Science.gov

Sample records for collagen internalization receptor

  1. A novel functional role of collagen glycosylation: interaction with the endocytic collagen receptor uparap/ENDO180.

    PubMed

    Jürgensen, Henrik J; Madsen, Daniel H; Ingvarsen, Signe; Melander, Maria C; Gårdsvoll, Henrik; Patthy, Laszlo; Engelholm, Lars H; Behrendt, Niels

    2011-09-16

    Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains, the function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose receptor protein family. These proteins all include a fibronectin type II domain and a series of C-type lectin-like domains, of which only a minor part possess carbohydrate recognition activity. At least two of the family members, uPARAP/Endo180 and the mannose receptor, interact with collagens. The molecular basis for this interaction is known to involve the fibronectin type II domain but nothing is known about the function of the lectin domains in this respect. In this study, we have investigated a possible role of the single active lectin domain of uPARAP/Endo180 in the interaction with collagens. By expressing truncated recombinant uPARAP/Endo180 proteins and analyzing their interaction with collagens with high and low levels of glycosylation we demonstrated that this lectin domain interacts directly with glycosylated collagens. This interaction is functionally important because it was found to modulate the endocytic efficiency of the receptor toward highly glycosylated collagens such as basement membrane collagen IV. Surprisingly, this property was not shared by the mannose receptor, which internalized glycosylated collagens independently of its lectin function. This role of modulating its uptake efficiency by a specific receptor is a previously unrecognized function of collagen glycosylation.

  2. Complex Determinants in Specific Members of the Mannose Receptor Family Govern Collagen Endocytosis*

    PubMed Central

    Jürgensen, Henrik J.; Johansson, Kristina; Madsen, Daniel H.; Porse, Astrid; Melander, Maria C.; Sørensen, Kristine R.; Nielsen, Christoffer; Bugge, Thomas H.; Behrendt, Niels; Engelholm, Lars H.

    2014-01-01

    Members of the well-conserved mannose receptor (MR) protein family have been functionally implicated in diverse biological and pathological processes. Importantly, a proposed common function is the internalization of collagen for intracellular degradation occurring during bone development, cancer invasion, and fibrosis protection. This functional relationship is suggested by a common endocytic capability and a candidate collagen-binding domain. Here we conducted a comparative investigation of each member's ability to facilitate intracellular collagen degradation. As expected, the family members uPARAP/Endo180 and MR bound collagens in a purified system and internalized collagens for degradation in cellular settings. In contrast, the remaining family members, PLA2R and DEC-205, showed no collagen binding activity and were unable to mediate collagen internalization. To pinpoint the structural elements discriminating collagen from non-collagen receptors, we constructed a series of receptor chimeras and loss- and gain-of-function mutants. Using this approach we identified a critical collagen binding loop in the suggested collagen binding region (an FN-II domain) in uPARAP/Endo180 and MR, which was different in PLA2R or DEC-205. However, we also found that an active FN-II domain was not a sufficient determinant to allow collagen internalization through these receptors. Nevertheless, this ability could be acquired by the transfer of a larger segment of uPARAP/Endo180 (the Cys-rich domain, the FN-II domain and two CTLDs) to DEC-205. These data underscore the importance of the FN-II domain in uPARAP/Endo180 and MR-mediated collagen internalization but at the same time uncover a critical interplay with flanking domains. PMID:24500714

  3. Complex determinants in specific members of the mannose receptor family govern collagen endocytosis.

    PubMed

    Jürgensen, Henrik J; Johansson, Kristina; Madsen, Daniel H; Porse, Astrid; Melander, Maria C; Sørensen, Kristine R; Nielsen, Christoffer; Bugge, Thomas H; Behrendt, Niels; Engelholm, Lars H

    2014-03-14

    Members of the well-conserved mannose receptor (MR) protein family have been functionally implicated in diverse biological and pathological processes. Importantly, a proposed common function is the internalization of collagen for intracellular degradation occurring during bone development, cancer invasion, and fibrosis protection. This functional relationship is suggested by a common endocytic capability and a candidate collagen-binding domain. Here we conducted a comparative investigation of each member's ability to facilitate intracellular collagen degradation. As expected, the family members uPARAP/Endo180 and MR bound collagens in a purified system and internalized collagens for degradation in cellular settings. In contrast, the remaining family members, PLA2R and DEC-205, showed no collagen binding activity and were unable to mediate collagen internalization. To pinpoint the structural elements discriminating collagen from non-collagen receptors, we constructed a series of receptor chimeras and loss- and gain-of-function mutants. Using this approach we identified a critical collagen binding loop in the suggested collagen binding region (an FN-II domain) in uPARAP/Endo180 and MR, which was different in PLA2R or DEC-205. However, we also found that an active FN-II domain was not a sufficient determinant to allow collagen internalization through these receptors. Nevertheless, this ability could be acquired by the transfer of a larger segment of uPARAP/Endo180 (the Cys-rich domain, the FN-II domain and two CTLDs) to DEC-205. These data underscore the importance of the FN-II domain in uPARAP/Endo180 and MR-mediated collagen internalization but at the same time uncover a critical interplay with flanking domains.

  4. Discoidin domain receptor 2 inhibits fibrillogenesis of collagen type 1.

    PubMed

    Mihai, Cosmin; Iscru, Daniel F; Druhan, Lawrence J; Elton, Terry S; Agarwal, Gunjan

    2006-09-01

    Discoidin domain receptors (DDR1 and DDR2) are widely expressed cell-surface receptors, which bind to and are activated by collagens, including collagen type 1. Activation of DDRs and the resulting downstream signaling is known to regulate the extracellular matrix. However, little is known about how DDRs interact with collagen and its direct impact on collagen regulation. Here, we have established that by binding to collagen, the extracellular domain (ECD) of DDR2 inhibits collagen fibrillogenesis and alters the morphology of collagen type 1 fibers. Our in vitro assays utilized DDR2-Fc fusion proteins, which contain only the ECD of DDR2. Using surface plasmon resonance, we confirmed that further oligomerization of DDR2-Fc (by means of anti-Fc antibody) greatly enhances its binding to immobilized collagen type 1. Collagen turbidity measurements and biochemical assays indicated that DDR2 delays the formation of collagen fibrils. Atomic force microscopy of soluble collagen revealed that a predominately monomeric state of collagen was present with DDR2, while control solutions had an abundance of polymeric collagen. Transmission electron microscopy of collagen fibers, showed that the native periodic banded structure of collagen fibers was weakened and nearly absent in the presence of DDR2. Further, using a cell-based assay we demonstrate that overexpression of full length DDR2 inhibits fibrillogenesis of collagen type 1. Our results demonstrate a novel and important functional role of the DDR2 ECD that may contribute to collagen regulation via modulation of fibrillogenesis.

  5. M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway.

    PubMed

    Madsen, Daniel H; Leonard, Daniel; Masedunskas, Andrius; Moyer, Amanda; Jürgensen, Henrik Jessen; Peters, Diane E; Amornphimoltham, Panomwat; Selvaraj, Arul; Yamada, Susan S; Brenner, David A; Burgdorf, Sven; Engelholm, Lars H; Behrendt, Niels; Holmbeck, Kenn; Weigert, Roberto; Bugge, Thomas H

    2013-09-16

    Tissue remodeling processes critically depend on the timely removal and remodeling of preexisting collagen scaffolds. Nevertheless, many aspects related to the turnover of this abundant extracellular matrix component in vivo are still incompletely understood. We therefore took advantage of recent advances in optical imaging to develop an assay to visualize collagen turnover in situ and identify cell types and molecules involved in this process. Collagen introduced into the dermis of mice underwent cellular endocytosis in a partially matrix metalloproteinase-dependent manner and was subsequently routed to lysosomes for complete degradation. Collagen uptake was predominantly executed by a quantitatively minor population of M2-like macrophages, whereas more abundant Col1a1-expressing fibroblasts and Cx3cr1-expressing macrophages internalized collagen at lower levels. Genetic ablation of the collagen receptors mannose receptor (Mrc1) and urokinase plasminogen activator receptor-associated protein (Endo180 and Mrc2) impaired this intracellular collagen degradation pathway. This study demonstrates the importance of receptor-mediated cellular uptake to collagen turnover in vivo and identifies a key role of M2-like macrophages in this process.

  6. Collagen Fibril Ultrastructure in Mice Lacking Discoidin Domain Receptor 1.

    PubMed

    Tonniges, Jeffrey R; Albert, Benjamin; Calomeni, Edward P; Roy, Shuvro; Lee, Joan; Mo, Xiaokui; Cole, Susan E; Agarwal, Gunjan

    2016-06-01

    The quantity and quality of collagen fibrils in the extracellular matrix (ECM) have a pivotal role in dictating biological processes. Several collagen-binding proteins (CBPs) are known to modulate collagen deposition and fibril diameter. However, limited studies exist on alterations in the fibril ultrastructure by CBPs. In this study, we elucidate how the collagen receptor, discoidin domain receptor 1 (DDR1) regulates the collagen content and ultrastructure in the adventitia of DDR1 knock-out (KO) mice. DDR1 KO mice exhibit increased collagen deposition as observed using Masson's trichrome. Collagen ultrastructure was evaluated in situ using transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Although the mean fibril diameter was not significantly different, DDR1 KO mice had a higher percentage of fibrils with larger diameter compared with their wild-type littermates. No significant differences were observed in the length of D-periods. In addition, collagen fibrils from DDR1 KO mice exhibited a small, but statistically significant, increase in the depth of the fibril D-periods. Consistent with these observations, a reduction in the depth of D-periods was observed in collagen fibrils reconstituted with recombinant DDR1-Fc. Our results elucidate how DDR1 modulates collagen fibril ultrastructure in vivo, which may have important consequences in the functional role(s) of the underlying ECM.

  7. Collagen Fibril Ultrastructure in Mice Lacking Discoidin Domain Receptor 1

    PubMed Central

    Tonniges, Jeffrey R.; Albert, Benjamin; Calomeni, Edward P.; Roy, Shuvro; Lee, Joan; Mo, Xiaokui; Cole, Susan E.; Agarwal, Gunjan

    2016-01-01

    The quantity and quality of collagen fibrils in the extracellular matrix (ECM) have a pivotal role in dictating biological processes. Several collagen-binding proteins (CBPs) are known to modulate collagen deposition and fibril diameter. However, limited studies exist on alterations in the fibril ultrastructure by CBPs. In this study, we elucidate how the collagen receptor, discoidin domain receptor 1 (DDR1) regulates the collagen content and ultrastructure in the adventitia of DDR1 knock-out (KO) mice. DDR1 KO mice exhibit increased collagen deposition as observed using Masson’s trichrome. Collagen ultrastructure was evaluated in situ using transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Although the mean fibril diameter was not significantly different, DDR1 KO mice had a higher percentage of fibrils with larger diameter compared with their wild-type littermates. No significant differences were observed in the length of D-periods. In addition, collagen fibrils from DDR1 KO mice exhibited a small, but statistically significant, increase in the depth of the fibril D-periods. Consistent with these observations, a reduction in the depth of D-periods was observed in collagen fibrils reconstituted with recombinant DDR1-Fc. Our results elucidate how DDR1 modulates collagen fibril ultrastructure in vivo, which may have important consequences in the functional role(s) of the underlying ECM. PMID:27329311

  8. Cell-collagen interactions: the use of peptide Toolkits to investigate collagen-receptor interactions.

    PubMed

    Farndale, Richard W; Lisman, Ton; Bihan, Dominique; Hamaia, Samir; Smerling, Christiane S; Pugh, Nicholas; Konitsiotis, Antonios; Leitinger, Birgit; de Groot, Philip G; Jarvis, Gavin E; Raynal, Nicolas

    2008-04-01

    Fibrillar collagens provide the most fundamental platform in the vertebrate organism for the attachment of cells and matrix molecules. We have identified specific sites in collagens to which cells can attach, either directly or through protein intermediaries. Using Toolkits of triple-helical peptides, each peptide comprising 27 residues of collagen primary sequence and overlapping with its neighbours by nine amino acids, we have mapped the binding of receptors and other proteins on to collagens II or III. Integrin alpha2beta1 binds to several GXX'GER motifs within the collagens, the affinities of which differ sufficiently to control cell adhesion and migration independently of the cellular regulation of the integrin. The platelet receptor, Gp (glycoprotein) VI binds well to GPO (where O is hydroxyproline)-containing model peptides, but to very few Toolkit peptides, suggesting that sequence in addition to GPO triplets is important in defining GpVI binding. The Toolkits have been applied to the plasma protein vWF (von Willebrand factor), which binds to only a single sequence, identified by truncation and amino acid substitution within Toolkit peptides, as GXRGQOGVMGFO in collagens II and III. Intriguingly, the receptor tyrosine kinase, DDR2 (discoidin domain receptor 2) recognizes three sites in collagen II, including its vWF-binding site, although the amino acids that support the interaction differ slightly within this motif. Furthermore, the secreted protein BM-40 (basement membrane protein 40) also binds well to this same region. Thus the availability of extracellular collagen-binding proteins may be important in regulating and facilitating direct collagen-receptor interaction.

  9. The discoidin domain receptor DDR2 is a receptor for type X collagen.

    PubMed

    Leitinger, Birgit; Kwan, Alvin P L

    2006-08-01

    During endochondral ossification, collagen X is deposited in the hypertrophic zone of the growth plate. Our previous results have shown that collagen X is capable of interacting directly with chondrocytes, primarily via integrin alpha2beta1. In this study, we determined whether collagen X could also interact with the non-integrin collagen receptors, discoidin domain receptors (DDRs), DDR1 or DDR2. The widely expressed DDRs are receptor tyrosine kinases that are activated by a number of different collagen types. Collagen X was found to be a much better ligand for DDR2 than for DDR1. Collagen X bound to the DDR2 extracellular domain with high affinity and stimulated DDR2 autophosphorylation, the first step in transmembrane signalling. Expression of DDR2 in the epiphyseal plate was confirmed by RT-PCR and immunohistochemistry. The spatial expression of DDR2 in the hypertrophic zone of the growth plate is consistent with a physiological interaction of DDR2 with collagen X. Surprisingly, the discoidin domain of DDR2, which fully contains the binding sites for the fibrillar collagens I and II, was not sufficient for collagen X binding. The nature of the DDR2 binding site(s) within collagen X was further analysed. In addition to a collagenous domain, collagen X contains a C-terminal NC1 domain. DDR2 was found to recognise the triple-helical region of collagen X as well as the NC1 domain. Binding to the collagenous region was dependent on the triple-helical conformation. DDR2 autophosphorylation was induced by the collagen X triple-helical region but not the NC1 domain, indicating that the triple-helical region of collagen X contains a specific DDR2 binding site that is capable of receptor activation. Our study is the first to describe a non-fibrillar collagen ligand for DDR2 and will form the basis for further studies into the biological function of collagen X during endochondral ossification.

  10. Recombinant Collagen Engineered to Bind to Discoidin Domain Receptor Functions as a Receptor Inhibitor.

    PubMed

    An, Bo; Abbonante, Vittorio; Xu, Huifang; Gavriilidou, Despoina; Yoshizumi, Ayumi; Bihan, Dominique; Farndale, Richard W; Kaplan, David L; Balduini, Alessandra; Leitinger, Birgit; Brodsky, Barbara

    2016-02-26

    A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities.

  11. Recombinant Collagen Engineered to Bind to Discoidin Domain Receptor Functions as a Receptor Inhibitor*

    PubMed Central

    An, Bo; Abbonante, Vittorio; Xu, Huifang; Gavriilidou, Despoina; Yoshizumi, Ayumi; Bihan, Dominique; Farndale, Richard W.; Kaplan, David L.; Balduini, Alessandra; Leitinger, Birgit; Brodsky, Barbara

    2016-01-01

    A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities. PMID:26702058

  12. Structural basis for collagen recognition by the immune receptor OSCAR

    PubMed Central

    Zhou, Long; Hinerman, Jennifer M.; Blaszczyk, Michal; Miller, Jeanette L. C.; Conrady, Deborah G.; Barrow, Alexander D.; Chirgadze, Dimitri Y.; Bihan, Dominique; Farndale, Richard W.

    2016-01-01

    The osteoclast-associated receptor (OSCAR) is a collagen-binding immune receptor with important roles in dendritic cell maturation and activation of inflammatory monocytes as well as in osteoclastogenesis. The crystal structure of the OSCAR ectodomain is presented, both free and in complex with a consensus triple-helical peptide (THP). The structures revealed a collagen-binding site in each immunoglobulin-like domain (D1 and D2). The THP binds near a predicted collagen-binding groove in D1, but a more extensive interaction with D2 is facilitated by the unusually wide D1-D2 interdomain angle in OSCAR. Direct binding assays, combined with site-directed mutagenesis, confirm that the primary collagen-binding site in OSCAR resides in D2, in marked contrast to the related collagen receptors, glycoprotein VI (GPVI) and leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1). Monomeric OSCAR D1D2 binds to the consensus THP with a KD of 28 µM measured in solution, but shows a higher affinity (KD 1.5 μM) when binding to a solid-phase THP, most likely due to an avidity effect. These data suggest a 2-stage model for the interaction of OSCAR with a collagen fibril, with transient, low-affinity interactions initiated by the membrane-distal D1, followed by firm adhesion to the primary binding site in D2. PMID:26552697

  13. Collagen binding specificity of the discoidin domain receptors: binding sites on collagens II and III and molecular determinants for collagen IV recognition by DDR1.

    PubMed

    Xu, Huifang; Raynal, Nicolas; Stathopoulos, Stavros; Myllyharju, Johanna; Farndale, Richard W; Leitinger, Birgit

    2011-01-01

    The discoidin domain receptors, DDR1 and DDR2 are cell surface receptor tyrosine kinases that are activated by triple-helical collagen. While normal DDR signalling regulates fundamental cellular processes, aberrant DDR signalling is associated with several human diseases. We previously identified GVMGFO (O is hydroxyproline) as a major DDR2 binding site in collagens I-III, and located two additional DDR2 binding sites in collagen II. Here we extend these studies to the homologous DDR1 and the identification of DDR binding sites on collagen III. Using sets of overlapping triple-helical peptides, the Collagen II and Collagen III Toolkits, we located several DDR2 binding sites on both collagens. The interaction of DDR1 with Toolkit peptides was more restricted, with DDR1 mainly binding to peptides containing the GVMGFO motif. Triple-helical peptides containing the GVMGFO motif induced DDR1 transmembrane signalling, and DDR1 binding and receptor activation occurred with the same amino acid requirements as previously defined for DDR2. While both DDRs exhibit the same specificity for binding the GVMGFO motif, which is present only in fibrillar collagens, the two receptors display distinct preferences for certain non-fibrillar collagens, with the basement membrane collagen IV being exclusively recognised by DDR1. Based on our recent crystal structure of a DDR2-collagen complex, we designed mutations to identify the molecular determinants for DDR1 binding to collagen IV. By replacing five amino acids in DDR2 with the corresponding DDR1 residues we were able to create a DDR2 construct that could function as a collagen IV receptor.

  14. A cell surface receptor complex for collagen type I recognizes the Arg- Gly-Asp sequence

    PubMed Central

    1987-01-01

    To isolate collagen-binding cell surface proteins, detergent extracts of surface-iodinated MG-63 human osteosarcoma cells were chromatographed on affinity matrices of either type I collagen- Sepharose or Sepharose carrying a collagen-like triple-helical peptide. The peptide was designed to be triple helical and to contain the sequence Arg-Gly-Asp, which has been implicated as the cell attachment site of fibronectin, vitronectin, fibrinogen, and von Willebrand factor, and is also present in type I collagen. Three radioactive polypeptides having apparent molecular masses of 250 kD, 70 kD, and 30 kD were distinguishable in that they showed affinity toward the collagen and collagen-like peptide affinity columns, and could be specifically eluted from these columns with a solution of an Arg-Gly- Asp-containing peptide, Gly-Arg-Gly-Asp-Thr-Pro. These collagen-binding polypeptides associated with phosphatidylcholine liposomes, and the resulting liposomes bound specifically to type I collagen or the collagen-like peptide but not to fibronectin or vitronectin or heat- denatured collagen. The binding of these liposomes to type I collagen could be inhibited with the peptide Gly-Arg-Gly-Asp-Thr-Pro and with EDTA, but not with a variant peptide Gly-Arg-Gly-Glu-Ser-Pro. We conclude from these data that these three polypeptides are membrane molecules that behave as a cell surface receptor (or receptor complex) for type I collagen by interacting with it through the Arg-Gly-Asp tripeptide adhesion signal. The lack of binding to denatured collagen suggests that the conformation of the Arg-Gly-Asp sequence is important in the recognition of collagen by the receptor complex. PMID:3469204

  15. Discoidin domain receptor 2 regulates the adhesion of fibroblasts to 3D collagen matrices.

    PubMed

    Kim, Daehwan; You, Eunae; Min, Na Young; Lee, Kwang-Ho; Kim, Hyoung Kyu; Rhee, Sangmyung

    2013-05-01

    The collagen matrix constitutes the primary extracellular matrix (ECM) portion of mammalian connective tissues in which the interaction of the cell and the surrounding collagen fibers has a significant impact on cell and tissue physiology, including morphogenesis, development and motility. Discoidin domain receptors (DDR1 and DDR2) have been identified as the receptor tyrosine kinases that are activated upon collagen binding. However, there is a lack of evidence regarding the effect of DDRs on the mechanical interaction between fibroblasts and ECM. In this study, we demonstrated that one of the major phosphotyrosine proteins in human fibroblasts during 3D collagen matrix polymerization is DDR2. Treatment of fibroblasts in 3D collagen matrices with platelet-derived growth factor (PDFG) has been shown to increase DDR2 phosphorylation. Silencing of DDR2 with siRNA in fibroblasts significantly reduced the number of dendritic extensions regardless of whether cells were cultured in the collagen or fibronectin 3D matrices. Decreasing dendritic extensions in DDR2-silenced cells has also been shown to decrease the ability of fibroblast entanglement to collagen fibrils in 3D collagen matrices. Finally, we also showed that the silencing of DDR2 decreased the cell migration in 3D nested collagen matrices but had no effect on 3D floating matrix contraction. Collectively, these results suggest that DDR2 functioning is required for the membrane dynamics to control the mechanical attachment of fibroblasts to the 3D collagen matrices in an integrin-independent manner.

  16. Age-Dependent Expression of Collagen Receptors and Deformation of Type I Collagen Substrates by Rat Cardiac Fibroblasts

    PubMed Central

    Wilson, Christopher G.; Stone, John W.; Fowlkes, Vennece; Morales, Mary O.; Murphy, Catherine J.; Baxter, Sarah C.; Goldsmith, Edie C.

    2014-01-01

    Little is known about how age influences the ways in which cardiac fibroblasts interact with the extracellular matrix. We investigated the deformation of collagen substrates by neonatal and adult rat cardiac fibroblasts in monolayer and three-dimensional (3D) cultures, and quantified the expression of three collagen receptors [discoidin domain receptor (DDR) 1, DDR2, and β1 integrin] and the contractile protein alpha smooth muscle actin (α-SMA) in these cells. We report that adult fibroblasts contracted 3D collagen substrates significantly less than their neonate counterparts, whereas no differences were observed in monolayer cultures. Adult cells had lower expression of β1 integrin and α-SMA than neonate cultures, and we detected significant correlations between the expression of α-SMA and each of the collagen receptors in neonate cells but not in adult cells. Consistent with recent work demonstrating age-dependent interactions with myocytes, our results indicate that interactions between cardiac fibroblasts and the extracellular matrix change with age. PMID:21740617

  17. Structural Basis for Platelet Collagen Responses by the Immune-type Receptor Glycoprotein VI

    SciTech Connect

    Horii,K.; Kahn, M.; Herr, A.

    2006-01-01

    Activation of circulating platelets by exposed vessel wall collagen is a primary step in the pathogenesis of heart attack and stroke, and drugs to block platelet activation have successfully reduced cardiovascular morbidity and mortality. In humans and mice, collagen activation of platelets is mediated by glycoprotein VI (GPVI), a receptor that is homologous to immune receptors but bears little sequence similarity to known matrix protein adhesion receptors. Here we present the crystal structure of the collagen-binding domain of human GPVI and characterize its interaction with a collagen-related peptide. Like related immune receptors, GPVI contains 2 immunoglobulin-like domains arranged in a perpendicular orientation. Significantly, GPVI forms a back-to-back dimer in the crystal, an arrangement that could explain data previously obtained from cell-surface GPVI inhibition studies. Docking algorithms identify 2 parallel grooves on the GPVI dimer surface as collagen-binding sites, and the orientation and spacing of these grooves precisely match the dimensions of an intact collagen fiber. These findings provide a structural basis for the ability of an immunetype receptor to generate signaling responses to collagen and for the development of GPVI inhibitors as new therapies for human cardiovascular disease.

  18. The collagen receptor DDR2 is expressed during early cardiac development.

    PubMed

    Goldsmith, Edie C; Zhang, Xiadong; Watson, James; Hastings, Josh; Potts, Jay D

    2010-05-01

    Discoidin Domain Receptor 2 (DDR2) is a receptor tyrosine kinase which has been shown to regulate cell migration upon binding its ligand, collagen. Expression studies determined that DDR2 mRNA and protein are present in the atrioventricular canal during epithelial-mesenchymal transformation (EMT) and the receptor is expressed in both activated endothelial and migrating mesenchymal cells in vivo.

  19. Characterization of high affinity binding motifs for the discoidin domain receptor DDR2 in collagen.

    PubMed

    Konitsiotis, Antonios D; Raynal, Nicolas; Bihan, Dominique; Hohenester, Erhard; Farndale, Richard W; Leitinger, Birgit

    2008-03-14

    The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that are activated by native triple-helical collagen. Here we have located three specific DDR2 binding sites by screening the entire triple-helical domain of collagen II, using the Collagen II Toolkit, a set of overlapping triple-helical peptides. The peptide sequence that bound DDR2 with highest affinity interestingly contained the sequence for the high affinity binding site for von Willebrand factor in collagen III. Focusing on this sequence, we used a set of truncated and alanine-substituted peptides to characterize the sequence GVMGFO (O is hydroxyproline) as the minimal collagen sequence required for DDR2 binding. Based on a recent NMR analysis of the DDR2 collagen binding domain, we generated a model of the DDR2-collagen interaction that explains why a triple-helical conformation is required for binding. Triple-helical peptides comprising the DDR2 binding motif not only inhibited DDR2 binding to collagen II but also activated DDR2 transmembrane signaling. Thus, DDR2 activation may be effected by single triple-helices rather than fibrillar collagen.

  20. Type I collagen aging impairs discoidin domain receptor 2-mediated tumor cell growth suppression.

    PubMed

    Saby, Charles; Buache, Emilie; Brassart-Pasco, Sylvie; El Btaouri, Hassan; Courageot, Marie-Pierre; Van Gulick, Laurence; Garnotel, Roselyne; Jeannesson, Pierre; Morjani, Hamid

    2016-05-03

    Tumor cells are confronted to a type I collagen rich environment which regulates cell proliferation and invasion. Biological aging has been associated with structural changes of type I collagen. Here, we address the effect of collagen aging on cell proliferation in a three-dimensional context (3D).We provide evidence for an inhibitory effect of adult collagen, but not of the old one, on proliferation of human fibrosarcoma HT-1080 cells. This effect involves both the activation of the tyrosine kinase Discoidin Domain Receptor 2 (DDR2) and the tyrosine phosphatase SHP-2. DDR2 and SHP-2 were less activated in old collagen. DDR2 inhibition decreased SHP-2 phosphorylation in adult collagen and increased cell proliferation to a level similar to that observed in old collagen.In the presence of old collagen, a high level of JAK2 and ERK1/2 phosphorylation was observed while expression of the cell cycle negative regulator p21CIP1 was decreased. Inhibition of DDR2 kinase function also led to an increase in ERK1/2 phosphorylation and a decrease in p21CIP1 expression. Similar signaling profile was observed when DDR2 was inhibited in adult collagen. Altogether, these data suggest that biological collagen aging could increase tumor cell proliferation by reducingthe activation of the key matrix sensor DDR2.

  1. The role of ITAM- and ITIM-coupled receptors in platelet activation by collagen.

    PubMed

    Watson, S P; Asazuma, N; Atkinson, B; Berlanga, O; Best, D; Bobe, R; Jarvis, G; Marshall, S; Snell, D; Stafford, M; Tulasne, D; Wilde, J; Wonerow, P; Frampton, J

    2001-07-01

    The major activation-inducing collagen receptor glycoprotein VI (GPVI) has been cloned within the last two years. It is a member of the Ig superfamily of proteins and is constitutively associated with the ITAM-bearing Fc receptor gamma-chain (FcR gamma-chain). GPVI signals through a pathway that involves several of the proteins used by Fc, B- and T-lymphocyte receptors and which takes place in glycolipid-enriched membrane domains in the plasma membrane known as GEMs. Responses to GPVI are regulated by PECAM-1 (CD31) and possibly other ITIM-bearing receptors. Despite a pivotal role for GPVI, there are important differences between signalling events to collagen and GPVI-specific ligands. This may reflect a role for co-receptors in the response to collagen.

  2. Molecular analysis of collagen binding by the human discoidin domain receptors, DDR1 and DDR2. Identification of collagen binding sites in DDR2.

    PubMed

    Leitinger, Birgit

    2003-05-09

    The widely expressed mammalian discoidin domain receptors (DDRs), DDR1 and DDR2, are unique among receptor tyrosine kinases in that they are activated by the extracellular matrix protein collagen. Various collagen types bind to and activate the DDRs, but the molecular details of collagen recognition have not been well defined. In this study, recombinant extracellular domains of DDR1 and DDR2 were produced to explore DDR-collagen binding in detail. In solid phase assays, both DDRs bound collagen I with high affinity. DDR1 recognized collagen I only as a dimeric and not as a monomeric construct, indicating a requirement for receptor dimerization in the DDR1-collagen interaction. The DDRs contain a discoidin homology domain in their extracellular domains, and the isolated discoidin domain of DDR2 bound collagen I with high affinity. Furthermore, the discoidin domain of DDR2, but not of DDR1, was sufficient for transmembrane receptor signaling. To map the collagen binding site within the discoidin domain of DDR2, mutant constructs were created, in which potential surface-exposed loops in DDR2 were exchanged for the corresponding loops of functionally unrelated discoidin domains. Three spatially adjacent surface loops within the DDR2 discoidin domain were found to be critically involved in collagen binding of the isolated DDR2 extracellular domain. In addition, the same loops were required for collagen-dependent receptor activation. It is concluded that the loop region opposite to the polypeptide chain termini of the DDR2 discoidin domain constitutes the collagen recognition site.

  3. The collagen receptor uPARAP/Endo180 in tissue degradation and cancer (Review).

    PubMed

    Melander, Maria C; Jürgensen, Henrik J; Madsen, Daniel H; Engelholm, Lars H; Behrendt, Niels

    2015-10-01

    The collagen receptor uPARAP/Endo180, the product of the MRC2 gene, is a central component in the collagen turnover process governed by various mesenchymal cells. Through the endocytosis of collagen or large collagen fragments, this recycling receptor serves to direct basement membrane collagen as well as interstitial collagen to lysosomal degradation. This capacity, shared only with the mannose receptor from the same protein family, endows uPARAP/Endo180 with a critical role in development and homeostasis, as well as in pathological disruptions of the extracellular matrix structure. Important pathological functions of uPARAP/Endo180 have been identified in various cancers and in several fibrotic conditions. With a particular focus on matrix turnover in cancer, this review presents the necessary background for understanding the function of uPARAP/Endo180 at the molecular and cellular level, followed by an in-depth survey of the available knowledge of the expression and role of this receptor in various types of cancer and other degenerative diseases.

  4. The collagen receptor uPARAP/Endo180 in tissue degradation and cancer (Review)

    PubMed Central

    MELANDER, MARIA C.; JÜRGENSEN, HENRIK J.; MADSEN, DANIEL H.; ENGELHOLM, LARS H.; BEHRENDT, NIELS

    2015-01-01

    The collagen receptor uPARAP/Endo180, the product of the MRC2 gene, is a central component in the collagen turnover process governed by various mesenchymal cells. Through the endocytosis of collagen or large collagen fragments, this recycling receptor serves to direct basement membrane collagen as well as interstitial collagen to lysosomal degradation. This capacity, shared only with the mannose receptor from the same protein family, endows uPARAP/Endo180 with a critical role in development and homeostasis, as well as in pathological disruptions of the extracellular matrix structure. Important pathological functions of uPARAP/Endo180 have been identified in various cancers and in several fibrotic conditions. With a particular focus on matrix turnover in cancer, this review presents the necessary background for understanding the function of uPARAP/Endo180 at the molecular and cellular level, followed by an in-depth survey of the available knowledge of the expression and role of this receptor in various types of cancer and other degenerative diseases. PMID:26316068

  5. G6f-like is an ITAM-containing collagen receptor in thrombocytes.

    PubMed

    Hughes, Craig E; Radhakrishnan, Uvaraj P; Lordkipanidzé, Marie; Egginton, Stuart; Dijkstra, Johannes M; Jagadeeswaran, Pudur; Watson, Stephen P

    2012-01-01

    Collagen activates mammalian platelets through a complex of the immunoglobulin (Ig) receptor GPVI and the Fc receptor γ-chain, which has an immunoreceptor tyrosine-based activation motif (ITAM). Cross-linking of GPVI mediates activation through the sequential activation of Src and Syk family kinases and activation of PLCγ2. Nucleated thrombocytes in fish are activated by collagen but lack an ortholog of GPVI. In this study we show that collagen activates trout thrombocytes in whole blood and under flow conditions through a Src kinase driven pathway. We identify the Ig receptor G6f-like as a collagen receptor and demonstrate in a cell line assay that it signals through its cytoplasmic ITAM. Using a morpholino for in vivo knock-down of G6f-like levels in zebrafish, we observed a marked delay or absence of occlusion of the venous and arterial systems in response to laser injury. Thus, G6f-like is a physiologically relevant collagen receptor in fish thrombocytes which signals through the same ITAM-based signalling pathway as mammalian GPVI, providing a novel example of convergent evolution.

  6. Immunohistochemical expression of Type IV Collagen and Autocrine Motility Factor Receptor in Odontogenic Tumours

    PubMed Central

    Sethi, Sneha

    2014-01-01

    Background: Autocrine motility factor receptor (AMFR) is a tumour motility stimulating protein secreted by tumour cells. The protein encoded by this gene is a glycosylated transmembrane protein and a receptor for autocrine motility factor. It has been known to play a role in progression of neoplastic lesions. Basement membranes are specialized extracellular matrices that serve as structural barriers as well as substrates for cellular interactions. The network of type IV collagen is thought to define the scaffold integrating other components such as laminins and perlecan into highly organized supramolecular architecture. The aim of this study was to determine and evaluate the immunohistochemical expression of Type IV Collagen and Autocrine motility factor receptor in odontogenic lesions. Materials and Methods: Immunohistochemical expression of Type IV Collagen and Autocrine motility factor receptor was evaluated in 31 odontogenic lesions, including unicystic ameloblastoma, multicystic ameloblastoma, keratocystic odontogenic tumour and ameloblastic carcinoma. Normal follicular tissue formed the control. Results: Maximum expression for Type IV Collagen was seen in multicystic ameloblastoma and minimum expression in keratocystic odontogenic tumour. The maximum expression of AMFR was seen in ameloblastic carcinoma and minimum expression in multicystic ameloblastoma. Conclusion: The results of this study suggested an association of loss of expression of type IV Collagen with progression of lesion. AMFR expression was found to be associated with the aggressive potential of tumours. PMID:25478440

  7. The D2 period of collagen II contains a specific binding site for the human discoidin domain receptor, DDR2.

    PubMed

    Leitinger, Birgit; Steplewski, Andrzej; Fertala, Andrzej

    2004-12-03

    The human discoidin domain receptors (DDRs), DDR1 and DDR2, are expressed widely and, uniquely among receptor tyrosine kinases, activated by the extracellular matrix protein collagen. This activation is due to a direct interaction of collagen with the DDR discoidin domain. Here, we localised a specific DDR2 binding site on the triple-helical region of collagen II. Collagen II was found to be a much better ligand for DDR2 than for DDR1. As expected, DDR2 binding to collagen II was dependent on triple-helical collagen and was mediated by the DDR2 discoidin domain. Collagen II served as a potent stimulator of DDR2 autophosphorylation, the first step in transmembrane signalling. To map the DDR2 binding site(s) on collagen II, we used recombinant collagen II variants with specific deletions of one of the four repeating D periods. We found that the D2 period of collagen II was essential for DDR2 binding and receptor autophosphorylation, whereas the D3 and D4 periods were dispensable. The DDR2 binding site on collagen II was further defined by recombinant collagen II-like proteins consisting predominantly of tandem repeats of the D2 or D4 period. The D2 construct, but not the D4 construct, mediated DDR2 binding and receptor autophosphorylation, demonstrating that the D2 period of collagen II harbours a specific DDR2 recognition site. The discovery of a site-specific interaction of DDR2 with collagen II gives novel insight into the nature of the interaction of collagen II with matrix receptors.

  8. Structural basis of collagen recognition by human osteoclast-associated receptor and design of osteoclastogenesis inhibitors.

    PubMed

    Haywood, Joel; Qi, Jianxun; Chen, Chun-Chi; Lu, Guangwen; Liu, Yingxia; Yan, Jinghua; Shi, Yi; Gao, George F

    2016-01-26

    Human osteoclast-associated receptor (OSCAR) is an immunoglobulin (Ig)-like collagen receptor that is up-regulated on osteoclasts during osteoclastogenesis and is expressed in a range of myeloid cells. As a member of the leukocyte receptor complex family of proteins, OSCAR shares a high degree of sequence and structural homology with other collagen receptors of this family, including glycoprotein VI, leukocyte-associated Ig-like receptor-1, and leukocyte Ig-like receptor B4, but recognizes a unique collagen sequence. Here, we present the crystal structures of OSCAR in its free form and in complex with a triple-helical collagen-like peptide (CLP). These structures reveal that the CLP peptide binds only one of the two Ig-like domains, the membrane-proximal domain (domain 2) of OSCAR, with the middle and trailing chain burying a total of 661 Å(2) of solvent-accessible collagen surface. This binding mode is facilitated by the unusual topography of the OSCAR protein, which displays an obtuse interdomain angle and a rotation of domain 2 relative to the membrane-distal domain 1. Moreover, the binding of the CLP to OSCAR appears to be mediated largely by tyrosine residues and conformational changes at a shallow Phe pocket. Furthermore, we investigated CLP peptides as inhibitors of osteoclastogenesis and found that a peptide length of 40 amino acids is required to ensure adequate inhibition of osteoclastogenesis in vitro. These findings provide valuable structural insights into the mode of collagen recognition by OSCAR and into the use of synthetic peptide matrikines for osteoclastogenesis inhibition.

