Science.gov

Sample records for collagen fragmentation promotes

  1. Collagen Fragmentation Promotes Oxidative Stress and Elevates Matrix Metalloproteinase-1 in Fibroblasts in Aged Human Skin

    PubMed Central

    Fisher, Gary J.; Quan, Taihao; Purohit, Trupta; Shao, Yuan; Cho, Moon Kyun; He, Tianyuan; Varani, James; Kang, Sewon; Voorhees, John J.

    2009-01-01

    Aged human skin is fragile because of fragmentation and loss of type I collagen fibrils, which confer strength and resiliency. We report here that dermal fibroblasts express increased levels of collagen-degrading matrix metalloproteinases-1 (MMP-1) in aged (>80 years old) compared with young (21 to 30 years old) human skin in vivo. Transcription factor AP-1 and α2β1 integrin, which are key regulators of MMP-1 expression, are also elevated in fibroblasts in aged human skin in vivo. MMP-1 treatment of young skin in organ culture causes fragmentation of collagen fibrils and reduces fibroblast stretch, consistent with reduced mechanical tension, as observed in aged human skin. Limited fragmentation of three-dimensional collagen lattices with exogenous MMP-1 also reduces fibroblast stretch and mechanical tension. Furthermore, fibroblasts cultured in fragmented collagen lattices express elevated levels of MMP-1, AP-1, and α2β1 integrin. Importantly, culture in fragmented collagen raises intracellular oxidant levels and treatment with antioxidant MitoQ10 significantly reduces MMP-1 expression. These data identify positive feedback regulation that couples age-dependent MMP-1-catalyzed collagen fragmentation and oxidative stress. We propose that this self perpetuating cycle promotes human skin aging. These data extend the current understanding of the oxidative theory of aging beyond a cellular-centric view to include extracellular matrix and the critical role that connective tissue microenvironment plays in the biology of aging. PMID:19116368

  2. Unusual Fragmentation Pathways in Collagen Glycopeptides

    NASA Astrophysics Data System (ADS)

    Perdivara, Irina; Perera, Lalith; Sricholpech, Marnisa; Terajima, Masahiko; Pleshko, Nancy; Yamauchi, Mitsuo; Tomer, Kenneth B.

    2013-07-01

    Collagens are the most abundant glycoproteins in the body. One characteristic of this protein family is that the amino acid sequence consists of repeats of three amino acids -(X—Y—Gly)n. Within this motif, the Y residue is often 4-hydroxyproline (HyP) or 5-hydroxylysine (HyK). Glycosylation in collagen occurs at the 5-OH group in HyK in the form of two glycosides, galactosylhydroxylysine (Gal-HyK) and glucosyl galactosylhydroxylysine (GlcGal-HyK). In collision induced dissociation (CID), collagen tryptic glycopeptides exhibit unexpected gas-phase dissociation behavior compared to typical N- and O-linked glycopeptides (i.e., in addition to glycosidic bond cleavages, extensive cleavages of the amide bonds are observed). The Gal- or GlcGal- glycan modifications are largely retained on the fragment ions. These features enable unambiguous determination of the amino acid sequence of collagen glycopeptides and the location of the glycosylation site. This dissociation pattern was consistent for all analyzed collagen glycopeptides, regardless of their length or amino acid composition, collagen type or tissue. The two fragmentation pathways—amide bond and glycosidic bond cleavage—are highly competitive in collagen tryptic glycopeptides. The number of ionizing protons relative to the number of basic sites (i.e., Arg, Lys, HyK, and N-terminus) is a major driving force of the fragmentation. We present here our experimental results and employ quantum mechanics calculations to understand the factors enhancing the labile character of the amide bonds and the stability of hydroxylysine glycosides in gas phase dissociation of collagen glycopeptides.

  3. Unusual fragmentation pathways in collagen glycopeptides

    PubMed Central

    Perdivara, Irina; Perera, Lalith; Sricholpech, Marnisa; Terajima, Masahiko; Pleshko, Nancy; Yamauchi, Mitsuo; Tomer, Kenneth B.

    2013-01-01

    Collagens are the most abundant glycoproteins in the body. One characteristic of this protein family is that the amino acid sequence consists of repeats of three amino acids –(X—Y—Gly)n. Within this motif, the Y residue is often 4-hydroxyproline (HyP) or 5-hydroxylysine (HyK). Glycosylation in collagen occurs at the 5-OH group in HyK in the form of two glycosides, galactosylhydroxylysine (Gal-HyK) and glucosyl galactosylhydroxylysine (GlcGal-HyK). In collision induced dissociation (CID), collagen tryptic glycopeptides exhibit unexpected gas-phase dissociation behavior compared to typical N- and O-linked glycopeptides, i.e. in addition to glycosidic bond cleavages, extensive cleavages of the amide bonds are observed. The Gal- or GlcGal- glycan modifications are largely retained on the fragment ions. These features enable unambiguous determination of the amino acid sequence of collagen glycopeptides and the location of the glycosylation site. This dissociation pattern was consistent for all analyzed collagen glycopeptides, regardless of their length or amino acid composition, collagen type or tissue. The two fragmentation pathways – amide bond and glycosidic bond cleavage – are highly competitive in collagen tryptic glycopeptides. The number of ionizing protons relative to the number of basic sites (i.e. Arg, Lys, HyK and N-terminus) is a major driving force of the fragmentation. We present here our experimental results and employ quantum mechanics calculations, to understand the factors enhancing the labile character of the amide bonds and the stability of hydroxylysine glycosides in gas phase dissociation of collagen glycopeptides. PMID:23633013

  4. Type I Collagen and Collagen Mimetics as Angiogenesis Promoting Superpolymers

    SciTech Connect

    Twardowski, T.; Fertala, A.; Orgel, J.P.R.O.; San Antonio, J.D.

    2008-07-18

    Angiogenesis, the development of blood vessels from the pre-existing vasculature, is a key component of embryogenesis and tissue regeneration. Angiogenesis also drives pathologies such as tumor growth and metastasis, and hemangioma development in newborns. On the other hand, promotion of angiogenesis is needed in tissues with vascular insufficiencies, and in bioengineering, to endow tissue substitutes with appropriate microvasculatures. Therefore, much research has focused on defining mechanisms of angiogenesis, and identifying pro- and anti-angiogenic molecules. Type I collagen, the most abundant protein in humans, potently stimulates angiogenesis in vitro and in vivo. Crucial to its angiogenic activity appears to be ligation and possibly clustering of endothelial cell (EC) surface {alpha}1{beta}1/{alpha}2{beta}1 integrin receptors by the GFPGER502-507 sequence of the collagen fibril. However, additional aspects of collagen structure and function that may modulate its angiogenic properties are discussed. Moreover, type I collagen and fibrin, another angiogenic polymer, share several structural features. These observations suggest strategies for creating 'angiogenic superpolymers', including: modifying type I collagen to influence its biological half-life, immunogenicity, and integrin binding capacity; genetically engineering fibrillar collagens to include additional integrin binding sites or angiogenic determinants, and remove unnecessary or deleterious sequences without compromising fibril integrity; and exploring the suitability of poly(ortho ester), PEG-lysine copolymer, tubulin, and cholesteric cuticle as collagen mimetics, and suggesting means of modifying them to display ideal angiogenic properties. The collagenous and collagen mimetic angiogenic superpolymers described here may someday prove useful for many applications in tissue engineering and human medicine.

  5. Exposure to Mimivirus Collagen Promotes Arthritis

    PubMed Central

    Shah, Nikunj; Hülsmeier, Andreas J.; Hochhold, Nina; Neidhart, Michel; Gay, Steffen

    2014-01-01

    Collagens, the most abundant proteins in animals, also occur in some recently described nucleocytoplasmic large DNA viruses such as Mimiviridae, which replicate in amoebae. To clarify the impact of viral collagens on the immune response of animals exposed to Mimiviridae, we have investigated the localization of collagens in Acanthamoeba polyphaga mimivirus particles and the response of mice to immunization with mimivirus particles. Using protein biotinylation, we have first shown that viral collagen encoded by open reading frame L71 is present at the surface of mimivirus particles. Exposure to mimivirus collagens elicited the production of anti-collagen antibodies in DBA/1 mice immunized intradermally with mimivirus protein extracts. This antibody response also targeted mouse collagen type II and was accompanied by T-cell reactivity to collagen and joint inflammation, as observed in collagen-induced arthritis following immunization of mice with bovine collagen type II. The broad distribution of nucleocytoplasmic large DNA viruses in the environment suggests that humans are constantly exposed to such large virus particles. A survey of blood sera from healthy human subjects and from rheumatoid arthritis patients indeed demonstrated that 30% of healthy-subject and 36% of rheumatoid arthritis sera recognized the major mimivirus capsid protein L425. Moreover, whereas 6% of healthy-subject sera recognized the mimivirus collagen protein L71, 22% of rheumatoid arthritis sera were positive for mimivirus L71. Accordingly, our study shows that environmental exposure to mimivirus represents a risk factor in triggering autoimmunity to collagens. PMID:24173233

  6. Plasma clot-promoting effect of collagen in relation to collagen-platelet interaction

    SciTech Connect

    Gentry, P.A.; Schneider, M.D.; Miller, J.K.

    1981-01-01

    The hemostatic function of several acid-soluble collagen preparations and a fibrillar-form collagen preparation have been compared. Pepsin-treated acid-soluble collagen isolated from burro and horse aortic tissue and acid-soluble colagen isolated from human umbilical cord readily promoted platelet aggregation, but failed to activate the coagulation mechanism even after prolonged incubation with plasma at 37 C. By contrast, fibrillar-form collagen isolated from burro aorta was both an efficient stimulant for the induction of platelet aggregation and a potent clot-promoting agent. Similar results were found for all the collagen preparations irrespective of whether the studies were conducted with sheep or with burro plasma. Heat denaturation studies showed that the hemostatic functon of the fibrillar-form colagen was dependent on an intact tirple-helical structure.

  7. 7S Fragment of Type IV Collagen as a Serum Marker of Canine Liver Fibrosis.

    PubMed

    Glińska-Suchocka, K; Orłowska, A; Kubiak, K; Spużak, J; Jankowski, M

    2016-09-01

    The aim of this study was to assess whether the serum levels of the 7S fragment of type IV collagen may aid in diagnosing liver fibrosis in dogs. The study was carried out on 20 dogs with liver disease. Serum levels of the 7S fragment of type IV collagen were measured in all dogs. The analysis showed that healthy dogs and dogs with type 1, 2 and 3 liver fibrosis had low serum concentrations of the 7S fragment of type IV collagen compared to dogs with type 4 liver fibrosis. The study revealed that the assessment of serum levels of the 7S fragment of type IV collagen is useful in the diagnosis of advanced liver fibrosis and cirrhosis.

  8. Collagen-derived matricryptins promote inhibitory nerve terminal formation in the developing neocortex

    PubMed Central

    Su, Jianmin; Chen, Jiang; Lippold, Kumiko; Monavarfeshani, Aboozar; Carrillo, Gabriela Lizana; Jenkins, Rachel

    2016-01-01

    Inhibitory synapses comprise only ∼20% of the total synapses in the mammalian brain but play essential roles in controlling neuronal activity. In fact, perturbing inhibitory synapses is associated with complex brain disorders, such as schizophrenia and epilepsy. Although many types of inhibitory synapses exist, these disorders have been strongly linked to defects in inhibitory synapses formed by Parvalbumin-expressing interneurons. Here, we discovered a novel role for an unconventional collagen—collagen XIX—in the formation of Parvalbumin+ inhibitory synapses. Loss of this collagen results not only in decreased inhibitory synapse number, but also in the acquisition of schizophrenia-related behaviors. Mechanistically, these studies reveal that a proteolytically released fragment of this collagen, termed a matricryptin, promotes the assembly of inhibitory nerve terminals through integrin receptors. Collectively, these studies not only identify roles for collagen-derived matricryptins in cortical circuit formation, but they also reveal a novel paracrine mechanism that regulates the assembly of these synapses. PMID:26975851

  9. A graphene oxide-based FRET sensor for rapid and specific detection of unfolded collagen fragments.

    PubMed

    Sun, Xiuxia; Fan, Jun; Zhang, Yuping; Chen, Hongli; Zhao, Yongqing; Xiao, Jianxi

    2016-05-15

    The unstructured collagen species plays a critical role in a variety of important biological processes as well as pathological conditions. In order to develop novel diagnosis and therapies for collagen-related diseases, it is essential to construct simple and efficient methods to detect unfolded collagen fragments. We therefore have designed a FITC-labeled collagen mimic triple helical peptide, whose adsorption on the surface of GO effectively quenches its fluorescence. The newly constructed GO/FITC-GPO complex specifically detects unstructured collagen fragments, but not fully folded triple helix species. The detection shows a clear preference for the collagen targets with complementary GPO-rich sequences. The conformation-sensitive, sequence-specific GO-based approach can be applied as an efficient biosensor for rapid detection of unfolded collagen fragments at nM level, and may have great potential in drug screening for inhibitors of unfolded collagen. It may provide a prototype to develop GO-based assays to detect other important unstructured proteins involved in diseases.

  10. Vaccination with a recombinant fragment of collagen adhesin provides protection against Staphylococcus aureus-mediated septic death.

    PubMed Central

    Nilsson, I M; Patti, J M; Bremell, T; Höök, M; Tarkowski, A

    1998-01-01

    Staphylococcus aureus is a major cause of nosocomial and community-acquired infections. Morbidity and mortality due to infections such as sepsis, osteomyelitis, septic arthritis, and invasive endocarditis remain high despite the use of antibiotics. The emergence of antibiotic resistant super bugs mandates that alternative strategies for the prevention and treatment of S. aureus infections are developed. We investigated the ability of vaccination with a recombinant fragment of the S. aureus collagen adhesin to protect mice against sepsis-induced death. Actively immunized NMRI mice were intravenously inoculated with the S. aureus clinical isolate strain Phillips. 14 d after inoculation, mortality in the collagen adhesin-vaccinated group was only 13%, compared with 87% in the control antigen immunized group (P < 0.001). To determine if the protective effect was antibody mediated, we passively immunized naive mice with collagen adhesin-specific antibodies. Similar to the active immunization strategy, passive transfer of collagen adhesin-specific antibodies protected mice against sepsis-induced death. In vitro experiments indicated that S. aureus opsonized with sera from collagen adhesin immunized mice promoted phagocytic uptake and enhanced intracellular killing compared with bacteria opsonized with sera from control animals. These results indicate that the collagen adhesin is a viable target in the development of immunotherapeutics against S. aureus. PMID:9637697

  11. Collagen fibril diameter and alignment promote the quiescent keratocyte phenotype

    PubMed Central

    Muthusubramaniam, Lalitha; Peng, Lily; Zaitseva, Tatiana; Paukshto, Michael; Martin, George R.; Desai, Tejal

    2011-01-01

    In this study, we investigated how matrix nanotopography affects corneal fibroblast phenotype and matrix synthesis. To this end, corneal fibroblasts isolated from bovine corneas were grown on collagen nanofiber scaffolds of different diameters and alignment – 30 nm aligned fibrils (30A), 300 nm or larger aligned fibrils (300A), and 30 nm nonaligned fibrils (30NA) in comparison to collagen coated flat glass substrates (FC). Cell morphology was visualized using confocal microscopy. Quantitative PCR was used to measure expression levels of six target genes: the corneal crystallin - transketolase (TKT), the myofibroblast marker - α-smooth muscle actin (SMA), and four matrix proteins - collagen 1 (COL1), collagen 3 (COL3), fibronectin (FN) and biglycan. It was found that SMA expression was down-regulated and TKT expression was increased on all three collagen nanofiber substrates, compared to the FC control substrates. However, COL3 and biglycan expression was also significantly increased on 300A, compared to the FC substrates. Thus matrix nanotopography down-regulates the fibrotic phenotype, promotes formation of the quiescent keratocyte phenotype and influences matrix synthesis. These results have significant implications for the engineering of corneal replacements and for promoting regenerative healing of the cornea after disease and/or injury. PMID:22213336

  12. Thermochemical Fragment Energy Method for Biomolecules: Application to a Collagen Model Peptide.

    PubMed

    Suárez, Ernesto; Díaz, Natalia; Suárez, Dimas

    2009-06-09

    Herein, we first review different methodologies that have been proposed for computing the quantum mechanical (QM) energy and other molecular properties of large systems through a linear combination of subsystem (fragment) energies, which can be computed using conventional QM packages. Particularly, we emphasize the similarities among the different methods that can be considered as variants of the multibody expansion technique. Nevertheless, on the basis of thermochemical arguments, we propose yet another variant of the fragment energy methods, which could be useful for, and readily applicable to, biomolecules using either QM or hybrid quantum mechanical/molecular mechanics methods. The proposed computational scheme is applied to investigate the stability of a triple-helical collagen model peptide. To better address the actual applicability of the fragment QM method and to properly compare with experimental data, we compute average energies by carrying out single-point fragment QM calculations on structures generated by a classical molecular dynamics simulation. The QM calculations are done using a density functional level of theory combined with an implicit solvent model. Other free-energy terms such as attractive dispersion interactions or thermal contributions are included using molecular mechanics. The importance of correcting both the intermolecular and intramolecular basis set superposition error (BSSE) in the QM calculations is also discussed in detail. On the basis of the favorable comparison of our fragment-based energies with experimental data and former theoretical results, we conclude that the fragment QM energy strategy could be an interesting addition to the multimethod toolbox for biomolecular simulations in order to investigate those situations (e.g., interactions with metal clusters) that are beyond the range of applicability of common molecular mechanics methods.

  13. Expression of catalytically active Matrix Metalloproteinase-1 in dermal fibroblasts induces collagen fragmentation and functional alterations that resemble aged human skin

    PubMed Central

    Xia, Wei; Hammerberg, Craig; Li, Yong; He, Tianyuan; Quan, Taihao; Voorhees, John J; Fisher, Gary J

    2013-01-01

    Summary Increased expression of matrix metalloproteinase-1 (MMP-1) and reduced production of type I collagen by dermal fibroblasts are prominent features of aged human skin. We have proposed that MMP-1-mediated collagen fibril fragmentation is a key driver of age-related decline of skin function. To investigate this hypothesis, we constructed, characterized, and expressed constitutively active MMP-1 mutant (MMP-1 V94G) in adult human skin in organ culture and fibroblasts in three dimensional collagen lattice cultures. Expression of MMP-1 V94G in young skin in organ culture caused fragmentation and ultrastructural alterations of collagen fibrils similar to those observed in aged human skin in vivo. Expression of MMP-1 V94G in dermal fibroblasts cultured in three-dimensional collagen lattices caused substantial collagen fragmentation, which was markedly reduced by MMP-1 siRNA-mediated knockdown or MMP inhibitor MMI270. Importantly, fibroblasts cultured in MMP-1 V94G-fragmented collagen lattices displayed many alterations observed in fibroblasts in aged human skin, including reduced cytoplasmic area, disassembled actin cytoskeleton, impaired TGF-β pathway, and reduced collagen production. These results support the concept that MMP-1-mediated fragmentation of dermal collagen fibrils alters the morphology and function of dermal fibroblasts, and provide a foundation for understanding specific mechanisms that link collagen fibril fragmentation to age-related decline of fibroblast function. PMID:23601157

  14. Differential effects of parathyroid hormone fragments on collagen gene expression in chondrocytes

    PubMed Central

    1996-01-01

    The effect of parathyroid hormone (PTH) in vivo after secretion by the parathyroid gland is mediated by bioactive fragments of the molecule. To elucidate their possible role in the regulation of cartilage matrix metabolism, the influence of the amino-terminal (NH2-terminal), the central, and the carboxyl-terminal (COOH-terminal) portion of the PTH on collagen gene expression was studied in a serum free cell culture system of fetal bovine and human chondrocytes. Expression of alpha1 (I), alpha1 (II), alpha1 (III), and alpha1 (X) mRNA was investigated by in situ hybridization and quantified by Northern blot analysis. NH2- terminal and mid-regional fragments containing a core sequence between amino acid residues 28-34 of PTH induced a significant rise in alpha1 (II) mRNA in proliferating chondrocytes. In addition, the COOH-terminal portion (aa 52-84) of the PTH molecule was shown to exert a stimulatory effect on alpha1 (II) and alpha1 (X) mRNA expression in chondrocytes from the hypertrophic zone of bovine epiphyseal cartilage. PTH peptides harboring either the functional domain in the central or COOH-terminal region of PTH can induce cAMP independent Ca2+ signaling in different subsets of chondrocytes as assessed by microfluorometry of Fura-2/AM loaded cells. These results support the hypothesis that different hormonal effects of PTH on cartilage matrix metabolism are exerted by distinct effector domains and depend on the differentiation stage of the target cell. PMID:8922395

  15. Three Dimensional Collagen Scaffold Promotes Intrinsic Vascularisation for Tissue Engineering Applications.

    PubMed

    Chan, Elsa C; Kuo, Shyh-Ming; Kong, Anne M; Morrison, Wayne A; Dusting, Gregory J; Mitchell, Geraldine M; Lim, Shiang Y; Liu, Guei-Sheung

    2016-01-01

    Here, we describe a porous 3-dimensional collagen scaffold material that supports capillary formation in vitro, and promotes vascularization when implanted in vivo. Collagen scaffolds were synthesized from type I bovine collagen and have a uniform pore size of 80 μm. In vitro, scaffolds seeded with primary human microvascular endothelial cells suspended in human fibrin gel formed CD31 positive capillary-like structures with clear lumens. In vivo, after subcutaneous implantation in mice, cell-free collagen scaffolds were vascularized by host neovessels, whilst a gradual degradation of the scaffold material occurred over 8 weeks. Collagen scaffolds, impregnated with human fibrinogen gel, were implanted subcutaneously inside a chamber enclosing the femoral vessels in rats. Angiogenic sprouts from the femoral vessels invaded throughout the scaffolds and these degraded completely after 4 weeks. Vascular volume of the resulting constructs was greater than the vascular volume of constructs from chambers implanted with fibrinogen gel alone (42.7±5.0 μL in collagen scaffold vs 22.5±2.3 μL in fibrinogen gel alone; p<0.05, n = 7). In the same model, collagen scaffolds seeded with human adipose-derived stem cells (ASCs) produced greater increases in vascular volume than did cell-free collagen scaffolds (42.9±4.0 μL in collagen scaffold with human ASCs vs 25.7±1.9 μL in collagen scaffold alone; p<0.05, n = 4). In summary, these collagen scaffolds are biocompatible and could be used to grow more robust vascularized tissue engineering grafts with improved the survival of implanted cells. Such scaffolds could also be used as an assay model for studies on angiogenesis, 3-dimensional cell culture, and delivery of growth factors and cells in vivo.

  16. Collagen fibril surface displays a constellation of sites capable of promoting fibril assembly, stability, and hemostasis

    SciTech Connect

    Orgel, J.P.; Antipova, O.; Sagi, I.; Bitler, A.; Qiu, D.; Wang, R.; Xu, Y.; San Antonio, J.D.

    2011-12-14

    Fibrillar collagens form the structural basis of organs and tissues including the vasculature, bone, and tendon. They are also dynamic, organizational scaffolds that present binding and recognition sites for ligands, cells, and platelets. We interpret recently published X-ray diffraction findings and use atomic force microscopy data to illustrate the significance of new insights into the functional organization of the collagen fibril. These data indicate that collagen's most crucial functional domains localize primarily to the overlap region, comprising a constellation of sites we call the 'master control region.' Moreover, the collagen's most exposed aspect contains its most stable part - the C-terminal region that controls collagen assembly, cross-linking, and blood clotting. Hidden beneath the fibril surface exists a constellation of 'cryptic' sequences poised to promote hemostasis and cell - collagen interactions in tissue injury and regeneration. These findings begin to address several important, and previously unresolved, questions: How functional domains are organized in the fibril, which domains are accessible, and which require proteolysis or structural trauma to become exposed? Here we speculate as to how collagen fibrillar organization impacts molecular processes relating to tissue growth, development, and repair.

  17. Collagen fibril surface displays a constellation of sites capable of promoting fibril assembly, stability, and hemostasis.

    PubMed

    Orgel, J P R O; Antipova, O; Sagi, I; Bitler, A; Qiu, D; Wang, R; Xu, Y; San Antonio, J D

    2011-02-01

    Fibrillar collagens form the structural basis of organs and tissues including the vasculature, bone, and tendon. They are also dynamic, organizational scaffolds that present binding and recognition sites for ligands, cells, and platelets. We interpret recently published X-ray diffraction findings and use atomic force microscopy data to illustrate the significance of new insights into the functional organization of the collagen fibril. These data indicate that collagen's most crucial functional domains localize primarily to the overlap region, comprising a constellation of sites we call the "master control region." Moreover, the collagen's most exposed aspect contains its most stable part-the C-terminal region that controls collagen assembly, cross-linking, and blood clotting. Hidden beneath the fibril surface exists a constellation of "cryptic" sequences poised to promote hemostasis and cell-collagen interactions in tissue injury and regeneration. These findings begin to address several important, and previously unresolved, questions: How functional domains are organized in the fibril, which domains are accessible, and which require proteolysis or structural trauma to become exposed? Here we speculate as to how collagen fibrillar organization impacts molecular processes relating to tissue growth, development, and repair.

  18. Promotion of wound collagen formation in normal and diabetic mice by quadrol.

    PubMed

    Bhide, M V; Dunphy, M J; Mirkopulos, N; Smith, D J

    1988-01-01

    The rate of collagen deposition in implanted polytetrafluoroethylene (PTFE) tubing in non-diabetic and streptozotocin-induced (STZ) diabetic mice was measured during 14 days post-wounding. At the time of implantation, test groups received injections of either Quadrol [N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine], glucan, or buffer in an area adjacent to the wound site. The accumulation of collagen in the implants of Quadrol-treated non-diabetic animals was more than 200% above control on days 8 to 11 and was 50% above control on day 14. In Quadrol-treated STZ-diabetic mice, the collagen accumulation gradually increased from 50% above control on day 8 to 200% above control on day 14. Treatment with glucan increased the collagen accumulation in normal mice 200 to 300% above control from days 8 to 11 respectively and then 30% above control on day 14. Collagen accumulation in the implants of the glucan-treated STZ-diabetic mice was similar to the control group. These results indicate that Quadrol promotes in vivo collagen synthesis and that Quadrol may be effective as a stimulator of wound healing in diabetic and non-diabetic animals.

  19. Adhesion to Vitronectin and Collagen I Promotes Osteogenic Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Plopper, George E.

    2004-01-01

    The mechanisms controlling human mesenchymal stem cells (hMSC) differentiation are not entirely understood. We hypothesized that the contact with extracellular matrix (ECM) proteins normally found in bone marrow would promote osteogenic differentiation of hMSC in vitro. To test this hypothesis, we cultured hMSC on purified ECM proteins in the presence or absence of soluble osteogenic supplements, and assayed for the presence of well-established differentiation markers (production of mineralized matrix, osteopontin, osteocalcin, collagen I, and alkaline phosphatase expression) over a 16-day time course. We found that hMSC adhere to ECM proteins with varying affinity (fibronectin>collagen I≥collagen IV≥vitronectin>laminin-1) and through distinct integrin receptors. Importantly, the greatest osteogenic differentiation occurred in cells plated on vitronectin and collagen I and almost no differentiation took place on fibronectin or uncoated plates. We conclude that the contact with vitronectin and collagen I promotes the osteogenic differentiation of hMSC, and that ECM contact alone may be sufficient to induce differentiation in these cells. PMID:15123885

  20. Breast Tumor-Generated Type 1 Collagen Breakdown Fragments Act as Matrikines to Drive Osteolysis

    DTIC Science & Technology

    2009-09-01

    triplicate. A dose - response curve will be determined using different concentrations of matrikine fragments. Cathepsin K, PTHrP, TNF-alpha, GM...in triplicate. A dose - response curve will be determined using different concentrations of matrikine fragments. Cathepsin K, PTHrP, TNF-alpha, GM

  1. Inhibition of bone collagen synthesis by the tumor promoter phorbol 12-myristate 13-acetate.

    PubMed

    Feyen, J H; Petersen, D N; Kream, B E

    1988-04-01

    We characterized the effect of the tumor promoter phorbol 12-myristate 13-acetate (PMA) on osteoblast function and DNA synthesis in 21-day-old fetal rat calvaria maintained in organ culture. Protein synthesis was determined by measuring the incorporation of [3H]proline into collagenase-digestible (CDP) and noncollagen protein (NCP), respectively. Alkaline phosphatase activity was assessed as the release of p-nitrophenol from p-nitrophenol phosphate. DNA synthesis was determined by the incorporation of [3H]thymidine into acid-insoluble bone and total DNA content. PMA at 3-100 ng/ml (4-133 nM) caused a dose-related inhibition of collagen synthesis that was observed 6 hours after adding PMA to calvaria. PMA inhibited collagen synthesis in the osteoblast-rich central bone of calvaria but did not alter collagen synthesis in the periosteum. There was little effect of PMA on noncollagen protein synthesis in the central bone or periosteum. Phorbol esters that do not promote tumor formation in vivo did not alter collagen synthesis in calvaria. PMA stimulated prostaglandin E2 (PGE2) production in calvaria, but indomethacin did not alter the inhibitory effect of PMA on bone collagen synthesis. PMA decreased alkaline phosphatase activity measured after 48 hr of culture and increased the incorporation of [3H]thymidine into bone and DNA content after 96 hr of culture. These data indicate that PMA inhibits collagen synthesis and alkaline phosphatase activity, while stimulating DNA synthesis, suggesting that activation of protein kinase C might regulate osteoblast function and bone cell replication.

  2. Collagen nerve conduits promote enhanced axonal regeneration, schwann cell association, and neovascularization compared to silicone conduits.

    PubMed

    Kemp, Stephen W P; Syed, Shahbaz; Walsh, Walsh; Zochodne, Douglas W; Midha, Rajiv

    2009-08-01

    Peripheral nerve regeneration within guidance conduits involves a critical association between regenerating axons, Schwann cells (SCs), and neovascularization. However, it is currently unknown if there is a greater association between these factors in nonpermeable versus semipermeable nerve guide conduits. We therefore examined this collaboration in both silicone- and collagen-based nerve conduits in both 5- and 10-mm-injury gaps in rat sciatic nerves. Results indicate that collagen conduits promoted enhanced axonal and SC regeneration and association when compared to silicone conduits in the shorter 5-mm-gap model. In addition, collagen tubes displayed enhanced neovascularization over silicone conduits, suggesting that these three factors are intimately related in successful peripheral nerve regeneration. At later time points (1- and 2-month analysis) in a 10-mm-gap model, collagen tubes displayed enhanced axonal regeneration, myelination, and vascularization when compared to silicone-based conduits. Results from these studies suggest that regenerating cables within collagen-based conduits are revascularized earlier and more completely, which in turn enhances peripheral nerve regeneration through these nerve guides as compared to silicone conduits.

  3. The electron-impact promoted fragmentation of aurone epoxides.

    NASA Technical Reports Server (NTRS)

    Brady, B. A.; O'Sullivan, W. I.; Duffield, A. M.

    1972-01-01

    The mass spectra of six aurone epoxides have been rationalized with the aid of high resolution mass spectrometry and metastable ion evidence. These compounds fragment in a well defined manner and mechanisms are proposed for the formation of their characteristic ions. Some similarity was observed between the mass spectra of 6-methoxyaurone epoxide (II), 4-hydroxy-7-methoxy-3-phenylcoumarin (VII) and 7-methoxyflavonol (IX). The possibility that VII and IX are intermediates in the fragmentation of epoxide II is discussed. Thermal rearrangement of aurone epoxide II was shown to yield the corresponding flavonol IX and coumarin VII.

  4. ROCK signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth.

    PubMed

    Rath, Nicola; Morton, Jennifer P; Julian, Linda; Helbig, Lena; Kadir, Shereen; McGhee, Ewan J; Anderson, Kurt I; Kalna, Gabriela; Mullin, Margaret; Pinho, Andreia V; Rooman, Ilse; Samuel, Michael S; Olson, Michael F

    2017-02-01

    Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer death; identifying PDAC enablers may reveal potential therapeutic targets. Expression of the actomyosin regulatory ROCK1 and ROCK2 kinases increased with tumor progression in human and mouse pancreatic tumors, while elevated ROCK1/ROCK2 expression in human patients, or conditional ROCK2 activation in a Kras(G12D)/p53(R172H) mouse PDAC model, was associated with reduced survival. Conditional ROCK1 or ROCK2 activation promoted invasive growth of mouse PDAC cells into three-dimensional collagen matrices by increasing matrix remodeling activities. RNA sequencing revealed a coordinated program of ROCK-induced genes that facilitate extracellular matrix remodeling, with greatest fold-changes for matrix metalloproteinases (MMPs) Mmp10 and Mmp13 MMP inhibition not only decreased collagen degradation and invasion, but also reduced proliferation in three-dimensional contexts. Treatment of Kras(G12D)/p53(R172H) PDAC mice with a ROCK inhibitor prolonged survival, which was associated with increased tumor-associated collagen. These findings reveal an ancillary role for increased ROCK signaling in pancreatic cancer progression to promote extracellular matrix remodeling that facilitates proliferation and invasive tumor growth.

  5. Biomimetic LBL structured nanofibrous matrices assembled by chitosan/collagen for promoting wound healing.

    PubMed

    Huang, Rong; Li, Wangzhou; Lv, Xiaoxing; Lei, Zhanjun; Bian, Yongqian; Deng, Hongbing; Wang, Hongjun; Li, Jinqing; Li, Xueyong

    2015-06-01

    This paper reports the fabrication of biomimetic nanofibrous matrices via co-electrospinning of polycaprolactone (PCL)/cellulose acetate (CA) and layer-by-layer self-assembly (LBL) of positively charged chitosan (CS) and negatively charged Type Ⅰ collagen on the nanofibrous matrix. FE-SEM images indicate that the average fiber diameter increased from 392 to 541 nm when the coating bilayers varied from 5 to 20.5. Besides, the excellent biocompatibility and enhanced attachment and spreading of normal human dermal fibroblasts (NHDFs) of prepared nanofibrous mats are confirmed by MTT and SEM results. Furthermore, the LBL structured (CS/collagen)n nanofibrous mats greatly improve the cell migration in vitro, promote re-epithelialization and vascularization in vivo, and up-regulate the expression of collagen Ⅳ and α-tubulin, as well as the Integrin β1 and phosphorylation of focal adhesion kinase (FAK) at Tyr-397. The levels of expressed protein are significantly enhanced with increasing coating bilayers via immunohistochemistry and western blotting analyses. Collectively, these results suggest that the LBL structured biomimetic nanofibrous matrices may enhance cell migration and further promote the skin regeneration by up-regulating the secretion of ECM protein and triggering Integrin/FAK signaling pathway, which demonstrate the potential use of the nanofibrous mats to rapidly restore the structural and functional properties of wounded skin.

  6. rFN/Cad-11-Modified Collagen Type II Biomimetic Interface Promotes the Adhesion and Chondrogenic Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Guo, Hongfeng; Zhang, Yuan; Li, Zhengsheng; Kang, Fei; Yang, Bo; Kang, Xia; Wen, Can; Yan, Yanfei; Jiang, Bo; Fan, Yujiang

    2013-01-01

    Properties of the cell-material interface are determining factors in the successful function of cells for cartilage tissue engineering. Currently, cell adhesion is commonly promoted through the use of polypeptides; however, due to their lack of complementary or modulatory domains, polypeptides must be modified to improve their ability to promote adhesion. In this study, we utilized the principle of matrix-based biomimetic modification and a recombinant protein, which spans fragments 7–10 of fibronectin module III (heterophilic motif ) and extracellular domains 1–2 of cadherin-11 (rFN/Cad-11) (homophilic motif ), to modify the interface of collagen type II (Col II) sponges. We showed that the designed material was able to stimulate cell proliferation and promote better chondrogenic differentiation of rabbit mesenchymal stem cells (MSCs) in vitro than both the FN modified surfaces and the negative control. Further, the Col II/rFN/Cad-11-MSCs composite stimulated cartilage formation in vivo; the chondrogenic effect of Col II alone was much less significant. These results suggested that the rFN/Cad-11-modified collagen type II biomimetic interface has dual biological functions of promoting adhesion and stimulating chondrogenic differentiation. This substance, thus, may serve as an ideal scaffold material for cartilage tissue engineering, enhancing repair of injured cartilage in vivo. PMID:23919505

  7. Distinct regions control transcriptional activation of the alpha1(VI) collagen promoter in different tissues of transgenic mice

    PubMed Central

    1996-01-01

    To identify regions involved in tissue specific regulation of transcription of the alpha1(VI) collagen chain, transgenic mice were generated carrying various portions of the gene's 5'-flanking sequence fused to the E. coli beta-galactosidase gene. Analysis of the transgene expression pattern by X-gal staining of embryos revealed that: (a) The proximal 0.6 kb of promoter sequence activated transcription in mesenchymal cells at sites of insertion of superficial muscular aponeurosis into the skin; tendons were also faintly positive. (b) The region between -4.0 and -5.4 kb from the transcription start site was required for activation of the transgene in nerves. It also drove expression in joints, in intervertebral disks, and in subepidermal and vibrissae mesenchyme. (c) The fragment comprised within -6.2 and -7.5 kb was necessary for high level transcription in skeletal muscle and meninges. Positive cells in muscle were mostly mononuclear and probably included connective tissue elements, although staining of myoblasts was not ruled out. This fragment also activated expression in joints, in intervertebral disks, and in subepidermal and vibrissae mesenchyme. (d) beta-Galactosidase staining in vibrissae induced by the sequences -4.0 to -5.4 and -6.2 to -7.5 was not coincident: with the latter sequence labeled nuclei were found mainly in the ventral and posterior quadrant, and, histologically, in the outer layers of mesenchyme surrounding and between the follicles, whereas with the former the remaining quadrants were positive and expressing cells were mostly in the inner layers of the dermal sheath. (e) Other tissues, notably lung, adrenal gland, digestive tract, which produce high amounts of collagen type VI, did not stain for beta-galactosidase. (f) Central nervous system and retina, in which the endogenous gene is inactive, expressed the lacZ transgene in most lines. The data suggest that transcription of alpha1(VI) in different tissues is regulated by distinct sequence

  8. Epithelial derived CTGF promotes breast tumor progression via inducing EMT and collagen I fibers deposition

    PubMed Central

    Zhao, Zhen; Sheng, Jianting; Wang, Jiang; Liu, Jiyong; Cui, Kemi; Chang, Jenny; Zhao, Hong; Wong, Stephen

    2015-01-01

    Interactions among tumor cells, stromal cells, and extracellular matrix compositions are mediated through cytokines during tumor progression. Our analysis of 132 known cytokines and growth factors in published clinical breast cohorts and our 84 patient-derived xenograft models revealed that the elevated connective tissue growth factor (CTGF) in tumor epithelial cells significantly correlated with poor clinical prognosis and outcomes. CTGF was able to induce tumor cell epithelial-mesenchymal transition (EMT), and promote stroma deposition of collagen I fibers to stimulate tumor growth and metastasis. This process was mediated through CTGF-tumor necrosis factor receptor I (TNFR1)-IκB autocrine signaling. Drug treatments targeting CTGF, TNFR1, and IκB signaling each prohibited the EMT and tumor progression. PMID:26318291

  9. Promoter engineering to optimize recombinant periplasmic Fab' fragment production in Escherichia coli.

    PubMed

    Schofield, Desmond M; Templar, Alex; Newton, Joseph; Nesbeth, Darren N

    2016-07-08

    Fab' fragments have become an established class of biotherapeutic over the last two decades. Likewise, developments in synthetic biology are providing ever more powerful techniques for designing bacterial genes, gene networks and entire genomes that can be used to improve industrial performance of cells used for production of biotherapeutics. We have previously observed significant leakage of an exogenous therapeutic Fab' fragment into the growth medium during high cell density cultivation of an Escherichia coli production strain. In this study we sought to apply a promoter engineering strategy to address the issue of Fab' fragment leakage and its consequent bioprocess challenges. We used site directed mutagenesis to convert the Ptac promoter, present in the plasmid, pTTOD-A33 Fab', to a Ptic promoter which has been shown by others to direct expression at a 35% reduced rate compared to Ptac . We characterized the resultant production trains in which either Ptic or Ptac promoters direct Fab' fragment expression. The Ptic promoter strain showed a 25-30% reduction in Fab' expression relative to the original Ptac strain. Reduced Fab' leakage and increased viability over the course of a fed-batch fermentation were also observed for the Ptic promoter strain. We conclude that cell design steps such as the Ptac to Ptic promoter conversion reported here, can yield significant process benefit and understanding with respect to periplasmic Fab' fragment production. It remains an open question as to whether the influence of transgene expression on periplasmic retention is mediated by global metabolic burden effects or periplasm overcapacity. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:840-847, 2016.

  10. Monomeric, porous type II collagen scaffolds promote chondrogenic differentiation of human bone marrow mesenchymal stem cells in vitro

    NASA Astrophysics Data System (ADS)

    Tamaddon, M.; Burrows, M.; Ferreira, S. A.; Dazzi, F.; Apperley, J. F.; Bradshaw, A.; Brand, D. D.; Czernuszka, J.; Gentleman, E.

    2017-03-01

    Osteoarthritis (OA) is a common cause of pain and disability and is often associated with the degeneration of articular cartilage. Lesions to the articular surface, which are thought to progress to OA, have the potential to be repaired using tissue engineering strategies; however, it remains challenging to instruct cell differentiation within a scaffold to produce tissue with appropriate structural, chemical and mechanical properties. We aimed to address this by driving progenitor cells to adopt a chondrogenic phenotype through the tailoring of scaffold composition and physical properties. Monomeric type-I and type-II collagen scaffolds, which avoid potential immunogenicity associated with fibrillar collagens, were fabricated with and without chondroitin sulfate (CS) and their ability to stimulate the chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells was assessed. Immunohistochemical analyses showed that cells produced abundant collagen type-II on type-II scaffolds and collagen type-I on type-I scaffolds. Gene expression analyses indicated that the addition of CS – which was released from scaffolds quickly – significantly upregulated expression of type II collagen, compared to type-I and pure type-II scaffolds. We conclude that collagen type-II and CS can be used to promote a more chondrogenic phenotype in the absence of growth factors, potentially providing an eventual therapy to prevent OA.

  11. Monomeric, porous type II collagen scaffolds promote chondrogenic differentiation of human bone marrow mesenchymal stem cells in vitro

    PubMed Central

    Tamaddon, M.; Burrows, M.; Ferreira, S. A.; Dazzi, F.; Apperley, J. F.; Bradshaw, A.; Brand, D. D.; Czernuszka, J.; Gentleman, E.

    2017-01-01

    Osteoarthritis (OA) is a common cause of pain and disability and is often associated with the degeneration of articular cartilage. Lesions to the articular surface, which are thought to progress to OA, have the potential to be repaired using tissue engineering strategies; however, it remains challenging to instruct cell differentiation within a scaffold to produce tissue with appropriate structural, chemical and mechanical properties. We aimed to address this by driving progenitor cells to adopt a chondrogenic phenotype through the tailoring of scaffold composition and physical properties. Monomeric type-I and type-II collagen scaffolds, which avoid potential immunogenicity associated with fibrillar collagens, were fabricated with and without chondroitin sulfate (CS) and their ability to stimulate the chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells was assessed. Immunohistochemical analyses showed that cells produced abundant collagen type-II on type-II scaffolds and collagen type-I on type-I scaffolds. Gene expression analyses indicated that the addition of CS – which was released from scaffolds quickly – significantly upregulated expression of type II collagen, compared to type-I and pure type-II scaffolds. We conclude that collagen type-II and CS can be used to promote a more chondrogenic phenotype in the absence of growth factors, potentially providing an eventual therapy to prevent OA. PMID:28256634

  12. Hydroxyethylene isosteres introduced in type II collagen fragments substantially alter the structure and dynamics of class II MHC A(q)/glycopeptide complexes.

    PubMed

    Lindgren, Cecilia; Andersson, Ida E; Berg, Lotta; Dobritzsch, Doreen; Ge, Changrong; Haag, Sabrina; Uciechowska, Urszula; Holmdahl, Rikard; Kihlberg, Jan; Linusson, Anna

    2015-06-14

    Class II major histocompatibility complex (MHC) proteins are involved in initiation of immune responses to foreign antigens via presentation of peptides to receptors of CD4(+) T-cells. An analogous presentation of self-peptides may lead to autoimmune diseases, such as rheumatoid arthritis (RA). The glycopeptide fragment CII259-273, derived from type II collagen, is presented by A(q) MHCII molecules in the mouse and has a key role in development of collagen induced arthritis (CIA), a validated model for RA. We have introduced hydroxyethylene amide bond isosteres at the Ala(261)-Gly(262) position of CII259-273. Biological evaluation showed that A(q) binding and T cell recognition were dramatically reduced for the modified glycopeptides, although static models predicted similar binding modes as the native type II collagen fragment. Molecular dynamics (MD) simulations demonstrated that introduction of the hydroxyethylene isosteres disturbed the entire hydrogen bond network between the glycopeptides and A(q). As a consequence the hydroxyethylene isosteric glycopeptides were prone to dissociation from A(q) and unfolding of the β1-helix. Thus, the isostere induced adjustment of the hydrogen bond network altered the structure and dynamics of A(q)/glycopeptide complexes leading to the loss of A(q) affinity and subsequent T cell response.

  13. Tricyclic Antidepressants Promote Ceramide Accumulation to Regulate Collagen Production in Human Hepatic Stellate Cells

    PubMed Central

    Chen, Jennifer Y.; Newcomb, Benjamin; Zhou, Chan; Pondick, Joshua V.; Ghoshal, Sarani; York, Samuel R.; Motola, Daniel L.; Coant, Nicolas; Yi, Jae Kyo; Mao, Cungui; Tanabe, Kenneth K.; Bronova, Irina; Berdyshev, Evgeny V.; Fuchs, Bryan C.; Hannun, Yusuf; Chung, Raymond T.; Mullen, Alan C.

    2017-01-01

    Activation of hepatic stellate cells (HSCs) in response to injury is a key step in hepatic fibrosis, and is characterized by trans-differentiation of quiescent HSCs to HSC myofibroblasts, which secrete extracellular matrix proteins responsible for the fibrotic scar. There are currently no therapies to directly inhibit hepatic fibrosis. We developed a small molecule screen to identify compounds that inactivate human HSC myofibroblasts through the quantification of lipid droplets. We screened 1600 compounds and identified 21 small molecules that induce HSC inactivation. Four hits were tricyclic antidepressants (TCAs), and they repressed expression of pro-fibrotic factors Alpha-Actin-2 (ACTA2) and Alpha-1 Type I Collagen (COL1A1) in HSCs. RNA sequencing implicated the sphingolipid pathway as a target of the TCAs. Indeed, TCA treatment of HSCs promoted accumulation of ceramide through inhibition of acid ceramidase (aCDase). Depletion of aCDase also promoted accumulation of ceramide and was associated with reduced COL1A1 expression. Treatment with B13, an inhibitor of aCDase, reproduced the antifibrotic phenotype as did the addition of exogenous ceramide. Our results show that detection of lipid droplets provides a robust readout to screen for regulators of hepatic fibrosis and have identified a novel antifibrotic role for ceramide. PMID:28322247

  14. Pyrazinamide potential effects on male rats DNA fragmentation, bone type I collagen amino acid composition, reproductive capability and posterity antenatal and postnatal development.

    PubMed

    Bondarenko, Larysa B; Shayakhmetova, Ganna M; Byshovets, Taisiya F; Kovalenko, Valentina M

    2012-01-01

    Current therapeutic regimens with first-line antitubercular agents are associated with a high rate of adverse effects which can lead to therapeutic failure. Understanding the nature and the severity of these effects is important for treatment optimization. The aim of present study was to investigate pyrazinamide potential effects on male rats DNA fragmentation, amino acid composition of bone type I collagen, reproductive capability and their posterity antenatal and postnatal development. Wistar albino male rats (160-200 g b.w.) were divided into three groups: I--received pyrazinamide per os at a dose of 1000 mg/kg b.w./day, II--at a dose of 2000 mg/kg b.w./day, in both groups it was given for 60 days; III--control. After 60 days of the experiment, rats of the experimental (groups I and II) and control groups were mated with intact virgin females. The amino acids contents of male rat bone type I collagens were determined using amino acid analyzer, epididymis and testis DNA fragmentation--electrophoretically; posterity antenatal development indices and postnatal development--by standard procedures. The study of pyrazinamide effects (administered in different doses) on males bone type I collagen amino acid contents and testis DNA fragmentation demonstrated the presence of dose-dependent pyrazinamide-mediated quantitative and qualitative changes in male rat reproductive organs DNA and extracellular matrix proteins in comparison with control. Changes in nucleic acids and proteins structure were accompanied by alterations in processes of fertilization (with intact females), embryogenesis and by lowering of posterity survival.

  15. Cryptic collagen IV promotes cell migration and adhesion in myeloid leukemia.

    PubMed

    Favreau, Amanda J; Vary, Calvin P H; Brooks, Peter C; Sathyanarayana, Pradeep

    2014-04-01

    Previously, we showed that discoidin domain receptor 1 (DDR1), a class of collagen-activated receptor tyrosine kinase (RTK) was highly upregulated on bone marrow (BM)-derived CD33+ leukemic blasts of acute myeloid leukemia (AML) patients. Herein as DDR1 is a class of collagen-activated RTK, we attempt to understand the role of native and remodeled collagen IV in BM microenvironment and its functional significance in leukemic cells. Exposure to denatured collagen IV significantly increased the migration and adhesion of K562 cells, which also resulted in increased activation of DDR1 and AKT. Further, levels of MMP9 were increased in conditioned media (CM) of denatured collagen IV exposed cells. Mass spectrometric liquid chromatography/tandem mass spectrometry QSTAR proteomic analysis revealed exclusive presence of Secretogranin 3 and InaD-like protein in the denatured collagen IV CM. Importantly, BM samples of AML patients exhibited increased levels of remodeled collagen IV compared to native as analyzed via anti-HUIV26 antibody. Taken together, for the first time, we demonstrate that remodeled collagen IV is a potent activator of DDR1 and AKT that also modulates both migration and adhesion of myeloid leukemia cells. Additionally, high levels of the HUIV26 cryptic collagen IV epitope are expressed in BM of AML patients. Further understanding of this phenomenon may lead to the development of therapeutic agents that directly modulate the BM microenvironment and attenuate leukemogenesis.

  16. Cross-linking of collagen I by tissue transglutaminase provides a promising biomaterial for promoting bone healing.

    PubMed

    Fortunati, Dario; Chau, David Yi San; Wang, Zhuo; Collighan, Russell John; Griffin, Martin

    2014-07-01

    Transglutaminases (TGs) stabilize proteins by the formation of ε(γ-glutamyl)lysine cross-links. Here, we demonstrate that the cross-linking of collagen I (COL I) by tissue transglutaminase (TG2) causes an alteration in the morphology and rheological properties of the collagen fibers. Human osteoblasts (HOB) attach, spread, proliferate, differentiate and mineralize more rapidly on this cross-linked matrix compared to native collagen. When seeded on cross-linked COL I, HOB are more resistant to the loss of cell spreading by incubation with RGD containing peptides and with α1, α2 and β1 integrin blocking antibodies. Following adhesion on cross-linked collagen, HOB show increased phosphorylation of the focal adhesion kinase, and increased expression of β1 and β3 integrins. Addition of human bone morphogenetic protein to HOB seeded on TG2 cross-linked COL I enhanced the expression of the differentiation marker bone alkaline phosphatase when compared to cross-linked collagen alone. In summary, the use of TG2-modified COL I provides a promising new scaffold for promoting bone healing.

  17. Type I pro-collagen promoting and anti-collagenase activities of Phyllanthus emblica extract in mouse fibroblasts.

    PubMed

    Chanvorachote, Pithi; Pongrakhananon, Varisa; Luanpitpong, Sudjit; Chanvorachote, Boontarika; Wannachaiyasit, Sumalee; Nimmannit, Ubonthip

    2009-01-01

    As part of an ongoing search for the novel pharmacological activities of Phyllanthus emblica, the present study has shown its type I collagen promoting and anti-collagenase effects on primary mouse fibroblast cells. At a concentration of 0.1 mg/ml, emblica extract significantly increased the type I pro-collagen level up to 1.65-fold, and 6.78-fold greater than that of an untreated control, determined by immunocytochemistry and Western blot analysis, respectively. Emblica extract caused an approximately 7.75-fold greater type I pro-collagen induction compared to the known herbal collagen enhancer asiaticoside at the same treatment concentration (0.1 mg/ml). Moreover, emblica extract inhibited collagenase activity in a dose-dependent manner. Maximal inhibition was observed (78.67 +/- 3.51%) at a concentration of 1 mg/ml. In summary, emblica extract has a promising pharmacological effect that benefits collagen synthesis and protects against its degradation and could be used as a natural anti-aging ingredient.

  18. Hyperbaric Oxygen Promotes Proximal Bone Regeneration and Organized Collagen Composition during Digit Regeneration

    PubMed Central

    Sammarco, Mimi C.; Simkin, Jennifer; Cammack, Alexander J.; Fassler, Danielle; Gossmann, Alexej; Marrero, Luis; Lacey, Michelle; Van Meter, Keith; Muneoka, Ken

    2015-01-01

    Oxygen is critical for optimal bone regeneration. While axolotls and salamanders have retained the ability to regenerate whole limbs, mammalian regeneration is restricted to the distal tip of the digit (P3) in mice, primates, and humans. Our previous study revealed the oxygen microenvironment during regeneration is dynamic and temporally influential in building and degrading bone. Given that regeneration is dependent on a dynamic and changing oxygen environment, a better understanding of the effects of oxygen during wounding, scarring, and regeneration, and better ways to artificially generate both hypoxic and oxygen replete microenvironments are essential to promote regeneration beyond wounding or scarring. To explore the influence of increased oxygen on digit regeneration in vivo daily treatments of hyperbaric oxygen were administered to mice during all phases of the entire regenerative process. Micro-Computed Tomography (μCT) and histological analysis showed that the daily application of hyperbaric oxygen elicited the same enhanced bone degradation response as two individual pulses of oxygen applied during the blastema phase. We expand past these findings to show histologically that the continuous application of hyperbaric oxygen during digit regeneration results in delayed blastema formation at a much more proximal location after amputation, and the deposition of better organized collagen fibers during bone formation. The application of sustained hyperbaric oxygen also delays wound closure and enhances bone degradation after digit amputation. Thus, hyperbaric oxygen shows the potential for positive influential control on the various phases of an epimorphic regenerative response. PMID:26452224

  19. Hyperbaric Oxygen Promotes Proximal Bone Regeneration and Organized Collagen Composition during Digit Regeneration.

    PubMed

    Sammarco, Mimi C; Simkin, Jennifer; Cammack, Alexander J; Fassler, Danielle; Gossmann, Alexej; Marrero, Luis; Lacey, Michelle; Van Meter, Keith; Muneoka, Ken

    2015-01-01

    Oxygen is critical for optimal bone regeneration. While axolotls and salamanders have retained the ability to regenerate whole limbs, mammalian regeneration is restricted to the distal tip of the digit (P3) in mice, primates, and humans. Our previous study revealed the oxygen microenvironment during regeneration is dynamic and temporally influential in building and degrading bone. Given that regeneration is dependent on a dynamic and changing oxygen environment, a better understanding of the effects of oxygen during wounding, scarring, and regeneration, and better ways to artificially generate both hypoxic and oxygen replete microenvironments are essential to promote regeneration beyond wounding or scarring. To explore the influence of increased oxygen on digit regeneration in vivo daily treatments of hyperbaric oxygen were administered to mice during all phases of the entire regenerative process. Micro-Computed Tomography (μCT) and histological analysis showed that the daily application of hyperbaric oxygen elicited the same enhanced bone degradation response as two individual pulses of oxygen applied during the blastema phase. We expand past these findings to show histologically that the continuous application of hyperbaric oxygen during digit regeneration results in delayed blastema formation at a much more proximal location after amputation, and the deposition of better organized collagen fibers during bone formation. The application of sustained hyperbaric oxygen also delays wound closure and enhances bone degradation after digit amputation. Thus, hyperbaric oxygen shows the potential for positive influential control on the various phases of an epimorphic regenerative response.

  20. Proportion of collagen type II in the extracellular matrix promotes the differentiation of human adipose-derived mesenchymal stem cells into nucleus pulposus cells.

    PubMed

    Tao, Yiqing; Zhou, Xiaopeng; Liu, Dongyu; Li, Hao; Liang, Chengzhen; Li, Fangcai; Chen, Qixin

    2016-01-01

    During degeneration process, the catabolism of collagen type II and anabolism of collagen type I in nucleus pulposus (NP) may influence the bioactivity of transplanted cells. Human adipose-derived mesenchymal stem cells (hADMSCs) were cultured as a micromass or in a series of gradual proportion hydrogels of a mix of collagen types I and II. Cell proliferation and cytotoxicity were detected using CCK-8 and LDH assays respectively. The expression of differentiation-related genes and proteins, including SOX9, aggrecan, collagen type I, and collagen type II, was examined using RT-qPCR and Western blotting. Novel phenotypic genes were also detected by RT-qPCR and western blotting. Alcian blue and dimethylmethylene blue assays were used to investigate sulfate proteoglycan expression, and PI3K/AKT, MAPK/ERK, and Smad signaling pathways were examined by Western blotting. The results showed collagen hydrogels have good biocompatibility, and cell proliferation increased after collagen type II treatment. Expressions of SOX9, aggrecan, and collagen type II were increased in a collagen type II dependent manner. Sulfate proteoglycan synthesis increased in proportion to collagen type II concentration. Only hADMSCs highly expressed NP cell marker KRT19 in collagen type II culture. Additionally, phosphorylated Smad3, which is associated with phosphorylated ERK, was increased after collagen type II-stimulation. The concentration and type of collagen affect hADMSC differentiation into NP cells. Collagen type II significantly ameliorates hADMSC differentiation into NP cells and promotes extracellular matrix synthesis. Therefore, anabolism of collagen type I and catabolism of type II may attenuate the differentiation and biosynthesis of transplanted stem cells.

  1. Type IV collagen aggregates promote keratinocyte proliferation and formation of epidermal layer in human skin equivalents.

    PubMed

    Matsuura-Hachiya, Yuko; Arai, Koji Y; Muraguchi, Taichi; Sasaki, Tasuku; Nishiyama, Toshio

    2017-03-07

    Type IV collagen isolated from lens capsule without enzymatic treatment is known to form a gel under physiological condition and influences cellular activities. In case of human keratinocytes, the suppression of proliferation on reconstituted type IV collagen gels was reported in monolayer culture. In this study, we examined effects of type IV collagen isolated from porcine lens capsule on epidermal formation in human skin equivalents. Type IV collagen aggregates were prepared under the culture condition and the aggregates suppressed keratinocyte proliferation in monolayer culture as well as the culture on the gels. In human skin equivalents type IV collagen aggregates were reconstituted on the surface of contracted collagen gels containing human dermal fibroblasts and the keratinocytes were then cultured on the aggregates for 14 days. Interestingly, in human skin equivalents with type IV collagen aggregates, the BrdU-positive keratinocytes were increased and the thickness of the epidermal layer was around twice than that of control culture. Epidermal differentiation markers were expressed in the upper layer of the epidermis and the defined deposition of human basement membrane components were increased at the dermal-epidermal junction. These results indicate that the type IV collagen aggregates stimulate the proliferation of basal keratinocytes and improve the stratification of epidermal layers in human skin equivalents. This article is protected by copyright. All rights reserved.

  2. A fragment of alpha-actinin promotes monocyte/macrophage maturation in vitro.

    PubMed

    Luikart, S; Wahl, D; Hinkel, T; Masri, M; Oegema, T

    1999-02-01

    Conditioned media (CM) from cultures of HL-60 myeloid leukemia cells grown on extracellular bone marrow matrix contains a factor that induces macrophage-like maturation of HL-60 cells. This factor was purified from the CM of HL-60 cells grown on bone marrow stroma by ammonium sulfate precipitation, then sequential chromatography on DEAE, affi-gel blue affinity, gel exclusion, and wheat germ affinity columns, followed by C-4 reverse phase HPLC, and SDS-PAGE. The maturation promoting activity of the CM was identified in a single 31 kD protein. Amino acid sequence analysis of four internal tryptic peptides of this protein confirmed significant homology with amino acid residues 48-60, 138-147, 215-220, and 221-236 of human cytoskeletal alpha-actinin. An immunoaffinity purified rabbit polyclonal anti-chicken alpha-actinin inhibited the activity of HL-60 conditioned media. A 27 kD amino-terminal fragment of alpha-actinin produced by thermolysin digestion of chicken gizzard alpha-actinin, but not intact alpha-actinin, had maturation promoting activity on several cell types, including blood monocytes, as measured by lysozyme secretion and tartrate-resistant acid phosphatase staining. We conclude that an extracellular alpha-actinin fragment can promote monocyte/macrophage maturation. This represents the first example of a fragment of a cytoskeletal component, which may be released during tissue remodeling and repair, playing a role in phagocyte maturation.

  3. Lactase gene promoter fragments mediate differential spatial and temporal expression patterns in transgenic mice.

    PubMed

    Wang, Zhi; Maravelias, Charalambos; Sibley, Eric

    2006-04-01

    Lactase gene expression is spatiotemporally regulated during mammalian gut development. We hypothesize that distinct DNA control regions specify appropriate spatial and temporal patterning of lactase gene expression. In order to define regions of the lactase promoter involved in mediating intestine-specific and spatiotemporal restricted expression, transgenic mice harboring 100 bp, 1.3- and 2.0- kb fragments of the 5' flanking region of the rat lactase gene cloned upstream of a luciferase reporter were characterized. The 100-bp lactase promoter-reporter transgenic mouse line expressed maximal luciferase activity in the intestine with a posterior shift in spatial restriction and ectopic expression in the stomach and lung. The temporal pattern of expression mediated by the 1.3-kb promoter?reporter transgene increases with postnatal maturation in contrast with the postnatal decline mediated by the 2.0-kb promoter-reporter transgene and the endogenous lactase gene. The differential transgene expression patterns mediated by the lactase promoter fragments suggests that intestine-specific spatial and temporal control elements reside in distinct regions of the DNA sequences upstream of the lactase gene transcription start-site.

  4. Specific collagen XVIII isoforms promote adipose tissue accrual via mechanisms determining adipocyte number and affect fat deposition.

    PubMed

    Aikio, Mari; Elamaa, Harri; Vicente, David; Izzi, Valerio; Kaur, Inderjeet; Seppinen, Lotta; Speedy, Helen E; Kaminska, Dorota; Kuusisto, Sanna; Sormunen, Raija; Heljasvaara, Ritva; Jones, Emma L; Muilu, Mikko; Jauhiainen, Matti; Pihlajamäki, Jussi; Savolainen, Markku J; Shoulders, Carol C; Pihlajaniemi, Taina

    2014-07-29

    Collagen XVIII is an evolutionary conserved ubiquitously expressed basement membrane proteoglycan produced in three isoforms via two promoters (P). Here, we assess the function of the N-terminal, domain of unknown function/frizzled-like sequences unique to medium/long collagen XVIII by creating P-specific null mice. P2-null mice, which only produce short collagen XVIII, developed reduced bulk-adiposity, hepatic steatosis, and hypertriglyceridemia. These abnormalities did not develop in P1-null mice, which produce medium/long collagen XVIII. White adipose tissue samples from P2-null mice contain larger reserves of a cell population enriched in early adipocyte progenitors; however, their embryonic fibroblasts had ∼ 50% lower adipocyte differentiation potential. Differentiating 3T3-L1 fibroblasts into mature adipocytes produced striking increases in P2 gene-products and dramatic falls in P1-transcribed mRNA, whereas Wnt3a-induced dedifferentiation of mature adipocytes produced reciprocal changes in P1 and P2 transcript levels. P2-derived gene-products containing frizzled-like sequences bound the potent adipogenic inhibitor, Wnt10b, in vitro. Previously, we have shown that these same sequences bind Wnt3a, inhibiting Wnt3a-mediated signaling. P2-transcript levels in visceral fat were positively correlated with serum free fatty acid levels, suggesting that collagen α1 (XVIII) expression contributes to regulation of adipose tissue metabolism in visceral obesity. Medium/long collagen XVIII is deposited in the Space of Disse, and interaction between hepatic apolipoprotein E and this proteoglycan is lost in P2-null mice. These results describe a previously unidentified extracellular matrix-directed mechanism contributing to the control of the multistep adipogenic program that determines the number of precursors committing to adipocyte differentiation, the maintenance of the differentiated state, and the physiological consequences of its impairment on ectopic fat

  5. Efficacy of DNA vaccines expressing the type F botulinum toxin Hc fragment using different promoters.

    PubMed

    Jathoul, Amit P; Holley, Jane L; Garmory, Helen S

    2004-09-28

    DNA vaccines which expressed the Hc fragment of the Clostridium botulinum type F neurotoxin (BoNT/F Hc) fused to a signal peptide downstream of four different eukaryotic promoters were prepared. Subsequently, the immunogenicity of the DNA vaccines and protection afforded in mice against challenge with 10(4) MLD of type F botulinum toxin was evaluated. The DNA vaccine containing the human ubiquitin gene (UbC) promoter induced the highest BoNT/F Hc-specific antibody concentration following two intramuscular immunisations and afforded 90% protection against challenge. The results from this study indicate that the selection of promoter used in DNA vaccination studies may be of importance in designing optimised vaccines.

  6. Novel Vanadium-Loaded Ordered Collagen Scaffold Promotes Osteochondral Differentiation of Bone Marrow Progenitor Cells

    PubMed Central

    Cortizo, Ana M.; Ruderman, Graciela; Mazzini, Flavia N.; Molinuevo, M. Silvina; Mogilner, Ines G.

    2016-01-01

    Bone and cartilage regeneration can be improved by designing a functionalized biomaterial that includes bioactive drugs in a biocompatible and biodegradable scaffold. Based on our previous studies, we designed a vanadium-loaded collagen scaffold for osteochondral tissue engineering. Collagen-vanadium loaded scaffolds were characterized by SEM, FTIR, and permeability studies. Rat bone marrow progenitor cells were plated on collagen or vanadium-loaded membranes to evaluate differences in cell attachment, growth and osteogenic or chondrocytic differentiation. The potential cytotoxicity of the scaffolds was assessed by the MTT assay and by evaluation of morphological changes in cultured RAW 264.7 macrophages. Our results show that loading of VOAsc did not alter the grooved ordered structure of the collagen membrane although it increased membrane permeability, suggesting a more open structure. The VOAsc was released to the media, suggesting diffusion-controlled drug release. Vanadium-loaded membranes proved to be a better substratum than C0 for all evaluated aspects of BMPC biocompatibility (adhesion, growth, and osteoblastic and chondrocytic differentiation). In addition, there was no detectable effect of collagen or vanadium-loaded scaffolds on macrophage viability or cytotoxicity. Based on these findings, we have developed a new ordered collagen scaffold loaded with VOAsc that shows potential for osteochondral tissue engineering. PMID:27293438

  7. Collagen peptide-based biomaterials for protein delivery and peptide-promoted self-assembly of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ernenwein, Dawn M.

    2011-12-01

    Bottom-up self-assembly of peptides has driven the research progress for the following two projects: protein delivery vehicles of collagen microflorettes and the assembly of gold nanoparticles with coiled-coil peptides. Collagen is the most abundant protein in the mammals yet due to immunogenic responses, batch-to-batch variability and lack of sequence modifications, synthetic collagen has been designed to self-assemble into native collagen-like structures. In particular with this research, metal binding ligands were incorporated on the termini of collagen-like peptides to generate micron-sized particles, microflorettes. The over-arching goal of the first research project is to engineer MRI-active microflorettes, loaded with His-tagged growth factors with differential release rates while bound to stem cells that can be implemented toward regenerative cell-based therapies. His-tagged proteins, such as green fluorescent protein, have successfully been incorporated on the surface and throughout the microflorettes. Protein release was monitored under physiological conditions and was related to particle degradation. In human plasma full release was obtained within six days. Stability of the microflorettes under physiological conditions was also examined for the development of a therapeutically relevant delivery agent. Additionally, MRI active microflorettes have been generated through the incorporation of a gadolinium binding ligand, DOTA within the collagen-based peptide sequence. To probe peptide-promoted self-assemblies of gold nanoparticles (GNPs) by non-covalent, charge complementary interactions, a highly anionic coiled-coil peptide was designed and synthesized. Upon formation of peptide-GNP interactions, the hydrophobic domain of the coiled-coil were shown to promote the self-assembly of peptide-GNPs clustering. Hydrophobic forces were found to play an important role in the assembly process, as a peptide with an equally overall negative charge, but lacking an

  8. The promoting effects of geniposidic acid and aucubin in Eucommia ulmoides Oliver leaves on collagen synthesis.

    PubMed

    Li, Y; Sato, T; Metori, K; Koike, K; Che, Q M; Takahashi, S

    1998-12-01

    We have reported that collagen synthesis was stimulated by the administration of a hot water extract from the leaves of Eucommia ulmoides OLIVER, Eucommiaceae (Du-Zhong leaves) in false aged model rats. In this paper, we set out to examine the compounds in Du-Zhong leaves that stimulated collagen synthesis in false aged model rats. In experiment 1, a methanol extract of Du-Zhong leaves also stimulated collagen synthesis in aged model rats. An acetone fraction was derived from the methanol extract by silica gel chromatography in experiment 2. The acetone fraction mainly contained iridoides mono-glycosides such as geniposidic acid and aucubin. The administration of geniposidic acid or aucubin stimulated collagen synthesis in aged model rats in experiments 3 and 4 (significance (p<0.05)). The reported pharmacological effects of Du-Zhong leaves, including healing organs and strengthening bone and muscle, are closely related to collagen metabolism. It appears that geniposidic acid and aucubin are the actual compounds in Du-Zhong which caused the effect in our experiments.

  9. Lack of collagen VI promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging

    PubMed Central

    Castagnaro, Silvia; Gregorio, Ilaria; Bonaldo, Paolo

    2016-01-01

    Collagen VI is an extracellular matrix (ECM) protein with a broad distribution in different tissues and mostly deposited at the close periphery of the cell surface. Previous studies revealed that collagen VI protects neurons from the toxicity of amyloid-βpeptides and from UV-induced damage. However, the physiological role of this protein in the central nervous system (CNS) remains unknown. Here, we established primary neural cultures from murine cortex and hippocampus, and carried out in vitro and in vivo studies in wild-type and collagen VI null (Col6a1−/−) mice. Col6a1−/− neural cultures displayed an increased incidence of spontaneous apoptosis and higher vulnerability to oxidative stress, accompanied by altered regulation of autophagy with increased p62 protein levels and decreased LC3 lipidation. Analysis of brain sections confirmed increased apoptosis and abnormal regulation of autophagy in the CNS of collagen VI-deficient animals. To investigate the in vivo physiological consequences of these CNS defects, we carried out functional studies and found that motor and memory task performances were impaired in aged Col6a1−/− mice. These findings indicate that lack of collagen VI leads to spontaneous apoptosis and defective autophagy in neural cells, and point at a protective role for this ECM protein in the CNS during physiological aging. PMID:27060109

  10. Prevention of liver fibrosis by triple helix-forming oligodeoxyribonucleotides targeted to the promoter region of type I collagen gene.

    PubMed

    Koilan, Subramaniyan; Hamilton, David; Baburyan, Narina; Padala, Mythili K; Weber, Karl T; Guntaka, Ramareddy V

    2010-10-01

    Hepatic fibrosis leading to cirrhosis remains a global health problem. The most common etiologies are alcoholism and viral infections. Liver fibrosis is associated with major changes in both quantity and composition of extracellular matix and leads to disorganization of the liver architecture and irreversible damage to the liver function. As of now there is no effective therapy to control fibrosis. The end product of fibrosis is abnormal synthesis and accumulation of type I collagen in the extracellular matrix, which is produced by activated stellate or Ito cells in the damaged liver. Therefore, inhibition of transcription of type I collagen should in principle inhibit its production and accumulation in liver. Normally, DNA exists in a duplex form. However, under some circumstances, DNA can assume triple helical (triplex) structures. Intermolecular triplexes, formed by the addition of a sequence-specific third strand to the major groove of the duplex DNA, have the potential to serve as selective gene regulators. Earlier, we demonstrated efficient triplex formation between the exogenously added triplex-forming oligodeoxyribonucleotides (TFOs) and a specific sequence in the promoter region of the COL1A1 gene. In this study we used a rat model of liver fibrosis, induced by dimethylnitrosamine, to test whether these TFOs prevent liver fibrosis. Our results indicate that both the 25-mer and 18-mer TFOs, specific for the upstream nucleotide sequence from -141 to -165 (relative to the transcription start site) in the 5' end of collagen gene promoter, effectively prevented accumulation of liver collagen and fibrosis. We also observed improvement in liver function tests. However, mutations in the TFO that eliminated formation of triplexes are ineffective in preventing fibrosis. We believe that these TFOs can be used as potential antifibrotic therapeutic molecules.

  11. Association of collagen with calcium phosphate promoted osteogenic responses of osteoblast-like MG63 cells.

    PubMed

    Hong, Yoon Jung; Chun, Jae-Sig; Lee, Woo-Kul

    2011-04-01

    In this investigation, the effects of the association of the collagen (COLL) molecules with the calcium phosphate (CaP) film were examined with respect to both the physicochemical properties of the CaP films and the osteoblast responses, such as the adhesion, proliferation, differentiation, and mineralization. The COLL pre-adsorbed CaP film (CaPA) exhibited significant changes in the surface morphology compared to the COLL incorporated CaP film (CaPC). The adhesions of the osteoblast-like MG63 cells were similar on the CaPC or CaPA films. However, the proliferation of the MG63 cells on CaPC was comparable to CaP but considerably different than CaPA. The differentiation of the MG63 cells was greatly improved on CaPC and CaPA compared to CaP and more pronounced on CaPA. The presence of COLL within or on the CaP films significantly modulated the expression of the phenotypic genes, including osteopontin (OPN), alkaline phosphatase (ALP), and the transforming growth factor-β (TGF-β). The expression patterns of these genes elucidated that COLL that was present within or on the CaP film supported the osteoblast proliferation and differentiation. These positive effects were stronger for CaPA than CaPC. The bone-like nodules formed on all of the specimens. However, the mineralization of CaPC and CaPA was significantly higher than CaP, indicating that the association of CaP with COLL promoted the mineral deposition. Therefore, the association of the COLL molecules with the CaP film induced positive effects on the biomineralization. Overall, the incorporation of COLL efficiently enhanced the osteoblast responses of CaP. This system can be utilized in a drug delivery system using calcium phosphate. Although the incorporation effects were slightly higher for the osteoblast responses of CaPA than CaPC, CaPC can be used when the longer drug release times are desirable.

  12. AN APOLIPOPROTEIN E4 FRAGMENT CAN PROMOTE INTRACELLULAR ACCUMULATION OF AMYLOID PEPTIDE BETA 42

    PubMed Central

    Dafnis, Ioannis; Stratikos, Efstratios; Tzinia, Athina; Tsilibary, Effie C.; Zannis, Vassilis I.; Chroni, Angeliki

    2010-01-01

    Apolipoprotein E (apoE) plays a crucial role in lipid transport in circulation and the brain. The apoE4 isoform is a major risk factor for Alzheimer's disease (AD). ApoE4 is more susceptible to proteolysis than other apoE isoforms and apoE4 fragments have been found in brains of AD patients. These apoE4 fragments have been hypothesized to be involved in the pathogenesis of AD, although the mechanism is not clear. In this study we examined the effect of lipid-free apoE4 on amyloid precursor protein (APP) processing and Aβ40 and Aβ42 levels in human neuroblastoma SK-N-SH cells. We discovered that a specific apoE4 fragment, apoE4[Δ(166-299)], can promote the cellular uptake of extracellular Aβ40 and Aβ42 either generated after APP transfection or added exogenously. A longer length fragment, apoE4[Δ(186-299)], or full-length apoE4 failed to elicit this effect. ApoE4[Δ(166-299)] effected a 20% reduction of cellular sphingomyelin levels, as well as changes in cellular membrane micro-fluidity. Following uptake, approximately 50% of Aβ42 remained within the cell for at least 24h, and led to increased formation of reactive oxygen species. Overall, our findings suggest a direct link between two early events in the pathogenesis of AD, apoE4 proteolysis and intraneuronal presence of Aβ. PMID:20412390

  13. A 470 bp WAP-promoter fragment confers lactation independent, progesterone regulated mammary-specific gene expression in transgenic mice.

    PubMed

    Lipnik, Karoline; Petznek, Helga; Renner-Müller, Ingrid; Egerbacher, Monika; Url, Angelika; Salmons, Brian; Günzburg, Walter H; Hohenadl, Christine

    2005-04-01

    The ability of a 470 bp sub-fragment of the murine whey acidic protein (WAP) promoter in the context of a retroviral expression plasmid to direct gene expression to mammary epithelial cells was analysed in a number of independent transgenic mouse lines. In contrast to previous findings with the genuine 2.5 kb promoter fragment, our studies revealed a highly mammary gland-specific expression detectable only in non-lactating animals. This suggested a mainly progesterone-regulated activity of the short fragment. Therefore, transgene expression was examined in the progesterone-determined estrous cycle and during pregnancy. In accordance with in vitro data from stably transfected cell lines, in both situations expression was upregulated at stages associated with high progesterone levels. Taken together these data provide deeper insight into WAP-promoter regulation and stress the usefulness of the shortened fragment for a lactation independent mammary-targeted expression.

  14. Collagen-nanofiber hydrogel composites promote contact guidance of human lymphatic microvascular endothelial cells and directed capillary tube formation.

