Science.gov

Sample records for collagen induced ear

  1. Prostaglandins in the perilymph of guinea pig with type II collagen induced ear diseases

    SciTech Connect

    Takeda, T.; Chiang, T.; Kitano, H.; Sudo, N.; Kim, S.Y.; Ha, S.; Woo, V.; Wolf, B.; Floyd, R.; Yoo, T.J.

    1986-03-01

    The authors have studied the prostaglandins (PGs) in the perilymph from guinea pig with type II collagen induced autoimmune ear disease. Hartly guinea pigs were immunized with type II collagen in CFA and auditory brain stem responses (ABR) were measured at 2, 3, 4, and 6 months after initial immunization perilymph was obtained and the levels of PGE2 and 6 keto-PGFl..cap alpha.. were measured by radioimmunoassays. Temporal bones were examined for the histopathologic changes. Immunized guinea pigs showed the evidence of hearing loss by ABR. The temporal bones showed the following changes: spiral ganglia degeneration, mild to moderate degree of degeneration in organ of Corti, infrequent very mild endolymphatic hydrops and labrynthitis. The perilymph from immunized animals contained about 5 times more PGE2 and about 3 times more 6 keto-PGFl..cap alpha.. than control animals. However, between these two groups, there was no difference in the CSF and sera levels of PGE2 and 6 keto-PGFl..cap alpha... Thus, this study suggests that these inflammatory mediators might be involved in the pathogenesis of collagen induced autoimmune inner ear disease.

  2. Collagen hydrolysate inhibits zymosan-induced inflammation.

    PubMed

    Hartog, Anita; Cozijnsen, Miranda; de Vrij, Gerrit; Garssen, Johan

    2013-07-01

    During the past years, evidence accumulated showing that glycine comprises anti-inflammatory activities. These effects occur, at least in part, via the activation of glycine-gated chloride channels (GlyR). Glycine is one of the major structural units of collagen, making up about 30% of the amino acids. This study aims to investigate the anti-inflammatory potential of collagen hydrolysate (CH) using the zymosan-induced ear-skin inflammation mouse model. After oral intake of 12.5, 25 or 50 mg CH the plasma levels of glycine increased in a concentration-dependent manner. CH was able to counteract zymosan-induced ear-skin inflammation locally (ear swelling) as well as systemically (IL-6 production by lipopolysaccharide (LPS)-stimulated whole blood cells). The LPS-stimulated IL-6 production in whole blood correlated positively with the ear swelling response. This correlation was abolished by strychnine (a glycine receptor antagonist), indicating the involvement of GlyR. Collectively, these data show that CH is able to modulate inflammatory responses both locally as well as systemically. This effect might be constituted by inhibiting pro-inflammatory cytokine production via GlyR.

  3. Detection of endogenous and food-derived collagen dipeptide prolylhydroxyproline (Pro-Hyp) in allergic contact dermatitis-affected mouse ear.

    PubMed

    Kusubata, Masashi; Koyama, Yoh-Ichi; Tometsuka, Chisa; Shigemura, Yasutaka; Sato, Kenji

    2015-01-01

    Generation of collagen dipeptides and deposition of orally administered prolylhydroxyproline (Pro-Hyp) in local inflammatory sites were examined in mice with hapten (2,4-dinitrofluorobenzene)-induced dermatitis in the ear. Pro-Hyp content in the hapten-treated ear was significantly higher in the chronic phase of contact dermatitis than the vehicle control. In contrast, hydroxyprolylglycine contents remained at lower levels in all cases compared to Pro-Hyp. Four hours after the ingestion of [(13)C5,(15)N]Pro and [(13)C5,(15)N]Pro-Hyp, labeled-Pro-Hyp and Pro, respectively, appeared only in the ear with dermatitis. Thus, Pro-Hyp is generated and degraded as part of the rapid synthesis and degradation of collagen in the ear with dermatitis. In addition to the endogenously generated Pro-Hyp, the orally administered Pro-Hyp was deposited in the ears.

  4. Eupatilin ameliorates collagen induced arthritis.

    PubMed

    Kim, Juryun; Kim, Youngkyun; Yi, Hyoju; Jung, Hyerin; Rim, Yeri Alice; Park, Narae; Jung, Seung Min; Park, Sung-Hwan; Ju, Ji Hyeon

    2015-03-01

    Eupatilin is the main active component of DA-9601, an extract from Artemisia. Recently, eupatilin was reported to have anti-inflammatory properties. We investigated the anti-arthritic effect of eupatilin in a murine arthritis model and human rheumatoid synoviocytes. DA-9601 was injected into collagen-induced arthritis (CIA) mice. Arthritis score was regularly evaluated. Mouse monocytes were differentiated into osteoclasts when eupatilin was added simultaneously. Osteoclasts were stained with tartrate-resistant acid phosphatase and then manually counted. Rheumatoid synoviocytes were stimulated with TNF-α and then treated with eupatilin, and the levels of IL-6 and IL-1β mRNA expression in synoviocytes were measured by RT-PCR. Intraperitoneal injection of DA-9601 reduced arthritis scores in CIA mice. TNF-α treatment of synoviocytes increased the expression of IL-6 and IL-1β mRNAs, which was inhibited by eupatilin. Eupatilin decreased the number of osteoclasts in a concentration dependent manner. These findings, showing that eupatilin and DA-9601 inhibited the expression of inflammatory cytokines and the differentiation of osteoclasts, suggest that eupatilin and DA-9601 is a candidate anti-inflammatory agent.

  5. Propranolol-induced elevation of pulmonary collagen

    SciTech Connect

    Lindenschmidt, R.C.; Witschi, H.P.

    1985-01-01

    Current concepts of collagen metabolism suggest that fibroblasts tightly control collagen production. One of the possible mechanisms of control is via the cyclic nucleotides, cyclic AMP (cAMP) and cyclic GMP (cGMP). Beta adrenergic agonists, by elevating intracellular cAMP levels, have been shown in vitro to suppress fibroblast collagen production; whereas beta adrenergic antagonists were effective in removing this suppression by blocking the rise in cAMP. In the present study with mice, the authors showed that administration of the beta adrenergic antagonists, propranolol, at a dose demonstrated to decrease the ratio of cAMP to cGMP, resulted in an elevation in total lung collagen in vivo. The increase in collagen was evident only when propranolol was administered before and during acute lung damage induced by either butylated hydroxytoluene, bleomycin or high concentrations of oxygen. There was no increase in lung collagen when propranolol administration was delayed after injury or when given to an undamaged lung. The authors propose that via beta adrenergic blockage by propranolol, fibroblasts involved in the normal reparative process may have lost a mechanism for regulatory control, resulting in excessive deposition of collagen. 38 references, 3 figures, 2 tables.

  6. Electrical ear acupuncture reduces histamine-induced itch (alloknesis).

    PubMed

    Kesting, Marco Rainer; Thurmüller, Petra; Hölzle, Frank; Wolff, Klaus-Dietrich; Holland-Letz, Tim; Stücker, Markus

    2006-01-01

    In order to assess an objective measure for the outcome of ear acupuncture, we evaluated the effect of electrical ear acupuncture on areas of histamine-induced alloknesis in 32 healthy volunteers. In a first assessment 5 min after histamine application on both volar forearms, 16 subjects received right ear and 16 left ear acupuncture. Immediately before and 5 min after acupuncture, alloknesis areas on both forearms were planimetrically evaluated. A second assessment was carried out 4 weeks later with the same patients. They underwent histamine application once more, but received no acupuncture. Alloknesis areas were then compared with reference to time, assessment and therapy side. Forearms relating to ipsilateral acupuncture showed significantly reduced or even no alloknesis areas after therapy. On the contralateral sides and during the "non-acupuncture" assessment 4 weeks later, alloknesis areas were significantly enlarged compared with sides ipsilateral to right and left ear acupuncture. Hence, results verify the effects of electrical ear acupuncture by objective measures.

  7. [Effect of tetrandine on gene expression of collagen type I, collagen type III and TGF-beta1 in scar tissue's of rabbits ear].

    PubMed

    Zhou, Xiao-Liang; Liu, De-Wu; Mao, Yuan-Gui; Lü, Jing

    2013-11-01

    To observe the effect of tetrandine on gene expression of collagen type I, collagen type III, transformation growth factor-beta1 and to investigate the inhibitory effect of tetrandine on the scar tissue hyperplasia in rabbits' ears. After the scar model was formed on the rabbits' ears, the rabbits were divided into 4 groups to receive intro-lesion injection with saline, or prednisolone (Pre) or tetrandrine in low concentration (L-Tet, 1.0 mg/ml) or tetrandrine in high concentration (H-Tet, 7.5 mg/ml). The morphological changes of scar tissue were observed. The changes of fibroblasts quantity and collagen expression were observed with HE and Masson staining. Immunohistochemical study was used to observe the expression level of collagen type I and collagen type III and TGF-beta1. Collagen type I and collagen type III and TGF-beta1, and signal factor Smad 3 mRNA were detected with RT-PCR. (1) 24 days after injury, all the wounds healed completely with formation of red, tough and hypertrophic scar. HE and Masson staining showed significant increase of fibroblasts and collagen density with irregularly arrangement. (2) Compared with that in saline group, the scar in other groups became softer, lighter and thinner, especially in H-Tet group. (3) HE and Masson staining shows the scar in Tet and Pre groups contained less fibroblasts and lower collagen dentsity with comparatively regular arrangement than that in saline group (P < 0.01), especially in H-Tet group. (4) According to the immunohistochemical study, the expression of collage type I and III and TGF-beta was positive in all the groups, but the positive rate and the ratio of collagen density I to III decreased in the order of saline, L-Tet, H-Tet and Pre groups (P < 0.01). (5) PT-PCR detection results showed that the amplification bands brightness of collagen type I and III and TGF-beta1 and signal molecular Smad 3 mRNA in scar tissue were obviously different. Compared with that in saline group, the expression of

  8. Proton pump inhibitor induced collagen expression in colonocytes is associated with collagenous colitis

    PubMed Central

    Mori, Shiori; Kadochi, Yui; Luo, Yi; Fujiwara-Tani, Rina; Nishiguchi, Yukiko; Kishi, Shingo; Fujii, Kiyomu; Ohmori, Hitoshi; Kuniyasu, Hiroki

    2017-01-01

    AIM To elucidate the role of proton pump inhibitors (PPIs) in collagenous disease, direct effect of PPI on colonocytes was examined. METHODS Collagenous colitis is a common cause of non-bloody, watery diarrhea. Recently, there has been increasing focus on the use of proton PPIs as a risk factor for developing collagenous colitis. Mouse CT26 colonic cells were treated with PPI and/or PPI-induced alkaline media. Expression of fibrosis-associated genes was examined by RT-PCR. In human materials, collagen expression was examined by immunohistochemistry. RESULTS CT26 cells expressed a Na+-H+ exchanger gene (solute carrier family 9, member A2). Treatment with PPI and/or PPI-induced alkaline media caused growth inhibition and oxidative stress in CT26 cells. The treatment increased expression of fibrosis inducing factors, transforming growth factor β and fibroblast growth factor 2. The treatment also decreased expression of a negative regulator of collagen production, replication factor C1, resulting in increased expression of collagen types III and IV in association with lipid peroxide. In biopsy specimens from patients with collagenous colitis, type III and IV collagen were increased. Increase of type III collagen was more pronounced in PPI-associated collagenous colitis than in non-PPI-associated disease. CONCLUSION From these findings, the reaction of colonocytes to PPI might participate in pathogenesis of collagenous colitis. PMID:28321159

  9. [Vertigo induced by noise or pressure to the left ear].

    PubMed

    Seidel, D U; Dülks, A; Remmert, S

    2011-06-01

    A 49-year-old male patient presented with recently acquired vertigo induced by noise or pressure to the left ear. With appropriate stimulation, oscillopsia with a rotatory component could be reproduced in videooculography. Cervical vestibular evoked myogenic potentials (VEMP) showed increased amplitudes and a lowered threshold on the left side. CT of the petrous bone showed a bony dehiscence of the left superior semicircular canal. Conservative therapy was initiated as a first step.

  10. Effects of cyclosporin on collagen induced arthritis in mice.

    PubMed Central

    Takagishi, K; Kaibara, N; Hotokebuchi, T; Arita, C; Morinaga, M; Arai, K

    1986-01-01

    We have studied the effect of the immunosuppressive agent cyclosporin on collagen induced arthritis in mice. Cyclosporin, when given prophylactically, was capable of suppressing the development of collagen induced arthritis and the immunological response to native type II collagen in a dose dependent manner. Furthermore, treatment with cyclosporin, started on the same day as the booster injection with type II collagen, also resulted in inhibition of development of arthritis and of immunity to collagen. These findings suggest that the time of a booster injection, three weeks after the initial immunisation, might be still within the induction phase of arthritis since reinoculation is required to produce a high incidence of arthritis in mice. In addition, therapeutic treatment with cyclosporin did not affect the clinical course of the disease or the immune response to collagen. PMID:3754714

  11. Perforin deficiency attenuates collagen-induced arthritis

    PubMed Central

    Bauer, Kristin; Knipper, Annika; Tu-Rapp, Hoang; Koczan, Dirk; Kreutzer, Hans-Jürgen; Nizze, Horst; Mix, Eilhard; Thiesen, Hans-Juergen; Holmdahl, Rikard; Ibrahim, Saleh M

    2005-01-01

    Collagen-induced arthritis (CIA), an approved animal model for rheumatoid arthritis, is thought to be a T cell-dependent disease. There is evidence that CD8+ T cells are a major subset controlling the pathogenesis of CIA. They probably contribute to certain features of disease, namely tissue destruction and synovial hyperplasia. In this study we examined the role of perforin (pfp), a key molecule of the cytotoxic death pathway that is expressed mainly in CD8+ T cells, for the pathogenesis of CIA. We generated DBA/1J mice suffering from mutations of the pfp molecule, DBA/1J-pfp-/-, and studied their susceptibility to arthritis. As a result, pfp-deficient mice showed a reduced incidence (DBA/1J-pfp+/+, 64%; DBA/1J-pfp-/-, 54%), a slightly delayed onset (onset of disease: DBA/1J-pfp+/+, 53 ± 3.6; DBA/1J-pfp-/-, 59 ± 4.9 (mean ± SEM), and milder form of the disease (maximum disease score: DBA/1J-pfp+/+, 7.3 ± 1.1; DBA/1J-pfp-/-, 3.4 ± 1.4 (mean ± SEM); P < 0.05). Concomitantly, peripheral T cell proliferation in response to the specific antigen bovine collagen II was increased in pfp-/- mice compared with pfp+/+ mice, arguing for an impaired killing of autoreactive T cells caused by pfp deficiency. Thus, pfp-mediated cytotoxicity is involved in the initiation of tissue damage in arthritis, but pfp-independent cytotoxic death pathways might also contribute to CIA. PMID:15987490

  12. Collagen-chitosan-glycerol bio-composite as artificial tympanic membrane for ruptured inner ear organ

    NASA Astrophysics Data System (ADS)

    Widiyanti, Prihartini; Setya Angtika, Rara; Githanadi, Brillyana; Hanif Kharisma, Ditya; Asyraf, Tarikh Omar; Wardani, Adita

    2017-05-01

    WHO data in 2012 shows that 5.3% of world population highly suffers from hearing loss and deafness. One of the deafness causes is rupture of tympanic membrane. Tympanic membrane damage which occurs often is perforated tympanic membrane, and it is also commonly known in medical term as tympanic membrane perforation. The causes, for instance, are high frequency of using earphones, traumatic accidents, noise, bacteria, viruses, and infectious microorganism. Tympanoplasty becomes the only treatment that can be widely accepted despite of deficiencies in postoperative complications. Therefore, this research aims to create artificial tympanic membrane made of natural materials such as type I collagen composited with chitosan and made of addition of glycerol to improve its mechanical strength and biodegradability. The method included the process of dissolving acetic acid in distilled water and mixation with chitosan. The solution is next added with glycerol and stirred to be homogeneous. After that, it was minted in petri dish and aerated before characterized. The sample characterization included tensile strength of which tensile test results showed that the value of the elasticity modulus tended to decrease with an increase in collagen concentration. The elasticity modulus values in a row for the variations of 7: 3, 8: 2, and 9: 1 were 35.10 MPa, 54,52MPa, and 47,45MPa respectively. The morphological test with 1000x, 2500x, and 5000x magnification showed their interaction in the formation of pores. Cytotoxicity results, moreover, showed that those samples were non-toxic and safe for the body due to the percentage of living cells. The sound absorption coefficient was between 1000 Hz - 2000 Hz which means that it could use as sound absorbing material. The antibacterial test results showed that all the sample variations were anti-bacterial due to the diameter of the clear zone. In conclusion, collagen and chitosan composite with addition of glycerol could be used for

  13. Amelioration of estrogen deficiency-induced obesity by collagen hydrolysate

    PubMed Central

    Chiang, Tsay-I; Chang, I-Chang; Lee, Hsueh-Hui; Hsieh, Kuang hui; Chiu, Yung-Wei; Lai, Te-Jen; Liu, Jer-Yuh; Hsu, Li-Sung; Kao, Shao-Hsuan

    2016-01-01

    Objectives: Menopausal transition with declining estrogen levels significantly affects the physiological properties of women and consequently contributes to a series of medical conditions, including obesity. Obesity is a crucial risk factor associated with cardiovascular diseases, diabetes mellitus, and breast cancer. Increasing dietary protein content improves satiety and energy expenditure. Thus, we hypothesize that supplementing with collagen, a common dietary protein, may alleviate menopause-induced obesity. Methods: We used ovariectomized (OVX) rats to mimic a menopausal human. The body weight of OVX rats significantly increased compared with that of sham-operated rats (P<0.05), but uterus weight was decreased. Adipocyte size in perigonadal adipose tissue also increased (P<0.05). Results: By contrast, OVX rats supplemented with aqueous collagen hydrolysate (2.5 mg/mL) exhibited significant attenuation in body weight gain and adipocyte enlargement (P<0.05), but insignificant change in uterus weight. Further investigation indicated that collagen hydrolysate supplementation insignificantly affected the levels of dorsal fat, serum total cholesterol, and serum triacylglycerol. Levels of serum biochemical factors, calcium, phosphorus, and glucose were also insignificantly altered by collagen hydrolysate supplementation. Conclusion: Collagen hydrolysate supplementation reduced body weight gain and adipocyte enlargement in response to ovariectomy but slightly affected blood lipids, calcium, and glucose in both sham-operated and OVX rats. Collagen hydrolysate supplementation is beneficial in ameliorating estrogen deficiency-induced obesity and its associated risk factors. PMID:27877077

  14. Amelioration of estrogen deficiency-induced obesity by collagen hydrolysate.

    PubMed

    Chiang, Tsay-I; Chang, I-Chang; Lee, Hsueh-Hui; Hsieh, Kuang Hui; Chiu, Yung-Wei; Lai, Te-Jen; Liu, Jer-Yuh; Hsu, Li-Sung; Kao, Shao-Hsuan

    2016-01-01

    Objectives: Menopausal transition with declining estrogen levels significantly affects the physiological properties of women and consequently contributes to a series of medical conditions, including obesity. Obesity is a crucial risk factor associated with cardiovascular diseases, diabetes mellitus, and breast cancer. Increasing dietary protein content improves satiety and energy expenditure. Thus, we hypothesize that supplementing with collagen, a common dietary protein, may alleviate menopause-induced obesity. Methods: We used ovariectomized (OVX) rats to mimic a menopausal human. The body weight of OVX rats significantly increased compared with that of sham-operated rats (P<0.05), but uterus weight was decreased. Adipocyte size in perigonadal adipose tissue also increased (P<0.05). Results: By contrast, OVX rats supplemented with aqueous collagen hydrolysate (2.5 mg/mL) exhibited significant attenuation in body weight gain and adipocyte enlargement (P<0.05), but insignificant change in uterus weight. Further investigation indicated that collagen hydrolysate supplementation insignificantly affected the levels of dorsal fat, serum total cholesterol, and serum triacylglycerol. Levels of serum biochemical factors, calcium, phosphorus, and glucose were also insignificantly altered by collagen hydrolysate supplementation. Conclusion: Collagen hydrolysate supplementation reduced body weight gain and adipocyte enlargement in response to ovariectomy but slightly affected blood lipids, calcium, and glucose in both sham-operated and OVX rats. Collagen hydrolysate supplementation is beneficial in ameliorating estrogen deficiency-induced obesity and its associated risk factors.

  15. Microscale mechanisms of agarose-induced disruption of collagen remodeling.

    PubMed

    Ulrich, Theresa A; Lee, Tae Geol; Shon, Hyun Kyong; Moon, Dae Won; Kumar, Sanjay

    2011-08-01

    Cells are strongly influenced by the local structure and mechanics of the extracellular matrix (ECM). We recently showed that adding agarose to soft collagen ECMs can mechanically stiffen these hydrogels by two orders of magnitude while limiting 3D cell motility, which we speculated might derive from agarose-mediated inhibition of collagen fiber deformation and remodeling. Here, we directly address this hypothesis by investigating the effects of agarose on cell-collagen interactions at the microscale. Addition of agarose progressively restricts cell spreading, reduces stress fiber and focal adhesion assembly, and inhibits macroscopic gel compaction. While time-of-flight secondary ion mass spectrometry and scanning electron microscopy fail to reveal agarose-induced alterations in collagen ligand presentation, the latter modality shows that agarose strongly impairs cell-directed assembly of large collagen bundles. Agarose-mediated inhibition of cell spreading and cytoarchitecture can be rescued by β-agarase digestion or by covalently crosslinking the matrix with glutaraldehyde. Based on these results, we argue that cell spreading and motility on collagen requires local matrix stiffening, which can be achieved via cell-mediated fiber remodeling or by chemically crosslinking the fibers. These findings provide new mechanistic insights into the regulatory function of agarose and bear general implications for cell adhesion and motility in fibrous ECMs.

  16. Water-soluble undenatured type II collagen ameliorates collagen-induced arthritis in mice.

    PubMed

    Yoshinari, Orie; Shiojima, Yoshiaki; Moriyama, Hiroyoshi; Shinozaki, Junichi; Nakane, Takahisa; Masuda, Kazuo; Bagchi, Manashi

    2013-11-01

    Earlier studies have reported the efficacy of type II collagen (C II) in treating rheumatoid arthritis (RA). However, a few studies have investigated the ability of the antigenic collagen to induce oral tolerance, which is defined as active nonresponse to an orally administered antigen. We hypothesized that water-soluble undenatured C II had a similar effect as C II in RA. The present study was designed to examine the oral administration of a novel, water-soluble, undenatured C II (commercially known as NEXT-II) on collagen-induced arthritis (CIA) in mice. In addition, the underlying mechanism of NEXT-II was also identified. After a booster dose (collagen-Freund's complete adjuvant), mice were assigned to control CIA group, or NEXT-II treatment group, to which saline and NEXT-II were administered, respectively. The arthritis index in the NEXT-II group was significantly lower compared with the CIA group. Serum IL-6 levels in the NEXT-II group were significantly lower compared with the CIA group, while serum IL-2 level was higher. Furthermore, oral administration of NEXT-II enhanced the proportion of CD4+CD25+T (Treg) cells, and gene expressions of stimulated dendritic cells induced markers for regulatory T cells such as forkhead box p3 (Foxp3), transforming growth factor (TGF)-β1, and CD25. These results demonstrated that orally administered water-soluble undenatured C II (NEXT-II) is highly efficacious in the suppression of CIA by inducing CD4+CD25+ Treg cells.

  17. Modulation by glycyrrhetinic acid derivatives of TPA-induced mouse ear oedema.

    PubMed Central

    Inoue, H.; Mori, T.; Shibata, S.; Koshihara, Y.

    1989-01-01

    1. The anti-inflammatory effects of glycyrrhetinic acid and its derivatives on TPA (12-O-tetradecanoylphorbol-13-acetate)-induced mouse ear oedema were studied. The mechanisms of TPA-induced ear oedema were first investigated with respect to the chemical mediators. 2. The formation of ear oedema reached a maximum 5 h after TPA application (2 micrograms per ear) and the prostaglandin E2 (PGE2) production of mouse ear increased with the oedema formation. 3. TPA-induced ear oedema was prevented by actinomycin D and cycloheximide (0.1 mg per ear, respectively) when applied during 60 min after TPA treatment. 4. Of glycyrrhetinic acid derivatives examined, dihemiphthalate derivatives (IIe, IIe', IIIa, IIIa', IVa, IVa') most strongly inhibited ear oedema on both topical (ID50, 1.6 mg per ear for IIe, 2.0 mg per ear for IIIa and 1.6 mg per ear for IVa) and oral (ID50, 88 mg kg-1 for IIe', 130 mg kg-1 for IIIa' and 92 mg kg-1 for IVa') administration. 5. Glycyrrhetinic acid (Ia) and its derivatives applied 30 min before TPA treatment were much more effective in inhibiting oedema than when applied 30 min after TPA. A dihemiphthalate of triterpenoid compound IVa completely inhibited oedema, even when applied 3 h before TPA treatment. 6. Glycyrrhetinic acid (Ia) and deoxoglycyrrhetol (IIa), the parent compounds, produced little inhibition by oral administration at less than 200 mg kg-1. 7. These results suggest that the dihemiphthalate derivatives of triterpenes derived from glycyrrhetinic acid by chemical modification are useful for the treatment of skin inflammation by both topical and oral application. PMID:2924072

  18. Expression of macrophage migration inhibitory factor and CD74 in the inner ear and middle ear in lipopolysaccharide-induced otitis media.

    PubMed

    Ishihara, Hisashi; Kariya, Shin; Okano, Mitsuhiro; Zhao, Pengfei; Maeda, Yukihide; Nishizaki, Kazunori

    2016-10-01

    Significant expression of macrophage migration inhibitory factor and its receptor (CD74) was observed in both the middle ear and inner ear in experimental otitis media in mice. Modulation of macrophage migration inhibitory factor and its signaling pathway might be useful in the management of inner ear inflammation due to otitis media. Inner ear dysfunction secondary to otitis media has been reported. However, the specific mechanisms involved are not clearly understood. The aim of this study is to investigate the expression of macrophage migration inhibitory factor and CD74 in the middle ear and inner ear in lipopolysaccharide-induced otitis media. BALB/c mice received a transtympanic injection of either lipopolysaccharide or phosphate-buffered saline (PBS). The mice were sacrificed 24 h after injection, and temporal bones were processed for polymerase chain reaction (PCR) analysis, histologic examination, and immunohistochemistry. PCR examination revealed that the lipopolysaccharide-injected mice showed a significant up-regulation of macrophage migration inhibitory factor in both the middle ear and inner ear as compared with the PBS-injected control mice. The immunohistochemical study showed positive reactions for macrophage migration inhibitory factor and CD74 in infiltrating inflammatory cells, middle ear mucosa, and inner ear in the lipopolysaccharide-injected mice.

  19. Characteristics of laser-induced shock wave injury to the inner ear of rats

    NASA Astrophysics Data System (ADS)

    Kurioka, Takaomi; Matsunobu, Takeshi; Niwa, Katsuki; Tamura, Atsushi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro

    2014-12-01

    Recently, the number of blast injuries of the inner ear has increased in the general population. In blast-induced inner ear injury, a shock wave (SW) component in the blast wave is considered to play an important role in sensorineural hearing loss. However, the mechanisms by which an SW affects inner ear tissue remain largely unknown. We aimed to establish a new animal model for SW-induced inner ear injury by using laser-induced SWs (LISWs) on rats. The LISWs were generated by irradiating an elastic laser target with 694-nm nanosecond pulses of a ruby laser. After LISW application to the cochlea through bone conduction, auditory measurements revealed the presence of inner ear dysfunction, the extent of which depended on LISW overpressure. A significantly lower survival rate of hair cells and spiral ganglion neurons, as well as severe oxidative damage, were observed in the inner ear exposed to an LISW. Although considerable differences in the pressure characteristics exist between LISWs and SWs in real blast waves, the functional and morphological changes shown by the present LISW-based model were similar to those observed in real blast-induced injury. Thus, our animal model is expected to be useful for laboratory-based research of blast-induced inner ear injury.

  20. Chemical Leucoderma Induced by Ear-ring Stoppers Made of Polyvinyl Chloride

    PubMed Central

    Sharma, Reena; Singal, Archana; Verma, Prashant; Grover, Chander

    2012-01-01

    We report a case of chemical leucoderma (CL) in a 15-year-old girl, who developed patterned depigmentation at the back of both ear lobules after contact with plastic ear-ring stoppers made of polyvinyl chloride (PVC) after continuous use for 6–7 months. Patch test with Indian standard series and cosmetic series was negative after 48 h, but she refused patch testing for extended duration as the possibility of induced depigmentation at the test site was unacceptable to her. To the best of our knowledge, this is the first report of plastic ear-ring stopper induced CL. PMID:23060712

  1. Oestrogen exhibits type II collagen protective effects and attenuates collagen-induced arthritis in rats.

    PubMed

    Nielsen, R H; Christiansen, C; Stolina, M; Karsdal, M A

    2008-04-01

    As anti-inflammatory treatments used in rheumatoid arthritis, such as glucocorticoids, often result in secondary detrimental effects on bone health, the objective of this study was to investigate the effects of oestrogen therapy (ET) on the development and activity of collagen-induced arthritis (CIA) in rats, with a focus on assessment of chondroprotective effects using biomarkers of type II collagen degradation. Forty female Lewis rats were allocated into four intervention groups: (i) control + vehicle; (ii) CIA + vehicle; (iii) CIA + ET; and (iv) CIA + prednisolone. During the 28-day intervention period we monitored body weight, time-point of disease onset, incidence of manifest disease and paw volume. Levels of the type II collagen degradation marker (CTX-II) were measured in serum. At euthanasia, hind paws were isolated, extracted for proteins and measured for the concentration of CTX-II. Matrix metalloproteinase (MMP) activity was evaluated using gelatinase zymography. Oestrogen treatment delayed the time-point of disease onset and reduced the incidence and degree of manifest immunoarthritis significantly, assessed by macroscopic evaluation of hind paw inflammation and paw volume. Measures of serum or tissue levels of CTX-II showed significantly reduced type II collagen degradation elicited by oestrogen treatment. In alignment, a decreased activity of MMP-2 and MMP-9 was found in the paw protein extracts. We have demonstrated that the anti-inflammatory effect of ET is linked to chondroprotective effects in an animal model of systemic immunoarthritis. As ET has positive rather than negative effects on bone health in contrast to prednisolone, these observations may be important for potential combination therapy.

  2. Tolerogenic activity of polymerized type II collagen in preventing collagen-induced arthritis in rats.

    PubMed Central

    Thompson, H S; Henderson, B; Spencer, J M; Hobbs, S M; Peppard, J V; Staines, N A

    1988-01-01

    Rats were exposed parenterally or pergastrically to polymerized type II collagen (POLCII) and became resistant to the subsequent induction of disease with arthritogenic type II collagen (CII) administered intradermally in Freund's incomplete adjuvant (FIA). POLCII was prepared by cross-linking native soluble arthritogenic CII, from bovine nasal septal cartilage, with glutaraldehyde. POLCII injected intradermally in FIA did not induce arthritis. Animals treated in this manner were resistant for a period of at least 100 days to induced disease. The change in the properties of the CII from an arthritogen to a tolerogen was related to the amount of glutaraldehyde (used to polymerize the CII) which was assumed to control the extent of cross-linking of the CII. Highly cross-linked POLCII administered pergastrically, like soluble CII, was not arthritogenic but was tolerogenic, inducing a state of unresponsiveness to a challenge with arthritogenic CII. In general serum anti-CII antibody levels were higher in arthritic than in tolerized non-arthritic rats. It is concluded that the breaking of self-tolerance to CII depends upon its physical state. When polymerized and insoluble, a form analogous to that in which it exists naturally, it is tolerogenic. PMID:3396219

  3. Ear Infection (Middle Ear)

    MedlinePlus

    Ear infection (middle ear) Overview By Mayo Clinic Staff An ear infection (acute otitis media) is most often a bacterial or viral infection that affects the middle ear, the air-filled space behind the eardrum that ...

  4. Changes induced by ozone and ultraviolet light in type I collagen. Bovine Achilles tendon collagen versus rat tail tendon collagen.

    PubMed

    Fujimori, E

    1985-10-15

    High-molecular-mass aggregates were made soluble from insoluble collagens of bovine Achilles tendon and rat tail tendon by limited thermal hydrolysis. These polymeric collagen aggregates were cross-linked by 390-nm-fluorescent 3-hydroxy-pyridinium residues (excited at 325 nm) in the former tendon and by unknown non-fluorescent residues in the latter. With the solubilized insoluble-collagens from both tendons, as well as with acid-soluble collagen from rat tail tendon, other 350-385-nm fluorescence intensities (excited at 300 nm) were found to be higher in monomeric chains than in dimeric and polymeric chains. Low levels of ozone inhibited fibril formation of acid-soluble collagen particularly from young rat tail tendon, reacting with tyrosine residues and the 350-385-nm fluorophores. Aldehyde groups, involved in cross-linking, were not effectively modified by ozone. beta-Components (alpha-chain dimers) were not efficiently dissociated even by higher doses of ozone compared to gamma-components (alpha-chain trimers). Polymeric chain aggregates from bovine Achilles tendon collagen, whose 3-hydroxy-pyridinium cross-links are cleaved by ozone, were more readily dissociated by ozone than those from rat tail tendon collagen. Ultraviolet (300-nm) light, which destroyed the 350-385-nm fluorophores, inhibited fibril formation less effectively than ultraviolet (275-nm) light, which is absorbed by tyrosine residues, and did not dissociate collagen polymers from rat tail tendon. On the other hand, ultraviolet (320-nm) light, absorbed by 3-hydroxy-pyridinium cross-links which were rapidly photolyzed, partially dissociated polymeric collagen aggregates from bovine Achilles tendon after subsequent heating.

  5. Assessment of thermal treatment via irrigation of external ear to reduce cisplatin-induced hearing loss.

    PubMed

    Spankovich, Christopher; Lobarinas, Edward; Ding, Dalian; Salvi, Richard; Le Prell, Colleen G

    2016-02-01

    Systemic and local changes in body temperature can have a profound effect on traumatic injuries including those to the inner ear. Therefore, we investigated the effects of acutely increasing or decreasing the temperature of the external ear canal on cisplatin-induced hearing loss. The external auditory canals of male guinea pigs were acutely irrigated with warm (44 °C), euthermic (37 °C), or cool (30 °C) water and subsequently injected with cisplatin (12 mg/kg, i.p.). Hearing was assessed by the auditory brainstem response and cochleograms were prepared to determine loss of hair cells. Ear canal irrigation with warm water potentiated cisplatin-induced hearing loss and outer hair cell loss whereas cool ear canal irrigation showed significant protection from cisplatin-induced hearing loss and outer hair cell loss. These results suggest that non-invasive cool water ear canal irrigation may be highly effective clinical procedure for protecting against cisplatin-induced hearing loss. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Therapeutic effect of quercetin in collagen-induced arthritis.

    PubMed

    Haleagrahara, Nagaraja; Miranda-Hernandez, Socorro; Alim, Md Abdul; Hayes, Linda; Bird, Guy; Ketheesan, Natkunam

    2017-03-22

    Quercetin, a bioactive flavonoid with anti-inflammatory, immunosuppressive, and protective properties, is a potential agent for the treatment of rheumatoid arthritis (RA). Collagen-induced arthritis (CIA) is the most commonly used animal model for studying the pathogenesis of RA. This study analysed the therapeutic role of quercetin in collagen-induced arthritis in C57BL/6 mice. The animals were allocated into five groups that were subjected to the following treatments: negative (untreated) control, positive control (arthritis-induced), arthritis+methotrexate, arthritis+quercetin, and arthritis+methotrexate+quercetin. Assessments of weight, oedema, joint damage, and cytokine production were used to determine the therapeutic effect of quercetin. This study demonstrated for the first time the anti-inflammatory and protective effects of quercetin in vivo in CIA. The results also showed that the concurrent administration of quercetin and methotrexate did not offer greater protection than the administration of a single agent. The use of quercetin as a monotherapeutic agent resulted in the lowest degree of joint inflammation and the highest protection. The reduced severity of the disease in animals treated with quercetin was associated with decreased levels of TNF-α, IL-1β, IL-17, and MCP-1. In conclusion, this study determined that quercetin, which was non-toxic, produced better results than methotrexate for the protection of joints from arthritic inflammation in mice. Quercetin may be an alternative treatment for RA because it modulates the main pathogenic pathways of RA.

  7. Sirt2 suppresses inflammatory responses in collagen-induced arthritis

    SciTech Connect

    Lin, Jiangtao; Sun, Bing; Jiang, Chuanqiang; Hong, Huanyu; Zheng, Yanping

    2013-11-29

    Highlights: •Sirt2 expression decreases in collagen-induced arthritis (CIA). •Sirt2 knockout aggravates severity of arthritis in mice with CIA. •Sirt2 knockout increases levels of pro-inflammatory factors in the serum. •Sirt2 deacetylates p65 and inhibits pro-inflammatory factors expression. •Sirt2 rescue abates severity of arthritis in mice with CIA. -- Abstract: Arthritis is a common autoimmune disease that is associated with progressive disability, systemic complications and early death. However, the underling mechanisms of arthritis are still unclear. Sirtuins are a NAD{sup +}-dependent class III deacetylase family, and regulate cellular stress, inflammation, genomic stability, carcinogenesis, and energy metabolism. Among the sirtuin family members, Sirt1 and Sirt6 are critically involved in the development of arthritis. It remains unknown whether other sirtuin family members participate in arthritis. Here in this study, we demonstrate that Sirt2 inhibits collagen-induced arthritis (CIA) using in vivo and in vitro evidence. The protein and mRNA levels of Sirt2 significantly decreased in joint tissues of mice with CIA. When immunized with collagen, Sirt2-KO mice showed aggravated severity of arthritis based on clinical scores, hind paw thickness, and radiological and molecular findings. Mechanically, Sirt2 deacetylated p65 subunit of nuclear factor-kappa B (NF-κB) at lysine 310, resulting in reduced expression of NF-κB-dependent genes, including interleukin 1β (IL-1β), IL-6, monocyte chemoattractant protein 1(MCP-1), RANTES, matrix metalloproteinase 9 (MMP-9) and MMP-13. Importantly, our rescue experiment showed that Sirt2 re-expression abated the severity of arthritis in Sirt2-KO mice. Those findings strongly indicate Sirt2 as a considerably inhibitor of the development of arthritis.

  8. Suppression of collagen induced arthritis by idiotype coupled lymphoid cells

    SciTech Connect

    Nagler-Anderson, C.; Gurish, M.F.; Robinson, M.E.; Thorbecke, G.J.

    1986-03-01

    Studies were initiated to evaluate the regulatory influence of idiotype (Id) networks in an experimental auto-immune disease. Collagen induced arthritis is an animal model of polyarthritis induced in susceptible mice by immunization with collagen II (CII). A humoral immune response to CII appears to be critical for the development of diseases. If subpopulations of the anti-CII abs, important for the induction of arthritis, could be identified and manipulated through the presence of a major Id, it should be possible to decrease arthritis incidence by suppressing the production of these Ids. Specifically purified anti-CII abs from arthritic DBA/1 mice were coupled to syngeneic spleen cells and administered IV prior to intradermal immunization with CII. By day 34 after 1/sup 0/ immunization, 100% of control mice and 50% of treated mice had developed arthritis. Suppression of the Id population administered to the treated group was confirmed by RIA. Sera from individual mice were tested as inhibitors of binding of /sup 125/I-labelled polyclonal DBA/1 anti-CII to a rabbit anti-Id directed against polyclonal anti-CII isolated from the sera of arthritic mice. Mean percentage of inhibition of binding of /sup 125/I-Id to rabbit anti-Id by sera from non-arthritic treated mice was found to be significantly lower than that observed in the arthritic control group (p = .045), but did not correlate with total anti-CII ab titers.

  9. Development of biomimetic tilapia collagen nanofibers for skin regeneration through inducing keratinocytes differentiation and collagen synthesis of dermal fibroblasts.

    PubMed

    Zhou, Tian; Wang, Nanping; Xue, Yang; Ding, Tingting; Liu, Xin; Mo, Xiumei; Sun, Jiao

    2015-02-11

    In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides, and its denaturation temperature was 44.99 °C. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4+/CD8+ lymphocytes, and the level of IgG or IgM in Sprague-Dawley rat. The contact angle, tensile strength, and weight loss temperature of collagen nanofibers were 21.2°, 6.72±0.44 MPa, and 300 °C, respectively. The nanofibers could promote the viabilities of human keratinocytes (HaCaTs) and human dermal fibroblasts (HDFs), inducing epidermal differentiation through the gene expression of involucrin, filaggrin, and type I transglutaminase of HaCaTs, and they could also accelerate migration of HaCaTs with the expression of matrix metalloproteinase-9 and transforming growth factor-β1 (TGF-β1). Besides, the nanofibers could upregulate the protien level of Col-I in HDFs both via a direct effect and TGF-β1 secreted from HaCaTs, thus facilitating the formation of collagen fibers. Furthermore, the collagen nanofibers stimulated the skin regeneration rapidly and effectively in vivo. These biological effects could be explained as the contributions from the biomimic extracellular cell matrix structure, hydrophilicity, and the multiple amino acids of the collagen nanofibers.

  10. Immune regulation and anti-inflammatory effects of isogarcinol extracted from Garcinia mangostana L. against collagen-induced arthritis.

    PubMed

    Fu, Yanxia; Zhou, Hailing; Wang, Mengqi; Cen, Juren; Wei, Qun

    2014-05-07

    Isogarcinol is a natural compound that we extracted from Garcinia mangostana L., and we were the first to report that it is a new immunosuppressant. In the present study, we investigated the immune regulation and anti-inflammatory effects of isogarcinol on collagen-induced arthritis (CIA) and explored its potential mechanism in the treatment of rheumatoid arthritis. The oral administration of isogarcinol significantly reduced clinical scores, alleviated cartilage and bone erosion, and reduced the levels of serum inflammatory cytokines in CIA mice. Isogarcinol inhibited xylene-induced mouse ear edema in vivo. In vitro, isogarcinol decreased iNOS and COX-2 mRNA expression and NO content by inhibiting NF-κB expression. Furthermore, isogarcinol decreased the activity of NFAT and inhibited IL-2 expression. The mechanism of action of isogarcinol is associated with down-regulation of both autoimmune and inflammatory reactions.

  11. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    SciTech Connect

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling; Liu, Wei-Wei; Xu, Qian; Xia, Ming-Yu; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-ichi; Onodera, Satoshi; Ikejima, Takashi

    2015-02-20

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.

  12. Paclitaxel suppresses collagen-induced arthritis: a reevaluation

    PubMed Central

    Zhao, Yi; Chang, Zhi-Fang; Li, Ru; Li, Zhan-Guo; Li, Xiao-Xia; Li, Lin

    2016-01-01

    Objective: To reevaluate the suppressive effect of paclitaxel (PTX) liposome on collagen-induced arthritis (CIA) in rats and explore its mechanisms. Methods: Female Lewis rats were immunized with bovine type II collagen (CII) to induce arthritis. The rats with CIA were randomly divided into three groups: 5% GS control group, 2.5 mg/kg PTX treatment group and 1 mg/kg methotrexate (MTX) positive control group. The drugs were administered by intraperitoneal injection on the second day after arthritis onset. The body weights, arthritis scores and paw volumes were observed consecutively. The ankle joints of rats were collected for X-ray examination and histological evaluation. Serum samples were collected to test the levels of anti-CII antibodies and cytokines. Results: Body weights were not significantly affected after PTX or MTX treatments (p>0.05). Compared with 5% GS control or MTX treatment groups, PTX group showed significant decrease of arthritis scores and paw volumes (p<0.05). Radiographic and histologic evaluation provided evidence that rats with PTX treatment had less synovial proliferation and bone erosion. In addition, the levels of anti-CII antibodies as well as serum tumor necrosis factor (TNF)-α and vascular endothelial growth factor (VEGF) levels were remarkably lower in PTX group than those in 5% GS controls (p<0.05). Conclusions: PTX inhibits the progression of CIA in rats and prevents the destruction of joints. The mechanism might be related to its inhibition on the levels of serum anti-CII antibodies, TNF-α and VEGF. PMID:27904705

  13. Diabetes-induced alterations in tissue collagen and carboxymethyllysine in rat kidneys: Association with increased collagen-degrading proteinases and amelioration by Cu(II)-selective chelation.

    PubMed

    Brings, Sebastian; Zhang, Shaoping; Choong, Yee S; Hogl, Sebastian; Middleditch, Martin; Kamalov, Meder; Brimble, Margaret A; Gong, Deming; Cooper, Garth J S

    2015-08-01

    Advanced glycation end-products (AGEs) comprise a group of non-enzymatic post-translational modifications of proteins and are elevated in diabetic tissues. AGE-modification impairs the digestibility of collagen in vitro but little is known about its relation to collagen-degrading proteinases in vivo. N(ε)-carboxymethyllysine (CML) is a stable AGE that forms on lysyl side-chains in the presence of glucose, probably via a transition metal-catalysed mechanism. Here, rats with streptozotocin-induced diabetes and non-diabetic controls were treated for 8weeks with placebo or the Cu(II)-selective chelator, triethylenetetramine (TETA), commencing 8weeks after disease induction. Actions of diabetes and drug treatment were measured on collagen and collagen-degrading proteinases in kidney tissue. The digestibility and CML content of collagen, and corresponding levels of mRNAs and collagen, were related to changes in collagen-degrading-proteinases. Collagen-degrading proteinases, cathepsin L (CTSL) and matrix metalloproteinase-2 (MMP-2) were increased in diabetic rats. CTSL-levels correlated strongly and positively with increased collagen-CML levels and inversely with decreased collagen digestibility in diabetes. The collagen-rich mesangium displayed a strong increase of CTSL in diabetes. TETA treatment normalised kidney collagen content and partially normalised levels of CML and CTSL. These data provide evidence for an adaptive proteinase response in diabetic kidneys, affected by excessive collagen-CML formation and decreased collagen digestibility. The normalisation of collagen and partial normalisation of CML- and CTSL-levels by TETA treatment supports the involvement of Cu(II) in CML formation and altered collagen metabolism in diabetic kidneys. Cu(II)-chelation by TETA may represent a treatment option to rectify collagen metabolism in diabetes independent of alterations in blood glucose levels.

  14. Pathophysiology of the inner ear after blast injury caused by laser-induced shock wave

    PubMed Central

    Niwa, Katsuki; Mizutari, Kunio; Matsui, Toshiyasu; Kurioka, Takaomi; Matsunobu, Takeshi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro; Kobayashi, Yasushi

    2016-01-01

    The ear is the organ that is most sensitive to blast overpressure, and ear damage is most frequently seen after blast exposure. Blast overpressure to the ear results in sensorineural hearing loss, which is untreatable and is often associated with a decline in the quality of life. In this study, we used a rat model to demonstrate the pathophysiological and structural changes in the inner ear that replicate pure sensorineural hearing loss associated with blast injury using laser-induced shock wave (LISW) without any conductive hearing loss. Our results indicate that threshold elevation of the auditory brainstem response (ABR) after blast exposure was primarily caused by outer hair cell dysfunction induced by stereociliary bundle disruption. The bundle disruption pattern was unique; disturbed stereocilia were mostly observed in the outermost row, whereas those in the inner and middle rows stereocilia remained intact. In addition, the ABR examination showed a reduction in wave I amplitude without elevation of the threshold in the lower energy exposure group. This phenomenon was caused by loss of the synaptic ribbon. This type of hearing dysfunction has recently been described as hidden hearing loss caused by cochlear neuropathy, which is associated with tinnitus or hyperacusis. PMID:27531021

  15. Novel CC chemokine receptor 4 antagonist RS-1154 inhibits ovalbumin-induced ear swelling in mice.

    PubMed

    Nakagami, Yasuhiro; Kawashima, Kayo; Yonekubo, Kazuki; Etori, Maki; Jojima, Takaaki; Miyazaki, Shojiro; Sawamura, Ryoko; Hirahara, Kazuki; Nara, Futoshi; Yamashita, Makoto

    2009-12-10

    CC chemokine ligand 17 (CCL17/thymus and activation-regulated chemokine: TARC) and CCL22 (macrophage-derived chemokine: MDC) selectively bind to CC chemokine receptor 4 (CCR4). The CCR4 system is considered to be responsible for the pathology of allergic diseases such as atopic dermatitis. To find and develop potential medicines against allergic diseases, we screened an in-house library to search for compounds having a profile as a CCR4 antagonist. From among the screening hits, we focused on 3-{2-[(2R)-2-phenyl-4-(4-pyridin-4-ylbenzyl)morpholin-2-yl]ethyl}quinazoline-2,4(1H,3H)-dione (named RS-1154), which had been newly synthesized in our laboratory. This compound inhibited the binding of [(125)I]CCL17 to human CCR4-expressing CHO cells with an IC(50) value of 27.7 nM and moreover inhibited CCL17-induced migration of DO11.10 mice-derived T helper 2 cells with an IC(50) value of 1.5 nM in vitro. We then examined the effect of RS-1154 in an ovalbumin-induced ear swelling assay. The ear thickness was decreased by intravenous administration of anti-CCL17 or anti-CCL22 antibodies, suggesting that the CCR4 system is involved in the ear swelling. Though partially, the oral administration of RS-1154 also significantly ameliorated the ear swelling at the doses of 30 and 100 mg/kg. Furthermore, the serum level of interleukin-4 decreased after the administration of RS-1154. In this study, we succeeded in obtaining a newly-synthesized compound, RS-1154, which has a potential to inhibit the chemotaxis of T helper 2 cells in vitro and to ameliorate ovalbumin-induced ear swelling in vivo. These results raise the possibility that RS-1154 or one of derivatives might become a therapeutic agent for atopic dermatitis patients.

  16. A Mouse Ear Model for Bystander Studies Induced by Microbeam Irradiation

    PubMed Central

    Buonanno, M.; Randers-Pehrson, G.; Smilenov, L. B.; Kleiman, N. J.; Young, E.; Ponnayia, B.; Brenner, D. J.

    2015-01-01

    Radiation-induced bystander effects have been observed in vitro and in cell and tissue culture models, however, there are few reported studies showing these effects in vivo. To our knowledge, this is the first reported study on bystander effects induced by microbeam irradiation in an intact living mammal. The mouse ear was used to investigate radiation-induced bystander effects in keratinocytes, utilizing a 3 MeV proton microbeam (LET 13.1 keV/µm) with a range in skin of about 135 µm. Using a custom-designed holder, the ear of an anesthetized C57BL/6J mouse was flattened by gentle suction and placed over the microbeam port to irradiate cells along a 35 µm wide, 6 mm long path. Immunohistochemical analysis of γ-H2AX foci formation in tissue sections revealed, compared to control tissue, proton-induced γ-H2AX foci formation in one of the two epidermal layers of the mouse ear. Strikingly, a higher number of cells than expected showed foci from direct irradiation effects. Although the proton-irradiated line was ~35 µm wide, the average width spanned by γ-H2AX-positive cells exceeded 150 µm. Cells adjacent to or in the epidermal layer opposite the γ-H2AX-positive region did not exhibit foci. These findings validate this mammalian model as a viable system for investigating radiation-induced bystander effects in an intact living organism. PMID:26207682

  17. Smad, but not MAPK, pathway mediates the expression of type I collagen in radiation induced fibrosis

    SciTech Connect

    Yano, Hiroyuki; Hamanaka, Ryoji; Nakamura, Miki; Sumiyoshi, Hideaki; Matsuo, Noritaka; Yoshioka, Hidekatsu

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer We examine how radiation affects the expression level and signal pathway of collagen. Black-Right-Pointing-Pointer TGF-{beta}1 mRNA is elevated earlier than those of collagen genes after irradiation. Black-Right-Pointing-Pointer Smad pathway mediates the expression of collagen in radiation induced fibrosis. Black-Right-Pointing-Pointer MAPK pathways are not affected in the expression of collagen after irradiation. -- Abstract: Radiation induced fibrosis occurs following a therapeutic or accidental radiation exposure in normal tissues. Tissue fibrosis is the excessive accumulation of collagen and other extracellular matrix components. This study investigated how ionizing radiation affects the expression level and signal pathway of type I collagen. Real time RT-RCR showed that both {alpha}1and {alpha}2 chain of type I collagen mRNA were elevated from 48 h after irradiation with 10 Gy in NIH3T3 cells. The relative luciferase activities of both genes and type I collagen marker were elevated at 72 h. TGF-{beta}1 mRNA was elevated earlier than those of type I collagen genes. A Western blot analysis showed the elevation of Smad phosphorylation at 72 h. Conversely, treatment with TGF-{beta} receptor inhibitor inhibited the mRNA and relative luciferase activity of type I collagen. The phosphorylation of Smad was repressed with the inhibitor, and the luciferase activity was cancelled using a mutant construct of Smad binding site of {alpha}2(I) collagen gene. However, the MAPK pathways, p38, ERK1/2 and JNK, were not affected with specific inhibitors or siRNA. The data showed that the Smad pathway mediated the expression of type I collagen in radiation induced fibrosis.

  18. Ossicular Bone Damage and Hearing Loss in Rheumatoid Arthritis: A Correlated Functional and High Resolution Morphometric Study in Collagen-Induced Arthritic Mice

    PubMed Central

    Barbe, Mary F.

    2016-01-01

    Globally, a body of comparative case-control studies suggests that rheumatoid arthritis (RA) patients are more prone to developing hearing loss (HL). However, experimental evidence that supports this hypothesis is still lacking because the human auditory organ is not readily accessible. The aim of this study was to determine the association between bone damage to the ossicles of the middle ear and HL, using a widely accepted murine model of collagen-induced arthritis (RA mice). Diarthrodial joints in the middle ear were examined with microcomputer tomography (microCT), and hearing function was assessed by auditory brainstem response (ABR). RA mice exhibited significantly decreased hearing sensitivity compared to age-matched controls. Additionally, a significant narrowing of the incudostapedial joint space and an increase in the porosity of the stapes were observed. The absolute latencies of all ABR waves were prolonged, but mean interpeak latencies were not statistically different. The observed bone defects in the middle ear that were accompanied by changes in ABR responses were consistent with conductive HL. This combination suggests that conductive impairment is at least part of the etiology of RA-induced HL in a murine model. Whether the inner ear sustains bone erosion or other pathology, and whether the cochlear nerve sustains pathology await subsequent studies. Considering the fact that certain anti-inflammatories are ototoxic in high doses, monitoring RA patients’ auditory function is advisable as part of the effort to ensure their well-being. PMID:27690307

  19. Comparison of collagenase-cleaved articular cartilage collagen in mice in the naturally occurring STR/ort model of osteoarthritis and in collagen-induced arthritis.

    PubMed

    Price, J S; Chambers, M G; Poole, A R; Fradin, A; Mason, R M

    2002-03-01

    The STR/ort mouse develops a naturally occurring osteoarthritis of the femorotibial joint that provides a model with which to establish the time course of biochemical changes taking place in articular cartilage in the disease. Our objective was to define the onset, location and progression of type II collagen cleavage by collagenase in the tibial cartilage of the STR/ort mouse. For comparison, cartilage collagen cleavage was also studied in collagen-induced arthritis in DBA mice. STR and control CBA mice aged 6-45 weeks were examined. DBA/1 mice were studied 2 and 3 weeks after initiating collagen-induced arthritis. Collagen cleavage was detected by immunolocalization using the antibody COL2-3/4Cshort which recognizes a carboxy terminal neoepitope created by collagenase cleavage of type I and II collagens. No COL 2-3/4Cshort immunostaining was observed in the intact cartilage of healthy young or old mice. The earliest detectable collagen degradation occurred at the cartilage surface coincident with the appearance of surface roughening. As fibrillations developed, further collagen degradation was evident around the edge of the lesion and in adjacent extracellular matrix. In contrast, staining was observed throughout the cartilage matrix in type II collagen-induced arthritis prior to the development of histopathological lesions. No evidence was found for collagen cleavage in intact/pre-lesional cartilage from STR/ort mice. Local collagen cleavage was, however, clearly associated with very early histopathological lesions and immunostaining with COL 2-3/4Cshort increased with progression of the latter. In contrast, type II collagen cleavage occurs throughout the articular cartilage at an early stage in collagen-induced arthritis. Copyright 2002 OsteoArthritis Research Society International.

  20. Cell Alignment Driven by Mechanically Induced Collagen Fiber Alignment in Collagen/Alginate Coatings

    PubMed Central

    Chaubaroux, Christophe; Perrin-Schmitt, Fabienne; Senger, Bernard; Vidal, Loïc; Voegel, Jean-Claude; Schaaf, Pierre; Haikel, Youssef; Boulmedais, Fouzia; Lavalle, Philippe

    2015-01-01

    For many years it has been a major challenge to regenerate damaged tissues using synthetic or natural materials. To favor the healing processes after tendon, cornea, muscle, or brain injuries, aligned collagen-based architectures are of utmost interest. In this study, we define a novel aligned coating based on a collagen/alginate (COL/ALG) multilayer film. The coating exhibiting a nanofibrillar structure is cross-linked with genipin for stability in physiological conditions. By stretching COL/ALG-coated polydimethylsiloxane substrates, we developed a versatile method to align the collagen fibrils of the polymeric coating. Assays on cell morphology and alignment were performed to investigate the properties of these films. Microscopic assessments revealed that cells align with the stretched collagen fibrils of the coating. The degree of alignment is tuned by the stretching rate (i.e., the strain) of the COL/ALG-coated elastic substrate. Such coatings are of great interest for strategies that require aligned nanofibrillar biological material as a substrate for tissue engineering. PMID:25658028

  1. Pregnancy-induced remodeling of collagen architecture and content in the mitral valve.

    PubMed

    Pierlot, Caitlin M; Lee, J Michael; Amini, Rouzbeh; Sacks, Michael S; Wells, Sarah M

    2014-10-01

    Pregnancy produces rapid, non-pathological volume-overload in the maternal circulation due to the demands of the growing fetus. Using a bovine model for human pregnancy, previous work in our laboratory has shown remarkable pregnancy-induced changes in leaflet size and mechanics of the mitral valve. The present study sought to relate these changes to structural alterations in the collagenous leaflet matrix. Anterior mitral valve leaflets were harvested from non-pregnant heifers and pregnant cows (pregnancy stage estimated by fetal length). We measured changes in the thickness of the leaflet and its anatomic layers via Verhoeff-Van Gieson staining, and in collagen crimp (wavelength and percent collagen crimped) via picrosirius red staining and polarized microscopy. Collagen concentration was determined biochemically: hydroxyproline assay for total collagen and pepsin-acid extraction for uncrosslinked collagen. Small-angle light scattering (SALS) assessed changes in internal fiber architecture (characterized by degree of fiber alignment and preferred fiber direction). Pregnancy produced significant changes to collagen structure in the mitral valve. Fiber alignment decreased 17% with an 11.5° rotation of fiber orientation toward the radial axis. Collagen fiber crimp was dramatically lost, accompanied by a 53% thickening of the fibrosa, and a 16% increase in total collagen concentration, both suggesting that new collagen is being synthesized. Extractable collagen concentration was low, both in the non-pregnant and pregnant state, suggesting early crosslinking of newly-synthesized collagen. This study has shown that the mitral valve is strongly adaptive during pregnancy, with significant changes in size, collagen content and architecture in response to rapidly changing demands.

  2. Pierced Ears

    MedlinePlus

    ... los dientes Video: Getting an X-ray Pierced Ears KidsHealth > For Kids > Pierced Ears Print A A ... cool, but infected ears do not! Getting Your Ears Pierced It's important to get your ears pierced ...

  3. Platelet-collagen adhesion enhances platelet aggregation induced by binding of VWF to platelets

    SciTech Connect

    Laduca, F.M.; Bell, W.R.; Bettigole, R.E. State Univ. of New York, Buffalo )

    1987-11-01

    Ristocetin-induced platelet aggregation (RIPA) was evaluated in the presence of platelet-collagen adhesion. RIPA of normal donor platelet-rich plasma (PRP) demonstrated a primary wave of aggregation mediated by the binding of von Willebrand factor (VWF) to platelets and a secondary aggregation wave, due to a platelet-release reaction, initiated by VWF-platelet binding and inhibitable by acetylsalicylic acid (ASA). An enhanced RIPA was observed in PRP samples to which collagen had been previously added. These subthreshold concentrations of collagen, which by themselves were insufficient to induce aggregation, caused measurable platelet-collagen adhesion. Subthreshold collagen did not cause microplatelet aggregation, platelet release of ({sup 3}H)serotonin, or alter the dose-responsive binding of {sup 125}I-labeled VWF to platelets, which occurred with increasing ristocetin concentrations. However, ASA inhibition of the platelet release reaction prevented collagen-enhanced RIPA. These results demonstrate that platelet-collagen adhesion altered the platelet-release reaction induced by the binding of VWF to platelets causing a platelet-release reaction at a level of VWF-platelet binding not normally initiating a secondary aggregation. These findings suggest that platelet-collagen adhesion enhances platelet function mediated by VWF.

  4. Heparin fragments modulate the collagen phenotype of fibroblasts from radiation-induced subcutaneous fibrosis

    SciTech Connect

    el Nabout, R.; Martin, M.; Remy, J.; Robert, L.; Lafuma, C. )

    1989-10-01

    Acute local gamma irradiation of porcine skin induces, as in human skin, an extensive and mutilating sclerosis characterized by continuous expansion of the fibrosis invading the adjacent muscle and by accumulation of the macromolecular components of the extracellular matrix. Collagen synthesis, content, and types were studied in the presence of heparin fragments (100 micrograms/10(6) cells) in the culture medium, by measuring the incorporation of the radiolabeled precursor (3H)proline into confluent primary cultures of porcine fibroblasts obtained from normal and irradiated fibrotic dermis. Enhancement in collagen biosynthesis and deposition and preferential increase in collagen type III synthesis were observed in fibrotic fibroblast cultures when compared to those in normal dermis fibroblasts. The total collagen synthesis and the rate of collagen hydroxylation appear unmodified by heparin fragments both in normal and in fibrotic fibroblast cultures. But heparin fragments induce a 10- and 2-fold decrease, respectively, in collagen type III and type V syntheses by fibrosis fibroblasts. As only minor effects upon collagen type III and V are observed in cultures of normal dermis fibroblasts, these results highly suggest that heparin fragments are capable of specifically modulating the collagen phenotype of fibroblasts derived from radiation-induced dermis fibrosis and thus are able to regulate the fibrotic process.

  5. Autologous Collagen-Induced Chondrogenesis Technique for Knee Chondral Lesions

    PubMed Central

    Costa-Paz, Matias; Zicaro, Juan Pablo; Yacuzzi, Carlos

    2017-01-01

    Objectives: The purpose of the study was to evaluate a series of patients with osteochondral lesions who underwent a microfractures treatment and autologous collagen-induced chondrogenesis technique (ACIC). Methods: Microfracture treatment and ACIC was performed in eight patients with grade IV cartilage lesion of more than 3 cm2 long. Two patients were discarded due to short follow-up. Four women and two men were evaluated with 50 year-old mean age. The average follow-up was 12.5 months. An associated valgus osteotomy was performed in two patients. Patients were evaluated using the Lysholm score and IKDC. Radiographs were evaluated and a Magnetic Resonance (MRI) was performed in 3 patients. Results: Six patients were evaluated with a 1 B, 2 C and 3 D arthrosis grade according to IKDC classification. Atelocollagen was placed in the medial femoral condyle in four patients (2 associated to tibial valgus osteotomy), in the trochlea in one patient and in both in one patient. Pre and post operative average score IKDC was 38/58 and Lysholm 34/89. One case of postoperative artrofibrosis was registered which was mobilized under anesthesia with satisfactory results. The MRI showed signal with coverage of the chondral defect in more than 70%. There were no cases of infection or reactive synovitis. Conclusion: Atelocollagen combined with microfractures improved the clinical conditions in patients with articular cartilage lesions of the knee. It is necessary more patients and longer follow-up to verify this data.

  6. Inhibition by medroxyprogesterone acetate of interleukin-1β-induced collagen degradation by corneal fibroblasts.

    PubMed

    Zhou, Hongyan; Kimura, Kazuhiro; Orita, Tomoko; Nishida, Teruo; Sonoda, Koh-Hei

    2012-06-28

    To examine the effect of medroxyprogesterone 17-acetate (MPA) on interleukin-1β (IL-1β)-induced collagen degradation by corneal fibroblasts. Rabbit corneal fibroblasts were cultured in three-dimensional collagen gels with or without MPA. Collagen degradation was determined by measurement of hydroxyproline after acid hydrolysis. The expression or activity of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) was evaluated by immunoblot analysis or gelatin zymography. The phosphorylation of mitogen-activated protein kinases (MAPKs) in corneal fibroblasts was examined by immunoblot analysis. Cell proliferation and viability were evaluated by measurement of bromodeoxyuridine incorporation and the release of lactate dehydrogenase, respectively. MPA inhibited IL-1β-induced collagen degradation by corneal fibroblasts in a concentration- and time-dependent manner. MMP expression and activation as well as TIMP expression in corneal fibroblasts exposed to IL-1β were also inhibited by MPA. MPA had no effect on cell proliferation or viability. MPA inhibited the IL-1β-induced phosphorylation of p38 MAPK without affecting that of the MAPKs ERK or JNK. IL-1β-induced MMP expression and activation as well as collagen degradation were also blocked by the p38 MAPK inhibitor SB203580. MPA inhibited MMP expression and thereby suppressed collagen degradation by corneal fibroblasts induced by IL-1β. Furthermore, inhibition of p38 MAPK phosphorylation by MPA may contribute to its inhibition of collagen degradation.

  7. Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering.

    PubMed

    Heo, Jiseung; Koh, Rachel H; Shim, Whuisu; Kim, Hwan D; Yim, Hyun-Gu; Hwang, Nathaniel S

    2016-04-01

    A meniscus tear is a common knee injury, but its regeneration remains a clinical challenge. Recently, collagen-based scaffolds have been applied in meniscus tissue engineering. Despite its prevalence, application of natural collagen scaffold in clinical setting is limited due to its extremely low stiffness and rapid degradation. The purpose of the present study was to increase the mechanical properties and delay degradation rate of a collagen-based scaffold by photo-crosslinking using riboflavin (RF) and UV exposure. RF is a biocompatible vitamin B2 that showed minimal cytotoxicity compared to conventionally utilized photo-initiator. Furthermore, collagen photo-crosslinking with RF improved mechanical properties and delayed enzyme-triggered degradation of collagen scaffolds. RF-induced photo-crosslinked collagen scaffolds encapsulated with fibrochondrocytes resulted in reduced scaffold contraction and enhanced gene expression levels for the collagen II and aggrecan. Additionally, hyaluronic acid (HA) incorporation into photo-crosslinked collagen scaffold showed an increase in its retention. Based on these results, we demonstrate that photo-crosslinked collagen-HA hydrogels can be potentially applied in the scaffold-based meniscus tissue engineering.

  8. Osmotic pressure induced tensile forces in tendon collagen

    NASA Astrophysics Data System (ADS)

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J.; Fratzl, Peter

    2015-01-01

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.

  9. Nutrient-Enhanced Diet Reduces Noise-Induced Damage to the Inner Ear and Hearing Loss

    PubMed Central

    Le Prell, C. G.; Gagnon, P. M; Bennett, D. C.; Ohlemiller, K. K.

    2011-01-01

    Oxidative stress has been broadly implicated as a cause of cell death and neural degeneration in multiple disease conditions; however, the evidence for successful intervention with dietary antioxidant manipulations has been mixed. In this study, we investigated the potential for protection of cells in the inner ear using a dietary supplement with multiple antioxidant components, selected for their potential interactive effectiveness. Protection against permanent threshold shift (PTS) was observed in CBA/J mice maintained on a diet supplemented with a combination of β-carotene, vitamins C and E, and magnesium when compared to PTS in control mice maintained on a nutritionally complete control diet. Although hair cell survival was not enhanced, noise-induced loss of Type II fibrocytes in the lateral wall was significantly reduced (p<0.05), and there was a trend towards less noise-induced loss in strial cell density in animals maintained on the supplemented diet. Taken together, our data suggest that pre-noise oral treatment with the high-nutrient diet can protect cells in the inner ear and reduce PTS in mice. Demonstration of functional and morphological preservation of cells in the inner ear with oral administration of this antioxidant supplemented diet supports the possibility of translation to human patients, and suggests an opportunity to evaluate antioxidant protection in mouse models of oxidative stress-related disease and pathology. PMID:21708355

  10. Magnetically induced behaviour of ferritin corpuscles in avian ears: can cuticulosomes function as magnetosomes?

    PubMed

    Jandacka, Petr; Burda, Hynek; Pistora, Jaromir

    2015-01-06

    Magnetoreception is an enigmatic, poorly understood sensory ability, described mainly on the basis of behavioural studies in animals of diverse taxa. Recently, corpuscles containing superparamagnetic iron-storage protein ferritin were found in the inner ear hair cells of birds, a predominantly single ferritin corpuscle per cell. It was suggested that these corpuscles might represent magnetosomes and function as magnetosensors. Here we determine ferritin low-field paramagnetic susceptibility to estimate its magnetically induced intracellular behaviour. Physical simulations show that ferritin corpuscles cannot be deformed or rotate in weak geomagnetic fields, and thus cannot provide magnetoreception via deformation of the cuticular plate. Furthermore, we reached an alternative hypothesis that ferritin corpuscle in avian ears may function as an intracellular electromagnetic oscillator. Such an oscillator would generate additional cellular electric potential related to normal cell conditions. Though the phenomenon seems to be weak, this effect deserves further analyses.

  11. Temperature induced denaturation of collagen in acidic solution.

    PubMed

    Mu, Changdao; Li, Defu; Lin, Wei; Ding, Yanwei; Zhang, Guangzhao

    2007-07-01

    The denaturation of collagen solution in acetic acid has been investigated by using ultra-sensitive differential scanning calorimetry (US-DSC), circular dichroism (CD), and laser light scattering (LLS). US-DSC measurements reveal that the collagen exhibits a bimodal transition, i.e., there exists a shoulder transition before the major transition. Such a shoulder transition can recover from a cooling when the collagen is heated to a temperature below 35 degrees C. However, when the heating temperature is above 37 degrees C, both the shoulder and major transitions are irreversible. CD measurements demonstrate the content of triple helix slowly decreases with temperature at a temperature below 35 degrees C, but it drastically decreases at a higher temperature. Our experiments suggest that the shoulder transition and major transition arise from the defibrillation and denaturation of collagen, respectively. LLS measurements show the average hydrodynamic radius R(h), radius of gyration R(g)of the collagen gradually decrease before a sharp decrease at a higher temperature. Meanwhile, the ratio R(g)/R(h) gradually increases at a temperature below approximately 34 degrees C and drastically increases in the range 34-40 degrees C, further indicating the defibrillation of collagen before the denaturation.

  12. Smad, but not MAPK, pathway mediates the expression of type I collagen in radiation induced fibrosis.

    PubMed

    Yano, Hiroyuki; Hamanaka, Ryoji; Nakamura, Miki; Sumiyoshi, Hideaki; Matsuo, Noritaka; Yoshioka, Hidekatsu

    2012-02-17

    Radiation induced fibrosis occurs following a therapeutic or accidental radiation exposure in normal tissues. Tissue fibrosis is the excessive accumulation of collagen and other extracellular matrix components. This study investigated how ionizing radiation affects the expression level and signal pathway of type I collagen. Real time RT-RCR showed that both α1 and α2 chain of type I collagen mRNA were elevated from 48 h after irradiation with 10 Gy in NIH3T3 cells. The relative luciferase activities of both genes and type I collagen marker were elevated at 72 h. TGF-β1 mRNA was elevated earlier than those of type I collagen genes. A Western blot analysis showed the elevation of Smad phosphorylation at 72 h. Conversely, treatment with TGF-β receptor inhibitor inhibited the mRNA and relative luciferase activity of type I collagen. The phosphorylation of Smad was repressed with the inhibitor, and the luciferase activity was cancelled using a mutant construct of Smad binding site of α2(I) collagen gene. However, the MAPK pathways, p38, ERK1/2 and JNK, were not affected with specific inhibitors or siRNA. The data showed that the Smad pathway mediated the expression of type I collagen in radiation induced fibrosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. A Mouse Ear Model for Bystander Studies Induced by Microbeam Irradiation.

    PubMed

    Buonanno, M; Randers-Pehrson, G; Smilenov, L B; Kleiman, N J; Young, E; Ponnayia, B; Brenner, D J

    2015-08-01

    Radiation-induced bystander effects have been observed in vitro and in cell and tissue culture models, however, there are few reported studies showing these effects in vivo. To our knowledge, this is the first reported study on bystander effects induced by microbeam irradiation in an intact living mammal. The mouse ear was used to investigate radiation-induced bystander effects in keratinocytes, utilizing a 3 MeV proton microbeam (LET 13.1 keV/μm) with a range in skin of about 135 μm. Using a custom-designed holder, the ear of an anesthetized C57BL/6J mouse was flattened by gentle suction and placed over the microbeam port to irradiate cells along a 35 μm wide, 6 mm long path. Immunohistochemical analysis of γ-H2AX foci formation in tissue sections revealed, compared to control tissue, proton-induced γ-H2AX foci formation in one of the two epidermal layers of the mouse ear. Strikingly, a higher number of cells than expected showed foci from direct irradiation effects. Although the proton-irradiated line was ~35 μm wide, the average width spanned by γ-H2AX-positive cells exceeded 150 μm. Cells adjacent to or in the epidermal layer opposite the γ-H2AX-positive region did not exhibit foci. These findings validate this mammalian model as a viable system for investigating radiation-induced bystander effects in an intact living organism.

  14. Muscle wasting in collagen-induced arthritis and disuse atrophy.

    PubMed

    de Oliveira Nunes Teixeira, Vivian; Filippin, Lidiane Isabel; Viacava, Paula Ramos; de Oliveira, Patrícia Gnieslaw; Xavier, Ricardo Machado

    2013-12-01

    The mechanisms of muscle wasting and decreased mobility have a major functional effect in rheumatoid arthritis, but they have been poorly studied. The objective of our study is to describe muscular involvement and the pathways in an experimental model of arthritis compared to the pathways in disuse atrophy. Female Wistar rats were separated into three groups: control (CO), collagen-induced arthritis (CIA), and immobilized (IM). Spontaneous locomotion and weight were evaluated weekly. The gastrocnemius muscle was evaluated by histology and immunoblotting to measure the expression of myostatin (a negative regulator), LC3 (autophagy), MuRF-1 (proteasome-mediated proteolysis), MyoD, and myogenin (satellite-cell activation). The significance level was set at P < 0.05, and histological analysis of joints confirmed the severity of the arthropathy. There was a significant difference in spontaneous locomotion in the CIA group. Animal body weight, gastrocnemius muscle weight, and relative muscle weight decreased 20%, 30%, and 20%, respectively, in the CIA rats. Inflammatory infiltration and swelling were present in the gastrocnemius muscles of the CIA rats. The mean cross-sectional area was reduced by 30% in the CIA group and by 60% in the IM group. The expressions of myostatin and LC3 between the groups were similar. There was increased expression of MuRF-1 in the IM (1.9-fold) and CIA (3.1-fold) groups and of myogenin in the muscles of the CIA animals (1.7-fold), while MyoD expression was decreased in the IM (20%) rats. This study demonstrated that the development of experimental arthritis is associated with decreased mobility, body weight, and muscle loss. Both IM and CIA animal models presented muscle atrophy, but while proteolysis and the regeneration pathways were activated in the CIA model, there was no activation of regeneration in the IM model. We can assume that muscle atrophy in experimental arthritis is associated with the disease itself and not simply with

  15. Induced Collagen Cross-Links Enhance Cartilage Integration

    PubMed Central

    Athens, Aristos A.; Makris, Eleftherios A.; Hu, Jerry C.

    2013-01-01

    Articular cartilage does not integrate due primarily to a scarcity of cross-links and viable cells at the interface. The objective of this study was to test the hypothesis that lysyl-oxidase, a metalloenzyme that forms collagen cross-links, would be effective in improving integration between native-to-native, as well as tissue engineered-to-native cartilage surfaces. To examine these hypotheses, engineered cartilage constructs, synthesized via the self-assembling process, as well as native cartilage, were implanted into native cartilage rings and treated with lysyl-oxidase for varying amounts of time. For both groups, lysyl-oxidase application resulted in greater apparent stiffness across the cartilage interface 2–2.2 times greater than control. The construct-to-native lysyl-oxidase group also exhibited a statistically significant increase in the apparent strength, here defined as the highest observed peak stress during tensile testing. Histology indicated a narrowing gap at the cartilage interface in lysyl-oxidase treated groups, though this alone is not sufficient to indicate annealing. However, when the morphological and mechanical data are taken together, the longer the duration of lysyl-oxidase treatment, the more integrated the interface appeared. Though further data are needed to confirm the mechanism of action, the enhancement of integration may be due to lysyl-oxidase-induced pyridinoline cross-links. This study demonstrates that lysyl-oxidase is a potent agent for enhancing integration between both native-to-native and native-to-engineered cartilages. The fact that interfacial strength increased manifold suggests that cross-linking agents should play a significant role in solving the difficult problem of cartilage integration. Future studies must examine dose, dosing regimen, and cellular responses to lysyl-oxidase to optimize its application. PMID:23593295

  16. Monitoring the thermally induced structural transitions of collagen by use of second-harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Sung-Jan; Hsiao, Chih-Yuan; Sun, Yen; Lo, Wen; Lin, Wei-Chou; Jan, Gwo-Jen; Jee, Shiou-Hwa; Dong, Chen-Yuan

    2005-03-01

    The thermal disruption of collagen I in rat tail tendon is investigated with second-harmonic generation (SHG) microscopy. We investigate its effects on SHG images and intensity in the temperature range 25°-60°C. We find that the SHG signal decreases rapidly starting at 45°C. However, SHG imaging reveals that breakage of collagen fibers is not evident until 57°C and worsens with increasing temperature. At 57°C, structures of both molten and fibrous collagen exist, and the disruption of collagen appears to be complete at 60°C. Our results suggest that, in addition to intensity measurement, SHG imaging is necessary for monitoring details of thermally induced changes in collagen structures in biomedical applications.

  17. Biphasic function of focal adhesion kinase in endothelial tube formation induced by fibril-forming collagens.

    PubMed

    Nakamura, Junko; Shigematsu, Satoshi; Yamauchi, Keishi; Takeda, Teiji; Yamazaki, Masanori; Kakizawa, Tomoko; Hashizume, Kiyoshi

    2008-10-03

    Migration and tube formation of endothelial cells are important in angiogenesis and require a coordinated response to the extra-cellular matrix (ECM) and growth factor. Since focal adhesion kinase (FAK) integrates signals from both ECM and growth factor, we investigated its role in angiogenesis. Type I and II collagens are fibril-forming collagens and stimulate human umbilical vein endothelial cells (HUVECs) to form tube structure. Although knockdown of FAK restrained cell motility and resulted in inhibition of tube formation, FAK degradation and tube formation occurred simultaneously after incubation with fibril-forming collagens. The compensation for the FAK degradation by a calpain inhibitor or transient over-expression of FAK resulted in disturbance of tube formation. These phenomena are specific to fibril-forming collagens and mediated via alpha2beta1 integrin. In conclusion, our data indicate that FAK is functioning in cell migration, but fibril-forming collagen-induced FAK degradation is necessary for endothelial tube formation.

  18. Activation of AMPK by metformin inhibits TGF-β-induced collagen production in mouse renal fibroblasts.

    PubMed

    Lu, Jiamei; Shi, Jianhua; Li, Manxiang; Gui, Baosong; Fu, Rongguo; Yao, Ganglian; Duan, Zhaoyang; Lv, Zhian; Yang, Yanyan; Chen, Zhao; Jia, Lining; Tian, Lifang

    2015-04-15

    To clarify whether activation of adenosine monophosphate-activated protein kinase (AMPK) by metformin inhibits transforming growth factor beta (TGF-β)-induced collagen production in primary cultured mouse renal fibroblasts and further to address the molecular mechanisms. Primary cultured mouse renal fibroblasts were stimulated with TGF-β1 and the sequence specific siRNA of Smad3 or connective tissue growth factor (CTGF) was applied to investigate the involvement of these molecular mediators in TGF-β1-induced collagen type I production. Cells were pre-incubated with AMPK agonist metformin or co-incubated with AMPK agonist metformin and AMPK inhibitor Compound C before TGF-β1 stimulation to clarify whether activation of AMPK inhibition of TGF-β1-induced renal fibroblast collagen type I expression. Our results demonstrate that TGF-β1 time- and dose-dependently induced renal fibroblast collagen type I production; TGF-β1 also stimulated Smad3-dependent CTGF expression and caused collagen type I generation; this effect was blocked by knockdown of Smad3 or CTGF. Activation of AMPK by metformin reduced TGF-β1-induced collagen type I production by suppression of Smad3-driven CTGF expression. This study suggests that activation of AMPK might be a novel strategy for the treatment of chronic kidney disease (CKD) partially by inhibition of renal interstitial fibrosis (RIF). Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Respiration-induced changes in ear photoplethysmography relates to relative blood volume during hemodialysis.