  9. Internal strain drives spontaneous periodic buckling in collagen and regulates remodeling.

    PubMed

    Dittmore, Andrew; Silver, Jonathan; Sarkar, Susanta K; Marmer, Barry; Goldberg, Gregory I; Neuman, Keir C

    2016-07-26

    Fibrillar collagen, an essential structural component of the extracellular matrix, is remarkably resistant to proteolysis, requiring specialized matrix metalloproteinases (MMPs) to initiate its remodeling. In the context of native fibrils, remodeling is poorly understood; MMPs have limited access to cleavage sites and are inhibited by tension on the fibril. Here, single-molecule recordings of fluorescently labeled MMPs reveal cleavage-vulnerable binding regions arrayed periodically at ∼1-µm intervals along collagen fibrils. Binding regions remain periodic even as they migrate on the fibril, indicating a collective process of thermally activated and self-healing defect formation. An internal strain relief model involving reversible structural rearrangements quantitatively reproduces the observed spatial patterning and fluctuations of defects and provides a mechanism for tension-dependent stabilization of fibrillar collagen. This work identifies internal-strain-driven defects that may have general and widespread regulatory functions in self-assembled biological filaments.

  10. Aryl hydrocarbon receptor deficiency in T cells suppresses the development of collagen-induced arthritis

    PubMed Central

    Nakahama, Taisuke; Kimura, Akihiro; Nguyen, Nam Trung; Chinen, Ichino; Hanieh, Hamza; Nohara, Keiko; Fujii-Kuriyama, Yoshiaki; Kishimoto, Tadamitsu

    2011-01-01

    The contributions of aryl hydrocarbon receptor (Ahr) to the pathogenesis of rheumatoid arthritis have not been elucidated. Here, we show that Ahr deficiency ameliorated collagen-induced arthritis, a mouse model of RA. Collagen-immunized Ahr KO mice showed decreased serum levels of such proinflammatory cytokines as IL-1β and IL-6. The Th17 and Th1 cell populations in lymph nodes from these mice decreased and increased, respectively, whereas the percentage of regulatory T cells was unchanged. Interestingly, a lack of Ahr specifically in T cells significantly suppressed collagen-induced arthritis development, whereas Ahr deficiency in macrophages had no effect. These finding indicate that the development of experimental autoimmune arthritis depends on the presence of Ahr in T cells, and that Th1/Th17 balance may be particularly important for this process. PMID:21825138

  11. Collagen advanced glycation inhibits its Discoidin Domain Receptor 2 (DDR2)-mediated induction of lysyl oxidase in osteoblasts.

    PubMed

    Khosravi, Roozbeh; Sodek, Katharine L; Faibish, Michael; Trackman, Philip C

    2014-01-01

    Diabetes increases the risk of bone fracture. Organic and inorganic bone extracellular matrix components determine bone strength. Previous studies indicate that in diabetes, glycation of collagen causes abnormal arrangements of collagen molecules and fragile bones. Diabetic bone fragility is additionally attributed to reduced levels of lysyl oxidase enzyme-dependent collagen cross-links. The mechanism underlying the presence of lower enzymatic collagen cross-links in diabetic bone has not been directly investigated. Here we determine in primary osteoblast cultures the regulation of lysyl oxidase protein by type I collagen and collagen modified by carboxymethylation (CML-collagen), a form of advanced glycation endproducts. Data indicate that non-glycated collagen up-regulates lysyl oxidase levels both in primary non-differentiated and in differentiating mouse and rat osteoblast cultures, while CML-collagen fails to regulate lysyl oxidase in these cells. Collagen binding to Discoidin Domain Receptor-2 (DDR2) mediates lysyl oxidase increases, determined in DDR2 shRNA knockdown studies. DDR2 binding and activation were disrupted by collagen glycation, pointing to a mechanism for the diminished levels of lysyl oxidase and consequently low lysyl oxidase-derived cross-links in diabetic bone. Our studies indicate that collagen-integrin interactions may not play a major role in up-regulating lysyl oxidase. Furthermore, non-collagenous ligands for the receptor for advanced glycation end products (RAGE) failed to alter lysyl oxidase levels. Taken together with published studies a new understanding emerges in which diabetes- and age-dependent inhibition of normal collagen-stimulated DDR2- and integrin-signaling, and independent advanced glycation-stimulated RAGE-signaling, each contributes to different aspects of diabetic osteopenia.

  12. Collagen Advanced Glycation Inhibits Its Discoidin Domain Receptor 2 (DDR2)-Mediated Induction of Lysyl Oxidase in Osteoblasts

    PubMed Central

    Khosravi, Roozbeh; Sodek, Katharine L.; Faibish, Michael; Trackman, Philip C.

    2013-01-01

    Diabetes increases the risk of bone fracture. Organic and inorganic bone extracellular matrix components determine bone strength. Previous studies indicate that in diabetes, glycation of collagen causes abnormal arrangements of collagen molecules and fragile bones. Diabetic bone fragility is additionally attributed to reduced levels of lysyl oxidase enzyme-dependent collagen cross-links. The mechanism underlying the presence of lower enzymatic collagen cross-links in diabetic bone has not been directly investigated. Here we determine in primary osteoblast cultures the regulation of lysyl oxidase protein by type I collagen and collagen modified by carboxymethylation (CML-collagen), a form of advanced glycation endproducts. Data indicate that non-glycated collagen up-regulates lysyl oxidase levels both in primary non-differentiated and in differentiating mouse and rat osteoblast cultures, while CML-collagen fails to regulate lysyl oxidase in these cells. Collagen binding to Discoidin Domain Receptor-2 (DDR2) mediates lysyl oxidase increases, determined in DDR2 shRNA knockdown studies. DDR2 binding and activation were disrupted by collagen glycation, pointing to a mechanism for the diminished levels of lysyl oxidase and consequent low lysyl oxidase-derived cross-links in diabetic bone. Our studies indicate that collagen-integrin interactions may not play a major role in up-regulating lysyl oxidase. Furthermore, non-collagenous ligands for the receptor for advanced glycation end products (RAGE) failed to alter lysyl oxidase levels. Taken together with published studies a new understanding emerges in which diabetes- and age-dependent inhibition of normal collagen-stimulated DDR2- and integrin-signaling, and independent advanced glycation-stimulated RAGE-signaling, each contributes to different aspects of diabetic osteopenia. PMID:24120383

  13. Inhibitory effects of peroxisome proliferator-activated receptor γ agonists on collagen IV production in podocytes.

    PubMed

    Li, Yanjiao; Shen, Yachen; Li, Min; Su, Dongming; Xu, Weifeng; Liang, Xiubin; Li, Rongshan

    2015-07-01

    Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists have beneficial effects on the kidney diseases through preventing microalbuminuria and glomerulosclerosis. However, the mechanisms underlying these effects remain to be fully understood. In this study, we investigate the effects of PPAR-γ agonist, rosiglitazone (Rosi) and pioglitazone (Pio), on collagen IV production in mouse podocytes. The endogenous expression of PPAR-γ was found in the primary podocytes and can be upregulated by Rosi and Pio, respectively, detected by RT-PCR and Western blot. PPAR-γ agonist markedly blunted the increasing of collagen IV expression and extraction in podocytes induced by TGF-β. In contrast, adding PPAR-γ antagonist, GW9662, to podocytes largely prevented the inhibition of collagen IV expression from Pio treatment. Our data also showed that phosphorylation of Smad2/3 enhanced by TGF-β in a time-dependent manner was significantly attenuated by adding Pio. The promoter region of collagen IV gene contains one putative consensus sequence of Smad-binding element (SBE) by promoter analysis, Rosi and Pio significantly ameliorated TGF-β-induced SBE4-luciferase activity. In conclusion, PPAR-γ activation by its agonist, Rosi or Pio, in vitro directly inhibits collagen IV expression and synthesis in primary mouse podocytes. The suppression of collagen IV production was related to the inhibition of TGF-β-driven phosphorylation of Smad2/3 and decreased response activity of SBEs of collagen IV in PPAR-γ agonist-treated mouse podocytes. This represents a novel mechanistic support regarding PPAR-γ agonists as podocyte protective agents.

  14. Aspirin suppresses cardiac fibroblast proliferation and collagen formation through downregulation of angiotensin type 1 receptor transcription

    SciTech Connect

    Wang, Xianwei Lu, Jingjun; Khaidakov, Magomed; Mitra, Sona; Ding, Zufeng; Raina, Sameer; Goyal, Tanu; Mehta, Jawahar L.

    2012-03-15

    Aspirin (acetyl salicylic acid, ASA) is a common drug used for its analgesic and antipyretic effects. Recent studies show that ASA not only blocks cyclooxygenase, but also inhibits NADPH oxidase and resultant reactive oxygen species (ROS) generation, a pathway that underlies pathogenesis of several ailments, including hypertension and tissue remodeling after injury. In these disease states, angiotensin II (Ang II) activates NADPH oxidase via its type 1 receptor (AT1R) and leads to fibroblast growth and collagen synthesis. In this study, we examined if ASA would inhibit NADPH oxidase activation, upregulation of AT1R transcription, and subsequent collagen generation in mouse cardiac fibroblasts challenged with Ang II. Mouse heart fibroblasts were isolated and treated with Ang II with or without ASA. As expected, Ang II induced AT1R expression, and stimulated cardiac fibroblast growth and collagen synthesis. The AT1R blocker losartan attenuated these effects of Ang II. Similarly to losartan, ASA, and its SA moiety suppressed Ang II-mediated AT1R transcription and fibroblast proliferation as well as expression of collagens and MMPs. ASA also suppressed the expression of NADPH oxidase subunits (p22{sup phox}, p47{sup phox}, p67{sup phox}, NOX2 and NOX4) and ROS generation. ASA did not affect total NF-κB p65, but inhibited its phosphorylation and activation. These observations suggest that ASA inhibits Ang II-induced NADPH oxidase expression, NF-κB activation and AT1R transcription in cardiac fibroblasts, and fibroblast proliferation and collagen expression. The critical role of NADPH oxidase activity in stimulation of AT1R transcription became apparent in experiments where ASA also inhibited AT1R transcription in cardiac fibroblasts challenged with H{sub 2}O{sub 2}. Since SA had similar effect as ASA on AT1R expression, we suggest that ASA's effect is mediated by its SA moiety. -- Highlights: ► Aspirin in therapeutic concentrations decreases mouse cardiac fibroblast

  15. Internal strain drives spontaneous periodic buckling in collagen and regulates remodeling

    PubMed Central

    Dittmore, Andrew; Silver, Jonathan; Sarkar, Susanta K.; Marmer, Barry; Goldberg, Gregory I.; Neuman, Keir C.

    2016-01-01

    Fibrillar collagen, an essential structural component of the extracellular matrix, is remarkably resistant to proteolysis, requiring specialized matrix metalloproteinases (MMPs) to initiate its remodeling. In the context of native fibrils, remodeling is poorly understood; MMPs have limited access to cleavage sites and are inhibited by tension on the fibril. Here, single-molecule recordings of fluorescently labeled MMPs reveal cleavage-vulnerable binding regions arrayed periodically at ∼1-µm intervals along collagen fibrils. Binding regions remain periodic even as they migrate on the fibril, indicating a collective process of thermally activated and self-healing defect formation. An internal strain relief model involving reversible structural rearrangements quantitatively reproduces the observed spatial patterning and fluctuations of defects and provides a mechanism for tension-dependent stabilization of fibrillar collagen. This work identifies internal–strain-driven defects that may have general and widespread regulatory functions in self-assembled biological filaments. PMID:27402741

  16. A Novel Functional Role of Collagen Glycosylation

    PubMed Central

    Jürgensen, Henrik J.; Madsen, Daniel H.; Ingvarsen, Signe; Melander, Maria C.; Gårdsvoll, Henrik; Patthy, Laszlo; Engelholm, Lars H.; Behrendt, Niels

    2011-01-01

    Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains, the function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose receptor protein family. These proteins all include a fibronectin type II domain and a series of C-type lectin-like domains, of which only a minor part possess carbohydrate recognition activity. At least two of the family members, uPARAP/Endo180 and the mannose receptor, interact with collagens. The molecular basis for this interaction is known to involve the fibronectin type II domain but nothing is known about the function of the lectin domains in this respect. In this study, we have investigated a possible role of the single active lectin domain of uPARAP/Endo180 in the interaction with collagens. By expressing truncated recombinant uPARAP/Endo180 proteins and analyzing their interaction with collagens with high and low levels of glycosylation we demonstrated that this lectin domain interacts directly with glycosylated collagens. This interaction is functionally important because it was found to modulate the endocytic efficiency of the receptor toward highly glycosylated collagens such as basement membrane collagen IV. Surprisingly, this property was not shared by the mannose receptor, which internalized glycosylated collagens independently of its lectin function. This role of modulating its uptake efficiency by a specific receptor is a previously unrecognized function of collagen glycosylation. PMID:21768090

  17. Type I macrophage scavenger receptor contains α-helical and collagen-like coiled coils

    NASA Astrophysics Data System (ADS)

    Kodama, Tatsuhiko; Freeman, Mason; Rohrer, Lucia; Zabrecky, James; Matsudaira, Paul; Krieger, Monty

    1990-02-01

    The macrophage scavenger receptor is a trimeric membrane glycoprotein with unusual ligand-binding properties which has been implicated in the development of atherosclerosis. The trimeric structure of the bovine type I scavenger receptor, deduced by complementary DNA cloning, contains three extracellular C-terminal cysteine-rich domains connected to the transmembrane domain by a long fibrous stalk. This stalk structure, composed of an a-helical coiled coil and a collagen-like triple helix, has not previously been observed in an integral membrane protein.

  18. A dual laminin/collagen receptor acts in peripheral nerve regeneration.

    PubMed Central

    Toyota, B; Carbonetto, S; David, S

    1990-01-01

    A regeneration chamber was created in vivo by suturing a synthetic tube sealed at its distal end onto the proximal stump of a severed rat sciatic nerve. Nerves regenerated into tubes coated with laminin at a rate of 0.33 mm/day after a lag of about 2 days. At 25 days, regenerating nerves had extended 23% farther into laminin-coated tubes as compared with uncoated ones. Monoclonal antibody 3A3, which functionally interferes with a dual laminin/collagen receptor, inhibited nerve regeneration into laminin-coated tubes by 32%. In contrast, monoclonal antibody JG22, which inhibits chicken matrix receptors, had no significant effect on regeneration. Immunohistochemical studies of teased adult rat sciatic nerves indicate that 3A3 bound to Schwann cells and possibly to axons. In other studies, the heterodimeric, laminin/collagen receptor recognized by 3A3 has been shown to be a member of the integrin superfamily of adhesive receptors. These data provide evidence that an integrin receptor functions in nerve regeneration in vivo. Images PMID:2154740

  19. The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism.

    PubMed

    Labrador, J P; Azcoitia, V; Tuckermann, J; Lin, C; Olaso, E; Mañes, S; Brückner, K; Goergen, J L; Lemke, G; Yancopoulos, G; Angel, P; Martínez, C; Klein, R

    2001-05-01

    The discoidin domain receptor 2 (DDR2) is a member of a subfamily of receptor tyrosine kinases whose ligands are fibrillar collagens, and is widely expressed in postnatal tissues. We have generated DDR2-deficient mice to establish the in vivo functions of this receptor, which have remained obscure. These mice exhibit dwarfism and shortening of long bones. This phenotype appears to be caused by reduced chondrocyte proliferation, rather than aberrant differentiation or function. In a skin wound healing model, DDR2-/- mice exhibit a reduced proliferative response compared with wild-type littermates. In vitro, fibroblasts derived from DDR2-/- mutants proliferate more slowly than wild-type fibroblasts, a defect that is rescued by introduction of wild-type but not kinase-dead DDR2 receptor. Together our results suggest that DDR2 acts as an extracellular matrix sensor to modulate cell proliferation.

  20. G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination.

    PubMed

    Luo, Rong; Jeong, Sung-Jin; Jin, Zhaohui; Strokes, Natalie; Li, Shihong; Piao, Xianhua

    2011-08-02

    GPR56, an orphan G protein-coupled receptor (GPCR) from the family of adhesion GPCRs, plays an indispensable role in cortical development and lamination. Mutations in the GPR56 gene cause a malformed cerebral cortex in both humans and mice that resembles cobblestone lissencephaly, which is characterized by overmigration of neurons beyond the pial basement membrane. However, the molecular mechanisms through which GPR56 regulates cortical development remain elusive due to the unknown status of its ligand. Here we identify collagen, type III, alpha-1 (gene symbol Col3a1) as the ligand of GPR56 through an in vitro biotinylation/proteomics approach. Further studies demonstrated that Col3a1 null mutant mice exhibit overmigration of neurons beyond the pial basement membrane and a cobblestone-like cortical malformation similar to the phenotype seen in Gpr56 null mutant mice. Functional studies suggest that the interaction of collagen III with its receptor GPR56 inhibits neural migration in vitro. As for intracellular signaling, GPR56 couples to the Gα(12/13) family of G proteins and activates RhoA pathway upon ligand binding. Thus, collagen III regulates the proper lamination of the cerebral cortex by acting as the major ligand of GPR56 in the developing brain.

  1. Discoidin Domain Receptor 2 Mediates Collagen-Induced Activation of Membrane-Type 1 Matrix Metalloproteinase in Human Fibroblasts.

    PubMed

    Majkowska, Iwona; Shitomi, Yasuyuki; Ito, Noriko; Gray, Nathanael S; Itoh, Yoshifumi

    2017-03-07

    Membrane-Type 1 Matrix Metalloproteinase (MT1-MMP) is a membrane-bound MMP that is highly expressed in cells with invading capacity including fibroblasts and invasive cancer cell. A potential physiological stimulus for MT1-MMP expression is fibrillar collagen, and it has been shown that it upregulates both MT1-MMP gene and functions in various cell types. However, the mechanisms of collagen-mediated MT1-MMP activation is not clearly understood. In this study we identified discoidin domain receptor 2 (DDR2) as a crucial receptor that mediates this process in human fibroblasts. Knocking down DDR2, but not β1 integrin subunit, a common subunit for all collagen-binding integrins, inhibited collagen-induced activation of proMMP-2 and upregulation of MT1-MMP at the gene and protein level. Interestingly DDR2 knockdown or pharmacological inhibition of DDR2 also inhibited MT1-MMP-dependent cellular degradation of collagen film, suggesting that cell surface collagen degradation by MT1-MMP involves DDR2-mediated collagen signalling. This DDR2-mediated mechanism is only present in non-transformed mesenchymal cells, as collagen-induced MT1-MMP activation in HT1080 fibrosarcoma cells and MT1-MMP function in MDA-MB231 breast cancer cells were not affected by DDR kinase inhibition. DDR2 activation was found to be noticeably more effective when cells were stimulated by collagen without non-helical telopeptides region compared to intact collagen fibrils. Those data suggest that DDR2 is a microenvironmental sensor that regulates fibroblasts migration in collagen-rich environment.

  2. Differential regulation of collagen secretion by kinin receptors in cardiac fibroblast and myofibroblast

    SciTech Connect

    Catalán, Mabel; Smolic, Christian; Contreras, Ariel; Ayala, Pedro; Olmedo, Ivonne; Copaja, Miguel; Boza, Pía; Vivar, Raúl; Avalos, Yennifer; Lavandero, Sergio; Velarde, Victoria; Díaz-Araya, Guillermo

    2012-06-15

    Kinins mediate their cellular effects through B1 (B1R) and B2 (B2R) receptors, and the activation of B2R reduces collagen synthesis in cardiac fibroblasts (CF). However, the question of whether B1R and/or B2R have a role in cardiac myofibroblasts remains unanswered. Methods: CF were isolated from neonate rats and myofibroblasts were generated by an 84 h treatment with TGF-β1 (CMF). B1R was evaluated by western blot, immunocytochemistry and radioligand assay; B2R, inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and cyclooxygenases 1and 2 (COX-1, and COX-2) were evaluated by western blot; intracellular Ca{sup +2} levels were evaluated with Fluo-4AM; collagen secretion was measured in the culture media using the picrosirius red assay kit. Results: B2R, iNOS, COX-1 and low levels of B1R but not eNOS, were detected by western blot in CF. Also, B1R, B2R, and COX-2 but not iNOS, eNOS or COX-1, were detected by western blot in CMF. By immunocytochemistry, our results showed lower intracellular B1R levels in CF and higher B1R levels in CMF, mainly localized on the cell membrane. Additionally, we found B1R only in CMF cellular membrane through radioligand displacement assay. Bradykinin (BK) B2R agonist increased intracellular Ca{sup 2+} levels and reduced collagen secretion both in CF and CMF. These effects were blocked by HOE-140, and inhibited by L-NAME, 1400W and indomethacin. Des-Arg-kallidin (DAKD) B1R agonist did not increase intracellular Ca{sup 2+} levels in CF; however, after preincubation for 1 h with DAKD and re-stimulation with the same agonist, we found a low increase in intracellular Ca{sup 2+} levels. Finally, DAKD increased intracellular Ca{sup 2+} levels and decreased collagen secretion in CMF, being this effect blocked by the B1R antagonist des-Arg9-Leu8-kallidin and indomethacin, but not by L-NAME or 1400 W. Conclusion: B1R, B2R, iNOS and COX-1 were expressed differently between CF and CMF, and collagen secretion was

  3. CCK1 and CCK2 Receptors Are Expressed on Pancreatic Stellate Cells and Induce Collagen Production

    PubMed Central

    Berna, Marc J.; Seiz, Oliver; Nast, Jan Friso; Benten, Daniel; Bläker, Michael; Koch, Johannes; Lohse, Ansgar W.; Pace, Andrea

    2010-01-01

    The gastrointestinal hormone cholecystokinin (CCK) can induce acute pancreatitis in rodents through its action on acinar cells. Treatment with CCK, in combination with other agents, represents the most commonly used model to induce experimental chronic pancreatitis. Pancreatic stellate cells (PSC) are responsible for pancreatic fibrosis and therefore play a predominant role in the genesis of chronic pancreatitis. However, it is not known whether PSC express CCK receptors. Using real time PCR techniques, we demonstrate that CCK1 and CCK2 receptors are expressed on rat PSC. Interestingly both CCK and gastrin significantly induced type I collagen synthesis. Moreover, both inhibit proliferation. These effects are comparable with TGF-β-stimulated PSC. Furthermore, the natural agonists CCK and gastrin induce activation of pro-fibrogenic pathways Akt, ERK, and Src. Using specific CCK1 and CCK2 receptor (CCK2R) inhibitors, we found that Akt activation is mainly mediated by CCK2R. Akt activation by CCK and gastrin could be inhibited by the PI3K inhibitor wortmannin. Activation of ERK and the downstream target Elk-1 could be inhibited by the MEK inhibitor U0126. These data suggest that CCK and gastrin have direct activating effects on PSC, are able to induce collagen synthesis in these cells, and therefore appear to be important regulators of pancreatic fibrogenesis. Furthermore, similar to TGF-β, both CCK and gastrin inhibit proliferation in PSC. PMID:20843811

  4. Hyperhomocysteinemia accelerates collagen accumulation in the adventitia of balloon-injured rat carotid arteries via angiotensin II type 1 receptor.

    PubMed

    Yao, Dan; Sun, Ning-Ling

    2014-10-27

    Recent studies suggest that hyperhomocysteinemia (HHcy) increases collagen type I accumulation in rat vascular adventitia after balloon injury and that Angiotensin II (Ang II) induces collagen synthesis in vascular adventitial fibroblasts. Reports also indicate that Ang II type1 receptor (AT1R) activation, mediated by homocysteine (Hcy) may contribute to collagen type 1 expression in mouse aortic endothelial cells. However, little is known about the possible mechanisms behind the relationship between Hcy and AT1R in adventitial remodeling. Thus, we investigated whether HHcy induces collagen accumulation via activation of AT1R in the adventitia. Male Sprague-Dawley (SD) rats were randomly divided into a control group and a 1% l-methionine-induced HHcy group. Balloon injury was performed after 12 experimental weeks and animals were sacrificed at 7, 14, and 28 days after injury. Collagen deposition and AT1R expression was measured with Western blot. Serum Hcy, adventitial collagen, and AT1R levels were higher in the HHcy group compared with the control group. Hcy time-dependently induced collagen type 1 and AT1R expression, with the highest induction observed at 48 h. Also, we observed that the AT1R blocker, valsartan, attenuated collagen type 1 and AT1R expression. HHcy exacerbates adventitial remodeling after balloon injury, and the underling mechanisms may be related to AT1R activity.

  5. The Non-phagocytic Route of Collagen Uptake

    PubMed Central

    Madsen, Daniel H.; Ingvarsen, Signe; Jürgensen, Henrik J.; Melander, Maria C.; Kjøller, Lars; Moyer, Amanda; Honoré, Christian; Madsen, Charlotte A.; Garred, Peter; Burgdorf, Sven; Bugge, Thomas H.; Behrendt, Niels; Engelholm, Lars H.

    2011-01-01

    The degradation of collagens, the most abundant proteins of the extracellular matrix, is involved in numerous physiological and pathological conditions including cancer invasion. An important turnover pathway involves cellular internalization and degradation of large, soluble collagen fragments, generated by initial cleavage of the insoluble collagen fibers. We have previously observed that in primary mouse fibroblasts, this endocytosis of collagen fragments is dependent on the receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180. Others have identified additional mechanisms of collagen uptake, with different associated receptors, in other cell types. These receptors include β1-integrins, being responsible for collagen phagocytosis, and the mannose receptor. We have now utilized a newly developed monoclonal antibody against uPARAP/Endo180, which down-regulates the receptor protein level on treated cells, to examine the role of uPARAP/Endo180 as a mediator of collagen internalization by a wide range of cultured cell types. With the exception of macrophages, all cells that proved capable of efficient collagen internalization were of mesenchymal origin and all of these utilized uPARAP/Endo180 for their collagen uptake process. Macrophages internalized collagen in a process mediated by the mannose receptor, a protein belonging to the same protein family as uPARAP/Endo180. β1-Integrins were found not to be involved in the endocytosis of soluble collagen, irrespectively of whether this was mediated by uPARAP/Endo180 or the mannose receptor. This further distinguishes these pathways from the phagocytic uptake of particulate collagen. PMID:21652704

  6. Alternative activation of macrophages and pulmonary fibrosis are modulated by scavenger receptor, macrophage receptor with collagenous structure.

    PubMed

    Murthy, Shubha; Larson-Casey, Jennifer L; Ryan, Alan J; He, Chao; Kobzik, Lester; Carter, A Brent

    2015-08-01

    Alternative activation of alveolar macrophages is linked to fibrosis following exposure to asbestos. The scavenger receptor, macrophage receptor with collagenous structure (MARCO), provides innate immune defense against inhaled particles and pathogens; however, a receptor for asbestos has not been identified. We hypothesized that MARCO acts as an initial signaling receptor for asbestos, polarizes macrophages to a profibrotic M2 phenotype, and is required for the development of asbestos-induced fibrosis. Compared with normal subjects, alveolar macrophages isolated from patients with asbestosis express higher amounts of MARCO and have greater profibrotic polarization. Arginase 1 (40-fold) and IL-10 (265-fold) were higher in patients. In vivo, the genetic deletion of MARCO attenuated the profibrotic environment and pulmonary fibrosis in mice exposed to chrysotile. Moreover, alveolar macrophages from MARCO(-/-) mice polarize to an M1 phenotype, whereas wild-type mice have higher Ym1 (>3.0-fold) and nearly 7-fold more active TGF-β1 in bronchoalveolar lavage (BAL) fluid (BALF). Arg(432) and Arg(434) in domain V of MARCO are required for the polarization of macrophages to a profibrotic phenotype as mutation of these residues reduced FIZZ1 expression (17-fold) compared with cells expressing MARCO. These observations demonstrate that a macrophage membrane protein regulates the fibrotic response to lung injury and suggest a novel target for therapeutic intervention.

  7. Cleavage of Type I Collagen by Fibroblast Activation Protein-α Enhances Class A Scavenger Receptor Mediated Macrophage Adhesion.

    PubMed

    Mazur, Anna; Holthoff, Emily; Vadali, Shanthi; Kelly, Thomas; Post, Steven R

    2016-01-01

    Pathophysiological conditions such as fibrosis, inflammation, and tumor progression are associated with modification of the extracellular matrix (ECM). These modifications create ligands that differentially interact with cells to promote responses that drive pathological processes. Within the tumor stroma, fibroblasts are activated and increase the expression of type I collagen. In addition, activated fibroblasts specifically express fibroblast activation protein-α (FAP), a post-prolyl peptidase. Although FAP reportedly cleaves type I collagen and contributes to tumor progression, the specific pathophysiologic role of FAP is not clear. In this study, the possibility that FAP-mediated cleavage of type I collagen modulates macrophage interaction with collagen was examined using macrophage adhesion assays. Our results demonstrate that FAP selectively cleaves type I collagen resulting in increased macrophage adhesion. Increased macrophage adhesion to FAP-cleaved collagen was not affected by inhibiting integrin-mediated interactions, but was abolished in macrophages lacking the class A scavenger receptor (SR-A/CD204). Further, SR-A expressing macrophages localize with activated fibroblasts in breast tumors of MMTV-PyMT mice. Together, these results demonstrate that FAP-cleaved collagen is a substrate for SR-A-dependent macrophage adhesion, and suggest that by modifying the ECM, FAP plays a novel role in mediating communication between activated fibroblasts and macrophages.

  8. The induction of the collagen capsule synthesis by Trichinella spiralis is closely related to protease-activated receptor 2.

    PubMed

    Park, Mi Kyung; Cho, Min Kyoung; Kang, Shin Ae; Kim, Bo Young; Yu, Hak Sun

    2016-10-30

    The muscle-stage larvae of the parasite Trichinella spiralis have the ability to survive within host muscle tissue by virtue of the formation a nurse cell-parasite complex, which is surrounded by collagen. The formation of the complex is initiated by excretory-secretory (ES) proteins produced by the parasite. To determine the mechanisms underlying collagen capsule formation, we investigated the expression levels of several types of collagen genes and TGF-βI signaling-related genes (Smad2 and Smad3) in muscle cells. Synthesis of type I, IV, and VI collagen, which are major constituents of the collagen capsule, significantly increased during T. spiralis infection. In addition, we found that expression of the protease-activated receptor 2 (PAR2) gene was significantly increased during this period. Expression levels of the collagen genes and TGF-βI, Smad2, and Smad3 were induced by ES proteins and a PAR2 agonist, whereas their enhanced expression levels were reduced by a PAR2 antagonist and serine protease inhibitors. To evaluate the involvement of PAR2 during T. spiralis infection in vivo, we infected wild-type and PAR2 knockout (KO) mice with T. spiralis. Expression levels of type I, IV, and VI collagen genes and TGF-βI signaling-related genes (Smad2 and Smad3) were also decreased in the PAR2 KO mice. Phosphorylation of Smad2/3, which was increased by T. spiralis infection, was significantly diminished in the PAR2 KO mice. In conclusion, ES proteins containing serine protease most likely activate collagen synthesis via PAR2 and TGF-βI signaling, and this event could influence collagen capsule formation.

  9. Type IV collagen is an activating ligand for the adhesion G protein-coupled receptor GPR126.

    PubMed

    Paavola, Kevin J; Sidik, Harwin; Zuchero, J Bradley; Eckart, Michael; Talbot, William S

    2014-08-12

    GPR126 is an orphan heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor (GPCR) that is essential for the development of diverse organs. We found that type IV collagen, a major constituent of the basement membrane, binds to Gpr126 and activates its signaling function. Type IV collagen stimulated the production of cyclic adenosine monophosphate in rodent Schwann cells, which require Gpr126 activity to differentiate, and in human embryonic kidney (HEK) 293 cells expressing exogenous Gpr126. Type IV collagen specifically bound to the extracellular amino-terminal region of Gpr126 containing the CUB (complement, Uegf, Bmp1) and pentraxin domains. Gpr126 derivatives lacking the entire amino-terminal region were constitutively active, suggesting that this region inhibits signaling and that ligand binding relieves this inhibition to stimulate receptor activity. A new zebrafish mutation that truncates Gpr126 after the CUB and pentraxin domains disrupted development of peripheral nerves and the inner ear. Thus, our findings identify type IV collagen as an activating ligand for GPR126, define its mechanism of activation, and highlight a previously unrecognized signaling function of type IV collagen in basement membranes.

  10. Differential Actions of the Endocytic Collagen Receptor uPARAP/Endo180 and the Collagenase MMP-2 in Bone Homeostasis

    PubMed Central

    Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe; Melander, Maria C.; Albrechtsen, Reidar; Hald, Andreas; Holmbeck, Kenn; Bugge, Thomas H.; Behrendt, Niels; Engelholm, Lars H.

    2013-01-01

    A well-coordinated remodeling of uncalcified collagen matrices is a pre-requisite for bone development and homeostasis. Collagen turnover proceeds through different pathways, either involving extracellular reactions exclusively, or being dependent on endocytic processes. Extracellular collagen degradation requires the action of secreted or membrane attached collagenolytic proteases, whereas the alternative collagen degradation pathway proceeds intracellularly after receptor-mediated uptake and delivery to the lysosomes. In this study we have examined the functional interplay between the extracellular collagenase, MMP-2, and the endocytic collagen receptor, uPARAP, by generating mice with combined deficiency of both components. In both uPARAP-deficient and MMP-2-deficient adult mice the length of the tibia and femur was decreased, along with a reduced bone mineral density and trabecular bone quality. An additional decrease in bone length was observed when combining the two deficiencies, pointing to both components being important for the remodeling processes in long bone growth. In agreement with results found by others, a different effect of MMP-2 deficiency was observed in the distinct bone structures of the calvaria. These membranous bones were found to be thickened in MMP-2-deficient mice, an effect likely to be related to an accompanying defect in the canalicular system. Surprisingly, both of the latter defects in MMP-2-deficient mice were counteracted by concurrent uPARAP deficiency, demonstrating that the collagen receptor does not support the same matrix remodeling processes as the MMP in the growth of the skull. We conclude that both uPARAP and MMP-2 take part in matrix turnover processes important for bone growth. However, in some physiological situations, these two components do not support the same step in the growth process. PMID:23940733

  11. Differential actions of the endocytic collagen receptor uPARAP/Endo180 and the collagenase MMP-2 in bone homeostasis.

    PubMed

    Madsen, Daniel H; Jürgensen, Henrik J; Ingvarsen, Signe; Melander, Maria C; Albrechtsen, Reidar; Hald, Andreas; Holmbeck, Kenn; Bugge, Thomas H; Behrendt, Niels; Engelholm, Lars H

    2013-01-01

    A well-coordinated remodeling of uncalcified collagen matrices is a pre-requisite for bone development and homeostasis. Collagen turnover proceeds through different pathways, either involving extracellular reactions exclusively, or being dependent on endocytic processes. Extracellular collagen degradation requires the action of secreted or membrane attached collagenolytic proteases, whereas the alternative collagen degradation pathway proceeds intracellularly after receptor-mediated uptake and delivery to the lysosomes. In this study we have examined the functional interplay between the extracellular collagenase, MMP-2, and the endocytic collagen receptor, uPARAP, by generating mice with combined deficiency of both components. In both uPARAP-deficient and MMP-2-deficient adult mice the length of the tibia and femur was decreased, along with a reduced bone mineral density and trabecular bone quality. An additional decrease in bone length was observed when combining the two deficiencies, pointing to both components being important for the remodeling processes in long bone growth. In agreement with results found by others, a different effect of MMP-2 deficiency was observed in the distinct bone structures of the calvaria. These membranous bones were found to be thickened in MMP-2-deficient mice, an effect likely to be related to an accompanying defect in the canalicular system. Surprisingly, both of the latter defects in MMP-2-deficient mice were counteracted by concurrent uPARAP deficiency, demonstrating that the collagen receptor does not support the same matrix remodeling processes as the MMP in the growth of the skull. We conclude that both uPARAP and MMP-2 take part in matrix turnover processes important for bone growth. However, in some physiological situations, these two components do not support the same step in the growth process.

  12. Fps/Fes and Fer non-receptor protein-tyrosine kinases regulate collagen- and ADP-induced platelet aggregation.

    PubMed

    Senis, Y A; Sangrar, W; Zirngibl, R A; Craig, A W B; Lee, D H; Greer, P A

    2003-05-01

    Fps/Fes and Fer proto-oncoproteins are structurally related non-receptor protein-tyrosine kinases implicated in signaling downstream from cytokines, growth factors and immune receptors. We show that Fps/Fes and Fer are expressed in human and mouse platelets, and are activated following stimulation with collagen and collagen-related peptide (CRP), suggesting a role in GPVI receptor signaling. Fer was also activated following stimulation with thrombin and a protease-activated receptor4 (PAR4)-activating peptide, suggesting a role in signaling downstream from the G protein-coupled PAR4. There were no detectable perturbations in CRP-induced activation of Syk, PLCgamma2, cortactin, Erk, Jnk, Akt or p38 in platelets from mice lacking Fps/Fes, Fer, or both kinases. Platelets lacking Fps/Fes, from a targeted fps/fes null strain of mice, showed increased rates and amplitudes of collagen-induced aggregation, relative to wild-type platelets. P-Selectin expression was also elevated on the surface of Fps/Fes-null platelets in response to CRP. Fer-deficient platelets, from mice targeted with a kinase-inactivating mutation, disaggregated more rapidly than wild-type platelets in response to ADP. This report provides the first evidence that Fps/Fes and Fer are expressed in platelets and become activated downstream from the GPVI collagen receptor, and that Fer is activated downstream from a G-protein coupled receptor. Furthermore, using targeted mouse models we show that deficiency in Fps/Fes or Fer resulted in disregulated platelet aggregation and disaggregation, demonstrating a role for these kinases in regulating platelet functions.