    PubMed

    Laco, Filip; Grant, M Helen; Black, Richard A

    2013-06-01

    Collagen and fibronectin matrices are known to stimulate migration of microvascular endothelial cells and the process of tubulogenesis, but the physical, chemical, and topographical cues for directed vessel formation have yet to be determined. In this study, growth, migration, elongation, and tube formation of human lymphatic microvascular endothelial cells (LECs) were investigated on electrospun poly(D,L-lactic-co-glycolic acid) (PLGA) and poly(L-lactic-co-D-lactic acid) (PLDL) nanofiber-coated substrates, and correlated with fiber density and diameter. Directed migration of LECs was observed in the presence of aligned nanofibers, whereas random fiber alignment slowed down migration and growth of LECs. Cell guidance was significantly enhanced in the presence of more hydrophobic PLDL polymer nanofibers compared to PLGA (10:90). Subsequent experiments with tube-forming assays reveal the ability of resorbable hydrophobic nanofibers >300 nm in diameter to promote cell guidance in collagen gels without direct cell-fiber contact, in contrast to the previously reported contact-guidance phenomena. Our results show that endothelial cell guidance is possible within nanofiber/collagen-gel constructs that mimic the native extracellular matrix in terms of size and orientation of fibrillar components.

  15. Overexpression of HMGA2-LPP fusion transcripts promotes expression of the {alpha} 2 type XI collagen gene

    SciTech Connect

    Kubo, Takahiro; Matsui, Yoshito . E-mail: ymatsui@sb4.so-net.ne.jp; Goto, Tomohiro; Yukata, Kiminori; Yasui, Natsuo

    2006-02-10

    In a subset of human lipomas, a specific t (3; 12) chromosome translocation gives rise to HMGA2-LPP fusion protein, containing the amino (N)-terminal DNA binding domains of HMGA2 fused to the carboxyl (C)-terminal LIM domains of LPP. In addition to its role in adipogenesis, several observations suggest that HMGA2-LPP is linked to chondrogenesis. Here, we analyzed whether HMGA2-LPP promotes chondrogenic differentiation, a marker of which is transactivation of the {alpha} 2 type XI collagen gene (Col11a2). Real-time PCR analysis showed that HMGA2-LPP and COL11A2 were co-expressed. Luciferase assay demonstrated that either of HMGA2-LPP, wild-type HMGA2 or the N-terminal HMGA2 transactivated the Col11a2 promoter in HeLa cells, while the C-terminal LPP did not. RT-PCR analysis revealed that HMGA2-LPP transcripts in lipomas with the fusion were 591-fold of full-length HMGA2 transcripts in lipomas without the fusion. These results indicate that in vivo overexpression of HMGA2-LPP promotes chondrogenesis by upregulating cartilage-specific collagen gene expression through the N-terminal DNA binding domains.

  16. Use of a new rat chondrosarcoma cell line to delineate a 119-base pair chondrocyte-specific enhancer element and to define active promoter segments in the mouse pro-alpha 1(II) collagen gene.

    PubMed

    Mukhopadhyay, K; Lefebvre, V; Zhou, G; Garofalo, S; Kimura, J H; de Crombrugghe, B

    1995-11-17

    We show that a new rat chondrosarcoma (RCS) cell line established in long-term culture from the Swarm tumor displayed a stable differentiated chondrocyte-like phenotype. Indeed, these cells produced the collagen types II, IX, and XI and alcian blue-stainable cartilage-specific proteoglycans, but no type I or type III collagen. To functionally characterize their chondrocytic nature, the cells were stably transfected with a type II collagen/beta geo chimeric gene which confers essentially perfect chondrocyte-specific expression in transgenic mice. RCS cells expressed both beta-galactosidase and G418 resistance, in comparison with similarly transfected 10T1/2 and NIH/3T3 fibroblasts which did not. These cells were then used to perform a systematic deletion analysis of the first intron of the mouse type II collagen gene (Col2a1) using transient expression experiments to determine which segments stimulated expression of a luciferase reporter gene in RCS cells but not in 10T1/2 fibroblasts. Cloning of two tandem copies of a 156-base pair (bp) intron 1 fragment (+2188 to +2343) in a construction containing a 314-bp Col2a1 promoter caused an almost 200-fold increase in promoter activity in RCS cells but no increase in 10T1/2 cells. DNase I footprint analysis over this 156-bp fragment revealed two adjacent protected regions, FP1 and FP2, located in the 3'-half of this segment, but no differences were seen with nuclear extracts of RCS cells and 10T1/2 fibroblasts. Deletion of FP2 to leave a 119-bp segment decreased enhancer activity by severalfold, but RCS cell specificity was maintained. Further deletions indicated that sequences both in the 5' part of the 119-bp fragment and in FP1 were needed simultaneously for RCS cell-specific enhancer activity. A series of deletions in the promoter region of the mouse Col2a1 gene progressively reduced activity when these promoters were tested by themselves in transient expression experiments. However, these promoter deletions were all

  17. A modified collagen gel dressing promotes angiogenesis in a preclinical swine model of chronic ischemic wounds.

    PubMed

    Elgharably, Haytham; Ganesh, Kasturi; Dickerson, Jennifer; Khanna, Savita; Abas, Motaz; Ghatak, Piya Das; Dixit, Sriteja; Bergdall, Valerie; Roy, Sashwati; Sen, Chandan K

    2014-01-01

    We recently performed proteomic characterization of a modified collagen gel (MCG) dressing and reported promising effects of the gel in healing full-thickness excisional wounds. In this work, we test the translational relevance of our aforesaid findings by testing the dressing in a swine model of chronic ischemic wounds recently reported by our laboratory. Full-thickness excisional wounds were established in the center of bipedicle ischemic skin flaps on the backs of animals. Ischemia was verified by laser Doppler imaging, and MCG was applied to the test group of wounds. Seven days post wounding, macrophage recruitment to the wound was significantly higher in MCG-treated ischemic wounds. In vitro, MCG up-regulated expression of Mrc-1 (a reparative M2 macrophage marker) and induced the expression of anti-inflammatory cytokine interleukin (IL)-10 and of fibroblast growth factor-basic (β-FGF). An increased expression of CCR2, an M2 macrophage marker, was noted in the macrophages from MCG treated wounds. Furthermore, analyses of wound tissues 7 days post wounding showed up-regulation of transforming growth factor-β, vascular endothelial growth factor, von Willebrand's factor, and collagen type I expression in MCG-treated ischemic wounds. At 21 days post wounding, MCG-treated ischemic wounds displayed higher abundance of proliferating endothelial cells that formed mature vascular structures and increased blood flow to the wound. Fibroblast count was markedly higher in MCG-treated ischemic wound-edge tissue. In addition, MCG-treated wound-edge tissues displayed higher abundance of mature collagen with increased collagen type I : III deposition. Taken together, MCG helped mount a more robust inflammatory response that resolved in a timely manner, followed by an enhanced proliferative phase, angiogenic outcome, and postwound tissue remodeling. Findings of the current study warrant clinical testing of MCG in a setting of ischemic chronic wounds.

  18. Stromal Cells in Dense Collagen Promote Cardiomyocyte and Microvascular Patterning in Engineered Human Heart Tissue.

    PubMed

    Roberts, Meredith A; Tran, Dominic; Coulombe, Kareen L K; Razumova, Maria; Regnier, Michael; Murry, Charles E; Zheng, Ying

    2016-04-01

    Cardiac tissue engineering is a strategy to replace damaged contractile tissue and model cardiac diseases to discover therapies. Current cardiac and vascular engineering approaches independently create aligned contractile tissue or perfusable vasculature, but a combined vascularized cardiac tissue remains to be achieved. Here, we sought to incorporate a patterned microvasculature into engineered heart tissue, which balances the competing demands from cardiomyocytes to contract the matrix versus the vascular lumens that need structural support. Low-density collagen hydrogels (1.25 mg/mL) permit human embryonic stem cell-derived cardiomyocytes (hESC-CMs) to form a dense contractile tissue but cannot support a patterned microvasculature. Conversely, high collagen concentrations (density ≥6 mg/mL) support a patterned microvasculature, but the hESC-CMs lack cell-cell contact, limiting their electrical communication, structural maturation, and tissue-level contractile function. When cocultured with matrix remodeling stromal cells, however, hESC-CMs structurally mature and form anisotropic constructs in high-density collagen. Remodeling requires the stromal cells to be in proximity with hESC-CMs. In addition, cocultured cardiac constructs in dense collagen generate measurable active contractions (on the order of 0.1 mN/mm(2)) and can be paced up to 2 Hz. Patterned microvascular networks in these high-density cocultured cardiac constructs remain patent through 2 weeks of culture, and hESC-CMs show electrical synchronization. The ability to maintain microstructural control within engineered heart tissue enables generation of more complex features, such as cellular alignment and a vasculature. Successful incorporation of these features paves the way for the use of large scale engineered tissues for myocardial regeneration and cardiac disease modeling.

  19. Fibroblast populated collagen matrix promotes islet survival and reduces the number of islets required for diabetes reversal.

    PubMed

    Jalili, Reza B; Moeen Rezakhanlou, Alireza; Hosseini-Tabatabaei, Azadeh; Ao, Ziliang; Warnock, Garth L; Ghahary, Aziz

    2011-07-01

    Islet transplantation represents a viable treatment for type 1 diabetes. However, due to loss of substantial mass of islets early after transplantation, islets from two or more donors are required to achieve insulin independence. Islet-extracellular matrix disengagement, which occurs during islet isolation process, leads to subsequent islet cell apoptosis and is an important contributing factor to early islet loss. In this study, we developed a fibroblast populated collagen matrix (FPCM) as a novel scaffold to improve islet cell viability and function post-transplantation. FPCM was developed by embedding fibroblasts within type-I collagen and used as scaffold for islet grafts. Viability and insulin secretory function of islets embedded within FPCM was evaluated in vitro and in a syngeneic murine islet transplantation model. Islets embedded within acellular matrix or naked islets were used as control. Islet cell survival and function was markedly improved particularly after embedding within FPCM. The composite scaffold significantly promoted islet isograft survival and reduced the critical islet mass required for diabetes reversal by half (from 200 to 100 islets per recipient). Fibroblast embedded within FPCM produced fibronectin and growth factors and induced islet cell proliferation. No evidence of fibroblast over-growth within composite grafts was noticed. These results confirm that FPCM significantly promotes islet viability and functionality, enhances engraftment of islet grafts and decreases the critical islet mass needed to reverse hyperglycemia. This promising finding offers a new approach to reducing the number of islet donors per recipient and improving islet transplant outcome.

  20. A Naturally Occurring HER2 Carboxy-Terminal Fragment Promotes Mammary Tumor Growth and Metastasis▿ †

    PubMed Central

    Pedersen, Kim; Angelini, Pier-Davide; Laos, Sirle; Bach-Faig, Alba; Cunningham, Matthew P.; Ferrer-Ramón, Cristina; Luque-García, Antonio; García-Castillo, Jesús; Parra-Palau, Josep Lluis; Scaltriti, Maurizio; y Cajal, Santiago Ramón; Baselga, José; Arribas, Joaquín

    2009-01-01

    HER2 is a tyrosine kinase receptor causally involved in cancer. A subgroup of breast cancer patients with particularly poor clinical outcomes expresses a heterogeneous collection of HER2 carboxy-terminal fragments (CTFs). However, since the CTFs lack the extracellular domain that drives dimerization and subsequent activation of full-length HER2, they are in principle expected to be inactive. Here we show that at low expression levels one of these fragments, 611-CTF, activated multiple signaling pathways because of its unanticipated ability to constitutively homodimerize. A transcriptomic analysis revealed that 611-CTF specifically controlled the expression of genes that we found to be correlated with poor prognosis in breast cancer. Among the 611-CTF-regulated genes were several that have previously been linked to metastasis, including those for MET, EPHA2, matrix metalloproteinase 1, interleukin 11, angiopoietin-like 4, and different integrins. It is thought that transgenic mice overexpressing HER2 in the mammary glands develop tumors only after acquisition of activating mutations in the transgene. In contrast, we show that expression of 611-CTF led to development of aggressive and invasive mammary tumors without the need for mutations. These results demonstrate that 611-CTF is a potent oncogene capable of promoting mammary tumor progression and metastasis. PMID:19364815

  1. In Vitro Oxidation of Collagen Promotes the Formation of Advanced Oxidation Protein Products and the Activation of Human Neutrophils.

    PubMed

    Bochi, Guilherme Vargas; Torbitz, Vanessa Dorneles; de Campos, Luízi Prestes; Sangoi, Manuela Borges; Fernandes, Natieli Flores; Gomes, Patrícia; Moretto, Maria Beatriz; Barbisan, Fernanda; da Cruz, Ivana Beatrice Mânica; Moresco, Rafael Noal

    2016-04-01

    The accumulation of advanced oxidation protein products (AOPPs) has been linked to several pathological conditions. Here, we investigated collagen as a potential source for AOPP formation and determined the effects of hypochlorous acid (HOCl)-treated collagen (collagen-AOPPs) on human neutrophil activity. We also assessed whether alpha-tocopherol could counteract these effects. Exposure to HOCl increased the levels of collagen-AOPPs. Collagen-AOPPs also stimulated the production of AOPPs, nitric oxide (NO), superoxide radicals (O2(-)), and HOCl by neutrophils. Collagen-AOPPs induced apoptosis and decreased the number of viable cells. Alpha-tocopherol prevented the formation of collagen-AOPPs, strongly inhibited the collagen-AOPP-induced production of O2(-) and HOCl, and increased the viability of neutrophils. Our results suggest that collagen is an important protein that interacts with HOCl to form AOPPs, and consequently, collagen-AOPP formation is related to human neutrophil activation and cell death.

  2. SCF promotes dental pulp progenitor migration, neovascularization, and collagen remodeling - potential applications as a homing factor in dental pulp regeneration.

    PubMed

    Pan, Shuang; Dangaria, Smit; Gopinathan, Gokul; Yan, Xiulin; Lu, Xuanyu; Kolokythas, Antonia; Niu, Yumei; Luan, Xianghong

    2013-10-01

    Stem cell factor (SCF) is a powerful chemokine that binds to the c-Kit receptor CD117 and has shown promise as a homing agent capable of progenitor cell recruitment. In the present study we have documented high levels of both SCF and its receptor c-Kit in differentiating dental pulp (DP) cells and in the sub-odontoblastic layer of Höhl. In vitro studies using human DP progenitors revealed a significant increase in cell proliferation after100 nM SCF application, explained by a 2-fold upregulation in cyclin D3 and FGF2 cell cycle regulators, and a 7-fold increase in CDK4 expression. DP cell migration in the presence of SCF was up-regulated 2.7-fold after a 24 h culture period, and this effect was accompanied by cytoskeletal rearrangement, a 1.5-fold increase in polymeric F-actin over G-actin, and a 1.8-fold increase in RhoA expression. Explaining the signaling effect of SCF on DP migration, PI3K/Akt and MEK/ERK pathway inhibitors were demonstrated to significantly reduce DP cell migration, while SCF alone doubled the number of migrated cells. ERK and AKT phosphorylation were dramatically upregulated already 3-5 min after SCF addition to the culture medium and declined thereafter, classifying SCF as a fast acting chemokine. When applied as an agent to promote tissue regeneration in subcutaneously implanted collagen sponges, SCF resulted in a 7-fold increase in the cell number in the implanted tissue construct, a more than 9-fold increase in capillaries, as well as collagen sponge remodeling and collagen fiber neogenesis. Together, these studies demonstrate the suitability of SCF as a potent aid in the regeneration of dental pulp and other mesenchymal tissues, capable of inducing cell homing, angiogenesis, and tissue remodeling.

  3. Looping Mediated Interaction between the Promoter and 3′ UTR Regulates Type II Collagen Expression in Chondrocytes

    PubMed Central

    Jash, Arijita; Yun, Kangsun; Sahoo, Anupama; So, Jae-Seon; Im, Sin-Hyeog

    2012-01-01

    Type II collagen is the major component of articular cartilage and is mainly synthesized by chondrocytes. Repeated sub-culturing of primary chondrocytes leads to reduction of type II collagen gene (Col2a1) expression, which mimics the process of chondrocyte dedifferentiation. Although the functional importance of Col2a1 expression has been extensively investigated, mechanism of transcriptional regulation during chondrocyte dedifferentiation is still unclear. In this study, we have investigated the crosstalk between cis-acting DNA element and transcription factor on Col2a1 expression in primary chondrocytes. Bioinformatic analysis revealed the potential regulatory regions in the Col2a1 genomic locus. Among them, promoter and 3′ untranslated region (UTR) showed highly accessible chromatin architecture with enriched recruitment of active chromatin markers in primary chondrocytes. 3′ UTR has a potent enhancer function which recruits Lef1 (Lymphoid enhancer binding factor 1) transcription factor, leading to juxtaposition of the 3′ UTR with the promoter through gene looping resulting in up-regulation of Col2a1 gene transcription. Knock-down of endogenous Lef1 level significantly reduced the gene looping and subsequently down-regulated Col2a1 expression. However, these regulatory loci become inaccessible due to condensed chromatin architecture as chondrocytes dedifferentiate which was accompanied by a reduction of gene looping and down-regulation of Col2a1 expression. Our results indicate that Lef1 mediated looping between promoter and 3′ UTR under the permissive chromatin architecture upregulates Col2a1 expression in primary chondrocytes. PMID:22815835

  4. Modification of mature non-reducible collagen cross-link concentrations in bovine m. gluteus medius and semitendinosus with steer age at slaughter, breed cross and growth promotants.

    PubMed

    Roy, B C; Sedgewick, G; Aalhus, J L; Basarab, J A; Bruce, H L

    2015-12-01

    Increased meat toughness with animal age has been attributed to mature trivalent collagen cross-link formation. Intramuscular trivalent collagen cross-link content may be decreased by reducing animal age at slaughter and/or inducing muscle re-modeling with growth promotants. This hypothesis was tested in m. gluteus medius (GM) and m. semitendinosus (ST) from 112 beef steers finished at either 12 to 13 (rapid growth) or 18 to 20 (slow growth) months of age. Hereford-Aberdeen Angus (HAA) or Charolais-Red Angus (CRA) steers were randomly assigned to receive implants (IMP), ractopamine (RAC), both IMP and RAC, or none (control). RAC decreased pyridinoline (mol/mol collagen) and IMP increased Ehrlich chromogen (EC) (mol/mol collagen) in the GM. In the ST, RAC increased EC (mol/mol collagen) but decreased EC (nmol/g raw muscle) in slow growing CRA steers. Also, IMP increased ST pyridinoline (nmol/g raw muscle) of slow-growing HAA steers. Results indicated alteration of perimysium collagen cross-links content in muscle in response to growth promotants.

  5. Promotion of fibroblast adhesion by triple-helical peptide models of type I collagen-derived sequences.

    PubMed

    Grab, B; Miles, A J; Furcht, L T; Fields, G B

    1996-05-24

    The dissection of the activities mediated by type I collagen requires an approach by which the influence of triple-helical conformation can be evaluated. The alpha 1 beta 1 and alpha 2 beta 1 integrin binding sites within type I collagen are dependent upon triple-helical conformation and contained within residues 14-822 from alpha 1(I). Seven alpha 1(I)-derived triple-helical peptides (THPs) were synthesized based on charge clustering (alpha 1(I)256-270, alpha 1(I)385-396, alpha 1(I)406-417, alpha 1(I)415-423, alpha 1(I)448-456, alpha 1(I)496-507, and alpha 1(I)526-537). Three additional THPs were synthesized (alpha 1(I)85-96, alpha 1(I)433-441, and alpha 1(I)772-786) based on previously described or proposed activities (Kleinman, H. K., McGoodwin, E.B., Martin, G. R., Klebe, R. J., Fietzek, P. P., and Wooley, D. E. (1978) J. Biol. Chem. 253, 5642-5646; Staatz, W. D., Foik, K. F., Zutter, M. M., Adams, S. P., Rodriquez, B. A., and Santoro, S. A. (1991) J. Biol. Chem. 266, 7363-7367; San Antonio, J. D., Lander, A. D., Karnovsky, M. J., and Slayter, H. S. (1994) J. Cell Biol. 125, 1179-1188). Of the ten THPs, alpha 1(I)772-786 THP had the greatest activity, with half-maximal normal dermal fibroblast adhesion occurring at a peptide concentration of 1.6 microM. Triple-helicity was essential for activity of this sequence, as the non-triple-helical peptide analog (alpha 1(I)772-786 SSP) exhibited considerably lower levels of cell adhesion promotion even at peptide concentrations as high as 100 microM. Within the sequence itself, residues 784-786 (Gly-Leu-Hyp) were important for cellular recognition, as the alpha 1(I)772-783 THP had greatly reduced cell adhesion activity compared with alpha 1(I)772-786 THP. Preliminary studies indicate that the beta 1 integrin subunit mediates fibroblast adhesion to alpha 1(I)772-786 THP. The identification of fibroblast integrin binding sites within type I collagen may have important implications for understanding collagen metabolism.

  6. Linear ordered collagen scaffolds loaded with collagen-binding neurotrophin-3 promote axonal regeneration and partial functional recovery after complete spinal cord transection.

    PubMed

    Fan, Juan; Xiao, Zhifeng; Zhang, Hongtian; Chen, Bing; Tang, Guoqiang; Hou, Xianglin; Ding, Wenyong; Wang, Bin; Zhang, Peng; Dai, Jianwu; Xu, Ruxiang

    2010-09-01

    Neurotrophin-3 (NT3) is an important neurotrophic factor for spinal cord injury (SCI) repair. However, constant exchange of cerebrospinal fluid often decreases the effective dosage of NT3 at the targeted injury site. In the present study, a recombinant collagen-binding NT3 (CBD-NT3), consisting of a collagen-binding domain (CBD) and native NT3, was constructed. Linear rat-tail collagen (LRTC) was used as a physical carrier for CBD-NT3 to construct a LRTC/C3 system. The collagen-binding ability of CBD-NT3 was verified, and the bioactivity of CBD-NT3 was assayed with neurite outgrowth of dorsal root ganglia (DRG) explants and DRG cells in vitro. After complete spinal cord transection in rats, LRTC/CBD-NT3 or the LRTC/NT3 system was transplanted into the injury site. Hindlimb locomotion recovery was closely observed using the Basso-Beattie-Bresnahan (BBB) locomotor rating scale and the grid walk test. Significant improvement was observed in the LRTC/CBD-NT3 group. The results of regenerating nerve fiber and anterograde tracing of biotinylated dextran amine (BDA)-labeled corticospinal tract (CST) fibers demonstrated axonal regeneration of LRTC/CBD-NT3 in the injured spinal cord. Serotonin fiber regrowth also illustrated the effectiveness of LRTC/CBD-NT3. Thus, collagen-binding NT3 with LRTC may provide an effective method for treating SCI.

  7. TGF-β1 promotes linear invadosome formation in hepatocellular carcinoma cells, through DDR1 up-regulation and collagen I cross-linking.

    PubMed

    Ezzoukhry, Zakaria; Henriet, Elodie; Piquet, Léo; Boyé, Kevin; Bioulac-Sage, Paulette; Balabaud, Charles; Couchy, Gabrielle; Zucman-Rossi, Jessica; Moreau, Violaine; Saltel, Frédéric

    2016-11-01

    Transforming growth factor-β1 (TGF-β1) is an important player in chronic liver diseases inducing fibrogenesis and hepatocellular carcinoma (HCC) development. TGF-β1 promotes pleiotropic modifications at the cellular and matrix microenvironment levels. TGF-β1 was described to enhance production of type I collagen and its associated cross-linking enzyme, the lysyl oxidase-like2 (LOXL2). In addition, TGF-β1 and type I collagen are potent inducers of invadosomes. Indeed, type I collagen fibers induce the formation of active linear invadosomes through the discoidin domain receptor 1 (DDR1). The goal of our study was to address the role of TGF-β1 in collagen cross-linking and its impact on the formation of linear invadosomes in liver cancer cells. We first report a significant correlation between expressions of TGF-β1, and type I collagen, LOXL2, DDR1 and MT1-MMP in human HCCs. We demonstrate that TGF-β1 promotes a Smad4-dependent up-regulation of DDR1, together with LOXL2, in cultured HCC cells. Moreover, we show that LOXL2-induced collagen cross-linking enhances linear invadosome formation. Altogether, our data demonstrate that TGF-β1 favors linear invadosome formation through the expressions of both the inducers, such as collagen and LOXL2, and the components such as DDR1 and MT1-MMP of linear invadosomes in cancer cells. Meanwhile, our data uncover a new TGF-β1-dependent regulation of DDR1 expression.

  8. Synthesis of α-collagen fragments and research of their influence on the degree of hydration of a model of epidermis

    PubMed Central

    Grobelna, Beata; Maćkiewicz, Zbigniew

    2013-01-01

    Introduction In recent years the interest into areas of science, such as cosmetology, dermatology, pharmacology or aesthetic medicine has increased significantly. Scientists are more frequently looking for ingredients that affect the skin's condition and slow down the aging process. Practically every year, the scientists discover a number of new chemical substances (both natural and synthetic) that can be potentially used to manufacture cosmetics. Aim To evaluate the influence of selected peptides derived from α-collagen fragments on the degree of hydration of a model of epidermis isolated from a pig. Material and methods The synthesis of selected cosmetic oligopeptides were performed manually, on the solid medium, using procedure of SPPS (solid phase peptide synthesis). Following components: aqua, carbomer, glycerine, phenonip, D-panthenol, dimethicone and triethanolamine were used to prepare a reference hydrogel masks. Both the number of components and the composition of hydrogels have been developed individually for the purposes of this research. For this study the skin from a domestic pig was used. The degree of the skin hydration was measured with the SKINTEST plus camera, which uses the latest semiconductor technology. Results During the study the absorption of hydrogels with peptides was faster than that of the reference hydrogel mask. The combination of hydrophilic properties of the peptide with hydrophobic properties of Palm enabled receiving an amphiphilic structure. Such molecules are considered to be able to penetrate the corneum barrier with the greatest ease. Conclusions The results showed that the modified compounds have contributed to water retention in the cells, thereby increasing the degree of hydration of the biological material. PMID:24278040

  9. Transformed MDCK cells secrete elevated MMP1 that generates LAMA5 fragments promoting endothelial cell angiogenesis

    PubMed Central

    Gopal, Shashi K.; Greening, David W.; Zhu, Hong-Jian; Simpson, Richard J.; Mathias, Rommel A.

    2016-01-01

    Epithelial-mesenchymal transition (EMT) enhances the migration and invasion of cancer cells, and is regulated by various molecular mechanisms including extracellular matrix metalloproteinase (MMP) activity. Previously, we reported transformation of epithelial Madin-Darby canine kidney (MDCK) cells with oncogenic H-Ras (21D1 cells) induces EMT, and significantly elevates MMP1 expression. To explore the biological significance, in this study we characterized 21D1 cells with knocked-down MMP1 expression (21D1−MMP1). MMP1 silencing diminished 21D1 cell migration, invasion and anchorage-independent growth in vitro. Additionally, 21D1−MMP1 cells displayed reduced tumour volume when grown as in vivo subcutaneous xenografts in mice. Depletion of MMP1 lowered the ability of the cellular secretome (extracellular culture medium) to influence recipient cell behaviour. For example, supplementation with 21D1 secretome elevated cell migration of recipient fibroblasts, and enhanced endothelial cell angiogenesis (vessel length and branching). By contrast, 21D1−MMP1 secretome was less potent in both functional assays. We reveal laminin subunit alpha-5 (LAMA5) as a novel biological substrate of MMP1, that generates internal and C-terminal proteolytic fragments in 21D1 secretome. Furthermore, antibody-based inhibition of integrin αvβ3 on endothelial cells nullified the angiogenic capability of 21D1 secretome. Therefore, we report this as a new VEGF-independent mechanism that oncogenic cells may employ to promote tumour angiogenesis. PMID:27324842

  10. Engineered collagen hydrogels for the sustained release of biomolecules and imaging agents: promoting the growth of human gingival cells.

    PubMed

    Choi, Jonghoon; Park, Hoyoung; Kim, Taeho; Jeong, Yoon; Oh, Myoung Hwan; Hyeon, Taeghwan; Gilad, Assaf A; Lee, Kwan Hyi

    2014-01-01

    We present here the in vitro release profiles of either fluorescently labeled biomolecules or computed tomography contrast nanoagents from engineered collagen hydrogels under physiological conditions. The collagen constructs were designed as potential biocompatible inserts into wounded human gingiva. The collagen hydrogels were fabricated under a variety of conditions in order to optimize the release profile of biomolecules and nanoparticles for the desired duration and amount. The collagen constructs containing biomolecules/nanoconstructs were incubated under physiological conditions (ie, 37°C and 5% CO2) for 24 hours, and the release profile was tuned from 20% to 70% of initially loaded materials by varying the gelation conditions of the collagen constructs. The amounts of released biomolecules and nanoparticles were quantified respectively by measuring the intensity of fluorescence and X-ray scattering. The collagen hydrogel we fabricated may serve as an efficient platform for the controlled release of biomolecules and imaging agents in human gingiva to facilitate the regeneration of oral tissues.

  11. Nutrient enrichment promotes survival and dispersal of drifting fragments in an invasive tropical macroalga

    NASA Astrophysics Data System (ADS)

    Vermeij, M. J. A.; Dailer, M. L.; Smith, C. M.

    2009-06-01

    The effect of nutrient availability on growth, survival, and photosynthetic performance of drifting fragments of the invasive red alga Hypnea musciformis was studied in Maui (Hawaii), where this species smothers native reef communities and forms localized blooms. H. musciformis does not sexually reproduce in Hawaii and drifting fragments represent the only pathway by which H. musciformis can disperse and invade new areas. Growth rates decreased with age and approached zero when fragments aged 32 days. Increased nutrient availability did not result in increased relative growth rates during this period. In contrast to growth, photosynthetic performance remained unaffected through time and showed no clear relationship with nutrient availability. Increased nutrient availability increased fragment survival and fragments survived for >2 months in the high nutrient treatment (3.0 μmolPO4 + 30.0 μmolNH4). This indicates that increased nutrient availability increases the dispersal potential of H. musciformis. Low growth rates of drifting Hypnea fragments increased recruitment success since attachment success of this epiphytic species decreased with increasing fragment size. H. musciformis thus uses resources for survival and maintenance rather than growth, resulting in long competency periods and optimal recruitment, which likely contribute to its success as an invader of Hawaiian reef communities.

  12. Modifications on collagen structures promoted by 1,4-dioxane improve thermal and biological properties of bovine pericardium as a biomaterial.

    PubMed

    Forti, Fábio L; Goissis, Gilberto; Plepis, Ana M G

    2006-01-01

    Collagen is a widely used raw material for biomaterial manufacture, which generally depends on chemical modifications of this fibrillar protein with cross-linking agents to improve biocompatibility and mechanical properties. However, cross-linking reduces the natural properties of collagen, such as low immune response, low toxicity as well as the ability to promote cellular growth and attachment. In this work, the modifications promoted by 1,4-dioxane solvent on the collagen present in native bovine pericardium (NBP) matrix routinely used in bioprosthesis manufacture, with or without subsequent cross-linking by glutaraldehyde, has been studied. The structural changes of NBP evaluated by scanning electron microscopy show that 1,4-dioxane induces a more homogeneous material by increasing aggregation of collagen fibers, while transmission scanning electron microscopy shows that natural collagen fibril arrangement, integrity, and the D-periodicity pattern are maintained by solvent treatments. Measurements of thermal stability and resistance to collagenase enzymatic digestion of NBP matrices treated with 1,4-dioxane show an increase in melting temperature and decrease in biodegradability, as compared to native pericardium. Cross-linking with glutaraldehyde improves all the analyzed NBP properties, which are not impaired by previous treatment with 1,4-dioxane. Histological evaluation of NBP submitted to 1,4-dioxane treatment shows lower lipid and cell contents and improvement in other morphologic characteristics compared to native pericardium. Altogether, these results suggest the use of 1,4-dioxane organic solvent as an alternative non-cross-linking treatment for direct utilization on rich collagen matrices, resulting in materials with improved biocompatibility and physicochemical properties suitable for tissue engineering.

  13. Targeting gene expression to specific cells of kidney tubules in vivo, using adenoviral promoter fragments.

    PubMed

    Watanabe, Sumiyo; Ogasawara, Toru; Tamura, Yoshifuru; Saito, Taku; Ikeda, Toshiyuki; Suzuki, Nobuchika; Shimosawa, Tatsuo; Shibata, Shigeru; Chung, Ung-Il; Nangaku, Masaomi; Uchida, Shunya

    2017-01-01

    Although techniques for cell-specific gene expression via viral transfer have advanced, many challenges (e.g., viral vector design, transduction of genes into specific target cells) still remain. We investigated a novel, simple methodology for using adenovirus transfer to target specific cells of the kidney tubules for the expression of exogenous proteins. We selected genes encoding sodium-dependent phosphate transporter type 2a (NPT2a) in the proximal tubule, sodium-potassium-2-chloride cotransporter (NKCC2) in the thick ascending limb of Henle (TALH), and aquaporin 2 (AQP2) in the collecting duct. The promoters of the three genes were linked to a GFP-coding fragment, the final constructs were then incorporated into an adenovirus vector, and this was then used to generate gene-manipulated viruses. After flushing circulating blood, viruses were directly injected into the renal arteries of rats and were allowed to site-specifically expression in tubule cells, and rats were then euthanized to obtain kidney tissues for immunohistochemistry. Double staining with adenovirus-derived EGFP and endogenous proteins were examined to verify orthotopic expression, i.e. "adenovirus driven NPT2a-EGFP and endogenous NHE3 protein", "adenovirus driven NKCC2-EGFP and endogenous NKCC2 protein" and "adenovirus driven AQP2-EGFP and endogenous AQP2 protein". Owing to a lack of finding good working anti-NPT2a antibody, an antibody against a different protein (sodium-hydrogen exchanger 3 or NHE3) that is also specifically expressed in the proximal tubule was used. Kidney structures were well-preserved, and other organ tissues did not show EGFP staining. Our gene transfer method is easier than using genetically engineered animals, and it confers the advantage of allowing the manipulation of gene transfer after birth. This is the first method to successfully target gene expression to specific cells in the kidney tubules. This study may serve as the first step for safe and effective gene

  14. Targeting gene expression to specific cells of kidney tubules in vivo, using adenoviral promoter fragments

    PubMed Central

    Watanabe, Sumiyo; Ogasawara, Toru; Tamura, Yoshifuru; Saito, Taku; Ikeda, Toshiyuki; Suzuki, Nobuchika; Shimosawa, Tatsuo; Shibata, Shigeru; Chung, Ung-il; Nangaku, Masaomi; Uchida, Shunya

    2017-01-01

    Although techniques for cell-specific gene expression via viral transfer have advanced, many challenges (e.g., viral vector design, transduction of genes into specific target cells) still remain. We investigated a novel, simple methodology for using adenovirus transfer to target specific cells of the kidney tubules for the expression of exogenous proteins. We selected genes encoding sodium-dependent phosphate transporter type 2a (NPT2a) in the proximal tubule, sodium-potassium-2-chloride cotransporter (NKCC2) in the thick ascending limb of Henle (TALH), and aquaporin 2 (AQP2) in the collecting duct. The promoters of the three genes were linked to a GFP-coding fragment, the final constructs were then incorporated into an adenovirus vector, and this was then used to generate gene-manipulated viruses. After flushing circulating blood, viruses were directly injected into the renal arteries of rats and were allowed to site-specifically expression in tubule cells, and rats were then euthanized to obtain kidney tissues for immunohistochemistry. Double staining with adenovirus-derived EGFP and endogenous proteins were examined to verify orthotopic expression, i.e. “adenovirus driven NPT2a-EGFP and endogenous NHE3 protein”, “adenovirus driven NKCC2-EGFP and endogenous NKCC2 protein” and “adenovirus driven AQP2-EGFP and endogenous AQP2 protein”. Owing to a lack of finding good working anti-NPT2a antibody, an antibody against a different protein (sodium-hydrogen exchanger 3 or NHE3) that is also specifically expressed in the proximal tubule was used. Kidney structures were well-preserved, and other organ tissues did not show EGFP staining. Our gene transfer method is easier than using genetically engineered animals, and it confers the advantage of allowing the manipulation of gene transfer after birth. This is the first method to successfully target gene expression to specific cells in the kidney tubules. This study may serve as the first step for safe and

  15. Sp7/Osterix induces the mouse pro-α2(I) collagen gene (Col1a2) expression via the proximal promoter in osteoblastic cells.

    PubMed

    Yano, Hiroyuki; Hamanaka, Ryoji; Nakamura-Ota, Miki; Adachi, Sawako; Zhang, Juan Juan; Matsuo, Noritaka; Yoshioka, Hidekatsu

    2014-09-26

    Bone is essentially composed of two components, hydroxyapatite and extracellular matrix proteins. The extracellular matrix of bone is primary composed of collagen, mostly type I collagen, with lesser amounts of other types of collagen such as type V collagen. Osteoblast differentiation is a multi-step process in which many classes of factors function in a coordinated manner. Sp7/Osterix, which binds to G/C-rich sequences, is a transcription factor that contributes to osteoblast differentiation. The present study aimed to clarify the involvement of Sp7/Osterix with the proximal promoter region of the mouse Col1a2 gene containing multiple G/C-rich sequences exist. Consequently, a functional analysis of the proximal mouse Col1a2 promoter showed that a substitution mutation of the second G/C-rich sequence from the transcription site specifically decreased the activity of osteoblastic cells. In addition, the experiments of overexpression of Sp7/Osterix and treatment with its specific siRNA showed that this G/C-rich sequence is responsible for the specific expression in osteoblastic cells. Consistent with these data, Sp7/Osterix bound to the region and increased the expression of the Col1a2 gene in association with osteoblast differentiation in the culture system.

  16. Collagen-derived dipeptide prolyl-hydroxyproline promotes differentiation of MC3T3-E1 osteoblastic cells

    SciTech Connect

    Kimira, Yoshifumi; Ogura, Kana; Taniuchi, Yuri; Kataoka, Aya; Inoue, Naoki; Sugihara, Fumihito; Nakatani, Sachie; Shimizu, Jun; Wada, Masahiro; Mano, Hiroshi

    2014-10-24

    Highlights: • Pro-Hyp did not affect MC3T3-E1 cell proliferation and matrix mineralization. • Pro-Hyp significantly increased alkaline phosphatase activity. • Pro-Hyp significantly upregulated gene expression of Runx2, Osterix, and Col1α1. - Abstract: Prolyl-hydroxyproline (Pro-Hyp) is one of the major constituents of collagen-derived dipeptides. The objective of this study was to investigate the effects of Pro-Hyp on the proliferation and differentiation of MC3T3-E1 osteoblastic cells. Addition of Pro-Hyp did not affect MC3T3-E1 cell proliferation and matrix mineralization but alkaline phosphatase activity was significantly increased. Furthermore, cells treated with Pro-Hyp significantly upregulated gene expression of Runx2, Osterix, and Col1α1. These results indicate that Pro-Hyp promotes osteoblast differentiation. This study demonstrates for the first time that Pro-Hyp has a positive effect on osteoblast differentiation with upregulation of Runx2, Osterix, and Collα1 gene expression.

  17. Characterization of the BM88 promoter and identification of an 88 bp fragment sufficient to drive neurone-specific expression.

    PubMed

    Papadodima, Olga; Sergaki, Maritina; Hurel, Catherine; Mamalaki, Avgi; Matsas, Rebecca

    2005-10-01

    BM88 is a neurone-specific protein implicated in cell cycle exit and differentiation of neuronal precursors. It is widely expressed in terminally differentiated neurones but also in neuronal progenitors, albeit in lower levels. Thus BM88 expression shows a tight correlation with the progression of progenitor cells towards neuronal differentiation. Here we report the genomic organization and proximal promoter characterization of the human and mouse BM88 genes. Both promoters lie in a CpG island, are TATA-less and have multiple transcription start sites. Deletion analysis performed on the human BM88 gene revealed an 88 bp minimal promoter fragment that is preferentially active in neural cells. Importantly, this minimal promoter is sufficient to confer specific transcriptional activity in primary neurones, but not in glial cells. Within the promoter region there are four functional Sp1-binding sites. Simultaneous mutations to all four Sp1 sites results in complete loss of promoter activity. Transactivation experiments revealed that Sp1 directly activates the BM88 promoter while activation also occurs in the presence of neurogenin-1. Characterization of the promoter elements that control neurone-specific and developmental expression of BM88 should contribute to the elucidation of the transcriptional networks that regulate the transition from a proliferative neural progenitor to a post-mitotic neurone.

  18. S-adenosylmethionine blocks collagen I production by preventing transforming growth factor-beta induction of the COL1A2 promoter.

    PubMed

    Nieto, Natalia; Cederbaum, Arthur I

    2005-09-02

    To study the anti-fibrogenic mechanisms of S-adenosylmethionine (AdoMet), transgenic mice harboring the -17 kb to +54 bp of the collagen alpha2 (I) promoter (COL1A2) cloned upstream from the beta-gal reporter gene were injected with carbon tetrachloride (CCl4) to induce fibrosis and coadministered either AdoMet or saline. Control groups received AdoMet or mineral oil. AdoMet lowered the pathology in CCl4-treated mice as shown by transaminase levels, hematoxylin and eosin, Masson's trichrome staining, and collagen I expression. beta-Galactosidase activity indicated activation of the COL1A2 promoter in stellate cells from CCl4-treated mice and repression of such activation by AdoMet. Lipid peroxidation, transforming growth factor-beta (TGFbeta) expression, and decreases in glutathione levels were prevented by AdoMet. Incubation of primary stellate cells with AdoMet down-regulated basal and TGFbeta-induced collagen I and alpha-smooth muscle actin proteins. AdoMet metabolites down-regulated collagen I protein and mRNA levels. AdoMet repressed basal and TGFbeta-induced reporter activity in stellate cells transfected with COL1A2 promoter deletion constructs. AdoMet blocked TGFbeta induction of the -378 bp region of the COL1A2 promoter and prevented the phosphorylation of extracellular signal-regulated kinase 1/2 and the binding of Sp1 to the TGFbeta-responsive element. These observations unveil a novel mechanism by which AdoMet could ameliorate liver fibrosis.

  19. In vitro incubation of human spermatozoa promotes reactive oxygen species generation and DNA fragmentation.

    PubMed

    Cicaré, J; Caille, A; Zumoffen, C; Ghersevich, S; Bahamondes, L; Munuce, M J

    2015-10-01

    The aim of this study was to investigate the oxidative process associated with sperm capacitation and its impact on DNA fragmentation and sperm function. Redox activity and lipid peroxidation were analysed in human spermatozoa after 3, 6 and 22 h of incubation in Ham's F10 medium plus bovine albumin at 37° and 5% CO2 for capacitation. DNA status, tyrosine phosphorylation pattern and induced acrosome reaction were evaluated after capacitating conditions. At 22 h of incubation, there was a significant (P < 0.05) increase in oxygen-free radicals and lipid peroxidation, with no effect on sperm viability. There also was a significant (P < 0.001) increase in fragmented DNA in capacitated spermatozoa compared to semen values with higher rates being found after the occurrence of the induced acrosome reaction. Protein tyrosine phosphorylation pattern confirms that capacitation took place in parallel with the occurrence of DNA fragmentation. These results indicate that when spermatozoa are incubated for several hours (22 h), a common practice in assisted reproductive techniques, an increase in oxidative sperm metabolism and in the proportion of fragmented DNA should be expected. However, there was no effect on any of the other functional parameters associated with sperm fertilising capacity.

  20. TURBULENT DISKS ARE NEVER STABLE: FRAGMENTATION AND TURBULENCE-PROMOTED PLANET FORMATION

    SciTech Connect

    Hopkins, Philip F.; Christiansen, Jessie L.

    2013-10-10

    A fundamental assumption in our understanding of disks is that when the Toomre Q >> 1, the disk is stable against fragmentation into self-gravitating objects (and so cannot form planets via direct collapse). But if disks are turbulent, this neglects a spectrum of stochastic density fluctuations that can produce rare, high-density mass concentrations. Here, we use a recently developed analytic framework to predict the statistics of these fluctuations, i.e., the rate of fragmentation and mass spectrum of fragments formed in a turbulent Keplerian disk. Turbulent disks are never completely stable: we calculate the (always finite) probability of forming self-gravitating structures via stochastic turbulent density fluctuations in such disks. Modest sub-sonic turbulence above Mach number M∼0.1 can produce a few stochastic fragmentation or 'direct collapse' events over ∼Myr timescales, even if Q >> 1 and cooling is slow (t{sub cool} >> t{sub orbit}). In transsonic turbulence this extends to Q ∼ 100. We derive the true Q-criterion needed to suppress such events, which scales exponentially with Mach number. We specify to turbulence driven by magneto-rotational instability, convection, or spiral waves and derive equivalent criteria in terms of Q and the cooling time. Cooling times ∼> 50 t{sub dyn} may be required to completely suppress fragmentation. These gravo-turbulent events produce mass spectra peaked near ∼(Q M{sub disk}/M{sub *}){sup 2} M{sub disk} (rocky-to-giant planet masses, increasing with distance from the star). We apply this to protoplanetary disk models and show that even minimum-mass solar nebulae could experience stochastic collapse events, provided a source of turbulence.

  1. Analysis of the promoter region and the N-propeptide domain of the human pro alpha 2(I) collagen gene.

    PubMed Central

    Dickson, L A; de Wet, W; Di Liberto, M; Weil, D; Ramirez, F

    1985-01-01

    We have located the exon coding for the start site of transcription of the human pro alpha 2(I) collagen gene. Comparison with the homologous region of other fibrillar collagen genes has confirmed the existence of a consensus sequence (CATGTCTA-n-TAGACATG) capable of forming a hairpin secondary structure possibly involved in the regulation of collagen biosynthesis. Sequence comparison of the chromosomal regions at the 5' end of the pro alpha 1(I) and pro alpha 2(I) collagen genes failed to identify unique DNA elements potentially mediating common regulatory signals. Sequencing of four exons coding for the N-terminal propeptide has determined most of its structure and it has implied the existence of smaller coding units similar to the 11 and 18 bp exons originally described in the avian gene. Images PMID:4011429

  2. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects.

    PubMed

    Wang, Yao; Van Manh, Ngo; Wang, Haorong; Zhong, Xue; Zhang, Xu; Li, Changyi

    2016-01-01

    The mineralization of collagen scaffolds can improve their mechanical properties and biocompatibility, thereby providing an appropriate microenvironment for bone regeneration. The primary purpose of the present study is to fabricate a synergistically intra- and extrafibrillar mineralized collagen scaffold, which has many advantages in terms of biocompatibility, biomechanical properties, and further osteogenic potential. In this study, mineralized collagen scaffolds were fabricated using a traditional mineralization method (ie, immersed in simulated body fluid) as a control group and using a biomimetic method based on the polymer-induced liquid precursor process as an experimental group. In the polymer-induced liquid precursor process, a negatively charged polymer, carboxymethyl chitosan (CMC), was used to stabilize amorphous calcium phosphate (ACP) to form nanocomplexes of CMC/ACP. Collagen scaffolds mineralized based on the polymer-induced liquid precursor process were in gel form such that nanocomplexes of CMC/ACP can easily be drawn into the interstices of the collagen fibrils. Scanning electron microscopy and transmission electron microscopy were used to examine the porous micromorphology and synergistic mineralization pattern of the collagen scaffolds. Compared with simulated body fluid, nanocomplexes of CMC/ACP significantly increased the modulus of the collagen scaffolds. The results of in vitro experiments showed that the cell count and differentiated degrees in the experimental group were higher than those in the control group. Histological staining and micro-computed tomography showed that the amount of new bone regenerated in the experimental group was larger than that in the control group. The biomimetic mineralization will assist us in fabricating a novel collagen scaffold for clinical applications.

  3. Human pancreatic stellate cells modulate 3D collagen alignment to promote the migration of pancreatic ductal adenocarcinoma cells.

    PubMed

    Drifka, Cole R; Loeffler, Agnes G; Esquibel, Corinne R; Weber, Sharon M; Eliceiri, Kevin W; Kao, W John

    2016-12-01

    A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the ability for cancer cells to aggressively infiltrate and navigate through a dense stroma during the metastatic process. Key features of the PDAC stroma include an abundant population of activated pancreatic stellate cells (PSCs) and highly aligned collagen fibers; however, important questions remain regarding how collagen becomes aligned and what the biological manifestations are. To better understand how PSCs, aligned collagen, and PDAC cells might cooperate during the transition to invasion, we utilized a microchannel-based in vitro tumor model and advanced imaging technologies to recreate and examine in vivo-like heterotypic interactions. We found that PSCs participate in a collaborative process with cancer cells by orchestrating the alignment of collagen fibers that, in turn, are permissive to enhanced cell migration. Additionally, direct contact between PSCs, collagen, and PDAC cells is critical to invasion and co-migration of both cell types. This suggests PSCs may accompany and assist in navigating PDAC cells through the stromal terrain. Together, our data provides a new role for PSCs in stimulating the metastatic process and underscores the importance of collagen alignment in cancer progression.

  4. Collagen chains detected by western blotting using a /sup 125/I-labeled 45K fragment of fibronectin (45K FN)

    SciTech Connect

    Ristagno, R.; Heimer, R.; Fishman, A.P.; Sampson, P.M.

    1987-05-01

    The objective was to improve the sensitivity and specificity of detection of unlabeled collagen chains in biologic fluids. Chains of Types I,II,III,IV and XI (1..cap alpha..2..cap alpha..3..cap alpha..) collagen were separated by SDS PAGE. Their complete transfer to nitrocellulose was obtained by electrophoresis for 16 h at 150 mA with 10 mM Tris, 117 mM glycine, 100 mM cysteine, 0.1% SDS and 10% methanol. The 45K FN was prepared by chymotryptic digestion of fibronectin adsorbed to gelatin-Sepharose, followed by elution with 1.2 M urea, 1 M Tris-NaCl, pH 8.3 and iodination. When exposed to the nitrocellulose transblot at pH 9.5 and 4/sup 0/C, 45K FN did not react with IgG, fibrinogen, myosin, albumin or carbonic anhydrase. These proteins interfere in the assay under conditions of lower pH and higher temperature. The autoradiographs of the transblots were evaluated by densitometry and reflected results also obtained by dot blotting, that chains of collagen Types I,II,III were detectable at 4 ng and those of collagen Type IV at 12 ng. Generally, ..cap alpha..,BETA, and ..gamma.. chains were detectable. The 45K FN reacted equally with ..cap alpha..1(I) and ..cap alpha..2(I), but for Type XI the 1..cap alpha.. chain had considerably more reactivity than 2..cap alpha.. or 3..cap alpha... As the 45K FN was specific for collagens added to plasma, the authors method appears useful for qualitative and quantitative assays of unlabeled collagens in biologic fluids.

  5. Interactions between Amyloid-β and Tau Fragments Promote Aberrant Aggregates: Implications for Amyloid Toxicity

    PubMed Central

    2015-01-01

    We have investigated at the oligomeric level interactions between Aβ(25–35) and Tau(273–284), two important fragments of the amyloid-β and Tau proteins, implicated in Alzheimer’s disease. We are able to directly observe the coaggregation of these two peptides by probing the conformations of early heteroligomers and the macroscopic morphologies of the aggregates. Ion-mobility experiment and theoretical modeling indicate that the interactions of the two fragments affect the self-assembly processes of both peptides. Tau(273–284) shows a high affinity to form heteroligomers with existing Aβ(25–35) monomer and oligomers in solution. The configurations and characteristics of the heteroligomers are determined by whether the population of Aβ(25–35) or Tau(273–284) is dominant. As a result, two types of aggregates are observed in the mixture with distinct morphologies and dimensions from those of pure Aβ(25–35) fibrils. The incorporation of some Tau into β-rich Aβ(25–35) oligomers reduces the aggregation propensity of Aβ(25–35) but does not fully abolish fibril formation. On the other hand, by forming complexes with Aβ(25–35), Tau monomers and dimers can advance to larger oligomers and form granular aggregates. These heteroligomers may contribute to toxicity through loss of normal function of Tau or inherent toxicity of the aggregates themselves. PMID:25153942

  6. Electronic cigarette aerosols and copper nanoparticles induce mitochondrial stress and promote DNA fragmentation in lung fibroblasts.

    PubMed

    Lerner, Chad A; Rutagarama, Pierrot; Ahmad, Tanveer; Sundar, Isaac K; Elder, Alison; Rahman, Irfan

    2016-09-02

    Oxidants or nanoparticles have recently been identified as constituents of aerosols released from various styles of electronic cigarettes (E-cigs). Cells in the lung may be directly exposed to these constituents and harbor reactive properties capable of incurring acute cell injury. Our results show mitochondria are sensitive to both E-cig aerosols and aerosol containing copper nanoparticles when exposed to human lung fibroblasts (HFL-1) using an Air-Liquid Interface culture system, evident by elevated levels of mitochondrial ROS (mtROS). Increased mtROS after aerosol exposure is associated with reduced stability of OxPhos electron transport chain (ETC) complex IV subunit and nuclear DNA fragmentation. Increased levels of IL-8 and IL-6 in HFL-1 conditioned media were also observed. These findings reveal both mitochondrial, genotoxic, and inflammatory stresses are features of direct cell exposure to E-cig aerosols which are ensued by inflammatory duress, raising a concern on deleterious effect of vaping.

  7. Aromatic interactions promote self-association of collagen triple-helical peptides to higher-order structures.

    PubMed

    Kar, Karunakar; Ibrar, Sajjad; Nanda, Vikas; Getz, Todd M; Kunapuli, Satya P; Brodsky, Barbara

    2009-08-25

    Aromatic residues are relatively rare within the collagen triple helix, but they appear to play a specialized role in higher-order structure and function. The role of aromatic amino acids in the self-assembly of triple-helical peptides was investigated in terms of the kinetics of self-association, the nature of aggregated species formed, and the ability of these species to activate platelet aggregation. The presence of aromatic residues on both ends of a type IV collagen model peptide is observed to greatly accelerate the kinetics of self-association, decreasing the lag time and leading to insoluble, well-defined linear fibrils as well as small soluble aggregates. Both macroscopic visible aggregates and small multimolecular complexes in solution are capable of inducing platelet aggregation through the glycoprotein VI receptor on platelets. Proline-aromatic CH...pi interactions are often observed within globular proteins and in protein complexes, and examination of molecular packing in the crystal structure of the integrin binding collagen peptide shows Phe interacts with Pro/Hyp in a neighboring triple-helical molecule. An intermolecular interaction between aromatic amino acids and imino acids within the triple helix is also supported by the observed inhibitory effect of isolated Phe amino acids on the self-association of (Pro-Hyp-Gly)(10). Given the high fraction of Pro and Hyp residues on the surface of collagen molecules, it is likely that imino acid-aromatic CH...pi interactions are important in formation of higher-order structure. We suggest that the catalysis of type I collagen fibrillogenesis by nonhelical telopeptides is due to specific intermolecular CH...pi interactions between aromatic residues in the telopeptides and Pro/Hyp residues within the triple helix.

  8. IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-kappa B ligand/osteoprotegerin balance.

    PubMed

    Lubberts, Erik; van den Bersselaar, Liduine; Oppers-Walgreen, Birgitte; Schwarzenberger, Paul; Coenen-de Roo, Christina J J; Kolls, Jay K; Joosten, Leo A B; van den Berg, Wim B

    2003-03-01

    IL-17 is a T cell-derived proinflammatory cytokine in experimental arthritis and is a stimulator of osteoclastogenesis in vitro. In this study, we report the effects of IL-17 overexpression (AdIL-17) in the knee joint of type II collagen-immunized mice on bone erosion and synovial receptor activator of NF-kappa B ligand (RANKL)/receptor activator of NF-kappa B/osteoprotegerin (OPG) expression. Local IL-17 promoted osteoclastic bone destruction, which was accompanied with marked tartrate-resistant acid phosphatase activity at sites of bone erosion in cortical, subchondral, and trabecular bone. Accelerated expression of RANKL and its receptor, receptor activator of NF-kappa B, was found in the synovial infiltrate and at sites of focal bone erosion, using specific immunohistochemistry. Interestingly, AdIL-17 not only enhanced RANKL expression but also strongly up-regulated the RANKL/OPG ratio in the synovium. Comparison of arthritic mice from the AdIL-17 collagen-induced arthritis group with full-blown collagen-arthritic mice having similar clinical scores for joint inflammation revealed lower RANKL/OPG ratio and tartrate-resistant acid phosphatase activity in the latter group. Interestingly, systemic OPG treatment prevented joint damage induced by local AdIL-17 gene transfer in type II collagen-immunized mice. These findings suggest T cell IL-17 to be an important inducer of RANKL expression leading to loss of the RANKL/OPG balance, stimulating osteoclastogenesis and bone erosion in arthritis.

  9. Classical complement pathway component C1q: purification of human C1q, isolation of C1q collagen-like and globular head fragments and production of recombinant C1q-derivatives. Functional characterization.

    PubMed

    Kojouharova, Mihaela

    2014-01-01

    The classical complement pathway (CCP) activation is a multimolecular complex, composed of three subcomponents namely C1q, C1r, and C1s. C1q is the recognition subunit of this complex and its binding to the specific targets leads to the formation of active C1, which in turn activates the CCP in an immunoglobulin-dependent or -independent manner. C1q is a hexameric glycoprotein composed of 18 polypeptide chains of three different types (A, B, and C), organized in two fragments-collagen-like (CLR) and globular head (gC1q) possessing different functional activity. The contemporary knowledge of the C1q structure allows the isolation and purification of a C1q molecule from serum by combination of different chromatography procedures including ion-exchange, size-exclusion, and affinity chromatography, as well as the isolation of CLR and gC1q by limited enzymatic hydrolysis of the native C1q molecule. In this chapter, we described methods for purification of human C1q and its CLR and gC1q fragments, as well as methods for their biochemical and functional characterization. The production and purification of recombinant C1q derivatives ghA, ghB, and ghC (globular fragments of the individual C1q chains) are also presented.

  10. Characterization of low molecular weight fragments from gamma irradiated κ-carrageenan used as plant growth promoter

    NASA Astrophysics Data System (ADS)

    Abad, Lucille V.; Aurigue, Fernando B.; Relleve, Lorna S.; Montefalcon, Djowel Recto V.; Lopez, Girlie Eunice P.

    2016-01-01

    Radiation degraded κ-carrageenan (1% solution at absorbed doses of 20 kGy and 30 kGy) were tested for its plant growth promoter (PGP) effect on pechay plants under hydroponics condition. Results revealed that higher PGP effects were found in κ-carrageenan irradiated at an absorbed dose of 30 kGy. Mw of irradiated κ-carrageenan as measured by GPC were determined to be 7362 Da and 6762 Da for 20 kGy and 30 kGy, respectively. Fractionation of the irradiated κ-carrageenan (30 kGy) was done to separate different Mw fractions using Mw cut-off filters of 1 kDa, 3 kDa, and 5 kDa. The PGP effect of the different retentates showed that biological activity in plants followed the order of 5 kDa>3 kDa>1 kDa using hydroponics condition but the reverse was observed in the order of 1 kDa>3 kDa>5 kDa when absorbed in plants by foliar spraying. GPC chromatogram indicated at least three (3) low molecular weight (LMW) fragments from radiation modified κ-carrageenan solution with an Mw<2000 Da. A fragment has also been identified with an Mw of as low as 160 Da which was produced under acidic (un-neutralized) condition. This may be attributed to the formation of 5-hydroxymethylfurfural (5-HMF).

  11. Interleukin-35 (IL-35) inhibits proliferation and promotes apoptosis of fibroblast-like synoviocytes isolated from mice with collagen-induced arthritis.

    PubMed

    Li, Yunxia; Wu, Suqin; Li, Yuxuan; Jiang, Shenyi; Lin, Tiantian; Xia, Liping; Shen, Hui; Lu, Jing

    2016-09-01

    Rheumatoid arthritis (RA) is an inflammatory disorder of the joints that affects 0.5-1 % of adults. Excessive growth of the fibroblast-like synoviocytes (FLS) promotes hyperplasia of synovial tissues and causes its invasion into the bone and cartilage, which eventually causes deformity and dysfunction of affected joints. Interleukin 35 (IL-35) was shown to suppress the inflammatory responses to collagen-induced arthritis (CIA) via upregulation of T regulatory cells and suppression of T helper type 17 cells in a mouse model. To study the effects of IL-35 on the proliferation and apoptosis frequency of cultured FLS isolated from mice with CIA as well as to examine the effects of IL-35 on CIA in vivo. Thirty DBA/1 J mice, which are used as an animal model for RA, were divided randomly (ten mice per group) to a CIA group (collagen treatment), a CIA + IL-35 group (collagen and IL-35 treatments), and a control group (no treatment). Starting on the 24th day after collagen administration, IL-35 was injected intraperitoneally into mice of the CIA + IL-35 group once per day for 10 days. An arthritis index was calculated, and pathological analysis of synovial tissue was performed. FLS isolated from CIA mice were treated with various concentrations of IL-35 (12.5-100 ng/ml). The MTT assay was used to examine FLS proliferation, and apoptosis frequency of FLS was detected by flow cytometry. On day 24, the CIA mice began to exhibit arthritis symptoms, and the symptoms rapidly progressed with time. Treatment with IL-35 significantly alleviated arthritis symptoms and reduced the synovial tissue inflammation. In addition, IL-35 treatment inhibited proliferation and promoted apoptosis in cultured FLS from CIA mice in a dose-dependent manner. IL-35 could ameliorate the symptoms of arthritis in the CIA mouse model in vivo and inhibited FLS proliferation while promoting FLS apoptosis in vitro, thereby exhibited the potential in inhibiting the progression of RA.

  12. Characterization of EBV Promoters and Coding Regions by Sequencing PCR-Amplified DNA Fragments.

    PubMed

    Szenthe, Kalman; Bánáti, Ferenc

    2017-01-01

    DNA sequencing approaches originally developed in two directions, the chemical degradation method and the chain-termination method. The latter one became more widespread and a huge amount of sequencing data including whole genome sequences accumulated, based on the use of capillary sequencer systems and the application of a modified chain-termination method which proved to be relatively easy, fast, and reliable. In addition, relatively long, up to 1000 bp sequences could be obtained with a single read with high per-base accuracy. Although the recent appearance of next-generation DNA sequencing (NGS) technologies enabled high-throughput and low cost analysis of DNA, the modified chain-terminating methods are often applied in research until now. In the following, we shall present the application of capillary sequencing for the sequence characterization of viral genomes in case of partial and whole genome sequencing, and demonstrate it on the BARF1 promoter of Epstein Barr virus (EBV).

  13. Effect of a novel botanical agent Drynol Cibotin on human osteoblast cells and implications for osteoporosis: promotion of cell growth, calcium uptake and collagen production.

    PubMed

    Wegiel, Barbara; Persson, Jenny L

    2010-06-01

    Osteoporosis is a widespread problem afflicting millions of people. Drynol Cibotinis is a newly developed proprietary botanical combination of eight botanicals including Angelica sinensis, Glycine max, Wild yam, Ligustrum lucidum, Astragalus membranaceus, Cuscuta chinensis, Psoraleae corylifoliae, and Drynaria fortune. Each of the botanicals has been used in traditional Chinese medicine to treat osteoporosis. The effect of Drynol Cibotinis, with the specific combination of these anti-osteoporosis botanicals for promoting bone growth, was examined in this study. The effects of Drynol Cibotin on cell growth, apoptosis, cell spreading, calcium uptake and production of bone matrix proteins Collagen I and Laminin B2 on human osteoblast cells were assessed by BrdU incorporation, TUNEL assay, cell staining, intracellular Ca2+ measurement and Western blot analysis. The results showed that Drynol Cibotin significantly increased cell proliferation and inhibited apoptosis in osteoblasts (P < 0.01). In addition, Drynol Cibotin was found to promote cell spreading and greatly increase calcium uptake both instantaneously and in the long term (P < 0.01). Furthermore, Drynol Cibotin significantly increased production of two key extracellular matrix proteins in bone cells: Collagen I and Laminin B2. These results indicate that Drynol Cibotin alone or in combination with amino acids and vitamins may have prophylactic potentials in osteoporosis.

  14. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs

    PubMed Central

    Bhatia, Ayesha; O’Brien, Kathryn; Chen, Mei; Wong, Alex; Garner, Warren; Woodley, David T.; Li, Wei

    2016-01-01

    Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for burns should show dual abilities to prevent the burn wound progression and thereafter promote burn wound healing. Herein we report that topically applied F-5 fragment of heat shock protein-90α is a dual functional agent to promote burn wound healing in pigs. First, F-5 prevents burn wound progression by protecting the surrounding cells from undergoing heat-induced caspase 3 activation and apoptosis with increased Akt activation. Accordingly, F-5–treated burn and excision wounds show a marked decline in inflammation. Thereafter, F-5 accelerates burn wound healing by stimulating the keratinocyte migration-led reepithelialization, leading to wound closure. This study addresses a topical agent that is capable of preventing burn wound progression and accelerating burn wound healing. PMID:27382602

  15. Biased Signaling Favoring Gi over β-Arrestin Promoted by an Apelin Fragment Lacking the C-terminal Phenylalanine*

    PubMed Central

    Ceraudo, Emilie; Galanth, Cécile; Carpentier, Eric; Banegas-Font, Inmaculada; Schonegge, Anne-Marie; Alvear-Perez, Rodrigo; Iturrioz, Xavier; Bouvier, Michel; Llorens-Cortes, Catherine

    2014-01-01

    Apelin plays a prominent role in body fluid and cardiovascular homeostasis. We previously showed that the C-terminal Phe of apelin 17 (K17F) is crucial for triggering apelin receptor internalization and decreasing blood pressure (BP) but is not required for apelin binding or Gi protein coupling. Based on these findings, we hypothesized that the important role of the C-terminal Phe in BP decrease may be as a Gi-independent but β-arrestin-dependent signaling pathway that could involve MAPKs. For this purpose, we have used apelin fragments K17F and K16P (K17F with the C-terminal Phe deleted), which exhibit opposite profiles on apelin receptor internalization and BP. Using BRET-based biosensors, we showed that whereas K17F activates Gi and promotes β-arrestin recruitment to the receptor, K16P had a much reduced ability to promote β-arrestin recruitment while maintaining its Gi activating property, revealing the biased agonist character of K16P. We further show that both β-arrestin recruitment and apelin receptor internalization contribute to the K17F-stimulated ERK1/2 activity, whereas the K16P-promoted ERK1/2 activity is entirely Gi-dependent. In addition to providing new insights on the structural basis underlying the functional selectivity of apelin peptides, our study indicates that the β-arrestin-dependent ERK1/2 activation and not the Gi-dependent signaling may participate in K17F-induced BP decrease. PMID:25012663

  16. Collagen XXIV (Col24α1) Promotes Osteoblastic Differentiation and Mineralization through TGF-β/Smads Signaling Pathway

    PubMed Central

    Wang, Weizhuo; Olson, Douglas; Liang, Gang; Franceschi, Renny T; Li, Chunyi; Wang, Bingyan; Wang, Shuen Shiuan; Yang, Shuying

    2012-01-01

    Collagen XXIV (Col24α1) is a recently discovered fibrillar collagen. It is known that mouse Col24α1 is predominantly expressed in the forming skeleton of the mouse embryo, as well as in the trabecular bone and periosteum of the newborn mouse. However, the role and mechanism of Col24α1 in osteoblast differentiation and mineralization remains unclear. By analyzing the expression pattern of Col24α1, we confirmed that it is primarily expressed in bone tissues, and this expression gradually increased concomitant with the progression of osteoblast differentiation. Through the use of a lentivirus vector-mediated interference system, silencing Col24α1 expression in MC3T3-E1 murine preosteoblastic cells resulted in significant inhibition of alkaline phosphatase (ALP) activity, cell mineralization, and the expression of osteoblast marker genes such as runt-related transcription factor 2 (Runx2), osteocalcin (OCN), ALP, and type I collagen (Col I). Subsequent overexpression not only rescued the deficiency in osteoblast differentiation from Col24α1 silenced cells, but also enhanced osteoblastic differentiation in control cells. We further revealed that Col24α1 interacts with integrin β3, and silencing Col24α1 up-regulated the expression of Smad7 during osteoblast differentiation while at the same time inhibiting the phosphorylation of the Smad2/3 complex. These results suggest that Col24α1 imparts some of its regulatory control on osteoblast differentiation and mineralization at least partially through interaction with integrin β3 and the transforming growth factor beta (TGF-β) /Smads signaling pathway. PMID:23139630

  17. Gelatin-methacrylamide gel loaded with microspheres to deliver GDNF in bilayer collagen conduit promoting sciatic nerve growth.

    PubMed

    Zhuang, Hai; Bu, Shoushan; Hua, Lei; Darabi, Mohammad A; Cao, Xiaojian; Xing, Malcolm

    2016-01-01

    In this study, we fabricated glial cell-line derived neurotrophic factor (GDNF)-loaded microspheres, then seeded the microspheres in gelatin-methacrylamide hydrogel, which was finally integrated with the commercial bilayer collagen membrane (Bio-Gide(®)). The novel composite of nerve conduit was employed to bridge a 10 mm long sciatic nerve defect in a rat. GDNF-loaded gelatin microspheres had a smooth surface with an average diameter of 3.9±1.8 μm. Scanning electron microscopy showed that microspheres were uniformly distributed in both the GelMA gel and the layered structure. Using enzyme-linked immunosorbent assay, in vitro release studies (pH 7.4) of GDNF from microspheres exhibited an initial burst release during the first 3 days (18.0%±1.3%), and then, a prolonged-release profile extended to 32 days. However, in an acidic condition (pH 2.5), the initial release percentage of GDNF was up to 91.2%±0.9% within 4 hours and the cumulative release percentage of GDNF was 99.2%±0.2% at 48 hours. Then the composite conduct was implanted in a 10 mm critical defect gap of sciatic nerve in a rat. We found that the nerve was regenerated in both conduit and autograft (AG) groups. A combination of electrophysiological assessment and histomorphometry analysis of regenerated nerves showed that axonal regeneration and functional recovery in collagen tube filled with GDNF-loaded microspheres (GM + CT) group were similar to AG group (P>0.05). Most myelinated nerves were matured and arranged densely with a uniform structure of myelin in a neat pattern along the long axis in the AG and GM + CT groups, however, regenerated nerve was absent in the BLANK group, left the 10 mm gap empty after resection, and the nerve fiber exhibited a disordered arrangement in the collagen tube group. These results indicated that the hybrid system of bilayer collagen conduit and GDNF-loaded gelatin microspheres combined with gelatin-methacrylamide hydrogels could serve as a new biodegradable

  18. Gelatin-methacrylamide gel loaded with microspheres to deliver GDNF in bilayer collagen conduit promoting sciatic nerve growth

    PubMed Central

    Zhuang, Hai; Bu, Shoushan; Hua, Lei; Darabi, Mohammad A; Cao, Xiaojian; Xing, Malcolm

    2016-01-01

    In this study, we fabricated glial cell-line derived neurotrophic factor (GDNF)-loaded microspheres, then seeded the microspheres in gelatin-methacrylamide hydrogel, which was finally integrated with the commercial bilayer collagen membrane (Bio-Gide®). The novel composite of nerve conduit was employed to bridge a 10 mm long sciatic nerve defect in a rat. GDNF-loaded gelatin microspheres had a smooth surface with an average diameter of 3.9±1.8 μm. Scanning electron microscopy showed that microspheres were uniformly distributed in both the GelMA gel and the layered structure. Using enzyme-linked immunosorbent assay, in vitro release studies (pH 7.4) of GDNF from microspheres exhibited an initial burst release during the first 3 days (18.0%±1.3%), and then, a prolonged-release profile extended to 32 days. However, in an acidic condition (pH 2.5), the initial release percentage of GDNF was up to 91.2%±0.9% within 4 hours and the cumulative release percentage of GDNF was 99.2%±0.2% at 48 hours. Then the composite conduct was implanted in a 10 mm critical defect gap of sciatic nerve in a rat. We found that the nerve was regenerated in both conduit and autograft (AG) groups. A combination of electrophysiological assessment and histomorphometry analysis of regenerated nerves showed that axonal regeneration and functional recovery in collagen tube filled with GDNF-loaded microspheres (GM + CT) group were similar to AG group (P>0.05). Most myelinated nerves were matured and arranged densely with a uniform structure of myelin in a neat pattern along the long axis in the AG and GM + CT groups, however, regenerated nerve was absent in the BLANK group, left the 10 mm gap empty after resection, and the nerve fiber exhibited a disordered arrangement in the collagen tube group. These results indicated that the hybrid system of bilayer collagen conduit and GDNF-loaded gelatin microspheres combined with gelatin-methacrylamide hydrogels could serve as a new biodegradable

  19. Hierarchical assembly of collagen peptide triple helices into curved disks and metal ion-promoted hollow spheres.

    PubMed

    Przybyla, David E; Rubert Pérez, Charles M; Gleaton, Jeremy; Nandwana, Vikas; Chmielewski, Jean

    2013-03-06

    A 27 amino acid collagen-based peptide (Hbyp3) was designed to radially display nine hydrophobic bipyridine moieties from a triple helical scaffold. Self-assembly of such functionalized triple helices led to the formation of micrometer-scaled disks with a curved morphology, presumably mediated by aromatic interactions, with a height that is in the range of the length of the triple helical peptide. Higher order assembly of these curved disks into micrometer-sized hollow spheres was accomplished through metal-ligand interactions between bipyridine groups of the disks and metal ions such as Fe(II), Co(II), Zn(II) and Cu(II). The thickness of the shell of these hollow spheres corresponds well with the thickness of the collagen peptide-based triple helix and the corresponding self-assembled disks. Addition of a metal ion chelator was found to reverse the assembly of the hollow spheres back to the curved disk structures. These data support the formation of the hollow spheres from the self-assembled disks of Hbyp3 upon addition of metal ions.

  20. Bioengineered collagens

    PubMed Central

    Ramshaw, John AM; Werkmeister, Jerome A; Dumsday, Geoff J

    2014-01-01

    Mammalian collagen has been widely used as a biomedical material. Nevertheless, there are still concerns about the variability between preparations, particularly with the possibility that the products may transmit animal-based diseases. Many groups have examined the possible application of bioengineered mammalian collagens. However, translating laboratory studies into large-scale manufacturing has often proved difficult, although certain yeast and plant systems seem effective. Production of full-length mammalian collagens, with the required secondary modification to give proline hydroxylation, has proved difficult in E. coli. However, recently, a new group of collagens, which have the characteristic triple helical structure of collagen, has been identified in bacteria. These proteins are stable without the need for hydroxyproline and are able to be produced and purified from E. coli in high yield. Initial studies indicate that they would be suitable for biomedical applications. PMID:24717980

  1. Enhanced hepatic uptake and bioactivity of type alpha1(I) collagen gene promoter-specific triplex-forming oligonucleotides after conjugation with cholesterol.

    PubMed

    Cheng, Kun; Ye, Zhaoyang; Guntaka, Ramareddy V; Mahato, Ram I

    2006-05-01

    A triplex-forming oligonucleotide (TFO) specific for type alpha1(I) collagen promoter is a promising candidate for treating liver fibrosis. Earlier, we determined the pharmacokinetics and biodistribution of TFO after systemic administration into normal and fibrotic rats. In this study, we conjugated cholesterol to the 3' end of the TFO via a disulfide bond and determined its cellular and nuclear uptake and bioactivity using HSC-T6 cell lines in vitro, followed by biodistribution at whole-body, organ (liver), and subcellular levels. Conjugation with cholesterol had little effect on the triplex-forming ability of the TFO with target duplex DNA, and the cellular uptake of (33)P-TFO-cholesterol (Chol) increased by 2- to approximately 4-fold. Real-time reverse transcriptase-polymerase chain reaction analysis after transfection of HSC-T6 cells with TFO-Chol or TFO indicated that TFO-Chol had higher inhibition on type alpha1(I) collagen primary transcript than naked TFO at low concentration (200 nM) but showed similar inhibition at higher concentration (500 and 1000 nM). There was increase in the inhibition on primary transcript with transfection time. The hepatic uptake of (33)P-TFO-Chol after systemic administration was 72.22% of the dose compared with 45.8% of (33)P-TFO. There was significant increase in the uptake of (33)P-TFO-Chol by hepatic stellate cells and hepatocytes. More importantly, the nuclear uptake of TFO-Chol was higher than TFO in cell culture system and in vivo studies. In conclusion, TFO-Chol is a potential antifibrotic agent.

  2. Epidermal growth factor promotes a mesenchymal over an amoeboid motility of MDA-MB-231 cells embedded within a 3D collagen matrix

    NASA Astrophysics Data System (ADS)

    Geum, Dongil T.; Kim, Beum Jun; Chang, Audrey E.; Hall, Matthew S.; Wu, Mingming

    2016-01-01

    The receptor of epidermal growth factor (EGFR) critically regulates tumor cell invasion and is a potent therapeutic target for treatment of many types of cancers, including carcinomas and glioblastomas. It is known that EGF regulates cell motility when tumor cells are embedded within a 3D biomatrix. However, roles of EGF in modulating tumor cell motility phenotype are largely unknown. In this article, we report that EGF promotes a mesenchymal over an amoeboid motility phenotype using a malignant breast tumor cell line, MDA-MB-231, embedded within a 3D collagen matrix. Amoeboid cells are rounded in shape, while mesenchymal cells are elongated, and their migrations are governed by a distinctly different set of biomolecules. Using single cell tracking analysis, we also show that EGF promotes cell dissemination through a significant increase in cell persistence along with a moderate increase of speed. The increase of persistence is correlated with the increase of the percentage of the mesenchymal cells within the population. Our work reveals a novel role of microenvironmental cue, EGF, in modulating heterogeneity and plasticity of tumor cell motility phenotype. In addition, it suggests a potential visual cue for diagnosing invasive states of breast cancer cells. This work can be easily extended beyond breast cancer cells.