    PubMed

    Javed, Faizan; Chan, Gregory S H; Savkin, Andrey V; Middleton, Paul M; Mackie, James D; Lovell, Nigel H

    2010-01-01

    Renal failure patients provide a good model of fluid overload with the process of hemodialysis leading to central hypovolemia. This study aims to assess if hemodialysis induces identifiable changes in ear photoplethysmographic waveform variability (PPGV). The results are based on data collected from 10 kidney failure patients undergoing regular hemodialysis; classified as either fluid removal or non-fluid removal patients. Six minutes of continuous photoplethysmography (PPG) signals were recorded at pre-dialysis, end of dialysis and at regular intervals of 20 minutes during hemodialysis. Baseline and amplitude variabilities were derived from the PPG waveform. Frequency spectrum analysis was applied to these variability signals and spectral powers were then calculated from low frequency (LF), mid frequency (MF) and high frequency (HF) bands. The results indicate that in fluid removal patients, LF (p = 0.04), MF (p = 0.03) and HF (p = 0.0003) powers of amplitude ear PPGV (expressed in mean-scaled units) showed a significant increase at the end of dialysis compared to pre-dialysis. No significant change was observed in non-fluid removal patients. A moderate correlation was found between relative blood volume (RBV) and HF power (median R = 0.64, p 〈 0.05). This study suggests that ear PPG may be a suitable monitor of the systemic circulation and can provide a non-invasive tool to detect blood volume loss.

  20. Gentamicin induces functional type VII collagen in recessive dystrophic epidermolysis bullosa patients.

    PubMed

    Woodley, David T; Cogan, Jon; Hou, Yingping; Lyu, Chao; Marinkovich, M Peter; Keene, Douglas; Chen, Mei

    2017-08-01

    Recessive dystrophic epidermolysis bullosa (RDEB) is an incurable disease caused by mutations in the gene encoding type VII collagen, the major component of anchoring fibrils (AF). We previously demonstrated that gentamicin produced functional type VII collagen in RDEB cells harboring nonsense mutations. Herein, we determined whether topical or intradermal gentamicin administration induces type VII collagen and AFs in RDEB patients. A double-blind, placebo-controlled pilot trial assessed safety and efficacy of topical and intradermal gentamicin in 5 RDEB patients with nonsense mutations. The topical arm tested 0.1% gentamicin ointment or placebo application 3 times daily at 2 open erosion sites for 2 weeks. The intradermal arm tested daily intradermal injection of gentamicin solution (8 mg) or placebo into 2 intact skin sites for 2 days in 4 of 5 patients. Primary outcomes were induction of type VII collagen and AFs at the test sites and safety assessment. A secondary outcome assessed wound closure of topically treated erosions. Both topical and intradermal gentamicin administration induced type VII collagen and AFs at the dermal-epidermal junction of treatment sites. Newly created type VII collagen varied from 20% to 165% of that expressed in normal human skin and persisted for 3 months. Topical gentamicin corrected dermal-epidermal separation, improved wound closure, and reduced blister formation. There were no untoward side effects from gentamicin treatments. Type VII collagen induction did not generate anti-type VII collagen autoantibodies in patients' blood or skin. Topical and intradermal gentamicin suppresses nonsense mutations and induces type VII collagen and AFs in RDEB patients. Gentamicin therapy may provide a readily available treatment for RDEB patients with nonsense mutations. ClinicalTrials.gov NCT02698735. Epidermolysis Bullosa Research Partnership, Epidermolysis Bullosa Medical Research Foundation, NIH, and VA Merit Award.

  1. Swimmer's Ear

    MedlinePlus

    ... de los dientes Video: Getting an X-ray Swimmer's Ear KidsHealth > For Kids > Swimmer's Ear Print A ... continue How Do I Know if I Have Swimmer's Ear? Swimmer's ear may start with some itching, ...

  2. Ear Tubes

    MedlinePlus

    ... ENTCareers Marketplace Find an ENT Doctor Near You Ear Tubes Ear Tubes Patient Health Information News media ... and throat specialist) may be considered. What are ear tubes? Ear tubes are tiny cylinders placed through ...

  3. Selective deficiency in collagen-induced platelet aggregation during L-asparaginase therapy.

    PubMed

    Shapiro, R S; Gerrard, J M; Ramsay, N K; Nesbit, M E; Coccia, P F; Stoddard, S F; Plow, E F; White, J G; Krivit, W

    1980-01-01

    Platelet aggregation studies were performed on 10 pediatric patients with acute lymphoblastic leukemia (ALL) receiving induction therapy with vincristine, prednisone, and L-asparaginase. An isolated abnormality in platelet aggregation in response to collagen was found in all patients during the course of therapy. Platelet aggregation in response to collagen normalized following the discontinuation of L-asparaginase, while patients were still on vincristine and prednisone. In contrast to the abnormal collagen response, platelet aggregation induced by epinephrine, arachidonic acid, adenosine diphosphate (ADP), and thrombin were normal both during and following therapy. In the one patient with a normal platelet count before therapy, aggregation induced by all agents was normal. This selective abnormality in collagen aggregation therefore appears to result from therapy, with the use of L-asparaginase in particular being implicated.

  4. Non-thermal atmospheric plasma brush induces HEMA grafting onto dentin collagen

    PubMed Central

    Chen, Mingsheng; Zhang, Ying; Dusevich, Vladimir; Liu, Yi; Yu, Qingsong; Wang, Yong

    2014-01-01

    Objective Non-thermal atmospheric plasma (NTAP) brush has been regarded as a promising technique to enhance dental interfacial bonding. However, the principal enhancement mechanisms have not been well identified. In this study, the effect of non-thermal plasmas on grafting of HEMA, a typical dental monomer, onto dentin collagen thin films was investigated. Methods Human dentin was sectioned into 10-um-thick films. After total demineralization in 0.5 M EDTA solution for 30 min, the dentin collagen films were water-rinsed, air-dried, treated with 35 wt% HEMA aqueous solution. The films were then subject to plasma-exposure under a NTAP brush with different time (1–8 min) / input power (5–15 w). For comparison, the dentin collagen films were also treated with the above HEMA solution containing photo-initiators, then subject to light-curing. After plasma-exposure or light-curing, the HEMA-collagen films were rinsed in deionized water, and then examined by FTIR spectroscopy and TEM. Results The FITR results indicated that plasma-exposure could induce significant HEMA grafting onto dentin collagen thin films. In contrast, light-curing led to no detectable interaction of HEMA with dentin collagen. Quantitative IR spectral analysis (i.e., 1720/3075 or 749/3075, HEMA/collagen ratios) further suggested that the grafting efficacy of HEMA onto the plasma-exposed collagen thin films strongly depended on the treatment time and input power of plasmas. TEM results indicated that plasma treatment did not alter collagen’s banding structure. Significance The current study provides deeper insight into the mechanism of dental adhesion enhancement induced by non-thermal plasmas treatment. The NTAP brush could be a promising method to create chemical bond between resin monomers and dentin collagen. PMID:25458523

  5. Sulfur mustard induces an endoplasmic reticulum stress response in the mouse ear vesicant model

    SciTech Connect

    Chang, Yoke-Chen; Wang, James D.; Svoboda, Kathy K.; Casillas, Robert P.; Laskin, Jeffrey D.; Gordon, Marion K.; Gerecke, Donald R.

    2013-04-15

    The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, persistent inflammation, upregulation of laminin γ2 (one of the chains of laminin-332, a heterotrimeric skin glycoprotein required for wound repair), and delayed wound healing from 24 h to 168 h post exposure. This was associated with time related increased expression of the cell survival ER stress marker, GRP78/BiP, and the ER stress apoptosis marker, GADD153/CHOP, suggesting simultaneous activation of both cell survival and non-mitochondrial apoptosis pathways. Dual immunofluorescence labeling of a keratinocyte migration promoting protein, laminin γ2 and GRP78/BIP, showed colocalization of the two molecules 72 h post exposure indicating that the laminin γ2 was misfolded after SM exposure and trapped within the ER. Taken together, these data show that ER stress is induced in mouse skin within 24 h of vesicant exposure in a defensive response to promote cell survival; however, it appears that this response is rapidly overwhelmed by the apoptotic pathway as a consequence of severe SM-induced injury. - Highlights: ► We demonstrated ER stress response in the mouse ear vesicant model. ► We described the asymmetrical nature of wound repair in the MEVM. ► We identified the distribution of various ER stress markers in the MEVM.

  6. Autoantibodies to Multiple Epitopes on the Non-Collagenous-1 Domain of Type VII Collagen Induce Blisters.

    PubMed

    Vorobyev, Artem; Ujiie, Hideyuki; Recke, Andreas; Buijsrogge, Jacqueline J A; Jonkman, Marcel F; Pas, Hendri H; Iwata, Hiroaki; Hashimoto, Takashi; Kim, Soo-Chan; Hoon Kim, Jong; Groves, Richard; Samavedam, Unni; Gupta, Yask; Schmidt, Enno; Zillikens, Detlef; Shimizu, Hiroshi; Ludwig, Ralf J

    2015-06-01

    Epidermolysis bullosa acquisita (EBA) is an autoimmune blistering disease of the skin and mucous membranes, characterized by autoantibodies against type VII collagen (COL7), a major component of anchoring fibrils. Different clinical EBA phenotypes are described, including mechanobullous and inflammatory variants. Most EBA patients' sera react with epitopes located within the non-collagenous 1 (NC1) domain of human COL7. However, it has remained unclear whether antibody binding to these different epitopes is pathogenically relevant. To address this issue, we generated recombinant proteins covering the entire NC1 domain. IgG reactivity with these proteins was analyzed in sera of 69 EBA patients. Most recognized clusters of epitopes throughout the NC1 domain. No correlation was detected between antibody specificity and clinical phenotype. To study the pathogenicity of antibodies specific to different NC1 subdomains, rabbit antibodies were generated. All these antibodies caused dermal-epidermal separation ex vivo. Antibodies against two of these subdomains were injected into mice carrying null mutations of mouse COL7 and the human COL7 transgene and induced subepidermal blisters. We here document that autoantibodies to COL7, independent of the targeted epitopes, induce blisters both ex vivo and in vivo. In addition, using COL7-humanized mice, we provide in vivo evidence of pathogenicity of autoantibodies binding to human COL7.

  7. Inhibition of Glycoprotein VI Clustering by Collagen as a Mechanism of Inhibiting Collagen-Induced Platelet Responses: The Example of Losartan

    PubMed Central

    Jiang, Peng; Loyau, Stéphane; Tchitchinadze, Maria; Ropers, Jacques; Jondeau, Guillaume; Jandrot-Perrus, Martine

    2015-01-01

    Exposure of platelets to collagen triggers the formation of a platelet clot. Pharmacological agents capable of inhibiting platelet activation by collagen are thus of potential therapeutic interest. Thrombus formation is initiated by the interaction of the GPIb-V-IX complex with collagen-bound vWF, while GPVI interaction with collagen triggers platelet activation that is reinforced by ADP and thromboxane A2. Losartan is an angiotensin II (Ang II) type I receptor (AT1R) antagonist proposed to have an antiplatelet activity via the inhibition of both the thromboxane A2 (TXA2) receptor (TP) and the glycoprotein VI (GPVI). Here, we characterized in vitro the effects of losartan at different doses on platelet responses: losartan inhibited platelet aggregation and secretion induced by 1 μg.mL-1 and 10 μg.mL-1 of collagen with an IC50 of ~ 6 μM. Losartan inhibited platelet responses induced by the GPVI specific collagen related peptide but not by the α2β1 specific peptide. However, losartan did not inhibit the binding of recombinant GPVI to collagen, which is not in favor of a simple competition. Indeed, the clustering of GPVI observed in flow cytometry and using the Duolink methodology, was inhibited by losartan. The impact of a therapeutic dose of losartan (100 mg/day) on platelet responses was analyzed ex vivo in a double blind study. No statistically significant differences were observed between losartan-treated (n=25) and non-treated (n=30) patients in terms of collagen and U46619-induced platelet activation. These data indicate that in treated patients, losartan does not achieve a measurable antiplatelet effect but provide the proof of concept that inhibiting collagen-induced GPVI clustering is of pharmacological interest to obtain an antithrombotic efficacy. Trial Registration ClinicalTrials.gov NCT00763893 PMID:26052700

  8. Hernia fibroblasts lack β-estradiol induced alterations of collagen gene expression

    PubMed Central

    2006-01-01

    Background Estrogens are reported to increase type I and type III collagen deposition and to regulate Metalloproteinase 2 (MMP-2) expression. These proteins are reported to be dysregulated in incisional hernia formation resulting in a significantly decreased type I to III ratio. We aimed to evaluate the β-estradiol mediated regulation of type I and type III collagen genes as well as MMP-2 gene expression in fibroblasts derived from patients with or without history of recurrent incisional hernia disease. We compared primary fibroblast cultures from male/female subjects without/without incisional hernia disease. Results Incisional hernia fibroblasts (IHFs) revealed a decreased type I/III collagen mRNA ratio. Whereas fibroblasts from healthy female donors responded to β-estradiol, type I and type III gene transcription is not affected in fibroblasts from males or affected females. Furthermore β-estradiol had no influence on the impaired type I to III collagen ratio in fibroblasts from recurrent hernia patients. Conclusion Our results suggest that β-estradiol does not restore the imbaired balance of type I/III collagen in incisional hernia fibroblasts. Furthermore, the individual was identified as an independent factor for the β-estradiol induced alterations of collagen gene expression. The observation of gender specific β-estradiol-dependent changes of collagen gene expression in vitro is of significance for future studies of cellular response. PMID:17010202

  9. Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation.

    PubMed

    Zhou, Tian; Wang, Nanping; Xue, Yang; Ding, Tingting; Liu, Xin; Mo, Xiumei; Sun, Jiao

    2016-07-01

    The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4(+)/CD8(+) lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6.72±0.44MPa and 26.71±4.88°, respectively. They also had good thermal stability and swelling property. Furthermore, the nanofibers could significantly promote the proliferation of human keratinocytes (HaCaTs) and stimulate epidermal differentiation through the up-regulated gene expression of involucrin, filaggrin, and type I transglutaminase in HaCaTs. The collagen nanofibers could also facilitate rat skin regeneration. In the present study, electrospun biomimetic tilapia skin collagen nanofibers were succesfully prepared, were proved to have good bioactivity and could accelerate rat wound healing rapidly and effectively. These biological effects might be attributed to the biomimic extracellular matrix structure and the multiple amino acids of the collagen nanofibers. Therefore, the cost-efficient tilapia collagen nanofibers could be used as novel wound dressing, meanwhile effectively avoiding the risk of transmitting animal disease in the future clinical apllication.

  10. Sulfur mustard induces an endoplasmic reticulum stress response in the mouse ear vesicant model

    PubMed Central

    Chang, Yoke-Chen; Wang, James D.; Svoboda, Kathy K.; Casillas, Robert P.; Laskin, Jeffrey D.; Gordon, Marion K.; Gerecke, Donald R.

    2013-01-01

    The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, persistent inflammation, upregulation of laminin γ2 (one of the chains of laminin-332, a heterotrimeric skin glycoprotein required for wound repair), and delayed wound healing from 24 h to 168 h post exposure. This was associated with time related increased expression of the cell survival ER stress marker, GRP78/BiP, and the ER stress apoptosis marker, GADD153/CHOP, suggesting simultaneous activation of both cell survival and non-mitochondrial apoptosis pathways. Dual immunofluorescence labeling of a keratinocyte migration promoting protein, laminin γ2 and GRP78/BIP, showed colocalization of the two molecules 72 h post exposure indicating that the laminin γ2 was misfolded after SM exposure and trapped within the ER. Taken together, these data show that ER stress is induced in mouse skin within 24 h of vesicant exposure in a defensive response to promote cell survival; however, it appears that this response is rapidly overwhelmed by the apoptotic pathway as a consequence of severe SM-induced injury. PMID:23357548

  11. Gene Therapy Induces Antigen-Specific Tolerance in Experimental Collagen-Induced Arthritis

    PubMed Central

    Jirholt, Pernilla; Turesson, Olof; Wing, Kajsa; Holmdahl, Rikard; Kihlberg, Jan; Stern, Anna; Mårtensson, Inga-Lill; Henningsson, Louise; Gustafsson, Kenth; Gjertsson, Inger

    2016-01-01

    Here, we investigate induction of immunological tolerance by lentiviral based gene therapy in a mouse model of rheumatoid arthritis, collagen II-induced arthritis (CIA). Targeting the expression of the collagen type II (CII) to antigen presenting cells (APCs) induced antigen-specific tolerance, where only 5% of the mice developed arthritis as compared with 95% of the control mice. In the CII-tolerized mice, the proportion of Tregs as well as mRNA expression of SOCS1 (suppressors of cytokine signaling 1) increased at day 3 after CII immunization. Transfer of B cells or non-B cell APC, as well as T cells, from tolerized to naïve mice all mediated a certain degree of tolerance. Thus, sustainable tolerance is established very early during the course of arthritis and is mediated by both B and non-B cells as APCs. This novel approach for inducing tolerance to disease specific antigens can be used for studying tolerance mechanisms, not only in CIA but also in other autoimmune diseases. PMID:27159398

  12. Polymerized-Type I Collagen Induces Upregulation of Foxp3-Expressing CD4 Regulatory T Cells and Downregulation of IL-17-Producing CD4+ T Cells (Th17) Cells in Collagen-Induced Arthritis

    PubMed Central

    Furuzawa-Carballeda, Janette; Macip-Rodríguez, Perla; Galindo-Feria, Angeles S.; Cruz-Robles, David; Soto-Abraham, Virgina; Escobar-Hernández, Sergio; Aguilar, Diana; Alpizar-Rodríguez, Deshiré; Férez-Blando, Karen; Llorente, Luis

    2012-01-01

    Previous studies showed that polymerized-type I collagen (polymerized collagen) exhibits potent immunoregulatory properties. This work evaluated the effect of intramuscular administration of polymerized collagen in early and established collagen-induced arthritis (CIA) in mice and analyzed changes in Th subsets following therapy. Incidence of CIA was of 100% in mice challenged with type II collagen. Clinimorphometric analysis showed a downregulation of inflammation after administration of all treatments (P < 0.05). Histological analysis showed that the CIA-mice group had extensive bone erosion, pannus and severe focal inflammatory infiltrates. In contrast, there was a remarkable reduction in the severity of arthritis in mice under polymerized collagen, methotrexate or methotrexate/polymerized collagen treatment. Polymerized Collagen but not methotrexate induced tissue joint regeneration. Polymerized Collagen and methotrexate/polymerized collagen but not methotrexate alone induces downregulation of CD4+/IL17A+ T cells and upregulation of Tregs and CD4+/IFN-γ+ T cells. Thus, Polymerized Collagen could be an effective therapeutic agent in early and established rheumatoid arthritis by exerting downregulation of autoimmune inflammation. PMID:22028728

  13. Glibenclamide Induces Collagen IV Catabolism in High Glucose-Stimulated Mesangial Cells

    PubMed Central

    Zhu, Liping; Cortes, Pedro; Hassett, Clare; Taube, David W.; Yee, Jerry

    2012-01-01

    We have shown the full prevention of mesangial expansion in insulin-deficient diabetic rats by treatment with clinically-relevant dosages of glibenclamide (Glib). Studies in mesangial cells (MCs) also demonstrated reduction in the high glucose (HG)-induced accumulation of collagens, proposing that this was due to increased catabolism. In the present study, we investigated the signaling pathways that may be implicated in Glib action. Rat primary MCs were exposed to HG for 8 weeks with or without Glib in therapeutic (0.01 μM) or supratherapeutic (1.0 μM) concentrations. We found that HG increased collagen IV protein accumulation and PAI-1 mRNA and protein expression, in association with decreased cAMP generating capacity and decreased PKA activity. Low Glib increased collagen IV mRNA but fully prevented collagen IV protein accumulation and PAI-1 overexpression while enhancing cAMP formation and PKA activity. MMP2 mRNA, protein expression and gelatinolytic activity were also enhanced. High Glib was, overall, ineffective. In conclusion, low dosage/concentration Glib prevents HG-induced collagen accumulation in MC by enhancing collagen catabolism in a cAMP-PKA-mediated PAI-1 inhibition. PMID:23008698

  14. Glibenclamide induces collagen IV catabolism in high glucose-stimulated mesangial cells.

    PubMed

    Zhu, Liping; Cortes, Pedro; Hassett, Clare; Taube, David W; Yee, Jerry

    2012-01-01

    We have shown the full prevention of mesangial expansion in insulin-deficient diabetic rats by treatment with clinically-relevant dosages of glibenclamide (Glib). Studies in mesangial cells (MCs) also demonstrated reduction in the high glucose (HG)-induced accumulation of collagens, proposing that this was due to increased catabolism. In the present study, we investigated the signaling pathways that may be implicated in Glib action. Rat primary MCs were exposed to HG for 8 weeks with or without Glib in therapeutic (0.01 μM) or supratherapeutic (1.0 μM) concentrations. We found that HG increased collagen IV protein accumulation and PAI-1 mRNA and protein expression, in association with decreased cAMP generating capacity and decreased PKA activity. Low Glib increased collagen IV mRNA but fully prevented collagen IV protein accumulation and PAI-1 overexpression while enhancing cAMP formation and PKA activity. MMP2 mRNA, protein expression and gelatinolytic activity were also enhanced. High Glib was, overall, ineffective. In conclusion, low dosage/concentration Glib prevents HG-induced collagen accumulation in MC by enhancing collagen catabolism in a cAMP-PKA-mediated PAI-1 inhibition.

  15. Apigenin induces dermal collagen synthesis via smad2/3 signaling pathway.

    PubMed

    Zhang, Y; Wang, J; Cheng, X; Yi, B; Zhang, X; Li, Q

    2015-04-13

    Decrease in fibroblast-produced collagen has been proven to be the pivotal cause of skin aging, but there is no satisfactory drug which directly increases dermal thickness and collage density. Here we found that a flavonoid natural product, apigenin, could significantly increase collagen synthesis. NIH/3T3 and primary human dermal fibroblasts (HDFs) were incubated with various concentrations of apigenin, with dimethyl sulfoxide (DMSO) serving as the negative control. Real-time reverse-transcription polymerase chain reaction (PCR), Western Blot, and Toluidine blue staining demonstrated that apigenin stimulated type-I and type-III collagen synthesis of fibroblasts on the mRNA and protein levels. Meanwhile, apigenin did not induce expression of alpha smooth muscle actin (α-SMA) in vitro and in vivo, a fibrotic marker in living tissues. Then the production of collagen was confirmed by Masson's trichrome stain, Picrosirius red stain and immunohistochemistry in mouse models. We also clarified that this compound induced collagen synthesis by activating smad2/3 signaling pathway. Taken together, without obvious influence on fibroblasts' apoptosis and viability, apigenin could promote the type-I and type-III collagen synthesis of dermal fibroblasts in vitro and in vivo, thus suggesting that apigenin may serve as a potential agent for esthetic and reconstructive skin rejuvenation.

  16. Short stimulation of electro-responsive PAA/fibrin hydrogel induces collagen production.

    PubMed

    Rahimi, Nastaran; Swennen, Geertje; Verbruggen, Sanne; Scibiorek, Martyna; Molin, Daniel G; Post, Mark J

    2014-09-01

    Acrylic acid/fibrin hydrogel can mechanically stimulate cells when an external electrical field is applied, enabling them to migrate and align throughout the depth of the gel. The ability of electro-responsive polyacrylic acid (PAA)/fibrin hydrogel to promote collagen production and remodeling has been investigated by three-dimensional (3D) culturing and conditioning of smooth muscle cells (SMCs). SMCs-seeded hydrogels were subjected to an alternating electrical field (0.06 V/mm) for 2 h for one, two, or three times per week during 4 weeks of culturing. Fluorescent images of collagen structure and accumulation, assessed by CNA-35 probe, showed increased collagen content (>100-fold at 1× stimulation/week) in the center of the hydrogels after 4 weeks of culture. The increase in collagen production correlated with increasing extracellular matrix gene expression and resulted in significantly improved mechanical properties of the stimulated hydrogels. Matrix metalloproteinase (MMP)-2 activity was also significantly enhanced by stimulation, which probably has a role in the reorganization of the collagen. Short stimulation (2 h) induced a favorable response in the cells and enhanced tissue formation and integrity of the scaffold by inducing collagen production. The presented set up could be used for conditioning and improving the functionality of current tissue-engineered vascular grafts.

  17. Apigenin Induces Dermal Collagen Synthesis Via smad2/3 Signaling Pathway

    PubMed Central

    Zhang, Y.; Wang, J.; Cheng, X.; Yi, B.; Zhang, X.; Li, Q.

    2015-01-01

    Decrease in fibroblast-produced collagen has been proven to be the pivotal cause of skin aging, but there is no satisfactory drug which directly increases dermal thickness and collage density. Here we found that a flavonoid natural product, apigenin, could significantly increase collagen synthesis. NIH/3T3 and primary human dermal fibroblasts (HDFs) were incubated with various concentrations of apigenin, with dimethyl sulfoxide (DMSO) serving as the negative control. Real-time reverse-transcription polymerase chain reaction (PCR), Western Blot, and Toluidine blue staining demonstrated that apigenin stimulated type-I and type-III collagen synthesis of fibroblasts on the mRNA and protein levels. Meanwhile, apigenin did not induce expression of alpha smooth muscle actin (α-SMA) in vitro and in vivo, a fibrotic marker in living tissues. Then the production of collagen was confirmed by Masson’s trichrome stain, Picrosirius red stain and immunohistochemistry in mouse models. We also clarified that this compound induced collagen synthesis by activating smad2/3 signaling pathway. Taken together, without obvious influence on fibroblasts’ apoptosis and viability, apigenin could promote the type-I and type-III collagen synthesis of dermal fibroblasts in vitro and in vivo, thus suggesting that apigenin may serve as a potential agent for esthetic and reconstructive skin rejuvenation. PMID:26150153

  18. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts

    SciTech Connect

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo; Kim, So Young; Jang, Hwan-Hee; Ryu, Sung Ho; Kim, Beom Joon; Lee, Taehoon G.

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer We identify a function of the YIGSR peptide to enhance collagen synthesis in Hs27. Black-Right-Pointing-Pointer YIGSR peptide enhanced collagen type 1 synthesis both of gene and protein levels. Black-Right-Pointing-Pointer There were no changes in cell proliferation and MMP-1 level in YIGSR treatment. Black-Right-Pointing-Pointer The YIGSR effect on collagen synthesis mediated activation of FAK, pyk2 and ERK. Black-Right-Pointing-Pointer The YIGSR-induced FAK and ERK activation was modulated by FAK and MEK inhibitors. -- Abstract: The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the {beta}1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67 kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate

  19. Effect of drill-induced noise on hearing in non-operated ear

    PubMed Central

    Abtahi, Seyyed Hamidreza; Fazel, Alireza; Rogha, Mehrdad; Nilforoush, Mohamadhosein; Solooki, Reza

    2016-01-01

    Background: The aim of this study was to evaluate the effect of drill-generated noise on hearing loss in non-operated ear and if any, was temporary or persistent. Materials and Methods: In this prospective clinical study, 23 patients who had undergone mastoidectomy and normal contralateral hearing were enrolled. Patients were evaluated preoperatively and postoperatively (1 and 7 days) following surgery using low and high-frequency pure tone audiometry (PTA) and low and high-frequency transient evoked and distortion product otoacoustic emission (DPOAE) testing. Results: Comparing preoperative and 1-day after surgery, PTA averages were significantly different at low frequencies, but no statistical significant differences were observed at 0.25 KHz and high-frequencies. Comparing 1-day after surgery and 7 days after surgery showed that, PTA averages at 0.5, 2 and 2 KHz were significantly different with no significant differences at the other average of thresholds in low and high frequencies; PTA average at 1 KHz was significantly different with, no significant differences at the other averages of thresholds in low and high frequencies. DPOAEs showed a significant difference preoperative and 1-day after surgery, 1-day and 7 days after, but DPOAEs were not significantly different. Transiently evoked otoacoustic emissions (TEOAEs) had a significant difference preoperative and 1-day after surgery, 1-day and 7 days after but when comparing preoperative and 7 days after surgery, TEOAEs were not significantly different. Conclusions: Drill-induced noise during ear surgery (mastoidectomy) can cause reversible changes in PTA, DPOAEs and TEOAEs in the non-operated ear. PMID:27274502

  20. Isorhamnetin attenuates collagen-induced arthritis via modulating cytokines and oxidative stress in mice

    PubMed Central

    Wang, Xuewen; Zhong, Wei

    2015-01-01

    Inflammation and oxidative stress were involved in the development and progression of rheumatoid arthritis (RA). Isorhamnetin has anti-inflammatory and anti-oxidative activities, but its effects on RA have not been investigated. In order to observe the possible therapeutic effects of isorhamnetin on RA, we established a collagen-induced arthritis mouse model and treated the animal with isorhamnetin for 3 weeks. Besides, fibroblast-like synoviocytes (FLS) were treated with lipopolysaccharide (LPS) and isorhamnetin. The severity of arthritis was assessed by arthritis score, joint destruction score and inflammation score. Levels of cytokines TNF-α, IL-1β, IL-6, IL-17A, IL-17F, IL-10 and IL-35 in the joint tissue homogenate and cell culture medium as well as anti-type II collagen antibody in serum were measured using ELISA. Contents of H2O2 and malondialdehyde (MDA) in joint tissue homogenate were measured using assay kits. We found collagen immunization induced significant arthritis in mice and isorhamnetin at the dose of 10 and 20 mg/kg/day could significantly attenuate the collagen-induced arthritis. Isorhamnetin also modulated the production of cytokines and suppressed the oxidative stress in the mice with collagen-induced arthritis at the dose of 10 and 20 mg/kg/day. These data suggested that isorhamnetin might be a potential agent for the management of RA. PMID:26629181

  1. Isorhamnetin attenuates collagen-induced arthritis via modulating cytokines and oxidative stress in mice.

    PubMed

    Wang, Xuewen; Zhong, Wei

    2015-01-01

    Inflammation and oxidative stress were involved in the development and progression of rheumatoid arthritis (RA). Isorhamnetin has anti-inflammatory and anti-oxidative activities, but its effects on RA have not been investigated. In order to observe the possible therapeutic effects of isorhamnetin on RA, we established a collagen-induced arthritis mouse model and treated the animal with isorhamnetin for 3 weeks. Besides, fibroblast-like synoviocytes (FLS) were treated with lipopolysaccharide (LPS) and isorhamnetin. The severity of arthritis was assessed by arthritis score, joint destruction score and inflammation score. Levels of cytokines TNF-α, IL-1β, IL-6, IL-17A, IL-17F, IL-10 and IL-35 in the joint tissue homogenate and cell culture medium as well as anti-type II collagen antibody in serum were measured using ELISA. Contents of H2O2 and malondialdehyde (MDA) in joint tissue homogenate were measured using assay kits. We found collagen immunization induced significant arthritis in mice and isorhamnetin at the dose of 10 and 20 mg/kg/day could significantly attenuate the collagen-induced arthritis. Isorhamnetin also modulated the production of cytokines and suppressed the oxidative stress in the mice with collagen-induced arthritis at the dose of 10 and 20 mg/kg/day. These data suggested that isorhamnetin might be a potential agent for the management of RA.

  2. Substance P Inhibits the Collagen Synthesis of Rat Myocardial Fibroblasts Induced by Ang II

    PubMed Central

    Yang, Zhiyong; Zhang, Xinzhong; Guo, Naipeng; Li, Bin; Zhao, Sheng

    2016-01-01

    Background The aim of this study was to explore the regulating effects of Substance P (SP) on the collagen synthesis of rat myocardial fibroblasts (CFBs) induced by angiotensin II (Ang II) and its potential mechanism. Material/Methods The CFBs of a neonatal SD rat were separately cultured and divided into the control group, Ang II treatment group, and treatment groups with different concentrations of SP, Ang II +; each group was given corresponding treatment respectively. Results Ang II successfully induced the collagen synthesis of CFBs. Compared with the control group, the phosphorylation levels of TGF-β, erk, and smad2/3 were higher (p<0.05). Different concentrations of SP had an effect on Ang II-induced CFBs, reduced the collagen synthesis of CFBs, and increased the expressions of SP receptors, accompanied by lowering TGF-β protein, erk protein phosphorylation level, and smad2/3 protein phosphorylation level (p<0.05). Moreover, the higher the concentrations of SP, the more obvious of an effect it exerted. Treating the Ang II + SP group with aprepitant reduced the inhibiting effects of SP on collagen synthesis. The expression changes of collagen I and collagen III detected by immunocytochemistry were exactly in accordance with the results of qPCR and Western blotting. Conclusions SP can inhibit collagen synthesis of CFBs after Ang II inducing which may adjust the downstream signaling pathways associated protein including TGF-β, erk and smad2/3. SP can block the progress of myocardial fibrosis and is dose dependent, which is expected to be a promising target for the treatment of myocardial fibrosis. PMID:27980320

  3. Substance P Inhibits the Collagen Synthesis of Rat Myocardial Fibroblasts Induced by Ang II.

    PubMed

    Yang, Zhiyong; Zhang, Xinzhong; Guo, Naipeng; Li, Bin; Zhao, Sheng

    2016-12-16

    BACKGROUND The aim of this study was to explore the regulating effects of Substance P (SP) on the collagen synthesis of rat myocardial fibroblasts (CFBs) induced by angiotensin II (Ang II) and its potential mechanism. MATERIAL AND METHODS The CFBs of a neonatal SD rat were separately cultured and divided into the control group, Ang II treatment group, and treatment groups with different concentrations of SP, Ang II +; each group was given corresponding treatment respectively. RESULTS Ang II successfully induced the collagen synthesis of CFBs. Compared with the control group, the phosphorylation levels of TGF-β, erk, and smad2/3 were higher (p<0.05). Different concentrations of SP had an effect on Ang II-induced CFBs, reduced the collagen synthesis of CFBs, and increased the expressions of SP receptors, accompanied by lowering TGF-β protein, erk protein phosphorylation level, and smad2/3 protein phosphorylation level (p<0.05). Moreover, the higher the concentrations of SP, the more obvious of an effect it exerted. Treating the Ang II + SP group with aprepitant reduced the inhibiting effects of SP on collagen synthesis. The expression changes of collagen I and collagen III detected by immunocytochemistry were exactly in accordance with the results of qPCR and Western blotting. CONCLUSIONS SP can inhibit collagen synthesis of CFBs after Ang II inducing which may adjust the downstream signaling pathways associated protein including TGF-β, erk and smad2/3. SP can block the progress of myocardial fibrosis and is dose dependent, which is expected to be a promising target for the treatment of myocardial fibrosis.

  4. Collagen V-induced nasal tolerance downregulates pulmonary collagen mRNA gene and TGF-beta expression in experimental systemic sclerosis

    PubMed Central

    2010-01-01

    Background The purpose of this study was to evaluate collagen deposition, mRNA collagen synthesis and TGF-beta expression in the lung tissue in an experimental model of scleroderma after collagen V-induced nasal tolerance. Methods Female New Zealand rabbits (N = 12) were immunized with 1 mg/ml of collagen V in Freund's adjuvant (IM). After 150 days, six immunized animals were tolerated by nasal administration of collagen V (25 μg/day) (IM-TOL) daily for 60 days. The collagen content was determined by morphometry, and mRNA expressions of types I, III and V collagen were determined by Real-time PCR. The TGF-beta expression was evaluated by immunostaining and quantified by point counting methods. To statistic analysis ANOVA with Bonferroni test were employed for multiple comparison when appropriate and the level of significance was determined to be p < 0.05. Results IM-TOL, when compared to IM, showed significant reduction in total collagen content around the vessels (0.371 ± 0.118 vs. 0.874 ± 0.282, p < 0.001), bronchioles (0.294 ± 0.139 vs. 0.646 ± 0.172, p < 0.001) and in the septal interstitium (0.027 ± 0.014 vs. 0.067 ± 0.039, p = 0.026). The lung tissue of IM-TOL, when compared to IM, showed decreased immunostaining of types I, III and V collagen, reduced mRNA expression of types I (0.10 ± 0.07 vs. 1.0 ± 0.528, p = 0.002) and V (1.12 ± 0.42 vs. 4.74 ± 2.25, p = 0.009) collagen, in addition to decreased TGF-beta expression (p < 0.0001). Conclusions Collagen V-induced nasal tolerance in the experimental model of SSc regulated the pulmonary remodeling process, inhibiting collagen deposition and collagen I and V mRNA synthesis. Additionally, it decreased TGF-beta expression, suggesting a promising therapeutic option for scleroderma treatment. PMID:20047687

  5. The adaptor protein CIKS/Act1 is necessary to induce collagen-induced arthritis pathology and it contributes to collagen-specific antibody production

    PubMed Central

    Pisitkun, Prapaporn; Claudio, Estefania; Ren, Nina; Wang, Hongshan; Siebenlist, Ulrich

    2010-01-01

    Objective CIKS/Act1 is an adaptor molecule necessary for signaling by members of the IL-17 cytokine family. Here we aim to determine whether this adaptor is required for collagen-induced arthritis (CIA). If required, CIKS-mediated signaling could be a potential target for therapeutic intervention in rheumatoid arthritis. Methods CIA model studies were performed with CIKS deficient and sufficient mice on an otherwise wild-type C57BL/6 background or on a background lacking FcγRIIb. In addition, wild-type and CIKS deficient mice were subjected to collagen-antibody induced arthritis (CAIA) studies. Arthritis pathology was determined by visual inspection of the paws, by histochemical analysis of tissue sections and by measurements of collagen-specific antibodies. Results Arthritis pathology could be readily induced with the CIA model in wild-type mice and pathology was exacerbated in FcγRIIb-deficient mice. In contrast, CIKS deficient mice were protected from all aspects of CIA pathology, even in FcγRIIb deficient mice. The absence of CIKS completely prevented neutrophil infiltration into joints, bone erosion and cartilage damage; furthermore, production of collagen type 2-specific antibodies (CII-Abs) was reduced. In contrast to the CIA model, CIKS deficient mice remained susceptible to arthritis induced with the CAIA model. Conclusion CIKS-mediated signaling is necessary for the pathogenesis in the CIA model, but not in the CAIA model. These findings suggest critical functions of CIKS during the development of arthritis in the CIA model, including in the formation of CII-Abs, and they mark the CIKS adaptor as a potential therapeutic target in RA. PMID:20662069

  6. Nimesulide improves the symptomatic and disease modifying effects of leflunomide in collagen induced arthritis.

    PubMed

    Al-Abd, Ahmed M; Al-Abbasi, Fahad A; Nofal, Salwa M; Khalifa, Amani E; Williams, Richard O; El-Eraky, Wafaa I; Nagy, Ayman A; Abdel-Naim, Ashraf B

    2014-01-01

    Nimesulide is a COX-2 inhibitor used for symptomatic relief of rheumatoid arthritis. Leflunomide is an anti-pyrimidine used to manage the progression of rheumatoid arthritis. Herein we studied the influence of nimesulide and leflunomide combination in terms of disease symptoms and progression using collagen-induced arthritis model in mice, as a model for rheumatoid arthritis. Collagen induced arthritis was induced by immunization with type II collagen. Assessment of joint stiffness and articular hyperalgesia were evaluated using a locomotor activity cage and the Hargreaves method, respectively. Disease progression was assessed via arthritic index scoring, X-ray imaging, myeloperoxidase enzyme activity and histopathologic examination. Nimesulide induced only transient symptomatic alleviation on the top of decreased leucocytic infiltration compared to arthritis group. However, nimesulide alone failed to induce any significant improvement in the radiological or pathological disease progression. Leflunomide alone moderately alleviates the symptoms of arthritis and moderately retarded the radiological and pathological disease progression. Combination of nimesulide and leflunomide significantly improved symptomatic (analgesia and joint stiffness) and arthritic disease progression (radiological, pathological and Myeloperoxidase enzyme activity) in collagen induced arthritis animal model.

  7. Blister-inducing antibodies target multiple epitopes on collagen VII in mice

    PubMed Central

    Csorba, Kinga; Chiriac, Mircea Teodor; Florea, Florina; Ghinia, Miruna Georgiana; Licarete, Emilia; Rados, Andreea; Sas, Alexandra; Vuta, Vlad; Sitaru, Cassian

    2014-01-01

    Epidermolysis bullosa acquisita (EBA) is an autoimmune subepidermal blistering disease of mucous membranes and the skin caused by autoantibodies against collagen VII. In silico and wet laboratory epitope mapping studies revealed numerous distinct epitopes recognized by EBA patients' autoantibodies within the non-collagenous (NC)1 and NC2 domains of collagen VII. However, the distribution of pathogenic epitopes on collagen VII has not yet been described. In this study, we therefore performed an in vivo functional epitope mapping of pathogenic autoantibodies in experimental EBA. Animals (n = 10/group) immunized against fragments of the NC1 and NC2 domains of collagen VII or injected with antibodies generated against the same fragments developed to different extent experimental EBA. Our results demonstrate that antibodies targeting multiple, distinct epitopes distributed over the entire NC1, but not NC2 domain of collagen VII induce blistering skin disease in vivo. Our present findings have crucial implications for the development of antigen-specific B- and T cell-targeted therapies in EBA. PMID:25091020

  8. Hindlimb unloading induces a collagen isoform shift in the soleus muscle of the rat

    NASA Technical Reports Server (NTRS)

    Miller, T. A.; Lesniewski, L. A.; Muller-Delp, J. M.; Majors, A. K.; Scalise, D.; Delp, M. D.

    2001-01-01

    To determine whether hindlimb unloading (HU) alters the extracellular matrix of skeletal muscle, male Sprague-Dawley rats were subjected to 0 (n = 11), 1 (n = 11), 14 (n = 13), or 28 (n = 11) days of unloading. Remodeling of the soleus and plantaris muscles was examined biochemically for collagen abundance via measurement of hydroxyproline, and the percentage of cross-sectional area of collagen was determined histologically with picrosirius red staining. Total hydroxyproline content in the soleus and plantaris muscles was unaltered by HU at any time point. However, the relative proportions of type I collagen in the soleus muscle decreased relative to control (Con) with 14 and 28 days HU (Con 68 +/- 5%; 14 days HU 53 +/- 4%; 28 days HU 53 +/- 7%). Correspondingly, type III collagen increased in soleus muscle with 14 and 28 days HU (Con 32 +/- 5%; 14 days HU 47 +/- 4%; 28 days HU 48 +/- 7%). The proportion of type I muscle fibers in soleus muscle was diminished with HU (Con 96 +/- 2%; 14 days HU 86 +/- 1%; 28 days HU 83 +/- 1%), and the proportion of hybrid type I/IIB fibers increased (Con 0%; 14 days HU 8 +/- 2%; 28 days HU 14 +/- 2%). HU had no effect on the proportion of type I and III collagen or muscle fiber composition in plantaris muscle. The data demonstrate that HU induces a shift in the relative proportion of collagen isoform (type I to III) in the antigravity soleus muscle, which occurs concomitantly with a slow-to-fast myofiber transformation.

  9. Hindlimb unloading induces a collagen isoform shift in the soleus muscle of the rat

    NASA Technical Reports Server (NTRS)

    Miller, T. A.; Lesniewski, L. A.; Muller-Delp, J. M.; Majors, A. K.; Scalise, D.; Delp, M. D.

    2001-01-01

    To determine whether hindlimb unloading (HU) alters the extracellular matrix of skeletal muscle, male Sprague-Dawley rats were subjected to 0 (n = 11), 1 (n = 11), 14 (n = 13), or 28 (n = 11) days of unloading. Remodeling of the soleus and plantaris muscles was examined biochemically for collagen abundance via measurement of hydroxyproline, and the percentage of cross-sectional area of collagen was determined histologically with picrosirius red staining. Total hydroxyproline content in the soleus and plantaris muscles was unaltered by HU at any time point. However, the relative proportions of type I collagen in the soleus muscle decreased relative to control (Con) with 14 and 28 days HU (Con 68 +/- 5%; 14 days HU 53 +/- 4%; 28 days HU 53 +/- 7%). Correspondingly, type III collagen increased in soleus muscle with 14 and 28 days HU (Con 32 +/- 5%; 14 days HU 47 +/- 4%; 28 days HU 48 +/- 7%). The proportion of type I muscle fibers in soleus muscle was diminished with HU (Con 96 +/- 2%; 14 days HU 86 +/- 1%; 28 days HU 83 +/- 1%), and the proportion of hybrid type I/IIB fibers increased (Con 0%; 14 days HU 8 +/- 2%; 28 days HU 14 +/- 2%). HU had no effect on the proportion of type I and III collagen or muscle fiber composition in plantaris muscle. The data demonstrate that HU induces a shift in the relative proportion of collagen isoform (type I to III) in the antigravity soleus muscle, which occurs concomitantly with a slow-to-fast myofiber transformation.

  10. Cancer-associated Fibroblasts Induce a Collagen Cross-link Switch in Tumor Stroma

    PubMed Central

    Pankova, Daniela; Chen, Yulong; Terajima, Masahiko; Schliekelman, Mark J.; Baird, Brandi N.; Fahrenholtz, Monica; Sun, Li; Gill, Bartley J.; Vadakkan, Tegy J.; Kim, Min P.; Ahn, Young-Ho; Roybal, Jonathon D.; Liu, Xin; Parra Cuentas, Edwin Roger; Rodriguez, Jaime; Wistuba, Ignacio I.; Creighton, Chad J.; Gibbons, Don L.; Hicks, John M.; Dickinson, Mary E.; West, Jennifer L.; Grande-Allen, K. Jane; Hanash, Samir M.; Yamauchi, Mitsuo; Kurie, Jonathan M.

    2015-01-01

    Intratumoral collagen cross-links heighten stromal stiffness and stimulate tumor cell invasion, but it is unclear how collagen cross-linking is regulated in epithelial tumors. To address this question, we used KrasLA1 mice, which develop lung adenocarcinomas from somatic activation of a KrasG12D allele. The lung tumors in KrasLA1 mice were highly fibrotic and contained cancer-associated fibroblasts (CAFs) that produced collagen and generated stiffness in collagen gels. In xenograft tumors generated by injection of wild-type mice with lung adenocarcinoma cells alone or in combination with CAFs, the total concentration of collagen cross-links was the same in tumors generated with or without CAFs, but co-injected tumors had higher hydroxylysine aldehyde-derived collagen cross-links (HLCCs) and lower lysine-aldehyde-derived collagen cross-links (LCCs). Therefore, we postulated that an LCC-to-HLCC switch induced by CAFs promotes the migratory and invasive properties of lung adenocarcinoma cells. To test this hypothesis, we created co-culture models in which CAFs are positioned interstitially or peripherally in tumor cell aggregates, mimicking distinct spatial orientations of CAFs in human lung cancer. In both contexts, CAFs enhanced the invasive properties of tumor cells in 3-dimensional (3D) collagen gels. Tumor cell aggregates that attached to CAF networks on a Matrigel surface dissociated and migrated on the networks. Lysyl hydroxylase 2 (PLOD2/LH2), which drives HLCC formation, was expressed in CAFs, and LH2 depletion abrogated the ability of CAFs to promote tumor cell invasion and migration. PMID:26631572

  11. Modification of collagen and noncollagenous proteins in radiation-induced muscular fibrosis

    SciTech Connect

    Wegrowski, J.; Lafuma, C.; Lefaix, J.L.; Daburon, F.; Robert, L.

    1988-06-01

    Six months after acute local gamma irradiation of the pig skin and adjacent muscle, the muscular tissue is replaced by a large mutilating and proliferative fibrosis deliminated by a perifibrotic inflammatory zone. The content and biosynthesis of collagen and noncollagenous proteins were studied in both fibrotic and perifibrotic zones after incubation of the biopsies with (/sup 14/C)proline or (/sup 35/S)methionine for 24 hr. Cells of perifibrotic and fibrotic regions synthesize about 10 times more proteins than those in the nonirradiated muscle. When compared to normal muscle tissue, our results indicate an important increase in collagen content and biosynthesis in fibrotic tissue. The increase in collagen biosynthesis in the irradiated tissue is more pronounced for type III collagen than for type I collagen. Biosynthesis of type III and type I collagens increases 20- and 10-fold, respectively, compared to the normal muscle. Type I to III collagen ratio in irradiated tissue decreases from 2.3 in normal tissue to 1.1 in fibrotic tissue. Histological examination of the biopsies as well as the protein pattern by polyacrylamide gel electrophoresis show striking differences in the perifibrotic and fibrotic areas as compared to the normal muscular tissue with a progressive disappearance of the myotubes replaced by a dense sclerotic tissue. The results indicate that the perifibrotic inflammatory area is engaged in a remodeling process and that the fibrotic tissue remains active in the neosynthesis of the extracellular matrix macromolecules with a high proportion of type III collagen. This high biosynthetic activity of the irradiated tissue may explain the pseudosarcomatous character of the radiation-induced lesions.

  12. Interleukin 17 induces cartilage collagen breakdown: novel synergistic effects in combination with proinflammatory cytokines

    PubMed Central

    Koshy, P; Henderson, N; Logan, C; Life, P; Cawston, T; Rowan, A

    2002-01-01

    Objective: To investigate whether interleukin 17 (IL17), derived specifically from T cells, can promote type II collagen release from cartilage. The ability of IL17 to synergise with other proinflammatory mediators to induce collagen release from cartilage, and what effect anti-inflammatory agents had on this process, was also assessed. Methods: IL17 alone, or in combination with IL1, IL6, oncostatin M (OSM), or tumour necrosis factor α (TNFα), was added to bovine nasal cartilage explant cultures. Proteoglycan and collagen release were determined. Collagenolytic activity was determined by bioassay. Chondroprotective effects of IL4, IL13, transforming growth factor ß1 (TGFß1) and insulin-like growth factor-1 (IGF1) were assessed by inclusion in the explant cultures. Results: IL17 alone stimulated a dose dependent release of proteoglycan and type II collagen from bovine nasal cartilage explants. Suboptimal doses of IL17 synergised potently with TNFα, IL1, OSM, and IL6 to promote collagen degradation. This collagen release was completely inhibited by tissue inhibitor of metalloproteinase-1 and BB-94 (a synthetic metalloproteinase inhibitor), and was significantly reduced by IL4, IL13, TGFß1, and IGF1. In IL17 treated chondrocytes, mRNA expression for matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 was detected. Moreover, a synergistic induction of these MMPs was seen when IL17 was combined with other proinflammatory cytokines. Conclusions: IL17 can, alone and synergistically in combination with other proinflammatory cytokines, promote chondrocyte mediated MMP dependent type II collagen release from cartilage. Because levels of all these proinflammatory cytokines are raised in rheumatoid synovial fluids, this study suggests that IL17 may act as a potent upstream mediator of cartilage collagen breakdown in inflammatory joint diseases. PMID:12117676

  13. Aryl hydrocarbon receptor deficiency in T cells suppresses the development of collagen-induced arthritis

    PubMed Central

    Nakahama, Taisuke; Kimura, Akihiro; Nguyen, Nam Trung; Chinen, Ichino; Hanieh, Hamza; Nohara, Keiko; Fujii-Kuriyama, Yoshiaki; Kishimoto, Tadamitsu

    2011-01-01

    The contributions of aryl hydrocarbon receptor (Ahr) to the pathogenesis of rheumatoid arthritis have not been elucidated. Here, we show that Ahr deficiency ameliorated collagen-induced arthritis, a mouse model of RA. Collagen-immunized Ahr KO mice showed decreased serum levels of such proinflammatory cytokines as IL-1β and IL-6. The Th17 and Th1 cell populations in lymph nodes from these mice decreased and increased, respectively, whereas the percentage of regulatory T cells was unchanged. Interestingly, a lack of Ahr specifically in T cells significantly suppressed collagen-induced arthritis development, whereas Ahr deficiency in macrophages had no effect. These finding indicate that the development of experimental autoimmune arthritis depends on the presence of Ahr in T cells, and that Th1/Th17 balance may be particularly important for this process. PMID:21825138

  14. Phenomenological evolution equations for heat-induced shrinkage of a collagenous tissue.

    PubMed

    Chen, S S; Wright, N T; Humphrey, J D

    1998-10-01

    Optimization of clinical heat treatments for various pathologies requires accurate numerical modeling of the heat transfer, evolution of thermal damage, and associated changes in the material properties of the tissues. This paper presents two phenomenological equations that quantify time-dependent thermal damage in a uniaxial collagenous tissue. Specifically, an empirical rule-of-mixtures model is shown to describe well heat-induced axial shrinkage (a measure of underlying denaturation) in chordae tendineae which results from a spectrum of thermomechanical loading histories. Likewise an exponential decay model is shown to describe well the partial recovery (e.g., renaturation) of chordae when it is returned to body temperature following heating. Together these models provide the first quantitative descriptors of the evolution of heat-induced damage and subsequent recovery in collagen. Such descriptors are fundamental to numerical analyses of many heat treatments because of the prevalence of collagen in many tissues and organs.

  15. Histological characteristics of collagen denaturation and injuries in bipolar radiofrequency-induced colonic anastomoses.

    PubMed

    Zhao, Lingxi; Zhuo, Changhua; Song, Chengli; Li, Xinxiang; Zhou, Yu; Shi, Debing

    2015-03-01

    Bipolar radiofrequency-induced thermo-fusion has been explored as an advanced surgical method for intestinal anastomoses; however, the histological characteristics of collagen denaturation and injuries arising from this process remain unclear. The aim of this study was to investigate the microcosmic changes and tissue damage of fusion regions with various parameters of injury. Ex vivo colons of pigs were fused serosa-serosa on two carrier rings, which were installed on a homemade anastomotic device. Five levels of compressive pressure from 171 to 313 kPa were applied for 5s to fuse the colons under radiofrequency power of 160 W, and then the collagen denaturation of the fused region was examined by transmission electron microscopy. Light microscopy was utilized to observe histological slices that were stained with picrosirius red in order to visualize the tissue injuries under two levels of radiofrequency power (120 vs. 140 W) and operation time (5 vs. 10s). Transmission electron micrographs showed that increased compressive pressure led to thicker denatured collagen fibrils and wider gaps between each collagen fibril. Serosa adhesion regions appeared abundant in collagen. No histological differences were observed when 120 W of power was applied for 5 and 10s. Significant muscle cracking occurred when colons were fused using 140 W for 5s. When the operation time was extended to 10s, 140 W led to tight fusion and less splitting on muscles. These results suggest that higher compressive pressure results in more severe collagen unfolding and also reduces collagen crosslinking in fused colons. Improved radiofrequency power along with operation time could avoid tissue injury upon radiofrequency-induced colonic anastomoses. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Aortic VCAM-1: an early marker of vascular inflammation in collagen-induced arthritis.

    PubMed

    Denys, Anne; Clavel, Gaëlle; Lemeiter, Delphine; Schischmanoff, Olivier; Boissier, Marie-Christophe; Semerano, Luca

    2016-05-01

    Cardiovascular disease (CVD) is a major cause of morbidity and mortality in rheumatoid arthritis (RA). There are limited experimental data on vascular involvement in arthritis models. To study the link between CVD and inflammation in RA, we developed a model of vascular dysfunction and articular inflammation by collagen-induced arthritis (CIA) in C57Bl/6 (B6) mice. We studied the expression of vascular inflammatory markers in CIA with and without concomitant hyperlipidic diet (HD). Collagen-induced arthritis was induced with intradermal injection of chicken type-II collagen followed by a boost 21 days later. Mice with and without CIA were fed a standard diet or an HD for 12 weeks starting from the day of the boost. Arthritis severity was evaluated with a validated clinical score. Aortic mRNA levels of vascular cell adhesion molecule-1 (VCAM-1), inducible nitric oxide synthase (iNOS) and interleukin-17 were analysed by quantitative RT-PCR. Vascular cell adhesion molecule-1 localization in the aortic sinus was determined by immunohistochemistry. Atherosclerotic plaque presence was assessed in aortas. Collagen-induced arthritis was associated with increased expression of VCAM-1, independent of diet. VCAM-1 overexpression was detectable as early as 4 weeks after collagen immunization and persisted after 15 weeks. The HD induced atheroma plaque formation and aortic iNOS expression regardless of CIA. Concomitant CIA and HD had no additive effect on atheroma or VCAM-1 or iNOS expression. CIA and an HD diet induced a distinct and independent expression of large-vessel inflammation markers in B6 mice. This model may be relevant for the study of CVD in RA.

  17. Ear Disorders

    MedlinePlus

    ... ear, where they make your eardrum vibrate. The vibrations are transmitted through three tiny bones, called ossicles, in your middle ear. The vibrations travel to your inner ear, a snail-shaped ...

  18. Ear emergencies

    MedlinePlus

    ... an ear injury, avoid nose blowing and getting water in the injured ear. Treat ear infections right ... FDR Medical Services/Millard Fillmore Suburban Hospital, Buffalo, NY. Also reviewed by David Zieve, MD, MHA, ...

  19. Your Ears

    MedlinePlus

    ... gross and useful. continue The Middle Ear: Good Vibrations After sound waves enter the outer ear, they ... take those sound waves and turn them into vibrations that are delivered to the inner ear. To ...

  20. Ear barotrauma

    MedlinePlus

    Barotitis media; Barotrauma; Ear popping - barotrauma; Pressure-related ear pain; Eustachian tube dysfunction - barotrauma ... The air pressure in the middle ear is most often the same as the air ... body. The Eustachian tube is a connection between the middle ...

  1. Ear Problems

    MedlinePlus

    ... BMI Calculator myhealthfinder Immunization Schedules Nutrient Shortfall Questionnaire Ear ProblemsEar problems are often caused by an infection. However, other conditions may also cause ear pain or discomfort. Follow this chart for more ...

  2. Cauliflower Ear

    MedlinePlus

    ... dientes Video: Getting an X-ray What's Cauliflower Ear? KidsHealth > For Kids > What's Cauliflower Ear? Print A A A Have you ever seen someone whose ear looks bumpy and lumpy? The person might have ...

  3. Bacopa monniera (L.) wettst inhibits type II collagen-induced arthritis in rats.

    PubMed

    Viji, V; Kavitha, S K; Helen, A

    2010-09-01

    Bacopa monniera (L.) Wettst is an Ayurvedic herb with antirheumatic potential. This study investigated the therapeutic efficacy of Bacopa monniera in treating rheumatoid arthritis using a type II collagen-induced arthritis rat model. Arthritis was induced in male Wistar rats by immunization with bovine type II collagen in complete Freund's adjuvant. Bacopa monniera extract (BME) was administered after the development of arthritis from day 14 onwards. The total duration of experiment was 60 days. Paw swelling, arthritic index, inflammatory mediators such as cyclooxygenase, lipoxygenase, myeloperoxidase and serum anti-collagen IgG and IgM levels were analysed in control and experimental rats. Arthritic induction significantly increased paw edema and other classical signs of arthritis coupled to upregulation of inflammatory mediators such as cyclooxygenase, lipoxygenase, neutrophil infiltration and increased anti-collagen IgM and IgG levels in serum. BME significantly inhibited the footpad swelling and arthritic symptoms. BME was effective in inhibiting cyclooxygenase and lipoxygenase activities in arthritic rats. Decreased neutrophil infiltration was evident from decreased myeloperoxidase activity and histopathological data where an improvement in joint architecture was also observed. Serum anti-collagen IgM and IgG levels were consistently decreased. Thus the study demonstrates the potential antiarthritic effect of Bacopa monniera for treating arthritis which might confer its antirheumatic activity.

  4. Regulation of collagen synthesis in human dermal fibroblasts by ascorbic-induced lipid peroxidation

    SciTech Connect

    Geesin, J.C. Johnson and Johnson Consumer Products, Inc., Skillman, NJ ); Gordon, J.S. ); Gordon, J.S. ); Berg, R.A. )

    1991-03-11

    Ascorbic acid has been shown to stimulate collagen synthesis through the induction of lipid peroxidation which leads to increased transcription of the collagen genes. To test the ability of aldehyde products of lipid peroxidation to mediate this effect, the authors treated cultured fibroblasts with 1-200{mu}M of malondialdehyde, acetaldehyde, glyoxal or hexenal in the presence of lipid peroxidation inducing or noninducing concentrations of ascorbic acid. The treatment process involved either pretreatment of cells for 66hrs with either concentration of ascorbate before a 6hr treatment in the presence of ascorbate and the aldehydes, or 6 or 72hr treatment of the cells in the presence of either concentration of ascorbate plus the aldehydes. No effect of any of these aldehydes was seen on ascorbate-stimulated collagen synthesis. Also, pretreatment of fibroblasts for 24hrs with 100nM phorbol myristate acetate (PMA), which produces down regulation of protein kinase C(PKC), failed to alter the ascorbate-stimulation of collagen synthesis. Additionally, the authors tested the ability of benzamide, a poly ACP ribosylation inhibitor, to inhibit the ascorbate response with no specific effect noted. These results do not support the proposed roles for aldehydes, PKC, or poly ADP ribosylation in the mediation of the lipid peroxidation induced stimulation of collagen synthesis.

  5. Regional alterations of type I collagen in rat tibia induced by skeletal unloading

    NASA Technical Reports Server (NTRS)

    Shiiba, Masashi; Arnaud, Sara B.; Tanzawa, Hideki; Kitamura, Eiji; Yamauchi, Mitsuo

    2002-01-01

    Skeletal unloading induces loss of mineral density in weight-bearing bones that leads to inferior bone mechanical strength. This appears to be caused by a failure of bone formation; however, its mechanisms still are not well understood. The objective of this study was to characterize collagen, the predominant matrix protein in bone, in various regions of tibia of rats that were subjected to skeletal unloading by 4 weeks tail suspension. Sixteen male Sprague-Dawley rats (4 months old) were divided into tail suspension and ambulatory controls (eight rats each). After the tail suspension, tibias from each animal were collected and divided into five regions and collagen was analyzed. The collagen cross-linking and the extent of lysine (Lys) hydroxylation in unloaded bones were significantly altered in proximal epiphysis, diaphysis, and, in particular, proximal metaphysis but not in distal regions. The pool of immature/nonmineralized collagen measured by its extractability with a chaotropic solvent was significantly increased in proximal metaphysis. These results suggest that skeletal unloading induced an accumulation of post-translationally altered nonmineralized collagen and that these changes are bone region specific. These alterations might be caused by impaired osteoblastic function/differentiation resulting in a mineralization defect.

  6. Regional alterations of type I collagen in rat tibia induced by skeletal unloading

    NASA Technical Reports Server (NTRS)

    Shiiba, Masashi; Arnaud, Sara B.; Tanzawa, Hideki; Kitamura, Eiji; Yamauchi, Mitsuo

    2002-01-01

    Skeletal unloading induces loss of mineral density in weight-bearing bones that leads to inferior bone mechanical strength. This appears to be caused by a failure of bone formation; however, its mechanisms still are not well understood. The objective of this study was to characterize collagen, the predominant matrix protein in bone, in various regions of tibia of rats that were subjected to skeletal unloading by 4 weeks tail suspension. Sixteen male Sprague-Dawley rats (4 months old) were divided into tail suspension and ambulatory controls (eight rats each). After the tail suspension, tibias from each animal were collected and divided into five regions and collagen was analyzed. The collagen cross-linking and the extent of lysine (Lys) hydroxylation in unloaded bones were significantly altered in proximal epiphysis, diaphysis, and, in particular, proximal metaphysis but not in distal regions. The pool of immature/nonmineralized collagen measured by its extractability with a chaotropic solvent was significantly increased in proximal metaphysis. These results suggest that skeletal unloading induced an accumulation of post-translationally altered nonmineralized collagen and that these changes are bone region specific. These alterations might be caused by impaired osteoblastic function/differentiation resulting in a mineralization defect.

  7. Glutaraldehyde-induced remineralization improves the mechanical properties and biostability of dentin collagen.

    PubMed

    Chen, Chaoqun; Mao, Caiyun; Sun, Jian; Chen, Yi; Wang, Wei; Pan, Haihua; Tang, Ruikang; Gu, Xinhua

    2016-10-01

    The purpose of this study was to induce a biomimetic remineralization process by using glutaraldehyde (GA) to reconstruct the mechanical properties and biostability of demineralized collagen. Demineralized dentin disks (35% phosphoric acid, 10s) were pretreated with a 5% GA solution for 3min and then cultivated in a calcium phosphate remineralization solution. The remineralization kinetics and superstructure of the remineralization layer were evaluated by Raman spectroscopy, transmission electron microscopy, scanning electron microscopy and nanoindentation tests. The biostability was examined by enzymatic degradation experiments. A significant difference was found in dentin remineralization process between dentin with and without GA pretreating. GA showed a specific affinity to dentin collagen resulting in the formation of a cross-linking superstructure. GA pretreating could remarkably shorten remineralization time from 7days to 2days. The GA-induced remineralized collagen fibrils were well encapsulated by newly formed hydroxyapatite mineral nanocrystals. With the nano-hydroxyapatite coating, both the mechanical properties (elastic modulus and hardness) and the biostability against enzymatic degradation of the collagen were significantly enhanced, matching those of natural dentin. The results indicated that GA cross-linking of dentin collagen could promote dentin biomimetic remineralization, resulting in an improved mechanical properties and biostability. It may provide a promising tissue-engineering technology for dentin repair. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Folic Acid Improves Inner Ear Vascularization in Hyperhomocysteinemic Mice*

    PubMed Central

    Kundu, Soumi; Munjal, Charu; Tyagi, Neetu; Sen, Utpal; Tyagi, Aaron C.; Tyagi, Suresh C

    2013-01-01

    More than 29 million adults in the United States have been diagnosed with hearing loss. Interestingly, elevated homocysteine (Hcy) levels, known as hyperhomocysteinemia (HHcy) is also associated with impaired hearing. However, the associated mechanism remains obscure. The collagen receptor such as discoidin domain receptor 1 and matrix metalloproteinase (MMP) play a significant role in inner ear structure and function. We hypothesize that HHcy increases hearing thresholds by compromise in inner ear vasculature resulted from impaired Hcy metabolism, increased oxidative stress, collagen IVa and collagen la turnover. The treatment with folic acid (FA) protects elevated hearing thresholds and prevents reduction in vessel density by lowering abundant collagen deposition and oxidative stress in inner ear. To test this hypothesis we employed 8 weeks old male wild type (WT), cystathionine-beta-synthase heterozygote knockout (CBS+/−) mice, WT+FA (0.0057 μg/g/day, equivalent to a 400 μg/70 kg/day human dose in drinking water); and CBS(+/−)+FA. The mice were treated for four weeks. The hearing thresholds were determined by recording the auditory brainstem responses. Integrity of vessels was analyzed by perfusion of horseradish peroxidase (HRP) tracer. Endothelial permeability was assessed, which indicated restoration of HRP leakage by FA treatment. A total Hcy level was increased in stria vascularis (SV) and spiral ligament (SL) of CBS+/− mice which was lowered by FA. Interestingly, FA treatment lowered Col IVa Immunostaining by affecting its turnover. The levels of MMP-2, -9, methylenetetrahydrofolate reductase (MTHFR) and cystathione gamma lyase (CSE) were measured by Western blot analysis. The oxidative stress was high in SV and SL of CBS+/− compared to WT however the treatment with FA lowered oxidative stress in CBS+/− mice. These data suggested that hearing loss in CBS+/− mice was primarily due to leakage in inner ear circulation, also partly by induced

  9. Piperlongumine Blocks JAK2-STAT3 to Inhibit Collagen-Induced Platelet Reactivity Independent of Reactive Oxygen Species†

    PubMed Central

    Yuan, Hengjie; Houck, Katie L.; Tian, Ye; Bharadwaj, Uddalak; Hull, Ken; Zhou, Zhou; Zhou, Mingzhao; Wu, Xiaoping; Tweardy, David J.; Romo, Daniel; Fu, Xiaoyun; Zhang, Yanjun; Zhang, Jianning; Dong, Jing-fei

    2015-01-01

    Background Piperlongumine (PL) is a compound isolated from the piper longum plant. It possesses anti-cancer activities through blocking the transcription factor STAT3 and by inducing reactive oxygen species (ROS) in cancer, but not normal cells. It also inhibits platelet aggregation induced by collagen, but the underlying mechanism is not known. Objective We conducted in vitro experiments to test the hypothesis that PL regulates a non-transcriptional activity of STAT3 to specifically reduce the reactivity of human platelets to collagen. Results PL dose-dependently blocked collagen-induced platelet aggregation, calcium influx, CD62p expression and thrombus formation on collagen with a maximal inhibition at 100 μM. It reduced platelet microvesiculation induced by collagen. PL blocked the activation of JAK2 and STAT3 in collagen-stimulated platelets. This inhibitory effect was significantly reduced in platelets pretreated with a STAT3 inhibitor. Although PL induced ROS production in platelets; quenching ROS using excessive reducing agents: 20 μM GSH and 0.5 mM L-Cysteine, did not block the inhibitory effects. The NADPH oxidase inhibitor Apocynin also had no effect. Conclusions PL inhibited collagen-induced platelet reactivity by targeting the JAK2-STAT3 pathway. We also provide experimental evidence that PL and collagen induce different oxidants that have differential effects on platelets. Studying these differential effects may uncover new mechanisms of regulating platelet functions by oxidants in redox signals. PMID:26645674

  10. Cigarette smoke-induced collagen destruction; key to chronic neutrophilic airway inflammation?

    PubMed

    Overbeek, Saskia A; Braber, Saskia; Koelink, Pim J; Henricks, Paul A J; Mortaz, Esmaeil; LoTam Loi, Adele T; Jackson, Patricia L; Garssen, Johan; Wagenaar, Gerry T M; Timens, Wim; Koenderman, Leo; Blalock, J Edwin; Kraneveld, Aletta D; Folkerts, Gert

    2013-01-01

    Cigarette smoking induces inflammatory responses in all smokers and is the major risk factor for lung disease such as chronic obstructive pulmonary disease (COPD). In this progressive disease, chronic inflammation in the lung contributes to lung tissue destruction leading to the formation of chemotactic collagen fragments such as N-acetylated Proline-Glycine-Proline (N-ac-PGP). The generation of this tripeptide is mediated by a multistep pathway involving matrix metalloproteases (MMPs) 8 and 9 and prolyl endopeptidase (PE). Here we investigated whether cigarette smoke extract (CSE) stimulates human PMNs to breakdown whole matrix collagen leading to the generation of the chemotactic collagen fragment N-ac-PGP. Incubating PMNs with CSE led to the release of chemo-attractant CXCL8 and proteases MMP8 and MMP9. PMNs constitutively expressed PE activity as well as PE protein. Incubating CSE-primed PMNs with collagen resulted in collagen breakdown and in N-ac-PGP generation. Incubation of PMNs with the tripeptide N-ac-PGP resulted in the release of CXCL8, MMP8 and MMP9. Moreover, we tested whether PMNs from COPD patients are different from PMNs from healthy donors. Here we show that the intracellular basal PE activity of PMNs from COPD patients increased 25-fold compared to PMNs from healthy donors. Immunohistological staining of human lung tissue for PE showed that besides neutrophils, macrophages and epithelial cells express PE. This study indicates that neutrophils activated by cigarette smoke extract can breakdown collagen into N-ac-PGP and that this collagen fragment itself can activate neutrophils, which may lead in vivo to a self-propagating cycle of neutrophil infiltration, chronic inflammation and lung emphysema. MMP-, PE- or PGP-inhibitors can serve as an attractive therapeutic target and may open new avenues towards effective treatment of COPD.

  11. Assessing cisplatin-induced ototoxicity and otoprotection in whole organ culture of the mouse inner ear in simulated microgravity.

    PubMed

    Tropitzsch, Anke; Arnold, Heinz; Bassiouni, Mohamed; Müller, Andrea; Eckhard, Andreas; Müller, Marcus; Löwenheim, Hubert

    2014-06-16

    Cisplatin is a widely used anti-cancer drug. Ototoxicity is a major dose-limiting side-effect. A reproducible mammalian in-vitro model of cisplatin ototoxicity is required to screen and validate otoprotective drug candidates. We utilized a whole organ culture system of the postnatal mouse inner ear in a rotating wall vessel bioreactor under "simulated microgravity" culture conditions. As previously described this system allows whole organ culture of the inner ear and quantitative assessment of ototoxic effects of aminoglycoside induced hair cell loss. Here we demonstrate that this model is also applicable to the assessment of cisplatin induced ototoxicity. In this model cisplatin induced hair cell loss was dose and time dependent. Increasing exposure time of cisplatin led to decreasing EC50 concentrations. Outer hair cells were more susceptible than inner hair cells, and hair cells in the cochlear base were more susceptible than hair cells in the cochlear apex. Initial cisplatin dose determined the final extent of hair cell loss irrespective if the drug was withdrawn or continued. Dose dependant otoprotection was demonstrated by co-administration of the antioxidant agent N-acetyl l-cysteine. The results support the use of this inner ear organ culture system as an in vitro assay and validation platform for inner ear toxicology and the search for otoprotective compounds. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  12. Contribution of elastin and collagen to the pathogenesis of monocrotaline induced pulmonary hypertension

    SciTech Connect

    Todorovich, L.; Johnson, D.; Ranger, P.; Keeley, F.; Rabinovitch, M.

    1986-03-01

    Male Sprague-Dawley rats were selected randomly for subcutaneous injections, 24 with monocrotaline (M) (60mg/kg) and 24 with an equivolume of saline, and studied 8, 16 or 28 days later. The right (RV) and left ventricle with septum (LV + S) were separated and weighed. The pulmonary artery (PA) was assessed by light and electron microscopy. Synthesis of elastin collagen and non-collagenous proteins was determined by measuring incorporations of /sup 3/H-valine, /sup 14/C-OH-proline and /sup 14/C-proline respectively. Total content of elastin was determined by weight of residue after CNBr digestion, and of collagen by total OH-proline content in SDS and CNBr extracts. At 16 days, the M injected rats developed a 6-fold increase in PA elastin synthesis and a 2-fold increase in medial wall thickness. Ultrastructural changes included increased microtubules and golgi apparatus in endothelium, decreased proportion of mature elastin in subendothelium and increased ground substance in media. By 28 days, M rats showed a progressive increase in PA elastin and collagen synthesis, greater than 20-fold, and in medial wall thickness, 3-fold. This was associated with a 2-fold increase in total elastin in proportion to the increase in PA weight and the development of RV hypertrophy (RV/LV + S increased more than 2-fold). Progressive irreversible pulmonary hypertension induced by M may be related to continuing stimulation of PA elastin and collagen synthesis.

  13. Isolated posterior cruciate ligament insufficiency induces morphological changes of anterior cruciate ligament collagen fibrils.

    PubMed

    Ochi, M; Murao, T; Sumen, Y; Kobayashi, K; Adachi, N

    1999-04-01

    We studied the ultrastructural changes of the human anterior cruciate ligament (ACL) with transmission electron micrograph cross-sections following isolated posterior cruciate ligament (PCL) injury. Biopsy specimens were obtained from the proximal third and anteromedial aspect of the ACL. Fourteen patients with PCL-deficient knees at a mean of 22.1 months from injury to surgery and 5 normal knees amputated secondary to malignant tumors or traumatic injuries were used as controls. A significant difference was found in the number of collagen fibrils per 1 microm2 between the PCL-deficient knee group and the control group. There was a significant difference found in the collagen fibril diameter between the PCL-deficient knee group and the control group. The collagen packing density (the percentage of sampled area occupied by collagen fibrils) was also significantly different between the PCL-deficient knee and the control group. The current study shows that an isolated PCL insufficiency can induce morphological changes in ACL collagen fibrils, suggesting that a PCL insufficiency can have adverse effects on other ligamentous structures in the knee joint.

  14. Lack of collagen VI promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging

    PubMed Central

    Castagnaro, Silvia; Gregorio, Ilaria; Bonaldo, Paolo

    2016-01-01

    Collagen VI is an extracellular matrix (ECM) protein with a broad distribution in different tissues and mostly deposited at the close periphery of the cell surface. Previous studies revealed that collagen VI protects neurons from the toxicity of amyloid-βpeptides and from UV-induced damage. However, the physiological role of this protein in the central nervous system (CNS) remains unknown. Here, we established primary neural cultures from murine cortex and hippocampus, and carried out in vitro and in vivo studies in wild-type and collagen VI null (Col6a1−/−) mice. Col6a1−/− neural cultures displayed an increased incidence of spontaneous apoptosis and higher vulnerability to oxidative stress, accompanied by altered regulation of autophagy with increased p62 protein levels and decreased LC3 lipidation. Analysis of brain sections confirmed increased apoptosis and abnormal regulation of autophagy in the CNS of collagen VI-deficient animals. To investigate the in vivo physiological consequences of these CNS defects, we carried out functional studies and found that motor and memory task performances were impaired in aged Col6a1−/− mice. These findings indicate that lack of collagen VI leads to spontaneous apoptosis and defective autophagy in neural cells, and point at a protective role for this ECM protein in the CNS during physiological aging. PMID:27060109

  15. Riboflavin/UVA Collagen Cross-Linking-Induced Changes in Normal and Keratoconus Corneal Stroma

    PubMed Central

    Hayes, Sally; Boote, Craig; Kamma-Lorger, Christina S.; Rajan, Madhavan S.; Harris, Jonathan; Dooley, Erin; Hawksworth, Nicholas; Hiller, Jennifer; Terill, Nick J.; Hafezi, Farhad; Brahma, Arun K.; Quantock, Andrew J.; Meek, Keith M.

    2011-01-01

    Purpose To determine the effect of Ultraviolet-A collagen cross-linking with hypo-osmolar and iso-osmolar riboflavin solutions on stromal collagen ultrastructure in normal and keratoconus ex vivo human corneas. Methods Using small-angle X-ray scattering, measurements of collagen D-periodicity, fibril diameter and interfibrillar spacing were made at 1 mm intervals across six normal post-mortem corneas (two above physiological hydration (swollen) and four below (unswollen)) and two post-transplant keratoconus corneal buttons (one swollen; one unswollen), before and after hypo-osmolar cross-linking. The same parameters were measured in three other unswollen normal corneas before and after iso-osmolar cross-linking and in three pairs of swollen normal corneas, in which only the left was cross-linked (with iso-osmolar riboflavin). Results Hypo-osmolar cross-linking resulted in an increase in corneal hydration in all corneas. In the keratoconus corneas and unswollen normal corneas, this was accompanied by an increase in collagen interfibrillar spacing (p<0.001); an increase in fibril diameter was also seen in two out of four unswollen normal corneas and one unswollen keratoconus cornea (p<0.001). Iso-osmolar cross-linking resulted in a decrease in tissue hydration in the swollen normal corneas only. Although there was no consistent treatment-induced change in hydration in the unswollen normal samples, iso-osmolar cross-linking of these corneas did result in a compaction of collagen fibrils and a reduced fibril diameter (p<0.001); these changes were not seen in the swollen normal corneas. Collagen D-periodicity was not affected by either treatment. Conclusion The observed structural changes following Ultraviolet-A cross-linking with hypo-osmolar or iso-osmolar riboflavin solutions are more likely a consequence of treatment-induced changes in tissue hydration rather than cross-linking. PMID:21850225

  16. Role of nuclear factor-kappaB in interleukin-1-induced collagen degradation by corneal fibroblasts.

    PubMed

    Lu, Ying; Fukuda, Ken; Li, Qin; Kumagai, Naoki; Nishida, Teruo

    2006-09-01

    The proinflammatory cytokine interleukin (IL)-1 is implicated in corneal ulceration. The role of nuclear factor (NF)-kappaB in the IL-1-induced degradation of collagen by corneal fibroblasts that underlies corneal ulceration was investigated. Rabbit corneal fibroblasts were cultured in three-dimensional gels of type I collagen with or without IL-1 and sulfasalazine, an inhibitor of NF-kappaB activation. Collagen degradation was assessed from the amount of hydroxyproline generated by acid-heat hydrolysis of culture supernatants. The release of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) into culture supernatants was examined by immunoblot analysis and gelatin zymography, and the cellular abundance of MMP and TIMP mRNAs was determined by reverse transcription and real-time polymerase chain reaction analysis. The phosphorylation and degradation of the NF-kappaB-inhibitory protein IkappaB-alpha were examined by immunoblot analysis. The subcellular localization and DNA binding activity of the p65 subunit of NF-kappaB were evaluated by immunofluorescence analysis and with a colorimetric assay, respectively. The transactivation activity of NF-kappaB was assessed with a reporter gene assay. Sulfasalazine inhibited IL-1-induced collagen degradation by corneal fibroblasts in a concentration-dependent manner. It also inhibited the stimulatory effects of IL-1 on the synthesis or activation of various MMPs in a concentration-dependent manner. IL-1 induced the phosphorylation and degradation of IkappaB-alpha, the nuclear translocation and up-regulation of the DNA binding activity of the p65 subunit of NF-kappaB, and the activation of NF-kappaB in a manner sensitive to sulfasalazine. These results suggest that NF-kappaB contributes to the IL-1-induced degradation of collagen by corneal fibroblasts and is therefore a potential therapeutic target for treatment of corneal ulcers.