  13. The role of collagen receptors Endo180 and DDR-2 in the foreign body reaction against non-crosslinked collagen and gelatin.

    PubMed

    Ye, Qingsong; Harmsen, Martin C; Ren, Yijin; Bank, Ruud A

    2011-02-01

    Despite the use of collagen-derived scaffolds in regenerative medicine, little is known about the degradation mechanisms of these scaffolds in vivo. Non-crosslinked dermal sheep (NDSC) and gelatin disks were implanted subcutaneously in mice. NDSC disks showed a very low degradation rate, despite the presence of high numbers of macrophages and the influx of neutrophils. This was attributed to the presence of the matrix metalloproteinase inhibitor TIMP-1. The limited degradation occurred mainly in the later stages of the foreign body reaction, and could be attributed to (1) phagocytosis by macrophages due to a co-expression of Endo180 and MT1-MMP on these cells (intracellular degradation) and (2) the presence of MMP-13 due to an upregulation of the expression of the DDR-2 receptor (extracellular degradation). In contrast, gelatin disks degraded quickly, due to the efficient formation of large giant cells as well as the presence of MMP-13; the inhibitor TIMP-1 was absent. The DDR-2 receptor was not expressed in the gelatin disks. Endo180 and MT1-MMP were expressed, but at most times no co-expression was seen. We conclude that the physical state of collagen (native or denatured) had a dramatic outcome on the degradation rate and provoked a completely different foreign body reaction.

  14. Transgenic expression of an altered angiotensin type I AT1 receptor resulting in marked modulation of vascular type I collagen.

    PubMed

    Yu, Jun; Taylor, Linda; Rich, Celeste; Toselli, Paul; Stone, Philip; Green, Daniel; Warburton, Rod; Hill, Nicholas; Goldstein, Ronald; Polgar, Peter

    2012-05-01

    The angiotensin II (AngII) type I receptor (AT1) was modified by replacing its third intracellular loop and C-terminal tail with the corresponding regions from the bradykinin B2 receptor. Transgenic mice were produced that overexpress this mutated receptor (AB3T). Considerably less collagen content in the intact aorta and in primary aortic smooth muscle cells (aSMCs) cultures was observed in the transgenic mice. On the other hand, elastin content remained unchanged as measured by Western blot, and insoluble amino acid quantitation. The contraction of isolated aortas also remained unaltered. The aSMCs derived from the transgenic mice showed a reduction in AngII responsive type I collagen production. In aSMCs from transgenic mice, the cascade of Akt to the mammalian target rapamycin (mTOR) to p70 S6 kinase (p70S6K) was not AngII activated, while in the aSMCs from wild-type (WT) mice the cascade was AngII activated. Angiotensin activation of Smad2 and Stat3 was also reduced in the AB3T aSMCs. However, no change in the effect of transforming growth factor β (TGFβ) on type I collagen production was observed. Also, the activation of ERK and JNK and G-protein linked signaling remained unaltered in response to AngII. Akt and PI3K activation inhibitors blocked AngII-stimulated type I collagen expression in WT aSMCs, whereas ERK inhibitor had no such effect. Our results point to an Akt/mTOR/p70S6K regulation of collagen production by AngII with participation of Smad2 and Stat3 cascades in this process.

  15. Transgenic Expression of an Altered Angiotensin type I AT1 Receptor Resulting in Marked Modulation of Vascular Type I Collagen

    PubMed Central

    Yu, Jun; Taylor, Linda; Rich, Celeste; Toselli, Paul; Stone, Philip; Green, Daniel; Warburton, Rod; Hill, Nicholas; Goldstein, Ronald; Polgar, Peter

    2011-01-01

    The angiotensin II type I receptor (AT1) was modified by replacing its third intracellular loop and C-terminal tail with the corresponding regions from the bradykinin B2 receptor. Transgenic mice were produced that overexpress this mutated receptor (AB3T). Considerably less collagen content in the intact aorta and in primary aortic smooth muscle (aSMCs) cultures was observed in the transgenic mice. On the other hand, elastin content remained unchanged as measured by western blot, and insoluble amino acid quantitation. The contraction of isolated aortas also remained unaltered. The aSMCs derived from the transgenic mice showed a reduction in angiotensin II responsive type I collagen production. In aSMCs from transgenic mice, the cascade of Akt to the mammalian target rapamycin (mTOR) to p70 S6 kinase (p70S6K) was not angiotensin II activated, while in the aSMCs from wild type mice the cascade was angiotensin II activated. Angiotensin activation of Smad2 and Stat3 was also reduced in the AB3T aSMCs. However, no change in the effect of transforming growth factor β (TGFβ) on type I collagen production was observed. Also, the activation of ERK and JNK and G protein linked signaling remained unaltered in response to angiotensin II. Akt and PI3K activation inhibitors blocked angiotensin II stimulated type I collagen expression in WT aSMCs, whereas ERK inhibitor had no such effect. Our results point to an Akt/ mTOR/ p70S6K regulation of collagen production by angiotensin II with participation of Smad2 and Stat3 cascades in this process. PMID:21751211

  16. Treatment of penetrating brain injury in a rat model using collagen scaffolds incorporating soluble Nogo receptor.

    PubMed

    Elias, Paul Z; Spector, Myron

    2015-02-01

    Injuries and diseases of the central nervous system (CNS) have the potential to cause permanent loss of brain parenchyma, with severe neurological consequences. Cavitary defects in the brain may afford the possibility of treatment with biomaterials that fill the lesion site while delivering therapeutic agents. This study examined the treatment of penetrating brain injury (PBI) in a rat model with collagen biomaterials and a soluble Nogo receptor (sNgR) molecule. sNgR was aimed at neutralizing myelin proteins that hinder axon regeneration by inducing growth cone collapse. Scaffolds containing sNgR were implanted in the brains of adult rats 1 week after injury and analysed 4 weeks or 8 weeks later. Histological analysis revealed that the scaffolds filled the lesion sites, remained intact with open pores and were infiltrated with cells and extracellular matrix. Immunohistochemical staining demonstrated the composition of the cellular infiltrate to include macrophages, astrocytes and vascular endothelial cells. Isolated regions of the scaffold borders showed integration with surrounding viable brain tissue that included neurons and oligodendrocytes. While axon regeneration was not detected in the scaffolds, the cellular infiltration and vascularization of the lesion site demonstrated a modification of the injury environment with implications for regenerative strategies.

  17. C-type lectin-like domain and fibronectin-like type II domain of phospholipase A(2) receptor 1 modulate binding and migratory responses to collagen.

    PubMed

    Takahashi, Soichiro; Watanabe, Kazuhiro; Watanabe, Yosuke; Fujioka, Daisuke; Nakamura, Takamitsu; Nakamura, Kazuto; Obata, Jun-ei; Kugiyama, Kiyotaka

    2015-03-24

    Phospholipase A2 receptor 1 (PLA2R) mediates collagen-dependent migration. The mechanisms by which PLA2R interacts with collagen remain unclear. We produced HEK293 cells expressing full-length wild-type PLA2R or a truncated PLA2R that lacks fibronectin-like type II (FNII) domains or several regions of C-type lectin-like domain (CTLD). We show that the CTLD1-2 as well as the FNII domain of PLA2R are responsible for binding to collagen and for collagen-dependent migration. Thus, multiple regions and domains of the extracellular portion of PLA2R participate in the responses to collagen. These data suggest a potentially new mechanism for PLA2R-mediated biological response beyond that of a receptor for secretory PLA2.

  18. The primary structure of the VLA-2/collagen receptor alpha 2 subunit (platelet GPIa): homology to other integrins and the presence of a possible collagen-binding domain

    PubMed Central

    1989-01-01

    VLA-2 (also called gpIa/IIa on platelets) is a collagen receptor with a unique alpha subunit and a beta subunit common to other adhesion receptors in the VLA/integrin family. Multiple cDNA clones for the human VLA-2 alpha 2 subunit have been selected from a lambda gtll library by specific antibody screening. The 5,374-bp nucleotide sequence encoded for 1,181 amino acids, including a signal peptide of 29 amino acids followed by a long extracellular domain (1,103 amino acids), a transmembrane domain, and a short cytoplasmic segment (22 amino acids). Direct sequencing of purified alpha 2 protein confirmed the identity of the 15 NH2-terminal amino acids. Overall, the alpha 2 amino acid sequence was 18-25% similar to the sequences known for other integrin alpha subunits. In particular, the alpha 2 sequence matched other integrin alpha chains in (a) the positions of 17 of its 20 cysteine residues; (b) the presence of three metal-binding domains of the general structure DXDXDGXXD; and (c) the transmembrane domain sequence. In addition, the alpha 2 sequence has a 191-amino acid insert (called the I-domain), previously found only in leukocyte integrins of the beta 2 integrin family. The alpha 2 I-domain was 23-41% similar to domains in cartilage matrix protein and von Willebrand factor, which are perhaps associated with collagen binding. The NH2-terminal sequence reported here for alpha 2 does not match the previously reported alpha 2 NH2-terminal sequence (Takada, Y., J. L. Strominger, and M. E. Hemler. 1987. Proc. Natl. Acad. Sci. USA. 84:3239-3243). Resolution of this discrepancy suggests that there may be another VLA heterodimer that resembles VLA-2 in size but has a different amino acid sequence. PMID:2545729

  19. The non-phagocytic route of collagen uptake: a distinct degradation pathway.

    PubMed

    Madsen, Daniel H; Ingvarsen, Signe; Jürgensen, Henrik J; Melander, Maria C; Kjøller, Lars; Moyer, Amanda; Honoré, Christian; Madsen, Charlotte A; Garred, Peter; Burgdorf, Sven; Bugge, Thomas H; Behrendt, Niels; Engelholm, Lars H

    2011-07-29

    The degradation of collagens, the most abundant proteins of the extracellular matrix, is involved in numerous physiological and pathological conditions including cancer invasion. An important turnover pathway involves cellular internalization and degradation of large, soluble collagen fragments, generated by initial cleavage of the insoluble collagen fibers. We have previously observed that in primary mouse fibroblasts, this endocytosis of collagen fragments is dependent on the receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180. Others have identified additional mechanisms of collagen uptake, with different associated receptors, in other cell types. These receptors include β1-integrins, being responsible for collagen phagocytosis, and the mannose receptor. We have now utilized a newly developed monoclonal antibody against uPARAP/Endo180, which down-regulates the receptor protein level on treated cells, to examine the role of uPARAP/Endo180 as a mediator of collagen internalization by a wide range of cultured cell types. With the exception of macrophages, all cells that proved capable of efficient collagen internalization were of mesenchymal origin and all of these utilized uPARAP/Endo180 for their collagen uptake process. Macrophages internalized collagen in a process mediated by the mannose receptor, a protein belonging to the same protein family as uPARAP/Endo180. β1-Integrins were found not to be involved in the endocytosis of soluble collagen, irrespectively of whether this was mediated by uPARAP/Endo180 or the mannose receptor. This further distinguishes these pathways from the phagocytic uptake of particulate collagen.

  20. The relative roles of collagen adhesive receptor DDR2 activation and matrix stiffness on the downregulation of focal adhesion kinase in vascular smooth muscle cells.

    PubMed

    Bhadriraju, Kiran; Chung, Koo-Hyun; Spurlin, Tighe A; Haynes, Ross J; Elliott, John T; Plant, Anne L

    2009-12-01

    Cells within tissues derive mechanical anchorage and specific molecular signals from the insoluble extracellular matrix (ECM) that surrounds them. Understanding the role of different cues that extracellular matrices provide cells is critical for controlling and predicting cell response to scaffolding materials. Using an engineered extracellular matrix of Type I collagen we examined how the stiffness, supramolecular structure, and glycosylation of collagen matrices influence the protein levels of cellular FAK and the activation of myosin II. Our results show that (1) cellular FAK is downregulated on collagen fibrils, but not on a non-fibrillar monolayer of collagen, (2) the downregulation of FAK is independent of the stiffness of the collagen fibrils, and (3) FAK levels are correlated with levels of tyrosine phosphorylation of the collagen adhesion receptor DDR2. Further, siRNA depletion of DDR2 blocks FAK downregulation. Our results suggest that the collagen receptor DDR2 is involved in the regulation of FAK levels in vSMC adhered to Type I collagen matrices, and that regulation of FAK levels in these cells appears to be independent of matrix stiffness.

  1. Functional selectivity of dopamine D1 receptor agonists in regulating the fate of internalized receptors *

    PubMed Central

    Ryman-Rasmussen, Jessica P.; Griffith, Adam; Oloff, Scott; Vaidehi, Nagarajan; Brown, Justin T.; Goddard, William A.; Mailman, Richard B.

    2007-01-01

    Recently, we demonstrated that D1 agonists can cause functionally selective effects when the endpoints of receptor internalization and adenylate cyclase activation are compared. The present study was designed to probe the phenomenon of functional selectivity at the D1 receptor further by testing the hypothesis that structurally dissimilar agonists with efficacies at these endpoints that equal or exceed those of dopamine would differ in ability to influence receptor fate after internalization, a functional endpoint largely unexplored for the D1 receptor. We selected two novel agonists of therapeutic interest that meet these criteria (the isochroman A-77636, and the isoquinoline dinapsoline), and compared the fates of the D1 receptor after internalization in response to these two compounds with that of dopamine. We found that dopamine caused the receptor to be rapidly recycled to the cell surface within 1 h of removal. Conversely, A-77636 caused the receptor to be retained intracellularly up to 48 h after agonist removal. Most surprisingly, the D1 receptor recovered to the cell surface 48 h after removal of dinapsoline. Taken together, these data indicate that these agonists target the D1 receptor to different intracellular trafficking pathways, demonstrating that the phenomenon of functional selectivity at the D1 receptor is operative for cellular events that are temporally downstream of immediate receptor activation. We hypothesize that these differential effects result from interactions of the synthetic ligands with aspects of the D1 receptor that are distal from the ligand binding domain. PMID:17067639

  2. Gene encoding the collagen type I and thrombospondin receptor CD36 is located on chromosome 7q11. 2

    SciTech Connect

    Fernandez-Ruiz, E.; Armesilla, A.L.; Sanchez-Madrid, F.; Vega, M.A. )

    1993-09-01

    The human CD36 is a member of a gene family of structurally related glycoproteins and functions as a receptor for collagen type I and thrombospondin. CD36 also binds to red blood cells infected with the human malaria parasite Plasmodium falciparum. In the present study, the CD36 gene was assigned to chromosome 7 by using the polymerase chain reaction with DNA from human-hamster somatic cell hybrids. Furthermore, the use of a CD36 genomic probe has allowed the localization of the CD36 locus to the 7q11.2 band by fluorescence in situ hybridization coupled with GTG-banding. 14 refs., 2 figs.

  3. Quantifying GPCR internalization: a focus on the Kisspeptin receptor.

    PubMed

    Pampillo, Macarena; Babwah, Andy V

    2015-01-01

    GPCR internalization is a critical regulatory step in determining receptor activity. While internalization terminates G protein-coupled signaling, it might be required for G protein-independent signaling. A large number of clinical therapies are based on preventing or promoting GPCR internalization. Thus, for any given GPCR, it is important to characterize its internalization and understand the factors that regulate such internalization. Here we describe different experimental protocols to evaluate the internalization of any GPCR transiently expressed in HEK 293 cells. The protocols describe the use of immunofluorescence and imaging techniques as well as flow cytometry. The techniques described use the FLAG-tagged kisspeptin receptor (KISS1R) as an example but are equally applicable to any other GPCR.

  4. Cell Surface Protein Detection to Assess Receptor Internalization

    PubMed Central

    Czarnecka, Magdalena; Kitlinska, Joanna

    2017-01-01

    The migration of membrane receptors upon exposure to different stimulants/inhibitors is of great importance. Among others, the internalization of membrane receptors affects their accessibility to ligands and cell responsiveness to environmental cues. Experimentally, receptor internalization can be used as a measure of their activation. In our studies, we employed this approach to explore cross-talk between a seven transmembrane domain receptor for neuropeptide Y (NPY), Y5R, and a tyrosine kinase receptor for brain-derived neurotrophic factor (BDNF), TrkB. To this end, we measured the internalization of Y5R upon stimulation with the TrkB ligand, BDNF. Upon treatment with BDNF, the cells were exposed to a membrane impermeable, biotinylation reagent that selectively labels surface proteins. Subsequently, the biotinylated membrane proteins were affinity-purified on columns with avidin resins and analyzed by Western blot. Differences in the fraction of receptors present on the cell surface of control and ligand-treated cells served as a measure of their internalization and response to particular stimuli.

  5. Dynamics of Receptor-Mediated Nanoparticle Internalization into Endothelial Cells

    PubMed Central

    Gonzalez-Rodriguez, David; Barakat, Abdul I.

    2015-01-01

    Nanoparticles offer a promising medical tool for targeted drug delivery, for example to treat inflamed endothelial cells during the development of atherosclerosis. To inform the design of such therapeutic strategies, we develop a computational model of nanoparticle internalization into endothelial cells, where internalization is driven by receptor-ligand binding and limited by the deformation of the cell membrane and cytoplasm. We specifically consider the case of nanoparticles targeted against ICAM-1 receptors, of relevance for treating atherosclerosis. The model computes the kinetics of the internalization process, the dynamics of binding, and the distribution of stresses exerted between the nanoparticle and the cell membrane. The model predicts the existence of an optimal nanoparticle size for fastest internalization, consistent with experimental observations, as well as the role of bond characteristics, local cell mechanical properties, and external forces in the nanoparticle internalization process. PMID:25901833

  6. Internalization of the chemokine receptor CCR4 can be evoked by orthosteric and allosteric receptor antagonists.

    PubMed

    Ajram, Laura; Begg, Malcolm; Slack, Robert; Cryan, Jenni; Hall, David; Hodgson, Simon; Ford, Alison; Barnes, Ashley; Swieboda, Dawid; Mousnier, Aurelie; Solari, Roberto

    2014-04-15

    The chemokine receptor CCR4 has at least two natural agonist ligands, MDC (CCL22) and TARC (CCL17) which bind to the same orthosteric site with a similar affinity. Both ligands are known to evoke chemotaxis of CCR4-bearing T cells and also elicit CCR4 receptor internalization. A series of small molecule allosteric antagonists have been described which displace the agonist ligand, and inhibit chemotaxis. The aim of this study was to determine which cellular coupling pathways are involved in internalization, and if antagonists binding to the CCR4 receptor could themselves evoke receptor internalization. CCL22 binding coupled CCR4 efficiently to β-arrestin and stimulated GTPγS binding however CCL17 did not couple to β-arrestin and only partially stimulated GTPγS binding. CCL22 potently induced internalization of almost all cell surface CCR4, while CCL17 showed only weak effects. We describe four small molecule antagonists that were demonstrated to bind to two distinct allosteric sites on the CCR4 receptor, and while both classes inhibited agonist ligand binding and chemotaxis, one of the allosteric sites also evoked receptor internalization. Furthermore, we also characterize an N-terminally truncated version of CCL22 which acts as a competitive antagonist at the orthosteric site, and surprisingly also evokes receptor internalization without demonstrating any agonist activity. Collectively this study demonstrates that orthosteric and allosteric antagonists of the CCR4 receptor are capable of evoking receptor internalization, providing a novel strategy for drug discovery against this class of target.

  7. Opioid receptor internalization contributes to dermorphin-mediated antinociception

    PubMed Central

    Macey, Tara A.; Ingram, Susan L.; Bobeck, Erin N.; Hegarty, Deborah M.; Aicher, Sue A.; Arttamangkul, Seksiri; Morgan, Michael M.

    2010-01-01

    Microinjection of opioids into the ventrolateral periaqueductal gray (vlPAG) produces antinociception in part by binding to mu-opioid receptors (MOPrs). Although both high and low efficacy agonists produce antinociception, low efficacy agonists such as morphine produce limited MOPr internalization suggesting that MOPr internalization and signaling leading to antinociception are independent. This hypothesis was tested in awake, behaving rats using DERM-A594, a fluorescently labeled dermorphin analog, and internalization blockers. Microinjection of DERM-A594 into the vlPAG produced both antinociception and internalization of DERM-A594. Administration of the irreversible opioid receptor antagonist beta-CNA prior to DERM-A594 microinjection reduced both the antinociceptive effect and the number of DERM-A594 labeled cells demonstrating that both effects are opioid receptor-mediated. Pretreatment with the internalization blockers dynamin dominant-negative inhibitory peptide (dynamin-DN) and concanavalinA (ConA) attenuated both DERM-A594 internalization and antinociception. Microinjection of dynamin-DN and ConA also decreased the antinociceptive potency of the unlabeled opioid agonist dermorphin when microinjected into the vlPAG as demonstrated by rightward shifts in the dose-response curves. In contrast, administration of dynamin-DN had no effect on the antinociceptive effect of microinjecting the GABAA antagonist bicuculline into the vlPAG. The finding that dermorphin-induced antinociception is attenuated by blocking receptor internalization indicates that key parts of opioid receptor-mediated signaling depend on internalization. PMID:20394808

  8. Hypoxia increases pulmonary arterial thromboxane receptor internalization independent of receptor sensitization.

    PubMed

    Fediuk, J; Sikarwar, A S; Lizotte, P P; Hinton, M; Nolette, N; Dakshinamurti, S

    2015-02-01

    Persistent Pulmonary Hypertension of the Newborn (PPHN) is characterized by sustained vasospasm and an increased thromboxane:prostacyclin ratio. Thromboxane (TP) receptors signal via Gαq to mobilize IP3 and Ca(2+), causing pulmonary arterial constriction. We have previously reported increased TP internalization in hypoxic pulmonary arterial (PA) myocytes. Serum-deprived PA myocytes were grown in normoxia (NM) or hypoxia (HM) for 72 h. TP localization was visualized in agonist-naïve and -challenged NM and HM by immunocytochemistry. Pathways for agonist-induced TP receptor internalization were determined by inhibiting caveolin- or clathrin-mediated endocytosis, and caveolar fractionation. Roles of actin and tubulin in TP receptor internalization were assessed using inhibitors of tubulin, actin-stabilizing or -destabilizing agents. PKA, PKC or GRK activation and inhibition were used to determine the kinase responsible for post-agonist receptor internalization. Agonist-naïve HM had decreased cell surface TP, and greater TP internalization after agonist challenge. TP protein did not sort with caveolin-rich fractions. Inhibition of clathrin prevented TP internalization. Both actin-stabilizing and -destabilizing agents prevented TP endocytosis in NM, while normalizing TP internalization in HM. Velocity of TP internalization was unaffected by PKA activity, but PKC activation normalized TP receptor internalization in HM. GRK inhibition had no effect. We conclude that in hypoxic myocytes, TP is internalized faster and to a greater extent than in normoxic controls. Internalization of the agonist-challenged TP requires clathrin, dynamic actin and is sensitive to PKC activity. TP receptor trafficking and signaling in hypoxia are pivotal to understanding increased vasoconstrictor sensitivity.

  9. Severe osteoporosis with multiple spontaneous vertebral fractures in a young male carrying triple polymorphisms in the vitamin D receptor, collagen type 1, and low-density lipoprotein receptor-related peptide 5 genes.

    PubMed

    Yavropoulou, Maria P; Kollia, Panagoulia; Chatzidimitriou, Dimitris; Samara, Stavroula; Skoura, Lemonia; Yovos, John G

    2016-10-01

    Osteoporosis is a common disease with a strong genetic component. Several studies have reported the vitamin D receptor (VDR), collagen type I (COL1A1), and LDL receptor-related protein 5 (LRP5) genes as the most likely candidates. However, most of the studies have been carried out in postmenopausal women and older men and show inconsistent results.

  10. Extracellular heat shock protein 90 binding to TGFβ receptor I participates in TGFβ-mediated collagen production in myocardial fibroblasts.

    PubMed

    García, Raquel; Merino, David; Gómez, Jenny M; Nistal, J Francisco; Hurlé, María A; Cortajarena, Aitziber L; Villar, Ana V

    2016-10-01

    The pathological remodeling heart shows an increase in left ventricular mass and an excess of extracellular matrix deposition that can over time cause heart failure. Transforming growth factor β (TGFβ) is the main cytokine controlling this process. The molecular chaperone heat shock protein 90 (Hsp90) has been shown to play a critical role in TGFβ signaling by stabilizing the TGFβ signaling cascade. We detected extracellular Hsp90 in complex with TGFβ receptor I (TGFβRI) in fibroblasts and determined a close proximity between both proteins suggesting a potential physical interaction between the two at the plasma membrane. This was supported by in silico studies predicting Hsp90 dimers and TGFβRI extracellular domain interaction. Both, Hsp90aa1 and Hsp90ab1 isoforms participate in TGFβRI complex. Extracellular Hsp90 inhibition lessened the yield of collagen production as well as the canonical TGFβ signaling cascade, and collagen protein synthesis was drastically reduced in Hsp90aa1 KO mice. These observations together with the significant increase in activity of Hsp90 at the plasma membrane pointed to a functional cooperative partnership between Hsp90 and TGFβRI in the fibrotic process. We propose that a surface population of Hsp90 extracellularly binds TGFβRI and this complex behaves as an active participant in collagen production in TGFβ-activated fibroblasts. We also offer an in vivo insight into the role of Hsp90 and its isoforms during cardiac remodeling in murine aortic banding model suffering from pathological cardiac remodeling and detect circulating Hsp90 overexpressed in remodeling mice.

  11. Mechanism for adhesion G protein-coupled receptor GPR56-mediated RhoA activation induced by collagen III stimulation.

    PubMed

    Luo, Rong; Jeong, Sung-Jin; Yang, Annie; Wen, Miaoyun; Saslowsky, David E; Lencer, Wayne I; Araç, Demet; Piao, Xianhua

    2014-01-01

    GPR56 is a member of the adhesion G protein-coupled receptor (GPCR) family. Despite the importance of GPR56 in brain development, where mutations cause a devastating human brain malformation called bilateral frontoparietal polymicrogyria (BFPP), the signaling mechanism(s) remain largely unknown. Like many other adhesion GPCRs, GPR56 is cleaved via a GPCR autoproteolysis-inducing (GAIN) domain into N- and C-terminal fragments (GPR56N and GPR56C); however, the biological significance of this cleavage is elusive. Taking advantage of the recent identification of a GPR56 ligand and the presence of BFPP-associated mutations, we investigated the molecular mechanism of GPR56 signaling. We demonstrate that ligand binding releases GPR56N from the membrane-bound GPR56C and triggers the association of GPR56C with lipid rafts and RhoA activation. Furthermore, one of the BFPP-associated mutations, L640R, does not affect collagen III-induced lipid raft association of GPR56. Instead, it specifically abolishes collagen III-mediated RhoA activation. Together, these findings reveal a novel signaling mechanism that may apply to other members of the adhesion GPCR family.

  12. β2-agonist clenbuterol suppresses bacterial phagocytosis of splenic macrophages expressing high levels of macrophage receptor with collagenous structure.

    PubMed

    Shirato, Ken; Sato, Shogo; Sato, Madoka; Hashizume, Yoko; Tachiyashiki, Kaoru; Imaizumi, Kazuhiko

    2013-01-01

    Splenic marginal zone macrophages expressing macrophage receptor with collagenous structure (MARCO) contribute to the clearance of blood-borne pathogens. We determined a splenic adherent cell fraction abundantly containing cells expressing a higher level of MARCO by flow cytometry, and examined the effects of daily administration of an anabolic dose of β2-agonist clenbuterol on the phagocytic capacity of the cells in mice. After 6 weeks of clenbuterol (1.0 mg/kg body weight/d) or vehicle administration to the mice, splenic adherent cells were isolated. These cells were separated into three cell-size subpopulations. Among them, the small-cell subpopulation contained abundantly the cells with markedly higher levels of MARCO and exhibited more intense phagocytic capacity against Escherichia coli, as compared with the other subpopulations. The phagocytic capacity of the small cells was significantly reduced after clenbuterol administration. These results suggest that the utilization of clenbuterol as doping drug impairs bacterial clearance in the spleen.

  13. Kaempferol inhibits fibroblast collagen synthesis, proliferation and activation in hypertrophic scar via targeting TGF-β receptor type I.

    PubMed

    Li, Hongwei; Yang, Liu; Zhang, Yuebing; Gao, Zhigang

    2016-10-01

    Hypertrophic scar (HPS) formation is a debilitating condition that results in pain, esthetic symptom and loss of tissue function. So far, no satisfactory therapeutic approach has been available for HPS treatment. In this study, we discovered that a natural small molecule, kaempferol, could significantly inhibit HPS formation in a mechanical load-induced mouse model. Our results also demonstrated that kaempferol remarkably attenuated collagen synthesis, proliferation and activation of fibroblasts in vitro and in vivo. Western blot analysis further revealed that kaempferol significantly down-regulated Smad2 and Smad3 phosphorylation in a dose-dependent manner. At last, we found that such bioactivity of kaempferol which resulted from the inhibition of TGF-β1/Smads signaling was induced by the selective binding of kaempferol to TGF-β receptor type I (TGFβRI). These findings suggest that kaempferol could be developed into a promising agent for the treatment of HPS or other fibroproliferative disorders.

  14. A Membrane-Type-1 Matrix Metalloproteinase (MT1-MMP) – Discoidin Domain Receptor 1 Axis Regulates Collagen-Induced Apoptosis in Breast Cancer Cells

    PubMed Central

    Assent, Delphine; Bourgot, Isabelle; Hennuy, Benoît; Geurts, Pierre; Noël, Agnès; Foidart, Jean-Michel; Maquoi, Erik

    2015-01-01

    During tumour dissemination, invading breast carcinoma cells become confronted with a reactive stroma, a type I collagen-rich environment endowed with anti-proliferative and pro-apoptotic properties. To develop metastatic capabilities, tumour cells must acquire the capacity to cope with this novel microenvironment. How cells interact with and respond to their microenvironment during cancer dissemination remains poorly understood. To address the impact of type I collagen on the fate of tumour cells, human breast carcinoma MCF-7 cells were cultured within three-dimensional type I collagen gels (3D COL1). Using this experimental model, we have previously demonstrated that membrane type-1 matrix metalloproteinase (MT1-MMP), a proteinase overexpressed in many aggressive tumours, promotes tumour progression by circumventing the collagen-induced up-regulation of BIK, a pro-apoptotic tumour suppressor, and hence apoptosis. Here we performed a transcriptomic analysis to decipher the molecular mechanisms regulating 3D COL1-induced apoptosis in human breast cancer cells. Control and MT1-MMP expressing MCF-7 cells were cultured on two-dimensional plastic plates or within 3D COL1 and a global transcriptional time-course analysis was performed. Shifting the cells from plastic plates to 3D COL1 activated a complex reprogramming of genes implicated in various biological processes. Bioinformatic analysis revealed a 3D COL1-mediated alteration of key cellular functions including apoptosis, cell proliferation, RNA processing and cytoskeleton remodelling. By using a panel of pharmacological inhibitors, we identified discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase specifically activated by collagen, as the initiator of 3D COL1-induced apoptosis. Our data support the concept that MT1-MMP contributes to the inactivation of the DDR1-BIK signalling axis through the cleavage of collagen fibres and/or the alteration of DDR1 receptor signalling unit, without triggering a

  15. Targeting Insulin Receptor with a Novel Internalizing Aptamer

    PubMed Central

    Iaboni, Margherita; Fontanella, Raffaela; Rienzo, Anna; Capuozzo, Maria; Nuzzo, Silvia; Santamaria, Gianluca; Catuogno, Silvia; Condorelli, Gerolama; de Franciscis, Vittorio; Esposito, Carla Lucia

    2016-01-01

    Nucleic acid-based aptamers are emerging as therapeutic antagonists of disease-associated proteins such as receptor tyrosine kinases. They are selected by an in vitro combinatorial chemistry approach, named Systematic Evolution of Ligands by Exponential enrichment (SELEX), and thanks to their small size and unique chemical characteristics, they possess several advantages over antibodies as diagnostics and therapeutics. In addition, aptamers that rapidly internalize into target cells hold as well great potential for their in vivo use as delivery tools of secondary therapeutic agents. Here, we describe a nuclease resistant RNA aptamer, named GL56, which specifically recognizes the insulin receptor (IR). Isolated by a cell-based SELEX method that allows enrichment for internalizing aptamers, GL56 rapidly internalizes into target cells and is able to discriminate IR from the highly homologous insulin-like growth factor receptor 1. Notably, when applied to IR expressing cancer cells, the aptamer inhibits IR dependent signaling. Given the growing interest in the insulin receptor as target for cancer treatment, GL56 reveals a novel molecule with great translational potential as inhibitor and delivery tool for IR-dependent cancers. PMID:27648925

  16. Constitutive Smad signaling and Smad-dependent collagen gene expression in mouse embryonic fibroblasts lacking peroxisome proliferator-activated receptor-{gamma}

    SciTech Connect

    Ghosh, Asish K Wei, Jun; Wu, Minghua; Varga, John

    2008-09-19

    Transforming growth factor-{beta} (TGF-{beta}), a potent inducer of collagen synthesis, is implicated in pathological fibrosis. Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is a nuclear hormone receptor that regulates adipogenesis and numerous other biological processes. Here, we demonstrate that collagen gene expression was markedly elevated in mouse embryonic fibroblasts (MEFs) lacking PPAR-{gamma} compared to heterozygous control MEFs. Treatment with the PPAR-{gamma} ligand 15d-PGJ{sub 2} failed to down-regulate collagen gene expression in PPAR-{gamma} null MEFs, whereas reconstitution of these cells with ectopic PPAR-{gamma} resulted in their normalization. Compared to control MEFs, PPAR-{gamma} null MEFs displayed elevated levels of the Type I TGF-{beta} receptor (T{beta}RI), and secreted more TGF-{beta}1 into the media. Furthermore, PPAR-{gamma} null MEFs showed constitutive phosphorylation of cellular Smad2 and Smad3, even in the absence of exogenous TGF-{beta}, which was abrogated by the ALK5 inhibitor SB431542. Constitutive Smad2/3 phosphorylation in PPAR-{gamma} null MEFs was associated with Smad3 binding to its cognate DNA recognition sequences, and interaction with coactivator p300 previously implicated in TGF-{beta} responses. Taken together, these results indicate that loss of PPAR-{gamma} in MEFs is associated with upregulation of collagen synthesis, and activation of intracellular Smad signal transduction, due, at least in part, to autocrine TGF-{beta} stimulation.

  17. Activation of the platelet collagen receptor integrin alpha(2)beta(1): its mechanism and participation in the physiological functions of platelets.

    PubMed

    Jung, S M; Moroi, M

    2000-10-01

    When platelets are stimulated by agonists, integrin alpha(2)beta(1) (GP Ia/IIa), one of the platelet collagen receptors, is activated to forms with high affinities for its ligand collagen. Here we describe our studies to characterize the binding kinetics of the activated integrin forms and the activation mechanism. Under low agonist concentrations, integrin alpha(2)beta(1) is activated through a mechanism involving ADP/ADP receptors; and under high agonist concentrations, multiple signaling pathways are involved in its activation. Such differences in mechanism at low and high agonist concentrations are also suggested in the activation of integrin alpha(IIb)beta(3), the platelet fibrinogen receptor. We describe our flow adhesion studies, from which evidence was obtained about the involvement of integrin alpha(2)beta(1) activation in the physiological function of platelets, adhesion and thrombus formation.

  18. Intrinsic Relative Activities of Opioid Agonists in Activating Gα proteins and Internalizing Receptor: Differences between Human and Mouse Receptors

    PubMed Central

    DiMattio, Kelly M.; Ehlert, Frederick J.; Liu-Chen, Lee-Yuan

    2015-01-01

    Several investigators recently identified biased opioid receptor (KOP receptor) agonists. However, no comprehensive study of the functional selectivity of available KOP receptor agonists at the human and mouse KOP receptors (hKOP receptor and mKOP receptor, respectively) has been published. Here we examined the ability of over 20 KOP receptor agonists to activate G proteins and to internalize the receptor. Clonal neuro-2a mouse neuroblastoma (N2a) cells stably transfected with the hKOP receptor or mKOP receptor were used. We employed agonist-induced [35S]GTPγS binding and KOP receptor internalization as measures of activation of G protein and β-arrestin pathways, respectively. The method of Ehlert and colleagues was used to quantify intrinsic relative activities at G protein activation (RAi−G) and receptor internalization (RAi−I) and the degree of functional selectivity between the two [Log RAi−G − Log RAi−I, RAi−G/RAi−I and bias factor]. The parameter, RAi, represents a relative estimate of agonist affinity for the active receptor state that elicits a given response. The endogenous ligand dynorphin A (1–17) was designated as the balanced ligand with a bias factor of 1. Interestingly, we found that there were species differences in functional selectivity. The most striking differences were for 12-epi-salvinorin A, U69,593, and ICI-199,441. 12-Epi-salvinorin A was highly internalization-biased at the mKOP receptor, but apparently G protein-biased at hKOP receptor. U69,593 was much more internalization-biased at mKOP receptor than hKOP receptor. ICI199,441 showed internalization-biased at the mKOP receptor and G protein-biased at the hKOP receptor. Possible mechanisms for the observed species differences are discussed. PMID:26057692

  19. Definition of MHC and T cell receptor contacts in the HLA-DR4restricted immunodominant epitope in type II collagen and characterization of collagen-induced arthritis in HLA-DR4 and human CD4 transgenic mice

    PubMed Central

    Andersson, Ellen Christina; Hansen, Bjarke Endel; Jacobsen, Helle; Madsen, Lars S.; Andersen, Claus B.; Engberg, Jan; Rothbard, Jonathan B.; McDevitt, Grete Sønderstrup; Malmström, Vivianne; Holmdahl, Rikard; Svejgaard, Arne; Fugger, Lars

    1998-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease associated with the HLA-DR4 and DR1 alleles. The target autoantigen(s) in RA is unknown, but type II collagen (CII) is a candidate, and the DR4- and DR1-restricted immunodominant T cell epitope in this protein corresponds to amino acids 261–273 (CII 261–273). We have defined MHC and T cell receptor contacts in CII 261–273 and provide strong evidence that this peptide corresponds to the peptide binding specificity previously found for RA-associated DR molecules. Moreover, we demonstrate that HLA-DR4 and human CD4 transgenic mice homozygous for the I-Abβ0 mutation are highly susceptible to collagen-induced arthritis and describe the clinical course and histopathological changes in the affected joints. PMID:9636191

  20. Cancer Cell Invasion in Three-dimensional Collagen Is Regulated Differentially by Gα13 Protein and Discoidin Domain Receptor 1-Par3 Protein Signaling.