  3. Transplantation of hUC-MSCs seeded collagen scaffolds reduces scar formation and promotes functional recovery in canines with chronic spinal cord injury

    PubMed Central

    Li, Xing; Tan, Jun; Xiao, Zhifeng; Zhao, Yannan; Han, Sufang; Liu, Dingyang; Yin, Wen; Li, Jing; Li, Juan; Wanggou, Siyi; Chen, Bing; Ren, Caiping; Jiang, Xingjun; Dai, Jianwu

    2017-01-01

    Spinal cord injury (SCI) can lead to locomotor deficits, and the repair of chronic SCI is considered one of the most challenging clinical problems. Although extensive studies have evaluated treatments for acute SCI in small animals, comparatively fewer studies have been conducted on large-animal SCI in the chronic phase, which is more clinically relevant. Here, we used a collagen-based biomaterial, named the NeuroRegen scaffold, loaded with human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in a canine chronic SCI model. To generate chronic SCI, the T8 spinal cord segment was removed by complete transection of the spinal cord. Two months later, glial scar tissue was removed and a NeuroRegen scaffold was transplanted into the lesion area. Functionalized NeuroRegen scaffold implantation promoted both locomotor recovery and endogenous neurogenesis in the lesion area. Moreover, some newly generated neurons successfully matured into 5-HT-positive neurons at 1 year post-injury. In addition, many regenerated axon fibers in the lesion area exhibited remyelination and synapse formation at 1 year post-injury in the functionalized NeuroRegen scaffold group. In conclusion, the NeuroRegen scaffold functionalized with hUC-MSCs is a promising potential therapeutic approach to chronic SCI that promotes neuronal regeneration, reduces glial scar formation, and ultimately improves locomotor recovery. PMID:28262732

  4. Bovine Collagen Peptides Compounds Promote the Proliferation and Differentiation of MC3T3-E1 Pre-Osteoblasts

    PubMed Central

    Liu, JunLi; Zhang, Bing; Song, ShuJun; Ma, Ming; Si, ShaoYan; Wang, YiHu; Xu, BingXin; Feng, Kai; Wu, JiGong; Guo, YanChuan

    2014-01-01

    Objective Collagen peptides (CP) compounds, as bone health supplements, are known to play a role in the treatment of osteoporosis. However, the molecular mechanisms of this process remain unclear. This study aimed to investigate the effects of bovine CP compounds on the proliferation and differentiation of MC3T3-E1 cells. Methods Mouse pre-osteoblast cell line MC3T3-E1 subclone 4 cells were treated with bovine CP compounds. Cell proliferation was analyzed by MTT assays and the cell cycle was evaluated by flow cytometry scanning. Furthermore, MC3T3-E1 cell differentiation was analyzed at the RNA level by real-time PCR and at the protein level by western blot analysis for runt-related transcription factor 2 (Runx2), a colorimetric p-nitrophenyl phosphate assay for alkaline phosphatase (ALP), and ELISA for osteocalcin (OC). Finally, alizarin red staining for mineralization was measured using Image Software Pro Plus 6.0. Results Cell proliferation was very efficient after treatment with different concentrations of bovine CP compounds, and the best concentration was 3 mg/mL. Bovine CP compounds significantly increased the percentage of MC3T3-E1 cells in G2/S phase. Runx2 expression, ALP activity, and OC production were significantly increased after treatment with bovine CP compounds for 7 or 14 days. Quantitative analyses with alizarin red staining showed significantly increased mineralization of MC3T3-E1 cells after treatment with bovine CP compounds for 14 or 21 days. Conclusions Bovine CP compounds increased osteoblast proliferation, and played positive roles in osteoblast differentiation and mineralized bone matrix formation. Taking all the experiments together, our study indicates a molecular mechanism for the potential treatment of osteoarthritis and osteoporosis. PMID:24926875

  5. Collagen triple helix repeat containing 1 is overexpressed in hepatocellular carcinoma and promotes cell proliferation and motility.

    PubMed

    Tameda, Masahiko; Sugimoto, Kazushi; Shiraki, Katsuya; Yamamoto, Norihiko; Okamoto, Ryuji; Usui, Masanobu; Ito, Masaaki; Takei, Yoshiyuki; Nobori, Tsutomu; Kojima, Takahiro; Suzuki, Hideaki; Uchida, Masako; Uchida, Kazuhiko

    2014-08-01

    Although several therapeutic options are available for hepatocellular carcinoma (HCC), the outcome is still very poor. One reason is the complexity of signal transduction in the pathogenesis of HCC. The aim of this study was to identify new HCC-related genes and to investigate the functions of these genes in the pathogenesis and progression of HCC. Whole genomes of 15 surgically resected HCC specimens were examined for copy number alterations with comparative genomic hybridization. Gene expression was compared between HCC and normal liver tissues. The roles of the new genes in the progression of HCC were studied using cultured cell lines. Copy number gain in chromosome 8q was detected in 53% of HCC tissues examined. The gene that coded for collagen triple helix repeat containing 1 (CTHRC1), located at chromosome 8q22.3, was overexpressed in HCC compared with normal or liver cirrhosis tissues and identified as a new HCC-related gene. CTHRC1 deletion with short hairpin RNA significantly reduced proliferation, migration and invasion of HepG2 and Huh7 cells. In addition, mRNA of integrins β-2 and β-3 was downregulated, with deletion of CTHRC1 in these cells. Immunohistochemical staining on resected HCC tissues showing positive staining areas for CTHRC1 was significantly greater in poorly-differentiated HCC compared with well‑differentiated HCC. Moreover, some cases showed strong staining for CTHRC1 in invasive areas of HCC. CTHRC1 has the potential to be a new biomarker for the aggressive HCC, and to be a new therapeutic target in treating HCC.

  6. A methylcellulose and collagen based temperature responsive hydrogel promotes encapsulated stem cell viability and proliferation in vitro.

    PubMed

    Payne, Christina; Dolan, Eimear B; O'Sullivan, Janice; Cryan, Sally-Ann; Kelly, Helena M

    2017-02-01

    With the number of stem cell-based therapies emerging on the increase, the need for novel and efficient delivery technologies to enable therapies to remain in damaged tissue and exert their therapeutic benefit for extended periods, has become a key requirement for their translation. Hydrogels, and in particular, thermoresponsive hydrogels, have the potential to act as such delivery systems. Thermoresponsive hydrogels, which are polymer solutions that transform into a gel upon a temperature increase, have a number of applications in the biomedical field due to their tendency to maintain a liquid state at room temperature, thereby enabling minimally invasive administration and a subsequent ability to form a robust gel upon heating to physiological temperature. However, various hurdles must be overcome to increase the clinical translation of hydrogels as a stem cell delivery system, with barriers including their low tensile strength and their inadequate support of cell viability and attachment. In order to address these issues, a methylcellulose based hydrogel was formulated in combination with collagen and beta glycerophosphate, and key development issues such as injectability and sterilisation processes were examined. The polymer solution underwent thermogelation at ~36 °C as determined by rheological analysis, and when gelled, was sufficiently robust to resist significant disintegration in the presence of phosphate buffered saline (PBS) while concomitantly allowing for diffusion of methylene blue dye solution into the gel. We demonstrate that human mesenchymal stem cells (hMSCs) encapsulated within the gel remained viable and showed raised levels of dsDNA at increasing time points, an indication of cell proliferation. Mechanical testing showed the "injectability", i.e. force required for delivery of the polymer solution through devices such as a syringe, needle or catheter. Sterilisation of the freeze-dried polymer wafer via gamma irradiation showed no adverse

  7. Activation of hageman factor by collagen

    PubMed Central

    Wilner, G. D.; Nossel, H. L.; LeRoy, E. C.

    1968-01-01

    Purified acid-soluble and insoluble human collagen accelerated the clotting of plateletpoor plasma in silicone-treated tubes. The clot-promoting effect did not appear to be due to thromboplastic activity since the collagen preparations did not activate factor X in the presence of factor VII and calcium. Instead, collagen appeared to accelerate clotting by activating Hageman factor (factor XII) on the basis of the following findings: collagen increased the clot-promoting activity of partially purified Hageman factor but exerted no further effect in the presence of kaolin, a known activator of Hageman factor; clot-promoting eluates were obtained from collagen exposed to normal, hemophilic, or PTC-deficient plasma but not from collagen exposed to Hageman or PTA-deficient plasma. The collagen molecule itself appeared to be required for the clot-promoting activity since digestion with collagenase or thermal denaturation at pH 2.5 (about 35°C) resulted in very marked reduction in clot-promoting activity. Since thermal denaturation is associated with transformation of collagen structure from triple helical to random coil form, it is suggested that the native form of collagen is essential for the ability to activate Hageman factor. Blockage of the free amino groups by treatment with nitrous acid or dinitrofluorobenzene only slightly reduced the clot-promoting activity of collagen. In contrast, since addition of cationic proteins to collagen markedly reduced pro-coagulant activity it is suggested that negatively charged sites on the collagen molecule are critical for Hageman factor activation. This suggestion is supported by the finding that pepsin treatment of collagen, which removes the predominantly negatively charged telopeptides, results in significant decrease in coagulant activity. Esterification of collagen, which neutralizes 80-90% of the free carboxyl groups, reduced coagulant activity by over 90% and it is suggested that the free carboxyl groups of glutamic and

  8. Collagen triple helix repeat containing 1 (CTHRC1) acts via ERK-dependent induction of MMP9 to promote invasion of colorectal cancer cells.

    PubMed

    Kim, Hee Cheol; Kim, Yong Sung; Oh, Hyun-Woo; Kim, Kwoneel; Oh, Sang-Seok; Kim, Jong-Tae; Kim, Bo Yeon; Lee, Seon-Jin; Choe, Yong-Kyung; Kim, Dong Hyeok; Kim, Seok-Hyung; Chae, Seoung Wan; Kim, Kwang Dong; Lee, Hee Gu

    2014-01-30

    Collagen triple helix repeat-containing 1 (CTHRC1) is known to be aberrantly upregulated in most human solid tumors, although the functional roles of CTHRC1 in colorectal cancer remain unclear. In this study, we investigated the occurrence of CTHRC1 upregulation and its role in vivo and in vitro. The expression profile and clinical importance of CTHRC1 were examined by reverse transcription-polymerase chain reaction and immunohistochemical analyses in normal and tumor patient samples. CTHRC1 was detectable in normal tissues, but also was highly expressed in tumor specimens. CTHRC1 upregulation was significantly associated with demethylation of the CTHRC1 promoter in colon cancer cell lines and tumor tissues. Clinicopathologic analyses showed that nodal status and expression of CTHRC1 (95% CI 0.999-3.984, p=0.05) were significant prognostic factors for disease-free survival. Promoter CpG methylation and hypermethylation status were measured by bisulfite sequencing and pyrosequencing analysis. Furthermore, we showed that overexpression of CTHRC1 in the SW480 and HT-29 cell lines increased invasiveness, an effect mediated by extracellular signal-regulated kinase (ERK)-dependent upregulation of matrix metalloproteinase 9 (MMP9). Consistent with this, we found that knockdown of CTHRC1 attenuated ERK activation and cancer cell invasivity. These results demonstrate that CTHRC1 expression is elevated in human colon cancer cell lines and clinical specimens, and promotes cancer cell invasivity through ERK-dependent induction of MMP9 expression. Our results further suggest that high levels of CTHRC1 expression are associated with poor clinical outcomes.

  9. UV-Induced Triggering of a Biomechanical Initiation Switch Within Collagen Promotes Development of a Melanoma-Permissive Microenvironment in the Skin

    DTIC Science & Technology

    2011-09-01

    Using similar experimental approaches we coated microtiter wells with UVA or UVB irradiated collagen type-I or type-IV and examined human dermal ...4). Human dermal fibroblast cell adhesion to collagen type-I was only minimally (20%-25%) enhanced following UVA or UVB irradiation, while high dose...findings suggest that UVA and UVB dose dependently and differentially trigger conformational changes in collagen type-I and IV resulting in the

  10. TGF-β2 promotes RPE cell invasion into a collagen gel by mediating urokinase-type plasminogen activator (uPA) expression.

    PubMed

    Sugioka, Koji; Kodama, Aya; Okada, Kiyotaka; Iwata, Mihoko; Yoshida, Koji; Kusaka, Shunji; Matsumoto, Chota; Kaji, Hiroshi; Shimomura, Yoshikazu

    2013-10-01

    Transforming growth factor-beta (TGF-β) is one of the main epithelial-mesenchymal transition (EMT)-inducing factors. In general, TGF-β-induced EMT promotes cell migration and invasion. TGF-β also acts as a potent regulator of pericellular proteolysis by regulating the expression and secretion of plasminogen activators. Urokinase-type plasminogen activator (uPA) is a serine protease that binds to its cell surface receptor (uPAR) with high affinity. uPA binding to uPAR stimulates uPAR's interaction with transmembrane proteins, such as integrins, to regulate cytoskeletal reorganization and cell migration, differentiation and proliferation. However, the influence of TGF-β and the uPA/uPAR system on EMT in retinal pigment epithelial (RPE) cells is still unclear. The purpose of this study was to determine the effect of TGF-β2, which is the predominant isoform in the retina, and the uPA/uPAR system on RPE cells. In this study, we first examined the effect of TGF-β2 and/or the inhibitor of uPA (u-PA-STOP(®)) on the proliferation of a human retinal pigment epithelial cell line (ARPE-19 cells). Treatment with TGF-β2 or u-PA-STOP(®) suppressed cell proliferation. Combination treatment of TGF-β2 and u-PA-STOP(®) enhanced cell growth suppression. Furthermore, western blot analysis, fibrin zymography and real-time reverse transcription PCR showed that that TGF-β2 induced EMT in ARPE-19 cells and that the expression of uPA and uPAR expression was up-regulated during EMT. The TGF-β inhibitor SB431542 suppressed TGF-β2-stimulated uPA expression and secretion but did not suppress uPAR expression. Furthermore, we seeded ARPE-19 cells onto Transwell chambers and allowed them to invade the collagen matrix in the presence of TGF-β2 alone or with TGF-β2 and u-PA-STOP(®). TGF-β2 treatment induced ARPE-19 cell invasion into the collagen gel. Treatment with a combination of TGF-β2 and the uPA inhibitor strongly inhibited ARPE-19 cell invasion compared with treatment with

  11. The ability of apolipoprotein E fragments to promote intraneuronal accumulation of amyloid beta peptide 42 is both isoform and size-specific

    PubMed Central

    Dafnis, Ioannis; Argyri, Letta; Sagnou, Marina; Tzinia, Athina; Tsilibary, Effie C.; Stratikos, Efstratios; Chroni, Angeliki

    2016-01-01

    The apolipoprotein (apo) E4 isoform is the strongest risk factor for late-onset Alzheimer’s disease (AD). ApoE4 is more susceptible to proteolysis than apoE2 and apoE3 isoforms and carboxyl-terminal truncated apoE4 forms have been found in AD patients’ brain. We have previously shown that a specific apoE4 fragment, apoE4-165, promotes amyloid-peptide beta 42 (Aβ42) accumulation in human neuroblastoma SK-N-SH cells and increased intracellular reactive oxygen species formation, two events considered to occur early in AD pathogenesis. Here, we show that these effects are allele-dependent and absolutely require the apoE4 background. Furthermore, the exact length of the fragment is critical since longer or shorter length carboxyl-terminal truncated apoE4 forms do not elicit the same effects. Structural and thermodynamic analyses showed that apoE4-165 has a compact structure, in contrast to other carboxyl-terminal truncated apoE4 forms that are instead destabilized. Compared however to other allelic backgrounds, apoE4-165 is structurally distinct and less thermodynamically stable suggesting that the combination of a well-folded structure with structural plasticity is a unique characteristic of this fragment. Overall, our findings suggest that the ability of apoE fragments to promote Aβ42 intraneuronal accumulation is specific for both the apoE4 isoform and the particular structural and thermodynamic properties of the fragment. PMID:27476701

  12. Surface study of collagen/poloxamine hydrogels by a 'deep freezing' ToF-SIMS approach.

    PubMed

    Sosnik, Alejandro; Sodhi, Rana N S; Brodersen, Peter M; Sefton, Michael V

    2006-04-01

    In order to determine the presence of collagen molecules at the surface of a collagen-modified poloxamine hydrogel (a semi-interpenetrating network), the surface composition was studied using Time-of-Flight Secondary Ion Mass Spectra (ToF-SIMS). Collagen was added to the poloxamine hydrogel (poloxamine is a commercially available four-arm poly(ethylene oxide)/poly(propylene oxide) block copolymer, PEO/PPO) to promote the attachment of endothelial or liver cells. X-ray photoelectron spectroscopy (XPS) of dry samples showed a sharp increase in the N content from 0.6% in a pure poloxamine hydrogel to 8.8% in the collagen-containing material. Afterwards, the surface was studied by a 'deep freezing' ToF-SIMS approach under progressive heating from -120 to -60 degrees C. The positive spectrum of collagen/poloxamine at -65 degrees C displayed distinct signals corresponding to different amino acid fragments such as CH4N+ (30 m/z, Gly), C3HN2+ (43 m/z, Arg), C2H6N+ (44 m/z, Ala) and C4H5N2+(81m/z, His) and others corresponding to the PEO and PPO blocks of poloxamine. In addition, the negative spectrum showed peaks at 26 m/z (CN-), 32 m/z (S-) and 42 m/z (CNO-) characteristic of fragments of the collagen molecule. Imaging experiments indicated the homogeneous distribution of the collagen on the surface. These results supported the use of ToF-SIMS for the surface characterization of hydrated hydrogels and confirmed the collagen presence as the means whereby cells attach to the modified poloxamine matrix.

  13. Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro.

    PubMed

    Martens, Wendy; Sanen, Kathleen; Georgiou, Melanie; Struys, Tom; Bronckaers, Annelies; Ameloot, Marcel; Phillips, James; Lambrichts, Ivo

    2014-04-01

    In the present study, we evaluated the differentiation potential of human dental pulp stem cells (hDPSCs) toward Schwann cells, together with their functional capacity with regard to myelination and support of neurite outgrowth in vitro. Successful Schwann cell differentiation was confirmed at the morphological and ultrastructural level by transmission electron microscopy. Furthermore, compared to undifferentiated hDPSCs, immunocytochemistry and ELISA tests revealed increased glial marker expression and neurotrophic factor secretion of differentiated hDPSCs (d-hDPSCs), which promoted survival and neurite outgrowth in 2-dimensional dorsal root ganglia cultures. In addition, neurites were myelinated by d-hDPSCs in a 3-dimensional collagen type I hydrogel neural tissue construct. This engineered construct contained aligned columns of d-hDPSCs that supported and guided neurite outgrowth. Taken together, these findings provide the first evidence that hDPSCs are able to undergo Schwann cell differentiation and support neural outgrowth in vitro, proposing them to be good candidates for cell-based therapies as treatment for peripheral nerve injury.

  14. A 1-kb bacteriophage lambda fragment functions as an insulator to effectively block enhancer-promoter interactions in Arabidopsis thaliana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 35S cauliflower mosaic virus (CaMV) promoter contains an enhancer element that is able to override the tissue-, organ- and developmental-stage specificity of nearby promoters. Consequently, the precise control of transgene expression in transgenic plants, which often contain the 35S CaMV promot...

  15. Anti-IgD antibody attenuates collagen-induced arthritis by selectively depleting mature B-cells and promoting immune tolerance.

    PubMed

    Nguyen, Tue G; Little, Christopher B; Yenson, Vanessa M; Jackson, Christopher J; McCracken, Sharon A; Warning, Julia; Stevens, Veronica; Gallery, Eileen G; Morris, Jonathan M

    2010-08-01

    Membrane (m)IgD forms a major part of B-cell receptor complexes. Its wider role in the immune system has been enigmatic. Stimulation of mIgD with an antibody (anti-IgD) can activate B-cells and elicit a broad immune response in vivo. Given the role of B-cells in autoimmune diseases and the profound impact of anti-IgD on B-cells, the potential effects of anti-IgD on autoimmune conditions are intriguing and yet to be explored. Here we report a novel therapeutic effect of anti-IgD in the collagen-induced arthritis (CIA) mouse model. Administration of anti-IgD at the onset of early clinical symptoms as a therapeutic intervention, but not as a prophylactic treatment, significantly ameliorates disease severity and joint pathology. Anti-IgD treatment selectively depletes mature B cells while it spares regulatory B-cell subsets. This results in a significant reduction of autoantibody levels but does not affect antibody responses to a T-cell-dependent antigen. Therapeutic treatment with anti-IgD increases the numbers of regulatory B-cells and regulatory T-cells whilst it augments adaptive Th1/Th2 responses in vivo. In human PBMC samples, anti-IgD also promotes adaptive Th1/Th2 responses and modulates the innate responses toward an anti-inflammatory Th2-biased response. Collectively, anti-IgD treatment may offer a selective approach to B-cell depletion that also promotes immune tolerance and anti-inflammatory tendencies without compromising the general adaptive B-cell and T-cell responses. The multiple mechanisms of action by anti-IgD treatment suggest a wider clinical application for a number of chronic inflammatory and autoimmune conditions.

  16. Type II collagen fragment HELIX-II is a marker for early cartilage lesions but does not predict the progression of cartilage destruction in human knee joint synovial fluid.

    PubMed

    Wei, Xiaochun; Yin, Kun; Li, Pengcui; Wang, Huan; Ding, Juan; Duan, Wangping; Wei, Lei

    2013-07-01

    To determine whether there is a direct correlation between the concentration of type II collagen fragment HELIX-II in synovial fluid and the severity of cartilage damage at the knee joint, 83 patients who had undergone knee arthroscopy or total knee replacement were enrolled in this study (49% women, mean ± SD age 49.5 ± 19). The content of HELIX-II in the synovial fluid samples was measured by enzyme-linked immunosorbent assay (ELISA). Cartilage damage at the knee joint was classified during arthroscopy or direct surgical observation, using the Outerbridge cartilage damage scoring system. The maximum damage score was defined as the highest score among the six areas of the knee joint, and the cumulative score was defined as the sum of the scores of the six areas of the knee joint. The intra-assay and inter-assay variations of the HELIX-II ELISA were lower than 13 and 15%, respectively. The level of HELIX-II in the severely damaged cartilage groups (cumulative scores = 11-24 or maximum score = 2-4) was much higher than in the slightly damaged cartilage groups (cumulative scores = 0-10 or maximum score = 0-1). The level of HELIX-II in cartilage from severely damaged cartilage groups was significantly higher than in the slightly damaged groups, but no significant difference was detected in the level of HELIX-II among the severely damaged cartilage sub-groups. There was a significant correlation between the HELIX-II concentration in the synovial fluid and the cumulative (r = 0.807) and maximum scores (r = 0.794). Thus, elevated HELIX-II level is correlated with early cartilage lesions, but does not have the sensitivity to predict the progression of severity of cartilage damage in the knee joint.

  17. Collagen I confers gamma radiation resistance.

    PubMed

    Azorin, E; González-Martínez, P R; Azorin, J

    2012-12-01

    The effect of collagen on the response of somatomammotroph tumor cells (GH3) to gamma, radiation therapy was studied in vitro. After incubating confluent GH3 cell monolayers in a serum-free, maintaining medium, either with or without collagen, the monolayers were irradiated with 137Cs, gamma radiation. Collagen reduces cell mortality via ERK1/2 activation, abolishing gamma radiation, cell death, and promotes cell invasion when acting in synergy with collagen and in association with the, MAPK/ERK1/2 signaling pathway activation. The presence of collagen in somatomammotroph tumors, confers resistance to radiation.

  18. Collagen for bone tissue regeneration.

    PubMed

    Ferreira, Ana Marina; Gentile, Piergiorgio; Chiono, Valeria; Ciardelli, Gianluca

    2012-09-01

    In the last decades, increased knowledge about the organization, structure and properties of collagen (particularly concerning interactions between cells and collagen-based materials) has inspired scientists and engineers to design innovative collagen-based biomaterials and to develop novel tissue-engineering products. The design of resorbable collagen-based medical implants requires understanding the tissue/organ anatomy and biological function as well as the role of collagen's physicochemical properties and structure in tissue/organ regeneration. Bone is a complex tissue that plays a critical role in diverse metabolic processes mediated by calcium delivery as well as in hematopoiesis whilst maintaining skeleton strength. A wide variety of collagen-based scaffolds have been proposed for different tissue engineering applications. These scaffolds are designed to promote a biological response, such as cell interaction, and to work as artificial biomimetic extracellular matrices that guide tissue regeneration. This paper critically reviews the current understanding of the complex hierarchical structure and properties of native collagen molecules, and describes the scientific challenge of manufacturing collagen-based materials with suitable properties and shapes for specific biomedical applications, with special emphasis on bone tissue engineering. The analysis of the state of the art in the field reveals the presence of innovative techniques for scaffold and material manufacturing that are currently opening the way to the preparation of biomimetic substrates that modulate cell interaction for improved substitution, restoration, retention or enhancement of bone tissue function.

  19. Pyropia yezoensis peptide promotes collagen synthesis by activating the TGF-β/Smad signaling pathway in the human dermal fibroblast cell line Hs27

    PubMed Central

    Kim, Cho-Rong; Kim, Young-Min; Lee, Min-Kyeong; Kim, In-Hye; Choi, Youn-Hee; Nam, Taek-Jeong

    2017-01-01

    Pyropia yezoensis (P. yezoensis) is a marine algae that exhibits antioxidant, anti-inflammatory, antitumor and anti-aging activities. In this study, we investigated the effects of the P. yezoensis peptide, PYP1-5, on collagen synthesis in the human dermal fibroblast cell line Hs27. Skin aging is related to reduced collagen production and the activities of multiple enzymes, including matrix metalloproteinases (MMPs), which degrade collagen structure in the dermis, and tissue inhibitor of tissue inhibitor of metalloproteinases (TIMPs), which inhibit the action of MMPs. While collagen synthesis is associated with a number of signaling pathways, we examined the increased collagen synthesis via the upregulation of the transforming growth factor-β (TGF-β)/Smad signaling pathway. Using MTS assay, we found that PYP1-5 did not affect cell viability. Moreover, we confirmed that PYP1-5 increased type 1 collagen expression using enzyme-linked immunosorbent assay (ELISA), western blot analysis and quantitative PCR. In addition, we identified changes in various enzymes, as well as the mechanisms behind the PYP1-5-induced collagen synthesis. PYP1-5 decreased the MMP-1 protein and mRNA levels, and increased the TIMP-1 and TIMP-2 protein and mRNA levels. In addition, PYP1-5 activated the TGF-β/Smad signaling pathway, which increased TGF-β1, p-Smad2 and p-Smad3 expression, while inhibiting Smad7, an inhibitor of the TGF-β/Smad pathway. Furthermore, PYP1-5 upregulated transcription factor specificity protein 1 (Sp1) expression, which is reportedly involved in type 1 collagen expression. These findings indicate that PYP1-5 activates the TGF-β/Smad signaling pathway, which subsequently induces collagen synthesis in Hs27 cells. PMID:27878236

  20. Collagenous colitis.

    PubMed Central

    Kingham, J G; Levison, D A; Morson, B C; Dawson, A M

    1986-01-01

    Clinical and pathological aspects of six patients with collagenous colitis are presented. These patients have been observed for between four and 15 years and the evolution of the condition is documented in three (cases 1, 3 and 5). Management and possible pathogenetic mechanisms of this enigmatic condition are discussed. Images Fig. 1 Fig. 2 PMID:3699567

  1. Collagenous gastritis.

    PubMed

    Jin, Xiaoyi; Koike, Tomoyuki; Chiba, Takashi; Kondo, Yutaka; Ara, Nobuyuki; Uno, Kaname; Asano, Naoki; Iijima, Katsunori; Imatani, Akira; Watanabe, Mika; Shirane, Akio; Shimosegawa, Tooru

    2013-09-01

    In the present paper, we report a case of rare collagenous gastritis. The patient was a 25-year-old man who had experienced nausea, abdominal distention and epigastralgia since 2005. Esophagogastroduodenoscopy (EGD) carried out at initial examination by the patient's local doctor revealed an extensively discolored depression from the upper gastric body to the lower gastric body, mainly including the greater curvature, accompanied by residual mucosa with multiple islands and nodularity with a cobblestone appearance. Initial biopsies sampled from the nodules and accompanying atrophic mucosa were diagnosed as chronic gastritis. In August, 2011, the patient was referred to Tohoku University Hospital for observation and treatment. EGD at our hospital showed the same findings as those by the patient's local doctor. Pathological findings included a membranous collagen band in the superficial layer area of the gastric mucosa, which led to a diagnosis of collagenous gastritis. Collagenous gastritis is an extremely rare disease, but it is important to recognize its characteristic endoscopic findings to make a diagnosis.

  2. UV-Induced Triggering of a Biomechanical Initiation Switch within Collagen Promotes Development of a Melanoma-Permissive Microenvironment in the Skin

    DTIC Science & Technology

    2013-09-01

    MatrigelTM has on inflammatory cell, dermal fibroblast, and melanoma cell adhesion, migration, invasion and proliferation as compared to control ECM...indicated that UVA and UVB irradiation can dose dependently induce conformational changes in both collagen type-I and collagen type-IV resulting in the...expressed αSMA, a known marker of an activated phenotype. As shown in figure 1A the in vitro cultured human dermal fibroblast used in our studies

  3. UV-Induced Triggering of a Biomechanical Initiation Switch Within Collagen Promotes Development of a Melanoma-Permissive Microenvironment in the Skin

    DTIC Science & Technology

    2014-11-01

    Conformational change -- Cell adhesion -- Melanoma cells – Fibroblast-- Macrophages 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF...deviations from triplicate wells. 14 collagen type-IV suggests that specific doses of UV-irradiation may cause limited conformational changes or may...and that collagen type-IV present within MatrigelTM is at least partially in a non-triple helical conformation

  4. MET receptor variant R970C favors calpain-dependent generation of a fragment promoting epithelial cell scattering.

    PubMed

    Montagne, Rémi; Baranzelli, Anne; Muharram, Ghaffar; Catherine, Leroy; Lesaffre, Marie; Vinchent, Audrey; Kherrouche, Zoulika; Werkmeister, Elisabeth; Cortot, Alexis B; Tulasne, David

    2017-01-04

    The receptor tyrosine kinase MET and its ligand, the hepatocyte growth factor, are essential to embryonic development, whereas deregulation of MET signaling is associated with tumorigenesis leading to various cancers, including lung carcinoma. Mutations in the MET kinase domain lead to constitutive kinase activity and are associated with tumorigenesis. In lung cancer, however, some mutations are found in the juxtamembrane domain, and their functional consequences are unknown. Because the juxtamembrane domain of MET is targeted by several proteolytic cleavages, involved in its degradation during cell death or under steady-state conditions, we evaluated the influence of these mutations on the MET proteolytic cleavages. In stably transfected epithelial cells expressing MET, the juxtamembrane mutations R970C, P991S, and T992I were found not to modify the known caspase or presenilin-dependent regulated intramembrane proteolysis. Yet when overexpressed, the R970C variant caused generation of an as yet undescribed 45-kDa fragment (p45 MET). This fragment was found in the confluent lung cancer cell line NCI-H1437 carrying the R970C mutation and at a lesser extent in cell lines expressing WT MET, suggesting that R970C mutation favors this cleavage. Generation of p45 MET required the activity of the calpain proteases, confirming the involvement of proteolysis. Ectopic expression of reconstituted p45 MET in epithelial cell lines favored cell scattering and invasion indicating active role of this fragment in HGF/SF induced responses. Hence, although the juxtamembrane mutations of MET do not affect its known proteolytic cleavages, the R970C MET variant favors calpain dependent proteolytic cleavage in lung cancer cells.

  5. The intrinsically kinase-inactive EPHB6 receptor predisposes cancer cells to DR5-induced apoptosis by promoting mitochondrial fragmentation

    PubMed Central

    El Zawily, Amr M.; Toosi, Behzad M.; Freywald, Tanya; Indukuri, Vijaya V.; Vizeacoumar, Franco J.; Leary, Scot C.; Freywald, Andrew

    2016-01-01

    Death Receptor 5 (DR5) is a promising target for cancer therapy due to its ability to selectively induce apoptosis in cancer cells. However, the therapeutic usefulness of DR5 agonists is currently limited by the frequent resistance of malignant tumours to its activation. The identification of molecular mechanisms that determine outcomes of DR5 action is therefore crucial for improving the efficiency of DR5-activating reagents in cancer treatment. Here, we provide evidence that an intrinsically kinase-inactive member of the Eph group of receptor tyrosine kinases, EPHB6, induces marked fragmentation of the mitochondrial network in breast cancer cells of triple-negative origin, lacking expression of the estrogen, progesterone and HER2 receptors. Remarkably, this response renders cancer cells more susceptible to DR5-mediated apoptosis. EPHB6 action in mitochondrial fragmentation proved to depend on its ability to activate the ERK-DRP1 pathway, which increases the frequency of organelle fission. Moreover, DRP1 activity is also essential to the EPHB6-mediated pro-apoptotic response that we observe in the context of DR5 activation. These findings provide the first description of a member of the receptor tyrosine kinase family capable of producing a pro-apoptotic effect through the activation of ERK-DRP1 signaling and subsequent mitochondrial fragmentation. Our observations are of potential practical importance, as they imply that DR5-activating therapeutic approaches should be applied in a more personalized manner to primarily treat EPHB6-expressing tumours. Finally, our findings also suggest that the EPHB6 receptor itself may represent a promising target for cancer therapy, since EPHB6 and DR5 co-activation should support more efficient elimination of cancer cells. PMID:27788485

  6. [Will health promotion remain a utopia in a fragmented political system? The case of the Wallonia-Brussels Federation].

    PubMed

    Bantuelle, Martine

    2013-01-01

    In the French Community of Belgium (the Wallonia-Brussels Federation), the changing political landscape and the various laws relating to the roles of the federal state, communities and regions introduced since 1980 have had a significant impact on health policy. Since then, there have been significant developments in health education services and activities. In 1997, a government decree was issued to promote the concept of health promotion, to reform the existing system and to define policy priorities as part of a new five-year plan (1998-2003). Significant progress was made during this period as a result of the development of a global approach extending beyond the mere analysis of risk factors. The second five-year plan (2004-2008), aimed at combining preventive medicine and health promotion, resulted in the involvement of a wider range of actors and greater cross-sector collaboration. However, the sheer number of decision-making levels has been a major obstacle to popular participation and consultation. If the question of social and cultural accessibility is not seriously addressed, the focus on preventive medicine programs may prove to be detrimental to the development of an effective health promotion framework. The disconnect between the political vision and the reality of practice has had an adverse impact on health promotion. Health promotion professionals have repeatedly called for a third five-year plan involving all ministers and aimed at developing a cross-sector approach, at addressing the determinants of health, at promoting the active participation of local communities and at reducing social health inequalities. The concerns of health promotion practitioners were further exacerbated by the introduction of an external assessment process initiated by the Ministry of Health in 2010. The current concerns over the future of the Belgian state, the economic crisis and the impact of spending cuts have increased the sense of uncertainty. The upcoming elections

  7. Single chain fragment variable antibodies developed by using as target the 3rd fibronectin type III homologous repeat fragment of human neural cell adhesion molecule L1 promote cell migration and neuritogenesis.

    PubMed

    Tang, Dan-Yang; Yu, Yang; Zhao, Xuan-Jun; Schachner, Melitta; Zhao, Wei-Jiang

    2015-01-15

    L1CAM plays important roles during ontogeny, including promotion of neuronal cell migration and neuritogenesis, and stimulation of axonal outgrowth, fasciculation and myelination. These functions are at least partially exerted through a 16-mer amino acid sequence in the third fibronectin type III-like repeat of L1, which associates with several interaction partners, including integrins, other adhesion molecules and growth factor receptors. Here, using the Tomlinson I library for phage display, we obtained two single-chain variable fragment antibodies (scFvs) against this peptide sequence of human L1, hereafter called H3 peptide. Both scFvs recognize the H3 peptide and the extracellular domain of L1, as tested by enzyme-linked immunosorbent assay (ELISA), Western blot analysis and immunofluorescence staining of L1 expresssing cells. Furthermore, both scFvs reduce U-87 MG cell adhesion to fibronectin, while stimulating cell migration. Application of scFvs to human neuroblastoma SK-N-SH cells promote process outgrowth. Similar to triggering of endogenous L1 functions at the cell surface, both scFvs activate the signal transducers Erk and Src in these cells. Our results indicate that scFvs against a functionally pivotal domain in L1 trigger its regeneration-beneficial functions in vitro, encouraging thoughts on therapy of neurodegenerative diseases in the hope to ameliorate human nervous system diseases.

  8. Clinical uses of collagen shields.

    PubMed

    Poland, D E; Kaufman, H E

    1988-09-01

    Collagen shields immersed in tobramycin solution for one minute were applied to one eye each of 60 patients who had had cataract extraction, penetrating keratoplasty, or epikeratophakia or who had nonsurgical epithelial healing problems. The shields were well tolerated; one patient had the shield removed and one patient lost the shield in the early postoperative period. The surgical patients showed more rapid healing of epithelial defects after surgery with the use of the collagen shield. Patients with acute nonsurgical epithelial problems, such as contact lens abrasions and recurrent erosion, responded to the use of the collagen shield with improved healing. Patients with chronic epithelial defects responded poorly, presumably because underlying abnormalities in Bowman's layer prevented epithelial growth in the area of the defect. No infections were noted in any of the patients. The collagen shields appear to promote enhanced healing in patients with postsurgical and acute epithelial defects and to provide adequate antibiotic prophylaxis against infection in these vulnerable eyes.

  9. The Initiator Methionine tRNA Drives Secretion of Type II Collagen from Stromal Fibroblasts to Promote Tumor Growth and Angiogenesis.

    PubMed

    Clarke, Cassie J; Berg, Tracy J; Birch, Joanna; Ennis, Darren; Mitchell, Louise; Cloix, Catherine; Campbell, Andrew; Sumpton, David; Nixon, Colin; Campbell, Kirsteen; Bridgeman, Victoria L; Vermeulen, Peter B; Foo, Shane; Kostaras, Eleftherios; Jones, J Louise; Haywood, Linda; Pulleine, Ellie; Yin, Huabing; Strathdee, Douglas; Sansom, Owen; Blyth, Karen; McNeish, Iain; Zanivan, Sara; Reynolds, Andrew R; Norman, Jim C

    2016-03-21

    Expression of the initiator methionine tRNA (tRNAi(Met)) is deregulated in cancer. Despite this fact, it is not currently known how tRNAi(Met) expression levels influence tumor progression. We have found that tRNAi(Met) expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAi(Met) in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAi(Met) contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAi(Met) gene (2+tRNAi(Met) mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAi(Met) mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAi(Met) mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAi(Met) significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAi(Met)-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAi(Met)-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAi(Met) mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAi(Met) levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis.

  10. Structural insight for chain selection and stagger control in collagen

    PubMed Central

    Boudko, Sergei P.; Bächinger, Hans Peter

    2016-01-01

    Collagen plays a fundamental role in all known metazoans. In collagens three polypeptides form a unique triple-helical structure with a one-residue stagger to fit every third glycine residue in the inner core without disturbing the poly-proline type II helical conformation of each chain. There are homo- and hetero-trimeric types of collagen consisting of one, two or three distinct chains. Thus there must be mechanisms that control composition and stagger during collagen folding. Here, we uncover the structural basis for both chain selection and stagger formation of a collagen molecule. Three distinct chains (α1, α2 and α3) of the non-collagenous domain 2 (NC2) of type IX collagen are assembled to guide triple-helical sequences in the leading, middle and trailing positions. This unique domain opens the door for generating any fragment of collagen in its native composition and stagger. PMID:27897211

  11. Ormocomp-modified glass increases collagen binding and promotes the adherence and maturation of human embryonic stem cell-derived retinal pigment epithelial cells.

    PubMed

    Käpylä, Elli; Sorkio, Anni; Teymouri, Shokoufeh; Lahtonen, Kimmo; Vuori, Leena; Valden, Mika; Skottman, Heli; Kellomäki, Minna; Juuti-Uusitalo, Kati

    2014-12-09

    In in vitro live-cell imaging, it would be beneficial to grow and assess human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells on thin, transparent, rigid surfaces such as cover glasses. In this study, we assessed how the silanization of glass with 3-aminopropyltriethoxysilane (APTES), 3-(trimethoxysilyl)propyl methacrylate (MAPTMS), or polymer-ceramic material Ormocomp affects the surface properties, protein binding, and maturation of hESC-RPE cells. The surface properties were studied by contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and a protein binding assay. The cell adherence and proliferation were evaluated by culturing hESCRPE cells on collagen IV-coated untreated or silanized surfaces for 42 days. The Ormocomp treatment significantly increased the hydrophobicity and roughness of glass surfaces compared to the APTES and MAPTMS treatments. The XPS results indicated that the Ormocomp treatment changes the chemical composition of the glass surface by increasing the carbon content and the number of C-O/═O bonds. The protein-binding test confirmed that the Ormocomp-treated surfaces bound more collagen IV than did APTES- or MAPTMS-treated surfaces. All of the silane treatments increased the number of cells: after 42 days of culture, Ormocomp had 0.38, APTES had 0.16, MAPTMS had 0.19, and untreated glass had only 0.062, all presented as million cells cm(-2). There were no differences in cell numbers compared to smoother to rougher Ormocomp surfaces, suggesting that the surface chemistry and, more specifically, the collagen binding in combination with Ormocomp are beneficial to hESC-RPE cell culture. This study clearly demonstrates that Ormocomp treatment combined with collagen coating significantly increases hESC-RPE cell attachment compared to commonly used silanizing agents APTES and MAPTMS. Ormocomp silanization could thus enable the use of microscopic live cell imaging methods for h

  12. MT1-MMP promotes cell growth and ERK activation through c-Src and paxillin in three-dimensional collagen matrix

    SciTech Connect

    Takino, Takahisa; Tsuge, Hisashi; Ozawa, Terumasa; Sato, Hiroshi

    2010-06-11

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21{sup WAF1} and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin {alpha}{sub v}{beta}{sub 3} were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.

  13. Recognition of a core fragment of Beauveria bassiana hydrophobin gene promoter (P hyd1) and its special use in improving fungal biocontrol potential

    PubMed Central

    Wang, Zheng-Liang; Ying, Sheng-Hua; Feng, Ming-Guang

    2013-01-01

    To identify a suitable promoter for use in engineering fungal entomopathogens to improve heterologous gene expression and fungal biocontrol potential, a 1798 bp promoter (Phyd1) upstream of Beauveria bassiana class I hydrophobin gene (hyd1) was optimized by upstream truncation and site-directed mutation. A truncated 1290 bp fragment (Phyd1-t1) drove eGFP expression in B. bassiana much more efficiently than full-length Phyd1. Further truncating Phyd1-t1 to 1179, 991 and 791 bp or mutating one of the binding domains of three transcription factors in Phyd1-t1 reduced significantly the expression of eGFP (enhanced green fluorescence protein). Under Phyd1-t1 control, eGFP was expressed more abundantly in conidiogenic cells and conidia than in mycelia. Therefore, Phyd1-t1 was used to integrate a bacterium-derived, insect midgut-specific toxin (vip3Aa1) gene into B. bassiana, yielding a transgenic strain (BbHV8) expressing 9.8-fold more toxin molecules in conidia than a counterpart strain (BbV28) expressing the toxin under the control of PgpdA, a promoter widely used for gene expression in fungi. Consequently, BbHV8 showed much higher per os virulence to Spodoptera litura larvae than BbV28 in standardized bioassays with normal conidia for both cuticle penetration and ingestion or heat-killed conidia for ingestion only. Conclusively, Phyd1-t1 is a useful tool for enhancing beneficial protein expression, such as vip3Aa1, in fungal conidia, which are the active ingredients of mycoinsecticides. PMID:22639846

  14. Recognition of a core fragment ofBeauveria bassiana hydrophobin gene promoter (P hyd1) and its special use in improving fungal biocontrol potential.

    PubMed

    Wang, Zheng-Liang; Ying, Sheng-Hua; Feng, Ming-Guang

    2013-01-01

    To identify a suitable promoter for use in engineering fungal entomopathogens to improve heterologous gene expression and fungal biocontrol potential, a 1798 bp promoter (P hyd1) upstream of Beauveria bassiana class I hydrophobin gene (hyd1) was optimized by upstream truncation and site-directed mutation. A truncated 1290 bp fragment (P hyd1-t1) drove eGFP expression in B. bassiana much more efficiently than full-length P hyd1. Further truncating P hyd1-t1 to 1179, 991 and 791 bp or mutating one of the binding domains of three transcription factors in P hyd1-t1 reduced significantly the expression of eGFP (enhanced green fluorescence protein). Under P hyd1-t1 control, eGFP was expressed more abundantly in conidiogenic cells and conidia than in mycelia. Therefore, P hyd1-t1 was used to integrate a bacterium-derived, insect midgut-specific toxin (vip3Aa1) gene into B. bassiana, yielding a transgenic strain (BbHV8) expressing 9.8-fold more toxin molecules in conidia than a counterpart strain (BbV28) expressing the toxin under the control of P gpdA, a promoter widely used for gene expression in fungi. Consequently, BbHV8 showed much higher per os virulence to Spodoptera litura larvae than BbV28 in standardized bioassays with normal conidia for both cuticle penetration and ingestion or heat-killed conidia for ingestion only. Conclusively, P hyd1-t1 is a useful tool for enhancing beneficial protein expression, such as vip3Aa1, in fungal conidia, which are the active ingredients of mycoinsecticides.

  15. Promotion

    PubMed Central

    Alam, Hasan B.

    2013-01-01

    This article gives an overview of the promotion process in an academic medical center. A description of different promotional tracks, tenure and endowed chairs, and the process of submitting an application is provided. Finally, some practical advice about developing skills and attributes that can help with academic growth and promotion is dispensed. PMID:24436683

  16. UV-Induced Triggering of a Biomechanical Initiation Switch Within Collagen Promotes Development of a Melanoma-Permissive Microenvironment in the Skin

    DTIC Science & Technology

    2012-09-01

    human dermal fibroblasts, cell adhesion assays were carried out with collagen type-I that was not irradiated or irradiated with UVA over a dose... dermal fibroblasts to UVA -irradiated MatrigelTM. Given the differential impact of UVB-irradiated MatrigelTM had on cell adhesion, we examined the...or higher as compared to control. In addition, human dermal fibroblast adhesion was enhanced by nearly 40%, at a UVA dose of 5.0J/cm2 (figure 7B

  17. Sol-gel assisted fabrication of collagen hydrolysate composite scaffold: a novel therapeutic alternative to the traditional collagen scaffold.

    PubMed

    Ramadass, Satiesh Kumar; Perumal, Sathiamurthi; Gopinath, Arun; Nisal, Anuya; Subramanian, Saravanan; Madhan, Balaraman

    2014-09-10

    Collagen is one of the most widely used biomaterial for various biomedical applications. In this Research Article, we present a novel approach of using collagen hydrolysate, smaller fragments of collagen, as an alternative to traditionally used collagen scaffold. Collagen hydrolysate composite scaffold (CHCS) was fabricated with sol-gel transition procedure using tetraethoxysilane as the silica precursor. CHCS exhibits porous morphology with pore sizes varying between 380 and 780 μm. Incorporation of silica conferred CHCS with controlled biodegradation and better water uptake capacity. Notably, 3T3 fibroblast proliferation was seen to be significantly better under CHCS treatment when compared to treatment with collagen scaffold. Additionally, CHCS showed excellent antimicrobial activity against the wound pathogens Staphylococcus aureus, Bacillus subtilis, and Escherichia coli due to the inherited antimicrobial activity of collagen hydrolysate. In vivo wound healing experiments with full thickness excision wounds in rat model demonstrated that wounds treated with CHCS showed accelerated healing when compared to wounds treated with collagen scaffold. These findings indicate that the CHCS scaffold from collagen fragments would be an effective and affordable alternative to the traditionally used collagen structural biomaterials.

  18. A 3.7 kb Fragment of the Mouse Scn10a Gene Promoter Directs Neural Crest But Not Placodal Lineage EGFP Expression in a Transgenic Animal

    PubMed Central

    Lu, Van B.; Ikeda, Stephen R.

    2015-01-01

    Under physiological conditions, the voltage-gated sodium channel Nav1.8 is expressed almost exclusively in primary sensory neurons. The mechanism restricting Nav1.8 expression is not entirely clear, but we have previously described a 3.7 kb fragment of the Scn10a promoter capable of recapitulating the tissue-specific expression of Nav1.8 in transfected neurons and cell lines (Puhl and Ikeda, 2008). To validate these studies in vivo, a transgenic mouse encoding EGFP under the control of this putative sensory neuron specific promoter was generated and characterized in this study. Approximately 45% of dorsal root ganglion neurons of transgenic mice were EGFP-positive (mean diameter = 26.5 μm). The majority of EGFP-positive neurons bound isolectin B4, although a small percentage (∼10%) colabeled with markers of A-fiber neurons. EGFP expression correlated well with the presence of Nav1.8 transcript (95%), Nav1.8-immunoreactivity (70%), and TTX-R INa (100%), although not all Nav1.8-expressing neurons expressed EGFP. Several cranial sensory ganglia originating from neurogenic placodes, such as the nodose ganglion, failed to express EGFP, suggesting that additional regulatory elements dictate Scn10a expression in placodal-derived sensory neurons. EGFP was also detected in discrete brain regions of transgenic mice. Quantitative PCR and Nav1.8-immunoreactivity confirmed Nav1.8 expression in the amygdala, brainstem, globus pallidus, lateral and paraventricular hypothalamus, and olfactory tubercle. TTX-R INa recorded from EGFP-positive hypothalamic neurons demonstrate the usefulness of this transgenic line to study novel roles of Nav1.8 beyond sensory neurons. Overall, Scn10a-EGFP transgenic mice recapitulate the majority of the Nav1.8 expression pattern in neural crest-derived sensory neurons. PMID:25995484

  19. A 3.7 kb fragment of the mouse Scn10a gene promoter directs neural crest but not placodal lineage EGFP expression in a transgenic animal.

    PubMed

    Lu, Van B; Ikeda, Stephen R; Puhl, Henry L

    2015-05-20

    Under physiological conditions, the voltage-gated sodium channel Nav1.8 is expressed almost exclusively in primary sensory neurons. The mechanism restricting Nav1.8 expression is not entirely clear, but we have previously described a 3.7 kb fragment of the Scn10a promoter capable of recapitulating the tissue-specific expression of Nav1.8 in transfected neurons and cell lines (Puhl and Ikeda, 2008). To validate these studies in vivo, a transgenic mouse encoding EGFP under the control of this putative sensory neuron specific promoter was generated and characterized in this study. Approximately 45% of dorsal root ganglion neurons of transgenic mice were EGFP-positive (mean diameter = 26.5 μm). The majority of EGFP-positive neurons bound isolectin B4, although a small percentage (∼10%) colabeled with markers of A-fiber neurons. EGFP expression correlated well with the presence of Nav1.8 transcript (95%), Nav1.8-immunoreactivity (70%), and TTX-R INa (100%), although not all Nav1.8-expressing neurons expressed EGFP. Several cranial sensory ganglia originating from neurogenic placodes, such as the nodose ganglion, failed to express EGFP, suggesting that additional regulatory elements dictate Scn10a expression in placodal-derived sensory neurons. EGFP was also detected in discrete brain regions of transgenic mice. Quantitative PCR and Nav1.8-immunoreactivity confirmed Nav1.8 expression in the amygdala, brainstem, globus pallidus, lateral and paraventricular hypothalamus, and olfactory tubercle. TTX-R INa recorded from EGFP-positive hypothalamic neurons demonstrate the usefulness of this transgenic line to study novel roles of Nav1.8 beyond sensory neurons. Overall, Scn10a-EGFP transgenic mice recapitulate the majority of the Nav1.8 expression pattern in neural crest-derived sensory neurons.

  20. Sustained Delivery of Bioactive GDNF from Collagen and Alginate-Based Cell-Encapsulating Gel Promoted Photoreceptor Survival in an Inherited Retinal Degeneration Model

    PubMed Central

    Chan, Barbara P.; Lo, Amy C. Y.

    2016-01-01

    Encapsulated-cell therapy (ECT) is an attractive approach for continuously delivering freshly synthesized therapeutics to treat sight-threatening posterior eye diseases, circumventing repeated invasive intravitreal injections and improving local drug availability clinically. Composite collagen-alginate (CAC) scaffold contains an interpenetrating network that integrates the physical and biological merits of its constituents, including biocompatibility, mild gelling properties and availability. However, CAC ECT properties and performance in the eye are not well-understood. Previously, we reported a cultured 3D CAC system that supported the growth of GDNF-secreting HEK293 cells with sustainable GDNF delivery. Here, the system was further developed into an intravitreally injectable gel with 1x104 or 2x105 cells encapsulated in 2mg/ml type I collagen and 1% alginate. Gels with lower alginate concentration yielded higher initial cell viability but faster spheroid formation while increasing initial cell density encouraged cell growth. Continuous GDNF delivery was detected in culture and in healthy rat eyes for at least 14 days. The gels were well-tolerated with no host tissue attachment and contained living cell colonies. Most importantly, gel-implanted in dystrophic Royal College of Surgeons rat eyes for 28 days retained photoreceptors while those containing higher initial cell number yielded better photoreceptor survival. CAC ECT gels offers flexible system design and is a potential treatment option for posterior eye diseases. PMID:27441692

  1. Collagen scaffolds loaded with collagen-binding NGF-beta accelerate ulcer healing.

    PubMed

    Sun, Wenjie; Lin, Hang; Chen, Bing; Zhao, Wenxue; Zhao, Yannan; Xiao, Zhifeng; Dai, Jianwu

    2010-03-01

    Studies have shown that exogenous nerve growth factor (NGF) accelerates ulcer healing, but the inefficient growth factor delivery system limits its clinical application. In this report, we found that the native human NGF-beta fused with a collagen-binding domain (CBD) could form a collagen-based NGF targeting delivery system, and the CBD-fused NGF-beta could bind to collagen membranes efficiently. Using the rabbit dermal ischemic ulcer model, we have found that this targeting delivery system maintains a higher concentration and stronger bioactivity of NGF-beta on the collagen membranes by promoting peripheral nerve growth. Furthermore, it enhances the rate of ulcer healing through accelerating the re-epithelialization of dermal ulcer wounds and the formation of capillary lumens within the newly formed tissue area. Thus, collagen membranes loaded with collagen-targeting human NGF-beta accelerate ulcer healing efficiently.

  2. Dscam1 Forms a Complex with Robo1 and the N-Terminal Fragment of Slit to Promote the Growth of Longitudinal Axons

    PubMed Central

    Alavi, Maryam; Song, Minmin; Gillis, Taylor; Bousum, Adam; Miller, Amanda; Kidd, Thomas

    2016-01-01

    The Slit protein is a major midline repellent for central nervous system (CNS) axons. In vivo, Slit is proteolytically cleaved into N- and C-terminal fragments, but the biological significance of this is unknown. Analysis in the Drosophila ventral nerve cord of a slit allele (slit-UC) that cannot be cleaved revealed that midline repulsion is still present but longitudinal axon guidance is disrupted, particularly across segment boundaries. Double mutants for the Slit receptors Dscam1 and robo1 strongly resemble the slit-UC phenotype, suggesting they cooperate in longitudinal axon guidance, and through biochemical approaches, we found that Dscam1 and Robo1 form a complex dependent on Slit-N. In contrast, Robo1 binding alone shows a preference for full-length Slit, whereas Dscam1 only binds Slit-N. Using a variety of transgenes, we demonstrated that Dscam1 appears to modify the output of Robo/Slit complexes so that signaling is no longer repulsive. Our data suggest that the complex is promoting longitudinal axon growth across the segment boundary. The ability of Dscam1 to modify the output of other receptors in a ligand-dependent fashion may be a general principle for Dscam proteins. PMID:27654876

  3. C-terminal fragment of amebin promotes actin filament bundling, inhibits acto-myosin ATPase activity and is essential for amoeba migration.

    PubMed

    Jóźwiak, Jolanta; Rzhepetskyy, Yuriy; Sobczak, Magdalena; Kocik, Elżbieta; Skórzewski, Radosław; Kłopocka, Wanda; Rędowicz, Maria Jolanta

    2011-02-01

    Amebin [formerly termed as ApABP-FI; Sobczak et al. (2007) Biochem. Cell Biol. 85] is encoded in Amoeba proteus by two transcripts, 2672-nt and 1125-nt. A product of the shorter transcript (termed as C-amebin), comprising C-terminal 375 amino-acid-residue fragment of amebin, has been expressed and purified as the recombinant GST-fusion protein. GST-C-amebin bound both to monomeric and filamentous actin. The binding was Ca(2+)-independent and promoted filament bundling, as revealed with the transmission electron microscopy. GST-C-amebin significantly decreased MgATPase activity of rabbit skeletal muscle acto-S1. Removal with endoproteinase ArgC of a positively charged C-terminal region of GST-amebin containing KLASMWEQ sequence abolished actin-binding and bundling as well as the ATPase-inhibitory effect of C-amebin, indicating that this protein region was involved in the interaction with actin. Microinjection of amoebae with antibody against C-terminus of amebin significantly affected amoebae morphology, disturbed cell polarization and transport of cytoplasmic granules as well as blocked migration. These data indicate that amebin may be one of key regulators of the actin-cytoskeleton dynamics and actin-dependent motility in A. proteus.

  4. Binding of collagens to an enterotoxigenic strain of Escherichia coli

    SciTech Connect

    Visai, L.; Speziale, P.; Bozzini, S. )

    1990-02-01

    An enterotoxigenic strain of Escherichia coli, B34289c, has been shown to bind the N-terminal region of fibronectin with high affinity. We now report that this strain also binds collagen. The binding of 125I-labeled type II collagen to bacteria was time dependent and reversible. Bacteria expressed a limited number of collagen receptors (2.2 x 10(4) per cell) and bound collagen with a Kd of 20 nM. All collagen types tested (I to V) as well as all tested cyanogen bromide-generated peptides (alpha 1(I)CB2, alpha 1(I)CB3, alpha 1(I)CB7, alpha 1(I)CB8, and alpha 2(I)CB4) were recognized by bacterial receptors, as demonstrated by the ability of these proteins to inhibit the binding of 125I-labeled collagen to bacteria. Of several unlabeled proteins tested in competition experiments, fibronectin and its N-terminal region strongly inhibited binding of the radiolabeled collagen to E. coli cells. Conversely, collagen competed with an 125I-labeled 28-kilodalton fibronectin fragment for bacterial binding. Collagen bound to bacteria could be displaced by excess amounts of either unlabeled fibronectin or its N-terminal fragment. Similarly, collagen could displace 125I-labeled N-terminal peptide of fibronectin bound to the bacterial cell surface. Bacteria grown at 41 degrees C or in the presence of glucose did not express collagen or fibronectin receptors. These results indicate the presence of specific binding sites for collagen on the surface of E. coli cells and furthermore that the collagen and fibronectin binding sites are located in close proximity, possibly on the same structure.

  5. Development of chitosan-collagen hydrogel incorporated with lysostaphin (CCHL) burn dressing with anti-methicillin-resistant Staphylococcus aureus and promotion wound healing properties.

    PubMed

    Cui, Fuying; Li, Guodong; Huang, Jinjiang; Zhang, Jien; Lu, Min; Lu, Wanying; Huan, Jingning; Huang, Qingshan

    2011-04-01

    Methicillin-resistant Staphylococcus aureus (MRSA) have become increasingly prevalent as nosocomial pathogens, especially in burn patients, which is the leading cause of their death. A drug delivery system of chitosan-collagen hydrogel incorporated with lysostaphin (CCHL) based on the lysostaphin gauze was developed for MRSA infected burn wounds. CCHL scaffold consisted of numerous interconnected sphericles and tubular bodies with an average diameter of 100-200 µm, 20-60-fold swelling, high water retention capacity, and cell proliferation properties. The minimal inhibitory concentration of CCHL was 0.053 U/mL. By the second week after its application on MRSA infected third-degree burn wounds, no bacteria could be detected and the burn wounds had started healing. Therefore, CCHL should be studied further as a promising candidate of burn treatment dressing against MRSA infections for clinics.

  6. The pro alpha 2(V) collagen gene is evolutionarily related to the major fibrillar-forming collagens.

    PubMed Central

    Weil, D; Bernard, M; Gargano, S; Ramirez, F

    1987-01-01

    A number of overlapping cDNA clones, covering 5.2 kb of sequences which code for the human pro alpha 2(V) collagen chain, have been isolated. Analysis of the structural data have indicated a close evolutionary kinship between the pro alpha 2(V) chain and the major fibrillar collagen types. Isolation and analysis of an 8 kb genomic fragment has further supported this notion by revealing a homologous arrangement of nine triple-helical domain exons. These studies have therefore provided conclusive evidence which categorizes the Type V collagen as a member of the Group 1 molecules, or fibrillar-forming collagens. Images PMID:3029669

  7. Oriented collagen nanocoatings for tissue engineering.

    PubMed

    Pastorino, Laura; Dellacasa, Elena; Scaglione, Silvia; Giulianelli, Massimo; Sbrana, Francesca; Vassalli, Massimo; Ruggiero, Carmelina

    2014-02-01

    Collagens are among the most widely present and important proteins composing the human total body, providing strength and structural stability to various tissues, from skin to bone. In this paper, we report an innovative approach to bioactivate planar surfaces with oriented collagen molecules to promote cells proliferation and alignment. The Langmuir-Blodgett technique was used to form a stable collagen film at the air-water interface and the Langmuir-Schaefer deposition was adopted to transfer it to the support surface. The deposition process was monitored by estimating the mass of the protein layers after each deposition step. Collagen films were then structurally characterized by atomic force, scanning electron and fluorescent microscopies. Finally, collagen films were functionally tested in vitro. To this aim, 3T3 cells were seeded onto the silicon supports either modified or not (control) by collagen film deposition. Cells adhesion and proliferation on collagen films were found to be greater than those on control both after 1 (p<0.05) and 7 days culture. Moreover, the functionalization of the substrate surface triggered a parallel orientation of cells when cultured on it. In conclusion, these data demonstrated that the Langmuir-Schaefer technique can be successfully used for the deposition of oriented collagen films for tissue engineering applications.

  8. Definition of the native and denatured type II collagen binding site for fibronectin using a recombinant collagen system.

    PubMed

    An, Bo; Abbonante, Vittorio; Yigit, Sezin; Balduini, Alessandra; Kaplan, David L; Brodsky, Barbara

    2014-02-21

    Interaction of collagen with fibronectin is important for extracellular matrix assembly and regulation of cellular processes. A fibronectin-binding region in collagen was identified using unfolded fragments, but it is not clear if the native protein binds fibronectin with the same primary sequence. A recombinant bacterial collagen is utilized to characterize the sequence requirement for fibronectin binding. Chimeric collagens were generated by inserting the putative fibronectin-binding region from human collagen into the bacterial collagen sequence. Insertion of a sufficient length of human sequence conferred fibronectin affinity. The minimum sequence requirement was identified as a 6-triplet sequence near the unique collagenase cleavage site and was the same in both triple-helix and denatured states. Denaturation of the chimeric collagen increased its affinity for fibronectin, as seen for mammalian collagens. The fibronectin binding recombinant collagen did not contain hydroxyproline, indicating hydroxyproline is not essential for binding. However, its absence may account, in part, for the higher affinity of the native chimeric protein and the lower affinity of the denatured protein compared with type II collagen. Megakaryocytes cultured on chimeric collagen with fibronectin affinity showed improved adhesion and differentiation, suggesting a strategy for generating bioactive materials in biomedical applications.

  9. Collagen-mediated hemostasis.

    PubMed

    Manon-Jensen, T; Kjeld, N G; Karsdal, M A

    2016-03-01

    Collagens mediate essential hemostasis by maintaining the integrity and stability of the vascular wall. Imbalanced turnover of collagens by uncontrolled formation and/or degradation may result in pathologic conditions such as fibrosis. Thickening of the vessel wall because of accumulation of collagens may lead to arterial occlusion or thrombosis. Thinning of the wall because of collagen degradation or deficiency may lead to rupture of the vessel wall or aneurysm. Preventing excessive hemorrhage or thrombosis relies on collagen-mediated actions. Von Willebrand factor, integrins and glycoprotein VI, as well as clotting factors, can bind collagen to restore normal hemostasis after trauma. This review outlines the essential roles of collagens in mediating hemostasis, with a focus on collagens types I, III, IV, VI, XV, and XVIII.

  10. Biomedical applications of collagens.

    PubMed

    Ramshaw, John A M

    2016-05-01

    Collagen-based biomedical materials have developed into important, clinically effective materials used in a range of devices that have gained wide acceptance. These devices come with collagen in various formats, including those based on stabilized natural tissues, those that are based on extracted and purified collagens, and designed composite, biosynthetic materials. Further knowledge on the structure and function of collagens has led to on-going developments and improvements. Among these developments has been the production of recombinant collagen materials that are well defined and are disease free. Most recently, a group of bacterial, non-animal collagens has emerged that may provide an excellent, novel source of collagen for use in biomaterials and other applications. These newer collagens are discussed in detail. They can be modified to direct their function, and they can be fabricated into various formats, including films and sponges, while solutions can also be adapted for use in surface coating technologies.

  11. Perlecan antagonizes collagen IV and ADAMTS9/GON-1 in restricting the growth of presynaptic boutons.

    PubMed

    Qin, Jianzhen; Liang, Jingjing; Ding, Mei

    2014-07-30

    In the mature nervous system, a significant fraction of synapses are structurally stable over a long time scale. However, the mechanisms that restrict synaptic growth within a confined region are poorly understood. Here, we identified that in the C. elegans neuromuscular junction, collagens Type IV and XVIII, and the secreted metalloprotease ADAMTS/GON-1 are critical for growth restriction of presynaptic boutons. Without these components, ectopic boutons progressively invade into the nonsynaptic region. Perlecan/UNC-52 promotes the growth of ectopic boutons and functions antagonistically to collagen Type IV and GON-1 but not to collagen XVIII. The growth constraint of presynaptic boutons correlates with the integrity of the extracellular matrix basal lamina or basement membrane (BM), which surrounds chemical synapses. Fragmented BM appears in the region where ectopic boutons emerge. Further removal of UNC-52 improves the BM integrity and the tight association between BM and presynaptic boutons. Together, our results unravel the complex role of the BM in restricting the growth of presynaptic boutons and reveal the antagonistic function of perlecan on Type IV collagen and ADAMTS protein.

  12. Thermal stability of collagen triple helix.

    PubMed

    Xu, Yujia

    2009-01-01

    Chief among the challenges of characterizing the thermal stability of the collagen triple helix are the lack of the reversibility of the thermal transition and the presence of multiple folding-unfolding steps during the thermal transition which rarely follows the simple two-state, all-or-none mechanism. Despite of the difficulties inherited in the quantitative depiction of the thermal transition of collagen, biophysical studies combined with proteolysis and mutagenesis approaches using full-chain collagens, short synthetic peptides, and recombinant collagen fragments have revealed molecular features of the thermal unfolding of the subdomains of collagen and led to a better understanding of the diverse biological functions of this versatile protein. The subdomain of collagen generally refers to a segment of the long, rope-like triple helical molecule that can unfold cooperatively as an independent unit whose properties (their size, location, and thermal stability) are considered essential for the molecular recognition during the self-assembly of collagen and during the interactions of collagen with other macromolecules. While the unfolding of segments of the triple helix at temperatures below the apparent melting temperature of the molecule has been used to interpret much of the features of the thermal unfolding of full-chain collagens, the thermal studies of short, synthetic peptides have firmly established the molecular basis of the subdomains by clearly demonstrating the close dependence of the thermal stability of a triple helix on the constituent amino acid residues at the X and the Y positions of the characteristic Gly-X-Y repeating sequence patterns of the triple helix. Studies using recombinant collagen fragments further revealed that in the context of the long, linear molecule, the stability of a segment of the triple helix is also modulated by long-range impact of the local interactions such as the interchain salt bridges. Together, the combined approaches

  13. Enhancement of flowering and branching phenotype in chrysanthemum by expression of ipt under the control of a 0.821 kb fragment of the LEACO1 gene promoter.

    PubMed

    Khodakovskaya, Mariya; Vanková, Radomira; Malbeck, Jiri; Li, Aizhen; Li, Yi; McAvoy, Richard

    2009-09-01

    The cytokinin biosynthesis gene, isopentenyl transferase (ipt), under the control of an 821 bp fragment of the LEACO1 gene promoter (from Lycopersicon esculentum) was introduced into Dendranthema x grandiflorium 'Iridon' (chrysanthemum). LEACO1(0.821kb)-ipt transgenic lines grown in the vegetative state, exhibited a range of phenotypic changes including increased branching and reduced internode lengths. LEACO1(0.821kb)-ipt transgenic lines grown in the generative state, exhibited increased flower bud count that ranged from 3.8- to 6.7-times the number produced by wild-type plants. Dramatic increases in flower number were associated with a delay of flower bud development and a decrease in flower bud diameter. RT-PCR analysis indicated differences in ipt gene expression between individual transgenic lines that exhibited a range of phenotypes. Within an individual transgenic line, RT-PCR analysis revealed changes in ipt gene expression at different stages of generative shoot development. Expression of ipt in transgenic lines correlated well with high concentrations of the sum total to bioactive cytokinins plus the glucosides and phosphate derivatives of these species, under both vegetative and generative growth conditions. In general, transgenic lines accumulated higher concentrations of both storage-form cytokinins (O-glucosides) and deactivated-form cytokinins (N-glucosides) in generative shoots of than in vegetative shoots. Based on the range of phenotypes observed in various transgenic chrysanthemum lines, we conclude that the LEACO1 (0.821kb) -ipt gene appears to have great potential for use in ornamental crop improvement.

  14. In-situ Damage Assessment of Collagen within Ancient Manuscripts Written on Parchment: A Polarized Raman Spectroscopy Approach

    NASA Astrophysics Data System (ADS)

    Schütz, R.; Rabin, I.; Hahn, O.; Fratzl, P.; Masic, A.

    2010-08-01

    The collection generally known as Qumran scrolls or Dead Sea Scrolls (DSS) comprises some 900 highly fragmented manuscripts (mainly written on parchment) from the Second Temple period. In the years since their manufacture the writing materials have undergone serious deterioration due to a combination of natural ageing and environmental effects. Therefore, understanding quantitatively state of conservation of such manuscripts is a challenging task and a deep knowledge of damage pathways on all hierarchical levels (from molecular up to macroscopic) results of fundamental importance for a correct protection and conservation strategy. However, the degradation of parchments is very complex and not well understood process. Parchment is a final product of processing of animal skin and consist mainly of type I collagen, which is the most abundant constituent of the dermal matrix. Collagen molecule is built by folding of three polypeptide α-chains into a right-handed triple helix. Every α-chain is made by a repetitive sequence of (Gly-X-Y)n, where X and Y are often proline and hydroxyproline. Parallel and staggered collagen triple helices associate into fibrils, which than assemble into fibers. Deterioration of parchment is caused by chemical changes due to gelatinization, oxidation and hydrolysis of the collagen chains, promoted by several factors, summarized as biological and microbiological (bacteria, fungi etc.), heat, light, humidity and pollutants (1, 2). In this work we have focused on studying the collagen within parchments on two different levels of organization (molecular and fibrilar) by applying polarized Raman spectroscopic technique. Beside spectral information related to chemical bonding, polarization anisotropy of some collagen bands (i.e. amide I) has been used to explore organization of collagen on higher levels (three-dimensional arrangement of the triple-helix molecules and their alignment within a fibril of collagen). To this aim we have compared

  15. Fragmentation of oxime and silyl oxime ether odd-electron positive ions by the McLafferty rearrangement: new insights on structural factors that promote α,β fragmentation

    PubMed Central

    Laulhé, Sébastien; Bogdanov, Bogdan; Johannes, Leah M.; Gutierrez, Osvaldo; Harrison, Jason G.; Tantillo, Dean J.; Zhang, Xiang; Nantz, Michael H.

    2012-01-01

    The McLafferty rearrangement is an extensively studied fragmentation reaction for the odd-electron positive ions from a diverse range of functional groups and molecules. Here, we present experimental and theoretical results of 12 model compounds that were synthesized and investigated by GC-TOF MS and density functional theory calculations. These compounds consisted of three main groups: carbonyls, oximes and silyl oxime ethers. In all electron ionization mass spectra, the fragment ions that could be attributed to the occurrence of a McLafferty rearrangement were observed. For t-butyldimethylsilyl oxime ethers with oxygen in a β-position, the McLafferty rearrangement was accompanied by loss of the t-butyl radical. The various mass spectra showed that the McLafferty rearrangement is relatively enhanced compared with other primary fragmentation reactions by the following factors: oxime versus carbonyl, oxygen versus methylene at the β-position and ketone versus aldehyde. Calculations predict that the stepwise mechanism is favored over the concerted mechanism for all but one compound. For carbonyl compounds, C–C bond breaking was the rate-determining step. However, for both the oximes and t-butyldimethylsilyl oxime ethers with oxygen at the β-position, the hydrogen transfer step was rate limiting, whereas with a CH2 group at the β-position, the C–C bond breaking was again rate determining. n-Propoxy-acetaldehyde, bearing an oxygen atom at the β-position, is the only case that was predicted to proceed through a concerted mechanism. The synthesized oximes exist as both the (E)- and (Z)-isomers, and these were separable by GC. In the mass spectra of the two isomers, fragment ions that were generated by the McLafferty rearrangement were observed. Finally, fragment ions corresponding to the McLafferty reverse charge rearrangement were observed for all compounds at varying relative ion intensities compared with the conventional McLafferty rearrangement. PMID

  16. The Non-phagocytic Route of Collagen Uptake

    PubMed Central

    Madsen, Daniel H.; Ingvarsen, Signe; Jürgensen, Henrik J.; Melander, Maria C.; Kjøller, Lars; Moyer, Amanda; Honoré, Christian; Madsen, Charlotte A.; Garred, Peter; Burgdorf, Sven; Bugge, Thomas H.; Behrendt, Niels; Engelholm, Lars H.

    2011-01-01

    The degradation of collagens, the most abundant proteins of the extracellular matrix, is involved in numerous physiological and pathological conditions including cancer invasion. An important turnover pathway involves cellular internalization and degradation of large, soluble collagen fragments, generated by initial cleavage of the insoluble collagen fibers. We have previously observed that in primary mouse fibroblasts, this endocytosis of collagen fragments is dependent on the receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180. Others have identified additional mechanisms of collagen uptake, with different associated receptors, in other cell types. These receptors include β1-integrins, being responsible for collagen phagocytosis, and the mannose receptor. We have now utilized a newly developed monoclonal antibody against uPARAP/Endo180, which down-regulates the receptor protein level on treated cells, to examine the role of uPARAP/Endo180 as a mediator of collagen internalization by a wide range of cultured cell types. With the exception of macrophages, all cells that proved capable of efficient collagen internalization were of mesenchymal origin and all of these utilized uPARAP/Endo180 for their collagen uptake process. Macrophages internalized collagen in a process mediated by the mannose receptor, a protein belonging to the same protein family as uPARAP/Endo180. β1-Integrins were found not to be involved in the endocytosis of soluble collagen, irrespectively of whether this was mediated by uPARAP/Endo180 or the mannose receptor. This further distinguishes these pathways from the phagocytic uptake of particulate collagen. PMID:21652704

  17. Elevated cysteine-rich protein 61 (CCN1) promotes skin aging via upregulation of IL-1β in chronically sun-exposed human skin.

    PubMed

    Qin, Zhaoping; Okubo, Toru; Voorhees, John J; Fisher, Gary J; Quan, Taihao

    2014-02-01

    Chronic exposure of human skin to solar ultraviolet (UV) irradiation causes premature skin aging, which is characterized by reduced type I collagen production and increased fragmentation of the dermal collagenous extracellular matrix. This imbalance of collagen homeostasis is mediated, in part, by elevated expression of the matricellular protein cysteine-rich protein 61 (CCN1), in dermal fibroblasts, the primary collagen producing cell type in human skin. Here, we report that the actions of CCN1 are mediated by induction of interleukin 1β (IL-1β). CCN1 and IL-1β are strikingly induced by acute UV irradiation, and constitutively elevated in sun-exposed prematurely aged human skin. Elevated CCN1 rapidly induces IL-1β, inhibits type I collagen production, and upregulates matrix metalloproteinase-1, which degrades collagen fibrils. Blockade of IL-1β actions by IL-1 receptor antagonist largely prevents the deleterious effects of CCN1 on collagen homeostasis. Furthermore, knockdown of CCN1 significantly reduces induction of IL-1β by UV irradiation, and thereby partially prevents collagen loss. These data demonstrate that elevated CCN1promotes inflammaging and collagen loss via induction of IL-1β and thereby contributes to the pathophysiology of premature aging in chronically sun-exposed human skin.

  18. Parathyroid hormone linked to a collagen binding domain promotes hair growth in a mouse model of chemotherapy-induced alopecia in a dose-dependent manner.

    PubMed

    Katikaneni, Ranjitha; Ponnapakkam, Tulasi; Seymour, Andrew; Sakon, Joshua; Gensure, Robert

    2014-08-01

    Chemotherapy-induced alopecia is a major source of psychological stress in patients undergoing cancer chemotherapy, and it can influence treatment decisions. Although there is currently no therapy for alopecia, a fusion protein of parathyroid hormone and collagen binding domain (PTH-CBD) has shown promise in animal models. The aim of this study was to determine whether there are dose-dependent effects of PTH-CBD on chemotherapy-induced alopecia in a mouse model. C57BL/6J mice were waxed to synchronize hair follicles; treated on day 7 with vehicle or PTH-CBD (100, 320, and 1000 mcg/kg subcutaneous injection); and treated on day 9 with vehicle or cyclophosphamide (150 mg/kg intraperitoneally). Mice were photographed every 3-4 days and killed on day 63 for histological analysis. Photographs were quantified by gray scale analysis to assess hair content. Mice not receiving chemotherapy showed regrowth of hair 2 weeks after waxing and normal histology after 2 months. Mice receiving chemotherapy alone showed marked hair loss after chemotherapy, which was sustained for 10 days and was followed by rapid regrowth of a normal coat. Histological analysis revealed rapid cycling dystrophic anagen/catagen follicles. Animals receiving chemotherapy and PTH-CBD showed decreased hair loss and more rapid regrowth of hair than that seen with chemotherapy alone (increased hair growth by gray scale analysis, P<0.05), and the effects were dose dependent. Histologically, hair follicles in animals receiving the highest dose of PTH-CBD were in a quiescent phase, similar to that in mice that did not receive chemotherapy. Single-dose subcutaneous administration of PTH-CBD showed dose-dependent effects in minimizing hair loss and speeding up recovery from chemotherapy-induced alopecia.