  17. Dexamethasone inhibition of IL-1-induced collagen degradation by corneal fibroblasts in three-dimensional culture.

    PubMed

    Lu, Ying; Fukuda, Ken; Liu, Yang; Kumagai, Naoki; Nishida, Teruo

    2004-09-01

    Corticosteroids regulate the functions of inflammatory cells. The purpose of the present study was to investigate the effect of dexamethasone on collagen degradation by corneal fibroblasts, an underlying cause of corneal ulceration. Rabbit corneal fibroblasts were cultured in three-dimensional gels of type I collagen and in the absence or presence of IL-1beta or dexamethasone. The extent of collagen degradation was determined by measurement of the amount of hydroxyproline generated by acid-heat hydrolysis of culture supernatants. The expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) was evaluated by immunoblot analysis, gelatin zymography, and reverse transcription and real-time polymerase chain reaction. The phosphorylation of mitogen-activated protein kinases (MAPKs) in corneal fibroblasts was assessed by immunoblot analysis. Dexamethasone inhibited IL-1beta-induced collagen degradation by corneal fibroblasts in a dose-dependent manner. Both the synthesis and activation of MMPs and the expression of TIMPs were inhibited by dexamethasone, as was the activity of plasmin in culture supernatants. Dexamethasone also inhibited the IL-1beta-induced phosphorylation of the MAPKs extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), but not that of p38. Dexamethasone exerted multiple effects on the MMP-TIMP system in corneal fibroblasts and thereby inhibited IL-1beta-induced collagen degradation by these cells. Inhibition of the IL-1beta-induced activation of ERK and JNK may contribute to these effects of dexamethasone. Copyright Association for Research in Vision and Ophthalmology

  18. Ear Pieces

    ERIC Educational Resources Information Center

    DiJulio, Betsy

    2011-01-01

    In this article, the author describes an art project wherein students make fanciful connections between art and medicine. This project challenges students to interpret "ear idioms" (e.g. "blow it out your ear," "in one ear and out the other") by relying almost entirely on realistic ear drawings, the placement of them, marks, and values. In that…

  19. Ear Pieces

    ERIC Educational Resources Information Center

    DiJulio, Betsy

    2011-01-01

    In this article, the author describes an art project wherein students make fanciful connections between art and medicine. This project challenges students to interpret "ear idioms" (e.g. "blow it out your ear," "in one ear and out the other") by relying almost entirely on realistic ear drawings, the placement of them, marks, and values. In that…

  20. Riboflavin-ultraviolet-A-induced collagen cross-linking treatments in improving dentin bonding.

    PubMed

    Chiang, Yung-Show; Chen, Yuh-Ling; Chuang, Shu-Fen; Wu, Ching-Ming; Wei, Pal-Jen; Han, Chang-Fu; Lin, Jui-Che; Chang, Hsiao-Tzu

    2013-06-01

    To evaluate the collagen cross-linkers, riboflavin-ultraviolet-A (RF/UVA) and glutaraldehyde, with regard to their efficacy in cross-linking the dentinal collagen and improving dentin bonding. Glutaraldehyde and different RF/UVA protocols (0.1%RF/1-minUV, 0.1%RF/2-minUV, and 1%RF/1-minUV) were first evaluated by gel electrophoresis to determine their abilities of collagen cross-linking. The mechanical properties of acid-etched dentin receiving these cross-linking treatments were examined in either dry or wet condition by a nanoindentation test. Fifteen teeth with exposed occlusal dentin received the microtensile bond strength (μTBS) test. The teeth were primed either with RF/UVA or glutaraldehyde, followed by adhesive treatment and composite restorations, and then cut into resin-dentin microbeams. Half of the microbeams received the μTBS test after 24h, and the other half received test after 5000 thermocycles. Nanoleakage at the bond interface was examined under TEM. The alignments of collagen fibrils in the hybrid layers were also defined by an image analysis. Gel electrophoresis showed that glutaraldehyde induced strong collagen gelation, while RF/UVA generated milder collagen cross-linking. Glutaraldehyde, 0.1%RF/2-min-UVA, and 1%RF/1-minUV showed higher stiffness compared to untreated and 0.1%RF/1-minUV in wet condition. All the crosslinking treatments improved early μTBS, but 0.1%RF/2-minUVA treatment maintained high μTBS after theromocycles. Under TEM, glutaraldehyde-treated dentin showed dense and enclosed collagen network on the adhesive interface. 0.1%RF/2-minUVA showed the least nanoleakage, and this could be associated with the suspended collagen fibrils in the hybrid layer. 0.1%RF/2-minUVA treatment enhanced resin-dentin bond possibly through enhancing the stiffness and maintaining the expanding collagen matrix in the hybrid layer. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Epicutaneous (EC) immunization with type II collagen (COLL II) induces CD4(+) CD8(+) T suppressor cells that protect from collagen-induced arthritis (CIA).

    PubMed

    Marcińska, Katarzyna; Majewska-Szczepanik, Monika; Lazar, Agata; Kowalczyk, Paulina; Biała, Dominika; Woźniak, Dorota; Szczepanik, Marian

    2016-04-01

    We have shown previously that epicutaneous (EC) immunization with protein antigen induces T suppressor cells that alleviate inflammatory response in contact hypersensitivity reactions, in an animal model of multiple sclerosis, and in TNBS-induced colitis. DBA/1 mice were EC immunized with type II collagen (COLL II) spread over a gauze patch on days 0 and 4. On day 7, patches were removed and mice were intradermally (id) immunized with COLL II in CFA to induce collagen-induced arthritis (CIA). Our work shows that EC immunization with 100μg of COLL II prior to CIA induction reduces disease severity as determined by macroscopic evaluation. Reduced disease severity after EC immunization with COLL II correlates with milder histological changes found in joint sections. Experiments with the three non-cross-reacting antigens COLL II, ovalbumin (OVA) and myelin basic protein (MBP) showed that skin-induced suppression is antigen non-specific. Transfer experiments show that EC immunization with COLL II induces suppressor cells that belong to the population of CD4(+) CD8(+) double positive lymphocytes. Flow cytometry experiments showed increased percentage of CD4(+) CD8(+) RORγt(+) cells in axillary and inguinal lymph nodes isolated from mice patched with COLL II. Maneuver of EC immunization with a protein antigen that induces suppressor cells to inhibit inflammatory responses may become an attractive, noninvasive, needle-free therapeutic method for different clinical situations. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. Simulating Reflex Induced Changes in the Acoustic Impedance of the Ear.

    ERIC Educational Resources Information Center

    Sirlin, Mindy W.; Levitt, Harry

    1991-01-01

    A simple procedure for measuring changes in the acoustic impedance of the ear is described. The technique has several applications, including simulation using a standard coupler of changes in real ear impedance produced by the acoustic reflex, and calibration of response time of an otoadmittance meter. (Author/DB)

  3. Simulating Reflex Induced Changes in the Acoustic Impedance of the Ear.

    ERIC Educational Resources Information Center

    Sirlin, Mindy W.; Levitt, Harry

    1991-01-01

    A simple procedure for measuring changes in the acoustic impedance of the ear is described. The technique has several applications, including simulation using a standard coupler of changes in real ear impedance produced by the acoustic reflex, and calibration of response time of an otoadmittance meter. (Author/DB)

  4. Ear trauma.

    PubMed

    Eagles, Kylee; Fralich, Laura; Stevenson, J Herbert

    2013-04-01

    Understanding basic ear anatomy and function allows an examiner to quickly and accurately identify at-risk structures in patients with head and ear trauma. External ear trauma (ie, hematoma or laceration) should be promptly treated with appropriate injury-specific techniques. Tympanic membrane injuries have multiple mechanisms and can often be conservatively treated. Temporal bone fractures are a common cause of ear trauma and can be life threatening. Facial nerve injuries and hearing loss can occur in ear trauma.

  5. Two-photon induced collagen cross-linking in bioartificial cardiac tissue

    NASA Astrophysics Data System (ADS)

    Kuetemeyer, Kai; Kensah, George; Heidrich, Marko; Meyer, Heiko; Martin, Ulrich; Gruh, Ina; Heisterkamp, Alexander

    2011-08-01

    Cardiac tissue engineering is a promising strategy for regenerative therapies to overcome the shortage of donor organs for transplantation. Besides contractile function, the stiffness of tissue engineered constructs is crucial to generate transplantable tissue surrogates with sufficient mechanical stability to withstand the high pressure present in the heart. Although several collagen cross-linking techniques have proven to be efficient in stabilizing biomaterials, they cannot be applied to cardiac tissue engineering, as cell death occurs in the treated area. Here, we present a novel method using femtosecond (fs) laser pulses to increase the stiffness of collagen-based tissue constructs without impairing cell viability. Raster scanning of the fs laser beam over riboflavin-treated tissue induced collagen cross-linking by two-photon photosensitized singlet oxygen production. One day post-irradiation, stress-strain measurements revealed increased tissue stiffness by around 40% being dependent on the fibroblast content in the tissue. At the same time, cells remained viable and fully functional as demonstrated by fluorescence imaging of cardiomyocyte mitochondrial activity and preservation of active contraction force. Our results indicate that two-photon induced collagen cross-linking has great potential for studying and improving artificially engineered tissue for regenerative therapies.

  6. Exercise prevents β-aminopropionitrile-induced morphological changes to type I collagen in murine bone

    PubMed Central

    Hammond, Max A; Wallace, Joseph M

    2015-01-01

    This study evaluated the effects of reduced enzymatic crosslinking, exercise and the ability of exercise to prevent the deleterious impact of reduced crosslinking on collagen D-spacing. Eight-week-old female mice were divided into four weight-matched groups receiving daily injections of either phosphate-buffered saline (PBS) or 300 mg kg−1 β-aminopropionitrile (BAPN) while undergoing normal cage activity (Sed) or 30 min per day of treadmill exercise (Ex) for 21 consecutive days. BAPN caused a downward shift in the D-spacing distribution in Sed BAPN compared with Sed PBS (P<0.001) but not in Ex BAPN (P=0.429), indicating that exercise can prevent changes in collagen morphology caused by BAPN. Exercise had no effect on D-spacing in PBS control mice (P=0.726), which suggests that exercise-induced increases in lysyl oxidase may be a possible mechanism for preventing BAPN-induced changes in D-spacing. The D-spacing changes were accompanied by an increase in mineral crystallinity/maturity due to the main effect of BAPN (P=0.016). However, no changes in nanoindentation, reference point indentation or other Raman spectroscopy parameters were observed. The ability of exercise to rescue BAPN-driven changes in collagen morphology necessitates further research into the use of mechanical stimulation as a preventative therapy for collagen-based diseases. PMID:25798234

  7. The effects of experimentally induced conductive hearing loss on spectral and temporal aspects of sound transmission through the ear

    PubMed Central

    Lupo, J. Eric; Koka, Kanthaiah; Thornton, Jennifer L.; Tollin, Daniel J.

    2010-01-01

    Conductive hearing loss (CHL) is known to produce hearing deficits, including deficits in sound localization ability. The differences in sound intensities and timing experienced between the two tympanic membranes are important cues to sound localization (ILD and ITD, respectively). Although much is known about the effect of CHL on hearing levels, little investigation has been conducted into the actual impact of CHL on sound location cues. This study investigated effects of CHL induced by earplugs on cochlear microphonic (CM) amplitude and timing and their corresponding effect on the ILD and ITD location cues. Acoustic and CM measurements were made in 5 chinchillas before and after earplug insertion, and again after earplug removal using pure tones (500 Hz to 24 kHz). ILDs in the unoccluded condition demonstrated position and frequency dependence where peak far-lateral ILDs approached 30 dB for high frequencies. Unoccluded ear ITD cues demonstrated positional and frequency dependence with increased ITD cue for both decreasing frequency (± 420 µs at 500 Hz, ± 310 µs for 1–4 kHz ) and increasingly lateral sound source locations. Occlusion of the ear canal with foam plugs resulted in a mild, frequency-dependent conductive hearing loss of 10–38 dB (mean 31 ± 3.9 dB) leading to a concomitant frequency dependent increase in ILDs at all source locations. The effective ITDs increased in a frequency dependent manner with ear occlusion as a direct result of the acoustic properties of the plugging material, the latter confirmed via acoustical measurements using a model ear canal with varying volumes of acoustic foam. Upon ear plugging with acoustic foam, a mild CHL is induced. Furthermore, the CHL induced by acoustic foam results in substantial changes in the magnitudes of both the ITD and ILD cues to sound location. PMID:21073935

  8. Protective Effect of Pyruvate Against Radiation-Induced Damage in Collagenized Tissues

    NASA Technical Reports Server (NTRS)

    Griko, Y. V.; Yan, Xiaoli

    2016-01-01

    Exposure to high doses of ionizing radiation produces both acute and late effects on the collagenized tissues and have profound effects on wound healing. Because of the crucial practical importance for new radioprotective agents, our study has been focused on evaluation of the efficacy of non-toxic naturally occurring compounds to protect tissue integrity against high-dose gamma radiation. Here, we demonstrate that molecular integrity of collagen may serve as a sensitive biological marker for quantitative evaluation of molecular damage to collagenized tissue and efficacy of radioprotective agents. Increasing doses of gamma radiation (0-50kGy) result in progressive destruction of the native collagen fibrils, which provide a structural framework, strength, and proper milieu for the regenerating tissue. The strategy used in this study involved the thermodynamic specification of all structural changes in collagenized matrix of skin, aortic heart valve, and bone tissue induced by different doses and conditions of g-irradiation. This study describes a simple biophysical approach utilizing the Differential Scanning Calorimetry (DSC) to characterize the structural resistance of the aortic valve matrix exposed to different doses of g-irradiation. It allows us to identify the specific response of each constituent as well as to determine the influence of the different treatments on the characteristic parameters of protein structure. We found that pyruvate, a substance that naturally occurs in the body, provide significant protection (up to 80%) from biochemical and biomechanical damage to the collagenized tissue through the effective targeting of reactive oxygen species. The recently discovered role of pyruvate in the cell antioxidant defense to O2 oxidation, and its essential constituency in the daily human diet, indicate that the administration of pyruvate-based radioprotective formulations may provide safe and effective protection from deleterious effects of ionizing

  9. CALCOSPHERULITES* ISOLATED FROM THE MINERALIZATION FRONT OF BONE INDUCE THE MINERALIZATION OF TYPE I COLLAGEN

    PubMed Central

    Midura, Ronald J.; Vasanji, Amit; Su, Xiaowei; Wang, Aimin; Midura, Sharon B.; Gorski, Jeff P.

    2007-01-01

    Previous work has suggested that “calcospherulites” actively participate in the mineralization of developing and healing bone. This study sought to directly test this hypothesis by developing a method to isolate calcospherulites and analyzing their capacity to seed mineralization of fibrillar collagen. The periosteal surface of juvenile rat tibial diaphysis was enriched in spherulites of ~0.5-micron diameter exhibiting a Ca/P ratio of 1.3. Their identity as calcospherulites was confirmed by their uptake of calcein at the tibial mineralization front 24 h following in vivo injection. Periosteum was dissected and unmineralized osteoid removed by collagenase in order to expose calcospherulites. Calcein-labeled calcospherulites were then released from the mineralization front by dispase digestion and isolated via fluorescence flow sorting. X-ray diffraction analysis revealed they contained apatite crystals (c-axis length of 17.5 ± 0.2 nm), though their Ca/P ratio of 1.3 is lower than that of hydroxyapatite. Much of their non-mineral phosphorous content was removed by ice-cold ethanol, elevating their Ca/P ratio to 1.6, suggesting the presence of phospholipids. Western blot analyses showed the presence of bone matrix proteins and type I collagen in these preparations. Incubating isolated calcospherulites in collagen hydrogels demonstrated that they could seed a mineralization reaction on type I collagen fibers in vitro. Ultrastructural analyses revealed crystals on the collagen fibers that were distributed rather uniformly along the fiber lengths. Furthermore, crystals were observed at distances well away from the observed calcospherulites. Our results directly support an active role for calcospherulites in inducing the mineralization of type I collagen fibers at the mineralization front of bone. PMID:17936099

  10. Electrically-induced collagen calcification in pig skin. A histopathologic and histochemical study.

    PubMed

    Karlsmark, T; Danielsen, L; Aalund, O; Thomsen, H K; Nielsen, O; Nielsen, K G; Lyon, H; Ammitzbøll, T; Møller, R; Genefke, I K

    1988-11-01

    Deposition of calcium salts on collagen fibres in skin of fully anaesthetized pigs was induced by exposure to direct current (d.c.). In biopsies obtained from cathode areas successively from day 1 to day 7 after exposure the histopathologic and histochemical changes before and after the initial deposition of calcium salts have been examined. For comparison skin sites with intradermal injected calcium hydroxyapatite crystals were studied in addition. Small areas of calcified collagen and elastic fibres were noted in viable tissue 2 days after d.c. exposure. In succeeding days the calcified areas enlarged with new deposits always more superficial and closer to the epidermis than the original calcium deposits. Preconditions for calcification appear to be (1) a pH change in basic direction and/or the electrochemical processes specific to the cathode area and (2) a viable tissue. Elastic fibres appear to have a lower calcification threshold than collagen fibres. A positive staining for glycoproteins (PAS) and glycosaminoglycans (alcian blue pH 2.5) was noted in the calcified collagen fibres simultaneously with the calcification. In succeeding days the intensity of the staining reactions increased. Whether changes in the glycoproteins, collagen and its intimately bound glycosaminoglycans precede the calcification or the staining reactions develop secondarily to this deposition is not known. However, seven days after intradermal injections of Ca-apatite crystals in pig skin small and large crystals were observed ultrastructurally without any relation to collagen fibrils, but the calcified tissue presented a positive PAS and alcian blue reaction from day 2. Thus the PAS and alcian blue stainings in this model develop secondary to the deposition of calcium salts.

  11. An Agent-Based Discrete Collagen Fiber Network Model of Dynamic Traction Force-Induced Remodeling.

    PubMed

    Reinhardt, James W; Gooch, Keith

    2017-09-21

    We developed an agent-based model that incorporates repetitively applied traction force within a discrete fiber network to understand how microstructural properties of the network influence mechanical properties and traction force-induced remodeling. An important difference between our model and similar finite-element models is that by implementing more biologically-realistic dynamic traction, we can explore a greater range of matrix remodeling. Here, we validated our model by reproducing qualitative trends observed in three sets of experimental data reported by others: tensile and shear testing of cell-free collagen gels, collagen remodeling around a single isolated cell, and collagen remodeling between pairs of cells. In response to tensile and shear strain, simulated acellular networks exhibited biphasic stress-strain curves indicative of strain-stiffening. Our data support the notion that strain-stiffening might occur as individual fibrils successively align along the axis of strain and become engaged in tension. In simulations with a single, contractile cell, peak collagen displacement occurred closest to the cell and decreased with increasing distance. In simulations with two cells, compaction of collagen between cells appeared inversely related to the initial distance between cells. Further analysis revealed strain energy was relatively uniform around the outer surface of cells separated by 250 microns, but became increasingly non-uniform as the distance between cells decreased. This pattern was partly attributable to the pattern of collagen compaction. These findings are of interest because fibril alignment, density, and strain energy may each contribute to contact guidance during tissue morphogenesis.

  12. Inner ear disturbances related to middle ear inflammation

    PubMed Central

    Sone, Michihiko

    2017-01-01

    ABSTRACT The inner and middle ear are connected mainly through round and oval windows, and inflammation in the middle ear cavity can spread into the inner ear, which might induce a disturbance. In cases with intractable otitis media, attention should also be paid to symptoms related to the inner ear. In this paper, middle ear inflammation and related inner ear disturbances are reviewed with a focus on representative middle ear diseases (such as acute otitis media, chronic otitis media, otitis media with anti-neutrophil cytoplasmic antibody-associated vasculitis, eosinophilic otitis media, cholesteatoma with labyrinthine fistula, and reflux-related otitis media). Their clinical concerns are then discussed with reference to experimental studies. In these diseases, early diagnosis and adequate treatment are required to manage not only middle ear but also inner ear conditions. PMID:28303055

  13. Effects of agkistrodon in different dosage forms on collagen-induced arthritis in rats.

    PubMed

    Bao, Jie; Xie, Zhi-Jun; Chen, Lei-Ming; Sun, Jing; Fan, Yong-Sheng

    2016-12-01

    To determine the effective dosage and formulation of agkistrodon in collagen-induced arthritis (CIA) rats. CIA was induced by injection of collagen in complete/incomplete Freund's adjuvant. Agkistrodon decoction, agkistrodon powder, and agkistrodon wine were administered daily starting from the onset of arthritis. Paw swelling degree was measured by using a volume-measuring instrument every 7 days after primary immunization. Arthritis index was measured and calculated using the "five scoring method" every 7 days. The levels of serum interleukin-1ß (IL-1ß) and type II collagen IgG antibodies were detected by enzyme-linked immunosorbent assay. Finally, all ankles were removed, and X-ray radiography was performed with In-vivo Imaging System FX. Samples were counterstained with hematoxylin and eosin for analysis. Among the various dosage formulations of agkistrodon, high-dose powder, which was equivalent to an amount of 6 g/day in adults, showed better effects on the inhibition of joint swelling and reduction of arthritis index score. The relatively low levels of serum IL-1 and anti-type II collagen IgG antibodies, as well as the X-ray radiography and pathology results, further proved the superiority of the high-dose powder over the other formulations. The effect of decoction on inhibiting joint swelling was inversely proportional to the dosage. Other effects, such as reduction of arthritis index score and the levels of serum IL-1 and anti-type II collagen IgG antibodies, were directly proportional to the dosage. While the use of large dose agkistrodon wine led to negative effects. These data highlight the potential function of high-dose agkistrodon powder, which was equivalent to an amount of 6 g/day in adults. The powder can quickly relieve the symptoms of rheumatoid arthritis and prevent aggravation of disease, especially during the early period.

  14. Involvement of calpain-I and microRNA34 in kanamycin-induced apoptosis of inner ear cells.

    PubMed

    Yu, Li; Tang, Hao; Jiang, Xiao Hua; Tsang, Lai Ling; Chung, Yiu Wa; Chan, Hsiao Chang

    2010-12-01

    Inner ear cells, including hair cells, spiral ganglion cells, stria vascularis cells and supporting cells on the basilar membrane, play a major role in transducing hearing signals and regulating inner ear homoeostasis. However, their functions are often damaged by antibiotic-induced ototoxicity. Apoptosis is probably involved in inner ear cell injury following aminoglycoside treatment. Calpain, a calcium-dependent protease, is essential for mediating and promoting cell death. We have therefore investigated the involvement of calpain in the molecular mechanism underlying ototoxicity induced by the antibiotic kanamycin in mice. Kanamycin (750 mg/kg) mainly induced cell death of cochlear cells, including stria vascularis cells, supporting cells and spiral ganglion cells, but not hair cells within the organ of Corti. Cell death due to apoptosis occurred in a time-dependent manner with concomitant up-regulation of calpain expression. Furthermore, the expression levels of two microRNAs, mir34a and mir34c, were altered in a dose-dependent manner in cochlear cells. These novel findings demonstrated the involvement of both calpain and microRNAs in antibiotic-induced ototoxicity.

  15. Native Australian plant extracts differentially induce Collagen I and Collagen III in vitro and could be important targets for the development of new wound healing therapies.

    PubMed

    Adams, Damian H; Shou, Qingyao; Wohlmuth, Hans; Cowin, Allison J

    2016-03-01

    Australian native plants have a long history of therapeutic use in indigenous cultures, however, they have been poorly studied scientifically. We analysed the effects of 14 plant derived compounds from the species Pilidiostigma glabrum, Myoporum montanum, Geijera parviflora, and Rhodomyrtus psidioides for their potential wound healing properties by assessing their ability to induce or suppress Collagen I and Collagen III expression in human skin fibroblasts in culture. The compound 7-geranyloxycoumarin was able to significantly increase Collagen I (23.7%, p<0.0002) expression in comparison to control. Significant suppression of Collagen III was observed for the compounds flindersine (11.1%, p<0.02), and (N-acetoxymethyl) flindersine (27%, p<0.00005). The implications of these finding is that these compounds could potentially alter the expression of different collagens in the skin allowing for the potential development of new wound healing therapies and new approaches for treating various skin diseases as well as photo (sun) damaged, and aged skin.

  16. Neural Representation of Scale Illusion: Magnetoencephalographic Study on the Auditory Illusion Induced by Distinctive Tone Sequences in the Two Ears

    PubMed Central

    Kuriki, Shinya; Yokosawa, Koichi; Takahashi, Makoto

    2013-01-01

    The auditory illusory perception “scale illusion” occurs when a tone of ascending scale is presented in one ear, a tone of descending scale is presented simultaneously in the other ear, and vice versa. Most listeners hear illusory percepts of smooth pitch contours of the higher half of the scale in the right ear and the lower half in the left ear. Little is known about neural processes underlying the scale illusion. In this magnetoencephalographic study, we recorded steady-state responses to amplitude-modulated short tones having illusion-inducing pitch sequences, where the sound level of the modulated tones was manipulated to decrease monotonically with increase in pitch. The steady-state responses were decomposed into right- and left-sound components by means of separate modulation frequencies. It was found that the time course of the magnitude of response components of illusion-perceiving listeners was significantly correlated with smooth pitch contour of illusory percepts and that the time course of response components of stimulus-perceiving listeners was significantly correlated with discontinuous pitch contour of stimulus percepts in addition to the contour of illusory percepts. The results suggest that the percept of illusory pitch sequence was represented in the neural activity in or near the primary auditory cortex, i.e., the site of generation of auditory steady-state response, and that perception of scale illusion is maintained by automatic low-level processing. PMID:24086676

  17. Anti-citrullinated-protein-antibody-specific intravenous immunoglobulin attenuates collagen-induced arthritis in mice

    PubMed Central

    Svetlicky, N; Kivity, S; Odeh, Q; Shovman, O; Gertel, S; Amital, H; Gendelman, O; Volkov, A; Barshack, I; Bar-Meir, E; Blank, M; Shoenfeld, Y

    2015-01-01

    Administration of intravenous immunoglobulin (IVIg) is a recognized safe and efficient immunomodulation therapy for many autoimmune diseases. Anti-idiotypic antibody binding to pathogenic autoantibodies was proposed as one of the mechanisms attributed to the protective activity of IVIg in autoimmunity. The aim of this study was to fractionate the anti-anti-citrullinated protein anti-idiotypic-antibodies (anti-ACPA) from an IVIg preparation and to test it as a treatment for collagen-induced arthritis in mice. IVIg was loaded onto an ACPA column. The eluted fraction was defined as ACPA-specific-IVIg (ACPA-sIVIg). Collagen-induced-arthritis (CIA) was induced in mice. Mice were treated weekly with ACPA-sIVIg, low-dose-IVIg, high-dose-IVIg and phosphate-buffered saline (PBS). Sera-ACPA titres, anti-collagen anitbodies and cytokine levels were analysed by enzyme-linked immunosorbent assay (ELISA); antibody-forming-cell activity by enzyme-linked imunospot (ELISPOT) assay; and expansion of regulatory T cell (Treg) population by fluorescence activated cell sorter (FACS). ACPA-sIVIg inhibited ACPA binding to citrullinated-peptides (CCP) in vitro 100 times more efficiently than the IVIg compound. ACPA-sIVIg was significantly more effective than the IVIg-preparation in attenuating the development of collagen-induced arthritis. Splenocytes from CIA mice treated with ACPA-sIVIg reduced the ACPA and anti-collagen-antibody titres, including the number of anti-collagen and ACPA antibody-forming cells. In parallel, splenocytes from ACPA-sIVIg treated mice secreted higher levels of anti-inflammatory cytokines and lower proinflammatory cytokines. The ACPA-sIVIg inhibitory potential was accompanied with expansion of the Treg population. Low-dose IVIg did not affect the humoral and cellular response in the CIA mice in comparison to the PBS-treated mice. Based on our results, IVIg may be considered as a safe compound for treating patients with rheumatoid arthritis by neutralizing

  18. Osteoblasts extracellular matrix induces vessel like structures through glycosylated collagen I

    SciTech Connect

    Palmieri, D.; Valli, M.; Viglio, S.; Ferrari, N.; Ledda, B.; Volta, C.; Manduca, P.

    2010-03-10

    Extracellular matrix (ECM) plays a fundamental role in angiogenesis affecting endothelial cells proliferation, migration and differentiation. Vessels-like network formation in vitro is a reliable test to study the inductive effects of ECM on angiogenesis. Here we utilized matrix deposed by osteoblasts as substrate where the molecular and structural complexity of the endogenous ECM is preserved, to test if it induces vessel-like network formation by endothelial cells in vitro. ECM is more similar to the physiological substrate in vivo than other substrates previously utilized for these studies in vitro. Osteogenic ECM, prepared in vitro from mature osteoblasts at the phase of maximal deposition and glycosylation of collagen I, induces EAhy926, HUVEC, and HDMEC endothelial cells to form vessels-like structures and promotes the activation of metalloproteinase-2 (MMP-2); the functionality of the p-38/MAPK signaling pathway is required. Osteogenic ECM also induces a transient increase of CXCL12 and a decrease of the receptor CXCR4. The induction of vessel-like networks is dependent from proper glycosylation of collagens and does not occur on osteogenic ECMs if deglycosylated by -galactosidase or on less glycosylated ECMs derived from preosteoblasts and normal fibroblasts, while is sustained on ECM from osteogenesis imperfecta fibroblasts only when their mutation is associated with over-glycosylation of collagen type I. These data support that post-translational glycosylation has a role in the induction in endothelial cells in vitro of molecules conductive to self-organization in vessels-like structures.

  19. SND-117, a sinomenine bivalent alleviates type II collagen-induced arthritis in mice.

    PubMed

    Zhou, Yu-Ren; Zhao, Yang; Bao, Bei-Hua; Li, Jian-Xin

    2015-06-01

    Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disorder that affects about 1% of the population worldwide. RA is mainly manifested by persistent synovitis and progressive joint destruction. The aim of the present study was to examine the anti-arthritis effects of SND-117, a sinomenine bivalent that is obtained from the structure modification of a clinically available anti-RA drug, sinomenine. The arthritis model (CIA) was established by immunizing DBA/1 mice with type II collagen, and the arthritis scores including inflammation, joint destruction and bone erosion were assessed after booster immunization for 3weeks. The levels of cytokines such as IL-1β, IL-6 and TNF-α were analyzed by quantitative PCR and ELISA. The TNF-α induced NF-κB activation in fibroblast-like synovial cells (FLSCs) was analyzed by Western blot. SND-117 significantly relieved the inflammatory symptoms of collagen-induced arthritis, reduced bone erosion and joint destruction in CIA mice. The serum levels of IL-1β, IL-6 and TNF-α of CIA mice were markedly decreased by SND-117. SND-117 also strongly inhibited the phosphorylation and nuclear translocation of NF-κB p65 in FLSCs upon TNF-α stimulation. These data demonstrated that SND-117 could effectively block the pathogenesis of collagen-induced arthritis in CIA mice via inhibition of NF-κB signaling, and might provide potential clinic benefits in rheumatoid arthritis management.

  20. ALTERATIONS IN STATE OF MOLECULAR AGGREGATION OF COLLAGEN INDUCED IN CHICK EMBRYOS BY β-AMINOPROPIONITRILE (LATHYRUS FACTOR)

    PubMed Central

    Levene, Charles I.; Gross, Jerome

    1959-01-01

    The lathyrogenic agents, β-aminopropionitrile and semicarbizide, when applied to the chorio-allantoic membrane of the chick embryo produced a dramatic increase in fragility of the embryo. This alteration was not associated with a change in the concentration of collagen, except in aorta, but was accompanied by a sharp increase in the amount of collagen extractible in cold 1 M NaCl from skin, bone, and aorta. Increase in fragility and extractible collagen began within 3 hours after introduction of the agent and rose steadily for at least 72 hours. Essentially no collagen could be extracted from tissues of normal chick embryos. Both fragility and amount of extractible collagen were dosage- and time-dependent. It is concluded that the extractible collagen in lathyrism consists of a large proportion of dissolved fibers previously insoluble and formed prior to administration of the agent. The data also suggest that the "lathyritic" collagen in vivo is not in molecular dispersion but in an aggregate or fibrillar form. It is dispersed by cooling. The extracted collagen could be reconstituted to typical striated fibrils in vitro and the molecule appeared to be normal in the gross, with regard to asymmetry ratio and intramolecular helical structure. The evidence at hand suggests that at least one of the defects induced by lathyrogenic agents is an interference with the normal intermolecular cross-linking within the collagen fibril. PMID:14416144

  1. Loudness changes resulting from an electrically induced middle-ear reflex.

    NASA Technical Reports Server (NTRS)

    Gunn, W. J.

    1973-01-01

    An experiment was conducted in order to determine the changes in loudness brought about by electro-cutaneous elicitation of the middle-ear reflex. Subjects were required to judge the relative loudness of the second of three consecutive 30-msec bursts of tone, the second tone being accompanied by an electrical shock to the external auditory meatus, capable of eliciting a contraction of the middle-ear muscles. The difference between these judgments and those of the control condition (shock on the arm) was taken to represent a measure of the attenuation provided by contraction of the middle-ear muscles. Test tones were 500, 1000, 2000, and 3000 Hz at levels of 65, 75, 85, 95, and 105 dB. The results indicate that the middle-ear reflex decreases the middle-ear's transmission mainly for low-frequency sounds. The results fail to lend support to the Loeb-Riopelle hypothesis that the middle-ear reflex acts as a limiter, rather than a linear attenuator.

  2. Protective effect of niacinamide on interleukin-1beta-induced annulus fibrosus type II collagen degeneration in vitro.

    PubMed

    Duan, Deyu; Yang, Shuhua; Shao, Zengwu; Wang, Hong; Xiong, Xiaoqian

    2007-02-01

    The protective effect of niacinamide on interleukin-1beta (IL-1beta)-induced annulus fibrosus (AF) type II collagen degeneration in vitro and the mechanism were investigated. Chiba's intervertebral disc (IVD) culture models in rabbits were established and 48 IVDs from 12 adult Japanese white rabbits were randomly divided into 4 groups: normal control group, niacinamide-treated group, type II collagen degneration group (IL-1beta) and treatment group (niacinamide+IL-1beta). After culture for one week, AFs were collected for inducible nitric oxide synthase (iNOS), cysteine containing aspartate specific protease-3 (Caspase-3) and type II collagen immunohistochemical examination, and type II collagen reverse transcription polymerase chain reaction (RT-PCR). The results showed that rate of iNOS positive staining AF cells in the 4 groups was 17.6%, 10.9%, 73.9% and 19.3% respectively. The positive rate in treatment group was significantly lower than in the type II collagen degeneration group (P<0.01). Rate of Caspase-3 positive staining AF cells in the 4 groups was 3.4%, 4.2%, 17.6% and 10.3% respectively. The positive rate in treatment group was lower than in the type II collagen degeneration group (P<0.01). Type II collagen staining demonstrated that lamellar structure and continuity of collagen in treatment group was better reversed than in the degeneration group. RT-PCR revealed that the expression of type II collagen in treatment group was significantly stronger than that in type II collagen degeneration group (P<0.01). It was concluded that niacinamide could effectively inhibit IL-1beta stimulated increase of iNOS and Caspase-3 in AF, and alleviate IL-1beta-caused destruction and synthesis inhibition of type II collagen. Niacinamide is of potential for clinical treatment of IVD degeneration.

  3. Discoidin Domain Receptor 2 Mediates Collagen-Induced Activation of Membrane-Type 1 Matrix Metalloproteinase in Human Fibroblasts.

    PubMed

    Majkowska, Iwona; Shitomi, Yasuyuki; Ito, Noriko; Gray, Nathanael S; Itoh, Yoshifumi

    2017-03-07

    Membrane-Type 1 Matrix Metalloproteinase (MT1-MMP) is a membrane-bound MMP that is highly expressed in cells with invading capacity including fibroblasts and invasive cancer cell. A potential physiological stimulus for MT1-MMP expression is fibrillar collagen, and it has been shown that it upregulates both MT1-MMP gene and functions in various cell types. However, the mechanisms of collagen-mediated MT1-MMP activation is not clearly understood. In this study we identified discoidin domain receptor 2 (DDR2) as a crucial receptor that mediates this process in human fibroblasts. Knocking down DDR2, but not β1 integrin subunit, a common subunit for all collagen-binding integrins, inhibited collagen-induced activation of proMMP-2 and upregulation of MT1-MMP at the gene and protein level. Interestingly DDR2 knockdown or pharmacological inhibition of DDR2 also inhibited MT1-MMP-dependent cellular degradation of collagen film, suggesting that cell surface collagen degradation by MT1-MMP involves DDR2-mediated collagen signalling. This DDR2-mediated mechanism is only present in non-transformed mesenchymal cells, as collagen-induced MT1-MMP activation in HT1080 fibrosarcoma cells and MT1-MMP function in MDA-MB231 breast cancer cells were not affected by DDR kinase inhibition. DDR2 activation was found to be noticeably more effective when cells were stimulated by collagen without non-helical telopeptides region compared to intact collagen fibrils. Those data suggest that DDR2 is a microenvironmental sensor that regulates fibroblasts migration in collagen-rich environment.

  4. Two-dimensional infrared spectroscopic study on the thermally induced structural changes of glutaraldehyde-crosslinked collagen

    NASA Astrophysics Data System (ADS)

    Tian, Zhenhua; Wu, Kun; Liu, Wentao; Shen, Lirui; Li, Guoying

    2015-04-01

    The thermal stability of collagen solution (5 mg/mL) crosslinked by glutaraldehyde (GTA) [GTA/collagen (w/w) = 0.5] was measured by differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR), and the thermally induced structural changes were analyzed using two-dimensional (2D) correlation spectra. The denaturation temperature (Td) and enthalpy change (ΔH) of crosslinked collagen were respectively about 27 °C and 88 J/g higher than those of native collagen, illuminating the thermal stability increased. With the increase of temperature, the red-shift of absorption bands and the decreased AIII/A1455 value obtained from FTIR spectra indicated that hydrogen bonds were weakened and the unwinding of triple helix occurred for both native and crosslinked collagens; whereas the less changes in red-shifting and AIII/A1455 values for crosslinked collagen also confirmed the increase in thermal stability. Additionally, the 2D correlation analysis provided information about the thermally induced structural changes. In the 2D synchronous spectra, the intensities of auto-peaks at 1655 and 1555 cm-1, respectively assigned to amide I band (Cdbnd O stretching vibration) and amide II band (combination of Nsbnd H bending and Csbnd N stretching vibrations) in helical conformation were weaker for crosslinked collagen than those for native collagen, indicating that the helical structure of crosslinked collagen was less sensitive to temperature. Moreover, the sequence of the band intensity variations showed that the band at 1555 cm-1 moved backwards owing to the addition of GTA, demonstrating that the response of helical structure of crosslinked collagen to the increased temperature lagged. It was speculated that the stabilization of collagen by GTA was due to the reinforcement of triple helical structure.

  5. Two-dimensional infrared spectroscopic study on the thermally induced structural changes of glutaraldehyde-crosslinked collagen.

    PubMed

    Tian, Zhenhua; Wu, Kun; Liu, Wentao; Shen, Lirui; Li, Guoying

    2015-04-05

    The thermal stability of collagen solution (5 mg/mL) crosslinked by glutaraldehyde (GTA) [GTA/collagen (w/w)=0.5] was measured by differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR), and the thermally induced structural changes were analyzed using two-dimensional (2D) correlation spectra. The denaturation temperature (Td) and enthalpy change (ΔH) of crosslinked collagen were respectively about 27°C and 88 J/g higher than those of native collagen, illuminating the thermal stability increased. With the increase of temperature, the red-shift of absorption bands and the decreased AIII/A1455 value obtained from FTIR spectra indicated that hydrogen bonds were weakened and the unwinding of triple helix occurred for both native and crosslinked collagens; whereas the less changes in red-shifting and AIII/A1455 values for crosslinked collagen also confirmed the increase in thermal stability. Additionally, the 2D correlation analysis provided information about the thermally induced structural changes. In the 2D synchronous spectra, the intensities of auto-peaks at 1655 and 1555 cm(-1), respectively assigned to amide I band (CO stretching vibration) and amide II band (combination of NH bending and CN stretching vibrations) in helical conformation were weaker for crosslinked collagen than those for native collagen, indicating that the helical structure of crosslinked collagen was less sensitive to temperature. Moreover, the sequence of the band intensity variations showed that the band at 1555 cm(-1) moved backwards owing to the addition of GTA, demonstrating that the response of helical structure of crosslinked collagen to the increased temperature lagged. It was speculated that the stabilization of collagen by GTA was due to the reinforcement of triple helical structure.

  6. Sumoylation of the Tumor Suppressor Promyelocytic Leukemia Protein Regulates Arsenic Trioxide-Induced Collagen Synthesis in Osteoblasts.

    PubMed

    Xu, Wen-Xiao; Liu, Sheng-Zhi; Wu, Di; Qiao, Guo-Fen; Yan, Jinglong

    2015-01-01

    Promyelocytic leukemia (PML) protein is a tumor suppressor that fuses with retinoic acid receptor-α (PML-RARα) to contribute to the initiation of acute promyelocytic leukemia (APL). Arsenic trioxide (ATO) upregulates expression of TGF-β1, promoting collagen synthesis in osteoblasts, and ATO binds directly to PML to induce oligomerization, sumoylation, and ubiquitination. However, how ATO upregulates TGF-β1 expression is uncertain. Thus, we suggested that PML sumoylation is responsible for regulation of TGF-β1 protein expression. Kunming mice were treated with ATO, and osteoblasts were counted under scanning electron microscopy. Masson's staining was used to quantify collagen content. hFOB1.19 cells were transfected with siRNA against UBC9 or RNF4, and then treated with ATO or FBS. TGF-β1, PML expression, and sumoylation were quantified with Western blot, and collagen quantified via immunocytochemistry. ATO enhanced osteoblast accumulation, collagen synthesis, and PML-NB formation in vivo. Knocking down UBC9 in hFOB1.19 cells inhibited ATO- and FBS-induced PML sumoylation, TGF-β1 expression, and collagen synthesis. Conversely, knocking down RNF4 enhanced ATO- and FBS-induced PML sumoylation, TGF-β1 expression, and collagen synthesis. These data suggest that PML sumoylation is required for ATO-induced collagen synthesis in osteoblasts. © 2015 S. Karger AG, Basel.

  7. Ear wax

    MedlinePlus

    ... water to drain. You may need to repeat irrigation several times. To avoid damaging your ear or ... who may remove the wax by: Repeating the irrigation attempts Suctioning the ear canal Using a small ...

  8. Your Ears

    MedlinePlus

    ... Protect your hearing by wearing earplugs at loud music concerts and around noisy machinery, like in wood ... For Parents MORE ON THIS TOPIC Can Loud Music Hurt My Ears? What Is an Ear Infection? ...

  9. Ear tag

    MedlinePlus

    ... the opening of the ear are common in newborn infants. In most cases, these are normal. However, they ... M. Editorial team. Related MedlinePlus Health Topics Common Infant and Newborn Problems Ear Disorders Skin Conditions Browse the Encyclopedia ...

  10. Ear examination

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003340.htm Ear examination To use the sharing features on this page, ... ear References King EF, Couch ME. History, physical examination, and the preoperative evaluation. In: Flint PW, Haughey ...

  11. Proteoglycan and Collagen Biochemical Variations during Fluoroquinolone-Induced Chondrotoxicity in Mice

    PubMed Central

    Simonin, Marie-Agnès; Gegout-Pottie, Pascale; Minn, Alain; Gillet, Pierre; Netter, Patrick; Terlain, Bernard

    1999-01-01

    Although fluoroquinolone antibacterials have a broad therapeutic use, with a relatively low incidence of severe side effects, they have been reported to induce lesions in the cartilage of growing animals by a mechanism that remains unclear. This study was undertaken to determine the potentially deleterious effect of a high dose of pefloxacin (400 mg/kg of body weight) on two main constituents of cartilage in mice, i.e., proteoglycans and collagen. Variations in levels of proteoglycan anabolism measured by in vivo [35S]sulfate incorporation into cartilage and oxidative modifications of collagen assessed by detection of carbonyl derivatives were monitored after administration of pefloxacin. Treatment of mice with 1 day of pefloxacin treatment significantly decreased the rate of biosynthesis of proteoglycan for the first 24 h. However, no difference was observed after 48 h. The decrease in proteoglycan synthesis was accompanied by a marked drop in serum sulfate concentration and a concomitant increase in urinary sulfate excretion. The decrease in proteoglycan synthesis, also observed ex vivo, may suggest a direct effect of pefloxacin on this process, rather than it being a consequence of a low concentration of sulfate. On the other hand, treatment with pefloxacin for 10 days induced oxidative damage to collagen. In conclusion, this study demonstrates, for the first time, that pefloxacin administration to mice leads to modifications in the metabolism and integrity of extracellular proteins, such as collagen and proteoglycans, which may account for the side effects observed. These results offer new insights to explain quinolone-induced disorders in growing articular cartilage. PMID:10582882

  12. Proteoglycan and collagen biochemical variations during fluoroquinolone-induced chondrotoxicity in mice.

    PubMed

    Simonin, M A; Gegout-Pottie, P; Minn, A; Gillet, P; Netter, P; Terlain, B

    1999-12-01

    Although fluoroquinolone antibacterials have a broad therapeutic use, with a relatively low incidence of severe side effects, they have been reported to induce lesions in the cartilage of growing animals by a mechanism that remains unclear. This study was undertaken to determine the potentially deleterious effect of a high dose of pefloxacin (400 mg/kg of body weight) on two main constituents of cartilage in mice, i.e., proteoglycans and collagen. Variations in levels of proteoglycan anabolism measured by in vivo [(35)S]sulfate incorporation into cartilage and oxidative modifications of collagen assessed by detection of carbonyl derivatives were monitored after administration of pefloxacin. Treatment of mice with 1 day of pefloxacin treatment significantly decreased the rate of biosynthesis of proteoglycan for the first 24 h. However, no difference was observed after 48 h. The decrease in proteoglycan synthesis was accompanied by a marked drop in serum sulfate concentration and a concomitant increase in urinary sulfate excretion. The decrease in proteoglycan synthesis, also observed ex vivo, may suggest a direct effect of pefloxacin on this process, rather than it being a consequence of a low concentration of sulfate. On the other hand, treatment with pefloxacin for 10 days induced oxidative damage to collagen. In conclusion, this study demonstrates, for the first time, that pefloxacin administration to mice leads to modifications in the metabolism and integrity of extracellular proteins, such as collagen and proteoglycans, which may account for the side effects observed. These results offer new insights to explain quinolone-induced disorders in growing articular cartilage.

  13. Gallium nitrate ameliorates type II collagen-induced arthritis in mice.

    PubMed

    Choi, Jae-Hyeog; Lee, Jong-Hwan; Roh, Kug-Hwan; Seo, Su-Kil; Choi, Il-Whan; Park, Sae-Gwang; Lim, Jun-Goo; Lee, Won-Jin; Kim, Myoung-Hun; Cho, Kwang-rae; Kim, Young-Jae

    2014-05-01

    Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease. Gallium nitrate has been reported to reserve immunosuppressive activities. Therefore, we assessed the therapeutic effects of gallium nitrate in the mouse model of developed type II collagen-induced arthritis (CIA). CIA was induced by bovine type II collagen with Complete Freund's adjuvant. CIA mice were intraperitoneally treated from day 36 to day 49 after immunization with 3.5mg/kg/day, 7mg/kg/day gallium nitrate or vehicle. Gallium nitrate ameliorated the progression of mice with CIA. The clinical symptoms of collagen-induced arthritis did not progress after treatment with gallium nitrate. Gallium nitrate inhibited the increase of CD4(+) T cell populations (p<0.05) and also inhibited the type II collagen-specific IgG2a-isotype autoantibodies (p<0.05). Gallium nitrate reduced the serum levels of TNF-α, IL-6 and IFN-γ (p<0.05) and the mRNA expression levels of these cytokine and MMPs (MMP2 and MMP9) in joint tissues. Western blotting of members of the NF-κB signaling pathway revealed that gallium nitrate inhibits the activation of NF-κB by blocking IκB degradation. These data suggest that gallium nitrate is a potential therapeutic agent for autoimmune inflammatory arthritis through its inhibition of the NF-κB pathway, and these results may help to elucidate gallium nitrate-mediated mechanisms of immunosuppression in patients with RA. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Collagen gel protects L929 cells from TNFα-induced death by activating NF-κB.

    PubMed

    Wang, Hong-Ju; Li, Meng-Qi; Liu, Wei-Wei; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2017-09-01

    Type I collagen is one of the most abundant components of extracellular matrix. We previously illustrated that murine fibrosarcoma L929 cells grew well on type I collagen gel and escaped from TNFα-induced cell death. In this study, we investigated the mechanism underlying the protective effect of collagen gel. We used western blot, confocal microscopy, MTT assay and flow cytometry by introducing fluorescence staining to determine the expression levels of nuclear factor kappa B (NF-κB), inhibitory ratio and autophagy. L929 cells on collagen gel showed higher expression of NF-κB in the nucleus. Inhibition of NF-κB with pyrrolidine dithiocarbamate hydrochloride (PDTC) or knockdown by NF-κB-siRNA canceled the protective effect of collagen gel on L929 cells from TNFα-induced death, suggesting for the role of NF-κB in the protection from cell death. We found a new aspect of the effect of PDTC on L929 cells cultured on collagen gel. PDTC alone without TNFα induced apoptosis in the L929 cells cultured on collagen gel but not the cells on plastic dish. The apoptosis induction of the L929 cells cultured on collagen gel with PDTC was repressed by inhibiting autophagy with chloroquine, an autophagy inhibitor, suggesting that autophagy contributes to the death induced by the treatment with PDTC. Possible underlying mechanism of this finding is discussed. NF-κB played an important role in protecting the L929 cells cultured on collagen gel from TNFα-induced death.

  15. Super Ears.

    ERIC Educational Resources Information Center

    Thompson, Stan

    1995-01-01

    Presents an activity in which students design, construct, and test "super ears" to investigate sound and hearing. Students work in groups of three and explore how the outer ear funnels sound waves to the inner ear and how human hearing compares to that of other animals. (NB)

  16. Cauliflower Ear

    MedlinePlus

    ... Room? What Happens in the Operating Room? What's Cauliflower Ear? KidsHealth > For Kids > What's Cauliflower Ear? A A A Have you ever seen ... looks bumpy and lumpy? The person might have cauliflower ear. That sure is a funny name. Let's ...

  17. Clinical and histopathological characterization of a large animal (ovine) model of collagen-induced arthritis.

    PubMed

    Abdalmula, A; Washington, E A; House, J V; Dooley, L M; Blacklaws, B A; Ghosh, P; Bailey, S R; Kimpton, W G

    2014-05-15

    Collagen induced arthritis (CIA) is the most studied and used rheumatoid arthritis (RA) model in animals, as it shares many pathological and immunological features of the human disease. The aim of this study was to characterize clinical and immunological aspects of the ovine CIA model, and develop lameness and histopathological scoring systems, in order to validate this model for use in therapeutic trials. Sheep were sensitized to bovine type II collagen (BCII), arthritis was induced by injection of bovine collagen type II into the hock joint and the response was followed for two weeks. Clinical signs of lameness and swelling were evident in all sheep and gross thickening of the synovium surrounding the tibiotarsal joint and erosion on the cartilage surface in the arthritic joints. Leucocyte cell counts were increased in synovial fluid and there was synovial hyperplasia, thickening of the intimal layer, inflammation and marked angiogenesis in the synovial tissue. There was a large influx of monocytes and lymphocytes into the synovial tissue, and increased expression of TNF-α and IL-1β in arthritic intima, angiogenesis and upregulation of VCAM-1. CIA in sheep appears to be an excellent large animal model of RA and has the potential for testing biological therapeutics for the treatment of rheumatoid arthritis.

  18. Resveratrol modulates murine collagen-induced arthritis by inhibiting Th17 and B-cell function.

    PubMed

    Xuzhu, Gao; Komai-Koma, Mousa; Leung, Bernard P; Howe, Hwee Siew; McSharry, Charles; McInnes, Iain B; Xu, Damo

    2012-01-01

    Alcohol intake is inversely related to rheumatoid arthritis (RA) disease incidence and severity. Resveratrol, a safe, well-described plant-derived compound, possesses anti-inflammation and immune-regulatory properties and is present in red wine. As such, it could mediate anti-inflammatory properties of the latter and offer novel therapeutic utility in is own right. To evaluate the therapeutic effect of resveratrol on collagen-induced arthritis (CIA) and its putative immune modulation in mice. CIA was induced in DBA1 mice by immunisation with collagen II. Different doses of resveratrol were administered before or after the development of CIA. The levels of antibody and cytokines in serum or in draining lymph node (DLN) lymphocyte culture supernatants were measured by ELISA and Th17 cell development in DLN was monitored by flow cytometry. Either prophylactic or therapeutic administration of resveratrol attenuated clinical parameters and bone erosion in CIA mice. The arthritis-protective effects were associated with markedly reduced serum levels of pro-inflammatory cytokines and collagen-specific, but not total, IgG, and with reduced numbers of Th17 cells and the production of IL-17 in DLN. Resveratrol modulates inflammatory arthritis in rodents by selectively suppressing key cellular and humoral responses necessary for disease development. This may partly explain the protective effects of red wine but importantly may offer a novel, effective and safe pathway whereby novel agents could be developed to treat RA.

  19. Observer Variation in Drug-Induced Sleep Endoscopy: Experienced Versus Nonexperienced Ear, Nose, and Throat Surgeons

    PubMed Central

    Vroegop, Anneclaire V. M. T.; Vanderveken, Olivier M.; Wouters, Kristien; Hamans, Evert; Dieltjens, Marijke; Michels, Nele R.; Hohenhorst, Winfried; Kezirian, Eric J.; Kotecha, Bhik T.; de Vries, Nico; Braem, Marc J.; Van de Heyning, Paul H.

    2013-01-01

    Study Objective: To determine variations in interobserver and intraobserver agreement of drug-induced sleep endoscopy (DISE) in a cohort of experienced versus nonexperienced ear, nose, and throat (ENT) surgeons. Design: Prospective, blinded agreement study. Setting: Ninety-seven ENT surgeons (90 nonexperienced with DISE; seven experienced) observed six different DISE videos and were asked to score the upper airway (UA) level (palate, oropharynx, tongue base, hypopharynx, epiglottis), direction (anteroposterior, concentric, lateral), and degree of collapse (none; partial or complete collapse). Findings were collected and analyzed, determining interobserver and intraobserver agreement [overall agreement (OA), specific agreement (SA)] and kappa values per UA level. Measurement and Results: In the nonexperienced group, overall interobserver agreement on presence of tongue base collapse (OA = 0.63; kappa = 0.33) was followed by the agreement on epiglottis (OA = 0.57; kappa = 0.23) and oropharynx collapse (OA = 0.45; kappa = 0.09). Low overall interobserver agreement in this group was found for hypopharyngeal collapse (OA = 0.33; kappa = 0.08). A similar ranking was found for degree of collapse. For direction of collapse, high interobserver agreement was found for the palate (OA = 0.57; kappa = 0.16). Among the experienced observers, overall interobserver agreement was highest for presence of tongue base collapse (OA = 0.93; kappa = 0.71), followed by collapse of the palate (OA = 0.80; kappa = 0.51). In this group, lowest agreement was also found for hypopharyngeal collapse (OA = 0.47; kappa = 0.03). Interob-server agreement on direction of collapse was highest for epiglottis collapse (OA = 0.97; kappa = 0.97). Concerning the degree of collapse, highest agreement was found for degree of oropharyngeal collapse (OA = 0.82; kappa = 0.66). Among the experienced observers a statistically significant higher interobserver agreement was obtained for presence, direction, and

  20. Ionizing radiations and collagen metabolism: from oxygen free radicals to radio-induced late fibrosis

    NASA Astrophysics Data System (ADS)

    Nguyen, Tan Dat; Maquart, François-Xavier; Monboisse, Jean-Claude

    2005-02-01

    Skin fibrosis is one of the most common late adverse effects observed after radiation therapy for cancer. As a dose-limiting factor and hence a major hindrance to increase the amount of radiation delivered to the tumor, this problem can be addressed according to the very early steps of the fibrotic process: the oxygen free radical production. Reactive oxygen species (ROS) generated during radiotherapy result from both inflammatory response and water radiolysis. Many studies have demonstrated that the extracellular matrix molecules are potential targets for ROS, and that collagen metabolism and properties are deeply and permanently modified after irradiation, both in vitro and in vivo. It is therefore possible to design different therapeutic approaches such as the clinical use of liposomal superoxide dismutase able to reverse the imbalance between collagen matrix synthesis and degradation. Finally, the so-called oxidative stress induced by radiation represents a significant parameter leading to fibrosis and will undoubtedly serve to design further experimental and clinical studies.

  1. Collagen-induced platelet activation mainly involves the protein kinase C pathway.

    PubMed Central

    Karniguian, A; Grelac, F; Levy-Toledano, S; Legrand, Y J; Rendu, F

    1990-01-01

    This study analyses early biochemical events in collagen-induced platelet activation. An early metabolic event occurring during the lag phase was the activation of PtdIns(4,5)P2-specific phospholipase C. Phosphatidic acid (PtdOH) formation, phosphorylation of P43 and P20, thromboxane B2 (TXB2) synthesis and platelet secretion began after the lag phase, and were similarly time-dependent, except for TXB2 synthesis, which was delayed. Collagen induced extensive P43 phosphorylation, whereas P20 phosphorylation was weak and always lower than with thrombin. The dose-response curves of P43 phosphorylation and granule secretion were similar, and both reached a peak at 7.5 micrograms of collagen/ml, a dose which induced half-maximal PtdOH and TXB2 formation. Sphingosine, assumed to inhibit protein kinase C, inhibited P43 phosphorylation and secretion in parallel. However, sphingosine was not specific for protein kinase C, since a 15 microM concentration, which did not inhibit P43 phosphorylation, blocked TXB2 synthesis by 50%. Sphingosine did not affect PtdOH formation at all, even at 100 microM, suggesting that collagen itself induced this PtdOH formation, independently of TXB2 generation. The absence of external Ca2+ allowed the cleavage of polyphosphoinositides and the accumulation of InsP3 to occur, but impaired P43 phosphorylation, PtdOH and TXB2 formation, and secretion; these were only restored by adding 0.11 microM-Ca2+. In conclusion, stimulation of platelet membrane receptors for collagen initiates a PtdInsP2-specific phospholipase C activation, which is independent of external Ca2+, and might be the immediate receptor-linked response. A Ca2+ influx is indispensable to the triggering of subsequent platelet responses. This stimulation predominantly involves the protein kinase C pathway associated with secretion, and appears not to be mediated by TXB2, at least during its initial stage. Images Fig. 6. PMID:2163606

  2. Collagen-binding vascular endothelial growth factor attenuates CCl4-induced liver fibrosis in mice

    PubMed Central

    Wu, Kangkang; Huang, Rui; Wu, Hongyan; Liu, Yong; Yang, Chenchen; Cao, Shufeng; Hou, Xianglin; Chen, Bing; Dai, Jianwu; Wu, Chao

    2016-01-01

    Vascular endothelial growth factor (VEGF) serves an important role in promoting angiogenesis and tissue regeneration. However, the lack of an effective delivery system that can target this growth factor to the injured site reduces its therapeutic efficacy. Therefore, in the current study, collagen-binding VEGF was constructed by fusing a collagen-binding domain (CBD) to the N-terminal of native VEGF. The CBD-VEGF can specifically bind to collagen which is the major component of the extracellular matrix in fibrotic liver. The anti-fibrotic effects of this novel material were investigated by the carbon tetrachloride (CCl4)-induced liver fibrotic mouse model. Mice were injected with CCl4 intraperitoneally to induce liver fibrosis. CBD-VEGF was injected directly into the liver tissue of mice. The liver tissues were stained with hematoxylin and eosin for general observation or with Masson's trichrome staining for detection of collagen deposition. The hepatic stellate cell activation, blood vessel formation and hepatocyte proliferation were measured by immunohistochemical staining for α-smooth muscle actin, CD31 and Ki67 in the liver tissue. The fluorescent TUNEL assay was performed to evaluate the hepatocyte apoptosis. The present study identified that the CBD-VEGF injection could significantly promote vascularization of the liver tissue of fibrotic mice and attenuate liver fibrosis. Furthermore, hepatocyte apoptosis and hepatic stellate cell activation were attenuated by CBD-VEGF treatment. CBD-VEGF treatment could additionally promote hepatocyte regeneration in the liver tissue of fibrotic mice. Thus, it was suggested that CBD-VEGF may be used as a novel therapeutic intervention for liver fibrosis. PMID:27748931

  3. CCK1 and CCK2 Receptors Are Expressed on Pancreatic Stellate Cells and Induce Collagen Production

    PubMed Central

    Berna, Marc J.; Seiz, Oliver; Nast, Jan Friso; Benten, Daniel; Bläker, Michael; Koch, Johannes; Lohse, Ansgar W.; Pace, Andrea

    2010-01-01

    The gastrointestinal hormone cholecystokinin (CCK) can induce acute pancreatitis in rodents through its action on acinar cells. Treatment with CCK, in combination with other agents, represents the most commonly used model to induce experimental chronic pancreatitis. Pancreatic stellate cells (PSC) are responsible for pancreatic fibrosis and therefore play a predominant role in the genesis of chronic pancreatitis. However, it is not known whether PSC express CCK receptors. Using real time PCR techniques, we demonstrate that CCK1 and CCK2 receptors are expressed on rat PSC. Interestingly both CCK and gastrin significantly induced type I collagen synthesis. Moreover, both inhibit proliferation. These effects are comparable with TGF-β-stimulated PSC. Furthermore, the natural agonists CCK and gastrin induce activation of pro-fibrogenic pathways Akt, ERK, and Src. Using specific CCK1 and CCK2 receptor (CCK2R) inhibitors, we found that Akt activation is mainly mediated by CCK2R. Akt activation by CCK and gastrin could be inhibited by the PI3K inhibitor wortmannin. Activation of ERK and the downstream target Elk-1 could be inhibited by the MEK inhibitor U0126. These data suggest that CCK and gastrin have direct activating effects on PSC, are able to induce collagen synthesis in these cells, and therefore appear to be important regulators of pancreatic fibrogenesis. Furthermore, similar to TGF-β, both CCK and gastrin inhibit proliferation in PSC. PMID:20843811

  4. Inhibition of collagen-induced platelet aggregation by anopheline antiplatelet protein, a saliva protein from a malaria vector mosquito.

    PubMed

    Yoshida, Shigeto; Sudo, Toshiki; Niimi, Masashi; Tao, Lian; Sun, Bing; Kambayashi, Junichi; Watanabe, Hiroyuki; Luo, Enjie; Matsuoka, Hiroyuki

    2008-02-15

    During blood feeding, mosquitoes inject saliva containing a mixture of molecules that inactivate or inhibit various components of the hemostatic response to the bite injury as well as the inflammatory reactions produced by the bite, to facilitate the ingestion of blood. However, the molecular functions of the individual saliva components remain largely unknown. Here, we describe anopheline antiplatelet protein (AAPP) isolated from the saliva of Anopheles stephensi, a human malaria vector mosquito. AAPP exhibited a strong and specific inhibitory activity toward collagen-induced platelet aggregation. The inhibitory mechanism involves direct binding of AAPP to collagen, which blocks platelet adhesion to collagen and inhibits the subsequent increase in intracellular Ca(2+) concentration ([Ca(2+)]i). The binding of AAPP to collagen effectively blocked platelet adhesion via glycoprotein VI (GPVI) and integrin alpha(2)beta(1). Cell adhesion assay showed that AAPP inhibited the binding of GPVI to collagen type I and III without direct effect on GPVI. Moreover, intravenously administered recombinant AAPP strongly inhibited collagen-induced platelet aggregation ex vivo in rats. In summary, AAPP is a malaria vector mosquito-derived specific antagonist of receptors that mediate the adhesion of platelets to collagen. Our study may provide important insights for elucidating the effects of mosquito blood feeding against host hemostasis.

  5. Modulation of heat shock protein 90 affects TGF-β-induced collagen synthesis in human dermal fibroblast cells.

    PubMed

    Lee, Sae Bin; Lim, A-Ram; Rah, Dong Kyun; Kim, Kyung Soo; Min, Hyun Jin

    2016-12-01

    Heat shock protein 90 is a chaperone molecule that aids in proper folding of target proteins. Recently, heat shock protein 90 was found to play a role in would healing through regulation of fibroblast functions. The aim of the present study was to investigate the role of heat shock protein 90 in collagen synthesis in human dermal fibroblasts. The effects of transforming growth factor-β, 17-N-allylamino-17-demethoxygeldanamycin, and transfection of heat shock protein 90 were evaluated by real-time PCR, western blot, and immunofluorescence assays. The Smad 2/3 and Akt pathways were evaluated to identify the signaling pathways involved in collagen synthesis. Heat shock protein 90 and collagen levels were compared in keloid and control tissues by immunohistochemical analysis. The expression of collagen was significantly increased after treatment with transforming growth factor-β, while 17-N-allylamino-17-demethoxygeldanamycin inhibited transforming growth factor-β-induced collagen synthesis. Overexpression of heat shock protein 90 itself with or without transforming growth factor-β increased collagen synthesis. These effects were dependent on Smad 2/3 pathway signaling. Finally, expression of heat shock protein 90 was increased in keloid tissue compared with control tissues. Taken together, these results demonstrate that modulation of heat shock protein 90 influences transforming growth factor-β-induced collagen synthesis via regulation of Smad 2/3 phosphorylation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Attenuation of collagen-induced arthritis in mice by salmon proteoglycan.

    PubMed

    Yoshimura, Sayuri; Asano, Krisana; Nakane, Akio

    2014-01-01

    Rheumatoid arthritis (RA) is a serious autoimmune disease caused by chronic inflammation of connective tissues. The basic principle of RA treatment is aimed to reduce joint inflammation. Our previous studies demonstrated that salmon cartilage proteoglycan (PG) suppresses excess inflammation in different mouse inflammatory diseases. In this study, we investigated the prophylactic effect of PG on the progression of RA using an experimental mouse model, collagen-induced arthritis (CIA). Clinical and histological severity of CIA was attenuated by daily oral administration of PG. In the joints of PG-administered mice, infiltration of macrophages and neutrophils and also osteoclast accumulation were limited. In comparison to nonadministered mice, anti-collagen antibodies in the sera of PG-administered mice did not alter. On the other hand, local expression of interleukin-17A (IL-17A), IL-6, IL-1 β, interferon- γ (IFN- γ), C-C chemokine ligand 2 (CCL2), C-X-C chemokine ligand 1 (CXCL1), and CXCL2 in the joints of PG-administered mice decreased. Moreover, in the response of type II collagen- (CII-) restimulation ex vivo, IL-17A and IFN- γ production by splenocytes from PG-administered mice was less than that of control mice. These data suggested that daily ingested PG attenuated CIA pathogenesis by modulating immune response of splenocytes to CII stimulation and local production inflammatory cytokines and chemokines in the joints.

  7. Protein arginine deiminase 4 inhibition is sufficient for the amelioration of collagen-induced arthritis.

    PubMed

    Willis, V C; Banda, N K; Cordova, K N; Chandra, P E; Robinson, W H; Cooper, D C; Lugo, D; Mehta, G; Taylor, S; Tak, P P; Prinjha, R K; Lewis, H D; Holers, V M

    2017-01-27

    Citrullination of joint proteins by the protein arginine deiminase (PAD) family of enzymes is recognized increasingly as a key process in the pathogenesis of rheumatoid arthritis. This present study was undertaken to explore the efficacy of a novel PAD4-selective inhibitor, GSK199, in the murine collagen-induced arthritis model of rheumatoid arthritis. Mice were dosed daily from the time of collagen immunization with GSK199. Efficacy was assessed against a wide range of end-points, including clinical disease scores, joint histology and immunohistochemistry, serum and joint citrulline levels and quantification of synovial autoantibodies using a proteomic array containing joint peptides. Administration of GSK199 at 30 mg/kg led to significant effects on arthritis, assessed both by global clinical disease activity and by histological analyses of synovial inflammation, pannus formation and damage to cartilage and bone. In addition, significant decreases in complement C3 deposition in both synovium and cartilage were observed robustly with GSK199 at 10 mg/kg. Neither the total levels of citrulline measurable in joint and serum, nor levels of circulating collagen antibodies, were affected significantly by treatment with GSK199 at any dose level. In contrast, a subset of serum antibodies reactive against citrullinated and non-citrullinated joint peptides were reduced with GSK199 treatment. These data extend our previous demonstration of efficacy with the pan-PAD inhibitor Cl-amidine and demonstrate robustly that PAD4 inhibition alone is sufficient to block murine arthritis clinical and histopathological end-points.

  8. Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype

    PubMed Central

    Carey, Shawn P.; Martin, Karen E.; Reinhart-King, Cynthia A.

    2017-01-01

    A critical step in breast cancer progression is local tissue invasion, during which cells pass from the epithelial compartment to the stromal compartment. We recently showed that malignant leader cells can promote the invasion of otherwise non-invasive epithelial follower cells, but the effects of this induced-invasion phenomenon on follower cell phenotype remain unclear. Notably, this process can expose epithelial cells to the stromal extracellular matrix (ECM), which is distinct from the ECM within the normal epithelial microenvironment. Here, we used a 3D epithelial morphogenesis model in which cells were cultured in biochemically and mechanically defined matrices to examine matrix-mediated gene expression and the associated phenotypic response. We found that 3D collagen matrix promoted expression of mesenchymal genes including MT1-MMP, which was required for collagen-stimulated invasive behavior. Epithelial invasion required matrix anchorage as well as signaling through Src, PI3K, and Rac1, and increasingly stiff collagen promoted dispersive epithelial cell invasion. These results suggest that leader cell-facilitated access to the stromal ECM may trigger an invasive phenotype in follower epithelial cells that could enable them to actively participate in local tissue invasion. PMID:28186196

  9. Dimethylnitrosamine-induced liver injury in rats: the early deposition of collagen.

    PubMed

    George, J; Rao, K R; Stern, R; Chandrakasan, G

    2001-01-02

    Dimethylnitrosamine (DMN) is a potent hepatotoxin that can cause fibrosis of the liver. It's ability to provide a suitable rapid experimental murine model for early human cirrhosis was examined. The drug was administered to adult male albino rats in order to document sequential pathological and biochemical alterations. Injury was produced by intraperitoneal injections of DMN on three consecutive days of each week over a 3-week period. A rapid increase in collagen content was documented, with linear increases occurring from days 7 to 21. Livers were examined for histopathological changes on days 7, 14 and 21 following the beginning of exposure. Severe centrilobular congestion and haemorrhagic necrosis could be observed on day 7. Centrilobular necrosis and intense neutrophilic infiltration were observed on day 14. By day 21, collagen fiber deposition could be observed, together with severe centrilobular necrosis, with focal fatty changes, bile duct proliferation, bridging necrosis and fibrosis surrounding the central veins. A decrease in total protein and increase in DNA were also documented. DMN-induced liver injury in rats appears to be a potential animal model for early human cirrhosis and the rapid deposition of collagen, and may serve as a convenient procedure for screening antifibrotic agents.

  10. Transforming growth factor alpha induces collagen degradation and cell migration in differentiating human epidermal raft cultures.

    PubMed Central

    Turksen, K; Choi, Y; Fuchs, E

    1991-01-01

    When cultured on plastic and treated with transforming growth factor alpha (TGF alpha), human keratinocytes exhibit an increase in proliferation at the colony periphery, apparently as a consequence of enhanced cell migration (Barrandon and Green, 1987). To investigate the effects of TGF alpha on a differentiating stratified squamous epithelium and to begin to examine the molecular basis mediating this influence, we cultured human epidermal cells on a gelled lattice of collagen and fibroblasts, floating on the air-liquid interface. Under these conditions, raft cultures differentiate and exhibit morphological and biochemical features of human skin in vivo (Asselineau et al., 1986; Kopan et al., 1987). When 3-wk-old raft cultures were treated with TGF alpha, basal cells showed a marked increase in cell proliferation. At elevated concentrations of TGF alpha, the organization of cells within the artificial tissue changed and islands of basal cells entered the collagen matrix. Biochemical analysis of the response revealed that type I collagenase and gelatinase were induced by keratinocytes within 12 h after TGF alpha treatment. In contrast, invasion of basal cells into the collagen matrix was not significant until 48-72 h post-treatment, suggesting that collagenase and gelatinase production may be a prerequisite to this phenomenon. These results have important implications for the possible role of TGF alpha in squamous cell carcinoma and tumor invasion. Images PMID:1663788

  11. Mechanical strain- and high glucose-induced alterations in mesangial cell collagen metabolism: role of TGF-beta.

    PubMed

    Riser, B L; Cortes, P; Yee, J; Sharba, A K; Asano, K; Rodriguez-Barbero, A; Narins, R G

    1998-05-01

    Cultured mesangial cells (MC) exposed to cyclic mechanical strain or high glucose levels increase their secretion of transforming growth factor-beta1 (TGF-beta1) and collagen, suggesting possible mechanisms for the development of diabetic renal sclerosis resulting from intraglomerular hypertension and/or hyperglycemia. This study examines whether glucose interacts with mechanical strain to influence collagen metabolism and whether this change is mediated by TGF-beta. Accordingly, rat MC were grown on flexible-bottom plates in 8 or 35 mM glucose media, subjected to 2 to 5 d of cyclic stretching, and assayed for TGF-beta1 mRNA, TGF-beta1 secretion, and the incorporation of 14C-proline into free or protein-associated hydroxyproline to assess the dynamics of collagen metabolism. Stretching or high glucose exposure increased TGF-beta1 secretion twofold and TGF-beta1 mRNA levels by 30 and 45%, respectively. However, the combination of these stimuli increased secretion greater than fivefold without further elevating mRNA. In 8 mM glucose medium, stretching significantly increased MC collagen synthesis and breakdown, but did not alter accumulation, whereas those stretched in 35 mM glucose markedly increased collagen accumulation. TGF-beta neutralization significantly reduced baseline collagen synthesis, breakdown, and accumulation in low glucose, but had no significant effect on the changes induced by stretch. In contrast, the same treatment of MC in high glucose medium greatly reduced stretch-induced synthesis and breakdown of collagen and totally abolished the increase in collagen accumulation. These results indicate that TGF-beta plays a positive regulatory role in MC collagen synthesis, breakdown, and accumulation. However, in low glucose there is no stretch-induced collagen accumulation, and the effect of TGF-beta is limited to basal collagen turnover. In high glucose media, TGF-beta is a critical mediator of stretch-induced collagen synthesis and catabolism, and

  12. Murine CMV-Induced Hearing Loss Is Associated with Inner Ear Inflammation and Loss of Spiral Ganglia Neurons

    PubMed Central

    Golemac, Mijo; Pugel, Ester Pernjak; Jonjic, Stipan; Britt, William J.

    2015-01-01

    Congenital human cytomegalovirus (HCMV) occurs in 0.5–1% of live births and approximately 10% of infected infants develop hearing loss. The mechanism(s) of hearing loss remain unknown. We developed a murine model of CMV induced hearing loss in which murine cytomegalovirus (MCMV) infection of newborn mice leads to hematogenous spread of virus to the inner ear, induction of inflammatory responses, and hearing loss. Characteristics of the hearing loss described in infants with congenital HCMV infection were observed including, delayed onset, progressive hearing loss, and unilateral hearing loss in this model and, these characteristics were viral inoculum dependent. Viral antigens were present in the inner ear as were CD3+ mononuclear cells in the spiral ganglion and stria vascularis. Spiral ganglion neuron density was decreased after infection, thus providing a mechanism for hearing loss. The lack of significant inner ear histopathology and persistence of inflammation in cochlea of mice with hearing loss raised the possibility that inflammation was a major component of the mechanism(s) of hearing loss in MCMV infected mice. PMID:25875183

  13. Murine CMV-induced hearing loss is associated with inner ear inflammation and loss of spiral ganglia neurons.

    PubMed

    Bradford, Russell D; Yoo, Young-Gun; Golemac, Mijo; Pugel, Ester Pernjak; Jonjic, Stipan; Britt, William J

    2015-04-01

    Congenital human cytomegalovirus (HCMV) occurs in 0.5-1% of live births and approximately 10% of infected infants develop hearing loss. The mechanism(s) of hearing loss remain unknown. We developed a murine model of CMV induced hearing loss in which murine cytomegalovirus (MCMV) infection of newborn mice leads to hematogenous spread of virus to the inner ear, induction of inflammatory responses, and hearing loss. Characteristics of the hearing loss described in infants with congenital HCMV infection were observed including, delayed onset, progressive hearing loss, and unilateral hearing loss in this model and, these characteristics were viral inoculum dependent. Viral antigens were present in the inner ear as were CD(3+) mononuclear cells in the spiral ganglion and stria vascularis. Spiral ganglion neuron density was decreased after infection, thus providing a mechanism for hearing loss. The lack of significant inner ear histopathology and persistence of inflammation in cochlea of mice with hearing loss raised the possibility that inflammation was a major component of the mechanism(s) of hearing loss in MCMV infected mice.

  14. β-Aminopropionitrile-Induced Reduction in Enzymatic Crosslinking Causes In Vitro Changes in Collagen Morphology and Molecular Composition

    PubMed Central

    Canelón, Silvia P.

    2016-01-01

    Type I collagen morphology can be characterized using fibril D-spacing, a metric which describes the periodicity of repeating bands of gap and overlap regions of collagen molecules arranged into collagen fibrils. This fibrillar structure is stabilized by enzymatic crosslinks initiated by lysyl oxidase (LOX), a step which can be disrupted using β-aminopropionitrile (BAPN). Murine in vivo studies have confirmed effects of BAPN on collagen nanostructure and the objective of this study was to evaluate the mechanism of these effects in vitro by measuring D-spacing, evaluating the ratio of mature to immature crosslinks, and quantifying gene expression of type I collagen and LOX. Osteoblasts were cultured in complete media, and differentiated using ascorbic acid, in the presence or absence of 0.25mM BAPN-fumarate. The matrix produced was imaged using atomic force microscopy (AFM) and 2D Fast Fourier transforms were performed to extract D-spacing from individual fibrils. The experiment was repeated for quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Fourier Transform infrared spectroscopy (FTIR) analyses. The D-spacing distribution of collagen produced in the presence of BAPN was shifted toward higher D-spacing values, indicating BAPN affects the morphology of collagen produced in vitro, supporting aforementioned in vivo experiments. In contrast, no difference in gene expression was found for any target gene, suggesting LOX inhibition does not upregulate the LOX gene to compensate for the reduction in aldehyde formation, or regulate expression of genes encoding type I collagen. Finally, the mature to immature crosslink ratio decreased with BAPN treatment and was linked to a reduction in peak percent area of mature crosslink hydroxylysylpyridinoline (HP). In conclusion, in vitro treatment of osteoblasts with low levels of BAPN did not induce changes in genes encoding LOX or type I collagen, but led to an increase in collagen D-spacing as well as

  15. Human-induced contaminant impacts on migratory birds: lessons from the North American eared grebe (Podiceps nigricollis)

    USGS Publications Warehouse

    Sladky, Kurt K.; Quist, Charlotte; Ramirez, Pedro; Hill, David; Dein, F. Joshua

    2003-01-01

    The effects of aquatic contaminants generated by soda ash mining processes on the North American eared grebe (Podiceps nigricollis) population illustrates important issues associated with human-induced habitat degradation on the health of migratory species. Eared grebes have been extensively studied in their staging and breeding habitats, but little is known about their 2- to 3-day migratory periods. During migration, few bodies of water are available to the birds for refuge between freshwater breeding areas in Canada and hypersaline lakes (e.g., Great Salt Lake in Utah or Mono Lake in California) to which they migrate. One geographic refuge area includes a series of "tailings" ponds associated with soda ash mining operations in southwestern Wyoming. The ponds range from 100-1200 acres, with water containing high concentrations of sodium decahydrate (Na2CO3•10H2O). At cool temperatures (generally < 40°F) sodium decahydrate precipitates out of the water and crystallizes on solid objects in the ponds or on the water surface. Bird mortality on these ponds has been recognized since the early 1970's, and the mining companies have developed hazing strategies and rehabilitation programs in order to minimize mortality. In order to determine causes of grebe mortality and devise strategies to reduce mortality, a field epidemiologic investigation was developed with the following objectives: 1) to determine whether eared grebes have quantifiable physiologic abnormalities associated with exposure to soda ash mine pond water; 2) to evaluate physical effects of sodium decahydrate crystallization on grebe survival; 3) to establish cause of death based on necropsy of deceased grebes; 4) to determine long-term survivability of eared grebes after exposure to the pond water; and 5) to evaluate water quality and determine whether aquatic invertebrates are present in the ponds as a possible food source.