    PubMed

    Chow, Christina R; Ebine, Kazumi; Knab, Lawrence M; Bentrem, David J; Kumar, Krishan; Munshi, Hidayatullah G

    2016-01-22

    Cancer cells can invade in three-dimensional collagen as single cells or as a cohesive group of cells that require coordination of cell-cell junctions and the actin cytoskeleton. To examine the role of Gα13, a G12 family heterotrimeric G protein, in regulating cellular invasion in three-dimensional collagen, we established a novel method to track cell invasion by membrane type 1 matrix metalloproteinase-expressing cancer cells. We show that knockdown of Gα13 decreased membrane type 1 matrix metalloproteinase-driven proteolytic invasion in three-dimensional collagen and enhanced E-cadherin-mediated cell-cell adhesion. E-cadherin knockdown reversed Gα13 siRNA-induced cell-cell adhesion but failed to reverse the effect of Gα13 siRNA on proteolytic invasion. Instead, concurrent knockdown of E-cadherin and Gα13 led to an increased number of single cells rather than groups of cells. Significantly, knockdown of discoidin domain receptor 1 (DDR1), a collagen-binding protein that also co-localizes to cell-cell junctions, reversed the effects of Gα13 knockdown on cell-cell adhesion and proteolytic invasion in three-dimensional collagen. Knockdown of the polarity protein Par3, which can function downstream of DDR1, also reversed the effects of Gα13 knockdown on cell-cell adhesion and proteolytic invasion in three-dimensional collagen. Overall, we show that Gα13 and DDR1-Par3 differentially regulate cell-cell junctions and the actin cytoskeleton to mediate invasion in three-dimensional collagen.

  1. Imaging LDL receptor oligomerization during endocytosis using a co-internalization assay

    PubMed Central

    Zou, Peng; Ting, Alice Y.

    2011-01-01

    Methods to probe receptor oligomerization are useful to understand the molecular mechanisms of receptor signaling. Here we report a fluorescence imaging method to determine receptor oligomerization state in living cells during endocytic internalization. The wild-type receptor is co-expressed with an internalization-defective mutant, and the internalization kinetics of each is independently monitored. If the receptor internalizes as an oligomer, then the wild-type and mutant isoforms will mutually influence each others' trafficking properties, causing co-internalization of the mutant, or co-retention of the wild-type at the cell surface. Using this approach, we found that the low density lipoprotein (LDL) receptor internalizes as an oligomer into cells, both in the presence and absence of LDL ligand. The internalization kinetics of the wild-type receptor is not changed by LDL binding. We also found that the oligomerization domain of the LDL receptor is located in its cytoplasmic tail. PMID:21194239

  2. Insights into Collagen Uptake by C-type Mannose Receptors from the Crystal Structure of Endo180 Domains 1–4

    PubMed Central

    Paracuellos, Patricia; Briggs, David C.; Carafoli, Federico; Lončar, Tan; Hohenester, Erhard

    2015-01-01

    Summary The C-type mannose receptor and its homolog Endo180 (or uPARAP, for urokinase plasminogen activator receptor-associated protein) mediate the endocytic uptake of collagen by macrophages and fibroblasts. This process is required for normal tissue remodeling, but also facilitates the growth and dissemination of tumors. We have determined the crystal structure at 2.5 Å resolution of the N-terminal region of Endo180, consisting of a ricin-like domain, a fibronectin type II (FN2) domain, and two C-type lectin (CTL) domains. The L-shaped arrangement of these domains creates a shallow trench spanning the FN2 and CTL1 domains, which was shown by mutagenesis to bind triple-helical and denatured collagen. Small-angle X-ray scattering showed that the L-shaped structure is maintained in solution at neutral and acidic pH, irrespective of calcium ion loading. Collagen binding was equally unaffected by acidic pH, suggesting that collagen release in endosomes is not regulated by changes within the Endo180 N-terminal region. PMID:26481812

  3. Phosphoproteomics of collagen receptor networks reveals SHP-2 phosphorylation downstream of wild-type DDR2 and its lung cancer mutants.

    PubMed

    Iwai, Leo K; Payne, Leo S; Luczynski, Maciej T; Chang, Francis; Xu, Huifang; Clinton, Ryan W; Paul, Angela; Esposito, Edward A; Gridley, Scott; Leitinger, Birgit; Naegle, Kristen M; Huang, Paul H

    2013-09-15

    Collagen is an important extracellular matrix component that directs many fundamental cellular processes including differentiation, proliferation and motility. The signalling networks driving these processes are propagated by collagen receptors such as the β1 integrins and the DDRs (discoidin domain receptors). To gain an insight into the molecular mechanisms of collagen receptor signalling, we have performed a quantitative analysis of the phosphorylation networks downstream of collagen activation of integrins and DDR2. Temporal analysis over seven time points identified 424 phosphorylated proteins. Distinct DDR2 tyrosine phosphorylation sites displayed unique temporal activation profiles in agreement with in vitro kinase data. Multiple clustering analysis of the phosphoproteomic data revealed several DDR2 candidate downstream signalling nodes, including SHP-2 (Src homology 2 domain-containing protein tyrosine phosphatase 2), NCK1 (non-catalytic region of tyrosine kinase adaptor protein 1), LYN, SHIP-2 [SH2 (Src homology 2)-domain-containing inositol phosphatase 2], PIK3C2A (phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2α) and PLCL2 (phospholipase C-like 2). Biochemical validation showed that SHP-2 tyrosine phosphorylation is dependent on DDR2 kinase activity. Targeted proteomic profiling of a panel of lung SCC (squamous cell carcinoma) DDR2 mutants demonstrated that SHP-2 is tyrosine-phosphorylated by the L63V and G505S mutants. In contrast, the I638F kinase domain mutant exhibited diminished DDR2 and SHP-2 tyrosine phosphorylation levels which have an inverse relationship with clonogenic potential. Taken together, the results of the present study indicate that SHP-2 is a key signalling node downstream of the DDR2 receptor which may have therapeutic implications in a subset of DDR2 mutations recently uncovered in genome-wide lung SCC sequencing screens.

  4. IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-kappa B ligand/osteoprotegerin balance.

    PubMed

    Lubberts, Erik; van den Bersselaar, Liduine; Oppers-Walgreen, Birgitte; Schwarzenberger, Paul; Coenen-de Roo, Christina J J; Kolls, Jay K; Joosten, Leo A B; van den Berg, Wim B

    2003-03-01

    IL-17 is a T cell-derived proinflammatory cytokine in experimental arthritis and is a stimulator of osteoclastogenesis in vitro. In this study, we report the effects of IL-17 overexpression (AdIL-17) in the knee joint of type II collagen-immunized mice on bone erosion and synovial receptor activator of NF-kappa B ligand (RANKL)/receptor activator of NF-kappa B/osteoprotegerin (OPG) expression. Local IL-17 promoted osteoclastic bone destruction, which was accompanied with marked tartrate-resistant acid phosphatase activity at sites of bone erosion in cortical, subchondral, and trabecular bone. Accelerated expression of RANKL and its receptor, receptor activator of NF-kappa B, was found in the synovial infiltrate and at sites of focal bone erosion, using specific immunohistochemistry. Interestingly, AdIL-17 not only enhanced RANKL expression but also strongly up-regulated the RANKL/OPG ratio in the synovium. Comparison of arthritic mice from the AdIL-17 collagen-induced arthritis group with full-blown collagen-arthritic mice having similar clinical scores for joint inflammation revealed lower RANKL/OPG ratio and tartrate-resistant acid phosphatase activity in the latter group. Interestingly, systemic OPG treatment prevented joint damage induced by local AdIL-17 gene transfer in type II collagen-immunized mice. These findings suggest T cell IL-17 to be an important inducer of RANKL expression leading to loss of the RANKL/OPG balance, stimulating osteoclastogenesis and bone erosion in arthritis.

  5. Polymorphisms in the platelet-specific collagen receptor GP6 are associated with risk of nonfatal myocardial infarction in Caucasians

    PubMed Central

    Shaffer, JR; Kammerer, CM; Dorn, J; Ferrell, RE; Iacoviello, L; Trevisan, M; Donahue, RP

    2010-01-01

    Background and Aims Glycoprotein 6 (GP6) is a platelet-specific collagen receptor implicated in the thrombotic pathway to acute myocardial infarction (AMI), but a possible genetic relationship between GP6 and AMI is poorly understood. We tested for the genetic association between AMI and single nucleotide polymorphisms (SNPs) in 24 loci, including GP6. Methods and Results We conducted a case-control study of AMI and GP6 in a community-based population (n=652 cases, 625 controls). We also examined men and women separately and stratified the latter by use of hormone replacement therapy (HRT). Among both sexes, the strongest association was for a protective missense polymorphism (rs1163662) in the GP6 gene (OR=0.70; Bonferroni-adjusted p<0.05). SNPs in GP6 were also strongly associated with AMI among women who reported ever taking HRT, but not among women who never took HRT. Haplotype analyses were consistent with the single-SNP findings. Conclusions In this sample of white non-Hispanic men and women, several SNPs in GP6 were significantly related to risk of AMI. Development of pharmacologic therapy directed towards platelet activity and thrombosis may reduce the incidence of AMI among at-risk groups. PMID:20227257

  6. Angiotensin (1-7) induces MAS receptor internalization.

    PubMed

    Gironacci, Mariela M; Adamo, Hugo P; Corradi, Gerardo; Santos, Robson A; Ortiz, Pablo; Carretero, Oscar A

    2011-08-01

    Angiotensin (Ang) (1-7) is the endogenous ligand for the G protein-coupled receptor Mas, a receptor associated with cardiac, renal, and cerebral protective responses. Physiological evidence suggests that Mas receptor (MasR) undergoes agonist-dependent desensitization, but the underlying molecular mechanism regulating receptor activity is unknown. We investigated the hypothesis that MasR desensitizes and internalizes on stimulation with Ang-(1-7). For this purpose, we generated a chimera between the MasR and the yellow fluorescent protein (YFP; MasR-YFP). MasR-YFP-transfected HEK 293T cells were incubated with Ang-(1-7), and the relative cellular distribution of MasR-YFP was observed by confocal microscopy. In resting cells, MasR-YFP was mostly localized to the cell membrane. Ang-(1-7) induced a redistribution of MasR-YFP to intracellular vesicles of various sizes after 5 minutes. Following the time course of [(125)I]Ang-(1-7) endocytosis, we observed that half of MasR-YFP underwent endocytosis after 10 minutes, and this was blocked by a MasR antagonist. MasR-YFP colocalized with Rab5, the early endosome antigen 1, and the adaptor protein complex 2, indicating that the R is internalized through a clathrin-mediated pathway and targeted to early endosomes after Ang-(1-7) stimulation. A fraction of MasR-YFP also colocalized with caveolin 1, suggesting that at some point MasR-YFP traverses caveolin 1-positive compartments. In conclusion, MasR undergoes endocytosis on stimulation with Ang-(1-7), and this event may explain the desensitization of MasR responsiveness. In this way, MasR activity and density may be tightly controlled by the cell.

  7. Discoidin domain receptor 2-microRNA 196a-mediated negative feedback against excess type I collagen expression is impaired in scleroderma dermal fibroblasts.

    PubMed

    Makino, Katsunari; Jinnin, Masatoshi; Aoi, Jun; Hirano, Ayaka; Kajihara, Ikko; Makino, Takamitsu; Sakai, Keisuke; Fukushima, Satoshi; Inoue, Yuji; Ihn, Hironobu

    2013-01-01

    Systemic sclerosis (SSc) is characterized by excess collagen deposition in the skin, due to intrinsic transforming growth factor-β (TGF-β) activation. We tried to determine the expression and the role of discoidin domain receptor 2 (DDR2) in SSc. The expression of DDR2 mRNA and protein was significantly decreased in SSc dermal fibroblasts, which was recovered by knocking down TGF-β. The knockdown of DDR2 in normal fibroblasts induced microRNA-196a expression, which led to type I collagen downregulation, indicating that DDR2 itself has a negative effect on microRNA-196a expression and inducible effect on collagen expression. In SSc fibroblasts, however, the DDR2 knockdown did not affect TGF-β signaling and microRNA-196a expression. The microRNA-196a levels were significantly decreased in normal fibroblasts treated with TGF-β and in SSc fibroblasts. Taken together our data indicate that, in SSc fibroblasts, intrinsic TGF-β stimulation induces type I collagen expression, and also downregulates DDR2 expression. This probably acts as a negative feedback mechanism against excess collagen expression, as a decreased DDR2 expression is supposed to stimulate the microRNA-196a expression and further change the collagen expression. However, in SSc fibroblasts the microRNA-196a expression was downregulated by TGF-β signaling. DDR2-microRNA-196a pathway may be a previously unreported negative feedback system, and its impairment may be involved in the pathogenesis of SSc.

  8. Collagen I induces discoidin domain receptor (DDR) 1 expression through DDR2 and a JAK2-ERK1/2-mediated mechanism in primary human lung fibroblasts.

    PubMed

    Ruiz, Pedro A; Jarai, Gabor

    2011-04-15

    Discoidin domain receptors (DDRs) DDR1 and DDR2 are receptor tyrosine kinases with the unique ability among receptor tyrosine kinases to respond to collagen. Several signaling molecules have been implicated in DDR signaling, including Shp-2, Src, and MAPK pathways, but a detailed understanding of these pathways and their transcriptional targets is still lacking. Similarly, the regulation of the expression of DDRs is poorly characterized with only a few inflammatory mediators, such as lipopolysaccharide and interleukin-1β identified as playing a role in DDR1 expression. DDRs have been reported to induce the expression of various genes including matrix metalloproteinases and bone morphogenetic proteins, but the regulatory mechanisms underlying DDR-induced gene expression remain to be determined. The aim of the present work was to elucidate the molecular mechanisms implicated in the expression of DDRs and to identify DDR-induced signaling pathways and target genes. Our data show that collagen I induces the expression of DDR1 in a dose- and time-dependent manner in primary human lung fibroblasts. Furthermore, activation of DDR2, JAK2, and ERK1/2 MAPK signaling pathways was essential for collagen I-induced DDR1 and matrix metalloproteinase 10 expression. Finally, inhibition of the ERK1/2 pathway abrogated DDR1 expression by blocking the recruitment of the transcription factor polyoma enhancer A-binding protein 3 to the DDR1 promoter. Our data provide new insights into the molecular mechanisms of collagen I-induced DDR1 expression and demonstrate an important role for ERK1/2 activation and the recruitment of polyoma enhancer-A binding protein 3 to the DDR1 promoter.

  9. Towards improved receptor targeting: anterograde transport, internalization and postendocytic trafficking of neuropeptide Y receptors.

    PubMed

    Babilon, Stefanie; Mörl, Karin; Beck-Sickinger, Annette G

    2013-08-01

    The neuropeptide Y system is known to be involved in the regulation of many central physiological and pathophysiological processes, such as energy homeostasis, obesity, cancer, mood disorders and epilepsy. Four Y receptor subtypes have been cloned from human tissue (hY1, hY2, hY4 and hY5) that form a multiligand/multireceptor system together with their three peptidic agonists (NPY, PYY and PP). Addressing this system for medical application requires on the one hand detailed information about the receptor-ligand interaction to design subtype-selective compounds. On the other hand comprehensive knowledge about alternative receptor signaling, as well as desensitization, localization and downregulation is crucial to circumvent the development of undesired side-effects and drug resistance. By bringing such knowledge together, highly potent and long-lasting drugs with minimized side-effects can be engineered. Here, current knowledge about Y receptor export, internalization, recycling, and degradation is summarized, with a focus on the human Y receptor subtypes, and is discussed in terms of its impact on therapeutic application.

  10. Histological investigation of the effect of soybean (Glycine max) extracts on the collagen layer and estrogen receptors in the skin of female rats

    PubMed Central

    Uyar, Belkiz; Sivrikoz, Oya Nermin; Ozdemir, Ugur; Dasbasi, Teslima; Sacar, Handan

    2014-01-01

    OBJECTIVES: The purpose of this study was to analyze the effects of soybean extracts obtained using different extraction methods on the skin of female rats. METHOD: A total of 64 female Sprague-Dawley rats were divided into 8 equal groups. Various extracts were administered to the female rats by oral gavage for one month. The groups comprised carboxymethyl cellulose-free control, carboxymethyl cellulose-plus control, 100-mg/kg n-hexane extract, 200-mg/kg n-hexane extract, 100-mg/kg ethyl acetate extract, 200-mg/kg ethyl acetate extract, 100-mg/kg ethanol extract and 200-mg/kg ethanol extract groups. The thickness of the collagen layer and the number of estrogen receptor-positive cells were evaluated. RESULTS: All the extract-treated groups showed a statistically significant decrease in the number of estrogen receptor-positive cells compared with the control groups. Regarding the thickness of the collagen layer, only the 200-mg/kg ethyl acetate extract-treated group showed a significant increase compared with the control groups (p<0.05). CONCLUSIONS: Our data suggest that oral intake of three different total soybean extracts might have positive estrogenic effects on the skin and that only a high-dose ethyl acetate extract can increase the expression of collagen, which may prove to be beneficial for postmenopausal facial skin. PMID:25627999

  11. Synthesis of huaicarbon A/B and their activating effects on platelet glycoprotein VI receptor to mediate collagen-induced platelet aggregation

    PubMed Central

    Yu, Hongli; Chen, Yeqing; Wu, Hao; Wang, Kuilong; Liu, Liping; Zhang, Xingde

    2017-01-01

    Quercetin and rhamnose were efficiently converted into huaicarbon A/B by heating at 250°C for 10-15 min or at 200°C for 25-30 min. With the optimum molar ratio of quercetin/rhamnose (1:3), huaicarbon A and B yields reached 25% and 16% respectively after heating at 250°C, with 55% quercetin conversion. Huaicarbon A/B both promoted washed platelet aggregation dose-dependently, which was antagonized by an inhibitor of glycoprotein VI (GPVI) receptor. Similarly, they both promoted collagen-induced platelet aggregation in platelet-rich plasma in dose-dependent manners. According to the S type dose-response model, EC50 values of huaicarbon A and huaicarbon B were calculated as 33.48 μM and 48.73 μM respectively. They induced intracellular Ca2+ accumulation that was specifically blocked by GPVI antagonist. Huaicarbon A/B enhanced intracellular Ca2+ accumulation and facilitated collagen-induced platelet aggregation, which were blocked by GPVI antagonist. They were conducive to collagen-induced platelet aggregation by activating platelet GPVI receptor. PMID:28337278

  12. Clathrin-dependent internalization of the angiotensin II AT₁A receptor links receptor internalization to COX-2 protein expression in rat aortic vascular smooth muscle cells.

    PubMed

    Morinelli, Thomas A; Walker, Linda P; Velez, Juan Carlos Q; Ullian, Michael E

    2015-02-05

    The major effects of Angiotensin II (AngII) in vascular tissue are mediated by AngII AT1A receptor activation. Certain effects initiated by AT1A receptor activation require receptor internalization. In rat aortic vascular smooth muscle cells (RASMC), AngII stimulates cyclooxygenase 2 protein expression. We have previously shown this is mediated by β-arrestin-dependent receptor internalization and NF-κB activation. In this study, a specific inhibitor of clathrin-mediated endocytosis (CME), pitstop-2, was used to test the hypothesis that clathrin-dependent internalization of activated AT1A receptor mediates NF-κB activation and subsequent cyclooxygenase 2 expression. Radioligand binding assays, real time qt-PCR and immunoblotting were used to document the effects of pitstop-2 on AngII binding and signaling in RASMC. Laser scanning confocal microscopy (LSCM) was used to image pitstop-2׳s effects on AT1 receptor/GFP internalization in HEK-293 cells and p65 NF-κB nuclear localization in RASMC. Pitstop-2 significantly inhibited internalization of AT1A receptor (44.7% ± 3.1% Control vs. 13.2% ± 8.3% Pitstop-2; n=3) as determined by radioligand binding studies in RASMC. Studies utilizing AT1A receptor/GFP expressed in HEK 293 cells and LSCM confirmed these findings. Pitstop-2 significantly inhibited AngII-induced p65 NF-κB phosphorylation and nuclear localization, COX-2 message and protein expression in RASMC without altering activation of p42/44 ERK or TNFα signaling. Pitstop-2, a specific inhibitor of clathrin-mediated endocytosis, confirms that internalization of activated AT1A receptor mediates AngII activation of cyclooxygenase 2 expression in RASMC. These data provide support for additional intracellular signaling pathways activated through β-arrestin mediated internalization of G protein-coupled receptors, such as AT1A receptors.

  13. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist inhibits collagen synthesis in human hypertrophic scar fibroblasts by targeting Smad3 via miR-145

    SciTech Connect

    Zhu, Hua-Yu; Li, Chao; Zheng, Zhao; Zhou, Qin; Guan, Hao; Su, Lin-Lin; Han, Jun-Tao; Zhu, Xiong-Xiang; Wang, Shu-yue; Li, Jun Hu, Da-Hai

    2015-03-27

    The transcription factor peroxisome proliferator-activated receptor-γ (PPAR-γ) functions to regulate cell differentiation and lipid metabolism. Recently, its agonist has been documented to regulate extracellular matrix production in human dermal fibroblasts. This study explored the underlying molecular mechanisms and gene interactions in hypertrophic scar fibroblasts (HSFBs) in vitro. HSFBs were cultured and treated with or without PPAR-γ agonist or antagonist for gene expression. Bioinformatical analysis predicted that miR-145 could target Smad3 expression. Luciferase assay was used to confirm such an interaction. The data showed that PPAR-γ agonist troglitazone suppressed expression of Smad3 and Col1 in HSFBs. PPAR-γ agonist induced miR-145 at the gene transcriptional level, which in turn inhibited Smad3 expression and Col1 level in HSFBs. Furthermore, ELISA data showed that Col1 level in HSFBs was controlled by a feedback regulation mechanism involved in PPAR-γ agonist and antagonist-regulated expression of miR-145 and Smad3 in HSFBs. These findings indicate that PPAR-γ-miR-145-Smad3 axis plays a role in regulation of collagen synthesis in HSFBs. - Highlights: • PPAR-γ agonist inhibits collagen synthesis in HSFBs. • Smad3 and type I collagen expression are decreased by PPAR-γ agonist. • miR-145 expression is increased by PPAR-γ agonist in HSFBs. • Increased miR-145 inhibits collagen synthesis by targeting Smad3. • miR-145 regulates collagen synthesis.

  14. Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization

    NASA Technical Reports Server (NTRS)

    Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.

    1999-01-01

    We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.

  15. Evidence for the involvement of p59fyn and p53/56lyn in collagen receptor signalling in human platelets.

    PubMed

    Briddon, S J; Watson, S P

    1999-02-15

    The binding of collagen to platelet glycoprotein VI (GPVI) leads to the subsequent activation of phospholipase Cgamma2 through a pathway that is dependent on the Fc receptor gamma (FcR gamma) chain and the tyrosine kinase p72syk. We have investigated the role of platelet Src-family kinases in this signalling pathway. The selective Src-family kinase inhibitor PP1 prevented collagen-stimulated increases in whole-cell tyrosine phosphorylation and tyrosine phosphorylation of the FcR gamma chain and p72syk. A similar set of observations was made for a collagen-related peptide (CRP), which binds to GPVI but not to the integrin alpha2beta1 (GPIa/IIa). These effects were seen at a concentration of PP1 that inhibited platelet aggregation, dense granule release and Ca2+ mobilization induced by CRP, but not aggregation and Ca2+ mobilization mediated by the G-protein-coupled receptor agonist thrombin. After stimulation by CRP or collagen, the Src-family kinases p59fyn and p53/56lyn became associated with several tyrosine-phosphorylated proteins including the FcR gamma chain. This was not true of the other platelet Src-family kinases. The association between the FcR gamma chain and p59fyn was also seen under basal conditions, and was stable only in the weak detergent Brij96 but not in Nonidet P40, suggesting a non-SH2-dependent interaction. These results provide strong evidence for the involvement of p59fyn and p53/56lyn in signalling via GPVI, with p59fyn possibly acting upstream of FcR gamma chain phosphorylation.

  16. Requirement of cortical actin organization for bombesin, endothelin, and EGF receptor internalization.

    PubMed

    Lunn, J A; Wong, H; Rozengurt, E; Walsh, J H

    2000-12-01

    The role of actin organization in occupancy-induced receptor internalization remains poorly defined. Here we report that treatment of mouse Swiss 3T3 cells with latrunculin A, a potent inhibitor of actin polymerization (including cortical actin), inhibited the internalization of the endogenous bombesin/gastrin-releasing peptide (GRP) receptor, as judged by uptake of (125)I-labeled GRP or fluorescent Cy3-labeled bombesin. In contrast, cells pretreated with cytochalasin D showed minimal inhibition of bombesin/GRP receptor internalization. Similarly, pretreatment of Swiss 3T3 cells with the potent Rho-kinase inhibitor HA-1077, at concentrations (10-20 microM) that abrogated bombesin-mediated stress fiber formation, did not significantly alter receptor-mediated internalization of (125)I-GRP. These results indicate that bombesin/GRP receptor internalization depends on latrunculin A-sensitive cortical actin rather than on rapidly turning over actin stress fibers that are disrupted by either cytochalasin D or HA-1077. The rates and total levels of internalization of the endogenously expressed endothelin A receptor and epidermal growth factor receptor were also markedly reduced by latrunculin A in Swiss 3T3 cells. The potency of latrunculin A for inhibiting G protein-coupled receptor endocytosis was comparable to that for reducing internalization of the epidermal growth factor tyrosine kinase receptor. We conclude that cortical actin structures, disrupted by latrunculin A, are necessary for occupancy-induced receptor internalization in animal cells.

  17. Opiates modulate thermosensation by internalizing cold receptor TRPM8.

    PubMed

    Shapovalov, George; Gkika, Dimitra; Devilliers, Maily; Kondratskyi, Artem; Gordienko, Dmitri; Busserolles, Jerome; Bokhobza, Alexandre; Eschalier, Alain; Skryma, Roman; Prevarskaya, Natalia

    2013-08-15

    Stimulation of μ-opioid receptors (OPRMs) brings powerful pain relief, but it also leads to the development of tolerance and addiction. Ensuing withdrawal in abstinent patients manifests itself with severe symptoms, including cold hyperalgesia, often preventing addicted patients from successfully completing the rehabilitation. Unsurprisingly, OPRMs have been a central point of many studies. Nonetheless, a satisfactory understanding of the pathways leading to distorted sensory responses during opiate administration and abstinence is far from complete. Here, we present a mechanism that leads to modulation by OPRMs of one of the sensory responses, thermosensation. Activation of OPRM1 leads to internalization of a cold-sensor TRPM8, which can be reversed by a follow-up treatment with the inverse OPRM agonist naloxone. Knockout of TRPM8 protein leads to a decrease in morphine-induced cold analgesia. The proposed pathway represents a universal mechanism that is probably shared by regulatory pathways modulating general pain sensation in response to opioid treatment.

  18. M2-like macrophages are responsible for collagen degradation through a mannose receptor–mediated pathway

    PubMed Central

    Madsen, Daniel H.; Leonard, Daniel; Masedunskas, Andrius; Moyer, Amanda; Jürgensen, Henrik Jessen; Peters, Diane E.; Amornphimoltham, Panomwat; Selvaraj, Arul; Yamada, Susan S.; Brenner, David A.; Burgdorf, Sven; Engelholm, Lars H.; Behrendt, Niels; Holmbeck, Kenn; Weigert, Roberto

    2013-01-01

    Tissue remodeling processes critically depend on the timely removal and remodeling of preexisting collagen scaffolds. Nevertheless, many aspects related to the turnover of this abundant extracellular matrix component in vivo are still incompletely understood. We therefore took advantage of recent advances in optical imaging to develop an assay to visualize collagen turnover in situ and identify cell types and molecules involved in this process. Collagen introduced into the dermis of mice underwent cellular endocytosis in a partially matrix metalloproteinase–dependent manner and was subsequently routed to lysosomes for complete degradation. Collagen uptake was predominantly executed by a quantitatively minor population of M2-like macrophages, whereas more abundant Col1a1-expressing fibroblasts and Cx3cr1-expressing macrophages internalized collagen at lower levels. Genetic ablation of the collagen receptors mannose receptor (Mrc1) and urokinase plasminogen activator receptor–associated protein (Endo180 and Mrc2) impaired this intracellular collagen degradation pathway. This study demonstrates the importance of receptor-mediated cellular uptake to collagen turnover in vivo and identifies a key role of M2-like macrophages in this process. PMID:24019537

  19. Activation, internalization, and recycling of the serotonin 2A receptor by dopamine

    PubMed Central

    Bhattacharyya, Samarjit; Raote, Ishier; Bhattacharya, Aditi; Miledi, Ricardo; Panicker, Mitradas M.

    2006-01-01

    Serotonergic and dopaminergic systems, and their functional interactions, have been implicated in the pathophysiology of various CNS disorders. Here, we use recombinant serotonin (5-HT) 2A (5-HT2A) receptors to further investigate direct interactions between dopamine and 5-HT receptors. Previous studies in Xenopus oocytes showed that dopamine, although not the cognate ligand for the 5-HT2A receptor, acts as a partial-efficacy agonist. At micromolar concentrations, dopamine also acts as a partial-efficacy agonist on 5-HT2A receptors in HEK293 cells. Like 5-HT, dopamine also induces receptor-internalization in these cells, although at significantly higher concentrations than 5-HT. Interestingly, if the receptors are first sensitized or “primed” by subthreshold concentrations of 5-HT, then dopamine-induced internalization occurs at concentrations ≈10-fold lower than when dopamine is used alone. Furthermore, unlike 5-HT-mediated internalization, dopamine-mediated receptor internalization, alone, or after sensitization by 5-HT, does not depend on PKC. Dopamine-internalized receptors recycle to the surface at rates similar to those of 5-HT-internalized receptors. Our results suggest a previously uncharacterized role for dopamine in the direct activation and internalization of 5-HT2A receptors that may have clinical relevance to the function of serotonergic systems in anxiety, depression, and schizophrenia and also to the treatment of these disorders. PMID:17005723

  20. Histamine H2 receptor trafficking: role of arrestin, dynamin, and clathrin in histamine H2 receptor internalization.

    PubMed

    Fernandez, Natalia; Monczor, Federico; Baldi, Alberto; Davio, Carlos; Shayo, Carina

    2008-10-01

    Agonist-induced internalization of G protein-coupled receptors (GPCRs) has been implicated in receptor desensitization, resensitization, and down-regulation. In the present study, we sought to establish whether the histamine H2 receptor (H2r) agonist amthamine, besides promoting receptor desensitization, induced H2r internalization. We further studied the mechanisms involved and its potential role in receptor resensitization. In COS7 transfected cells, amthamine induced H2r time-dependent internalization, showing 70% of receptor endocytosis after 60-min exposure to amthamine. Agonist removal led to the rapid recovery of resensitized receptors to the cell surface. Similar results were obtained in the presence of cycloheximide, an inhibitor of protein synthesis. Treatment with okadaic acid, an inhibitor of the protein phosphatase 2A (PP2A) family of phosphatases, reduced the recovery of both H2r membrane sites and cAMP response. Arrestin 3 but not arrestin 2 overexpression reduced both H2r membrane sites and H2r-evoked cAMP response. Receptor cotransfection with dominant-negative mutants for arrestin, dynamin, Eps15 (a component of the clathrin-mediated endocytosis machinery), or RNA interference against arrestin 3 abolished both H2r internalization and resensitization. Similar results were obtained in U937 cells endogenously expressing H2r. Our findings suggest that amthamine-induced H2r internalization is crucial for H2r resensitization, processes independent of H2r de novo synthesis but dependent on PP2A-mediated dephosphorylation. Although we do not provide direct evidence for H2r interaction with beta-arrestin, dynamin, and/or clathrin, our results support their involvement in H2r endocytosis. The rapid receptor recycling to the cell surface and the specific involvement of arrestin 3 in receptor internalization further suggest that the H2r belongs to class A GPCRs.

  1. Investigation of the role of endosomal Toll-like receptors in murine collagen-induced arthritis reveals a potential role for TLR7 in disease maintenance

    PubMed Central

    2012-01-01

    Introduction Endosomal toll-like receptors (TLRs) have recently emerged as potential contributors to the inflammation observed in human and rodent models of rheumatoid arthritis (RA). This study aims to evaluate the role of endosomal TLRs and in particular TLR7 in the murine collagen induced arthritis (CIA) model. Methods CIA was induced by injection of collagen in complete Freund's adjuvant. To investigate the effect of endosomal TLRs in the CIA model, mianserin was administered daily from the day of disease onset. The specific role of TLR7 was examined by inducing CIA in TLR7-deficient mice. Disease progression was assessed by measuring clinical score, paw swelling, serum anti-collagen antibodies histological parameters, cytokine production and the percentage of T regulatory (Treg) cells. Results Therapeutic administration of mianserin to arthritic animals demonstrated a highly protective effect on paw swelling and joint destruction. TLR7-/- mice developed a mild arthritis, where the clinical score and paw swelling were significantly compromised in comparison to the control group. The amelioration of arthritis by mianserin and TLR7 deficiency both corresponded with a reduction in IL-17 responses, histological and clinical scores, and paw swelling. Conclusions These data highlight the potential role for endosomal TLRs in the maintenance of inflammation in RA and support the concept of a role for TLR7 in experimental arthritis models. This study also illustrates the potential benefit that may be afforded by therapeutically inhibiting the endosomal TLRs in RA. PMID:22691272

  2. Constitutive internalization and recycling of metabotropic glutamate receptor 5 (mGluR5).

    PubMed

    Trivedi, Rishi Raj; Bhattacharyya, Samarjit

    2012-10-12

    Ligand-dependent and ligand-independent endocytic trafficking of G-protein coupled receptors (GPCRs) is critical for accurate receptor-mediated signaling and its regulation. Metabotropic glutamate receptor 5 (mGluR5) is a GPCR that plays a crucial role in circuit formation in the brain and also in various forms of synaptic plasticity including learning and memory. Outside the central nervous system this receptor also plays very important role in various other non-neuronal cells like heart cells, skin cells, hepatocytes, etc. Although the ligand-mediated endocytosis of mGluR5 has been studied in some detail, ligand-independent/constitutive endocytosis of the receptor has not been properly studied. Here, we have investigated the constitutive endocytosis of mGluR5 and also the sub-cellular fate of the receptor subsequent to internalization. We show here that mGluR5 undergoes constitutive internalization in HEK293 cells. Following endocytosis, the receptor enters the recycling compartment and no localization of the receptor was observed in the lysosome. In addition, we also report here that most of the receptors recycle to the cell surface subsequent to constitutive internalization. Thus, our data demonstrate that mGluR5 receptors internalize without the application of ligand and the internalized receptors recycle back to the cell surface following constitutive endocytosis.

  3. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors

    PubMed Central

    Koshimizu, Taka-aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na+ in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na+-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na+ sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na+ increased cell surface [3H]AVP binding and decreased receptor internalization. Substitution of Na+ by Cs+ or NH4+ inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na+ over Cs+. Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  4. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.

    PubMed

    Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-05-03

    Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations.

  5. In Vivo Techniques to Investigate the Internalization Profile of Opioid Receptors

    PubMed Central

    Pradhan, Amynah A.; Tawfik, Vivianne L.; Laboy, Alycia F.; Scherrer, Grégory

    2015-01-01

    G-protein-coupled receptors (GPCRs) regulate a remarkable diversity of biological functions, and are thus often targeted for drug therapies. Receptor internalization is commonly observed following agonist binding and activation. Receptor trafficking events have been well characterized in cell systems, but the in vivo significance of GPCR internalization is still poorly understood. To address this issue, we have developed an innovative knock-in mouse model, where an opioid receptor is directly visible in vivo. These knockin mice express functional fluorescent delta opioid receptors (DOR-eGFP) in place of the endogenous receptor, and these receptors are expressed at physiological levels within their native environment. DOR-eGFP mice have proven to be an extraordinary tool in studying receptor neuroanatomy, real-time receptor trafficking in live neurons, and in vivo receptor internalization. We have used this animal model to determine the relationship between receptor trafficking in neurons and receptor function at a behavioral level. Here, we describe in detail the construction and characterization of this knockin mouse. We also outline how to use these mice to examine the behavioral consequences of agonist-specific trafficking at the delta opioid receptor. These techniques are potentially applicable to any GPCR, and highlight the powerful nature of this imaging tool. PMID:25293318

  6. Diallylsulfide attenuates excessive collagen production and apoptosis in a rat model of bleomycin induced pulmonary fibrosis through the involvement of protease activated receptor-2

    SciTech Connect

    Kalayarasan, Srinivasan Sriram, Narayanan; Soumyakrishnan, Syamala; Sudhandiran, Ganapasam

    2013-09-01

    Pulmonary fibrosis (PF) can be a devastating lung disease. It is primarily caused by inflammation leading to severe damage of the alveolar epithelial cells. The pathophysiology of PF is not yet been clearly defined, but studying lung parenchymal injury by involving reactive oxygen species (ROS) through the activation of protease activated receptor-2 (PAR-2) may provide promising results. PAR-2 is a G-protein coupled receptor is known to play an important role in the development of PF. In this study, we investigated the inhibitory role of diallylsulfide (DAS) against ROS mediated activation of PAR-2 and collagen production accompanied by epithelial cell apoptosis. Bleomycin induced ROS levels may prompt to induce the expression of PAR-2 as well as extracellular matrix proteins (ECM), such as MMP 2 and 9, collagen specific proteins HSP-47, α-SMA, and cytokines IL-6, and IL-8RA. Importantly DAS treatment effectively decreased the expression of all these proteins. The inhibitory effect of DAS on profibrotic molecules is mediated by blocking the ROS level. To identify apoptotic signaling as a mediator of PF induction, we performed apoptotic protein expression, DNA fragmentation analysis and ultrastructural details of the lung tissue were performed. DAS treatment restored all these changes to near normalcy. In conclusion, treatment of PF bearing rats with DAS results in amelioration of the ROS production, PAR-2 activation, ECM production, collagen synthesis and alveolar epithelial cell apoptosis during bleomycin induction. We attained the first evidence that treatment of DAS decreases the ROS levels and may provide a potential therapeutic effect attenuating bleomycin induced PF. - Highlights: • DAS inhibits PAR-2 activity; bleomycin stimulates PAR-2 activity. • Increase in PAR-2 activity is correlated with pulmonary fibrosis • DAS reduces pro-inflammatory activity linked to facilitating pulmonary fibrosis. • DAS inhibits apoptosis of alveolar epithelial cells.