  19. 96-Well plate assays for measuring collagenase activity using (3)H-acetylated collagen.

    PubMed

    Koshy, P J; Rowan, A D; Life, P F; Cawston, T E

    1999-11-15

    We describe two alternative assays for measuring collagenolytic activity using (3)H-acetylated collagen. Both assays have been developed for the 96-well plate format and measure the amount of radiolabeled collagen fragments released into the supernatant from an insoluble (3)H-acetylated collagen fibril preparation. The first method separates digested solubilized fragments from the intact fibril by sedimentation of the undigested collagen by centrifugation. The second method achieves this separation by filtration of the supernatant through the membrane of a 96-well filtration plate which retains the undigested collagen fibril. Both methods give linear dose- and time-dependent responses of collagenase activity > or = 70% of total collagen lysis. In addition, both assays can be simply modified to measure tissue inhibitors of metalloproteinases (TIMPs) inhibitory activity, which is also linear between 20 and 75% of total collagen lysis with the amount of TIMP added.

  20. Reactions of lipid-derived malondialdehyde with collagen.

    PubMed

    Slatter, D A; Paul, R G; Murray, M; Bailey, A J

    1999-07-09

    Malondialdehyde is a product of fatty acid oxidation (e.g. from low density lipoprotein) implicated in the damage of proteins such as collagen in the cardiovascular system (Chio, K. J., and Tappel, A. L. (1969) Biochemistry 8, 2821-2827). Its concentration is raised in diabetic subjects probably as a side effect of increased protein glycation. Collagen has enzyme-catalyzed cross-links formed between its individual molecules that are essential for maintaining the structure and flexibility of the collagen fiber. The cross-link dehydro-hydroxylysinonorleucine reacts irreversibly with 10 mM malondialdehyde at least 3 orders of magnitude faster than glucose reactions with lysine or arginine, such that there is little cross-link left after 1 h at 37 degrees C. Other cross-links and glycated elements of collagen are also vulnerable. Several possible products of malondialdehyde with collagen cross-links are proposed, and the potential involvement of collagenous histidine in these reactions is discussed. We have also isolated Ndelta-(2-pyrimidyl)-L-ornithine from collagenous arginine reacted with malondialdehyde. The yields of this product were considerably higher than those from model reactions, being approximately 2 molecules/collagen molecule after 1 day at 37 degrees C in 10 mM malondialdehyde. Collagenous lysine-derived malondialdehyde products may have been present but were not protected from protein acid hydrolysis by standard reduction techniques, thus resulting in a multitude of fragmented products.

  1. Enigmatic insight into collagen

    PubMed Central

    Deshmukh, Shrutal Narendra; Dive, Alka M; Moharil, Rohit; Munde, Prashant

    2016-01-01

    Collagen is a unique, triple helical molecule which forms the major part of extracellular matrix. It is the most abundant protein in the human body, representing 30% of its dry weight. It is the fibrous structural protein that makes up the white fibers (collagen fibers) of skin, tendons, bones, cartilage and all other connective tissues. Collagens are not only essential for the mechanical resistance and resilience of multicellular organisms, but are also signaling molecules defining cellular shape and behavior. The human body has at least 16 types of collagen, but the most prominent types are I, II and III. Collagens are produced by several cell types and are distinguishable by their molecular compositions, morphologic characteristics, distribution, functions and pathogenesis. This is the major fibrous glycoprotein present in the extracellular matrix and in connective tissue and helps in maintaining the structural integrity of these tissues. It has a triple helical structure. Various studies have proved that mutations that modify folding of the triple helix result in identifiable genetic disorders. Collagen diseases share certain similarities with autoimmune diseases, because autoantibodies specific to each collagen disease are produced. Therefore, this review highlights the role of collagen in normal health and also the disorders associated with structural and functional defects in collagen. PMID:27601823

  2. Collagen and gelatin.

    PubMed

    Liu, Dasong; Nikoo, Mehdi; Boran, Gökhan; Zhou, Peng; Regenstein, Joe M

    2015-01-01

    Collagen and gelatin have been widely used in the food, pharmaceutical, and cosmetic industries due to their excellent biocompatibility, easy biodegradability, and weak antigenicity. Fish collagen and gelatin are of renewed interest, owing to the safety and religious concerns of their mammalian counterparts. The structure of collagen has been studied using various modern technologies, and interpretation of the raw data should be done with caution. The structure of collagen may vary with sources and seasons, which may affect its applications and optimal extraction conditions. Numerous studies have investigated the bioactivities and biological effects of collagen, gelatin, and their hydrolysis peptides, using both in vitro and in vivo assay models. In addition to their established nutritional value as a protein source, collagen and collagen-derived products may exert various potential biological activities on cells in the extracellular matrix through the corresponding food-derived peptides after ingestion, and this might justify their applications in dietary supplements and pharmaceutical preparations. Moreover, an increasing number of novel applications have been found for collagen and gelatin. Therefore, this review covers the current understanding of the structure, bioactivities, and biological effects of collagen, gelatin, and gelatin hydrolysates as well as their most recent applications.

  3. Chameleon fragmentation

    SciTech Connect

    Brax, Philippe

    2014-02-01

    A scalar field dark energy candidate could couple to ordinary matter and photons, enabling its detection in laboratory experiments. Here we study the quantum properties of the chameleon field, one such dark energy candidate, in an ''afterglow'' experiment designed to produce, trap, and detect chameleon particles. In particular, we investigate the possible fragmentation of a beam of chameleon particles into multiple particle states due to the highly non-linear interaction terms in the chameleon Lagrangian. Fragmentation could weaken the constraints of an afterglow experiment by reducing the energy of the regenerated photons, but this energy reduction also provides a unique signature which could be detected by a properly-designed experiment. We show that constraints from the CHASE experiment are essentially unaffected by fragmentation for φ{sup 4} and 1/φ potentials, but are weakened for steeper potentials, and we discuss possible future afterglow experiments.

  4. Isolation of cDNA and genomic DNA clones encoding type II collagen.

    PubMed Central

    Young, M F; Vogeli, G; Nunez, A M; Fernandez, M P; Sullivan, M; Sobel, M E

    1984-01-01

    A cDNA library constructed from total chick embryo RNA was screened with an enriched fraction of type II collagen mRNA. Two overlapping cDNA clones were characterized and shown to encode the COOH propeptide of type II collagen. In addition, a type II collagen clone was isolated from a Charon 4A library of chick genomic fragments. Definitive identification of the clones was based on DNA sequence analysis. The 3' end of the type II collagen gene appears to be similar to that of other interstitial collagen genes. Northern hybridization data indicates that there is a marked decrease in type II collagen mRNA levels in chondrocytes treated with the dedifferentiating agent 5-bromodeoxyuridine. The major type II collagen mRNA species is 5300 bases long, similar to that of other interstitial collagen RNAs. Images PMID:6203098

  5. Molecular cloning of porcine growth differentiation factor 9 (GDF-9) cDNA and its role in early folliculogenesis: direct ovarian injection of GDF-9 gene fragments promotes early folliculogenesis.

    PubMed

    Shimizu, Takashi; Miyahayashi, Yasunori; Yokoo, Masaki; Hoshino, Yumi; Sasada, Hiroshi; Sato, Eimei

    2004-11-01

    Growth differentiation factor-9 (GDF-9) is a growth factor secreted by oocytes in growing ovarian follicles. To investigate the ovarian function of GDF-9 in pigs, we first cloned porcine GDF-9 complementary DNA (cDNA), and then injected its gene fragments into the ovary in gilts. Porcine GDF-9 has open reading frame (ORF) homologies of 81.4%, 84.6%, 84.2%, 72.7% and 72.6% with its human, bovine, ovine, rat and mouse counterparts respectively. Regarding the deduced amino-acid sequence of the mature protein, the corresponding homologies reach 92.1%, 97.8%, 97.0%, 89.6% and 88.1% respectively. To investigate the role of GDF-9 in early folliculogenesis, the ovaries of 2-month-old prepubertal gilts were injected with GDF-9 gene fragments. The injection of porcine GDF-9 gene fragments resulted in an increase in the number of primary, secondary and tertiary follicles, concomitant with a decrease in the number of primordial follicles. These results indicated that exogenous GDF-9 can promote early folliculogenesis in the porcine ovary, and that a technique for direct ovarian injection of GFD-9 gene fragments may contribute to a novel therapy for prevention and treatment of infertility associated with ovarian dysfunction.

  6. Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase.

    PubMed Central

    Heck, L W; Morihara, K; McRae, W B; Miller, E J

    1986-01-01

    Purified Pseudomonas aeruginosa elastase cleaved human type III and IV collagens with the formation of specific cleavage products. Furthermore, type I collagen appeared to be slowly cleaved by both P. aeruginosa elastase and alkaline protease. These cleavage fragments from type III and IV collagens were separated from the intact collagen chains by SDS polyacrylamide gradient gel electrophoresis run under reducing conditions, and they were detected by their characteristic Coomassie blue staining pattern. The results of these studies suggest that the pathogenesis of tissue invasion and hemorrhagic tissue necrosis observed in P. aeruginosa infections may be related to the degradation of these collagen types by bacterial extracellular proteases. Images PMID:3079727

  7. The homeoproteins MAB-18 and CEH-14 insulate the dauer collagen gene col-43 from activation by the adjacent promoter of the Spermatheca gene sth-1 in Caenorhabditis elegans.

    PubMed

    Bando, Tetsuya; Ikeda, Tatsuji; Kagawa, Hiroaki

    2005-04-22

    Genome searches in this study indicate that the nematode Caenorhabditis elegans genome has 2582 bidirectionally oriented genes that account for more than 25% of the total genes. We analyze the transcriptional repression system for one of these predicted bidirectional promoters, which controls the expression of the spermathecal gene sth-1 and collagen gene col-43. These two genes are separated by 1.3 kb and are transcribed bidirectionally. sth-1 is expressed in spermatheca after the L4 stage and col-43 is expressed in the hypodermal cells of the L2d dauer stage. The upstream regions required for the expression of sth-1 and col-43 shared an overlapped control sequence. Two homeoproteins, MAB-18 and CEH-14, were isolated by yeast one-hybrid screening as binding proteins of the overlapped region. MAB-18 bound to two homeodomain-binding sites and interacted with CEH-14 to repress col-43 expression in spermatheca. These results indicate that the two homeoproteins interact with each other to repress col-43 expression in sth-1-expressing tissues. This is the first report of bidirectional gene regulation analysis in the C.elegans genome.

  8. FKBP65-dependent peptidyl-prolyl isomerase activity potentiates the lysyl hydroxylase 2-driven collagen cross-link switch

    PubMed Central

    Chen, Yulong; Terajima, Masahiko; Banerjee, Priyam; Guo, Houfu; Liu, Xin; Yu, Jiang; Yamauchi, Mitsuo; Kurie, Jonathan M.

    2017-01-01

    Bruck Syndrome is a connective tissue disease associated with inactivating mutations in lysyl hydroxylase 2 (LH2/PLOD2) or FK506 binding protein 65 (FKBP65/FKBP10). However, the functional relationship between LH2 and FKBP65 remains unclear. Here, we postulated that peptidyl prolyl isomerase (PPIase) activity of FKBP65 positively modulates LH2 enzymatic activity and is critical for the formation of hydroxylysine-aldehyde derived intermolecular collagen cross-links (HLCCs). To test this hypothesis, we analyzed collagen cross-links in Fkbp10-null and –wild-type murine embryonic fibroblasts. Although LH2 protein levels did not change, FKBP65 deficiency significantly diminished HLCCs and increased the non-hydroxylated lysine-aldehyde–derived collagen cross-links (LCCs), a pattern consistent with loss of LH2 enzymatic activity. The HLCC-to-LCC ratio was rescued in FKBP65-deficient murine embryonic fibroblasts by reconstitution with wild-type but not mutant FKBP65 that lacks intact PPIase domains. Findings from co-immunoprecipitation, protein-fragment complementation, and co-immunofluorescence assays showed that LH2 and FKBP65 are part of a common protein complex. We conclude that FKBP65 regulates LH2-mediated collagen cross-linking. Because LH2 promotes fibrosis and cancer metastasis, our findings suggest that pharmacologic strategies to target FKBP65 and LH2 may have complementary therapeutic activities. PMID:28378777

  9. Serum- and Growth-Factor-Free Three-Dimensional Culture System Supports Cartilage Tissue Formation by Promoting Collagen Synthesis via Sox9–Col2a1 Interaction

    PubMed Central

    Ahmed, Nazish; Iu, Jonathan; Brown, Chelsea E.; Taylor, Drew Wesley

    2014-01-01

    Objective: One of the factors preventing clinical application of regenerative medicine to degenerative cartilage diseases is a suitable source of cells. Chondrocytes, the only cell type of cartilage, grown in vitro under culture conditions to expand cell numbers lose their phenotype along with the ability to generate hyaline cartilaginous tissue. In this study we determine that a serum- and growth-factor-free three-dimensional (3D) culture system restores the ability of the passaged chondrocytes to form cartilage tissue in vitro, a process that involves sox9. Methods: Bovine articular chondrocytes were passaged twice to allow for cell number expansion (P2) and cultured at high density on 3D collagen-type-II-coated membranes in high glucose content media supplemented with insulin and dexamethasone (SF3D). The cells were characterized after monolayer expansion and following 3D culture by flow cytometry, gene expression, and histology. The early changes in signaling transduction pathways during redifferentiation were characterized. Results: The P2 cells showed a progenitor-like antigen profile of 99% CD44+ and 40% CD105+ and a gene expression profile suggestive of interzone cells. P2 in SF3D expressed chondrogenic genes and accumulated extracellular matrix. Downregulating insulin receptor (IR) with HNMPA-(AM3) or the PI-3/AKT kinase pathway (activated by insulin treatment) with Wortmannin inhibited collagen synthesis. HNMPA-(AM3) reduced expression of Col2, Col11, and IR genes as well as Sox6 and -9. Co-immunoprecipitation and chromatin immunoprecipitation analyses of HNMPA-(AM3)-treated cells showed binding of the coactivators Sox6 and Med12 with Sox9 but reduced Sox9–Col2a1 binding. Conclusions: We describe a novel culture method that allows for increase in the number of chondrocytes and promotes hyaline-like cartilage tissue formation in part by insulin-mediated Sox9–Col2a1 binding. The suitability of the tissue generated via this approach for use in joint

  10. Visualization of collagen regeneration in mouse dorsal skin using second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Luo, T.; Chen, J. X.; Zhuo, S. M.; Lu, K. C.; Jiang, X. S.; Liu, Q. G.

    2009-03-01

    The purpose of this study is to highlight a clearer understanding of the process of collagen regeneration during wound healing. By means of second harmonic generation (SHG) microscopy, the changes of collagen arrangement at the wound margin were analyzed at 0, 3, 5, 7, 11 and 13 days post injury. The degree of collagen disorders associated with the healing process was quantitatively obtained using the aspect ratio of polar plot image of collagen azimuthal angles and the healing status of collagen could be estimated by arithmetical mean deviation ( Ra) of the collagen SHG images. Our results suggest that SHG microscopy has potential advances in the collagen studies during wound healing and the arrangement of collagen fibers gradually transformed from disorder to order so as to contract the wound. It is capable of promoting clinical application of the noninvasive imaging tool and the analysis methods of collagen disorder as an effective scar management for prevention and treatment about aberrant healing.

  11. Fragmentation Processes

    NASA Astrophysics Data System (ADS)

    Whelan, Colm T.

    2012-12-01

    Preface; 1. Direct and resonant double-photoionization: from atoms to solids L. Avaldi and G. Stefani; 2. The application of propagation exterior complex scaling to atomic collisions P. L. Bartlett and A. T. Stelbovics; 3. Fragmentation of molecular-ion beams in intense ultra-short laser pulses I. Ben-Itzhak; 4. Atoms with one and two active electrons in strong laser fields I. A. Ivanov and A. S. Kheifets; 5. Experimental aspects of ionization studies by positron and positronium impact G. Laricchia, D. A. Cooke, Á. Kövér and S. J. Brawley; 6. (e,2e) spectroscopy using fragmentation processes J. Lower, M. Yamazaki and M. Takahashi; 7. A coupled pseudostate approach to the calculation of ion-atom fragmentation processes M. McGovern, H. R. J. Walters and C. T. Whelan; 8. Electron Impact Ionization using (e,2e) coincidence techniques from threshold to intermediate energies A. J. Murray; 9. (e,2e) processes on atomic inner shells C. T. Whelan; 10. Spin resolved atomic (e,2e) processes J. Lower and C. T. Whelan; Index.

  12. Short-Fragment DNA Residue from Vaccine Purification Processes Promotes Immune Response to the New Inactivated EV71 Vaccine by Upregulating TLR9 mRNA

    PubMed Central

    Shao, Jie; Gao, Fan; Lin, Hui-Juan; Mao, Qun-Ying; Chen, Pan; Wu, Xing; Yao, Xin; Kong, Wei; Liang, Zheng-Lun

    2016-01-01

    To reduce potential oncogenic long genomic DNA in vaccines, nuclease treatment has been applied in the purification processes. However, this action increased the residue of short-fragment DNA and its effect on vaccine potency was still elusive. In this study, we found residual sf-DNA in an inactivated EV71 vaccine could enhance humoral immune response in mice. Ag stimulation in vitro and vaccine injection in vivo revealed that TLR9 transcription level was elevated, indicating that sf-DNA could activate TLR9. These new findings will help us to understand the molecular mechanism induced by vero-cell culture-derived vaccines. PMID:27082865

  13. Short-Fragment DNA Residue from Vaccine Purification Processes Promotes Immune Response to the New Inactivated EV71 Vaccine by Upregulating TLR9 mRNA.

    PubMed

    Shao, Jie; Gao, Fan; Lin, Hui-Juan; Mao, Qun-Ying; Chen, Pan; Wu, Xing; Yao, Xin; Kong, Wei; Liang, Zheng-Lun

    2016-01-01

    To reduce potential oncogenic long genomic DNA in vaccines, nuclease treatment has been applied in the purification processes. However, this action increased the residue of short-fragment DNA and its effect on vaccine potency was still elusive. In this study, we found residual sf-DNA in an inactivated EV71 vaccine could enhance humoral immune response in mice. Ag stimulation in vitro and vaccine injection in vivo revealed that TLR9 transcription level was elevated, indicating that sf-DNA could activate TLR9. These new findings will help us to understand the molecular mechanism induced by vero-cell culture-derived vaccines.

  14. Collagen vascular disease

    MedlinePlus

    ... developed these disorders were previously said to have "connective tissue" or "collagen vascular" disease. We now have names ... be used. These include as undifferentiated systemic rheumatic (connective tissue) diseases or overlap syndromes. Images Dermatomyositis, heliotrope eyelids ...

  15. Collagen V nasal tolerance in experimental model of systemic sclerosis.

    PubMed

    Velosa, Ana Paula Pereira; Teodoro, Walcy Rosolia; de Oliveira, Cristiane Carla; Dos Santos Filho, Antonio; Moutinho, Rodnei Francisco; Santos, Angela Gomes; Vendramini, Margarete Borges Galhardo; Bueno, Cleonice; Parra, Edwin Roger; Capelozzi, Vera Luiza; Yoshinari, Natalino Hajime

    2007-07-01

    Our aim was to study skin remodeling and autoantibody production in an experimental model of scleroderma (SSc), following nasal tolerance with human type V collagen (Col V). Female New Zealand rabbits (n = 12) were immunized with two doses of 1 mg/ml of Col V in complete Freund's adjuvant and additional two boosters in incomplete Freund's adjuvant to induce SSc. After 150 days, half of these immunized rabbits were submitted to type V collagen-induced tolerance receiving a daily nasal administration of 25 mug of Col V. Control animals (n = 6) were only submitted to type V collagen-induced tolerance. Serial skin biopsies were performed on days 0, 150 and 210, and stained with H&E, Masson's trichrome and Picrosirius for morphological and morphometric analysis. Types I, III and V collagen were identified by immunofluorescence. The animals' serum samples were collected to determine anti types I, III, IV and V collagen and antinuclear antibodies (ANA). Skin biopsies from immunized animals confirmed SSc morphology as previously described, such as progressive decrease of papillary dermis, appendages atrophy, increased type I, III and V collagen deposition. Rabbits with Col V-induced nasal tolerance showed reduction of skin involvement, with significant decrease of collagen amount. Humoral immune response did not change with nasal tolerance. Collagen V nasal tolerance promotes regression of skin remodeling process in an experimental model of SSc. We suggest that nasal tolerance with type V collagen can be a promising therapeutic option to treat scleroderma patients.

  16. Nanomechanics of collagen microfibrils

    PubMed Central

    Vesentini, Simone; Redaelli, Alberto; Gautieri, Alfonso

    2013-01-01

    Summary Collagen constitutes one third of the human proteome, providing mechanical stability, elasticity and strength to organisms and is thus the prime construction material in biology. Collagen is also the dominating material in the extracellular matrix where its stiffness controls cell differentiation, growth and pathology. We use atomistic-based hierarchical multiscale modeling to describe this complex biological material from the bottom up. This includes the use and development of large-scale computational modeling tools to investigate several aspects related to collagen-based tissues, including source of visco-elasticity and deformation mechanisms at the nanoscale level. The key innovation of this research is that until now, collagen materials have primarily been described at macroscopic scales, without explicitly understanding the mechanical contributions at the molecular and fibrillar levels. The major impact of this research will be the development of fundamental models of collagenous tissues, important to the design of new scaffolding biomaterials for regenerative medicine as well as for the understanding of collagen-related diseases. PMID:23885342

  17. Environmental regulation of type X collagen production by cultures of limb mesenchyme, mesectoderm, and sternal chondrocytes.

    PubMed

    Solursh, M; Jensen, K L; Reiter, R S; Schmid, T M; Linsenmayer, T F

    1986-09-01

    We have examined whether the production of hypertrophic cartilage matrix reflecting a late stage in the development of chondrocytes which participate in endochondral bone formation, is the result of cell lineage, environmental influence, or both. We have compared the ability of cultured limb mesenchyme and mesectoderm to synthesize type X collagen, a marker highly selective for hypertrophic cartilage. High density cultures of limb mesenchyme from stage 23 and 24 chick embryos contain many cells that react positively for type II collagen by immunohistochemistry, but only a few of these initiate type X collagen synthesis. When limb mesenchyme cells are cultured in or on hydrated collagen gels or in agarose (conditions previously shown to promote chondrogenesis in low density cultures), almost all initiate synthesis of both collagen types. Similarly, collagen gel cultures of limb mesenchyme from stage 17 embryos synthesize type II collagen and with some additional delay type X collagen. However, cytochalasin D treatment of subconfluent cultures on plastic substrates, another treatment known to promote chondrogenesis, induces the production of type II collagen, but not type X collagen. These results demonstrate that the appearance of type X collagen in limb cartilage is environmentally regulated. Mesectodermal cells from the maxillary process of stages 24 and 28 chick embryos were cultured in or on hydrated collagen gels. Such cells initiate synthesis of type II collagen, and eventually type X collagen. Some cells contain only type II collagen and some contain both types II and X collagen. On the other hand, cultures of mandibular processes from stage 29 embryos contain chondrocytes with both collagen types and a larger overall number of chondrogenic foci than the maxillary process cultures. Since the maxillary process does not produce cartilage in situ and the mandibular process forms Meckel's cartilage which does not hypertrophy in situ, environmental influences

  18. Augmentation of diabetic wound healing and enhancement of collagen content using nanofibrous glucophage-loaded collagen/PLGA scaffold membranes.

    PubMed

    Lee, Cheng-Hung; Chang, Shang-Hung; Chen, Wei-Jan; Hung, Kuo-Chun; Lin, Yu-Huang; Liu, Shih-Jung; Hsieh, Ming-Jer; Pang, Jong-Hwei S; Juang, Jyuhn-Huarng

    2015-02-01

    This work developed nanofibrous drug-loaded collagen/poly-D-L-lactide-glycolide (PLGA) scaffold membranes that provided the sustained release of glucophage for the wounds associated with diabetes. PLGA, glucophage, and collagen were firstly dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol and were spun into nanofibrous membranes by electrospinning. High-performance liquid chromatography assay was used to characterize the in vivo and in vitro release rates of the pharmaceuticals from the membranes. High concentrations of glucophage were released for over three weeks from the nanofibrous membranes. The nanofibrous glucophage-loaded collagen/PLGA membranes were more hydrophilic than collagen/PLGA membranes and exhibited a greater water-containing capacity. The glucophage-loaded collagen/PLGA membranes markedly promoted the healing of diabetic wounds. Moreover, the collagen content of diabetic rats using drug-eluting membranes was higher than that of the control rats, because of the down-regulation of matrix metalloproteinase 9. The experimental results herein suggest that the nanofibrous glucophage-loaded collagen/PLGA membranes had effect for increasing collagen content in treating diabetic wounds and very effective promoters of the healing of such wounds in the early stages.

  19. Helicase-like transcription factor (Hltf) regulates G2/M transition, Wt1/Gata4/Hif-1a cardiac transcription networks, and collagen biogenesis.

    PubMed

    Helmer, Rebecca A; Martínez-Zaguilán, Raul; Dertien, Janet S; Fulford, Candra; Foreman, Oded; Peiris, Vasum; Chilton, Beverly S

    2013-01-01

    HLTF/Hltf regulates transcription, remodels chromatin, and coordinates DNA damage repair. Hltf is expressed in mouse brain and heart during embryonic and postnatal development. Silencing Hltf is semilethal. Seventy-four percent of congenic C57BL/6J Hltf knockout mice died, 75% within 12-24 hours of birth. Previous studies in neonatal (6-8 hour postpartum) brain revealed silencing Hltf disrupted cell cycle progression, and attenuated DNA damage repair. An RNA-Seq snapshot of neonatal heart transcriptome showed 1,536 of 20,000 total transcripts were altered (p < 0.05) - 10 up- and 1,526 downregulated. Pathway enrichment analysis with MetaCore™ showed Hltf's regulation of the G2/M transition (p=9.726E(-15)) of the cell cycle in heart is nearly identical to its role in brain. In addition, Brca1 and 12 members of the Brca1 associated genome surveillance complex are also downregulated. Activation of caspase 3 coincides with transcriptional repression of Bcl-2. Hltf loss caused downregulation of Wt1/Gata4/Hif-1a signaling cascades as well as Myh7b/miR499 transcription. Hltf-specific binding to promoters and/or regulatory regions of these genes was authenticated by ChIP-PCR. Hif-1a targets for prolyl (P4ha1, P4ha2) and lysyl (Plod2) collagen hydroxylation, PPIase enzymes (Ppid, Ppif, Ppil3) for collagen trimerization, and lysyl oxidase (Loxl2) for collagen-elastin crosslinking were downregulated. However, transcription of genes for collagens, fibronectin, Mmps and their inhibitors (Timps) was unaffected. The collective downregulation of genes whose protein products control collagen biogenesis caused disorganization of the interstitial and perivascular myocardial collagen fibrillar network as viewed with picrosirius red-staining, and authenticated with spectral imaging. Wavy collagen bundles in control hearts contrasted with collagen fibers that were thin, short and disorganized in Hltf null hearts. Collagen bundles in Hltf null hearts were tangled and fragmented. Thus

  20. Collagen Prolyl Hydroxylases are Essential for Breast Cancer Metastasis

    PubMed Central

    Gilkes, Daniele M.; Chaturvedi, Pallavi; Bajpai, Saumendra; Wong, Carmen Chak-Lui; Wei, Hong; Pitcairn, Stephen; Hubbi, Maimon E.; Wirtz, Denis; Semenza, Gregg L.

    2013-01-01

    Metastasis is the leading cause of death among patients with breast cancer. Understanding the role of the extracellular matrix in the metastatic process may lead to the development of improved therapies for cancer patients. Intratumoral hypoxia is found in the majority of breast cancers and is associated with an increased risk of metastasis and patient mortality. Here we demonstrate that hypoxia-inducible factor 1 activates the transcription of genes encoding collagen prolyl hydroxylases that are critical for collagen deposition by breast cancer cells. We show that expression of collagen prolyl hydroxylases promotes cancer cell alignment along collagen fibers, resulting in enhanced invasion and metastasis to lymph nodes and lungs. Lastly, we establish the prognostic significance of collagen prolyl hydroxylase mRNA expression in human breast cancer biopsies, and demonstrate that ethyl 3,4-dihydroxybenzoate, a prolyl hydroxylase inhibitor, decreases tumor fibrosis and metastasis in a mouse model of breast cancer. PMID:23539444

  1. Development of multifunctional collagen scaffolds directed by collagen mimetic peptides

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Lan (Allen)

    Collagen is widely used for soft tissue replacement and tissue engineering scaffold. Functionalized collagen may offer new and improved applications for collagen-based biomaterials. But passively adsorbed molecules readily diffuse out from collagen matrix, and conventional chemical reactions on collagen are difficult to control and may compromise the biochemical feature of natural collagen. Hence, the aim of this dissertation is to develop a new physical collagen modification method through the non-covalent immobilization of collagen mimetic peptides (CMPs) and CMP derivatives on collagen scaffolds, thereby evading the drawbacks of passive and chemical modifications. Most of the research on CMPs over the past three decades has focused on synthesizing CMPs and understanding the effects of amino acid sequence on the peptide structural stability. Although few attempts have been made to develop biomaterials based on pure CMP, CMP has never used in complex with natural collagen. We demonstrate that CMPs with varying chain lengths have strong propensity to associate with natural 2-D and 3-D collagen substrates. We also show that CMPs can recognize and bind to reconstituted type I collagen fibers as well as collagens of ex vivo human liver tissue. The practical use of CMPs conjugated with linear and multi-arm poly(ethylene glycol)s allows to control cell organization in 2-D collagen substrates. Our cell adhesion studies suggest that under certain conditions (e.g. high incubation temperature, small CMP size), the bound CMP derivatives can be released from the collagen matrix, which may provide new opportunities for manipulating cell behavior especially by dynamically controlling the amount of signaling molecules in the collagen matrix. Polyanionic charged CMP was synthesized to modulate tubulogenesis of endothelial cells by attracting VEGF with 3-D collagen gel and a new PEG hydrogel using bifunctional CMP conjugates was synthesized as physico-chemical crosslinkers for

  2. Human Immunodeficiency Virus (HIV)-1 Infects Human Hepatic Stellate Cells and Promotes Collagen I and Monocyte Chemoattractant Protein-1 Expression: Implications for the Pathogenesis of HIV/Hepatitis C Virus–Induced Liver Fibrosis

    PubMed Central

    Tuyama, Ana C.; Hong, Feng; Saiman, Yedidya; Wang, Chuansheng; Ozkok, Derya; Mosoian, Arevik; Chen, Ping; Chen, Benjamin K.; Klotman, Mary E.; Bansal, Meena B.

    2010-01-01

    Patients coinfected with human immunodeficiency virus (HIV) and hepatitis C virus (HCV) develop more rapid fibrosis than those infected with HCV only. In HIV/HCV-coinfected patients, fibrosis progression correlates with HIV RNA levels, suggesting a direct role of HIV in liver fibrogenesis. Chemokine (C-C motif) receptor 5 (CCR5) and cysteine-X-cysteine receptor 4 (CXCR4), the two major coreceptors required for HIV entry into cells, are expressed on activated hepatic stellate cells (HSCs), the principle fibrogenic cell type in the liver. We therefore examined whether HIV can infect HSCs, explored the potential mechanisms of viral entry, and assessed the impact of infection as reflected by the ability of HSCs to transfer virus to T lymphocytes and elicit a proinflammatory and profibrogenic response. We report that the laboratory-adapted viruses HIV-IIIB (CXCR4-tropic or X4) and HIV-BaL (CCR5-tropic or R5) and primary HIV isolates can infect both a human stellate cell line, LX-2, and primary human HSCs. HIV entry and gene expression in HSCs was confirmed using HIV–green fluorescent protein (GFP) expression viral constructs in the presence or absence of the reverse-transcriptase inhibitor azidothymidine. CD4 expression on a subset of primary HSCs was demonstrated using fluorescence-activated cell sorting and immunofluorescence staining. Blocking experiments in the presence of anti-CD4, anti-CXCR4, and anti-CCR5 revealed that HIV entry into HSCs is predominantly CD4/chemokine coreceptor-independent. HIV infection promoted HSC collagen I expression and secretion of the proinflammatory cytokine monocyte chemoattractant protein-1. Furthermore, infected LX-2 cells were capable of transferring GFP-expressing virus to T lymphocytes in a coculture system. Conclusion Taken together, our results suggest a potential role of HIV in liver fibrosis/inflammation mediated through effects on HSCs. The role of early highly active antiretroviral therapy initiation in patients with HIV

  3. Studies on the molecular significance in the interaction of bilirubin with collagen.

    PubMed

    Nagarajan, Usharani; Gladstone Christopher, Jayakumar; Chandrasekaran, Bangaru; Jonnalagadda, Raghava Rao; Balachandran, Unni Nair; Kohsaku, Kawakami

    2013-10-01

    The present investigation is aimed to understand the physiological significance of bilirubin interaction with collagen. In human skin, collagen absorbs both free bilirubin and serum bound bilirubin from the human system. Interaction between bilirubin and collagen depends on time, temperature and concentration of bilirubin. There is an increase in the aggregation rate of collagen in the presence of biliruibin. At physiological condition, 125 nM of bilirubin is the maximum concentration absorbed by per mg of collagen molecule. Bilirubin accelerates the lateral growth of collagen fibrils by shifting its rate of nucleation. Moreover, collagen-bilirubin complex exhibit a tendency to undergo adsorption onto the surface of the fibroblast cells, showing detrimental effects on fibroblasts proliferations. Based on the collagen binding assays, the binding of bilirubin to collagen is found to be electrostatic in nature, which confirms binding between the amino acid fragment of α1 (I) region of collagen and carboxyl group of bilirubin. The biotinylated bilirubin derivatives show better binding to α1 (I) chain rather than α2 (I) chains which clearly designates that bilirubin shows greater affinity to α1 chains of collagen. This novel approach directs to reduce the occurrence of bilirubin in hyperbilirubinemia patients.

  4. Collagen fibrils: nanoscale ropes.

    PubMed

    Bozec, Laurent; van der Heijden, Gert; Horton, Michael

    2007-01-01

    The formation of collagen fibrils from staggered repeats of individual molecules has become "accepted" wisdom. However, for over thirty years now, such a model has failed to resolve several structural and functional questions. In a novel approach, it was found, using atomic force microscopy, that tendon collagen fibrils are composed of subcomponents in a spiral disposition-that is, their structure is similar to that of macroscale ropes. Consequently, this arrangement was modeled and confirmed using elastic rod theory. This work provides new insight into collagen fibril structure and will have wide application-from the design of scaffolds for tissue engineering and a better understanding of pathogenesis of diseases of bone and tendon, to the conservation of irreplaceable parchment-based museum exhibits.

  5. Thermal Memory in Self-Assembled Collagen Fibril Networks

    PubMed Central

    de Wild, Martijn; Pomp, Wim; Koenderink, Gijsje H.

    2013-01-01

    Collagen fibrils form extracellular networks that regulate cell functions and provide mechanical strength to tissues. Collagen fibrillogenesis is an entropy-driven process promoted by warming and reversed by cooling. Here, we investigate the influence of noncovalent interactions mediated by the collagen triple helix on fibril stability. We measure the kinetics of cold-induced disassembly of fibrils formed from purified collagen I using turbimetry, probe the fibril morphology by atomic force microscopy, and measure the network connectivity by confocal microscopy and rheometry. We demonstrate that collagen fibrils disassemble by subunit release from their sides as well as their ends, with complex kinetics involving an initial fast release followed by a slow release. Surprisingly, the fibrils are gradually stabilized over time, leading to thermal memory. This dynamic stabilization may reflect structural plasticity of the collagen fibrils arising from their complex structure. In addition, we propose that the polymeric nature of collagen monomers may lead to slow kinetics of subunit desorption from the fibril surface. Dynamic stabilization of fibrils may be relevant in the initial stages of collagen assembly during embryogenesis, fibrosis, and wound healing. Moreover, our results are relevant for tissue repair and drug delivery applications, where it is crucial to control fibril stability. PMID:23823240

  6. Potency of Fish Collagen as a Scaffold for Regenerative Medicine

    PubMed Central

    Yamamoto, Kohei; Yanagiguchi, Kajiro

    2014-01-01

    Cells, growth factors, and scaffold are the crucial factors for tissue engineering. Recently, scaffolds consisting of natural polymers, such as collagen and gelatin, bioabsorbable synthetic polymers, such as polylactic acid and polyglycolic acid, and inorganic materials, such as hydroxyapatite, as well as composite materials have been rapidly developed. In particular, collagen is the most promising material for tissue engineering due to its biocompatibility and biodegradability. Collagen contains specific cell adhesion domains, including the arginine-glycine-aspartic acid (RGD) motif. After the integrin receptor on the cell surface binds to the RGD motif on the collagen molecule, cell adhesion is actively induced. This interaction contributes to the promotion of cell growth and differentiation and the regulation of various cell functions. However, it is difficult to use a pure collagen scaffold as a tissue engineering material due to its low mechanical strength. In order to make up for this disadvantage, collagen scaffolds are often modified using a cross-linker, such as gamma irradiation and carbodiimide. Taking into account the possibility of zoonosis, a variety of recent reports have been documented using fish collagen scaffolds. We herein review the potency of fish collagen scaffolds as well as associated problems to be addressed for use in regenerative medicine. PMID:24982861

  7. Collagen in organ development

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Spooner, B. S.

    1992-01-01

    It is important to know whether microgravity will adversely affect developmental processes. Collagens are macromolecular structural components of the extracellular matrix (ECM) which may be altered by perturbations in gravity. Interstitial collagens have been shown to be necessary for normal growth and morphogenesis in some embryonic organs, and in the mouse salivary gland, the biosynthetic pattern of these molecules changes during development. Determination of the effects of microgravity on epithelial organ development must be preceded by crucial ground-based studies. These will define control of normal synthesis, secretion, and deposition of ECM macromolecules and the relationship of these processes to morphogenesis.

  8. Anti-CD20 single chain variable antibody fragment-apolipoprotein A-I chimera containing nanodisks promote targeted bioactive agent delivery to CD20-positive lymphomas.

    PubMed

    Crosby, Natasha M; Ghosh, Mistuni; Su, Betty; Beckstead, Jennifer A; Kamei, Ayako; Simonsen, Jens B; Luo, Bing; Gordon, Leo I; Forte, Trudy M; Ryan, Robert O

    2015-08-01

    A fusion protein comprising an α-CD20 single chain variable fragment (scFv) antibody, a spacer peptide, and human apolipoprotein (apo) A-I was constructed and expressed in Escherichia coli. The lipid interaction properties intrinsic to apoA-I as well as the antigen recognition properties of the scFv were retained by the chimera. scFv•apoA-I was formulated into nanoscale reconstituted high-density lipoprotein particles (termed nanodisks; ND) and incubated with cultured cells. α-CD20 scFv•apoA-I ND bound to CD20-positive non-Hodgkins lymphoma (NHL) cells (Ramos and Granta) but not to CD20-negative T lymphocytes (i.e., Jurkat). Binding to NHL cells was partially inhibited by pre-incubation with rituximab, a monoclonal antibody directed against CD20. Confocal fluorescence microscopy analysis of Granta cells following incubation with α-CD20 scFv•apoA-I ND formulated with the intrinsically fluorescent hydrophobic polyphenol, curcumin, revealed α-CD20 scFv•apoA-I localizes to the cell surface, while curcumin off-loads and gains entry to the cell. Compared to control incubations, viability of cultured NHL cells was decreased upon incubation with α-CD20 scFv•apoA-I ND harboring curcumin. Thus, formulation of curcumin ND with α-CD20 scFv•apoA-I as the scaffold component confers cell targeting and enhanced bioactive agent delivery, providing a strategy to minimize toxicity associated with chemotherapeutic agents.

  9. Structure and function of collagen types

    SciTech Connect

    Mayne, R.; Burgeson, R.E.

    1987-01-01

    This book contains 10 chapters. Some of the chapter titles are: The Classical Collagens: Types I, II, and III; Type IV Collagen; Type IX Collagen; and Analysis of Collagen Structure by Molecular Biology Techniques.

  10. [The genetics of collagen diseases].

    PubMed

    Kaplan, J; Maroteaux, P; Frezal, J

    1986-01-01

    Heritable disorders of collagen include Ehler-Danlos syndromes (11 types are actually known), Larsen syndrome and osteogenesis imperfecta. Their clinical, genetic and biochemical features are reviewed. Marfan syndrome is closely related to heritable disorders of collagen.

  11. Collagen models as a probe in the decay of works of art: synthesis, conformation and immunological studies.

    PubMed

    Zevgiti, Stella; Sakarellos, Constantinos; Sakarellos-Daitsiotis, Maria; Ioakimoglou, Eleni; Panou-Pomonis, Eugenia

    2007-02-01

    Proteinaceous substances such as collagen, casein and albumin have been widely used as binding media in a variety of works of art. Damages of these 'sensitive' materials, mainly caused of the influence of the environment, are responsible for the overall decay of works of art, and their identification is essential to understand ancient technologies, determine the extent of deterioration and help in future restoration and preservation processes. The most commonly used techniques for the identification of proteinaceous binding media are staining techniques, chromatography, spectrometry and immunological methods, although for the latter no systematic studies have been carried out until now. Aiming at contributing to the development of a reliable and reproducible immunoassay for the evaluation of the collagen-based decay of works of art, sequential polypeptides (Pro-X-Gly)n where X represents amino acid residues Val, Lys, Glu and (Hyp-Val-Gly)n were prepared as models of collagen fragments derived from artificially and naturally aged animal collagens. Conformational studies of the polypeptides by CD revealed the occurrence of polyproline II-like structures comparable with those of collagen. Polypeptides and collagen I were administered to animals, and the induced antibodies were used for the immunochemical detection and differentiation of collagen and collagen fragments. The combined application of (i) anti-collagen antibodies, which strongly interact with native collagen, but poorly recognized by artificially aged collagen and (ii) anti-polypeptide antibodies, which do not associate with native collagen, but are strongly recognized by collagen fragments in naturally or artificially aged collagen, is a valuable tool in determining the extent of decay in works of art.

  12. The C-terminal fragment of parathyroid hormone-related peptide promotes bone formation in diabetic mice with low-turnover osteopaenia

    PubMed Central

    Lozano, D; Fernández-de-Castro, L; Portal-Núñez, S; López-Herradón, A; Dapía, S; Gómez-Barrena, E; Esbrit, P

    2011-01-01

    BACKGROUND AND PURPOSE Current data suggest that parathyroid hormone (PTH)-related peptide (PTHrP) domains other than the N-terminal PTH-like domain contribute to its role as an endogenous bone anabolic factor. PTHrP-107-139 inhibits bone resorption, a fact which has precluded an unequivocal demonstration of its possible anabolic action in vivo. We thus sought to characterize the osteogenic effects of this peptide using a mouse model of diabetic low-turnover osteopaenia. EXPERIMENTAL APPROACH PTHrP-107-139 was administered to streptozotocin-induced diabetic mice, with or without bone marrow ablation, for 13 days. Osteopaenia was confirmed by dual-energy X-ray absorptiometry and microcomputed tomography analysis. Histological analysis was performed on paraffin-embedded bone tissue sections by haematoxylin/eosin and Masson's staining, and tartrate-resistent acid phosphatase immunohistochemistry. Mouse bone marrow stromal cells and osteoblastic MC3T3-E1 cells were cultured in normal and/or high glucose (HG) medium. Osteogenic and adipogenic markers were assessed by real-time PCR, and PTHrP and the PTH1 receptor protein expression by Western blot analysis. KEY RESULTS PTHrP-107-139 reversed the alterations in bone structure and osteoblast function, and also promoted bone healing after marrow ablation without affecting the number of osteoclast-like cells in diabetic mice. This peptide also reversed the high-glucose-induced changes in osteogenic differentiation in both bone marrow stromal cells and the more differentiated MC3T3-E1 cells. CONCLUSIONS AND IMPLICATIONS These findings demonstrate that PTHrP-107-139 promotes bone formation in diabetic mice. This mouse model and in vitro cell cultures allowed us to identify various anabolic effects of this peptide in this scenario. PMID:21175568

  13. Design and synthesis of collagen mimetic peptide derivatives for studying triple helix assembly and collagen mimetic peptide-collagen binding interaction

    NASA Astrophysics Data System (ADS)

    Mo, Xiao

    2008-10-01

    region, one of the thermally unstable domains in the collagen molecule. The binding results at various temperatures were in good agreement with our hypothesis that CMP-collagen binding occurs through strand invasion reaction of the thermally unstable collagen domain. In addition, purple membrane (PM), a protein crystal patch from halobacteria cell membrane, was genetically engineered to display cysteine or histidine groups on the membrane surface with defined nanoscale symmetry. X-ray diffraction results showed that the engineered PM formed a stable 2D PM-like hexagonal crystal lattice (unit cell: 6.2 mm). We utilized the genetically engineered PM as a bio-template for inorganic nanoparticle nucleation and assembly. The specific functional groups (cysteine or histidine) on the surfaces of genetically engineered PMs exhibited designed reactivity for inorganic nanoparticles while promoting the formation of nanoscale 2D particle assembly.

  14. Inhibition of Staphylococcus aureus Adherence to Collagen under Dynamic Conditions

    PubMed Central

    Mohamed, Nehal; Teeters, Mark A.; Patti, Joseph M.; Höök, Magnus; Ross, Julia M.

    1999-01-01

    Staphylococcus aureus is the most common etiological agent of bacterial arthritis and acute osteomyelitis and has been shown to bind to type II collagen under static and dynamic conditions. We have previously reported the effect of shear on the adhesion of S. aureus Phillips to collagen and found that this process is shear dependent (Z. Li, M. Höök, J. M. Patti, and J. M. Ross, Ann. Biomed. Eng. 24[Suppl. 1]:S–55). In this study, we used recombinant collagen adhesin fragments as well as polyclonal antibodies generated against adhesin fragments in attempts to inhibit bacterial adhesion. A parallel-plate flow chamber was used in a dynamic adhesion assay, and quantification of adhesion was accomplished by phase contrast video microscopy coupled with digital image processing. We report that both recombinant fragments studied, M19 and M55, and both polyclonal antibodies studied, α-M17 and α-M55, inhibit adhesion to varying degrees and that these processes are shear dependent. The M55 peptide and α-M55 cause much higher levels of inhibition than M19 and α-M17, respectively, at all wall shear rates studied. Our results demonstrate the importance of using a dynamic system in the assessment of inhibitory strategies and suggest the possible use of M55 and α-M55 in clinical applications to prevent infections caused by S. aureus adhesion to collagen. PMID:9916063

  15. Collagen remodeling by phagocytosis is determined by collagen substrate topology and calcium-dependent interactions of gelsolin with nonmuscle myosin IIA in cell adhesions

    PubMed Central

    Arora, P. D.; Wang, Y.; Bresnick, A.; Dawson, J.; Janmey, P. A.; McCulloch, C. A.

    2013-01-01

    We examine how collagen substrate topography, free intracellular calcium ion concentration ([Ca2+]i, and the association of gelsolin with nonmuscle myosin IIA (NMMIIA) at collagen adhesions are regulated to enable collagen phagocytosis. Fibroblasts plated on planar, collagen-coated substrates show minimal increase of [Ca2+]i, minimal colocalization of gelsolin and NMMIIA in focal adhesions, and minimal intracellular collagen degradation. In fibroblasts plated on collagen-coated latex beads there are large increases of [Ca2+]i, time- and Ca2+-dependent enrichment of NMMIIA and gelsolin at collagen adhesions, and abundant intracellular collagen degradation. NMMIIA knockdown retards gelsolin recruitment to adhesions and blocks collagen phagocytosis. Gelsolin exhibits tight, Ca2+-dependent binding to full-length NMMIIA. Gelsolin domains G4–G6 selectively require Ca2+ to interact with NMMIIA, which is restricted to residues 1339–1899 of NMMIIA. We conclude that cell adhesion to collagen presented on beads activates Ca2+ entry and promotes the formation of phagosomes enriched with NMMIIA and gelsolin. The Ca2+ -dependent interaction of gelsolin and NMMIIA in turn enables actin remodeling and enhances collagen degradation by phagocytosis. PMID:23325791

  16. Collagen hydrolysate based collagen/hydroxyapatite composite materials

    NASA Astrophysics Data System (ADS)

    Ficai, Anton; Albu, Madalina Georgiana; Birsan, Mihaela; Sonmez, Maria; Ficai, Denisa; Trandafir, Viorica; Andronescu, Ecaterina

    2013-04-01

    The aim of this study was to study the influence of collagen hydrolysate (HAS) on the formation of ternary collagen-hydrolysate/hydroxyapatite composite materials (COLL-HAS/HA). During the precipitation process of HA, a large amount of brushite is resulted at pH = 7 but, practically pure HA is obtained at pH ⩾ 8. The FTIR data reveal the duplication of the most important collagen absorption bands due to the presence of the collagen hydrolysate. The presence of collagen hydrolysate is beneficial for the management of bone and joint disorders such as osteoarthritis and osteoporosis.

  17. Pathogenic prion protein fragment (PrP106-126) promotes human immunodeficiency virus type-1 infection in peripheral blood monocyte-derived macrophages.

    PubMed

    Bacot, Silvia M; Feldman, Gerald M; Yamada, Kenneth M; Dhawan, Subhash

    2015-02-01

    Transfusion of blood and blood products contaminated with the pathogenic form of prion protein Prp(sc), thought to be the causative agent of variant a Creutzfeldt-Jakob disease (vCJD), may result in serious consequences in recipients with a compromised immune system, for example, as seen in HIV-1 infection. In the present study, we demonstrate that treatment of peripheral blood monocyte-derived macrophages (MDM) with PrP106-126, a synthetic domain of PrP(sc) that has intrinsic functional activities related to the full-length protein, markedly increased their susceptibility to HIV-1 infection, induced cytokine secretion, and enhanced their migratory behavior in response to N-formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLP). Live-cell imaging of MDM cultured in the presence of PrP106-126 showed large cell clusters indicative of cellular activation. Tyrosine kinase inhibitor STI-571, protein kinase C inhibitor K252B, and cyclin-dependent kinase inhibitor olomoucine attenuated PrP106-126-induced altered MDM functions. These findings delineate a previously undefined functional role of PrP106-126-mediated host cell response in promoting HIV-1 pathogenesis.

  18. The non-phagocytic route of collagen uptake: a distinct degradation pathway.

    PubMed

    Madsen, Daniel H; Ingvarsen, Signe; Jürgensen, Henrik J; Melander, Maria C; Kjøller, Lars; Moyer, Amanda; Honoré, Christian; Madsen, Charlotte A; Garred, Peter; Burgdorf, Sven; Bugge, Thomas H; Behrendt, Niels; Engelholm, Lars H

    2011-07-29

    The degradation of collagens, the most abundant proteins of the extracellular matrix, is involved in numerous physiological and pathological conditions including cancer invasion. An important turnover pathway involves cellular internalization and degradation of large, soluble collagen fragments, generated by initial cleavage of the insoluble collagen fibers. We have previously observed that in primary mouse fibroblasts, this endocytosis of collagen fragments is dependent on the receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180. Others have identified additional mechanisms of collagen uptake, with different associated receptors, in other cell types. These receptors include β1-integrins, being responsible for collagen phagocytosis, and the mannose receptor. We have now utilized a newly developed monoclonal antibody against uPARAP/Endo180, which down-regulates the receptor protein level on treated cells, to examine the role of uPARAP/Endo180 as a mediator of collagen internalization by a wide range of cultured cell types. With the exception of macrophages, all cells that proved capable of efficient collagen internalization were of mesenchymal origin and all of these utilized uPARAP/Endo180 for their collagen uptake process. Macrophages internalized collagen in a process mediated by the mannose receptor, a protein belonging to the same protein family as uPARAP/Endo180. β1-Integrins were found not to be involved in the endocytosis of soluble collagen, irrespectively of whether this was mediated by uPARAP/Endo180 or the mannose receptor. This further distinguishes these pathways from the phagocytic uptake of particulate collagen.

  19. [Production of recombinant fragments of the Clostridium tetani neurotoxin for the development of new immune-prophylaxis preparations against tetanus].

    PubMed

    Varfolomeeva, N A; Makhotina, O A; Sergeeva, T I; Belyĭ, Iu F

    2003-01-01

    Tetanus belongs to dangerous infection diseases, whose effective prevention can be ensured by vaccines. The acting substance of tetanus vaccines, presently in use, is a partially purified and deprived-of-lethal-action Clostridium tetani neurotoxin. The construction of a subunit preparation on the basis of toxin fragments obtained through gene engineering could be a method aimed at promoting the quality of the used tetanus vaccines. With this goal in mind, we built, within the present case study, the expressing genetic constructions and obtained, in the pure form, an extensive tetanus-vaccine chain with its C-terminal (Hc) fragment, hydride peptides, containing the Hc-fragment and C-terminal fragment of toxin B C. difficile, as well as Hc-fragment and S3 collagen-binding domain of collagenase C. histolyticum. The thus obtained proteins can be used in testing their immunogenic and protective properties, while the conducted study could be a basis for further research of a new-generation vaccine against tetanus and other human infection diseases.

  20. Characterization of electrospun nanofiber matrices made of collagen blends as potential skin substitutes.

    PubMed

    Lin, Hsin-Yi; Kuo, Yu-Jen; Chang, Shih-Hsin; Ni, Tsung-Sheng

    2013-04-01

    Collagen and its blends, collagen/polyvinyl alcohol (PVA) and collagen/chitosan/PVA, were made into nanofibers by electrospinning. The nanofibrous matrices were evaluated for their potential as skin substitutes. The addition of PVA to collagen increased the swelling ratio of the nanofibers, their Young's modulus, strain at break and ultimate tensile strength. The addition of chitosan to collagen/PVA reduced its swelling ratio and its strain at break, but increased the Young's modulus and ultimate tensile strength. Both PVA and chitosan stabilized the collagen fibers in an aqueous solution. The addition of PVA, but not chitosan, promoted initial fibroblast cell proliferation on the matrices. Compared to the skin substitute made of pure collagen, the substitutes with PVA and chitosan showed improved structural stability in aqueous solution, better tensile strength and similar or better biocompatibility in vitro.

  1. Cysteine-rich protein 61 (CCN1) mediates replicative senescence-associated aberrant collagen homeostasis in human skin fibroblasts.

    PubMed

    Quan, Taihao; Qin, Zhaoping; Voorhees, John J; Fisher, Gary J

    2012-09-01

    Dermal fibroblasts produce a collagen-rich extracellular matrix, which confers mechanical strength and resiliency to human skin. During aging, collagen production is reduced and collagen fragmentation is increased, which is initiated by matrix metalloproteinase-1 (MMP-1). This aberrant collagen homeostasis results in net collagen deficiency, which impairs the structural integrity and function of skin. Cysteine-rich protein 61 (CCN1), a member of the CCN family, negatively regulates collagen homeostasis, in primary human skin dermal fibroblasts. As replicative senescence is a form of cellular aging, we have utilized replicative senescent dermal fibroblasts to further investigate the connection between elevated CCN1 and aberrant collagen homeostasis. CCN1 mRNA and protein levels were significantly elevated in replicative senescent dermal fibroblasts. Replicative senescent dermal fibroblasts also expressed significantly reduced levels of type I procollagen and increased levels of MMP-1. Knockdown of elevated CCN1 in senescent dermal fibroblasts partially normalized both type I procollagen and MMP-1 expression. These data further support a key role of CCN1 in regulation of collagen homeostasis. Elevated expression of CCN1 substantially increased collagen lattice contraction and fragmentation caused by replicative senescent dermal fibroblasts. Atomic force microscopy (AFM) further revealed collagen fibril fragmentation and disorganization were largely prevented by knockdown of CCN1 in replicative senescent dermal fibroblasts, suggesting CCN1 mediates MMP-1-induced alterations of collagen fibrils by replicative senescent dermal fibroblasts. Given the ability of CCN1 to regulate both production and degradation of type I collagen, it is likely that elevated-CCN1 functions as an important mediator of collagen loss, which is observed in aged human skin.

  2. Osteocalcin/fibronectin-functionalized collagen matrices for bone tissue engineering.

    PubMed

    Kim, S G; Lee, D S; Lee, S; Jang, J-H

    2015-06-01

    Collagen is the most abundant protein found in the extracellular matrix and is widely used to build scaffolds for biomedical applications which are the result of its biocompatibility and biodegradability. In the present study, we constructed a rhOCN/FNIII9-10 fusion protein and rhOCN/FNIII9-10-functionalized collagen matrices and investigated the potential value for bone tissue engineering. In vitro studies carried out with preosteoblastic MC3T3-E1 cells showed that rhOCN/FNIII9-10 fusion protein promoted cell adhesion and the mRNA levels of osteogenic markers including osteocalcin, runt-related transcription factor 2, alkaline phosphatase (ALP), and collagen type I. In addition, rhOCN/FNIII9-10-functionalized collagen matrices showed significant induction of the ALP activity more than rhFNIII9-10-functionalized collagen matrices or collagen matrices alone. These results suggested that rhOCN/FNIII9-10-functionalized collagen matrices have potential for bone tissue engineering.

  3. Differences in the Ovine HSP90AA1 Gene Expression Rates Caused by Two Linked Polymorphisms at Its Promoter Affect Rams Sperm DNA Fragmentation under Environmental Heat Stress Conditions

    PubMed Central

    González, Carmen; Pérez-Guzmán, M. Dolores; Garde, J. Julián; García-Álvarez, Olga; Maroto-Morales, Alejandro; Calvo, Jorge H.; Serrano, M. Magdalena

    2015-01-01

    Heat shock (HS) is one of the best-studied exogenous cellular stresses. Almost all tissues, cell types, metabolic pathways and biochemical reactions are affected in greater or lesser extent by HS. However, there are some especially thermo sensible cellular types such as the mammalian male germ cells. The present study examined the role of three INDELs in conjunction with the -660G/C polymorphism located at the HSP90AA1 promoter region over the gene expression rate under HS. Specially, the -668insC INDEL, which is very close to the -660G/C transversion, is a good candidate to be implied in the transcriptional regulation of the gene by itself or in a cooperative way with this SNP. Animals carrying the genotype II-668 showed higher transcription rates than those with ID-668 (FC = 3.07) and DD-668 (FC = 3.40) genotypes for samples collected under HS. A linkage between gene expression and sperm DNA fragmentation was also found. When HS conditions were present along or in some stages of the spermatogenesis, alternative genotypes of the -668insC and -660G/C mutations are involved in the effect of HS over sperm DNA fragmentation. Thus, unfavorable genotypes in terms of gene expression induction (ID-668GC-660 and DD-668GG-660) do not produce enough mRNA (stored as messenger ribonucleoprotein particles) and Hsp90α protein to cope with future thermal stress which might occur in posterior stages when transcriptional activity is reduced and cell types and molecular processes are more sensible to heat (spermatocytes in pachytene and spermatids protamination). This would result in the impairment of DNA packaging and the consequent commitment of the events occurring shortly after fertilization and during embryonic development. In the short-term, the assessment of the relationship between sperm DNA fragmentation sensitivity and ram’s fertility will be of interest to a better understanding of the mechanisms of response to HS and its consequences on animal production and

  4. Polarized Raman anisotropic response of collagen in tendon: towards 3D orientation mapping of collagen in tissues.

    PubMed

    Galvis, Leonardo; Dunlop, John W C; Duda, Georg; Fratzl, Peter; Masic, Admir

    2013-01-01

    In this study, polarized Raman spectroscopy (PRS) was used to characterize the anisotropic response of the amide I band of collagen as a basis for evaluating three-dimensional collagen fibril orientation in tissues. Firstly, the response was investigated theoretically by applying classical Raman theory to collagen-like peptide crystal structures. The theoretical methodology was then tested experimentally, by measuring amide I intensity anisotropy in rat tail as a function of the orientation of the incident laser polarization. For the theoretical study, several collagen-like triple-helical peptide crystal structures obtained from the Protein Data Bank were rotated "in plane" and "out of plane" to evaluate the role of molecular orientation on the intensity of the amide I band. Collagen-like peptides exhibit a sinusoidal anisotropic response when rotated "in plane" with respect to the polarized incident laser. Maximal intensity was obtained when the polarization of the incident light is perpendicular to the molecule and minimal when parallel. In the case of "out of plane" rotation of the molecular structure a decreased anisotropic response was observed, becoming completely isotropic when the structure was perpendicular to the plane of observation. The theoretical Raman response of collagen was compared to that of alpha helical protein fragments. In contrast to collagen, alpha helices have a maximal signal when incident light is parallel to the molecule and minimal when perpendicular. For out-of-plane molecular orientations alpha-helix structures display a decreased average intensity. Results obtained from experiments on rat tail tendon are in excellent agreement with the theoretical predictions, thus demonstrating the high potential of PRS for experimental evaluation of the three-dimensional orientation of collagen fibers in biological tissues.

  5. The Biological Function of DMP-1 in Osteocyte Maturation Is Mediated by Its 57-kDa C-terminal Fragment

    PubMed Central

    Lu, Yongbo; Yuan, Baozhi; Qin, Chunlin; Cao, Zhengguo; Xie, Yixia; Dallas, Sarah L; McKee, Marc D; Drezner, Marc K; Bonewald, Lynda F; Feng, Jian Q

    2011-01-01

    Dentin matrix protein 1 (DMP-1) is a key molecule in controlling osteocyte formation and phosphate homeostasis. Based on observations that full-length DMP-1 is not found in bone, but only cleaved fragments of 37 and 57 kDa are present, and in view of the finding that mutations in the 57-kDa fragment result in disease, we hypothesized that the 57-kDa C-terminal fragment is the functional domain of DMP-1. To test this hypothesis, a 3.6-kb type I collagen promoter was used to express this 57-kDa C-terminal fragment for comparison with full-length DMP-1 in Dmp1 null osteoblasts/osteocytes. Not only did expression of the full-length DMP-1 in bone cells fully rescue the skeletal abnormalities of Dmp1 null mice, but the 57-kDa fragment also had similar results. This included rescue of growth plate defects, osteomalacia, abnormal osteocyte maturation, and the abnormal osteocyte lacunocanalicular system. In addition, the abnormal fibroblast growth factor 23 (FGF-23) expression in osteocytes, elevated circulating FGF-23 levels, and hypophosphatemia were rescued. These results show that the 57-kDa C-terminal fragment is the functional domain of DMP-1 that controls osteocyte maturation and phosphate metabolism. © 2011 American Society for Bone and Mineral Research. PMID:20734454

  6. AggLb Is the Largest Cell-Aggregation Factor from Lactobacillus paracasei Subsp. paracasei BGNJ1-64, Functions in Collagen Adhesion, and Pathogen Exclusion In Vitro

    PubMed Central

    Miljkovic, Marija; Strahinic, Ivana; Tolinacki, Maja; Zivkovic, Milica; Kojic, Snezana; Golic, Natasa; Kojic, Milan

    2015-01-01

    Eleven Lactobacillus strains with strong aggregation abilities were selected from a laboratory collection. In two of the strains, genes associated with aggregation capability were plasmid located and found to strongly correlate with collagen binding. The gene encoding the auto-aggregation-promoting protein (AggLb) of Lactobacillus paracasei subsp. paracasei BGNJ1-64 was cloned using a novel, wide-range-host shuttle cloning vector, pAZILSJ. The clone pALb35, containing a 11377-bp DNA fragment, was selected from the SacI plasmid library for its ability to provide carriers with the aggregation phenotype. The complete fragment was sequenced and four potential ORFs were detected, including the aggLb gene and three surrounding transposase genes. AggLb is the largest known cell-surface protein in lactobacilli, consisting of 2998 aa (318,611 Da). AggLb belongs to the collagen-binding superfamily and its C-terminal region contains 20 successive repeats that are identical even at the nucleotide level. Deletion of aggLb causes a loss of the capacity to form cell aggregates, whereas overexpression increases cellular aggregation, hydrophobicity and collagen-binding potential. PCR screening performed with three sets of primers based on the aggLb gene of BGNJ1-64 enabled detection of the same type of aggLb gene in five of eleven selected aggregation-positive Lactobacillus strains. Heterologous expression of aggLb confirmed the crucial role of the AggLb protein in cell aggregation and specific collagen binding, indicating that AggLb has a useful probiotic function in effective colonization of host tissue and prevention of pathogen colonization. PMID:25955159

  7. Impacts of fullerene derivatives on regulating the structure and assembly of collagen molecules.

    PubMed

    Yin, Xiaohui; Zhao, Lina; Kang, Seung-gu; Pan, Jun; Song, Yan; Zhang, Mingyi; Xing, Gengmei; Wang, Fei; Li, Jingyuan; Zhou, Ruhong; Zhao, Yuliang

    2013-08-21

    During cancer development, the fibrous layers surrounding the tumor surface get thin and stiff which facilitates the tumor metastasis. After the treatment of metallofullerene derivatives Gd@C82(OH)22, the fibrous layers become thicker and softer, the metastasis of tumor is then largely suppressed. The effect of Gd@C82(OH)22 was found to be related to their direct interaction with collagen and the resulting impact on the structure of collagen fibrils, the major component of extracellular matrices. In this work we study the interaction of Gd@C82(OH)22 with collagen by molecular dynamics simulations. We find that Gd@C82(OH)22 can enhance the rigidity of the native structure of collagen molecules and promote the formation of an oligomer or a microfibril. The interaction with Gd@C82(OH)22 may regulate further the assembly of collagen fibrils and change the biophysical properties of collagen. The control run with fullerene derivatives C60(OH)24 also indicates that C60(OH)24 can influence the structure and assembly of collagen molecules as well, but to a lesser degree. Both fullerene derivatives can form hydrogen bonds with multiple collagen molecules acting as a "fullerenol-mediated bridge" that enhance the interaction within or among collagen molecules. Compared to C60(OH)24, the interaction of Gd@C82(OH)22 with collagen is stronger, resulting in particular biomedical effects for regulating the biophysical properties of collagen fibrils.

  8. Bacterial collagen-like proteins that form triple-helical structures.

    PubMed

    Yu, Zhuoxin; An, Bo; Ramshaw, John A M; Brodsky, Barbara

    2014-06-01

    A large number of collagen-like proteins have been identified in bacteria during the past 10years, principally from analysis of genome databases. These bacterial collagens share the distinctive Gly-Xaa-Yaa repeating amino acid sequence of animal collagens which underlies their unique triple-helical structure. A number of the bacterial collagens have been expressed in Escherichia coli, and they all adopt a triple-helix conformation. Unlike animal collagens, these bacterial proteins do not contain the post-translationally modified amino acid, hydroxyproline, which is known to stabilize the triple-helix structure and may promote self-assembly. Despite the absence of collagen hydroxylation, the triple-helix structures of the bacterial collagens studied exhibit a high thermal stability of 35-39°C, close to that seen for mammalian collagens. These bacterial collagens are readily produced in large quantities by recombinant methods, either in the original amino acid sequence or in genetically manipulated sequences. This new family of recombinant, easy to modify collagens could provide a novel system for investigating structural and functional motifs in animal collagens and could also form the basis of new biomedical materials with designed structural properties and functions.

  9. A novel combined polyphenol-aldehyde crosslinking of collagen film-Applications in biomedical materials.

    PubMed

    Liu, Ting; Shi, Lu; Gu, Zhipeng; Dan, Weihua; Dan, Nianhua

    2017-03-30

    Despite its crucial role in directing cell fate in healthy and diseased tissues, improvements in physical-chemical properties and biocompatibility of type-I collagen are still needed. In this report, we described combined and facile method to modify collagen. The collagen film was first modified by procyanidins solution, in which, then subjected to further crosslinked by dialdehyde alginate, resulting in collagen-procyanidins-dialdehyde alginate film. The properties of the crosslinked collagen films were investigated and the results were discussed. Results from differential scanning calorimetry and thermo gravimetric analysis suggested that the thermal stabilities of the collagen-procyanidins-dialdehyde alginate film were significantly improved. The mechanical properties of collagen-procyanidins-dialdehyde alginate film in terms of elongation at break and tensile strength increased approximately 2-fold and 3-fold, respectively compare to pure collagen film. In addition, the resistance to collagenase degradation of collagen-procyanidins-dialdehyde alginate film was remarkably promoted. The results from methyltetrazolium assay and confocal laser scanning microscopy showed that no cytotoxicity of collagen film was introduced by the combined crosslinking method. Thus, the novel combined by procyanidins-dialdehyde alginate crosslinking method shown in this study provided a non-toxic and efficient crosslinking method that improved various properties of collagen film, which has great potential applications in biomedical materials.

  10. UV damage of collagen: insights from model collagen peptides.

    PubMed

    Jariashvili, Ketevan; Madhan, Balaraman; Brodsky, Barbara; Kuchava, Ana; Namicheishvili, Louisa; Metreveli, Nunu

    2012-03-01

    Fibrils of Type I collagen in the skin are exposed to ultraviolet (UV) light and there have been claims that collagen photo-degradation leads to wrinkles and may contribute to skin cancers. To understand the effects of UV radiation on collagen, Type I collagen solutions were exposed to the UV-C wavelength of 254 nm for defined lengths of time at 4°C. Circular dichroism (CD) experiments show that irradiation of collagen leads to high loss of triple helical content with a new lower thermal stability peak and SDS-gel electrophoresis indicates breakdown of collagen chains. To better define the effects of UV radiation on the collagen triple-helix, the studies were extended to peptides which model the collagen sequence and conformation. CD studies showed irradiation for days led to lower magnitudes of the triple-helix maximum at 225 nm and lower thermal stabilities for two peptides containing multiple Gly-Pro-Hyp triplets. In contrast, the highest radiation exposure led to little change in the T(m) values of (Gly-Pro-Pro)(10) and (Ala-Hyp-Gly)(10) , although (Gly-Pro-Pro)(10) did show a significant decrease in triple helix intensity. Mass spectroscopy indicated preferential cleavage sites within the peptides, and identification of some of the most susceptible sites of cleavage. The effect of radiation on these well defined peptides gives insight into the sequence and conformational specificity of photo-degradation of collagen.

  11. Heterogeneity of collagens in rabbit cornea: type VI collagen

    SciTech Connect

    Cintron, C.; Hong, B.S.

    1988-05-01

    Normal adult rabbit corneas were digested with 5% pepsin and their collagens extracted with acetic acid. Collagen extracts were fractionated by differential salt precipitation. The 2.5 M NaCl fraction was then redissolved with tris buffer and precipitated with sodium acetate. The precipitate contained a high-molecular-weight disulfide-bonded aggregate which, upon reduction with mercaptoethanol, was converted into three distinct polypeptides having molecular weights between 45 and 66 Kd. These physical characteristics, together with the susceptibility of these polypeptides to collagenase and their amino acid composition, identified the high molecular weight aggregate as type VI collagen. Corneas from neonate rabbits and adult corneas containing 2-week-old scars were organ cultured in the presence of (/sup 14/C) glycine to incorporate radiolabel into collagen. Tissues were digested with 0.02% pepsin and their collagens extracted with formic acid. The total radioactivity of the extracts and tissue residues was determined before the collagens were separated by SDS-polyacrylamide slab gel electrophoresis. Radioactive collagen polypeptides bands were then stained with Coomassie blue, processed for fluorography, and analyzed by densitometry. The results show that: (1) type VI collagen is synthesized by neonate corneas and healing adult corneas; (2) it is not readily solubilized from either corneal tissue by 0.02% pepsin digestion and formic acid extraction; and (3) the proportion of type VI collagen deposited in scar tissue is markedly lower than that found in neonate corneas.

  12. Heterogeneity of collagens in rabbit cornea: type III collagen

    SciTech Connect

    Cintron, C.; Hong, B.S.; Covington, H.I.; Macarak, E.J.

    1988-05-01

    Whole neonate rabbit corneas and adult corneas containing 2-week-old scars were incubated in the presence of (/sup 14/C) glycine. Radiolabeled collagen extracted from the corneas and scar tissue were analyzed by sodium dodecylsulfate/polyacrylamide gel electrophoresis and fluorography to determine the types and relative quantity of collagen polypeptides present and synthesized by these tissues. In addition to other collagen types, type III was found in both neonate cornea and scar tissue from adult cornea, albeit in relatively small quantities. Type III collagen in normal cornea was associated with the residue after pepsin digestion and formic acid extraction of the tissue, and the same type of collagen was extracted from scar tissue after similar treatment. Type III collagen-specific monoclonal antibody bound to developing normal corneas and healing adult tissue sections, as determined by immunofluorescence. Antibody binding was localized to the endothelium and growing Descemet's membrane in fetal and neonate corneas, and restricted to the most posterior region of the corneal scar tissue. Although monoclonal antibody to keratan sulfate, used as a marker for stromal fibroblasts, bound to most of the scar tissue, the antibody failed to bind to the posterior scar tissue positive for type III collagen. We conclude that endothelial cells from fetal and neonate rabbit cornea and endothelium-derived fibroblasts from healing wounds of adult cornea synthesize and deposit type III collagen. Moreover, this collagen appears to be incorporated into the growing Descemet's membrane of normal corneas and narrow posterior portion of the scar tissue.

  13. Collagenous colitis: an unrecognised entity.

    PubMed Central

    Bogomoletz, W V; Adnet, J J; Birembaut, P; Feydy, P; Dupont, P

    1980-01-01

    A patient is reported with chronic abdominal pain, diarrhoea, and associated radiological and endoscopic abnormalities of the sigmoid colon. Light and electron microscopic study of colorectal mucosa showed abnormal collagenous thickening of the subepithelial basement membrane. The authors felt that the clinical and morphological features justified a diagnosis of collagenous colitis. Review of the literature suggested that collagenous colitis was still an unrecognised entity. Images Fig. 1 Fig. 2 Fig. 3 PMID:7380341

  14. Second harmonic generation in collagen

    NASA Astrophysics Data System (ADS)

    Reiser, Karen M.; Stoller, Patrick; Celliers, Peter; Rubenchik, Alexander; Bratton, Clay; Yankelevich, Diego

    2003-11-01

    Collagen possesses a strong second order nonlinear susceptibility; when it is irradiated with intense laser light, some of the reflected and transmitted light will have twice the frequency of the incident beam, a phenomenon known as second harmonic generation (SHG). Polarization modulation of an ultra-short pulse laser beam can be used to simultaneously measure collagen fiber orientation, SHG intensity, and a parameter related to the second order non-linear susceptibility. This technique has made it possible to discriminate among patterns of fibrillar orientation in many tissues. In the present study the role that organizational complexity plays in the relationship between nonlinear optical properties and collagen structure is investigated. As a component of tissues and organs, collagen"s structure and function is inextricably intertwined with that of the many other matrix components; to what extent do these noncollagenous components affect its nonlinear properties? To answer this, we investigated SHG in two different collagenous tissues, liver and cartilage; in addition we looked at the effect of progressive pathological changes in these tissues on SHG. At the other end of the spectrum, we studied collagen organized at the minimal level of complexity necessary for SHG detection: fibrils generated from solutions containing only a single type of collagen. Data obtained from these studies suggest that collagen"s strong nonlinear susceptibility, a property no other biologically significant macromolecule shares to the same degree, may serve as more than the basis of a novel imaging device for soft tissue. Collagen"s nonlinear optical properties in conjunction with its vast capacity for self-initiated conformational change--through self-assembly, site recognition, post-translational modification, and the like -make it an attractive candidate molecule for any of several demanding engineering applications, such as nanopatterning.

  15. Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis

    SciTech Connect

    Perumal, Shiamalee; Antipova, Olga; Orgel, Joseph P.R.O.

    2008-06-24

    We describe the molecular structure of the collagen fibril and how it affects collagen proteolysis or 'collagenolysis.' The fibril-forming collagens are major components of all mammalian connective tissues, providing the structural and organizational framework for skin, blood vessels, bone, tendon, and other tissues. The triple helix of the collagen molecule is resistant to most proteinases, and the matrix metalloproteinases that do proteolyze collagen are affected by the architecture of collagen fibrils, which are notably more resistant to collagenolysis than lone collagen monomers. Until now, there has been no molecular explanation for this. Full or limited proteolysis of the collagen fibril is known to be a key process in normal growth, development, repair, and cell differentiation, and in cancerous tumor progression and heart disease. Peptide fragments generated by collagenolysis, and the conformation of exposed sites on the fibril as a result of limited proteolysis, regulate these processes and that of cellular attachment, but it is not known how or why. Using computational and molecular visualization methods, we found that the arrangement of collagen monomers in the fibril (its architecture) protects areas vulnerable to collagenolysis and strictly governs the process. This in turn affects the accessibility of a cell interaction site located near the cleavage region. Our observations suggest that the C-terminal telopeptide must be proteolyzed before collagenase can gain access to the cleavage site. Collagenase then binds to the substrate's 'interaction domain,' which facilitates the triple-helix unwinding/dissociation function of the enzyme before collagenolysis.

  16. Effect of microgravity on collagenase deproteinization and EDTA decalcification of bone fragments.

    PubMed

    Simske, S J; Luttges, M W

    1994-09-01

    Undecalcified (n = 140) and decalcified (n = 11) bone fragments were treated with either collagenase (to remove collagen portion; undecalcified n = 64, decalcified n = 11) or EDTA (to remove mineral portion; n = 76) under the reduced gravity environment on US Space Shuttle mission STS-57. The fragments were initially stored in Dulbecco's phosphate buffer solution. After orbit had been established, fragments were exposed to either a neutral buffered collagenase or EDTA solution. Reactions were terminated (neutral buffered formalin for collagenase, 21% CuSO4 5H2O for EDTA) before reentry to earth's atmosphere. Differences in bone samples mass from before flight to after flight were measured. EDTA-treated sample mass was corrected for CuSO4 content. Flight and matched ground (gravitational control) sample showed similar EDTA-induced loss of mineral mass. Collagenase treatments, however, appeared to be more effective in flight samples compared to ground control samples. The flight-exposed, collagenase-treated samples showed significantly more loss of mass than did ground samples. The microgravity environment appeared to promote proteolytic reactions in bone more than the EDTA decalcification reaction.