  16. Thermally induced irreversible conformational changes in collagen probed by optical second harmonic generation and laser-induced fluorescence.

    PubMed

    Theodossiou, T; Rapti, G S; Hovhannisyan, V; Georgiou, E; Politopoulos, K; Yova, D

    2002-01-01

    Irreversible thermal conformational changes induced to collagen have been studied by optical methods. More specifically, second harmonic generation (SHG) from incident nanosecond Ng:YAG 1064 nm radiation and laser-induced fluorescence by 337 nm, pulsed nanosecond nitrogen laser excitation, at 405, 410 and 415 nm emission wavelengths were registered at eight temperatures (40 degrees, 50 degrees, 55 degrees, 60 degrees, 65 degrees, 70 degrees, 75 degrees and 80 degrees C) and normalised with respect to the corresponding values at the ambient temperature of 30 degrees C. The heating protocol used in this work, was selected to monitor only permanent changes reflecting in the optical properties of the samples under investigation. In this context, the SHG, directly related to the collagen fibril population in triple helix conformation, indicated on irreversible phase transition around 64 degrees C. On the other hand fluorescence related to the destruction of cross-linked chromophores in collagen, some of which are related to the triple helix tertiary structure, also indicated a permanent phase transition around 63 degrees C. These results are in agreement with previous results from studies with differential scanning calorimetry. However SHG and fluorescence, being non-invasive optical methods are expected to have a significant impact in the fields of laser ablative surgery and laser tissue welding.

  17. The effect of sulfur mustard and nitrogen mustard on corneal collagen degradation induced by the enzyme collagenase.

    PubMed

    Naderi, Mostafa; Jadidi, Khosro; Falahati, Farzaneh; Alavi, Saayyed Ali

    2010-12-01

    Sulfur mustard (SM) is an alkylating agent that can affect cornea and induce various complications. With regard to the role of the enzyme collagenase in dermatologic complications induced by sm and its role in other ocular disorders, we studied the effect of SM and nitrogen mustard (NM) on collagen degradation by collagenase. This study included 7 groups of samples: The negative control group contained collagen without collagenase and toxins, the control group contained collagen and collagenase without any toxin, the positive control groups of NM and SM contained collagen and NM or SM without collagenase, the experimental groups of NM and SM contained collagen that was affected by NM or SM and collagenase, and the control group of collagenase contained only collagenase without containing collagen or receiving toxins. After incubation for 3.5 hours, the amount of hydroxyproline and the protein content of the samples were measured. Data were analyzed by analysis of variance (ANOVA). The protein concentrations of the negative control group and the positive control groups of SM and NM were significantly lower than those for all other groups of the study. There was a significant difference in hydroxyproline concentration of control group and negative control group; however, there was no significant difference between experimental group of SM and the positive control group of SM. There was no significant difference between the negative control group and the positive control group of SM in the hydroxyproline concentration of sediment samples. According to the results of this study, SM can affect the corneal collagen in a way in which collagenase cannot degrade it. In addition, it can be hypothesized that ineffective activity of this enzyme can result in increasing concentration of collagenase, which can lead to the destruction of the normal collagen of the cornea. The main result of this study confirms the hypothesis that SM inhibits the effect of collagenase on corneal

  18. Observer variation in drug-induced sleep endoscopy: experienced versus nonexperienced ear, nose, and throat surgeons.

    PubMed

    Vroegop, Anneclaire V M T; Vanderveken, Olivier M; Wouters, Kristien; Hamans, Evert; Dieltjens, Marijke; Michels, Nele R; Hohenhorst, Winfried; Kezirian, Eric J; Kotecha, Bhik T; de Vries, Nico; Braem, Marc J; Van de Heyning, Paul H

    2013-06-01

    To determine variations in interobserver and intraobserver agreement of drug-induced sleep endoscopy (DISE) in a cohort of experienced versus nonexperienced ear, nose, and throat (ENT) surgeons. Prospective, blinded agreement study. Ninety-seven ENT surgeons (90 nonexperienced with DISE; seven experienced) observed six different DISE videos and were asked to score the upper airway (UA) level (palate, oropharynx, tongue base, hypopharynx, epiglottis), direction (anteroposterior, concentric, lateral), and degree of collapse (none; partial or complete collapse). Findings were collected and analyzed, determining interobserver and intraobserver agreement [overall agreement (OA), specific agreement (SA)] and kappa values per UA level. In the nonexperienced group, overall interobserver agreement on presence of tongue base collapse (OA = 0.63; kappa = 0.33) was followed by the agreement on epiglottis (OA = 0.57; kappa = 0.23) and oropharynx collapse (OA = 0.45; kappa = 0.09). Low overall interobserver agreement in this group was found for hypopharyngeal collapse (OA = 0.33; kappa = 0.08). A similar ranking was found for degree of collapse. For direction of collapse, high interobserver agreement was found for the palate (OA = 0.57; kappa = 0.16). Among the experienced observers, overall interobserver agreement was highest for presence of tongue base collapse (OA = 0.93; kappa = 0.71), followed by collapse of the palate (OA = 0.80; kappa = 0.51). In this group, lowest agreement was also found for hypopharyngeal collapse (OA = 0.47; kappa = 0.03). Interob-server agreement on direction of collapse was highest for epiglottis collapse (OA = 0.97; kappa = 0.97). Concerning the degree of collapse, highest agreement was found for degree of oropharyngeal collapse (OA = 0.82; kappa = 0.66). Among the experienced observers a statistically significant higher interobserver agreement was obtained for presence, direction, and degree of oropharyngeal collapse, as well as for presence of

  19. Lycium barbarum polysaccharide attenuates type II collagen-induced arthritis in mice.

    PubMed

    Liu, Yao; Lv, Jun; Yang, Bo; Liu, Fang; Tian, Zhiqiang; Cai, Yongqing; Yang, Di; Ouyang, Jing; Sun, Fengjun; Shi, Ying; Xia, Peiyuan

    2015-01-01

    No curative treatment is yet available for rheumatoid arthritis (RA), wherein chronic synovitis progresses to cartilage and bone destruction. Considering the recently recognized anti-inflammatory properties of Lycium barbarum polysaccharide (LBP; a derivative of the goji berry), we established the collagen type II-induced arthritis (CIA) mouse model to investigate the potential therapeutic effects and mechanisms of LBP. The CIA-induced changes and LBP-related effects were assessed by micro-computed tomography measurement of bone volume/tissue volume and by ELISA and western blotting detection of inflammatory mediators and matrix metalloproteinases (MMPs). The CIA mice showed substantial bone damage, bone loss, and increased concentrations of TNF-α, IL-6, IL-17, PGE2, MIP-1, anti-type II collagen IgG, MMP-1, and MMP-3. LBP treatments produced significant dose-dependent improvements in CIA-induced bone damage and bone loss, and significantly reduced CIA-stimulated expression of the inflammatory mediators and MMPs. Thus, LBP therapy can preserve bone integrity in CIA mice, possibly through down-regulation of inflammatory mediators.

  20. Recombinant Galectin-1 and Its Genetic Delivery Suppress Collagen-Induced Arthritis via T Cell Apoptosis

    PubMed Central

    Rabinovich, Gabriel A.; Daly, Gordon; Dreja, Hanna; Tailor, Hitakshi; Riera, Clelia M.; Hirabayashi, Jun; Chernajovsky, Yuti

    1999-01-01

    Galectin-1 (GAL-1), a member of a family of conserved β-galactoside–binding proteins, has been shown to induce in vitro apoptosis of activated T cells and immature thymocytes. We assessed the therapeutic effects and mechanisms of action of delivery of GAL-1 in a collagen-induced arthritis model. A single injection of syngeneic DBA/1 fibroblasts engineered to secrete GAL-1 at the day of disease onset was able to abrogate clinical and histopathological manifestations of arthritis. This effect was reproduced by daily administration of recombinant GAL-1. GAL-1 treatment resulted in reduction in anticollagen immunoglobulin (Ig)G levels. The cytokine profile in draining lymph node cells and the anticollagen IgG isotypes in mice sera at the end of the treatment clearly showed inhibition of the proinflammatory response and skewing towards a type 2–polarized immune reaction. Lymph node cells from mice engaged in the gene therapy protocol increased their susceptibility to antigen-induced apoptosis. Moreover, GAL-1–expressing fibroblasts and recombinant GAL-1 revealed a specific dose-dependent inhibitory effect in vitro in antigen-dependent interleukin 2 production to an Aq-restricted, collagen type 2–specific T cell hybridoma clone. Thus, a correlation between the apoptotic properties of GAL-1 in vitro and its immunomodulatory properties in vivo supports its therapeutic potential in the treatment of T helper cell type 1–mediated autoimmune disorders. PMID:10430627

  1. STAT6-Dependent Collagen Synthesis in Human Fibroblasts Is Induced by Bovine Milk.

    PubMed

    Kippenberger, Stefan; Zöller, Nadja; Kleemann, Johannes; Müller, Jutta; Kaufmann, Roland; Hofmann, Matthias; Bernd, August; Meissner, Markus; Valesky, Eva

    2015-01-01

    Since the domestication of the urus, 10.000 years ago, mankind utilizes bovine milk for different purposes. Besides usage as a nutrient also the external application of milk on skin has a long tradition going back to at least the ancient Aegypt with Cleopatra VII as a great exponent. In order to test whether milk has impact on skin physiology, cultures of human skin fibroblasts were exposed to commercial bovine milk. Our data show significant induction of proliferation by milk (max. 2,3-fold, EC50: 2,5% milk) without toxic effects. Surprisingly, bovine milk was identified as strong inducer of collagen 1A1 synthesis at both, the protein (4-fold, EC50: 0,09% milk) and promoter level. Regarding the underlying molecular pathways, we show functional activation of STAT6 in a p44/42 and p38-dependent manner. More upstream, we identified IGF-1 and insulin as key factors responsible for milk-induced collagen synthesis. These findings show that bovine milk contains bioactive molecules that act on human skin cells. Therefore, it is tempting to test the herein introduced concept in treatment of atrophic skin conditions induced e.g. by UV light or corticosteroids.

  2. STAT6-Dependent Collagen Synthesis in Human Fibroblasts Is Induced by Bovine Milk

    PubMed Central

    Kippenberger, Stefan; Zöller, Nadja; Kleemann, Johannes; Müller, Jutta; Kaufmann, Roland; Hofmann, Matthias; Bernd, August; Meissner, Markus; Valesky, Eva

    2015-01-01

    Since the domestication of the urus, 10.000 years ago, mankind utilizes bovine milk for different purposes. Besides usage as a nutrient also the external application of milk on skin has a long tradition going back to at least the ancient Aegypt with Cleopatra VII as a great exponent. In order to test whether milk has impact on skin physiology, cultures of human skin fibroblasts were exposed to commercial bovine milk. Our data show significant induction of proliferation by milk (max. 2,3-fold, EC50: 2,5% milk) without toxic effects. Surprisingly, bovine milk was identified as strong inducer of collagen 1A1 synthesis at both, the protein (4-fold, EC50: 0,09% milk) and promoter level. Regarding the underlying molecular pathways, we show functional activation of STAT6 in a p44/42 and p38-dependent manner. More upstream, we identified IGF-1 and insulin as key factors responsible for milk-induced collagen synthesis. These findings show that bovine milk contains bioactive molecules that act on human skin cells. Therefore, it is tempting to test the herein introduced concept in treatment of atrophic skin conditions induced e.g. by UV light or corticosteroids. PMID:26134630

  3. Targeting the chemotactic function of CD147 reduces collagen-induced arthritis.

    PubMed

    Damsker, Jesse M; Okwumabua, Ifeanyi; Pushkarsky, Tatiana; Arora, Kamalpreet; Bukrinsky, Michael I; Constant, Stephanie L

    2009-01-01

    CD147 is a type I transmembrane glycoprotein expressed on a wide variety of cell types, including all leucocytes. While CD147 is best known as a potent inducer of matrix metalloproteinases, it can also function as a regulator of leucocyte migration through its cell surface interaction with chemotactic extracellular cyclophilins. A potential role for CD147-cyclophilin interactions during inflammatory diseases, including rheumatoid arthritis (RA), is suggested from several studies. For example, CD147 expression is increased on reactive leucocytes in the synovial fluid and tissues of patients with arthritis. In addition, the synovial fluid of patients with RA contains high levels of extracellular cyclophilin A. In the current studies we investigated the contribution of the chemotactic function of CD147-cyclophilin interactions to joint inflammation using the mouse model of collagen-induced arthritis. Our data demonstrate that proinflammatory leucocytes, specifically neutrophils, monocytes and activated CD4(+) T cells, lose their ability to migrate in response to cyclophilin A in vitro when treated with anti-CD147 monoclonal antibody. Furthermore, in vivo treatment with anti-CD147 monoclonal antibody can reduce the development of collagen-induced arthritis in mice by >75%. Such findings suggest that CD147-cyclophilin interactions might contribute to the pathogenesis of RA by promoting the recruitment of leucocytes into joint tissues.

  4. Targeting the chemotactic function of CD147 reduces collagen-induced arthritis

    PubMed Central

    Damsker, Jesse M; Okwumabua, Ifeanyi; Pushkarsky, Tatiana; Arora, Kamalpreet; Bukrinsky, Michael I; Constant, Stephanie L

    2009-01-01

    CD147 is a type I transmembrane glycoprotein expressed on a wide variety of cell types, including all leucocytes. While CD147 is best known as a potent inducer of matrix metalloproteinases, it can also function as a regulator of leucocyte migration through its cell surface interaction with chemotactic extracellular cyclophilins. A potential role for CD147–cyclophilin interactions during inflammatory diseases, including rheumatoid arthritis (RA), is suggested from several studies. For example, CD147 expression is increased on reactive leucocytes in the synovial fluid and tissues of patients with arthritis. In addition, the synovial fluid of patients with RA contains high levels of extracellular cyclophilin A. In the current studies we investigated the contribution of the chemotactic function of CD147–cyclophilin interactions to joint inflammation using the mouse model of collagen-induced arthritis. Our data demonstrate that proinflammatory leucocytes, specifically neutrophils, monocytes and activated CD4+ T cells, lose their ability to migrate in response to cyclophilin A in vitro when treated with anti-CD147 monoclonal antibody. Furthermore, in vivo treatment with anti-CD147 monoclonal antibody can reduce the development of collagen-induced arthritis in mice by > 75%. Such findings suggest that CD147–cyclophilin interactions might contribute to the pathogenesis of RA by promoting the recruitment of leucocytes into joint tissues. PMID:18557953

  5. The proteasome regulates collagen-induced platelet aggregation via nuclear-factor-kappa-B (NFĸB) activation.

    PubMed

    Grundler, Katharina; Rotter, Raffaela; Tilley, Sloane; Pircher, Joachim; Czermak, Thomas; Yakac, Mustaf; Gaitzsch, Erik; Massberg, Steffen; Krötz, Florian; Sohn, Hae-Young; Pohl, Ulrich; Mannell, Hanna; Kraemer, Bjoern F

    2016-12-01

    Platelets possess critical hemostatic functions in the system of thrombosis and hemostasis, which can be affected by a multitude of external factors. Previous research has shown that platelets have the capacity to synthesize proteins de novo and more recently a multicatalytic protein complex, the proteasome, has been discovered in platelets. Due to its vital function for cellular integrity, the proteasome has become a therapeutic target for anti-proliferative drug therapies in cancer. Clinically thrombocytopenia is a frequent side-effect, but the aggregatory function of platelets also appears to be affected. Little is known however about underlying regulatory mechanisms and functional aspects of proteasome inhibition on platelets. Our study aims to investigate the role of the proteasome in regulating collagen-induced platelet aggregation and its interaction with NFkB in this context. Using fluorescence activity assays, platelet aggregometry and immunoblotting, we investigate regulatory interactions of the proteasome and Nuclear-factor-kappa-B (NFkB) in collagen-induced platelet aggregation. We show that collagen induces proteasome activation in platelets and collagen-induced platelet aggregation can be reduced with proteasome inhibition by the specific inhibitor epoxomicin. This effect does not depend on Rho-kinase/ROCK activation or thromboxane release, but rather depends on NFkB activation. Inhibition of the proteasome prevented cleavage of NFκB-inhibitor protein IκBα and decreased NFκB activity after collagen stimulation. Inhibition of the NFκB-pathway in return reduced collagen-induced platelet proteasome activity and cleavage of proteasome substrates. This work offers novel explanations how the proteasome influences collagen-dependent platelet aggregation by involving non-genomic functions of NFkB. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Decreased collagen-induced arthritis severity and adaptive immunity in MKK-6-deficient mice.

    PubMed

    Hammaker, Deepa; Topolewski, Katharyn; Edgar, Meghan; Yoshizawa, Toshio; Fukushima, Akihisa; Boyle, David L; Burak, Esther Cory; Sah, Robert L; Firestein, Gary S

    2012-03-01

    The MAPK kinases MKK-3 and MKK-6 regulate p38 MAPK activation in inflammatory diseases such as rheumatoid arthritis (RA). Previous studies demonstrated that MKK-3 or MKK-6 deficiency inhibits K/BxN serum-induced arthritis. However, the role of these kinases in adaptive immunity-dependent models of chronic arthritis is not known. The goal of this study was to evaluate MKK-3 and MKK-6 deficiency in the collagen-induced arthritis (CIA) model. Wild-type (WT), MKK-3(-/-) , and MKK-6(-/-) mice were immunized with bovine type II collagen. Disease activity was evaluated by semiquantitative scoring, histologic assessment, and micro-computed tomography. Serum anticollagen antibody levels were quantified by enzyme-linked immunosorbent assay. In vitro T cell cytokine response was measured by flow cytometry and multiplex analysis. Expression of joint cytokines and matrix metalloproteinases (MMPs) was determined by quantitative polymerase chain reaction. MKK-6 deficiency markedly reduced arthritis severity compared with that in WT mice, while the absence of MKK-3 had an intermediate effect. Joint damage was minimal in arthritic MKK-6(-/-) mice and intermediate in MKK-3(-/-) mice compared with WT mice. MKK-6(-/-) mice had modestly lower levels of pathogenic anticollagen antibodies than did WT or MKK-3(-/-) mice. In vitro T cell assays showed reduced proliferation and interleukin-17 (IL-17) production by lymph node cells from MKK-6(-/-) mice in response to type II collagen. Gene expression of synovial IL-6, MMP-3, and MMP-13 was significantly inhibited in MKK-6-deficient mice. Reduced disease severity in MKK-6(-/-) mice correlated with decreased anticollagen antibody responses, indicating that MKK-6 is a crucial regulator of inflammatory joint destruction in CIA. MKK-6 is a potential therapeutic target in complex diseases involving adaptive immune responses, such as RA. Copyright © 2012 by the American College of Rheumatology.

  7. A proinflammatory role for Fas in joints of mice with collagen-induced arthritis

    PubMed Central

    Tu-Rapp, Hoang; Hammermüller, André; Mix, Eilhard; Kreutzer, Hans-Jürgen; Goerlich, Roland; Köhler, Hansjürgen; Nizze, Horst; Thiesen, Hans-Jürgen; Ibrahim, Saleh M

    2004-01-01

    Collagen-induced arthritis (CIA) is a chronic inflammatory disease bearing all the hallmarks of rheumatoid arthritis, e.g. polyarthritis, synovitis, and subsequent cartilage/bone erosions. One feature of the disease contributing to joint damage is synovial hyperplasia. The factors responsible for the hyperplasia are unknown; however, an imbalance between rates of cell proliferation and cell death (apoptosis) has been suggested. To evaluate the role of a major pathway of cell death – Fas (CD95)/FasL – in the pathogenesis of CIA, DBA/1J mice with a mutation of the Fas gene (lpr) were generated. The susceptibility of the mutant DBA-lpr/lpr mice to arthritis induced by collagen type II was evaluated. Contrary to expectations, the DBA-lpr/lpr mice developed significantly milder disease than the control littermates. The incidence of disease was also significantly lower in the lpr/lpr mice than in the controls (40% versus 81%; P < 0.05). However DBA-lpr/lpr mice mounted a robust immune response to collagen, and the expression of local proinflammatory cytokines such as, e.g., tumor necrosis factor α (TNF-α) and IL-6 were increased at the onset of disease. Since the contribution of synovial fibroblasts to inflammation and joint destruction is crucial, the potential activating effect of Fas on mouse fibroblast cell line NIH3T3 was investigated. On treatment with anti-Fas in vitro, the cell death of NIH3T3 fibroblasts was reduced and the expression of proinflammatory cytokines TNF-α and IL-6 was increased. These findings suggest that impairment of immune tolerance by increased T-cell reactivity does not lead to enhanced susceptibility to CIA and point to a role of Fas in joint destruction. PMID:15380040

  8. The essential role of fetuin in the serum-induced calcification of collagen.

    PubMed

    Toroian, Damon; Price, Paul A

    2008-02-01

    The mineral in bone is located primarily within the collagen fibril, and during mineralization the fibril is formed first and then water within the fibril is replaced with mineral. Our goal is to understand the mechanism of fibril mineralization, and as a first step we recently determined the size exclusion characteristics of the fibril. This study indicates that apatite crystals up to 12 unit cells in size can access the water within the fibril while molecules larger than a 40-kDa protein are excluded. We proposed a novel mechanism for fibril mineralization based on these observations, one that relies exclusively on agents excluded from the fibril. One agent generates crystals outside the fibril, some of which diffuse into the fibril and grow, and the other selectively inhibits crystal growth outside of the fibril. We have tested this mechanism by examining the impact of removing the major serum inhibitor of apatite growth, fetuin, on the serum-induced calcification of collagen. The results of this test show that fetuin determines the location of serum-driven mineralization: in fetuin's presence, mineral forms only within collagen fibrils; in fetuin's absence, mineral forms only in solution outside the fibrils. The X-ray diffraction spectrum of serum-induced mineral is comparable to the spectrum of bone crystals. These observations show that serum calcification activity consists of an as yet unidentified agent that generates crystal nuclei, some of which diffuse into the fibril, and fetuin, which favors fibril mineralization by selectively inhibiting the growth of crystals outside the fibril.

  9. Characterization of type I, II, III, IV, and V collagens by time-resolved laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Marcu, Laura; Cohen, David; Maarek, Jean-Michel I.; Grundfest, Warren S.

    2000-04-01

    The relative proportions of genetically distinct collagen types in connective tissues vary with tissue type and change during disease progression, development, wound healing, aging. This study aims to 1) characterize the spectro- temporal fluorescence emission of fiber different types of collagen and 2) assess the ability of time-resolved laser- induced fluorescence spectroscopy to distinguish between collagen types. Fluorescence emission of commercially available purified samples was induced with nitrogen laser excitation pulses and detected with a MCP-PMT connected to a digital storage oscilloscope. The recorded time-resolved emission spectra displayed distinct fluorescence emission characteristics for each collagen type. The time domain information complemented the spectral domain intensity data for improved discrimination between different collagen types. Our results reveal that analysis of the fluorescence emission can be used to characterize different species of collagen. Also, the results suggest that time-resolved spectroscopy can be used for monitoring of connective tissue matrix composition changes due to various pathological and non-pathological conditions.

  10. Influence of Term of Exposure to High-Fat Diet-Induced Obesity on Myocardial Collagen Type I and III

    PubMed Central

    da Silva, Danielle Cristina Tomaz; Lima-Leopoldo, Ana Paula; Leopoldo, André Soares; de Campos, Dijon Henrique Salomé; do Nascimento, André Ferreira; de Oliveira, Sílvio Assis; Padovani, Carlos Roberto; Cicogna, Antonio Carlos

    2014-01-01

    Background Obesity is a risk factor for many medical complications; medical research has shown that hemodynamic, morphological and functional abnormalities are correlated with the duration and severity of obesity. Objective Present study determined the influence of term of exposure to high-fat diet-induced obesity on myocardial collagen type I and III. Methods Thirty-day-old male Wistar rats were randomly distributed into two groups: a control (C) group fed a standard rat chow and an obese (Ob) group alternately fed one of four palatable high-fat diets. Each diet was changed daily, and the rats were maintained on their respective diets for 15 (C15 and Ob15) and 30 (C30 and Ob30) consecutive weeks. Obesity was determined by adiposity index. Results The Ob15 group was similar to the C15 group regarding the expression of myocardial collagen type I; however, expression in the Ob30 group was less than C30 group. The time of exposure to obesity was associated with a reduction in collagen type I in Ob30 when compared with Ob15. Obesity did not affect collagen type III expression. Conclusion This study showed that the time of exposure to obesity for 30 weeks induced by unsaturated high-fat diet caused a reduction in myocardial collagen type I expression in the obese rats. However, no effect was seen on myocardial collagen type III expression. PMID:24676371

  11. Dynamics of Early Synovial Cytokine Expression in Rodent Collagen-Induced Arthritis

    PubMed Central

    Palmblad, Karin; Erlandsson-Harris, Helena; Tracey, Kevin J.; Andersson, Ulf

    2001-01-01

    This study was performed to elucidate pathophysiological events before and during the course of collagen-induced arthritis in Dark Agouti rats, a model for rheumatoid arthritis. Kinetic studies of local cytokine responses were determined using immunohistochemical techniques, quantified by computer-assisted image analysis. We recently reported that the macrophage-pacifying agent CNI-1493 successfully ameliorated collagen-induced arthritis. In the present trial, we investigated the potential of CNI-1493 to down-regulate pro-inflammatory cytokines. Synovial cryosections were analyzed at various time points for the presence of interleukin (IL)-1β, tumor necrosis factor (TNF), and transforming growth factor (TGF)-β. Unexpectedly, an early simultaneous TNF and IL-1β expression was detected in resident cells in the lining layer, preceding disease onset and inflammatory cell infiltration by >1 week. The predominant cytokine synthesis by synovial (ED1+) macrophages coincided with clinical disease. TNF production greatly exceeded that of IL-1β. CNI-1493 treatment did not affect the early disease-preceding TNF and IL-1β synthesis in the lining layer. However, after disease onset, CNI-1493 intervention resulted in a pronounced reduced IL-1β and in particular TNF expression. Furthermore, CNI-1493 significantly up-regulated synthesis of the anti-inflammatory cytokine TGF-β and thereby shifted the balance of pro-inflammatory and anti-inflammatory cytokines in the arthritic joint in a beneficial way. PMID:11159186

  12. Collagen-Hydroxyapatite Scaffolds Induce Human Adipose Derived Stem Cells Osteogenic Differentiation In Vitro.

    PubMed

    Calabrese, Giovanna; Giuffrida, Raffaella; Fabbi, Claudia; Figallo, Elisa; Lo Furno, Debora; Gulino, Rosario; Colarossi, Cristina; Fullone, Francesco; Giuffrida, Rosario; Parenti, Rosalba; Memeo, Lorenzo; Forte, Stefano

    2016-01-01

    Mesenchymal stem cells (MSCs) play a crucial role in regulating normal skeletal homeostasis and, in case of injury, in bone healing and reestablishment of skeletal integrity. Recent scientific literature is focused on the development of bone regeneration models where MSCs are combined with biomimetic three-dimensional scaffolds able to direct MSC osteogenesis. In this work the osteogenic potential of human MSCs isolated from adipose tissue (hADSCs) has been evaluated in vitro in combination with collagen/Mg doped hydroxyapatite scaffolds. Results demonstrate the high osteogenic potential of hADSCs when cultured in specific differentiation induction medium, as revealed by the Alizarin Red S staining and gene expression profile analysis. In combination with collagen/hydroxyapatite scaffold, hADSCs differentiate into mature osteoblasts even in the absence of specific inducing factors; nevertheless, the supplement of the factors markedly accelerates the osteogenic process, as confirmed by the expression of specific markers of pre-osteoblast and mature osteoblast stages, such as osterix, osteopontin (also known as bone sialoprotein I), osteocalcin and specific markers of extracellular matrix maturation and mineralization stages, such as ALPL and osteonectin. Hence, the present work demonstrates that the scaffold per se is able to induce hADSCs differentiation, while the addition of osteo-inductive factors produces a significant acceleration of the osteogenic process. This observation makes the use of our model potentially interesting in the field of regenerative medicine for the treatment of bone defects.

  13. Collagen-Hydroxyapatite Scaffolds Induce Human Adipose Derived Stem Cells Osteogenic Differentiation In Vitro

    PubMed Central

    Fabbi, Claudia; Figallo, Elisa; Lo Furno, Debora; Gulino, Rosario; Colarossi, Cristina; Fullone, Francesco; Giuffrida, Rosario; Parenti, Rosalba; Memeo, Lorenzo; Forte, Stefano

    2016-01-01

    Mesenchymal stem cells (MSCs) play a crucial role in regulating normal skeletal homeostasis and, in case of injury, in bone healing and reestablishment of skeletal integrity. Recent scientific literature is focused on the development of bone regeneration models where MSCs are combined with biomimetic three-dimensional scaffolds able to direct MSC osteogenesis. In this work the osteogenic potential of human MSCs isolated from adipose tissue (hADSCs) has been evaluated in vitro in combination with collagen/Mg doped hydroxyapatite scaffolds. Results demonstrate the high osteogenic potential of hADSCs when cultured in specific differentiation induction medium, as revealed by the Alizarin Red S staining and gene expression profile analysis. In combination with collagen/hydroxyapatite scaffold, hADSCs differentiate into mature osteoblasts even in the absence of specific inducing factors; nevertheless, the supplement of the factors markedly accelerates the osteogenic process, as confirmed by the expression of specific markers of pre-osteoblast and mature osteoblast stages, such as osterix, osteopontin (also known as bone sialoprotein I), osteocalcin and specific markers of extracellular matrix maturation and mineralization stages, such as ALPL and osteonectin. Hence, the present work demonstrates that the scaffold per se is able to induce hADSCs differentiation, while the addition of osteo-inductive factors produces a significant acceleration of the osteogenic process. This observation makes the use of our model potentially interesting in the field of regenerative medicine for the treatment of bone defects. PMID:26982592

  14. Isoegomaketone Alleviates the Development of Collagen Antibody-Induced Arthritis in Male Balb/c Mice.

    PubMed

    Jin, Chang Hyun; So, Yangkang; Nam, Bomi; Han, Sung Nim; Kim, Jin-Baek

    2017-07-19

    In this study, we attempted to identify and assess effects of isoegomaketone (IK) isolated from Perilla frutescens var. crispa on the development of rheumatoid arthritis (RA). RA was induced in male Balb/c mice by collagen antibody injection. Experimental animals were randomly divided into five groups: normal, collagen antibody-induced arthritis (CAIA), CAIA + IK (5 mg/kg/day), CAIA + IK (10 mg/kg/day), and CAIA + apigenin (16 mg/kg/day) and respective treatments were administered via oral gavage once per day for four days. Mice treated with IK (10 mg/kg/day) developed less severe arthritis than the control CAIA mice. Arthritic score, paw volume, and paw thickness were less significant compared to the control CAIA mice at day seven (73%, 15%, and 14% lower, respectively). Furthermore, histopathological examination of ankle for inflammation showed that infiltration of inflammatory cells and edema formation were reduced by IK treatment. Similarly, neutrophil to lymphocyte ratio (NLR) in whole blood was lower in mice treated with IK (10 mg/kg/day) by 85% when compared to CAIA mice. Taken together, treatment with IK delays the onset of the arthritis and alleviates the manifestations of arthritis in CAIA mice.

  15. The destruction evaluation in different foot joints: new ideas in collagen-induced arthritis rat model.

    PubMed

    Zhang, Peng; Han, Dong; Tang, Tingting; Zhang, Xiaoling; Dai, Kerong

    2009-04-01

    Collagen-induced arthritis (CIA) has been widely used as the animal model of rheumatoid arthritis since 1977, while till now, no paper has depicted the destruction characteristics in different foot joints. In this study, we observed the differences among the foot joint destruction process of CIA to elucidate further the pathological process of this model. CIA was induced in male Wistar rat immunized with bovine type II collagen and Freund's incomplete adjuvant. Radiological studies were performed 1, 2, 4, 6, and 8 months after the second immunization to follow the development of disease. At last, all the animals were killed and histological research was performed. In the histological observation, three main types of joint destructions such as subchondral side erosion, external joint erosion and the cartilaginous fusion of articular cartilage were identified. All these destruction forms exist in one joint or several different joints. Furthermore, we found that tartrate-resistant acid phosphatase (TRAP) stain-positive cells participated in the destruction of articular cartilage. These new findings showed that in the disease process of the CIA model, different foot joints show different destruction characteristics and cartilaginous fusion of foot joints is another typical pathological characteristic.

  16. Effects of zoledronate on the radiation-induced collagen breakdown: a prospective randomized clinical trial.

    PubMed

    Gierloff, M; Reutemann, M; Gülses, A; Niehoff, P; Wiltfang, J; Açil, Y

    2015-06-01

    A negative side effect of therapeutic irradiation is the radiation-induced bone loss which can lead, in long term, to pathological fractures. Until today, the detailed mechanism is unknown. If osteoclasts would mainly contribute to the pathological bone loss, bisphosphonates could potentially counteract the osteolytic process and possibly help to prevent long-term complications. The aim of this study was to evaluate the effect of zoledronic acid on the early radiation-induced degradation of bone collagen fibrils by monitoring the urinary excretion of hydroxylysylpyridinoline and lysylpyridinoline under radiotherapy. A total of 40 patients with skeletal metastases were assigned for a local radiotherapy and bisphosphonate treatment. The patients were prospectively randomized into two treatment groups: group A (n = 20) received the first zoledronate administration after and group B (n = 20) prior to the radiotherapy. Urine samples were collected from each patient on the first day, in the middle, and on the last day of the radiation therapy. Measurement of the bone metabolites hydroxylysylpyridinoline and lysylpyridinoline was performed by high-performance liquid chromatography. Statistical analysis was performed using the Mann-Whitney U test. The hydroxylysylpyridinoline and lysylpyridinoline excretion decreased significantly in the combined bisphosphonate and radiotherapy group (p = 0.02, p = 0.08). No significant change of the hydroxylysylpyridinoline and lysylpyridinoline excretion was determined in the patients that received solely irradiation. The results indicate the ability of zoledronate to prevent the early radiation-induced bone collagen degradation suggesting that the radiation-induced bone loss is mainly caused by osteoclastic bone resorption rather than by a direct radiation-induced damage.

  17. Experimental colitis delays and reduces the severity of collagen-induced arthritis in mice.

    PubMed

    Hablot, Julie; Peyrin-Biroulet, Laurent; Kokten, Tunay; El Omar, Reine; Netter, Patrick; Bastien, Claire; Jouzeau, Jean-Yves; Sokol, Harry; Moulin, David

    2017-01-01

    Amongst extraintestinal manifestations (EIM) occurring in IBD patients, rheumatologic manifestations are the most frequent. Understanding the relationships between arthritis and colitis is a prerequisite to improving the management of these patients. Microbiota of patients with IBD or rheumatologic diseases, like spondyloarthritis (SpA) is modified compared to healthy individual. Thus, we have evaluated the impact of colitis in the development of arthritis in mice and we have analyzed microbiota changes. Collagen-induced arthritis (CIA) was induced at day 0 in DBA1 mice exposed or not to Dextran Sodium Sulfate (DSS) to induce colitis between day 14 and day 21. Animals were monitored regularly for arthritis and colitis severity (clinical score, hindpaw edema). Fecal microbiota was studied by 16S rRNA deep sequencing at critical time points (D14, D14, D21 & D41). At day 41, histological scoring of the intestines and ankles were performed at the end of experiment. Induction of colitis slightly delayed arthritis onset (2 ± 1 days of delay) and reduced its severity (5.75 ± 1.62 in arthritis only group vs 4.00 ± 1.48 in arthritis + colitis group (p = 0.02 at day 28) macroscopically and histologically. In contrast, colitis severity was not influenced by arthritis development. Induction of colitis promoted a modification of microbiota composition and a decrease of α-diversity. Fecal microbiota composition was different between "colitis" and "arthritis+colitis" groups during colitis development. Interestingly a milder decrease of bacterial diversity in the "arthritis+colitis" group was observed. Concomitant experimental colitis protects mice against collagen-induced arthritis and this is associated with changes in gut microbiome composition.

  18. Personal listening devices and the prevention of noise induced hearing loss in children: the Cheers for Ears Pilot Program.

    PubMed

    Taljaard, Dunay Schmulian; Leishman, Natalie F; Eikelboom, Robert H

    2013-01-01

    To determine whether the Cheers for Ears Program on noise induced hearing loss prevention was effective in improving current knowledge of noise impact of personal listening devices on hearing, and in changing self-reported listening behavior of primary school students aged between 9 years and 13 years. A survey study was implemented at participating primary schools. Schools represented various levels of socio-economic status. Informed consent (parents and teachers) and informed assent (pupils) were obtained. All pupils participated in two interactive sessions (the second 6 weeks after first) and only those who provided assent and consent were surveyed at three points during the study: Prior to the first session (baseline), directly post-session and at 3 months post-session. A total of 318 pupils were surveyed. The median age of the participants was 11 years (nearly 50% of the total cohort). Significant changes are reported in their knowledge about hearing and in listening behavior of the participants as measured by pre- and post-measurement. The changes in behaviors were stable and sustained at 3 months post-intervention survey point and the success of the program can be attributed to the multimodal interactive nature of the sessions, the spacing of the sessions and the survey points. Wide-ranging support from schools and departments also played a role. The pilot Cheers for Ears Program is effective in increasing knowledge on the harmful effects of noise and therefore, it may prevent future noise-induced hearing loss.

  19. Parasite-mediated down-regulation of collagen-induced arthritis (CIA) in DA rats.

    PubMed

    Mattsson, L; Larsson, P; Erlandsson-Harris, H; Klareskog, L; Harris, R A

    2000-12-01

    Microbial infection can impact on the course of autoimmune disease, both in disease-inducing and disease-protecting capacities. Here we investigated if infection with Trypanosoma brucei brucei (Tbb), the protozoan causative agent of African Sleeping Sickness, could ameliorate the course of CIA in the Dark Agouti rat, an experimental model which shares many features with human rheumatoid arthritis. Infection of animals with living, but not inoculation with dead Tbb resulted in complete or significant reduction of clinical arthritic symptoms. Infection prior to collagen immunization was more effective than a later treatment, and this effect was related to the level of parasitaemia. Using reverse transcriptase-polymerase chain reaction we detected an increase in interferon-gamma mRNA in the draining lymph nodes of Tbb-treated animals relative to controls at day 28 after disease induction. Transforming growth factor-beta could be detected in the lymph nodes in four out of six animals that had received Tbb. In the joints, immunohistochemistry revealed reduced production of tumour necrosis factor-alpha in Tbb-treated animals relative to controls. The most striking difference between Tbb-infected and control groups, as measured by ELISA, was the down-regulation of anti-collagen II IgG antibody responses in parasite-infected animals. We conclude that live parasites can exert an immunomodulatory and protective effect in CIA in which several mechanisms may work in parallel, although the almost complete down-regulation of the anti-collagen antibody response may alone explain the protective effect in CIA. The described model may be useful in further attempts to use the mechanisms involved in parasite immune defence to prevent and treat certain autoimmune conditions.

  20. Activation of cannabinoid receptor 2 attenuates synovitis and joint distruction in collagen-induced arthritis.

    PubMed

    Gui, Huan; Liu, Xia; Liu, Li-Rong; Su, Ding-Feng; Dai, Sheng-Ming

    2015-06-01

    Recent studies have suggested immunomodulatory and anti-inflammatory effects of cannabinoid receptor 2 (CB2R) activation, which is devoid of psychoactivity. We have demonstrated the expression of CB2R in synovial tissue from patients with rheumatoid arthritis (RA), and its specific activation shows inhibitory effects on fibroblast-like synoviocytes. However, it is still unclear whether selective activation of CB2R inhibits joint inflammation or protects joint damage in RA. A murine model of collagen-induced arthritis (CIA) was used to evaluate the therapeutic efficacy of HU-308, a selective CB2R agonist. The disease severity was evaluated by semi-quantitative scoring of joint swelling, histological assessment of joint inflammation and structure, and radiographic assessment of joint destruction by using digital plain radiographs and micro-CT scans. The concentrations of various isotypes of anti-collagen II antibodies in sera and the levels of cytokines in culture supernatants were determined by ELISA. Compared with vehicle treatment, protective treatment with intraperitoneal injection of HU-308 (0.3-1.0 mg/kg) failed to decrease the incidence of the development of CIA, but it effectively suppressed the severity of the disease. In CIA mice, treatment with HU-308 significantly decreased joint swelling, synovial inflammation, and joint destruction, as well as serum levels of anti-collagen II antibodies. In vitro, HU-308 (1-10 μM) significantly suppressed the production of proinflammatory cytokines IL-6 and TNF-α from lipopolysaccharide-stimulated murine peritoneal macrophages with intact CB2R in dose-dependent manners. HU-308 failed to elicit any inhibitory effect of on lipopolysaccharide-stimulated macrophages from CB2R-knockout mice. Activation of CB2R by HU-308 has therapeutic potential for RA to suppress synovitis and alleviate joint destruction by inhibiting the production of autoantibodies and proinflammatory cytokines. Copyright © 2014 Elsevier GmbH. All

  1. Puerarin decreases bone loss and collagen destruction in rats with ligature-induced periodontitis.

    PubMed

    Yang, X; Zhang, H; Wang, J; Zhang, Z; Li, C

    2015-12-01

    Puerarin, the most abundant isoflavonoid in kudzu root, shows various bioactivities, including bone-sparing, anti-inflammatory and antiproteinase properties. This study aimed to evaluate the effects of puerarin in a rat model of ligature-induced periodontitis. Rat models of periodontitis were developed by bilaterally placing ligatures around the first mandibular molars. Puerarin was administrated daily by gavage at doses of 100, 200 and 400 mg/kg, starting a day before the placement of ligatures. Rats were humanely killed 7 d after the induction of periodontitis. Micro-computed tomography and sirius red staining were used to evaluate alveolar bone loss and collagen destruction, respectively. Histomorphometrical analysis was used to assess the inflammatory cell infiltration. Immunohistochemistry and tartrate-resistant acid phosphatase were used to detect receptor activator of nuclear factor kappa B ligand and osteoprotegerin expressions, and osteoclast activity in the gingiva and alveolar bone. The activation of nuclear factor-kappa B, production of tumor necrosis factor (TNF)-α and interleukin (IL)-1β, glycosylation of extracellular matrix metalloproteinase inducer, and production of matrix metalloproteinase (MMP)-2 and MMP-9 in the gingiva were assessed by Western blot. Puerarin at doses of 200 and 400 mg/kg significantly reduced the alveolar bone loss compared with the vehicle group. Collagen destruction and inflammatory cell infiltration were significantly less in the puerarin-treated group (200 mg/kg) compared with that of the vehicle group. Puerarin (200 mg/kg) also reduced the ratio of receptor activator of nuclear factor kappa B ligand/osteoprotegerin and osteoclast activity. Western blot analysis showed that puerarin (200 mg/kg) inhibited the activation of nuclear factor-kappa B p65, which is associated with lower IL-1β and TNF-α production, and reduced the glycosylation of extracellular matrix metalloproteinase inducer, which is associated with lower

  2. Carbonic Anhydrase Inhibitors Induce Developmental Toxicity During Zebrafish Embryogenesis, Especially in the Inner Ear.

    PubMed

    Matsumoto, Hiroko; Fujiwara, Shoko; Miyagi, Hisako; Nakamura, Nobuhiro; Shiga, Yasuhiro; Ohta, Toshihiro; Tsuzuki, Mikio

    2017-07-10

    In vertebrates, carbonic anhydrases (CAs) play important roles in ion transport and pH regulation in many organs, including the eyes, kidneys, central nervous system, and inner ear. In aquatic organisms, the enzyme is inhibited by various chemicals present in the environment, such as heavy metals, pesticides, and pharmaceuticals. In this study, the effects of CA inhibitors, i.e., sulfonamides [ethoxyzolamide (EZA), acetazolamide (AZA), and dorzolamide (DZA)], on zebrafish embryogenesis were investigated. In embryos treated with the sulfonamides, abnormal development, such as smaller otoliths, an enlarged heart, an irregular pectoral fin, and aberrant swimming behavior, was observed. Especially, the development of otoliths and locomotor activity was severely affected by all the sulfonamides, and EZA was a consistently stronger inhibitor than AZA or DZA. In the embryos treated with EZA, inner ear hair cells containing several CA isoforms, which provide HCO3(-) to the endolymph for otolith calcification and maintain an appropriate pH there, were affected. Acridine orange/ethidium bromide staining indicated that the hair cell damage in the inner ear and pectral fin is due to apoptosis. Moreover, RNA measurement demonstrated that altered gene expression of cell cycle arrest- and apoptosis-related proteins p53, p21, p27, and Bcl-2 occurred even at 0.08 ppm with which normal development was observed. This finding suggests that a low concentration of EZA may affect embryogenesis via the apoptosis pathway. Thus, our findings demonstrated the importance of potential risk assessment of CA inhibition, especially regarding the formation of otoliths as a one of the most sensitive organs in embryogenesis.

  3. The Preventive Effects of Nanopowdered Peanut Sprout-added Caciocavallo Cheese on Collagen-induced Arthritic Mice.

    PubMed

    Kim, Dong-Hwi; Chang, Yoon Hyuk; Kwak, Hae-Soo

    2014-01-01

    The present study was carried out to investigate the effects of nanopowdered peanut sprout-added Caciocavallo cheese (NPCC) on the prevention and treatment of rheumatoid arthritis in DBA/IJ mice immunized with type II collagen. After the induction of arthritis, the mice were being divided into five groups: (1) normal, no immunization; (2) CIA, collagen-induced arthritis; (3) MTX, collagen-induced arthritis treated with methotrexate (0.3 mg/kg body weight); (4) CC, collagen-induced arthritis treated with Caciocavallo cheese (0.6 g/d); (5) NPCC, collagen-induced arthritis treated with nanopowdered peanut sprout-added Caciocavallo cheese (0.6 g/d). Nanopowdered peanut sprout was ranged from 300 to 350 nm, while regular powdered peanut sprouts were ranged from 50 to 150 μm. The NPCC group had considerable reductions of clinical scores and paw thicknesses at the end of experiment as compared to the CIA group. In the serum analysis, the TNF-α, IL-1β, IL- 6 and IgG1 levels in the NPCC group have decreased by 69.4, 75.9, 66.6, and 61.9%, respectively, when compared to the CIA group. The histological score and spleen index of the NPCC group were significantly lower than the CIA group. In conclusion, the feeding NPCC method could delay and/or prevent the rheumatoid arthritis in the collagen-induced arthritis mouse model. Based on this study, nanopowdered peanut sprouts could be applied to various functional cheeses.

  4. The Preventive Effects of Nanopowdered Peanut Sprout-added Caciocavallo Cheese on Collagen-induced Arthritic Mice

    PubMed Central

    Chang, Yoon Hyuk

    2014-01-01

    The present study was carried out to investigate the effects of nanopowdered peanut sprout-added Caciocavallo cheese (NPCC) on the prevention and treatment of rheumatoid arthritis in DBA/IJ mice immunized with type II collagen. After the induction of arthritis, the mice were being divided into five groups: (1) normal, no immunization; (2) CIA, collagen-induced arthritis; (3) MTX, collagen-induced arthritis treated with methotrexate (0.3 mg/kg body weight); (4) CC, collagen-induced arthritis treated with Caciocavallo cheese (0.6 g/d); (5) NPCC, collagen-induced arthritis treated with nanopowdered peanut sprout-added Caciocavallo cheese (0.6 g/d). Nanopowdered peanut sprout was ranged from 300 to 350 nm, while regular powdered peanut sprouts were ranged from 50 to 150 μm. The NPCC group had considerable reductions of clinical scores and paw thicknesses at the end of experiment as compared to the CIA group. In the serum analysis, the TNF-α, IL-1β, IL- 6 and IgG1 levels in the NPCC group have decreased by 69.4, 75.9, 66.6, and 61.9%, respectively, when compared to the CIA group. The histological score and spleen index of the NPCC group were significantly lower than the CIA group. In conclusion, the feeding NPCC method could delay and/or prevent the rheumatoid arthritis in the collagen-induced arthritis mouse model. Based on this study, nanopowdered peanut sprouts could be applied to various functional cheeses. PMID:26760745

  5. Lymphatic response to depilation-induced inflammation in mouse ear assessed with label-free optical lymphangiography.

    PubMed

    Qin, Wan; Baran, Utku; Wang, Ruikang

    2015-10-01

    Optical microangiography (OMAG) is a noninvasive technique capable of imaging 3D microvasculature. OMAG-based optical lymphangiography has been developed for 3D visualization of lymphatic vessels without the need for exogenous contrast agents. In this study, we utilize the optical lymphangiography to investigate dynamic changes in lymphatic response within skin tissue to depilation-induced inflammation by using mouse ear as a simple tissue model. A spectral-domain optical coherence tomography (OCT) system is used in this study to acquire volumetric images of mouse ear. The system operates under the ultrahigh-sensitive OMAG scanning protocol with five repetitions for each B frame. An improved adaptive-threshold-based method is proposed to segment lymphatic vessels from OCT microstructure images. Depilation is achieved by placing hair removal lotion on mouse ear pinna for 5 minutes. Three acquisitions are made before depilation, 3-minute and 30-minute post-depilation, respectively. Right after the application of depilation lotion on the skin, we observe that the blind-ended sacs of initial lymphatics are mainly visible in a specific area of the normal tissue. At 5 minutes, more collecting lymphatic vessels start to form, evidenced by their valve structure that only exists in collecting lymphatic vessels. The lymphangiogenesis is almost completed within 8 minutes in the inflammatory tissue. Our experimental results demonstrate that the OMAG-based optical lymphangiography has great potential to improve the understanding of lymphatic system in response to various physiological conditions, thus would benefit the development of effective therapeutics. © 2015 Wiley Periodicals, Inc.

  6. Mice Deficient in CD38 Develop an Attenuated Form of Collagen Type II-Induced Arthritis

    PubMed Central

    Postigo, Jorge; Iglesias, Marcos; Cerezo-Wallis, Daniela; Rosal-Vela, Antonio; García-Rodríguez, Sonia; Zubiaur, Mercedes; Sancho, Jaime

    2012-01-01

    CD38, a type II transmembrane glycoprotein expressed in many cells of the immune system, is involved in cell signaling, migration and differentiation. Studies in CD38 deficient mice (CD38 KO mice) indicate that this molecule controls inflammatory immune responses, although its involvement in these responses depends on the disease model analyzed. Here, we explored the role of CD38 in the control of autoimmune responses using chicken collagen type II (col II) immunized C57BL/6-CD38 KO mice as a model of collagen-induced arthritis (CIA). We demonstrate that CD38 KO mice develop an attenuated CIA that is accompanied by a limited joint induction of IL-1β and IL-6 expression, by the lack of induction of IFNγ expression in the joints and by a reduction in the percentages of invariant NKT (iNKT) cells in the spleen. Immunized CD38 KO mice produce high levels of circulating IgG1 and low of IgG2a anti-col II antibodies in association with reduced percentages of Th1 cells in the draining lymph nodes. Altogether, our results show that CD38 participates in the pathogenesis of CIA controlling the number of iNKT cells and promoting Th1 inflammatory responses. PMID:22438945

  7. Metabolomics analysis of collagen-induced arthritis in rats and interventional effects of oral tolerance.

    PubMed

    Ding, Xinghong; Hu, Jinbo; Li, Jinfeng; Zhang, Yan; Shui, Bingjie; Ding, Zhishan; Yao, Li; Fan, Yongsheng

    2014-08-01

    A serum metabolomics method based on rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RRLC-Q-TOF-MS) was performed for a holistic evaluation of the metabolic changes of collagen-induced arthritis (CIA) in rats and to assess the interventional effects of type II collagen (CII) in this model. Partial least-squares-discriminant analysis (PLS-DA) was employed to study the metabolic profiling of CIA rats and control rats. Ten metabolites, namely, 12(S)-HHTrE, 12(S)-HEPE, PGE2, TXB2, 12(S)-HETE, LysoPE(16:0), PE(O-18:0/0:0), Lyso-PE(18:2), Lyso-PE(20:4), and Lyso-PC(22:5) were identified as differential metabolites associated with the pathogenesis of CIA. These results suggested that dysregulation of the arachidonic acid (AA) and phospholipid metabolic networks is involved in the pathomechanism of CIA. Differential metabolomics and histopathological analyses demonstrated that CII inhibits the progress of arthritis. Furthermore, the therapeutic effects of CII on CIA may involve regulation of the disordered AA and phospholipid metabolic networks. This metabolomics study provides new insights into the pathogenesis of arthritis and, furthermore, indicates the potential mechanism underlying the significantly increased prevalence of metabolic syndrome, defined as a clustering of cardiovascular disease (CVD) risk factors, in arthritis patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Anti-Tumor Necrosis Factor Ameliorates Joint Disease in Murine Collagen- Induced Arthritis

    NASA Astrophysics Data System (ADS)

    Williams, Richard O.; Feldmann, Marc; Maini, Ravinder N.

    1992-10-01

    There is considerable evidence implicating tumor necrosis factor α (TNF-α) in the pathogenesis of rheumatoid arthritis. This evidence is based not only on the universal presence of TNF-α in arthritic joints accompanied by the upregulation of TNF-α receptors but also on the effects of neutralizing TNF-α in joint cell cultures. Thus, neutralization of TNF-α in vitro results in inhibition of the production of interleukin 1, which like TNF-α, is believed to contribute to joint inflammation and erosion. To determine the validity of this concept in vivo, the effect of administering TNF-neutralizing antibodies to mice with collagen-induced arthritis has been studied. This disease model was chosen because of its many immunological and pathological similarities to human rheumatoid arthritis. TN3-19.12, a hamster IgG1 monoclonal antibody to murine TNF-α/β, was injected i.p. into mice either before the onset of arthritis or after the establishment of clinical disease. Anti-TNF administered prior to disease onset significantly reduced paw swelling and histological severity of arthritis without reducing the incidence of arthritis or the level of circulating anti-type II collagen IgG. More relevant to human disease was the capacity of the antibody to reduce the clinical score, paw swelling, and the histological severity of disease even when injected after the onset of clinical arthritis. These results have implications for possible modes of therapy of human arthritis.

  9. Potent Antiarthritic Properties of Phloretin in Murine Collagen-Induced Arthritis

    PubMed Central

    Wang, Shun-Ping; Li, Shiming; Chao, Ya-Hsuan

    2016-01-01

    In the exploration of potential therapeutic agents for rheumatoid arthritis (RA), DBA/1J mice are used as the RA model of collagen-induced arthritis (CIA). Phloretin, a flavonoid compound extracted from Prunus mandshurica, has been found to exhibit anti-inflammatory activity, making it a potential candidate for treatment of RA. The objective of this study was to evaluate the therapeutic effects of phloretin on CIA mice. CIA mice were dosed daily with phloretin at either 50 or 100 mg/kg among two treatment groups. CIA treated mice showed mitigation of clinical symptoms of RA in addition to reduced inflammation of hind-limbs compared to mice who did not receive phloretin. Histological analysis showed that phloretin suppressed the severity of RA and effectively mitigated joint inflammation and cartilage- and bone-destruction via reducing proinflammatory cytokine productions (TNF-α, IL-6, IL-1β, and IL-17). This was at least partially mediated by causing inadequate splenocyte activation and proliferation. Moreover, phloretin-treated CIA mice showed decreased oxidative stress and diminished levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in paw tissues as well as reduced productivity of anti-collagen antibodies in serum. We have concluded that phloretin could be a potent and effective antiarthritis agent, demonstrating anti-inflammatory, antioxidative, and immunomodulatory effects in CIA mice. PMID:28044086

  10. Anti-inflammatory effect of Ulmus davidiana Planch (Ulmaceae) on collagen-induced inflammation in rats.

    PubMed

    Song, In-Kwang; Kim, Kap-Sung; Suh, Seok-Jong; Kim, Myung-Sunny; Kwon, Dae Young; Kim, Sun-Lim; Kim, Cheorl-Ho

    2007-01-01

    Ulmus davidiana Planch (Ulmaceae) extract (UD) has long been known to have anti-inflammatory and anticancer activities. UD has been also known to have protective effects on damaged tissue, inflammation and bone among other functions. Effects of UD on inflammatory and immune responses and its mechanisms in collagen-induced inflammation (CII) rat were studied. Hind paw volumes of rats were measured by volume meter; lymphocyte proliferation, interleukin (IL)-1, IL-2, tumor necrosis factor (TNF)-α level was determined by 3-(4,5-2dimethylthiazal-2yl)2,5-diphenyltetrazoliumbromide assay. Antibodies to collagen type II (BC-II) were determined by enzyme-linked immunosorbent assay. There was a marked secondary inflammatory response in CII model, which accompanied with the decrease of body weight and the weight of immune organs simultaneously. The administration of UD (20, 80, 150mg/kg, intragastrically×10 days) inhibited the inflammatory response and restored body weight and the weight of immune organs of CII rats. Lymphocyte proliferation and IL-2 production of CII rats increases, together with IL-1 and TNF-α in peritoneal macrophages and synoviocytes. The administration of UD (20, 80, 150mg/kg, 10 days) reduced above changes significantly. UD had no effect on the concentration of antibodies to BC-II. From the results, it was concluded that UD possesses anti-inflammatory and immunoregulatory activities and has a therapeutic effect on CII rats.

  11. Preventive Effect of Lactobacillus helveticus SBT2171 on Collagen-Induced Arthritis in Mice

    PubMed Central

    Yamashita, Maya; Matsumoto, Kurumi; Endo, Tsutomu; Ukibe, Ken; Hosoya, Tomohiro; Matsubara, Yumi; Nakagawa, Hisako; Sakai, Fumihiko; Miyazaki, Tadaaki

    2017-01-01

    We recently reported that the intraperitoneal inoculation of Lactobacillus helveticus SBT2171 inhibited the development of collagen-induced arthritis (CIA), a murine model of rheumatoid arthritis (RA). In the present study, we evaluated the effect of the oral administration of L. helveticus SBT2171 on CIA development and on the regulation of antigen-specific antibody production and inflammatory immune cells, which have been implicated in the development of RA. Both oral administration and intraperitoneal inoculation of L. helveticus SBT2171 reduced joint swelling, body weight loss, and the serum level of bovine type II collagen (CII)-specific antibodies in the CIA mouse model. The intraperitoneal inoculation also decreased the arthritis incidence, joint damage, and serum level of interleukin (IL)-6. In addition, the numbers of total immune cells, total B cells, germinal center B cells, and CD4+ T cells in the draining lymph nodes were decreased following intraperitoneal inoculation of L. helveticus SBT2171. These findings demonstrate the ability of L. helveticus SBT2171 to downregulate the abundance of immune cells and the subsequent production of CII-specific antibodies and IL-6, thereby suppressing the CIA symptoms, indicating its potential for use in the prevention of RA. PMID:28680422

  12. Suppression of collagen-induced arthritis with a serine proteinase inhibitor (serpin) derived from myxoma virus.

    PubMed

    Brahn, Ernest; Lee, Sarah; Lucas, Alexandra; McFadden, Grant; Macaulay, Colin

    2014-08-01

    Many viruses encode virulence factors to facilitate their own survival by modulating a host's inflammatory response. One of these factors, secreted from cells infected with myxoma virus, is the serine proteinase inhibitor (serpin) Serp-1. Because Serp-1 had demonstrated anti-inflammatory properties in arterial injury models and viral infections, it was cloned and evaluated for therapeutic efficacy in collagen-induced arthritis (CIA). Clinical severity was significantly lower in the Serp-1 protocols (p<0.0001) and blinded radiographs indicated that the Serp-1 group had significantly less erosions than the controls (p<0.01). Delayed-type hypersensitivity was lower in the Serp-1 group but antibody titers to type II collagen were not significantly altered. Recipients had minimal histopathologic synovial changes and did not develop neutralizing antibodies to Serp-1. These results indicate that Serp-1 impedes the pathogenesis of CIA and suggests that the therapeutic potential of serine proteinase inhibitors in inflammatory joint diseases, such as rheumatoid arthritis, should be investigated further.

  13. Inhibition of arthritis by systemic administration of endostatin in passive murine collagen induced arthritis

    PubMed Central

    Kurosaka, D; Yoshida, K; Yasuda, J; Yokoyama, T; Kingetsu, I; Yamaguchi, N; Joh, K; Matsushima, M; Saito, S; Yamada, A

    2003-01-01

    Methods: Four kinds of monoclonal anti-type II collagen antibody followed by lipopolysaccharide (LPS) three days later were given to 6 week old, female Balb/c mice to induce arthritis. Three groups of mice received 0.2 mg/kg/day, 2 mg/kg/day, and 10 mg/kg/day of endostatin, respectively, whereas a control group received phosphate buffered saline (PBS). Endostatin or PBS was given for 13 days, starting before the development of arthritis. Arthritis was evaluated by arthritis scores and hind paw thicknesses. Mice were killed for histological examination on the 22nd day after the administration of monoclonal anti-type II collagen antibody. Results: Arthritis developed within three days after LPS administration in both the control and endostatin treatment groups. No difference in the development rate of arthritis was noted between the control and endostatin treatment groups. Arthritis scores remained significantly lower in the endostatin 10 mg/kg/day group than in the control group. Hind paw thicknesses also remained significantly smaller in the endostatin 10 mg/kg/day group than in the control group. Histopathological examination showed that synovial thickening and subchondral bone erosion improved more in the endostatin treatment groups than in the control group. Conclusion: The systemic administration of endostatin had an arthritis inhibiting effect in RA animal models. Endostatin inhibited, in particular, pannus formation and bone destruction. PMID:12810435

  14. The role of lipopolysaccharide injected systemically in the reactivation of collagen-induced arthritis in mice

    PubMed Central

    Yoshino, Shin; Ohsawa, Motoyasu

    2000-01-01

    We investigated the role of bacterial lipopolysaccharide (LPS) in the reactivation of autoimmune disease by using collagen-induced arthritis (CIA) in mice in which autoimmunity to the joint cartilage component type II collagen (CII) was involved.CIA was induced by immunization with CII emulsified with complete Freund's adjuvant at the base of the tail (day 0) followed by a booster injection on day 21. Varying doses of LPS from E. coli were i.p. injected on day 50.Arthritis began to develop on day 25 after immunization with CII and reached a peak on day 35. Thereafter, arthritis subsided gradually but moderate joint inflammation was still observed on day 50. An i.p. injection of LPS on day 50 markedly reactivated arthritis on a dose-related fashion. Histologically, on day 55, there were marked oedema of synovium which had proliferated by the day of LPS injection, new formation of fibrin, and intense infiltration of neutrophils accompanied with a large number of mononuclear cells. The reactivation of CIA by LPS was associated with increases in anti-CII IgG and IgG2a antibodies as well as various cytokines including IL-12, IFN-γ, IL-1β, and TNF-α. LPS from S. enteritidis, S. typhimurium, and K. neumoniae and its component, lipid A from E. coli also reactivated the disease. Polymyxin B sulphate suppressed LPS- or lipid A-induced reactivation of CIA.These results suggest that LPS may play an important role in the reactivation of autoimmune joint inflammatory diseases such as rheumatoid arthritis in humans. PMID:10742285

  15. Periodontal bacterial colonization in synovial tissues exacerbates collagen-induced arthritis in B10.RIII mice.

    PubMed

    Chukkapalli, Sasanka; Rivera-Kweh, Mercedes; Gehlot, Prashasnika; Velsko, Irina; Bhattacharyya, Indraneel; Calise, S John; Satoh, Minoru; Chan, Edward K L; Holoshitz, Joseph; Kesavalu, Lakshmyya

    2016-07-12

    It has been previously hypothesized that oral microbes may be an etiological link between rheumatoid arthritis (RA) and periodontal disease. However, the mechanistic basis of this association is incompletely understood. Here, we investigated the role of periodontal bacteria in induction of joint inflammation in collagen-induced arthritis (CIA) in B10.RIII mice. CIA-prone B10.RIII mice were infected orally with a polybacterial mixture of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia for 24 weeks before induction of CIA. The ability of polybacterial mixture to colonize the periodontium and induce systemic response, horizontal alveolar bone resorption in infected B10.RIII mice was investigated. Arthritis incidence, severity of joint inflammation, pannus formation, skeletal damage, hematogenous dissemination of the infection, matrix metalloproteinase 3 (MMP3) levels, and interleukin-17 expression levels were evaluated. B10.RIII mice had gingival colonization with all three bacteria, higher levels of anti-bacterial immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies, significant alveolar bone resorption, and hematogenous dissemination of P. gingivalis to synovial joints. Infected B10.RIII mice had more severe arthritis, and higher serum matrix metalloproteinase 3 levels and activity. Histopathological analysis showed increased inflammatory cell infiltration, destruction of articular cartilage, erosions, and pannus formation. Additionally, involved joints showed had expression levels of interleukin-17. These findings demonstrate that physical presence of periodontal bacteria in synovial joints of B10.RIII mice with collagen-induced arthritis is associated with arthritis exacerbation, and support the hypothesis that oral bacteria, specifically P. gingivalis, play a significant role in augmenting autoimmune arthritis due to their intravascular dissemination to the joints.

  16. Boswellia serrata extract attenuates inflammatory mediators and oxidative stress in collagen induced arthritis.

    PubMed

    Umar, Sadiq; Umar, Khalid; Sarwar, Abu Hasnath Md Golam; Khan, Altaf; Ahmad, Niyaz; Ahmad, Sayeed; Katiyar, Chandra Kant; Husain, Syed Akhtar; Khan, Haider A

    2014-05-15

    Rheumatoid arthritis (RA) is a chronic inflammatory disease which leads to destruction of joints. Current treatment modalities for RA either produce symptomatic relief (NSAIDs) or modify the disease process (DMARDs). Though effective, their use is also limited by their side effects. As a result, the interest in alternative, well tolerated anti-inflammatory remedies has re-emerged. Our aim was to evaluate the antioxidant and antiarthritic activity of Boswellia serrata gum resin extract (BSE) in collagen induced arthritis. Arthritis was induced in male Wistar rats by collagen induced arthritis (CIA) method. BSE was administered at doses of 100 and 200mg/kg body weight once daily for 21 days. The effects of treatment in the rats were assessed by biochemical (articular elastase, MPO, LPO, GSH, catalase, SOD and NO), inflammatory mediators (IL-1β, IL-6, TNF-α, IL-10, IFN-γ and PGE2), and histological studies in joints. BSE was effective in bringing significant changes on all the parameters (articular elastase, MPO, LPO, GSH, catalase, SOD and NO) studied. Oral administration of BSE resulted in significantly reduced levels of inflammatory mediators (IL-1β, IL-6, TNF-α, IFN-γ and PGE2), and increased level of IL-10. The protective effects of BSE against RA were also evident from the decrease in arthritis scoring and bone histology. The abilities to inhibit proinflammatory cytokines and modulation of antioxidant status suggest that the protective effect of Boswellia serrata extract on arthritis in rats might be mediated via the modulation of immune system.

  17. Partial depletion of natural gut flora by antibiotic aggravates collagen induced arthritis (CIA) in mice.

    PubMed

    Dorożyńska, Iwona; Majewska-Szczepanik, Monika; Marcińska, Katarzyna; Szczepanik, Marian

    2014-04-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease that affects about 1% of the adult population and occurs twice as frequently among women than men. At present it is accepted that pathogenesis of RA is based on inflammatory response mediated by CD4(+) Th1 and Th17 lymphocytes. The most commonly applied model imitating RA is the collagen induced arthritis (CIA). A growing evidence shows that there is a correlation between microbial dysbiosis and human pathology which includes autoimmunity, allergic diseases, obesity, inflammatory bowel disease (IBD), metabolic syndrome. Collagen induced arthritis was used to study influence of natural gut flora on course of rheumatoid arthritis. Current work employing CIA model showed that partial depletion of natural gut flora with orally administered antibiotic Baytril (enrofloxacin) aggravates disease severity when compared to control mice. Observed partial depletion of both aerobic and anaerobic bacteria did not affect animal body weight. Additionally, in vitro study showed increased production of IFN-? and IL-17A and decreased release of IL-4 by axillary lymph node cells (ALNC) isolated from mice treated with antibiotic and induced CIA when compared to positive control. Furthermore, treatment with antibiotic prior to CIA induction results in augmented production of IFN-?, IL-17A and IL-6 by mesenteric lymph node cells (MLNC). Presented data suggest that alteration of gut microbiota via use of enrofloxacin may play a role in modulating arthritis symptom severity in this mouse model. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  18. ASC plays a role in the priming phase of the immune response to type II collagen in collagen-induced arthritis.

    PubMed

    Yamazaki, Hideshi; Takeoka, Michiko; Kitazawa, Masato; Ehara, Takashi; Itano, Naoki; Kato, Hiroyuki; Taniguchi, Shun'ichiro

    2012-06-01

    Although rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology, the role of IL-1β and IL-18 in the pathophysiology of RA has been well established. IL-1β and IL-18 are generated via cleavage of their pro-forms in the presence of the apoptosis-associated speck-like protein containing a caspase recruit domain (ASC), a known adaptor protein that activates procaspase-1. As such, we investigated the involvement of ASC in the progression of murine collagen-induced arthritis (CIA) and collagen antibody-induced arthritis (CAIA) using ASC-deficient (ASC(-/-)) and wild-type (ASC(+/+)) mice. Analyses were performed by immunohistochemistry for tissues and ELISA for sera. We observed an increase in the expression of ASC, as well as IL-1β and IL-18, in the joints of CIA DBA mice, which indicated that ASC is involved in disease development. Next, we demonstrated that the infiltration of inflammatory cells and cartilage/bone destruction in CIA knee joints were significantly increased in ASC(+/+) mice compared with ASC(-/-) mice. No such differences were noted in ASC(+/+) and ASC(-/-) CAIA mice. In terms of cytokine expression in knee joints, IL-1β and IL-18 were depressed in ASC-deficient CIA mice compared with wild-type mice, but were similarly expressed in CAIA joints in both mice groups. Taken together, we can conclude that ASC is involved in the development of CIA and plays a role in the priming phase of the immune response to type II collagen.

  19. Acoustically induced vibrations of the Reissner's membrane in the guinea-pig inner ear.

    PubMed

    Ulfendahl, M; Khanna, S M; Decraemer, W F

    1996-11-01

    In the inner ear, the Reissner's membrane separates the scala vestibuli from the scala media and is thus of importance for maintaining a positive endocochlear potential. The motion of the membrane is thought to be driven by the vibrations of the underlying hearing organ caused by a hydromechanical coupling between the structures. Since the Reissner's membrane is relatively easily accessible in the cochlea its vibratory response has been used as a measure of the micromechanical behaviour of the hearing organ. To determine whether this indirect measure revealed the true characteristics of the hearing organ, experiments were performed using laser heterodyne interferometry in an in vitro preparation of the guinea-pig temporal bone. Interferometric measurements at the Reissner's membrane and at the surface of the hearing organ directly beneath made it possible to compare the mechanical tuning characteristics of both structures. It was found that the mechanical response characteristics of the Reissner's membrane differed considerably from the hearing organ. The tuning frequency was different and only minor changes in the maximal vibration amplitude were seen when measuring at different radial locations. However, the shape of the response curve changes with location. The Reissner's membrane response appeared to be affected by the mechanical vibrations originating both at the middle ear ossicles and at the hearing organ. It is concluded that the Reissner's membrane response is a poor indicator of cochlear mechanics and that investigations of cochlear micromechanics should be performed directly at the level of the hearing organ.

  20. Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation.

    PubMed

    Wang, Su Bin; Jang, Ji Yong; Chae, Yun Hee; Min, Ji Hyun; Baek, Jin Young; Kim, Myunghee; Park, Yunjeong; Hwang, Gwi Seo; Ryu, Jae-Sang; Chang, Tong-Shin

    2015-06-01

    Reactive oxygen species (ROS) generated upon collagen stimulation act as second messengers to propagate various platelet-activating events. Among the ROS-generating enzymes, NADPH oxidase (NOX) plays a prominent role in platelet activation. Thus, NOX has been suggested as a novel target for anti-platelet drug development. Although kaempferol has been identified as a NOX inhibitor, the influence of kaempferol on the activation of platelets and the underlying mechanism have never been investigated. Here, we studied the effects of kaempferol on NOX activation, ROS-dependent signaling pathways, and functional responses in collagen-stimulated platelets. Superoxide anion generation stimulated by collagen was significantly inhibited by kaempferol in a concentration-dependent manner. More importantly, kaempferol directly bound p47(phox), a major regulatory subunit of NOX, and significantly inhibited collagen-induced phosphorylation of p47(phox) and NOX activation. In accordance with the inhibition of NOX, ROS-dependent inactivation of SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) was potently protected by kaempferol. Subsequently, the specific tyrosine phosphorylation of key components (Syk, Vav1, Btk, and PLCγ2) of collagen receptor signaling pathways was suppressed by kaempferol. Kaempferol also attenuated downstream responses, including cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Ultimately, kaempferol inhibited platelet aggregation and adhesion in response to collagen in vitro and prolonged in vivo thrombotic response in carotid arteries of mice. This study shows that kaempferol impairs collagen-induced platelet activation through inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2. This effect suggests that kaempferol has therapeutic potential for the prevention and treatment of thrombovascular diseases.

  1. Effects of laser irradiation on collagen organization in chemically induced degenerative annulus fibrosus of lumbar intervertebral disc.

    PubMed

    Ignatieva, Natalia; Zakharkina, Olga; Andreeva, Irina; Sobol, Emil; Kamensky, Vladislav; Lunin, Valery

    2008-08-01

    The number of in vitro experimental studies was carried out with the use of intact tissues to establish a mechanism of laser-tissue interaction. However, in the process of degeneration, both biochemical composition and behavior of the disc were altered drastically. The objective of this study was to evaluate the role of the main matrix components in laser modification of annulus fibrosus (AF) under IR laser irradiation. The samples of AF in a motion segment after hyaluronidase treatment, trypsin digestion and glycation by glyceraldehyde were heated in hydrothermal bath (95 degrees C, 2 min) or irradiated by laser at 1.56 microm. Specimens were imaged by cross-polarization optical coherence tomography (CP-OCT), and then analyzed by differential scanning calorimery (DSC). According to CP-OCT and DSC data non-significant alteration was revealed in AF after hyaluronidase treatment, glycation led to stabilization of annulus collagen and trypsin digestion resulted in a noticeable impairment of collagen fibrils. Laser treatment induced subsequent damages of AF matrix but these damages cannot be explained by laser heating only. The specificity of chemical modification of AF matrix has an influence on a character of collagen network alteration due to IR laser effect. Minimal and maximal alterations are observed for hyaluronidase and trypsin treated samples respectively. Glyceraldehyde fixed samples showed failure of the collagen structure after moderate laser treatment; at the same time thermal denaturation of collagen macromolecules was negligible. We assume that a mechanical effect of laser irradiation plays an important role in laser-induced annulus collagen modification and propose the scheme of physico-chemical process occurring under non-uniform IR laser treatment in AF tissue. CP-OCT and DSC techniques allow us to record the alteration of collagen network organization as a result of chemical modification. There were detected significant and specific effects of the

  2. Sex steroid dependency of diabetes-induced changes in polyol metabolism, vascular permeability, and collagen cross-linking.

    PubMed

    Williamson, J R; Rowold, E; Chang, K; Marvel, J; Tomlinson, M; Sherman, W R; Ackermann, K E; Berger, R A; Kilo, C

    1986-01-01

    The effects of castration on diabetes-induced increases in collagen cross-linking and vascular permeability and on polyol levels in new granulation tissue formed after induction of streptozocin (STZ) diabetes were examined in male Sprague-Dawley rats. New granulation tissue formation was induced by implanting sterile polyester fabric subcutaneously (s.c.) at the time of STZ injection 3 wk before assessment of vascular permeability and collagen cross-linking. Castration was performed 10 days before implanting the fabric. The characteristic increases in collagen cross-linking (manifested by decreased solubility in 0.5 M acetic acid) and in albumin permeation of the vasculature seen in intact diabetic rats were completely prevented by castration. Net collagen accumulation was not affected by diabetes or castration. Castration also markedly diminished diabetes-induced increases in tissue levels of sorbitol and completely prevented the decreases in tissue levels of myo-inositol and scyllo-inositol observed in intact diabetic rats, but had no effect on serum glucose levels, nonenzymatic glycosylation of plasma and granulation tissue proteins, or plasma somatomedin-C levels. The demonstration that castration prevents diabetes-induced increases in vascular permeability and collagen cross-linking as well as imbalances in tissue levels of sorbitol, myo-inositol, and scyllo-inositol in this model indicates that all of these changes are sex steroid-dependent phenomena. While the pathogenesis of these vascular permeability and collagen cross-linking changes is clearly multifactorial, these new findings: indicate that the role of sex steroids in the development of late complications of diabetes may be far more important than hitherto suspected, and suggest an explanation for the clinical observation that diabetic complications are uncommon in prepubertal diabetic subjects regardless of duration of diabetes.

  3. Swimmer's ear

    MedlinePlus

    ... or a respiratory infection such as a cold. Swimming in unclean water can lead to swimmer's ear. ... very well after it has gotten wet. Avoid swimming in polluted water. Use earplugs when swimming. Try ...

  4. Pierced Ears

    MedlinePlus

    ... you run the risk of getting infected ears. Metal Matters Your first earrings should have gold posts ( ... infection and swelling. Later, you may find some metals cause an allergic reaction. You're probably wondering ...

  5. Airplane Ear

    MedlinePlus

    ... severe hearing loss Ringing in your ear (tinnitus) Spinning sensation (vertigo) Vomiting resulting from vertigo Bleeding from ... the back of the nasal cavity and the top of the throat meet (nasopharynx). When an airplane ...

  6. Ear Infections

    MedlinePlus

    ... most common cause of ear infections. Get your child’s vaccinations on time.Practice routine hand washing and avoid sharing food and drinks, especially if your child is exposed to large groups of kids in ...

  7. Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles

    PubMed Central

    Chang, Ernest W.; Cheng, Jeffrey T.; Röösli, Christof; Kobler, James B.; Rosowski, John J.; Yun, Seok Hyun

    2013-01-01

    Efficient transfer of sound by the middle ear ossicles is essential for hearing. Various pathologies can impede the transmission of sound and thereby cause conductive hearing loss. Differential diagnosis of ossicular disorders can be challenging since the ossicles are normally hidden behind the tympanic membrane (TM). Here we describe the use of a technique termed optical coherence tomography (OCT) vibrography to view the sound-induced motion of the TM and ossicles simultaneously. With this method, we were able to capture three-dimensional motion of the intact TM and ossicles of the chinchilla ear with nanometer-scale sensitivity at sound frequencies from 0.5 to 5 kHz. The vibration patterns of the TM were complex and highly frequency dependent with mean amplitudes of 70–120 nm at 100 dB sound pressure level. The TM motion was only marginally sensitive to stapes fixation and incus-stapes joint interruption; however, when additional information derived from the simultaneous measurement of ossicular motion was added, it was possible to clearly distinguish these different simulated pathologies. The technique may be applicable to clinical diagnosis in Otology and to basic research in audition and acoustics. PMID:23811181

  8. Effect of testosterone on the proliferation and collagen synthesis of cardiac fibroblasts induced by angiotensin II in neonatal rat.

    PubMed

    Yang, Xiaocun; Wang, Ying; Yan, Shuxun; Sun, Lina; Yang, Guojie; Li, Yuan; Yu, Chaonan

    2017-01-02

    The objective is to explore the effect of testosterone on the proliferation and collagen synthesis of neonatal rat cardiac fibroblasts (CF) induced by Angiotensin II (Ang II) and the underlying mechanisms. Derived from neonatal rats, the CFs were divided into 4 groups: the control group, Ang II group, testosterone group, and testosterone + Ang II group in vitro. Cell cycle distribution, collagen counts, and phosphorylated extracellular signal-regulated kinase (ERK1/2) (p - ERK1/2) expression were assessed by flow cytometry, VG staining, and immunocytochemistry, respectively. The Ang II group had a much higher proportion of cells in the S-phase, higher collagen contents, and a higher p - ERK1/2 expression level than either the control or testosterone group. However, these factors were significantly reduced in the testosterone + Ang II group as compared to the Ang II group. In terms of cells in the S-phase and the collagen contents, there was not a significant difference between the testosterone group and the control. However, the protein expression of p-ERK1/2 was significantly increased in the testosterone group as compared to the control. Testosterone inhibits the proliferation and collagen synthesis of CF induced by Ang II. The underlying mechanism may involve the ERK1/2 signaling pathway.

  9. Collagen Induces Maturation of Human Monocyte-Derived Dendritic Cells by Signaling through Osteoclast-Associated Receptor

    PubMed Central

    Schultz, Heidi S.; Nitze, Louise M.; Zeuthen, Louise H.; Keller, Pernille; Gruhler, Albrecht; Pass, Jesper; Chen, Jianhe; Guo, Li; Fleetwood, Andrew J.; Hamilton, John A.; Berchtold, Martin W.