  7. Characterization of the single transmembrane domain of human receptor activity-modifying protein 3 in adrenomedullin receptor internalization

    SciTech Connect

    Kuwasako, Kenji; Kitamura, Kazuo; Nagata, Sayaka; Nozaki, Naomi; Kato, Johji

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer RAMP3 mediates CLR internalization much less effectively than does RAMP2. Black-Right-Pointing-Pointer The RAMP3 TMD participates in the negative regulation of CLR/RAMP3 internalization. Black-Right-Pointing-Pointer A new strategy of promoting internalization and resensitization of the receptor was found. -- Abstract: Two receptor activity-modifying proteins (RAMP2 and RAMP3) enable calcitonin receptor-like receptor (CLR) to function as two heterodimeric receptors (CLR/RAMP2 and CLR/RAMP3) for adrenomedullin (AM), a potent cardiovascular protective peptide. Following AM stimulation, both receptors undergo rapid internalization through a clathrin-dependent pathway, after which CLR/RAMP3, but not CLR/RAMP2, can be recycled to the cell surface for resensitization. However, human (h)RAMP3 mediates CLR internalization much less efficiently than does hRAMP2. Therefore, the molecular basis of the single transmembrane domain (TMD) and the intracellular domain of hRAMP3 during AM receptor internalization was investigated by transiently transfecting various RAMP chimeras and mutants into HEK-293 cells stably expressing hCLR. Flow cytometric analysis revealed that substituting the RAMP3 TMD with that of RAMP2 markedly enhanced AM-induced internalization of CLR. However, this replacement did not enhance the cell surface expression of CLR, [{sup 125}I]AM binding affinity or AM-induced cAMP response. More detailed analyses showed that substituting the Thr{sup 130}-Val{sup 131} sequence in the RAMP3 TMD with the corresponding sequence (Ile{sup 157}-Pro{sup 158}) from RAMP2 significantly enhanced AM-mediated CLR internalization. In contrast, substituting the RAMP3 target sequence with Ala{sup 130}-Ala{sup 131} did not significantly affect CLR internalization. Thus, the RAMP3 TMD participates in the negative regulation of CLR/RAMP3 internalization, and the aforementioned introduction of the Ile-Pro sequence into the RAMP3 TMD may be a

  8. Involvement of P2X7 receptor signaling on regulating the differentiation of Th17 cells and type II collagen-induced arthritis in mice

    PubMed Central

    Fan, Zhi-Dan; Zhang, Ya-Yuan; Guo, Yi-Hong; Huang, Na; Ma, Hui-Hui; Huang, Hui; Yu, Hai-Guo

    2016-01-01

    Interleukin (IL)-17 producing T helper (Th17) cells are major effector cells in the pathogenesis of rheumatoid arthritis (RA). The P2X7 receptor (P2X7R) has emerged as a potential site in the regulation of inflammation in RA but little is known of its functional role on the differentiation of Th17 cells. This study investigates the in vitro and in vivo effects of P2X7R on Th17 cell differentiation during type II collagen (CII) induced experimental arthritis model. In CII-treated dendritic cells (DCs) and DC/CD4+ T coculture system, pretreatment with pharmacological antagonists of P2X7R (Suramin and A-438079) caused strong inhibition of production of Th17-promoting cytokines (IL-1β, TGF-β1, IL-23p19 and IL-6). Exposure to CII induced the elevation of mRNAs encoding retinoic acid receptor-related orphan receptor α and γt, which were abolished by pretreatment with P2X7R antagonists. Furthermore, blocking P2X7R signaling abolished the CII-mediated increase in IL-17A. Blockade of P2X7R remarkably inhibited hind paw swelling and ameliorated pathological changes in ankle joint of the collagen-induced arthritis mice. Thus, we demonstrated a novel function for P2X7R signaling in regulating CII-induced differentiation of Th17 cells. P2X7R signaling facilitates the development of the sophisticated network of DC-derived cytokines that favors a Th17 phenotype. PMID:27775097

  9. Endocytosis and membrane receptor internalization: implication of F-BAR protein Carom.

    PubMed

    Xu, Yanjie; Xia, Jixiang; Liu, Suxuan; Stein, Sam; Ramon, Cueto; Xi, Hang; Wang, Luqiao; Xiong, Xinyu; Zhang, Lixiao; He, Dingwen; Yang, William; Zhao, Xianxian; Cheng, Xiaoshu; Yang, Xiaofeng; Wang, Hong

    2017-03-01

    Endocytosis is a cellular process mostly responsible for membrane receptor internalization. Cell membrane receptors bind to their ligands and form a complex which can be internalized. We previously proposed that F-BAR protein initiates membrane curvature and mediates endocytosis via its binding partners. However, F-BAR protein partners involved in membrane receptor endocytosis and the regulatory mechanism remain unknown. In this study, we established database mining strategies to explore mechanisms underlying receptor-related endocytosis. We identified 34 endocytic membrane receptors and 10 regulating proteins in clathrin-dependent endocytosis (CDE), a major process of membrane receptor internalization. We found that F-BAR protein FCHSD2 (Carom) may facilitate endocytosis via 9 endocytic partners. Carom is highly expressed, along with highly expressed endocytic membrane receptors and partners, in endothelial cells and macrophages. We established 3 models of Carom-receptor complexes and their intracellular trafficking based on protein interaction and subcellular localization. We conclude that Carom may mediate receptor endocytosis and transport endocytic receptors to the cytoplasm for receptor signaling and lysosome/proteasome degradation, or to the nucleus for RNA processing, gene transcription and DNA repair.

  10. Signal-transducing mechanisms involved in activation of the platelet collagen receptor integrin alpha(2)beta(1).

    PubMed

    Jung, S M; Moroi, M

    2000-03-17

    Evidence was obtained about the mechanism responsible for platelet integrin alpha(2)beta activation by determining effects of various inhibitors on soluble collagen binding, a parameter to assess integrin alpha(2)beta(1) activation, in stimulated platelets. Agonists that can also activate platelet glycoprotein IIb/IIIa are able to activate integrin alpha(2)beta(1), but those operating via glycoprotein Ib cannot. Activation of alpha(2)beta(1) induced by low thrombin or collagen-related peptide concentrations was almost completely inhibited by apyrase, and the inhibitors wortmannin, 4-amino-5-(chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, bisindolylmaleimide I, and SQ29548 significantly inhibited it. Activation induced by high thrombin or collagen-related peptide concentrations was far less sensitive to these inhibitors. However, only wortmannin markedly inhibited ADP-induced integrin alpha(2)beta(1) activation, and this was not ADP concentration-dependent. These results suggest that at the low agonist concentrations, the released ADP would be a primary inducer of integrin alpha(2)beta(1) activation, while at the high agonist concentrations, there would be several pathways through which integrin alpha(2)beta(1) activation can be induced. Kinetic analyses revealed that ADP-induced platelets had about the same number of binding sites (B(max)) as thrombin-induced platelets, but their affinity (K(d)) for soluble collagen was 3.7-12.7-fold lower, suggesting that activated integrin alpha(2)beta(1) induced by ADP is different from that induced by thrombin. The data are consistent with an activation mechanism involving released ADP and in which there exists two different states of activated integrin alpha(2)beta(1); these activated forms of integrin alpha(2)beta(1) would have different conformations that determine their ligand affinity.

  11. Soluble complement receptor one (sCR1) inhibits the development and progression of rat collagen-induced arthritis.

    PubMed

    Goodfellow, R M; Williams, A S; Levin, J L; Williams, B D; Morgan, B P

    2000-01-01

    We set out to determine whether inhibition of complement using sCR1 could influence the development and progression of collagen arthritis in the Lewis rat. Collagen arthritis was successfully established in the Lewis rat, using a novel immunization schedule. In separate experiments, cobra venom factor (CVF) and sCR1 were used to achieve systemic complement inhibition. Their respective effects on disease onset and on the progression of established disease compared with saline-treated control animals was explored. Arthritis was assessed by measurement of clinical score, paw diameter and paw volume. Complement inhibition using either CVF or sCR1, prior to the onset of clinical signs of inflammation, delayed the development of disease. CVF was ineffective in the treatment of established disease, whereas sCR1 delayed the progression of disease in affected joints and prevented the recruitment of further joints while the animals were complement-depleted. In the control saline-treated groups the disease continued to progress relentlessly. We conclude that complement activation is important in the initiation and maintenance of inflammation in collagen arthritis. The potent disease-modulating effect of sCR1 provides persuasive evidence that specific complement inhibiting agents may be an effective approach to the treatment of inflammatory joint diseases

  12. Honokiol as a specific collagen receptor glycoprotein VI antagonist on human platelets: Functional ex vivo and in vivo studies

    PubMed Central

    Lee, Tzu-Yin; Chang, Chao-Chien; Lu, Wan-Jung; Yen, Ting-Lin; Lin, Kuan-Hung; Geraldine, Pitchairaj; Li, Jiun-Yi; Sheu, Joen-Rong

    2017-01-01

    Honokiol, derived from Magnolia officinalis, has various pharmacological properties. Platelet activation plays a critical role in cardiovascular diseases. Honokiol has been reported to inhibit collagen-stimulated rabbit platelet aggregation. However, detailed further studies on the characteristics and functional activity of honokiol in platelet activation are relatively lacking. In the present study, honokiol specifically inhibited platelet aggregation and Ca+2 ion mobilization stimulated with collagen or convulxin, an agonist of glycoprotein (GP) VI, but not with aggretin, an agonist of integrin α2β1. Honokiol also attenuated the phosphorylation of Lyn, PLCγ2, PKC, MAPKs, and Akt after convulxin stimulation. Honokiol have no cytotoxicity in zebrafish embryos. Honokiol diminished the binding of anti-GP VI (FITC-JAQ1) mAb to human platelets, and it also reduced the coimmunoprecipitation of GP VI-bound Lyn after convulxin stimulation. The surface plasmon resonance results revealed that honokiol binds directly to GP VI, with a KD of 289 μM. Platelet function analysis revealed that honokiol substantially prolonged the closure time in human whole blood and increased the occlusion time of thrombotic platelet plug formation in mice. In conclusion, honokiol acts as a potent antagonist of collagen GP VI in human platelets, and it has therapeutic potential in the prevention of the pathological thrombosis. PMID:28054640

  13. Platelet collagen receptor integrin alpha2beta1 activation involves differential participation of ADP-receptor subtypes P2Y1 and P2Y12 but not intracellular calcium change.

    PubMed

    Jung, S M; Moroi, M

    2001-06-01

    In agonist-induced platelet activation, the collagen platelet receptor integrin alpha2beta1 is activated to high-affinity states through ADP involvement [Jung, S.M. & Moroi, M. (2000) J. Biol. Chem. 275, 8016-8026]. Here we determined the ADP-receptor subtypes involved and their relative contributions to alpha2beta1 activation (assessed by soluble-collagen binding) using the P2Y12 antagonist AR-C69931MX and P2Y1 antagonists adenosine 3',5'-diphosphate (Ado(3,5)PP) and adenosine 3'-phosphate 5'-phosphosulfate (AdoPPS). All three inhibited alpha2beta1 activation induced by low or high ADP, low thrombin, or low collagen-related peptide (CRP) concentrations; however, AR-C69931MX was markedly more inhibitory than the P2Y1 antagonists, suggesting the greater contribution of P2Y12. Inhibition patterns by various combinations of AR-C69931MX, AdoPPS, and wortmannin suggested that P2Y1 and P2Y12 mediate alpha2beta1 activation through different pathways, with possible involvement of phosphoinositide 3-kinase in both. Low concentrations of the acetoxy-methyl derivative of 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetra-acetic acid (calcium chelator) markedly decreased alpha2beta1 activation by low thrombin or CRP, but did not affect that by low or high ADP. Measurements of intracellular Ca2+ level (fluorimetric method) and alpha2beta1 activation (soluble-collagen binding) in the same platelet preparation indicated that alpha2beta1 activation via ADP receptors was independent of intracellular Ca2+ release. Our data indicate that integrin alpha2beta1 activation by ADP occurs through an inside-out signaling mechanism involving differential contributions by P2Y1 and P2Y12 wherein each contributes to some portion of the activation, with the stronger contribution of P2Y12. Furthermore, intracellular Ca2+ increase is not directly related to integrin alpha2beta1 activation, meaning that it is separate from the calcium mobilization pathways that these two ADP receptors are involved in.

  14. Bioengineered collagens

    PubMed Central

    Ramshaw, John AM; Werkmeister, Jerome A; Dumsday, Geoff J

    2014-01-01

    Mammalian collagen has been widely used as a biomedical material. Nevertheless, there are still concerns about the variability between preparations, particularly with the possibility that the products may transmit animal-based diseases. Many groups have examined the possible application of bioengineered mammalian collagens. However, translating laboratory studies into large-scale manufacturing has often proved difficult, although certain yeast and plant systems seem effective. Production of full-length mammalian collagens, with the required secondary modification to give proline hydroxylation, has proved difficult in E. coli. However, recently, a new group of collagens, which have the characteristic triple helical structure of collagen, has been identified in bacteria. These proteins are stable without the need for hydroxyproline and are able to be produced and purified from E. coli in high yield. Initial studies indicate that they would be suitable for biomedical applications. PMID:24717980

  15. Surface proteome analysis identifies platelet derived growth factor receptor-alpha as a critical mediator of transforming growth factor-beta-induced collagen secretion.

    PubMed

    Heinzelmann, Katharina; Noskovičová, Nina; Merl-Pham, Juliane; Preissler, Gerhard; Winter, Hauke; Lindner, Michael; Hatz, Rudolf; Hauck, Stefanie M; Behr, Jürgen; Eickelberg, Oliver

    2016-05-01

    Fibroblasts are extracellular matrix-producing cells in the lung. Fibroblast activation by transforming growth factor-beta leads to myofibroblast-differentiation and increased extracellular matrix deposition, a hallmark of pulmonary fibrosis. While fibroblast function with respect to migration, invasion, and extracellular matrix deposition has been well-explored, little is known about the surface proteome of lung fibroblasts in general and its specific response to fibrogenic growth factors, in particular transforming growth factor-beta. We thus performed a cell-surface proteome analysis of primary human lung fibroblasts in presence/absence of transforming growth factor-beta, followed by characterization of our findings using FACS analysis, Western blot, and siRNA-mediated knockdown experiments. We identified 213 surface proteins significantly regulated by transforming growth factor-beta, platelet derived growth factor receptor-alpha being one of the top down-regulated proteins. Transforming growth factor beta-induced downregulation of platelet derived growth factor receptor-alpha induced upregulation of platelet derived growth factor receptor-beta expression and phosphorylation of Akt, a downstream target of platelet derived growth factor signaling. Importantly, collagen type V expression and secretion was strongly increased after forced knockdown of platelet derived growth factor receptor-alpha, an effect that was potentiated by transforming growth factor-beta. We therefore show previously underappreciated cross-talk of transforming growth factor-beta and platelet derived growth factor signaling in human lung fibroblasts, resulting in increased extracellular matrix deposition in a platelet derived growth factor receptor-alpha dependent manner. These findings are of particular importance for the treatment of lung fibrosis patients with high pulmonary transforming growth factor-beta activity.

  16. Transcriptome analysis reveals an unexpected role of a collagen tyrosine kinase receptor gene, Ddr2, as a regulator of ovarian function.

    PubMed

    Matsumura, Hirokazu; Kano, Kiyoshi; Marín de Evsikova, Caralina; Young, James A; Nishina, Patsy M; Naggert, Jürgen K; Naito, Kunihiko

    2009-10-07

    Mice homozygous for the smallie (slie) mutation lack a collagen receptor, discoidin domain receptor 2 (DDR2), and are dwarfed and infertile due to peripheral dysregulation of the endocrine system of unknown etiology. We used a systems biology approach to identify biological networks affected by Ddr2(slie/slie) mutation in ovaries using microarray analysis and validate findings using molecular, cellular, and functional biological assays. Transcriptome analysis indicated several altered gene categories in Ddr2(slie/slie) mutants, including gonadal development, ovulation, antiapoptosis, and steroid hormones. Subsequent biological experiments confirmed the transcriptome analysis predictions. For instance, a significant increase of TUNEL-positive follicles was found in Ddr2(slie/slie) mutants vs. wild type, which confirm the transcriptome prediction for decreased chromatin maintenance and antiapoptosis. Decreases in gene expression were confirmed by RT-PCR and/or qPCR; luteinizing hormone receptor and prostaglandin type E and F receptors in Ddr2(slie/slie) mutants, compared with wild type, confirm hormonal signaling pathways involved in ovulation. Furthermore, deficiencies in immunohistochemistry for DDR2 and luteinizing hormone receptor in the somatic cells, but not the oocytes, of Ddr2(slie/slie) mutant ovaries suggest against an intrinsic defect in germ cells. Indeed, Ddr2(slie/slie) mutants ovulated significantly fewer oocytes; their oocytes were competent to complete meiosis and fertilization in vitro. Taken together, our convergent data signify DDR2 as a novel critical player in ovarian function, which acts upon classical endocrine pathways in somatic, rather than germline, cells.

  17. Transcriptome analysis reveals an unexpected role of a collagen tyrosine kinase receptor gene, Ddr2, as a regulator of ovarian function

    PubMed Central

    Matsumura, Hirokazu; de Evsikova, Caralina Marín; Young, James A.; Nishina, Patsy M.; Naggert, Jürgen K.; Naito, Kunihiko

    2009-01-01

    Mice homozygous for the smallie (slie) mutation lack a collagen receptor, discoidin domain receptor 2 (DDR2), and are dwarfed and infertile due to peripheral dysregulation of the endocrine system of unknown etiology. We used a systems biology approach to identify biological networks affected by Ddr2slie/slie mutation in ovaries using microarray analysis and validate findings using molecular, cellular, and functional biological assays. Transcriptome analysis indicated several altered gene categories in Ddr2slie/slie mutants, including gonadal development, ovulation, antiapoptosis, and steroid hormones. Subsequent biological experiments confirmed the transcriptome analysis predictions. For instance, a significant increase of TUNEL-positive follicles was found in Ddr2slie/slie mutants vs. wild type, which confirm the transcriptome prediction for decreased chromatin maintenance and antiapoptosis. Decreases in gene expression were confirmed by RT-PCR and/or qPCR; luteinizing hormone receptor and prostaglandin type E and F receptors in Ddr2slie/slie mutants, compared with wild type, confirm hormonal signaling pathways involved in ovulation. Furthermore, deficiencies in immunohistochemistry for DDR2 and luteinizing hormone receptor in the somatic cells, but not the oocytes, of Ddr2slie/slie mutant ovaries suggest against an intrinsic defect in germ cells. Indeed, Ddr2slie/slie mutants ovulated significantly fewer oocytes; their oocytes were competent to complete meiosis and fertilization in vitro. Taken together, our convergent data signify DDR2 as a novel critical player in ovarian function, which acts upon classical endocrine pathways in somatic, rather than germline, cells. PMID:19671659

  18. Icariin attenuates high glucose-induced type IV collagen and fibronectin accumulation in glomerular mesangial cells by inhibiting transforming growth factor-β production and signalling through G protein-coupled oestrogen receptor 1.

    PubMed

    Li, Yi-Chen; Ding, Xuan-Sheng; Li, Hui-Mei; Zhang, Cheng

    2013-09-01

    Icariin has been shown to attenuate diabetic nephropathy in rats by decreasing transforming growth factor-β (TGF-β) and type IV collagen expression, but its mode of action in glomerular mesangial cells is uncertain. The present study aimed to investigate the effect of icariin on excess mesangial type IV collagen and fibronectin accumulation induced by high glucose, and to determine the mechanism underlying its protective effects. Under high-glucose conditions, icariin diminished type IV collagen and fibronectin accumulation, as well as TGF-β production in human and rat mesangial cells. Mesangial cells treated with icariin after TGF-β1 exposure expressed less type IV collagen and fibronectin than those without icariin treatment, suggesting inhibition by icariin of TGF-β1 downstream pathways. On TGF-β1 stimulation, icariin inhibited TGF-β canonical Smad signalling and extracellular signal-regulated kinase (ERK)1/2 signalling by decreasing Smad2/3 and ERK1/2 phosphorylation in a dose-dependent manner. U0126, which blocked the ERK1/2 pathway, exerted an additive effect on the icariin suppression of type IV collagen and fibronectin expression, enhancing the beneficial effects of icariin. The G protein-coupled oestrogen receptor 1 (GPER) antagonist, G-15, abolished the icariin-induced inhibition of type IV collagen, and fibronectin overproduction and TGF-β signalling. Treatment of cells with fulvestrant, a downregulator of the oestrogen receptor, enhanced the action of icariin. In conclusion, icariin decreased type IV collagen and fibronectin accumulation induced by high glucose in mesangial cells by inhibiting TGF-β production, as well as Smad and ERK signalling in a GPER-dependent manner.

  19. Visualizing clathrin-mediated IgE receptor internalization by electron and atomic force microscopy.

    PubMed

    Burns, Alan R; Oliver, Janet M; Pfeiffer, Janet R; Wilson, Bridget S

    2008-01-01

    A significant step in the immunoglobulin E (IgE) receptor signaling pathway in mast cell membranes is receptor internalization by clathrin-coated vesicles. Visualization in native membrane sheets of the emerging clathrin lattice structures containing the IgE receptor and associated signaling partners has been accomplished with high-resolution transmission electron microscopy (TEM). More recently, membrane sheets with labeled clathrin have also been characterized with atomic force microscopy (AFM) in combination with fluorescence imaging. We discuss here the procedure for creating fixed, native cell membrane sheets, labeling with immunogold or fluorescent labels, and utilization for TEM or AFM/fluorescence imaging of clathrin-mediated IgE internalization.

  20. Angiotensin receptor blockade and angiotensin-converting-enzyme inhibition limit adverse remodeling of infarct zone collagens and global diastolic dysfunction during healing after reperfused ST-elevation myocardial infarction.

    PubMed

    Jugdutt, Bodh I; Idikio, Halliday; Uwiera, Richard R E

    2007-09-01

    To determine whether therapy with the angiotensin II type 1 receptor blocker (ARB) candesartan and the comparator angiotensin-converting-enzyme inhibitor (ACEI) enalapril during healing after reperfused ST-elevation myocardial infarction (RSTEMI) limit adverse remodeling of infarct zone (IZ) collagens and left ventricular (LV) diastolic dysfunction, we randomized 24 dogs surviving anterior RSTEMI (90-min coronary occlusion) to placebo, candesartan, and enalapril therapy between day 2 and 42. Six other dogs were sham. We measured regional IZ and non-infarct zone (NIZ) collagens (hydroxyproline; types I/III; cross-linking), transforming growth factor-beta (TGF-beta) and topography at 6 weeks, and hemodynamics, LV diastolic and systolic function, and remodeling over 6 weeks. Compared to sham, placebo-RSTEMI differentially altered regional collagens, with more pronounced increase in TGF-beta, hydroxyproline, and type I, insoluble, and cross-linked collagens in the IZ than NIZ, and increased IZ soluble and type III collagens at 6 weeks, and induced persistent LV filling pressure elevation, diastolic and systolic dysfunction, and LV remodeling over 6 weeks. Compared to placebo-RSTEMI, candesartan and enalapril limited adverse regional collagen remodeling, with normalization of type III, soluble and insoluble collagens and decrease in pyridinoline cross-linking in the IZ at 6 weeks, and attenuation of LV filling pressure, diastolic dysfunction, and remodeling over 6 weeks. The results suggest that candesartan and enalapril during healing after RSTEMI prevent rather than worsen adverse remodeling of IZ collagens and LV diastolic dysfunction, supporting the clinical use of ARBs and ACEIs during subacute RSTEMI.

  1. Retromer terminates the generation of cAMP by internalized PTH-receptors

    PubMed Central

    Feinstein, Timothy N.; Wehbi, Vanessa L.; Ardura, Juan; Wheeler, David S.; Ferrandon, Sebastien; Gardella, Thomas J.; Vilardaga, Jean-Pierre

    2011-01-01

    Generation of cAMP by G protein–coupled receptors (GPCRs) and its termination is currently thought to occur exclusively at the plasma membrane of cells. Under existing models of receptor regulation, this signal is primarily restricted by desensitizationof the receptors through their binding to β-arrestins. However, this paradigm is not consistent with recent observations that the parathyroid hormone receptor type 1 (PTHR) continues to stimulate cAMP production even after receptor internalization, as β-arrestins are known to rapidly bind and internalize activated PTHR. Here we show that β-arrestin1 binding prolongs rather than terminates cAMP generation by PTHR, and that cAMP generation correlates with the persistence of arrestin-receptor complexes on endosomes. We found that PTHR signaling is instead turned-off by the retromer complex, which regulates traffic of internalized receptor from endosomes to the Golgi apparatus. Thus, binding by the retromer complex regulates sustained cAMP generation triggered by an internalized GPCR. PMID:21445058

  2. Only high-affinity receptors for interleukin 2 mediate internalization of ligand

    SciTech Connect

    Weissman, A.M.; Harford, J.B.; Svetlik, P.B.; Leonard, W.L.; Depper, J.M.; Waldmann, T.A.; Greene, W.C.; Klausner, R.D.

    1986-03-01

    Interleukin 2 (IL-2) receptors are expressed on activated T cells and in select T-cell leukemias. Recently, it has been demonstrated that at least two classes of receptor for IL-2 exist with markedly different affinities for ligand. All known biological actions of IL-2 have been correlated with occupancy of high-affinity sites; the function of the low-affinity sites remains unknown. Receptor-mediated endocytosis is the primary means of internalization of cell-surface receptors and their ligands. The internalization of IL-2 bound to high- and low-affinity receptor sites was studied in a human T-cell lymphotrophic virus type 1 (HTLV-1)-infected human T-cell leukemia cell line and in a cloned murine cytotoxic T-cell line (CTLL). Internalization of IL-2 occurred only when bound to high-affinity sites. In addition, an anti-receptor antibody (anti-Tac), which binds equally well to high- and low-affinity sites, demonstrated no detectable internalization. The implications of these findings as they relate to IL-2 receptor structure and function are discussed.

  3. Direct visualization of the phosphorylated epidermal growth factor receptor during its internalization in A-431 cells

    PubMed Central

    1987-01-01

    Epidermal growth factor (EGF) rapidly stimulates receptor autophosphorylation in A-431 cells. After 1 min the phosphorylated receptor can be identified at the plasma membrane using an anti- phosphotyrosine antibody. With further incubation at 37 degrees C, approximately 50% of the phosphorylated EGF receptor was internalized (t1/2 = 5 min) and associated with the tubulovesicular system and later with multivesicular bodies, but not the nucleus. During this period, there was no change in the extent or sites of phosphorylation. At all times the phosphotyrosine remained on the cytoplasmic side of the membrane, opposite to the EGF ligand identified by anti-EGF antibody. These data indicate that (a) the tyrosine-phosphorylated EGF receptor is internalized in its activated form providing a mechanism for translocation of the receptor kinase to substrates in the cell interior; (b) the internalized receptor remains intact for at least 60 min, does not associate with the nucleus, and does not generate any tyrosine-phosphorylated fragments; and (c) tyrosine phosphorylation alone is not the signal for receptor internalization. PMID:2447100

  4. Propranolol restricts the mobility of single EGF-receptors on the cell surface before their internalization.

    PubMed

    Otero, Carolina; Linke, Max; Sanchez, Paula; González, Alfonso; Schaap, Iwan A T

    2013-01-01

    The epidermal growth factor receptor is involved in morphogenesis, proliferation and cell migration. Its up-regulation during tumorigenesis makes this receptor an interesting therapeutic target. In the absence of the ligand, the inhibition of phosphatidic acid phosphohydrolase activity by propranolol treatment leads to internalization of empty/inactive receptors. The molecular events involved in this endocytosis remain unknown. Here, we quantified the effects of propranolol on the mobility of single quantum-dot labelled receptors before the actual internalization took place. The single receptors showed a clear stop-and-go motion; their diffusive tracks were continuously interrupted by sub-second stalling events, presumably caused by transient clustering. In the presence of propranolol we found that: i) the diffusion rate reduced by 22 %, which indicates an increase in drag of the receptor. Atomic force microscopy measurements did not show an increase of the effective membrane tension, such that clustering of the receptor remains the likely mechanism for its reduced mobility. ii) The receptor got frequently stalled for longer periods of multiple seconds, which may signal the first step of the internalization process.

  5. Desensitization of human muscarinic acetylcholine receptor m2 subtypes is caused by their sequestration/internalization.

    PubMed

    Tsuga, H; Kameyama, K; Haga, T

    1998-10-01

    Desensitization of human muscarinic acetylcholine receptor m2 subtypes (hm2 receptors) stably expressed in chinese hamster ovary cells was measured as decreases in the carbamylcholine-stimulated [35S]GTPgammaS binding activity in membrane preparations after pre-treatment of cells with carbamylcholine. The extent of carbamylcholine-stimulated [35S]GTPgammaS binding activity was found to decrease to 64% following pretreatment of cells with 10 microM carbamylcholine for 30 min, and under the same conditions 51-59% of hm2 receptors were sequestered/internalized as assessed by decreases in the [3H]N-methylscopolamine binding activity on the cell surface. A similar reduction in the carbamylcholine-stimulated [35S]GTPgammaS binding activity was observed by pretreatment of cells with 5 nM propylbenzylylcholine mustard, which irreversibly bound to and inactivated 58% of the hm2 receptors. When the cells were pretreated with 10 microM carbamylcholine in the presence of 0.32 M sucrose, which is known to inhibit clathrin-mediated endocytosis, no sequestration/internalization of hm2 receptors was observed, and the extent of carbamylcholine-stimulated [35S]GTPgammaS binding activity did not change. These results indicate that desensitization of hm2 receptors may be caused by reduction of receptor number on the cell surface through sequestration/internalization rather than by loss of the function of receptors.

  6. Propranolol Restricts the Mobility of Single EGF-Receptors on the Cell Surface before Their Internalization

    PubMed Central

    Otero, Carolina; Linke, Max; Sanchez, Paula; González, Alfonso; Schaap, Iwan A. T.

    2013-01-01

    The epidermal growth factor receptor is involved in morphogenesis, proliferation and cell migration. Its up-regulation during tumorigenesis makes this receptor an interesting therapeutic target. In the absence of the ligand, the inhibition of phosphatidic acid phosphohydrolase activity by propranolol treatment leads to internalization of empty/inactive receptors. The molecular events involved in this endocytosis remain unknown. Here, we quantified the effects of propranolol on the mobility of single quantum-dot labelled receptors before the actual internalization took place. The single receptors showed a clear stop-and-go motion; their diffusive tracks were continuously interrupted by sub-second stalling events, presumably caused by transient clustering. In the presence of propranolol we found that: i) the diffusion rate reduced by 22 %, which indicates an increase in drag of the receptor. Atomic force microscopy measurements did not show an increase of the effective membrane tension, such that clustering of the receptor remains the likely mechanism for its reduced mobility. ii) The receptor got frequently stalled for longer periods of multiple seconds, which may signal the first step of the internalization process. PMID:24349439

  7. Influence of cadmium on isolated peritoneal macrophage populations: cadmium inhibits Fc receptor internalization

    SciTech Connect

    Cook, G.B.

    1985-01-01

    In vitro experiments were performed to examine the effect of cadmium on adherent phagocytic cell populations. The authors were able to demonstrate, in vitro, a phagocytic defect that was originally observed in an in vivo system. Using in vitro methodologies, cadmium was found to inhibit opsonin-dependent but not opsonin-independent phagocytosis in two different populations of macrophages. The receptors through which the opsonized /sup 51/Cr-ElgG were internalized were characterized as Fc receptors. They were able to demonstrate that cadmium could reversibly inhibit internalization of Fc receptors. This mechanism, rather than an alteration of the receptors' binding capabilities, was responsible for the observed inhibition of Fc mediated (opsonin-dependent) phagocytosis in both populations of macrophages tested. The defect was not specific for cadmium per se. Zinc treatment caused a similar inhibition of Fc receptor mediated phagocytosis.

  8. Collagen structure: new tricks from a very old dog.

    PubMed

    Bella, Jordi

    2016-04-15

    The main features of the triple helical structure of collagen were deduced in the mid-1950s from fibre X-ray diffraction of tendons. Yet, the resulting models only could offer an average description of the molecular conformation. A critical advance came about 20 years later with the chemical synthesis of sufficiently long and homogeneous peptides with collagen-like sequences. The availability of these collagen model peptides resulted in a large number of biochemical, crystallographic and NMR studies that have revolutionized our understanding of collagen structure. High-resolution crystal structures from collagen model peptides have provided a wealth of data on collagen conformational variability, interaction with water, collagen stability or the effects of interruptions. Furthermore, a large increase in the number of structures of collagen model peptides in complex with domains from receptors or collagen-binding proteins has shed light on the mechanisms of collagen recognition. In recent years, collagen biochemistry has escaped the boundaries of natural collagen sequences. Detailed knowledge of collagen structure has opened the field for protein engineers who have used chemical biology approaches to produce hyperstable collagens with unnatural residues, rationally designed collagen heterotrimers, self-assembling collagen peptides, etc. This review summarizes our current understanding of the structure of the collagen triple helical domain (COL×3) and gives an overview of some of the new developments in collagen molecular engineering aiming to produce novel collagen-based materials with superior properties.

  9. PICK1 and phosphorylation of the glutamate receptor 2 (GluR2) AMPA receptor subunit regulates GluR2 recycling after NMDA receptor-induced internalization.

    PubMed

    Lin, Da-Ting; Huganir, Richard L

    2007-12-12

    Changes in surface trafficking of AMPA receptors play an important role in synaptic plasticity. Phosphorylation of the C terminus of the AMPA receptor (AMPAR) subunit glutamate receptor 2 (GluR2) and the binding of GluR2 to the PDZ [postsynaptic density-95/Discs large/zona occludens-1]-domain containing protein, protein interacting with protein kinase C (PICK1), have been proposed to play an important role in NMDA receptor dependent internalization of GluR2. However, the fate of internalized GluR2 after NMDA receptor (NMDAR) activation is still unclear. Both recycling and degradation of GluR2 after the activation of NMDAR have been reported. Here, we used a pH-sensitive green fluorescent protein variant, pHluorin, tagged to the N terminus of GluR2 (pH-GluR2) to study the dynamic internalization and recycling of GluR2 after NMDAR activation. Using fluorescence recovery after photobleach (FRAP), we directly demonstrate that internalized pH-GluR2 subunits recycle back to the cell surface after NMDAR activation. We further demonstrate that changing the phosphorylation state of the S880 residue at the C terminus of GluR2 does not affect NMDAR-dependent GluR2 internalization, but alters the recycling of GluR2 after NMDAR activation. In addition, mutation of the N-ethylmaleimide-sensitive fusion protein (NSF) binding site in the pH-GluR2 slows receptor recycling. Finally, neurons lacking PICK1 display normal NMDAR dependent GluR2 internalization compared with wild-type neurons, but demonstrate accelerated GluR2 recycling after NMDAR activation. These results indicate that phosphorylation of GluR2 S880 and NSF and PICK1 binding to GluR2 dynamically regulate GluR2 recycling.

  10. Tyrosine phosphorylation of the insulin receptor is not required for receptor internalization: studies in 2,4-dinitrophenol-treated cells

    SciTech Connect

    Backer, J.M.; Kahn, C.R.; White, M.F.

    1989-05-01

    The relation between insulin-stimulated autophosphorylation of the insulin receptor and internalization of the receptor was studied in Fao rat hepatoma cells. Treatment of Fao cells with 2,4-dinitrophenol for 45 min depleted cellular ATP by 80% and equally inhibited insulin-stimulated receptor autophosphorylation, as determined by immunoprecipitation of surface-iodinated or (/sup 32/P)phosphate-labeled cells with anti-phosphotyrosine antibody. In contrast, internalization of the insulin receptor and internalization and degradation of /sup 125/I-labeled insulin by 2,4-dinitrophenol-treated cells were normal. These data show that autophosphorylation of the insulin receptor is not required for the receptor-mediated internalization of insulin in Fao cells and suggest that insulin receptor recycling is independent of autophosphorylation.

  11. Ligand-induced internalization of the type 1 cholecystokinin receptor independent of recognized signaling activity.

    PubMed

    Cawston, Erin E; Harikumar, Kaleeckal G; Miller, Laurence J

    2012-02-01

    Receptor ligands, identified as antagonists, based on the absence of stimulation of signaling, can rarely stimulate receptor internalization. d-Tyr-Gly-[(Nle(28,31),d-Trp(30))CCK-26-32]-2-phenylethyl ester (d-Trp-OPE) is such a ligand that binds to the cholecystokinin (CCK) receptor and stimulates internalization. Here, the molecular basis of this trafficking event is explored, with the assumption that ligand binding initiates conformational change, exposing an epitope to direct endocytosis. Ligand-stimulated internalization was studied morphologically using fluorescent CCK and d-Trp-OPE. d-Trp-OPE occupation of Chinese hamster ovary cell receptors stimulated internalization into the same region as CCK. Arrestin-biased action was ruled out using morphological translocation of fluorescent arrestin 2 and arrestin 3, moving to the membrane in response to CCK, but not d-Trp-OPE. Possible roles of the carboxyl terminus were studied using truncated receptor constructs, eliminating the proline-rich distal tail, the serine/threonine-rich midregion, and the remainder to the vicinal cysteines. None of these constructs disrupted d-Trp-OPE-stimulated internalization. Possible contributions of transmembrane segments were studied using competitive inhibition with peptides that also had no effect. Intracellular regions were studied with a similar strategy using coexpressing cell lines. Peptides corresponding to ends of each loop region were studied, with only the peptide at the carboxyl end of the third loop inhibiting d-Trp-OPE-stimulated internalization but having no effect on CCK-stimulated internalization. The region contributing to this effect was refined to peptide 309-323, located below the recognized G protein-association motif. While a receptor in which this segment was deleted did internalize in response to d-Trp-OPE, it exhibited abnormal ligand binding and did not signal in response to CCK, suggesting an abnormal conformation and possible mechanism of internalization

  12. Tetrandrine ameliorates collagen-induced arthritis in mice by restoring the balance between Th17 and Treg cells via the aryl hydrocarbon receptor.