  17. Effect of microgravity on collagenase deprotoeinization and EDTA decalcification of bone fragments

    NASA Technical Reports Server (NTRS)

    Simske, S. J.; Luttges, M. W.

    1994-01-01

    Undecalcified (n = 140) and decalcified (n = 11) bone fragments were treated with either collagenase (to remove collagen portion; undecalcified n = 64, decalcified n = 11) or EDTA (to remove mineral portion; n= 76) under the reduced gravity environment on US Space Shuttle mission STS-57. The fragments were initially stored in Dulbecco's phosphate buffer solution. After orbit had been established, fragments were exposed to either a neutral buffered collagenase or EDTA solution. Reactions were terminated (neutral buffered formalin for collagenase, 21% CuSO4-5H2O for EDTA) before reentry to earth's atmosphere. Differences in bone samples mass from before flight to after flight were measured. EDTA-treated sample mass was corrected for CuSO4 content. Flight and matched ground (gravitational control) sample showed similar EDTA-induced loss of mineral mass. Collagenase treatments, however, appeared to be more effective in flight samples compared to ground control samples. The flight-exposed, collagenase-treated samples showed significantly more loss than did ground samples. The microgravity environment appeared to promote proteolytic reactions in bone more than the EDTA decalcification reaction.

  18. Fibrillar, fibril-associated and basement membrane collagens of the arterial wall: architecture, elasticity and remodeling under stress.

    PubMed

    Osidak, M S; Osidak, E O; Akhmanova, M A; Domogatsky, S P; Domogatskaya, A S

    2015-01-01

    The ability of a human artery to pass through 150 million liters of blood sustaining 2 billion pulsations of blood pressure with minor deterioration depends on unique construction of the arterial wall. Viscoelastic properties of this construction enable to re-seal the occuring damages apparently without direct immediate participance of the constituent cells. Collagen structures are considered to be the elements that determine the mechanoelastic properties of the wall in parallel with elastin responsible for elasticity and resilience. Collagen scaffold architecture is the function-dependent dynamic arrangement of a dozen different collagen types composing three distinct interacting forms inside the extracellular matrix of the wall. Tightly packed molecules of collagen types I, III, V provide high tensile strength along collagen fibrils but toughness of the collagen scaffold as a whole depends on molecular bonds between distinct fibrils. Apart of other macromolecules in the extracellular matrix (ECM), collagen-specific interlinks involve microfilaments of collagen type VI, meshwork-organized collagen type VIII, and FACIT collagen type XIV. Basement membrane collagen types IV, XV, XVIII and cell-associated collagen XIII enable transmission of mechanical signals between cells and whole artery matrix. Collagen scaffold undergoes continuous remodeling by decomposition promoted with MMPs and reconstitution from newly produced collagen molecules. Pulsatile stress-strain load modulates both collagen synthesis and MMP-dependent collagen degradation. In this way the ECM structure becomes adoptive to mechanical challenges. The mechanoelastic properties of the arterial wall are changed in atherosclerosis concomitantly with collagen turnover both type-specific and dependent on the structure. Improving the feedback could be another approach to restore sufficient blood circulation.

  19. Porous Collagen Scaffold Reinforced with Surfaced Activated PLLA Nanoparticles

    PubMed Central

    Xu, Cancan; Lu, Wei; Bian, Shaoquan; Liang, Jie; Fan, Yujiang; Zhang, Xingdong

    2012-01-01

    Porous collagen scaffold is integrated with surface activated PLLA nanoparticles fabricated by lyophilizing and crosslinking via EDC treatment. In order to prepare surface-modified PLLA nanoparticles, PLLA was firstly grafted with poly (acrylic acid) (PAA) through surface-initiated polymerization of acrylic acid. Nanoparticles of average diameter 316 nm and zeta potential −39.88 mV were obtained from the such-treated PLLA by dialysis method. Porous collagen scaffold were fabricated by mixing PLLA nanoparticles with collagen solution, freeze drying, and crosslinking with EDC. SEM observation revealed that nanoparticles were homogeneously dispersed in collagen matrix, forming interconnected porous structure with pore size ranging from 150 to 200 μm, irrespective of the amount of nanoparticles. The porosity of the scaffolds kept almost unchanged with the increment of the nanoparticles, whereas the mechanical property was obviously improved, and the degradation was effectively retarded. In vitro L929 mouse fibroblast cells seeding and culture studies revealed that cells infiltrated into the scaffolds and were distributed homogeneously. Compared with the pure collagen sponge, the number of cells in hybrid scaffolds greatly increased with the increment of incorporated nanoparticles. These results manifested that the surface-activated PLLA nanoparticles effectively reinforced the porous collagen scaffold and promoted the cells penetrating into the scaffold, and proliferation. PMID:22448137

  20. Influence of collagen addition on the thermal and morphological properties of chitosan/xanthan hydrogels.

    PubMed

    Horn, Marilia M; Martins, Virginia C A; Plepis, Ana Maria de Guzzi

    2015-09-01

    This study investigates the collagen influence on thermal and morphological characteristics of chitosan/xanthan hydrogels for potential tissue engineering applications. Anionic collagen was prepared by selective hydrolysis of type I collagen found in bovine tendons. Chitosan was obtained from the partial deacetylation of squid pen β-chitin and xanthan was acquired from Fluka. The hydrogels were obtained in different ratios and were characterized by thermal and morphological analysis. FT-IR suggested only electrostatic interactions between NH3(+) groups of chitosan and COO(-) groups of xanthan and collagen. Thermogravimetric curves showed that hydrogels contain a great amount of water (above 98%) and the presence of collagen does not change this characteristic. Freezing-bound water transition in DSC curves was shifted to higher values due to the increase of water/polymer interaction, mainly when different ratios of chitosan and xanthan were used. SEM images showed sheet-form structures with the presence of collagen promoting an increase in pore size.

  1. Fluorescence study on the aggregation of collagen molecules in acid solution influenced by hydroxypropyl methylcellulose.

    PubMed

    Ding, Cuicui; Zhang, Min; Li, Guoying

    2016-01-20

    The effect of hydroxypropyl methylcellulose (HPMC) on the aggregation of collagen molecules with collagen concentrations of 0.25, 0.5 and 1.0mg/mL was studied by fluorescence techniques. On one hand, both the synchronous fluorescence spectra and fluorescence emission spectra showed that there was no change in the fluorescence intensity of collagen intrinsic fluorescence when 30% HPMC was added, while it decreased obviously when HPMC content ≥ 50%. From the two-dimensional fluorescence correlation analysis, it was indicated that collagen molecules in 0.25 and 0.5mg/mL collagen solutions were more sensitive to HPMC than those in 1.0mg/mL collagen solution. On the other hand, the pyrene fluorescence and the fluorescence anisotropy measurements indicated that HPMC inhibited the collagen aggregation for 0.25 and 0.5mg/mL collagen, but promoted it for 1.0mg/mL collagen. The atomic force microscopy images further confirmed the effect of HPMC on collagen with different initial states.

  2. Tunability of collagen matrix mechanical properties via multiple modes of mineralization

    PubMed Central

    Smith, Lester J.; Deymier, Alix C.; Boyle, John J.; Li, Zhen; Linderman, Stephen W.; Pasteris, Jill D.; Xia, Younan; Genin, Guy M.; Thomopoulos, Stavros

    2016-01-01

    Functionally graded, mineralized collagen tissues exist at soft-to-hard material attachments throughout the body. However, the details of how collagen and hydroxyapatite mineral (HA) interact are not fully understood, hampering efforts to develop tissue-engineered constructs that can assist with repair of injuries at the attachments of soft tissues to bone. In this study, spatial control of mineralization was achieved in collagen matrices using simulated body fluids (SBFs). Based upon previous observations of poor bonding between reconstituted collagen and HA deposited using SBF, we hypothesized that mineralizing collagen in the presence of fetuin (which inhibits surface mineralization) would lead to more mineral deposition within the scaffold and therefore a greater increase in stiffness and toughness compared with collagen mineralized without fetuin. We tested this hypothesis through integrated synthesis, mechanical testing and modelling of graded, mineralized reconstituted collagen constructs. Results supported the hypothesis, and further suggested that mineralization on the interior of reconstituted collagen constructs, as promoted by fetuin, led to superior bonding between HA and collagen. The results provide us guidance for the development of mineralized collagen scaffolds, with implications for bone and tendon-to-bone tissue engineering. PMID:26855755

  3. Effect of collagen sponge and fibrin glue on bone repair

    PubMed Central

    SANTOS, Thiago de Santana; ABUNA, Rodrigo Paolo Flores; de ALMEIDA, Adriana Luisa Gonçalves; BELOTI, Marcio Mateus; ROSA, Adalberto Luiz

    2015-01-01

    ABSTRACT The ability of hemostatic agents to promote bone repair has been investigated using in vitro and in vivo models but, up to now, the results are inconclusive. Objective In this context, the aim of this study was to compare the potential of bone repair of collagen sponge with fibrin glue in a rat calvarial defect model. Material and Methods Defects of 5 mm in diameter were created in rat calvariae and treated with either collagen sponge or fibrin glue; untreated defects were used as control. At 4 and 8 weeks, histological analysis and micro-CT-based histomorphometry were carried out and data were compared by two-way ANOVA followed by Student-Newman-Keuls test when appropriated (p≤0.05). Results Three-dimensional reconstructions showed increased bone formation in defects treated with either collagen sponge or fibrin glue compared with untreated defects, which was confirmed by the histological analysis. Morphometric parameters indicated the progression of bone formation from 4 to 8 weeks. Additionally, fibrin glue displayed slightly higher bone formation rate when compared with collagen sponge. Conclusion Our results have shown the benefits of using collagen sponge and fibrin glue to promote new bone formation in rat calvarial bone defects, the latter being discreetly more advantageous. PMID:26814464

  4. Parton fragmentation functions

    NASA Astrophysics Data System (ADS)

    Metz, A.; Vossen, A.

    2016-11-01

    The field of fragmentation functions of light quarks and gluons is reviewed. In addition to integrated fragmentation functions, attention is paid to the dependence of fragmentation functions on transverse momenta and on polarization degrees of freedom. Higher-twist and di-hadron fragmentation functions are considered as well. Moreover, the review covers both theoretical and experimental developments in hadron production in electron-positron annihilation, deep-inelastic lepton-nucleon scattering, and proton-proton collisions.

  5. Fragmentation Analysis - Fundamental Processes

    DTIC Science & Technology

    Wausau quartzite and anorthosite of 3.0 to 3.5 inch size were fragmented in this device. An analysis of the fragment distribution results of the drop...disc-shaped specimens of Wausau quartzite, anorthosite , and Felch marble were then fragmented with the impact pendulum device. Computer programs were

  6. The NC2 domain of type IX collagen determines the chain register of the triple helix.

    PubMed

    Boudko, Sergei P; Bächinger, Hans Peter

    2012-12-28

    Precise mapping and unraveling the mechanism of interaction or degradation of a certain type of collagen triple helix requires the generation of short and stable collagenous fragments. This is a great challenge especially for hetero-trimeric collagens, where chain composition and register (stagger) are important factors. No system has been reported that can be efficiently used to generate a natural collagenous fragment with exact chain composition and desired chain register. The NC2 domain (only 35-50 residues) of FACIT collagens is a potent trimerization domain. In the case of type IX collagen it provides the efficient selection and hetero-trimerization of three distinct chains. The ability of the NC2 domain to determine the chain register of the triple helix is studied. We generated three possible sequence combinations (α1α1α2, α1α2α1, α2α1α1) of a type I collagen fragment (the binding region for the von Willebrand factor A3 domain) attached to the NC2 domain. In addition, two control combinations were produced that constitute homo-trimers of (α1)(3) or (α2)(3). For the hetero-trimeric constructs, α1α1α2 demonstrated a higher melting temperature than the other two. Binding experiments with the von Willebrand factor A3 domain revealed the homo-trimer of (α1)(3) as the strongest binding construct, whereas the homo-trimer of (α2)(3) showed no binding. For hetero-trimers, α1α1α2 was found to be the strongest binding construct. Differences in thermal stability and binding to the A3 domain unambiguously demonstrate that the NC2 domain of type IX collagen determines not only the chain composition but also the chain register of the adjacent triple helix.

  7. Selectable fragmentation warhead

    DOEpatents

    Bryan, Courtney S.; Paisley, Dennis L.; Montoya, Nelson I.; Stahl, David B.

    1993-01-01

    A selectable fragmentation warhead capable of producing a predetermined number of fragments from a metal plate, and accelerating the fragments toward a target. A first explosive located adjacent to the plate is detonated at selected number of points by laser-driven slapper detonators. In one embodiment, a smoother-disk and a second explosive, located adjacent to the first explosive, serve to increase acceleration of the fragments toward a target. The ability to produce a selected number of fragments allows for effective destruction of a chosen target.

  8. Collagen binding to Staphylococcus aureus

    SciTech Connect

    Holderbaum, D.; Hall, G.S.; Ehrhart, L.A.

    1986-11-01

    Staphylococcus aureus can bind soluble collagen in a specific, saturable manner. We have previously shown that some variability exists in the degree of collagen binding between different strains of heat-killed, formaldehyde-fixed S. aureus which are commercially available as immunologic reagents. The present study demonstrates that live S. aureus of the Cowan 1 strain binds amounts of collagen per organism equivalent to those demonstrated previously in heat-killed, formaldehyde-fixed bacteria but has an affinity over 100 times greater, with Kd values of 9.7 X 10(-11) M and 4.3 X 10(-8) M for live and heat-killed organisms, respectively. Studies were also carried out with S. aureus killed by ionizing radiation, since this method of killing the organism seemed less likely to alter the binding moieties on the surface than did heat killing. Bacteria killed by exposure to gamma radiation bound collagen in a manner essentially indistinguishable from that of live organisms. Binding of collagen to irradiated cells of the Cowan 1 strain was rapid, with equilibrium reached by 30 min at 22 degrees C, and was fully reversible. The binding was not inhibited by fibronectin, fibrinogen, C1q, or immunoglobulin G, suggesting a binding site for collagen distinct from those for these proteins. Collagen binding was virtually eliminated in trypsin-treated organisms, indicating that the binding site has a protein component. Of four strains examined, Cowan 1 and S. aureus ATCC 25923 showed saturable, specific binding, while strains Woods and S4 showed a complete lack of binding. These results suggest that some strains of S. aureus contain high-affinity binding sites for collagen. While the number of binding sites per bacterium varied sixfold in the two collagen-binding strains, the apparent affinity was similar.

  9. Sequence comparison of pepsin-resistant segments of basement-membrane collagen alpha 1(IV) chains from bovine lens capsule and mouse tumour.

    PubMed Central

    Schuppan, D; Glanville, R W; Timpl, R; Dixit, S N; Kang, A H

    1984-01-01

    The C-terminal peptic fragment P1 (about 518 amino acid residues) of bovine lens-capsule collagen alpha 1(IV) chain was cleaved with CNBr and trypsin. The peptides were purified and characterized, allowing their ordering within the P1 fragment by comparison with a corresponding section of mouse collagen alpha 1(IV) chain [Schuppan, Glanville & Timpl (1982) Eur. J. Biochem. 123, 505-512]. About 67% of the sequence of bovine collagen fragment P1 was determined by Edman degradation. Comparison with the sequence of the corresponding mouse collagen fragment P1 showed 76% identity for positions Xaa and Yaa of the triplet structures Gly-Xaa-Yaa. Invariance was found for the positions of two non-triplet interruptions and of 3-hydroxyproline residues, pointing to the functional importance of these structures. PMID:6430279

  10. Electrostatic effects in collagen fibrillization

    NASA Astrophysics Data System (ADS)

    Morozova, Svetlana; Muthukumar, Murugappan

    2014-03-01

    Using light scattering and AFM techniques, we have measured the kinetics of fibrillization of collagen (pertinent to the vitreous of human eye) as a function of pH and ionic strength. At higher and lower pH, collagen triple-peptides remain stable in solution without fibrillization. At neutral pH, the fibrillization occurs and its growth kinetics is slowed upon either an increase in ionic strength or a decrease in temperature. We present a model, based on polymer crystallization theory, to describe the observed electrostatic nature of collagen assembly.

  11. Impact of temperature and electrical potentials on the stability and structure of collagen adsorbed on the gold electrode

    NASA Astrophysics Data System (ADS)

    Meiners, Frank; Ahlers, Michael; Brand, Izabella; Wittstock, Gunther

    2015-01-01

    The morphology and structure of collagen type I adsorbed on gold electrodes were studied as a function of electrode potential and temperature by means of capacitance measurements, polarization modulation infrared reflection-absorption spectroscopy and scanning force microscopy at temperatures of 37 °C, 43 °C and 50 °C. The selected temperatures corresponded to the normal body temperature, temperature of denaturation of collagen molecules and denaturation of collagen fibrils, respectively. Independently of the solution temperature, collagen was adsorbed on gold electrodes in the potential range - 0.7 V < E < 0.4 V vs. Ag/AgCl, where the protein film was very stable. Fragments of collagen molecules made a direct contact to the gold surface and water was present in the film. Protein molecules were oriented preferentially with their long axis towards the gold surface. Collagen molecules in the adsorbed state preserved their native triple helical structure even at temperatures corresponding to collagen denaturation in aqueous solutions. Application of E < - 0.75 V vs. Ag/AgCl leads to the swelling of the protein film by water and desorption from the electrode surface. IR spectra provided no evidence of the thermal denaturation of adsorbed collagen molecules. A temperature increase to 50 °C leads to a distortion of the collagen film. The processes of aggregation and fibrilization were preferred over thermal denaturation for collagen adsorbed on the electrode surface and exposed to changing potentials.

  12. Fibroblast morphogenesis on 3D collagen matrices: the balance between cell clustering and cell migration.

    PubMed

    da Rocha-Azevedo, Bruno; Grinnell, Frederick

    2013-10-01

    Fibroblast clusters have been observed in tissues under a variety of circumstances: in fibrosis and scar, in the formation of hair follicle dermal papilla, and as part of the general process of mesenchymal condensation that takes place during development. Cell clustering has been shown to depend on features of the extracellular matrix, growth factor environment, and mechanisms to stabilize cell-cell interactions. In vitro studies have shown that increasing the potential for cell-cell adhesion relative to cell-substrate adhesion promotes cell clustering. Experimental models to study fibroblast clustering have utilized centrifugation, hanging drops, and substrata with poorly adhesive, soft and mechanically unstable properties. In this review, we summarize work on a new, highly tractable, cell clustering research model in which human fibroblasts are incubated on the surfaces of collagen matrices. Fibroblast clustering occurs under procontractile growth factor conditions (e.g., serum or the serum lipid agonist lysophosphatidic acid) but not under promigratory growth factor conditions (e.g., platelet-derived growth factor) and can be reversed by switching growth factor environments. Cell contraction plays a dual role in clustering to bring cells closer together and to stimulate cells to organize fibronectin into a fibrillar matrix. Binding of fibroblasts to a shared fibronectin fibrillar matrix stabilizes clusters, and fragmentation of the fibrillar matrix occurs when growth factor conditions are switched to promote cell dispersal.

  13. Golgi fragmentation in Alzheimer's disease

    PubMed Central

    Joshi, Gunjan; Bekier, Michael E.; Wang, Yanzhuang

    2015-01-01

    The Golgi apparatus is an essential cellular organelle for post-translational modifications, sorting, and trafficking of membrane and secretory proteins. Proper functionality of the Golgi requires the formation of its unique cisternal-stacking morphology. The Golgi structure is disrupted in a variety of neurodegenerative diseases, suggesting a common mechanism and contribution of Golgi defects in neurodegenerative disorders. A recent study on Alzheimer's disease (AD) revealed that phosphorylation of the Golgi stacking protein GRASP65 disrupts its function in Golgi structure formation, resulting in Golgi fragmentation. Inhibiting GRASP65 phosphorylation restores the Golgi morphology from Aβ-induced fragmentation and reduces Aβ production. Perturbing Golgi structure and function in neurons may directly impact trafficking, processing, and sorting of a variety of proteins essential for synaptic and dendritic integrity. Therefore, Golgi defects may ultimately promote the development of AD. In the current review, we focus on the cellular impact of impaired Golgi morphology and its potential relationship to AD disease development. PMID:26441511

  14. Health Promotion

    PubMed Central

    Karmali-Rawji, Shameela; Kassim-Lakha, Shaheen; Taylor, Karmel

    1992-01-01

    Perceived lack or loss of control, stress, a rapidly again population and rising costs of health care necessitate effective health promotion and disease prevention in the elderly. In a collaborative health promotion effort, the private sector, public sector, and community partners have joined to increase the South Asian elders' sense of control over the decisions and circumstances that affect their everyday lives. The project was designed to help elders come to terms with the fragmentation of their extended families, cultural alienation, decreased autonomy, need for information, and greater risk of cardiovascular disease. Imagesp622-a

  15. Universality of fragment shapes

    PubMed Central

    Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea

    2015-01-01

    The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism. PMID:25772300

  16. Universality of fragment shapes

    NASA Astrophysics Data System (ADS)

    Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea

    2015-03-01

    The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism.

  17. Chitosan and fish collagen as biomaterials for regenerative medicine.

    PubMed

    Hayashi, Yoshihiko; Yamada, Shizuka; Yanagi Guchi, Kajiro; Koyama, Zenya; Ikeda, Takeshi

    2012-01-01

    This chapter focuses and reviews on the characteristics and biomedical application of chitosan and collagen from marine products and advantages and disadvantages of regeneration medicine. The understanding of the production processes of chitosan and collagen and the conformation of these biomaterials are indispensable for promoting the theoretical and practical availability. The initial inflammatory reactions associated with chitosan application to hard and soft tissues need to be controlled before it can be considered for clinical application as scaffold. Further, as chitosan takes too long for biodegradation in vivo, generally it is not suitable for the scaffold for degenerative medicine in especially dental pulp tissue. The collagen extract from the scales of tropical fish has been reported to have a degeneration temperature of 35°C. The properties of biocompatibility and biodegradation of fish atelocollagen are suitable for the scaffold in regenerative medicine.

  18. Effect of curcumin caged silver nanoparticle on collagen stabilization for biomedical applications.

    PubMed

    Srivatsan, Kunnavakkam Vinjimur; Duraipandy, N; Begum, Shajitha; Lakra, Rachita; Ramamurthy, Usha; Korrapati, Purna Sai; Kiran, Manikantan Syamala

    2015-04-01

    The current study aims at understanding the influence of curcumin caged silver nanoparticle (CCSNP) on stability of collagen. The results indicated that curcumin caged silver nanoparticles efficiently stabilize collagen, indicated by enhanced tensile strength, fibril formation and viscosity. The tensile strength of curcumin caged silver nanoparticle cross-linked collagen and elongation at break was also found to be higher than glutaraldehyde cross-linked collagen. The physicochemical characteristics of curcumin caged nanoparticle cross-linked collagen exhibited enhanced strength. The thermal properties were also good with both thermal degradation temperature and hydrothermal stability higher than native collagen. CD analysis showed no structural disparity in spite of superior physicochemical properties suggesting the significance of curcumin caged nanoparticle mediated cross-linking. The additional enhancement in the stabilization of collagen could be attributed to multiple sites for interaction with collagen molecule provided by curcumin caged silver nanoparticles. The results of cell proliferation and anti-microbial activity assays indicated that curcumin caged silver nanoparticles promoted cell proliferation and inhibited microbial growth making it an excellent biomaterial for wound dressing application. The study opens scope for nano-biotechnological strategies for the development of alternate non-toxic cross-linking agents facilitating multiple site interaction thereby improving therapeutic values to the collagen for biomedical application.

  19. Rheological, biocompatibility and osteogenesis assessment of fish collagen scaffold for bone tissue engineering.

    PubMed

    Elango, Jeevithan; Zhang, Jingyi; Bao, Bin; Palaniyandi, Krishnamoorthy; Wang, Shujun; Wenhui, Wu; Robinson, Jeya Shakila

    2016-10-01

    In the present investigation, an attempt was made to find an alternative to mammalian collagen with better osteogenesis ability. Three types of collagen scaffolds - collagen, collagen-chitosan (CCH), and collagen-hydroxyapatite (CHA) - were prepared from the cartilage of Blue shark and investigated for their physico-functional and mechanical properties in relation to biocompatibility and osteogenesis. CCH scaffold was superior with pH 4.5-4.9 and viscosity 9.7-10.9cP. Notably, addition of chitosan and HA (hydroxyapatite) improved the stiffness (11-23MPa) and degradation rate but lowered the water binding capacity and porosity of the scaffold. Interestingly, CCH scaffolds remained for 3days before complete in-vitro biodegradation. The decreased amount of viable T-cells and higher level of FAS/APO-1 were substantiated the biocompatibility properties of prepared collagen scaffolds. Osteogenesis study revealed that the addition of CH and HA in both fish and mammalian collagen scaffolds could efficiently promote osteoblast cell formation. The ALP activity was significantly high in CHA scaffold-treated osteoblast cells, which suggests an enhanced bone-healing process. Therefore, the present study concludes that the composite scaffolds prepared from fish collagen with higher stiffness, lower biodegradation rate, better biocompatible, and osteogenesis properties were suitable biomaterial for a bone tissue engineering application as an alternative to mammalian collagen scaffolds.

  20. Blister-inducing antibodies target multiple epitopes on collagen VII in mice

    PubMed Central

    Csorba, Kinga; Chiriac, Mircea Teodor; Florea, Florina; Ghinia, Miruna Georgiana; Licarete, Emilia; Rados, Andreea; Sas, Alexandra; Vuta, Vlad; Sitaru, Cassian

    2014-01-01

    Epidermolysis bullosa acquisita (EBA) is an autoimmune subepidermal blistering disease of mucous membranes and the skin caused by autoantibodies against collagen VII. In silico and wet laboratory epitope mapping studies revealed numerous distinct epitopes recognized by EBA patients' autoantibodies within the non-collagenous (NC)1 and NC2 domains of collagen VII. However, the distribution of pathogenic epitopes on collagen VII has not yet been described. In this study, we therefore performed an in vivo functional epitope mapping of pathogenic autoantibodies in experimental EBA. Animals (n = 10/group) immunized against fragments of the NC1 and NC2 domains of collagen VII or injected with antibodies generated against the same fragments developed to different extent experimental EBA. Our results demonstrate that antibodies targeting multiple, distinct epitopes distributed over the entire NC1, but not NC2 domain of collagen VII induce blistering skin disease in vivo. Our present findings have crucial implications for the development of antigen-specific B- and T cell-targeted therapies in EBA. PMID:25091020

  1. Human collagen produced in plants

    PubMed Central

    Shoseyov, Oded; Posen, Yehudit; Grynspan, Frida

    2014-01-01

    Consequential to its essential role as a mechanical support and affinity regulator in extracellular matrices, collagen constitutes a highly sought after scaffolding material for regeneration and healing applications. However, substantiated concerns have been raised with regard to quality and safety of animal tissue-extracted collagen, particularly in relation to its immunogenicity, risk of disease transmission and overall quality and consistency. In parallel, contamination with undesirable cellular factors can significantly impair its bioactivity, vis-a-vis its impact on cell recruitment, proliferation and differentiation. High-scale production of recombinant human collagen Type I (rhCOL1) in the tobacco plant provides a source of an homogenic, heterotrimeric, thermally stable “virgin” collagen which self assembles to fine homogenous fibrils displaying intact binding sites and has been applied to form numerous functional scaffolds for tissue engineering and regenerative medicine. In addition, rhCOL1 can form liquid crystal structures, yielding a well-organized and mechanically strong membrane, two properties indispensable to extracellular matrix (ECM) mimicry. Overall, the shortcomings of animal- and cadaver-derived collagens arising from their source diversity and recycled nature are fully overcome in the plant setting, constituting a collagen source ideal for tissue engineering and regenerative medicine applications. PMID:23941988

  2. Fragmentation properties of metals

    SciTech Connect

    Grady, D.E.; Kipp, M.E.

    1996-06-01

    In the present study we are developing an experimental fracture material property test method specific to dynamic fragmentation. Spherical test samples of the metals of interest are subjected to controlled impulsive stress loads by acceleration to high velocities with a light-gas launcher facility and subsequent normal impact on thin plates. Motion, deformation and fragmentation of the test samples are diagnosed with multiple flash radiography methods. The impact plate materials are selected to be transparent to the x-ray method so that only test metal material is imaged. Through a systematic series of such tests, both strain-to-failure and fragmentation resistance properties are determined through this experimental method. Fragmentation property data for several steels, copper, aluminum, tantalum and titanium have been obtained to date. Aspects of the dynamic data have been analyzed with computational methods to achieve a better understanding of the processes leading to failure and fragmentation, and to test an existing computational fragmentation model.

  3. ALCOHOL MODULATION OF MMP AND TIMP EXPRESSION IN THE HEART FAVORS COLLAGEN ACCUMULATION

    PubMed Central

    El Hajj, E.C.; El hajj, M.C.; Voloshenyuk, T.G.; Mouton, A.J.; Khoutorova, E.; Molina, P.E.; Gilpin, N.W.; Gardner, J.D.

    2013-01-01

    Background Chronic alcohol consumption has been shown in human and animal studies to result in collagen accumulation, myocardial fibrosis, and heart failure. Cardiac fibroblasts produce collagen and regulate extracellular matrix (ECM) homeostasis through the synthesis and activity of matrix metalloproteinases (MMP) and tissue inhibitors of MMPs (TIMP), with the balance of MMPs/TIMPs determining the rate of collagen turnover. Dynamic changes of MMP and TIMP expression were reported in alcohol induced hepatic fibrosis; however, the effect of alcohol on MMP/TIMP balance in the heart and cardiac fibroblasts is unknown. We hypothesized that alcohol exposure alters cardiac fibroblast MMP and TIMP expression to promote collagen accumulation in the heart. Methods Cardiac fibroblasts isolated from adult rats were cultured in the presence of alcohol (12.5–200 mM) for 48 hrs. MMP, TIMP, and collagen type I and III expression were assayed by Western blot analysis. Hydroxyproline (HPro) was used as a marker of collagen production. The in vivo cardiac effects of ethanol were determined using rats exposed to ethanol vapor for two weeks, resulting in blood alcohol levels of 150–200 mg/dl. Cardiac collagen volume fraction (CVF), as well as MMP, TIMP and collagen expression, was assessed. Results Ethanol exposed rats exhibited upregulation of TIMP-1, -3 and -4 in the heart, with no significant increases in MMPs. Cardiac fibroblasts exhibited transformation to a profibrotic phenotype following exposure to alcohol. These changes were reflected by increased α-smooth muscle actin and collagen I and III expression, as well as increased collagen secretion. In vivo ethanol exposure also produced fibrosis, indicated by increased CVF and expression of collagens. Conclusion Alcohol exposure modulates cardiac fibroblast MMP/TIMP expression favoring a profile associated with collagen accumulation. Our data suggest that this disrupted MMP/TIMP profile may contribute to the development of

  4. Induction of rat facial nerve regeneration by functional collagen scaffolds.

    PubMed

    Cao, Jiani; Xiao, Zhifeng; Jin, Wei; Chen, Bing; Meng, Danqing; Ding, Wenyong; Han, Sufang; Hou, Xiaoshan; Zhu, Tiansheng; Yuan, Baoyu; Wang, Jing; Liang, Weibang; Dai, Jianwu

    2013-01-01

    Nerve conduit provides a promising strategy for nerve regeneration, and the proper microenvironment in the lumen could improve the regeneration. Our previous work had demonstrated that linear ordered collagen scaffold (LOCS) could effectively guide the oriented growth of axons. Laminin is known as an important nerve growth promoting factor and can facilitate the growth cone formation. In addition, ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) can effectively improve the nerve regeneration after nerve injuries. However, in practice, diffusion caused by the body fluids is the major obstacle in their applications. To retain CNTF or BDNF on the scaffolds, we produced collagen binding CNTF (CBD-CNTF), collagen binding BDNF (CBD-BDNF) and laminin binding CNTF (LBD-CNTF), laminin binding BDNF (LBD-BDNF) respectively. In this work, we developed laminin modified LOCS fibers (L × LOCS) by chemical cross-linking LOCS fibers with laminin. Collagen binding or laminin binding neurotrophic factors were combined with LOCS or L × LOCS, and then filled them into the collagen nerve conduit. They were found to guide the ordered growth of axons, and improve the nerve functional recovery in the rat facial nerve transection model. The combination of CNTF and BDNF greatly enhanced the facial nerve regeneration and functional recovery.

  5. Collagen Hydrogel Scaffold and Fibroblast Growth Factor-2 Accelerate Periodontal Healing of Class II Furcation Defects in Dog

    PubMed Central

    Momose, Takehito; Miyaji, Hirofumi; Kato, Akihito; Ogawa, Kosuke; Yoshida, Takashi; Nishida, Erika; Murakami, Syusuke; Kosen, Yuta; Sugaya, Tsutomu; Kawanami, Masamitsu

    2016-01-01

    Objective: Collagen hydrogel scaffold exhibits bio-safe properties and facilitates periodontal wound healing. However, regenerated tissue volume is insufficient. Fibroblast growth factor-2 (FGF2) up-regulates cell behaviors and subsequent wound healing. We evaluated whether periodontal wound healing is promoted by application of collagen hydrogel scaffold in combination with FGF2 in furcation defects in beagle dogs. Methods: Collagen hydrogel was fabricated from bovine type I collagen with an ascorbate-copper ion cross-linking system. Collagen hydrogel was mingled with FGF2 and injected into sponge-form collagen. Subsequently, FGF2 (50 µg)/collagen hydrogel scaffold and collagen hydrogel scaffold alone were implanted into class II furcation defects in dogs. In addition, no implantation was performed as a control. Histometric parameters were assessed at 10 days and 4 weeks after surgery. Result: FGF2 application to scaffold promoted considerable cell and tissue ingrowth containing numerous cells and blood vessel-like structure at day 10. At 4 weeks, reconstruction of alveolar bone was stimulated by implantation of scaffold loaded with FGF2. Furthermore, periodontal attachment, consisting of cementum-like tissue, periodontal ligament-like tissue and Sharpey’s fibers, was also repaired, indicating that FGF2-loaded scaffold guided self-assembly and then re-established the function of periodontal organs. Aberrant healing, such as ankylosis and root resorption, was not observed. Conclusion: FGF2-loaded collagen hydrogel scaffold possessed excellent biocompatibility and strongly promoted periodontal tissue engineering, including periodontal attachment re-organization. PMID:27583044

  6. Effect of ultrasonication on the fibril-formation and gel properties of collagen from grass carp skin.

    PubMed

    Jiang, Ying; Wang, Haibo; Deng, Mingxia; Wang, Zhongwen; Zhang, Juntao; Wang, Haiyin; Zhang, Hanjun

    2016-02-01

    Controlling the fibril-formation process of collagen in vitro to fabricate novel biomaterials is a new area in the field of collagen research. This study aimed to determine the effect of ultrasonication on collagen fibril formation and the properties of the resulting collagen gels. Native collagen, extracted from the skin of grass carp, self-assembled under ultrasonic conditions (at different ultrasonic power and duration). The self-assembly kinetics, fibrillar morphology, and physical and cell growth-promoting properties of the collagen gels were analyzed and compared. The results showed that the self-assembly rate of collagen was increased by ultrasonication at the nucleation stage. The resulting fibrils exhibited smaller diameters and D-periodicity lengths than that of the untreated collagen samples (p<0.05). The viscoelasticity and textural properties of collagen gels also changed after ultrasonication at the nucleation stage. Texture profile analysis and cell proliferation assays showed that ultrasonication produced softer collagen gel colloids, which were more suitable for cell proliferation than the untreated collagen gels.

  7. Linear Ordered Collagen Scaffolds Loaded with Collagen-Binding Basic Fibroblast Growth Factor Facilitate Recovery of Sciatic Nerve Injury in Rats

    PubMed Central

    Ma, Fukai; Xiao, Zhifeng; Chen, Bing; Hou, Xianglin

    2014-01-01

    Natural biological functional scaffolds, consisting of biological materials filled with promoting elements, provide a promising strategy for the regeneration of peripheral nerve defects. Collagen conduits have been used widely due to their excellent biological properties. Linear ordered collagen scaffold (LOCS) fibers are good lumen fillers that can guide nerve regeneration in an ordered direction. In addition, basic fibroblast growth factor (bFGF) is important in the recovery of nerve injury. However, the traditional method for delivering bFGF to the lesion site has no long-term effect because of its short half-life and rapid diffusion. Therefore, we fused a specific collagen-binding domain (CBD) peptide to the N-terminal of native basic fibroblast growth factor (NAT-bFGF) to retain bFGF on the collagen scaffolds. In this study, a natural biological functional scaffold was constructed using collagen tubes filled with collagen-binding bFGF (CBD-bFGF)-loaded LOCS to promote regeneration in a 5-mm rat sciatic nerve transection model. Functional evaluation, histological investigation, and morphometric analysis indicated that the natural biological functional scaffold retained more bFGF at the injury site, guided axon growth, and promoted nerve regeneration as well as functional restoration. PMID:24188561

  8. Parathyroid hormone linked to a collagen binding domain (PTH-CBD) promotes hair growth in a mouse model of chemotherapy-induced alopecia in a dose-dependent manner

    PubMed Central

    Katikaneni, Ranjitha; Ponnapakkam, Tulasi; Seymour, Andrew; Sakon, Joshua; Gensure, Robert

    2014-01-01

    Chemotherapy-induced alopecia is a major source of psychological stress in patients undergoing cancer chemotherapy, and can influence treatment decisions. While there is currently no therapy, PTH-CBD, a fusion protein of parathyroid hormone and collagen binding domain, has shown promise in animal models. Objective To determine if there are dose-dependent effects of PTH-CBD on chemotherapy-induced alopecia in a mouse model. Methods C57BL/6J mice were waxed to synchronize hair follicles; treated on day 7 with vehicle or PTH-CBD (100, 320 and 1000 mcg/kg subcutaneous injection); treated on day 9 with vehicle or cyclophosphamide (150 mg/kg i.p.). Mice were photographed every 3–4 days and sacrificed on day 63 for histological analysis. Photographs were quantified by grey scale analysis to assess hair content. Results Mice not receiving chemotherapy showed regrowth of hair 2 weeks following waxing, and normal histology after 2 months. Mice receiving chemotherapy alone showed marked hair loss after chemotherapy, which was sustained for 10 days and was followed by rapid regrowth of a normal coat. Histology revealed rapid cycling dystrophic anagen/catagen follicles. Animals receiving chemotherapy and PTH-CBD showed decreased hair loss and more rapid regrowth of hair than that seen with chemotherapy alone (increased hair growth by grey scale analysis, p<0.05), and the effects were dose dependent. Histologically, hair follicles in animals receiving the highest dose of PTH-CBD were in a quiescent phase, similar to mice which did not receive chemotherapy. Conclusions Single dose subcutaneous administration of PTH-CBD showed dose-dependent effects in minimizing hair loss and speeding recovery from chemotherapy-induced alopecia. PMID:24710191

  9. Nanomechanics of Type I Collagen.

    PubMed

    Varma, Sameer; Orgel, Joseph P R O; Schieber, Jay D

    2016-07-12

    Type I collagen is the predominant collagen in mature tendons and ligaments, where it gives them their load-bearing mechanical properties. Fibrils of type I collagen are formed by the packing of polypeptide triple helices. Higher-order structures like fibril bundles and fibers are assembled from fibrils in the presence of other collagenous molecules and noncollagenous molecules. Curiously, however, experiments show that fibrils/fibril bundles are less resistant to axial stress compared to their constituent triple helices-the Young's moduli of fibrils/fibril bundles are an order-of-magnitude smaller than the Young's moduli of triple helices. Given the sensitivity of the Young's moduli of triple helices to solvation environment, a plausible explanation is that the packing of triple helices into fibrils perhaps reduces the Young's modulus of an individual triple helix, which results in fibrils having smaller Young's moduli. We find, however, from molecular dynamics and accelerated conformational sampling simulations that the Young's modulus of the buried core of the fibril is of the same order as that of a triple helix in aqueous phase. These simulations, therefore, suggest that the lower Young's moduli of fibrils/fibril bundles cannot be attributed to the specific packing of triple helices in the fibril core. It is not the fibril core that yields initially to axial stress. Rather, it must be the portion of the fibril exposed to the solvent and/or the fibril-fibril interface that bears the initial strain. Overall, this work provides estimates of Young's moduli and persistence lengths at two levels of collagen's structural assembly, which are necessary to quantitatively investigate the response of various biological factors on collagen mechanics, including congenital mutations, posttranslational modifications and ligand binding, and also engineer new collagen-based materials.

  10. Adsorption and interactions of dentine phosphoprotein with hydroxyapatite and collagen.

    PubMed

    Milan, Anna M; Sugars, Rachael V; Embery, Graham; Waddington, Rachel J

    2006-06-01

    Dentine phosphoprotein (DPP) has been proposed to both promote and inhibit mineral deposition during dentinogenesis. The present study aimed to investigate the molecular interactions of DPP and dephosphorylated DPP (DPP-p) with hydroxyapatite (HAP). Bovine DPP was purified and dephosphorylated by alkaline phosphatase to obtain DPP-p. DPP and DPP-p adsorption to HAP was determined along with their ability, when free in solution or bound to collagen, to influence HAP-induced crystal growth. Absorption isotherms suggested that lower DPP concentrations (1.5-6.25 microg ml(-1)) demonstrated a reduced affinity for HAP compared with higher protein concentrations (12.5-50.0 microg ml(-1)). Dephosphorylated DPP had a much reduced affinity for HAP compared with DPP. Dentine phosphoprotein inhibited seeded HAP crystal growth, in a dose-dependent manner, whilst removal of the phosphate groups reduced this inhibition. When bound to collagen fibrils, DPP significantly promoted the rate of HAP crystal growth over 0-8 min. Conversely, DPP-p and collagen significantly decreased the rate of crystal growth over 0-18 min. These results indicate a major role for the phosphate groups present on DPP in HAP crystal growth. In addition, concentration-dependent conformational changes to DPP, and the interaction with other matrix components, such as collagen, are important in predicting its dual role in the mineralization of dentine.

  11. Enhanced stabilization of collagen by furfural.

    PubMed

    Lakra, Rachita; Kiran, Manikantan Syamala; Usha, Ramamoorthy; Mohan, Ranganathan; Sundaresan, Raja; Korrapati, Purna Sai

    2014-04-01

    Furfural (2-furancarboxaldehyde), a product derived from plant pentosans, has been investigated for its interaction with collagen. Introduction of furfural during fibril formation enhanced the thermal and mechanical stability of collagen. Collagen films treated with furfural exhibited higher denaturation temperature (Td) (p<0.04) and showed a 3-fold increase in Young's modulus (p<0.04) at higher concentration. Furfural and furfural treated collagen films did not have any cytotoxic effect. Rheological characterization showed an increase in shear stress and shear viscosity with increasing shear rate for treated collagen. Circular dichroism (CD) studies indicated that the furfural did not have any impact on triple helical structure of collagen. Scanning electron microscopy (SEM) of furfural treated collagen exhibited small sized porous structure in comparison with untreated collagen. Thus this study provides an alternate ecologically safe crosslinking agent for improving the stability of collagen for biomedical and industrial applications.

  12. Fragments and Coherence

    ERIC Educational Resources Information Center

    Watson, Anne

    2008-01-01

    Can teachers contact the inner coherence of mathematics while working in a context fragmented by always-new objectives, criteria, and initiatives? How, more importantly, can learners experience the inner coherence of mathematics while working in a context fragmented by testing, modular curricular, short-term learning objectives, and lessons that…

  13. Fragment Hazard Investigation Program

    DTIC Science & Technology

    1978-10-01

    53 Ballistic Density (k) ............................................. 53 Ejection A ngle (a...54 Ejection Velocity (V) ................................................. 54 DEVELOPMENT OF EMPIRICAL RELATION...5S 54 Fragment Weight Versus Gamma for Test QD-155-08 ......................... 56 55 Fragment Range Versus Ejection Angle as a Function of

  14. Fragmentation of fullerenes

    NASA Astrophysics Data System (ADS)

    Chancey, Ryan T.; Oddershede, Lene; Harris, Frank E.; Sabin, John R.

    2003-04-01

    We have performed classical molecular-dynamics simulations of the fragmentation collisions of neutral fullerenes (C24, C60, C100, and C240) with a hard wall. The interactions between the carbon atoms are modeled by a Tersoff potential and the position of each carbon atom at each time step is calculated using a sixth-order predictor-corrector method. The statistical distribution of the fragments depends on impact energy. At low energies, the fragment distribution appears symmetric, with both the large and small fragment distributions well fitted by an exponential function of the same exponent, the value of which decreases with impact energy. At intermediate energies, the distribution of the smallest fragments can be fitted equally well by a power law or an exponential function. At high impact energies, the entire fragmentation pattern is well described by a single exponential function, the exponent increasing with energy. The observed tendencies in fragment distributions as well as the obtained exponents are in agreement with experimental observations. The fragmentation behavior of the four investigated fullerenes is very similar, and it is noted that C60 appears to be the most stable.

  15. Hydroperoxide formation in model collagens and collagen type I.

    PubMed

    Madison, S A; McCallum, J E B; Rojas Wahl, R U

    2002-02-01

    Protein hydroperoxides represent a relatively new concept in understanding biological oxidation chemistry. Here, we show with post-column-chemiluminescence that this sometimes remarkably stable and yet reactive species can be formed in collagen models and collagen type I when submitted to oxidative stress as exemplified by the Fenton reaction. These findings are supported by mass spectrometry and iodometry. Using (Proline-hydroxyproline-glycine)(10) (POG)(10), those hydroperoxides are stable for hours at room temperature and can give rise to free radicals in the presence of ferrous sulphate, as evidenced by EPR spin trapping with DMPO. Possible implications for biological systems are discussed with emphasis on collagen in the extracellular matrix in skin as a major type of connective tissue.

  16. Impacts of fullerene derivatives on regulating the structure and assembly of collagen molecules

    NASA Astrophysics Data System (ADS)

    Yin, Xiaohui; Zhao, Lina; Kang, Seung-Gu; Pan, Jun; Song, Yan; Zhang, Mingyi; Xing, Gengmei; Wang, Fei; Li, Jingyuan; Zhou, Ruhong; Zhao, Yuliang

    2013-07-01

    During cancer development, the fibrous layers surrounding the tumor surface get thin and stiff which facilitates the tumor metastasis. After the treatment of metallofullerene derivatives Gd@C82(OH)22, the fibrous layers become thicker and softer, the metastasis of tumor is then largely suppressed. The effect of Gd@C82(OH)22 was found to be related to their direct interaction with collagen and the resulting impact on the structure of collagen fibrils, the major component of extracellular matrices. In this work we study the interaction of Gd@C82(OH)22 with collagen by molecular dynamics simulations. We find that Gd@C82(OH)22 can enhance the rigidity of the native structure of collagen molecules and promote the formation of an oligomer or a microfibril. The interaction with Gd@C82(OH)22 may regulate further the assembly of collagen fibrils and change the biophysical properties of collagen. The control run with fullerene derivatives C60(OH)24 also indicates that C60(OH)24 can influence the structure and assembly of collagen molecules as well, but to a lesser degree. Both fullerene derivatives can form hydrogen bonds with multiple collagen molecules acting as a ``fullerenol-mediated bridge'' that enhance the interaction within or among collagen molecules. Compared to C60(OH)24, the interaction of Gd@C82(OH)22 with collagen is stronger, resulting in particular biomedical effects for regulating the biophysical properties of collagen fibrils.During cancer development, the fibrous layers surrounding the tumor surface get thin and stiff which facilitates the tumor metastasis. After the treatment of metallofullerene derivatives Gd@C82(OH)22, the fibrous layers become thicker and softer, the metastasis of tumor is then largely suppressed. The effect of Gd@C82(OH)22 was found to be related to their direct interaction with collagen and the resulting impact on the structure of collagen fibrils, the major component of extracellular matrices. In this work we study the interaction

  17. The Role of Collagen Quaternary Structure in the Platelet:Collagen Interaction

    PubMed Central

    Brass, Lawrence F.; Bensusan, Howard B.

    1974-01-01

    We have investigated whether collagen queternary structure is required for the platelet: collagen interaction. Quaternary structure refers to the assembly of collagen monomers (tropocollagen) into polymers (native-type fibrils). Purified monomeric collagen was prepared from acetic acid extracts of fetal calfskin. Polymeric collagen was prepared by dispersion of bovine Achilles tendon collagen and by incubation of monomeric collagen at 37°C and pH 7.4. The state of polymerization was confirmed by electron microscopy. Release of platelet serotonin in the absence of platelet aggregation was used to determine the effectiveness of the platelet: collagen interaction. All forms of collagen produced serotonin release only after a lag period, but polymeric collagen gave a shorter lag period than did monomeric collagen. Monomeric collagen was also quanidinated selectively to convert collagen lysine groups to homoarginine, while leaving the arrangement of polar groups intact. Guanidination of monomeric collagen increased the rate of polymerization and reduced the lag time in serotonin release. Glucosamine (17 mM) retarded polymerization and inhibited the release of platelet serotonin by monomeric collagen but had little effect on release produced by thrombin or polymeric collagen. At the same concentration, glucosamine did not reduce the sensitivity of platelets to stimulation by collagen or block the platelet: collagen interaction. The only effect of glucosamine was on the collagen: collagen interaction. Galactosamine had a similar effect, but glucose, galactose, and N-acetylglycosamine had no effect. We conclude from this data that collagen monomers cannot effectively interact with platelets and that, therefore, collagen quaternary structure has a role in the recognition of collagen by platelets. PMID:4215825

  18. Excessive collagen turnover products are released during colorectal cancer progression and elevated in serum from metastatic colorectal cancer patients

    PubMed Central

    Kehlet, S. N.; Sanz-Pamplona, R.; Brix, S.; Leeming, D. J.; Karsdal, M. A.; Moreno, V.

    2016-01-01

    During cancer progression, the homeostasis of the extracellular matrix becomes imbalanced with an excessive collagen remodeling by matrix metalloproteinases. As a consequence, small protein fragments of degraded collagens are released into the circulation. We have investigated the potential of protein fragments of collagen type I, III and IV as novel biomarkers for colorectal cancer. Specific fragments of degraded type I, III and IV collagen (C1M, C3M, C4M) and type III collagen formation (Pro-C3) were assessed in serum from colorectal cancer patients, subjects with adenomas and matched healthy controls using well-characterized and validated ELISAs. Serum levels of the biomarkers were significantly elevated in colorectal cancer patients compared to subjects with adenomas (C1M, Pro-C3, C3M) and controls (C1M, Pro-C3). When patients were stratified according to their tumour stage, all four biomarkers were able to differentiate stage IV metastatic patients from all other stages. Combination of all markers with age and gender in a logistic regression model discriminated between metastatic and non-metastatic patients with an AUROC of 0.80. The data suggest that the levels of these collagen remodeling biomarkers may be a measure of tumour activity and invasiveness and may provide new clinical tools for monitoring of patients with advanced stage colorectal cancer. PMID:27465284

  19. Opaque rock fragments

    SciTech Connect

    Abhijit, B.; Molinaroli, E.; Olsen, J.

    1987-05-01

    The authors describe a new, rare, but petrogenetically significant variety of rock fragments from Holocene detrital sediments. Approximately 50% of the opaque heavy mineral concentrates from Holocene siliciclastic sands are polymineralic-Fe-Ti oxide particles, i.e., they are opaque rock fragments. About 40% to 70% of these rock fragments show intergrowth of hm + il, mt + il, and mt + hm +/- il. Modal analysis of 23,282 opaque particles in 117 polished thin sections of granitic and metamorphic parent rocks and their daughter sands from semi-arid and humid climates show the following relative abundances. The data show that opaque rock fragments are more common in sands from igneous source rocks and that hm + il fragments are more durable. They assume that equilibrium conditions existed in parent rocks during the growth of these paired minerals, and that the Ti/Fe ratio did not change during oxidation of mt to hm. Geothermometric determinations using electron probe microanalysis of opaque rock fragments in sand samples from Lake Erie and the Adriatic Sea suggest that these rock fragments may have equilibrated at approximately 900/sup 0/ and 525/sup 0/C, respectively.

  20. Mandibular Cartilage Collagen Network Nanostructure

    PubMed Central

    Vanden Berg-Foels, Wendy S.

    2015-01-01

    Background Mandibular condyle cartilage (MCC) has a unique structure among articular cartilages; however, little is known about its nanoscale collagen network architecture, hampering design of regeneration therapies and rigorous evaluation of regeneration experiment outcomes in preclinical research. Helium ion microscopy is a novel technology with a long depth of field that is uniquely suited to imaging open 3D collagen networks at multiple scales without obscuring conductive coatings. Objective The objective of this research was to image, at the micro- and nanoscales, the depth-dependent MCC collagen network architecture. Design MCC was collected from New Zealand white rabbits. Images of MCC zones were acquired using helium ion, transmission electron, and light microscopy. Network fibril and canal diameters were measured. Results For the first time, the MCC was visualized as a 3D collagen fibril structure at the nanoscale, the length scale of network assembly. Fibril diameters ranged from 7 to 110 nm and varied by zone. The articular surface was composed of a fine mesh that was woven through thin layers of larger fibrils. The fibrous zone was composed of approximately orthogonal lamellae of aligned fibrils. Fibrocyte processes surrounded collagen bundles forming extracellular compartments. The proliferative, mature, and hypertrophic zones were composed of a branched network that was progressively remodeled to accommodate chondrocyte hypertrophy. Osteoid fibrils were woven around osteoblast cytoplasmic processes to create numerous canals similar in size to canaliculi of mature bone. Conclusion This multiscale investigation advances our foundational understanding of the complex, layered 3D architecture of the MCC collagen network. PMID:27375843

  1. Fragmentation of monoclonal antibodies

    PubMed Central

    Vlasak, Josef

    2011-01-01

    Fragmentation is a degradation pathway ubiquitously observed in proteins despite the remarkable stability of peptide bond; proteins differ only by how much and where cleavage occurs. The goal of this review is to summarize reports regarding the non-enzymatic fragmentation of the peptide backbone of monoclonal antibodies (mAbs). The sites in the polypeptide chain susceptible to fragmentation are determined by a multitude of factors. Insights are provided on the intimate chemical mechanisms that can make some bonds prone to cleavage due to the presence of specific side-chains. In addition to primary structure, the secondary, tertiary and quaternary structures have a significant impact in modulating the distribution of cleavage sites by altering local flexibility, accessibility to solvent or bringing in close proximity side chains that are remote in sequence. This review focuses on cleavage sites observed in the constant regions of mAbs, with special emphasis on hinge fragmentation. The mechanisms responsible for backbone cleavage are strongly dependent on pH and can be catalyzed by metals or radicals. The distribution of cleavage sites are different under acidic compared to basic conditions, with fragmentation rates exhibiting a minimum in the pH range 5–6; therefore, the overall fragmentation pattern observed for a mAb is a complex result of structural and solvent conditions. A critical review of the techniques used to monitor fragmentation is also presented; usually a compromise has to be made between a highly sensitive method with good fragment separation and the capability to identify the cleavage site. The effect of fragmentation on the function of a mAb must be evaluated on a case-by-case basis depending on whether cleavage sites are observed in the variable or constant regions, and on the mechanism of action of the molecule. PMID:21487244

  2. Endothelial Cell Growth and Differentiation on Collagen-Immobilized Polycaprolactone Nanowire Surfaces.

    PubMed

    Leszczak, Victoria; Baskett, Dominique A; Popat, Ketul C

    2015-06-01

    The success of cardiovascular implants is associated with the development of an endothelium on material surface, critical to the prevention of intimal hyperplasia, calcification and thrombosis. A thorough understanding of the interaction between vascular endothelial cells and the biomaterial involved is essential in order to have a successful application which promotes healing and regeneration through integration with native tissue. In this study, we have developed collagen immobilized nanostructured surfaces with controlled arrays of high aspect ratio nanowires for the growth and maintenance of human microvascular endothelial cells (HMVECs). The nanowire surfaces were fabricated from polycaprolactone using a novel nanotemplating technique, and were immobilized with collagen utilizing an aminolysis method. The collagen immobilized nanowire surfaces were characterized using contact angle measurements, scanning electron microscopy and X-ray photoelectron spectroscopy. Human microvascular endothelial cells were used to evaluate the efficacy of the collagen immobilized nanowire surfaces to promote cell adhesion, proliferation, viability and differentiation. The results presented here indicate significantly higher cellular adhesion, proliferation and viability on nanowire and collagen immobilized surfaces as compared to the control surface. Further, HMVECs have a more elongated body and low shape factor on nanostructured surfaces. The differentiation potential of collagen immobilized nanowire surfaces was also evaluated by immunostaining and western blotting for key endothelial cell markers that are expressed when human microvascular endothelial cells are differentiated. Results indicate that expression of VE-cadherin is increased on collagen immobilized surfaces while the expression of von Willebrand factor is statistically similar on all surfaces.

  3. A biomaterial composed of collagen and solubilized elastin enhances angiogenesis and elastic fiber formation without calcification.

    PubMed

    Daamen, Willeke F; Nillesen, Suzan T M; Wismans, Ronnie G; Reinhardt, Dieter P; Hafmans, Theo; Veerkamp, Jacques H; van Kuppevelt, Toin H

    2008-03-01

    Elastin is the prime protein in elastic tissues that contributes to elasticity of, for example, lung, aorta, and skin. Upon injury, elastic fibers are not readily replaced, which hampers tissue regeneration. Incorporation of solubilized elastin (hydrolyzed insoluble elastin fibers or elastin peptides) in biomaterials may improve regeneration, because solubilized elastin is able to promote proliferation as well as elastin synthesis. Porous biomaterials composed of highly purified collagen without and without elastin fibers or solubilized elastin were prepared by freezing and lyophilization. Solubilized elastin formed spherical structures that were incorporated in the collagenous part of the scaffolds and that persisted after chemical crosslinking of the scaffolds. Crosslinked scaffolds were subcutaneously implanted in young Sprague Dawley rats. Collagen-solubilized elastin and collagen scaffolds showed no calcification in this sensitive calcification model, in contrast to scaffolds containing elastin fibers. Collagen-solubilized elastin scaffolds also induced angiogenesis, as revealed by type IV collagen staining, and promoted elastic fiber synthesis, as shown with antibodies against rat elastin and fibrillin-1. It is concluded that scaffolds produced from collagen and solubilized elastin present a non-calcifying biomaterial with a capacity for soft-tissue regeneration, especially in relation to elastic fiber synthesis.

  4. Type V Collagen in Health, Disease, and Fibrosis.

    PubMed

    Mak, Ki M; Png, Chien Yi M; Lee, Danielle J

    2016-05-01

    Type V collagen (COLV) is a regulatory fibril-forming collagen. It has at least three different molecular isoforms-α1(V)2 α2(V), α1(V)3, and α1(V)α2(V)α3(V)-formed by combinations of three different polypeptide α chains-α1(V), α2(V), and α3(V). COL V is a relatively minor collagen of the extracellular matrix (ECM). Morphologically, COLV occurs as heterotypic fibrils with type I collagen (COLI), microfilaments, or 12-nm-thick fibrils. COLV is synthesized in various mesenchymal cells and its gene expression is modulated by TGF-β and growth factors. While resistant to digestion by interstitial collagenases, native and denatured COLV are degraded by metalloproteinases and gelatinases, thereby promoting ECM remodeling. COLV interacts with matrix collagens and structural proteins, conferring structural integrity to tissue scaffolds. It binds matrix macromolecules, modulating cellular behavior, and functions. COLV co-assembles with COLI into heterotypic fibrils in the cornea and skin dermis, acting as a dominant regulator of collagen fibrillogenesis. COLV deficiency is associated with loss of corneal transparency and classic Ehlers-Danlos syndrome, while COLV overexpression is found in cancer, granulation tissue, inflammation, atherosclerosis, and fibrosis of lungs, skin, kidneys, adipose tissue, and liver. COLV isoform containing the α3(V) chain is involved in mediating pancreatic islet cell functions. In the liver, COLV is a minor but regular component of the ECM. Increases in COLV are associated with both early and advanced hepatic fibrosis. The neoepitopes of COLV have been shown to be a useful noninvasive serum biomarker for assessing fibrotic progression and resolution in experimental hepatic fibrosis. COLV is multifunctional in health, disease, and fibrosis.

  5. Universality in Fragmentation

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Holian, B. L.; Timonen, J.

    2000-04-01

    Fragmentation of a two-dimensional brittle solid by impact and ``explosion,'' and a fluid by ``explosion'' are all shown to become critical. The critical points appear at a nonzero impact velocity, and at infinite explosion duration, respectively. Within the critical regimes, the fragment-size distributions satisfy a scaling form qualitatively similar to that of the cluster-size distribution of percolation, but they belong to another universality class. Energy balance arguments give a correlation length exponent that is exactly one-half of its percolation value. A single crack dominates fragmentation in the slow-fracture limit, as expected.

  6. A conceptual framework to describe the ecology of fragmented landscapes and implications for conservation and management.

    PubMed

    del Castillo, Rafael F

    2015-09-01

    The study of the ecology of fragmented landscapes has been dominated by two assumptions: the unique unidirectional path from larger to smaller fragments and the negligible role of fragment species on fragment properties. An accurate conceptualization of fragmented landscapes requires consideration of the age and origin of the fragments, i.e., direct fragmentation or reverse fragmentation (generation or increase of vegetated fragments by colonization), and the habitat modifications of fragment species (autogenic processes). Colonization and autogenic processes alter the fragments' composition and function. Fragment metrics affect colonization. Autogenic processes are antagonized by disturbances and modulated by abiotic inputs. Fragment alterations by autogenic processes may explain the continuous species substitution detected in some fragments or the species persistence in others. Reverse fragmentation, a natural process in commonly disturbed landscapes, challenges the avoidance-of-habitat disturbance as the ultimate strategy for biodiversity conservation and stresses the importance of pioneer species that promote succession as resilience elements in fragmented landscapes. Among-fragment diversity, generated by local disturbances, can be essential for the resilience of fragmented landscapes, suggesting that conservation and habitat utilization can be complementary processes. Traditional agroforestry systems that depend on disturbance, fragmentation, colonization, and autogenic processes may provide important insights into fragmentation ecology.

  7. The evolution of fibrillar collagens: a sea-pen collagen shares common features with vertebrate type V collagen.

    PubMed

    Tillet, E; Franc, J M; Franc, S; Garrone, R

    1996-02-01

    The extracellular matrix of marine primitive invertebrates (sponges, polyps and jellyfishes) contains collagen fibrils with narrow diameters. From various data, it has been hypothesized that these primitive collagens could represent ancestral forms of the vertebrate minor collagens, i.e., types V or XI. Recently we have isolated a primitive collagen from the soft tissues of the sea-pen Veretillum cynomorium. This report examines whether the sea-pen collagen shares some features with vertebrate type V collagen. Rotary shadowed images of acid-soluble collagen molecules extracted from beta-APN treated animals, positive staining of segment-long-spacing crystallites precipitated from pepsinized collagen, Western blots of the pepsinized alpha1 and alpha2 chains with antibodies to vertebrate types I, III and V collagens, and in situ gold immunolabeling of ECM collagen fibrils were examined. Our results showed that the tissue form of the sea-pen collagen is a 340-nm threadlike molecule, which is close to the vertebrate type V collagen with its voluminous terminal globular domain, the distribution of most of its polar amino-acid residues, and its antigenic properties.

  8. The mouse collagen X gene: complete nucleotide sequence, exon structure and expression pattern.

    PubMed Central

    Elima, K; Eerola, I; Rosati, R; Metsäranta, M; Garofalo, S; Perälä, M; De Crombrugghe, B; Vuorio, E

    1993-01-01

    Overlapping genomic clones covering the 7.2 kb mouse alpha 1(X) collagen gene, 0.86 kb of promoter and 1.25 kb of 3'-flanking sequences were isolated from two genomic libraries and characterized by nucleotide sequencing. Typical features of the gene include a unique three-exon structure, similar to that in the chick gene, with the entire triple-helical domain of 463 amino acids coded by a single large exon. The highest degree of amino acid and nucleotide sequence conservation was seen in the coding region for the collagenous and C-terminal non-collagenous domains between the mouse and known chick, bovine and human collagen type X sequences. More divergence between the sequences occurred in the N-terminal non-collagenous domain. Similarity between the mammalian collagen X sequences extended into the 3'-untranslated sequence, particularly near the polyadenylation site. The promoter of the mouse collagen X gene was found to contain two TATAA boxes 159 bp apart; primer extension analyses of the transcription start site revealed that both were functional. The promoter has an unusual structure with a very low G + C content of 28% between positions -220 and -1 of the upstream transcription start site. Northern and in situ hybridization analyses confirmed that the expression of the alpha 1(X) collagen gene is restricted to hypertrophic chondrocytes in tissues undergoing endochondral calcification. The detailed sequence information of the gene is useful for studies on the promoter activity of the gene and for generation of transgenic mice. Images Figure 3 Figure 5 Figure 6 PMID:8424763

  9. Degradation of the COL1 domain of type XIV collagen by 92-kDa gelatinase.

    PubMed

    Sires, U I; Dublet, B; Aubert-Foucher, E; van der Rest, M; Welgus, H G

    1995-01-20

    Type XIV collagen is a newly described member of the fibril-associated collagens with interrupted triple helices (FACITs). Expression of this collagen has been localized to various embryonic tissues, suggesting that it has a functional role in development. All FACITs thus far described (types IX, XII, XIV, and XVI) contain a highly homologous carboxyl-terminal triple helical domain designated COL1. We have studied the capacity of various matrix metalloproteinases (interstitial collagenase, stromelysin, matrilysin, and 92-kDa gelatinase) to degrade the COL1 domain of collagen XIV. We found that only 92-kDa gelatinase cleaves COL1. Furthermore, digestion of whole native collagen XIV by the 92-kDa gelatinase indicates that this enzyme specifically attacks the carboxyl-terminal triple helix-containing region of the molecule. COL1 is cleaved by 92-kDa gelatinase at 30 degrees C, a full 5-6 degrees C below the melting temperature (Tm) of this domain; native collagen XIV is also degraded at 30 degrees C. In comparison to interstitial collagenase degradation of its physiologic native type I collagen substrate, the 92-kDa enzyme cleaved COL1 (XIV) with comparable catalytic efficacy. Interestingly, following thermal denaturation of the COL1 fragment, its susceptibility to 92-kDa gelatinase increases, but only to a degree that leaves it several orders of magnitude less sensitive to degradation than denatured collagens I and III. These data indicate that native COL1 and collagen XIV are readily and specifically cleaved by 92-kDa gelatinase. They also suggest a role for 92-kDa gelatinase activity in the structural tissue remodeling of the developing embryo.

  10. Collagen crosslinks in chondromalacia of the patella.

    PubMed

    Väätäinen, U; Kiviranta, I; Jaroma, H; Arokosi, J; Tammi, M; Kovanen, V

    1998-02-01

    The aim of the study was to determine collagen concentration and collagen crosslinks in cartilage samples from chondromalacia of the patella. To study the extracellular matrix alterations associated to chondromalacia, we determined the concentration of collagen (hydroxyproline) and its hydroxylysylpyridinoline and lysylpyridinoline crosslinks from chondromalacia foci of the patellae in 12 patients and 7 controls from apparently normal cadavers. The structure of the collagen network in 8 samples of grades II-IV chondromalacia was examined under polarized light microscopy. The full-thickness cartilage samples taken with a surgical knife from chondromalacia lesions did not show changes in collagen, hydroxylysylpyridinoline and lysylpyridinoline concentration as compared with the controls. Polarized light microscopy showed decreased birefringence in the superficial cartilage of chondromalacia lesions, indicating disorganization or disappearance of collagen fibers in this zone. It is concluded that the collagen network shows gradual disorganization with the severity of chondromalacia lesion of the patella without changes in the concentration or crosslinks of collagen.

  11. [Disc electrophoresis of collagen protein (author's transl)].

    PubMed

    Reitmayr, P; Verzár, F

    1975-01-01

    The composition of proteins extracted from tendon collagen is investigated by disc electrophoresis. No qualitative differences can be demonstrated between young and old collagen. The action of formaldehyde and methionine on the tendons has no effect on the electrophoretic picture.

  12. The influence of specific binding of collagen-silk chimeras to silk biomaterials on hMSC behavior.

    PubMed

    An, Bo; DesRochers, Teresa M; Qin, Guokui; Xia, Xiaoxia; Thiagarajan, Geetha; Brodsky, Barbara; Kaplan, David L

    2013-01-01

    Collagen-like proteins in the bacteria Streptococcus pyogenes adopt a triple-helix structure with a thermal stability similar to that of animal collagens, can be expressed in high yield in Escherichia coli and can be easily modified through molecular biology techniques. However, potential applications for such recombinant collagens are limited by their lack of higher order structure to achieve the physical properties needed for most biomaterials. To overcome this problem, the S. pyogenes collagen domain was fused to a repetitive Bombyx mori silk consensus sequence, as a strategy to direct specific non-covalent binding onto solid silk materials whose superior stability, mechanical and material properties have been previously established. This approach resulted in the successful binding of these new collagen-silk chimeric proteins to silk films and porous scaffolds, and the binding affinity could be controlled by varying the number of repeats in the silk sequence. To explore the potential of collagen-silk chimera for regulating biological activity, integrin (Int) and fibronectin (Fn) binding sequences from mammalian collagens were introduced into the bacterial collagen domain. The attachment of bioactive collagen-silk chimeras to solid silk biomaterials promoted hMSC spreading and proliferation substantially in comparison to the controls. The ability to combine the biomaterial features of silk with the biological activities of collagen allowed more rapid cell interactions with silk-based biomaterials, improved regulation of stem cell growth and differentiation, as well as the formation of artificial extracellular matrices useful for tissue engineering applications.

  13. Wavelength-Dependent Conformational Changes of Collagen in Mid-IR Ablation

    NASA Astrophysics Data System (ADS)

    Hutson, M. Shane; Xiao, Yaowu; Guo, Mingsheng

    2006-03-01

    Single pulses of the Mark-III free electron laser have been used to ablate porcine corneas at a fluence of 240 J/cm^2 and wavelengths of 2.77 and 6.45 μm. As previously characterized, the non-volatile ablation debris shows evidence of wavelength-dependent collagen fragmentation. We have measured micro-Raman spectra of the debris and the ablation crater to determine if any wavelength-dependent conformational changes have taken place. Comparison of the spectra from two different wavelengths shows that a 938 cm-1 Raman band -- assignable to the peptide CC=O-Cα stretch of collagen -- loses substantial intensity during 6.45-μm ablation, but not in 2.77-μm ablation. This intensity decrease may be associated with a reduction of collagen triple-helix structure. Other spectral techniques yield mixed results; signatures for the loss of triple-helix structure are evident in UV-CD and some aspects of ^13C-NMR spectra, but not in FTIR spectra. Raman measurements on thermally-treated corneal slices display similar changes at high temperatures, suggesting that higher protein temperatures are reached during ablation at 6.45 μm when compared to 2.77 μm. These observations suggest that any pre-vaporization loss of protein structural integrity includes not only collagen fragmentation, but also a loss of collagen triple-helix structure.

  14. Fragmentation in Biaxial Tension

    SciTech Connect

    Campbell, G H; Archbold, G C; Hurricane, O A; Miller, P L

    2006-06-13

    We have carried out an experiment that places a ductile stainless steel in a state of biaxial tension at a high rate of strain. The loading of the ductile metal spherical cap is performed by the detonation of a high explosive layer with a conforming geometry to expand the metal radially outwards. Simulations of the loading and expansion of the metal predict strain rates that compare well with experimental observations. A high percentage of the HE loaded material was recovered through a soft capture process and characterization of the recovered fragments provided high quality data, including uniform strain prior to failure and fragment size. These data were used with a modified fragmentation model to determine a fragmentation energy.

  15. Biology, chemistry and pathology of collagen

    SciTech Connect

    Fleischmajer, R.; Olsen, B.R.; Kuhn, K.

    1985-01-01

    This book consists of five parts and a section of poster papers. Some of the articles are: Structure of the Type II Collagen Gene; Structural and Functional Analysis of the Genes for ..cap alpha..2(1) and ..cap alpha..1(III) collagens; Structure and Expression of the Collagen Genes of C. Elegans; Molecular Basis of Clinical Heterogeneity in the Ehlers-Danlos Syndrome; and Normal and Mutant Human Collagen Genes.

  16. Quantification of aortic and cutaneous elastin and collagen morphology in Marfan syndrome by multiphoton microscopy.

    PubMed

    Cui, Jason Z; Tehrani, Arash Y; Jett, Kimberly A; Bernatchez, Pascal; van Breemen, Cornelis; Esfandiarei, Mitra

    2014-09-01

    In a mouse model of Marfan syndrome, conventional Verhoeff-Van Gieson staining displays severe fragmentation, disorganization and loss of the aortic elastic fiber integrity. However, this method involves chemical fixatives and staining, which may alter the native morphology of elastin and collagen. Thus far, quantitative analysis of fiber damage in aorta and skin in Marfan syndrome has not yet been explored. In this study, we have used an advanced noninvasive and label-free imaging technique, multiphoton microscopy to quantify fiber fragmentation, disorganization, and total volumetric density of aortic and cutaneous elastin and collagen in a mouse model of Marfan syndrome. Aorta and skin samples were harvested from Marfan and control mice aged 3-, 6- and 9-month. Elastin and collagen were identified based on two-photon excitation fluorescence and second-harmonic-generation signals, respectively, without exogenous label. Measurement of fiber length indicated significant fragmentation in Marfan vs. control. Fast Fourier transform algorithm analysis demonstrated markedly lower fiber organization in Marfan mice. Significantly reduced volumetric density of elastin and collagen and thinner skin dermis were observed in Marfan mice. Cutaneous content of elastic fibers and thickness of dermis in 3-month Marfan resembled those in the oldest control mice. Our findings of early signs of fiber degradation and thinning of skin dermis support the potential development of a novel non-invasive approach for early diagnosis of Marfan syndrome.

  17. The materials science of collagen.

    PubMed

    Sherman, Vincent R; Yang, Wen; Meyers, Marc A

    2015-12-01

    Collagen is the principal biopolymer in the extracellular matrix of both vertebrates and invertebrates. It is produced in specialized cells (fibroblasts) and extracted into the body by a series of intra and extracellular steps. It is prevalent in connective tissues, and the arrangement of collagen determines the mechanical response. In biomineralized materials, its fraction and spatial distribution provide the necessary toughness and anisotropy. We review the structure of collagen, with emphasis on its hierarchical arrangement, and present constitutive equations that describe its mechanical response, classified into three groups: hyperelastic macroscopic models based on strain energy in which strain energy functions are developed; macroscopic mathematical fits with a nonlinear constitutive response; structurally and physically based models where a constitutive equation of a linear elastic material is modified by geometric characteristics. Viscoelasticity is incorporated into the existing constitutive models and the effect of hydration is discussed. We illustrate the importance of collagen with descriptions of its organization and properties in skin, fish scales, and bone, focusing on the findings of our group.

  18. The binding capacity of α1β1-, α2β1- and α10β1-integrins depends on non-collagenous surface macromolecules rather than the collagens in cartilage fibrils.

    PubMed

    Woltersdorf, Christian; Bonk, Melanie; Leitinger, Birgit; Huhtala, Mikko; Käpylä, Jarmo; Heino, Jyrki; Gil Girol, Christian; Niland, Stephan; Eble, Johannes A; Bruckner, Peter; Dreier, Rita; Hansen, Uwe

    2017-02-10

    Interactions of cells with supramolecular aggregates of the extracellular matrix (ECM) are mediated, in part, by cell surface receptors of the integrin family. These are important molecular components of cell surface-suprastructures regulating cellular activities in general. A subfamily of β1-integrins with von Willebrand-factor A-like domains (I-domains) in their α-chains can bind to collagen molecules and, therefore, are considered as important cellular mechano-receptors. Here we show that chondrocytes strongly bind to cartilage collagens in the form of individual triple helical molecules but very weakly to fibrils formed by the same molecules. We also find that chondrocyte integrins α1β1-, α2β1- and α10β1-integrins and their I-domains have the same characteristics. Nevertheless we find integrin binding to mechanically generated cartilage fibril fragments, which also comprise peripheral non-collagenous material. We conclude that cell adhesion results from binding of integrin-containing adhesion suprastructures to the non-collagenous fibril periphery but not to the collagenous fibril cores. The biological importance of the well-investigated recognition of collagen molecules by integrins is unknown. Possible scenarios may include fibrillogenesis, fibril degradation and/or phagocytosis, recruitment of cells to remodeling sites, or molecular signaling across cytoplasmic membranes. In these circumstances, collagen molecules may lack a fibrillar organization. However, other processes requiring robust biomechanical functions, such as fibril organization in tissues, cell division, adhesion, or migration, do not involve direct integrin-collagen interactions.

  19. The linker-free covalent attachment of collagen to plasma immersion ion implantation treated polytetrafluoroethylene and subsequent cell-binding activity.

    PubMed

    Bax, Daniel V; McKenzie, David R; Weiss, Anthony S; Bilek, Marcela M M

    2010-03-01

    It is desirable that polymers used for the fabrication of prosthetic implants promote biological functions such as cellular adhesion, differentiation and viability. In this study, we have used plasma immersion ion implantation (PIII) to modify the surface of polytetrafluoroethylene (PTFE), thereby modulating the binding mechanism of collagen. The amount of collagen bound to the polymer surface following PIII-treatment was similar to that bound by non-covalent physisorption. In a manner consistent with previous enzyme and tropoelastin binding data, the collagen bound to the PIII-treated PTFE surface was resistant to sodium dodecyl sulfate (SDS) elution whilst collagen bound to the untreated surface was fully removed. This demonstrates the capability of PIII-treated surfaces to covalently attach collagen without employing chemical linking molecules. Only the collagen bound to the PIII-treated PTFE surface supported human dermal fibroblast attachment and spreading. This indicates that collagen on the PIII-treated surface possesses increased adhesive activity as compared to that on the untreated surface. Cell adhesion was inhibited by EDTA when the collagen was bound to PIII-treated PTFE, as expected for integrin involvement. Additionally this adhesion was sensitive to the conformation of the bound collagen. Increased actin cytoskeletal assembly was observed on cells spreading onto collagen-coated PIII-treated PTFE compared to the collagen-coated untreated PTFE. These data demonstrate the retention of collagen's biological properties following its attachment to PIII-treated PTFE, suggesting advantages for tissue engineering and prosthetic design.