    2015-01-01

    Osteoclast-associated receptor (OSCAR) is widely expressed on human myeloid cells. Collagen types (Col)I, II, and III have been described as OSCAR ligands, and ColII peptides can induce costimulatory signaling in receptor activator for NF-κB–dependent osteoclastogenesis. In this study, we isolated collagen as an OSCAR-interacting protein from the membranes of murine osteoblasts. We have investigated a functional outcome of the OSCAR–collagen interaction in human monocyte-derived dendritic cells (DCs). OSCAR engagement by ColI/II-induced activation/maturation of DCs is characterized by upregulation of cell surface markers and secretion of cytokines. These collagen-matured DCs (Col-DCs) were efficient drivers of allogeneic and autologous naive T cell proliferation. The T cells expanded by Col-DCs secreted cytokines with no clear T cell polarization pattern. Global RNA profiling revealed that multiple proinflammatory mediators, including cytokines and cytokine receptors, components of the stable immune synapse (namely CD40, CD86, CD80, and ICAM-1), as well as components of TNF and TLR signaling, are transcriptional targets of OSCAR in DCs. Our findings indicate the existence of a novel pathway by which extracellular matrix proteins locally drive maturation of DCs during inflammatory conditions, for example, within synovial tissue of rheumatoid arthritis patients, where collagens become exposed during tissue remodeling and are thus accessible for interaction with infiltrating precursors of DCs. PMID:25725106

  10. Anti-Inflammatory and Antioxidant Effects of Repeated Exposure to Cruciferous Allyl Nitrile in Sensitizer-Induced Ear Edema in Mice

    PubMed Central

    Tanii, Hideji; Sugitani, Kayo; Saijoh, Kiyofumi

    2016-01-01

    Background Skin sensitizers induce allergic reactions through the induction of reactive oxygen species. Allyl nitrile from cruciferous vegetables has been reported to induce antioxidants and phase II detoxification enzymes in various tissues. We assessed the effects of repeated exposure to allyl nitrile on sensitizer-induced allergic reactions. Material/Methods Mice were dosed with allyl nitrile (0–200 μmol/kg), and then received a dermal application of 1 of 3 sensitizers on the left ear or 1 of 2 vehicles on the right ear. Quantitative assessment of edema was carried out by measuring the difference in weight between the portions taken from the right and left ears. We tested enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and thiobarbituric acid reactive substances (TBARS) in ears. Results Repeated exposure to allyl nitrile reduced edemas induced by glutaraldehyde and by 2, 4-dinitrochlorobenzene (DNCB), but not by formaldehyde. The repeated exposure decreased levels of TBARS, a marker of oxidative stress, induced by glutaraldehyde and by DNCB, but not by formaldehyde. Allyl nitrile elevated SOD levels for the 3 sensitizers, and CAT levels for formaldehyde and DNCB. Allyl nitrile also increased GPx levels for formaldehyde and DNCB, but not for glutaraldehyde. The reduced edemas were associated with changes in oxidative stress levels and antioxidant enzymes. Conclusions Repeated exposure to allyl nitrile reduced allergic reactions induced by glutaraldehyde and by DNCB, but not by formaldehyde. This reduction was associated with changes in ROS levels and antioxidant enzyme activities. PMID:26932717

  11. Anti-Inflammatory and Antioxidant Effects of Repeated Exposure to Cruciferous Allyl Nitrile in Sensitizer-Induced Ear Edema in Mice.

    PubMed

    Tanii, Hideji; Sugitani, Kayo; Saijoh, Kiyofumi

    2016-02-29

    Skin sensitizers induce allergic reactions through the induction of reactive oxygen species. Allyl nitrile from cruciferous vegetables has been reported to induce antioxidants and phase II detoxification enzymes in various tissues. We assessed the effects of repeated exposure to allyl nitrile on sensitizer-induced allergic reactions. Mice were dosed with allyl nitrile (0-200 µmol/kg), and then received a dermal application of 1 of 3 sensitizers on the left ear or 1 of 2 vehicles on the right ear. Quantitative assessment of edema was carried out by measuring the difference in weight between the portions taken from the right and left ears. We tested enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and thiobarbituric acid reactive substances (TBARS) in ears. Repeated exposure to allyl nitrile reduced edemas induced by glutaraldehyde and by 2, 4-dinitrochlorobenzene (DNCB), but not by formaldehyde. The repeated exposure decreased levels of TBARS, a marker of oxidative stress, induced by glutaraldehyde and by DNCB, but not by formaldehyde. Allyl nitrile elevated SOD levels for the 3 sensitizers, and CAT levels for formaldehyde and DNCB. Allyl nitrile also increased GPx levels for formaldehyde and DNCB, but not for glutaraldehyde. The reduced edemas were associated with changes in oxidative stress levels and antioxidant enzymes. Repeated exposure to allyl nitrile reduced allergic reactions induced by glutaraldehyde and by DNCB, but not by formaldehyde. This reduction was associated with changes in ROS levels and antioxidant enzyme activities.

  12. Epithelial derived CTGF promotes breast tumor progression via inducing EMT and collagen I fibers deposition

    PubMed Central

    Zhao, Zhen; Sheng, Jianting; Wang, Jiang; Liu, Jiyong; Cui, Kemi; Chang, Jenny; Zhao, Hong; Wong, Stephen

    2015-01-01

    Interactions among tumor cells, stromal cells, and extracellular matrix compositions are mediated through cytokines during tumor progression. Our analysis of 132 known cytokines and growth factors in published clinical breast cohorts and our 84 patient-derived xenograft models revealed that the elevated connective tissue growth factor (CTGF) in tumor epithelial cells significantly correlated with poor clinical prognosis and outcomes. CTGF was able to induce tumor cell epithelial-mesenchymal transition (EMT), and promote stroma deposition of collagen I fibers to stimulate tumor growth and metastasis. This process was mediated through CTGF-tumor necrosis factor receptor I (TNFR1)-IκB autocrine signaling. Drug treatments targeting CTGF, TNFR1, and IκB signaling each prohibited the EMT and tumor progression. PMID:26318291

  13. Anti-arthritic effect of eugenol on collagen-induced arthritis experimental model.

    PubMed

    Grespan, Renata; Paludo, Marcia; Lemos, Henrique de Paula; Barbosa, Carmem Patrícia; Bersani-Amado, Ciomar Aparecida; Dalalio, Marcia Machado de Oliveira; Cuman, Roberto Kenji Nakamura

    2012-01-01

    This study was designed to test the efficacy of eugenol, a compound obtained from the essential oil of cloves (Syzygium aromaticum) in collagen-induced arthritis (CIA), a well characterized murine model of rheumatoid arthritis. Macroscopic clinical evidence of CIA manifests first as periarticular erythema and edema in the hind paws. Treatment with eugenol starting at the onset of arthritis (day 25) ameliorated these clinical signs of CIA. Furthermore, eugenol inhibited mononuclear cell infiltration into the knee joints of arthritic mice and also lowered the levels of cytokines (tumor necrosis factor (TNF)-α, interferon (IFN)-γ and tumor growth factor (TGF)-β) within the ankle joints. Eugenol treatment did not affect the in vitro cell viability as assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Therefore, eugenol ameliorates experimental arthritis and could be useful as a beneficial supplement in treating human arthritis.

  14. Vascular pentraxin 3 controls arterial thrombosis by targeting collagen and fibrinogen induced platelets aggregation

    PubMed Central

    Bonacina, F.; Barbieri, S.S.; Cutuli, L.; Amadio, P.; Doni, A.; Sironi, M.; Tartari, S.; Mantovani, A.; Bottazzi, B.; Garlanda, C.; Tremoli, E.; Catapano, A.L.; Norata, G.D.

    2016-01-01

    Aim The long pentraxin PTX3 plays a non-redundant role during acute myocardial infarction, atherosclerosis and in the orchestration of tissue repair and remodeling during vascular injury, clotting and fibrin deposition. The aim of this work is to investigate the molecular mechanisms underlying the protective role of PTX3 during arterial thrombosis. Methods and results PTX3 KO mice transplanted with bone marrow from WT or PTX3 KO mice presented a significant reduction in carotid artery blood flow following FeCl3 induced arterial thrombosis (− 80.36 ± 11.5% and − 95.53 ± 4.46%), while in WT mice transplanted with bone marrow from either WT or PTX3 KO mice, the reduction was less dramatic (− 45.55 ± 1.37% and − 53.39 ± 9.8%), thus pointing to a protective effect independent of a hematopoietic cell's derived PTX3. By using P-selectin/PTX3 double KO mice, we further excluded a role for P-selectin, a target of PTX3 released by neutrophils, in vascular protection played by PTX3. In agreement with a minor role for hematopoietic cell-derived PTX3, platelet activation (assessed by flow cytometric expression of markers of platelet activation) was similar in PTX3 KO and WT mice as were haemostatic properties. Histological analysis indicated that PTX3 localizes within the thrombus and the vessel wall, and specific experiments with the N-terminal and the C-terminal PTX3 domain showed the ability of PTX3 to selectively dampen either fibrinogen or collagen induced platelet adhesion and aggregation. Conclusion PTX3 interacts with fibrinogen and collagen and, by dampening their pro-thrombotic effects, plays a protective role during arterial thrombosis. PMID:26976330

  15. Amelioration of collagen-induced arthritis by CD95 (Apo-1/Fas)-ligand gene transfer.

    PubMed Central

    Zhang, H; Yang, Y; Horton, J L; Samoilova, E B; Judge, T A; Turka, L A; Wilson, J M; Chen, Y

    1997-01-01

    Both rheumatoid arthritis and animal models of autoimmune arthritis are characterized by hyperactivation of synovial cells and hyperplasia of the synovial membrane. The activated synovial cells produce inflammatory cytokines and degradative enzymes that lead to destruction of cartilage and bones. Effective treatment of arthritis may require elimination of most or all activated synovial cells. The death factor Fas/Apo-1 and its ligand (FasL) play pivotal roles in maintaining self-tolerance and immune privilege. Fas is expressed constitutively in most tissues, and is dramatically upregulated at the site of inflammation. In both rheumatoid arthritis and animal models of autoimmune arthritis, high levels of Fas are expressed on activated synovial cells and infiltrating leukocytes in the inflamed joints. Unlike Fas, however, the levels of FasL expressed in the arthritic joints are extremely low, and most activated synovial cells survive despite high levels of Fas expression. To upregulate FasL expression in the arthritic joints, we have generated a recombinant replication-defective adenovirus carrying FasL gene; injection of the FasL virus into inflamed joints conferred high levels of FasL expression, induced apoptosis of synovial cells, and ameliorated collagen-induced arthritis in DBA/1 mice. The Fas-ligand virus also inhibited production of interferon-gamma by collagen-specific T cells. Coadministration of Fas-immunoglobulin fusion protein with the Fas-ligand virus prevented these effects, demonstrating the specificity of the Fas-ligand virus. Thus, FasL gene transfer at the site of inflammation effectively ameliorates autoimmune disease. PMID:9329958

  16. Smoking and nicotine exposure delay development of collagen-induced arthritis in mice.

    PubMed

    Lindblad, Sofia S; Mydel, Piotr; Jonsson, Ing-Marie; Senior, Robert M; Tarkowski, Andrej; Bokarewa, Maria

    2009-01-01

    Recent epidemiologic studies have implicated smoking as an environmental risk factor for the development of rheumatoid arthritis (RA). The aim of the present study is the evaluation of the role of cigarette smoke (CS) in the pathogenesis of collagen-induced arthritis in mice. DBA/1 mice exposed to CS for 16 weeks (n = 25) and mice exposed to nicotine in drinking water (n = 10) were immunized with collagen type II (CII). Severity of arthritis was evaluated clinically and morphologically and compared with control mice (n = 35). Intensity of inflammation was evaluated by serum IL-6 and TNF-alpha levels. Additionally, antibody response to CII (anti-CII) and citrullinated peptides (aCCP) was measured. Clinical evaluation of arthritis showed a delayed onset of arthritis in CS-exposed mice compared with non-smoking controls (P < 0.05). Histologic index and weight changes were comparable between the groups; however, smoking mice presented less weight loss during the acute phase of the disease and gained weight significantly faster in the recovery phase (P < 0.05). Similar results were obtained in the mice exposed to nicotine. Nicotine also showed a direct anti-inflammatory effect diminishing IL-6 production by stimulated splenocytes in vitro (P < 0.001). Additionally, smoking mice had lower levels of aCCP and anti-CII antibodies compared with non-smoking (P < 0.05). Neither smoking nor nicotine exposure aggravates development of CII-induced arthritis in mouse model. Moreover, CS exposure was associated with a lower level of anti-CII antibodies, providing a possible explanation for a delay of arthritis onset in this group.

  17. Age-Related Differences in Collagen-Induced Arthritis: Clinical and Imaging Correlations

    PubMed Central

    Wilson-Gerwing, Tracy D; Pratt, Isaac V; Cooper, David M L; Silver, Tawni I; Rosenberg, Alan M

    2013-01-01

    Arthritis is among the most common chronic diseases in both children and adults. Although intraarticular inflammation is the feature common among all patients with chronic arthritis there are, in addition to age at onset, clinical characteristics that further distinguish the disease in pediatric and adult populations. In this study, we aimed to demonstrate the utility of microCT (µCT) and ultrasonography in characterizing pathologic age-related differences in a collagen-induced arthritis (CIA) rat model. Juvenile (35 d old) and young adult (91 d old) male Wistar rats were immunized with bovine type II collagen and incomplete Freund adjuvant to induce polyarthritis. Naïve male Wistar rats served as controls. All paws were scored on a scale of 0 (normal paw) to 4 (disuse of paw). Rats were euthanized at 14 d after the onset of arthritis and the hindpaws imaged by µCT and ultrasonography. Young adult rats had more severe signs of arthritis than did their juvenile counterparts. Imaging demonstrated that young adult CIA rats exhibited more widespread and severe skeletal lesions of the phalanges, metatarsals, and tarsal bones, whereas juvenile CIA rats had more localized and less proliferative and osteolytic damage that was confined predominantly to the phalanges and metatarsals. This report demonstrates the utility of imaging modalities to compare juvenile and young adult rats with CIA and provides evidence that disease characteristics and progression differ between the 2 age groups. Our observations indicate that the CIA model could help discern age-related pathologic processes in inflammatory joint diseases. PMID:24326225

  18. Betahistine attenuates murine collagen-induced arthritis by suppressing both inflammatory and Th17 cell responses.

    PubMed

    Tang, Kuo-Tung; Chao, Ya-Hsuan; Chen, Der-Yuan; Lim, Yun-Ping; Chen, Yi-Ming; Li, Yi-Rong; Yang, Deng-Ho; Lin, Chi-Chen

    2016-10-01

    The objective of this study was to evaluate the potential therapeutic effects of betahistine dihydrochloride (betahistine) in a collagen-induced arthritis (CIA) mouse model. CIA was induced in DBA/1 male mice by primary immunization with 100μl of emulsion containing 2mg/ml chicken type II collagen (CII) mixed with complete Freund's adjuvant (CFA) in an 1:1 ratio, and booster immunization with 100μl of emulsion containing 2mg/ml CII mixed with incomplete Freund's adjuvant (IFA) in an 1:1 ratio. Immunization was performed subcutaneously at the base of the tail. After being boosted on day 21, betahistine (1 and 5mg/kg) was orally administered daily for 2weeks. The severity of CIA was determined by arthritic scores and assessment of histopathological joint destruction. Expression of cytokines in the paw and anti-CII antibodies in the serum was evaluated by ELISA. The proliferative response against CII in the lymph node cells was measured by (3)H-thymidine incorporation assay. The frequencies of different CII specific CD4(+) T cell subsets in the lymph node were determined by flow-cytometric analysis. Betahistine treatment attenuated the severity of arthritis and reduced the levels of pro-inflammatory cytokines, including TNF-α, IL-6, IL-23 and IL-17A, in the paw tissues of CIA mice. Lymph node cells from betahistine-treated mice showed a decrease in proliferation, as well as a lower frequency of Th17 cells. In vitro, betahistine suppressed CD4(+) T cell differentiation into Th17 cells. These results indicate that betahistine is effective in suppressing both inflammatory and Th17 responses in mouse CIA and that it may have therapeutic value as an adjunct treatment for rheumatoid arthritis.

  19. Collagen-induced binding to human platelets of platelet-derived growth factor leading to inhibition of P43 and P20 phosphorylation

    SciTech Connect

    Bryckaert, M.C.; Rendu, F.; Tobelem, G.; Wasteson, A.

    1989-03-15

    Platelet-derived growth factor (PDGF) is known to inhibit collagen-induced platelet aggregation. Collagen-induced binding of /sup 125/I-PDGF to human washed platelets was therefore investigated. It was found to be time-dependent, reaching a plateau at 20 degrees C after 30 min, collagen concentration-dependent, specifically inhibited by unlabeled PDGF, and saturable. Scatchard plot analysis showed a single class of sites with 3000 +/- 450 molecules bound/cell and an apparent KD of 1.2 +/- 0.2 10(-8) M. The effects of PDGF on collagen-induced phosphoinositide breakdown and protein phosphorylation were also investigated. At 50 ng/ml PDGF, a concentration which completely inhibited collagen-induced aggregation, the breakdown of (/sup 32/P)phosphatidylinositol 4,5-biphosphate (PIP2) and (/sup 32/P)phosphatidylinositol 4-phosphate (PIP) was observed, but the subsequent replenishment of (/sup 32/P)PIP2 was inhibited. The same PDGF concentration totally inhibited collagen-induced phosphatidic acid formation. PDGF also completely prevented phosphorylation of P43 and P20, as a result of protein kinase C activation consecutive to phosphoinositide metabolism. These results suggest that a specific PDGF receptor can be induced by collagen, and PDGF can effect the early events of collagen-induced platelet activation by inhibiting PIP2 resynthesis and P43 and P20 phosphorylation. It is concluded that PDGF might be involved in a negative feed-back control of platelet activation.

  20. The plant response induced in wheat ears by a combined attack of Sitobion avenae aphids and Fusarium graminearum boosts fungal infection and deoxynivalenol production.

    PubMed

    De Zutter, Nathalie; Audenaert, Kris; Ameye, Maarten; De Boevre, Marthe; De Saeger, Sarah; Haesaert, Geert; Smagghe, Guy

    2017-01-01

    The pathogen Fusarium graminearum, producer of the mycotoxin deoxynivalenol, and Sitobion avenae aphids both reside on wheat ears. We explored the influence of an earlier aphid infestation on the expression profile of specific molecular markers associated with F. graminearum infection. Using reverse transcription-quantitative polymerase chain reaction analysis, we followed the expression of wheat defence genes on S. avenae infestation and explored the effect on a subsequent F. graminearum infection. This was performed by the assessment of disease symptoms, fungal biomass, mycotoxin production and number of aphids at several time points during disease progress. Wheat ears infected with F. graminearum showed more disease symptoms and higher deoxynivalenol levels when ears were pre-exposed to aphids relative to a sole inoculation with F. graminearum. Aphids induced defence genes that are typically induced on F. graminearum infection. Other defence genes showed earlier and/or enhanced transcription after exposure to both aphids and F. graminearum. In the discussion, we link the symptomatic and epidemiological parameters with the transcriptional induction pattern in the plant. Our study suggests that pre-exposure of wheat ears to aphids affects the plant response, which plays a role in the subsequent attack of F. graminearum, enabling the fungus to colonize wheat ears more rapidly. © 2016 BSPP and John Wiley & Sons Ltd.

  1. Suppression of collagen-induced arthritis by oral administration of transgenic rice seeds expressing altered peptide ligands of type II collagen.

    PubMed

    Iizuka, Mana; Wakasa, Yuhya; Tsuboi, Hiroto; Asashima, Hiromitsu; Hirota, Tomoya; Kondo, Yuya; Matsumoto, Isao; Takaiwa, Fumio; Sumida, Takayuki

    2014-10-01

    Rheumatoid arthritis (RA) is an autoimmune disease associated with the recognition of self proteins secluded in arthritic joints. We previously reported that altered peptide ligands (APLs) of type II collagen (CII256-271) suppress the development of collagen-induced arthritis (CIA). In this study, we generated transgenic rice expressing CII256-271 and APL6 contained in fusion proteins with the rice storage protein glutelin in the seed endosperm. These transgene products successfully and stably accumulated at high levels (7-24 mg/g seeds) in protein storage vacuoles (PB-II) of mature seeds. We examined the efficacy of these transgenic rice seeds by performing oral administration of the seeds to CIA model mice that had been immunized with CII. Treatment with APL6 transgenic rice for 14 days significantly inhibited the development of arthritis (based on clinical score) and delayed disease onset during the early phase of arthritis. These effects were mediated by the induction of IL-10 from CD4(+ ) CD25(-) T cells against CII antigen in splenocytes and inguinal lymph nodes (iLNs), and treatment of APL had no effect on the production of IFN-γ, IL-17, IL-2 or Foxp3(+) Treg cells. These findings suggest that abnormal immune suppressive mechanisms are involved in the therapeutic effect of rice-based oral vaccine expressing high levels of APLs of type II collagen on the autoimmune disease CIA, suggesting that the seed-based mucosal vaccine against CIA functions via a unique mechanism.

  2. The effect of taurine on high potassium-and noradrenaline-induced contraction in rabbit ear artery.

    PubMed Central

    Franconi, F.; Giotti, A.; Manzini, S.; Martini, F.; Stendardi, I.; Zilletti, L.

    1982-01-01

    1 Intraluminal administration of taurine (40 mM) did not affect the contractile tone of rabbit isolated ear artery 2 Taurine (10-80 mM) exerted a powerful concentration-dependent, vasodilator action in arteries contracted with high potassium medium. 3 In the same experimental conditions, the taurine analogues beta-alanine and homotaurine, had no effect. 4 Taurine (40-80 mM) did not affect in a significant manner the tonic component of the noradrenaline (5x10(-6 M)-induced contraction. 5 When noradrenaline (5x10(-6M) was followed by the administration of high potassium medium a further increase in intraluminal pressure was observed. Under these conditions taurine (40 mM) reversed specifically the component due to the high potassium medium. PMID:7066608

  3. Hydrolyzed tilapia fish collagen induces osteogenic differentiation of human periodontal ligament cells.

    PubMed

    Liu, Chao; Sun, Jiao

    2015-12-14

    Alveolar bone regeneration has aroused worldwide attention and plays an important role in oral clinics. In recent years, the application of biomaterials to induce osteogenic differentiation of periodontal ligament cells has become the hot topic in the field of alveolar bone regeneration. At present, most existing biomaterials lack osteoinductivity, while extrinsic inducers carry the risk of unwanted side effects. The objective of this work was to study the in vitro functionality of a newly developed hydrolyzed tilapia fish collagen (HFC) for periodontal tissue regeneration. HFC was extracted from the scales of tilapia, human periodontal ligament cells (hPDL cells) were cultured with HFC without the addition of any inducing reagent, and the effects of HFC on cell viability and osteogenic differentiation were investigated. The results revealed that HFC promoted the cell viability of hPDL cells. Furthermore, the upregulation of osteogenic markers ALP, COL I, RUNX2, and OCN at the gene level and the production of osteogenic-related proteins (alkaline phosphatase and osteocalcin) proved the success of osteogenic differentiation of hPDL cells treated with HFC. In addition, we revealed that the effect of HFC was mediated by ERK signaling pathways. Taken together, the data presented in this paper suggested for the first time that HFC is a promising bioactive ingredient for biomaterials used in alveolar bone regeneration.

  4. Chemically Modified Interleukin-6 Aptamer Inhibits Development of Collagen-Induced Arthritis in Cynomolgus Monkeys

    PubMed Central

    Murakami, Ikuo; Ishikawa, Yuichi; Suzuki, Tomoki; Sumida, Shun-ichiro; Ibaragi, Shigeru; Kasai, Hayato; Horai, Naoto; Drolet, Daniel W.; Gupta, Shashi; Janjic, Nebojsa

    2016-01-01

    Interleukin-6 (IL-6) is a potent mediator of inflammatory and immune responses, and a validated target for therapeutic intervention of inflammatory diseases. Previous studies have shown that SL1026, a slow off-rate modified aptamer (SOMAmer) antagonist of IL-6, neutralizes IL-6 signaling in vitro. In the present study, we show that SL1026 delays the onset and reduces the severity of rheumatoid symptoms in a collagen-induced arthritis model in cynomolgus monkeys. SL1026 (1 and 10 mg/kg), administered q.i.d., delayed the progression of arthritis and the concomitant increase in serum IL-6 levels compared to the untreated control group. Furthermore, SL1026 inhibited IL-6-induced STAT3 phosphorylation ex vivo in T lymphocytes from human blood and IL-6-induced C-reactive protein and serum amyloid A production in human primary hepatocytes. Importantly, SOMAmer treatment did not elicit an immune response, as evidenced by the absence of anti-SOMAmer antibodies in plasma of treated monkeys. These results demonstrate that SOMAmer antagonists of IL-6 may be attractive agents for the treatment of IL-6-mediated diseases, including rheumatoid arthritis. PMID:26579954

  5. Lactobacillus acidophilus maintained oxidative stress from reproductive organs in collagen-induced arthritic rats.

    PubMed

    Amdekar, Sarika; Singh, Vinod

    2016-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) induced organ damage is a well-known fact. Previous studies suggest that Lactobacillus scavenge the free radicals from liver and kidney and also protect animals from arthritis. Comparing protective properties of Lactobacillus acidophilus in reducing oxidative stress from reproductive organs developed during collagen-induced arthritis in animal model. Arthritis was induced in Wistar rats. Oral administration of L. acidophilus, indomethacin, and distilled water were all started on the same day. Arthritis scores were calculated for each group. Oxidative stress parameters were estimated in testis and ovary homogenates. Histopathology of ovary and testis was also performed. L. acidophilus decreased arthritis score (P < 0.001) as well as maintained normal histology of reproductive organs. L. acidophilus maintained oxidative stress parameters from ovaries and testis (P < 0.001). These results provide strong evidence that NSAIDs increase oxidative stress in reproductive organs while L. acidophilus not only scavenges free radicals from reproductive organs but also protects rats from arthritis symptoms.

  6. Lactobacillus acidophilus maintained oxidative stress from reproductive organs in collagen-induced arthritic rats

    PubMed Central

    Amdekar, Sarika; Singh, Vinod

    2016-01-01

    CONTEXTS: Nonsteroidal anti-inflammatory drugs (NSAIDs) induced organ damage is a well-known fact. Previous studies suggest that Lactobacillus scavenge the free radicals from liver and kidney and also protect animals from arthritis. AIMS: Comparing protective properties of Lactobacillus acidophilus in reducing oxidative stress from reproductive organs developed during collagen-induced arthritis in animal model. METHODS: Arthritis was induced in Wistar rats. Oral administration of L. acidophilus, indomethacin, and distilled water were all started on the same day. Arthritis scores were calculated for each group. Oxidative stress parameters were estimated in testis and ovary homogenates. Histopathology of ovary and testis was also performed. RESULTS AND CONCLUSION: L. acidophilus decreased arthritis score (P < 0.001) as well as maintained normal histology of reproductive organs. L. acidophilus maintained oxidative stress parameters from ovaries and testis (P < 0.001). These results provide strong evidence that NSAIDs increase oxidative stress in reproductive organs while L. acidophilus not only scavenges free radicals from reproductive organs but also protects rats from arthritis symptoms. PMID:27110077

  7. Inhibition of "spontaneous," notochord-induced, and collagen-induced in vitro somite chondrogenesis by the calcium lonophore, A23187.

    PubMed

    Kosher, R A

    1978-02-01

    The present study represents a first step in investigating the possible involvement of calcium (Ca2+) in the stimulation of somite chondrogenesis elicited by extracellular matrix components produced by the embryonic notochord. The ionophore, A23187, a drug that facilitates Ca2+ uptake leading to elevation of cytoplasmic Ca2+ levels, at concentrations of 0.25-1.0 microgram/ml severely impairs "spontaneous" somite chondrogenesis, i.e., inhibits the formation of the small amount of cartilaginous matrix normally formed by embryonic somites in vitro in the absence of inducing tissues. This inhibition is reflected in a considerable reduction in sulfated glycosaminoglycan (GAG) accumulation by A23187-treated somite explants. Furthermore, A23187 inhibits the striking stimulation of cartilaginous matrix formation and sulfated GAG accumulation normally elicited by the embryonic notochord and collagen substrates. In fact, 1.0 microgram/ml of A23187 reduces sulfated GAG accumulation by somites cultured in association with notochord or on collagen to a level even below that accumulated by somites cultured in the absence of these inductive agents. Although these results must be interpreted with caution, they provide incentive for considering a possible regulatory role for Ca2+ in the chondrogenic response of somites to extracellular matrix components produced by the embryonic notochord.

  8. Porphyromonas gingivalis oral infection exacerbates the development and severity of collagen-induced arthritis

    PubMed Central

    2013-01-01

    Introduction Clinical studies suggest a direct influence of periodontal disease (PD) on serum inflammatory markers and disease assessment of patients with established rheumatoid arthritis (RA). However, the influence of PD on arthritis development remains unclear. This investigation was undertaken to determine the contribution of chronic PD to immune activation and development of joint inflammation using the collagen-induced arthritis (CIA) model. Methods DBA1/J mice orally infected with Porphyromonas gingivalis were administered with collagen II (CII) emulsified in complete Freund’s adjuvant (CFA) or incomplete Freund’s adjuvant (IFA) to induce arthritis. Arthritis development was assessed by visual scoring of paw swelling, caliper measurement of the paws, mRNA expression, paw micro-computed tomography (micro-CT) analysis, histology, and tartrate resistant acid phosphatase for osteoclast detection (TRAP)-positive immunohistochemistry. Serum and reactivated splenocytes were evaluated for cytokine expression. Results Mice induced for PD and/or arthritis developed periodontal disease, shown by decreased alveolar bone and alteration of mRNA expression in gingival tissues and submandibular lymph nodes compared to vehicle. P. gingivalis oral infection increased paw swelling and osteoclast numbers in mice immunized with CFA/CII. Arthritis incidence and severity were increased by P. gingivalis in mice that received IFA/CII immunizations. Increased synovitis, bone erosions, and osteoclast numbers in the paws were observed following IFA/CII immunizations in mice infected with P gingivalis. Furthermore, cytokine analysis showed a trend toward increased serum Th17/Th1 ratios when P. gingivalis infection was present in mice receiving either CFA/CII or IFA/CII immunizations. Significant cytokine increases induced by P. gingivalis oral infection were mostly associated to Th17-related cytokines of reactivated splenic cells, including IL-1β, IL-6, and IL-22 in the CFA

  9. Porphyromonas gingivalis oral infection exacerbates the development and severity of collagen-induced arthritis.

    PubMed

    Marchesan, Julie Teresa; Gerow, Elizabeth Ann; Schaff, Riley; Taut, Andrei Dan; Shin, Seung-Yun; Sugai, James; Brand, David; Burberry, Aaron; Jorns, Julie; Lundy, Steven Karl; Nuñez, Gabriel; Fox, David A; Giannobile, William V

    2013-11-12

    Clinical studies suggest a direct influence of periodontal disease (PD) on serum inflammatory markers and disease assessment of patients with established rheumatoid arthritis (RA). However, the influence of PD on arthritis development remains unclear. This investigation was undertaken to determine the contribution of chronic PD to immune activation and development of joint inflammation using the collagen-induced arthritis (CIA) model. DBA1/J mice orally infected with Porphyromonas gingivalis were administered with collagen II (CII) emulsified in complete Freund's adjuvant (CFA) or incomplete Freund's adjuvant (IFA) to induce arthritis. Arthritis development was assessed by visual scoring of paw swelling, caliper measurement of the paws, mRNA expression, paw micro-computed tomography (micro-CT) analysis, histology, and tartrate resistant acid phosphatase for osteoclast detection (TRAP)-positive immunohistochemistry. Serum and reactivated splenocytes were evaluated for cytokine expression. Mice induced for PD and/or arthritis developed periodontal disease, shown by decreased alveolar bone and alteration of mRNA expression in gingival tissues and submandibular lymph nodes compared to vehicle. P. gingivalis oral infection increased paw swelling and osteoclast numbers in mice immunized with CFA/CII. Arthritis incidence and severity were increased by P. gingivalis in mice that received IFA/CII immunizations. Increased synovitis, bone erosions, and osteoclast numbers in the paws were observed following IFA/CII immunizations in mice infected with P gingivalis. Furthermore, cytokine analysis showed a trend toward increased serum Th17/Th1 ratios when P. gingivalis infection was present in mice receiving either CFA/CII or IFA/CII immunizations. Significant cytokine increases induced by P. gingivalis oral infection were mostly associated to Th17-related cytokines of reactivated splenic cells, including IL-1β, IL-6, and IL-22 in the CFA/CII group and IL-1β, tumor necrosis

  10. Novel therapeutic compound tuftsin-phosphorylcholine attenuates collagen-induced arthritis.

    PubMed

    Bashi, T; Shovman, O; Fridkin, M; Volkov, A; Barshack, I; Blank, M; Shoenfeld, Y

    2016-04-01

    Treatment with helminthes and helminthes ova improved the clinical symptoms of several autoimmune diseases in patients and in animal models. Phosphorylcholine (PC) proved to be the immunomodulatory molecule. We aimed to decipher the tolerogenic potential of tuftsin-PC (TPC), a novel helminth-based compound in collagen-induced arthritis (CIA) a mouse model of rheumatoid arthritis (RA). CIA DBA/1 mice were treated with TPC subcutaneously (5 µg/0.1 ml) or orally (250 µg/0.1 ml), starting prior to disease induction. The control groups were treated with PBS. Collagen antibodies were tested by enzyme-linked immunosorbent assay (ELISA), cytokine protein levels by ELISA kits and regulatory T (Treg ) and regulatory B (Breg ) cell phenotypes by fluorescence-activated cell sorter (FACS). TPC-treated mice had a significantly lower arthritis score of 1.5 in comparison with control mice 11.8 (P < 0.0001) in both subcutaneous and orally treated groups at day 31. Moreover, histology analysis demonstrated highly inflamed joints in control mice, whereas TPC-treated mice maintained normal joint structure. Furthermore, TPC decreased the titres of circulating collagen II antibodies in mice sera (P < 0.0001), enhanced expression of IL-10 (P < 0.0001) and inhibited production of tumour necrosis factor (TNF)-α, interleukin (IL)-17 and IL-1β (P < 0.0001). TPC significantly expanded the CD4(+) CD25(+) forkhead box protein 3 (FoxP3(+) ) Treg cells and CD19(+) IL-10(+) CD5(high) CD1d(high) T cell immunoglobulin mucin-1 (TIM-1(+) ) Breg cell phenotypes (P < 0.0001) in treated mice. Our data indicate that treatment with TPC attenuates CIA in mice demonstrated by low arthritic score and normal joints histology. TPC treatment reduced proinflammatory cytokines and increased anti-inflammatory cytokine expression, as well as expansion of Treg and Breg cells. Our results may lead to a new approach for a natural therapy for early rheumatoid arthritis onset.

  11. Extracellular matrix-induced synthesis of a low molecular weight collagen by fetal calf ligament fibroblasts.

    PubMed

    Sage, H; Mecham, R

    1987-01-01

    Fetal calf ligamentum nuchae fibroblasts, cultured from animals of different gestational age, synthesize a unique, low molecular weight collagen termed FCL-1 (Sage, H., Mecham, R., Johnson, C., and Bornstein, P., 1983, J. Cell Biol. 97:1933-1938). Previous studies on the elastogenic differentiation of these cells in vitro demonstrated that the extracellular matrix (ECM) protein elastin was specifically induced in undifferentiated fibroblasts when they were grown on ligament ECM isolated from animals at later stages of development (Mecham, R.P., Madaras, J.G., and Senior, R.M., 1984. J. Cell Biol. 98:1804-1812). To investigate the expression of FCL-1 as a function of developmental age, we grew fetal calf ligament fibroblasts from an 85 d (first trimester) animal (FCL 85d) on three different substrata: ligament from a 120 d (second trimester) animal, ligament from a 270 d (term) animal, and unmodified plastic tissue culture dishes. FCL 270d fibroblasts were grown on plastic substrata and served as a differentiated cellular control. Analysis of metabolically radiolabeled proteins from both the culture media and the cell layers showed that the synthesis of FCL-1 was selectively increased in those cells cultured on ligament ECM. For FCL 85d fibroblasts grown on 120 d and 270 d ligaments, FCL-1 comprised 17% and 22%, respectively, of the culture medium proteins that precipitated at concentrations of ammonium sulfate from 20-50%. FCL 85d and 270d fibroblasts grown on plastic substrata yielded values of 2.5% and 1.0%, respectively. This effect appeared to be specific for this collagen and did not reflect a general increase in the synthesis of connective tissue proteins of the ECM (e.g., types I and III procollagen). As percent of total newly-synthesized cellular protein, the output of FCL-1 was 10-fold higher by FCL 85d cells grown on 270d ligament ECM (5.8%) as compared to that of the same cellular population grown on a plastic surface (0.56%). The presence of the

  12. Epithelial Sheet Folding Induces Lumen Formation by Madin-Darby Canine Kidney Cells in a Collagen Gel

    PubMed Central

    Ishida, Sumire; Tanaka, Ryosuke; Yamaguchi, Naoya; Ogata, Genki; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2014-01-01

    Lumen formation is important for morphogenesis; however, an unanswered question is whether it involves the collective migration of epithelial cells. Here, using a collagen gel overlay culture method, we show that Madin-Darby canine kidney cells migrated collectively and formed a luminal structure in a collagen gel. Immediately after the collagen gel overlay, an epithelial sheet folded from the periphery, migrated inwardly, and formed a luminal structure. The inhibition of integrin-β1 or Rac1 activity decreased the migration rate of the peripheral cells after the sheets folded. Moreover, lumen formation was perturbed by disruption of apical-basolateral polarity induced by transforming growth factor-β1. These results indicate that cell migration and cell polarity play an important role in folding. To further explore epithelial sheet folding, we developed a computer-simulated mechanical model based on the rigidity of the extracellular matrix. It indicated a soft substrate is required for the folding movement. PMID:25170757

  13. Epithelial sheet folding induces lumen formation by Madin-Darby canine kidney cells in a collagen gel.

    PubMed

    Ishida, Sumire; Tanaka, Ryosuke; Yamaguchi, Naoya; Ogata, Genki; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2014-01-01

    Lumen formation is important for morphogenesis; however, an unanswered question is whether it involves the collective migration of epithelial cells. Here, using a collagen gel overlay culture method, we show that Madin-Darby canine kidney cells migrated collectively and formed a luminal structure in a collagen gel. Immediately after the collagen gel overlay, an epithelial sheet folded from the periphery, migrated inwardly, and formed a luminal structure. The inhibition of integrin-β1 or Rac1 activity decreased the migration rate of the peripheral cells after the sheets folded. Moreover, lumen formation was perturbed by disruption of apical-basolateral polarity induced by transforming growth factor-β1. These results indicate that cell migration and cell polarity play an important role in folding. To further explore epithelial sheet folding, we developed a computer-simulated mechanical model based on the rigidity of the extracellular matrix. It indicated a soft substrate is required for the folding movement.

  14. Effects of low molecular weight chondroitin sulfate on type II collagen-induced arthritis in DBA/1J mice.

    PubMed

    Cho, So Yean; Sim, Joon-Soo; Jeong, Choon Sik; Chang, Seung Yeup; Choi, Don Woong; Toida, Toshihiko; Kim, Yeong Shik

    2004-01-01

    In order to evaluate the improvement in the treatment of chronic arthritis, we investigated chondroitin sulfate depolymerization product (low molecular weight chondroitin sulfate, LMWCS) and intact chondroitin sulfate (CS) in vitro and in vivo. LMWCS was prepared by a chemical depolymerization process induced by hydrogen peroxide in the presence of copper salts. LMWCS (300 mg/kg) and CS (1200 mg/kg) were orally administered to DBA/1J mice once daily for 14 d prior to initial immunization with type II collagen. Their elastase activities and the production of cytokines in sera were examined on type II collagen-induced arthritis in DBA/1J mice. We also compared the paracellular transport of LMWCS and CS across Caco-2 cell monolayers and examined the inhibitory effects on elastase activities. LMWCS inhibited elastase activity slightly, but CS did not show inhibition. Hind paw edema was significantly decreased by LMWCS treatment. Levels of anti-type II collagen antibody and tumor necrosis factor-alpha (TNF-alpha) in sera were also reduced by LMWCS treatment but not in case of CS, although no significant difference was observed between LMWCS and CS on interleukin-6 (IL-6) induction. The LMWCS preparation showed preventive effects on the type II collagen-induced arthritis in DBA/1J mice and better permeability through Caco-2 cells.

  15. Phenotypic characterization of type II collagen-induced arthritis in Wistar rats.

    PubMed

    Song, Hou-Pan; Li, Xin; Yu, Rong; Zeng, Guang; Yuan, Zhen-Yi; Wang, Wei; Huang, Hui-Yong; Cai, Xiong

    2015-10-01

    The aim of the present study was to determine a more specific, efficient and simple method for the induction of collagen-induced arthritis (CIA) in rats. Different strains of rats were injected at the base of the tail with bovine type II collagen (CII) emulsified in incomplete Freund's adjuvant (IFA). The onset and severity of arthritis were evaluated by clinical assessment. The established CIA model was analyzed using a comprehensive examination of clinical, hematological, histological and radiological parameters. The results demonstrated that Wistar rats were the most susceptible strain to CIA followed by Wistar Furth rats, with Sprague Dawley rats being the least susceptible. Following primary and booster immunization, female Wistar rats developed severe arthritis, with an incidence of >83% and low variability in clinical signs. The development of arthritis was accompanied by a significantly elevated erythrocyte sedimentation rate compared with that in the control rats. The radiographic examination revealed bone matrix resorption, considerable soft tissue swelling, periosteal new bone formation and bone erosion in the arthritic joints of the CIA rats. Histopathologically, the synovial joints of CIA rats were characterized by synovial hyperplasia, pannus formation, marked cellular infiltration, bone and cartilage erosion and narrowing of the joint space. The administration of an intradermal injection of only 200 µg bovine CII emulsified in IFA at the base of the tail therefore leads to the successful development of a CIA rat model. This well-characterized CIA rat model could be specifically used to study the pathophysiology of human rheumatoid arthritis as well as to test and develop anti-arthritic agents for humans.

  16. Phellinus baumii ethyl acetate extract alleviated collagen type II induced arthritis in DBA/1 mice.

    PubMed

    Yayeh, Taddesse; Lee, Whi Min; Ko, Dukhwan; Park, Seung-Choon; Cho, Jae Youl; Park, Hwa-Jin; Lee, In-Kyoung; Kim, Seung-Hyung; Hong, Seung-Bok; Kim, Suk; Yun, Bong-Sik; Rhee, Man Hee

    2013-10-01

    Mushrooms have a long history of dietary benefits in Asia due to their health-promoting effects. Phellinus baumii, a wild mushroom, has been reported to have anti-platelet, anti-inflammatory, anti-obesity and free radical scavenging activities. However, its anti-rheumatoid arthritis (RA) property remains poorly understood. Hence, we investigated the protective effect of Phellinus baumii ethyl acetate extract (PBEAE) against bovine collagen type II induced arthritis (CIA) in DBA/1 mice. PBEAE (50 and 150 mg/kg) reduced the CIA score and leukocyte count in draining lymph nodes (DLNs) and inflamed joints. PBEAE also attenuated the expressions of CD3⁺ (T cells), CD19⁺ (B cells), CD4⁺ (T-helper), CD8⁺ (T-cytotoxic), MHC class II/CD11c⁺ (antigen-presenting cells), double positives (B220⁺/CD23⁺ and CD3⁺/CD69⁺: early lymphocyte activation markers) and CD4⁺/CD25⁺ (activated T-helper) leukocyte subpopulations in DLNs. Likewise, CD3⁺ and Gr-1⁺CD11b⁺ (neutrophil) counts in inflamed joints were also decreased. Furthermore, PBEAE reduced the serum levels of anti-collagen type immunoglobulin G, tumor necrosis factor-α and interleukin (IL)-1β and IL-6. Taken together, PBEAE impaired cellular recruitment to the inflamed joint and alleviated CIA, and thus could be considered as a potential agent against rheumatoid arthritis.

  17. Madecassoside ameliorates bleomycin-induced pulmonary fibrosis in mice by downregulating collagen deposition.

    PubMed

    Lu, Guo-Xun; Bian, Di-Fei; Ji, Yu; Guo, Jiao-Mei; Wei, Zhi-Feng; Jiang, Si-De; Xia, Yu-Feng; Dai, Yue

    2014-08-01

    This study aimed to explore the protective effects of madecassoside (Mad), a triterpenoid saponin isolated from Centella asiatica herbs, on experimental pulmonary fibrosis (PF) and underlying mechanisms. PF model was established in mice by endotracheal instillation with bleomycin (5 mg/kg). Mice were orally administered with Mad (10, 20, 40 mg/kg) and prednisone (5 mg/kg) for 7 or 21 days. Mad (20, 40 mg/kg) significantly improved lung pathological changes and reduced collagen deposition. In the aspect of collagen synthesis, Mad (20, 40 mg/kg) reduced the expressions of α-smooth muscle actin and transforming growth factor-β1 (TGF-β1), and inhibited the phosphorylations of Smad2 and Smad3 in the lung tissues. However, in vitro, Mad showed little effect on TGF-β1-induced phosphorylation of either Smad2 or Smad3 in primary mouse lung fibroblasts. Moreover, Mad (20, 40 mg/kg) attenuated oxidative damage and inflammation presented at the early stage of PF, evidenced by reduced total leukocytes in the bronchoalveolar lavage fluid, decreased myeloperoxidase activity and malondialdehyde level, and increased super-oxide dismutase activity and glutathione level in lung tissues. On the other hand, Mad (40 mg/kg) elevated the matrix metalloproteinase 1/tissue inhibitor of metalloproteinase 1 ratio in lung tissues of PF mice mainly by downregulating tissue inhibitor of metalloproteinase 1 expression. The present study demonstrated that Mad can ameliorate PF by preventing the deposition of extracellular matrix, which might be achieved mainly through attenuating inflammation and oxidative stress and consequent TGF-β1 overexpression.

  18. Decreased collagen-induced arthritis severity and adaptive immunity in mitogen activated protein kinase kinase 6 -deficient mice

    PubMed Central

    Hammaker, Deepa; Topolewski, Katharyn; Edgar, Meghan; Yoshizawa, Toshio; Fukushima, Akihisa; Boyle, David L.; Firestein, Gary S.

    2011-01-01

    Objective MAPK kinases MKK3 and MKK6 regulate p38 MAPK activation in inflammatory diseases such as rheumatoid arthritis. Previous studies demonstrated that MKK3- or MKK6-deficiency inhibits K/BxN serum-induced arthritis. However, the role of these kinases in adaptive immunity-dependent models of chronic arthritis is not known. The goal of this study was to evaluate MKK3- and MKK6-deficiency in the collagen induced arthritis model. Methods Wildtype, MKK3−/−, and MKK6−/− mice were immunized with bovine type II collagen (CII). Disease activity was evaluated by semiquantitative scoring, histology, and microcomputed tomography. Serum anti-collagen antibody levels were quantified by ELISA. In-vitro T cell cytokine response was measured by flow cytometry and multiplex analysis. Expression of joint cytokines and matrix metalloproteinase was determined by qPCR. Results MKK6-deficiency markedly reduced arthritis severity compared with WT mice, while absence of MKK3 had an intermediate effect. Joint damage was minimal in arthritic MKK6−/− mice and intermediate in MKK3−/− mice compared with wild type mice. MKK6−/− mice had modestly lower levels of pathogenic anti-collagen antibodies than WT or MKK3−/− mice. In vitro T cell assays showed reduced proliferation and IL-17 production by MKK6−/− cells in response to type II collagen. Gene expression of synovial IL-6, matrix metalloproteinases MMP3, and MMP13 was significantly inhibited in MKK6-deficient mice. Conclusion Reduced disease severity in MKK6−/− mice correlated with decreased anti-collagen responses indicating that MKK6 is a crucial regulator of inflammation joint destruction in CIA. MKK6 is a potential therapeutic target in complex diseases involving adaptive immune responses like rheumatoid arthritis. PMID:21953132

  19. Parathyroid hormone attenuates radiation-induced increases in collagen crosslink ratio at periosteal surfaces of mouse tibia.

    PubMed

    Oest, Megan E; Gong, Bo; Esmonde-White, Karen; Mann, Kenneth A; Zimmerman, Nicholas D; Damron, Timothy A; Morris, Michael D

    2016-05-01

    As part of our ongoing efforts to understand underlying mechanisms contributing to radiation-associated bone fragility and to identify possible treatments, we evaluated the longitudinal effects of parathyroid hormone (PTH) treatment on bone quality in a murine model of limited field irradiation. We hypothesized PTH would mitigate radiation-induced changes in the chemical composition and structure of bone, as measured by microscope-based Raman spectroscopy. We further hypothesized that collagen crosslinking would be especially responsive to PTH treatment. Raman spectroscopy was performed on retrieved tibiae (6-7/group/time point) to quantify metrics associated with bone quality, including: mineral-to-matrix ratio, carbonate-to-phosphate ratio, mineral crystallinity, collagen crosslink (trivalent:divalent) ratio, and the mineral and matrix depolarization ratios. Irradiation disrupted the molecular structure and orientation of bone collagen, as evidenced by a higher collagen crosslink ratio and lower matrix depolarization ratio (vs. non-irradiated control bones), persisting until 12weeks post-irradiation. Radiation transiently affected the mineral phase, as evidenced by increased mineral crystallinity and mineral-to-matrix ratio at 4weeks compared to controls. Radiation decreased bone mineral depolarization ratios through 12weeks, indicating increased mineral alignment. PTH treatment partially attenuated radiation-induced increases in collagen crosslink ratio, but did not restore collagen or mineral alignment. These post-radiation matrix changes are consistent with our previous studies of radiation damage to bone, and suggest that the initial radiation damage to bone matrix has extensive effects on the quality of tissue deposited thereafter. In addition to maintaining bone quality, preventing initial radiation damage to the bone matrix (i.e. crosslink ratio, matrix orientation) may be critical to preventing late-onset fragility fractures.

  20. Adipose-Derived Mesenchymal Stem Cells Prevent Systemic Bone Loss in Collagen-Induced Arthritis

    PubMed Central

    Garimella, Manasa G.; Kour, Supinder; Piprode, Vikrant; Mittal, Monika; Kumar, Anil; Rani, Lekha; Pote, Satish T.; Mishra, Gyan C.; Chattopadhyay, Naibedya

    2015-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammatory synovitis leading to joint destruction and systemic bone loss. The inflammation-induced bone loss is mediated by increased osteoclast formation and function. Current antirheumatic therapies primarily target suppression of inflammatory cascade with limited or no success in controlling progression of bone destruction. Mesenchymal stem cells (MSCs) by virtue of their tissue repair and immunomodulatory properties have shown promising results in various autoimmune and degenerative diseases. However, the role of MSCs in prevention of bone destruction in RA is not yet understood. In this study, we investigated the effect of adipose-derived MSCs (ASCs) on in vitro formation of bone-resorbing osteoclasts and pathological bone loss in the mouse collagen-induced arthritis (CIA) model of RA. We observed that ASCs significantly inhibited receptor activator of NF-κB ligand (RANKL)–induced osteoclastogenesis in both a contact-dependent and -independent manner. Additionally, ASCs inhibited RANKL-induced osteoclastogenesis in the presence of proinflammatory cytokines such as TNF-α, IL-17, and IL-1β. Furthermore, treatment with ASCs at the onset of CIA significantly reduced clinical symptoms and joint pathology. Interestingly, ASCs protected periarticular and systemic bone loss in CIA mice by maintaining trabecular bone structure. We further observed that treatment with ASCs reduced osteoclast precursors in bone marrow, resulting in decreased osteoclastogenesis. Moreover, ASCs suppressed autoimmune T cell responses and increased the percentages of peripheral regulatory T and B cells. Thus, we provide strong evidence that ASCs ameliorate inflammation-induced systemic bone loss in CIA mice by reducing osteoclast precursors and promoting immune tolerance. PMID:26538398

  1. Effects of chebulic acid on advanced glycation endproducts-induced collagen cross-links.

    PubMed

    Lee, Ji-Young; Oh, Jun-Gu; Kim, Jin Sook; Lee, Kwang-Won

    2014-01-01

    Advanced glycation end-products (AGEs) have been implicated in the development of diabetic complications. We report the antiglycating activity of chebulic acid (CA), isolated from Terminalia chebula on breaking the cross-links of proteins induced by AGEs and inhibiting the formation of AGEs. Aminoguanidine (AG) reduced 50% of glycated bovine serum albumin (BSA) with glycolaldehyde (glycol-BSA)-induced cross-links of collagen at a concentration of 67.8 ± 2.5 mM, the level of CA required for exerting a similar antiglycating activity was 38.8 ± 0.5 µM. Also, the breaking activity on collagen cross-links induced by glycol-BSA was potent with CA (IC50=1.46 ± 0.05 mM), exhibiting 50-fold stronger breaking activity than with ALT-711, a well-known cross-link breaker (IC50=72.2 ± 2.4 mM). IC50 values of DPPH· scavenging activity for CA and ascorbic acid (AA) were 39.2 ± 4.9 and 19.0 ± 1.2 µg dry matter (DM) mL(-1), respectively, and ferric reducing and antioxidant power (FRAP) activities for CA and AA were 4.70 ± 0.06 and 11.4 ± 0.1 mmol/FeSO4·7H2O/g DM, respectively. The chelating activities of CA, AG and ALT711 on copper-catalyzed oxidation of AA were compared, and in increasing order, ALT-711 (IC50 of 1.92 ± 0.20 mM)

  2. Resistance to collagen-induced arthritis in SHPS-1 mutant mice

    SciTech Connect

    Okuzawa, Chie; Kaneko, Yoriaki; Murata, Yoji; Miyake, Astuko; Saito, Yasuyuki; Okajo, Jun; Tomizawa, Takeshi; Kaneko, Yuka; Okazawa, Hideki; Ohnishi, Hiroshi; Matozaki, Takashi Nojima, Yoshihisa

    2008-07-04

    SHPS-1 is a transmembrane protein that binds the protein tyrosine phosphatases SHP-1 and SHP-2 through its cytoplasmic region and is abundantly expressed on dendritic cells and macrophages. Here we show that mice expressing a mutant form of SHPS-1 fail to develop type-II collagen (CII)-induced arthritis (CIA), a model for rheumatoid arthritis in humans. Histological examinations of the arthritic paws from immunized wild-type mice revealed that cartilage was destroyed in association with marked mononuclear cell infiltration, while only mild cell infiltration was observed in immunized SHPS-1 mutant mice. Consistently, the serum levels of both IgG and IgG2a specific to CII and of IL-1{beta} in immunized SHPS-1 mutant mice were markedly reduced compared with those apparent for wild-type mice. The CII-induced proliferation of, and production of cytokines by, T cells from immunized SHPS-1 mutant mice were reduced compared to wild-type cells. These results suggest that SHPS-1 is essential for development of CIA.

  3. Mucosal Administration of Collagen V Ameliorates the Atherosclerotic Plaque Burden by Inducing Interleukin 35-dependent Tolerance.

    PubMed

    Park, Arick C; Huang, Guorui; Jankowska-Gan, Ewa; Massoudi, Dawiyat; Kernien, John F; Vignali, Dario A; Sullivan, Jeremy A; Wilkes, David S; Burlingham, William J; Greenspan, Daniel S

    2016-02-12

    We have shown previously that collagen V (col(V)) autoimmunity is a consistent feature of atherosclerosis in human coronary artery disease and in the Apoe(-/-) mouse model. We have also shown sensitization of Apoe(-/-) mice with col(V) to markedly increase the atherosclerotic burden, providing evidence of a causative role for col(V) autoimmunity in atherosclerotic pathogenesis. Here we sought to determine whether induction of immune tolerance to col(V) might ameliorate atherosclerosis, providing further evidence for a causal role for col(V) autoimmunity in atherogenesis and providing insights into the potential for immunomodulatory therapeutic interventions. Mucosal inoculation successfully induced immune tolerance to col(V) with an accompanying reduction in plaque burden in Ldlr(-/-) mice on a high-cholesterol diet. The results therefore demonstrate that inoculation with col(V) can successfully ameliorate the atherosclerotic burden, suggesting novel approaches for therapeutic interventions. Surprisingly, tolerance and reduced atherosclerotic burden were both dependent on the recently described IL-35 and not on IL-10, the immunosuppressive cytokine usually studied in the context of induced tolerance and amelioration of atherosclerotic symptoms. In addition to the above, using recombinant protein fragments, we were able to localize two epitopes of the α1(V) chain involved in col(V) autoimmunity in atherosclerotic Ldlr(-/-) mice, suggesting future courses of experimentation for the characterization of such epitopes.

  4. Sympathetic Neurotransmitters Modulate Osteoclastogenesis and Osteoclast Activity in the Context of Collagen-Induced Arthritis

    PubMed Central

    Muschter, Dominique; Schäfer, Nicole; Stangl, Hubert; Straub, Rainer H.; Grässel, Susanne

    2015-01-01

    Excessive synovial osteoclastogenesis is a hallmark of rheumatoid arthritis (RA). Concomitantly, local synovial changes comprise neuronal components of the peripheral sympathetic nervous system. Here, we wanted to analyze if collagen-induced arthritis (CIA) alters bone marrow-derived macrophage (BMM) osteoclastogenesis and osteoclast activity, and how sympathetic neurotransmitters participate in this process. Therefore, BMMs from Dark Agouti rats at different CIA stages were differentiated into osteoclasts in vitro and osteoclast number, cathepsin K activity, matrix resorption and apoptosis were analyzed in the presence of acetylcholine (ACh), noradrenaline (NA) vasoactive intestinal peptide (VIP) and assay-dependent, adenylyl cyclase activator NKH477. We observed modulation of neurotransmitter receptor mRNA expression in CIA osteoclasts without affecting protein level. CIA stage-dependently altered marker gene expression associated with osteoclast differentiation and activity without affecting osteoclast number or activity. Neurotransmitter stimulation modulated osteoclast differentiation, apoptosis and activity. VIP, NA and adenylyl cyclase activator NKH477 inhibited cathepsin K activity and osteoclastogenesis (NKH477, 10-6M NA) whereas ACh mostly acted pro-osteoclastogenic. We conclude that CIA alone does not affect metabolism of in vitro generated osteoclasts whereas stimulation with NA, VIP plus specific activation of adenylyl cyclase induced anti-resorptive effects probably mediated via cAMP signaling. Contrary, we suggest pro-osteoclastogenic and pro-resorptive properties of ACh mediated via muscarinic receptors. PMID:26431344

  5. Paroxetine alleviates T lymphocyte activation and infiltration to joints of collagen-induced arthritis

    PubMed Central

    Wang, Qingtong; Wang, Longsheng; Wu, Li; Zhang, Mei; Hu, Shanshan; Wang, Rui; Han, Yongsheng; Wu, Yujing; Zhang, Lingling; Wang, Xinming; Sun, Wuyi; Wei, Wei

    2017-01-01

    T cell infiltration to synovial tissue is an early pathogenic mechanism of rheumatoid arthritis (RA). In the present work, we reveal that G protein coupled receptor kinase 2 (GRK2) is abundantly expressed in T cells of collagen-induced arthritis (CIA). A GRK2 inhibitor, paroxetine protects the joints from inflammation and destruction, primarily through inhibition of both CD4+ helper T (Th) cell and CD8+ cytotoxic T (Tc) cell migration to synovial tissue. Meanwhile, paroxetine restores the balance of Th/Tc, effector Th (Theff)/ naïve Th (Thnaive) and effector Tc (Tceff)/ naïve Tc (Tcnaive) to equilibrium by elevating the frequency of Thnaive, Tcnaive and regulatory Th cells; reducing the increased Theff, activated Th and Tceff, having a similar effect as methotrexate (MTX). In addition, both serum and synovial IL-1β, TNF-α and CX3CL1 expression was effectively inhibited in treated rats. In vitro assay confirmed that paroxetine inhibits CX3CL1-induced T cell migration through blocking the activity of GRK2. Among three MAPK families, paroxetine was found to be able to decrease the phosphorylation of ERK. This study elucidates that paroxetine attenuates the symptoms of CIA rats due to its inhibitory effect on T cell activation and infiltration to synovial tissue via suppression of ERK pathway. PMID:28349925

  6. Changes and significance of IL-25 in chicken collagen II-induced experimental arthritis (CIA).

    PubMed

    Kaiwen, Wang; Zhaoliang, Su; Yinxia, Zhao; Siamak, Sandoghchian Shotorbani; Zhijun, Jiao; Yuan, Xue; Heng, Yang; Dong, Zheng; Yanfang, Liu; Pei, Shen; Shengjun, Wang; Qixiang, Shao; Xinxiang, Huang; Liwei, Lu; Huaxi, Xu

    2012-08-01

    Rheumatoid arthritis (RA) is an autoimmune inflammatory disease. It is a systemic inflammatory disease, characterized by chronic, symmetrical, multi-articular synovial arthritis. IL-25 (IL-17E) is a member of the recently emerged cytokine family (IL-17s), which is expressed in Th2 cells and bone marrow-derived mast cells. Unlike the other members of this family, IL-25 is capable of inducing Th2-associated cytokines (IL-4, IL-5, and IL-13) and also promotes the release of some pro-immune factors (IL-6 and IL-8). IL-25 is also a pleiotropic factor, which constitutes a tissue-specific pathological injury and chronic inflammation. In this study, we used chicken collagen II-induced experimental arthritis (CIA) model in DBA/1 mice to investigate the relationship between IL-25 and other inflammatory factors, revealing the possible mechanism in CIA. Our results showed that the expression level of IL-25 was enhanced in the late stage of CIA, and IL-17 was increased in the early stage of the disease. It is well known that IL-17 has a crucial role in the development of RA pathogenesis, and IL-25 plays a significant role in humoral immune. For reasons given above, we suggested that the IL-25 inhibited IL-17 expression to some extent, while enhancing the production of IL-4. It was confirmed that IL-25 not only regulated the cellular immune, but also involved the humoral immune in rheumatoid arthritis.

  7. Loss of IL-22 inhibits autoantibody formation in collagen-induced arthritis in mice.

    PubMed

    Corneth, Odilia B J; Reijmers, Rogier M; Mus, Adriana M C; Asmawidjaja, Patrick S; van Hamburg, Jan Piet; Papazian, Natalie; Siegers, Jurre Y; Mourcin, Frédéric; Amin, Rada; Tarte, Karin; Hendriks, Rudi W; Cupedo, Tom; Lubberts, Erik

    2016-06-01

    Interleukin 22 (IL-22) expression is associated with increased joint destruction and disease progression in rheumatoid arthritis (RA). Although IL-22 is considered a pro-inflammatory cytokine, its mechanism of action in RA remains incompletely understood. Here, we used the collagen-induced arthritis model in IL-22 deficient (IL-22(-/-) ) mice to study the role of IL-22 in RA. In spite of normal disease incidence, disease severity is significantly diminished in IL-22(-/-) mice. Moreover, pathogenicity of Th17 cells and development and function of B cells are unaffected. In contrast, splenic plasma cells, as well as serum autoantibody titers, are reduced in the absence of IL-22. At the peak of disease, germinal centers (GCs) are severely reduced in the spleens of IL-22(-/-) mice, correlating with a decline in GC B-cell numbers. Within the GC, we identified IL-22R1 expressing follicular dendritic cell-like stromal cells. Human lymphoid stromal cells respond to IL-22 ex vivo by inducing transcription of CXCL12 and CXCL13. We therefore postulate IL-22 as an important enhancer of the GC reaction, maintaining chemokine levels for the persistence of GC reactions, essential for the production of autoantibody-secreting plasma cells. Blocking IL-22 might therefore prevent immune-complex deposition and destruction of joints in RA patients. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Intralymphatic Administration of Adipose Mesenchymal Stem Cells Reduces the Severity of Collagen-Induced Experimental Arthritis

    PubMed Central

    Mancheño-Corvo, Pablo; Lopez-Santalla, Mercedes; Menta, Ramon; DelaRosa, Olga; Mulero, Francisca; del Rio, Borja; Ramirez, Cristina; Büscher, Dirk; Bueren, Juan A.; Lopez-Belmonte, Juan; Dalemans, Wilfried; Garin, Marina I.; Lombardo, Eleuterio

    2017-01-01

    Mesenchymal stem cells (MSCs) are multipotent stromal cells with immunomodulatory properties. They have emerged as a very promising treatment for autoimmunity and inflammatory diseases such as rheumatoid arthritis. Previous studies have demonstrated that MSCs, administered systemically, migrate to lymphoid tissues associated with the inflammatory site where functional MSC-induced immune cells with a regulatory phenotype were increased mediating the immunomodulatory effects of MSCs. These results suggest that homing of MSCs to the lymphatic system plays an important role in the mechanism of action of MSCs in vivo. Thus, we hypothesized that direct intralymphatic (IL) (also referred as intranodal) administration of MSCs could be an alternative and effective route of administration for MSC-based therapy. Here, we report the feasibility and efficacy of the IL administration of human expanded adipose mesenchymal stem cells (eASCs) in a mouse model of collagen-induced arthritis (CIA). IL administration of eASCs attenuated the severity and progression of arthritis, reduced bone destruction and increased the levels of regulatory T cells (CD25+Foxp3+CD4+ cells) and Tr1 cells (IL10+CD4+), in spleen and draining lymph nodes. Taken together, these results indicate that IL administration of eASCs is very effective in modulating established CIA and may represent an alternative treatment modality for cell therapy with eASCs. PMID:28484460

  9. Reversibility of D-penicillamine induced collagen alterations in rat skin and granulation tissue.

    PubMed

    Junker, P; Lorenzen, I

    1983-06-01

    Granulation tissue was produced in rats by subcutaneous implantation of Visella sponges. D-penicillamine (D-pen) 100 or 500 mg/kg was administered daily for 42 days by gastric tubing. Pairfed, placebo treated animals were included as controls. Half of the groups were kept for additionally 28 days without medication. The inhibitory effect of D-pen on cross-link formation in newly synthesized collagen was readily reversible. By contrast, cross-link deficiency lasting beyond the observation period was observed in the higher polymeric collagen variants released by dilute acid, heat exposure or limited pepsin proteolysis as estimated by solubility, alpha/beta chain ratio and/or aldehyde content. By SDS-polyacrylamide gel electrophoresis on gels containing 3.6 M urea it was shown that purified dermal acid soluble collagen from treated animals consisted of a mixture of type I and III collagen, whereas only type I collagen was detected in controls. The band pattern was identical in reduced and unreduced collagen samples. Four weeks after D-pen discontinuance type III collagen had disappeared from the acid extract. Moreover, the ratio of type III to type I collagen in the pepsin digest from both granulation tissue and skin showed a persistent rise with D-pen. These observations indicate that D-pen destabilized type III collagen in particular by interference with its disulfide linkages. The amount of granulation tissue remained unaffected throughout the experiment, whereas the skin collagen content decreased at the higher dose level. The regeneration was not completed by the end of the observation period. Modulation of the molecular stability of granuloma collagens may be of relevance for the antirheumatoid effect of D-pen, but the sustained effect on normal tissues may imply a long standing impairment of their supportive capacity.

  10. Aqueous and Methanolic Extracts of Caulerpa mexicana Suppress Cell Migration and Ear Edema Induced by Inflammatory Agents

    PubMed Central

    Bitencourt, Mariana Angelica Oliveira; Dantas, Gracielle Rodrigues; Lira, Daysianne Pereira; Barbosa-Filho, Jose Maria; de Miranda, George Emmanuel Cavalcanti; de Oliveira Santos, Barbara Viviana; Souto, Janeusa Trindade

    2011-01-01

    The regulation of the inflammatory response is essential to maintaining homeostasis. Several studies have investigated new drugs that may contribute to avoiding or minimizing excessive inflammatory process. The aim of this study was to evaluate the effect of extracts of green algae Caulerpa mexicana on models inflammation. In mice, the inflammatory peritonitis model is induced by zymosan. Previous treatment of mice with aqueous and methanolic extracts of C. mexicana was able to suppress the cell migration to the peritoneal cavity, in a time-dependent but not in a dose-dependent manner. The treatment of mice with C. mexicana extracts also decreased the xylene-induced ear edema, exerting strong inhibitory leukocyte migration elicited by zymosan into the air pouch. We concluded that administration of the extracts resulted in a reduction of cell migration to different sites as well as a decrease in edema formation induced by chemical irritants. This study demonstrates for the first time the anti-inflammatory effect of aqueous and methanolic extracts from the green marine algae Caulerpa mexicana. PMID:21892348

  11. Aqueous and methanolic extracts of Caulerpa mexicana suppress cell migration and ear edema induced by inflammatory agents.

    PubMed

    Bitencourt, Mariana Angelica Oliveira; Dantas, Gracielle Rodrigues; Lira, Daysianne Pereira; Barbosa-Filho, Jose Maria; de Miranda, George Emmanuel Cavalcanti; Santos, Barbara Viviana de Oliveira; Souto, Janeusa Trindade

    2011-01-01

    The regulation of the inflammatory response is essential to maintaining homeostasis. Several studies have investigated new drugs that may contribute to avoiding or minimizing excessive inflammatory process. The aim of this study was to evaluate the effect of extracts of green algae Caulerpa mexicana on models inflammation. In mice, the inflammatory peritonitis model is induced by zymosan. Previous treatment of mice with aqueous and methanolic extracts of C. mexicana was able to suppress the cell migration to the peritoneal cavity, in a time-dependent but not in a dose-dependent manner. The treatment of mice with C. mexicana extracts also decreased the xylene-induced ear edema, exerting strong inhibitory leukocyte migration elicited by zymosan into the air pouch. We concluded that administration of the extracts resulted in a reduction of cell migration to different sites as well as a decrease in edema formation induced by chemical irritants. This study demonstrates for the first time the anti-inflammatory effect of aqueous and methanolic extracts from the green marine algae Caulerpa mexicana.

  12. Protective effects of a blueberry extract in acute inflammation and collagen-induced arthritis in the rat.

    PubMed

    Figueira, Maria-Eduardo; Oliveira, Mónica; Direito, Rosa; Rocha, João; Alves, Paula; Serra, Ana-Teresa; Duarte, Catarina; Bronze, Rosário; Fernandes, Adelaide; Brites, Dora; Freitas, Marisa; Fernandes, Eduarda; Sepodes, Bruno

    2016-10-01

    Here we investigated the anti-inflammatory effect of a blueberry extract in the carrageenan-induced paw edema model and collagen-induced arthritis model, both in rats. Along with the chemical characterization of the phenolic content of the fruits and extract, the antioxidant potential of the extract, the cellular antioxidant activity and the effects over neutrophils' oxidative burst, were studied in order to provide a mechanistic insight for the anti-inflammatory effects observed. The extract significantly inhibited paw edema formation in an acute model the rat. Our results also demonstrate that the standardized extract had pharmacological activity when administered orally in the collagen-induced arthritis model in the rat and was able to significantly reduce the development of clinical signs of arthritis and the degree of bone resorption, soft tissue swelling and osteophyte formation, consequently improving articular function in treated animals.

  13. Multiphoton microscopy of engineered dermal substitutes: assessment of 3-D collagen matrix remodeling induced by fibroblast contraction

    NASA Astrophysics Data System (ADS)

    Pena, Ana-Maria; Fagot, Dominique; Olive, Christian; Michelet, Jean-François; Galey, Jean-Baptiste; Leroy, Frédéric; Beaurepaire, Emmanuel; Martin, Jean-Louis; Colonna, Anne; Schanne-Klein, Marie-Claire

    2010-09-01

    Dermal fibroblasts are responsible for the generation of mechanical forces within their surrounding extracellular matrix and can be potentially targeted by anti-aging ingredients. Investigation of the modulation of fibroblast contraction by these ingredients requires the implementation of three-dimensional in situ imaging methodologies. We use multiphoton microscopy to visualize unstained engineered dermal tissue by combining second-harmonic generation that reveals specifically fibrillar collagen and two-photon excited fluorescence from endogenous cellular chromophores. We study the fibroblast-induced reorganization of the collagen matrix and quantitatively evaluate the effect of Y-27632, a RhoA-kinase inhibitor, on dermal substitute contraction. We observe that collagen fibrils rearrange around fibroblasts with increasing density in control samples, whereas collagen fibrils show no remodeling in the samples containing the RhoA-kinase inhibitor. Moreover, we show that the inhibitory effects are reversible. Our study demonstrates the relevance of multiphoton microscopy to visualize three-dimensional remodeling of the extracellular matrix induced by fibroblast contraction or other processes.

  14. Effect of γ-tocotrienol in counteracting oxidative stress and joint damage in collagen-induced arthritis in rats.

    PubMed

    Radhakrishnan, Ammu; Tudawe, Dulanthi; Chakravarthi, Srikumar; Chiew, Gan Seng; Haleagrahara, Nagaraja

    2014-05-01

    Tocotrienols exhibit a significant anti-inflammatory and antioxidant effect in numerous human diseases. However, the anti-inflammatory and antioxidant effects of tocotrienols in arthritic conditions are not well documented. Therefore, the effect of γ-tocotrienol supplementation against oxidative stress and joint pathology in collagen-induced arthritis in rats was investigated in the present study. Adult female Dark Agouti rats were randomly divided into groups: Control, γ-tocotrienol alone, arthritis alone and arthritis with γ-tocotrienol. Arthritis was induced using 4 mg/kg body weight collagen in complete Freund's adjuvant. The rats were treated orally with 5 mg/kg body weight of γ-tocotrienol between day 21 and day 45. After 45 days, serum C-reactive protein (CRP), tumor necrosis factor (TNF)-α, superoxide dismutase (SOD) and total glutathione (GSH) assays were conducted. γ-tocotrienol significantly reduced the arthritis-induced changes in body weight, CRP, TNF-α, SOD and the total GSH levels. There was a significant reduction in the arthritis-induced histopathological changes in the γ-tocotrienol treatment group. The data indicated that administration of γ-tocotrienol resulted in a significant antioxidant and anti-inflammatory effect on collagen-induced arthritis; therefore, γ-tocotrienol may have therapeutic potential as a long-term anti-arthritic agent in rheumatoid arthritis therapy.

  15. Effect of γ-tocotrienol in counteracting oxidative stress and joint damage in collagen-induced arthritis in rats

    PubMed Central

    RADHAKRISHNAN, AMMU; TUDAWE, DULANTHI; CHAKRAVARTHI, SRIKUMAR; CHIEW, GAN SENG; HALEAGRAHARA, NAGARAJA

    2014-01-01

    Tocotrienols exhibit a significant anti-inflammatory and antioxidant effect in numerous human diseases. However, the anti-inflammatory and antioxidant effects of tocotrienols in arthritic conditions are not well documented. Therefore, the effect of γ-tocotrienol supplementation against oxidative stress and joint pathology in collagen-induced arthritis in rats was investigated in the present study. Adult female Dark Agouti rats were randomly divided into groups: Control, γ-tocotrienol alone, arthritis alone and arthritis with γ-tocotrienol. Arthritis was induced using 4 mg/kg body weight collagen in complete Freund’s adjuvant. The rats were treated orally with 5 mg/kg body weight of γ-tocotrienol between day 21 and day 45. After 45 days, serum C-reactive protein (CRP), tumor necrosis factor (TNF)-α, superoxide dismutase (SOD) and total glutathione (GSH) assays were conducted. γ-tocotrienol significantly reduced the arthritis-induced changes in body weight, CRP, TNF-α, SOD and the total GSH levels. There was a significant reduction in the arthritis-induced histopathological changes in the γ-tocotrienol treatment group. The data indicated that administration of γ-tocotrienol resulted in a significant antioxidant and anti-inflammatory effect on collagen-induced arthritis; therefore, γ-tocotrienol may have therapeutic potential as a long-term anti-arthritic agent in rheumatoid arthritis therapy. PMID:24940448

  16. Membrane-associated 41-kDa GTP-binding protein in collagen-induced platelet activation

    SciTech Connect

    Walker, G.; Bourguignon, L.Y. )

    1990-08-01

    Initially we established that the binding of collagen to human blood platelets stimulates both the rapid loss of PIP2 and the generation of inositol-4,5-bisphosphate (IP2) and inositol-1,4,5-triphosphate (IP3). These results indicate that the binding of collagen stimulates inositol phospholipid-specific phospholipase C during platelet activation. The fact that GTP or GTP-gamma-S augments, and pertussis toxin inhibits, collagen-induced IP3 formation suggests that a GTP-binding protein or (or proteins) may be directly involved in the regulation of phospholipase C-mediated phosphoinositide turnover in human platelets. We have used several complementary techniques to isolate and characterize a platelet 41-kDa polypeptide (or polypeptides) that has a number of structural and functional similarities to the regulatory alpha i subunit of the GTP-binding proteins isolated from bovine brain. This 41-kDa polypeptide (or polypeptides) is found to be closely associated with at least four membrane glycoproteins (e.g., gp180, gp110, gp95, and gp75) in a 330-kDa complex that can be dissociated by treatment with high salt plus urea. Most important, we have demonstrated that antilymphoma 41-kDa (alpha i subunit of GTP-binding proteins) antibody cross-reacts with the platelet 41-kDa protein (or proteins) and the alpha i subunit of bovine brain Gi alpha proteins, and blocks GTP/collagen-induced IP3 formation. These data provide strong evidence that the 41-kDa platelet GTP-binding protein (or proteins) is directly involved in collagen-induced signal transduction during platelet activation.

  17. Resveratrol inhibits high glucose induced collagen upregulation in cardiac fibroblasts through regulating TGF-β1-Smad3 signaling pathway.

    PubMed

    Liu, Junhui; Zhuo, Xiaozhen; Liu, Weimin; Wan, Zhaofei; Liang, Xiao; Gao, Shanshan; Yuan, Zuyi; Wu, Yue

    2015-02-05

    Cardiac fibrosis is a common pathological process presented in a variety of diseases, including hypertension and diabetes. Cardiac fibroblasts (CFs) have been identified as the most important participants in the development of cardiac fibrosis. Exposure of cultured CFs to high glucose (HG) or angiotensin II (Ang II) resulted in increased collagen synthesis. Resveratrol (Res) is a natural polyphenol exhibiting anti-fibrosis effects in a number of different organs fibrosis process, whether Res can prevent HG and Ang II induced fibrosis response in CFs remains unclear. The aim of this work was to evaluate the effects of Res in HG and Ang II induced fibrosis response in CFs. We cultured rat CFs in either normal glucose (5.6 mM) or HG (25 mM) media in the presence of Res or not and the changes in collagens synthesis and TGF-β1 production were assessed by Real-time PCR, Western blotting, and enzyme linked immunosorbent assay (ELISA). Furthermore, normal and diabetic mice (induced by single dose of streptozotocin (100 mg/kg) via tail vein) receiving Res (10 mg/kg) were used to explore the effects of Res on cardiac fibrosis in vivo. Masson staining and immunohistochemistry were performed to visualize cardiac collagen deposition. Results indicate that CFs exposed to HG condition shows enhanced proliferation rate. Furthermore, in the presence of HG or Ang II, CFs exhibited increased collagens synthesis and TGF-β1 production. And these effects were abolished by Res intervention. In vivo results show that diabetic mice exhibit increased collagen deposition in the cardiac compared with the normal mice. And this change was prevented by the treatment of Res. These results suggest that Res possesses a potential antifibrogenic effect in hypertension and diabetes-related cardiac fibrosis. Moreover, the action mechanism is probably associated with its ability to reduce TGF-β1 content in CFs.

  18. The Role of Leukocyte-Associated Ig-like Receptor-1 in Suppressing Collagen-Induced Arthritis.

    PubMed

    Kim, Seunghyun; Easterling, Ellis R; Price, Lauren C; Smith, Savannah L; Coligan, John E; Park, Jeoung-Eun; Brand, David D; Rosloniec, Edward F; Stuart, John M; Kang, Andrew H; Myers, Linda K

    2017-09-08

    Several observations implicate a critical role for T cell dysregulation as a central problem in rheumatoid arthritis. We investigated a mechanism for suppressing T cell activation by stimulating a natural inhibitory receptor called leukocyte-associated Ig-like receptor-1 (LAIR-1). The collagen-induced arthritis (CIA) model and DR-1 transgenic mice were used to study the importance of LAIR-1 in autoimmune arthritis. Splenocytes from wild-type or LAIR-1(-/-) mice were stimulated with soluble anti-CD3 Ab in the presence or absence of α1(II) and supernatants were collected for cytokine analysis. B6.DR1 mice were immunized with type II collagen/CFA to induce arthritis and were treated with either the stimulatory mAb to LAIR-1 or a hamster IgG control. Finally, B6.DR1/LAIR-1(-/-) and B6.DR1/LAIR-1(+/+) mice were challenged for CIA and mean severity scores were recorded thrice weekly. Using splenocytes or purified CD4(+) cells that were sufficient in LAIR-1, CD3-induced cytokine secretion was significantly suppressed in the presence of collagen, whereas LAIR-1-deficient splenocytes had no attenuation. Treatment with a stimulatory mAb to LAIR-1 also significantly attenuated CIA in the LAIR(+/+) mice. When B6.DR1/LAIR-1(-/-) mice were immunized with type II collagen they developed more severe arthritis and had a greater percentage of affected limbs than the wild-type mice. These data demonstrate that collagen can suppress the T cell cytokine response through the action of LAIR-1. Treatment with stimulating LAIR-1 Abs suppresses CIA whereas B6.DR1/LAIR-1(-/-) mice develop more severe arthritis than wild-type controls. These data suggest that LAIR-1 may be a potential therapeutic target for suppressing rheumatoid arthritis. Copyright © 2017 by The American Association of Immunologists, Inc.