    PubMed

    Yuan, Xusheng; Tong, Bei; Dou, Yannong; Wu, Xin; Wei, Zhifeng; Dai, Yue

    2016-02-01

    Tetrandrine is an alkaloid constituent of the root of Stephania tetrandra S. Moore. The long-term clinical uses of tetrandrine for treatments of rheumatalgia and arthralgia as well as the inhibition of rat adjuvant-induced arthritis imply that tetrandrine may have therapeutic potential in rheumatoid arthritis (RA). Here, we explored its anti-RA mechanism in collagen-induced arthritis (CIA) in relation to the balance between T helper (Th) 17 cells and regulatory T (Treg) cells. DBA/1 mice were immunized with chicken type II collagen and were orally administered tetrandrine for 14 consecutive days. Then, the mice were sacrificed, their joints were removed for histological analysis, and spleens and mesenteric lymph nodes (MLNs) were removed to examine the Th17 and Treg cells. Tetrandrine markedly alleviated the severity of arthritis, reduced the serum levels of pro-inflammatory cytokines, and restored the Th17/Treg balance, as demonstrated by the serum levels of their related cytokines (IL-17 and IL-10) and the proportion of each cell type. Tetrandrine inhibited Th17 cell differentiation and induced Treg cell differentiation in vitro . Notably, aryl hydrocarbon receptor (AhR) was proven to play a crucial role in tetrandrine-mediated T cell differentiation. The correlation between AhR activation, regulation of Th17/Treg and amelioration of arthritis by tetrandrine was verified in the CIA mice. Moreover, tetrandrine might be a ligand of AhR because it facilitated the expression of the AhR target gene cytochrome P450 1A1 (CYP1A1) and the activation of its downstream signaling pathways. Taken together, tetrandrine exerts its anti-arthritis efficacy by restoring Th17/Treg balance via AhR.

  13. In vivo visualization of delta opioid receptors upon physiological activation uncovers a distinct internalization profile

    PubMed Central

    FAGET, Lauren; ERBS, Eric; LE MERRER, Julie; SCHERRER, Gregory; MATIFAS, Audrey; BENTURQUIA, Nadia; NOBLE, Florence; DECOSSAS, Marion; KOCH, Marc; KESSLER, Pascal; VONESCH, Jean-Luc; SCHWAB, Yannick; KIEFFER, Brigitte L.; MASSOTTE, Dominique

    2012-01-01

    G protein-coupled receptors (GPCRs) mediate numerous physiological functions and represent prime therapeutic targets. Receptor trafficking upon agonist stimulation is critical for GPCR function, but examining this process in vivo remains a true challenge. Using knock-in mice expressing functional fluorescent delta opioid receptors under the control of the endogenous promoter, we visualized in vivo internalization of this native GPCR upon physiological stimulation. We developed a paradigm in which animals were made dependent to morphine in a drug-paired context. When re-exposed to this context in a drug-free state, mice showed context-dependent withdrawal signs and activation of the hippocampus. Receptor internalization was transiently detected in a subset of CA1 neurons, uncovering regionally restricted opioid peptide release. Importantly, a pool of surface receptors always remained, which contrasts with the in vivo profile previously established for exogenous drug-induced internalization. Therefore, a distinct response is observed at the receptor level upon a physiological or pharmacological stimulation. Altogether, direct in vivo GPCR visualization enables mapping receptor stimulation promoted by a behavioral challenge, and represents a powerful approach to study endogenous GPCR physiology. PMID:22623675

  14. In vivo visualization of delta opioid receptors upon physiological activation uncovers a distinct internalization profile.

    PubMed

    Faget, Lauren; Erbs, Eric; Le Merrer, Julie; Scherrer, Gregory; Matifas, Audrey; Benturquia, Nadia; Noble, Florence; Decossas, Marion; Koch, Marc; Kessler, Pascal; Vonesch, Jean-Luc; Schwab, Yannick; Kieffer, Brigitte L; Massotte, Dominique

    2012-05-23

    G-protein-coupled receptors (GPCRs) mediate numerous physiological functions and represent prime therapeutic targets. Receptor trafficking upon agonist stimulation is critical for GPCR function, but examining this process in vivo remains a true challenge. Using knock-in mice expressing functional fluorescent delta opioid receptors under the control of the endogenous promoter, we visualized in vivo internalization of this native GPCR upon physiological stimulation. We developed a paradigm in which animals were made dependent on morphine in a drug-paired context. When re-exposed to this context in a drug-free state, mice showed context-dependent withdrawal signs and activation of the hippocampus. Receptor internalization was transiently detected in a subset of CA1 neurons, uncovering regionally restricted opioid peptide release. Importantly, a pool of surface receptors always remained, which contrasts with the in vivo profile previously established for exogenous drug-induced internalization. Therefore, a distinct response is observed at the receptor level upon a physiological or pharmacological stimulation. Altogether, direct in vivo GPCR visualization enables mapping receptor stimulation promoted by a behavioral challenge and represents a powerful approach to study endogenous GPCR physiology.

  15. Cardiac β2-Adrenergic Receptor Phosphorylation at Ser355/356 Regulates Receptor Internalization and Functional Resensitization.

    PubMed

    Fan, Xiaofang; Gu, Xuejiang; Zhao, Ru; Zheng, Qingqing; Li, Lan; Yang, Wenbing; Ding, Lu; Xue, Feng; Fan, Junming; Gong, Yongsheng; Wang, Yongyu

    2016-01-01

    Previous studies have demonstrated that β2-adrenergic receptors (β2ARs) can be phosphorylated by G protein-coupled receptor kinases (GRKs) and protein kinase A (PKA), affecting β2AR internalization and desensitization. However, the exact physiological function of β2ARs in cardiomyocytes is unknown. In this study, we showed that neonatal mouse cardiomyocytes had different contraction and internalization responses to sustained or repeated, transient agonist stimulation. Specifically, short-time stimulation (10 min) with epinephrine or norepinephrine increased the cardiomyocyte contraction rate, reaching a maximum at 5 min, followed by a slow decline. When the agonist was re-added after a 60-min wash-out period, the increase in the cardiomyocyte contraction rate was similar to the initial response. In contrast, when cardiomyocytes were exposed continuously to epinephrine or norepinephrine for 60 min, the second agonist stimulation did not increase the contraction response. These results indicated that continuous β2AR stimulation caused functional desensitization. Phosphorylation of β2ARs at serine (Ser)355/356 GRK phosphorylation sites, but not at Ser345/346 PKA phosphorylation sites increased with continuous epinephrine stimulation for 60 min. Accordingly, β2AR internalization increased. Interestingly, β2AR internalization was blocked by mutations at the GRK phosphorylation sites, but not by mutations at the PKA phosphorylation sites. Furthermore, inhibition of β2AR dephosphorylation by okadaic acid, a phosphatase 2A inhibitor, impaired the recovery of internalized β2ARs and reduced the cardiomyocyte contraction rate in response to epinephrine. Finally, epinephrine treatment induced the physical interaction of β-arrestin with internalized β2ARs in cardiomyocytes. Together, these data revealed the essential role of the Ser355/356 phosphorylation status of β2ARs in regulating receptor internalization and physiological resensitization in neonatal

  16. Desensitization and internalization of the m2 muscarinic acetylcholine receptor are directed by independent mechanisms.

    PubMed

    Pals-Rylaarsdam, R; Xu, Y; Witt-Enderby, P; Benovic, J L; Hosey, M M

    1995-12-01

    The phenomenon of acute desensitization of G-protein-coupled receptors has been associated with several events, including receptor phosphorylation, loss of high affinity agonist binding, receptor:G-protein uncoupling, and receptor internalization. However, the biochemical events underlying these processes are not fully understood, and their contributions to the loss of signaling remain correlative. In addition, the nature of the kinases and the receptor domains which are involved in modulation of activity have only begun to be investigated. In order to directly measure the role of G-protein-coupled receptor kinases (GRKs) in the desensitization of the m2 muscarinic acetylcholine receptor (m2 mAChR), a dominant-negative allele of GRK2 was used to inhibit receptor phosphorylation by endogenous GRK activity in a human embryonic kidney cell line. The dominant-negative GRK2K220R reduced agonist-dependent phosphorylation of the m2 mAChR by approximately 50% and prevented acute desensitization of the receptor as measured by the ability of the m2 mAChR to attenuate adenylyl cyclase activity. In contrast, the agonist-induced internalization of the m2 mAChR was unaffected by the GRK2K220R construct. Further evidence linking receptor phosphorylation to acute receptor desensitization was obtained when two deletions of the third intracellular loop were made which created m2 mAChRs that did not become phosphorylated in an agonist-dependent manner and did not desensitize. However, the mutant mAChRs retained the ability to internalize. These data provide the first direct evidence that GRK-mediated receptor phosphorylation is necessary for m2 mAChR desensitization; the likely sites of in vivo phosphorylation are in the central portion of the third intracellular loop (amino acids 282-323). These results also indicate that internalization of the m2 receptor is not a key event in desensitization and is mediated by mechanisms distinct from GRK phosphorylation of the receptor.

  17. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors.

    PubMed

    Panula, Pertti; Chazot, Paul L; Cowart, Marlon; Gutzmer, Ralf; Leurs, Rob; Liu, Wai L S; Stark, Holger; Thurmond, Robin L; Haas, Helmut L

    2015-07-01

    Histamine is a developmentally highly conserved autacoid found in most vertebrate tissues. Its physiological functions are mediated by four 7-transmembrane G protein-coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R was identified in the 1970s and led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The crystal structure of ligand-bound H1R has rendered it possible to design new ligands with novel properties. The H3R is an autoreceptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. A block of these actions promotes waking. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated.

  18. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors

    PubMed Central

    Chazot, Paul L.; Cowart, Marlon; Gutzmer, Ralf; Leurs, Rob; Liu, Wai L. S.; Stark, Holger; Thurmond, Robin L.; Haas, Helmut L.

    2015-01-01

    Histamine is a developmentally highly conserved autacoid found in most vertebrate tissues. Its physiological functions are mediated by four 7-transmembrane G protein–coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R was identified in the 1970s and led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The crystal structure of ligand-bound H1R has rendered it possible to design new ligands with novel properties. The H3R is an autoreceptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. A block of these actions promotes waking. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated. PMID:26084539

  19. The F-BAR Protein PACSIN2 Regulates Epidermal Growth Factor Receptor Internalization

    PubMed Central

    de Kreuk, Bart-Jan; Anthony, Eloise C.; Geerts, Dirk; Hordijk, Peter L.

    2012-01-01

    Signaling via growth factor receptors, including the epidermal growth factor (EGF) receptor, is key to various cellular processes, such as proliferation, cell survival, and cell migration. In a variety of human diseases such as cancer, aberrant expression and activation of growth factor receptors can lead to disturbed signaling. Intracellular trafficking is crucial for proper signaling of growth factor receptors. As a result, the level of cell surface expression of growth factor receptors is an important determinant for the outcome of downstream signaling. BAR domain-containing proteins represent an important family of proteins that regulate membrane dynamics. In this study, we identify a novel role for the F-BAR protein PACSIN2 in the regulation of EGF receptor signaling. We show that internalized EGF as well as the (activated) EGF receptor translocated to PACSIN2-positive endosomes. Furthermore, loss of PACSIN2 increased plasma membrane expression of the EGF receptor in resting cells and increased EGF-induced phosphorylation of the EGF receptor. As a consequence, EGF-induced activation of Erk and Akt as well as cell proliferation were enhanced in PACSIN2-depleted cells. In conclusion, this study identifies a novel role for the F-BAR-domain protein PACSIN2 in regulating EGF receptor surface levels and EGF-induced downstream signaling. PMID:23129763

  20. Rate of Homologous Desensitization and Internalization of the GLP-1 Receptor.

    PubMed

    Shaaban, Ghina; Oriowo, Mabayoje; Al-Sabah, Suleiman

    2016-12-26

    The glucagon-like peptide-1 receptor (GLP-1R) is an important target in the treatment of type 2 diabetes mellitus. The aim of this study was to compare the rate of agonist stimulated desensitization and internalization of GLP-1R. To this end, an N-terminally myc-tagged GLP-1R was stably expressed in HEK-293 cells. Homologous desensitization was assessed by measuring the cAMP response to agonist stimulation following pre-incubation with agonist for up to 120 min. Receptor internalization was monitored using an indirect ELISA-based method and confocal microscopy. Pre-incubation with GLP-1 resulted in a time-dependent loss of response to a second stimulation. Washing cells following pre-incubation failed to bring cAMP levels back to basal. Taking this into account, two desensitization rates were calculated: "apparent" (t1/2 = 19.27 min) and "net" (t1/2 = 2.99 min). Incubation of cells with GLP-1 also resulted in a time-dependent loss of receptor cell surface expression (t1/2 = 2.05 min). Rapid agonist-stimulated internalization of GLP-1R was confirmed using confocal microscopy. Stimulation of GLP-1R with GLP-1 results in rapid desensitization and internalization of the receptor. Interestingly, the rate of "net" desensitization closely matches the rate of internalization. Our results suggest that agonist-bound GLP-1R continues to generate cAMP after it has been internalized.

  1. Insulin receptor substrate-1 time-dependently regulates bone formation by controlling collagen Iα2 expression via miR-342

    PubMed Central

    Guo, Yue; Tang, Chen-Yi; Man, Xiao-Fei; Tang, Hao-Neng; Tang, Jun; Wang, Fang; Zhou, Ci-La; Tan, Shu-Wen; Feng, Yun-Zhi; Zhou, Hou-De

    2016-01-01

    Insulin promotes bone formation via a well-studied canonical signaling pathway. An adapter in this pathway, insulin-receptor substrate (IRS)-1, has been implicated in the diabetic osteopathy provoked by impaired insulin signaling. To further investigate IRS-1’s role in the bone metabolism, we generated Irs-1-deficient Irs-1smla/smla mice. These null mice developed a spontaneous mutation that led to an increase in trabecular thickness (Tb.Th) in 12-mo-old, but not in 2-mo-old mice. Analyses of the bone marrow stromal cells (BMSCs) from these mice revealed their differential expression of osteogenesis-related genes and miRNAs. The expression of miR-342, predicted and then proven to target the gene encoding collagen type Iα2 (COL1A2), was reduced in BMSCs derived from Irs-1-null mice. COL1A2 expression was then shown to be age dependent in osteoblasts and BMSCs derived from Irs-1smla/smla mice. After the induction of osteogenesis in BMSCs, miR-342 expression correlated inversely with that of Col1a2. Further, Col1a2-specific small interfering RNA (siRNA) reduced alkaline phosphatase (ALP) activity and inhibited BMSC differentiation into osteocyte-like cells, both in wild-type (WT) and Irs-1smla/smla mice. Conversely, in Irs-1smla/smla osteocytes overexpressing COL1A2, ALP-positive staining was stronger than in WT osteocytes. In summary, we uncovered a temporal regulation of BMSC differentiation/bone formation, controlled via Irs-1/miR-342 mediated regulation of Col1a2 expression.—Guo, Y., Tang, C.-Y., Man, X.-F., Tang, H.-N., Tang, J., Wang, F., Zhou, C.-L., Tan, S.-W., Feng, Y.-Z., Zhou, H.-D. Insulin receptor substrate-1 time-dependently regulates bone formation by controlling collagen Iα2 expression via miR-342. PMID:27623927

  2. Scavenger Receptor-Mediated Targeted Treatment of Collagen-Induced Arthritis by Dextran Sulfate-Methotrexate Prodrug.

    PubMed

    Yang, Modi; Ding, Jianxun; Feng, Xiangru; Chang, Fei; Wang, Yinan; Gao, Zhongli; Zhuang, Xiuli; Chen, Xuesi

    2017-01-01

    Rheumatoid arthritis (RA) is a chronic autoimmune disorder implicated in multiple joint affection and even disability. The activated macrophages perform a predominant role in onset and persistence of RA. Scavenger receptor (SR), one of several receptors overexpressed on the activated macrophages, is a specific biomarker for targeted therapy of numerous chronic inflammation diseases like RA. In this work, dextran sulfate-graft-methotrexate conjugate (DS-g-MTX) is synthesized and characterized, which exhibits excellent targetability to SR on the activated RAW 264.7 cells. Additionally, the enhanced accumulation and potent inflammatory inhibition are observed in the affected joint after intravenous injection of DS-g-MTX, compared to the treatment with dextran-graft-methotrexate (Dex-g-MTX), as is confirmed by the detection of histopathology and pro-inflammatory cytokines. Our work highlights DS-g-MTX as a potential therapeutic option for RA aiming the SR-expressed activated macrophages.

  3. Scavenger Receptor-Mediated Targeted Treatment of Collagen-Induced Arthritis by Dextran Sulfate-Methotrexate Prodrug

    PubMed Central

    Yang, Modi; Ding, Jianxun; Feng, Xiangru; Chang, Fei; Wang, Yinan; Gao, Zhongli; Zhuang, Xiuli; Chen, Xuesi

    2017-01-01

    Rheumatoid arthritis (RA) is a chronic autoimmune disorder implicated in multiple joint affection and even disability. The activated macrophages perform a predominant role in onset and persistence of RA. Scavenger receptor (SR), one of several receptors overexpressed on the activated macrophages, is a specific biomarker for targeted therapy of numerous chronic inflammation diseases like RA. In this work, dextran sulfate-graft-methotrexate conjugate (DS-g-MTX) is synthesized and characterized, which exhibits excellent targetability to SR on the activated RAW 264.7 cells. Additionally, the enhanced accumulation and potent inflammatory inhibition are observed in the affected joint after intravenous injection of DS-g-MTX, compared to the treatment with dextran-graft-methotrexate (Dex-g-MTX), as is confirmed by the detection of histopathology and pro-inflammatory cytokines. Our work highlights DS-g-MTX as a potential therapeutic option for RA aiming the SR-expressed activated macrophages. PMID:28042319

  4. The GPRC6A Receptor displays Constitutive Internalization and Sorting to the Slow Recycling Pathway.

    PubMed

    Jacobsen, Stine Engesgaard; Ammendrup-Johnsen, Ina; Jansen, Anna Mai; Gether, Ulrik; Madsen, Kenneth Lindegaard; Bräuner-Osborne, Hans

    2017-03-09

    The class C G protein-coupled receptor GPRC6A is a putative nutrient sensing receptor and represents a possible new drug target in metabolic disorders. However, the specific physiological role of this receptor has yet to be identified, and the mechanisms regulating its activity and cell surface availability also remain enigmatic. In the present study, we investigated the trafficking properties of GPRC6A by use of both a classical antibody feeding internalization assay in which cells were visualized using confocal microscopy and a novel internalization assay that is based on real-time measurements of fluorescence resonance energy transfer. Both assays revealed that GPRC6A predominantly undergoes constitutive internalization while the agonist-induced effects were imperceptible. Moreover, post-endocytic sorting was investigated by assessing the co-localization of internalized GPRC6A with selected Rab protein markers. Internalized GPRC6A was mainly co-localized with the early endosome marker Rab5 and the long loop recycling endosome marker Rab11 and to a much lesser extent with the late endosome marker Rab7. This suggests that upon agonist-independent internalization, GPRC6A is recycled via the Rab11-positive slow recycling pathway, which may be responsible for ensuring a persistent pool of GPRC6A receptors at the cell surface despite chronic agonist exposure. Distinct trafficking pathways have been reported for several of the class C receptors, and our results thus substantiate that non-canonical trafficking mechanisms are a common feature for the nutrient sensing class C family that ensure functional receptors in the cell membrane despite prolonged agonist exposure.

  5. C-terminal motif of human neuropeptide Y4 receptor determines internalization and arrestin recruitment.

    PubMed

    Wanka, Lizzy; Babilon, Stefanie; Burkert, Kerstin; Mörl, Karin; Gurevich, Vsevolod V; Beck-Sickinger, Annette G

    2017-01-01

    The human neuropeptide Y4 receptor is a rhodopsin-like G protein-coupled receptor (GPCR), which contributes to anorexigenic signals. Thus, this receptor is a highly interesting target for metabolic diseases. As GPCR internalization and trafficking affect receptor signaling and vice versa, we aimed to investigate the molecular mechanism of hY4R desensitization and endocytosis. The role of distinct segments of the hY4R carboxyl terminus was investigated by fluorescence microscopy, binding assays, inositol turnover experiments and bioluminescence resonance energy transfer assays to examine the internalization behavior of hY4R and its interaction with arrestin-3. Based on results of C-terminal deletion mutants and substitution of single amino acids, the motif (7.78)EESEHLPLSTVHTEVSKGS(7.96) was identified, with glutamate, threonine and serine residues playing key roles, based on site-directed mutagenesis. Thus, we identified the internalization motif for the human neuropeptide Y4 receptor, which regulates arrestin-3 recruitment and receptor endocytosis.

  6. Microplate-compatible total internal reflection fluorescence microscopy for receptor pharmacology

    NASA Astrophysics Data System (ADS)

    Chen, Minghan; Zaytseva, Natalya V.; Wu, Qi; Li, Min; Fang, Ye

    2013-05-01

    We report the use of total internal reflection fluorescence (TIRF) microscopy for analyzing receptor pharmacology and the development of a microplate-compatible TIRF imaging system. Using stably expressed green fluorescence protein tagged β2-adrenergic receptor as the reporter, we found that the activation of different receptors results in distinct kinetic signatures of the TIRF intensity of cells. These TIRF signatures closely resemble the characteristics of their respective label-free dynamic mass redistribution signals in the same cells. This suggests that TIRF in microplate can be used for profiling and screening drugs.

  7. Internalization and recycling of 5-HT2A receptors activated by serotonin and protein kinase C-mediated mechanisms

    PubMed Central

    Bhattacharyya, Samarjit; Puri, Sapna; Miledi, Ricardo; Panicker, Mitradas M.

    2002-01-01

    Serotonin (5-HT), a major neurotransmitter, has a large number of G protein-coupled receptors in mammals. On activation by exposure to their ligand, 5-HT2 receptor subtypes increase IP3 levels and undergo desensitization and internalization. To visualize the receptor in cells during these processes, we have constructed a 5-HT2A-enhanced GFP (SR2-GFP) fusion receptor. We show that this fusion receptor undergoes internalization on exposure to its natural ligand, 5-HT. Because 5-HT2A receptors activate the phospholipase C pathway, we studied the effect of protein kinase C (PKC) on the internalization process and found that activation of PKC by its specific activator phorbol 12-myristate 13-acetate, in the absence of 5-HT, leads to internalization of the receptor. Moreover, inhibition of PKC by its inhibitor sphingosine in the presence of 5-HT prevents the internalization process, suggesting that activation of PKC is sufficient and necessary for the internalization of 5-HT2A receptors. We also show that SR2-GFP recycles back to the plasma membrane after 5-HT-dependent internalization, suggesting a mechanism for resensitization. In addition, receptors that have been internalized on addition of phorbol 12-myristate 13-acetate in the absence of 5-HT also recycle to the surface, with a time course similar to that seen after activation of the receptors by 5-HT. Our study suggests that 5-HT2A receptors internalize and return to the surface after both serotonin- and PKC-mediated processes. This study reveals a role for PKC in receptor internalization and also shows that 5-HT2A receptors are recycled. PMID:12388782

  8. Internalization and recycling of receptor-bound gonadotropin-releasing hormone agonist in pituitary gonadotropes

    SciTech Connect

    Schvartz, I.; Hazum, E.

    1987-12-15

    The fate of cell surface gonadotropin-releasing hormone (GnRH) receptors on pituitary cells was studied utilizing lysosomotropic agents and monensin. Labeling of pituitary cells with a photoreactive GnRH derivative, (azidobenzoyl-D-Lys6)GnRH, revealed a specific band of Mr = 60,000. When photoaffinity-labeled cells were exposed to trypsin immediately after completion of the binding, the radioactivity incorporated into the Mr = 60,000 band decreased, with a concomitant appearance of a proteolytic fragment (Mr = 45,000). This fragment reflects cell surface receptors. Following GnRH binding, the hormone-receptor complexes underwent internalization, partial degradation, and recycling. The process of hormone-receptor complex degradation was substantially prevented by lysosomotropic agents, such as chloroquine and methylamine, or the proton ionophore, monensin. Chloroquine and monensin, however, did not affect receptor recycling, since the tryptic fragment of Mr = 45,000 was evident after treatment with these agents. This suggests that recycling of GnRH receptors in gonadotropes occurs whether or not the internal environment is acidic. Based on these findings, we propose a model describing the intracellular pathway of GnRH receptors.

  9. Comparing analgesia and μ-opioid receptor internalization produced by intrathecal enkephalin

    PubMed Central

    Chen, Wenling; Song, Bingbing; Lao, Lijun; Pérez, Orlando A.; Kim, Woojae; Marvizón, Juan Carlos G.

    2007-01-01

    Summary Opioid receptors in the spinal cord produce strong analgesia, but the mechanisms controlling their activation by endogenous opioids remain unclear. We have previously shown in spinal cord slices that peptidases preclude μ-opioid receptor (MOR) internalization by opioids. Our present goals were to investigate whether enkephalin-induced analgesia is also precluded by peptidases, and whether it is mediated by MORs or δ-opioid receptors (DORs). Tail-flick analgesia and MOR internalization were measured in rats injected intrathecally with Leu-enkephalin and peptidase inhibitors. Without peptidase inhibitors, Leu-enkephalin produced neither analgesia nor MOR internalization at doses up to 100 nmol, whereas with peptidase inhibitors it produced analgesia at 0.3 nmol and MOR internalization at 1 nmol. Leu-enkephalin was ten times more potent to produce analgesia than to produce MOR internalization, suggesting that DORs were involved. Selective MOR or DOR antagonists completely blocked the analgesia elicited by 0.3 nmol Leu-enkephalin (a dose that produced little MOR internalization), indicating that it involved these two receptors, possibly by an additive or synergistic interaction. The selective MOR agonist endomorphin-2 produced analgesia even in the presence of a DOR antagonist, but at doses substantially higher than Leu-enkephalin. Unlike Leu-enkephalin, endomorphin-2 had the same potencies to induce analgesia and MOR internalization. We concluded that low doses of enkephalins produce analgesia by activating both MORs and DORs. Analgesia can also be produced exclusively by MORs at higher agonist doses. Since peptidases prevent the activation of spinal opioid receptors by enkephalins, the coincident release of opioids and endogenous peptidase inhibitors may be required for analgesia. PMID:17845806

  10. Collagenous colitis.

    PubMed Central

    Kingham, J G; Levison, D A; Morson, B C; Dawson, A M

    1986-01-01

    Clinical and pathological aspects of six patients with collagenous colitis are presented. These patients have been observed for between four and 15 years and the evolution of the condition is documented in three (cases 1, 3 and 5). Management and possible pathogenetic mechanisms of this enigmatic condition are discussed. Images Fig. 1 Fig. 2 PMID:3699567

  11. Collagenous gastritis.

    PubMed

    Jin, Xiaoyi; Koike, Tomoyuki; Chiba, Takashi; Kondo, Yutaka; Ara, Nobuyuki; Uno, Kaname; Asano, Naoki; Iijima, Katsunori; Imatani, Akira; Watanabe, Mika; Shirane, Akio; Shimosegawa, Tooru

    2013-09-01

    In the present paper, we report a case of rare collagenous gastritis. The patient was a 25-year-old man who had experienced nausea, abdominal distention and epigastralgia since 2005. Esophagogastroduodenoscopy (EGD) carried out at initial examination by the patient's local doctor revealed an extensively discolored depression from the upper gastric body to the lower gastric body, mainly including the greater curvature, accompanied by residual mucosa with multiple islands and nodularity with a cobblestone appearance. Initial biopsies sampled from the nodules and accompanying atrophic mucosa were diagnosed as chronic gastritis. In August, 2011, the patient was referred to Tohoku University Hospital for observation and treatment. EGD at our hospital showed the same findings as those by the patient's local doctor. Pathological findings included a membranous collagen band in the superficial layer area of the gastric mucosa, which led to a diagnosis of collagenous gastritis. Collagenous gastritis is an extremely rare disease, but it is important to recognize its characteristic endoscopic findings to make a diagnosis.

  12. Macrophage receptor with collagenous structure (MARCO) is a dynamic adhesive molecule that enhances uptake of carbon nanotubes by CHO-K1 Cells

    SciTech Connect

    Hirano, Seishiro; Fujitani, Yuji; Furuyama, Akiko; Kanno, Sanae

    2012-02-15

    The toxicity of carbon nanotubes (CNTs), a highly promising nanomaterial, is similar to that of asbestos because both types of particles have a fibrous shape and are biopersistent. Here, we investigated the characteristics of macrophage receptor with collagenous structure (MARCO), a membrane receptor expressed on macrophages that recognizes environmental or unopsonized particles, and we assessed whether and how MARCO was involved in cellular uptake of multi-walled CNTs (MWCNTs). MARCO-transfected Chinese hamster ovary (CHO-K1) cells took up polystyrene beads irrespective of the particle size (20 nm–1 μm). In the culture of MARCO-transfected CHO-K1 cells dendritic structures were observed on the bottom of culture dishes, and the edges of these dendritic structures were continually renewed as the cell body migrated along the dendritic structures. MWCNTs were first tethered to the dendritic structures and then taken up by the cell body. MWCNTs appeared to be taken up via membrane ruffling like macropinocytosis, rather than phagocytosis. The cytotoxic EC{sub 50} value of MWCNTs in MARCO-transfected CHO-K1 cells was calculated to be 6.1 μg/mL and transmission electron microscopic observation indicated that the toxicity of MWCNTs may be due to the incomplete inclusion of MWCNTs by the membrane structure. -- Highlights: ►Carbon nanotubes (CNTs) were tethered to MARCO in vitro. ►CNTs were taken up rapidly into the cell body via MARCO by membrane ruffling. ►The incomplete inclusion of CNTs by membranes caused cytotoxicity.

  13. Targeting a novel bone degradation pathway in primary bone cancer by inactivation of the collagen receptor uPARAP/Endo180.

    PubMed

    Engelholm, Lars H; Melander, Maria C; Hald, Andreas; Persson, Morten; Madsen, Daniel H; Jürgensen, Henrik J; Johansson, Kristina; Nielsen, Christoffer; Nørregaard, Kirstine S; Ingvarsen, Signe Z; Kjaer, Andreas; Trovik, Clement S; Laerum, Ole D; Bugge, Thomas H; Eide, Johan; Behrendt, Niels

    2016-01-01

    In osteosarcoma, a primary mesenchymal bone cancer occurring predominantly in younger patients, invasive tumour growth leads to extensive bone destruction. This process is insufficiently understood, cannot be efficiently counteracted and calls for novel means of treatment. The endocytic collagen receptor, uPARAP/Endo180, is expressed on various mesenchymal cell types and is involved in bone matrix turnover during normal bone growth. Human osteosarcoma specimens showed strong expression of this receptor on tumour cells, along with the collagenolytic metalloprotease, MT1-MMP. In advanced tumours with ongoing bone degeneration, sarcoma cells positive for these proteins formed a contiguous layer aligned with the degradation zones. Remarkably, osteoclasts were scarce or absent from these regions and quantitative analysis revealed that this scarcity marked a strong contrast between osteosarcoma and bone metastases of carcinoma origin. This opened the possibility that sarcoma cells might directly mediate bone degeneration. To examine this question, we utilized a syngeneic, osteolytic bone tumour model with transplanted NCTC-2472 sarcoma cells in mice. When analysed in vitro, these cells were capable of degrading the protein component of surface-labelled bone slices in a process dependent on MMP activity and uPARAP/Endo180. Systemic treatment of the sarcoma-inoculated mice with a mouse monoclonal antibody that blocks murine uPARAP/Endo180 led to a strong reduction of bone destruction. Our findings identify sarcoma cell-resident uPARAP/Endo180 as a central player in the bone degeneration of advanced tumours, possibly following an osteoclast-mediated attack on bone in the early tumour stage. This points to uPARAP/Endo180 as a promising therapeutic target in osteosarcoma, with particular prospects for improved neoadjuvant therapy.

  14. Type I Collagen and Collagen Mimetics as Angiogenesis Promoting Superpolymers

    SciTech Connect

    Twardowski, T.; Fertala, A.; Orgel, J.P.R.O.; San Antonio, J.D.

    2008-07-18

    Angiogenesis, the development of blood vessels from the pre-existing vasculature, is a key component of embryogenesis and tissue regeneration. Angiogenesis also drives pathologies such as tumor growth and metastasis, and hemangioma development in newborns. On the other hand, promotion of angiogenesis is needed in tissues with vascular insufficiencies, and in bioengineering, to endow tissue substitutes with appropriate microvasculatures. Therefore, much research has focused on defining mechanisms of angiogenesis, and identifying pro- and anti-angiogenic molecules. Type I collagen, the most abundant protein in humans, potently stimulates angiogenesis in vitro and in vivo. Crucial to its angiogenic activity appears to be ligation and possibly clustering of endothelial cell (EC) surface {alpha}1{beta}1/{alpha}2{beta}1 integrin receptors by the GFPGER502-507 sequence of the collagen fibril. However, additional aspects of collagen structure and function that may modulate its angiogenic properties are discussed. Moreover, type I collagen and fibrin, another angiogenic polymer, share several structural features. These observations suggest strategies for creating 'angiogenic superpolymers', including: modifying type I collagen to influence its biological half-life, immunogenicity, and integrin binding capacity; genetically engineering fibrillar collagens to include additional integrin binding sites or angiogenic determinants, and remove unnecessary or deleterious sequences without compromising fibril integrity; and exploring the suitability of poly(ortho ester), PEG-lysine copolymer, tubulin, and cholesteric cuticle as collagen mimetics, and suggesting means of modifying them to display ideal angiogenic properties. The collagenous and collagen mimetic angiogenic superpolymers described here may someday prove useful for many applications in tissue engineering and human medicine.

  15. Mutation of Three Residues in the Third Intracellular Loop of the Dopamine D2 Receptor Creates an Internalization-defective Receptor*

    PubMed Central

    Clayton, Cecilea C.; Donthamsetti, Prashant; Lambert, Nevin A.; Javitch, Jonathan A.; Neve, Kim A.

    2014-01-01

    Arrestins mediate desensitization and internalization of G protein-coupled receptors and also direct receptor signaling toward heterotrimeric G protein-independent signaling pathways. We previously identified a four-residue segment (residues 212–215) of the dopamine D2 receptor that is necessary for arrestin binding in an in vitro heterologous expression system but that also impairs receptor expression. We now describe the characterization of additional mutations at that arrestin binding site in the third intracellular loop. Mutating two (residues 214 and 215) or three (residues 213–215) of the four residues to alanine partially decreased agonist-induced recruitment of arrestin3 without altering activation of a G protein. Arrestin-dependent receptor internalization, which requires arrestin binding to β2-adaptin (the β2 subunit of the clathrin-associated adaptor protein AP2) and clathrin, was disproportionately affected by the three-residue mutation, with no agonist-induced internalization observed even in the presence of overexpressed arrestin or G protein-coupled receptor kinase 2. The disjunction between arrestin recruitment and internalization could not be explained by alterations in the time course of the receptor-arrestin interaction, the recruitment of G protein-coupled receptor kinase 2, or the receptor-induced interaction between arrestin and β2-adaptin, suggesting that the mutation impairs a property of the internalization complex that has not yet been identified. PMID:25336643

  16. Collagen interactions: Drug design and delivery.

    PubMed

    An, Bo; Lin, Yu-Shan; Brodsky, Barbara

    2016-02-01

    Collagen is a major component in a wide range of drug delivery systems and biomaterial applications. Its basic physical and structural properties, together with its low immunogenicity and natural turnover, are keys to its biocompatibility and effectiveness. In addition to its material properties, the collagen triple-helix interacts with a large number of molecules that trigger biological events. Collagen interactions with cell surface receptors regulate many cellular processes, while interactions with other ECM components are critical for matrix structure and remodeling. Collagen also interacts with enzymes involved in its biosynthesis and degradation, including matrix metalloproteinases. Over the past decade, much information has been gained about the nature and specificity of collagen interactions with its partners. These studies have defined collagen sequences responsible for binding and the high-resolution structures of triple-helical peptides bound to its natural binding partners. Strategies to target collagen interactions are already being developed, including the use of monoclonal antibodies to interfere with collagen fibril formation and the use of triple-helical peptides to direct liposomes to melanoma cells. The molecular information about collagen interactions will further serve as a foundation for computational studies to design small molecules that can interfere with specific interactions or target tumor cells. Intelligent control of collagen biological interactions within a material context will expand the effectiveness of collagen-based drug delivery.

  17. International Union of Basic and Clinical Pharmacology. XCIII. The parathyroid hormone receptors--family B G protein-coupled receptors.