  20. Localization of types I, II, and III collagen mRNAs in developing human skeletal tissues by in situ hybridization

    PubMed Central

    1987-01-01

    Paraffin sections of human skeletal tissues were studied in order to identify cells responsible for production of types I, II, and III collagens by in situ hybridization. Northern hybridization and sequence information were used to select restriction fragments of cDNA clones for the corresponding mRNAs to obtain probes with a minimum of cross- hybridization. The specificity of the probes was proven in hybridizations to sections of developing fingers: osteoblasts and chondrocytes, known to produce only one type of fibrillar collagen each (I and II, respectively) were only recognized by the corresponding cDNA probes. Smooth connective tissues exhibited variable hybridization intensities with types I and III collagen cDNA probes. The technique was used to localize the activity of type II collagen production in the different zones of cartilage during the growth of long bones. Visual inspection and grain counting revealed the highest levels of pro alpha 1(II) collagen mRNAs in chondrocytes of the lower proliferative and upper hypertrophic zones of the growth plate cartilage. This finding was confirmed by Northern blotting of RNAs isolated from epiphyseal (resting) cartilage and from growth zone cartilage. Analysis of the osseochondral junction revealed virtually no overlap between hybridization patterns obtained with probes specific for type I and type II collagen mRNAs. Only a fraction of the chondrocytes in the degenerative zone were recognized by the pro alpha 1(II) collagen cDNA probe, and none by the type I collagen cDNA probe. In the mineralizing zone virtually all cells were recognized by the type I collagen cDNA probe, but only very few scattered cells appeared to contain type II collagen mRNA. These data indicate that in situ hybridization is a valuable tool for identification of connective tissue cells which are actively producing different types of collagens at the various stages of development, differentiation, and growth. PMID:3558480

  1. The collagen receptor uPARAP/Endo180 in tissue degradation and cancer (Review).

    PubMed

    Melander, Maria C; Jürgensen, Henrik J; Madsen, Daniel H; Engelholm, Lars H; Behrendt, Niels

    2015-10-01

    The collagen receptor uPARAP/Endo180, the product of the MRC2 gene, is a central component in the collagen turnover process governed by various mesenchymal cells. Through the endocytosis of collagen or large collagen fragments, this recycling receptor serves to direct basement membrane collagen as well as interstitial collagen to lysosomal degradation. This capacity, shared only with the mannose receptor from the same protein family, endows uPARAP/Endo180 with a critical role in development and homeostasis, as well as in pathological disruptions of the extracellular matrix structure. Important pathological functions of uPARAP/Endo180 have been identified in various cancers and in several fibrotic conditions. With a particular focus on matrix turnover in cancer, this review presents the necessary background for understanding the function of uPARAP/Endo180 at the molecular and cellular level, followed by an in-depth survey of the available knowledge of the expression and role of this receptor in various types of cancer and other degenerative diseases.

  2. The collagen receptor uPARAP/Endo180 in tissue degradation and cancer (Review)

    PubMed Central

    MELANDER, MARIA C.; JÜRGENSEN, HENRIK J.; MADSEN, DANIEL H.; ENGELHOLM, LARS H.; BEHRENDT, NIELS

    2015-01-01

    The collagen receptor uPARAP/Endo180, the product of the MRC2 gene, is a central component in the collagen turnover process governed by various mesenchymal cells. Through the endocytosis of collagen or large collagen fragments, this recycling receptor serves to direct basement membrane collagen as well as interstitial collagen to lysosomal degradation. This capacity, shared only with the mannose receptor from the same protein family, endows uPARAP/Endo180 with a critical role in development and homeostasis, as well as in pathological disruptions of the extracellular matrix structure. Important pathological functions of uPARAP/Endo180 have been identified in various cancers and in several fibrotic conditions. With a particular focus on matrix turnover in cancer, this review presents the necessary background for understanding the function of uPARAP/Endo180 at the molecular and cellular level, followed by an in-depth survey of the available knowledge of the expression and role of this receptor in various types of cancer and other degenerative diseases. PMID:26316068

  3. The collagenous gastroenteritides: similarities and differences.

    PubMed

    Gopal, Purva; McKenna, Barbara J

    2010-10-01

    Collagenous gastritis, collagenous sprue, and collagenous colitis share striking histologic similarities and occur together in some patients. They also share some drug and disease associations. Pediatric cases of collagenous gastritis, however, lack most of these associations. The etiologies of the collagenous gastroenteritides are not known, so it is not clear whether they are similar because they share pathogeneses, or because they indicate a common histologic response to varying injuries. The features, disease and drug associations, and the inquiries into the pathogenesis of these disorders are reviewed.

  4. Collagen: a network for regenerative medicine

    PubMed Central

    Pawelec, K. M.; Best, S. M.

    2016-01-01

    The basic building block of the extra-cellular matrix in native tissue is collagen. As a structural protein, collagen has an inherent biocompatibility making it an ideal material for regenerative medicine. Cellular response, mediated by integrins, is dictated by the structure and chemistry of the collagen fibers. Fiber formation, via fibrillogenesis, can be controlled in vitro by several factors: pH, ionic strength, and collagen structure. After formation, fibers are stabilized via cross-linking. The final bioactivity of collagen scaffolds is a result of both processes. By considering each step of fabrication, scaffolds can be tailored for the specific needs of each tissue, improving their therapeutic potential. PMID:27928505

  5. Interleukin 17 induces cartilage collagen breakdown: novel synergistic effects in combination with proinflammatory cytokines

    PubMed Central

    Koshy, P; Henderson, N; Logan, C; Life, P; Cawston, T; Rowan, A

    2002-01-01

    Objective: To investigate whether interleukin 17 (IL17), derived specifically from T cells, can promote type II collagen release from cartilage. The ability of IL17 to synergise with other proinflammatory mediators to induce collagen release from cartilage, and what effect anti-inflammatory agents had on this process, was also assessed. Methods: IL17 alone, or in combination with IL1, IL6, oncostatin M (OSM), or tumour necrosis factor α (TNFα), was added to bovine nasal cartilage explant cultures. Proteoglycan and collagen release were determined. Collagenolytic activity was determined by bioassay. Chondroprotective effects of IL4, IL13, transforming growth factor ß1 (TGFß1) and insulin-like growth factor-1 (IGF1) were assessed by inclusion in the explant cultures. Results: IL17 alone stimulated a dose dependent release of proteoglycan and type II collagen from bovine nasal cartilage explants. Suboptimal doses of IL17 synergised potently with TNFα, IL1, OSM, and IL6 to promote collagen degradation. This collagen release was completely inhibited by tissue inhibitor of metalloproteinase-1 and BB-94 (a synthetic metalloproteinase inhibitor), and was significantly reduced by IL4, IL13, TGFß1, and IGF1. In IL17 treated chondrocytes, mRNA expression for matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 was detected. Moreover, a synergistic induction of these MMPs was seen when IL17 was combined with other proinflammatory cytokines. Conclusions: IL17 can, alone and synergistically in combination with other proinflammatory cytokines, promote chondrocyte mediated MMP dependent type II collagen release from cartilage. Because levels of all these proinflammatory cytokines are raised in rheumatoid synovial fluids, this study suggests that IL17 may act as a potent upstream mediator of cartilage collagen breakdown in inflammatory joint diseases. PMID:12117676

  6. Control of dense collagen gel scaffolds for tissue engineering through measurement and modelling of hydraulic permeability

    NASA Astrophysics Data System (ADS)

    Serpooshan, Vahid

    Among various natural biopolymers, type I collagen gels have demonstrated the highest potential as biomimetic scaffolds for tissue engineering (TE). However, the successful application of collagen gels requires a greater understanding of the relationship between their microstructure and physical-mechanical properties. Therefore, a precise method to modulate collagen gel microstructure in order to attain optimal scaffold properties for diverse biomedical applications is necessary. This dissertation describes a new approach to produce collagen gels with defined microstructures, quantified by hydraulic permeability ( k), in order to optimize scaffold properties for TE applications. It was hypothesized that the measurement of k can be used to study the role of microstructure in collagen gel properties, as well as cell function and cell-scaffold interactions. Applying increasing levels of plastic compression (PC) to the highly hydrated collagen gels resulted in an increase in collagen fibrillar density, reduced Happel model derived k values, increased gel stiffness, promoted MSC metabolic activity, osteogenic differentiation, and mineral deposition, while cell-induced gel contraction diminished. Thus, collagen gels with lower k and higher stiffness values exhibited greater potential for bone tissue engineering. Correlating between collagen gel microstructure, k, and fibroblast function within collagen gels indicated that increasing the level of PC yielded a reduction in pore size and an increase in fibril bundle diameter. Decrease in k values resulted in a decrease in gel contraction and an increase in cell metabolic activity. An increase in cell density accelerated contraction. Therefore, fibroblast function within collagen gels can be optimised by a balance between the microstructure, k, and cell seeding density. Developing a micromechanical model to measure experimental k of collagen gels during confined compression revealed the formation of a dense collagen lamella

  7. MicroRNA-21 Promotes Proliferation of Fibroblast-Like Synoviocytes through Mediation of NF-κB Nuclear Translocation in a Rat Model of Collagen-Induced Rheumatoid Arthritis.

    PubMed

    Chen, Ying; Xian, Pei-Feng; Yang, Lu; Wang, Sheng-Xu

    2016-01-01

    MicroRNA-21 (miR-21) is overexpressed in patients with rheumatoid arthritis (RA). This study was designed to investigate the effect and mechanism of miR-21 on cell proliferation in fibroblast-like synoviocytes (FLS) of RA. FLS were primary-cultured from a rat RA model. RA-FLS and normal FLS were infected with lentivirus (anti-miR-21 or pro-miR-21) for overexpression or downregulation of miR-21, respectively. The effects of miR-21 overexpression or inhibition on nucleoprotein NF-κB levels and FLS cell proliferation were evaluated by western blotting and MTT assays. The effects of an inhibitor of NF-κB nuclear translocation (BAY 11-7082) were also evaluated. The results showed that the levels of miR-21 and nucleoprotein NF-κB were increased in FLS of RA model rats compared to the control group. Downregulation of miR-21 in RA FLS led to a significant decrease in nucleoprotein NF-κB levels and cell proliferation rates compared to the antinegative control (NC) group. However, miR-21 overexpression in normal FLS resulted in a significant increase of nucleoprotein NF-κB levels and cell proliferation rates compared to the pro-NC group. The effects of miR-21 overexpression were reversed by BAY 11-7082. We concluded that upregulated miR-21 in FLS in RA model rats may promote cell proliferation by facilitating NF-κB nuclear translocation, thus affecting the NF-κB pathway.

  8. MicroRNA-21 Promotes Proliferation of Fibroblast-Like Synoviocytes through Mediation of NF-κB Nuclear Translocation in a Rat Model of Collagen-Induced Rheumatoid Arthritis

    PubMed Central

    Xian, Pei-Feng; Yang, Lu; Wang, Sheng-Xu

    2016-01-01

    MicroRNA-21 (miR-21) is overexpressed in patients with rheumatoid arthritis (RA). This study was designed to investigate the effect and mechanism of miR-21 on cell proliferation in fibroblast-like synoviocytes (FLS) of RA. FLS were primary-cultured from a rat RA model. RA-FLS and normal FLS were infected with lentivirus (anti-miR-21 or pro-miR-21) for overexpression or downregulation of miR-21, respectively. The effects of miR-21 overexpression or inhibition on nucleoprotein NF-κB levels and FLS cell proliferation were evaluated by western blotting and MTT assays. The effects of an inhibitor of NF-κB nuclear translocation (BAY 11-7082) were also evaluated. The results showed that the levels of miR-21 and nucleoprotein NF-κB were increased in FLS of RA model rats compared to the control group. Downregulation of miR-21 in RA FLS led to a significant decrease in nucleoprotein NF-κB levels and cell proliferation rates compared to the antinegative control (NC) group. However, miR-21 overexpression in normal FLS resulted in a significant increase of nucleoprotein NF-κB levels and cell proliferation rates compared to the pro-NC group. The effects of miR-21 overexpression were reversed by BAY 11-7082. We concluded that upregulated miR-21 in FLS in RA model rats may promote cell proliferation by facilitating NF-κB nuclear translocation, thus affecting the NF-κB pathway. PMID:27429986

  9. Aging decreases collagen IV expression in vivo in the dermo-epidermal junction and in vitro in dermal fibroblasts: possible involvement of TGF-β1.

    PubMed

    Feru, Jezabel; Delobbe, Etienne; Ramont, Laurent; Brassart, Bertrand; Terryn, Christine; Dupont-Deshorgue, Aurelie; Garbar, Christian; Monboisse, Jean-Claude; Maquart, Francois-Xavier; Brassart-Pasco, Sylvie

    2016-08-01

    Collagen IV is a major component of the dermo-epidermal junction (DEJ). To study expression of collagen IV upon aging in the DEJ and dermal fibroblasts isolated from the same patients. A model of senescent fibroblasts was developed in order to identify biological compounds that might restore the level of collagen IV. Skin fragments of women (30 to 70 years old) were collected. Localisation of collagen IV expression in the DEJ was studied by immunofluorescence. Fibroblast collagen IV expression was studied by real-time PCR, ELISA, and western blotting. Premature senescence was simulated by exposing fibroblasts to subcytotoxic H2O2 concentrations. Collagen IV decreased in the DEJ and fibroblasts relative to age. TGF-β1 treatment significantly increased collagen IV gene and protein expression in fibroblasts and restored expression in the model of senescence. Addition of TGF-β1-neutralizing antibody to fibroblast cultures decreased collagen IV expression. Taken together, the results suggest that the decrease in collagen IV in the DEJ, relative to age, could be due to a decrease in collagen IV expression by senescent dermal fibroblasts and may involve TGF-β1 signalling.

  10. Collagen interactions: Drug design and delivery.

    PubMed

    An, Bo; Lin, Yu-Shan; Brodsky, Barbara

    2016-02-01

    Collagen is a major component in a wide range of drug delivery systems and biomaterial applications. Its basic physical and structural properties, together with its low immunogenicity and natural turnover, are keys to its biocompatibility and effectiveness. In addition to its material properties, the collagen triple-helix interacts with a large number of molecules that trigger biological events. Collagen interactions with cell surface receptors regulate many cellular processes, while interactions with other ECM components are critical for matrix structure and remodeling. Collagen also interacts with enzymes involved in its biosynthesis and degradation, including matrix metalloproteinases. Over the past decade, much information has been gained about the nature and specificity of collagen interactions with its partners. These studies have defined collagen sequences responsible for binding and the high-resolution structures of triple-helical peptides bound to its natural binding partners. Strategies to target collagen interactions are already being developed, including the use of monoclonal antibodies to interfere with collagen fibril formation and the use of triple-helical peptides to direct liposomes to melanoma cells. The molecular information about collagen interactions will further serve as a foundation for computational studies to design small molecules that can interfere with specific interactions or target tumor cells. Intelligent control of collagen biological interactions within a material context will expand the effectiveness of collagen-based drug delivery.

  11. IMPACT fragmentation model developments

    NASA Astrophysics Data System (ADS)

    Sorge, Marlon E.; Mains, Deanna L.

    2016-09-01

    The IMPACT fragmentation model has been used by The Aerospace Corporation for more than 25 years to analyze orbital altitude explosions and hypervelocity collisions. The model is semi-empirical, combining mass, energy and momentum conservation laws with empirically derived relationships for fragment characteristics such as number, mass, area-to-mass ratio, and spreading velocity as well as event energy distribution. Model results are used for several types of analysis including assessment of short-term risks to satellites from orbital altitude fragmentations, prediction of the long-term evolution of the orbital debris environment and forensic assessments of breakup events. A new version of IMPACT, version 6, has been completed and incorporates a number of advancements enabled by a multi-year long effort to characterize more than 11,000 debris fragments from more than three dozen historical on-orbit breakup events. These events involved a wide range of causes, energies, and fragmenting objects. Special focus was placed on the explosion model, as the majority of events examined were explosions. Revisions were made to the mass distribution used for explosion events, increasing the number of smaller fragments generated. The algorithm for modeling upper stage large fragment generation was updated. A momentum conserving asymmetric spreading velocity distribution algorithm was implemented to better represent sub-catastrophic events. An approach was developed for modeling sub-catastrophic explosions, those where the majority of the parent object remains intact, based on estimated event energy. Finally, significant modifications were made to the area-to-mass ratio distribution to incorporate the tendencies of different materials to fragment into different shapes. This ability enabled better matches between the observed area-to-mass ratios and those generated by the model. It also opened up additional possibilities for post-event analysis of breakups. The paper will discuss

  12. Guiding the orientation of smooth muscle cells on random and aligned polyurethane/collagen nanofibers.

    PubMed

    Jia, Lin; Prabhakaran, Molamma P; Qin, Xiaohong; Ramakrishna, Seeram

    2014-09-01

    Fabricating scaffolds that can simulate the architecture and functionality of native extracellular matrix is a huge challenge in vascular tissue engineering. Various kinds of materials are engineered via nano-technological approaches to meet the current challenges in vascular tissue regeneration. During this study, nanofibers from pure polyurethane and hybrid polyurethane/collagen in two different morphologies (random and aligned) and in three different ratios of polyurethane:collagen (75:25; 50:50; 25:75) are fabricated by electrospinning. The fiber diameters of the nanofibrous scaffolds are in the range of 174-453 nm and 145-419 for random and aligned fibers, respectively, where they closely mimic the nanoscale dimensions of native extracellular matrix. The aligned polyurethane/collagen nanofibers expressed anisotropic wettability with mechanical properties which is suitable for regeneration of the artery. After 12 days of human aortic smooth muscle cells culture on different scaffolds, the proliferation of smooth muscle cells on hybrid polyurethane/collagen (3:1) nanofibers was 173% and 212% higher than on pure polyurethane scaffolds for random and aligned scaffolds, respectively. The results of cell morphology and protein staining showed that the aligned polyurethane/collagen (3:1) scaffold promote smooth muscle cells alignment through contact guidance, while the random polyurethane/collagen (3:1) also guided cell orientation most probably due to the inherent biochemical composition. Our studies demonstrate the potential of aligned and random polyurethane/collagen (3:1) as promising substrates for vascular tissue regeneration.

  13. Estrogen-induced collagen reorientation correlates with sympathetic denervation of the rat myometrium.

    PubMed

    Martínez, G F; Bianchimano, P; Brauer, M M

    2016-12-01

    Estrogen inhibits the growth and causes the degeneration (pruning) of sympathetic nerves supplying the rat myometrium. Previous cryoculture studies evidenced that substrate-bound signals contribute to diminish the ability of the estrogenized myometrium to support sympathetic nerve growth. Using electron microscopy, here we examined neurite-substrate interactions in myometrial cryocultures, observing that neurites grew associated to collagen fibrils present in the surface of the underlying cryosection. In addition, we assessed quantitatively the effects of estrogen on myometrial collagen organization in situ, using ovariectomized rats treated with estrogen and immature females undergoing puberty. Under low estrogen levels, most collagen fibrils were oriented in parallel to the muscle long axis (83% and 85%, respectively). Following estrogen treatment, 89% of fibrils was oriented perpendicularly to the muscle main axis; while after puberty, 57% of fibrils acquired this orientation. Immunohistochemistry combined with histology revealed that the vast majority of fine sympathetic nerve fibers supplying the myometrium courses within the areas where collagen realignment was observed. Finally, to assess whether depending on their orientation collagen fibrils can promote or inhibit neurite outgrowth, we employed cryocultures, now using as substrate tissue sections of rat-tail tendon. We observed that neurites grew extensively in the direction of the parallel-aligned collagen fibrils in the tendon main axis but were inhibited to grow perpendicularly to this axis. Collectively, these findings support the hypothesis that collagen reorientation may be one of the factors contributing to diminish the neuritogenic capacity of the estrogen-primed myometrial substrate.

  14. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors.

    PubMed

    Nudelman, Fabio; Pieterse, Koen; George, Anne; Bomans, Paul H H; Friedrich, Heiner; Brylka, Laura J; Hilbers, Peter A J; de With, Gijsbertus; Sommerdijk, Nico A J M

    2010-12-01

    Bone is a composite material in which collagen fibrils form a scaffold for a highly organized arrangement of uniaxially oriented apatite crystals. In the periodic 67 nm cross-striated pattern of the collagen fibril, the less dense 40-nm-long gap zone has been implicated as the place where apatite crystals nucleate from an amorphous phase, and subsequently grow. This process is believed to be directed by highly acidic non-collagenous proteins; however, the role of the collagen matrix during bone apatite mineralization remains unknown. Here, combining nanometre-scale resolution cryogenic transmission electron microscopy and cryogenic electron tomography with molecular modelling, we show that collagen functions in synergy with inhibitors of hydroxyapatite nucleation to actively control mineralization. The positive net charge close to the C-terminal end of the collagen molecules promotes the infiltration of the fibrils with amorphous calcium phosphate (ACP). Furthermore, the clusters of charged amino acids, both in gap and overlap regions, form nucleation sites controlling the conversion of ACP into a parallel array of oriented apatite crystals. We developed a model describing the mechanisms through which the structure, supramolecular assembly and charge distribution of collagen can control mineralization in the presence of inhibitors of hydroxyapatite nucleation.

  15. Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation.

    PubMed

    Zhou, Tian; Wang, Nanping; Xue, Yang; Ding, Tingting; Liu, Xin; Mo, Xiumei; Sun, Jiao

    2016-07-01

    The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4(+)/CD8(+) lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6.72±0.44MPa and 26.71±4.88°, respectively. They also had good thermal stability and swelling property. Furthermore, the nanofibers could significantly promote the proliferation of human keratinocytes (HaCaTs) and stimulate epidermal differentiation through the up-regulated gene expression of involucrin, filaggrin, and type I transglutaminase in HaCaTs. The collagen nanofibers could also facilitate rat skin regeneration. In the present study, electrospun biomimetic tilapia skin collagen nanofibers were succesfully prepared, were proved to have good bioactivity and could accelerate rat wound healing rapidly and effectively. These biological effects might be attributed to the biomimic extracellular matrix structure and the multiple amino acids of the collagen nanofibers. Therefore, the cost-efficient tilapia collagen nanofibers could be used as novel wound dressing, meanwhile effectively avoiding the risk of transmitting animal disease in the future clinical apllication.

  16. Chronic Wound Dressings Based on Collagen-Mimetic Proteins

    PubMed Central

    Cereceres, Stacy; Touchet, Tyler; Browning, Mary Beth; Smith, Clayton; Rivera, Jose; Höök, Magnus; Whitfield-Cargile, Canaan; Russell, Brooke; Cosgriff-Hernandez, Elizabeth

    2015-01-01

    Objective: Chronic wounds are projected to reach epidemic proportions due to the aging population and the increasing incidence of diabetes. There is a strong clinical need for an improved wound dressing that can balance wound moisture, promote cell migration and proliferation, and degrade at an appropriate rate to minimize the need for dressing changes. Approach: To this end, we have developed a bioactive, hydrogel microsphere wound dressing that incorporates a collagen-mimetic protein, Scl2GFPGER, to promote active wound healing. A redesigned Scl2GFPGER, engineered collagen (eColGFPGER), was created to reduce steric hindrance of integrin-binding motifs and increase overall stability of the triple helical backbone, thereby resulting in increased cell adhesion to substrates. Results: This study demonstrates the successful modification of the Scl2GFPGER protein to eColGFPGER, which displayed enhanced stability and integrin interactions. Fabrication of hydrogel microspheres provided a matrix with adaptive moisture technology, and degradation rates have potential for use in human wounds. Innovation: This collagen-mimetic wound dressing was designed to permit controlled modulation of cellular interactions and degradation rate without impact on other physical properties. Its fabrication into uniform hydrogel microspheres provides a bioactive dressing that can readily conform to irregular wounds. Conclusion: Overall, this new eColGFPGER shows strong promise in the generation of bioactive hydrogels for wound healing as well as a variety of tissue scaffolds. PMID:26244101

  17. Effects of strontium on collagen content and expression of related genes in rat chondrocytes cultured in vitro.

    PubMed

    Wang, Jianguo; Zhu, Xiaoyan; Liu, Lei; Shi, Xiaoxia; Yin, Liheng; Zhang, Yuming; Li, Xiaobing; Wang, Zhe; Liu, Guowen

    2013-06-01

    Strontium stimulates cartilage matrix formation in vitro. However, the mechanisms governing these effects have not yet been extensively reported. In this study, chondrocytes were isolated from rat articular cartilage by enzymatic digestion and cultured for 24-72 h with 1-5 mM strontium. We investigated the effects of different concentrations of strontium on collagen content, type II collagen, insulin-like growth factor (IGF-1) and matrix metalloproteinase (MMP)-13 expression in rat cultured articular chondrocytes in vitro. The collagen content of the chondrocytes, determined as hydroxyproline, was measured by a colorimetry method. Type II collagen, IGF-1, and MMP-13 mRNA abundance and protein expression levels were determined by real-time polymerase chain reaction (real-time PCR) and western blot, respectively. The results showed that collagen content from the chondrocytes extracellular matrix increased with increasing strontium concentration. Moreover, 3 and 5 mM strontium strongly stimulated protein expression and mRNA levels of type II collagen and IGF-1. Conversely, MMP-13 expression in chondrocytes decreased dose-dependently with increasing strontium concentration. These results should provide insight into the ability of strontium to promote chondrocyte extracellular matrix synthesis. Strontium could promote collagen synthesis and suppress collagen degradation via the repression of MMP-13 expression.

  18. Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction

    NASA Technical Reports Server (NTRS)

    Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.

    1991-01-01

    Solubilized interstitial collagens will form a fibrillar, gel-like lattice when brought to physiologic conditions. In the presence of human dermal fibroblasts the collagen lattice will contract. The rate of contraction can be determined by computer-assisted planemetry. The mechanisms involved in contraction are as yet unknown. Using this system it was found that the rate of contraction was markedly decreased when collagen lacking telopeptides was substituted for native collagen. Histidinohydroxylysinonorleucine (HHL) is a major stable trifunctional collagen cross-link in mature skin that involves a carboxyl terminal, telopeptide site 16c, the sixteenth amino acid residue from the carboxy terminal of the telopeptide region of alpha 1 (I) in type I collagen. Little, if any, HHL was present in native, purified, reconstituted, soluble collagen fibrils from 1% acetic acid-extracted 2-year-old bovine skin. In contrast, HHL cross-links were present (0.22 moles of cross-link per mole of collagen) in lattices of the same collagen contracted by fibroblasts. However, rat tail tendon does not contain HHL cross-links, and collagen lattices made of rat tail tendon collagen are capable of contraction. This suggests that telopeptide sites, and not mature HHL cross-links per se, are essential for fibroblasts to contract collagen lattices. Beta-aminopropionitrile fumarate (BAPN), a potent lathyrogen that perturbs collagen cross-linking by inhibition of lysyl oxidase, also inhibited the rate of lattice cell contraction in lattices composed of native collagen. However, the concentrations of BAPN that were necessary to inhibit the contraction of collagen lattices also inhibited fibroblast growth suggestive of cellular toxicity. In accordance with other studies, we found no inhibition of the rate of lattice contraction when fibronectin-depleted serum was used. Electron microscopy of contracted gels revealed typical collagen fibers with a characteristic axial periodicity. The data

  19. Collagen-Gelatin Mixtures as Wound Model, and Substrates for VEGF-Mimetic Peptide Binding and Endothelial Cell Activation

    PubMed Central

    Chan, Tania R.; Stahl, Patrick J.; Li, Yang; Yu, S. Michael

    2015-01-01

    In humans, high level of collagen remodeling is seen during normal physiological events such as bone renewal, as well as in pathological conditions, such as arthritis, tumor growth and other chronic wounds. Our lab recently discovered that collagen mimetic peptide (CMP) is able to hybridize with denatured collagens at these collagen remodeling sites with high affinity. Here, we show that the CMP's high binding affinity to denatured collagens can be utilized to deliver angiogenic signals to scaffolds composed of heat-denatured collagens (gelatins). We first demonstrate hybridization between denatured collagens and QKCMP, a CMP with pro-angiogenic QK domain. We show that high levels of QKCMP can be immobilized to a new artificial matrix containing both fibrous type I collagen and heat denatured collagen through triple helix hybridization, and that the QKCMP is able to stimulate early angiogenic response of endothelial cells (ECs). We also show that the QKCMP can bind to excised tissues from burn injuries in cutaneous mouse model, suggesting its potential for promoting neovascularization of burn wounds. PMID:25584990

  20. Fibrils of different collagen types containing immobilised proteoglycans (PGs) as coatings: characterisation and influence on osteoblast behaviour.

    PubMed

    Douglas, T; Hempel, U; Mietrach, C; Heinemann, S; Scharnweber, D; Worch, H

    2007-11-01

    Collagen, the main organic component of bone, is used as a coating on titanium implants and as a scaffold material in bone tissue engineering. Surface modifications of titanium which promote osteoblast adhesion, proliferation and synthesis of collagen by osteoblasts are desirable. One biomimetic approach is the coating of titanium with collagen in fibrillar form. Other organic components of bone may be bound to fibrils and exert additional effects. In this study, the collagen types I-III were compared regarding their ability to bind the proteoglycans decorin and biglycan, which are found in bone. More collagen was bound to collagen II fibrils than to those of types I and III. Therefore, titanium surfaces were coated with fibrils of collagen type II containing biglycan or decorin or neither to investigate the effect of the proteoglycans on human primary osteoblast behaviour. In addition, the growth factor TGF-beta1 was adsorbed onto surfaces coated with fibrils of collagen type II containing biglycan or decorin or neither to investigate the influence of decorin and biglycan on the effect of TGF-beta1 on osteoblasts. Fibril-bound biglycan and decorin influence primary osteoblast behaviour by themselves. The presence of substrate-bound biglycan or decorin influences the effect of TGF-beta1. These results may be important when designing collagen-based coatings or scaffolds for tissue engineering, including those loaded with growth factors.

  1. Immunostimulation effect of jellyfish collagen.

    PubMed

    Sugahara, Takuya; Ueno, Masashi; Goto, Yoko; Shiraishi, Ryusuke; Doi, Mikiharu; Akiyama, Koichi; Yamauchi, Satoshi

    2006-09-01

    Certain edible large jellyfishes belonging to the order Rhizostomeae are consumed in large quantities in China and Japan. The exumbrella part of the edible jellyfish Stomolophus nomurai was cut and soaked in dilute hydrochloric acid solution (pH 3.0) for 12 h, and heated at 121 degrees C for 20 min. The immunostimulation effects of the jellyfish extract were examined. The jellyfish extract enhanced IgM production of human hybridoma HB4C5 cells 34-fold. IgM and IgG production of human peripheral blood lymphocytes (PBL) were also accelerated, 2.8- and 1.4-fold respectively. Moreover, production of interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha by human PBL was stimulated 100- and 17-fold respectively. Collagenase treatment inactivated the immunostimulation activity of the jellyfish extract. In addition, purified collagen from bovine Achilles' tendon accelerated IgM production of hybridoma cells. These facts mean that collagen has an immunostimulation effect, and that the active substance in jellyfish extract is collagen.

  2. Target fragmentation in radiobiology

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.; Townsend, Lawrence W.

    1993-01-01

    Nuclear reactions in biological systems produce low-energy fragments of the target nuclei seen as local high events of linear energy transfer (LET). A nuclear-reaction formalism is used to evaluate the nuclear-induced fields within biosystems and their effects within several biological models. On the basis of direct ionization interaction, one anticipates high-energy protons to have a quality factor and relative biological effectiveness (RBE) of unity. Target fragmentation contributions raise the effective quality factor of 10 GeV protons to 3.3 in reasonable agreement with RBE values for induced micronuclei in bean sprouts. Application of the Katz model indicates that the relative increase in RBE with decreasing exposure observed in cell survival experiments with 160 MeV protons is related solely to target fragmentation events. Target fragment contributions to lens opacity given an RBE of 1.4 for 2 GeV protons in agreement with the work of Lett and Cox. Predictions are made for the effective RBE for Harderian gland tumors induced by high-energy protons. An exposure model for lifetime cancer risk is derived from NCRP 98 risk tables, and protraction effects are examined for proton and helium ion exposures. The implications of dose rate enhancement effects on space radiation protection are considered.

  3. The Fragmentation of Learning.

    ERIC Educational Resources Information Center

    Downes, Stephen

    2001-01-01

    Information and communication technologies, especially the Internet, have vastly increased access to information and educational opportunities. Steadily increasing consumer demand is driving the development of online educational materials. The end result may be a "fragmentation" of learning involving multiple learning providers and delivery modes,…

  4. A Novel Functional Role of Collagen Glycosylation

    PubMed Central

    Jürgensen, Henrik J.; Madsen, Daniel H.; Ingvarsen, Signe; Melander, Maria C.; Gårdsvoll, Henrik; Patthy, Laszlo; Engelholm, Lars H.; Behrendt, Niels

    2011-01-01

    Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains, the function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose receptor protein family. These proteins all include a fibronectin type II domain and a series of C-type lectin-like domains, of which only a minor part possess carbohydrate recognition activity. At least two of the family members, uPARAP/Endo180 and the mannose receptor, interact with collagens. The molecular basis for this interaction is known to involve the fibronectin type II domain but nothing is known about the function of the lectin domains in this respect. In this study, we have investigated a possible role of the single active lectin domain of uPARAP/Endo180 in the interaction with collagens. By expressing truncated recombinant uPARAP/Endo180 proteins and analyzing their interaction with collagens with high and low levels of glycosylation we demonstrated that this lectin domain interacts directly with glycosylated collagens. This interaction is functionally important because it was found to modulate the endocytic efficiency of the receptor toward highly glycosylated collagens such as basement membrane collagen IV. Surprisingly, this property was not shared by the mannose receptor, which internalized glycosylated collagens independently of its lectin function. This role of modulating its uptake efficiency by a specific receptor is a previously unrecognized function of collagen glycosylation. PMID:21768090

  5. Protein hydrogen exchange studied by the fragment separation method.

    PubMed

    Englander, J J; Rogero, J R; Englander, S W

    1985-05-15

    The potential of hydrogen-exchange studies for providing detailed information on protein structure and structural dynamics has not yet been realized, largely because of the continuing inability to correlate measured exchange behavior with the parts of a protein that generate that behavior. J. Rosa and F. M. Richards (1979, J. Mol. Biol. 133, 399-416) pioneered a promising approach to this problem in which tritium label at exchangeable proton sites can be located by fragmenting the protein, separating the fragments, and measuring the label carried by each fragment. However, severe losses of tritium label during the fragment separation steps have so far rendered the results ambiguous. This paper describes methods that minimize losses of tritium label during the fragment separation steps and correct for losses that do occur so that the label can be unambiguously located and even quantified. Steps that promote adequate fragment isolation are also described.

  6. Inhibitory effect of collagen-derived tripeptides on dipeptidylpeptidase-IV activity.

    PubMed

    Hatanaka, Tadashi; Kawakami, Kayoko; Uraji, Misugi

    2014-12-01

    The collagen tripeptide fragments Gly-Ala-Hyp, Gly-Pro-Ala and Gly-Pro-Hyp were generated by hydrolyzing collagen from pig-skin, cattle-skin, fish-scales and chicken-feet, respectively, with Streptomyces collagenase. Collagenase treatment increased the concentration of tripeptides in the hydrolysates by 13-15% (w/w). Of the three peptides, Gly-Pro-Hyp was a true peptidic inhibitor of dipeptidylpeptidase-IV (DPP-IV), because DPP-IV could not hydrolyze the bond between Pro-Hyp. This tripeptide was a moderately competitive inhibitor (Ki=4.5 mM) of DPP-IV, and its level in the collagen hydrolysates could be greatly increased (4-9% [w/w]) using Streptomyces collagenase.

  7. Achieving climate connectivity in a fragmented landscape

    PubMed Central

    Lawler, Joshua J.; McRae, Brad H.; Nuñez, Tristan A.; Theobald, David M.

    2016-01-01

    The contiguous United States contains a disconnected patchwork of natural lands. This fragmentation by human activities limits species’ ability to track suitable climates as they rapidly shift. However, most models that project species movement needs have not examined where fragmentation will limit those movements. Here, we quantify climate connectivity, the capacity of landscape configuration to allow species movement in the face of dynamically shifting climate. Using this metric, we assess to what extent habitat fragmentation will limit species movements in response to climate change. We then evaluate how creating corridors to promote climate connectivity could potentially mitigate these restrictions, and we assess where strategies to increase connectivity will be most beneficial. By analyzing fragmentation patterns across the contiguous United States, we demonstrate that only 41% of natural land area retains enough connectivity to allow plants and animals to maintain climatic parity as the climate warms. In the eastern United States, less than 2% of natural area is sufficiently connected. Introducing corridors to facilitate movement through human-dominated regions increases the percentage of climatically connected natural area to 65%, with the most impactful gains in low-elevation regions, particularly in the southeastern United States. These climate connectivity analyses allow ecologists and conservation practitioners to determine the most effective regions for increasing connectivity. More importantly, our findings demonstrate that increasing climate connectivity is critical for allowing species to track rapidly changing climates, reconfiguring habitats to promote access to suitable climates. PMID:27298349

  8. Diastolic Left Ventricular Function in Relation to Urinary and Serum Collagen Biomarkers in a General Population

    PubMed Central

    Ravassa, Susana; Yang, Wen-Yi; Zürbig, Petra; López, Begoña; Wei, Fang-Fei; Pontillo, Claudia; Thijs, Lutgarde; Jacobs, Lotte; González, Arantxa; Voigt, Jens-Uwe; Verhamme, Peter; Kuznetsova, Tatiana; Díez, Javier; Mischak, Harald; Staessen, Jan A.

    2016-01-01

    Current knowledge on the pathogenesis of diastolic heart failure predominantly rests on case-control studies involving symptomatic patients with preserved ejection fraction and relying on invasive diagnostic procedures including endomyocardial biopsy. Our objective was to gain insight in serum and urinary biomarkers reflecting collagen turnover and associated with asymptomatic diastolic LV dysfunction. We randomly recruited 782 Flemish (51.3% women; 50.5 years). We assessed diastolic LV function from the early and late diastolic peak velocities of the transmitral blood flow and of the mitral annulus. By sequencing urinary peptides, we identified 70 urinary collagen fragments. In serum, we measured carboxyterminal propeptide of procollagen type 1 (PICP) as marker of collagen I synthesis and tissue inhibitor of matrix metalloproteinase type 1 (TIMP-1), an inhibitor of collagen-degrading enzymes. In multivariable-adjusted analyses with Bonferroni correction, we expressed effect sizes per 1-SD in urinary collagen I (uCI) or collagen III (uCIII) fragments. In relation to uCI fragments, e’ decreased by 0.183 cm/s (95% confidence interval, 0.017 to 0.350; p = 0.025), whereas E/e’ increased by 0.210 (0.067 to 0.353; p = 0.0012). E/e’ decreased with uCIII by 0.168 (0.021 to 0.316; p = 0.018). Based on age-specific echocardiographic criteria, 182 participants (23.3%) had subclinical diastolic LV dysfunction. Partial least squares discriminant analysis contrasting normal vs. diastolic LV dysfunction confirmed the aforementioned associations with the uCI and uCIII fragments. PICP and TIMP-1 increased in relation to uCI (p<0.0001), whereas these serum markers decreased with uCIII (p≤0.0006). Diastolic LV dysfunction was associated with higher levels of TIMP-1 (653 vs. 696 ng/mL; p = 0.013). In a general population, the non-invasively assessed diastolic LV function correlated inversely with uCI and serum markers of collagen I deposition, but positively with uCIII. These

  9. Cancer-associated Fibroblasts Induce a Collagen Cross-link Switch in Tumor Stroma

    PubMed Central

    Pankova, Daniela; Chen, Yulong; Terajima, Masahiko; Schliekelman, Mark J.; Baird, Brandi N.; Fahrenholtz, Monica; Sun, Li; Gill, Bartley J.; Vadakkan, Tegy J.; Kim, Min P.; Ahn, Young-Ho; Roybal, Jonathon D.; Liu, Xin; Parra Cuentas, Edwin Roger; Rodriguez, Jaime; Wistuba, Ignacio I.; Creighton, Chad J.; Gibbons, Don L.; Hicks, John M.; Dickinson, Mary E.; West, Jennifer L.; Grande-Allen, K. Jane; Hanash, Samir M.; Yamauchi, Mitsuo; Kurie, Jonathan M.

    2015-01-01

    Intratumoral collagen cross-links heighten stromal stiffness and stimulate tumor cell invasion, but it is unclear how collagen cross-linking is regulated in epithelial tumors. To address this question, we used KrasLA1 mice, which develop lung adenocarcinomas from somatic activation of a KrasG12D allele. The lung tumors in KrasLA1 mice were highly fibrotic and contained cancer-associated fibroblasts (CAFs) that produced collagen and generated stiffness in collagen gels. In xenograft tumors generated by injection of wild-type mice with lung adenocarcinoma cells alone or in combination with CAFs, the total concentration of collagen cross-links was the same in tumors generated with or without CAFs, but co-injected tumors had higher hydroxylysine aldehyde-derived collagen cross-links (HLCCs) and lower lysine-aldehyde-derived collagen cross-links (LCCs). Therefore, we postulated that an LCC-to-HLCC switch induced by CAFs promotes the migratory and invasive properties of lung adenocarcinoma cells. To test this hypothesis, we created co-culture models in which CAFs are positioned interstitially or peripherally in tumor cell aggregates, mimicking distinct spatial orientations of CAFs in human lung cancer. In both contexts, CAFs enhanced the invasive properties of tumor cells in 3-dimensional (3D) collagen gels. Tumor cell aggregates that attached to CAF networks on a Matrigel surface dissociated and migrated on the networks. Lysyl hydroxylase 2 (PLOD2/LH2), which drives HLCC formation, was expressed in CAFs, and LH2 depletion abrogated the ability of CAFs to promote tumor cell invasion and migration. PMID:26631572

  10. Properties of radiolabeled type I, II, and III collagens related to their use as substrates in collagenase assays

    SciTech Connect

    Mookhtiar, K.A.; Mallya, S.K.; Van Wart, H.E.

    1986-11-01

    Calf skin and rat tendon type I, bovine cartilage type II, and human amnion type III collagens have been radiolabeled by reaction with (/sup 3/H)acetic anhydride, (/sup 3/H)formaldehyde, and succinimidyl 2,3-(3H)propionate. All three reactions produce collagens with high specific activities that are suitable for use as substrates in collagenase assays. The identity of the radiolabel and the labeling indices do not alter the molecular weights or thermal stabilities of the collagens or the solubilities of the collagens or gelatins in dioxane-water mixtures at 4 degrees C. However, in contrast to native or sparsely labeled collagens, those with 40 or more lysine + hydroxylysine residues labeled per molecule do not undergo fibrillogenesis in the presence of 0.2-0.4 M NaCl in the 4-35 degree C temperature range. Thus, the modification reactions not only serve to introduce the radiolabel, but also to keep the collagens soluble over a wide range of temperatures and concentrations. The TCA, TCB fragments produced on partial reaction of each collagen type with tissue collagenases can be selectively denatured by a 10-minute incubation under specific conditions and the intact collagens selectively precipitated by addition of 50% v/v dioxane. This serves as the basis for soluble collagenase assays. The effect of labeling index on the properties of the collagens has been investigated and the results establish the range of conditions over which these collagens can be used as substrates for soluble versus fibrillar collagenase assays.

  11. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts

    SciTech Connect

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo; Kim, So Young; Jang, Hwan-Hee; Ryu, Sung Ho; Kim, Beom Joon; Lee, Taehoon G.

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer We identify a function of the YIGSR peptide to enhance collagen synthesis in Hs27. Black-Right-Pointing-Pointer YIGSR peptide enhanced collagen type 1 synthesis both of gene and protein levels. Black-Right-Pointing-Pointer There were no changes in cell proliferation and MMP-1 level in YIGSR treatment. Black-Right-Pointing-Pointer The YIGSR effect on collagen synthesis mediated activation of FAK, pyk2 and ERK. Black-Right-Pointing-Pointer The YIGSR-induced FAK and ERK activation was modulated by FAK and MEK inhibitors. -- Abstract: The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the {beta}1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67 kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate

  12. Jellyfish collagen scaffolds for cartilage tissue engineering.

    PubMed

    Hoyer, Birgit; Bernhardt, Anne; Lode, Anja; Heinemann, Sascha; Sewing, Judith; Klinger, Matthias; Notbohm, Holger; Gelinsky, Michael

    2014-02-01

    Porous scaffolds were engineered from refibrillized collagen of the jellyfish Rhopilema esculentum for potential application in cartilage regeneration. The influence of collagen concentration, salinity and temperature on fibril formation was evaluated by turbidity measurements and quantification of fibrillized collagen. The formation of collagen fibrils with a typical banding pattern was confirmed by atomic force microscopy and transmission electron microscopy analysis. Porous scaffolds from jellyfish collagen, refibrillized under optimized conditions, were fabricated by freeze-drying and subsequent chemical cross-linking. Scaffolds possessed an open porosity of 98.2%. The samples were stable under cyclic compression and displayed an elastic behavior. Cytotoxicity tests with human mesenchymal stem cells (hMSCs) did not reveal any cytotoxic effects of the material. Chondrogenic markers SOX9, collagen II and aggrecan were upregulated in direct cultures of hMSCs upon chondrogenic stimulation. The formation of typical extracellular matrix components was further confirmed by quantification of sulfated glycosaminoglycans.

  13. Collagen-coated microparticles in drug delivery.

    PubMed

    Sehgal, Praveen Kumar; Srinivasan, Aishwarya

    2009-07-01

    Advantages of drug-incorporated collagen particles have been described for the controlled delivery system for therapeutic actions. The attractiveness of collagen lies in its low immunogenicity and high biocompatibility. It is also recognized by the body as a natural constituent rather than a foreign body. Our research and development efforts are focused towards addressing some of the limitations of collagen, like the high viscosity of an aqueous phase, nondissolution in neutral pH buffers, thermal instability (denaturation) and biodegradability, to make it an ideal material for drug delivery with particular reference to microparticles. These limitations could be overcome by making collagen conjugates with other biomaterials or chemically modifying collagen monomer without affecting its triple helical conformation and maintaining its native properties. This article highlights collagen microparticles' present status as a carrier in drug delivery.

  14. Collagen-Based Biomaterials for Wound Healing

    PubMed Central

    Chattopadhyay, Sayani; Raines, Ronald T.

    2014-01-01

    With its wide distribution in soft and hard connective tissues, collagen is the most abundant of animal proteins. In vitro, natural collagen can be formed into highly organized, three-dimensional scaffolds that are intrinsically biocompatible, biodegradable, non-toxic upon exogenous application, and endowed with high tensile strength. These attributes make collagen the material of choice for wound healing and tissue engineering applications. In this article, we review the structure and molecular interactions of collagen in vivo; the recent use of natural collagen in sponges, injectables, films and membranes, dressings, and skin grafts; and the on-going development of synthetic collagen mimetic peptides as pylons to anchor cytoactive agents in wound beds. PMID:24633807

  15. Stress controls the mechanics of collagen networks

    PubMed Central

    Licup, Albert James; Münster, Stefan; Sharma, Abhinav; Sheinman, Michael; Jawerth, Louise M.; Fabry, Ben; Weitz, David A.; MacKintosh, Fred C.

    2015-01-01

    Collagen is the main structural and load-bearing element of various connective tissues, where it forms the extracellular matrix that supports cells. It has long been known that collagenous tissues exhibit a highly nonlinear stress–strain relationship, although the origins of this nonlinearity remain unknown. Here, we show that the nonlinear stiffening of reconstituted type I collagen networks is controlled by the applied stress and that the network stiffness becomes surprisingly insensitive to network concentration. We demonstrate how a simple model for networks of elastic fibers can quantitatively account for the mechanics of reconstituted collagen networks. Our model points to the important role of normal stresses in determining the nonlinear shear elastic response, which can explain the approximate exponential relationship between stress and strain reported for collagenous tissues. This further suggests principles for the design of synthetic fiber networks with collagen-like properties, as well as a mechanism for the control of the mechanics of such networks. PMID:26195769

  16. Stress controls the mechanics of collagen networks.

    PubMed

    Licup, Albert James; Münster, Stefan; Sharma, Abhinav; Sheinman, Michael; Jawerth, Louise M; Fabry, Ben; Weitz, David A; MacKintosh, Fred C

    2015-08-04

    Collagen is the main structural and load-bearing element of various connective tissues, where it forms the extracellular matrix that supports cells. It has long been known that collagenous tissues exhibit a highly nonlinear stress-strain relationship, although the origins of this nonlinearity remain unknown. Here, we show that the nonlinear stiffening of reconstituted type I collagen networks is controlled by the applied stress and that the network stiffness becomes surprisingly insensitive to network concentration. We demonstrate how a simple model for networks of elastic fibers can quantitatively account for the mechanics of reconstituted collagen networks. Our model points to the important role of normal stresses in determining the nonlinear shear elastic response, which can explain the approximate exponential relationship between stress and strain reported for collagenous tissues. This further suggests principles for the design of synthetic fiber networks with collagen-like properties, as well as a mechanism for the control of the mechanics of such networks.

  17. Statistical models of brittle fragmentation

    NASA Astrophysics Data System (ADS)

    Åström, J. A.

    2006-06-01

    Recent developments in statistical models for fragmentation of brittle material are reviewed. The generic objective of these models is understanding the origin of the fragment size distributions (FSDs) that result from fracturing brittle material. Brittle fragmentation can be divided into two categories: (1) Instantaneous fragmentation for which breakup generations are not distinguishable and (2) continuous fragmentation for which generations of chronological fragment breakups can be identified. This categorization becomes obvious in mining industry applications where instantaneous fragmentation refers to blasting of rock and continuous fragmentation to the consequent crushing and grinding of the blasted rock fragments. A model of unstable cracks and crack-branch merging contains both of the FSDs usually related to instantaneous fragmentation: the scale invariant FSD with the power exponent (2-1/D) and the double exponential FSD which relates to Poisson process fragmentation. The FSDs commonly related to continuous fragmentation are: the lognormal FSD originating from uncorrelated breakup and the power-law FSD which can be modeled as a cascade of breakups. Various solutions to the generic rate equation of continuous fragmentation are briefly listed. Simulations of crushing experiments reveal that both cascade and uncorrelated fragmentations are possible, but that also a mechanism of maximizing packing density related to Apollonian packing may be relevant for slow compressive crushing.

  18. Imaging Prostate Cancer Microenvironment by Collagen Hybridization

    DTIC Science & Technology

    2015-10-01

    INVESTIGATOR: Dr. Michael S. Yu CONTRACTING ORGANIZATION: University of Utah Salt Lake City, UT 84112 REPORT DATE: October 2015 TYPE OF REPORT: Annual...SUBTITLE Imaging Prostate Cancer Microenvironment by Collagen Hybridization 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0555 5c. PROGRAM ELEMENT...peptide (CMP) as a collagen targeting agents that will allow imaging of invasive PCa. Since CMP binds to unstructured collagens more readily, it is

  19. Comprehensive Characterization of Glycosylation and Hydroxylation of Basement Membrane Collagen IV by High-Resolution Mass Spectrometry.

    PubMed

    Basak, Trayambak; Vega-Montoto, Lorenzo; Zimmerman, Lisa J; Tabb, David L; Hudson, Billy G; Vanacore, Roberto M

    2016-01-04

    Collagen IV is the main structural protein that provides a scaffold for assembly of basement membrane proteins. Posttranslational modifications such as hydroxylation of proline and lysine and glycosylation of lysine are essential for the functioning of collagen IV triple-helical molecules. These modifications are highly abundant posing a difficult challenge for in-depth characterization of collagen IV using conventional proteomics approaches. Herein, we implemented an integrated pipeline combining high-resolution mass spectrometry with different fragmentation techniques and an optimized bioinformatics workflow to study posttranslational modifications in mouse collagen IV. We achieved 82% sequence coverage for the α1 chain, mapping 39 glycosylated hydroxylysine, 148 4-hydroxyproline, and seven 3-hydroxyproline residues. Further, we employed our pipeline to map the modifications on human collagen IV and achieved 85% sequence coverage for the α1 chain, mapping 35 glycosylated hydroxylysine, 163 4-hydroxyproline, and 14 3-hydroxyproline residues. Although lysine glycosylation heterogeneity was observed in both mouse and human, 21 conserved sites were identified. Likewise, five 3-hydroxyproline residues were conserved between mouse and human, suggesting that these modification sites are important for collagen IV function. Collectively, these are the first comprehensive maps of hydroxylation and glycosylation sites in collagen IV, which lay the foundation for dissecting the key role of these modifications in health and disease.

  20. Wound-associated macrophages control collagen 1α2 transcription during the early stages of skin wound healing.

    PubMed

    Rodero, Mathieu P; Legrand, Julien M D; Bou-Gharios, George; Khosrotehrani, Kiarash

    2013-02-01

    Wound-associated fibrosis is important to provide tensile strength upon wound healing but at the same time is detrimental to proper tissue regeneration. To date, there is no clear evidence of the role of macrophages and their subpopulations in the control of the kinetics of collagen production during wound healing. To evaluate in vivo the contribution of macrophages in collagen transcription, we depleted macrophages after wounding luciferase reporter mice of the collagen 1 alpha 2 (Col 1α2) promoter activity. Our data reveal that Col 1α2 starts to be transcribed at D2 after wounding, reaching a plateau after 7 days. Sustained macrophage depletion significantly reduced collagen 1α2 transcription from D4, indicating that the control of fibrosis by macrophages occurs during the early stages of the wound healing process. In conclusion, our results demonstrate an important role of wound macrophages in the control of collagen production during wound healing.

  1. NG2/CSPG4-collagen type VI interplays putatively involved in the microenvironmental control of tumour engraftment and local expansion.

    PubMed

    Cattaruzza, Sabrina; Nicolosi, Pier Andrea; Braghetta, Paola; Pazzaglia, Laura; Benassi, Maria Serena; Picci, Piero; Lacrima, Katia; Zanocco, Daniela; Rizzo, Erika; Stallcup, William B; Colombatti, Alfonso; Perris, Roberto

    2013-06-01

    In soft-tissue sarcoma patients, enhanced expression of NG2/CSPG4 proteoglycan in pre-surgical primary tumours predicts post-surgical metastasis formation and thereby stratifies patients into disease-free survivors and patients destined to succumb to the disease. Both primary and secondary sarcoma lesions also up-regulate collagen type VI, a putative extracellular matrix ligand of NG2, and this matrix alteration potentiates the prognostic impact of NG2. Enhanced constitutive levels of the proteoglycan in isolated sarcoma cells closely correlate with a superior engraftment capability and local growth in xenogenic settings. This apparent NG2-associated malignancy was also corroborated by the diverse tumorigenic behaviour in vitro and in vivo of immunoselected NG2-expressing and NG2-deficient cell subsets, by RNAi-mediated knock down of endogenous NG2, and by ectopic transduction of full-length or deletion constructs of NG2. Cells with modified expression of NG2 diverged in their interaction with purified Col VI, matrices supplemented with Col VI, and cell-free matrices isolated from wild-type and Col VI null fibroblasts. The combined use of dominant-negative NG2 mutant cells and purified domain fragments of the collagen allowed us to pinpoint the reciprocal binding sites within the two molecules and to assert the importance of this molecular interaction in the control of sarcoma cell adhesion and motility. The NG2-mediated binding to Col VI triggered activation of convergent cell survival- and cell adhesion/migration-promoting signal transduction pathways, implicating PI-3K as a common denominator. Thus, the findings point to an NG2-Col VI interplay as putatively involved in the regulation of the cancer cell-host microenvironment interactions sustaining sarcoma progression.

  2. Fragmentation of Fractal Random Structures

    NASA Astrophysics Data System (ADS)

    Elçi, Eren Metin; Weigel, Martin; Fytas, Nikolaos G.

    2015-03-01

    We analyze the fragmentation behavior of random clusters on the lattice under a process where bonds between neighboring sites are successively broken. Modeling such structures by configurations of a generalized Potts or random-cluster model allows us to discuss a wide range of systems with fractal properties including trees as well as dense clusters. We present exact results for the densities of fragmenting edges and the distribution of fragment sizes for critical clusters in two dimensions. Dynamical fragmentation with a size cutoff leads to broad distributions of fragment sizes. The resulting power laws are shown to encode characteristic fingerprints of the fragmented objects.

  3. STUDIES ON THE FORMATION OF COLLAGEN

    PubMed Central

    Gross, Jerome

    1958-01-01

    Some properties of cold neutral salt extracts of fresh guinea pig dermis have been described in terms of viscosity, electrophoresis and sedimentation patterns, partial composition, the collagen content, conditions for extraction of collagen, and the effect of certain enzymes. Viscosity of the extracts depended on the collagen in solution as demonstrated by removal of this protein by precipitation or enzymatic degradation. The intrinsic viscosity of the crude 0.45 M extract, as well as that of the isolated collagen was 14.5, identical with that for collagen dissolved by dilute acid, indicating the same high asymmetry ratio for both. Electrophoresis of the skin extracts revealed a slow moving, high, sharp, poorly diffusing boundary in addition to a pattern superficially resembling that of serum. The ultracentrifuge pattern revealed a slowly sedimenting, hypersharp boundary following a large rapidly diffusing peak. The slow moving boundaries in both patterns were abolished by collagenase or heat precipitation of the collagen fraction. Hyaluronidase had no effect on either pattern. Neutral sulfate, chloride, and phosphate extracted more collagen than did thiocyanate. Very little collagen was extracted at 37°C. as compared with that removed at 3°C. A two stage fractionation procedure employing dilute trichloroacetic acid and ethanol is described for the isolation and purification of soluble collagen from crude extracts. PMID:13491760

  4. Monoclonal antibody against chicken type IX collagen: preparation, characterization, and recognition of the intact form of type IX collagen secreted by chondrocytes.

    PubMed

    Irwin, M H; Silvers, S H; Mayne, R

    1985-09-01

    A series of monoclonal antibodies was prepared against the pepsin-resistant fragment of type IX collagen designated HMW. One of these antibodies (called 2C2) was selected for further analysis. Antibody 2C2 showed no cross-reactivity with other collagen types by inhibition enzyme-linked immunosorbent assays. It recognized an epitope present in native HMW, but failed to recognize any of the three chains of HMW fractionated after denaturation followed by reduction and alkylation of interchain disulfide bridges. Electron microscopic observations after rotary shadowing showed that the location of the epitope for antibody 2C2 was close to the carboxy-terminus of HMW. Immunofluorescent staining of sections of embryonic and adult cartilage with antibody 2C2 after removal of proteoglycans by testicular hyaluronidase digestion showed that type IX collagen is distributed throughout the cartilage matrix, and is not present in other connective tissues or skeletal muscle. The intact type IX collagen molecule, which was secreted by a suspension culture of freshly isolated embryonic chick chondrocytes, was recognized by rotary shadowing in the presence of antibody 2C2 after first precipitating the procollagens from the culture medium with ammonium sulfate (30%). Two different collagenous molecules were present in the precipitate: a longer molecule of type II procollagen (average length, 335 nm) with both amino- and carboxy-propeptides still remaining uncleaved, and a shorter molecule (average length, 190 nm) which was identified as type IX collagen. Antibody 2C2 consistently bound to the shorter molecules at a site located 136 nm from a distinctive knob at one end of the molecule, and did not bind to any specific site on the type II procollagen molecules. The structure of the intact type IX collagen molecule with the location of both collagenous and noncollagenous domains was as predicted after converting the nucleotide sequence of a cDNA clone encoding for one of the chains of

  5. Molecules in Focus: Collagen XII: Protecting bone and muscle integrity by organizing collagen fibrils

    PubMed Central

    Chiquet, Matthias; Birk, David E.; Bönnemann, Carsten G.; Koch, Manuel

    2014-01-01

    Collagen XII, largest member of the fibril-associated collagens with interrupted triple helix (FACIT) family, assembles from three identical α-chains encoded by the COL12A1 gene. The molecule consists of three threadlike N-terminal noncollagenous NC3 domains, joined by disulfide bonds and a short interrupted collagen triple helix towards the C-terminus. Splice variants differ considerably in size and properties: "small" collagen XIIB (220 kDa subunit) is similar to collagen XIV, whereas collagen XIIA (350 kDa) has a much larger NC3 domain carrying glycosaminoglycan chains. Collagen XII binds to collagen I-containing fibrils via its collagenous domain, whereas its large noncollagenous arms interact with other matrix proteins such as tenascin-X. In dense connective tissues and bone, collagen XII is thought to regulate organization and mechanical properties of collagen fibril bundles. Accordingly, recent findings show that collagen XII mutations cause Ehlers-Danlos/myopathy overlap syndrome associated with skeletal abnormalities and muscle weakness in mice and humans. PMID:24801612

  6. Guided tissue regeneration-based root coverage utilizing collagen membranes: technique and case reports.

    PubMed

    Wang, Hom-Lay; Al-Shammari, Khalaf F

    2002-01-01

    Gingival recession defects have traditionally been treated with various grafting procedures. Recently, guided tissue regeneration with collagen membranes has shown promising results. This article reviews the rationale, indications, contraindications, and clinical methods for the use of bioabsorbable collagen membrane barriers. Several properties make collagen membranes attractive candidates for use as barriers in guided tissue regeneration-based root coverage procedures. These include the inhibition of epithelial migration and promotion of new connective tissue attachment; the ability to aggregate platelets, thereby facilitating wound stabilization and maturation; the promotion of cellular migration and wound closure; the elimination of the need for reentry surgery; and the ability to augment tissue thickness. Cases are presented to illustrate the surgical principles and techniques.

  7. Collagen and keratin polypeptide models for assessing the natural and artificial protein decay of organic materials.

    PubMed

    Fotou, Evmorfia; Sakarellos-Daitsiotis, Maria; Ioakeimoglou, Eleni; Tziamourani, Eleni; Malea, Ekaterini; Panayiaris, George; Panou-Pomonis, Eugenia

    2016-11-01

    Among the materials constituting the natural and cultural heritage, organic materials of proteinaceous origin as bone (collagen), parchment and woolen textiles (keratin) are the most susceptible to damage and decay because of their exposure to air pollution, inappropriate values of ambient temperature, humidity and light. Aiming at contributing to the development of a reliable and reproducible immunoassay for the evaluation of collagen and keratin decay, three polypeptide models of these proteins were designed, synthesized and studied. Polypeptide [Pro-Ser(OBzl)-Gly]n incorporates the typical motif Pro-X-Gly of collagen; polypeptide [Pro-Cys(Acm)-Gly]n is a model of the C-terminal domain of type I keratin, corresponding to the repeating unit Pro-Cys-X of keratin, while polypeptide Ac-YRSGGGFGYRSGGGFGYRS-βAla-NH2 encloses the characteristic repeating sequence GGGFGYRS of the N-terminal part of Type II keratin. These polypeptides may be considered as simplified models that mimic fragments of collagen and keratin resulting from artificial and natural ageing or decay. It is concluded that high recognition of anti-polypeptide antibodies, produced after immunizations, by the bone, parchment and textile samples is indicative of high deterioration, while high anti-collagen or anti-keratin recognition is indicative of low deterioration. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  8. Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice.

    PubMed

    Fan, Ming-Hui; Zhu, Qiang; Li, Hui-Hua; Ra, Hyun-Jeong; Majumdar, Sonali; Gulick, Dexter L; Jerome, Jacob A; Madsen, Daniel H; Christofidou-Solomidou, Melpo; Speicher, David W; Bachovchin, William W; Feghali-Bostwick, Carol; Puré, Ellen

    2016-04-08

    Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2-4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent within vitrostudies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP's protective effects in the lung.

  9. Differential co-expression of long and short form type IX collagen transcripts during avian limb chondrogenesis in ovo.

    PubMed

    Swiderski, R E; Solursh, M

    1992-05-01

    Using RNA blot analysis of developmentally staged avian limb buds, we demonstrate that transcripts of several cartilage marker genes appear in limb tissue prior to overt chondrogenesis. Type II collagen mRNA, cartilage proteoglycan core protein mRNA, alpha 2(IX) collagen mRNA, and transcripts of the short form alpha 1(IX) collagen chain derived from the downstream promoter are co-expressed in limb tissue approximately 24-36 hours before the appearance of the respective polypeptides in differentiating cartilagenous tissue. Transcripts of the long form alpha 1(IX) collagen chain derived from the upstream promoter appear somewhat later in development; nearly coincident with the immunolocalization of type IX collagen in the cartilage elements of the limb. The spatial distribution of type II and type IX collagen transcripts was analyzed by in situ hybridization. Type II collagen and the long form alpha 1(IX) collagen transcripts co-localized in the chondrogenic elements of the developing forelimb. In contrast, short form alpha 1(IX) collagen transcripts which lack the 5' region encoding the NC4 globular amino-terminal domain were distributed throughout the non-chondrogenic, non-myogenic mesenchymal regions of the limb and were not detectable above background levels in the limb chondrogenic elements. The precocious appearance of several cartilage marker gene transcripts prior to chondrogenesis suggests that multiple levels of gene regulation including alternative promoter use, alternative RNA splicing, alternative polyadenylation, and other post-transcriptional as well as translational mechanisms are active prior to, and during avian limb chondrogenesis.

  10. Nanolayered Features of Collagen-like Peptides

    NASA Technical Reports Server (NTRS)

    Valluzzi, Regina; Bini, Elisabetta; Haas, Terry; Cebe, Peggy; Kaplan, David L.

    2003-01-01

    We have been investigating collagen-like model oligopeptides as molecular bases for complex ordered biomimetic materials. The collagen-like molecules incorporate aspects of native collagen sequence and secondary structure. Designed modifications to native primary and secondary structure have been incorporated to control the nanostructure and microstructure of the collagen-like materials produced. We find that the collagen-like molecules form a number of lyotropic rod liquid crystalline phases, which because of their strong temperature dependence in the liquid state can also be viewed as solvent intercalated thermotropic liquid crystals. The liquid crystalline phases formed by the molecules can be captured in the solid state by drying off solvent, resulting in solid nanopatterned (chemically and physically) thermally stable (to greater than 100 C) materials. Designed sequences which stabilize smectic phases have allowed a variety of nanoscale multilayered biopolymeric materials to be developed. Preliminary investigations suggest that chemical patterns running perpendicular to the smectic layer plane can be functionalized and used to localize a variety of organic, inorganic, and organometallic moieties in very simple multilayered nanocomposites. The phase behavior of collagen-like oligopeptide materials is described, emphasizing the correlation between mesophase, molecular orientation, and chemical patterning at the microscale and nanoscale. In many cases, the textures observed for smectic and hexatic phase collagens are remarkably similar to the complex (and not fully understood) helicoids observed in biological collagen-based tissues. Comparisons between biological morphologies and collagen model liquid crystalline (and solidified materials) textures may help us understand the molecular features which impart order and function to the extracellular matrix and to collagen-based mineralized tissues. Initial studies have utilized synthetic collagen-like peptides while

  11. Collagen structure: new tricks from a very old dog.

    PubMed

    Bella, Jordi

    2016-04-15

    The main features of the triple helical structure of collagen were deduced in the mid-1950s from fibre X-ray diffraction of tendons. Yet, the resulting models only could offer an average description of the molecular conformation. A critical advance came about 20 years later with the chemical synthesis of sufficiently long and homogeneous peptides with collagen-like sequences. The availability of these collagen model peptides resulted in a large number of biochemical, crystallographic and NMR studies that have revolutionized our understanding of collagen structure. High-resolution crystal structures from collagen model peptides have provided a wealth of data on collagen conformational variability, interaction with water, collagen stability or the effects of interruptions. Furthermore, a large increase in the number of structures of collagen model peptides in complex with domains from receptors or collagen-binding proteins has shed light on the mechanisms of collagen recognition. In recent years, collagen biochemistry has escaped the boundaries of natural collagen sequences. Detailed knowledge of collagen structure has opened the field for protein engineers who have used chemical biology approaches to produce hyperstable collagens with unnatural residues, rationally designed collagen heterotrimers, self-assembling collagen peptides, etc. This review summarizes our current understanding of the structure of the collagen triple helical domain (COL×3) and gives an overview of some of the new developments in collagen molecular engineering aiming to produce novel collagen-based materials with superior properties.

  12. [Collagen diseases with gastrointestinal manifestations].

    PubMed

    Takahashi, Hiroki; Ohara, Mikiko; Imai, Kohzoh

    2004-06-01

    Collagen vascular diseases are known to present with a diverse array of gastrointestinal manifestations. These can be classified as: 1) gastrointestinal damage due to the collagen vascular disease itself; 2) adverse events caused by pharmacotherapies; or 3) gastrointestinal infections following immunosuppression due to corticosteroid (CS) administration. The first group includes lupus enteritis and protein-losing gastroenteropathy in systemic lupus erythematosus (SLE), reflux esophagitis, chronic intestinal pseudo-obstruction, and pneumatosis cystoids intestinalis in systemic sclerosis, amyloidosis in rheumatoid arthritis, bowel ulcer and bleeding in rheumatoid vasculitis and microscopic polyangiitis, and ileocecal ulcer in Behcet disease. In particular, colonic ulcers associated with SLE represent refractory lesions resistant to CS. Analysis of reported cases showing colonic lesions with SLE (22 cases in Japan) revealed that mean duration of SLE was 9.9 years and 77% of colonic lesions were observed in the rectum and sigmoid colon. Half of the patients developed intestinal perforation or penetration, and 6 of the 11 patients with perforation died. The second group includes lesions in the small and large intestine due to nonsteroidal anti-inflammatory drugs (NSAIDs) and CSs, in addition to peptic ulcers. As perforation in CS-treated patients displays relatively high incidence with poor prognosis, careful attention to such complications is needed. The third group includes candidal esophagitis and cytomegalovirus (CMV) enteritis. Prompt diagnosis is required to prevent colonic bleeding and perforation due to CMV.

  13. Laser welding and collagen crosslinks

    SciTech Connect

    Reiser, K.M.; Last, J.A.; Small, W. IV; Maitland, D.J.; Heredia, N.J.; Da Silva, L.B.; Matthews, D.L.

    1997-02-20

    Strength and stability of laser-welded tissue may be influenced, in part, by effects of laser exposure on collagen crosslinking. We therefore studied effects of diode laser exposure (805 nm, 1-8 watts, 30 seconds) + indocyanine green dye (ICG) on calf tail tendon collagen crosslinks. Effect of ICG dye alone on crosslink content prior to laser exposure was investigated; unexpectedly, we found that ICG-treated tissue had significantly increased DHLNL and OHP, but not HLNL. Laser exposure after ICG application reduced elevated DHLNL and OHP crosslink content down to their native levels. The monohydroxylated crosslink HLNL was inversely correlated with laser output (p<0.01 by linear regression analysis). DHLNL content was highly correlated with content of its maturational product, OHP, suggesting that precursor-product relations are maintained. We conclude that: (1)ICG alone induces DHLNL and OHP crosslink formation; (2)subsequent laser exposure reduces the ICG-induced crosslinks down to native levels; (3)excessive diode laser exposure destroys normally occurring HLNL crosslinks.

  14. Investigation of structural collapse in unidirectionally freeze cast collagen scaffolds.

    PubMed

    Clearfield, Drew; Wei, Mei

    2016-01-01

    Though unidirectional freeze casting is a facile method for the production of structurally anisotropic biomedical scaffolds, challenges exist in optimizing the drying process that are often overlooked. In particular, structural collapse may occur if the material's frozen-state glass transition temperature (Tg') is exceeded. It was discovered that unidirectionally freeze cast collagen matrices were highly deformed following lyophilization, rendering them incapable of further use. In this study, modulated differential scanning calorimetry was performed to identify Tg's of unidirectionally freeze cast collagen scaffolds, and product temperatures during sublimation were recorded. It was observed that cast matrices from 0.5 to 0.05 M acetic acid (HAc) sublimed at a lyophilizer shelf temperature of -25 °C underwent structural collapse and exceeded their Tg's for the majority of the drying cycle. The use of a low pH suspension (0.5 M HAc) promoted the formation of a non-porous surface, which in turn contributed to the increase of the product temperature above its Tg' during drying. This study has revealed that use of a low shelf temperature (-40 °C) and a low HAc concentration (0.05 M) is effective in maintaining product temperatures under Tg' thereby preventing collapse in unidirectionally freeze cast collagen scaffolds.

  15. Immunomodulatory effects of amniotic membrane matrix incorporated into collagen scaffolds

    PubMed Central

    Hortensius, Rebecca A.; Ebens, Jill H.; Harley, Brendan A. C.

    2016-01-01

    Adult tendon wound repair is characterized by the formation of disorganized collagen matrix which leads to decreases in mechanical properties and scar formation. Studies have linked this scar formation to the inflammatory phase of wound healing. Instructive biomaterials designed for tendon regeneration are often designed to provide both structural and cellular support. In order to facilitate regeneration, success may be found by tempering the body’s inflammatory response. This work combines collagen-glycosaminoglycan scaffolds, previously developed for tissue regeneration, with matrix materials (hyaluronic acid and amniotic membrane) that have been shown to promote healing and decreased scar formation in skin studies. The results presented show that scaffolds containing amniotic membrane matrix have significantly increased mechanical properties and that tendon cells within these scaffolds have increased metabolic activity even when the media is supplemented with the pro-inflammatory cytokine interleukin-1 beta. Collagen scaffolds containing hyaluronic acid or amniotic membrane also temper the expression of genes associated with the inflammatory response in normal tendon healing (TNF-α, COLI, MMP-3). These results suggest that alterations to scaffold composition, to include matrix known to decrease scar formation in vivo, can modify the inflammatory response in tenocytes. PMID:26799369

  16. Apigenin induces dermal collagen synthesis via smad2/3 signaling pathway.

    PubMed

    Zhang, Y; Wang, J; Cheng, X; Yi, B; Zhang, X; Li, Q

    2015-04-13

    Decrease in fibroblast-produced collagen has been proven to be the pivotal cause of skin aging, but there is no satisfactory drug which directly increases dermal thickness and collage density. Here we found that a flavonoid natural product, apigenin, could significantly increase collagen synthesis. NIH/3T3 and primary human dermal fibroblasts (HDFs) were incubated with various concentrations of apigenin, with dimethyl sulfoxide (DMSO) serving as the negative control. Real-time reverse-transcription polymerase chain reaction (PCR), Western Blot, and Toluidine blue staining demonstrated that apigenin stimulated type-I and type-III collagen synthesis of fibroblasts on the mRNA and protein levels. Meanwhile, apigenin did not induce expression of alpha smooth muscle actin (α-SMA) in vitro and in vivo, a fibrotic marker in living tissues. Then the production of collagen was confirmed by Masson's trichrome stain, Picrosirius red stain and immunohistochemistry in mouse models. We also clarified that this compound induced collagen synthesis by activating smad2/3 signaling pathway. Taken together, without obvious influence on fibroblasts' apoptosis and viability, apigenin could promote the type-I and type-III collagen synthesis of dermal fibroblasts in vitro and in vivo, thus suggesting that apigenin may serve as a potential agent for esthetic and reconstructive skin rejuvenation.

  17. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts.

    PubMed

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo; Kim, So Young; Jang, Hwan-Hee; Ryu, Sung Ho; Kim, Beom Joon; Lee, Taehoon G

    2012-11-23

    The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the β1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate peptide for the treatment of skin aging and wrinkles.

  18. Apigenin Induces Dermal Collagen Synthesis Via smad2/3 Signaling Pathway

    PubMed Central

    Zhang, Y.; Wang, J.; Cheng, X.; Yi, B.; Zhang, X.; Li, Q.

    2015-01-01

    Decrease in fibroblast-produced collagen has been proven to be the pivotal cause of skin aging, but there is no satisfactory drug which directly increases dermal thickness and collage density. Here we found that a flavonoid natural product, apigenin, could significantly increase collagen synthesis. NIH/3T3 and primary human dermal fibroblasts (HDFs) were incubated with various concentrations of apigenin, with dimethyl sulfoxide (DMSO) serving as the negative control. Real-time reverse-transcription polymerase chain reaction (PCR), Western Blot, and Toluidine blue staining demonstrated that apigenin stimulated type-I and type-III collagen synthesis of fibroblasts on the mRNA and protein levels. Meanwhile, apigenin did not induce expression of alpha smooth muscle actin (α-SMA) in vitro and in vivo, a fibrotic marker in living tissues. Then the production of collagen was confirmed by Masson’s trichrome stain, Picrosirius red stain and immunohistochemistry in mouse models. We also clarified that this compound induced collagen synthesis by activating smad2/3 signaling pathway. Taken together, without obvious influence on fibroblasts’ apoptosis and viability, apigenin could promote the type-I and type-III collagen synthesis of dermal fibroblasts in vitro and in vivo, thus suggesting that apigenin may serve as a potential agent for esthetic and reconstructive skin rejuvenation. PMID:26150153

  19. Regulation of migratory activity of human keratinocytes by topography of multiscale collagen-containing nanofibrous matrices.

    PubMed

    Fu, Xiaoling; Xu, Meng; Liu, Jie; Qi, Yanmei; Li, Shaohua; Wang, Hongjun

    2014-02-01

    Nanofibrous matrices hold great promise in skin wound repair partially due to their capability of recapturing the essential attributes of native extracellular matrix (ECM). With regard to limited studies on the effect of nanofibrous matrices on keratinocytes, the present study was aimed to understand how the topographical feature of nanofibrous matrices regulates keratinocyte motility by culturing keratinocytes on polycaprolactone (PCL)/collagen nanofibrous matrices (rough surface with fiber diameters of 331 ± 112 nm) or the matrices coated with a thin layer of collagen gel to form a secondary ultrafine fibrous network (smooth surface with ultrafine fiber diameters of 55 ± 26 nm). It was found that the PCL/collagen nanofibrous matrices alone did not stimulate cell migration, while collagen gel coating could significantly increase cell motility. Further studies demonstrated that the ultrafine fibrous network of collagen gel coating significantly activated integrin β1, Rac1 and Cdc42, facilitated the deposition of laminin-332 (formerly called laminin-5), and promoted the expression of active matrix metalloproteinases (MMPs) (i.e., MMP-2 and 9). Neutralization of integrin β1 activity abrogated the gel coating-induced keratinocyte migration. These findings provide important evidence on the role of topographical features of nanofibrous matrices in regulating the phenotypic alteration of keratinocytes and suggest the possible utility of collagen-containing nanofibrous matrices for skin regeneration especially in re-epithelialization.