  19. Fucoidan as an inhibitor of thermally induced collagen glycation examined by acetate electrophoresis.

    PubMed

    Pielesz, Anna; Paluch, Jadwiga

    2014-08-01

    Non-enzymatic glycation (Maillard reaction) in vitro could be a simple method to obtain glycoconjugates for studying their biological properties. Hence, fucoidan was retained by acetate electrophoresis indicating a strong interaction with the protein. A loss of colour in fucoidan bands was found for samples incubated with collagen as compared with samples of free fucoidan. Also under in vitro conditions at 100°C - simulating a sudden burn incident - fucoidan binds with collagen as a result of the Maillard reaction. In contrast, the colour of the fucoidan bands intensified for samples incubated with collagen, with the addition of glucose. Electrophoretic analyses were carried out after heating the samples to a temperature simulating a burn incident. The bands were found to intensify for samples incubated with collagen during a 30-day-long incubation. Thus, spontaneous in vitro glycation - i.e. without the addition of glucose - was confirmed. This process is highly intensified both by the temperature and time of incubation. For a sample incubated in vitro in a fucoidan solution containing glucose, glycation was confirmed in a preliminary FTIR and acetate electrophoresis examinations, occurring in collagen obtained from chicken skins. In particular, a new band emerging around 1746 cm(-1) was observed for above samples, as was its increasing intensity, as compared with samples without the addition of glucose. In the collagen glycation assay, while glucose reacts with collagen and forms cross-linked aggregates, fucoidan decreases the process of aggregation and recovery of native collagen.

  20. [Inner Ear Hearing Loss].

    PubMed

    Hesse, G

    2016-06-01

    Hearing loss is one of the most dominant handicaps in modern societies, which additionally very often is not realized or not admitted. About one quarter of the general population suffers from inner ear hearing loss and is therefore restricted in communicational skills. Demographic factors like increasing age play an important role as well as environmental influences and an increasing sound and noise exposure especially in leisure activities. Thus borders between a "classical" presbyacusis - if it ever existed - and envirionmentally induced hearing loss disappear. Today restrictions in hearing ability develop earlier in age but at the same time they are detected and diagnosed earlier. This paper can eventually enlighten the wide field of inner ear hearing loss only fragmentarily; therefore mainly new research, findings and developments are reviewed. The first part discusses new aspects of diagnostics of inner ear hearing loss and different etiologies.

  1. Oxaliplatin retains HMGB1 intranuclearly and ameliorates collagen type II-induced arthritis

    PubMed Central

    Östberg, Therese; Wähämaa, Heidi; Palmblad, Karin; Ito, Norimasa; Stridh, Pernilla; Shoshan, Maria; Lotze, Michael T; Harris, Helena Erlandsson; Andersson, Ulf

    2008-01-01

    Introduction High mobility group box chromosomal protein 1 (HMGB1) is a nuclear protein that acts as a pro-inflammatory mediator following extracellular release. The protein is aberrantly expressed extracellularly in the settings of clinical and experimental synovitis. Therapy based on HMGB1 antagonists has shown encouraging results in experimental arthritis and warrants further scientific exploration using independent methods. In the present study we asked whether nuclear sequestration of HMGB1 preventing HMGB1 release would be beneficial for synovitis treatment. Methods Oxaliplatin-based therapy was evaluated in collagen type II-induced arthritis in DBA/1 mice by clinical scoring and immunostaining of articular tissue. Oxaliplatin is an antineoplastic platinum-based compound that generates DNA adducts which tightly bind HMGB1. Secretion and intracellular location of HMGB1 were assessed by a novel HMGB1-specific ELISPOT assay and immunofluorescent staining. Results Intraperitoneal injections of oxaliplatin in early collagen type II-induced arthritis trapped HMGB1 with a distinct biphasic response pattern. Oxaliplatin therapy showed beneficial results for approximately 1 week. Microscopic evaluation of synovitis during this period showed strong nuclear HMGB1 staining in the oxaliplatin treated animals with much lower quantities of extracellular HMGB1 when compared to control treated animals. Furthermore, cellular infiltration, as well as cartilage and bone damage, were all reduced in the oxaliplatin treated group. A dramatic and as yet unexplained clinical relapse occurred later in the oxaliplatin exposed animals, which coincided with a massive synovial tissue expression of extracellular HMGB1 in all treated animals. This rebound-like reaction was also accompanied by a significantly increased incidence of arthritis in the oxaliplatin treated group. These results indicate a distinct temporal and spatial relationship between the clinical course of disease and the

  2. Collagen-gel-induced resistance of overlying keratinocyte cultures to photosensitization

    NASA Astrophysics Data System (ADS)

    Katsantonis, John C.; Georgiou, Savas K.; Providaki, Mary G.; Vlahonikolis, John G.; Tosca, Andronicki D.

    1997-12-01

    In the present study it was found that human keratinocytes grown on collagen substrate, exhibited increased resistance to the hematoprophyrin-mediated photodynamic treatment, in comparison to keratinocytes grown on Petri dishes without collagen. Interestingly, no protection was afforded by the collagen gel to the cells in the corresponding control ('hematoprophyrin only' and 'light only') experiments. This observation was found to be independent of light dose and drug concentration, and the relative degree of resistance was the same for both normal and malignant cells. The degree of keratinocyte resistance was found to be closely related to the duration of cell attachment on the collagen substrate. These results are indicative of an active interference of collagen gel with the cellular evolution of the photodynamic phenomenon and they are also suggestive of variation in the photodynamic treatment efficacy according to the cellular environment.

  3. Ear Injury

    MedlinePlus

    ... Brain Damage in Boxers (News) Which High School Sport Has the Most Concussions? Additional Content Medical News Ear Injury By Sam ... often... More News News HealthDay Which High School Sport Has the Most Concussions? WEDNESDAY, March 15, 2017 (HealthDay News) -- Female soccer ...

  4. Effect of green tea extract on advanced glycation and cross-linking of tail tendon collagen in streptozotocin induced diabetic rats.

    PubMed

    Babu, Pon Velayutham Anandh; Sabitha, Kuruvimalai Ekambaram; Shyamaladevi, Chennam Srinivasulu

    2008-01-01

    Diabetes leads to modification of collagen such as advanced glycation and cross-linking which play an important role in the pathogenesis of diabetes mellitus. We have investigated the effect of green tea on modification of collagen in streptozotocin (60 mg/kg body weight) induced diabetic rats. To investigate the therapeutic effect of green tea, treatment was begun six weeks after the onset of diabetes and green tea extract (300 mg/kg body weight) was given orally for 4 weeks. The collagen content, extent of advanced glycation, advanced glycation end products (AGE) and cross-linking of tail tendon collagen were investigated. Green tea reduced the tail tendon collagen content which increased in diabetic rats. Accelerated advanced glycation and AGE in diabetic animals, as detected by Ehrlich's-positive material and collagen linked fluorescence respectively were reduced significantly by green tea. The solubility of tail tendon collagen decreased significantly in diabetic rats indicating a remarkable increase in the cross-linking, whereas green tea increases the solubility of collagen in diabetic rats. The present study reveals that green tea is effective in reducing the modification of tail tendon collagen in diabetic rats. Thus green tea may have a therapeutic effect in the treatment of glycation induced complications of diabetes.

  5. Cosmetic ear surgery

    MedlinePlus

    Otoplasty; Ear pinning; Ear surgery - cosmetic; Ear reshaping; Pinnaplasty ... Cosmetic ear surgery may be done in the surgeon's office, an outpatient clinic, or a hospital. It can be performed under ...

  6. Ear Infection and Vaccines

    MedlinePlus

    ... ENTCareers Marketplace Find an ENT Doctor Near You Ear Infection and Vaccines Ear Infection and Vaccines Patient Health Information News media ... who suffer from the most common type of ear infection, called middle ear infection or otitis media ( ...

  7. Ear Plastic Surgery

    MedlinePlus

    ... ENTCareers Marketplace Find an ENT Doctor Near You Ear Plastic Surgery Ear Plastic Surgery Patient Health Information ... they may improve appearance and self-confidence. Can Ear Deformities Be Corrected? Formation of the ear during ...

  8. Better Ear Health

    MedlinePlus

    ... Marketplace Find an ENT Doctor Near You Better Ear Health Better Ear Health Patient Health Information News ... often helpful to those with this condition. Swimmer’s Ear An infection of the outer ear structures caused ...

  9. Garcinia Cambogia attenuates diet-induced adiposity but exacerbates hepatic collagen accumulation and inflammation

    PubMed Central

    Kim, Young-Je; Choi, Myung-Sook; Park, Yong Bok; Kim, Sang Ryong; Lee, Mi-Kyung; Jung, Un Ju

    2013-01-01

    AIM: To investigate long-term effects of Garcinia Cambogia (GC), weight-loss supplement, on adiposity and non-alcoholic fatty liver disease in obese mice. METHODS: Obesity-prone C57BL/6J mice were fed a high-fat diet (HFD, 45 kcal% fat) with or without GC (1%, w/w) for 16 wk. The HFD contained 45 kcal% fat, 20 kcal% protein and 35 kcal% carbohydrate. They were given free access to food and distilled water, and food consumption and body weight were measured daily and weekly, respectively. Data were expressed as the mean ± SE. Statistical analyses were performed using the statistical package for the social science software program. Student’s t test was used to assess the differences between the groups. Statistical significance was considered at P < 0.05. RESULTS: There were no significant changes in body weight and food intake between the groups. However, the supplementation of GC significantly lowered visceral fat accumulation and adipocyte size via inhibition of fatty acid synthase activity and its mRNA expression in visceral adipose tissue, along with enhanced enzymatic activity and gene expression involved in adipose fatty acid β-oxidation. Moreover, GC supplementation resulted in significant reductions in glucose intolerance and the plasma resistin level in the HFD-fed mice. However, we first demonstrated that it increased hepatic collagen accumulation, lipid peroxidation and mRNA levels of genes related to oxidative stress (superoxide dismutase and glutathione peroxidase) and inflammatory responses (tumor necrosis factor-α and monocyte chemoattractant protein-1) as well as plasma alanine transaminase and aspartate transaminase levels, although HFD-induced hepatic steatosis was not altered. CONCLUSION: GC protects against HFD-induced obesity by modulating adipose fatty acid synthesis and β-oxidation but induces hepatic fibrosis, inflammation and oxidative stress. PMID:23922466

  10. Garcinia Cambogia attenuates diet-induced adiposity but exacerbates hepatic collagen accumulation and inflammation.

    PubMed

    Kim, Young-Je; Choi, Myung-Sook; Park, Yong Bok; Kim, Sang Ryong; Lee, Mi-Kyung; Jung, Un Ju

    2013-08-07

    To investigate long-term effects of Garcinia Cambogia (GC), weight-loss supplement, on adiposity and non-alcoholic fatty liver disease in obese mice. Obesity-prone C57BL/6J mice were fed a high-fat diet (HFD, 45 kcal% fat) with or without GC (1%, w/w) for 16 wk. The HFD contained 45 kcal% fat, 20 kcal% protein and 35 kcal% carbohydrate. They were given free access to food and distilled water, and food consumption and body weight were measured daily and weekly, respectively. Data were expressed as the mean ± SE. Statistical analyses were performed using the statistical package for the social science software program. Student's t test was used to assess the differences between the groups. Statistical significance was considered at P < 0.05. There were no significant changes in body weight and food intake between the groups. However, the supplementation of GC significantly lowered visceral fat accumulation and adipocyte size via inhibition of fatty acid synthase activity and its mRNA expression in visceral adipose tissue, along with enhanced enzymatic activity and gene expression involved in adipose fatty acid β-oxidation. Moreover, GC supplementation resulted in significant reductions in glucose intolerance and the plasma resistin level in the HFD-fed mice. However, we first demonstrated that it increased hepatic collagen accumulation, lipid peroxidation and mRNA levels of genes related to oxidative stress (superoxide dismutase and glutathione peroxidase) and inflammatory responses (tumor necrosis factor-α and monocyte chemoattractant protein-1) as well as plasma alanine transaminase and aspartate transaminase levels, although HFD-induced hepatic steatosis was not altered. GC protects against HFD-induced obesity by modulating adipose fatty acid synthesis and β-oxidation but induces hepatic fibrosis, inflammation and oxidative stress.

  11. Inhibitory effects of Atractylodis lanceae rhizoma and Poria on collagen- or thromboxane A2-induced aggregation in rabbit platelets.

    PubMed

    Nasu, Yuiko; Iwashita, Masaya; Saito, Masaki; Fushiya, Shinji; Nakahata, Norimichi

    2009-05-01

    Kami-shoyo-san (Jia-Wei-Xiao-Yao-San), Toki-shakuyaku-san (Dang-Gui-Shao-Yao-San) and Toki-shigyaku-ka-goshuyu-shokyo-to (Dang-Gui-Si-Ni-Jia-Wu-Zhu-Yu-Sheng-Jiang-Tang) are Kampo (traditional Chinese) medicines which are traditionally and effectively used for the treatment of chilly sensation (Hiesho) in Japan, but the active components and their detailed mechanisms have not yet been clarified. Etiologies of Hiesho include poor peripheral blood circulation and platelet aggregability contributes to peripheral blood circulation; therefore, we investigated the effect of Kampo medicines on platelet aggregation using rabbit platelets in vitro. Collagen and U46619, a thromboxane A(2) receptor agonist, caused rabbit platelet aggregation, which was potently inhibited by pretreatment of platelets with Kami-shoyo-san and Toki-shakuyaku-san in vitro. Toki-shigyaku-ka-goshuyu-shokyo-to, however, did not significantly inhibit collagen- or U46619-induced platelet aggregation. Therefore, we examined the effect on platelet aggregation of two herbal medicines, Atractylodis Lanceae Rhizoma and Poria, both of which are contained in Kami-shoyo-san and Toki-shakuyaku-san but not in Toki-shigyaku-ka-goshuyu-shokyo-to. As the results indicate, Atractylodis Lanceae Rhizoma inhibited platelet aggregation induced by collagen but not by U46619. Poria effectively inhibited U46619-induced platelet aggregation and it partially inhibited collagen-induced platelet aggregation. On the other hand, Atractylodis Lanceae Rhizoma and Poria did not inhibit adrenaline/adenosine diphosphate- or adrenaline/serotonin-induced platelet aggregation. These results suggest the possibility that the inhibition of platelet aggregation by two Kampo medicines, Kami-shoyo-san and Toki-shakuyaku-san, is one of the mechanisms underlying the improvement of Hiesho. Furthermore, Atractylodis Lanceae Rhizoma and Poria are possible herbal medicines for the inhibition of platelet aggregation.

  12. Modulation of collagen production following bleomycin-induced pulmonary fibrosis in hamsters. Presence of a factor in lung that increases fibroblast prostaglandin E2 and cAMP and suppresses fibroblast proliferation and collagen production.

    PubMed

    Clark, J G; Kostal, K M; Marino, B A

    1982-07-25

    To elucidate mechanisms involved in the regulation of lung collagen content we studied hamsters with bleomycin-induced pulmonary fibrosis. Lung collagen in this model is increased as the result of greatly increased lung collagen synthesis rates. However, collagen synthesis rates are subsequently restored to normal. Hamster lung explants from both normal and bleomycin-exposed hamsters were cultured, and the effects of explant conditioned medium (CM) on lung fibroblast (IMR-90) proliferation and collagen production in vitro were determined. Lung explant CM increased fibroblast prostaglandin (PG)E2 production and intracellular cAMP, and decreased both fibroblast proliferation and collagen production in a dose-dependent manner. Greater activity was observed with lung explant CM from bleomycin-exposed lungs. Incubation of fibroblasts with indomethacin prior to addition of CM blocked CM-mediated changes in PGE2 and cAMP and inhibited changes in fibroblast proliferation and collagen production. Exogenous PGE2 or dibutyryl cAMP also suppressed fibroblast proliferation and collagen production. The suppressive activity in lung-conditioned medium is nondialyzable, has an apparent molecular weight of 15,000-20,000 by gel filtration, and is heat-stable. It is not species-restricted since CM from hamster lung affected human and hamster lung fibroblasts similarly. Activity is present preformed in lung and bronchoalveolar lavage fluid, although bronchoalveolar macrophages produce a nondialyzable factor in culture which suppresses fibroblast proliferation. The suppressive activity identified in fibrotic lung may represent a means for limiting collagen accumulation following tumor injury.

  13. How can the auditory efferent system protect our ears from noise-induced hearing loss? Let us count the ways

    NASA Astrophysics Data System (ADS)

    Marshall, Lynne; Miller, Judi A. Lapsley

    2015-12-01

    It is a cause for some debate as to how the auditory olivocochlear (OC) efferent system could protect hearing from noise trauma. In this review, we examined physiological research to find mechanisms that could effectively attenuate the response to sound. For each purported mechanism, we indicate which part of the OC-efferent system is responsible for the function and the site of action. These mechanisms include basilar-membrane phase shifts at high stimulus levels; changes in outer-hair-cell stiffness and phase lag associated with efferent slow effects; small decreases in endocochlear potentials causing small decreases in outer- and inner-hair-cell output; low-spontaneous-rate and medium-spontaneous-rate fibers showing OC-induced decrements at high levels; auditory-nerve initial-peak reduction; OC effect increasing over minutes; cholinergic activation of anti-apoptotic pathways; and anti-excitotoxicity. There are clearly multiple opportunities for the OC-efferent system to protect the inner ear from noise trauma. From further exploration into the mechanisms outlined here, as well as to-be-discovered mechanisms, we will gain a greater understanding of the protective nature of the OC-efferent system. These findings could aid our ability to design better predictive tests for people at risk for noise-induced hearing loss.

  14. Effects of adrenergic and nitrergic blockade on theophylline-induced increase in peripheral blood flow in rat ear.

    PubMed

    Sanae, F; Hayashi, H

    1998-11-01

    A bolus injection of theophylline produced a significant increase in peripheral blood flow in anesthetized rat ear, monitored by laser-Doppler flowmetry, with increases in arterial blood pressure and heart rate. These effects were attenuated by previous treatment with reserpine, but reserpine had no effect on the blood flow increase produced by acetylcholine. A dose of propranolol, which caused attenuation of the theophylline-induced increase in heart rate, did not change the peripheral blood flow. The higher dose of propranolol, which nearly canceled the increases in blood pressure and heart rate, caused attenuation of the blood flow increase but did not cancel it. However, the theophylline-induced flow increase was completely reversed by a nitric oxide synthase inhibitor, NG-nitro-L-arginine methyl ester, which alone had no effect, without any change in arterial blood pressure and heart rate. Treatment of the rats with the dose of inhibitor slightly and significantly reduced the response of peripheral blood flow to acetylcholine. The other isomer, NG-nitro-D-arginine methyl ester, and the other inhibitor, NG-monomethyl-L-arginine, did not have such an effect. These results suggest that the flow increase is due to an independent effect on the heart with modification by autonomic reflexes and involves the adrenergic and nitrergic pathways.

  15. Full-Length Fibronectin Drives Fibroblast Accumulation at the Surface of Collagen Microtissues during Cell-Induced Tissue Morphogenesis

    PubMed Central

    Foolen, Jasper; Shiu, Jau-Ye; Mitsi, Maria; Zhang, Yang; Chen, Christopher S.; Vogel, Viola

    2016-01-01

    Generating and maintaining gradients of cell density and extracellular matrix (ECM) components is a prerequisite for the development of functionality of healthy tissue. Therefore, gaining insights into the drivers of spatial organization of cells and the role of ECM during tissue morphogenesis is vital. In a 3D model system of tissue morphogenesis, a fibronectin-FRET sensor recently revealed the existence of two separate fibronectin populations with different conformations in microtissues, i.e. ‘compact and adsorbed to collagen’ versus ‘extended and fibrillar’ fibronectin that does not colocalize with the collagen scaffold. Here we asked how the presence of fibronectin might drive this cell-induced tissue morphogenesis, more specifically the formation of gradients in cell density and ECM composition. Microtissues were engineered in a high-throughput model system containing rectangular microarrays of 12 posts, which constrained fibroblast-populated collagen gels, remodeled by the contractile cells into trampoline-shaped microtissues. Fibronectin’s contribution during the tissue maturation process was assessed using fibronectin-knockout mouse embryonic fibroblasts (Fn-/- MEFs) and floxed equivalents (Fnf/f MEFs), in fibronectin-depleted growth medium with and without exogenously added plasma fibronectin (full-length, or various fragments). In the absence of full-length fibronectin, Fn-/- MEFs remained homogenously distributed throughout the cell-contracted collagen gels. In contrast, in the presence of full-length fibronectin, both cell types produced shell-like tissues with a predominantly cell-free compacted collagen core and a peripheral surface layer rich in cells. Single cell assays then revealed that Fn-/- MEFs applied lower total strain energy on nanopillar arrays coated with either fibronectin or vitronectin when compared to Fnf/f MEFs, but that the presence of exogenously added plasma fibronectin rescued their contractility. While collagen

  16. Resveratrol inhibits collagen-induced platelet stimulation through suppressing NADPH oxidase and oxidative inactivation of SH2 domain-containing protein tyrosine phosphatase-2.

    PubMed

    Jang, Ji Yong; Min, Ji Hyun; Wang, Su Bin; Chae, Yun Hee; Baek, Jin Young; Kim, Myunghee; Ryu, Jae-Sang; Chang, Tong-Shin

    2015-12-01

    Reactive oxygen species (ROS) produced upon collagen stimulation are implicated in propagating various platelet-activating pathways. Among ROS-producing enzymes, NADPH oxidase (NOX) is largely responsible for collagen receptor-dependent ROS production. Therefore, NOX has been proposed as a novel target for the development of antiplatelet agent. We here investigate whether resveratrol inhibits collagen-induced NOX activation and further examine the effects of resveratrol on ROS-dependent signaling pathways in collagen-stimulated platelets. Collagen-induced superoxide anion production in platelets was inhibited by resveratrol. Resveratrol suppressed collagen-induced phosphorylation of p47(phox), a major regulatory subunit of NOX. Correlated with the inhibitory effects on NOX, resveratrol protected SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) from ROS-mediated inactivation and subsequently attenuated the specific tyrosine phosphorylation of key components (spleen tyrosine kinase, Vav1, Bruton's tyrosine kinase, and phospholipase Cγ2) for collagen receptor signaling cascades. Resveratrol also inhibited downstream responses such as cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Furthermore, resveratrol inhibited platelet aggregation and adhesion in response to collagen. The antiplatelet effects of resveratrol through the inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2 suggest that resveratrol is a potential compound for prevention and treatment of thrombovascular diseases.

  17. The Extract of Chrysanthemum zawadskii var. latilobum Ameliorates Collagen-Induced Arthritis in Mice

    PubMed Central

    Kim, Hyuk Soon; Kim, Do Kyun; Lee, Jun Ho; Yoo, Young Hyo; Park, Sun Kyu; Nam, Seung Taek; Kim, Hyun Woo; Park, Young Hwan; Lee, Dajeong; Lee, Min Beom

    2016-01-01

    Chrysanthemum zawadskii var. latilobum (CZ) has been used for beverage or tea and also as folk medicine for the remedy of diverse inflammatory diseases. Nevertheless, the therapeutic effect of CZ on arthritis remains to be unknown. In this paper we aim to investigate the CZ's antiarthritic effect and mechanism of action both in vitro and in vivo. To assess CZ's antiarthritic effect, mouse models of type II collagen-induced arthritis (CIA) were used. Mice were used to gauge clinical arthritis index and histopathological changes. Reverse transcriptase-polymerase chain reaction (RT-PCR), western blotting, electrophoretic mobility shift assay (EMSA), and other biological methods were adopted to measure CZ's effect on arthritis and to understand the veiled mechanism of action. CZ greatly suppressed CIA, histopathological score, bone erosion, and osteoclast differentiation. Mechanistically, CZ inhibited the production of various inflammatory and arthritic mediators like inflammatory cytokines, matrix metalloproteinases (MMPs), and chemokines. Of note, CZ significantly suppressed the activation of the NF-κB pathway in vivo. CZ exerted an antiarthritic effect in CIA mice by curbing the production of crucial inflammatory and arthritis mediators. This study warrants further investigation of CZ for the use in human rheumatoid arthritis (RA). PMID:27840652

  18. Polymorphism of the MHC class II Eb gene determines the protection against collagen-induced arthritis

    SciTech Connect

    Gonzalez-Gay, M.A.; Zanelli, E.; Krco, C.J.

    1995-05-01

    Collagen-induced arthritis (CIA) is an animal model of auto immune polyarthritis, sharing similarities with rheumatoid arthritis (RA). Paradoxally, susceptibility to mouse CIA is controlled by the H2A loci (DQ homologous) while RA is linked to HLA.DR genes (H2E homologous). We recently showed that the E{beta}{sup d} molecule prevents CIA development in susceptible H2{sup q} mice. We addressed the question of whether H2Eb polymorphism will influence CIA incidence as HLA.DRB1 polymorphism does in RA. In F{sub 1} mice, only H2Eb{sup d} and H2Eb{sup s} molecules showed protection. Using recombinant B10.RDD (Eb{sup d/b}) mice, we found that CIA protection was mediated by the first domain of the E{beta}{sup d} molecule. Using peptides covering the third hypervariable region of the E{beta} chain, we found a perfect correlation between presentation of E{beta} peptides by the H2A{sup q} molecule and protection on CIA. Therefore, the mechanism by which H2Eb protects against CIA seems to rely on the affinity of E{beta} peptides for the H2A{sup q} molecule. 35 refs., 2 figs., 3 tabs.

  19. Directional conductivity in SWNT-collagen-fibrin composite biomaterials through strain-induced matrix alignment.

    PubMed

    Voge, Christopher M; Kariolis, Mihalis; MacDonald, Rebecca A; Stegemann, Jan P

    2008-07-01

    Composite biomaterials incorporating fibroblast cells, collagen Type I, fibrin, and 2 wt % carboxylated SWNT were created, and their properties were compared with similar control constructs without SWNT. Alignment of the matrix was stimulated by application of 8% cyclic strain for three 12-h periods over three days. All constructs underwent cell-mediated gel compaction to 15-20% of their initial volume, which was not affected by SWNT loading. Mechanical strain increased the rate of compaction, and strained constructs were significantly more compacted than unstrained controls by day 3. Cell viability and morphology were similar in both control and SWNT-loaded constructs, but unstrained samples exhibited a more stellate appearance with more numerous cellular projections. Application of mechanical strain caused clear alignment of both the cells and matrix in the direction of the applied strain. Bioimpedance measurements showed that SWNT loading increased the electrical conductivity of composite constructs, and that mechanically-induced alignment of the matrix/SWNT caused a further increase in conductivity. These results demonstrate that SWNT can be used to augment the electrical properties of 3D protein hydrogels, and that anisotropy in the matrix further enhances these properties. Such electrically conductive biopolymers may have a variety of applications in tissue engineering and biosensor development.

  20. Treatment with recombinant Hsp72 suppresses collagen-induced arthritis in mice.

    PubMed

    Luo, Xinjing; Zuo, Xiaoxia; Mo, Xuanrong; Zhou, Yaou; Xiao, Xianzhong

    2011-10-01

    Although the level of heat shock protein (Hsp72) has been shown to be enhanced in rheumatoid arthritis (RA) synovial tissues and RA synovial fluid, it remains unclear what role extracellular Hsp72 plays in the pathogenesis of RA. This study was conducted to investigate the effects of recombinant human Hsp72 on collagen-induced arthritis (CIA) when administered therapeutically and elucidate its underlying mechanism. We demonstrated that recombinant Hsp72 significantly reduced disease severity. Hsp72-treated animals displayed significantly less cartilage and bone destruction than that in the controls. Hsp72 treatment also reduced the expression of tumor necrosis factor alpha and interleukin 6 in the sera. Furthermore, Hsp72 treatment significantly inhibited activation of nuclear factor kappa B (NF-κB) in synovial tissues of CIA mice. These findings suggest that recombinant Hsp72 effectively suppressed synovial inflammation and the development and progress of CIA, which is mediated through the reduction of production of proinflammatory cytokines and the suppression of activation of NF-κB pathway.

  1. Protective effects of Fructus sophorae extract on collagen-induced arthritis in BALB/c mice

    PubMed Central

    Han, Hyoung-Min; Hong, Su-Hyun; Park, Heung-Sik; Jung, Jae-Chul; Kim, Jong-Sik; Lee, Yong-Tae; Lee, Eun-Woo; Choi, Yung-Hyun; Kim, Byung-Woo; Kim, Cheol-Min; Kang, Kyung-Hwa

    2017-01-01

    Styphnolobium japonicum (L.) is utilized in Korean medicine for the treatment of various inflammatory diseases. The aim of the present study was to explore the effects of Fructus sophorae extract (FSE) isolated from the dried ripe fruit of S. japonicum (L.) on the development of type II collagen-induced arthritis (CIA) in BALB/c mice. The CIA mice were orally administered FSE or saline daily for 2 weeks. The incidence and severity of disease and the inflammatory response in the serum and the joint tissues were assessed. Macroscopic and histological investigation indicated that FSE protected against CIA development. FSE was associated with a significant reduction in the levels of total immunoglobulin G2a and proinflammatory cytokines and mediators in the serum. In addition, FSE suppressed the gene expression levels of proinflammatory cytokines and mediators, the mediator of osteoclastic bone remodeling, the receptor activator of nuclear factor κ-B ligand and matrix metalloproteinases in the joint tissues. The present results suggest that FSE may protect against inflammation and bone damage, and would be a valuable candidate for further investigation as a novel anti-arthritic agent. PMID:28123483

  2. Ascidian tunicate extracts attenuate rheumatoid arthritis in a collagen-induced murine model.

    PubMed

    Hong, Seong-Ho; Kwone, Jung-Taek; Lee, Jae-Ho; Lee, Somin; Lee, Ah Young; Cho, Won-Young; Bat-Erdene, Munkhjargal; Choi, Byeong-Dae; Cho, Myung-Haing

    2014-06-01

    Murine rheumatoid arthritis models are often used to investigate the potential therapeutic effects of candidate drugs. The present study has been conducted in order to investigate the therapeutic efficacy of ascidian tunicate extracts in a collagen-induced arthritis DBA1/J mice model. Four types of formulas, ascidian tunicate extracts (ATE), crude ascidian tunicate glycans (ATEC), ascidian tunicate extracts with licorice extracts (ATEL), and crude ascidian tunicate glycans with licorice extracts (ATECL) were orally administered into DBA/1J mice for 3 weeks and paw edema and thickness were evaluated. Changes in inflammatory proteins and cytokines levels were monitored in hind leg tissues by Western blot and quantitative PCR analysis. The oral administration of ascidian tunicate extracts alleviated paw edema and improved the histological hind leg cartilage status. The extracts also reduced the matrix metalloproteinase-9 (MMP-9) protein and prostaglandin E synthase (PGES) levels. In addition, the extracts-treated groups showed increased interleukin-10 (IL-10) levels compared with the non-treated group. These findings suggest that orally administered ascidian tunicate extracts might have potential therapeutic effects for the treatment of rheumatoid arthritis.

  3. A Metabolically-Stabilized Phosphonate Analog of Lysophosphatidic Acid Attenuates Collagen-Induced Arthritis

    PubMed Central

    Sevastou, Ioanna; Sirioti, Ivi; Samiotaki, Martina; Madan, Damian; Prestwich, Glenn D.; Aidinis, Vassilis

    2013-01-01

    Rheumatoid arthritis (RA) is a destructive arthropathy with systemic manifestations, characterized by chronic synovial inflammation. Under the influence of the pro-inflammatory milieu synovial fibroblasts (SFs), the main effector cells in disease pathogenesis become activated and hyperplastic while releasing a number of signals that include pro-inflammatory factors and tissue remodeling enzymes. Activated RA SFs in mouse or human arthritic joints express significant quantities of autotaxin (ATX), a lysophospholipase D responsible for the majority of lysophosphatidic acid (LPA) production in the serum and inflamed sites. Conditional genetic ablation of ATX from SFs resulted in attenuation of disease symptoms in animal models, an effect attributed to diminished LPA signaling in the synovium, shown to activate SF effector functions. Here we show that administration of 1-bromo-3(S)-hydroxy-4-(palmitoyloxy)butyl-phosphonate (BrP-LPA), a metabolically stabilized analog of LPA and a dual function inhibitor of ATX and pan-antagonist of LPA receptors, attenuates collagen induced arthritis (CIA) development, thus validating the ATX/LPA axis as a novel therapeutic target in RA. PMID:23923032

  4. Prophylactic and Therapeutic Effects of Acanthopanax senticosus Harms Extract on Murine Collagen-induced Arthritis

    PubMed Central

    Takahashi, Yusuke; Tanaka, Maki; Murai, Ryosei; Kuribayashi, Kageaki; Kobayashi, Daisuke; Yanagihara, Nozomi; Watanabe, Naoki

    2014-01-01

    Evidences are accumulating that extract of Acanthopanax senticosus Harms (ASH; syn Eleutherococcus senticosus [Rupr. & Maxim.] Maxim), a shrub native to Northeastern Asia, has antiinflammatory effects. In this study, we examined prophylactic and therapeutic effects of ASH extract (ASHE) on rheumatoid arthritis using collagen-induced arthritis (CIA) mouse model. Acanthopanax senticosus Harms extract was administered before the onset of arthritis in the prophylaxis model. In the therapeutic model, ASHE was administered after the onset of arthritis with or without anti-TNF-α antibody. The ASHE treatment showed efficacy before onset of CIA but there was no effect after CIA was established. The ASHE treatment delayed the onset and decreased severity of CIA. In vitro examinations showed that ASHE is an antioxidant and that ASHE suppresses TNF-α and interleukin-6 production in human peripheral blood mononuclear cells. The combination therapy with ASHE and anti-TNF-α antibody reduced the severity of arthritis compared with anti-TNF-α antibody alone. The present study shows that ASHE has prophylactic effect against CIA and support therapeutic effect of anti-TNF-α antibody. © 2014 The Authors. Phytotherapy Research published by John Wiley & Sons Ltd. PMID:24797499

  5. Etanercept-Synthesising Mesenchymal Stem Cells Efficiently Ameliorate Collagen-Induced Arthritis

    PubMed Central

    Park, Narae; Rim, Yeri Alice; Jung, Hyerin; Kim, Juryun; Yi, Hyoju; Kim, Youngkyun; Jang, Yeonsue; Jung, Seung Min; Lee, Jennifer; Kwok, Seung-Ki; Park, Sung-Hwan; Ju, Ji Hyeon

    2017-01-01

    Mesenchymal stem cells (MSCs) have multiple properties including anti-inflammatory and immunomodulatory effects in various disease models and clinical treatments. These beneficial effects, however, are sometimes inconsistent and unpredictable. For wider and proper application, scientists sought to improve MSC functions by engineering. We aimed to invent a novel method to produce synthetic biological drugs from engineered MSCs. We investigated the anti-arthritic effect of engineered MSCs in a collagen-induced arthritis (CIA) model. Biologics such as etanercept are the most successful drugs used in anti-cytokine therapy. Biologics are made of protein components, and thus can be theoretically produced from cells including MSCs. MSCs were transfected with recombinant minicircles encoding etanercept (trade name, Enbrel), which is a tumour necrosis factor α blocker currently used to treat rheumatoid arthritis. We confirmed minicircle expression in MSCs in vitro based on GFP. Etanercept production was verified from the conditioned media. We confirmed that self-reproduced etanercept was biologically active in vitro. Arthritis subsided more efficiently in CIA mice injected with mcTNFR2MSCs than in those injected with conventional MSCs or etanercept only. Although this novel strategy is in a very early conceptual stage, it seems to represent a potential alternative method for the delivery of biologics and engineering MSCs. PMID:28084468

  6. Activity of physalin F in a collagen-induced arthritis model.

    PubMed

    Brustolim, Daniele; Vasconcelos, Juliana F; Freitas, Luiz Antônio R; Teixeira, Mauro M; Farias, Marcel T; Ribeiro, Yvone M; Tomassini, Therezinha C B; Oliveira, Geraldo G S; Pontes-de-Carvalho, Lain C; Ribeiro-dos-Santos, Ricardo; Soares, Milena B P

    2010-08-27

    The effects of physalin F (1), a steroid derivative purified from Physalis angulata, were investigated in models of collagen-induced arthritis in DBA/1 mice and allergic airway inflammation in BALB/c mice. Oral treatment with 1 or dexamethasone caused a marked decrease in paw edema and joint inflammation when compared to vehicle-treated arthritic mice. In contrast, treatment with 1 had no effect in mice with allergic airway inflammation caused by ovalbumin immunization, whereas dexamethasone significantly reduced the number of inflammatory cells and eosinophils in the broncoalveolar lavage fluid and in lung sections of challenged mice. To further demonstrate that 1 acts through a mechanism different from that of glucocorticoids, a nuclear translocation assay was performed of the glucocorticoid receptor (GR) using COS-7 cells transfected with a plasmid encoding for a yellow fluorescent protein (YFP)-GR fusion protein. Untreated or treated cells with 1 had YFP staining mainly in the cytoplasm, whereas in dexamethasone-treated cells the YFP staining was concentrated in the nuclei. It is concluded that the mechanism of the immunosuppressive activity of physalin F is distinct from that of the glucocorticoids.

  7. Retrovirus-induced insertional mutagenesis: mechanism of collagen mutation in Mov13 mice.

    PubMed Central

    Barker, D D; Wu, H; Hartung, S; Breindl, M; Jaenisch, R

    1991-01-01

    The Mov13 mouse strain carries a mutation in the alpha 1(I) procollagen gene which is due to the insertion of a Moloney murine leukemia provirus into the first intron. This insertion results in the de novo methylation of the provirus and flanking DNA, the alteration of chromatin structure, and the transcriptional inactivity of the collagen promoter. To address the mechanism of mutagenesis, we reintroduced a cloned and therefore demethylated version of the Mov13 mutant allele into mouse fibroblasts. The transfected gene was not transcribed, indicating that the transcriptional defect was not due to the hypermethylation. Rather, this result strongly suggests that the mutation is due to the displacement or disruption of cis-acting regulatory DNA sequences within the first intron. We also constructed a Mov13 variant allele containing a single long terminal repeat instead of the whole provirus. This construct also failed to express mRNA, indicating that the Mov13 mutation does not revert by provirus excision as has been observed for other retrovirus-induced mutations. Images PMID:1922037

  8. The anti-spasticity drug baclofen alleviates collagen-induced arthritis and regulates dendritic cells.

    PubMed

    Huang, Shichao; Mao, Jianxin; Wei, Bin; Pei, Gang

    2015-07-01

    Baclofen is used clinically as a drug that treats spasticity, which is a syndrome characterized by excessive contraction of the muscles and hyperflexia in the central nervous system (CNS), by activating GABA(B) receptors (GABA(B)Rs). Baclofen was recently reported to desensitize chemokine receptors and to suppress inflammation through the activation of GABA(B)Rs. GABA(B)Rs are expressed in various immune cells, but the functions of these receptors in autoimmune diseases remain largely unknown. In this study, we investigated the effects of baclofen in murine collagen-induced arthritis (CIA). Oral administration of baclofen alleviated the clinical development of CIA, with a reduced number of IL-17-producing T helper 17 (T(H)17) cells. In addition, baclofen treatment suppressed dendritic cell (DC)-primed T(H)17 cell differentiation by reducing the production of IL-6 by DCs in vitro. Furthermore, the pharmacological and genetic blockade of GABA(B)Rs in DCs weakened the effects of baclofen, indicating that GABA(B)Rs are the molecular targets of baclofen on DCs. Thus, our findings revealed a potential role for baclofen in the treatment of CIA, as well as a previously unknown signaling pathway that regulates DC function.

  9. Effect of Brand's glucosamine with essence of chicken on collagen-induced arthritis in rats.

    PubMed

    Tsi, Daniel; Khow, Agatha; Iino, Taeko; Kiso, Yoshinobu; Ono, Hiroyuki

    2003-10-24

    The anti-arthritic effects of glucosamine incorporated in a chicken-meat extract known as Brand's Glucosamine with Essence of Chicken versus glucosamine or Essence of Chicken (EOC) alone were investigated on collagen induced arthritis (CIA) in dark agouti (DA) rats. Four groups of rats received basic food (control), 1.2% glucosamine (GLU), 0.8% EOC and 1.2% GLU + 0.8% EOC (GLU + EOC) admixed with basic food for 25 days following CIA. Foot pads were isolated on day 25 for histopathological evaluation. Clinical assessment of hind paw swelling as measured by foot pad volumes and histopathological scoring based on the degree of edema, periosteal new bone formation, periostitis and inflammatory cell infiltration of the isolated foot pad were performed. Arthritic rats given GLU + EOC showed significant reduction in left hind paw swelling following onset of arthritis. Correspondingly, a lesser degree of edema, periosteal new bone formation, periostitis and inflammatory cell infiltration was seen in histological sections of the left hind foot pads of these rats. A similar trend of reduced hind paw swelling was observed in the right hind paws of the same rats and those fed with EOC. Rats fed with GLU alone did not demonstrate these beneficial effects. The present findings demonstrate that a combination of glucosamine and EOC is effective in reducing the histopathological severity of arthritis, probably due to its ability to reduce the inflammatory conditions in CIA.

  10. Prophylactic and therapeutic effects of Acanthopanax senticosus Harms extract on murine collagen-induced arthritis.

    PubMed

    Takahashi, Yusuke; Tanaka, Maki; Murai, Ryosei; Kuribayashi, Kageaki; Kobayashi, Daisuke; Yanagihara, Nozomi; Watanabe, Naoki

    2014-10-01

    Evidences are accumulating that extract of Acanthopanax senticosus Harms (ASH; syn Eleutherococcus senticosus [Rupr. & Maxim.] Maxim), a shrub native to Northeastern Asia, has antiinflammatory effects. In this study, we examined prophylactic and therapeutic effects of ASH extract (ASHE) on rheumatoid arthritis using collagen-induced arthritis (CIA) mouse model. Acanthopanax senticosus Harms extract was administered before the onset of arthritis in the prophylaxis model. In the therapeutic model, ASHE was administered after the onset of arthritis with or without anti-TNF-α antibody. The ASHE treatment showed efficacy before onset of CIA but there was no effect after CIA was established. The ASHE treatment delayed the onset and decreased severity of CIA. In vitro examinations showed that ASHE is an antioxidant and that ASHE suppresses TNF-α and interleukin-6 production in human peripheral blood mononuclear cells. The combination therapy with ASHE and anti-TNF-α antibody reduced the severity of arthritis compared with anti-TNF-α antibody alone. The present study shows that ASHE has prophylactic effect against CIA and support therapeutic effect of anti-TNF-α antibody.

  11. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma

    PubMed Central

    Chen, Yulong; Terajima, Masahiko; Yang, Yanan; Sun, Li; Ahn, Young-Ho; Pankova, Daniela; Puperi, Daniel S.; Watanabe, Takeshi; Kim, Min P.; Blackmon, Shanda H.; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I.; Minelli, Rosalba; Scott, Kenneth L.; Sanchez-Adams, Johannah; Guilak, Farshid; Pati, Debananda; Thilaganathan, Nishan; Burns, Alan R.; Creighton, Chad J.; Martinez, Elisabeth D.; Zal, Tomasz; Grande-Allen, K. Jane; Yamauchi, Mitsuo; Kurie, Jonathan M.

    2015-01-01

    Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde–derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde–derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma. PMID:25664850

  12. Estrogen-induced collagen reorientation correlates with sympathetic denervation of the rat myometrium.

    PubMed

    Martínez, G F; Bianchimano, P; Brauer, M M

    2016-12-01

    Estrogen inhibits the growth and causes the degeneration (pruning) of sympathetic nerves supplying the rat myometrium. Previous cryoculture studies evidenced that substrate-bound signals contribute to diminish the ability of the estrogenized myometrium to support sympathetic nerve growth. Using electron microscopy, here we examined neurite-substrate interactions in myometrial cryocultures, observing that neurites grew associated to collagen fibrils present in the surface of the underlying cryosection. In addition, we assessed quantitatively the effects of estrogen on myometrial collagen organization in situ, using ovariectomized rats treated with estrogen and immature females undergoing puberty. Under low estrogen levels, most collagen fibrils were oriented in parallel to the muscle long axis (83% and 85%, respectively). Following estrogen treatment, 89% of fibrils was oriented perpendicularly to the muscle main axis; while after puberty, 57% of fibrils acquired this orientation. Immunohistochemistry combined with histology revealed that the vast majority of fine sympathetic nerve fibers supplying the myometrium courses within the areas where collagen realignment was observed. Finally, to assess whether depending on their orientation collagen fibrils can promote or inhibit neurite outgrowth, we employed cryocultures, now using as substrate tissue sections of rat-tail tendon. We observed that neurites grew extensively in the direction of the parallel-aligned collagen fibrils in the tendon main axis but were inhibited to grow perpendicularly to this axis. Collectively, these findings support the hypothesis that collagen reorientation may be one of the factors contributing to diminish the neuritogenic capacity of the estrogen-primed myometrial substrate.

  13. Radiation-Induced Middle Ear and Mastoid Opacification in Skull Base Tumors Treated With Radiotherapy

    SciTech Connect

    Walker, Gary V.; Ahmed, Salmaan; Allen, Pamela; Gidley, Paul W.; Woo, Shiao Y.; DeMonte, Franco; Chang, Eric L.; Mahajan, Anita

    2011-12-01

    Purpose: To assess the incidence of middle ear (ME) pathology in patients treated with radiotherapy (RT) for skull base tumors. Methods and Materials: A retrospective analysis of 61 patients treated with RT between 2003 and 2008 for skull base tumors was conducted. Clinical outcomes and demographics were reviewed. Dose-volume histogram analysis was performed on the eustachian canal (EC), ME, mastoid air cells, vestibular apparatus, cochlea, internal auditory canal, lateral and posterior nasopharynx, and temporal lobes to relate doses to symptoms and radiographic change. Otomastoid opacification was rated 0 (none), 1 (mild), 2 (moderate), and 3 (severe) by a neuroradiologist blinded to clinical outcomes and doses. Results: The median prescribed dose was 50.4 Gy (range, 14-74 Gy). The ME mean dose was 14 Gy and 34 Gy for Grade 0-1 and 2-3 opacification, respectively (p < 0.0001). The mean mastoid dose was 10 Gy and 26 Gy for Grade 0-1 and 2-3, respectively (p < 0.0001). The mean EC dose was 17 Gy and 32 Gy for Grade 0-1 and 2-3, respectively (p = 0.0001). Otomastoid opacification resolved in 17 of 40 patients (42.5%), at a mean of 17 months after RT (range, 2-45 months). Otomastoid opacification persisted in 23 of 40 patients (57.5%), with a mean follow-up of 23 months (range, 2-55 months). Multivariate analysis showed that mastoid dose >30 Gy (odds ratio = 28.0, p < 0.001) and posterior nasopharynx dose of >30 Gy (odds ratio = 4.9, p = 0.009) were associated with Grade 2-3 effusions, whereas other factors including dose to EC and ME were not significant. Conclusions: A mean RT dose >30 Gy to the mastoid air cells or posterior nasopharynx is associated with increased risk of moderate to severe otomastoid opacification, which persisted in more than half of patients at 2-year follow-up.

  14. Diclocor is superior to diclofenac sodium and quercetin in normalizing biochemical parameters in rats with collagen-induced osteoarthritis.

    PubMed

    Zupanets, I A; Shebeko, S K; Popov, O S; Shalamay, A S

    2016-02-01

    The aim of the present study was to investigate anti-inflammatory activity of Diclocor in the setting of collagen-induced osteoarthritis in rats in comparison with its active monocomponents-diclofenac sodium and quercetin. The study was conducted on the model of collagen-induced osteoarthritis and included measurement of sialic acids, glycoproteins, C-reactive protein, prostaglandin E2, 6-keto-prostaglandin F1α, thromboxane B2, and leukotriene B4. Lastly, morphologic study with morphometry was also performed. Diclocor is superior to quercetin and diclofenac sodium by the degree of pharmacological effect on some of the studied parameters. The differences between the values were statistically significant. Diclocor is a promising corrector of inflammatory and destructive joint diseases. Owing to the presence of both diclofenac sodium and quercetin in its composition, Diclocor exhibits a complex mechanism of anti-inflammatory action affecting cyclooxygenase and lipoxygenase ways of arachidonic acid biotransformation.

  15. Somatic Antigens of Tropical Liver Flukes Ameliorate Collagen-Induced Arthritis in Wistar Rats

    PubMed Central

    Khan, Yasir Akhtar; Umar, Sadiq; Abidi, Syed M. A.

    2015-01-01

    Parasitic helminths polarize immune response of their vertebrate hosts towards anti-inflammatory Th2 type and therefore it is hypothesized that they may suppress the inflammatory conditions in autoimmune disorders. The present study was undertaken to investigate in vivo immunomodulatory and therapeutic potential of somatic antigens (Ag) of liver infecting digenetic trematodes [Fasciola gigantica (Fg) and Gigantocotyle explanatum (Ge)] in collagen-induced arthritic (CIA) Wistar rats. The CIA rats were administered subcutaneously with different doses (50 μg, 100 μg and 150 μg) of somatic antigens of Fg and Ge, daily for 21 days, the time period required to establish infection in natural host (Bubalus bubalis). Thereafter, the control, diseased and treated rats were compared for different parameters viz. hind paw thickness; serum interleukins, IL-4 and IL-10, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ); expression level of matrix metalloproteinases (MMPs) -2, -9, -13 and nitric oxide (NO) in knee joints and patellar morphology. The CIA rats treated with different antigens, Fg-Ag and Ge-Ag, show significant amelioration of the disease by down regulation of serum TNF-α and IFN-γ (p< 0.05) and upregulation of IL-4 and IL-10 cytokines (p< 0.05); inhibition (p< 0.05) of MMPs (-2,-9,-13) and NO in knee joints and improved patellar morphology with decreased synovial hypertrophy and reduced infiltration of ploymorphonuclear cells. The activity of pro as well as active MMPs (-2 and -9) and active MMP-13 in knee joints of CIA rats was very high compared to the control and treatment groups, suggesting the extent of collagen degradation in CIA rats. Interestingly, the highest dose (150 μg) of Ge-Ag almost wiped out MMP-13 expression. The overall findings suggest that the somatic proteins of Ge-Ag appeared to be therapeutically more effective than Fg-Ag, reflecting interspecific molecular differences which could contribute to the ability of these worms to

  16. Post implantation fate of adipogenic induced mesenchymal stem cells on Type I collagen scaffold in a rat model.

    PubMed

    Venugopal, Balu; Fernandez, Francis B; Harikrishnan, V S; John, Annie

    2017-02-01

    Regenerative medicine via its application in soft tissue reconstruction through novel methods in adipose tissue engineering (ATE) has gained remarkable attention and investment despite simultaneous reports on clinical incidence of graft resorption and impaired vascularization. The underlying malaise here once identified may play a critical role in optimizing implant function. Our work attempts to determine the fate of donor cells and the implant in recipient micro environment using adipose-derived mesenchymal stem cells (ASCs) on a type I collagen sponge, an established scaffold for ATE. Cell components within the construct were identified 21 days post implantation to delineate cell survival, proliferation & terminal roles in vivo. ASC's are multipotent, while collagen type I is a natural extra cellular matrix component. Commercially available bovine type I collagen was characterized for its physiochemical properties and cyto-compatibility. Nile red staining of induced ASCs identified red globular structures in cell cytoplasm indicating oil droplet accumulation. Similarly, in vivo implantation of the cell seeded collagen construct in rat model for 21 days in the dorsal muscle, showed genesis of chicken wire network of fat-like cells, which was demonstrated histologically using a variety of staining techniques. Furthermore, fluorescent in situ hybridization (FISH) technique established the efficiency of transplantation wherein the male donor cells with labeled Y chromosome was identified 21 days post implantation from female rat model. Retrieved samples at 21 days indicated adipogenesis in situ, with donor cells highlighted via FISH. The study provides an insight to stem cells in ATE from genesis to functionalization.

  17. Efficacy of Annona squamosa L in the synthesis of glycosaminoglycans and collagen during wound repair in streptozotocin induced diabetic rats.

    PubMed

    Ponrasu, Thangavel; Suguna, Lonchin

    2014-01-01

    The aim of this work was to find out the effects of Annona squamosa on the formation of glycosaminoglycans and collagen during wound healing in normal and diabetic rats. Diabetes induced rats were segregated into 4 groups, each containing six animals. Groups I and III served as the normal and diabetic control while groups II and IV served as normal and diabetic treated. The animals were treated with 200 μL of Annona squamosa extract topically. The granulation tissues formed were removed on the 8th day and the amount of glycosaminoglycans (GAGs) and collagen formed was evaluated by sequential extraction and SDSPAGE, respectively. Histological evaluation was also carried out using Masson's trichrome stain. In vitro wound healing efficacy of A. squamosa in human dermal fibroblast culture (HDF) was also carried out. The fibroblasts treated with varying concentrations of A. squamosa were examined for proliferation and closure of the wound area and photographed. A. squamosa increased cellular proliferation in HDF culture. The granulation tissues of treated wounds showed increased levels of glycosaminoglycans (P < 0.05) and collagen which were also confirmed by histopathology. The results strongly substantiate the beneficial effects of A. squamosa on the formation of glycosaminoglycans and collagen during wound healing.

  18. Efficacy of Annona squamosa L in the Synthesis of Glycosaminoglycans and Collagen during Wound Repair in Streptozotocin Induced Diabetic Rats

    PubMed Central

    Ponrasu, Thangavel

    2014-01-01

    The aim of this work was to find out the effects of Annona squamosa on the formation of glycosaminoglycans and collagen during wound healing in normal and diabetic rats. Diabetes induced rats were segregated into 4 groups, each containing six animals. Groups I and III served as the normal and diabetic control while groups II and IV served as normal and diabetic treated. The animals were treated with 200 μL of Annona squamosa extract topically. The granulation tissues formed were removed on the 8th day and the amount of glycosaminoglycans (GAGs) and collagen formed was evaluated by sequential extraction and SDSPAGE, respectively. Histological evaluation was also carried out using Masson's trichrome stain. In vitro wound healing efficacy of A. squamosa in human dermal fibroblast culture (HDF) was also carried out. The fibroblasts treated with varying concentrations of A. squamosa were examined for proliferation and closure of the wound area and photographed. A. squamosa increased cellular proliferation in HDF culture. The granulation tissues of treated wounds showed increased levels of glycosaminoglycans (P < 0.05) and collagen which were also confirmed by histopathology. The results strongly substantiate the beneficial effects of A. squamosa on the formation of glycosaminoglycans and collagen during wound healing. PMID:25003104

  19. Treatment of Collagen-Induced Arthritis Using Immune Modulatory Properties of Human Mesenchymal Stem Cells.

    PubMed

    Park, Kyu-Hyung; Mun, Chin Hee; Kang, Mi-Il; Lee, Sang-Won; Lee, Soo-Kon; Park, Yong-Beom

    2016-01-01

    Mesenchymal stem cells (MSCs) have immune modulatory properties. We investigated the potential therapeutic effects of human bone marrow (BM)-, adipose tissue (AD)-, and cord blood (CB)-derived MSCs in an experimental animal model of rheumatoid arthritis (RA) and explored the mechanism underlying immune modulation by MSCs. We evaluated the therapeutic effect of clinically available human BM-, AD-, and CB-derived MSCs in DBA/1 mice with collagen-induced arthritis (CIA). CIA mice were injected intraperitoneally with three types of MSCs. Treatment control animals were injected with 35 mg/kg methotrexate (MTX) twice weekly. Clinical activity in CIA mice, degree of inflammation, cytokine expression in the joint, serum cytokine levels, and regulatory T cells (Tregs) were evaluated. Mice treated with human BM-, AD-, and CB-MSCs showed significant improvement in clinical joint score, comparable to MTX-treated mice. Histologic examination showed greatly reduced joint inflammation and damage in MSC-treated mice compared with untreated mice. Microcomputed tomography also showed little joint damage in the MSC-treated group. MSCs significantly decreased serum interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, and interferon-γ and increased IL-10 and transforming growth factor-β levels. Tregs were increased in mice treated with MSCs compared to untreated or MTX-treated mice. Human BM-, AD-, and CB-MSCs significantly suppressed joint inflammation in CIA mice. The cells decreased proinflammatory cytokines and upregulated anti-inflammatory cytokines and induced Tregs. Therefore, our study suggests that the use of human BM-, AD-, and CB-MSCs could be an effective therapeutic approach for RA.

  20. Autoantibody profile in the experimental model of scleroderma induced by type V human collagen

    PubMed Central

    Callado, Maria R M; Viana, Vilma S T; Vendramini, Margarete B G; Leon, Elaine P; Bueno, Cleonice; Velosa, Ana P P; Teodoro, Walcy R; Yoshinari, Natalino H

    2007-01-01

    The aim of this study is to evaluate the humoral autoimmune response in the experimental model of systemic sclerosis (SSc) induced by human type V collagen (huCol V). New Zealand rabbits were immunized with huCol V in Freund's complete adjuvant (FCA) and boosted twice with 15 days intervals with huCol V in Freund's incomplete adjuvant. Control groups included animals injected only with FCA or bovine serum albumin. Bleeding was done at days 0, 30, 75 and 120. Tissue specimens were obtained for histopathological investigation. Serological analysis included detection of antibodies against huCol V and anti-topoisomerase I (Anti-Scl70) by enzyme-linked immunosorbent assay, antinuclear antibodies (ANA) by indirect immunofluorescence, and rheumatoid factor (RF) by a latex agglutination test. Target antigens were characterized by immunoblot. Histological analysis revealed extracellular matrix remodeling with fibrosis and vasculitis. Anti-Scl70 and ANA were detected as early as 30 days in all huCol V animals. The universal ANA staining pattern was Golgi-like. This serum reactivity was not abolished by previous absorption with huCol V. Characterization of the target antigen by immunoblot revealed two major protein fractions of 175 000 and 220 000 MW. Similarly to ANA, there was a gradual increase of reactivity throughout the immunization and also it was not abolished by preincubation of serum samples with huCol V. RF testing was negative in hyperimmune sera. Conclusion: The production of autoantibodies, including anti-Scl70, a serological marker for SSc associated with histopathological alterations, validates huCol V induced-experimental model and brings out its potential for understanding the pathophysiology of SSc. PMID:17442023

  1. Autoantibody profile in the experimental model of scleroderma induced by type V human collagen.

    PubMed

    Callado, Maria R M; Viana, Vilma S T; Vendramini, Margarete B G; Leon, Elaine P; Bueno, Cleonice; Velosa, Ana P P; Teodoro, Walcy R; Yoshinari, Natalino H

    2007-09-01

    The aim of this study is to evaluate the humoral autoimmune response in the experimental model of systemic sclerosis (SSc) induced by human type V collagen (huCol V). New Zealand rabbits were immunized with huCol V in Freund's complete adjuvant (FCA) and boosted twice with 15 days intervals with huCol V in Freund's incomplete adjuvant. Control groups included animals injected only with FCA or bovine serum albumin. Bleeding was done at days 0, 30, 75 and 120. Tissue specimens were obtained for histopathological investigation. Serological analysis included detection of antibodies against huCol V and anti-topoisomerase I (Anti-Scl70) by enzyme-linked immunosorbent assay, antinuclear antibodies (ANA) by indirect immunofluorescence, and rheumatoid factor (RF) by a latex agglutination test. Target antigens were characterized by immunoblot. Histological analysis revealed extracellular matrix remodeling with fibrosis and vasculitis. Anti-Scl70 and ANA were detected as early as 30 days in all huCol V animals. The universal ANA staining pattern was Golgi-like. This serum reactivity was not abolished by previous absorption with huCol V. Characterization of the target antigen by immunoblot revealed two major protein fractions of 175,000 and 220,000 MW. Similarly to ANA, there was a gradual increase of reactivity throughout the immunization and also it was not abolished by preincubation of serum samples with huCol V. RF testing was negative in hyperimmune sera. The production of autoantibodies, including anti-Scl70, a serological marker for SSc associated with histopathological alterations, validates huCol V induced-experimental model and brings out its potential for understanding the pathophysiology of SSc.

  2. Imatinib mesylate inhibits osteoclastogenesis and joint destruction in rats with collagen-induced arthritis (CIA).

    PubMed

    Ando, Wataru; Hashimoto, Jun; Nampei, Akihide; Tsuboi, Hideki; Tateishi, Kosuke; Ono, Takeshi; Nakamura, Norimasa; Ochi, Takahiro; Yoshikawa, Hideki

    2006-01-01

    Macrophage colony-stimulating factor (M-CSF) is a key factor for osteoclastogenesis at the bone-pannus interface in patients with rheumatoid arthritis as well as a receptor activator of NF-kappaB ligand (RANKL). Imatinib mesylate inhibits the phosphorylation of c-fms, a receptor for M-CSF. The present study investigates the effect of imatinib mesylate on joint destruction in rats with collagen-induced arthritis (CIA) and on osteoclastogenesis in vitro. Imatinib mesylate (50 or 150 mg/kg), dexamethasone, or vehicle was administered daily to CIA rats for 4 weeks from the onset of arthritis. Hind-paw swelling and body weight were measured weekly. At weeks 2 and 4, the metatarsophalangeal (MTP) joints and the ankle and subtalar joints were radiographically and histologically assessed. The effect of imatinib mesylate on osteoclast formation from rat bone marrow cells with M-CSF and soluble RANKL (sRANKL) in vitro was also examined. Radiographic assessment showed that 150 mg/kg imatinib mesylate suppressed the destruction of the MTP and the ankle and subtalar joints at week 2, and MTP joint destruction at week 4 in CIA rats, although hind-paw swelling was not suppressed. The number of TRAP-positive cells at the bone-pannus interface was significantly reduced in the group administered with 150 mg/kg imatinib mesylate compared with that given vehicle at week 4. Imatinib mesylate dose-dependently inhibited the proliferation of M-CSF-dependent osteoclast precursor cells in vitro as well as osteoclast formation induced by M-CSF and sRANKL. These findings suggest that imatinib mesylate could prevent joint destruction in patients with rheumatoid arthritis.

  3. Locomotion and muscle mass measures in a murine model of collagen-induced arthritis.

    PubMed

    Hartog, Anita; Hulsman, Judith; Garssen, Johan

    2009-06-03

    Rheumatoid arthritis (RA) is characterized by chronic poly-arthritis, synovial hyperplasia, erosive synovitis, progressive cartilage and bone destruction accompanied by a loss of body cell mass. This loss of cell mass, known as rheumatoid cachexia, predominates in the skeletal muscle and can in part be explained by a decreased physical activity. The murine collagen induced arthritis (CIA) model has been proven to be a useful model in RA research since it shares many immunological and pathological features with human RA. The present study explored the interactions between arthritis development, locomotion and muscle mass in the CIA model. CIA was induced in male DBA/1 mice. Locomotion was registered at different time points by a camera and evaluated by a computerized tracing system. Arthritis severity was detected by the traditionally used semi-quantitative clinical scores. The muscle mass of the hind-legs was detected at the end of the study by weighing. A methotrexate (MTX) intervention group was included to study the applicability of the locomotion and muscle mass for testing effectiveness of interventions in more detail. There is a strong correlation between clinical arthritis and locomotion. The correlations between muscle mass and locomotion or clinical arthritis were less pronounced. MTX intervention resulted in an improvement of disease severity accompanied by an increase in locomotion and muscle mass. The present data demonstrate that registration of locomotion followed by a computerized evaluation of the movements is a simple non invasive quantitative method to define disease severity and evaluate effectiveness of therapeutic agents in the CIA model.

  4. Neferine inhibits proliferation and collagen synthesis induced by high glucose in cardiac fibroblasts and reduces cardiac fibrosis in diabetic mice

    PubMed Central

    Liu, Xue; Song, Xiuhui; Lu, Jianjun; Chen, Xueying; Liang, Ershun; Liu, Xiaoqiong; Zhang, Mingxiang; Zhang, Yun; Du, Zhanhui; Zhao, Yuxia

    2016-01-01

    Cardiac fibrosis is a common pathological process accompanying diabetes mellitus. In this report, we studied the effects of neferine (a major bisbenzylisoquinline alkaloid derived from lotus embryos) on cardiac fibrosis induced by diabetes mellitus, as well as the underlying molecular pathways. In vivo, type 1 diabetes mellitus was induced in mice by administering streptozotocin. Diabetic mice were treated with neferine through oral gavage, and cardiac function was assessed using echocardiography. Total collagen deposition was assessed by Masson's trichrome and Picrosirius staining. In vitro, cardiac fibroblasts were cultured in normal or high-glucose medium with or without neferine. Neferine attenuated left ventricular dysfunction and remodeling and reduced collagen deposition in diabetic mice. In vitro, neferine inhibited cardiac fibroblast proliferation, migration, and differentiation into myofibroblasts. In addition, neferine reduced high-glucose-induced collagen production and inhibited TGF-β1-Smad, ERK and p38 MAPK signaling activation in cardiac fibroblasts. These results suggest that neferine may have antifibrogenic effects in diabetes-related cardiac fibrosis. PMID:27533252

  5. Inhibition of UV-induced ROS and collagen damage by Phyllanthus emblica extract in normal human dermal fibroblasts.

    PubMed

    Majeed, Muhammed; Bhat, Beena; Anand, Susmitha; Sivakumar, A; Paliwal, Pritee; Geetha, K G

    2011-01-01

    As a part of ongoing research for novel natural cosmeceutical actives from plant extracts, this study demonstrates that Phyllanthus emblica fruit extract has shown its efficacy in protection against ultraviolet-B (UVB) irradiation-induced reactive oxygen species (ROS) and collagen damage in normal human dermal fibroblasts. At a concentration of 0.5 mg/ml, emblica extract showed a significant response of 9.5 ± 0.28-fold protection from UVB induced-collagen damage as compared to untreated cells. A known active, ascorbic acid, at a concentration of 0.5 mg/ml, showed 3.7 ± 0.07-fold protection from UVB-induced collagen damage. While the untreated cells showed 84 ± 1.4% induction in ROS on UVB irradiation as compared to the non-irradiated cells, emblica extract treatment inhibited the induction of ROS to 15 ± 4% at a concentration of 0.5 mg/ml. Ascorbic acid inhibited the induction in ROS to 64 ± 2% at a concentration of 0.5 mg/ml. Emblica extract is a significantly better natural active, with promising cosmeceutical benefits against photoaging.

  6. Fabrication of compositionally and topographically complex robust tissue forms by 3D-electrochemical compaction of collagen.

    PubMed

    Younesi, Mousa; Islam, Anowarul; Kishore, Vipuil; Panit, Stefi; Akkus, Ozan

    2015-06-12

    Collagen solutions are phase-transformed to mechanically robust shell structures with curviplanar topographies using electrochemically-induced pH gradients. The process enables rapid layer-by-layer deposition of collagen-rich mixtures over the entire field simultaneously to obtain compositionally diverse multilayered structures. The in-plane tensile strength and modulus of the electrocompacted collagen sheet samples were 5200-fold and 2300-fold greater than those of the uncompacted collagen samples. Out-of-plane compression tests showed a 27-fold increase in compressive stress and a 46-fold increase in compressive modulus compared to uncompacted collagen sheets. Cells proliferated 4.9 times faster, and the cellular area spread was 2.7 times greater on compacted collagen sheets. Electrocompaction also resulted in a 2.9 times greater focal adhesion area than on regular collagen hydrogel. The reported improvements in the cell-matrix interactions with electrocompaction would serve to expedite the population of electrocompacted collagen scaffolds by cells. The capacity of the method to fabricate nonlinear curved topographies with compositional heterogeneous layers is demonstrated by sequential deposition of a collagen-hydroxyapatite layer over a collagen layer. The complex curved topography of the nasal structure is replicated by the electrochemical compaction method. The presented electrochemical compaction process is an enabling modality which holds significant promise for reconstruction of a wide spectrum of topographically complex systems such as joint surfaces, craniofacial defects, ears, nose, and urogenital forms.

  7. Methacrylation induces rapid, temperature-dependent, reversible self-assembly of type-I collagen.

    PubMed

    Drzewiecki, Kathryn E; Parmar, Avanish S; Gaudet, Ian D; Branch, Jonathan R; Pike, Douglas H; Nanda, Vikas; Shreiber, David I

    2014-09-23

    Type-I collagen self-assembles into a fibrillar gel at physiological temperature and pH to provide a cell-adhesive, supportive, structural network. As such, it is an attractive, popular scaffold for in vitro evaluations of cellular behavior and for tissue engineering applications. In this study, type-I collagen is modified to introduce methacrylate groups on the free amines of the lysine residues to create collagen methacrylamide (CMA). CMA retains the properties of collagen such as self-assembly, biodegradability, and natural bioactivity but is also photoactive and can be rapidly cross-linked or functionalized with acrylated molecules when irradiated with ultraviolet light in the presence of a photoinitiator. CMA also demonstrates unique temperature-dependent behavior. For natural type-I collagen, the overall structure of the fiber network remains largely static over time scales of a few hours upon heating and cooling at temperatures below its denaturation point. CMA, however, is rapidly thermoreversible and will oscillate between a liquid macromer suspension and a semisolid fibrillar hydrogel when the temperature is modulated between 10 and 37 °C. Using a series of mechanical, scattering, and spectroscopic methods, we demonstrate that structural reversibility is manifest across multiple scales from the protein topology of the triple helix up through the rheological properties of the CMA hydrogel. Electron microscopy imaging of CMA after various stages of heating and cooling shows that the canonical collagen-like D-periodic banding ultrastructure of the fibers is preserved. A rapidly thermoreversible collagen-based hydrogel is expected to have wide utility in tissue engineering and drug delivery applications as a biofunctional, biocompatible material. Thermal reversibility also makes CMA a powerful model for studying the complex process of hierarchical collagen self-assembly.

  8. Collagen I-induced dendritic cells activation is regulated by TNF-alpha production through down-regulation of IRF4.

    PubMed

    Poudel, Barun; Ki, Hyeon-Hui; Lee, Young-Mi; Kim, Dae-Ki

    2015-03-01

    Previously we have shown that collagen I enhances the maturation and function of dendritic cells (DCs). Inflammatory mediators such as tumour necrosis factor (TNF)- alpha, interleukin (IL)-1 beta and lipopolysaccharide (LPS) are also known to activate DCs. Here we investigated the involvement of TNF-alpha on the collagen I-induced DCs activation. TNF-a neutralization inhibited collagen I-induced IL-12 secretions by DCs. Additionally, we observed suppression of collagen I-induced costimulatory molecules expression along with down-regulation of genes involved in DCs activation pathway. Furthermore, TNF- alpha inhibition upon collagen Istimulation up-regulated the expression of interferon regulatory transcription factor IRF4, when compared to collagen I only treated cells. Collectively, our data demonstrate that collagen I induce TNF- alpha production, which is crucial for the activation and function of DCs, through down-regulation of IRF4, and implicates the importance in development of anti- TNF-alpha therapeutics for several inflammatory diseases.

  9. Foam ear protectors for burnt ears.

    PubMed

    Harries, C A; Pegg, S P

    1989-01-01

    Foam ear protectors were developed at the Royal Brisbane Hospital for use with selected patients with burns to the ears. The protectors assist in preventing pressure necrosis of the ear and damage to skin grafts. They permit visualization of the ears after grafting and allow the patient to sleep in a side-lying position if desired.

  10. Molecular mechanism of force induced stabilization of collagen against enzymatic breakdown.

    PubMed

    Chang, Shu-Wei; Flynn, Brendan P; Ruberti, Jeffrey W; Buehler, Markus J

    2012-05-01

    Collagen cleavage, facilitated by collagenases of the matrix metalloproteinase (MMP) family, is crucial for many physiological and pathological processes such as wound healing, tissue remodeling, cancer invasion and organ morphogenesis. Earlier work has shown that mechanical force alters the cleavage rate of collagen. However, experimental results yielded conflicting data on whether applying force accelerates or slows down the degradation rate. Here we explain these discrepancies and propose a molecular mechanism by which mechanical force might change the rate of collagen cleavage. We find that a type I collagen heterotrimer is unfolded in its equilibrium state and loses its triple helical structure at the cleavage site without applied force, possibly enhancing enzymatic breakdown as each chain is exposed and can directly undergo hydrolysis. Under application of force, the naturally unfolded region refolds into a triple helical structure, potentially protecting the molecule against enzymatic breakdown. In contrast, a type I collagen homotrimer retains a triple helical structure even without applied force, making it more resistant to enzyme cleavage. In the case of the homotrimer, the application of force may directly lead to molecular unwinding, resulting in a destabilization of the molecule under increased mechanical loading. Our study explains the molecular mechanism by which force may regulate the formation and breakdown of collagenous tissue.

  11. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts.

    PubMed

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo; Kim, So Young; Jang, Hwan-Hee; Ryu, Sung Ho; Kim, Beom Joon; Lee, Taehoon G

    2012-11-23

    The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the β1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate peptide for the treatment of skin aging and wrinkles.

  12. A novel CC chemokine receptor 4 antagonist RS-1269 inhibits ovalbumin-induced ear swelling and lipopolysaccharide-induced endotoxic shock in mice.

    PubMed

    Nakagami, Yasuhiro; Kawashima, Kayo; Etori, Maki; Yonekubo, Kazuki; Suzuki, Chie; Jojima, Takaaki; Kuribayashi, Takeshi; Nara, Futoshi; Yamashita, Makoto

    2010-10-01

    There is growing evidence that chemokines recruit leukocytes in allergic, inflammatory and immune responses. CC chemokine receptor 4 (CCR4) is implicated as a preferential marker for T helper 2 cells, and the cells selectively respond to CC chemokine ligand 17 (CCL17) and CCL22. We searched for compounds having a profile as a CCR4 antagonist from an in-house library and have previously reported that 3-{2-[(2R)-2-phenyl-4-(4-pyridin-4-ylbenzyl)morpholin-2-yl]ethyl}quinazoline-2,4(1H,3H)-dione (named RS-1154) was capable of significantly inhibiting the binding of [(125) I]CCL17 to human CCR4-expressing CHO cells. From further synthesis of its derivatives, we newly focused on 3-(isobutyrylamino)-N-{2-[(2R)-2-phenyl-4-(4-pyridin-4-ylbenzyl)morpholin-2-yl]ethyl}benzamide (RS-1269), which showed potency comparable to RS-1154 in inhibiting CCL17-induced migration of DO11.10 mice-derived T helper 2 cells with an IC(50) value of 5.5 nM in vitro. We then investigated the pharmacological effects of RS-1269 on ovalbumin-induced ear swelling and lipopolysaccharide-induced endotoxic shock in mice. The ear thickness was significantly decreased by oral administration of RS-1269 at the dose of 30 mg/kg. Treatment with lipopolysaccharide significantly increased the serum level of tumour necrosis factor-α. Compared with an anti-CCL17 antibody, RS-1269 significantly inhibited the production at the dose of 100 mg/kg. These results raise the possibility that RS-1269 or one of its derivatives has potential to serve as a prototype compound to develop therapeutic agents for atopic dermatitis and inflammatory diseases.

  13. Lipopolysaccharide-Induced Middle Ear Inflammation Disrupts the cochlear Intra-Strial Fluid–Blood Barrier through Down-Regulation of Tight Junction Proteins

    PubMed Central

    Zhang, Jinhui; Chen, Songlin; Hou, Zhiqiang; Cai, Jing; Dong, Mingmin; Shi, Xiaorui

    2015-01-01

    Middle ear infection (or inflammation) is the most common pathological condition that causes fluid to accumulate in the middle ear, disrupting cochlear homeostasis. Lipopolysaccharide, a product of bacteriolysis, activates macrophages and causes release of inflammatory cytokines. Many studies have shown that lipopolysaccharides cause functional and structural changes in the inner ear similar to that of inflammation. However, it is specifically not known how lipopolysaccharides affect the blood-labyrinth barrier in the stria vascularis (intra-strial fluid–blood barrier), nor what the underlying mechanisms are. In this study, we used a cell culture-based in vitro model and animal-based in vivo model, combined with immunohistochemistry and a vascular leakage assay, to investigate lipopolysaccharide effects on the integrity of the mouse intra-strial fluid–blood barrier. Our results show lipopolysaccharide-induced local infection significantly affects intra-strial fluid–blood barrier component cells. Pericytes and perivascular-resident macrophage-like melanocytes are particularly affected, and the morphological and functional changes in these cells are accompanied by substantial changes in barrier integrity. Significant vascular leakage is found in the lipopolysaccharide treated-animals. Consistent with the findings from the in vivo animal model, the permeability of the endothelial cell monolayer to FITC-albumin was significantly higher in the lipopolysaccharide-treated monolayer than in an untreated endothelial cell monolayer. Further study has shown the lipopolysaccharide-induced inflammation to have a major effect on the expression of tight junctions in the blood barrier. Lipopolysaccharide was also shown to cause high frequency hearing loss, corroborated by previous reports from other laboratories. Our findings show lipopolysaccharide-evoked middle ear infection disrupts inner ear fluid balance, and its particular effects on the intra-strial fluid

  14. Lipopolysaccharide-induced middle ear inflammation disrupts the cochlear intra-strial fluid-blood barrier through down-regulation of tight junction proteins.

    PubMed

    Zhang, Jinhui; Chen, Songlin; Hou, Zhiqiang; Cai, Jing; Dong, Mingmin; Shi, Xiaorui

    2015-01-01

    Middle ear infection (or inflammation) is the most common pathological condition that causes fluid to accumulate in the middle ear, disrupting cochlear homeostasis. Lipopolysaccharide, a product of bacteriolysis, activates macrophages and causes release of inflammatory cytokines. Many studies have shown that lipopolysaccharides cause functional and structural changes in the inner ear similar to that of inflammation. However, it is specifically not known how lipopolysaccharides affect the blood-labyrinth barrier in the stria vascularis (intra-strial fluid-blood barrier), nor what the underlying mechanisms are. In this study, we used a cell culture-based in vitro model and animal-based in vivo model, combined with immunohistochemistry and a vascular leakage assay, to investigate lipopolysaccharide effects on the integrity of the mouse intra-strial fluid-blood barrier. Our results show lipopolysaccharide-induced local infection significantly affects intra-strial fluid-blood barrier component cells. Pericytes and perivascular-resident macrophage-like melanocytes are particularly affected, and the morphological and functional changes in these cells are accompanied by substantial changes in barrier integrity. Significant vascular leakage is found in the lipopolysaccharide treated-animals. Consistent with the findings from the in vivo animal model, the permeability of the endothelial cell monolayer to FITC-albumin was significantly higher in the lipopolysaccharide-treated monolayer than in an untreated endothelial cell monolayer. Further study has shown the lipopolysaccharide-induced inflammation to have a major effect on the expression of tight junctions in the blood barrier. Lipopolysaccharide was also shown to cause high frequency hearing loss, corroborated by previous reports from other laboratories. Our findings show lipopolysaccharide-evoked middle ear infection disrupts inner ear fluid balance, and its particular effects on the intra-strial fluid-blood barrier

  15. Evaluation of anti-inflammatory effect of Withania somnifera root on collagen-induced arthritis in rats.

    PubMed

    Gupta, Apurva; Singh, Surendra

    2014-03-01

    Withania somnifera (Linn.) Dunal (Solanaceae) has long been used as an herb in Ayurvedic and indigenous medicine and has received intense attention in recent years for its chemopreventive properties. The present study focuses on the effect of W. somnifera root powder on the behavioral and radiological changes in collagen-induced arthritic rats. The rats were randomly divided into five groups: normal control, arthritic control, arthritic rats treated with W. somnifera root powder (at dose levels 600 and 800 mg kg⁻¹) and arthritic rats treated with methotrexate (at dose level 0.3 mg kg⁻¹). The treatment with W. somnifera (daily) and methotrexate (weekly) was initiated from the 20th day post collagen immunization and continued up until the 45th day. Arthritis was assessed macroscopically by measuring paw thickness, ankle size and body weight. Arthritic pain was assessed by toe-spread and total print length of the affected paw. Functional recovery due to the oral treatment of W. somnifera and methotrexate was assessed by sciatic functional index and rota rod activity. Administration of W. somnifera root powder (600 mg kg⁻¹) to the arthritic rats significantly decreased the severity of arthritis by effectively suppressing the symptoms of arthritis and improving the functional recovery of motor activity and radiological score. W. somnifera root has a protective effect against collagen-induced arthritis (CIA) in rats. The results suggest that W. somnifera root powder acts as an anti-inflammatory and antioxidant agent in decreasing the arthritic effects in collagen-induced arthritic rats.