    PubMed

    Gardella, Thomas J; Vilardaga, Jean-Pierre

    2015-01-01

    The type-1 parathyroid hormone receptor (PTHR1) is a family B G protein-coupled receptor (GPCR) that mediates the actions of two polypeptide ligands; parathyroid hormone (PTH), an endocrine hormone that regulates the levels of calcium and inorganic phosphate in the blood by acting on bone and kidney, and PTH-related protein (PTHrP), a paracrine-factor that regulates cell differentiation and proliferation programs in developing bone and other tissues. The type-2 parathyroid hormone receptor (PTHR2) binds a peptide ligand, called tuberoinfundibular peptide-39 (TIP39), and while the biologic role of the PTHR2/TIP39 system is not as defined as that of the PTHR1, it likely plays a role in the central nervous system as well as in spermatogenesis. Mechanisms of action at these receptors have been explored through a variety of pharmacological and biochemical approaches, and the data obtained support a basic "two-site" mode of ligand binding now thought to be used by each of the family B peptide hormone GPCRs. Recent crystallographic studies on the family B GPCRs are providing new insights that help to further refine the specifics of the overall receptor architecture and modes of ligand docking. One intriguing pharmacological finding for the PTHR1 is that it can form surprisingly stable complexes with certain PTH/PTHrP ligand analogs and thereby mediate markedly prolonged cell signaling responses that persist even when the bulk of the complexes are found in internalized vesicles. The PTHR1 thus appears to be able to activate the Gα(s)/cAMP pathway not only from the plasma membrane but also from the endosomal domain. The cumulative findings could have an impact on efforts to develop new drug therapies for the PTH receptors.

  18. Identification of human somatostatin receptor 2 domains involved in internalization and signaling in QGP-1 pancreatic neuroendocrine tumor cell line.

    PubMed

    Cambiaghi, Valeria; Vitali, Eleonora; Morone, Diego; Peverelli, Erika; Spada, Anna; Mantovani, Giovanna; Lania, Andrea Gerardo

    2016-07-12

    Somatostatin exerts inhibitory effects on hormone secretion and cell proliferation via five receptor subtypes (SST1-SST5), whose internalization is regulated by β-arrestins. The receptor domains involved in these effects have been only partially elucidated. The aim of the study is to characterize the molecular mechanism and determinants responsible for somatostatin receptor 2 internalization and signaling in pancreatic neuroendocrine QGP-1 cell line, focusing on the third intracellular loop and carboxyl terminal domains. We demonstrated that in cells transfected with somatostatin receptor 2 third intracellular loop mutant, no differences in β-arrestins recruitment and receptor internalization were observed after somatostatin receptor 2 activation in comparison with cells bearing wild-type somatostatin receptor 2. Conversely, the truncated somatostatin receptor 2 failed to recruit β-arrestins and to internalize after somatostatin receptor 2 agonist (BIM23120) incubation. Moreover, the inhibitory effect of BIM23120 on cell proliferation, cyclin D1 expression, P-ERK1/2 levels, apoptosis and vascular endothelial growth factor secretion was completely lost in cells transfected with either third intracellular loop or carboxyl terminal mutants. In conclusion, we demonstrated that somatostatin receptor 2 internalization requires intact carboxyl terminal while the effects of SS on cell proliferation, angiogenesis and apoptosis mediated by somatostatin receptor 2 need the integrity of both third intracellular loop and carboxyl terminal.

  19. International Union of Basic and Clinical Pharmacology. LXXVII. Kisspeptin receptor nomenclature, distribution, and function.

    PubMed

    Kirby, Helen R; Maguire, Janet J; Colledge, William H; Davenport, Anthony P

    2010-12-01

    Kisspeptins are members of the Arg-Phe amide family of peptides, which have been identified as endogenous ligands for a G-protein-coupled receptor encoded by a gene originally called GPR54 (also known as AXOR12 or hOT7T175). After this pairing, the gene has been renamed KISS1R. The International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification recommends that the official name for the receptor is the kisspeptin receptor to follow the convention of naming the receptor protein after the endogenous ligand. The endogenous ligand was initially called metastin, after its role as a metastasis suppressor, and is now referred to as kisspeptin-54 (KP-54), a C-terminally amidated 54-amino acid peptide cleaved from the 145-amino acid gene product. Shorter C-terminal cleavage fragments [KP-14, KP-13 and KP-10 (the smallest active fragment)] are also biologically active. Both receptor and peptide are widely expressed in human, rat, and mouse; the receptor sequence shares more than 80% homology in these species. Activation of the kisspeptin receptor by kisspeptin is via coupling to G(q/11) and the phospholipase C pathway, causing Ca(2+) mobilization. Mutations in the KISS1R gene result in hypogonadotropic hypogonadotropism, and targeted disruption of Kiss1r in mice reproduces this phenotype, which led to the discovery of the remarkable ability of the kisspeptin receptor to act as a molecular switch for puberty. In addition to regulating the reproductive axis, the kisspeptin receptor is also implicated in cancer, placentation, diabetes, and the cardiovascular system.

  20. Ligand-induced EGF Receptor Oligomerization Is Kinase-dependent and Enhances Internalization*

    PubMed Central

    Hofman, Erik G.; Bader, Arjen N.; Voortman, Jarno; van den Heuvel, Dave J.; Sigismund, Sara; Verkleij, Arie J.; Gerritsen, Hans C.; van Bergen en Henegouwen, Paul M. P.

    2010-01-01

    The current activation model of the EGF receptor (EGFR) predicts that binding of EGF results in dimerization and oligomerization of the EGFR, leading to the allosteric activation of the intracellular tyrosine kinase. Little is known about the regulatory mechanism of receptor oligomerization. In this study, we have employed FRET between identical fluorophores (homo-FRET) to monitor the dimerization and oligomerization state of the EGFR before and after receptor activation. Our data show that, in the absence of ligand, ∼40% of the EGFR molecules were present as inactive dimers or predimers. The monomer/predimer ratio was not affected by deletion of the intracellular domain. Ligand binding induced the formation of receptor oligomers, which were found in both the plasma membrane and intracellular structures. Ligand-induced oligomerization required tyrosine kinase activity and nine different tyrosine kinase substrate residues. This indicates that the binding of signaling molecules to activated EGFRs results in EGFR oligomerization. Induction of EGFR predimers or pre-oligomers using the EGFR fused to the FK506-binding protein did not affect signaling but was found to enhance EGF-induced receptor internalization. Our data show that EGFR oligomerization is the result of EGFR signaling and enhances EGFR internalization. PMID:20940297

  1. Two Novel α7 Nicotinic Acetylcholine Receptor Ligands: In Vitro Properties and Their Efficacy in Collagen-Induced Arthritis in Mice

    PubMed Central

    van Maanen, Marjolein A.; Papke, Roger L.; Koopman, Frieda A.; Koepke, Jessica; Bevaart, Lisette; Clark, Roger; Lamppu, Diana; Elbaum, Daniel; LaRosa, Gregory J.; Tak, Paul P.; Vervoordeldonk, Margriet J.

    2015-01-01

    Introduction The cholinergic anti-inflammatory pathway can downregulate inflammation via the release of acetylcholine (ACh) by the vagus nerve. This neurotransmitter binds to the α7 subunit of nicotinic acetylcholine receptors (α7nAChR), expressed on macrophages and other immune cells. We tested the pharmacological and functional profile of two novel compounds, PMP-311 and PMP-072 and investigated their role in modulating collagen-induced arthritis (CIA) in mice. Methods Both compounds were characterized with binding, electrophysiological, and pharmacokinetic studies. For in vivo efficacy studies in the CIA model the compounds were administered daily by oral gavage from day 20 till sacrifice at day 34. Disease progression was monitored by visual clinical scoring and measurement of paw swelling. Inflammation and joint destruction were examined by histology and radiology. Results Treatment with PMP-311 was effective in preventing disease onset, reducing clinical signs of arthritis, and reducing synovial inflammation and bone destruction. PMP-072 also showed a trend in arthritis reduction at all concentrations tested. The data showed that while both compounds bind to α7nAChR with high affinity, PMP-311 acts like a classical agonist of ion channel activity, and PMP-072 can actually act as an ion channel antagonist. Moreover, PMP-072 was clearly distinct from typical competitive antagonists, since it was able to act as a silent agonist. It synergizes with the allosteric modulator PNU-120596, and subsequently activates desensitized α7nAChR. However, PMP-072 was less efficacious than PMP-311 at both channel activation and desensitization, suggesting that both conducting and non-conducting states maybe of importance in driving an anti-inflammatory response. Finally, we found that the anti-arthritic effect can be observed despite limited penetration of the central nervous system. Conclusions These data provide direct evidence that the α7nAChR in immune cells does not

  2. Development of interleukin-1 receptor antagonist mutants with enhanced antagonistic activity in vitro and improved therapeutic efficacy in collagen-induced arthritis.

    PubMed

    Dahlén, Eva; Barchan, Karin; Herrlander, Daniel; Höjman, Patrik; Karlsson, Marie; Ljung, Lill; Andersson, Mats; Bäckman, Eva; Hager, Ann-Christin Malmborg; Walse, Björn; Joosten, Leo; van den Berg, Wim

    2008-04-01

    Interleukin-1 receptor antagonist (IL-1Ra) is a naturally occurring inhibitor of the pro-inflammatory interleukin-1-mediated activation of the interleukin-1 receptor (IL-1R). Although wild-type IL-1Ra is used for treatment of inflammatory diseases, its effect is moderate and/or short-lived. The objective of this study was to generate IL-1Ra mutants with enhanced antagonistic activity for potential therapeutic use. Using a directed evolution approach in which libraries of IL-1Ra gene mutants were generated and screened in functional assays, mutants with desired properties were identified. Initially, diversity was introduced into the IL-1Ra using random mutagenesis. Mutations resulting in enhanced antagonistic activity were identified by screening in a reporter cell assay. To further enhance the antagonistic activity, selected mutations were recombined using the DNA recombination technology Fragment-INduced Diversity (FIND). Following three rounds of FIND recombination, several mutants with up to nine times enhanced antagonistic activity (mean IC50 +/- SEM value: 0.78 +/- 0.050 vs. 6.8 +/- 1.1 ng/ml for mutant and wild-type, respectively) were identified. Sequence analysis identified the mutations D47N, E52R and E90Y as being most important for this effect, however, the mutations P38Y, H54R, Q129L and M136N further enhanced the antagonistic function. Analysis of identified mutations in protein models based on the crystal structure of the IL-1Ra/IL-1R complex suggested that mutations found to enhance the antagonistic activity had a stabilizing effect on the IL-1Ra mutants or increased the affinity for the IL-1R. Finally, the therapeutic effect of one mutant was compared to that of wild-type IL-1Ra in collagen-induced arthritis in mice. Indeed, the enhanced antagonistic effect of the mutants observed in vitro was also seen in vivo. In conclusion, these results demonstrate that directed evolution of IL-1Ra is an effective means of generating highly potent therapeutic

  3. The 37kDa/67kDa Laminin Receptor acts as a receptor for Aβ42 internalization

    PubMed Central

    Da Costa Dias, Bianca; Jovanovic, Katarina; Gonsalves, Danielle; Moodley, Kiashanee; Reusch, Uwe; Knackmuss, Stefan; Weinberg, Marc S.; Little, Melvyn; Weiss, Stefan F. T.

    2014-01-01

    Neuronal loss is a major neuropathological hallmark of Alzheimer's disease (AD). The associations between soluble Aβ oligomers and cellular components cause this neurotoxicity. The 37 kDa/67 kDa laminin receptor (LRP/LR) has recently been implicated in Aβ pathogenesis. In this study the mechanism underlying the pathological role of LRP/LR was elucidated. Försters Resonance Energy Transfer (FRET) revealed that LRP/LR and Aβ form a biologically relevant interaction. The ability of LRP/LR to form stable associations with endogenously shed Aβ was confirmed by pull down assays and Aβ-ELISAs. Antibody blockade of this association significantly lowered Aβ42 induced apoptosis. Furthermore, antibody blockade and shRNA mediated downregulation of LRP/LR significantly hampered Aβ42 internalization. These results suggest that LRP/LR is a receptor for Aβ42 internalization, mediating its endocytosis and contributing to the cytotoxicity of the neuropeptide by facilitating intra-cellular Aβ42 accumulation. These findings recommend anti-LRP/LR specific antibodies and shRNAs as potential therapeutic tools for AD treatment. PMID:24990253

  4. Carboxyl-terminal multi-site phosphorylation regulates internalization and desensitization of the human sst2 somatostatin receptor.

    PubMed

    Lehmann, Andreas; Kliewer, Andrea; Schütz, Dagmar; Nagel, Falko; Stumm, Ralf; Schulz, Stefan

    2014-04-25

    The somatostatin receptor 2 (sst2) is the pharmacological target of somatostatin analogs that are widely used in the diagnosis and treatment of human neuroendocrine tumors. We have recently shown that the stable somatostatin analogs octreotide and pasireotide (SOM230) stimulate distinct patterns of sst2 receptor phosphorylation and internalization. Like somatostatin, octreotide promotes the phosphorylation of at least six carboxyl-terminal serine and threonine residues namely S341, S343, T353, T354, T356 and T359, which in turn leads to a robust receptor endocytosis. Unlike somatostatin, pasireotide stimulates a selective phosphorylation of S341 and S343 of the human sst2 receptor followed by a partial receptor internalization. Here, we show that exchange of S341 and S343 by alanine is sufficient to block pasireotide-driven internalization, whereas mutation of T353, T354, T356 and T359 to alanine is required to strongly inhibited both octreotide- and somatostatin-induced internalization. Yet, combined mutation of T353, T354, T356 and T359 is not sufficient to prevent somatostatin-driven β-arrestin mobilization and receptor desensitization. Replacement of all fourteen carboxyl-terminal serine and threonine residues by alanine completely abrogates sst2 receptor internalization and β-arrestin mobilization in HEK293 cells. Together, our findings demonstrate for the first time that agonist-selective sst2 receptor internalization is regulated by multi-site phosphorylation of its carboxyl-terminal tail.

  5. Internalization and down-regulation of human muscarinic acetylcholine receptor m2 subtypes. Role of third intracellular m2 loop and G protein-coupled receptor kinase 2.

    PubMed

    Tsuga, H; Kameyama, K; Haga, T; Honma, T; Lameh, J; Sadée, W

    1998-02-27

    Internalization and down-regulation of human muscarinic acetylcholine m2 receptors (hm2 receptors) and a hm2 receptor mutant lacking a central part of the third intracellular loop (I3-del m2 receptor) were examined in Chinese hamster ovary (CHO-K1) cells stably expressing these receptors and G protein-coupled receptor kinase 2 (GRK2). Agonist-induced internalization of up to 80-90% of hm2 receptors was demonstrated by measuring loss of [3H]N-methylscopolamine binding sites from the cell surface, and transfer of [3H]quinuclidinyl benzilate binding sites from the plasma membrane into the light-vesicle fractions separated by sucrose density gradient centrifugation. Additionally, translocation of hm2 receptors with endocytic vesicles were visualized by immunofluorescence confocal microscopy. Agonist-induced down-regulation of up to 60-70% of hm2 receptors was demonstrated by determining the loss of [3H]quinuclidinyl benzilate binding sites in the cells. The half-time (t1/2) of internalization and down-regulation in the presence of 10(-4) M carbamylcholine was estimated to be 9.5 min and 2.3 h, respectively. The rates of both internalization and down-regulation of hm2 receptors in the presence of 10(-6) M or lower concentrations of carbamylcholine were markedly increased by coexpression of GRK2. Agonist-induced internalization of I3-del m2 receptors was barely detectable upon incubation of cells for 1 h, but agonist-induced down-regulation of up to 40-50% of I3-del m2 receptors occurred upon incubation with 10(-4) M carbamylcholine for 16 h. However, the rate of down-regulation was lower compared with wild type receptors (t1/2 = 9.9 versus 2.3 h). These results indicate that rapid internalization of hm2 receptors is facilitated by their phosphorylation with GRK2 and does not occur in the absence of the third intracellular loop, but down-regulation of hm2 receptors may occur through both GRK2-facilitating pathway and third intracellular loop-independent pathways.

  6. The syndecan family of proteoglycans. Novel receptors mediating internalization of atherogenic lipoproteins in vitro.

    PubMed Central

    Fuki, I V; Kuhn, K M; Lomazov, I R; Rothman, V L; Tuszynski, G P; Iozzo, R V; Swenson, T L; Fisher, E A; Williams, K J

    1997-01-01

    Cell-surface heparan sulfate proteoglycans have been shown to participate in lipoprotein catabolism, but the roles of specific proteoglycan classes have not been examined previously. Here, we studied the involvement of the syndecan proteoglycan family. First, transfection of CHO cells with expression vectors for several syndecan core proteins produced parallel increases in the cell association and degradation of lipoproteins enriched in lipoprotein lipase, a heparan-binding protein. Second, a chimeric construct, FcR-Synd1, that consists of the ectodomain of the IgG Fc receptor Ia linked to the highly conserved transmembrane and cytoplasmic domains of syndecan-1 directly mediated efficient internalization, in a process triggered by ligand clustering. Third, internalization of lipase-enriched lipoproteins via syndecan-1 and of clustered IgGs via the chimera showed identical kinetics (t1/2 = 1 h) and identical dose-response sensitivities to cytochalasin B, which disrupts microfilaments, and to genistein, which inhibits tyrosine kinases. In contrast, internalization of the receptor-associated protein, which proceeds via coated pits, showed a t1/2 < 15 min, limited sensitivity to cytochalasin B, and complete insensitivity to genistein. Thus, syndecan proteoglycans can directly mediate ligand catabolism through a pathway with characteristics distinct from coated pits, and might act as receptors for atherogenic lipoproteins and other ligands in vivo. PMID:9294130

  7. Functional Hierarchy of Simultaneously Expressed Adhesion Receptors: Integrin α2β1 but Not CD44 Mediates MV3 Melanoma Cell Migration and Matrix Reorganization within Three-dimensional Hyaluronan-containing Collagen MatricesV⃞

    PubMed Central

    Maaser, Kerstin; Wolf, Katarina; Klein, C. Eberhard; Niggemann, Bernd; Zänker, Kurt S.; Bröcker, Eva-B.; Friedl, Peter

    1999-01-01

    Haptokinetic cell migration across surfaces is mediated by adhesion receptors including β1 integrins and CD44 providing adhesion to extracellular matrix (ECM) ligands such as collagen and hyaluronan (HA), respectively. Little is known, however, about how such different receptor systems synergize for cell migration through three-dimensionally (3-D) interconnected ECM ligands. In highly motile human MV3 melanoma cells, both β1 integrins and CD44 are abundantly expressed, support migration across collagen and HA, respectively, and are deposited upon migration, whereas only β1 integrins but not CD44 redistribute to focal adhesions. In 3-D collagen lattices in the presence or absence of HA and cross-linking chondroitin sulfate, MV3 cell migration and associated functions such as polarization and matrix reorganization were blocked by anti-β1 and anti-α2 integrin mAbs, whereas mAbs blocking CD44, α3, α5, α6, or αv integrins showed no effect. With use of highly sensitive time-lapse videomicroscopy and computer-assisted cell tracking techniques, promigratory functions of CD44 were excluded. 1) Addition of HA did not increase the migratory cell population or its migration velocity, 2) blocking of the HA-binding Hermes-1 epitope did not affect migration, and 3) impaired migration after blocking or activation of β1 integrins was not restored via CD44. Because α2β1-mediated migration was neither synergized nor replaced by CD44–HA interactions, we conclude that the biophysical properties of 3-D multicomponent ECM impose more restricted molecular functions of adhesion receptors, thereby differing from haptokinetic migration across surfaces. PMID:10512851

  8. Effects of arachidonic acid on FFA4 receptor: Signaling, phosphorylation and internalization.

    PubMed

    Villegas-Comonfort, S; Takei, Y; Tsujimoto, G; Hirasawa, A; García-Sáinz, J A

    2017-02-01

    Arachidonic acid increased intracellular calcium, in cells expressing green fluorescent protein-tagged human FFA4 receptors, with an EC50 of ~40µM. This action was not blocked by cyclooxygenase or lipoxigenase inhibitors but it was inhibited by AH7614, a FFA4 antagonist. Arachidonic acid induced ERK activation accompanied by EGF receptor transactivation. However, EGF transactivation was not the major mechanism through which the fatty acid induced ERK phosphorylation, as evidenced by the inability of AG1478 to block it. Arachidonic acid increased FFA4 receptor phosphorylation that reached its maximum within 15min with an EC50 of ~30µM; inhibitors of protein kinase C partially diminish this effect and AH7614 blocked it. Arachidonic acid induced rapid and sustained Akt/PKB phosphorylation and FFA4 - β-arrestin interaction. Confocal microscopy evidenced that FFA4 receptor activation and phosphorylation were associated to internalization. In conclusion, arachidonic acid is a bona fide FFA4 receptor agonist.

  9. Simplagrin, a Platelet Aggregation Inhibitor from Simulium nigrimanum Salivary Glands Specifically Binds to the Von Willebrand Factor Receptor in Collagen and Inhibits Carotid Thrombus Formation In Vivo

    PubMed Central

    Chagas, Andrezza C.; McPhie, Peter; San, Hong; Narum, David; Reiter, Karine; Tokomasu, Fuyuki; Brayner, Fabio A.; Alves, Luiz C.; Ribeiro, José M. C.; Calvo, Eric

    2014-01-01

    Background Among the several challenges faced by bloodsucking arthropods, the vertebrate hemostatic response against blood loss represents an important barrier to efficient blood feeding. Here we report the first inhibitor of collagen-induced platelet aggregation derived from the salivary glands of a black fly (Simulium nigrimanum), named Simplagrin. Methods and Findings Simplagrin was expressed in mammalian cells and purified by affinity-and size-exclusion chromatography. Light-scattering studies showed that Simplagrin has an elongated monomeric form with a hydrodynamic radius of 5.6 nm. Simplagrin binds to collagen (type I-VI) with high affinity (2–15 nM), and this interaction does not involve any significant conformational change as determined by circular dichroism spectroscopy. Simplagrin-collagen interaction is both entropically and enthalpically driven with a large negative ΔG, indicating that this interaction is favorable and occurs spontaneously. Simplagrin specifically inhibits von Willebrand factor interaction with collagen type III and completely blocks platelet adhesion to collagen under flow conditions at high shear rates; however, Simplagrin failed to block glycoprotein VI and Iα2β1 interaction to collagen. Simplagrin binds to RGQOGVMGF peptide with an affinity (KD 11 nM) similar to that of Simplagrin for collagen. Furthermore, Simplagrin prevents laser-induced carotid thrombus formation in vivo without significant bleeding in mice and could be useful as an antithrombotic agent in thrombosis related disease. Conclusion Our results support the orthology of the Aegyptin clade in bloodsucking Nematocera and the hypothesis of a faster evolutionary rate of salivary function of proteins from blood feeding arthropods. PMID:24921659

  10. Quantitative measurement of cell membrane receptor internalization by the nanoluciferase reporter: Using the G protein-coupled receptor RXFP3 as a model.

    PubMed

    Liu, Yu; Song, Ge; Shao, Xiao-Xia; Liu, Ya-Li; Guo, Zhan-Yun

    2015-02-01

    Nanoluciferase (NanoLuc) is a newly developed small luciferase reporter with the brightest bioluminescence to date. In the present work, we developed NanoLuc as a sensitive bioluminescent reporter to measure quantitatively the internalization of cell membrane receptors, based on the pH dependence of the reporter activity. The G protein-coupled receptor RXFP3, the cognate receptor of relaxin-3/INSL7, was used as a model receptor. We first generated stable HEK293T cells that inducibly coexpressed a C-terminally NanoLuc-tagged human RXFP3 and a C-terminally enhanced green fluorescent protein (EGFP)-tagged human RXFP3. The C-terminal EGFP-tag and NanoLuc-tag had no detrimental effects on the ligand-binding potency and intracellular trafficking of RXFP3. Based on the fluorescence of the tagged EGFP reporter, the ligand-induced RXFP3 internalization was visualized directly under a fluorescence microscope. Based on the bioluminescence of the tagged NanoLuc reporter, the ligand-induced RXFP3 internalization was measured quantitatively by a convenient bioluminescent assay. Coexpression of an EGFP-tagged inactive [E141R]RXFP3 had no detrimental effect on the ligand-binding potency and ligand-induced internalization of the NanoLuc-tagged wild-type RXFP3, suggesting that the mutant RXFP3 and wild-type RXFP3 worked independently. The present bioluminescent internalization assay could be extended to other G protein-coupled receptors and other cell membrane receptors to study ligand-receptor and receptor-receptor interactions.

  11. An Opioid Agonist that Does Not Induce μ-Opioid Receptor—Arrestin Interactions or Receptor Internalization

    PubMed Central

    Groer, C. E.; Tidgewell, K.; Moyer, R. A.; Harding, W. W.; Rothman, R. B.; Prisinzano, T. E.; Bohn, L. M.

    2013-01-01

    G protein-coupled receptor desensitization and trafficking are important regulators of opioid receptor signaling that can dictate overall drug responsiveness in vivo. Furthermore, different μ-opioid receptor (μOR) ligands can lead to varying degrees of receptor regulation, presumably because of distinct structural conformations conferred by agonist binding. For example, morphine binding produces a μOR with low affinity for β-arrestin proteins and limited receptor internalization, whereas enkephalin analogs promote robust trafficking of both β-arrestins and the receptors. Here, we evaluate μOR trafficking in response to activation by a novel μ-selective agonist derived from the naturally occurring plant product, salvinorin A. It is interesting that this compound, termed herkinorin, does not promote the recruitment of β-arrestin-2 to the μOR and does not lead to receptor internalization. Moreover, whereas G protein-coupled receptor kinase overexpression can promote morphine-induced β-arrestin interactions and μOR internalization, such manipulations do not promote herkinorin-induced trafficking. Studies in mice have shown that β-arrestin-2 plays an important role in the development of morphine-induced tolerance, constipation, and respiratory depression. Therefore, drugs that can activate the receptor without recruiting the arrestins may be a promising step in the development of opiate analgesics that distinguish between agonist activity and receptor regulation and may ultimately lead to therapeutics designed to provide pain relief without the adverse side effects normally associated with the opiate narcotics. PMID:17090705

  12. Unraveling a molecular determinant for clathrin-independent internalization of the M2 muscarinic acetylcholine receptor

    PubMed Central

    Wan, Min; Zhang, Wenhua; Tian, Yangli; Xu, Chanjuan; Xu, Tao; Liu, Jianfeng; Zhang, Rongying

    2015-01-01

    Endocytosis and postendocytic sorting of G-protein-coupled receptors (GPCRs) is important for the regulation of both their cell surface density and signaling profile. Unlike the mechanisms of clathrin-dependent endocytosis (CDE), the mechanisms underlying the control of GPCR signaling by clathrin-independent endocytosis (CIE) remain largely unknown. Among the muscarinic acetylcholine receptors (mAChRs), the M4 mAChR undergoes CDE and recycling, whereas the M2 mAChR is internalized through CIE and targeted to lysosomes. Here we investigated the endocytosis and postendocytic trafficking of M2 mAChR based on a comparative analysis of the third cytoplasmic domain in M2 and M4 mAChRs. For the first time, we identified that the sequence 374KKKPPPS380 servers as a sorting signal for the clathrin-independent internalization of M2 mAChR. Switching 374KKKPPPS380 to the i3 loop of the M4 mAChR shifted the receptor into lysosomes through the CIE pathway; and therefore away from CDE and recycling. We also found another previously unidentified sequence that guides CDE of the M2 mAChR, 361VARKIVKMTKQPA373, which is normally masked in the presence of the downstream sequence 374KKKPPPS380. Taken together, our data indicate that endocytosis and postendocytic sorting of GPCRs that undergo CIE could be sequence-dependent. PMID:26094760

  13. Unraveling a molecular determinant for clathrin-independent internalization of the M2 muscarinic acetylcholine receptor.

    PubMed

    Wan, Min; Zhang, Wenhua; Tian, Yangli; Xu, Chanjuan; Xu, Tao; Liu, Jianfeng; Zhang, Rongying

    2015-06-22

    Endocytosis and postendocytic sorting of G-protein-coupled receptors (GPCRs) is important for the regulation of both their cell surface density and signaling profile. Unlike the mechanisms of clathrin-dependent endocytosis (CDE), the mechanisms underlying the control of GPCR signaling by clathrin-independent endocytosis (CIE) remain largely unknown. Among the muscarinic acetylcholine receptors (mAChRs), the M4 mAChR undergoes CDE and recycling, whereas the M2 mAChR is internalized through CIE and targeted to lysosomes. Here we investigated the endocytosis and postendocytic trafficking of M2 mAChR based on a comparative analysis of the third cytoplasmic domain in M2 and M4 mAChRs. For the first time, we identified that the sequence (374)KKKPPPS(380) servers as a sorting signal for the clathrin-independent internalization of M2 mAChR. Switching (374)KKKPPPS(380) to the i3 loop of the M4 mAChR shifted the receptor into lysosomes through the CIE pathway; and therefore away from CDE and recycling. We also found another previously unidentified sequence that guides CDE of the M2 mAChR, (361)VARKIVKMTKQPA(373), which is normally masked in the presence of the downstream sequence (374)KKKPPPS(380). Taken together, our data indicate that endocytosis and postendocytic sorting of GPCRs that undergo CIE could be sequence-dependent.

  14. The insulin receptor juxtamembrane region contains two independent tyrosine/beta-turn internalization signals

    PubMed Central

    1992-01-01

    We have investigated the role of tyrosine residues in the insulin receptor cytoplasmic juxtamembrane region (Tyr953 and Tyr960) during endocytosis. Analysis of the secondary structure of the juxtamembrane region by the Chou-Fasman algorithms predicts that both the sequences GPLY953 and NPEY960 form tyrosine-containing beta-turns. Similarly, analysis of model peptides by 1-D and 2-D NMR show that these sequences form beta-turns in solution, whereas replacement of the tyrosine residues with alanine destabilizes the beta-turn. CHO cell lines were prepared expressing mutant receptors in which each tyrosine was mutated to phenylalanine or alanine, and an additional mutant contained alanine at both positions. These mutations had no effect on insulin binding or receptor autophosphorylation. Replacements with phenylalanine had no effect on the rate of [125I]insulin endocytosis, whereas single substitutions with alanine reduced [125I]insulin endocytosis by 40-50%. Replacement of both tyrosines with alanine reduced internalization by 70%. These data suggest that the insulin receptor contains two tyrosine/beta-turns which contribute independently and additively to insulin-stimulated endocytosis. PMID:1500426

  15. Importance of a N-terminal aspartate in the internalization of the neuropeptide Y Y2 receptor.

    PubMed

    Parker, Steven L; Parker, Michael S; Wong, Ying Y; Sah, Renu; Balasubramaniam, Ambikaipakan; Sallee, Floyd

    2008-10-10

    With human neuropeptide Y Y2 receptor expressed in the Chinese hamster ovary (CHO) cells, the Asp35Ala mutation, and especially the change of Pro34Asp35 to Ala34Ala35, decrease the compartmentalization and strongly accelerate internalization of the receptor. These changes are not associated with alterations in agonist affinity, G-protein interaction, dimerization, or level of expression of the mutated receptors relative to the wildtype receptor. The proline-flanked aspartate in the N-terminal extracellular segment of the neuropeptide Y Y2 receptor thus apparently has a large role in anchoring and compartmentalization of the receptor. However, the Pro34Ala mutation does not significantly affect the embedding and cycling of the receptor.

  16. Platelets activated by collagen through the immunoreceptor tyrosine-based activation motif in the Fc receptor gamma-chain play a pivotal role in the development of myocardial ischemia-reperfusion injury.

    PubMed

    Takaya, Norihide; Katoh, Youichi; Iwabuchi, Kazuhisa; Hayashi, Ichiro; Konishi, Hakuoh; Itoh, Seigo; Okumura, Ko; Ra, Chisei; Nagaoka, Isao; Daida, Hiroyuki

    2005-12-01

    Platelet activation and the formation of platelet microaggregates in coronary vessels play pivotal roles in myocardial ischemia and reperfusion injury. The Fc receptor gamma-chain (FcR gamma) is coexpressed with glycoprotein (GP) VI, forming a platelet collagen receptor, and the activation of platelets by collagen is closely coupled with tyrosine phosphorylation of the FcRgamma. To examine the functional significance of platelet FcR gamma/GPVI complex in the early phase of myocardial ischemia and reperfusion injury in mice, we performed coronary occlusion and reperfusion experiments using wild type mice and FcRgamma-deficient (FcRgamma(-/-)) mice that lack GPVI. The infarct size was significantly smaller in FcRgamma(-/-) mice subjected to occlusion and reperfusion of the coronary artery than in control FcR gamma(+/+) mice. Twenty-four hours after the reperfusion, electron microscopy of the injured tissue showed substantially more platelet aggregation and occlusive platelet microthrombi in the capillaries of the damaged areas of the wild type mice than in those of the FcR gamma(-/-) mice. Platelet Syk was scarcely activated in the FcR gamma(-/-) mice after myocardial ischemia and reperfusion, but significantly activated in the FcR gamma(+/+) mice. CD11b expression on neutrophils was elevated after myocardial ischemia and reperfusion in both mouse groups, whereas myeloperoxidase activity in the injured areas was significantly lower in the FcRgamma(-/-) mice than in the FcRgamma(+/+) mice. These results suggest that the collagen-induced activation of platelets through the FcR gamma plays a pivotal role in the extension of myocardial ischemia-reperfusion injury. FcRgamma and GPVI may be important therapeutic targets for myocardial ischemia-reperfusion injury.

  17. Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice.

    PubMed

    Fan, Ming-Hui; Zhu, Qiang; Li, Hui-Hua; Ra, Hyun-Jeong; Majumdar, Sonali; Gulick, Dexter L; Jerome, Jacob A; Madsen, Daniel H; Christofidou-Solomidou, Melpo; Speicher, David W; Bachovchin, William W; Feghali-Bostwick, Carol; Puré, Ellen

    2016-04-08

    Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2-4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent within vitrostudies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP's protective effects in the lung.

  18. Internalization of the receptor for advanced glycation end products (RAGE) is required to mediate intracellular responses.

    PubMed

    Sevillano, Natalia; Girón, María D; Salido, Mercedes; Vargas, Alberto M; Vilches, José; Salto, Rafael

    2009-01-01

    To dissect the rat receptor for advanced glycation end products (RAGE) subcellular distribution and trafficking in eukaryotic cells, an expression system coding for a fusion protein between the RAGE and an enhanced green fluorescent protein (EGFP) has been used. The RAGE-EGFP protein is expressed at the plasma membrane of CHO-k1 and Neuro-2a (N2a) cells and retains the capacity to bind Texas Red-labelled advanced glycation end products (AGEs). AGEs addition to the cell cultures induced a change in the subcellular distribution of the fluorescent RAGE-EGFP protein compatible with an internalization of the AGEs-RAGE complex. Furthermore, while N2a cells expressing the RAGE-EGFP showed an increase in ERK1/2 phosphorylation and NF-kappaB DNA binding in response to AGEs, pre-incubation with dansyl-cadaverine or phenylarsine oxide, inhibitors of receptors internalization, blocked the activation of ERKs and other intracellular responses mediated by AGEs. These results suggest that internalization plays a key role in the signal transduction mediated by RAGE.

  19. [Differences in dynamics of insulin and insulin-like growth I (IGF-I) receptors internalization in isolated rat hepatocytes].

    PubMed

    Kolychev, A P; Ternovskaya, E E; Arsenieva, A V; Shapkina, E V

    2013-01-01

    Insulin and IGF-I are two related peptides performing in the mammalian body functionally different roles of the metabolic and growth hormones, respectively. Internalization of the insulin-receptor complex (IRC) is the most important chain of mechanism of the action of hormone. To elucidate differences in the main stages of internalization of the two related hormones, the internalization dynamics of 125I-insulin and 125I-IGF-I was traced in isolated rat hepatocytes at 37 and 12 degrees C. There were established marked differences in the process of internalization of labeled hormones, which is stimulated by insulin and IGF-I. At 37 degrees C the insulin-stimulated internalization, unlike the process initiated by IGF-I, did not reach the maximal level for 1 h of incubation. However, essential differences in the internalization course of these two related peptide were obvious at the temperature of 12 degrees C. The internalization level of insulin receptors at 12 degrees C decreased by one third in spite of a significant increase of the insulin receptor binding on the hepatocytes plasma membrane. At 12 degrees C a slight decrease of the proportion of intracellular 125I-IGF-I correlated with a decrease in the 125I-IGF-I binding to receptors on the cell membrane. Internalization of IGF-I receptors was not affected by low temperature, as neither its level, nor the rate changed at 12 degrees C. The paradoxical decrease of the insulin-stimulated internalization at low temperature seems to represent a peculiar "inhibition mechanism" of immersion of IRC into the cell, which leads to accumulation of the complexes on the cell surface and possibly to a readjustment of the insulin biological activity. The resistance of internalization of the IGF-I receptor to cold seems to be related to the more ancient origin of this mechanism in the poikilothermal vertebrates.

  20. Proteolytic activation of receptor-bound anthrax protective antigen on macrophages promotes its internalization.

    PubMed

    Beauregard, K E; Collier, R J; Swanson, J A

    2000-06-01

    Immunofluorescence and other methods have been used to probe the self-assembly and internalization of the binary toxin, anthrax lethal toxin (LeTx), in primary murine macrophages. Proteolytic activation of protective antigen (PA; 83 kDa, the B moiety of the toxin) by furin was the rate-limiting step in internalization of LeTx and promoted clearance of PA from the cell surface. A furin-resistant form of PA remained at the cell surface for at least 90 min. Oligomerization of receptor-bound PA63, the 63 kDa active fragment of PA, was manifested by its conversion to a pronase-resistant state, characteristic of the heptameric prepore form in solution. That oligomerization of PA63 triggers toxin internalization is supported by the observation that PA20, the complementary 20 kDa fragment of PA, inhibited clearance of nicked PA. The PA63 prepore, with or without lethal factor (LF), cleared slowly from the cell surface. These studies show that proteolytic cleavage of PA, in addition to permitting oligomerization and LF binding, also promotes internalization of the protein. The relatively long period of activation and internalization of PA at the cell surface may reflect adaptation of this binary toxin that maximizes self-assembly.

  1. Cryptococcus neoformans is internalized by receptor-mediated or 'triggered' phagocytosis, dependent on actin recruitment.