  20. Effect of glucocorticoids on collagen accumulation in pulmonary vascular remodeling in the rat.

    PubMed

    Poiani, G J; Tozzi, C A; Thakker-Varia, S; Choe, J K; Riley, D J

    1994-04-01

    Administration of corticosteroids may attenuate the development of pulmonary hypertension by inhibiting the cell proliferation and protein synthesis that occur in early pulmonary vascular remodeling. However, in vitro studies show that corticosteroids stimulate collagen synthesis in vascular smooth muscle cells, and corticosteroid administration may be deleterious in stimulating collagen deposition. To test whether corticosteroid treatment promotes vascular collagen production in vivo, we administered triamcinolone diacetate to rats exposed to 10% O2 for 3 days and measured pro alpha 1(I) collagen mRNA and the hydroxyproline/protein ratio in the main pulmonary artery. Triamcinolone treatment (12 mg/kg intraperitoneally, once daily for 3 days) reduced mean right ventricular pressure (11 +/- 1 versus 14 +/- 1 mm Hg) and protein content of pulmonary arteries (1.8 +/- 0.1 versus 2.7 +/- 0.1 mg/vessel) (both p < 0.05). However, corticosteroid treatment produced a dose-related increase in pro alpha 1(I) mRNA levels and increased the ratio of hydroxyproline/protein (47 +/- 2 versus 38 +/- 3 micrograms/mg; p < 0.05). Thus, corticosteroid administration ameliorated the increase in pulmonary hypertension in early hypoxia, but increased the proportion of collagen in the vessel wall. Corticosteroid treatment in pulmonary vascular remodeling may be deleterious in increasing the concentration of collagen in the vessel wall.

  1. Thioamides in the collagen triple helix†

    PubMed Central

    Newberry, Robert W.; VanVeller, Brett

    2015-01-01

    To probe noncovalent interactions within the collagen triple helix, backbone amides were replaced with a thioamide isostere. This subtle substitution is the first in the collagen backbone that does not compromise thermostability. A triple helix with a thioamide as a hydrogen bond donor was found to be more stable than triple helices assembled from isomeric thiopeptides. PMID:25967743

  2. Thioamides in the collagen triple helix.

    PubMed

    Newberry, Robert W; VanVeller, Brett; Raines, Ronald T

    2015-06-14

    To probe noncovalent interactions within the collagen triple helix, backbone amides were replaced with a thioamide isostere. This subtle substitution is the first in the collagen backbone that does not compromise thermostability. A triple helix with a thioamide as a hydrogen bond donor was found to be more stable than triple helices assembled from isomeric thiopeptides.

  3. Structure, physiology, and biochemistry of collagens.

    PubMed

    Mienaltowski, Michael J; Birk, David E

    2014-01-01

    Tendons and ligaments are connective tissues that guide motion, share loads, and transmit forces in a manner that is unique to each as well as the anatomical site and biomechanical stresses to which they are subjected. Collagens are the major molecular components of both tendons and ligaments. The hierarchical structure of tendon and its functional properties are determined by the collagens present, as well as their supramolecular organization. There are 28 different types of collagen that assemble into a variety of supramolecular structures. The assembly of specific supramolecular structures is dependent on the interaction with other matrix molecules as well as the cellular elements. Multiple suprastructural assemblies are integrated to form the functional tendon/ligament. This chapter begins with a discussion of collagen molecules. This is followed by a definition of the supramolecular structures assembled by different collagen types. The general principles involved in the assembly of collagen-containing suprastructures are presented focusing on the regulation of tendon collagen fibrillogenesis. Finally, site-specific differences are discussed. While generalizations can be made, differences exist between different tendons as well as between tendons and ligaments. Compositional differences will impact structure that in turn will determine functional differences. Elucidation of the unique physiology and pathophysiology of different tendons and ligaments will require an appreciation of the role compositional differences have on collagen suprastructural assembly, tissue organization, and function.

  4. Polarization effects in SHG of collagen

    NASA Astrophysics Data System (ADS)

    Xu, Paul; Cox, Guy C.; Ramshaw, John A. M.; Lukins, Philip B.; Sheppard, Colin J. R.

    2004-06-01

    The polarization dependence of the second harmonic emission of purified in-vitro reconstituted fibrils of collagen has been examined. The results confirmed the quasi-hexagonal crystalline structure within the fibrils. Interesting different polarization behaviours were seen between collagen types I and II, which can be utilized as an experimental technique for differentiation.

  5. Use of natural neural scaffolds consisting of engineered vascular endothelial growth factor immobilized on ordered collagen fibers filled in a collagen tube for peripheral nerve regeneration in rats.

    PubMed

    Ma, Fukai; Xiao, Zhifeng; Meng, Danqing; Hou, Xianglin; Zhu, Jianhong; Dai, Jianwu; Xu, Ruxiang

    2014-10-15

    The search for effective strategies for peripheral nerve regeneration has attracted much attention in recent years. In this study, ordered collagen fibers were used as intraluminal fibers after nerve injury in rats. Vascular endothelial growth factor (VEGF) plays an important role in nerve regeneration, but its very fast initial burst of activity within a short time has largely limited its clinical use. For the stable binding of VEGF to ordered collagen fibers, we fused a collagen-binding domain (CBD) to VEGF through recombinant DNA technology. Then, we filled the ordered collagen fibers-CBD-VEGF targeting delivery system in a collagen tube to construct natural neural scaffolds, which were then used to bridge transected nerve stumps in a rat sciatic nerve transection model. After transplantation, the natural neural scaffolds showed minimal foreign body reactions and good integration into the host tissue. Oriented collagen fibers in the collagen tube could guide regenerating axons in an oriented manner to the distal, degenerating nerve segment, maximizing the chance of target reinnervation. Functional and histological analyses indicated that the recovery of nerve function in the natural neural scaffolds-treated group was superior to the other grafted groups. The guiding of oriented axonal regeneration and effective delivery systems surmounting the otherwise rapid and short-lived diffusion of growth factors in body fluids are two important strategies in promoting peripheral nerve regeneration. The natural neural scaffolds described take advantage of these two aspects and may produce synergistic effects. These properties qualified the artificial nerve conduits as a putative candidate system for the fabrication of peripheral nerve reconstruction devices.

  6. Proton pump inhibitor induced collagen expression in colonocytes is associated with collagenous colitis

    PubMed Central

    Mori, Shiori; Kadochi, Yui; Luo, Yi; Fujiwara-Tani, Rina; Nishiguchi, Yukiko; Kishi, Shingo; Fujii, Kiyomu; Ohmori, Hitoshi; Kuniyasu, Hiroki

    2017-01-01

    AIM To elucidate the role of proton pump inhibitors (PPIs) in collagenous disease, direct effect of PPI on colonocytes was examined. METHODS Collagenous colitis is a common cause of non-bloody, watery diarrhea. Recently, there has been increasing focus on the use of proton PPIs as a risk factor for developing collagenous colitis. Mouse CT26 colonic cells were treated with PPI and/or PPI-induced alkaline media. Expression of fibrosis-associated genes was examined by RT-PCR. In human materials, collagen expression was examined by immunohistochemistry. RESULTS CT26 cells expressed a Na+-H+ exchanger gene (solute carrier family 9, member A2). Treatment with PPI and/or PPI-induced alkaline media caused growth inhibition and oxidative stress in CT26 cells. The treatment increased expression of fibrosis inducing factors, transforming growth factor β and fibroblast growth factor 2. The treatment also decreased expression of a negative regulator of collagen production, replication factor C1, resulting in increased expression of collagen types III and IV in association with lipid peroxide. In biopsy specimens from patients with collagenous colitis, type III and IV collagen were increased. Increase of type III collagen was more pronounced in PPI-associated collagenous colitis than in non-PPI-associated disease. CONCLUSION From these findings, the reaction of colonocytes to PPI might participate in pathogenesis of collagenous colitis. PMID:28321159

  7. Influence of collagen source on fibrillar architecture and properties of vitrified collagen membranes.

    PubMed

    Majumdar, Shoumyo; Guo, Qiongyu; Garza-Madrid, Marcos; Calderon-Colon, Xiomara; Duan, Derek; Carbajal, Priscilla; Schein, Oliver; Trexler, Morgana; Elisseeff, Jennifer

    2016-02-01

    Collagen vitrigel membranes are transparent biomaterials characterized by a densely organized, fibrillar nanostructure that show promise in the treatment of corneal injury and disease. In this study, the influence of different type I collagen sources and processing techniques, including acid-solubilized collagen from bovine dermis (Bov), pepsin-solubilized collagen from human fibroblast cell culture (HuCC), and ficin-solubilized collagen from recombinant human collagen expressed in tobacco leaves (rH), on the properties of the vitrigel membranes was evaluated. Postvitrification carbodiimide crosslinking (CX) was also carried out on the vitrigels from each collagen source, forming crosslinked counterparts BovXL, HuCCXL, and rHXL, respectively. Collagen membrane ultrastructure and biomaterial properties were found to rely heavily on both collagen source and crosslinking. Bov and HuCC samples showed a random fibrillar organization of collagen, whereas rH vitrigels showed remarkable regional fibril alignment. After CX, light transmission was enhanced in all groups. Denaturation temperatures after CX increased in all membranes, of which the highest increase was seen in rH (14.71°C), suggesting improved thermal stability of the collagen fibrils in the membranes. Noncrosslinked rH vitrigels may be reinforced through CX to reach levels of mechanical strength and thermal stability comparable to Bov.

  8. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen.

    PubMed

    Thievessen, Ingo; Fakhri, Nikta; Steinwachs, Julian; Kraus, Viola; McIsaac, R Scott; Gao, Liang; Chen, Bi-Chang; Baird, Michelle A; Davidson, Michael W; Betzig, Eric; Oldenbourg, Rudolf; Waterman, Clare M; Fabry, Ben

    2015-11-01

    Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton-ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell-ECM adhesion and traction force generation.

  9. A novel benign solution for collagen processing

    NASA Astrophysics Data System (ADS)

    Arnoult, Olivier

    Collagen is the main protein constituting the extracellular matrix (ECM) of tissues in the body (skin, cartilage, blood vessels...). It exists many types of collagen, this work studies only fibrillar collagen (e.g. collagen type I contained in the skin) that exhibits a triple helical structure composed of 3 alpha-helical collagen chains. This particular and defined hierarchical structure is essential to the biological and mechanical properties of the collagen. Processing collagen into scaffolds to mimic the ECM is crucial for successful tissue engineering. Recently collagen was processed into fibrous and porous scaffold using electrospinning process. However the solvent (HFIP) used for electrospinning is extremely toxic for the user and expensive. This work shows that HFIP can be replaced by a benign mixture composed of water, salt and alcohol. Yet only three alcohols (methanol, ethanol and iso-propanol) enable the dissolution of large quantity of collagen in the benign mixture, with a wide range of alcohol to buffer ratio, and conserve the collagen hierarchical structure at least as well as the HFIP. Collagen can be electrospun from the benign mixture into sub-micron fibers with concentrations as low as 6 wt-% for a wide range of alcohol to buffer ratio, with at least 10wt-% of salt, and any of the three alcohols. Specific conditions yield nano size fibers. After processing from HFIP or a benign mixture, collagen is water soluble and needs to be chemically crosslink for tissue engineering application. Post-crosslinking with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) results in the loss of the scaffold fibrous aspect and porosity, hence it is useless for tissue engineering. Such issue could be prevented by incorporating the crosslinker into the mixture prior to electrospinning. When EDC is used alone, collagen forms a gel in the mixture within minutes, preventing electrospinning. The addition of N-hydroxysuccinimide (NHS) in excess to EDC

  10. Molecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides

    NASA Astrophysics Data System (ADS)

    Zitnay, Jared L.; Li, Yang; Qin, Zhao; San, Boi Hoa; Depalle, Baptiste; Reese, Shawn P.; Buehler, Markus J.; Yu, S. Michael; Weiss, Jeffrey A.

    2017-03-01

    Mechanical injury to connective tissue causes changes in collagen structure and material behaviour, but the role and mechanisms of molecular damage have not been established. In the case of mechanical subfailure damage, no apparent macroscale damage can be detected, yet this damage initiates and potentiates in pathological processes. Here, we utilize collagen hybridizing peptide (CHP), which binds unfolded collagen by triple helix formation, to detect molecular level subfailure damage to collagen in mechanically stretched rat tail tendon fascicle. Our results directly reveal that collagen triple helix unfolding occurs during tensile loading of collagenous tissues and thus is an important damage mechanism. Steered molecular dynamics simulations suggest that a likely mechanism for triple helix unfolding is intermolecular shearing of collagen α-chains. Our results elucidate a probable molecular failure mechanism associated with subfailure injuries, and demonstrate the potential of CHP targeting for diagnosis, treatment and monitoring of tissue disease and injury.

  11. Molecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides

    PubMed Central

    Zitnay, Jared L.; Li, Yang; Qin, Zhao; San, Boi Hoa; Depalle, Baptiste; Reese, Shawn P.; Buehler, Markus J.; Yu, S. Michael; Weiss, Jeffrey A.

    2017-01-01

    Mechanical injury to connective tissue causes changes in collagen structure and material behaviour, but the role and mechanisms of molecular damage have not been established. In the case of mechanical subfailure damage, no apparent macroscale damage can be detected, yet this damage initiates and potentiates in pathological processes. Here, we utilize collagen hybridizing peptide (CHP), which binds unfolded collagen by triple helix formation, to detect molecular level subfailure damage to collagen in mechanically stretched rat tail tendon fascicle. Our results directly reveal that collagen triple helix unfolding occurs during tensile loading of collagenous tissues and thus is an important damage mechanism. Steered molecular dynamics simulations suggest that a likely mechanism for triple helix unfolding is intermolecular shearing of collagen α-chains. Our results elucidate a probable molecular failure mechanism associated with subfailure injuries, and demonstrate the potential of CHP targeting for diagnosis, treatment and monitoring of tissue disease and injury. PMID:28327610

  12. Collagen Extracted from Persian Gulf Squid Exhibits Anti-Cytotoxic Properties on Apple Pectic Treated Cells: Assessment in an In Vitro Bioassay Model

    PubMed Central

    DELPHI, Ladan; SEPEHRI, Houri; MOTEVASELI, Elaheh; KHORRAMIZADEH, Mohammad Reza

    2016-01-01

    Background: Collagen-based three-dimensional (3D) in vitro systems have been introduced to study the physiological states of cells. As a biomolecule, collagen is usually extracted from terrestrial animals whilst aquatic animals like squid contain large amounts of collagen. Methods: In order to make effective use of marine organisms, we selected Persian Gulf squid in 2015 to extract the required collagen. Then, a 3D culture system based on the extracted collagen was applied to investigate cellular mechanisms in a native microenvironment. The formed collagen gel was used to investigate the growth of MDA-MB-231 breast cancer cells as well as responses to pectic acid. Results: The results revealed that the extracted collagen contained α, ß and γ components with high water holding capacity. This collagen formed a gel-like structure, which could promote the proliferation of MDA-MB-231 breast cancer cells. The MDA-MB-231 cells’ viability in presence of pectic acid, demonstrating the cells’ behavior in a 3D culture system. Conclusion: It seems that the collagen extracted from squid skin has type I collagen properties. It might be used as a substrate in 3D cell culture systems. PMID:27928532

  13. Effect of initial pBMP-9 loading and collagen concentration on the kinetics of peptide release and a mathematical model of the delivery system.

    PubMed

    Lauzon, Marc-Antoine; Marcos, Bernard; Faucheux, Nathalie

    2014-05-28

    Type I collagen is one of the most widely used materials for drug delivery in tissue repair. It is the reference carrier for delivering growth factors like bone morphogenetic proteins (BMPs such as BMP-2 and BMP-7) for bone repair. Since BMPs are expensive to produce, we have developed a peptide derived from BMP-9 (pBMP-9) that is 300 times less expensive than the entire protein while still promoting osteogenic differentiation. We have now evaluated the effects of the collagen concentration and the initial pBMP-9 load on peptide release. We then developed a model of pBMP-9 release kinetics by finite differences using a system based on Fick's second law in which the interactions between the peptide and collagen fibers are assumed to follow Langmuir adsorption kinetics. The Langmuir isotherms suggest that the structure of the collagen gel influences the strength of its electrostatic interaction with the peptide, since increasing the collagen concentration decreased the affinity of pBMP-9 for the collagen. The resulting model of the mechanism accurately reflects the experimental data and the parameters estimated indicate that the diffusivities with the different collagen concentrations are similar, whereas the mass transfer coefficient increases with the collagen concentration. The results also indicate that perfect sink conditions cannot be assumed and suggest the presence of an optimal collagen concentration. Finally, we have correlated our conclusions with the differences in collagen fiber organization observed by transmission electron microscopy.

  14. Matrix metalloproteinase interactions with collagen and elastin

    PubMed Central

    Van Doren, Steven R.

    2015-01-01

    Most abundant in the extracellular matrix are collagens, joined by elastin that confers elastic recoil to the lung, aorta, and skin. These fibrils are highly resistant to proteolysis but can succumb to a minority of the matrix metalloproteinases (MMPs). Considerable inroads to understanding how such MMPs move to the susceptible sites in collagen and then unwind the triple helix of collagen monomers have been gained. The essential role in unwinding of the hemopexin-like domain of interstitial collagenases or the collagen binding domain of gelatinases is highlighted. Elastolysis is also facilitated by the collagen binding domain in the cases of MMP-2 and MMP-9, and remote exosites of the catalytic domain in the case of MMP-12. PMID:25599938

  15. Proline puckering parameters for collagen structure simulations

    SciTech Connect

    Wu, Di

    2015-03-15

    Collagen is made of triple helices rich in proline residues, and hence is influenced by the conformational motions of prolines. Because the backbone motions of prolines are restricted by the helical structures, the only side chain motion—proline puckering—becomes an influential factor that may affect the stability of collagen structures. In molecular simulations, a proper proline puckering population is desired so to yield valid results of the collagen properties. Here we design the proline puckering parameters in order to yield suitable proline puckering populations as demonstrated in the experimental results. We test these parameters in collagen and the proline dipeptide simulations. Compared with the results of the PDB and the quantum calculations, we propose the proline puckering parameters for the selected collagen model simulations.

  16. Bioengineered collagens: emerging directions for biomedical materials.

    PubMed

    Ramshaw, John A M; Werkmeister, Jerome A; Dumsday, Geoff J

    2014-01-01

    Mammalian collagen has been widely used as a biomedical material. Nevertheless, there are still concerns about the variability between preparations, particularly with the possibility that the products may transmit animal-based diseases. Many groups have examined the possible application of bioengineered mammalian collagens. However, translating laboratory studies into large-scale manufacturing has often proved difficult, although certain yeast and plant systems seem effective. Production of full-length mammalian collagens, with the required secondary modification to give proline hydroxylation, has proved difficult in E. coli. However, recently, a new group of collagens, which have the characteristic triple helical structure of collagen, has been identified in bacteria. These proteins are stable without the need for hydroxyproline and are able to be produced and purified from E. coli in high yield. Initial studies indicate that they would be suitable for biomedical applications.

  17. Proline puckering parameters for collagen structure simulations

    NASA Astrophysics Data System (ADS)

    Wu, Di

    2015-03-01

    Collagen is made of triple helices rich in proline residues, and hence is influenced by the conformational motions of prolines. Because the backbone motions of prolines are restricted by the helical structures, the only side chain motion—proline puckering—becomes an influential factor that may affect the stability of collagen structures. In molecular simulations, a proper proline puckering population is desired so to yield valid results of the collagen properties. Here we design the proline puckering parameters in order to yield suitable proline puckering populations as demonstrated in the experimental results. We test these parameters in collagen and the proline dipeptide simulations. Compared with the results of the PDB and the quantum calculations, we propose the proline puckering parameters for the selected collagen model simulations.

  18. Fibrin binds to collagen and provides a bridge for αVβ3 integrin-dependent contraction of collagen gels.

    PubMed

    Reyhani, Vahid; Seddigh, Pegah; Guss, Bengt; Gustafsson, Renata; Rask, Lars; Rubin, Kristofer

    2014-08-15

    The functional significance of fibrin deposits typically seen in inflammatory lesions, carcinomas and in healing wounds is not fully understood. In the present study, we demonstrate that fibrinogen/fibrin specifically bound to native Col I (collagen type I) and used the Col I fibre network as a base to provide a functional interface matrix that connects cells to the Col I fibres through αVβ3 integrins. This allowed murine myoblast C2C12 cells to contract the collagenous composite gel via αVβ3 integrin. We show that fibrinogen specifically bound to immobilized native Col I at the site known to bind matrix metalloproteinase-1, discoidin domain receptor-2 and fibronectin, and that binding had no effect on Col I fibrillation. A specific competitive inhibitor blocking the Col-I-binding site for fibrinogen abolished the organization of fibrin into discernable fibrils, as well as the C2C12-mediated contraction of Col I gels. Our data show that fibrin can function as a linkage protein between Col I fibres and cells, and suggest that fibrin at inflammatory sites indirectly connects αVβ3 integrins to Col I fibres and thereby promotes cell-mediated contraction of collagenous tissue structures.

  19. Actin microfilaments participate in the regulation of the COL1A1 promoter activity in ROS17/2.8 cells under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Dai, Zhongquan; Li, Yinghui; Ding, Bai; Zhang, Xiaoyou; Tan, Yingjun; Wan, Yumin

    2006-01-01

    IntroductionMicrogravity is thought to decrease osteoblastic activity and induce osteoporosis during spaceflight, but the mechanisms, particularly the attendant changes in gene expression, are not well understood. It is suspected that the cytoskeletal system is involved in the manifold changes of cell shape, function, and signaling under microgravity conditions. MethodsWe constructed cell lines stably transfected with pJI36EGFP and pJI23EGFP, which contained a 3.6 and a 2.3 kb fragment, respectively, of the α1(I) collagen gene (COL1A1) promoter fused with the enhanced green fluorescence protein (EGFP) reporter gene. We then developed a semi-quantitative analysis of EGFP fluorescence intensity to evaluate the effects of clinorotation and/or cytochalasin B on the activity of the COL1A1 promoter. Simultaneously, we assessed the collagen type I protein content versus total protein content in clinorotated or control osteoblasts, using immunocytochemistry and the Bradford method, respectively. ResultsThe fluorescence intensity analysis revealed that the expression of COL1A1-EGFP increased in GFP-ROS cells clinorotated for 24 or 48 h, as compared with stationary control cultures. We observed a similar trend in collagen type I content, as assessed by immunocytochemistry. We found that the osteoblast microfilaments tended to disassemble and show a reduction in stress fibers under space flight and clinorotation. Treatment with cytochalasin B in normal gravity resulted in a dose-dependent increase of EGFP fluorescence intensity, indicating that disruption of the actin system was associated with increased activity of the COL1A1 promoter. ConclusionOur study demonstrates that disrupting the actin cytoskeleton by treatment with cytochalasin B and real or simulated microgravity conditions led to altered COL1A1 promoter activity. Together, these results suggest that actin may participate in the regulation of the COL1A1 promoter activity under microgravity conditions.

  20. New Scalings in Nuclear Fragmentation

    SciTech Connect

    Bonnet, E.; Bougault, R.; Galichet, E.; Gagnon-Moisan, F.; Guinet, D.; Lautesse, P.; Marini, P.; Parlog, M.

    2010-10-01

    Fragment partitions of fragmenting hot nuclei produced in central and semiperipheral collisions have been compared in the excitation energy region 4-10 MeV per nucleon where radial collective expansion takes place. It is shown that, for a given total excitation energy per nucleon, the amount of radial collective energy fixes the mean fragment multiplicity. It is also shown that, at a given total excitation energy per nucleon, the different properties of fragment partitions are completely determined by the reduced fragment multiplicity (i.e., normalized to the source size). Freeze-out volumes seem to play a role in the scalings observed.

  1. Inhibitory effects of peroxisome proliferator-activated receptor γ agonists on collagen IV production in podocytes.

    PubMed

    Li, Yanjiao; Shen, Yachen; Li, Min; Su, Dongming; Xu, Weifeng; Liang, Xiubin; Li, Rongshan

    2015-07-01

    Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists have beneficial effects on the kidney diseases through preventing microalbuminuria and glomerulosclerosis. However, the mechanisms underlying these effects remain to be fully understood. In this study, we investigate the effects of PPAR-γ agonist, rosiglitazone (Rosi) and pioglitazone (Pio), on collagen IV production in mouse podocytes. The endogenous expression of PPAR-γ was found in the primary podocytes and can be upregulated by Rosi and Pio, respectively, detected by RT-PCR and Western blot. PPAR-γ agonist markedly blunted the increasing of collagen IV expression and extraction in podocytes induced by TGF-β. In contrast, adding PPAR-γ antagonist, GW9662, to podocytes largely prevented the inhibition of collagen IV expression from Pio treatment. Our data also showed that phosphorylation of Smad2/3 enhanced by TGF-β in a time-dependent manner was significantly attenuated by adding Pio. The promoter region of collagen IV gene contains one putative consensus sequence of Smad-binding element (SBE) by promoter analysis, Rosi and Pio significantly ameliorated TGF-β-induced SBE4-luciferase activity. In conclusion, PPAR-γ activation by its agonist, Rosi or Pio, in vitro directly inhibits collagen IV expression and synthesis in primary mouse podocytes. The suppression of collagen IV production was related to the inhibition of TGF-β-driven phosphorylation of Smad2/3 and decreased response activity of SBEs of collagen IV in PPAR-γ agonist-treated mouse podocytes. This represents a novel mechanistic support regarding PPAR-γ agonists as podocyte protective agents.

  2. Collagen IV-modified scaffolds improve islet survival and function and reduce time to euglycemia.

    PubMed

    Yap, Woon Teck; Salvay, David M; Silliman, Michael A; Zhang, Xiaomin; Bannon, Zachary G; Kaufman, Dixon B; Lowe, William L; Shea, Lonnie D

    2013-11-01

    Islet transplantation on extracellular matrix (ECM) protein-modified biodegradable microporous poly(lactide-co-glycolide) scaffolds is a potential curative treatment for type 1 diabetes mellitus (T1DM). Collagen IV-modified scaffolds, relative to control scaffolds, significantly decreased the time required to restore euglycemia from 17 to 3 days. We investigated the processes by which collagen IV-modified scaffolds enhanced islet function and mediated early restoration of euglycemia post-transplantation. We characterized the effect of collagen IV-modified scaffolds on islet survival, metabolism, and insulin secretion in vitro and early- and intermediate-term islet mass and vascular density post-transplantation and correlated these with early restoration of euglycemia in a syngeneic mouse model. Control scaffolds maintained native islet morphologies and architectures as well as collagen IV-modified scaffolds in vivo. The islet size and vascular density increased, while β-cell proliferation decreased from day 16 to 113 post-transplantation. Collagen IV-modified scaffolds promoted islet cell viability and decreased early-stage apoptosis in islet cells in vitro-phenomena that coincided with enhanced islet metabolic function and glucose-stimulated insulin secretion. These findings suggest that collagen IV-modified scaffolds promote the early restoration of euglycemia post-transplantation by enhancing islet metabolism and glucose-stimulated insulin secretion. These studies of ECM proteins, in particular collagen IV, and islet function provide key insights for the engineering of a microenvironment that would serve as a platform for enhancing islet transplantation as a viable clinical therapy for T1DM.

  3. AP-1 overexpression impairs corticosteroid inhibition of collagen production by fibroblasts isolated from asthmatic subjects.

    PubMed

    Jacques, Eric; Semlali, Abdelhabib; Boulet, Louis Philippe; Chakir, Jamila

    2010-08-01

    Asthma is characterized by airway remodeling associated with an increase in the deposition of ECM proteins such as type I collagen. These components are mainly produced by fibroblasts. Inhaled corticosteroids are considered the cornerstone of asthma therapy. Despite substantial evidence as to the anti-inflammatory action of corticosteroids, their effect on controlling ECM protein deposition in the airways is not completely understood. This study determined the effect of dexamethasone (Dex) on collagen production by bronchial fibroblasts derived from asthmatic and healthy subjects. Expression of procollagen mRNA in fibroblasts from asthmatics and normal controls was determined by quantitative PCR. Regulation of the procollagen-alpha(1)I promoter was evaluated by transient transfections. Transforming growth factor-beta (TGF-beta) protein expression was determined by ELISA. Protein expression of glucocorticoid receptor (GR) and interaction with activator protein-1 (AP-1), a collagen regulatory transcription factor, was assessed by Western blots, coimmunoprecipitations, and EMSA. AP-1 overexpression was performed by transient transfection using c-Fos/c-Jun expression plasmids. Dex significantly downregulated procollagen production and promoter activity in normal fibroblasts but had no effect on asthmatic fibroblasts. AP-1 and GR interaction increased after Dex stimulation in asthmatic fibroblasts. AP-1 overexpression in control fibroblasts abrogated collagen gene response to Dex. These results show that Dex failed to reduce collagen production in fibroblasts from asthmatic subjects. This impaired response may be related to AP-1 overexpression in these cells.

  4. Guide to collagen characterization for biomaterial studies.

    PubMed

    Abraham, Leah C; Zuena, Erin; Perez-Ramirez, Bernardo; Kaplan, David L

    2008-10-01

    The structure and remodeling of collagen in vivo is critical to the pathology and healing of many human diseases, as well as to normal tissue development and regeneration. In addition, collagen matrices in the form of fibers, coatings, and films are used extensively in biomaterial and biomedical applications. The specific properties of these matrices, both in terms of physical and chemical characteristics, have a direct impact on cellular adhesion, spreading, and proliferation rates, and ultimately on the rate and extent of new extracellular matrix formation in vitro or in vivo. In recent studies, it has also been shown that collagen matrix structure has a major impact on cell and tissue outcomes related to cellular aging and differentiation potential. Collagen structure is complex because of both diversity of source materials, chemistry, and structural hierarchy. With such significant impact of collagen features on biological outcomes, it becomes essential to consider an appropriate set of analytical tools, or guide, so that collagens attained from commercial vendors are characterized in a comparative manner as an integral part of studies focused on biological parameters. The analysis should include as a starting point: (a) structural detail-mainly focused on molecular mass, purity, helical content, and bulk thermal properties, (b) chemical features-mainly focused on surface elemental analysis and hydrophobicity, and (c) morphological features at different length scales. The application of these analytical techniques to the characterization of collagen biomaterial matrices is critical in order to appropriately correlate biological responses from different studies with experimental outcomes in vitro or in vivo. As a case study, the analytical tools employed for collagen biomaterial studies are reviewed in the context of collagen remodeling by fibroblasts. The goal is to highlight the necessity of understanding collagen biophysical and chemical features as a

  5. Mechanisms and Dynamics of Collagen Assembly

    NASA Astrophysics Data System (ADS)

    Tao, Jinhui; Friddle, Raymond; Wang, Debin; de Yoreo, Jim

    2013-03-01

    Collagen is the major structural protein of bone, dentine and it template the nucleation of biomineral phases. Both collagen conformation and architecture on substrate are critical for its function. We studied the mechanism of collagen I assembly on mica by in-situ AFM. At acidic condition, assembled architecture evolved from random fibers to co-aligned fibers and finally to bundles as the K+ concentration increased from 100 to 300mM. XPS and NEXAFS showed the concentration of K+ within the collagen layer increased and the intensity of absorption peak due to π*(C =O) resonance decreased with higher K+concentration. The magnitude of collagen-mica (C-M) and collagen-collagen (C-C) interactions were measured by dynamic force spectroscopy. The free energy ΔGb for C-M and C-C at 200mM K+were 13.7kT and 1.4kT, while ΔGb at 300mM K+ were 5.7kT and 12.3kT, respectively. The switch from co-aligned fibers to 3D bundles is driven by the reversal in the magnitude of C-C and C-M interactions. Our results indicate K+ complex with C =O of collagen and its effect on the strength of collagen-collagen bridging is the likely source of architecture control. Authors would like to acknowledge grant no. DK61673 from the National Institutes of Health. Theoretical analysis was supported by Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract no. DE-AC02-05CH1123.

  6. Liver collagen synthesis in murine schistosomiasis.

    PubMed Central

    Dunn, M A; Rojkind, M; Warren, K S; Hait, P K; Rifas, L; Seifter, S

    1977-01-01

    Collagen synthesis was measured in liver slices obtained from mice with hepatosplenic schistosomiasis. Enlarged fibrotic livers from these mice contained 20 times more collagen than normal. This model of hepatic fibrosis results from an inflammatory granulomatous host response to Schistosoma mansoni ova in portal tracts, rather than from direct lover cell injury as with carbon tetrachloride-induced liver fibrosis. Collagen synthesis, as measured by the formation of labeled protein-bound hydroxyproline, occurred in granulomas isolated from fibrotic livers. Labeled collagen that cochromatographed with type I collagen was extracted with neutral salt solution from liver slices incubated with labeled proline. The free proline pool of the liver was doubled in infected mice; coordinately, liver slices from these animals showed maximal collagen production when the concentration of free proline in the medium was raised to 0.4 mM, the same level measured in the fibrotic livers. Under such conditions, collagen synthesis was at a rate equivalent to the formation of 5.4 nmol of protein-bound hydroxyproline per g liver in 6 h. In comparative incubations in medium containing 0.2 mM proline, fibrotic liver slices produced 16-fold more collagen than normal slices. The proline analogue, L-azetidine 2-carboxylic acid, effectively inhibited synthesis of labeled collagen by fibrotic liver slices. These studies show the synthesis of collagen in a reproducible animal model of the most prevalent form of human liver fibrosis. Difinitition of the controlling factors in this system is of interest for the general problem of fibrosis produced by immunological responses. Images PMID:845255

  7. Fragmentation of random trees

    NASA Astrophysics Data System (ADS)

    Kalay, Z.; Ben-Naim, E.

    2015-01-01

    We study fragmentation of a random recursive tree into a forest by repeated removal of nodes. The initial tree consists of N nodes and it is generated by sequential addition of nodes with each new node attaching to a randomly-selected existing node. As nodes are removed from the tree, one at a time, the tree dissolves into an ensemble of separate trees, namely, a forest. We study statistical properties of trees and nodes in this heterogeneous forest, and find that the fraction of remaining nodes m characterizes the system in the limit N\\to ∞ . We obtain analytically the size density {{φ }s} of trees of size s. The size density has power-law tail {{φ }s}˜ {{s}-α } with exponent α =1+\\frac{1}{m}. Therefore, the tail becomes steeper as further nodes are removed, and the fragmentation process is unusual in that exponent α increases continuously with time. We also extend our analysis to the case where nodes are added as well as removed, and obtain the asymptotic size density for growing trees.

  8. Fragmentation of random trees

    NASA Astrophysics Data System (ADS)

    Kalay, Ziya; Ben-Naim, Eli

    2015-03-01

    We investigate the fragmentation of a random recursive tree by repeated removal of nodes, resulting in a forest of disjoint trees. The initial tree is generated by sequentially attaching new nodes to randomly chosen existing nodes until the tree contains N nodes. As nodes are removed, one at a time, the tree dissolves into an ensemble of separate trees, namely a forest. We study the statistical properties of trees and nodes in this heterogeneous forest. In the limit N --> ∞ , we find that the system is characterized by a single parameter: the fraction of remaining nodes m. We obtain analytically the size density ϕs of trees of size s, which has a power-law tail ϕs ~s-α , with exponent α = 1 + 1 / m . Therefore, the tail becomes steeper as further nodes are removed, producing an unusual scaling exponent that increases continuously with time. Furthermore, we investigate the fragment size distribution in a growing tree, where nodes are added as well as removed, and find that the distribution for this case is much narrower.

  9. Collagen-binding VEGF mimetic peptide: Structure, matrix interaction, and endothelial cell activation

    NASA Astrophysics Data System (ADS)

    Chan, Tania R.

    Long term survival of artificial tissue constructs depends greatly on proper vascularization. In nature, differentiation of endothelial cells and formation of vasculature are directed by dynamic spatio-temporal cues in the extracellular matrix that are difficult to reproduce in vitro. In this dissertation, we present a novel bifunctional peptide that mimics matrix-bound vascular endothelial growth factor (VEGF), which can be used to encode spatially controlled angiogenic signals in collagen-based scaffolds. The peptide, QKCMP, contains a collagen mimetic domain (CMP) that binds to type I collagen by a unique triple helix hybridization mechanism and a VEGF mimetic domain (QK) with pro-angiogenic activity. We demonstrate QKCMP's ability to hybridize with native and heat denatured collagens through a series of binding studies on collagen and gelatin substrates. Circular dichroism experiments show that the peptide retains the triple helical structure vital for collagen binding, and surface plasmon resonance study confirms the molecular interaction between the peptide and collagen strands. Cell culture studies demonstrate QKCMP's ability to induce endothelial cell morphogenesis and network formation as a matrix-bound factor in 2D and 3D collagen scaffolds. We also show that the peptide can be used to spatially modify collagen-based substrates to promote localized endothelial cell activation and network formation. To probe the biological events that govern these angiogenic cellular responses, we investigated the cell signaling pathways activated by collagen-bound QKCMP and determined short and long-term endothelial cell response profiles for p38, ERK1/2, and Akt signal transduction cascades. Finally, we present our efforts to translate the peptide's in vitro bioactivity to an in vivo burn injury animal model. When implanted at the wound site, QKCMP functionalized biodegradable hydrogels induce enhanced neovascularization in the granulation tissue. The results show QKCMP

  10. Structure of collagen adsorbed on a model implant surface resolved by polarization modulation infrared reflection-absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Brand, Izabella; Habecker, Florian; Ahlers, Michael; Klüner, Thorsten

    2015-03-01

    The polarization modulation infrared reflection-absorption spectra of collagen adsorbed on a titania surface and quantum chemical calculations are used to describe components of the amide I mode to the protein structure at a sub-molecular level. In this study, imino acid rich and poor fragments, representing the entire collagen molecule, are taken into account. The amide I mode of the collagen triple helix is composed of three absorption bands which involve: (i) (∼1690 cm-1) the Cdbnd O stretching modes at unhydrated groups, (ii) (1655-1673 cm-1) the Cdbnd O stretching at carbonyl groups at imino acids and glycine forming intramolecular hydrogen bonds with H atoms at both NH2 and, unusual for proteins, CH2 groups at glycine at a neighbouring chain and (iii) (∼1640 cm-1) the Cdbnd O stretching at carbonyl groups forming hydrogen bonds between two, often charged, amino acids as well as hydrogen bonds to water along the entire helix. The IR spectrum of films prepared from diluted solutions (c < 50 μg ml-1) corresponds to solution spectra indicating that native collagen molecules interact with water adsorbed on the titania surface. In films prepared from solutions (c ⩾ 50 μg ml-1) collagen multilayers are formed. The amide I mode is blue-shifted by 18 cm-1, indicating that intramolecular hydrogen bonds at imino acid rich fragments are weakened. Simultaneous red-shift of the amide A mode implies that the strength of hydrogen bonds at the imino acid poor fragments increases. Theoretically predicted distortion of the collagen structure upon adsorption on the titania surface is experimentally confirmed.

  11. Structure of collagen adsorbed on a model implant surface resolved by polarization modulation infrared reflection-absorption spectroscopy.

    PubMed

    Brand, Izabella; Habecker, Florian; Ahlers, Michael; Klüner, Thorsten

    2015-03-05

    The polarization modulation infrared reflection-absorption spectra of collagen adsorbed on a titania surface and quantum chemical calculations are used to describe components of the amide I mode to the protein structure at a sub-molecular level. In this study, imino acid rich and poor fragments, representing the entire collagen molecule, are taken into account. The amide I mode of the collagen triple helix is composed of three absorption bands which involve: (i) (∼1690cm(-1)) the CO stretching modes at unhydrated groups, (ii) (1655-1673cm(-1)) the CO stretching at carbonyl groups at imino acids and glycine forming intramolecular hydrogen bonds with H atoms at both NH2 and, unusual for proteins, CH2 groups at glycine at a neighbouring chain and (iii) (∼1640cm(-1)) the CO stretching at carbonyl groups forming hydrogen bonds between two, often charged, amino acids as well as hydrogen bonds to water along the entire helix. The IR spectrum of films prepared from diluted solutions (c<50μgml(-1)) corresponds to solution spectra indicating that native collagen molecules interact with water adsorbed on the titania surface. In films prepared from solutions (c⩾50μgml(-1)) collagen multilayers are formed. The amide I mode is blue-shifted by 18cm(-1), indicating that intramolecular hydrogen bonds at imino acid rich fragments are weakened. Simultaneous red-shift of the amide A mode implies that the strength of hydrogen bonds at the imino acid poor fragments increases. Theoretically predicted distortion of the collagen structure upon adsorption on the titania surface is experimentally confirmed.

  12. Changes induced by ozone and ultraviolet light in type I collagen. Bovine Achilles tendon collagen versus rat tail tendon collagen.

    PubMed

    Fujimori, E

    1985-10-15

    High-molecular-mass aggregates were made soluble from insoluble collagens of bovine Achilles tendon and rat tail tendon by limited thermal hydrolysis. These polymeric collagen aggregates were cross-linked by 390-nm-fluorescent 3-hydroxy-pyridinium residues (excited at 325 nm) in the former tendon and by unknown non-fluorescent residues in the latter. With the solubilized insoluble-collagens from both tendons, as well as with acid-soluble collagen from rat tail tendon, other 350-385-nm fluorescence intensities (excited at 300 nm) were found to be higher in monomeric chains than in dimeric and polymeric chains. Low levels of ozone inhibited fibril formation of acid-soluble collagen particularly from young rat tail tendon, reacting with tyrosine residues and the 350-385-nm fluorophores. Aldehyde groups, involved in cross-linking, were not effectively modified by ozone. beta-Components (alpha-chain dimers) were not efficiently dissociated even by higher doses of ozone compared to gamma-components (alpha-chain trimers). Polymeric chain aggregates from bovine Achilles tendon collagen, whose 3-hydroxy-pyridinium cross-links are cleaved by ozone, were more readily dissociated by ozone than those from rat tail tendon collagen. Ultraviolet (300-nm) light, which destroyed the 350-385-nm fluorophores, inhibited fibril formation less effectively than ultraviolet (275-nm) light, which is absorbed by tyrosine residues, and did not dissociate collagen polymers from rat tail tendon. On the other hand, ultraviolet (320-nm) light, absorbed by 3-hydroxy-pyridinium cross-links which were rapidly photolyzed, partially dissociated polymeric collagen aggregates from bovine Achilles tendon after subsequent heating.

  13. Posttranscriptional regulation of collagen alpha1(I) mRNA in hepatic stellate cells.

    PubMed Central

    Stefanovic, B; Hellerbrand, C; Holcik, M; Briendl, M; Aliebhaber, S; Brenner, D A

    1997-01-01

    The hepatic stellate cell (HSC) is the primary cell responsible for the dramatic increase in the synthesis of type I collagen in the cirrhotic liver. Quiescent HSCs contain a low level of collagen alpha1(I) mRNA, while activated HSCs contain about 60- to 70-fold more of this mRNA. The transcription rate of the collagen alpha1(I) gene is only two fold higher in activated HSCs than in quiescent HSCs. In assays using actinomycin D or 5,6-dichlorobenzimidazole riboside collagen alpha1(I) mRNA has estimated half-lives of 1.5 h in quiescent HSCs and 24 h in activated HSCs. Thus, this 16-fold change in mRNA stability is primarily responsible for the increase in collagen alpha1(I) mRNA steady-state level in activated HSCs. We have identified a novel RNA-protein interaction targeted to the C-rich sequence in the collagen alpha1(I) mRNA 3' untranslated region (UTR). This sequence is localized 24 nucleotides 3' to the stop codon. In transient transfection experiments, mutation of this sequence diminished accumulation of an mRNA transcribed from a collagen alpha1(I) minigene and in stable transfections decreased the half-life of collagen alpha1(I) minigene mRNA. Binding to the collagen alpha1(I) 3' UTR is present in cytoplasmic extracts of activated but not quiescent HSCs. It contains as a subunit alphaCP, which is also found in the complex involved in stabilization of alpha-globin mRNA. The auxiliary factors necessary to promote binding of alphaCP to the collagen 3' UTR are distinct from the factors necessary for binding to the alpha-globin sequence. Since alphaCP is expressed in both quiescent and activated HSCs, these auxiliary factors are responsible for the differentially expressed RNA-protein interaction at the collagen alpha1(I) mRNA 3' UTR. PMID:9271398

  14. Discoidin domain receptor 2 inhibits fibrillogenesis of collagen type 1.

    PubMed

    Mihai, Cosmin; Iscru, Daniel F; Druhan, Lawrence J; Elton, Terry S; Agarwal, Gunjan

    2006-09-01

    Discoidin domain receptors (DDR1 and DDR2) are widely expressed cell-surface receptors, which bind to and are activated by collagens, including collagen type 1. Activation of DDRs and the resulting downstream signaling is known to regulate the extracellular matrix. However, little is known about how DDRs interact with collagen and its direct impact on collagen regulation. Here, we have established that by binding to collagen, the extracellular domain (ECD) of DDR2 inhibits collagen fibrillogenesis and alters the morphology of collagen type 1 fibers. Our in vitro assays utilized DDR2-Fc fusion proteins, which contain only the ECD of DDR2. Using surface plasmon resonance, we confirmed that further oligomerization of DDR2-Fc (by means of anti-Fc antibody) greatly enhances its binding to immobilized collagen type 1. Collagen turbidity measurements and biochemical assays indicated that DDR2 delays the formation of collagen fibrils. Atomic force microscopy of soluble collagen revealed that a predominately monomeric state of collagen was present with DDR2, while control solutions had an abundance of polymeric collagen. Transmission electron microscopy of collagen fibers, showed that the native periodic banded structure of collagen fibers was weakened and nearly absent in the presence of DDR2. Further, using a cell-based assay we demonstrate that overexpression of full length DDR2 inhibits fibrillogenesis of collagen type 1. Our results demonstrate a novel and important functional role of the DDR2 ECD that may contribute to collagen regulation via modulation of fibrillogenesis.

  15. Nonlinear optical response of the collagen triple helix and second harmonic microscopy of collagen liquid crystals

    NASA Astrophysics Data System (ADS)

    Deniset-Besseau, A.; De Sa Peixoto, P.; Duboisset, J.; Loison, C.; Hache, F.; Benichou, E.; Brevet, P.-F.; Mosser, G.; Schanne-Klein, M.-C.

    2010-02-01

    Collagen is characterized by triple helical domains and plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) and SHG microscopy proved to be a sensitive tool to score fibrotic pathologies. However, the nonlinear optical response of fibrillar collagen is not fully characterized yet and quantitative data are required to further process SHG images. We therefore performed Hyper-Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its amino-acid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro-Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagen liquid solutions by achieving liquid crystalline ordering of the collagen triple helices.

  16. Age-related crosslink in skin collagen

    SciTech Connect

    Yamauchi, M.; Mechanic, G.

    1986-05-01

    A stable crosslinking amino acid was isolated from mature bovine skin collagen and its structure was identified as histidinohydroxylysinonorleucine (HHL) using fast atom bombardment mass spectrometry and /sup 1/H, /sup 13/C-NMR. This newly identified crosslink has a linkage between C-2 histidine and C-6 of lysine in the latter's portion of hydroxylysinonorleucine. Quantitative studies using various aged samples of cow and human skin collagen indicated that this acid-heat stable nonreducible compound was the major age-related crosslink. In case of cow skin collagen, for example, during early embryonic development (3 and 5 month old embryos) the content of HHL stayed less than 0.01 residue/mole of collagen, however from the middle of gestation period (7 month old embryo) through the maturation stage it showed rapid increase with age and reached approximately 0.5 residues/mole of collagen in the 3 year old animal. Small increments (up to 0.65 res/mole of collagen) were observed in the 9 year old cow. The amounts of the crosslink unlike pyridinoline do not decrease with aging. Similar patterns were observed in human skin collagen.

  17. Molecular structure of the collagen triple helix.

    PubMed

    Brodsky, Barbara; Persikov, Anton V

    2005-01-01

    The molecular conformation of the collagen triple helix confers strict amino acid sequence constraints, requiring a (Gly-X-Y)(n) repeating pattern and a high content of imino acids. The increasing family of collagens and proteins with collagenous domains shows the collagen triple helix to be a basic motif adaptable to a range of proteins and functions. Its rodlike domain has the potential for various modes of self-association and the capacity to bind receptors, other proteins, GAGs, and nucleic acids. High-resolution crystal structures obtained for collagen model peptides confirm the supercoiled triple helix conformation, and provide new information on hydrogen bonding patterns, hydration, sidechain interactions, and ligand binding. For several peptides, the helix twist was found to be sequence dependent, and such variation in helix twist may serve as recognition features or to orient the triple helix for binding. Mutations in the collagen triple-helix domain lead to a variety of human disorders. The most common mutations are single-base substitutions that lead to the replacement of one Gly residue, breaking the Gly-X-Y repeating pattern. A single Gly substitution destabilizes the triple helix through a local disruption in hydrogen bonding and produces a discontinuity in the register of the helix. Molecular information about the collagen triple helix and the effect of mutations will lead to a better understanding of function and pathology.

  18. Propranolol-induced elevation of pulmonary collagen

    SciTech Connect

    Lindenschmidt, R.C.; Witschi, H.P.

    1985-01-01

    Current concepts of collagen metabolism suggest that fibroblasts tightly control collagen production. One of the possible mechanisms of control is via the cyclic nucleotides, cyclic AMP (cAMP) and cyclic GMP (cGMP). Beta adrenergic agonists, by elevating intracellular cAMP levels, have been shown in vitro to suppress fibroblast collagen production; whereas beta adrenergic antagonists were effective in removing this suppression by blocking the rise in cAMP. In the present study with mice, the authors showed that administration of the beta adrenergic antagonists, propranolol, at a dose demonstrated to decrease the ratio of cAMP to cGMP, resulted in an elevation in total lung collagen in vivo. The increase in collagen was evident only when propranolol was administered before and during acute lung damage induced by either butylated hydroxytoluene, bleomycin or high concentrations of oxygen. There was no increase in lung collagen when propranolol administration was delayed after injury or when given to an undamaged lung. The authors propose that via beta adrenergic blockage by propranolol, fibroblasts involved in the normal reparative process may have lost a mechanism for regulatory control, resulting in excessive deposition of collagen. 38 references, 3 figures, 2 tables.

  19. The Mineral–Collagen Interface in Bone

    PubMed Central

    2015-01-01

    The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone’s remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material’s performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions. PMID:25824581

  20. The Largest Fragment of a Homogeneous Fragmentation Process

    NASA Astrophysics Data System (ADS)

    Kyprianou, Andreas; Lane, Francis; Mörters, Peter

    2017-03-01

    We show that in homogeneous fragmentation processes the largest fragment at time t has size e^{-t Φ '(overline{p})}t^{-3/2 (log Φ )'(overline{p})+o(1)}, where Φ is the Lévy exponent of the fragmentation process, and overline{p} is the unique solution of the equation (log Φ )'(bar{p})=1/1+bar{p}. We argue that this result is in line with predictions arising from the classification of homogeneous fragmentation processes as logarithmically correlated random fields.

  1. Metal-triggered collagen peptide disk formation.

    PubMed

    Przybyla, David E; Chmielewski, Jean

    2010-06-16

    A collagen peptide was designed for metal-triggered, hierarchical assembly through a radial growth mechanism. To achieve radial assembly, H-(byp)(2) containing Pro-Hyp-Gly repeating sequences and two staggered bipyridine ligands within the peptide was synthesized. Triple helix formation resulted in the placement of six bipyridine ligands along the triple helix, and the addition of metal ions resulted in the formation of nanometer-sized collagen peptide disks. These structures were found to disassemble upon the addition of EDTA, demonstrating that radial assembly of collagen peptide triple helices could be realized with the addition of metal ions.

  2. Binary stars - Formation by fragmentation

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    1988-01-01

    Theories of binary star formation by capture, separate nuclei, fission and fragmentation are compared, assessing the success of theoretical attempts to explain the observed properties of main-sequence binary stars. The theory of formation by fragmentation is examined, discussing the prospects for checking the theory against observations of binary premain-sequence stars. It is concluded that formation by fragmentation is successful at explaining many of the key properties of main-sequence binary stars.

  3. Epidermal cells adhere preferentially to type IV (basement membrane) collagen

    PubMed Central

    1979-01-01

    Epidermal cells from adult guinea pig skin attach and differentiate preferentially on substrates of type IV (basement membrane) collagen, compared to those of types I--III collagen. In contrast, guinea pig dermal fibroblasts attach equally well to all four collagen substrates. Fibronectin mediates the attachment of fibroblasts but not of epidermal cells to collagen. PMID:422650

  4. Species–fragmented area relationship

    PubMed Central

    Hanski, Ilkka; Zurita, Gustavo A.; Bellocq, M. Isabel; Rybicki, Joel

    2013-01-01

    The species–area relationship (SAR) gives a quantitative description of the increasing number of species in a community with increasing area of habitat. In conservation, SARs have been used to predict the number of extinctions when the area of habitat is reduced. Such predictions are most needed for landscapes rather than for individual habitat fragments, but SAR-based predictions of extinctions for landscapes with highly fragmented habitat are likely to be biased because SAR assumes contiguous habitat. In reality, habitat loss is typically accompanied by habitat fragmentation. To quantify the effect of fragmentation in addition to the effect of habitat loss on the number of species, we extend the power-law SAR to the species–fragmented area relationship. This model unites the single-species metapopulation theory with the multispecies SAR for communities. We demonstrate with a realistic simulation model and with empirical data for forest-inhabiting subtropical birds that the species–fragmented area relationship gives a far superior prediction than SAR of the number of species in fragmented landscapes. The results demonstrate that for communities of species that are not well adapted to live in fragmented landscapes, the conventional SAR underestimates the number of extinctions for landscapes in which little habitat remains and it is highly fragmented. PMID:23858440

  5. Cleavage of Type I Collagen by Fibroblast Activation Protein-α Enhances Class A Scavenger Receptor Mediated Macrophage Adhesion.

    PubMed

    Mazur, Anna; Holthoff, Emily; Vadali, Shanthi; Kelly, Thomas; Post, Steven R

    2016-01-01

    Pathophysiological conditions such as fibrosis, inflammation, and tumor progression are associated with modification of the extracellular matrix (ECM). These modifications create ligands that differentially interact with cells to promote responses that drive pathological processes. Within the tumor stroma, fibroblasts are activated and increase the expression of type I collagen. In addition, activated fibroblasts specifically express fibroblast activation protein-α (FAP), a post-prolyl peptidase. Although FAP reportedly cleaves type I collagen and contributes to tumor progression, the specific pathophysiologic role of FAP is not clear. In this study, the possibility that FAP-mediated cleavage of type I collagen modulates macrophage interaction with collagen was examined using macrophage adhesion assays. Our results demonstrate that FAP selectively cleaves type I collagen resulting in increased macrophage adhesion. Increased macrophage adhesion to FAP-cleaved collagen was not affected by inhibiting integrin-mediated interactions, but was abolished in macrophages lacking the class A scavenger receptor (SR-A/CD204). Further, SR-A expressing macrophages localize with activated fibroblasts in breast tumors of MMTV-PyMT mice. Together, these results demonstrate that FAP-cleaved collagen is a substrate for SR-A-dependent macrophage adhesion, and suggest that by modifying the ECM, FAP plays a novel role in mediating communication between activated fibroblasts and macrophages.

  6. The EBV oncogene LMP1 protects lymphoma cells from cell death through the collagen-mediated activation of DDR1.

    PubMed

    Cader, Fathima Zumla; Vockerodt, Martina; Bose, Shikha; Nagy, Eszter; Brundler, Marie-Anne; Kearns, Pamela; Murray, Paul G

    2013-12-19

    The malignant Hodgkin and Reed-Sternberg (HRS) cells of Hodgkin lymphoma are surrounded by a tumor microenvironment that is composed of a variety of cell types, as well as noncellular components such as collagen. Although HRS cells harbor oncogenic Epstein-Barr virus (EBV) in approximately 50% of cases, it is not known if the tumor microenvironment contributes to EBV-driven lymphomagenesis. We show that expression of the EBV-encoded latent membrane protein-1 (LMP1) in primary human germinal center B cells, the presumed progenitors of HRS cells, upregulates discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase activated by collagen. We also show that HRS cells intimately associated with collagen frequently overexpress DDR1 and that short-term exposure to collagen is sufficient to activate DDR1 in Hodgkin lymphoma-derived cell lines. The ectopic expression of DDR1 significantly increased the survival of collagen-treated DG75 Burkitt lymphoma cells, following etoposide treatment. Conversely, knockdown of DDR1 significantly decreased the survival of collagen-treated L428 Hodgkin lymphoma cells in the absence of specific apoptotic stimulus, suggesting that DDR1 also influences baseline survival. Our results identify a hitherto unknown function for collagen in protecting Hodgkin lymphoma cells from apoptosis and suggest an important contribution of the tumor microenvironment in promoting the oncogenic effects of EBV.

  7. MT1-MMP and Type II Collagen Specify Skeletal Stem Cells and Their Bone and Cartilage Progeny

    PubMed Central

    Szabova, Ludmila; Yamada, Susan S.; Wimer, Helen; Chrysovergis, Kaliopi; Ingvarsen, Signe; Behrendt, Niels; Engelholm, Lars H.

    2009-01-01

    Skeletal formation is dependent on timely recruitment of skeletal stem cells and their ensuing synthesis and remodeling of the major fibrillar collagens, type I collagen and type II collagen, in bone and cartilage tissues during development and postnatal growth. Loss of the major collagenolytic activity associated with the membrane-type 1 matrix metalloproteinase (MT1-MMP) results in disrupted skeletal development and growth in both cartilage and bone, where MT1-MMP is required for pericellular collagen dissolution. We show here that reconstitution of MT1-MMP activity in the type II collagen–expressing cells of the skeleton rescues not only diminished chondrocyte proliferation, but surprisingly, also results in amelioration of the severe skeletal dysplasia associated with MT1-MMP deficiency through enhanced bone formation. Consistent with this increased bone formation, type II collagen was identified in bone cells and skeletal stem/progenitor cells of wildtype mice. Moreover, bone marrow stromal cells isolated from mice expressing MT1-MMP under the control of the type II collagen promoter in an MT1-MMP–deficient background showed enhanced bone formation in vitro and in vivo compared with cells derived from nontransgenic MT1-MMP–deficient littermates. These observations show that type II collagen is not stringently confined to the chondrocyte but is expressed in skeletal stem/progenitor cells (able to regenerate bone, cartilage, myelosupportive stroma, marrow adipocytes) and in the chondrogenic and osteogenic lineage progeny where collagenolytic activity is a requisite for proper cell and tissue function. PMID:19419317

  8. Effects of material and surface functional group on collagen self-assembly and subsequent cell adhesion behaviors.

    PubMed

    He, Jing; Su, Yao; Huang, Tao; Jiang, Bo; Wu, Fang; Gu, Zhongwei

    2014-04-01

    Collagen fibrous network not only provides structural support for cells but also serves as critical environment modulating various cell functions. Various factors would influence the collagen self-assembly but the effect of substrate surface on such process has been rarely studied. Here we examined the effects of materials (Ti and hydroxyapatite) and their surface characteristics (with and without the enrichment of hydroxyl group) on collagen self-reconstitution and fibrous network formation, and on subsequent cell adhesion and cytoskeleton organization of mesenchymal stem cells (MSCs). For both Ti and hydroxyapatite (HA) substrates, the enrichment of hydroxyl group (OH) on substrate surfaces promoted the collagen self-reconstitution and facilitated the formation of the fibrous network after 4h immersion in phosphate buffer solution (PBS), while all samples showed clear fibrous network formation after 2 day soaking in PBS. Compared with the Ti surfaces, the HA surfaces facilitated the self-reconstitution of collagen, leading to a more mature fibrous network with a twisted structure and enhanced lateral aggregation of fibrils. The fibrous network difference resulted in different behaviors of the subsequent MSC adhesion and spreading. The MSCs had the best adhesion and cytoskeleton organization on the OH enriched HA surface with collagen modification. Our results suggested that both the material selection and the hydroxyl group significantly influenced the collagen self-assembly and fibrous network formation and, as a result, the subsequent cell adhesion behaviors.

  9. MRI and histologic analysis of collagen type II sponge on repairing the cartilage defects of rabbit knee joints.

    PubMed

    Chen, Honghui; Yang, Xiaohong; Liao, Yingyang; Zeng, Xuwen; Liang, Peihong; Kang, Ning; Tan, Jianrong; Liang, Zhiping

    2011-02-01

    There are limited treatment options for cartilage defects in clinical practice because of the lack of suitable biomaterials. Here, we evaluated the effects of collagen type II sponge on the articular cartilage repairing process using a cartilage injury of a rabbit knee joint model. We showed that the home-made collagen type II sponges appeared to have a suitable pore size of 93.26 ± 38.4 μm for chondrocyte growth. MRI with H&E staining results demonstrated that the effusion absorption in the collagen type II sponge treated group was quicker than that of the control group. Moreover, sporadic cartilage signals first appeared at 6 weeks in the collagen type II sponge treated group. Safranin O staining and immunohistochemical analysis confirmed that the newly formed cartilage expresses glycosaminoglycan and type II collagen matrix. Using Sirius red polarized light staining, we showed that the newly formed cartilage-like areas from the collagen type II treated group are significantly greater than those of the control group. Taken together, our data demonstrated that the home-made collagen type II sponge is able to promote cartilage repair in the cartilage injury of a rabbit knee joint model.

  10. Collagen XVII Shedding Suppresses Re-Epithelialization by Directing Keratinocyte Migration and Dampening mTOR Signaling.

    PubMed

    Jacków, Joanna; Löffek, Stefanie; Nyström, Alexander; Bruckner-Tuderman, Leena; Franzke, Claus-Werner

    2016-05-01

    Transmembrane collagen XVII is traditionally viewed as an important hemidesmosomal attachment component that promotes stable dermal-epidermal adhesion in the skin. However, its expression is highly elevated at the leading edges of cutaneous wounds or invasive carcinomas, suggesting alternative functions in cell migration. The collagenous ectodomain of collagen XVII is constitutively shed from the cell surface by a disintegrin and metalloproteinases, and this shedding is strongly induced during wound healing. Recently, we investigated the physiological relevance of collagen XVII shedding by generating knock-in mice, which exclusively express a functional non-sheddable collagen XVII mutant. Prevention of ectodomain shedding in these mice caused no spontaneous phenotype in resting skin, but accelerated re-epithelialization on skin wounding. Here, we investigated the mechanistic function of shedding during wound healing. Using the non-shedding collagen XVII mice as a model, we uncovered ectodomain shedding as a highly dynamic modulator of in vivo proliferation and motility of activated keratinocytes through tight coordination of α6β4 integrin-laminin-332 interactions and dampening of mechanistic target of rapamycin signaling at the wound edges. Thus, our studies identify ectodomain shedding of collagen XVII as an interactive platform that translates shedding into a signal for directed cell growth and motility during skin regeneration.

  11. Nanoscale scraping and dissection of collagen fibrils.

    PubMed

    Wenger, M P E; Horton, M A; Mesquida, P

    2008-09-24

    The main function of collagen is mechanical, hence there is a fundamental scientific interest in experimentally investigating the mechanical and structural properties of collagen fibrils on the nanometre scale. Here, we present a novel atomic force microscopy (AFM) based scraping technique that can dissect the outer layer of a biological specimen. Applied to individual collagen fibrils, the technique was successfully used to expose the fibril core and reveal the presence of a D-banding-like structure. AFM nanoindentation measurements of fibril shell and core indicated no significant differences in mechanical properties such as stiffness (reduced modulus), hardness, adhesion and adhesion work. This suggests that collagen fibrils are mechanically homogeneous structures. The scraping technique can be applied to other biological specimens, as demonstrated on the example of bacteria.

  12. In vitro Sirius Red collagen assay measures the pattern shift from soluble to deposited collagen.

    PubMed

    Chen, Chun; Yang, Shanmin; Zhang, Mei; Zhang, Zhenhuan; Zhang, Bingrong; Han, Deping; Ma, Jun; Wang, Xiaohui; Hong, Jingshen; Guo, Yansong; Okunieff, Paul; Zhang, Lurong

    2013-01-01

    In this study, we compared two in vitro collagen production assays ([(3)H]-proline incorporation and Sirius Red) for their ability to determine the pattern shift from soluble to deposited collagen. The effect of the antifibrotic agent, triptolide (TPL), on collagen production was also studied. The results showed that: (1) 48 h after NIH 3T3 (murine embryo fibroblast) and HFL-1(human fetal lung fibroblast) were exposed to transforming growth factor-beta 1 (TGF-β), there was an increase in soluble collagen in the culture medium; (2) on day 4, soluble collagen declined, whereas deposited collagen increased; (3) Sirius Red was easier to use than [(3)H]-proline incorporation and more consistently reflected the collagen pattern shift from soluble to deposited; (4) the in vitro Sirius Red assay took less time than the in vivo assay to determine the effect of TPL. Our results suggest that: (a) the newly synthesized soluble collagen can sensitively evaluate an agent's capacity for collagen production and (b) Sirius Red is more useful than [(3)H]-proline because it is easier to use, more convenient, less time consuming, and does not require radioactive material.

  13. Marine Collagen: An Emerging Player in Biomedical applications.

    PubMed

    Subhan, Fazli; Ikram, Muhammad; Shehzad, Adeeb; Ghafoor, Abdul

    2015-08-01

    Mammalian collagen is a multifactorial biomaterial that is widely used for beneficial purposes in the advanced biomedical technologies. Generally, biomedical applicable collagen is extracted from the mammalian body, but it can also be derived from marine species. Recently, mammalian tissues collagen proteins are considered a great pathological risk for transmitted diseases, because purification of such protein is very challenging and needs efficient tool to avoid structure alteration. Thus, difficult extraction process and high cost decreased mammalian collagen demands for beneficial effects compared to marine collagen. In contrast, marine collagen is safe and easy to extract, however this potential source of collagen is hindered by low denaturing temperature, which is considered a main hurdle in the beneficial effects of marine collagen. Characterization and biomedical applications of marine collagen are in transition state and yet to be discovered. Therefore, an attempt was made to summarize the recent knowledge regarding different aspects of marine collagen applications in the biomedical engineering field.

  14. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice.

    PubMed

    Liu, Susan B; Ikenaga, Naoki; Peng, Zhen-Wei; Sverdlov, Deanna Y; Greenstein, Andrew; Smith, Victoria; Schuppan, Detlef; Popov, Yury

    2016-04-01

    Collagen stabilization through irreversible cross-linking is thought to promote hepatic fibrosis progression and limit its reversibility. However, the mechanism of this process remains poorly defined. We studied the functional contribution of lysyl oxidase (LOX) to collagen stabilization and hepatic fibrosis progression/reversalin vivousing chronic administration of irreversible LOX inhibitor β-aminopropionitrile (BAPN, or vehicle as control) in C57Bl/6J mice with carbon tetrachloride (CCl4)-induced fibrosis. Fibrotic matrix stability was directly assessed using a stepwise collagen extraction assay and fibrotic septae morphometry. Liver cells and fibrosis were studied by histologic, biochemical methods and quantitative real-time reverse-transcription PCR. During fibrosis progression, BAPN administration suppressed accumulation of cross-linked collagens, and fibrotic septae showed widening and collagen fibrils splitting, reminiscent of remodeling signs observed during fibrosis reversal. LOX inhibition attenuated hepatic stellate cell activation markers and promoted F4/80-positive scar-associated macrophage infiltration without an increase in liver injury. In reversal experiments, BAPN-treated fibrotic mice demonstrated accelerated fibrosis reversal after CCl4withdrawal. Our findings demonstrate for the first time that LOX contributes significantly to collagen stabilization in liver fibrosis, promotes fibrogenic activation of attenuated hepatic stellate cells, and limits fibrosis reversal. Our data support the concept of pharmacologic targeting of LOX pathway to inhibit liver fibrosis and promote its resolution.-Liu, S. B., Ikenaga, N., Peng, Z.-W., Sverdlov, D. Y., Greenstein, A., Smith, V., Schuppan, D., Popov, Y. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice.

  15. Techniques for Type I Collagen Organization

    NASA Astrophysics Data System (ADS)

    Anderson-Jackson, LaTecia Diamond

    Tissue Engineering is a process in which cells, engineering, and material methods are used in amalgamation to improve biological functions. The purpose of tissue engineering is to develop alternative solutions to treat or cure tissues and organs that have been severely altered or damaged by diseases, congenital defects, trauma, or cancer. One of the most common and most promising biological materials for tissue engineering to develop scaffolds is Type I collagen. A major challenge in biomedical research is aligning Type I collagen to mimic biological structures, such as ligaments, tendons, bones, and other hierarchal aligned structures within the human body. The intent of this research is to examine possible techniques for organizing Type I collagen and to assess which of the techniques is effective for potential biological applications. The techniques used in this research to organize collagen are soft lithography with solution-assisted sonication embossing, directional freezing, and direct poling. The final concentration used for both soft lithography with solution-assisted sonication embossing and direct poling was 1 mg/ml, whereas for directional freezing the final concentration varied between 4mg/ml, 2mg/ml, and 1 mg/ml. These techniques were characterized using the Atomic Force Microscope (AFM) and Helium Ion Microscope (HIM). In this study, we have found that out of the three techniques, the soft lithography and directional freezing techniques have been successful in organizing collagen in a particular pattern, but not alignment. We concluded alignment may be dependent on the pH of collagen and the amount of acetic acid used in collagen solution. However, experiments are still being conducted to optimize all three techniques to align collagen in a unidirectional arrangement.

  16. Thermodynamical string fragmentation

    NASA Astrophysics Data System (ADS)

    Fischer, Nadine; Sjöstrand, Torbjörn

    2017-01-01

    The observation of heavy-ion-like behaviour in pp collisions at the LHC suggests that more physics mechanisms are at play than traditionally assumed. The introduction e.g. of quark-gluon plasma or colour rope formation can describe several of the observations, but as of yet there is no established paradigm. In this article we study a few possible modifications to the Pythia event generator, which describes a wealth of data but fails for a number of recent observations. Firstly, we present a new model for generating the transverse momentum of hadrons during the string fragmentation process, inspired by thermodynamics, where heavier hadrons naturally are suppressed in rate but obtain a higher average transverse momentum. Secondly, close-packing of strings is taken into account by making the temperature or string tension environment-dependent. Thirdly, a simple model for hadron rescattering is added. The effect of these modifications is studied, individually and taken together, and compared with data mainly from the LHC. While some improvements can be noted, it turns out to be nontrivial to obtain effects as big as required, and further work is called for.

  17. Quantifying degradation of collagen in ancient manuscripts: the case of the Dead Sea Temple Scroll.

    PubMed

    Schütz, R; Bertinetti, L; Rabin, I; Fratzl, P; Masic, A

    2013-10-07

    Since their discovery in the late 1940s, the Dead Sea Scrolls, some 900 ancient Jewish texts, have never stopped attracting the attention of scholars and the broad public alike, because they were created towards the end of the Second Temple period and the "time of Christ". Most of the work on them has been dedicated to the information contained in the scrolls' text, leaving physical aspects of the writing materials unexamined. They are, however, crucial for both historical insight and preservation of the scrolls. Although scientific analysis requires handling, it is essential to establish the state of degradation of these valued documents. Polarized Raman Spectroscopy (PRS) is a powerful tool for obtaining information on both the composition and the level of disorder of molecular units. In this study, we developed a non-invasive and non-destructive methodology that allows a quantification of the disorder (that can be related to the degradation) of protein molecular units in collagen fibers. Not restricted to collagen, this method can be applied also to other protein-based fibrous materials such as ancient silk, wool or hair. We used PRS to quantify the degradation of the collagen fibers in a number of fragments of the Temple Scroll (11Q19a). We found that collagen fibers degrade heterogeneously, with the ones on the surface more degraded than those in the core.

  18. Vascularization of Three-Dimensional Collagen Hydrogels Using Ultrasound Standing Wave Fields

    PubMed Central

    Garvin, Kelley A.; Dalecki, Diane; Hocking, Denise C.

    2011-01-01

    The successful fabrication of large, three-dimensional (3D) tissues and organs in vitro requires the rapid development of a vascular network to maintain cell viability and tissue function. In this study, we utilized an application of ultrasound standing wave field (USWF) technology to vascularize 3D, collagen-based hydrogels in vitro. Acoustic radiation forces associated with USWF were used to non-invasively organize human endothelial cells into distinct, multicellular planar bands within 3D collagen gels. The formation and maturation of capillary-like endothelial cell sprouts was monitored over time and compared to sham-exposed collagen constructs which were characterized by a homogeneous cell distribution. USWF10 induced cell banding accelerated the formation and elongation of capillary-like sprouts, promoted collagen fiber alignment, and resulted in the maturation of endothelial cell sprouts into lumen-containing, anastomosing networks found throughout the entire volume of the collagen gel. USWF-induced endothelial cell networks contained large, arteriole-sized lumen areas that branched into smaller, capillary-sized structures indicating the development of vascular tree-like networks. In contrast, sprout formation was delayed in sham-exposed collagen gels, and endothelial cell networks were absent from sham gel centers and failed to develop into the vascular tree-like structures found in USWF-exposed constructs. Our results demonstrate that USWF technology leads to rapid and extensive vascularization of 3D collagen-based engineered tissue and therefore, provides a new strategy to vascularize engineered tissues in vitro. PMID:21924816

  19. Corneal Collagen Cross-Linking

    PubMed Central

    Jankov II, Mirko R.; Jovanovic, Vesna; Nikolic, Ljubisa; Lake, Jonathan C.; Kymionis, Georgos; Coskunseven, Efekan

    2010-01-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet-A (UVA) is a new technique of corneal tissue strengthening by using riboflavin as a photosensitizer and UVA to increase the formation of intra and interfibrillar covalent bonds by photosensitized oxidation. Keratocyte apoptosis in the anterior segment of the corneal stroma all the way down to a depth of about 300 microns has been described and a demarcation line between the treated and untreated cornea has been clearly shown. It is important to ensure that the cytotoxic threshold for the endothelium has not been exceeded by strictly respecting the minimal corneal thickness. Confocal microscopy studies show that repopulation of keratocytes is already visible 1 month after the treatment, reaching its pre-operative quantity and quality in terms of functional morphology within 6 months after the treatment. The major indication for the use of CXL is to inhibit the progression of corneal ectasias, such as keratoconus and pellucid marginal degeneration. CXL may also be effective in the treatment and prophylaxis of iatrogenic keratectasia, resulting from excessively aggressive photoablation. This treatment has also been used to treat infectious corneal ulcers with apparent favorable results. Combination with other treatments, such as intracorneal ring segment implantation, limited topography-guided photoablation and conductive keratoplasty have been used with different levels of success. PMID:20543933

  20. Eupatilin ameliorates collagen induced arthritis.

    PubMed

    Kim, Juryun; Kim, Youngkyun; Yi, Hyoju; Jung, Hyerin; Rim, Yeri Alice; Park, Narae; Jung, Seung Min; Park, Sung-Hwan; Ju, Ji Hyeon

    2015-03-01

    Eupatilin is the main active component of DA-9601, an extract from Artemisia. Recently, eupatilin was reported to have anti-inflammatory properties. We investigated the anti-arthritic effect of eupatilin in a murine arthritis model and human rheumatoid synoviocytes. DA-9601 was injected into collagen-induced arthritis (CIA) mice. Arthritis score was regularly evaluated. Mouse monocytes were differentiated into osteoclasts when eupatilin was added simultaneously. Osteoclasts were stained with tartrate-resistant acid phosphatase and then manually counted. Rheumatoid synoviocytes were stimulated with TNF-α and then treated with eupatilin, and the levels of IL-6 and IL-1β mRNA expression in synoviocytes were measured by RT-PCR. Intraperitoneal injection of DA-9601 reduced arthritis scores in CIA mice. TNF-α treatment of synoviocytes increased the expression of IL-6 and IL-1β mRNAs, which was inhibited by eupatilin. Eupatilin decreased the number of osteoclasts in a concentration dependent manner. These findings, showing that eupatilin and DA-9601 inhibited the expression of inflammatory cytokines and the differentiation of osteoclasts, suggest that eupatilin and DA-9601 is a candidate anti-inflammatory agent.

  1. Spherical silver nanoparticles in the detection of thermally denatured collagens.

    PubMed

    Ahumada, Manuel; McLaughlin, Sarah; Pacioni, Natalia L; Alarcon, Emilio I

    2016-03-01

    We have developed a rapid colorimetric method to determine the concentration of denatured collagen in solution, which is based on the collagen-silver nanoparticle corona formation. Using the proposed method, the lowest detectable concentration of denatured collagen protein in a solution of pure collagen was 14.7, 8.5, and 8.6 μg mL(-1) for porcine (PCOL), rat tail (RCOL), and type I human recombinant (HCOL) collagen, respectively.