  16. An essential role for mast cells as modulators of neutrophils influx in collagen-induced arthritis in the mouse

    PubMed Central

    Pimentel, Tatiana Aparecida; Sampaio, Andrxsé Luiz Franco; D’Acquisto, Fulvio; Perretti, Mauro; Oliani, Sonia Maria

    2012-01-01

    Mast cells are involved in immune disorders so that many of the proinflammatory and tissue destructive mediators produced by these cells have been implicated in the pathogenesis of rheumatoid arthritis. This scenario prompted us to investigate the correlation between mast cell degranulation and neutrophil influx within the digits and knees joints of arthritic mice assessing what could be the functional role(s) of joint mast cells in the response to collagen immunization. DBA/1J mice were submitted to collagen-induced arthritis and disease was assessed on day 21, 32 and 42 post-immunization. Pharmacological treatment with the glucocorticoid prednisolone, commonly used in the clinic, and nedocromil, a mast cell stabilizer, was performed from day 21 to 30. Arthritis developing after immunization gradually increased up to day 42. Neutrophil infiltration peaked on day 32 and 21, in the digits and knees, respectively, showing an unequal pattern of recruitment between these tissues. This difference emerged for mast cell they peaked in the digits on day 21, but a higher degree of degranulation could be measured in the knee joints. Uneven modulation of arthritis occurred after treatment of mice with prednisolone or nedocromil. Neutrophils migration to the tissue was reduced after both therapies, but only prednisolone augmented mast cell migration to the joints. Nedocromil exerted inhibitory properties both on mast cell proliferation and migration, more effectively on the digit joints. Thus, collagen induced an inflammatory process characterized by tissue mast cells activation and degranulation, suggesting a potential driving force in propagating inflammatory circuits yielding recruitment of neutrophils. However, the different degree of affected joint involvement suggests a time-related implication of digits and knees during collagen-induced arthritis development. These results provide evidence for local alterations whereby mast cells contribute to the initiation of

  17. Anti-inflammatory effect of Curcuma longa (turmeric) on collagen-induced arthritis: an anatomico-radiological study.

    PubMed

    Taty Anna, K; Elvy Suhana, M R; Das, S; Faizah, O; Hamzaini, A H

    2011-01-01

    Curcuma longa (CL) or turmeric is an Ayurvedic herb that has been traditionally used to treat inflammatory conditions like rheumatoid arthritis (RA). Collagen-induced arthritis (CIA) is a well established experimental auto-immune mediated polyarthritis in susceptible strains of rodents. The main aim of the study was to observe the inflammatory, macroscopic and radiological changes in the arthritic ankle joints of experimentally collagen-induced arthritis animals treated with or without CL extract. Thirty six male Sprague-Dawley (6-8 weeks-old, 150 ± 50) rats were equally divided into six groups. The first group served as a control while the rest five groups were immunized subdermally with 150 µg collagen type-II on day-0. All rats with established CIA with arthritis score (AS) exceeding 1 were treated orally with betamethasone (0.5 mg/ml/kg body weight) and varying doses of CL extract (30, 60 and 110 mg/ml/kg body weight) using olive oil as vehicle, daily for four weeks. Arthritic scoring (AS) of the paws, measurement of erythrocyte sedimentation rate (ESR) and paw thickness and radiological scoring were performed. Treatment with 110 mg/ml/kg CL showed significant mean difference in the ESR (p<0.01), AS (p<0.05) and radiological scores (p<0.01) on day-28 compared to the vehicle treated group. The mean difference for the ESR, AS and radiological scores of this highest CL dose group were found to be insignificant compared to the betamethasone treated group. The administration of CL extract arrested the degenerative changes in the bone and joints of collagen-induced arthritic rats.

  18. Microscopic characterization of collagen modifications induced by low-temperature diode-laser welding of corneal tissue.

    PubMed

    Matteini, Paolo; Rossi, Francesca; Menabuoni, Luca; Pini, Roberto

    2007-08-01

    Laser welding of corneal tissue that employs diode lasers (810 nm) at low power densities (12-20 W/cm(2)) in association with Indocyanine Green staining of the wound is a technique proposed as an alternative to conventional suturing procedures. The aim of this study is to evaluate, by means of light (LM) and transmission electron microscopy (TEM) analyses, the structural modifications induced in laser-welded corneal stroma. Experiments were carried out in 20 freshly enucleated pig eyes. A 3.5 mm in length full-thickness cut was produced in the cornea, and was then closed by laser welding. Birefringence modifications in samples stained with picrosirius red dye were analyzed by polarized LM to assess heat damage. TEM analysis was performed on ultra-thin slices, contrasted with uranyl acetate and lead citrate, in order to assess organization and size of type I collagen fibrils after laser welding. LM evidenced bridges of collagen bundles between the wound edges, with a loss of regular lamellar organization at the welded site. Polarized LM indicated that birefringence properties were mostly preserved after laser treatment. TEM examinations revealed the presence of quasi-ordered groups of fibrils across the wound edges preserving their interfibrillar spacing. These fibrils appeared morphologically comparable to those in the control tissue, indicating that type I collagen was not denatured during the diode laser corneal welding. The preservation of substantially intact, undenatured collagen fibrils in laser-welded corneal wounds supported the thermodynamic studies that we carried out recently, which indicated temperatures below 66 degrees C at the weld site under laser irradiation. This observation enabled us to hypothesize that the mechanism, proposed in the literature, of unwinding of collagen triple helixes followed by fibrils "interdigitation" is not likely to occur in the welding process that we set up for the corneal suturing.

  19. Primary structure of a collagenic tail peptide of Torpedo acetylcholinesterase: co-expression with catalytic subunit induces the production of collagen-tailed forms in transfected cells.

    PubMed Central

    Krejci, E; Coussen, F; Duval, N; Chatel, J M; Legay, C; Puype, M; Vandekerckhove, J; Cartaud, J; Bon, S; Massoulié, J

    1991-01-01

    The asymmetric forms of cholinesterases are synthesized only in differentiated muscular and neural cells of vertebrates. These complex oligomers are characterized by the presence of a collagen-like tail, associated with one, two or three tetramers of catalytic subunits. The collagenic tail is responsible for ionic interactions, explaining the insertion of these molecules in extracellular basal lamina, e.g. at neuromuscular endplates. We report the cloning of a collagenic subunit from Torpedo marmorata acetylcholinesterase (AChE). The predicted primary structure contains a putative signal peptide, a proline-rich domain, a collagenic domain, and a C-terminal domain composed of proline-rich and cysteine-rich regions. Several variants are generated by alternative splicing. Apart from the collagenic domain, the AChE tail subunit does not present any homology with previously known proteins. We show that co-expression of catalytic AChE subunits and collagenic subunits results in the production of asymmetric, collagen-tailed AChE forms in transfected COS cells. Thus, the assembly of these complex forms does not depend on a specific cellular processing, but rather on the expression of the collagenic subunits. Images PMID:1840520

  20. Puerarin attenuates inflammation and oxidation in mice with collagen antibody-induced arthritis via TLR4/NF-κB signaling.

    PubMed

    Wang, Changxing; Wang, Weidong; Jin, Xiaping; Shen, Jianguo; Hu, Weifeng; Jiang, Tao

    2016-08-01

    Puerarin is an important active ingredient in the root of kudzu vine due to its pharmacological properties. The aim of the present study is to contribute to the existing knowledge of the effect of puerarin in the attenuation of inflammation and oxidation in mice with collagen antibody-induced arthritis via toll‑like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling. Arthritis was induced using injection of anti‑type II collagen antibodies. Treatment with puerarin was observed to significantly decrease clinical scoring of the collagen antibody‑induced arthritis and suppress oxidative stress and the inflammatory response in mice. Furthermore, puerarin was demonstrated to inhibit mRNA expression of matrix metalloproteinase‑9 and protein expression of TLR4 following collagen antibody-induced arthritis in mice. The effect of puerarin may be associated with the suppression of NF‑κB activity in collagen antibody‑induced arthritis mice. Furthermore, upregulation of phosphorylated (p)‑Janus kinase 2 and p‑signal transducer and activator of transcription 3 protein expression was suppressed by puerarin. The results of the present study indicate, for the first time, the effect of puerarin to attenuate inflammation and oxidation in mice with collagen antibody‑induced arthritis via TLR4/NF-κB signaling.

  1. Iridoid glycosides from the flowers of Gentiana macrophylla Pall. ameliorate collagen-induced arthritis in rats.

    PubMed

    Jia, Na; Chu, Wei; Li, Yuwen; Ding, Likun; Duan, Jialin; Cui, Jia; Cao, Shanshan; Zhao, Chao; Wu, Yin; Wen, Aidong

    2016-08-02

    The flowers of Gentiana macrophylla have been usually applied to cure the joint inflammation and rheumatoid arthritis in Traditional Chinese Medicine. This work aimed to investigate the anti-rheumatoid arthritic effect and possible mechanism of iridoid glycosides from G. macrophylla (GMI) using an animal model of collagen-induced rheumatoid arthritis (CIA) in rats. All rats were randomly divided into five groups: normal control, CIA, dexamethasone, 15mg/kg and 30mg/kg GMI. CIA was induced (day 0) in male Sprague-Dawley rats by intradermal injection of complete Bovine CII at the base of the tail. Dexamethasone was chosen as the positive drug. The administration of different drugs started from day 1 and continued for 28 days. Paw swelling, arthritis score and histopathological changes were examined to assess the severity of arthritis. In addition, the serum levels of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions in joint synovial tissues were detected. GMI reduced paw edema, arthritis scores and the index of spleen and thymus from day 7 to 21 after CIA compared with those in the CIA group. Our data also demonstrated that GMI inhibited pro-inflammatory cytokines such as TNF-α, IL-1β and IL-6, regulated the expression of iNOS and COX-2 compared with those in the CIA group. We also obtained four major components from GMI, identified as loganic acid, swertamarin, gentiopicroside and sweroside, and the contents of them were also calculated respectively. Taken together, our results shed light on the therapeutic efficacy of GMI in rats rheumatoid arthritis model by reducing the levels of IL-1β, IL-6 and TNF-α in serum as well as down-regulating the levels of iNOS and COX-2. Therefore, GMI may be an effective therapy for the treatment of rheumatoid arthritis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Effects of cichoric acid extract from Echinacea purpurea on collagen-induced arthritis in rats.

    PubMed

    Jiang, Ling; Li, Weizu; Wang, Yuchan; Zhang, Xiaosu; Yu, Deqiang; Yin, Yanyan; Xie, Zhongwen; Yuan, Yi

    2014-01-01

    Cichoric acid extract (CAE) from Echinacea purpurea L. was used to investigate the anti-arthritic effect by using collagen-induced arthritis (CIA) rat model. The hind paw swelling volume and the body weight were measured and recorded. All the drug solutions were administered orally to rats for a total of 28 days. On day 28, the rats were anaesthetized and decapitated. The thymus and spleen were weighed for the determination of the organ index. The concentration of tumor necrosis factor alpha (TNFα), interleukin-1 beta (IL-1β) and prostaglandin E2 (PGE-2) in the serum was measured using commercially available ELISA kits. Total and phosphor-NF-κB and Cox-2 protein expression in synovial tissues were determined by histological slides quantification and western blot analysis. Our data showed that administration of all doses of CAE (8, 16, and 32 mg/kg) significantly decreased the paw swelling, restored body weight gain and decreased the organ index of the thymus and spleen compared with that of the CIA group. CAE (8, 16, and 32 mg/kg) treatment significantly reduced the levels of TNFα, IL-1β and PGE-2 in serum compared with the CIA group. Histopathological analysis demonstrated that CAE has obvious anti-arthritic activity. In addition, CAE (32 mg/kg) significantly decreased the levels of nuclear factor-κB (NF-κB), TNFα and cyclooxygenase 2 (Cox-2) in synovium tissues of the ankle joint compared with the CIA group. Furthermore, CAE administration significantly decreased the protein expression of phosphor-NF-κB and Cox-2 in synovium tissues of the knee joint compared with the CIA group. The results suggest that the anti-inflammatory activity of CAE may account for its anti-arthritic effect, and CAE could be a potential therapeutic drug for the treatment of rheumatoid arthritis (RA).

  3. Pharmacokinetics, pharmacodynamics, and toxicities of methotrexate in healthy and collagen-induced arthritic rats

    PubMed Central

    Liu, Dong-Yang; Lon, Hoi-Kei; Wang, Yan-Lin; DuBois, Debra C.; Almon, Richard R.; Jusko, William J.

    2013-01-01

    Methotrexate (MTX) is an anchor drug used to treat rheumatoid arthritis (RA), but responsiveness is variable in effectiveness and toxicity. Methotrexate and its polyglutamate conjugates (MTXPGn) in red blood cells (RBC) have been associated with patient response. In the current study, 13 collagen-induced arthritic (CIA) rats and 12 healthy rats were given subcutaneous doses of either saline or 0.3 or 1.5 mg/kg per 2 days of MTX from day 21 to 43 post-induction. Blood samples were obtained at various times to measure MTX in plasma, and MTX and MTXPGn in RBC. Effects on disease progression were indicated by body weight and paw size. After multiple-doses, RBC MTX reached steady-state (82.4 nM) within 4 days. The MTXPG2 and MTXPG3 in RBC kept increasing until the end of the study attaining 12.5 and 17.7 nM. Significant weight loss was observed after dosing of 1.5 mg/kg/2 days, whereas moderate effectiveness was observed after dosing of 0.3 mg/kg/2 days. A pharmacokinetic/ pharmacodynamic/disease (PK/PD/DIS) model with indirect mechanisms and transduction components incorporating plasma MTX, RBC MTX, and RBC MTXPGn concentrations, and paw size was developed using naïve data pooling and ADAPT 5. The PK/PD in CIA rats dosed at 0.3 mg/kg/2 days were captured well by our proposed model. MTX showed modest (Imaxd = 0.16) but sensitive (IC50d = 0.712 nM) effectiveness on paw edema. The higher dose produced toxicity. The proposed model offers improved understanding of MTX effects on rheumatoid arthritis. PMID:23456770

  4. Effect of Ultraviolet A-induced Crosslinking on Dentin Collagen Matrix

    PubMed Central

    Seseogullari-Dirihan, Roda; Tjäderhane, Leo; Pashley, David H; Tezvergil-Mutluay, Arzu

    2016-01-01

    Objectives The aim of this study was to evaluate the effect of using UVA-induced crosslinking with or without riboflavin as photosensitizers on degradation of dentin matrix by dentin proteases. Methods Demineralized dentin specimens (0.4×3×6mm, n=10/group) were subjected to: (RP1), 0.1% riboflavin-5 phosphate/UVA for 1 min; (RP5), 0.1% riboflavin-5 phosphate/UVA for 5 min; (R1), 0.1% riboflavin/UVA for 1 min; (R5), 0.1% riboflavin-UVA for 5 min; (UV1), UVA for 1 min; (UV5), UVA for 5 min. Specimens were incubated in 1 mL zinc and calcium containing media for 1 day and 1 week. An untreated group served as control (CM). After incubation, the loss of dry mass of samples was measured and aliquots of media were analyzed for the release of C-terminal fragment telopeptide (ICTP vs CTX) of collagen to evaluate for cathepsin K (CA-K) and total matrix metalloproteinase (MMP)-mediated degradation. Data were analyzed using repeated measures ANOVA at α=0.05. Results Although UVA radiation alone reduced dentin degradation, UVA-activated riboflavin or riboflavin-5 phosphate inhibited MMP and CA-K activities more than UVA alone. The effects of crosslinking were more pronounced in 7-day samples; only with CA-K were the effects of crosslinking with or without photosensitizer significantly different from controls in 1-day samples. Significance The use of bioactive forms (RP) or longer treatment time did not result with better effect. The use of UVA crosslinking reduces dentin matrix degradation, especially with photosensitizers. PMID:26314255

  5. Supplement of 5-hydroxytryptophan before induction suppresses inflammation and collagen-induced arthritis.

    PubMed

    Yang, Tao-Hsiang; Hsu, Peng-Yang; Meng, Menghsiao; Su, Che-Chun

    2015-12-15

    Evidence is accumulating that a preclinical phase is present before the onset of clinical signs and symptoms of rheumatoid arthritis (RA). This phase represents an important therapeutic window within which interventions can dramatically modulate outcomes. An agent able to prevent RA for high risk individuals in this phase is therefore desired. In this study, we investigated whether tryptophan metabolite, 5-hydroxytryptophan (5-HTP) or 5-methoxytryptophan (5-MTP), can act as such an agent for primary prevention of collagen-induced arthritis (CIA). Mouse splenocytes were pretreated with 5-HTP or 5-MTP and activated by anti-CD3 plus anti-CD28 antibodies in vitro. The percentages of interferon-γ (IFNγ)(+)CD4(+) T cells and interleukin-17 (IL-17)(+)CD4(+) T cells were measured by flow cytometry. The production of pro-inflammatory cytokines, serotonin and kynurenine was measured by enzyme-linked immunosorbent assay. A CIA model was used to investigate the in vivo effects of 5-HTP on the prevention of arthritis. 5-HTP decreased the percentages of IFNγ(+)CD4(+) T cells and IL-17(+)CD4(+) T cells and suppressed the production of IL-2, IL-4, IL-6, IL-17, tumor necrosis factor-α (TNFα) and IFNγ in activated splenocytes. 5-HTP administered before induction decreased the disease activities in CIA mice and suppressed the production of TNFα, IL-6 and cyclooxygenase-2 in arthritic joints. 5-HTP also increased serotonin, but decreased kynurenine in the CIA mice. 5-HTP suppresses inflammation and arthritis through decreasing the production of pro-inflammatory mediators. 5-HTP supplement before induction ameliorates arthritis in a CIA model.

  6. Therapeutic efficacy of Tyro3, Axl, and Mer tyrosine kinase agonists in collagen-induced arthritis.

    PubMed

    van den Brand, B T; Abdollahi-Roodsaz, S; Vermeij, E A; Bennink, M B; Arntz, O J; Rothlin, C V; van den Berg, W B; van de Loo, F A J

    2013-03-01

    Hyperactivation of innate immunity by Toll-like receptors (TLRs) can contribute to the development of autoinflammatory or autoimmune diseases. This study evaluated the activation of Tyro3, Axl, Mer (TAM) receptors, physiologic negative regulators of TLRs, by their agonists, growth arrest-specific protein 6 (GAS-6) and protein S, in the prevention of collagen-induced arthritis (CIA). Adenoviruses overexpressing GAS-6 and protein S were injected intravenously or intraarticularly into mice during CIA. Splenic T helper cell subsets from intravenously injected mice were studied by flow cytometry, and the knee joints of mice injected intravenously and intraarticularly were assessed histologically. Synovium from mice injected intraarticularly was evaluated for cytokine and suppressor of cytokine signaling (SOCS) expression. Protein S significantly reduced ankle joint swelling when overexpressed systemically. Further analysis of knee joints revealed a moderate reduction in pathologic changes in the joint and a significant reduction in the number of splenic Th1 cells when protein S was overexpressed systemically. Local overexpression of GAS-6 decreased joint inflammation and joint pathology. Protein S treatment showed a similar trend of protection. Consistently, GAS-6 and protein S reduced cytokine production in the synovium. Moreover, levels of messenger RNA for interleukin-12 (IL-12) and IL-23 were reduced by GAS-6 and protein S treatment, with a corresponding decrease in the production of interferon-γ and IL-17. TAM ligand overexpression was associated with an increase in SOCS-3 levels, which likely contributed to the amelioration of arthritis. This study provides the first evidence that TAM receptor stimulation by GAS-6 and protein S can be used to ameliorate arthritis when applied systemically or locally. TAM receptor stimulation limits proinflammatory signaling and adaptive immunity. This pathway provides a novel strategy by which to combat rheumatoid arthritis

  7. Cyclophilin A Aggravates Collagen-Induced Arthritis via Promoting Classically Activated Macrophages.

    PubMed

    Dongsheng, Zhai; Zhiguang, Fu; Junfeng, Jia; Zifan, Lu; Li, Wang

    2017-07-29

    Activated macrophages exhibiting diverse phenotypes and various functions contribute to the pathogenesis or amelioration of different diseases like cancer, inflammation, and infectious and autoimmune diseases. However, the mechanisms of macrophage polarization in inflamed joint and its effects on rheumatoid arthritis (RA) are still not clarified. This study is designed to explore the effects of cyclophilin A (CypA) on macrophage polarization and describe the underlying mechanisms. Collagen-induced arthritis (CIA) was employed to address the pro-arthritic effects of CypA. Flow cytometry was performed to investigate the populations of M1 and M2 macrophages in synovial tissues of the mice. Knockdown or overexpression of CypA macrophage cells was used to study the functions of CypA on macrophage polarization. Western blot was carried out to examine the potential signaling pathways. We found that CypA aggravated the severity of CIA in mice, as assessed by the increase of clinical score of inflammation, cartilage damage, and bone erosion. Moreover, the level of cytokines, such as IL-6, IL-1β, and IL-17, and the number of pro-inflammatory macrophages in synovial fluid were significantly elevated. In accordance with our observation, CypA dysregulation could actually influence the M1 macrophages polarization and pro-inflammatory cytokines production. Further mechanism study disclosed that CypA could regulate the transcriptional activity of NF-κB, the pivotal transcriptional factor regulating M1 polarization, dependent of its PPIase activity. Our findings provide evidence that PPIase CypA promoted macrophages polarization toward pro-inflammatory M1 phenotype via transcriptional activating NF-κB, thus leading to aggravated arthritis.

  8. Multiphoton microscopy of engineered dermal substitutes: assessment of 3D collagen matrix remodeling induced by fibroblasts contraction

    NASA Astrophysics Data System (ADS)

    Pena, A.-M.; Olive, C.; Michelet, J.-F.; Galey, J.-B.; Fagot, D.; Leroy, F.; Martin, J.-L.; Colonna, A.; Schanne-Klein, M.-C.

    2010-02-01

    One of the main functions of dermal fibroblasts is the generation of mechanical forces within their surrounding extracellular matrix. Investigating molecules that could modulate fibroblast contraction and act as potent anti aging ingredients requires the development of three-dimensional in situ imaging methodologies for dermal substitute analysis. Here we use multiphoton microscopy in order to investigate the fibroblast-induced collagen matrix reorganization in engineered dermal tissue and to evaluate the effect of Y27632, a RhoA kinase inhibitor on dermal substitutes contraction. We observe that collagen fibrils rearrange around fibroblast with increasing density in control samples, whereas collagen fibrils show no remodeling in the samples containing the RhoA kinase inhibitor. Moreover, when the culture medium containing the inhibitor was replaced with a control medium, the dermal substitutes presented the same 3D reorganization as the control samples, which indicates that the inhibitory effects are reversible. In conclusion, our study demonstrates the relevance of multiphoton microscopy to visualize three-dimensional remodeling of the matrix induced by fibroblast contraction.

  9. Attenuation of collagen induced arthritis by Centella asiatica methanol fraction via modulation of cytokines and oxidative stress.

    PubMed

    Sharma, Shikha; Gupta, Ritu; Thakur, Sonu Chand

    2014-12-01

    To investigate the anti-inflammatory, antioxidant and anti-arthritic effects of Centella asiatica methanolfraction (CaME) on collagen-induced arthritis (CIA), an animal model of rheumatoid arthritis. Arthritis was induced in female wistar rats by immunization with porcine type II collagen. The CIA rats were treated orally with CaME (50, 150, and 250 mg/kg/day) for 15 d (beginning on day 21 of the experimental period). The clinical, histological, biochemical, and immunological parameters were assessed. CaME treatment (150 and 250 mg/kg) significantly attenuated the severity of CIA and reduced the synovial inflammation, cartilage erosion, and bone erosion as evident from both histological and radiographic data. The escalated plasma levels of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-12 alongwith nitric oxide in CIA rats decreased significantly on CaME treatment. The serum levels of type-II collagen antibody were significantly lower in rats of CaME (150 and 250 mg/kg) treated group than those in the arthritic group. Furthermore, by inhibiting the above mediators, CaME also contributed towards the reversal of the disturbed antioxidant levels and peroxidative damage. Our results clearly indicate that oral administration of CaME suppresses joint inflammation, cytokine expression as well as antioxidant imbalance, thereby contributing to an amelioration of arthritis severity in CIA rats. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  10. Loss of alpha3/alpha4(IV) collagen from the glomerular basement membrane induces a strain-dependent isoform switch to alpha5alpha6(IV) collagen associated with longer renal survival in Col4a3-/- Alport mice.

    PubMed

    Kang, Jeong Suk; Wang, Xu-Ping; Miner, Jeffrey H; Morello, Roy; Sado, Yoshikazu; Abrahamson, Dale R; Borza, Dorin-Bogdan

    2006-07-01

    Mutations in COL4A3/4/5 genes that affect the normal assembly of the alpha3/4/5(IV) collagen network in the glomerular basement membrane (GBM) cause Alport syndrome. Patients progress to renal failure at variable rates that are determined by the underlying mutation and putative modifier genes. Col4a3(-/-) mice, a model for autosomal recessive Alport syndrome, progress to renal failure significantly slower on the C57BL/6 than on the 129X1/Sv background. Reported here is a novel strain-specific alternative collagen IV isoform switch that is associated with the differential renal survival in Col4a3(-/-) Alport mice. The downregulation or the absence of alpha3/4(IV) collagen chains in the GBM of Lmx1b(-/-) and Col4a3(-/-) mice was found to induce ectopic deposition of alpha5/6(IV) collagen. The GBM deposition of alpha5/6(IV) collagen was abundant in C57BL/6 Col4a3(-/-) mice but almost undetectable in 129X1/Sv Col4a3(-/-) mice. This strain difference was due to overall low expression of alpha6(IV) chain and alpha5/6(IV) protomers in the tissues of 129X1/SvJ mice, a natural Col4a6 knockdown. In (129 x B6)F1 Col4a3(-/-) mice, the amount of alpha5/6(IV) collagen in the GBM was inherited in a mother-to-son manner, suggesting that it is controlled by one or more X-linked loci, possibly Col4a6 itself. Importantly, high levels of ectopic alpha5/6(IV) collagen in the GBM were associated with approximately 46% longer renal survival. These findings suggest that alpha5/6(IV) collagen, the biologic role of which has been hitherto unknown, may partially substitute for alpha3/4/5(IV) collagen. Therapeutically induced GBM deposition of alpha5/6(IV) collagen may provide a novel strategy for delaying renal failure in patients with autosomal recessive Alport syndrome.

  11. Protective actions of Rubus coreanus ethanol extract on collagenous extracellular matrix in ultraviolet-B irradiation-induced human dermal fibroblasts

    PubMed Central

    Bae, Ji-Young; Lim, Soon Sung; Choi, Jung-Suk

    2007-01-01

    Solar ultraviolet (UV) irradiation leads to distinct changes in the skin connective tissues by degradation of collagen, which is a major structural component in the extracellular matrix. UV irradiation induces the production of matrix metalloproteinases (MMP) capable of attacking native fibrillar collagen and responsible for inhibiting the construction of collagenous extracellular matrix. In this study, we attempted to investigate the protective actions of Rubus coreanus ethanol extract (RCE) on the MMP production and the consequent procollagen/collagen degradation in UV-B-irradiated human dermal fibroblasts. The analytical data showed that Rubus coreanus ethanol extract was mostly comprised of cyanidin 3-rutinoside. Pre-treatment of fibroblasts with this extract inhibited UV-B-induced production of MMP-1, MMP-8 and MMP-13 in dose-dependent manners. In addition, Western blot analysis and immunocytochemical staining assay revealed that RCE markedly augmented the cellular levels of procollagen/collagen declined in UV-B-exposed dermal fibroblasts. These results demonstrate that RCE blocks UV-B-induced increase of the collagen degradation by inhibiting MMP production. Thus, RCE may act as an agent inhibiting excessive dermal collagen degradation leading to the skin photoaging. PMID:20368951

  12. Increased Inner Ear Susceptibility to Noise Injury in Mice With Streptozotocin-Induced Diabetes

    PubMed Central

    Fujita, Takeshi; Yamashita, Daisuke; Katsunuma, Sayaka; Hasegawa, Shingo; Tanimoto, Hitoshi; Nibu, Ken-ichi

    2012-01-01

    We aimed to investigate the pathophysiology of diabetes-associated hearing impairment in type 1 diabetes using mice with streptozotocin-induced diabetes (C57BL/6J; male). Hearing function was evaluated 1, 3, and 5 months after induction of diabetes (five diabetic and five control animals per time point) using auditory-evoked brain stem responses (ABRs). Mice (four diabetic and four control) were exposed to loud noise (105 dB) 5 months after induction of diabetes. ABRs were measured before and after noise exposure. Cochlear blood flows were measured by laser-Doppler flowmeter. Spiral ganglion cells (SGCs) were counted. Vessel endothelial cells were observed by CD31 immunostaining. Chronologic changes in the ABR threshold shift were not significantly different between the diabetic and control groups. However, vessel walls in the modiolus of the cochleae were significantly thicker in the diabetic group than the control group. Additionally, recovery from noise-induced injury was significantly impaired in diabetic mice. Reduced cochlea blood flows and SGC loss were observed in diabetic mice cochleae after noise exposure. Our data suggest that diabetic cochleae are more susceptible than controls to loud noise exposure, and decreased cochlear blood flow due to sclerosis of the vessels and consequent loss of SGCs are possible mechanisms of hearing impairment in diabetic patients. PMID:22851574

  13. Interleukin-22 reduces the severity of collagen-induced arthritis in association with increased levels of interleukin-10.

    PubMed

    Sarkar, Sujata; Zhou, Xiaoqun; Justa, Shivali; Bommireddy, Swaroopa Rani

    2013-04-01

    The mechanism of action of interleukin- 22 (IL-22) in inflammatory arthritis remains unknown. IL-22-deficient mice exhibit an intact humoral and cellular immune response to collagen and yet have a reduced incidence of collagen-induced arthritis (CIA). Further, administration of anti-IL-22 does not reduce the severity of clinical arthritis but rather improves only certain aspects of joint inflammation as assessed histologically. This study was undertaken to investigate the mechanism of action and role of systemic IL-22 in modulating target organ inflammation. CIA was induced in DBA mice by immunization with collagen and Freund's complete adjuvant. Expression of IL-22 and its receptor (IL-22R) in lymphoid organ and target tissues was determined during various phases of arthritis. The effector functions of IL-22 on induction/regulation of various cytokines in in vitro restimulation cultures were analyzed by enzyme-linked immunosorbent assay (ELISA). Recombinant IL-22 with or without anti-IL-10 antibody was administered to mice following immunization with collagen and prior to the onset of arthritis, and the severity of arthritis was evaluated by clinical scoring and histopathologic assessment. Anticollagen antibodies in mouse sera were analyzed by ELISA. IL-22 and IL-22R were up-regulated in lymphoid organs and joints during the course of arthritis. IL-22 augmented IL-10, IL-17, and IL-6 in lymphoid tissues in vitro. Administration of recombinant IL-22 was associated with an increase in IL-10 levels in vivo and a significant reduction in the progression of arthritis severity. Anti-IL-10 antibody treatment was associated with the abrogation of this protective effect of IL-22. Our data demonstrate, for the first time, that IL-22 has a protective role in inflammatory arthritis. Copyright © 2013 by the American College of Rheumatology.

  14. Wnt5a Induces Collagen Production by Human Periodontal Ligament Cells Through TGFβ1-Mediated Upregulation of Periostin Expression.

    PubMed

    Hasegawa, Daigaku; Wada, Naohisa; Maeda, Hidefumi; Yoshida, Shinichiro; Mitarai, Hiromi; Tomokiyo, Atsushi; Monnouchi, Satoshi; Hamano, Sayuri; Yuda, Asuka; Akamine, Akifumi

    2015-11-01

    Wnt5a, a member of the noncanonical Wnt proteins, is known to play important roles in the development of various organs and in postnatal cell functions. However, little is known about the effects of Wnt5a on human periodontal ligament (PDL) cells. In this study, we examined the localization and potential function of Wnt5a in PDL tissue. Immunohistochemical analysis revealed that Wnt5a was expressed predominantly in rat PDL tissue. Semi-quantitative reverse-transcription polymerase chain reaction and Western blotting analysis demonstrated that human PDL cells (HPDLCs) expressed Wnt5a and its receptors (Ror2, Fzd2, Fzd4, and Fzd5). Removal of occlusal pressure by extraction of opposing teeth decreased Wnt5a expression in rat PDL tissue, and the expression of Wnt5a and its receptors in HPDLCs was upregulated by exposure to mechanical stress. Stimulation with Wnt5a significantly enhanced the proliferation and migration of HPDLCs. Furthermore, Wnt5a suppressed osteoblastic differentiation of HPDLCs cultivated in osteogenic induction medium, while it significantly enhanced the expression of PDL-related genes, such as periostin, type-I collagen, and fibrillin-1 genes, and the production of collagen in HPDLCs cultivated in normal medium. Both knockdown of periostin gene expression by siRNA and inhibition of TGFβ1 function by neutralizing antibody suppressed the Wnt5a-induced PDL-related gene expression and collagen production in HPDLCs. Interestingly, in HPDLCs cultured with Wnt5a, TGFβ1 neutralizing antibody significantly suppressed periostin expression, while periostin siRNA had no effect on TGFβ1 expression. These results suggest that Wnt5a expressed in PDL tissue plays specific roles in inducing collagen production by PDL cells through TGFβ1-mediated upregulation of periostin expression. © 2015 Wiley Periodicals, Inc.

  15. Pefloxacin-Induced Achilles Tendon Toxicity in Rodents: Biochemical Changes in Proteoglycan Synthesis and Oxidative Damage to Collagen

    PubMed Central

    Simonin, Marie-Agnes; Gegout-Pottie, Pascale; Minn, Alain; Gillet, Pierre; Netter, Patrick; Terlain, Bernard

    2000-01-01

    Despite a relatively low incidence of serious side effects, fluoroquinolones and the fluoroquinolone pefloxacin have been reported to occasionally promote tendinopathy that might result in the complication of spontaneous rupture of tendons. In the present study, we investigated in rodents the intrinsic deleterious effect of pefloxacin (400 mg/kg of body weight) on Achilles tendon proteoglycans and collagen. Proteoglycan synthesis was determined by measurement of in vivo and ex vivo radiosulfate incorporation in mice. Collagen oxidative modifications were measured by carbonyl derivative detection by Western blotting. An experimental model of tendinous ischemia (2 h) and reperfusion (3 days) was achieved in rats. Biphasic changes in proteoglycan synthesis were observed after a single administration of pefloxacin, consisting of an early inhibition followed by a repair-like phase. The depletion phase was accompanied by a marked decrease in the endogenous serum sulfate level and a concomitant increase in the level of sulfate excretion in urine. Studies of ex vivo proteoglycan synthesis confirmed the in vivo results that were obtained. The decrease in proteoglycan anabolism seemed to be a direct effect of pefloxacin on tissue metabolism rather than a consequence of the low concentration of sulfate. Pefloxacin treatment for several days induced oxidative damage of type I collagen, with the alterations being identical to those observed in the experimental tendinous ischemia and reperfusion model. Oxidative damage was prevented by coadministration of N-acetylcysteine (150 mg/kg) to the mice. These results provide the first experimental evidence of a pefloxacin-induced oxidative stress in the Achilles tendon that altered proteoglycan anabolism and oxidized collagen. PMID:10722483

  16. Fps/Fes and Fer non-receptor protein-tyrosine kinases regulate collagen- and ADP-induced platelet aggregation.

    PubMed

    Senis, Y A; Sangrar, W; Zirngibl, R A; Craig, A W B; Lee, D H; Greer, P A

    2003-05-01

    Fps/Fes and Fer proto-oncoproteins are structurally related non-receptor protein-tyrosine kinases implicated in signaling downstream from cytokines, growth factors and immune receptors. We show that Fps/Fes and Fer are expressed in human and mouse platelets, and are activated following stimulation with collagen and collagen-related peptide (CRP), suggesting a role in GPVI receptor signaling. Fer was also activated following stimulation with thrombin and a protease-activated receptor4 (PAR4)-activating peptide, suggesting a role in signaling downstream from the G protein-coupled PAR4. There were no detectable perturbations in CRP-induced activation of Syk, PLCgamma2, cortactin, Erk, Jnk, Akt or p38 in platelets from mice lacking Fps/Fes, Fer, or both kinases. Platelets lacking Fps/Fes, from a targeted fps/fes null strain of mice, showed increased rates and amplitudes of collagen-induced aggregation, relative to wild-type platelets. P-Selectin expression was also elevated on the surface of Fps/Fes-null platelets in response to CRP. Fer-deficient platelets, from mice targeted with a kinase-inactivating mutation, disaggregated more rapidly than wild-type platelets in response to ADP. This report provides the first evidence that Fps/Fes and Fer are expressed in platelets and become activated downstream from the GPVI collagen receptor, and that Fer is activated downstream from a G-protein coupled receptor. Furthermore, using targeted mouse models we show that deficiency in Fps/Fes or Fer resulted in disregulated platelet aggregation and disaggregation, demonstrating a role for these kinases in regulating platelet functions.

  17. The 800-nm diode laser irradiation induces skin collagen synthesis by stimulating TGF-β/Smad signaling pathway.

    PubMed

    Dang, Yongyan; Liu, Bei; Liu, Lianxi; Ye, Xiyun; Bi, Xinling; Zhang, Yong; Gu, Jun

    2011-11-01

    The 800-nm diode laser is used clinically for hair removal and leg vein clearance. However, the effects of the laser on skin collagen synthesis have not been established. This study aims to research whether the 800-nm laser can be used for non-ablative rejuvenation and its possible mechanism by using an animal model. Eight 2-month-old rats were irradiated with the 800-nm diode laser at 20, 40, and 60 J/cm(2), respectively. Skin samples were taken for histological study and dermal thickness measurement at day 30 after laser irradiation. The expression of procollagen type I, III, IV, transforming growth factor-β (TGF-β), Smad2, 3, 4, and phosphorylated-Smad2, 3 in the rat skin was analyzed 24 h after completing all laser treatments by using RT-PCR and Western blot. Immunohistochemistry was performed to evaluate the content of type I collagen in the skin at day 30 after laser irradiation. The 800-nm diode laser treatments markedly improved the histological structure and increased dermal thickness compared to the non-irradiated controls. Laser irradiation at 40 J/cm(2) significantly up-regulated the expression of procollagen type I and IV, TGF-β and Smad2, 3, 4. The p-Smad2 and p-Smad3 levels were also enhanced in the laser-irradiated skin. The 800-nm laser is effective in improving skin structure and inducing skin new collagen expression. New collagen synthesis induced by the 800-nm laser was mediated by TGF-β/Smad signaling pathway. Thus, it seemed that the 800-nm laser could be used for non-ablative rejuvenation in the future.

  18. Advanced glycation end products suppress lysyl oxidase and induce bone collagen degradation in a rat model of renal osteodystrophy.

    PubMed

    Aoki, Chiharu; Uto, Kenta; Honda, Kazuho; Kato, Yoshiharu; Oda, Hideaki

    2013-11-01

    Renal osteodystrophy (ROD) is a major problem in patients with renal insufficiency. The present study was designed to elucidate the role of bone collagen changes and osteoblast differentiation in a rat model of ROD pathogenesis induced by adenine. Typical characteristics of renal failure, including increased serum urea nitrogen, creatinine, inorganic phosphorus, and intact parathyroid hormone levels, and decreased serum calcium and 1,25(OH)2D3 levels, were observed in adenine-induced rats. Micro-computed tomography analysis of the femur in adenine-induced rats showed decreased bone mineral density and osteoporotic changes, confirmed by the three-point bending test. The cancellous bone histomorphometric parameters of the tibia showed increased osteoblast number, decreased osteoclast surface with peritrabecular fibrosis, and increased osteoid tissue, indicating a severe mineralization disorder similar to clinical ROD. Scanning and transmission electron microscopy revealed irregular alignment and increased diameter of bone collagen fibrils in adenine-induced rats. Protein expression analysis showed greater accumulation of advanced glycation end products (AGEs) in peritrabecular osteoblasts of adenine-induced rats than in the controls. In contrast, suppressed expression of runt-related transcription factor 2, alkaline phosphatase, secreted phosphoprotein 1 (Spp1), and lysyl oxidase (Lox) mRNA levels, particularly the amount of active LOX protein, were observed. In in-vitro experiments, mineralizing MC3T3-E1 osteoblastic cells stimulated with AGE-modified bovine serum albumin had attenuated the expression of Spp1 mRNA levels and active LOX protein, with a decrease in extracellular nodules of mineralization. These observations provide clues to ROD pathogenesis, as they indicate that the suppression of osteoblast differentiation and decreased active LOX protein associated with accumulation of AGEs in osteoblasts caused structural abnormalities of bone collagen fibrils and

  19. Potentiation of butylated hydroxytoluene-induced acute lung damage by oxygen. Cell kinetics and collagen metabolism.

    PubMed

    Haschek, W M; Reiser, K M; Klein-Szanto, A J; Kehrer, J P; Smith, L H; Last, J A; Witschi, H P

    1983-01-01

    Changes in cell proliferation and in collagen synthesis were studied in young adult male BALB/c mice injected intraperitoneally with 400 mg/kg of butylated hydroxytoluene (BHT) in corn oil or corn oil alone and immediately exposed to 70% oxygen or air for 6 days. Mice received [3H]thymidine either as a single injection 90 min before being killed or as a continual infusion via an osmotic minipump. Autoradiography was done 2 to 14 days after BHT injection, and cell kinetic studies were performed. In a similar experiment, mice were injected intraperitoneally with [3H]proline 3 h before being killed, and type l/type III collagen ratio in newly synthesized lung collagen was determined. We found that exposure to 70% oxygen immediately after the administration of BHT initially delayed the epithelial cell proliferation and the decrease in the percentage of newly synthesized type III collagen that occurred after BHT alone. Once the animals were removed from oxygen there was a compensatory burst of cell proliferation and a precipitous drop in the percentage of newly synthesized type III collagen. The proliferating cell population after removal from oxygen was primarily interstitial and not epithelial. When exposure to oxygen was delayed, cell proliferation was similar to that seen after BHT injection alone.

  20. The alpha 3 chain of type IV collagen induces autoimmune Goodpasture syndrome.

    PubMed Central

    Kalluri, R; Gattone, V H; Noelken, M E; Hudson, B G

    1994-01-01

    Human Goodpasture syndrome is a lethal form of autoimmune disease that is characterized by pulmonary hemorrhage and glomerulonephritis. The tissue injury is mediated by autoantibodies that bind to glomerular and alveolar basement membrane. The target autoantigen is alpha 3(IV) collagen, one of six genetically distinct chains that comprise type IV collagen, and the epitope is sublocalized to the noncollagenous domain (NC1) of the alpha 3 chain. The present study reports the unique capacity of alpha 3(IV)NC1 dimer from bovine kidney to aberrantly engage the immune system of rabbits to respond to self, mimicking the organ-specific form of the human disease, whereas the other chains of type IV collagen are nonpathogenic. However, alpha 3(IV)NC1 hexamer was nonpathogenic, suggesting the exposure of a pathogenic epitope upon dissociation of hexamer into dimers. Exposure of the pathogenic epitope by infection or organic solvents, events which are thought to precede Goodpasture syndrome, may be the principal factor in the etiology of the disease. The pathogenicity of alpha 3(IV) collagen brings full circle a decade of research that has identified four novel chains (alpha 3-alpha 6) of type IV collagen. Images PMID:8016138

  1. The alpha 3 chain of type IV collagen induces autoimmune Goodpasture syndrome.

    PubMed

    Kalluri, R; Gattone, V H; Noelken, M E; Hudson, B G

    1994-06-21

    Human Goodpasture syndrome is a lethal form of autoimmune disease that is characterized by pulmonary hemorrhage and glomerulonephritis. The tissue injury is mediated by autoantibodies that bind to glomerular and alveolar basement membrane. The target autoantigen is alpha 3(IV) collagen, one of six genetically distinct chains that comprise type IV collagen, and the epitope is sublocalized to the noncollagenous domain (NC1) of the alpha 3 chain. The present study reports the unique capacity of alpha 3(IV)NC1 dimer from bovine kidney to aberrantly engage the immune system of rabbits to respond to self, mimicking the organ-specific form of the human disease, whereas the other chains of type IV collagen are nonpathogenic. However, alpha 3(IV)NC1 hexamer was nonpathogenic, suggesting the exposure of a pathogenic epitope upon dissociation of hexamer into dimers. Exposure of the pathogenic epitope by infection or organic solvents, events which are thought to precede Goodpasture syndrome, may be the principal factor in the etiology of the disease. The pathogenicity of alpha 3(IV) collagen brings full circle a decade of research that has identified four novel chains (alpha 3-alpha 6) of type IV collagen.

  2. The Methoxyflavonoid Isosakuranetin Suppresses UV-B-Induced Matrix Metalloproteinase-1 Expression and Collagen Degradation Relevant for Skin Photoaging

    PubMed Central

    Jung, Hana; Lee, Eunjoo H.; Lee, Tae Hoon; Cho, Man-Ho

    2016-01-01

    Solar ultraviolet (UV) radiation is a main extrinsic factor for skin aging. Chronic exposure of the skin to UV radiation causes the induction of matrix metalloproteinases (MMPs), such as MMP-1, and consequently results in alterations of the extracellular matrix (ECM) and skin photoaging. Flavonoids are considered as potent anti-photoaging agents due to their UV-absorbing and antioxidant properties and inhibitory activity against UV-mediated MMP induction. To identify anti-photoaging agents, in the present study we examined the preventative effect of methoxyflavonoids, such as sakuranetin, isosakuranetin, homoeriodictyol, genkwanin, chrysoeriol and syringetin, on UV-B-induced skin photo-damage. Of the examined methoxyflavonoids, pretreatment with isosakuranetin strongly suppressed the UV-B-mediated induction of MMP-1 in human keratinocytes in a concentration-dependent manner. Isosakuranetin inhibited UV-B-induced phosphorylation of mitogen-activated protein kinase (MAPK) signaling components, ERK1/2, JNK1/2 and p38 proteins. This result suggests that the ERK1/2 kinase pathways likely contribute to the inhibitory effects of isosakuranetin on UV-induced MMP-1 production in human keratinocytes. Isosakuranetin also prevented UV-B-induced degradation of type-1 collagen in human dermal fibroblast cells. Taken together, our findings suggest that isosakuranetin has the potential for development as a protective agent for skin photoaging through the inhibition of UV-induced MMP-1 production and collagen degradation. PMID:27598131

  3. The Methoxyflavonoid Isosakuranetin Suppresses UV-B-Induced Matrix Metalloproteinase-1 Expression and Collagen Degradation Relevant for Skin Photoaging.

    PubMed

    Jung, Hana; Lee, Eunjoo H; Lee, Tae Hoon; Cho, Man-Ho

    2016-09-01

    Solar ultraviolet (UV) radiation is a main extrinsic factor for skin aging. Chronic exposure of the skin to UV radiation causes the induction of matrix metalloproteinases (MMPs), such as MMP-1, and consequently results in alterations of the extracellular matrix (ECM) and skin photoaging. Flavonoids are considered as potent anti-photoaging agents due to their UV-absorbing and antioxidant properties and inhibitory activity against UV-mediated MMP induction. To identify anti-photoaging agents, in the present study we examined the preventative effect of methoxyflavonoids, such as sakuranetin, isosakuranetin, homoeriodictyol, genkwanin, chrysoeriol and syringetin, on UV-B-induced skin photo-damage. Of the examined methoxyflavonoids, pretreatment with isosakuranetin strongly suppressed the UV-B-mediated induction of MMP-1 in human keratinocytes in a concentration-dependent manner. Isosakuranetin inhibited UV-B-induced phosphorylation of mitogen-activated protein kinase (MAPK) signaling components, ERK1/2, JNK1/2 and p38 proteins. This result suggests that the ERK1/2 kinase pathways likely contribute to the inhibitory effects of isosakuranetin on UV-induced MMP-1 production in human keratinocytes. Isosakuranetin also prevented UV-B-induced degradation of type-1 collagen in human dermal fibroblast cells. Taken together, our findings suggest that isosakuranetin has the potential for development as a protective agent for skin photoaging through the inhibition of UV-induced MMP-1 production and collagen degradation.

  4. Aronia melanocarpa Concentrate Ameliorates Pro-Inflammatory Responses in HaCaT Keratinocytes and 12-O-Tetradecanoylphorbol-13-Acetate-Induced Ear Edema in Mice.

    PubMed

    Goh, Ah Ra; Youn, Gi Soo; Yoo, Ki-Yeon; Won, Moo Ho; Han, Sang-Zin; Lim, Soon Sung; Lee, Keun Wook; Choi, Soo Young; Park, Jinseu

    2016-07-01

    Abnormal expression of pro-inflammatory mediators such as cell adhesion molecules and cytokines has been implicated in various inflammatory skin diseases, including atopic dermatitis. In this study, we investigated the anti-inflammatory activity of Aronia melanocarpa concentrate (AC) and its action mechanisms using in vivo and in vitro skin inflammation models. Topical application of AC on mouse ears significantly suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear edema formation, as judged by measuring ear thickness and weight, and histological analysis. Topical administration of AC also reduced the expression of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in TPA-stimulated mouse ears. Pretreatment with AC suppressed TNF-α-induced ICAM-I expression and subsequent monocyte adhesiveness in human keratinocyte cell line HaCaT. In addition, AC significantly decreased intracellular reactive oxygen species (ROS) generation as well as mitogen-activated protein kinase (MAPK) activation in TNF-α-stimulated HaCaT cells. AC and its constituent cyanidin 3-glucoside also attenuated TNF-α-induced IKK activation, IκB degradation, p65 phosphorylation/nuclear translocation, and p65 DNA binding activity in HaCaT cells. Overall, our results indicate that AC exerts anti-inflammatory activities by inhibiting expression of pro-inflammatory mediators in vitro and in vivo possibly through suppression of ROS-MAPK-NF-κB signaling pathways. Therefore, AC may be developed as a therapeutic agent to treat various inflammatory skin diseases.

  5. A composite coating by electrolysis-induced collagen self-assembly and calcium phosphate mineralization.

    PubMed

    Fan, Yuwei; Duan, Ke; Wang, Rizhi

    2005-05-01

    A composite coating that is composed of collagen protein and calcium phosphate minerals is considered to be bioactive and may enhance bone growth and fixation of metallic orthopedic implants. In this study, we have successfully developed a uniform collagen fibril/octacalcium phosphate composite coating on silicon substrate by electrolytic deposition (ELD). The coating deposition was done through applying a constant potential to the cathode in a three-electrode electrochemistry cell that contain a mild acidic (pH 4.8-5.3) aqueous solution of collagen molecules, calcium and phosphate ions. The coating process involved self-assembly of collagen fibrils and the deposition of calcium phosphate minerals as a result of cathode reaction and local pH increase. The two steps could be synchronized to form a bone-like composite at nanometer scale through proper adjustment of the solution and deposition parameters. Coating morphology, crystal structure and compositions were analyzed by optical and fluorescence microscopy, scanning and transmission electron microscopy, energy dispersive X-ray analysis, inductively coupled argon plasma optical emission spectrophotometry, and Fourier-transformed infrared spectroscopy. Under typical deposition conditions, the cathode (Si) surface formed a thin (100 nm) layer of calcium phosphate coating, on top of which a thick (approximately 100 microm) composite layer formed. The porous composite layer consists of a collagen fibril network on which clusters of octacalcium phosphate crystals nucleate and grow. By combining photolithography and ELD, we were also able to pattern the composite coating into regular arrays of squares. Preliminary results by nanoindentation tests showed that properly prepared composite coating may have higher elastic modulus and scratch resistance than monolithic porous calcium phosphate coating. The results not only provide a novel bioactive coating for biomedical implants, but also establish a new experimental

  6. The exercise-induced biochemical milieu enhances collagen content and tensile strength of engineered ligaments.

    PubMed

    West, Daniel W D; Lee-Barthel, Ann; McIntyre, Todd; Shamim, Baubak; Lee, Cassandra A; Baar, Keith

    2015-10-15

    Exercise stimulates a dramatic change in the concentration of circulating hormones, such as growth hormone (GH), but the biological functions of this response are unclear. Pharmacological GH administration stimulates collagen synthesis; however, whether the post-exercise systemic milieu has a similar action is unknown. We aimed to determine whether the collagen content and tensile strength of tissue-engineered ligaments is enhanced by serum obtained post-exercise. Primary cells from a human anterior cruciate ligament (ACL) were used to engineer ligament constructs in vitro. Blood obtained from 12 healthy young men 15 min after resistance exercise contained GH concentrations that were ∼7-fold greater than resting serum (P < 0.001), whereas IGF-1 was not elevated at this time point (P = 0.21 vs. rest). Ligament constructs were treated for 7 days with medium supplemented with serum obtained at rest (RestTx) or 15 min post-exercise (ExTx), before tensile testing and collagen content analysis. Compared with RestTx, ExTx enhanced collagen content (+19%; 181 ± 33 vs. 215 ± 40 μg per construct P = 0.001) and ligament mechanical properties - maximal tensile load (+17%, P = 0.03 vs. RestTx) and ultimate tensile strength (+10%, P = 0.15 vs. RestTx). In a separate set of engineered ligaments, recombinant IGF-1, but not GH, enhanced collagen content and mechanics. Bioassays in 2D culture revealed that acute treatment with post-exercise serum activated mTORC1 and ERK1/2. In conclusion, the post-exercise biochemical milieu, but not recombinant GH, enhances collagen content and tensile strength of engineered ligaments, in association with mTORC1 and ERK1/2 activation.

  7. Imaging and modeling of acute pressure-induced changes of collagen and elastin microarchitectures in pig and human resistance arteries.

    PubMed

    Bloksgaard, Maria; Leurgans, Thomas M; Spronck, Bart; Heusinkveld, Maarten H G; Thorsted, Bjarne; Rosenstand, Kristoffer; Nissen, Inger; Hansen, Ulla M; Brewer, Jonathan R; Bagatolli, Luis A; Rasmussen, Lars M; Irmukhamedov, Akhmadjon; Reesink, Koen D; De Mey, Jo G R

    2017-07-01

    The impact of disease-related changes in the extracellular matrix (ECM) on the mechanical properties of human resistance arteries largely remains to be established. Resistance arteries from both pig and human parietal pericardium (PRA) display a different ECM microarchitecture compared with frequently used rodent mesenteric arteries. We hypothesized that the biaxial mechanics of PRA mirror pressure-induced changes in the ECM microarchitecture. This was tested using isolated pig PRA as a model system, integrating vital imaging, pressure myography, and mathematical modeling. Collagenase and elastase digestions were applied to evaluate the load-bearing roles of collagen and elastin, respectively. The incremental elastic modulus linearly related to the straightness of adventitial collagen fibers circumferentially and longitudinally (both R(2) ≥ 0.99), whereas there was a nonlinear relationship to the internal elastic lamina elastin fiber branching angles. Mathematical modeling suggested a collagen recruitment strain (means ± SE) of 1.1 ± 0.2 circumferentially and 0.20 ± 0.01 longitudinally, corresponding to a pressure of ~40 mmHg, a finding supported by the vital imaging. The integrated method was tested on human PRA to confirm its validity. These showed limited circumferential distensibility and elongation and a collagen recruitment strain of 0.8 ± 0.1 circumferentially and 0.06 ± 0.02 longitudinally, reached at a distending pressure below 20 mmHg. This was confirmed by vital imaging showing negligible microarchitectural changes of elastin and collagen upon pressurization. In conclusion, we show here, for the first time in resistance arteries, a quantitative relationship between pressure-induced changes in the extracellular matrix and the arterial wall mechanics. The strength of the integrated methods invites for future detailed studies of microvascular pathologies.NEW & NOTEWORTHY This is the first study to quantitatively relate pressure-induced

  8. An in vitro mouse model of congenital cytomegalovirus-induced pathogenesis of the inner ear cochlea.

    PubMed

    Melnick, Michael; Jaskoll, Tina

    2013-02-01

    Congenital human cytomegalovirus (CMV) infection is the leading nongenetic etiology of sensorineural hearing loss (SNHL) at birth and prelingual SNHL not expressed at birth. The paucity of temporal bone autopsy specimens from infants with congenital CMV infection has hindered the critical correlation of histopathology with pathogenesis. Here, we present an in vitro embryonic mouse model of CMV-infected cochleas that mimics the human sites of viral infection and associated pathology. There is a striking dysplasia/hyperplasia in mouse CMV-infected cochlear epithelium and mesenchyme, including organ of Corti hair and supporting cells and stria vascularis. This is concomitant with significant dysregulation of p19, p21, p27, and Pcna gene expression, as well as proliferating cell nuclear antigen (PCNA) protein expression. Other pathologies similar to those arising from known deafness gene mutations include downregulation of KCNQ1 protein expression in the stria vascularis, as well as hypoplastic and dysmorphic melanocytes. Thus, this model provides a relevant and reliable platform within which the detailed cell and molecular biology of CMV-induced deafness may be studied.

  9. The worker's ear: a history of noise-induced hearing loss.

    PubMed

    Thurston, Floyd E

    2013-03-01

    Hearing loss afflicts millions of people throughout the world, and many of those millions are workers who have been exposed to excessive noise. People have always been surrounded by a variety of sounds in their environments, but the invention of gunpowder and the Industrial Revolution introduced new sounds of greater intensity than ever before. It is only within the past 40 years that serious efforts to reduce excessive noise at work sites have been initiated. In the latter half of the 20th century, many governments imposed regulations to limit workers' exposure to loud sounds. Because of this recent action, some people may believe that the recognition of occupational noise-induced hearing loss (NIHL) is relatively new. However, a review of selected historical and medical manuscripts, books, and articles show that the association of hearing changes with loud noise exposure was recognized for centuries before systematic attempts were made to limit the exposure. Delays in implementing controls to limit noise exposure were due to cultural reasons, technical problems in controlling noise generation, and a lack of understanding of the mechanics of hearing loss. A historical perspective on this issue may remind health care providers that they need to continue to emphasize hearing conservation measures as occupational noise exposures change with the shift of industrial activities between countries. Copyright © 2012 Wiley Periodicals, Inc.

  10. An In Vitro Mouse Model of Congenital Cytomegalovirus-induced Pathogenesis of the Inner Ear Cochlea

    PubMed Central

    Melnick, Michael; Jaskoll, Tina

    2015-01-01

    Congenital human cytomegalovirus (CMV) infection is the leading nongenetic etiology of sensorineural hearing loss (SNHL) at birth and prelingual SNHL not expressed at birth. The paucity of temporal bone autopsy specimens from infants with congenital CMV infection has hindered the critical correlation of histopathology with pathogenesis. Here, we present an in vitro embryonic mouse model of CMV-infected cochleas that mimics the human sites of viral infection and associated pathology. There is a striking dysplasia/hyperplasia in mouse CMV-infected cochlear epithelium and mesenchyme, including organ of Corti hair and supporting cells and stria vascularis. This is concomitant with significant dysregulation of p19, p21, p27, and Pcna gene expression, as well as proliferating cell nuclear antigen (PCNA) protein expression. Other pathologies similar to those arising from known deafness gene mutations include downregulation of KCNQ1 protein expression in the stria vascularis, as well as hypoplastic and dysmorphic melanocytes. Thus, this model provides a relevant and reliable platform within which the detailed cell and molecular biology of CMV-induced deafness may be studied. PMID:23281115

  11. IL-18 enhances collagen-induced arthritis by recruiting neutrophils via TNF-alpha and leukotriene B4.

    PubMed

    Canetti, Claudio A; Leung, Bernard P; Culshaw, Shauna; McInnes, Iain B; Cunha, Fernando Q; Liew, Foo Y; Cannetti, Claudio A

    2003-07-15

    IL-18 expression and functional activity have been associated with a range of autoimmune diseases. However, the precise mechanism by which IL-18 induces such pathology remains unclear. In this study we provide direct evidence that IL-18 activates neutrophils via TNF-alpha induction, which drives the production of leukotriene B(4) (LTB(4)), which in turn leads to neutrophil accumulation and subsequent local inflammation. rIL-18 administered i.p. resulted in the local synthesis of LTB(4) and a rapid influx of neutrophils into the peritoneal cavity, which could be effectively blocked by the LTB(4) synthesis inhibitor MK-886 (MK) or its receptor antagonist CP-105,696. IL-18-induced neutrophils recruitment and LTB(4) production could also be blocked by a neutralizing anti-TNF-alpha Ab. In addition, IL-18 failed to induce neutrophil accumulation in vivo in TNFRp55(-/-) mice. In an IL-18-dependent murine collagen-induced arthritis model, administration of MK significantly inhibited disease severity and reduced articular inflammation and joint destruction. Furthermore, MK-886-treated mice also displayed suppressed proinflammatory cytokine production in response to type II collagen in vitro. Finally, we showed that IL-18-activated human peripheral blood neutrophils produced significant amounts of LTB(4) that were effectively blocked by the MK. Together, these findings provide a novel mechanism whereby IL-18 can promote inflammatory diseases.

  12. Arginase inhibition prevents bleomycin-induced pulmonary hypertension, vascular remodeling, and collagen deposition in neonatal rat lungs.

    PubMed

    Grasemann, Hartmut; Dhaliwal, Rupinder; Ivanovska, Julijana; Kantores, Crystal; McNamara, Patrick J; Scott, Jeremy A; Belik, Jaques; Jankov, Robert P

    2015-03-15

    Arginase is an enzyme that limits substrate L-arginine bioavailability for the production of nitric oxide by the nitric oxide synthases and produces L-ornithine, which is a precursor for collagen formation and tissue remodeling. We studied the pulmonary vascular effects of arginase inhibition in an established model of repeated systemic bleomycin sulfate administration in neonatal rats that results in pulmonary hypertension and lung injury mimicking the characteristics typical of bronchopulmonary dysplasia. We report that arginase expression is increased in the lungs of bleomycin-exposed neonatal rats and that treatment with the arginase inhibitor amino-2-borono-6-hexanoic acid prevented the bleomycin-induced development of pulmonary hypertension and deposition of collagen. Arginase inhibition resulted in increased L-arginine and L-arginine bioavailability and increased pulmonary nitric oxide production. Arginase inhibition also normalized the expression of inducible nitric oxide synthase, and reduced bleomycin-induced nitrative stress while having no effect on bleomycin-induced inflammation. Our data suggest that arginase is a promising target for therapeutic interventions in neonates aimed at preventing lung vascular remodeling and pulmonary hypertension.

  13. Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells.

    PubMed

    Ryan, Alan J; O'Brien, Fergal J

    2015-12-01

    Biomaterials with the capacity to innately guide cell behaviour while also displaying suitable mechanical properties remain a challenge in tissue engineering. Our approach to this has been to utilise insoluble elastin in combination with collagen as the basis of a biomimetic scaffold for cardiovascular tissue engineering. Elastin was found to markedly alter the mechanical and biological response of these collagen-based scaffolds. Specifically, during extensive mechanical assessment elastin was found to reduce the specific tensile and compressive moduli of the scaffolds in a concentration dependant manner while having minimal effect on scaffold microarchitecture with both scaffold porosity and pore size still within the ideal ranges for tissue engineering applications. However, the viscoelastic properties were significantly improved with elastin addition with a 3.5-fold decrease in induced creep strain, a 6-fold increase in cyclical strain recovery, and with a four-parameter viscoelastic model confirming the ability of elastin to confer resistance to long term deformation/creep. Furthermore, elastin was found to result in the modulation of SMC phenotype towards a contractile state which was determined via reduced proliferation and significantly enhanced expression of early (α-SMA), mid (calponin), and late stage (SM-MHC) contractile proteins. This allows the ability to utilise extracellular matrix proteins alone to modulate SMC phenotype without any exogenous factors added. Taken together, the ability of elastin to alter the mechanical and biological response of collagen scaffolds has led to the development of a biomimetic biomaterial highly suitable for cardiovascular tissue engineering.

  14. Effects of Calcium Gluconate, a Water Soluble Calcium Salt on the Collagen-Induced DBA/1J Mice Rheumatoid Arthritis

    PubMed Central

    Sohn, Ki Cheul; Kang, Su Jin; Kim, Joo Wan; Kim, Ki Young; Ku, Sae Kwang; Lee, Young Joon

    2013-01-01

    This study examined the effects of calcium (Ca) gluconate on collagen-induced DBA mouse rheumatoid arthritis (CIA). A single daily dose of 200, 100 or 50 mg/kg Ca gluconate was administered orally to male DBA/1J mice for 40 days after initial collagen immunization. To ascertain the effects administering the collagen booster, CIA-related features (including body weight, poly-arthritis, knee and paw thickness, and paw weight increase) were measured from histopathological changes in the spleen, left popliteal lymph node, third digit and the knee joint regions. CIA-related bone and cartilage damage improved significantly in the Ca gluconate- administered CIA mice. Additionally, myeloperoxidase (MPO) levels in the paw were reduced in Ca gluconate-treated CIA mice compared to CIA control groups. The level of malondialdehyde (MDA), an indicator of oxidative stress, decreased in a dosedependent manner in the Ca gluconate group. Finally, the production of IL-6 and TNF-α, involved in rheumatoid arthritis pathogenesis, were suppressed by treatment with Ca gluconate. Taken together, these results suggest that Ca gluconate is a promising candidate anti-rheumatoid arthritis agent, exerting anti-inflammatory, anti-oxidative and immunomodulatory effects in CIA mice. PMID:24244814

  15. Fabrication of Compositionally and Topographically Complex Robust Tissue Forms by 3D-Electrochemical Compaction of Collagen

    PubMed Central

    Younesi, Mousa; Islam, Anowarul; Kishore, Vipuil; Panit, Stefi; Akkus, Ozan

    2015-01-01

    Collagen solutions are phase-transformed to mechanically robust shell structures with curviplanar topographies using electrochemically induced pH gradients. The process enables rapid layer-by-layer deposition of collagen-rich mixtures over the entire field simultaneously to obtain compositionally diverse multilayered structures. In-plane tensile strength and modulus of the electrocompacted collagen sheet samples were 5200 -fold and 2300 -fold greater than that of uncompacted collagen samples. Out of plane compression tests showed 27 -fold and fold increase in compressive stress and 46 -fold increase in compressive modulus compared to uncompacted collagen sheets. Cells proliferated 4.9 times faster, and cellular area spread was 2.7 times greater on compacted collagen sheets. Electrocompaction also resulted in 2.9 times greater focal adhesion area than on regular collagen hydrogel. The reported improvements in the cell-matrix interactions with electrocompaction would serve to expedite the population of electrocompacted collagen scaffolds by cells. The capacity of the method to fabricate nonlinear curved topographies with compositional heterogeneous layers is demonstrated by sequential deposition of collagenhydroxyapatite layer over a collagen layer. The complex curved topography of the nasal structure is replicated by the electrochemical compaction method. The presented electrochemical compaction process is an enabling modality which holds significant promise for reconstruction of a wide spectrum of topographically complex systems such as joint surfaces, craniofacial defects, ears, nose or urogenital forms. PMID:26069162

  16. Ear Injuries (For Parents)

    MedlinePlus

    ... burst. previous continue Signs of Hearing Loss or Balance Problems Ear injuries can affect kids differently. Some ... both ears, kids with ear injuries that affect balance may have symptoms like: falling or stumbling a ...

  17. Ear drainage culture (image)

    MedlinePlus

    An ear drainage culture is collected by placing a cotton swab gently in the ear canal. The sample is sent to the laboratory for testing to isolate and identify the type of organism causing the ear infection.

  18. Ears and Altitude

    MedlinePlus

    ... ENTCareers Marketplace Find an ENT Doctor Near You Ears and Altitude Ears and Altitude Patient Health Information ... uncomfortable feeling of fullness or pressure. Why do ears pop? Normally, swallowing causes a little click or ...

  19. Ear tube insertion - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100045.htm Ear tube insertion - series—Normal anatomy To use the ... 4 Overview The eardrum (tympanic membrane) separates the ear canal from the middle ear. Review Date 8/ ...

  20. Ear Injuries (For Parents)

    MedlinePlus

    ... burst. previous continue Signs of Hearing Loss or Balance Problems Ear injuries can affect kids differently. Some ... both ears, kids with ear injuries that affect balance may have symptoms like: falling or stumbling a ...

  1. Transgenic mice with a mutated collagen promoter display normal response during bleomycin-induced fibrosis and possess neurological abnormalities.

    PubMed

    Stoddart, J H; Ladd, D; Bronson, R T; Harmon, M; Jaworski, J; Pritzker, C; Lausen, N; Smith, B D

    2000-02-01

    We have previously identified a potential TGF-beta activation element (TAE) in the rat collagen alpha1(I) promoter at -1624 upstream of the transcriptional start site [Ritzenthaler et al., 1991, 1993]. To determine the importance of the TAE in vivo, we produced transgenic mice carrying 3.6 kb of the rat collagen alpha1(I) promoter linked to the reporter gene chloramphenicol acetyl transferase with and without site-directed mutations that eliminate DNA-protein binding at the TAE site. Tissue-specific expression of the reporter gene in transgenic mice with the mutated collagen promoter was similar to that of transgenic mice with the normal promoter in two genetic backgrounds as judged by in situ hybridization, reporter assays, and immunochemistry. Endotracheal instillation of bleomycin induces lung fibrosis, mediated in part by TGF-beta. Earlier studies indicated that expression of wild-type collagen-reporter gene was upregulated in transgenic mice lungs in response to endotracheal instillation of bleomycin. A similar level of reporter gene upregulation was observed in transgenic mice carrying the mutation in the TAE. Two lines of transgenic mice carrying the mutated promoter construct displayed unexpected neurological abnormalities. In the FVB genetic background, there was a higher than normal incidence of mortality, spontaneous seizures, and an inability to nurture offspring. Histological evidence demonstrated clear abnormalities, including disorderly arrangement of neurons in the hippocampus and significant laminar cortical necrosis in the cerebrum in animals after seizures. In the C57Bl/6 background, there was a high incidence of severe communicating hydrocephalus, early runting, and increased mortality similar to that in transgenic animals with astroglial overexpression of TGF-beta. These animals provide an interesting model system to investigate molecular mechanisms responsible for seizures and hydrocephalus. Copyright 2000 Wiley-Liss, Inc.

  2. Long-term overproduction of collagen in radiation-induced fibrosis

    SciTech Connect

    Remy, J.; Wegrowski, J.; Crechet, F.; Martin, M.; Daburon, F. )

    1991-01-01

    Collagen metabolism was investigated in the fibrotic tissue which developed in pig thigh muscle 6 to 15 months after acute gamma irradiation. During this period, total collagen deposits in the fibrotic tissue increased 10-fold compared to the healthy muscle tissue. These deposits were composed mainly of type I and III collagen, and the type I/type III ratio was lower in the fibrotic than in the muscle tissue. Small pieces of both fibrotic and muscle tissue were incubated with (14C)proline. The (14C)hydroxyproline content of the fibrotic tissue reflected large concomitant increases in the synthesis of total collagen, mainly of types I and III, which rose 14- and 17-fold, respectively. Similarly, the level of type I and type III procollagen mRNAs rose 9- and 5-fold, respectively, in the fibrotic tissue versus the muscle tissue. These results suggest that procollagen gene transcription or RNA maturation in the cell nuclei is activated in the fibrotic tissue. The possibility that such activation is due to the long-term inflammatory state of this tissue is discussed.

  3. Stretch-induced network reconfiguration of collagen fibres in the human facet capsular ligament.

    PubMed

    Zhang, Sijia; Bassett, Danielle S; Winkelstein, Beth A

    2016-01-01

    Biomaterials can display complex spatial patterns of cellular responses to external forces. Revealing and predicting the role of these patterns in material failure require an understanding of the statistical dependencies between spatially distributed changes in a cell's local biomechanical environment, including altered collagen fibre kinematics in the extracellular matrix. Here, we develop and apply a novel extension of network science methods to investigate how excessive tensile stretch of the human cervical facet capsular ligament (FCL), a common source of chronic neck pain, affects the local reorganization of collagen fibres. We define collagen alignment networks based on similarity in fibre alignment angles measured by quantitative polarized light imaging. We quantify the reorganization of these networks following macroscopic loading by describing the dynamic reconfiguration of network communities, regions of the material that display similar fibre alignment angles. Alterations in community structure occur smoothly over time, indicating coordinated adaptation of fibres to loading. Moreover, flexibility, a measure of network reconfiguration, tracks the loss of FCL's mechanical integrity at the onset of anomalous realignment (AR) and regions of AR display altered community structure. These findings use novel network-based techniques to explain abnormal collagen fibre reorganization, a dynamic and coordinated multivariate process underlying tissue failure.

  4. Osteoprotegerin Reduces Osteoclast Numbers and Prevents Bone Erosion in Collagen-Induced Arthritis

    PubMed Central

    Romas, Evan; Sims, Natalie A.; Hards, Daphne K.; Lindsay, Mandy; Quinn, Julian W.M.; Ryan, Peter F.J.; Dunstan, Colin R.; Martin, T. John; Gillespie, Matthew T.

    2002-01-01

    Rheumatoid arthritis is characterized by progressive synovial inflammation and joint destruction. While matrix metalloproteinases (MMPs) are implicated in the erosion of unmineralized cartilage, bone destruction involves osteoclasts, the specialized cells that resorb calcified bone matrix. RANK ligand (RANKL) expressed by stromal cells and T cells, and its cognate receptor, RANK, were identified as a critical ligand-receptor pair for osteoclast differentiation and survival. A decoy receptor for RANKL, osteoprotegerin, (OPG) impinges on this system and regulates osteoclast numbers and activity. RANKL is also expressed in collagen-induced arthritis (CIA) in which focal collections of osteoclasts are prominent at sites of bone destruction. To determine the role of RANK signaling events in the effector phase of CIA, we investigated effects of Fc-osteoprotegerin fusion protein (Fc-OPG) in CIA. After induction of CIA in Dark Agouti rats, test animals were treated with or without Fc-OPG (3 mg/kg/day) subcutaneously for 5 days, beginning at the onset of disease. Paraffin-embedded joints were then analyzed histologically and the adjacent bone assessed by histomorphometry. Osteoclasts were identified using TRAP staining and expression of the mRNA for OPG and RANKL was identified by in situ hybridization. The results indicated that short-term Fc-OPG effectively prevented joint destruction, even though it had no impact on the inflammatory aspects of CIA. In arthritic joints, Fc-OPG depleted osteoclast numbers by over 75% and diminished bone erosion scores by over 60%. Although cartilage loss was also reduced by Fc-OPG, the effects on cartilage were less striking than those on bone. In arthritic joints OPG mRNA was highly expressed and co-localized with RANK ligand, and treatment with Fc-OPG did not affect the expression of endogenous RANKL or OPG mRNA. These data demonstrate that short term Fc-OPG treatment has powerful anti-erosive effects, principally on bone, even though

  5. [Experimental study on effects of acupoint application with Leima type II plaster on collagen-induced arthritis in rats].

    PubMed

    Li, Peng; Fang, Jian-Qiao; Zhou, Ya-Feng

    2011-09-01

    To observe the therapeutic effect of acupoint application with Leima type II plaster on collagen-induced arthritis (CIA) in rats and probe its mechanism. Bovine type II collagen was injected intradermally into the middle line of the back to induce CIA model with 48 Wistar rats. Then the rats were randomly divided into a model control group (group A), a matrix control group (group B), acupoint application group with plaster of low concentration (group C) and high concentration plaster group (group D), 12 rats in each group. Group C and group D were treated with low and high concentration of Leima type II plaster, and "Shenzhu" (GV 12), "Zhiyang" (GV 9) and "Mingmen" (GV 4) were selected, each application for about 15 hours, once each day for 30 days. Group B was used the same method of acupoint application except using non-drug matrix plaster, and group A was not given any treatment. The morphous and the histopathological changes of affection joint were observed. The paw edema volume after 30 days treatment in group C was significantly lower than that in group B (P < 0.01), and the anti-type II collagen antibody level after 15 days treatment in group C was significantly lower than that in group A (P < 0.05), and the synoviocytes proliferation of the knee joint in group C was significantly lower than that in group A and group B (both P < 0.01). The paw edema volume after 25 days treatment, arthritic index after 20 days treatment, pathological change of the paw and the synoviocytes proliferation of the knee joint in group D were significantly lower than those in group A and group B (P < 0.01, P < 0.05), and the anti-type II collagen antibody level after 15 days treatment in group D was significantly lower than that in group A (P < 0.05), and the paw edema volume and the arthritic index after 25 days treatment in group D were significantly lower than those in group C (P < 0.05, P < 0.01). Acupoint application with Leima type II plaster has a good therapeutic effect on

  6. Flow-Induced Crystallization of Collagen: A Potentially Critical Mechanism in Early Tissue Formation.

    PubMed

    Paten, Jeffrey A; Siadat, Seyed Mohammad; Susilo, Monica E; Ismail, Ebraheim N; Stoner, Jayson L; Rothstein, Jonathan P; Ruberti, Jeffrey W

    2016-05-24

    The type I collagen monomer is one of nature's most exquisite and prevalent structural tools. Its 300 nm triple-helical motifs assemble into tough extracellular fibers that transition seamlessly across tissue boundaries and exceed cell dimensions by up to 4 orders of magnitude. In spite of extensive investigation, no existing model satisfactorily explains how such continuous structures are generated and grown precisely where they are needed (aligned in the path of force) by discrete, microscale cells using materials with nanoscale dimensions. We present a simple fiber drawing experiment, which demonstrates that slightly concentrated type I collagen monomers can be "flow-crystallized" to form highly oriented, continuous, hierarchical fibers at cell-achievable strain rates (<1 s(-1)) and physiologically relevant concentrations (∼50 μM). We also show that application of tension following the drawing process maintains the structural integrity of the fibers. While mechanical tension has been shown to be a critical factor driving collagen fibril formation during tissue morphogenesis in developing animals, the precise role of force in the process of building tissue is not well understood. Our data directly couple mechanical tension, specifically the extensional strain rate, to collagen fibril assembly. We further derive a "growth equation" which predicts that application of extensional strains, either globally by developing muscles or locally by fibroblasts, can rapidly drive the fusion of already formed short fibrils to produce long-range, continuous fibers. The results provide a pathway to scalable connective tissue manufacturing and support a mechano-biological model of collagen fibril deposition and growth in vivo.

  7. Pulmonary microvascular endothelial cells from bleomycin-induced rats promote the transformation and collagen synthesis of fibroblasts.

    PubMed

    Yin, Qian; Nan, Hai-Yan; Zhang, Wen-Hu; Yan, Lin-Feng; Cui, Guang-Bin; Huang, Xiao-Feng; Wei, Jing-Guo

    2011-08-01

    Accumulation and activation of myofibroblasts are the hallmark of progressive pulmonary fibrosis, and the resident fibroblasts are the major source of myofibroblasts. However, the key factors involved in the transformation of fibroblasts are unknown. Pulmonary microvascular endothelial cells (PMVECs), major effector cells against pathogenesis in early stages of the disease, can secrete cytokines to induce the differentiation of mesenchymal cells. We speculated that PMVECs could secrete pro-fibrotic cytokines and promote the transformation of fibroblasts into myofibroblasts. Accordingly, we established a co-culture system with PMVECs and fibroblasts to examine the specific transformation and collagen synthesis of the co-cultured fibroblasts by FACS and Western blot, prior to and after treatment with neutralizing antibodies against transforming growth factor-beta1 (TGF-β1) and connective tissue growth factor (CTGF). We also analyzed expression of TGF-β1 and CTGF in PMVECs. The synthesis and secretion of TGF-β1 and CTGF protein were up-regulated in PMVECs isolated from bleomycin (BLM)-treated rats, most prominently at 7 days post-instillation. We showed that the PMVECs isolated from BLM-induced rats could induce the transformation of normal fibroblasts and their secretion of collagen I, which was inhibited by both neutralizing anti-TGF-β1 and anti-CTGF antibodies. Therefore, up-regulation of TGF-β1 and CTGF in PMVECs plays an important role in activation, transformation, and collagen synthesis of fibroblasts; in particular, these effects in PMVECs are likely to be the key factors for activation and stimulation of static fibroblasts in lung interstitium in early stages of pulmonary fibrosis disease. Copyright © 2010 Wiley-Liss, Inc.

  8. Interleukin-35 upregulates OPG and inhibits RANKL in mice with collagen-induced arthritis and fibroblast-like synoviocytes.

    PubMed

    Li, Y; Li, D; Li, Y; Wu, S; Jiang, S; Lin, T; Xia, L; Shen, H; Lu, J

    2016-04-01

    IL-35 is a novel anti-inflammatory cytokine, but the exact role of IL-35 in the progression of RA remains unclear, especially associated with osteoporosis and bone erosion. The present research has not been reported. Our purpose is to study how IL-35 affects RA bone destruction. This study investigated the effect of interleukin-35 (IL-35) on OPG and RANKL expression in collagen-induced arthritis (CIA) in rats and in cultured fibroblast-like synoviocytes (FLS). Thirty DBA/1J mice were randomly assigned to three groups (n = 10 per group): the control group, the CIA group, and the CIA + IL-35 group. Collagen-induced arthritis was induced by immunization with collagen. IL-35 was intraperitoneally injected daily for 10 days, starting from the 24(th) day after immunization. FLS cells were isolated and cultured from CIA. The expression of IL-17, RANKL, and OPG was determined by RT-PCR and Western blot. Each experiment was repeated three times. CIA mice exhibited arthritis symptoms on day 24, followed by a rapid progression of arthritis. The expression of IL-17 and RANKL was increased and the expression of OPG was decreased in CIA mice compared with control mice. IL-35 treatment inhibited the development of arthritis in CIA mice, accompanied by a decrease in the expression of IL-17 and RANKL and an increase in the expression of OPG. Furthermore, IL-35 dose-dependently inhibited the expression of RANKL and increased the expression of OPG in cultured FLS cells. IL-35 inhibits RANKL expression and increases OPG expression in CIA mice. IL-35 may be used for treating rheumatoid arthritis.

  9. Autologous collagen induced chondrogenesis (ACIC: Shetty-Kim technique) - A matrix based acellular single stage arthroscopic cartilage repair technique.

    PubMed

    Shetty, Asode Ananthram; Kim, Seok Jung; Shetty, Vishvas; Jang, Jae Deog; Huh, Sung Woo; Lee, Dong Hwan

    2016-01-01

    The defects of articular cartilage in the knee joint are a common degenerative disease and currently there are several established techniques to treat this problem, each with their own advantages and shortcomings. Autologous chondrocyte implantation is the current gold standard but the technique is expensive, time-consuming and most versions require two stage procedures and an arthrotomy. Autologous collagen induced chondrogenesis (ACIC) is a single-stage arthroscopic procedure and we developed. This method uses microfracture technique with atelocollagen mixed with fibrin gel to treat articular cartilage defects. We introduce this ACIC techniques and its scientific background.

  10. CD69 downregulates autoimmune reactivity through active transforming growth factor-β production in collagen-induced arthritis

    PubMed Central

    Sancho, David; Gómez, Manuel; Viedma, Fernando; Esplugues, Enric; Gordón-Alonso, Mónica; Angeles García-López, María; de la Fuente, Hortensia; Martínez-A, Carlos; Lauzurica, Pilar; Sánchez-Madrid, Francisco

    2003-01-01

    CD69 is induced after activation of leukocytes at inflammatory sites, but its physiological role during inflammation remains unknown. We explored the role of CD69 in autoimmune reactivity by analyzing a model of collagen-induced arthritis (CIA) in WT and CD69-deficient mice. CD69–/– mice showed higher incidence and severity of CIA, with exacerbated T and B cell immune responses to type II collagen. Levels of TGF-β1 and TGF-β2, which act as protective agents in CIA, were reduced in CD69–/– mice inflammatory foci, correlating with the increase in the proinflammatory cytokines IL-1β and RANTES. Local injection of blocking anti–TGF-β antibodies increased CIA severity and proinflammatory cytokine mRNA levels in CD69+/+ but not in CD69–/– mice. Moreover, in vitro engagement of CD69 induced total and active TGF-β1 production in Concanavalin A–activated splenocyte subsets, mouse and human synovial leukocytes, and Jurkat stable transfectants of human CD69 but not in the parental CD69 negative cell line. Our results show that CD69 is a negative modulator of autoimmune reactivity and inflammation through the synthesis of TGF-β, a cytokine that in turn downregulates the production of various proinflammatory mediators. PMID:12975472

  11. Treatment for chemotherapy-induced alopecia in mice using parathyroid hormone agonists and antagonists linked to a collagen binding domain.

    PubMed

    Katikaneni, Ranjitha; Ponnapakkam, Tulasi; Suda, Hirofumi; Miyata, Shigeru; Sakon, Joshua; Matsushita, Osamu; Gensure, Robert C

    2012-09-01

    Parathyroid hormone (PTH) agonists and antagonists have been shown to improve hair growth after chemotherapy; however, rapid clearance and systemic side-effects complicate their usage. To facilitate delivery and retention to skin, we fused PTH agonists and antagonists to the collagen binding domain (CBD) of Clostridium histolyticum collagenase. in-vitro studies showed that the agonist fusion protein, PTH-CBD, bound collagen and activated the PTH/parathyroid hormone-related peptide receptor in SaOS-2 cells. The antagonist fusion proteins, PTH(7-33)-CBD and PTH([-1]-33)-CBD, also bound collagen and antagonized PTH(1-34) effect in SaOS-2 cells; however, PTH(7-33)-CBD had lower intrinsic activity. Distribution studies confirmed uptake of PTH-CBD to the skin at 1 and 12 hr after subcutaneous injection. We assessed in vivo efficacy of PTH-CBD and PTH(7-33)-CBD in C57BL/6J mice. Animals were depilated to synchronize the hair follicles; treated on Day 7 with agonist, antagonist, or vehicle; treated on Day 9 with cyclophosphamide (150 mg/kg i.p.) or vehicle; and sacrificed on Day 39. Normal mice (no chemo and no treatment) showed rapid regrowth of hair and normal histology. Chemo+Vehicle mice showed reduced hair regrowth and decreased pigmentation; histology revealed reduced number and dystrophic anagen/catagen follicles. Chemo+Antagonist mice were grossly and histologically indistinguishable from Chemo+Vehicle mice. Chemo+Agonist mice showed more rapid regrowth and repigmentation of hair; histologically, there was a normal number of hair follicles, most of which were in the anagen phase. Overall, the agonist PTH-CBD had prominent effects in reducing chemotherapy-induced damage of hair follicles and may show promise as a therapy for chemotherapy-induced alopecia. Copyright © 2011 UICC.

  12. Treatment for chemotherapy-induced alopecia in mice using parathyroid hormone agonists and antagonists linked to a collagen binding domain

    PubMed Central

    Katikaneni, Ranjitha; Ponnapakkam, Tulasi; Suda, Hirofumi; Miyata, Shigeru; Sakon, Joshua; Matsushita, Osamu; Gensure, Robert C.

    2013-01-01

    Parathyroid hormone (PTH) agonists and antagonists have been shown to improve hair growth after chemotherapy; however, rapid clearance and systemic side-effects complicate their usage. To facilitate delivery and retention to skin, we fused PTH agonists and antagonists to the collagen binding domain (CBD) of Clostridium histolyticum collagenase. in-vitro studies showed that the agonist fusion protein, PTH-CBD, bound collagen and activated the PTH/parathyroid hormone-related peptide receptor in SaOS-2 cells. The antagonist fusion proteins, PTH(7–33)-CBD and PTH([−1]–33)-CBD, also bound collagen and antagonized PTH(1–34) effect in SaOS-2 cells; however, PTH(7–33)-CBD had lower intrinsic activity. Distribution studies confirmed uptake of PTH-CBD to the skin at 1 and 12 hr after subcutaneous injection. We assessed in vivo efficacy of PTH-CBD and PTH(7–33)-CBD in C57BL/6J mice. Animals were depilated to synchronize the hair follicles; treated on Day 7 with agonist, antagonist, or vehicle; treated on Day 9 with cyclophosphamide (150 mg/kg i.p.) or vehicle; and sacrificed on Day 39. Normal mice (no chemo and no treatment) showed rapid regrowth of hair and normal histology. Chemo + Vehicle mice showed reduced hair regrowth and decreased pigmentation; histology revealed reduced number and dystrophic anagen/catagen follicles. Chemo + Antagonist mice were grossly and histologically indistinguishable from Chemo + Vehicle mice. Chemo + Agonist mice showed more rapid regrowth and repigmentation of hair; histologically, there was a normal number of hair follicles, most of which were in the anagen phase. Overall, the agonist PTH-CBD had prominent effects in reducing chemotherapy-induced damage of hair follicles and may show promise as a therapy for chemotherapy-induced alopecia. PMID:22130912

  13. Methotrexate, combined with cyclophosphamide attenuates murine collagen induced arthritis by modulating the expression level of Breg and DCs.

    PubMed

    Fan, Jinnan; Luo, Jing; Yan, Caiping; Hao, Runxi; Zhao, Xiangcong; Jia, Ruihuan; He, Jiaojiao; Xu, Dan; Miao, Miao; Li, Xiaofeng

    2017-10-01

    To explore the mechanism of methotrexate (MTX) and its combination with cyclophosphamide (CTX) in collagen-induced arthritis (CIA), we investigated the levels of several immune cells and cytokines in mice with different treatments. CIA was induced in DBA/1 mice at the age of 7 weeks by primary immunization with 100μl emulsion containing 2mg/ml bovine type II collagen which was mixed with complete Freund's adjuvant (CFA). The booster immunization was performed with 50-100μl emulsion containing 2mg/ml bovine type II collagen (CII) mixed with incomplete Freund's adjuvant (IFA). MTX, CTX or both were administrated after the booster immunization. Therapeutic effect was evaluated by arthritic scores, X-rays and assessment of histopathological joint destruction. The expression of TNF-α, IL-6, IL-23, IL-10 were also measured. The frequencies of different immune cell subsets in the lymph node, spleen and bone marrow were determined by flow cytometry analysis. Our results showed that CTX and MTX treatment attenuated the severity of arthritis of CIA mice and reduced the levels of several cytokines. CTX and MTX treated mice showed a lower frequency of B cells in bone marrow. Also, when treated the CIA mice with MTX, alone or together with CTX, the lymph nodes and spleen exhibited a decrease in regulatory B cells (Breg) and dendritic cells (DCs). Notably, the combination of MTX and CTX had a more pronounced effect. By measuring the levels of different immune cells those participated in the development of rheumatoid arthritis (RA), our experiment may help to evaluate the therapeutic effects and prognosis of arthritic diseases. Copyright © 2017. Published by Elsevier Ltd.

  14. Preliminary evaluation of collagen as a component in the thermally induced 'weld'

    NASA Astrophysics Data System (ADS)

    Lemole, G. M., Jr.; Anderson, R. Rox; DeCoste, Sue

    1991-06-01

    A simple thermodynamic approach to tissue 'welding' was studied. Fresh bovine tendon (67% type I collagen) was sectioned into disk shaped pieces, pairs of which were inserted between bowed glass coverslips and wrapped in aluminum foil. The packets were heated in a waterbath according to two protocols. In group I, packets were tested for four minutes at temperatures between 55-65 degree(s)C, in 1 degree(s)C intervals. In group II, the packets were kept at 62 degree(s)C for 4 minutes while the rate of cooling was altered. The force necessary to separate the tendon disks was then measured. The optimal temperature for tissue bonding (group I) was 62 degree(s)C (598 gm/in2). Stress values below 250 gm/in2 could be achieved without heat application and were considered non-welds. Group II showed that the faster the sample cools, the stronger the bond. Several conclusions can be postulated. The narrow temperature region necessary for tissue 'welding' strongly suggests that melting of type I collagen fibrils is involved. Bonding presumably occurs at 62 degree(s)C by allowing (alpha) -strands from the collagen super-helix molecule to form new, random connections. Group II results suggest that trans-incisional reannealing of unraveled helices does not play a role in tissue bonding. Rapid cooling allows less time for extended helix reformation; same-side a-helix reannealing may inhibit effective welds by reducing sites for trans-incisional visco-elastic bonding. Although the exact nature and optimization of thermal tissue 'welds' remains unclear, the behavior of collagen appears to play a central role.

  15. Interference-based linear birefringence measurements of thermally induced changes in collagen

    NASA Astrophysics Data System (ADS)

    Maitland, Duncan J.; Walsh, Joseph T.

    1994-08-01

    Linear birefringence (LB) is a polarization-specific property of many semi-crystalline structures in tissue. Specifically, collagen, with its triple helix conformation, exhibits LB in its native state. Rat tail tendon (RTT) was chosen for the LB experiments because it is > 90% collagen and the collagen fiber alignment is nearly parallel with the RTT length. This alignment results in RTT exhibiting uniaxial characteristics such that two properly chosen optical axes display differing refractive indices ((Delta) n equals nslow - nfast). RTT, which has an elliptical cross section, has its slow axis parallel to the tendon's length and a fast axes along the tendon's cross section. Native RTT has a refractive index difference of (Delta) n equals 1.5 X 10-3. For a typical tendon thickness of 200 micrometers , the phase shift, (delta) equals n*d (d, diameter), is approximately equal to 300 nm (transmission measurement). Heating of RTT results in a repeatable loss of (delta) . If monochromatic light is used the sample's output intensity is proportional to sin2((delta) (pi) /(lambda) ) where (lambda) is the wavelength of the light. Thus, given the native phase shift, the incident light's wavelength may be chosen such that the sample's loss of LB with heating is intensity- mapped on the sample's image.

  16. Synergistic effect of interleukin 1 alpha on nontypeable Haemophilus influenzae-induced up-regulation of human beta-defensin 2 in middle ear epithelial cells

    PubMed Central

    Moon, Sung-Kyun; Lee, Haa-Yung; Pan, Huiqi; Takeshita, Tamotsu; Park, Raekil; Cha, Kiweon; Andalibi, Ali; Lim, David J

    2006-01-01

    Background We recently showed that beta-defensins have antimicrobial activity against nontypeable Haemophilus influenzae (NTHi) and that interleukin 1 alpha (IL-1 alpha) up-regulates the transcription of beta-defensin 2 (DEFB4 according to new nomenclature of the Human Genome Organization) in human middle ear epithelial cells via a Src-dependent Raf-MEK1/2-ERK signaling pathway. Based on these observations, we investigated if human middle ear epithelial cells could release IL-1 alpha upon exposure to a lysate of NTHi and if this cytokine could have a synergistic effect on beta-defensin 2 up-regulation by the bacterial components. Methods The studies described herein were carried out using epithelial cell lines as well as a murine model of acute otitis media (OM). Human cytokine macroarray analysis was performed to detect the released cytokines in response to NTHi exposure. Real time quantitative PCR was done to compare the induction of IL-1 alpha or beta-defensin 2 mRNAs and to identify the signaling pathways involved. Direct activation of the beta-defensin 2 promoter was monitored using a beta-defensin 2 promoter-Luciferase construct. An IL-1 alpha blocking antibody was used to demonstrate the direct involvement of this cytokine on DEFB4 induction. Results Middle ear epithelial cells released IL-1 alpha when stimulated by NTHi components and this cytokine acted in an autocrine/paracrine synergistic manner with NTHi to up-regulate beta-defensin 2. This synergistic effect of IL-1 alpha on NTHi-induced beta-defensin 2 up-regulation appeared to be mediated by the p38 MAP kinase pathway. Conclusion We demonstrate that IL-1 alpha is secreted by middle ear epithelial cells upon exposure to NTHi components and that it can synergistically act with certain of these molecules to up-regulate beta-defensin 2 via the p38 MAP kinase pathway. PMID:16433908

  17. What Is an Ear Infection?

    MedlinePlus

    ... the germs bother your outer ear, it's called swimmer's ear. The middle ear is a small pocket ... What's Hearing Loss? Taking Care of Your Ears Swimmer's Ear Perforated Eardrum What's Earwax? Contact Us Print ...

  18. Artemisinin analogue SM934 attenuate collagen-induced arthritis by suppressing T follicular helper cells and T helper 17 cells

    PubMed Central

    Lin, Ze-Min; Yang, Xiao-Qian; Zhu, Feng-Hua; He, Shi-Jun; Tang, Wei; Zuo, Jian-Ping

    2016-01-01

    SM934 is an artemisinin analogue with immunosuppressive properties and potent therapeutic activity against lupus-like diseases in autoimmune mice. In this report, the therapeutic efficacy and underlying mechanisms of SM934 on rheumatoid arthritis (RA) was investigated using collagen-induced arthritis (CIA) in DBA/1J mice. We demonstrated that SM934 treatment alleviate the severity of arthritis in CIA mice with established manifestations. The therapeutic benefits were associated with ameliorated joint swelling and reduced extent of bone erosion and destruction. Further, administration of SM934 diminished the development of T follicular helper (Tfh) cells and Th17 cells and suppressed the production of pathogenic antibodies, without altering the proportion of germinal center B cells. Ex vivo, SM934 treatment inhibited the bovine type II collagen (CII) induced proliferation and inflammatory cytokines secretion of CII -reactive T cells. In vitro, SM934 impeded the polarization of naïve CD4+ T cells into Tfh cells and the expression of its transcript factor Bcl-6. Moreover, SM934 decreased the IL-21-producing CD4+ T cells and dampened the IL-21 downstream signaling through STAT3. These finding offered the convincing evidence that artemisinin derivative might attenuate RA by simultaneously interfering with the generation of Tfh cells and Th17 cells as well as the subsequent antibody-mediated immune responses. PMID:27897259

  19. The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis.

    PubMed

    Malfait, A M; Gallily, R; Sumariwalla, P F; Malik, A S; Andreakos, E; Mechoulam, R; Feldmann, M

    2000-08-15

    The therapeutic potential of cannabidiol (CBD), the major nonpsychoactive component of cannabis, was explored in murine collagen-induced arthritis (CIA). CIA was elicited by immunizing DBA/1 mice with type II collagen (CII) in complete Freund's adjuvant. The CII used was either bovine or murine, resulting in classical acute CIA or in chronic relapsing CIA, respectively. CBD was administered after onset of clinical symptoms, and in both models of arthritis the treatment effectively blocked progression of arthritis. CBD was equally effective when administered i.p. or orally. The dose dependency showed a bell-shaped curve, with an optimal effect at 5 mg/kg per day i.p. or 25 mg/kg per day orally. Clinical improvement was associated with protection of the joints against severe damage. Ex vivo, draining lymph node cells from CBD-treated mice showed a diminished CII-specific proliferation and IFN-gamma production, as well as a decreased release of tumor necrosis factor by knee synovial cells. In vitro effects of CBD included a dose-dependent suppression of lymphocyte proliferation, both mitogen-stimulated and antigen-specific, and the blockade of the Zymosan-triggered reactive oxygen burst by peritoneal granulocytes. It also was found that CBD administration was capable of blocking the lipopolysaccharide-induced rise in serum tumor necrosis factor in C57/BL mice. Taken together, these data show that CBD, through its combined immunosuppressive and anti-inflammatory actions, has a potent anti-arthritic effect in CIA.

  20. Deficiency of β-arrestin1 ameliorates collagen-induced arthritis with impaired TH17 cell differentiation

    PubMed Central

    Li, Juan; Wei, Bin; Guo, Ao; Liu, Chang; Huang, Shichao; Du, Fang; Fan, Wei; Bao, Chunde; Pei, Gang

    2013-01-01

    Rheumatoid arthritis (RA) is an inflammatory disease in which interleukin 17 (IL-17)-producing T helper 17 (TH17) cells have been critically involved. We show that in patients with RA, the expression of a multifunctional regulator β-arrestin1 was significantly up-regulated in peripheral and synovial CD4+ T cells, which correlated well with active phases of RA. In collagen-induced arthritis, deficiency of β-arrestin1 ameliorated disease with decreased TH17 cell differentiation, proinflammatory cytokine production, synovitis, and cartilage and bone destruction. Further mechanistic study reveals that β-arrestin1 promoted signal transducer and activator of transcription 3 (STAT3) activation required for TH17 cell differentiation through scaffolding the interaction of Janus kinase 1 and STAT3. These findings indicate a critical role for β-arrestin1 in the pathogenesis of collagen-induced arthritis and TH17 cell differentiation and suggest β-arrestin1 as a potential diagnostic biomarker and therapeutic target for RA. PMID:23589893

  1. Mechanism for adhesion G protein-coupled receptor GPR56-mediated RhoA activation induced by collagen III stimulation.

    PubMed

    Luo, Rong; Jeong, Sung-Jin; Yang, Annie; Wen, Miaoyun; Saslowsky, David E; Lencer, Wayne I; Araç, Demet; Piao, Xianhua

    2014-01-01

    GPR56 is a member of the adhesion G protein-coupled receptor (GPCR) family. Despite the importance of GPR56 in brain development, where mutations cause a devastating human brain malformation called bilateral frontoparietal polymicrogyria (BFPP), the signaling mechanism(s) remain largely unknown. Like many other adhesion GPCRs, GPR56 is cleaved via a GPCR autoproteolysis-inducing (GAIN) domain into N- and C-terminal fragments (GPR56N and GPR56C); however, the biological significance of this cleavage is elusive. Taking advantage of the recent identification of a GPR56 ligand and the presence of BFPP-associated mutations, we investigated the molecular mechanism of GPR56 signaling. We demonstrate that ligand binding releases GPR56N from the membrane-bound GPR56C and triggers the association of GPR56C with lipid rafts and RhoA activation. Furthermore, one of the BFPP-associated mutations, L640R, does not affect collagen III-induced lipid raft association of GPR56. Instead, it specifically abolishes collagen III-mediated RhoA activation. Together, these findings reveal a novel signaling mechanism that may apply to other members of the adhesion GPCR family.

  2. Nimesulide improves the disease modifying anti-rheumatic profile of methotrexate in mice with collagen-induced arthritis.

    PubMed

    Al-Abd, Ahmed M; Inglis, Julia J; Nofal, Salwa M; Khalifa, Amani E; Williams, Richard O; El-Eraky, Wafaa I; Abdel-Naim, Ashraf B

    2010-10-10

    Methotrexate is a disease modifying anti-rheumatic drug that is widely used for the treatment of rheumatoid arthritis. Nimesulide is a non-steroidal anti-inflammatory drug which is frequently used as adjuvant therapy for symptomatic alleviation of rheumatoid arthritis. In this study, we have evaluated the potential influence of nimesulide on the disease modifying anti-rheumatic properties of methotrexate using the collagen-induced arthritis model. Mice were immunized with collagen type II for the induction of arthritis and treated with methotrexate (2.5mg/kg) twice a week, nimesulide (20mg/kg) every other day or a combination of both drugs. Treatment started one week after the onset of arthritis until day 40. An arthritic index was used to compare the severity of arthritis between different treatments. In addition, articular hyperalgesia, joint stiffness, radiological deterioration and intra-articular leucocytic infiltration were evaluated. Methotrexate alone showed modest but significant analgesic and anti-inflammatory effects, and the effects of nimesulide were comparable. On the other hand, nimesulide significantly improved the disease modifying anti-rheumatic profile of methotrexate in terms of arthritic index and joint mobility. Furthermore, although nimesulide failed to show any radiological evidence of articular protection, it significantly improved methotrexate-induced joint protection as judged by X-ray analysis.

  3. Protection of chronic intermittent hypobaric hypoxia against collagen-induced arthritis in rat through increasing apoptosis.

    PubMed

    Shi, Min; Cui, Fang; Liu, Ai-Jing; Li, Jiao; Ma, Hui-Juan; Cheng, Ming; Yang, Jing; Zhang, Yi

    2011-04-25

    The aim of present study was to investigate the effect of chronic intermittent hypobaric hypoxia (CIHH) on collagen-induced arthritis (CIA) in rat. Fifty male adult Sprague-Dawley rats were randomly divided into 5 groups: CIHH pre-treatment group (Pre-T), pre-control group (Pre-C), CIHH post-treatment group (Post-T), post-control group (Post-C) and blank control group (Con). The rats in Pre-T and Post-T groups were exposed to 28 d of hypobaric hypoxia (simulated 3 000 m altitude, 5 h per day, pO2 = 108.8 mmHg, 14% O2) in a hypobaric chamber before and 12 days after CIA induction, respectively. The rats in Pre-C and Post-C groups were only experienced CIA induction, being control groups for Pre-T and Post-T groups, respectively. The rats in Con group were not given any treatment. The thickness of two-hind paw of rat was measured with spiral micrometer and the degree of arthritis was evaluated by arthritis index (AI). Morphological changes of ankle joint were observed through HE staining. The apoptotic rate in synovial tissue was measured by terminal dUTP nick end labeling (TUNEL) and the apoptotic rate of CD3(+) T lymphocyte in spleen was measured by flow cytometry technique. The protein expressions of Bcl-2 and Bax were measured using immunohistochemistry SP method. The results showed that incidence rate of CIA in Pre-T rats was lower than that in Pre-C rats (P < 0.05). AI in Pre-T and Post-T rats were smaller than those in Pre-C and Post-C, respectively (P < 0.05). In Pre-C and Post-C rats, there were hyperplasia of synovial cell, pannus forming, infiltration with inflammatory cell, and destroyed cartilage and bone in ankle joint. On the contrary, pathological changes of ankle joint were alleviated significantly in Pre-T and Post-T rats. Compared with Pre-C and Post-C rats, apoptotic rates of synovial cell and T lymphocyte in Pre-T and Post-T rats were increased (P < 0.05). As to the possible anti-apoptosis mechanism, CIHH, no matter before and after CIA induction

  4. Swimmer's Ear (For Parents)

    MedlinePlus

    ... Feeding Your 1- to 2-Year-Old Swimmer's Ear (Otitis Externa) KidsHealth > For Parents > Swimmer's Ear (Otitis ... español Otitis del nadador (otitis externa) About Swimmer's Ear Otitis externa (OE) — commonly known as swimmer's ear — ...

  5. Fibroblast activation protein is induced by inflammation and degrades type I collagen in thin-cap fibroatheromata

    PubMed Central

    Brokopp, Chad E.; Schoenauer, Roman; Richards, Peter; Bauer, Stefan; Lohmann, Christine; Emmert, Maximilian Y.; Weber, Benedikt; Winnik, Stephan; Aikawa, Elena; Graves, Kirk; Genoni, Michele; Vogt, Peter; Lüscher, Thomas F.; Renner, Christoph; Hoerstrup, Simon P.; Matter, Christian M.

    2011-01-01

    Aims Collagen degradation in atherosclerotic plaques with thin fibrous caps renders them more prone to rupture. Fibroblast activation protein (FAP) plays a role in arthritis and tumour formation through its collagenase activity. However, the significance of FAP in thin-cap human fibroatheromata remains unknown. Methods and results We detected enhanced FAP expression in type IV–V human aortic atheromata (n = 12), compared with type II–III lesions (n = 9; P < 0.01) and healthy aortae (n = 8; P < 0.01) by immunostaining and western blot analyses. Fibroblast activation protein was also increased in thin-cap (<65 µm) vs. thick-cap (≥65 µm) human coronary fibroatheromata (n = 12; P < 0.01). Fibroblast activation protein was expressed by human aortic smooth muscle cells (HASMC) as shown by colocalization on immunofluorescent aortic plaque stainings (n = 10; P < 0.01) and by flow cytometry in cell culture. Although macrophages did not express FAP, macrophage burden in human aortic plaques correlated with FAP expression (n = 12; R2= 0.763; P < 0.05). Enzyme-linked immunosorbent assays showed a time- and dose-dependent up-regulation of FAP in response to human tumour necrosis factor α (TNFα) in HASMC (n = 6; P < 0.01). Moreover, supernatants from peripheral blood-derived macrophages induced FAP expression in cultured HASMC (n = 6; P < 0.01), an effect abolished by blocking TNFα (n = 6; P < 0.01). Fibroblast activation protein associated with collagen-poor regions in human coronary fibrous caps and digested type I collagen and gelatin in vitro (n = 6; P < 0.01). Zymography revealed that FAP-mediated collagenase activity was neutralized by an antibody directed against the FAP catalytic domain both in HASMC (n = 6; P < 0.01) and in fibrous caps of atherosclerotic plaques (n = 10; P < 0.01). Conclusion Fibroblast activation protein expression in HASMC is induced by macrophage-derived TNFα. Fibroblast activation protein associates with thin-cap human coronary

  6. Fasudil inhibits proliferation and collagen synthesis and induces apoptosis of human fibroblasts derived from urethral scar via the Rho/ROCK signaling pathway

    PubMed Central

    Xu, Ning; Chen, Shao-Hao; Qu, Gen-Yi; Li, Xiao-Dong; Lin, Wen; Xue, Xue-Yi; Lin, Yun-Zhi; Zheng, Qing-Shui; Wei, Yong

    2017-01-01

    Fasudil has shown antifibrotic effects in various fibrotic diseases. However, its effects on human urethral fibroblasts are unknown. This study evaluated the effects of fasudil on cellular proliferation, migration, apoptosis, and collagen synthesis in human fibroblasts derived from urethral scar tissues. Human urethral scar fibroblasts were cultured by explant and incubated for 24 h or 48 h with fasudil (12.5, 25, 50 µmol/L) with or without transforming growth factor β1 (TGF-β1, 10 ng/mL), or left untreated (control). Cell proliferation and migration was determined by MTT assay and Transwell chambers, respectively. Apoptosis was measured by flow cytometry. Levels of α-smooth muscle actin (α-SMA), myosin light-chain phosphatase (MLCP), LIM domain kinase 1 (LIMK1), phospho-cofilin (p-cofilin), collagen I, and collagen III were determined by Western blot. Compared with the control group, TGF-β1 was associated with a significant increase in urethral fibroblast proliferation and migration, and α-SMA, MLCP, LIMK1, p-cofilin, collagen I, and collagen III levels. Compared with the control group, fasudil (with or without TGF-β1), significantly and negatively correlated, in a dose-dependent manner, with the proliferation and migration of urethral fibroblasts, as well as α-SMA, MLCP, LIMK1, p-cofilin, collagen I, and collagen III levels. Moreover, fasudil significantly induced apoptosis of fibroblasts induced by TGF-β1. Higher concentrations of fasudil (50 μmol/L) were associated with greater cell apoptosis without TGF-β1 stimulation compared with the normal control group. Fasudil, with or without TGF-β1 stimulation, may inhibit human urethral fibroblasts proliferation, migration, apoptosis, and collagen synthesis via the Rho/ROCK signaling pathway. PMID:28386357

  7. FT-IR Microspectroscopy of Rat Ear Cartilage

    PubMed Central

    Vidal, Benedicto de Campos; Mello, Maria Luiza S.

    2016-01-01

    Rat ear cartilage was studied using Fourier transform-infrared (FT-IR) microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM) with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs) with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs) were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140–820 cm-1) after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of –SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of –SO3- groups (1236–1225 cm-1) overlapped with that of amide III bands, it is not recommended for evaluation of the –SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder) at 1027–1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  8. FT-IR Microspectroscopy of Rat Ear Cartilage.

    PubMed

    Vidal, Benedicto de Campos; Mello, Maria Luiza S

    2016-01-01

    Rat ear cartilage was studied using Fourier transform-infrared (FT-IR) microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM) with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs) with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs) were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1) after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1) overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder) at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue under

  9. Herb extracts and collagen hydrolysate improve skin damage resulting from ultraviolet-induced aging in hairless mice.

    PubMed

    Jimbo, Nozomi; Kawada, Chinatsu; Nomura, Yoshihiro

    2015-01-01

    We examined the effect of the daily ingestion of herb extract from Eucommia ulmoides leaves and Korean ginseng on skin damage induced by repeated UV irradiation of hairless mice. The herb extract was orally administered to mice at a dose of 1000 mg/kg/day. The hydration of mice dorsal skin decreased significantly with repeated UV irradiation, but did not decrease when the herb extract was administered for seven weeks. Transepidermal water loss (TEWL) increased with UV irradiation, but decreased with the administration of dietary herb extract. These effects were more pronounced when combined with the administration of collagen hydrolysate. Geniposidic acid from E. ulmoides leaves and ginsenoside Rg1 from Korean ginseng reduced TEWL and increased the skin moisture content of UV-damaged skin on hairless mice, respectively. We concluded that this dietary herb extract reduced the skin damage caused by UV-induced aging, with geniposidic acid and ginsenoside Rg1 detected in the blood.

  10. Rapid tyrosine phosphorylation and activation of Bruton's tyrosine/Tec kinases in platelets induced by collagen binding or CD32 cross-linking.

    PubMed

    Oda, A; Ikeda, Y; Ochs, H D; Druker, B J; Ozaki, K; Handa, M; Ariga, T; Sakiyama, Y; Witte, O N; Wahl, M I

    2000-03-01

    Stimulation of the platelet nonintegrin collagen receptor, glycoprotein VI, evokes a signaling response similar to that induced by antigen receptor activation in B and T lymphocytes. A key transducer of the lymphocyte signaling pathways is the Bruton's tyrosine kinase (Btk)/Tec kinase family, which connects receptors to the elevation of intracellular-free calcium levels. An important signaling function for Btk in collagen-induced platelet activation in vitro was recently demonstrated by other researchers using Btk-deficient platelets from patients with X-linked agammaglobulinemia (XLA). Since Btk-deficiency does not induce an overt platelet-based bleeding disorder in vivo, collagen receptor responses may include other Btk/Tec kinase family members in normal platelets. Both Btk and Tec had increased tyrosine following stimulation of collagen receptors or CD32 cross-linking. Data from kinetic analyses and inhibitor studies and the use of phosphopeptide-specific antibodies recognizing 2 Btk regulatory phosphorylated tyrosine residues suggest a mechanism for coordinate recruitment of Btk and Tec through the immunoreceptor tyrosine-based activation motif, Src family kinases, and phosphatidylinositol 3-kinase. In XLA platelets, collagen treatment increased tyrosine phosphorylation of Tec and several other signaling proteins, including Lyn, Fyb, Slp-76, and the Wiskott-Aldrich syndrome protein. This indicates that important elements of the collagen signaling pathway proximal and distal to Btk and Tec are preserved despite the lack of functional Btk. The results are consistent with the conclusion that activation of Tec may sustain XLA platelet function in vivo, while some in vitro assays of nonintegrin collagen receptor signaling through the Btk/Tec kinase family reflect the additive dosage of the transducers. (Blood. 2000;95:1663-1670)

  11. Role of CD14 and TLR4 in type I, type III collagen expression, synthesis and secretion in LPS-induced normal human skin fibroblasts

    PubMed Central

    Yang, Hongming; Li, Juncong; Wang, Yihe; Hu, Quan

    2015-01-01

    Objectives: The primary aim of this study was to investigate the role of CD14 and TLR4 in type I, type III collagen expression, synthesis and secretion in LPS-induced normal human skin fibroblasts. The secondary aim was to provide theoretical basis for the molecular mechanisms of scar formation induced by LPS. Methods: The normal skin fibroblasts cultured in vitro were randomly divided into four groups: 0.1 μg/mL LPS reference group, CD14 pretreatment + LPS, TLR4 pretreatment + LPS, CD14 and TLR4 pretreatment + LPS. The collagen DNA synthesis was assessed by 3H-proline incorporation method. Real-time Quantitative PCR was used to detect type I, type III collagen mRNA expression. Results: Similar results were revealed for mRNA expression levels. The immunofluorescence staining suggested that type I and type III collagen were expressed in all investigated groups and that the expression was differentially downregulated in groups B, C, D. ELISA demonstrated markedly decreased levels in secreting type I, type III collagens and hydroxyproline in groups B, C, D (P<0.05), and the lowest level was detected in group D (P<0.01). Conclusion: Pretreatment with CD14 or TLR4 alone or their combination can significantly reduce the levels of type I and type III collagen expression, synthesis and secretion, with the most notable reduction detected in case of CD14 and TLR4 combined. We could thus conclude that both CD14 and TLR4 are involved in type I and type III collagen expression, synthesis and secretion in LPS-induced skin fibroblasts. PMID:25932184

  12. Oxidant Exposure Induces Cysteine-Rich Protein 61 (CCN1) via c-Jun/AP-1 to Reduce Collagen Expression in Human Dermal Fibroblasts

    PubMed Central

    Qin, Zhaoping; Robichaud, Patrick; He, Tianyuan; Fisher, Gary J.; Voorhees, John J.; Quan, Taihao

    2014-01-01

    Human skin is a primary target of oxidative stress from reactive oxygen species (ROS) generated from both extrinsic and intrinsic sources. Oxidative stress inhibits the production of collagen, the most abundant protein in skin, and thus contributes to connective tissue aging. Here we report that cysteine-rich protein 61 (CCN1), a negative regulator of collagen production, is markedly induced by ROS and mediates loss of type I collagen in human dermal fibroblasts. Conversely, antioxidant N-acetyl-L-cysteine significantly reduced CCN1 expression and prevented ROS-induced loss of type I collagen in both human dermal fibroblasts and human skin in vivo. ROS increased c-Jun, a critical member of transcription factor AP-1 complex, and increased c-Jun binding to the AP-1 site of the CCN1 promoter. Functional blocking of c-Jun significantly reduced CCN1 promoter and gene expression and thus prevented ROS-induced loss of type I collagen. Targeting the c-Jun/CCN1 axis may provide clinical benefit for connective tissue aging in human skin. PMID:25536346

  13. Oxidant exposure induces cysteine-rich protein 61 (CCN1) via c-Jun/AP-1 to reduce collagen expression in human dermal fibroblasts.

    PubMed

    Qin, Zhaoping; Robichaud, Patrick; He, Tianyuan; Fisher, Gary J; Voorhees, John J; Quan, Taihao

    2014-01-01

    Human skin is a primary target of oxidative stress from reactive oxygen species (ROS) generated from both extrinsic and intrinsic sources. Oxidative stress inhibits the production of collagen, the most abundant protein in skin, and thus contributes to connective tissue aging. Here we report that cysteine-rich protein 61 (CCN1), a negative regulator of collagen production, is markedly induced by ROS and mediates loss of type I collagen in human dermal fibroblasts. Conversely, antioxidant N-acetyl-L-cysteine significantly reduced CCN1 expression and prevented ROS-induced loss of type I collagen in both human dermal fibroblasts and human skin in vivo. ROS increased c-Jun, a critical member of transcription factor AP-1 complex, and increased c-Jun binding to the AP-1 site of the CCN1 promoter. Functional blocking of c-Jun significantly reduced CCN1 promoter and gene expression and thus prevented ROS-induced loss of type I collagen. Targeting the c-Jun/CCN1 axis may provide clinical benefit for connective tissue aging in human skin.

  14. Inflammasome-independent role of apoptosis-associated speck-like protein containing a CARD (ASC) in T cell priming is critical for collagen-induced arthritis.

    PubMed

    Ippagunta, Sirish K; Brand, David D; Luo, Jiwen; Boyd, Kelli L; Calabrese, Christopher; Stienstra, Rinke; Van de Veerdonk, Frank L; Netea, Mihai G; Joosten, Leo A B; Lamkanfi, Mohamed; Kanneganti, Thirumala-Devi

    2010-04-16

    Rheumatoid arthritis is an autoimmune disease with 1% prevalence in the industrialized world. The contributions of the inflammasome components Nlrp3, ASC, and caspase-1 in the pathogenesis of collagen-induced arthritis have not been characterized. Here, we show that ASC(-/-) mice were protected from arthritis, whereas Nlrp3(-/-) and caspase-1(-/-) mice were susceptible to collagen-induced arthritis. Unlike Nlrp3(-/-) and caspase-1(-/-) mice, the production of collagen-specific antibodies was abolished in ASC(-/-) mice. This was due to a significantly reduced antigen-specific activation of lymphocytes by ASC(-/-) dendritic cells. Antigen-induced proliferation of purified ASC(-/-) T cells was restored upon incubation with wild type dendritic cells, but not when cultured with ASC(-/-) dendritic cells. Moreover, direct T cell receptor ligation with CD3 and CD28 antibodies induced a potent proliferation of ASC(-/-) T cells, indicating that ASC is specifically required in dendritic cells for antigen-induced T cell activation. Therefore, ASC fulfills a hitherto unrecognized inflammasome-independent role in dendritic cells that is crucial for T cell priming and the induction of antigen-specific cellular and humoral immunity and the onset of collagen-induced arthritis.

  15. Inhibition by a selective IkappaB kinase-2 inhibitor of interleukin-1-induced collagen degradation by corneal fibroblasts in three-dimensional culture.

    PubMed

    Kondo, Yukiko; Fukuda, Ken; Adachi, Tadafumi; Nishida, Teruo

    2008-11-01

    Corneal ulcer results from excessive collagen degradation in the corneal stroma. Interleukin (IL)-1 promotes this process by activating signaling molecules that include nuclear factor (NF)-kappaB and stimulating the synthesis of matrix metalloproteinases (MMPs) in corneal fibroblasts. NF-kappaB activation is mediated by phosphorylation of the inhibitor IkappaB by IkappaB kinase (IKK)-2 and consequent IkappaB degradation. The authors investigated the effects of the IKK-2 inhibitor [5-(p-fluorophenyl)-2-ureido]thiophene-3-carboxamide (TPCA-1) on collagen degradation by corneal fibroblasts. Rabbit corneal fibroblasts were cultured in three-dimensional collagen gels. Collagen degradation was evaluated by spectrophotometric quantitation of hydroxyproline in culture supernatants subjected to acid-heat hydrolysis. Expression of MMPs was evaluated by immunoblot analysis, gelatin zymography, and real-time reverse transcription polymerase chain reaction analysis. The phosphorylation and degradation of IkappaBalpha and the subcellular localization of NF-kappaB were examined by immunoblot and immunofluorescence analyses, respectively. IL-1beta-induced collagen degradation by corneal fibroblasts was inhibited by TPCA-1 in a concentration- and time-dependent manner. TPCA-1 inhibited the IL-1beta-induced expression of MMP-1, -3, and -9 in these cells at both the mRNA and protein levels and the IL-1beta-induced activation of pro-MMP-2. In contrast to dexamethasone, TPCA-1 inhibited the phosphorylation and degradation of IkappaBalpha and the nuclear translocation of NF-kappaB induced by IL-1beta. An IKK-2 inhibitor blocked IL-1beta-induced collagen degradation by corneal fibroblasts by inhibiting the activation of the NF-kappaB signaling pathway and the upregulation of MMPs. IKK-2 inhibitors are thus potential alternatives to dexamethasone for the treatment of corneal ulcer.

  16. Inhibition by all-trans-retinoic acid of transforming growth factor-β-induced collagen gel contraction mediated by human tenon fibroblasts.

    PubMed

    Liu, Yang; Kimura, Kazuhiro; Orita, Tomoko; Teranishi, Shinichiro; Suzuki, Katsuyoshi; Sonoda, Koh-Hei

    2014-06-03

    Excessive wound contraction can lead to scar formation in the conjunctiva. The effects of all-trans-retinoic acid (ATRA) on the contractility of human Tenon fibroblasts (HTFs) cultured in three-dimensional (3D) collagen gels were investigated. Human Tenon fibroblasts were cultured in 3D gels of type I collagen and in the absence or presence of TGF-β, ATRA, or various inhibitors. Collagen gel contraction was evaluated by measurement of gel diameter. Phosphorylation of various signaling molecules was examined by immunoblot analysis. The formation of actin stress fibers and focal adhesions was detected by laser confocal microscopy. All-trans-retinoic acid inhibited TGF-β-induced collagen gel contraction mediated by HTFs in a concentration- and time-dependent manner. The TGF-β-induced phosphorylation of focal adhesion kinase (FAK) and formation of stress fibers and focal adhesions in HTFs were attenuated by ATRA. All-trans-retinoic acid also inhibited the TGF-β-induced phosphorylation of the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase (ERK), p38, and c-Jun NH2-terminal kinase (JNK) as well as that of c-Jun and Smad2/3. Furthermore, TGF-β-induced collagen gel contraction was blocked by inhibitors of ERK, p38, or JNK signaling. All-trans-retinoic acid inhibited TGF-β-induced collagen gel contraction mediated by HTFs, most likely by attenuating the formation of actin stress fibers and focal adhesions as well as signaling by MAPKs, c-Jun, and Smads. All-trans-retinoic acid may therefore prove effective for inhibition of conjunctival scarring through attenuation of the contractility of Tenon fibroblasts. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  17. Influence of tetrahydrocurcumin on tail tendon collagen contents and its properties in rats with streptozotocin-nicotinamide-induced type 2 diabetes.

    PubMed

    Pari, Leelavinothan; Murugan, Pidaran

    2007-12-01

    Changes in the structural and functional properties of collagen caused by advanced glycation might be of importance for the etiology of late-stage complications in diabetics. Curcumin is the most active component of turmeric. It is believed that curcumin is a potent antioxidant and anti-inflammatory agent. Tetrahydrocurcumin (THC) is one of the major metabolites of curcumin, exhibiting many of the same physiological and pharmacological activities of curcumin and in some systems may exert greater antioxidant activity than curcumin. In diabetic rats, hydroxyproline and collagen content as well as its degree of cross-linking were increased, as shown by increased extent of glycation, collagen-linked fluorescence, neutral salt collagen, and decreased acid and pepsin solubility. Administration of THC for 45 days to diabetic rats significantly reduced the accumulation and cross-linking of collagen. The effects of THC were comparable with those of curcumin. In conclusion, administration of THC had a positive influence on the content of collagen and its properties in streptozotocin- and nicotinamide-induced diabetic rats. THC was found to be more effective than curcumin.

  18. Moxibustion at mingmen reduces inflammation and decreases IL-6 in a collagen-induced arthritis mouse model.

    PubMed

    Kogure, Morihiro; Mimura, Naomi; Ikemoto, Hideshi; Ishikawa, Shintaro; Nakanishi-Ueda, Takako; Sunagawa, Masataka; Hisamitsu, Tadashi

    2012-02-01

    The purpose of this study was to compare the effectiveness of moxibustion (MOX) treatment at the GV4 and CV12 acupoints, and to determine the correlations between MOX treatment and interleukin (IL)-6 and corticosterone levels in a collagen-induced arthritis (CIA) mouse model. CIA mice were immunized twice intradermally over a 3-week interval with bovine type II collagen. After the second immunization (day 21), MOX was applied to the mouse equivalent of the GV4 and CV12 acupoints with a 1mg moxa cone five times/day. Clinical symptoms of CIA were observed three times/week until day 35. The concentrations of IL-6 and corticosterone in the blood samples were measured by immunoassay kits. At day 35, the incidence of CIA was significantly decreased in mice treated with MOX at the GV4 acupoint (78%, n=23, p<0.05), compared to untreated CIA mice (100%) and mice treated with MOX at the CV12 acupoint (100%). IL-6 and corticosterone levels were significantly increased by immunization. IL-6 levels significantly decreased in mice treated with MOX at the GV4 acupoint. These results suggest that MOX treatment suppressed CIA at the GV4 acupoint, not at the CV12 acupoint, possibly through inhibition of IL-6 production.

  19. Therapeutic effect of erythroid differentiation regulator 1 (Erdr1) on collagen-induced arthritis in DBA/1J mouse

    PubMed Central

    Kim, Kyung Eun; Kim, Sungryung; Park, Sunyoung; Houh, Younkyung; Yang, Yoolhee; Park, Seung Beom; Kim, Sangyoon; Kim, Daejin; Hur, Dae Young; Kim, Seonghan

    2016-01-01

    Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, and multiple inflammatory cytokines are involved in RA pathogenesis. Interleukin (IL)-18, in particular, has a significant positive correlation with RA. In this study, we investigated the effect of erythroid differentiation regulator 1 (Erdr1), which is negatively regulated by IL-18, in an animal model of inflammatory arthritis, collagen-induced arthritis (CIA) in DBA/1J mice. Treatment of mice with recombinant (r)Erdr1 significantly suppressed the severity of arthritis, histologic features of arthritic tissue, and serum levels of anti-collagen autoantibodies (IgG, IgG1, IgG2a and IgM) in CIA. In addition, IL-18 expression was reduced in the affected synovium of rErdr1-treated mice. Interestingly, Erdr1 treatment suppressed migration in contrast to the pro-migratory effect of IL-18, indicating the therapeutic effects of Erdr1 on CIA through inhibiting synovial fibroblast migration. In addition, Erdr1 inhibited activation of ERK1/2, a key signaling pathway in migration of various cell types. Taken together, these data show that rErdr1 exerts therapeutic effects on RA by inhibiting synovial fibroblast migration, suggesting that rErdr1 treatment might be an effective therapeutic approach for RA. PMID:27823968

  20. Effects of Wutou Decoction on DNA Methylation and Histone Modifications in Rats with Collagen-Induced Arthritis

    PubMed Central

    Wen, Cai-Yu-Zhu; Chen, Zhe; Wang, Yu; Huang, Ying; Hu, Yong-Hong; Tu, Sheng-Hao

    2016-01-01

    Background. Wutou decoction (WTD) has been wildly applied in the treatment of rheumatoid arthritis and experimental arthritis in rats for many years. Epigenetic deregulation is associated with the aetiology of rheumatoid arthritis; however, the effects of WTD on epigenetic changes are unclear. This study is set to explore the effects of WTD on DNA methylation and histone modifications in rats with collagen-induced arthritis (CIA). Methods. The CIA model was established by the stimulation of collagen and adjuvant. The knee synovium was stained with hematoxylin and eosin. The DNA methyltransferase 1 (DNMT1) and methylated CpG binding domain 2 (MBD2) expression of peripheral blood mononuclear cells (PBMCs) were determined by Real-Time PCR. The global DNA histone H3-K4/H3-K27 methylation and total histones H3 and H4 acetylation of PBMCs were detected. Results. Our data demonstrated that the DNMT1 mRNA expression was significantly lowered in group WTD compared to that in group CIA (P < 0.05). The DNA methylation level was significantly reduced in group WTD compared to that in group CIA (P < 0.05). Moreover, H3 acetylation of PBMCs was overexpressed in WTD compared with CIA (P < 0.05). Conclusions. WTD may modulate DNA methylation and histone modifications, functioning as anti-inflammatory potential. PMID:27042192

  1. Release of biologically active TGF-beta from airway smooth muscle cells induces autocrine synthesis of collagen.

    PubMed

    Coutts, A; Chen, G; Stephens, N; Hirst, S; Douglas, D; Eichholtz, T; Khalil, N

    2001-05-01

    In severe or chronic asthma, there is an increase in airway smooth muscle cell (ASMC) mass as well as an increase in connective tissue proteins in the smooth muscle layer of airways. Transforming growth factor-beta (TGF-beta) exists in three isoforms in mammals and is a potent regulator of connective tissue protein synthesis. Using immunohistochemistry, we had previously demonstrated that ASMCs contain large quantities of TGF-beta1-3. In this study, we demonstrate that bovine ASMC-derived TGF-beta associates with the TGF-beta latency binding protein-1 (LTBP-1) expressed by the same cells. The TGF-beta associated with LTBP-1 localizes TGF-beta extracellularly. Furthermore, plasmin, a serine protease, regulates the secretion of a biologically active form of TGF-beta by ASMCs as well as the release of extracellular TGF-beta. The biologically active TGF-beta released by plasmin induces ASMCs to synthesize collagen I in an autocrine manner. The autocrine induction of collagen expression by ASMCs may contribute to the irreversible fibrosis and remodeling seen in the airways of some asthmatics.

  2. Cadmium induces alpha(1)collagen (I) and metallothionein II gene and alters the antioxidant system in rat hepatic stellate cells.

    PubMed

    del Carmen, Escobar Ma; Souza, Verónica; Bucio, Leticia; Hernández, Elizabeth; Damián-Matsumura, Pablo; Zaga, Verónica; Gutiérrez-Ruiz, Ma Concepción

    2002-01-15

    The mechanism of cadmium-mediated hepatotoxicity has been the subject of numerous investigations, principally in hepatocytes. Although, some uncertainties persist, sufficient evidence has emerged to provide a reasonable account of the toxic process in parenchymal cells. However, there is no information about the effect of cadmium in other hepatic cell types, such as stellate cells (fat storing cells, Ito cells, perisinusoidal cells, parasinusoidal cells, lipocytes). Hepatic stellate cells (HSC) express a quiescent phenotype in a healthy liver and acquire an activated phenotype in liver injury. These cells play an important role in the fibrogenic process. The objective of this study was to investigate the effect of a 24 h treatment of low Cd concentrations in glutathione content, lipid peroxidation damage, cytosolic free Ca, antioxidant enzyme activities: glutathione peroxidase, glutathione reductase, superoxide dismutase and catalase along with the capacity of this heavy metal to induce metallothionein II and alpha(1)collagen (I) in an hepatic stellate cell line (CFSC-2G). Cd-treated cells increased lipid peroxidation and the content of cytosolic free calcium, decreased glutathione content and superoxide dismutase, glutathione peroxidase and catalase activity. Cd was able to induce the expression of the metallothionein II and alpha(1)collagen (I) gene, that was not described in this cell type. Cadmium may act as a pro-fibrogenic agent in the liver probably by inducing oxidative damage by enhancing lipid peroxidation and altering the antioxidant system of the cells. Although, the exact role metallothionein induction plays in this process is unknown, it probably, provides a cytosolic pool of potential binding sites to sequester ionic Cd, thereby decreasing its toxicity.

  3. BMP4 inhibits PDGF-induced proliferation and collagen synthesis via PKA-mediated inhibition of calpain-2 in pulmonary artery smooth muscle cells.

    PubMed

    Cai, Pengcheng; Kovacs, Laszlo; Dong, Sam; Wu, Guangyu; Su, Yunchao

    2017-05-01

    In the present study, we investigated the effect of bone morphogenetic protein 4 (BMP4) on PDGF-induced cell proliferation and collagen synthesis in pulmonary artery smooth muscle cells (PASMCs). Normal human PASMCs were incubated with and without PDGF-BB in the absence and presence of BMP4 for 0.5 to 24 h. The protein levels of collagen-I, p-Smad2/3, p-Smad1/5, and intracellular active TGF-β1, calpain activity, and cell proliferation were then measured. The results showed that BMP4 induced an increase in p-Smad1/5 but had no effect on the protein levels of collagen-I, p-Smad2/3, and intracellular active TGF-β1 and calpain activity in control PASMCs. Nevertheless, BMP4 attenuated increases in cell proliferation and protein levels of collagen-I, p-Smad2/3, and intracellular active TGF-β1 and calpain activity in PASMCs exposed to PDGF-BB. Moreover, BMP4 increased PKA activity and inhibition of PKA prevented the inhibitory effects of BMP4 on PDGF-BB-induced calpain activation in normal PASMCs. The PKA activator forskolin recapitulated the suppressive effect of BMP4 on PDGF-induced calpain activation. Furthermore, BMP4 prevented a PDGF-induced decrease in calpain-2 phosphorylation at serine-369 in normal PASMCs. Finally, BMP4 did not attenuate PDGF-induced increases in cell proliferation, collagen-I protein levels, and calpain activation and did not induce PKA activation and did not prevent a PDGF-induced decrease in calpain-2 phosphorylation at serine-369 in PASMCs from idiopathic pulmonary arterial hypertension (PAH) patients. These data demonstrate that BMP4 inhibits PDGF-induced cell proliferation and collagen synthesis via PKA-mediated inhibition of calpain-2 in normal PASMCs. The inhibitory effects of BMP4 on PDGF-induced cell proliferation, collagen synthesis, and calpain-2 activation are impaired in PASMCs from PAH patients, which may contribute to pulmonary vascular remodeling in PAH.

  4. Rebamipide suppresses collagen-induced arthritis through reciprocal regulation of th17/treg cell differentiation and heme oxygenase 1 induction.

    PubMed

    Moon, Su-Jin; Park, Jin-Sil; Woo, Yun-Ju; Lim, Mi-Ae; Kim, Sung-Min; Lee, Seon-Yeong; Kim, Eun-Kyung; Lee, Hee Jin; Lee, Weon Sun; Park, Sang-Hi; Jeong, Jeong-Hee; Park, Sung-Hwan; Kim, Ho-Youn; Cho, Mi-La; Min, Jun-Ki

    2014-04-01

    Rebamipide, a gastroprotective agent, has the ability to scavenge reactive oxygen radicals. Increased oxidative stress is implicated in the pathogenesis of rheumatoid arthritis (RA). We undertook this study to investigate the impact of rebamipide on the development of arthritis and the pathophysiologic mechanisms by which rebamipide attenuates arthritis severity in a murine model of RA. Collagen-induced arthritis (CIA) was induced in DBA/1J mice. Anti-type II collagen antibody titers and interleukin-17 (IL-17) levels were determined using enzyme-linked immunosorbent assay. The expression of transcription factors was analyzed by immunostaining and Western blotting. Frequencies of IL-17-producing CD4+ T cells (Th17 cells) and CD4+CD25+FoxP3+ Treg cells were analyzed by flow cytometry. Rebamipide reduced the clinical arthritis score and severity of histologic inflammation and cartilage destruction in a dose-dependent manner. The joints isolated from rebamipide-treated mice with CIA showed decreased expression of nitrotyrosine, an oxidative stress marker. Rebamipide-treated mice showed lower circulating levels of type II collagen-specific IgG, IgG1, and IgG2a. Whereas the number of Th17 cells in spleens was decreased in rebamipide-treated mice with CIA, a significant increase in the number of Treg cells in spleens was observed. In vitro, rebamipide inhibited Th17 cell differentiation through STAT-3/retinoic acid receptor-related orphan nuclear receptor γt and reciprocally induced Treg cell differentiation through FoxP3. Rebamipide increased Nrf2 nuclear activities in murine CD4+ T cells and LBRM-33 murine T lymphoma cells. Heme oxygenase 1 (HO-1) expression in the spleens was markedly increased in rebamipide-treated mice. The inhibitory effects of rebamipide on joint inflammation are associated with recovery from an imbalance between Th17 cells and Treg cells and with activation of an Nrf2/HO-1 antioxidant pathway. Copyright © 2014 by the American College of

  5. Protective effects of Huang-Lian-Jie-Du-Tang and its component group on collagen-induced arthritis in rats.

    PubMed

    Hu, Yaohua; Hu, Zhenlin; Wang, Shuping; Dong, Xinxin; Xiao, Cheng; Jiang, Miao; Lv, Aiping; Zhang, Weidong; Liu, Runhui

    2013-12-12

    Huang-Lian-Jie-Du-Tang is a famous Traditional Chinese medicine consisting of Rhizoma coptidis (Coptis chinensis Franch, Ranunculaceae), Radix scutellariae (Scutellaria baicalensis Georgi, Labiatae), Cortex phellodendri (Phellodendron amurense Rupr. Rutaceae) and Fructus gardeniae (Gardenia jasminoide Ellis, Rubiaceae) in a weight ratio of 3:2:2:3.This formula was described by Wang Tao (in the Chinese Tang Dynasty) in his treatise "Wai Tai Mi Yao". It has been used to treat inflammation, hypertension, gastrointestinal disorders, and liver and cerebrovascular diseases in the clinical practice of Traditional Chinese medicine, especially in treating inflammation for nearly two thousand years. However, the essential compounds in it have not been identified, and the mechanisms remain to be addressed. To investigate the protective effects of HLJDT and its component group (HLJDT-CG) on collagen-induced arthritis in rats. CIA was established in male Wistar rats with subcutaneous injection of type II bovine collagen at the base of the tail of animals. CIA rats were treated daily with oral administration of HLJDT aqueous extracts (270 mg/kg) or HLJDT-CG (40 mg/kg) once per day from day 6 to day 28. Rats in normal and vehicle control groups were given an equal volume of vehicle (0.9% saline) and 0.025 mg/kg Dexamethasone was given to the Standard group at the same time. The protective effect of them were assessed by measuring arthritis index, swelling, the cytokines such as TNF-α, IFN-γ and IL-17 in serum, type II collagen antibodies, splenocyte proliferation and so on. The results demonstrated that treatment of CIA rat with either HLJDT aqueous extracts or HLJDT-CG not only ameliorated the symptoms of arthritis, prevented joint damage but also reduced the serum levels of TNF-α, IFN-γ and IL-17 in CIA rats. Anti-CII antibodies showed the similar trend except that of IgG1. Furthermore, HLJDT aqueous extracts and HLJDT-CG administration also suppressed CII-induced

  6. Simvastatin inhibits transforming growth factor-β1-induced expression of type I collagen, CTGF, and α-SMA in keloid fibroblasts.

    PubMed

    Mun, Je-Ho; Kim, Young-Mi; Kim, Byung-Soo; Kim, Jae-Ho; Kim, Moon-Bum; Ko, Hyun-Chang

    2014-01-01

    Simvastatin, a 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitor, is used to reduce cholesterol levels. Accumulating evidence has revealed the immunomodulatory and anti-inflammatory effects of simvastatin that prevent cardiovascular diseases. In addition, the beneficial effects of statins on fibrosis of various organs have been reported. However, the functional effect of statins on dermal fibrosis of keloids has not yet been explored. The objective of this study was to determine whether simvastatin could affect dermal fibrosis associated with keloids. We examined the effect of simvastatin on transforming growth factor (TGF)-β1-induced production of type I collagen, connective tissue growth factor (CTGF or CCN2), and α-smooth muscle actin (α-SMA). Keloid fibroblasts were cultured and exposed to different concentrations of simvastatin in the presence of TGF-β1, and the effects of simvastatin on TGF-β1-induced collagen and CTGF production in keloid fibroblasts were determined. The type I collagen, CTGF, and α-SMA expression levels and the Smad2 and Smad3 phosphorylation levels were assessed by Western blotting. The effect of simvastatin on cell viability was evaluated by assessing the colorimetric conversion of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide. Simvastatin suppressed TGF-β1-induced type I collagen, CTGF, and α-SMA production in a concentration-dependent manner. The TGF-β1-induced Smad2 and Smad3 phosphorylation levels were abrogated by simvastatin pretreatment. The inhibition of type I collagen, CTGF, and α-SMA expression by simvastatin was reversed by geranylgeranyl pyrophosphate, suggesting that the simvastatin-induced cellular responses were due to inhibition of small GTPase Rho involvement. A RhoA activation assay showed that preincubation with simvastatin significantly blocked TGF-β1-induced RhoA activation. The Rho-associated coiled kinase inhibitor Y27632 abrogated TGF-β1-induced production of type I collagen

  7. Engineering fibrin-based tissue constructs from myofibroblasts and application of constraints and strain to induce cell and collagen reorganization.

    PubMed

    de Jonge, Nicky; Baaijens, Frank P T; Bouten, Carlijn V C

    2013-10-28

    Collagen content and organization in developing collagenous tissues can be influenced by local tissue strains and tissue constraint. Tissue engineers aim to use these principles to create tissues with predefined collagen architectures. A full understanding of the exact underlying processes of collagen remodeling to control the final tissue architecture, however, is lacking. In particular, little is known about the (re)orientation of collagen fibers in response to changes in tissue mechanical loading conditions. We developed an in vitro model system, consisting of biaxially-constrained myofibroblast-seeded fibrin constructs, to further elucidate collagen (re)orientation in response to i) reverting biaxial to uniaxial static loading conditions and ii) cyclic uniaxial loading of the biaxially-constrained constructs before and after a change in loading direction, with use of the Flexcell FX4000T loading device. Time-lapse confocal imaging is used to visualize collagen (re)orientation in a nondestructive manner. Cell and collagen organization in the constructs can be visualized in real-time, and an internal reference system allows us to relocate cells and collagen structures for time-lapse analysis. Various aspects of the model system can be adjusted, like cell source or use of healthy and diseased cells. Additives can be used to further elucidate mechanisms underlying collagen remodeling, by for example adding MMPs or blocking integrins. Shape and size of the construct can be easily adapted to specific needs, resulting in a highly tunable model system to study cell and collagen (re)organization.

  8. Hypoxic culture conditions induce increased metabolic rate and collagen gene expression in ACL-derived cells.

    PubMed

    Kowalski, Tomasz J; Leong, Natalie L; Dar, Ayelet; Wu, Ling; Kabir, Nima; Khan, Adam Z; Eliasberg, Claire D; Pedron, Andrew; Karayan, Ashant; Lee, Siyoung; Di Pauli von Treuheim, Theodor; Jiacheng, Jin; Wu, Ben M; Evseenko, Denis; McAllister, David R; Petrigliano, Frank A

    2016-06-01

    There has been substantial effort directed toward the application of bone marrow and adipose-derived mesenchymal stromal cells (MSCs) in the regeneration of musculoskeletal tissue. Recently, resident tissue-specific stem cells have been described in a variety of mesenchymal structures including ligament, tendon, muscle, cartilage, and bone. In the current study, we systematically characterize three novel anterior cruciate ligament (ACL)-derived cell populations with the potential for ligament regeneration: ligament-forming fibroblasts (LFF: CD146(neg) , CD34(neg) CD44(pos) , CD31(neg) , CD45(neg) ), ligament perivascular cells (LPC: CD146(pos) CD34(neg) CD44(pos) , CD31(neg) , CD45(neg) ) and ligament interstitial cells (LIC: CD34(pos) CD146(neg) , CD44(pos) , CD31(neg) , CD45(neg) )-and describe their proliferative and differentiation potential, collagen gene expression and metabolism in both normoxic and hypoxic environments, and their trophic potential in vitro. All three groups of cells (LIC, LPC, and LFF) isolated from adult human ACL exhibited progenitor cell characteristics with regard to proliferation and differentiation potential in vitro. Culture in low oxygen tension enhanced the collagen I and III gene expression in LICs (by 2.8- and 3.3-fold, respectively) and LFFs (by 3- and 3.5-fold, respectively) and increased oxygen consumption rate and extracellular acidification rate in LICs (by 4- and 3.5-fold, respectively), LFFs (by 5.5- and 3-fold, respectively), LPCs (by 10- and 4.5-fold, respectively) as compared to normal oxygen concentration. In summary, this study demonstrates for the first time the presence of three novel progenitor cell populations in the adult ACL that demonstrate robust proliferative and matrix synthetic capacity; these cells may play a role in local ligament regeneration, and consequently represent a potential cell source for ligament engineering applications. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc

  9. Oncostatin M stimulates proliferation, induces collagen production and inhibits apoptosis of human lung fibroblasts

    PubMed Central

    Scaffidi, Amelia K; Mutsaers, Steven E; Moodley, Yuben P; McAnulty, Robin J; Laurent, Geoffrey J; Thompson, Philip J; Knight, Darryl A

    2002-01-01

    Oncostatin M (OSM), a member of the interleukin-6 (IL-6) cytokine family, acts on a variety of cells and elicits diversified biological responses, suggesting potential roles in the regulation of cell survival, differentiation and proliferation.We have examined the effect of OSM on the regulation of human lung fibroblast proliferation, collagen production and spontaneous apoptosis. The proliferative effects of OSM (0.5 – 100 ng ml−1) were assessed using a MTS assay as well as [3H]-thymidine incorporation and cell counts at 24 and 48 h. Hydroxyproline was measured as an index of procollagen production by high pressure liquid chromotography (HPLC). Apoptosis was determined by annexin staining.OSM enhanced the mitotic activity of lung fibroblasts in a time and dose dependent manner. Maximum proliferation of 57% above control was observed after incubation for 48 h with 2 ng ml−1 OSM (P<0.05).Incubation with the mitogen activated protein kinase (MAPK) kinase inhibitor, PD98059 or the tyrosine kinase inhibitor, genestein both significantly reduced the mitogenic effect of OSM (P<0.05).In contrast, proliferation in response to OSM was not regulated by induction of cyclo-oxygenase and subsequent prostaglandin E2 (PGE2) release or by IL-6.OSM also stimulated fibroblasts to synthesize pro-collagen by a maximum of 35% above control levels after 48 h (P<0.05).OSM significantly inhibited the spontaneous apoptosis of fibroblasts at 24 and 48 h.These results provide evidence that OSM has pro-fibrotic properties and suggest that it may play a role in normal lung wound repair and fibrosis. PMID:12086989

  10. Definition of MHC and T cell receptor contacts in the HLA-DR4restricted immunodominant epitope in type II collagen and characterization of collagen-induced arthritis in HLA-DR4 and human CD4 transgenic mice

    PubMed Central

    Andersson, Ellen Christina; Hansen, Bjarke Endel; Jacobsen, Helle; Madsen, Lars S.; Andersen, Claus B.; Engberg, Jan; Rothbard, Jonathan B.; McDevitt, Grete Sønderstrup; Malmström, Vivianne; Holmdahl, Rikard; Svejgaard, Arne; Fugger, Lars

    1998-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease associated with the HLA-DR4 and DR1 alleles. The target autoantigen(s) in RA is unknown, but type II collagen (CII) is a candidate, and the DR4- and DR1-restricted immunodominant T cell epitope in this protein corresponds to amino acids 261–273 (CII 261–273). We have defined MHC and T cell receptor contacts in CII 261–273 and provide strong evidence that this peptide corresponds to the peptide binding specificity previously found for RA-associated DR molecules. Moreover, we demonstrate that HLA-DR4 and human CD4 transgenic mice homozygous for the I-Abβ0 mutation are highly susceptible to collagen-induced arthritis and describe the clinical course and histopathological changes in the affected joints. PMID:9636191

  11. Anti-inflammatory activities of light emitting diode irradiation on collagen-induced arthritis in mice (a secondary publication)

    PubMed Central

    Ohta, Mitsuhiro; Sato, Yusuke; Abiko, Yoshimitsu

    2014-01-01

    Background and aims: Rheumatoid arthritis (RA) is an auto-immune disease afflicting multiple joints of the body, where as a result of the increase in inflammatory cytokines and tissue destructive factors such as matrix metalloproteinase (MMP)-3, deterioration of the bones and cartilages of the joints occurs. The present investigation was carried out to study the anti-inflammatory activities of light emitting diode (LED) irradiation on hind paw inflammation in collagen-induced arthritis (CIA) mice models. Materials and method: RA in the CIA mouse model was induced by immunization of DBA/1J mice with intradermal injections of an emulsion of bovine type II collagen and complete Freund's adjuvant. A total of 20 CIA mice were subdivided into the following groups: control group, CIA group and 2 groups of LED irradiated CIA mice (LED groups) (n=5 per group). The mouse knee joint area in the LED groups (the 570 nm and 940 nm groups) was irradiated with LED energy, three times a week for 500 s per session over 8 weeks at a dose of 5 J/cm2. The hind paw swelling was assessed by the increase in hind paw thickness. The serum levels of the inflammatory cytokines and arthritic factor MMP-3 were determined with an enzyme-linked immunosorbent assay (ELISA). Results: In the LED-570 and LED-940 groups at 4 weeks after arthritis induction, the swelling inhibition index was 18.1±4.9 and 29.3±4.0 respectively. Interleukin (IL)-1β, IL-6 and MMP-3 serum levels were significantly lower in the LED-940 group. Conclusions: LED irradiation, particularly in the near-infrared was effective for inhibition of the inflammatory reactions caused by RA. PMID:25368445

  12. Combination of Collagen-Based Scaffold and Bioactive Factors Induces Adipose-Derived Mesenchymal Stem Cells Chondrogenic Differentiation In vitro

    PubMed Central

    Calabrese, Giovanna; Forte, Stefano; Gulino, Rosario; Cefalì, Francesco; Figallo, Elisa; Salvatorelli, Lucia; Maniscalchi, Eugenia T.; Angelico, Giuseppe; Parenti, Rosalba; Gulisano, Massimo; Memeo, Lorenzo; Giuffrida, Raffaella

    2017-01-01

    Recently, multipotent mesenchymal stem cells (MSCs) have attracted much attention in the field of regenerative medicine due to their ability to give rise to different cell types, including chondrocytes. Damaged articular cartilage repair is one of the most challenging issues for regenerative medicine, due to the intrinsic limited capability of cartilage to heal because of its avascular nature. While surgical approaches like chondral autografts and allografts provide symptoms and function improvement only for a short period, MSC based stimulation therapies, like microfracture surgery or autologous matrix-induced chondrogenesis demonstrate to be more effective. The use of adult chondrocytes, which are the main cellular constituent of cartilage, in medical practice, is indeed limited due to their instability in monolayer culture and difficulty to collect donor tissue (articular and nasal cartilage). The most recent cartilage engineering approaches combine cells, biomaterial scaffold and bioactive factors to promote functional tissue replacements. Many recent evidences demonstrate that scaffolds providing specific microenvironmental conditions can promote MSCs differentiation toward a functional phenotype. In the present work, the chondrogenic potential of a new Collagen I based 3D scaffold has been assessed in vitro, in combination with human adipose-derived MSCs which possess a higher chondrogenic potential compared to MSCs isolated from other tissues. Our data indicate that the scaffold was able to promote the early stages of chondrogenic commitment and that supplementation of specific soluble factors was able to induce the complete differentiation of MSCs in chondrocytes as demonstrated by the appearance of cartilage distinctive markers (Sox 9, Aggrecan, Matrilin-1, and Collagen II), as well as by the cartilage-specific Alcian Blue staining and by the acquisition of typical cellular morphology. Such evidences suggest that the investigated scaffold formulation could

  13. Individual isomers of conjugated linoleic acid reduce inflammation associated with established collagen-induced arthritis in DBA/1 mice.

    PubMed

    Huebner, Shane M; Campbell, James P; Butz, Daniel E; Fulmer, Tyler G; Gendron-Fitzpatrick, Annette; Cook, Mark E

    2010-08-01

    Previously, dietary conjugated linoleic acid [(CLA), an equal mixture of cis-9, trans-11 (c9t11) and trans-10, cis-12 (t10c12) CLA isomers], was found to reduce inflammation in the murine collagen antibody-induced arthritis model, but less so in the murine collagen-induced arthritis (CIA) model, an arthritic model dependent upon acquired immunity. Because CLA is known to alter the acquired immune response, it was hypothesized that feeding CLA after the establishment of arthritis would reduce paw swelling in the CIA model. In this study, upon the establishment of arthritic symptoms, mice were randomized to the following dietary treatments: corn oil (CO) control (n = 6), 0.5% c9t11-CLA (n = 8), 0.5% t10c12-CLA (n = 6), or 1% combined CLA (1:1 c9t11:t10c12-CLA, n = 6). Paws were scored for severity of arthritis and measured for changes in thickness during an 84-d study period. Dietary c9t11- and combined-CLA similarly decreased the arthritic score (29%, P = 0.036, P = 0.049, respectively, when normalized to initial score) and paw thickness (0.11 mm, P = 0.027, P = 0.035, respectively) compared with CO. Dietary t10c12-CLA reduced the arthritic score (41%, P = 0.007 when normalized) and paw thickness (0.12 mm, P = 0.013) relative to CO. Reduced interleukin-1beta on d 7 and 21 for all CLA treatments (n = 3) relative to CO suggested that antiinflammatory effects of CLA isomers might work by common mechanisms of known pathways involved in chronic inflammation. In conclusion, dietary CLA reduced inflammation associated with CIA, and both c9t11-CLA and t10c12-CLA exhibited antiinflammatory effects.

  14. Morphological characterization of intra-articular HMGB1 expression during the course of collagen-induced arthritis

    PubMed Central

    Palmblad, Karin; Sundberg, Erik; Diez, Margarita; Söderling, Riikka; Aveberger, Ann-Charlotte; Andersson, Ulf; Harris, Helena Erlandsson

    2007-01-01

    High-mobility group chromosomal box protein 1 (HMGB1) is a structural nuclear protein that promotes inflammation when present extracellularly. Aberrant, extracellular HMGB1 expression has been demonstrated in human and experimental synovitis. The aim of the present study was to elucidate the temporal and spatial expression of HMGB1 compared to that of the central mediators tumor necrosis factor (TNF) and interleukin-1-beta (IL-1β) during the course of collagen-induced arthritis. Thus, Dark Agouti rats were immunized with homologous type II collagen and synovial tissue specimens were obtained at various time points prior to and during the course of clinical arthritis. Local cytokine responses were assessed by immunohistochemistry and by in situ hybridization. We demonstrate a distinct nuclear expression of HMGB1 at early disease-preceding time points. Preceding clinical onset by a few days, cytoplasmic HMGB1 expression was evident in synoviocytes within the non-proliferative lining layer. Pronounced cytoplasmic and additional extracellular HMGB1 expression coincided with the progression of clinical disease. In advanced arthritis, the number of cells with cytoplasmic HMGB1 expression was quantitatively comparable to that of cells expressing TNF and IL-1β. Interestingly, although HMGB1 was abundantly expressed throughout the inflamed synovium at a protein level, upregulation of HMGB1 mRNA was restricted mainly to areas of cartilage and bone destruction. In conclusion, these new findings implicate a role for HMGB1 in both inducing and perpetuating inflammatory events of significant importance in the destructive processes in chronic arthritis. PMID:17397533

  15. The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis

    PubMed Central

    Malfait, A. M.; Gallily, R.; Sumariwalla, P. F.; Malik, A. S.; Andreakos, E.; Mechoulam, R.; Feldmann, M.

    2000-01-01

    The therapeutic potential of cannabidiol (CBD), the major nonpsychoactive component of cannabis, was explored in murine collagen-induced arthritis (CIA). CIA was elicited by immunizing DBA/1 mice with type II collagen (CII) in complete Freund's adjuvant. The CII used was either bovine or murine, resulting in classical acute CIA or in chronic relapsing CIA, respectively. CBD was administered after onset of clinical symptoms, and in both models of arthritis the treatment effectively blocked progression of arthritis. CBD was equally effective when administered i.p. or orally. The dose dependency showed a bell-shaped curve, with an optimal effect at 5 mg/kg per day i.p. or 25 mg/kg per day orally. Clinical improvement was associated with protection of the joints against severe damage. Ex vivo, draining lymph node cells from CBD-treated mice showed a diminished CII-specific proliferation and IFN-γ production, as well as a decreased release of tumor necrosis factor by knee synovial cells. In vitro effects of CBD included a dose-dependent suppression of lymphocyte proliferation, both mitogen-stimulated and antigen-specific, and the blockade of the Zymosan-triggered reactive oxygen burst by peritoneal granulocytes. It also was found that CBD administration was capable of blocking the lipopolysaccharide-induced rise in serum tumor necrosis factor in C57/BL mice. Taken together, these data show that CBD, through its combined immunosuppressive and anti-inflammatory actions, has a potent anti-arthritic effect in CIA. PMID:10920191

  16. A Broad Blockade of Signaling from the IL-20 Family of Cytokines Potently Attenuates Collagen-Induced Arthritis.

    PubMed

    Liu, Xinyu; Zhou, Hong; Huang, Xueqin; Cui, Jingjing; Long, Tianzhen; Xu, Yang; Liu, Haipeng; Yu, Ruoxuan; Zhao, Rongchuan; Luo, Guangping; Huang, Anliang; Liang, Joshua G; Liang, Peng

    2016-10-15

    Two heterodimeric receptors consisting of either IL-20R1 or IL-22R1 in complex with a common β receptor subunit IL-20R2 are shared by three of the IL-20 family of cytokines: IL-19, IL-20, and IL-24. These proinflammatory cytokines have been implicated in the pathogenesis of some autoimmune diseases, including rheumatoid arthritis (RA), psoriasis, and atopic dermatitis. Although mAbs against IL-19 and IL-20 have each been shown to modulate disease severity of collagen-induced arthritis in animal models, and anti-IL-20 therapeutic Ab has exhibited some efficacy in the treatment of RA in clinical trials, benefits for a complete blockade of these functionally redundant cytokines remain to be explored. In this report, we show that recombinant human soluble IL-20R2-Fc fusion protein binds to IL-19, IL-20, and IL-24 with similar high affinity and blocks their signaling in vitro. In DBA/1 mouse collagen-induced arthritis model, recombinant human IL-20R2-Fc exhibits comparable efficacy as TNF blocker etanercept in the treatment of established arthritis, whereas the combined use of both biologics manifests little synergistic therapeutic effects. In situ ligand-receptor functional binding analysis shows that a large amount of immune infiltrates expressing high levels of TNFR and IL-20 subfamily cytokines congregate within the inflamed disease tissues. Colocalization experiments reveal that signals from IL-20R2 and TNF transduction pathways seem to converge in macrophages and function in tandem in orchestrating the pathogenesis of RA. Elucidation of this interaction provides a better understanding of cytokine cross-talk in RA and a rationale for more effective biologic therapies that target IL-20R2 instead of individual cytokines from IL-20 family. Copyright © 2016 by The American Association of Immunologists, Inc.

  17. Effect of an herbal mixture of Cinnamon Cortex, Persicae Semen, and Natril Sulfas on collagen-induced arthritis and lipopolysaccharides-induced nuclear factor-κ B signaling.

    PubMed

    Lee, Ji-Won; Lew, Jae-Hwan; Kim, Tae-Woo; Kang, Hee

    2016-11-17

    To investigate the anti-arthritic and anti-inflammatory effects of the mixture of three herbal agents, Cinnamon Cortex, Persica Semen, and Natril Sulfas (CPN), the major ingredients of Taoren Chengqi Decoction (). Collagen-induced arthritis (CIA) was induced by immunization with bovine type II collagen on day 1 and 21. DBA/1J mice were orally administered the water extract of CPN (100 and 500 mg/kg) and indomethacin (1 mg/kg) or vehicle (water) 3 times per week for 6 weeks. Arthritic symptoms were recorded on day 29, 31, 33, 36 and 38. On sacrififi ce, serum was obtained for inflammatory markers and anti-collagen antibodies as well as arthritic joints were obtained for histologic analysis. For the evaluation of in vitro anti-inflammatory mechanism of CPN, peritoneal macrophages were isolated from thioglycollate injected C57BL/6 mice and stimulated with lipopolysaccharides (LPS) for 15 min in the presence of CPN extract. Levels of inhibitor of NF-κB α isoform (IκBα), phospho-p38, phospho-C-Jun N-terminal kinases (JNK) and phospho-extracellular signal-regulated kinase 1/2 (ERK1/2) were detected by Western blot. Compared with mice in CIA group, oral administration of CPN signififi cantly reduced the clinical scores (P<0.05), histological analysis revealed the