  2. The peculiar collagens of mussel byssus.

    PubMed

    Waite, J H; Qin, X X; Coyne, K J

    1998-06-01

    The byssal collagens of marine mussels are extracorporeal collagens that function in byssal threads under tension. Each byssal thread resembles a shock absorber in its mechanical design: it is strong and stiff at one end and pliably elastic at the other. Primary structures of three of these collagens (preCols), deduced from cDNAs, reveal signal peptide sequences, but no N-glycosylation sites or propeptides typical of procollagens. The collagen domain (40-50 kDa) represents roughly half the mass of the mature molecules and is distinguished by its central location, abundant Gly-Gly-X repeats, and "flaws" (usually Gly deletions). Flanking the collagen domains on both sides are structural domains that resemble elastin in preCol-P, spider drag-line silk in preCol-D, and Gly-rich cell wall proteins in preCol-NG. Not surprisingly, studies of preCol distribution in byssal threads suggest preCol-P enhancement in the elastic proximal portion, while preCol-D predominates in the stiffer distal portion. PreCol-NG, in contrast, is evenly distributed. Although no data are yet available on the fibrillogenesis and cross-linking of the preCols, the quarter-stagger assembly of fibrillar interstitial collagens does not pertain since preCols lack the terminal peptides of tropocollagen. Metal-binding by histidines may mediate the initial inter- and intramolecular stabilization of preCols in the byssus.

  3. Marine Origin Collagens and Its Potential Applications

    PubMed Central

    Silva, Tiago H.; Moreira-Silva, Joana; Marques, Ana L. P.; Domingues, Alberta; Bayon, Yves; Reis, Rui L.

    2014-01-01

    Collagens are the most abundant high molecular weight proteins in both invertebrate and vertebrate organisms, including mammals, and possess mainly a structural role, existing different types according with their specific organization in distinct tissues. From this, they have been elected as one of the key biological materials in tissue regeneration approaches. Also, industry is constantly searching for new natural sources of collagen and upgraded methodologies for their production. The most common sources are from bovine and porcine origin, but other ways are making their route, such as recombinant production, but also extraction from marine organisms like fish. Different organisms have been proposed and explored for collagen extraction, allowing the sustainable production of different types of collagens, with properties depending on the kind of organism (and their natural environment) and extraction methodology. Such variety of collagen properties has been further investigated in different ways to render a wide range of applications. The present review aims to shed some light on the contribution of marine collagens for the scientific and technological development of this sector, stressing the opportunities and challenges that they are and most probably will be facing to assume a role as an alternative source for industrial exploitation. PMID:25490254

  4. Improving the mechanical properties of collagen-based membranes using silk fibroin for corneal tissue engineering.

    PubMed

    Long, Kai; Liu, Yang; Li, Weichang; Wang, Lin; Liu, Sa; Wang, Yingjun; Wang, Zhichong; Ren, Li

    2015-03-01

    Although collagen with outstanding biocompatibility has promising application in corneal tissue engineering, the mechanical properties of collagen-based scaffolds, especially suture retention strength, must be further improved to satisfy the requirements of clinical applications. This article describes a toughness reinforced collagen-based membrane using silk fibroin. The collagen-silk fibroin membranes based on collagen [silk fibroin (w/w) ratios of 100:5, 100:10, and 100:20] were prepared by using silk fibroin and cross-linking by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. These membranes were analyzed by scanning electron microscopy and their optical property, and NaCl and tryptophan diffusivity had been tested. The water content was found to be dependent on the content of silk fibroin, and CS10 membrane (loading 10 wt % of silk fibroin) performed the optimal mechanical properties. Also the suture experiments have proved CS10 has high suture retention strength, which can be sutured in rabbit eyes integrally. Moreover, the composite membrane proved good biocompatibility for the proliferation of human corneal epithelial cells in vitro. Lamellar keratoplasty shows that CS10 membrane promoted complete epithelialization in 35 ± 5 days, and their transparency is restored quickly in the first month. Corneal rejection reaction, neovascularization, and keratoconus are not observed. The composite films show potential for use in the field of corneal tissue engineering.

  5. Characterization of collagen from haddock skin and wound healing properties of its hydrolysates.

    PubMed

    Dang, Qi Feng; Liu, Han; Yan, Jing Quan; Liu, Cheng Sheng; Liu, Ya; Li, Jing; Li, Jing Jing

    2015-03-02

    Collagen, one of the most abundant structural proteins found in vertebrates, has been extensively used for biomedical applications. The objectives of this study were to isolate and characterize acid-soluble collagen (ASC) from haddock (Melanogrammus aeglefinus) skins and to investigate the biological function of ASC hydrolysates in wound healing. Amino acid composition, SDS-PAGE and FTIR suggested that the ASC is most likely type I collagen with well-maintained helical structures. Both the denaturation and shrinkage temperatures of ASC isolated from haddock skins were lower than those of mammalian collagens. The average molecular weights of hydrolysates decreased with the increase in HCl concentration as well as hydrolysis times. ASC and hydrolysates with more molecules (53.8 kDa) decreased the bleeding and clotting times and promoted order 2 vessel formation effectively. All the experimental groups, including the ASC group and its hydrolysate groups, could accelerate epithelialization and shorten the wound healing time of mice. The ASC from haddock skin could therefore serve as an alternative collagen for skin wound healing.

  6. Self-association of collagen triple helic peptides into higher order structures.

    PubMed

    Kar, Karunakar; Amin, Priyal; Bryan, Michael A; Persikov, Anton V; Mohs, Angela; Wang, Yuh-Hwa; Brodsky, Barbara

    2006-11-03

    Interest in self-association of peptides and proteins is motivated by an interest in the mechanism of physiologically higher order assembly of proteins such as collagen as well as the mechanism of pathological aggregation such as beta-amyloid formation. The triple helical form of (Pro-Hyp-Gly)(10), a peptide that has proved a useful model for molecular features of collagen, was found to self-associate, and its association properties are reported here. Turbidity experiments indicate that the triple helical peptide self-assembles at neutral pH via a nucleation-growth mechanism, with a critical concentration near 1 mM. The associated form is more stable than individual molecules by about 25 degrees C, and the association is reversible. The rate of self-association increases with temperature, supporting an entropically favored process. After self-association, (Pro-Hyp-Gly)(10) forms branched filamentous structures, in contrast with the highly ordered axially periodic structure of collagen fibrils. Yet a number of characteristics of triple helix assembly for the peptide resemble those of collagen fibril formation. These include promotion of fibril formation by neutral pH and increasing temperature; inhibition by sugars; and a requirement for hydroxyproline. It is suggested that these similar features for peptide and collagen self-association are based on common lateral underlying interactions between triple helical molecules mediated by hydrogen-bonded hydration networks involving hydroxyproline.

  7. A biomimetic multi-layered collagen-based scaffold for osteochondral repair.

    PubMed

    Levingstone, Tanya J; Matsiko, Amos; Dickson, Glenn R; O'Brien, Fergal J; Gleeson, John P

    2014-05-01

    Cartilage and osteochondral defects pose a significant challenge in orthopedics. Tissue engineering has shown promise as a potential method for the treatment of such defects; however, a long-lasting repair strategy has yet to be realized. This study focuses on the development of a layered construct for osteochondral repair, fabricated through a novel "iterative layering" freeze-drying technique. The process involved repeated steps of layer addition followed by freeze-drying, enabling control over material composition, pore size and substrate stiffness in each region of the construct, while also achieving a seamlessly integrated layer structure. The novel construct developed mimics the inherent gradient structure of healthy osteochondral tissue: a bone layer composed of type I collagen and hydroxyapatite (HA), an intermediate layer composed of type I collagen, type II collagen and HA and a cartilaginous region composed of type I collagen, type II collagen and hyaluronic acid. The material properties were designed to provide the biological cues required to encourage infiltration of host cells from the bone marrow while the biomechanical properties were designed to provide an environment optimized to promote differentiation of these cells towards the required lineage in each region. This novel osteochondral graft was shown to have a seamlessly integrated layer structure, high levels of porosity (>97%), a homogeneous pore structure and a high degree of pore interconnectivity. Moreover, homogeneous cellular distribution throughout the entire construct was evident following in vitro culture, demonstrating the potential of this multi-layered scaffold as an advanced strategy for osteochondral defect repair.

  8. Fragment screening and HIV therapeutics.

    PubMed

    Bauman, Joseph D; Patel, Disha; Arnold, Eddy

    2012-01-01

    Fragment screening has proven to be a powerful alternative to traditional methods for drug discovery. Biophysical methods, such as X-ray crystallography, NMR spectroscopy, and surface plasmon resonance, are used to screen a diverse library of small molecule compounds. Although compounds identified via this approach have relatively weak affinity, they provide a good platform for lead development and are highly efficient binders with respect to their size. Fragment screening has been utilized for a wide range of targets, including HIV-1 proteins. Here, we review the fragment screening studies targeting HIV-1 proteins using X-ray crystallography or surface plasmon resonance. These studies have successfully detected binding of novel fragments to either previously established or new sites on HIV-1 protease and reverse transcriptase. In addition, fragment screening against HIV-1 reverse transcriptase has been used as a tool to better understand the complex nature of ligand binding to a flexible target.

  9. Fragmentation functions in nuclear media

    NASA Astrophysics Data System (ADS)

    Sassot, Rodolfo; Stratmann, Marco; Zurita, Pia

    2010-03-01

    We perform a detailed phenomenological analysis of how well hadronization in nuclear environments can be described in terms of effective fragmentation functions. The medium modified fragmentation functions are assumed to factorize from the partonic scattering cross sections and evolve in the hard scale in the same way as the standard or vacuum fragmentation functions. Based on precise data on semi-inclusive deep-inelastic scattering off nuclei and hadron production in deuteron-gold collisions, we extract sets of effective fragmentation functions for pions and kaons at next-to-leading order accuracy. The obtained sets provide a rather accurate description of the kinematical dependence of the analyzed cross sections and are found to differ significantly from standard fragmentation functions both in shape and magnitude. Our results support the notion of factorization and universality in the studied nuclear environments, at least in an effective way and within the precision of the available data.

  10. Exosite Interactions Impact Matrix Metalloproteinase Collagen Specificities*

    PubMed Central

    Robichaud, Trista K.; Steffensen, Bjorn; Fields, Gregg B.

    2011-01-01

    Members of the matrix metalloproteinase (MMP) family selectively cleave collagens in vivo. However, the substrate structural determinants that facilitate interaction with specific MMPs are not well defined. We hypothesized that type I–III collagen sequences located N- or C-terminal to the physiological cleavage site mediate substrate selectivity among MMP-1, MMP-2, MMP-8, MMP-13, and MMP-14/membrane-type 1 (MT1)-MMP. The enzyme kinetics for hydrolysis of three fluorogenic triple-helical peptides (fTHPs) was evaluated herein. The first fTHP contained consensus residues 769–783 from type I–III collagens, the second inserted α1(II) collagen residues 763–768 N-terminal to the consensus sequence, and the third inserted α1(II) collagen residues 784–792 C-terminal to the consensus sequence. Our analyses showed that insertion of the C-terminal residues significantly increased kcat/Km and kcat for MMP-1. MMP-13 showed the opposite behavior with a decreased kcat/Km and kcat and a greatly improved Km in response to the C-terminal residues. Insertion of the N-terminal residues enhanced kcat/Km and kcat for MMP-8 and MT1-MMP. For MMP-2, the C-terminal residues enhanced Km and dramatically decreased kcat, resulting in a decrease in the overall activity. These changes in activities and kinetic parameters represented the collagen preferences of MMP-8, MMP-13, and MT1-MMP well. Thus, interactions with secondary binding sites (exosites) helped direct the specificity of these enzymes. However, MMP-1 collagen preferences were not recapitulated by the fTHP studies. The preference of MMP-1 for type III collagen appears to be primarily based on the flexibility of the hydrolysis site of type III collagen compared with types I and II. Further characterization of exosite determinants that govern interactions of MMPs with collagenous substrates should aid the development of pharmacotherapeutics that target individual MMPs. PMID:21896477

  11. Desmopressin (DDAVP) improves recruitment of activated platelets to collagen but simultaneously increases platelet endothelial interactions in vitro.

    PubMed

    Calmer, Simone; Ferkau, Annika; Larmann, Jan; Johanning, Kai; Czaja, Eliana; Hagl, Christian; Echtermeyer, Frank; Goudeva, Lilia; Heuft, Hans-Gert; Theilmeier, Gregor

    2014-01-01

    Platelet dysfunction can cause clinically relevant bleeding. Treatment with DDAVP is advocated for this condition. DDAVP increases von Willebrand factor (VWF) on endothelial cells (ECs) and in plasma. VWF could facilitate platelet deposition on subendothelial collagen. VWF also facilitates platelet/EC interactions. Therefore DDAVP could precipitate thromboembolic events. We used a flow chamber model to study in vitro and ex vivo if DDAVP alters recruitment of platelets to EC and collagen. Resting or TRAP-activated platelets and EC were treated individually or simultaneously with 0.4 ng/ml DDAVP. Fluorophor-labeled platelets (10(6)/ml) were resuspended in reconstituted blood and superfused across EC and collagen in an in vitro flow chamber model at arterial shear (320 s(-1)). Adhesion of platelets to the respective surface was recorded fluorescence microscopically and platelet covered area was assessed. TRAP significantly induced adhesiveness of platelets for collagen and EC. DDAVP pretreatment of platelets did not affect adhesiveness of resting or TRAP-activated platelets for collagen or EC. Adhesiveness of resting but not TRAP-activated platelets was induced on DDAVP-treated EC. DDAVP-conditioned EC supernatant contained vWF and significantly increased platelet deposition on collagen. Platelets from patients with clinically suspected platelet dysfunction undergoing aortic valve replacement exhibited decreased platelet deposition on collagen surfaces. In summary, our data confirm that DDAVP can induce release of platelet adhesion promoting factors from EC, which is most likely vWF. DDAVP has no direct effect on platelets. Blood samples from DDAVP-treated patients do not exhibit significantly augmented platelet deposition on collagen ex vivo. This influence of released promoting factors might cause an increase of undesirable interactions of platelets with EC.

  12. Identification and characterization of a heparin binding site within the NC1 domain of chicken collagen XIV.

    PubMed

    Giry-Lozinguez, C; Aubert-Foucher, E; Penin, F; Deléage, G; Dublet, B; van der Rest, M

    1998-06-01

    Collagen XIV is known to bind to the dermatan sulfate chain of decorin and to the heparan sulfate chain of perlecan. To study its possible interaction with glycosaminoglycans, the NC1 domain of chicken collagen XIV was overproduced in E. coli. Purified NC1*(6-119)* appears poorly organized (the asterisks indicate the presence of extension sequences), but V8-protease generated fragments containing the 84-108 basic sequence tend to fold into alpha-helix. These fragments interact specifically with heparin, which induces an alpha-helical fold with a maximum effect for equimolar heparin/peptide ratio. These data demonstrate the existence of a glycosaminoglycan binding site in NC1.

  13. Collagen-Binding Peptidoglycans Inhibit MMP Mediated Collagen Degradation and Reduce Dermal Scarring

    PubMed Central

    Snyder, Paul W.; Freeman, Lynetta; Panitch, Alyssa

    2011-01-01

    Scarring of the skin is a large unmet clinical problem that is of high patient concern and impact. Wound healing is complex and involves numerous pathways that are highly orchestrated, leaving the skin sealed, but with abnormal organization and composition of tissue components, namely collagen and proteoglycans, that are then remodeled over time. To improve healing and reduce or eliminate scarring, more rapid restoration of healthy tissue composition and organization offers a unique approach for development of new therapeutics. A synthetic collagen-binding peptidoglycan has been developed that inhibits matrix metalloproteinase-1 and 13 (MMP-1 and MMP-13) mediated collagen degradation. We investigated the synthetic peptidoglycan in a rat incisional model in which a single dose was delivered in a hyaluronic acid (HA) vehicle at the time of surgery prior to wound closure. The peptidoglycan treatment resulted in a significant reduction in scar tissue at 21 days as measured by histology and visual analysis. Improved collagen architecture of the treated wounds was demonstrated by increased tensile strength and transmission electron microscopy (TEM) analysis of collagen fibril diameters compared to untreated and HA controls. The peptidoglycan's mechanism of action includes masking existing collagen and inhibiting MMP-mediated collagen degradation while modulating collagen organization. The peptidoglycan can be synthesized at low cost with unique design control, and together with demonstrated preclinical efficacy in reducing scarring, warrants further investigation for dermal wound healing. PMID:21779387

  14. Effect of kiwifruit juice on beef collagen.

    PubMed

    Sugiyama, Sumi; Hirota, Aya; Okada, Chikako; Yorita, Taeko; Sato, Kenji; Ohtsuki, Kozo

    2005-02-01

    The objective of this study is to clarify the difference in susceptibility to protease digestion by kiwifruit juice between collagen domains under different conditions. In addition, the effect of pre-treatment with kiwifruit juice on collagen in meat during cooking processes was examined. Kiwifruit juice can degrade denatured collagen, but it can not cleave the triple helical domain of collagen. Thus, kiwifruit juice does not have collagenase activity. On the other hand, the cross-linked subunits of acid-soluble collagen were converted to monomeric subunits by kiwifruit juice treatment at acidic pH, suggesting that the globular domains, in which cross-links preferentially occur, can be degraded by kiwifruit juice. The pre-treatment with kiwifruit juice significantly decreased the shear force of connective tissue in comparison with other pre-treatments without protease activity, but inversely increased the liberation of collagen-related peptides in the outer solution by heating processes at 50 and 70 degrees C or by a shorter heating time at 100 degrees C. This can be explained by the protease-mediated degradation of globular domains. However, this effect was not observed with a prolonged heating period at 100 degrees C, and the liberation of collagen-related peptides by pre-treatment with kiwifruit juice at 100 degrees C was less than that at 70 degrees C for all heating periods. Thus, it can be suggested that the pre-treatment with kiwifruit juice might be useful in meat softening under vacuum-cooking and grilling, but not under stewing.

  15. Photobiomodulation on the proliferation and collagen synthesis of normal human skin fibroblast cells

    NASA Astrophysics Data System (ADS)

    Cheng, Lei; Liu, Timon Cheng-Yi; Chi, Jin-Quan; Li, Yan; Jin, Hua

    2006-01-01

    Background and Objective: Cultured normal human skin fibroblast cells (HSFs) were once used to study the mechanism of the effects of low intensity He-Ne laser irradiation (LHNL) on wound healing. The proliferation and collagen synthesis of HFSs were modulated by LHNL in different papers, respectively, and both of them are studied in this paper. Study Design/Materials and Methods: The dosage was studied for the same radiation time 300s. The proliferation and collagen synthesis were measured by 3-[4,5-Dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay and the spectrophotometric method for the determination of hydroxyproline, respectively. Results: The dose zones were called dose 1, dose 2 and dose 3 from low dose on so that HSF proliferation was inhibited in dose 1 (16, 24 mJ/cm2), and promoted in dose 2 (298, 503, 597mJ/cm2), and the collagen synthesis was inhibited in dose 2 (401, 526 mJ/cm2), and promoted in dose 3 (714, 926, 1539, 1727mJ/cm2), which supports our biological model of photobiomodulation. It was found there is the linear relationship of the effect with dose with dose in each dose zone. Conclusions: The photobiomodulation on the proliferation and collagen synthesis of HSFs might be linearly dose-dependent in limited dosage with radiation time kept constant, which provides a foundation to discuss photobiomodulation on wound healing.

  16. Daily consumption of the collagen supplement Pure Gold Collagen® reduces visible signs of aging

    PubMed Central

    Borumand, Maryam; Sibilla, Sara

    2014-01-01

    With age, changes in the metabolic processes of structural components of the skin lead to visible signs of aging, such as increased dryness and wrinkle formation. The nutritional supplement, Pure Gold Collagen®, which consists of hydrolyzed collagen, hyaluronic acid, vitamins, and minerals, was developed to counteract these signs. An open-label study was conducted to investigate the effects of this nutritional supplement on skin properties. Supplementation with 50 mL of Pure Gold Collagen on a daily basis for 60 days led to a noticeable reduction in skin dryness, wrinkles, and nasolabial fold depth. In addition, a significant increase in collagen density and skin firmness was observed after 12 weeks. The data from this study suggest that Pure Gold Collagen can counteract signs of natural aging. PMID:25342893

  17. Study of chemical properties and evaluation of collagen in mantle, epidermal connective tissue and tentacle of Indian Squid, Loligo duvauceli Orbigny.

    PubMed

    Raman, Maya; Mathew, Saleena

    2014-08-01

    The chemical composition and evaluation of Indian squid (Loligo duvauceli) mantle, epidermal connective tissue and tentacle is investigated in this current study. It is observed that squid mantle contains 22.2% total protein; 63.5% of the total protein is myofibrillar protein. The unique property of squid myofibrillar protein is its water solubility. Squid mantle contains 12.0% total collagen. Epidermal connective tissue has highest amounts of total collagen (17.8%). SDS-PAGE of total collagen identified high molecular weight α-, β- and γ- sub-chains. Amino acid profile analysis indicates that mantle and tentacle contain essential amino acids. Arginine forms a major portion of mantle collagen (272.5 g/100 g N). Isoleucine, glutamic acid and lysine are other amino acids that are found in significantly high amounts in the mantle. Sulphur containing cystine is deficit in mantle collagen. Papain digest of mantle and epidermal connective tissue is rich in uronic acid, while papain digest, collagenase digest and urea digest of epidermal connective tissue has significant amounts of sialic acid (25.2, 33.2 and 99.8 μmol /100 g, respectively). PAS staining of papain digest, collagenase digest and urea digest also identify the association of hexoses with low molecular weight collagen fragments. Histochemical sectioning also emphasized the localized distribution of collagen in epidermal and dermal region and very sparse fibres traverse the myotome bundles.

  18. Driven fragmentation of granular gases.

    PubMed

    Cruz Hidalgo, Raúl; Pagonabarraga, Ignacio

    2008-06-01

    The dynamics of homogeneously heated granular gases which fragment due to particle collisions is analyzed. We introduce a kinetic model which accounts for correlations induced at the grain collisions and analyze both the kinetics and relevant distribution functions these systems develop. The work combines analytical and numerical studies based on direct simulation Monte Carlo calculations. A broad family of fragmentation probabilities is considered, and its implications for the system kinetics are discussed. We show that generically these driven materials evolve asymptotically into a dynamical scaling regime. If the fragmentation probability tends to a constant, the grain number diverges at a finite time, leading to a shattering singularity. If the fragmentation probability vanishes, then the number of grains grows monotonously as a power law. We consider different homogeneous thermostats and show that the kinetics of these systems depends weakly on both the grain inelasticity and driving. We observe that fragmentation plays a relevant role in the shape of the velocity distribution of the particles. When the fragmentation is driven by local stochastic events, the long velocity tail is essentially exponential independently of the heating frequency and the breaking rule. However, for a Lowe-Andersen thermostat, numerical evidence strongly supports the conjecture that the scaled velocity distribution follows a generalized exponential behavior f(c) approximately exp(-cn) , with n approximately 1.2 , regarding less the fragmentation mechanisms.

  19. Lipoid proteinosis: an inherited disorder of collagen metabolism?

    PubMed

    Harper, J I; Duance, V C; Sims, T J; Light, N D

    1985-08-01

    The dermal collagen of a patient with lipoid proteinosis was investigated by immunohistochemistry and biochemical analysis. The affected skin was found to contain significantly less collagen per unit dry weight than normal dermis but showed elevated levels of type 3 collagen with respect to type I. Purification of collagen types from affected skin after pepsin digestion showed no novel forms, but a doubling in the yield of type 5 collagen. These results correlated well with those of immunohistochemistry which showed a patchy, diffuse, widely distributed type 3 collagen and an increase in types 4 and 5 collagens associated with 'onion skin' endothelial basement membrane thickening. Estimation of collagen cross-links showed an abnormal pattern with a preponderance of the keto-imine form not normally associated with skin. These results strongly suggest that lipoid proteinosis involves a primary perturbation of collagen metabolism.

  20. Activation of nuclear factor κB in colonic mucosa from patients with collagenous and ulcerative colitis

    PubMed Central

    Andresen, L; Jørgensen, V L; Perner, A; Hansen, A; Eugen-Olsen, J; Rask-Madsen, J

    2005-01-01

    Background and aims: Expression of inducible nitric oxide synthase (iNOS) is greatly upregulated in the colonic mucosa of patients with collagenous and ulcerative colitis. As the transcription factor nuclear factor κB (NFκB) is a major inducer of iNOS gene expression, we compared activation and transcriptional activity of NFκB in colonic mucosal biopsies from these patients. Patients: Eight patients with collagenous colitis, six with relapsing ulcerative colitis, and eight with uninflamed bowel were studied. Methods: NFκB DNA binding activity was assessed by electrophoretic mobility shift assay and inhibitor of NFκB (IκB) kinase (IKK) activity by immunocomplex kinase assay. In vivo recruitment of NFκB to the iNOS promoter was determined by chromatin immunoprecipitation analysis and transcriptional activity by NFκB gene expression profiling arrays. Cells showing NFκB activation were identified by immunohistochemistry. Results: In collagenous and ulcerative colitis, as opposed to uninflamed bowel, IKKβ activity and strong NFκB DNA binding gave rise to activation of identical NFκB subunits and recruitment of transcriptionally active p65 to the iNOS promoter. In collagenous colitis, activated NFκB was observed only in epithelial cells while up to 10% of lamina propria macrophages showed activation in ulcerative colitis. Conclusions: In collagenous and ulcerative colitis, colonic mucosal NFκB is activated and recruited to the iNOS promoter in vivo via an IKKβ mediated pathway. As collagenous colitis is not associated with tissue injury, these data challenge the prevailing view that activation of NFκB per se mediates tissue injury. Our results suggest that downstream inflammatory reactions leading to tissue damage originate in lamina propria immune cells, as increased NFκB activity in collagenous colitis was localised solely in epithelial cells, but present also in macrophages in ulcerative colitis. PMID:15753535

  1. Recombinant expression of hydroxylated human collagen in Escherichia coli.

    PubMed

    Rutschmann, Christoph; Baumann, Stephan; Cabalzar, Jürg; Luther, Kelvin B; Hennet, Thierry

    2014-05-01

    Collagen is the most abundant protein in the human body and thereby a structural protein of considerable biotechnological interest. The complex maturation process of collagen, including essential post-translational modifications such as prolyl and lysyl hydroxylation, has precluded large-scale production of recombinant collagen featuring the biophysical properties of endogenous collagen. The characterization of new prolyl and lysyl hydroxylase genes encoded by the giant virus mimivirus reveals a method for production of hydroxylated collagen. The coexpression of a human collagen type III construct together with mimivirus prolyl and lysyl hydroxylases in Escherichia coli yielded up to 90 mg of hydroxylated collagen per liter culture. The respective levels of prolyl and lysyl hydroxylation reaching 25 % and 26 % were similar to the hydroxylation levels of native human collagen type III. The distribution of hydroxyproline and hydroxylysine along recombinant collagen was also similar to that of native collagen as determined by mass spectrometric analysis of tryptic peptides. The triple helix signature of recombinant hydroxylated collagen was confirmed by circular dichroism, which also showed that hydroxylation increased the thermal stability of the recombinant collagen construct. Recombinant hydroxylated collagen produced in E. coli supported the growth of human umbilical endothelial cells, underlining the biocompatibility of the recombinant protein as extracellular matrix. The high yield of recombinant protein expression and the extensive level of prolyl and lysyl hydroxylation achieved indicate that recombinant hydroxylated collagen can be produced at large scale for biomaterials engineering in the context of biomedical applications.

  2. Computational and Experimental Determination of Fragmentation for Naturally Fragmenting Warheads

    DTIC Science & Technology

    1981-05-01

    Table Page I Chemical analysis of Armco iron and HF-I steel ....................... 3 2 Summary of tensile-pull measurements for transverse-direction...ntered) REPORT DOCUMENTATION PAGE - E-EFORE COMTLETING FORM I REPORT NUMBER 2 GOVT ACCESSION NO. 3 RECIPIENT’S CATALOG NUMBERNSWC TR 80-238 4 TITLE (and...Sulbtitle) S TYPE OF REPORT & PERIOD COVERED COMPUTATIONAL AND EXPERIMENTAL 1 Final DETERMINATION OF FRAGMENTATION FOR NATURALLY FRAGMENTING WARHEADS

  3. Collagen polymorphism in idiopathic chronic pulmonary fibrosis.

    PubMed Central

    Seyer, J M; Hutcheson, E T; Kang, A H

    1976-01-01

    Collagens in normal human lung and in idiopathic chronic fibrosis were investigated in terms of their covalent structure and compared for possible alterations in the diseased state. Collagens were solubilized by limited digestion with pepsin under nondenaturing conditions, and after purification they, were fractionated into types I and III. Carboxymethylcellulose and agarose chromatography of both types I and III collagens, and amino acid and carbohydrate analyses of the resulting alpha-chains indicated that the alpha 1 (I), alpha 2, and alpha 1 (III) chains of normal human lung were identical with the human skin alpha-chains in all respects examined except that the normal lung chains contained higher levels of hydroxylysine. Examination of collagens obtained from the diseased lung revealed that the content of hydroxylysine of the alpha 1 (I) and the alpha 1 (III) chains appeared to be diminished as compared to the normal lung chains. The values, expressed as residues per 1,000 residues, are 7.1 and 8.3 for the alpha 1 (I) and the alpha 1 (III) chains, respectively, as compared to 10.0 and 11.1 for the alpha-chains from the normal tissue. The chromatographic properties and amino acid and carbohydrate composition of the alpha-chains from the diseased tissue were otherwise indistinguishable from those of normal lung. In addition, isolation and characterization of the CNBr peptides of alpha 1 (I), alpha 2 and alpha 1 (III) from the diseased lung revealed no significant differences from the CNBr peptides from other human tissues reported previously. Normal and diseased lungs were also digested with CNBr, and the resultant alpha 1 (I) and alpha 1 (III) peptides were separated chromatographically. The relative quantities of these peptides indicate that type III collagen constitutes 33% of the total collagen in normal human lung, with the remainder being type I, whereas in idiopathic chronic pulmonary fibrosis, the relative content of type III collagen is markedly

  4. The protective effects of long-term oral administration of marine collagen hydrolysate from chum salmon on collagen matrix homeostasis in the chronological aged skin of Sprague-Dawley male rats.

    PubMed

    Liang, Jiang; Pei, Xinrong; Zhang, Zhaofeng; Wang, Nan; Wang, Junbo; Li, Yong

    2010-10-01

    To investigate the long-term effects of marine collagen hydrolysate (MCH) from Chum Salmon skin on the aberrant collagen matrix homeostasis in chronological aged skin, Sprague-Dawley male rats of 4-wk-old were orally administrated with MCH at the diet concentrations of 2.25% and 4.5% for 24 mo. Histological and biochemical analysis revealed that MCH had the potential to inhibit the collagen loss and collagen fragmentation in chronological aged skin. Based on immunohistochemistry and western blot analysis, collagen type I and III protein expression levels in MCH-treated groups significantly increased as compared with the aged control group. Furthermore, quantitative real-time polymerase chain reaction and western blot analysis showed MCH was able to increase the expressions of procollagen type I and III mRNA (COL1A2 and COL3A1) through activating Smad signaling pathway with up-regulated TGF-βRII (TβRII) expression level. Meanwhile, MCH was shown to inhibit the age-related increased collagen degradation through attenuating MMP-1 expression and increasing tissue inhibitor of metalloproteinases-1 expression in a dose-dependent manner. Moreover, MCH could alleviate the oxidative stress in chronological aged skin, which was revealed from the data of superoxide dismutase activity and the thiobarbituric acid reactive substances level in skin homogenates. Therefore, MCH was demonstrated to have the protective effects on chronological skin aging due to the influence on collagen matrix homeostasis. And the antioxidative property of MCH might play an important role in the process.

  5. Depleted Uranium Test Range Fragment Reclamation

    DTIC Science & Technology

    1982-07-01

    fragment drying was necessary in order to obtain adequate vacuum levels in the VIR furnaces . e. Vacuujm Induction Remelting Fragments and Casting...Acid Pickle and Water Rinse .... ........ 2 d. Drying the Fragments .... ............... 2 e. Vacuum Induction Remelting Fragments and Casting...feasibility of reclaiming test range fragments by vacuum induction remelting (VIR). The technical direction of Phase 11 was highly dependent upon the

  6. Collagenous colitis: new diagnostic possibilities with endomicroscopy

    NASA Astrophysics Data System (ADS)

    Hoffman, A.; Goetz, M.; Biesterfeld, S.; Galle, P. R.; Neurath, M. F.; Kiesslich, R.

    2006-02-01

    Collagenous colitis is a kind of microscopic colitis. It is characterized by chronic watery diarrhea and abdominal pain. The etiology is still unknown. So far, for the diagnose a histological evaluation was necessary with the presence of thickened subepithelial collagneous bands in the lamina propria. A new developed endoscope with a confocal laser allows analysing cellular and subcellular details of the mucosal layer at high resolution in vivo. In this case report we describe for the first time to diagnose collagenous colitis during ongoing colonoscopy by using this confocal endomicroscopy. In a 67 year old female patient with typical symptoms the characteristic histological changes could be identified in the endomicroscopic view. Biopsies could be targeted to affected areas and endomicroscopic prediction of the presence of collagenous bands could be confirmed in all targeted biopsies. First endomicroscopic experience in microscopic colitis could be confirmed in four additional patients. Future prospective studies are warranted to further evaluate these initial findings. However, collagenous colitis is frequently missed and endomicroscopy seems to be the ideal tool for accurate diagnosing collagenous colitis during ongoing endoscopy.

  7. Collagen degrading activity associated with Mycobacterium species

    PubMed Central

    Masso, F; Paez, A; Varela, E; d Diaz; Zenteno, E; Montano, L

    1999-01-01

    BACKGROUND—The mechanism of Mycobacterium tuberculosis penetration into tissues is poorly understood but it is reasonable to assume that there is a contribution from proteases capable of disrupting the extracellular matrix of the pulmonary epithelium and the blood vessels. A study was undertaken to identify and characterise collagen degrading activity of M tuberculosis.
METHODS—Culture filtrate protein extract (CFPE) was obtained from reference mycobacterial strains and mycobacteria isolated from patients with tuberculosis. The collagen degrading activity of CFPE was determined according to the method of Johnson-Wint using 3H-type I collagen. The enzyme was identified by the Birkedal-Hansen and Taylor method and its molecular mass determined by SDS-PAGE and Sephacryl S-300 gel filtration chromatography using an electroelution purified enzyme.
RESULTS—CFPE from Mycobacterium tuberculosis strain H37Rv showed collagenolytic activity that was four times higher than that of the avirulent strain H37Ra. The 75 kDa enzyme responsible was divalent cation dependent. Other mycobacterial species and those isolated from patients with tuberculosis also had collagen degrading activity.
CONCLUSIONS—Mycobacterium species possess a metalloprotease with collagen degrading activity. The highest enzymatic activity was found in the virulent reference strain H37Rv.

 PMID:10212111

  8. New recommendations for measuring collagen solubility.

    PubMed

    Latorre, María E; Lifschitz, Adrian L; Purslow, Peter P

    2016-08-01

    The heat-solubility of intramuscular collagen is usually conducted in 1/4 Ringer's solution at pH7.4, despite this ionic strength and pH being inappropriate for post-rigor meat. The current work studied the percentage of soluble collagen and hydrothermal isometric tension characteristics of perimysial strips on bovine semitendinosus muscles in either 1/4 Ringer's solution, distilled water, PBS, or a solution of the same salt concentration as 1/4 Ringer's but at pH5.6. Values of % soluble collagen were lower at pH7.4 than 5.6. Increasing ionic strength reduced % soluble collagen. The maximum perimysial isometric tension was independent of the bathing medium, but the percent relaxation was higher at pH7.4 than at pH5.6, and increased with ionic strength of the media. It is recommended that future measurements of collagen solubility and tests on connective tissue components of post-rigor meat should be carried out in a solution of concentrations NaCl and KCl equivalent to those in 1/4 Ringer's, but at pH5.6, a pH relevant to post-rigor meat.

  9. Crosslink in bone collagen in Paget's disease.

    PubMed Central

    Misra, D P

    1975-01-01

    The crosslink in bone collagen was analysed in specimens of bone obtained at necropsy from cases of Paget's disease and compared with normal bone collagen of the same age. The specimens were stored at -20 degrees C before analysis. The predominant crosslink in a normal bone collagen was hydroxylysinohydroxynorleucine (di OH-LNL) (F1), which was designated syndesine in the past; another fraction, hydroxylysinorleucine (HLNL) (F2), musch less prominent than di OH-LNL, was also noted in a normal bone collagen. Both fractions were reduced in bone tissue of advancing age. The peak corresponding to HLNL was considerably increased in Paget's disease. This abnormality was constantly seen in specimens of bone from cases of Paget's disease, but the significance of the finging could not be assessed from the present investigation. Calcitonin has been shown to produce complete remission in Paget's disease and the crosslink pattern was found to be normal in specimens examined froma calcitonin-treated patient. This shows that calcitonin has some effect on the metabolism of collagen and a normal crosslink in such a situation lends support to this idea. PMID:1127123

  10. Femtosecond laser collagen cross-linking without traditional photosensitizers

    NASA Astrophysics Data System (ADS)

    Guo, Yizang; Wang, Chao; Celi, Nicola; Vukelic, Sinisa

    2015-03-01

    Collagen cross-linking in cornea has the capability of enhancing its mechanical properties and thereby providing an alternative treatment for eye diseases such as keratoconus. Currently, riboflavin assisted UVA light irradiation is a method of choice for cross-link induction in eyes. However, ultrafast pulsed laser interactions may be a powerful alternative enabling in-depth treatment while simultaneously diminishing harmful side effects such as, keratocyte apoptosis. In this study, femtosecond laser is utilized for treatment of bovine cornea slices. It is hypothesized that nonlinear absorption of femtosecond laser pulses plays a major role in the maturation of immature cross-links and the promotion of their growth. Targeted irradiation with tightly focused laser pulses allows for the absence of a photosensitizing agent. Inflation test was conducted on half treated porcine cornea to identify the changes of mechanical properties due to laser treatment. Raman spectroscopy was utilized to study subtle changes in the chemical composition of treated cornea. The effects of treatment are analyzed by observing shifts in Amide I and Amide III bands, which suggest deformation of the collagen structure in cornea due to presence of newly formed cross-links.

  11. Distinct determinants on collagen support alpha 2 beta 1 integrin-mediated platelet adhesion and platelet activation.

    PubMed Central

    Santoro, S A; Walsh, J J; Staatz, W D; Baranski, K J

    1991-01-01

    Recent studies have revealed that the sequence of amino acids asp-gly-glu-ala represents an essential determinant of the site within the alpha 1(I)-CB3 fragment of collagen recognized by the alpha 2 beta 1 integrin cell surface collagen receptor (Staatz et al., 1991). Studies employing chemical modifications of collagen amino acid side chains confirm both the essential nature of the acidic side chains of aspartic acid and glutamic acid residues and the nonessentiality of lysine epsilon-amino groups in supporting adhesion mediated by the alpha 2 beta 1 integrin. The approach also indicates the presence of a distinct determinant on collagen separate from the alpha 2 beta 1 recognition site that contains essential lysine side chains and that is necessary for subsequent interactions with the platelet surface that give rise to collagen-induced platelet activation and secretion. The two-step, two-site model for cellular signaling involving both an integrin and a signal-transducing coreceptor suggested by these data may be common to other integrin-mediated processes. PMID:1809397

  12. Carcinogenesis of Depleted Uranium Fragments

    DTIC Science & Technology

    2000-06-01

    later determined not to cause cancer in humans. Examples are certain food colorings (Grasso and Golberg , 1966), iron dextran (Baker et al., 1961), and...carcinogenesis caused by dyes 21 Contains unpublished data; limit distribution and food additives (Grasso and Golberg , 1966). It is also apparent that...subcutaneously in rats (Grasso and Golberg , 1966). Those compounds that produced tissue destruction with subsequent dense collagen formation invariably

  13. Potential impact of sitagliptin on collagen-derived dipeptides in diabetic osteoporosis.

    PubMed

    Baerts, L; Glorie, L; Maho, W; Eelen, A; Verhulst, A; D'Haese, P; Covaci, A; De Meester, I

    2015-10-01

    It is known that diabetes coincides with an increased risk of osteoporosis. While a disturbed collagen metabolism is proposed as a possible cause, much remains unknown about the enzymes involved and changes in the collagen-derived dipeptides and amino acids. Therefore, we sought to study this intricate pathway and the effect of dipeptidyl peptidase 4 (DPP4) inhibitors. Control and streptozotocin-nicotinamide-induced diabetic rats were treated for 12 weeks with vehicle or sitagliptin, a DPP4 inhibitor (Con/VH, Con/SG, DM/VH and DM/SG). The activities of four key enzymes involved in collagen breakdown were determined in serum (DPP4, matrix metalloproteinase 2 and 9 and prolidase). Dipeptide (Ala-Pro, Gly-Pro, Pro-Pro and Pro-Hyp) and amino acid (Pro and Hyp) concentrations were measured by liquid chromatography coupled to mass spectrometry. We found three-fold higher MMP9 activities in DM/VH than in controls, while in DM/SG this rise was attenuated. MMP2 and prolidase did not differ in the investigated groups. Furthermore, we are the first to report on two-fold higher Ala-Pro and Pro-Pro levels in diabetes compared to controls. In contrast, Pro-Hyp concentrations were lower in diabetes (DM/VH and DM/SG). DPP4 inhibition does not seem to have a direct influence on the collagen metabolism in streptozotocin-nicotinamide-induced diabetic rats. Instead, it probably acts through its effect on osteoprotective substrates. In diabetes, increased MMP9 activities seem to favour the production of Ala-Pro and Pro-Pro containing collagen fragments. The high Pro-Hyp levels in untreated controls might have a bone-stimulating effect. Nevertheless, the biological significance of these dipeptides is not yet clear and should be further investigated.

  14. Collagen XVIII/endostatin is associated with the epithelial-mesenchymal transformation in the atrioventricular valves during cardiac development.

    PubMed

    Carvalhaes, Lorenza S; Gervásio, Othon L; Guatimosim, Cristina; Heljasvaara, Ritva; Sormunen, Raija; Pihlajaniemi, Taina; Kitten, Gregory T

    2006-01-01

    Type XVIII collagen is a multidomain protein that contains cleavable C-terminal NC1 and endostatin fragments, which have been shown to either induce or inhibit cell migration. Endostatin is being intensely studied because of its anti-angiogenic activity. Three variants of type XVIII collagen have been reported to be distributed in epithelial and endothelial basement membranes in a tissue-specific manner. The single gene encoding collagen XVIII is on chromosome 21 within the region associated with the congenital heart disease phenotype observed in Down's syndrome. In this study, we investigated the expression pattern of collagen XVIII in embryonic mouse hearts during formation of the atrioventricular (AV) valves. We found that collagen XVIII is localized not only in various basement membranes but is also highly expressed throughout the connective tissue core of the endocardial cushions and forming AV valve leaflets. It was closely associated with the epithelial-mesenchymal transformation of endothelial cells into mesenchymal cushion tissue cells and was localized around these cells as they migrated into the cardiac jelly to form the initial connective tissue elements of the valve leaflets. However, after embryonic day 17.5 collagen XVIII expression decreased rapidly in the connective tissue and thereafter remained detectable only in the basement membranes of the endothelial layer covering the leaflets. The staining pattern observed within the AV endocardial cushions suggests that collagen XVIII may have a role in cardiac valve morphogenesis. These results may help us to better understand normal heart development and the aberrant mechanisms that cause cardiac malformations in Down's syndrome.

  15. Fragmentation of drying paint layers

    NASA Astrophysics Data System (ADS)

    Bakos, Katinka; Dombi, András; Járai-Szabó, Ferenc; Néda, Zoltán

    2013-11-01

    Fragmentation of thin layers of drying granular materials on a frictional surface are studied both by experiments and computer simulations. Besides a qualitative description of the fragmentation phenomenon, the dependence of the average fragment size as a function of the layer thickness is thoroughly investigated. Experiments are done using a special nail polish, which forms characteristic crack structures during drying. In order to control the layer thickness, we diluted the nail polish in acetone and evaporated in a controlled manner different volumes of this solution on glass surfaces. During the evaporation process we managed to get an instable paint layer, which formed cracks as it dried out. In order to understand the obtained structures a previously developed spring-block model was implemented in a three-dimensional version. The experimental and simulation results proved to be in excellent qualitative and quantitative agreement. An earlier suggested scaling relation between the average fragment size and the layer thickness is reconfirmed.

  16. Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats.

    PubMed

    Chen, Chong; Zhao, Ming-Liang; Zhang, Ren-Kun; Lu, Gang; Zhao, Chang-Yu; Fu, Feng; Sun, Hong-Tao; Zhang, Sai; Tu, Yue; Li, Xiao-Hong

    2017-01-25

    Effective treatments promoting axonal regeneration and functional recovery for spinal cord injury (SCI) are still in the early stages of development. Most approaches have been focused on providing supportive substrates for guiding neurons and overcoming the physical and chemical barriers to healing that arise after SCI. Although collagen has become a promising natural substrate with good compatibility, its low mechanical properties restrict its potential applications. The mechanical properties mainly rely on the composition and pore structure of scaffolds. For the composition of a scaffold, we used heparin sulfate to react with collagen by crosslinking. For the structure, we adopted a three-dimensional (3D) printing technology to fabricate a scaffold with a uniform pore distributions. We observed that the internal structure of the scaffold printed with a 3D bioprinter was regular and porous. We also found that both the compression modulus and strengths of the scaffold were significantly enhanced by the collagen/heparin sulfate composition compared to a collagen scaffold. Meanwhile, the collagen/heparin sulfate scaffold presented good biocompatibility when it was co-cultured with neural stem cells in vitro. We also demonstrated that heparin sulfate modification significantly improved bFGF immobilization and absorption to the collagen by examining the release kinetics of bFGF from scaffolds. Two months after implantating the scaffold into transection lesions in T10 of the spinal cord in rats, the collagen/heparin sulfate group demonstrated significant recovery of locomotor function and according to electrophysiological examinations. Parallel to functional recovery, collagen/heparin sulfate treatment further ameliorated the pathological process and markedly increased the number of neurofilament (NF) positive cells compared to collagen treatment alone. These data suggested that a collagen/heparin sulfate scaffold fabricated by a 3D bioprinter could enhance the

  17. A semiempirical nuclear fragmentation model

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Badavi, F. F.

    1987-01-01

    An abrasion/ablation model of heavy ion fragmentation is derived which includes a second order correction for the surface energy term and provides a reasonable representation of the present elemental fragmentation cross sections. The full development of the model must await the resolution of disagreement among different experiments and an expansion of the experimental data base to a broader set of projectile-target combinations.

  18. High Fragmentation Steel Production Process

    DTIC Science & Technology

    1984-01-01

    phase of the project entailed the purchase and metallurgical characterization of two heats of HF-1 steel from different vendors. Performed by...At>-A 13^ nzt AD AD-E401 117 CONTRACTOR REPORT ARLCD-CR-83049 HIGH FRAGMENTATION STEEL PRODUCTION PROCESS ^"fP-PTTMirj A 1 James F. Kane...Report 6. PERFORMING ORG. REPORT NUMBER High Fragmentation Steel Production Process 7. AUTHORfs; James F. Kane, Ronald L. Kivak, Colin C. MacCrindle

  19. QGP and Modified Jet Fragmentation

    SciTech Connect

    Wang, Xin-Nian

    2005-04-18

    Recent progresses in the study of jet modification in hotmedium and their consequences in high-energy heavy-ion collisions are reviewed. In particular, I will discuss energy loss for propagating heavy quarks and the resulting modified fragmentation function. Medium modification of the parton fragmentation function due to quark recombination are formulated within finite temperature field theory and their implication on the search for deconfined quark-gluon plasma is also discussed.

  20. Biomimetic silicification of demineralized hierarchical collagenous tissues

    PubMed Central

    Ryou, Heonjune; Diogenes, Anibal; Yiu, Cynthia K.Y.; Mazzoni, Annalisa; Chen, Ji-hua; Arola, Dwayne D.; Hargreaves, Kenneth M.; Pashley, David H.; Tay, Franklin R.

    2013-01-01

    Unlike man-made composite materials, natural biominerals containing composites usually demonstrate different levels of sophisticated hierarchical structures which are responsible for their mechanical properties and other metabolic functions. However, the complex spatial organizations of the organic-inorganic phases are far beyond what they be achieved by contemporary engineering techniques. Here, we demonstrate that carbonated apatite present in collagen matrices derived from fish scale and bovine bone may be replaced by amorphous silica, using an approach that simulates what is utilized by phylogenetically ancient glass sponges. The structural hierarchy of these collagen-based biomaterials is replicated by the infiltration and condensation of fluidic polymer-stabilized silicic acid precursors within the intrafibrillar milieu of type I collagen fibrils. This facile biomimetic silicification strategy may be used for fabricating silica-based, three-dimensional functional materials with specific morphological and hierarchical requirements. PMID:23586938

  1. Physical crosslinkings of edible collagen casing.

    PubMed

    Wang, Wenhang; Zhang, Yi; Ye, Ran; Ni, Yonghao

    2015-11-01

    Although edible collagen casing has been commercially used in meat industry, the safety and effectiveness of collagen cross-linking with minimally invasive treatments are still big concerns for manufacturers. In this study, ultraviolet irradiation (UV) and dehydrothermal treatment (DHT) were used to improve the properties of casing. UV, DHT, and their combination (UV+DHT) significantly increased tensile strength and decreased elongation at break of casing, in which DHT showed the best performance. Swelling of casing was also partially inhibited by the treatments. Furthermore, UV and DHT slightly improved thermal stability of the casings. In addition, X-ray diffraction patterns showed the treatments caused different extents of denaturation of collagen. No obvious effects in thickness and light transparency except for surface roughness were observed in the treated casings. The physical treatments could potentially be used as safe and effective alternatives to chemical cross-linking for the production of collage casing.

  2. [Collagenous colitis. Morphologic and immunohistochemical study].

    PubMed

    Genova, G; Arena, N; Guddo, F; Vita, C; Reitano, R; Nagar, C; Tralongo, V

    1993-01-01

    Collagenous colitis is a clinico-pathological entity characterized by chronic diarrhoeas and deposition of collagen beneath the epithelium surface of large bowel. We revised 265 endoscopy biopsy specimens of the large bowel from 198 consecutive patients with "aspecific chronic colitis". Morphometric study showed that were not significant differences among various tracts in the same patients regarding to the thickness of basament membrane. It was more than 11.9 +/- 0.49 mu only in 13 pts (6.6%), while it was 3.96 +/- 1.4 mu in the others. Immunohistochemistry study confirmed the normality of subepithelial basement membrane and the below deposition of the large quantity of collagen IV.

  3. Prospects and limitations of the rational engineering of fibrillar collagens

    PubMed Central

    Majsterek, Ireneusz; McAdams, Erin; Adachi, Eijiro; Dhume, Shirish T.; Fertala, Andrzej

    2003-01-01

    Recombinant collagens are attractive proteins for a number of biomedical applications. To date, significant progress was made in the large-scale production of nonmodified recombinant collagens; however, engineering of novel collagen-like proteins according to customized specifications has not been addressed. Herein we investigated the possibility of rational engineering of collagen-like proteins with specifically assigned characteristics. We have genetically engineered two DNA constructs encoding multi-D4 collagens defined as collagen-like proteins, consisting primarily of a tandem of the collagen II D4 periods that correspond to the biologically active region. We have also attempted to decrease enzymatic degradation of novel collagen by mutating a matrix metalloproteinase 1 cleavage site present in the D4 period. We demonstrated that the recombinant collagen α-chains consisting predominantly of the D4 period but lacking most of the other D periods found in native collagen fold into a typical collagen triple helix, and the novel procollagens are correctly processed by procollagen N-proteinase and procollagen C-proteinase. The nonmutated multi-D4 collagen had a normal melting point of 41°C and a similar carbohydrate content as that of control. In contrast, the mutant multi-D4 collagen had a markedly lower thermostability of 36°C and a significantly higher carbohydrate content. Both collagens were cleaved at multiple sites by matrix metalloproteinase 1, but the rate of hydrolysis of the mutant multi-D4 collagen was lower. These results provide a basis for the rational engineering of collagenous proteins and identifying any undesirable consequences of altering the collagenous amino acid sequences. PMID:12931004

  4. Migration and Proliferative Activity of Mesenchymal Stem Cells in 3D Polylactide Scaffolds Depends on Cell Seeding Technique and Collagen Modification.

    PubMed

    Rodina, A V; Tenchurin, T Kh; Saprykin, V P; Shepelev, A D; Mamagulashvili, V G; Grigor'ev, T E; Lukanina, K I; Orekhov, A S; Moskaleva, E Yu; Chvalun, S N

    2016-11-01

    We analyzed viability of mesenchymal stem cells seeded by static and dynamic methods to highly porous fibrous 3D poly-L-lactide scaffolds with similar physical and chemical properties, but different spatial organization modified with collagen. Standard collagen coating promoted protein adsorption on the scaffold surface and improved adhesive properties of 100 μ-thick scaffolds. Modification of 600-μ scaffolds with collagen under pressure increased proliferative activity of mesenchymal stem cells seeded under static and dynamic (delivery of 100,000 cells in 10 ml medium in a perfusion system at a rate of 1 ml/min) conditions by 47 and 648%, respectively (measured after 120-h culturing by MTT test). Dynamic conditions provide more uniform distribution of collagen on scaffold fibers and promote cell penetration into 3D poly-L-lactide scaffolds with thickness >600 μ.

  5. Significant Role of Collagen XVII And Integrin β4 in Migration and Invasion of The Less Aggressive Squamous Cell Carcinoma Cells.

    PubMed

    Moilanen, Jyri M; Löffek, Stefanie; Kokkonen, Nina; Salo, Sirpa; Väyrynen, Juha P; Hurskainen, Tiina; Manninen, Aki; Riihilä, Pilvi; Heljasvaara, Ritva; Franzke, Claus-Werner; Kähäri, Veli-Matti; Salo, Tuula; Mäkinen, Markus J; Tasanen, Kaisa

    2017-03-22

    Collagen XVII and integrin α6β4 have well-established roles as epithelial adhesion molecules. Their binding partner laminin 332 as well as integrin α6β4 are largely recognized to promote invasion and metastasis in various cancers, and collagen XVII is essential for the survival of colon and lung cancer stem cells. We have studied the expression of laminin γ2, collagen XVII and integrin β4 in tissue microarray samples of squamous cell carcinoma (SCC) and its precursors, actinic keratosis and Bowen's disease. The expression of laminin γ2 was highest in SCC samples, whereas the expression of collagen XVII and integrin β4 varied greatly in SCC and its precursors. Collagen XVII and integrin β4 were also expressed in SCC cell lines. Virus-mediated RNAi knockdown of collagen XVII and integrin β4 reduced the migration of less aggressive SCC-25 cells in horizontal scratch wound healing assay. Additionally, in a 3D organotypic myoma invasion assay the loss of collagen XVII or integrin β4 suppressed equally the migration and invasion of SCC-25 cells whereas there was no effect on the most aggressive HSC-3 cells. Variable expression patterns and results in migration and invasion assays suggest that collagen XVII and integrin β4 contribute to SCC tumorigenesis.

  6. Significant Role of Collagen XVII And Integrin β4 in Migration and Invasion of The Less Aggressive Squamous Cell Carcinoma Cells

    PubMed Central

    Moilanen, Jyri M.; Löffek, Stefanie; Kokkonen, Nina; Salo, Sirpa; Väyrynen, Juha P.; Hurskainen, Tiina; Manninen, Aki; Riihilä, Pilvi; Heljasvaara, Ritva; Franzke, Claus-Werner; Kähäri, Veli-Matti; Salo, Tuula; Mäkinen, Markus J.; Tasanen, Kaisa

    2017-01-01

    Collagen XVII and integrin α6β4 have well-established roles as epithelial adhesion molecules. Their binding partner laminin 332 as well as integrin α6β4 are largely recognized to promote invasion and metastasis in various cancers, and collagen XVII is essential for the survival of colon and lung cancer stem cells. We have studied the expression of laminin γ2, collagen XVII and integrin β4 in tissue microarray samples of squamous cell carcinoma (SCC) and its precursors, actinic keratosis and Bowen’s disease. The expression of laminin γ2 was highest in SCC samples, whereas the expression of collagen XVII and integrin β4 varied greatly in SCC and its precursors. Collagen XVII and integrin β4 were also expressed in SCC cell lines. Virus-mediated RNAi knockdown of collagen XVII and integrin β4 reduced the migration of less aggressive SCC-25 cells in horizontal scratch wound healing assay. Additionally, in a 3D organotypic myoma invasion assay the loss of collagen XVII or integrin β4 suppressed equally the migration and invasion of SCC-25 cells whereas there was no effect on the most aggressive HSC-3 cells. Variable expression patterns and results in migration and invasion assays suggest that collagen XVII and integrin β4 contribute to SCC tumorigenesis. PMID:28327550

  7. Synthesis of the BCDE molecular fragment of azadiradione mediated by titanocene(III).

    PubMed

    Fernández-Mateos, A; Madrazo, S Encinas; Teijón, P Herrero; Clemente, R Rabanedo; González, R Rubio; González, F Sanz

    2013-10-04

    A practical, short, and diastereoselective synthesis of the azadiradione BCDE fragment from a readily available starting material is described. The key step was the titanocene(III)-promoted tandem cyclization of unsaturated epoxy nitrile.

  8. Cell-collagen interactions: the use of peptide Toolkits to investigate collagen-receptor interactions.

    PubMed

    Farndale, Richard W; Lisman, Ton; Bihan, Dominique; Hamaia, Samir; Smerling, Christiane S; Pugh, Nicholas; Konitsiotis, Antonios; Leitinger, Birgit; de Groot, Philip G; Jarvis, Gavin E; Raynal, Nicolas

    2008-04-01

    Fibrillar collagens provide the most fundamental platform in the vertebrate organism for the attachment of cells and matrix molecules. We have identified specific sites in collagens to which cells can attach, either directly or through protein intermediaries. Using Toolkits of triple-helical peptides, each peptide comprising 27 residues of collagen primary sequence and overlapping with its neighbours by nine amino acids, we have mapped the binding of receptors and other proteins on to collagens II or III. Integrin alpha2beta1 binds to several GXX'GER motifs within the collagens, the affinities of which differ sufficiently to control cell adhesion and migration independently of the cellular regulation of the integrin. The platelet receptor, Gp (glycoprotein) VI binds well to GPO (where O is hydroxyproline)-containing model peptides, but to very few Toolkit peptides, suggesting that sequence in addition to GPO triplets is important in defining GpVI binding. The Toolkits have been applied to the plasma protein vWF (von Willebrand factor), which binds to only a single sequence, identified by truncation and amino acid substitution within Toolkit peptides, as GXRGQOGVMGFO in collagens II and III. Intriguingly, the receptor tyrosine kinase, DDR2 (discoidin domain receptor 2) recognizes three sites in collagen II, including its vWF-binding site, although the amino acids that support the interaction differ slightly within this motif. Furthermore, the secreted protein BM-40 (basement membrane protein 40) also binds well to this same region. Thus the availability of extracellular collagen-binding proteins may be important in regulating and facilitating direct collagen-receptor interaction.

  9. Ordered collagen membranes: production and characterization.

    PubMed

    Ruderman, G; Mogilner, I G; Tolosa, E J; Massa, N; Garavaglia, M; Grigera, J R

    2012-01-01

    A collagen membrane with microscopic order is presented. The membranes were produced with acid-soluble collagen, using two different methods to obtain orientation. The product was characterized by mean of UV and IR spectra, scanning electronic microscopy, optical microscopy and laser diffractometry. The results clearly show a high level of order in the membranes obtained by both techniques. Permeability for rifamycin, ascorbic acid and NaCl was also measured. Due to the characteristics of the membranes, they have a potential application for treatment of surface injuries.

  10. Contact activation of blood coagulation on a defined kaolin/collagen surface in a microfluidic assay.

    PubMed

    Zhu, Shu; Diamond, Scott L

    2014-12-01

    Generation of active Factor XII (FXIIa) triggers blood clotting on artificial surfaces and may also enhance intravascular thrombosis. We developed a patterned kaolin (0 to 0.3 pg/μm(2))/type 1 collagen fibril surface for controlled microfluidic clotting assays. Perfusion of whole blood (treated only with a low level of 4 μg/mL of the XIIa inhibitor, corn trypsin inhibitor) drove platelet deposition followed by fibrin formation. At venous wall shear rate (100 s(-1)), kaolin accelerated onset of fibrin formation by ~100 sec when compared to collagen alone (250 sec vs. 350 sec), with little effect on platelet deposition. Even with kaolin present, arterial wall shear rate (1000 s(-1)) delayed and suppressed fibrin formation compared to venous wall shear rate. A comparison of surfaces for extrinsic activation (tissue factor TF/collagen) versus contact activation (kaolin/collagen) that each generated equal platelet deposition at 100 s(-1) revealed: (1) TF surfaces promoted much faster fibrin onset (at 100 sec) and more endpoint fibrin at 600 sec at either 100 s(-1) or 1000 s(-1), and (2) kaolin and TF surfaces had a similar sensitivity for reduced fibrin deposition at 1000 s(-1) (compared to fibrin formed at 100 s(-1)) despite differing coagulation triggers. Anti-platelet drugs inhibiting P2Y1, P2Y12, cyclooxygenase-1 or activating IP-receptor or guanylate cyclase reduced platelet and fibrin deposition on kaolin/collagen. Since FXIIa or FXIa inhibition may offer safe antithrombotic therapy, especially for biomaterial thrombosis, these defined collagen/kaolin surfaces may prove useful in drug screening tests or in clinical diagnostic assays of blood under flow conditions.

  11. Supra-molecular assembly of a lumican-derived peptide amphiphile enhances its collagen-stimulating activity.

    PubMed

    Walter, Merlin N M; Dehsorkhi, Ashkan; Hamley, Ian W; Connon, Che J

    2016-02-01

    C16-YEALRVANEVTLN, a peptide amphiphile (PA) incorporating a biologically active amino acid sequence found in lumican, has been examined for its influence upon collagen synthesis by human corneal fibroblasts in vitro, and the roles of supra-molecular assembly and activin receptor-like kinase ALK receptor signaling in this effect were assessed. Cell viability was monitored using the Alamar blue assay, and collagen synthesis was assessed using Sirius red. The role of ALK signaling was studied by receptor inhibition. Cultured human corneal fibroblasts synthesized significantly greater amounts of collagen in the presence of the PA over both 7-day and 21-day periods. The aggregation of the PA to form nanotapes resulted in a notable enhancement in this activity, with an approximately two-fold increase in collagen production per cell. This increase was reduced by the addition of an ALK inhibitor. The data presented reveal a stimulatory effect upon collagen synthesis by the primary cells of the corneal stroma, and demonstrate a direct influence of supra-molecular assembly of the PA upon the cellular response observed. The effects of PA upon fibroblasts were dependent upon ALK receptor function. These findings elucidate the role of self-assembled nanostructures in the biological activity of peptide amphiphiles, and support the potential use of a self-assembling lumican derived PA as a novel biomaterial, intended to promote collagen deposition for wound repair and tissue engineering purposes.

  12. In vitro bone formation by mesenchymal stem cells with 3D collagen/β-TCP composite scaffold.

    PubMed

    Todo, Mitsugu; Arahira, Takaaki

    2013-01-01

    Recent years, various kinds of natural polymers and bioceramics has been used to develop porous scaffolds for bone tissue engineering. Among of them, collagen guarantees good biological conditions, and β-tricalcium phosphate (β-TCP) possesses good oseteoconductivity, cellular adhesion, accelerated differentiation and mechanical property. In this study, rat bone marrow mesenchymal stem cells (rMSC) were cultured in β-TCP/collagen composite scaffolds up to 28 days in order to assess the time-dependent behavior of the extracellular matrix formation and the mechanical performance of the scaffold-cell system. The cell number and ALP activity were evaluated using a spectrophotometric plate reader. Gene expression of osteogenesis was analyzed using the real-time PCR reactions. Compression tests were also conducted periodically by using a conventional testing machine to evaluate the elastic modulus. The increasing behaviors of cell number and ALP activity in the composite scaffold were much better than in the collagen scaffold. The gene expression of osteocalcin and collagen type-I in collagen/β-TCP scaffold was higher than that of the collagen scaffold. The compressive modulus also increased up to 28 days. These results clearly showed that the distribution of micro β-TCP particles is very effective to increase the elastic modulus and promote cell growth.

  13. Formation of AAB-Type Collagen Heterotrimers from Designed Cationic and Aromatic Collagen-Mimetic Peptides: Evaluation of the C-Terminal Cation-π Interactions.

    PubMed

    Chiang, Chu-Harn; Fu, Yi-Hsuan; Horng, Jia-Cherng

    2017-03-13

    Most of natural collagens are heterotrimers composed of two (AAB) or three (ABC) different peptide chains, and thus heterotrimeric constructs are preferable to mimic natural collagens. Exploring the forces to assemble synthetic collagen-mimetic peptides (CMPs) into heterotrimers has been an attractive topic in preparing collagen-related biomaterials. Here we designed and synthesized two cationic CMPs (CR and CK) in which multiple Arg or Lys residues are installed in their C-terminal region, and one aromatic CMP (CF) whose C-terminal end contains multiple Phe residues. Circular dichroism and NMR spectroscopy showed that AAB-type heterotrimers could form in both CR-CF and CK-CF mixtures, suggesting that the C-terminal cation-π interactions between cationic and aromatic residues could serve as a nucleation force and substantially promote the folding of heterotrimers. In particular, only one major heterotrimeric fold was found in each mixture. For CR-CF mixtures, either the heterotrimer with two CR chains and one CF chain or that with one CR chain and two CF chains could form, depending on the molar ratios of CR to CF in solution. By contrast, in CK-CF mixtures only the heterotrimer consisting of two CK chains and one CF chain was found in solution even increasing the ratio of CF, implying that the heterotrimer composed of one CK chain and two CF chains is highly unstable. Additionally, differential scanning calorimetry analysis showed that the folding of these heterotrimers is governed by entropic effects. Together, our results provide a new design to prepare AAB-type collagen heterotrimers and reveal new insights into their folding thermodynamics.

  14. Platelet-reactive sites in collagen. Collagens I and III possess different aggregatory sites.

    PubMed Central

    Morton, L F; Fitzsimmons, C M; Rauterberg, J; Barnes, M J

    1987-01-01

    Collagen type III possesses a highly reactive platelet-aggregatory site at a locus which in type I is essentially inactive whilst the latter collagen possesses reactive sites absent in type III. It is proposed that platelet aggregation by collagen involves the sequence GK[or R]PG(EY)GPK[or R]G(EY) or, less favourably, GPK[or R]G(EY)G(XY)GK[or R]PG(EY), one basic residue acting in combination with the second in an adjacent alpha-chain. PMID:3124815

  15. Fragmentation Pathways in the Uracil Radical Cation

    SciTech Connect

    Zhou, Congyi; Matsika, Spiridoula; Kotur, Marija; Weinacht, Thomas C.

    2012-08-24

    We investigate pathways for fragmentation in the uracil radical cation using ab initio electronic structure calculations. We focus on the main fragments produced in pump–probe dissociative ionization experiments. These are fragments with mass to charge ratios (m/z) of 69, 28, 41, and 42. Barriers to dissociation along the ground ionic surface are reported, which provide an estimate of the energetic requirements for the production of the main fragments. Finally, direct and sequential fragmentation mechanisms have been analyzed, and it is concluded that sequential fragmentation after production of fragment with m/z 69 is the dominant mechanism for the production of the smaller fragments.

  16. Particle size statistics in dynamic fragmentation

    SciTech Connect

    Grady, D.E. )

    1990-12-15

    Condensed matter, when subjected to intense disrupting forces through impact or radiation deposition, will break up into a randomly distributed array of fragments. An earlier analysis of random fragmentation is extended to account for fragmentation in bodies which are finite in extent and for bodies within which the minimum fragment size is bounded. The statistical fragment size relations are compared with molecular dynamic simulations of dynamic fragmentation, with fragmentation caused by the high-energy collision of nuclear particles, and with the distribution of galaxies in the universe which are assumed to be fragment debris from the primordial Big Bang.

  17. Probing multiscale mechanics of collagen with optical tweezers

    NASA Astrophysics Data System (ADS)

    Shayegan, Marjan; Rezaei, Naghmeh; Lam, Norman H.; Altindal, Tuba; Wieczorek, Andrew; Forde, Nancy R.

    2013-09-01

    How the molecular structure of the structural, extracellular matrix protein collagen correlates with its mechanical properties at different hierarchical structural levels is not known. We demonstrate the utility of optical tweezers to probe collagen's mechanical response throughout its assembly hierarchy, from single molecule force-extension measurements through microrheology measurements on solutions of collagen molecules, collagen fibrillar gels and gelatin. These experiments enable the determination of collagen's flexibility, mechanics, and timescales and strengths of interaction at different levels of hierarchy, information critical to developing models of how collagen's physiological function and stability are influenced by its chemical composition. By investigating how the viscoelastic properties of collagen are affected by the presence of telopeptides, protein domains that strongly influence fibril formation, we demonstrate that these play a role in conferring transient elasticity to collagen solutions.

  18. Effect of indomethacin and lactoferrin on human tenocyte proliferation and collagen formation in vitro

    SciTech Connect

    Zhang, Yaonan; Wang, Xiao; Qiu, Yiwei; Cornish, Jillian; Carr, Andrew J.; Xia, Zhidao

    2014-11-14

    Highlights: • Indomethacin, a classic NSAID, inhibited human tenocyte proliferation at high concentration (100 µM). • Lactoferrin at 50-100 µg/ml promoted human tenocyte survival, proliferation and collagen synthesis. • Lactoferrin is anabolic to human tenocytes in vitro and reverses potential inhibitory effects of NSAIDs on human tenocytes. - Abstract: Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in patients with injuries and inflammation of tendon and ligament, and as post-surgical analgesics. The aim of this study is to investigate the effect of indomethacin, a classic NSAID and its combinational effect with an anabolic agent of skeletal tissue, lactoferrin, on the proliferation and collagen formation of human tenocytes in vitro. A factorial experimental design was employed to study the dose-dependent effect of the combination of indomethacin and lactoferrin. The results showed that indomethacin at high concentration (100 μM) inhibited human tenocyte proliferation in culture medium with 1–10% fetal bovine serum (FBS) in vitro. Also, high dose of indomethacin inhibited the collagen formation of human tenocytes in 1% FBS culture medium. Lactoferrin at 50–100 μg/ml promoted human tenocyte survival in serum-free culture medium and enhanced proliferation and collagen synthesis of human tenocytes in 1% FBS culture medium. When 50–100 μg/ml lactoferrin was used in combination with 100–200 μM indomethacin, it partially rescued the inhibitory effects of indomethacin on human tenocyte proliferation, viability and collagen formation. To our knowledge, it is the first evidence that lactoferrin is anabolic to human tenocytes in vitro and reverses potential inhibitory effects of NSAIDs on human tenocytes.

  19. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold.

    PubMed

    Baylan, Nuray; Bhat, Samerna; Ditto, Maggie; Lawrence, Joseph G; Lecka-Czernik, Beata; Yildirim-Ayan, Eda

    2013-08-01

    There is an increasing demand for an injectable cell coupled three-dimensional (3D) scaffold to be used as bone fracture augmentation material. To address this demand, a novel injectable osteogenic scaffold called PN-COL was developed using cells, a natural polymer (collagen type-I), and a synthetic polymer (polycaprolactone (PCL)). The injectable nanofibrous PN-COL is created by interspersing PCL nanofibers within pre-osteoblast cell embedded collagen type-I. This simple yet novel and powerful approach provides a great benefit as an injectable bone scaffold over other non-living bone fracture stabilization polymers, such as polymethylmethacrylate and calcium content resin-based materials. The advantages of injectability and the biomimicry of collagen was coupled with the structural support of PCL nanofibers, to create cell encapsulated injectable 3D bone scaffolds with intricate porous internal architecture and high osteoconductivity. The effects of PCL nanofiber inclusion within the cell encapsulated collagen matrix has been evaluated for scaffold size retention and osteocompatibility, as well as for MC3T3-E1 cells osteogenic activity. The structural analysis of novel bioactive material proved that the material is chemically stable enough in an aqueous solution for an extended period of time without using crosslinking reagents, but it is also viscous enough to be injected through a syringe needle. Data from long-term in vitro proliferation and differentiation data suggests that novel PN-COL scaffolds promote the osteoblast proliferation, phenotype expression, and formation of mineralized matrix. This study demonstrates for the first time the feasibility of creating a structurally competent, injectable, cell embedded bone tissue scaffold. Furthermore, the results demonstrate the advantages of mimicking the hierarchical architecture of native bone with nano- and micro-size formation through introducing PCL nanofibers within macron-size collagen fibers and in

  20. E-spun composite fibers of collagen and dragline silk protein: fiber mechanics, biocompatibility, and application in stem cell differentiation.

    PubMed

    Zhu, Bofan; Li, Wen; Lewis, Randolph V; Segre, Carlo U; Wang, Rong

    2015-01-12

    Biocomposite matrices with high mechanical strength, high stability, and the ability to direct matrix-specific stem cell differentiation are essential for the reconstruction of lesioned tissues in tissue engineering and cell therapeutics. Toward this end, we used the electrospinning technique to fabricate well-aligned composite fibers from collagen and spider dragline silk protein, obtained from the milk of transgenic goats, mimicking the native extracellular matrix (ECM) on a similar scale. Collagen and the dragline silk proteins were found to mix homogeneously at all ratios in the electrospun (E-spun) fibers. As a result, the ultimate tensile strength and elasticity of the fibers increased monotonically with silk percentage, whereas the stretchability was slightly reduced. Strikingly, we found that the incorporation of silk proteins to collagen dramatically increased the matrix stability against excessive fiber swelling and shape deformation in cell culture medium. When human decidua parietalis placental stem cells (hdpPSCs) were seeded on the collagen-silk matrices, the matrices were found to support cell proliferation at a similar rate as that of the pure collagen matrix, but they provided cell adhesion with reduced strengths and induced cell polarization at varied levels. Matrices containing 15 and 30 wt % silk in collagen (CS15, CS30) were found to induce a level of neural differentiation comparable to that of pure collagen. In particular, CS15 matrix induced the highest extent of cell polarization and promoted the development of extended 1D neural filaments strictly in-line with the aligned fibers. Taking the increased mechanical strength and fiber stability into consideration, CS15 and CS30 E-spun fibers offer better alternatives to pure collagen fibers as scaffolds that can be potentially utilized in neural tissue repair and the development of future nanobiodevices.

  1. Enhancing anticoagulation and endothelial cell proliferation of titanium surface by sequential immobilization of poly(ethylene glycol) and collagen

    NASA Astrophysics Data System (ADS)

    Pan, Chang-Jiang; Hou, Yan-Hua; Ding, Hong-Yan; Dong, Yun-Xiao

    2013-12-01

    In the present study, poly(ethylene glycol) (PEG) and collagen I were sequentially immobilized on the titanium surface to simultaneously improve the anticoagulation and endothelial cell proliferation. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy analysis confirmed that PEG and collagen I were successfully immobilized on the titanium surface. Water contact angle results suggested the excellent hydrophilic surface after the immobilization. The anticoagulation experiments demonstrated that the immobilized PEG and collagen I on the titanium surface could not only obviously prevent platelet adhesion and aggregation but also prolong activated partial thromboplastin time (APTT), leading to the improved blood compatibility. Furthermore, immobilization of collagen to the end of PEG chain did not abate the anticoagulation. As compared to those on the pristine and PEG-modified titanium surfaces, endothelial cells exhibited improved proliferative profiles on the surface modified by the sequential immobilization of PEG and collagen in terms of CCK-8 assay, implying that the modified titanium may promote endothelialization without abating the blood compatibility. Our method may be used to modify the surface of blood-contacting biomaterials such as titanium to promote endothelialization and improve the anticoagulation, it may be helpful for development of the biomedical devices such as coronary stents, where endothelializaton and excellent anticoagulation are required.

  2. Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype

    PubMed Central

    Carey, Shawn P.; Martin, Karen E.; Reinhart-King, Cynthia A.

    2017-01-01

    A critical step in breast cancer progression is local tissue invasion, during which cells pass from the epithelial compartment to the stromal compartment. We recently showed that malignant leader cells can promote the invasion of otherwise non-invasive epithelial follower cells, but the effects of this induced-invasion phenomenon on follower cell phenotype remain unclear. Notably, this process can expose epithelial cells to the stromal extracellular matrix (ECM), which is distinct from the ECM within the normal epithelial microenvironment. Here, we used a 3D epithelial morphogenesis model in which cells were cultured in biochemically and mechanically defined matrices to examine matrix-mediated gene expression and the associated phenotypic response. We found that 3D collagen matrix promoted expression of mesenchymal genes including MT1-MMP, which was required for collagen-stimulated invasive behavior. Epithelial invasion required matrix anchorage as well as signaling through Src, PI3K, and Rac1, and increasingly stiff collagen promoted dispersive epithelial cell invasion. These results suggest that leader cell-facilitated access to the stromal ECM may trigger an invasive phenotype in follower epithelial cells that could enable them to actively participate in local tissue invasion. PMID:28186196

  3. SPARC regulates collagen interaction with cardiac fibroblast cell surfaces.

    PubMed

    Harris, Brett S; Zhang, Yuhua; Card, Lauren; Rivera, Lee B; Brekken, Rolf A; Bradshaw, Amy D

    2011-09-01

    Cardiac tissue from mice that do not express secreted protein acidic and rich in cysteine (SPARC) have reduced amounts of insoluble collagen content at baseline and in response to pressure overload hypertrophy compared with wild-type (WT) mice. However, the cellular mechanism by which SPARC affects myocardial collagen is not clearly defined. Although expression of SPARC by cardiac myocytes has been detected in vitro, immunohistochemistry of hearts demonstrated SPARC staining primarily associated with interstitial fibroblastic cells. Primary cardiac fibroblasts isolated from SPARC-null and WT mice were assayed for collagen I synthesis by [(3)H]proline incorporation into procollagen and by immunoblot analysis of procollagen processing. Bacterial collagenase was used to discern intracellular from extracellular forms of collagen I. Increased amounts of collagen I were found associated with SPARC-null versus WT cells, and the proportion of total collagen I detected on SPARC-null fibroblasts without propeptides [collagen-α(1)(I)] was higher than in WT cells. In addition, the amount of total collagen sensitive to collagenase digestion (ex