    PubMed

    Guerra, Caroline Rezende; Seabra, Sergio Henrique; de Souza, Wanderley; Rozental, Sonia

    2014-01-01

    Cryptococcosis by the encapsulated yeast Cryptococcus neoformans affects mostly immunocompromised individuals and is a frequent neurological complication in AIDS patients. Recent studies support the idea that intracellular survival of Cryptococcus yeast cells is important for the pathogenesis of cryptococcosis. However, the initial steps of Cryptococcus internalization by host cells remain poorly understood. Here, we investigate the mechanism of Cryptococcus neoformans phagocytosis by peritoneal macrophages using confocal and electron microscopy techniques, as well as flow cytometry quantification, evaluating the importance of fungal capsule production and of host cell cytoskeletal elements for fungal phagocytosis. Electron microscopy analyses revealed that capsular and acapsular strains of C. neoformans are internalized by macrophages via both 'zipper' (receptor-mediated) and 'trigger' (membrane ruffle-dependent) phagocytosis mechanisms. Actin filaments surrounded phagosomes of capsular and acapsular yeasts, and the actin depolymerizing drugs cytochalasin D and latrunculin B inhibited yeast internalization and actin recruitment to the phagosome area. In contrast, nocodazole and paclitaxel, inhibitors of microtubule dynamics decreased internalization but did not prevent actin recruitment to the site of phagocytosis. Our results show that different uptake mechanisms, dependent on both actin and tubulin dynamics occur during yeast internalization by macrophages, and that capsule production does not affect the mode of Cryptococcus uptake by host cells.

  2. Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway.

    PubMed

    Yuan, Shuguang; Filipek, Slawomir; Palczewski, Krzysztof; Vogel, Horst

    2014-09-09

    Recent crystal structures of G-protein-coupled receptors (GPCRs) have revealed ordered internal water molecules, raising questions about the functional role of those waters for receptor activation that could not be answered by the static structures. Here, we used molecular dynamics simulations to monitor--at atomic and high temporal resolution--conformational changes of central importance for the activation of three prototypical GPCRs with known crystal structures: the adenosine A2A receptor, the β2-adrenergic receptor and rhodopsin. Our simulations reveal that a hydrophobic layer of amino acid residues next to the characteristic NPxxY motif forms a gate that opens to form a continuous water channel only upon receptor activation. The highly conserved tyrosine residue Y(7.53) undergoes transitions between three distinct conformations representative of inactive, G-protein activated and GPCR metastates. Additional analysis of the available GPCR crystal structures reveals general principles governing the functional roles of internal waters in GPCRs.

  3. Cannabinoid receptor interacting protein suppresses agonist-driven CB1 receptor internalization and regulates receptor replenishment in an agonist-biased manner.

    PubMed

    Blume, Lawrence C; Leone-Kabler, Sandra; Luessen, Deborah J; Marrs, Glen S; Lyons, Erica; Bass, Caroline E; Chen, Rong; Selley, Dana E; Howlett, Allyn C

    2016-11-01

    Cannabinoid receptor interacting protein 1a (CRIP1a) is a CB1 receptor (CB1 R) distal C-terminus-associated protein that modulates CB1 R signaling via G proteins, and CB1 R down-regulation but not desensitization (Blume et al. [2015] Cell Signal., 27, 716-726; Smith et al. [2015] Mol. Pharmacol., 87, 747-765). In this study, we determined the involvement of CRIP1a in CB1 R plasma membrane trafficking. To follow the effects of agonists and antagonists on cell surface CB1 Rs, we utilized the genetically homogeneous cloned neuronal cell line N18TG2, which endogenously expresses both CB1 R and CRIP1a, and exhibits a well-characterized endocannabinoid signaling system. We developed stable CRIP1a-over-expressing and CRIP1a-siRNA-silenced knockdown clones to investigate gene dose effects of CRIP1a on CB1 R plasma membrane expression. Results indicate that CP55940 or WIN55212-2 (10 nM, 5 min) reduced cell surface CB1 R by a dynamin- and clathrin-dependent process, and this was attenuated by CRIP1a over-expression. CP55940-mediated cell surface CB1 R loss was followed by a cycloheximide-sensitive recovery of surface receptors (30-120 min), suggesting the requirement for new protein synthesis. In contrast, WIN55212-2-mediated cell surface CB1 Rs recovered only in CRIP1a knockdown cells. Changes in CRIP1a expression levels did not affect a transient rimonabant (10 nM)-mediated increase in cell surface CB1 Rs, which is postulated to be as a result of rimonabant effects on 'non-agonist-driven' internalization. These studies demonstrate a novel role for CRIP1a in agonist-driven CB1 R cell surface regulation postulated to occur by two mechanisms: 1) attenuating internalization that is agonist-mediated, but not that in the absence of exogenous agonists, and 2) biased agonist-dependent trafficking of de novo synthesized receptor to the cell surface.

  4. Evidence for phosphorylation-dependent internalization of recombinant human ρ1 GABAC receptors

    PubMed Central

    Filippova, Natalia; Dudley, Richard; Weiss, David S

    1999-01-01

    decrease in the amplitude of IGABA, the cell capacitance significantly decreased in the presence of ATP in the patch pipette. This decrease in capacitance was not observed in the absence of Mg-ATP. The decrease in the membrane surface area suggests that receptor internalization could be a potential mechanism for the observed inactivation.At 32 °C, compared with 22 °C, the rate and magnitude of the decline was increased dramatically. In contrast, at 16 °C, no significant change in IGABA was observed over the 20 min recording time. This marked temperature sensitivity is consistent with receptor internalization as a mechanism for the time-dependent decline in IGABA.The specificity of the decrease in IGABA was assessed by coexpressing the voltage-dependent potassium channel Kv1.4 along with the ρ1 receptor in HEK293 cells. The amplitude of the potassium current (IKv1.4) exhibited very little decrement in comparison to IGABA suggesting that the putative GABA receptor internalization was not the consequence of a non-specific membrane retrieval. PMID:10381587

  5. Imaging Agonist-Induced D2/D3 Receptor Desensitization and Internalization In Vivo with PET/fMRI.

    PubMed

    Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian; Rosen, Bruce R; Mandeville, Joseph B

    2016-04-01

    This study investigated the dynamics of dopamine receptor desensitization and internalization, thereby proposing a new technique for non-invasive, in vivo measurements of receptor adaptations. The D2/D3 agonist quinpirole, which induces receptor internalization in vitro, was administered at graded doses in non-human primates while imaging with simultaneous positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). A pronounced temporal divergence between receptor occupancy and fMRI signal was observed: occupancy remained elevated while fMRI responded transiently. Analogous experiments with an antagonist (prochlorperazine) and a lower-affinity agonist (ropinirole) exhibited reduced temporal dissociation between occupancy and function, consistent with a mechanism of desensitization and internalization that depends upon drug efficacy and affinity. We postulated a model that incorporates internalization into a neurovascular-coupling relationship. This model yielded in vivo desensitization/internalization rates (0.2/min for quinpirole) consistent with published in vitro measurements. Overall, these results suggest that simultaneous PET/fMRI enables characterization of dynamic neuroreceptor adaptations in vivo, and may offer a first non-invasive method for assessing receptor desensitization and internalization.

  6. Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes

    PubMed Central

    1996-01-01

    We have followed the transfer of EGF-EGF receptor (EGFR) complexes from endosomal vacuoles that contain transferrin receptors (TfR) to lysosome vacuoles identified by their content of HRP loaded as a 15-min pulse 4 h previously. We show that the HRP-loaded lysosomes are lysosomal- associated membrane protein-1 (LAMP-1) positive, mannose-6-phosphate receptor (M6PR) negative. and contain active acid hydrolase. EGF-EGFR complexes are delivered to these lysosomes intact and are then rapidly degraded. Preactivating the HRP contained within the preloaded lysosomes inhibits the delivery of EGFR and degradation of EGF, and results in the accumulation of EGFR-containing multivesicular bodies (MVB). With time these accumulating MVB undergo a series of maturation changes that include the loss of TfR, the continued recruitment of EGFR, and the accumulation of internal vesicles, but they remain LAMP-1 and M6PR negative. The mature MVB are often seen to make direct contact with lysosomes containing preactivated HRP, but their perimeter membranes remain intact. Together our observations suggest that the transfer of EGF-EGFR complexes from the TfR-containing endosome compartment to the lysosomes that degrade them employs a single vacuolar intermediate, the maturing MVB, and can be achieved by a single heterotypic fusion step. PMID:8601581

  7. The Chemokine Receptor CCR1 Is Constitutively Active, Which Leads to G Protein-independent, β-Arrestin-mediated Internalization*

    PubMed Central

    Gilliland, C. Taylor; Salanga, Catherina L.; Kawamura, Tetsuya; Trejo, JoAnn; Handel, Tracy M.

    2013-01-01

    Activation of G protein-coupled receptors by their associated ligands has been extensively studied, and increasing structural information about the molecular mechanisms underlying ligand-dependent receptor activation is beginning to emerge with the recent expansion in GPCR crystal structures. However, some GPCRs are also able to adopt active conformations in the absence of agonist binding that result in the initiation of signal transduction and receptor down-modulation. In this report, we show that the CC-type chemokine receptor 1 (CCR1) exhibits significant constitutive activity leading to a variety of cellular responses. CCR1 expression is sufficient to induce inhibition of cAMP formation, increased F-actin content, and basal migration of human and murine leukocytes. The constitutive activity leads to basal phosphorylation of the receptor, recruitment of β-arrestin-2, and subsequent receptor internalization. CCR1 concurrently engages Gαi and β-arrestin-2 in a multiprotein complex, which may be accommodated by homo-oligomerization or receptor clustering. The data suggest the presence of two functional states for CCR1; whereas receptor coupled to Gαi functions as a canonical GPCR, albeit with high constitutive activity, the CCR1·β-arrestin-2 complex is required for G protein-independent constitutive receptor internalization. The pertussis toxin-insensitive uptake of chemokine by the receptor suggests that the CCR1·β-arrestin-2 complex may be related to a potential scavenging function of the receptor, which may be important for maintenance of chemokine gradients and receptor responsiveness in complex fields of chemokines during inflammation. PMID:24056371

  8. Structural/functional relationships between internal and external MSH receptors: modulation of expression in Cloudman melanoma cells by UVB radiation

    SciTech Connect

    Chakraborty, A.K.; Orlow, S.J.; Bolognia, J.L.; Pawelek, J.M. )

    1991-04-01

    Expression of internal receptors for MSH is an important criterion for responsiveness to MSH by Cloudman melanoma cells. Here, we show that internal and external receptors for MSH are of identical molecular weights (50-53 kDa) and share common antigenic determinants, indicating a structural relationship between the 2 populations of molecules. The internal receptors co-purified with a sub-cellular fraction highly enriched for small vesicles, many of which were coated. Ultraviolet B light (UVB) acted synergistically with MSH to increase tyrosinase activity and melanin content of cultured Cloudman melanoma cells, consistent with previous findings in the skin of mice and guinea pigs. Preceding the rise in tyrosinase activity in cultured cells, UVB elicited a decrease in internal MSH binding sites and a concomitant increase in external sites. The time frame for the UVB effects on MSH receptors and melanogenesis, 48 hours, was similar to that for a response to solar radiation in humans. Together, the results indicate a key role for MSH receptors in the induction of melanogenesis by UVB and suggest a potential mechanism of action for UVB: redistribution of MSH receptors with a resultant increase in cellular responsiveness to MSH.

  9. Internalization of the TGF-β type I receptor into caveolin-1 and EEA1 double-positive early endosomes.

    PubMed

    He, Kangmin; Yan, Xiaohua; Li, Nan; Dang, Song; Xu, Li; Zhao, Bing; Li, Zijian; Lv, Zhizhen; Fang, Xiaohong; Zhang, Youyi; Chen, Ye-Guang

    2015-06-01

    Endocytosis and intracellular sorting of transforming growth factor-β (TGF-β) receptors play an important regulatory role in TGF-β signaling. Two major endocytic pathways, clathrin- and caveolae-mediated endocytosis, have been reported to independently mediate the internalization of TGF-β receptors. In this study, we demonstrate that the clathrin- and caveolae-mediated endocytic pathways can converge during TGF-β receptor endocytic trafficking. By tracking the intracellular dynamics of fluorescently-labeled TGF-β type I receptor (TβRI), we found that after mediating TβRI internalization, certain clathrin-coated vesicles and caveolar vesicles are fused underneath the plasma membrane, forming a novel type of caveolin-1 and clathrin double-positive vesicles. Under the regulation of Rab5, the fused vesicles are targeted to early endosomes and thus deliver the internalized TβRI to the caveolin-1 and EEA1 double-positive early endosomes (caveolin-1-positive early endosomes). We further showed that the caveolin-1-positive early endosomes are positive for Smad3/SARA, Rab11 and Smad7/Smurf2, and may act as a multifunctional device for TGF-β signaling and TGF-β receptor recycling and degradation. Therefore, these findings uncover a novel scenario of endocytosis, the direct fusion of clathrin-coated and caveolae vesicles during TGF-β receptor endocytic trafficking, which leads to the formation of the multifunctional sorting device, caveolin-1-positive early endosomes, for TGF-β receptors.

  10. Morphine-induced internalization of the L83I mutant of the rat μ-opioid receptor

    PubMed Central

    Cooke, A E; Oldfield, S; Krasel, C; Mundell, S J; Henderson, G; Kelly, E

    2015-01-01

    BACKGROUND AND PURPOSE Naturally occurring single-nucleotide polymorphisms (SNPs) within GPCRs can result in alterations in various pharmacological parameters. Understanding the regulation and function of endocytic trafficking of the μ-opioid receptor (MOP receptor) is of great importance given its implication in the development of opioid tolerance. This study has compared the agonist-dependent trafficking and signalling of L83I, the rat orthologue of a naturally occurring variant of the MOP receptor. EXPERIMENTAL APPROACH Cell surface elisa, confocal microscopy and immunoprecipitation assays were used to characterize the trafficking properties of the MOP-L83I variant in comparison with the wild-type receptor in HEK 293 cells. Functional assays were used to compare the ability of the L83I variant to signal to several downstream pathways. KEY RESULTS Morphine-induced internalization of the L83I MOP receptor was markedly increased in comparison with the wild-type receptor. The altered trafficking of this variant was found to be specific to morphine and was both G-protein receptor kinase- and dynamin-dependent. The enhanced internalization of L83I variant in response to morphine was not due to increased phosphorylation of serine 375, arrestin association or an increased ability to signal. CONCLUSIONS AND IMPLICATIONS These results suggest that morphine promotes a specific conformation of the L83I variant that makes it more liable to internalize in response to morphine, unlike the wild-type receptor that undergoes significantly less morphine-stimulated internalization, providing an example of a ligand-selective biased receptor. The presence of this SNP within an individual may consequently affect the development of tolerance and analgesic responses. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24697554

  11. Drosophila Sugar Receptors in Sweet Taste Perception, Olfaction and Internal Nutrient Sensing

    PubMed Central

    Slone, Jesse; Jagge, Christopher; Song, Xiangyu; Amrein, Hubert

    2015-01-01

    SUMMARY Identification of nutritious compounds is dependent on expression of specific taste receptors in appropriate taste cell types [1]. In contrast to mammals, which rely on a single, broadly tuned heterodimeric sugar receptor [2], the Drosophila genome harbors a small subfamily of eight, closely related gustatory receptor (Gr) genes, Gr5a, Gr61a and Gr64a-f, of which three have been proposed to mediate sweet taste [3-6]. However, expression and function of several of these putative sugar Gr genes are not known. Here we present a comprehensive expression and functional analysis using GrLEXA/GAL4 alleles that were generated through homologous recombination. We show that sugar Gr genes are expressed in a combinatorial manner to yield at least eight sets of sweet sensing neurons. Behavioral investigations show that most sugar Gr mutations affect taste responses to only a small number of sugars and that effective detection of most sugars is dependent on more than one Gr gene. Surprisingly, Gr64a, one of three Gr genes previously proposed to play a major role in sweet taste [3, 4], is not expressed in labellar taste neurons, and Gr64a mutant flies exhibit normal sugar responses elicited from the labellum. Our analysis provides a molecular rationale for distinct tuning profiles of sweet taste neurons, and it favors a model whereby all sugar Grs contribute to sweet taste. Furthermore, expression in olfactory organs and the brain implies novel roles for sugar Gr genes in olfaction and internal nutrient sensing, respectively. Thus, sugar receptors may contribute to feeding behavior via multiple sensory systems. PMID:25702577

  12. Ligand-induced internalization, recycling, and resensitization of adrenomedullin receptors depend not on CLR or RAMP alone but on the receptor complex as a whole.

    PubMed

    Nag, Kakon; Sultana, Naznin; Kato, Akira; Dranik, Anna; Nakamura, Nobuhiro; Kutsuzawa, Koichi; Hirose, Shigehisa; Akaike, Toshihiro

    2015-02-01

    Adrenomedullins (AM) is a multifaceted distinct subfamily of peptides that belongs to the calcitonin gene-related peptide (CGRP) superfamily. These peptides exert their functional activities via associations of calcitonin receptor-like receptors (CLRs) and receptor activity-modifying proteins (RAMPs) RAMP2 and RAMP3. Recent studies established that RAMPs and CLRs can modify biochemical properties such as trafficking and glycosylation of each other. However there is very little or no understanding regarding how RAMP or CLR influence ligand-induced events of AM-receptor complex. In this study, using pufferfish homologs of CLR (mfCLR1-3) and RAMP (mfRAMP2 and mfRAMP3), we revealed that all combinations of CLR and RAMP quickly underwent ligand-induced internalization; however, their recycling rates were different as follows: mfCLR1-mfRAMP3>mfCLR2-mfRAMP3>mfCLR3-mfRAMP3. Functional receptor assay confirmed that the recycled receptors were resensitized on the plasma membrane. In contrast, a negligible amount of mfCLR1-mfRAMP2 was recycled and reconstituted. Immunocytochemistry results indicated that the lower recovery rate of mfCLR3-mfRAMP3 and mfCLR1-mfRAMP2 was correlated with higher proportion of lysosomal localization of these receptor complexes compared to the other combinations. Collectively our results indicate, for the first time, that the ligand-induced internalization, recycling, and reconstitution properties of RAMP-CLR receptor complexes depend on the receptor-complex as a whole, and not on individual CLR or RAMP alone.

  13. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors.

    PubMed

    Bachelerie, Francoise; Ben-Baruch, Adit; Burkhardt, Amanda M; Combadiere, Christophe; Farber, Joshua M; Graham, Gerard J; Horuk, Richard; Sparre-Ulrich, Alexander Hovard; Locati, Massimo; Luster, Andrew D; Mantovani, Alberto; Matsushima, Kouji; Murphy, Philip M; Nibbs, Robert; Nomiyama, Hisayuki; Power, Christine A; Proudfoot, Amanda E I; Rosenkilde, Mette M; Rot, Antal; Sozzani, Silvano; Thelen, Marcus; Yoshie, Osamu; Zlotnik, Albert

    2014-01-01

    Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome

  14. International Union of Pharmacology. LXXXIX. Update on the Extended Family of Chemokine Receptors and Introducing a New Nomenclature for Atypical Chemokine Receptors

    PubMed Central

    Bachelerie, Francoise; Ben-Baruch, Adit; Burkhardt, Amanda M.; Combadiere, Christophe; Farber, Joshua M.; Graham, Gerard J.; Horuk, Richard; Sparre-Ulrich, Alexander Hovard; Locati, Massimo; Luster, Andrew D.; Mantovani, Alberto; Matsushima, Kouji; Nibbs, Robert; Nomiyama, Hisayuki; Power, Christine A.; Proudfoot, Amanda E. I.; Rosenkilde, Mette M.; Rot, Antal; Sozzani, Silvano; Thelen, Marcus; Yoshie, Osamu; Zlotnik, Albert

    2014-01-01

    Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145–176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human

  15. Caveolae-dependent internalization and homologous desensitization of VIP/PACAP receptor, VPAC₂, in gastrointestinal smooth muscle.

    PubMed

    Mahavadi, Sunila; Bhattacharya, Sayak; Kim, Jennnifer; Fayed, Sally; Al-Shboul, Othman; Grider, John R; Murthy, Karnam S

    2013-05-01

    The main membrane proteins of caveolae (caveolin-1, -2 and -3) oligomerize within lipid rich domains to form regular invaginations of smooth muscle plasma membrane and participate in receptor internalization and desensitization independent of clathrin-coated vesicle endocytosis. We have previously shown that Gs-coupled VIP/PACAP receptors, VPAC2, predominantly expressed in smooth muscle cells of the gut, are exclusively phosphorylated by GRK2 leading to receptor internalization and desensitization. Herein, we characterized the role of caveolin-1 in VPAC2 receptor internalization and desensitization in gastric smooth muscle using three approaches: (i) methyl β-cyclodextrin (MβCD) to deplete cholesterol and disrupt caveolae in dispersed muscle cells, (ii) caveolin-1 siRNA to suppress caveolin-1 expression in cultured muscle cells, and (iii) caveolin-1 knockout mice (caveolin-1(-/-)). Pretreatment of gastric muscle cells with VIP stimulated tyrosine phosphorylation of caveolin-1, and induced VPAC2 receptor internalization (measured as decrease in (125)I-VIP binding after pretreatment) and desensitization (measured as decrease in VIP-induced cAMP formation after pretreatment). Caveolin-1 phosphorylation, and VPAC2 receptor internalization and desensitization were blocked by disruption of caveolae with MβCD, suppression of caveolin-1 with caveolin-1 siRNA or inhibition of Src kinase activity by PP2. Pretreatment with VIP significantly inhibited adenylyl cyclase activity and muscle relaxation in response to subsequent addition of VIP in freshly dispersed muscle cells and in muscle strips isolated from wild type and caveolin-1(-/-) mice; however, the inhibition was significantly attenuated in caveolin-1(-/-) mice. These results suggest that caveolin-1 plays an important role in VPAC2 receptor internalization and desensitization.

  16. Direct visualisation of internalization of the adenosine A3 receptor and localization with arrestin3 using a fluorescent agonist.

    PubMed

    Stoddart, Leigh A; Vernall, Andrea J; Briddon, Stephen J; Kellam, Barrie; Hill, Stephen J

    2015-11-01

    Fluorescence based probes provide a novel way to study the dynamic internalization process of G protein-coupled receptors (GPCRs). Recent advances in the rational design of fluorescent ligands for GPCRs have been used here to generate new fluorescent agonists containing tripeptide linkers for the adenosine A3 receptor. The fluorescent agonist BY630-X-(D)-A-(D)-A-G-ABEA was found to be a highly potent agonist at the adenosine A3 receptor in both reporter gene (pEC50 = 8.48 ± 0.09) and internalization assays (pEC50 = 7.47 ± 0.11). Confocal imaging studies showed that BY630-X-(D)-A-(D)-A-G-ABEA was internalized with A3 linked to yellow fluorescent protein, which was blocked by the competitive antagonist MRS1220. Internalization of untagged adenosine A3 could also be visualized with BY630-X-(D)-A-(D)-A-G-ABEA treatment. Further, BY630-X-(D)-A-(D)-A-G-ABEA stimulated the formation of receptor-arrestin3 complexes and was found to localize with these intracellular complexes. This highly potent agonist with excellent imaging properties should be a valuable tool to study receptor internalization. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.

  17. Cordycepin-Enriched WIB801C from Cordyceps militaris Inhibits Collagen-Induced [Ca(2+)]i Mobilization via cAMP-Dependent Phosphorylation of Inositol 1, 4, 5-Trisphosphate Receptor in Human Platelets.

    PubMed

    Lee, Dong-Ha; Kim, Hyun-Hong; Cho, Hyun-Jeong; Yu, Young-Bin; Kang, Hyo-Chan; Kim, Jong-Lae; Lee, Jong-Jin; Park, Hwa-Jin

    2014-05-01

    In this study, we prepared cordycepin-enriched (CE)-WIB801C, a n-butanol extract of Cordyceps militaris-hypha, and investigated the effect of CE-WIB801C on collagen-induced human platelet aggregation. CE-WIB801C dose-dependently inhibited collagen-induced platelet aggregation, and its IC50 value was 175 μg/ml. CE-WIB801C increased cAMP level more than cGMP level, but inhibited collagen-elevated [Ca(2+)]i mobilization and thromboxane A2 (TXA2) production. cAMP-dependent protein kinase (A-kinase) inhibitor Rp-8-Br-cAMPS increased the CE-WIB801C-downregulated [Ca(2+)]i level in a dose dependent manner, and strongly inhibited CE-WIB801C-induced inositol 1, 4, 5-trisphosphate receptor (IP3R) phosphorylation. These results suggest that the inhibition of [Ca(2+)]i mobilization by CE-WIB801C is resulted from the cAMP/A-kinase-dependent phosphorylation of IP3R. CE-WIB801C suppressed TXA2 production, but did not inhibit the activities of cyclooxygenase-1 (COX-1) and TXA2 synthase (TXAS). These results suggest that the inhibition of TXA2 production by WIB801C is not resulted from the direct inhibition of COX-1 and TXAS. In this study, we demonstrate that CE-WIB801C with cAMP-dependent Ca(2+)-antagonistic antiplatelet effects may have preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.

  18. Cordycepin-Enriched WIB801C from Cordyceps militaris Inhibits Collagen-Induced [Ca2+]i Mobilization via cAMP-Dependent Phosphorylation of Inositol 1, 4, 5-Trisphosphate Receptor in Human Platelets

    PubMed Central

    Lee, Dong-Ha; Kim, Hyun-Hong; Cho, Hyun-Jeong; Yu, Young-Bin; Kang, Hyo-Chan; Kim, Jong-Lae; Lee, Jong-Jin; Park, Hwa-Jin

    2014-01-01

    In this study, we prepared cordycepin-enriched (CE)-WIB801C, a n-butanol extract of Cordyceps militaris-hypha, and investigated the effect of CE-WIB801C on collagen-induced human platelet aggregation. CE-WIB801C dose-dependently inhibited collagen-induced platelet aggregation, and its IC50 value was 175 μg/ml. CE-WIB801C increased cAMP level more than cGMP level, but inhibited collagen-elevated [Ca2+]i mobilization and thromboxane A2 (TXA2) production. cAMP-dependent protein kinase (A-kinase) inhibitor Rp-8-Br-cAMPS increased the CE-WIB801C-downregulated [Ca2+]i level in a dose dependent manner, and strongly inhibited CE-WIB801C-induced inositol 1, 4, 5-trisphosphate receptor (IP3R) phosphorylation. These results suggest that the inhibition of [Ca2+]i mobilization by CE-WIB801C is resulted from the cAMP/A-kinase-dependent phosphorylation of IP3R. CE-WIB801C suppressed TXA2 production, but did not inhibit the activities of cyclooxygenase-1 (COX-1) and TXA2 synthase (TXAS). These results suggest that the inhibition of TXA2 production by WIB801C is not resulted from the direct inhibition of COX-1 and TXAS. In this study, we demonstrate that CE-WIB801C with cAMP-dependent Ca2+-antagonistic antiplatelet effects may have preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease. PMID:25009703

  19. Collagen-mediated hemostasis.

    PubMed

    Manon-Jensen, T; Kjeld, N G; Karsdal, M A

    2016-03-01

    Collagens mediate essential hemostasis by maintaining the integrity and stability of the vascular wall. Imbalanced turnover of collagens by uncontrolled formation and/or degradation may result in pathologic conditions such as fibrosis. Thickening of the vessel wall because of accumulation of collagens may lead to arterial occlusion or thrombosis. Thinning of the wall because of collagen degradation or deficiency may lead to rupture of the vessel wall or aneurysm. Preventing excessive hemorrhage or thrombosis relies on collagen-mediated actions. Von Willebrand factor, integrins and glycoprotein VI, as well as clotting factors, can bind collagen to restore normal hemostasis after trauma. This review outlines the essential roles of collagens in mediating hemostasis, with a focus on collagens types I, III, IV, VI, XV, and XVIII.

  20. Biomedical applications of collagens.

    PubMed

    Ramshaw, John A M

    2016-05-01

    Collagen-based biomedical materials have developed into important, clinically effective materials used in a range of devices that have gained wide acceptance. These devices come with collagen in various formats, including those based on stabilized natural tissues, those that are based on extracted and purified collagens, and designed composite, biosynthetic materials. Further knowledge on the structure and function of collagens has led to on-going developments and improvements. Among these developments has been the production of recombinant collagen materials that are well defined and are disease free. Most recently, a group of bacterial, non-animal collagens has emerged that may provide an excellent, novel source of collagen for use in biomaterials and other applications. These newer collagens are discussed in detail. They can be modified to direct their function, and they can be fabricated into various formats, including films and sponges, while solutions can also be adapted for use in surface coating technologies.

  1. Binding of collagens to an enterotoxigenic strain of Escherichia coli

    SciTech Connect

    Visai, L.; Speziale, P.; Bozzini, S. )

    1990-02-01

    An enterotoxigenic strain of Escherichia coli, B34289c, has been shown to bind the N-terminal region of fibronectin with high affinity. We now report that this strain also binds collagen. The binding of 125I-labeled type II collagen to bacteria was time dependent and reversible. Bacteria expressed a limited number of collagen receptors (2.2 x 10(4) per cell) and bound collagen with a Kd of 20 nM. All collagen types tested (I to V) as well as all tested cyanogen bromide-generated peptides (alpha 1(I)CB2, alpha 1(I)CB3, alpha 1(I)CB7, alpha 1(I)CB8, and alpha 2(I)CB4) were recognized by bacterial receptors, as demonstrated by the ability of these proteins to inhibit the binding of 125I-labeled collagen to bacteria. Of several unlabeled proteins tested in competition experiments, fibronectin and its N-terminal region strongly inhibited binding of the radiolabeled collagen to E. coli cells. Conversely, collagen competed with an 125I-labeled 28-kilodalton fibronectin fragment for bacterial binding. Collagen bound to bacteria could be displaced by excess amounts of either unlabeled fibronectin or its N-terminal fragment. Similarly, collagen could displace 125I-labeled N-terminal peptide of fibronectin bound to the bacterial cell surface. Bacteria grown at 41 degrees C or in the presence of glucose did not express collagen or fibronectin receptors. These results indicate the presence of specific binding sites for collagen on the surface of E. coli cells and furthermore that the collagen and fibronectin binding sites are located in close proximity, possibly on the same structure.

  2. Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links with Internalizing Behavior Problems

    PubMed Central

    Parade, Stephanie H.; Ridout, Kathryn K.; Seifer, Ronald; Armstrong, David A.; Marsit, Carmen J.; McWilliams, Melissa A.; Tyrka, Audrey R.

    2015-01-01

    Accumulating evidence suggests that early adversity is linked to methylation of the glucocorticoid receptor gene NR3C1, which is a key regulator of the hypothalamic-pituitary-adrenal (HPA) axis. Yet no prior work has considered the contribution of methylation of NR3C1 to emerging behavior problems and psychopathology in childhood. The current study examined links between methylation of NR3C1 and behavior problems in preschoolers. Data were drawn from a sample of preschoolers with early adversity (n=171). Children ranged in age from 3 to 5 years, were racially and ethnically diverse, and nearly all qualified for public assistance. Seventy-one children had child welfare documentation of moderate-severe maltreatment in the past six months. Structured record review and interviews in the home were used to assess early adversity. Parents reported on child internalizing and externalizing behavior problems. Methylation of NR3C1 at exons 1D, 1F, and 1H were measured via sodium bisulfite pyrosequencing from saliva DNA. Methylation of NR3C1 at exons 1D and 1F was positively associated with internalizing (r = .21, p < .01 and r = .23, p < .01 respectively), but not externalizing, behavior problems. Furthermore, NR3C1 methylation mediated effects of early adversity on internalizing behavior problems. These results suggest that methylation of NR3C1 contributes to psychopathology in young children, and NR3C1 methylation from saliva DNA is salient to behavioral outcomes. PMID:26822445

  3. The Mechanism of Chemokine Receptor 9 Internalization Triggered by Interleukin 2 and Interleukin 4

    PubMed Central

    Tong, Xiaoling; Zhang, Lijun; Zhang, Li; Hu, Meng; Leng, Jun; Yu, Beibei; Zhou, Beibei; Hu, Yi; Zhang, Qiuping

    2009-01-01

    In previous study, we found that the chemokine receptor 9 (CCR9) was highly expressed on CD4+ T cells from patients with T-cell lineage acute lymphocytic leukemia (T-ALL) and mediated leukemia cell infiltration and metastasis. Combined use of interleukin 2 (IL-2) and IL-4 promoted the internalization of CCR9 and therefore attenuated leukemia cell infiltration and metastasis. In this study, we preliminarily investigated the mechanism of internalization of CCR9 on MOLT4 cell model (a human leukemia T-cell line, naturally expresses CCR9) and found that IL-2 upregulated the cell surface expression of IL-4Rα (CD124) greatly, whereas IL-4 had no significant influence on α (CD25) and β subunits (CD122) of IL-2R. Moreover, specific inhibitors, such as staurosporine, H89 and heparin, inhibited internalization of CCR9, which indicated a role of protein kinase C (PKC) and G protein-coupled kinase 2 (GRK2), respectively. Furthermore, GRK2 was upregulated and translocated to cell membrane in IL-2 and IL-4 treated cells which indicated that PKC could be a prerequisite for GRK2 activity. PMID:19567201

  4. Binding and cross-linking of recombinant mouse interferon-. gamma. to receptors in mouse leukemic L1210 cells; interferon-. gamma. internalization and receptor down-regulation

    SciTech Connect

    Wietzerbin, J.; Gaudelet, C.; Aguet, M.; Falcoff, E.

    1986-04-01

    Recombinant E. coli-derived murine IFN-..gamma.. (Mu-rIFN-..gamma..; 5 x 10/sup 7/ U/mg) was radiolabeled with /sup 125/I by the chloramine-T method without loss of its antiviral activity. The /sup 125/I-Mu-rIFN-..gamma.. showed specific binding to L1210 cells. Scatchard analysis indicates about 4000 binding sites per cell and an apparent Kd of 5 x 10/sup -10/ M. Binding of /sup 125/I-Mu-rIFn-..gamma.. to cells inhibited by both natural (glycosylated) and rIFN-..gamma.., but not by IFN-..gamma../..beta... Receptor-bound /sup 125/I-Mu-rIFN-..gamma.. was rapidly internalized when incubation temperature was raised from 4/sup 0/C to 37/sup 0/C. On internalization, almost no IFN-..gamma.. degradation was observed during 16 hr incubation. /sup 125/I-Mu-rIFN-..gamma.. binding capacity decreased in cells preincubated with low doses of unlabeled Mu-rIFN-..gamma.., but not with IFN-..cap alpha../..beta... This receptor down-regulation was dose-dependent: 90% reduction of /sup 125/I-Mu-rIFN-..gamma.. binding was observed after preincubation with 100 U/ml. After removal of IFN-..gamma.. from the culture medium, the binding capacity increased with time. However, reappearance of receptor was completely blocked by cycloheximide or tunicamycin, suggesting that re-expression of receptors is not due to recycling but to the synthesis of new receptors, and that the receptor is probably a glycoprotein. Cross-linking of /sup 125/I-Mu-rIFN-..gamma.. to surface L1210 cell proteins by using bifunctional agents yielded a predominant complex of m.w. 110,000 +/- 5000. Thus, assuming a bimolecular complex, the m.w. of the receptor or receptor subunit would be close to 95,000 +/- 5000.

  5. Molecular structure of the collagen triple helix.

    PubMed

    Brodsky, Barbara; Persikov, Anton V

    2005-01-01

    The molecular conformation of the collagen triple helix confers strict amino acid sequence constraints, requiring a (Gly-X-Y)(n) repeating pattern and a high content of imino acids. The increasing family of collagens and proteins with collagenous domains shows the collagen triple helix to be a basic motif adaptable to a range of proteins and functions. Its rodlike domain has the potential for various modes of self-association and the capacity to bind receptors, other proteins, GAGs, and nucleic acids. High-resolution crystal structures obtained for collagen model peptides confirm the supercoiled triple helix conformation, and provide new information on hydrogen bonding patterns, hydration, sidechain interactions, and ligand binding. For several peptides, the helix twist was found to be sequence dependent, and such variation in helix twist may serve as recognition features or to orient the triple helix for binding. Mutations in the collagen triple-helix domain lead to a variety of human disorders. The most common mutations are single-base substitutions that lead to the replacement of one Gly residue, breaking the Gly-X-Y repeating pattern. A single Gly substitution destabilizes the triple helix through a local disruption in hydrogen bonding and produces a discontinuity in the register of the helix. Molecular information about the collagen triple helix and the effect of mutations will lead to a better understanding of function and pathology.

  6. Effect of human cytomegalovirus (HCMV) US27 on CXCR4 receptor internalization measured by fluorogen-activating protein (FAP) biosensors.

    PubMed

    Boeck, Jordan M; Spencer, Juliet V

    2017-01-01

    Human cytomegalovirus (HCMV) is a widespread pathogen and a member of the Herpesviridae family. HCMV has a large genome that encodes many genes that are non-essential for virus replication but instead play roles in manipulation of the host immune environment. One of these is the US27 gene, which encodes a protein with homology to the chemokine receptor family of G protein-coupled receptors (GPCRs). The US27 protein has no known chemokine ligands but can modulate the signaling activity of host receptor CXCR4. We investigated the mechanism for enhanced CXCR4 signaling in the presence of US27 using a novel biosensor system comprised of fluorogen activating proteins (FAPs). FAP-tagged CXCR4 and US27 were used to explore receptor internalization and recovery dynamics, and the results demonstrate that significantly more CXCR4 internalization was observed in the presence of US27 compared to CXCR4 alone upon stimulation with CXCL12. While ligand-induced endocytosis rates were higher, steady state internalization of CXCR4 was not affected by US27. Additionally, US27 underwent rapid endocytosis at a rate that was independent of either CXCR4 expression or CXCL12 stimulation. These results demonstrate that one mechanism by which US27 can enhance CXCR4 signaling is to alter receptor internalization dynamics, which could ultimately have the effect of promoting virus dissemination by increasing trafficking of HCMV-infected cells to tissues where CXCL12 is highly expressed.

  7. Effect of human cytomegalovirus (HCMV) US27 on CXCR4 receptor internalization measured by fluorogen-activating protein (FAP) biosensors

    PubMed Central

    Boeck, Jordan M.; Spencer, Juliet V.

    2017-01-01

    Human cytomegalovirus (HCMV) is a widespread pathogen and a member of the Herpesviridae family. HCMV has a large genome that encodes many genes that are non-essential for virus replication but instead play roles in manipulation of the host immune environment. One of these is the US27 gene, which encodes a protein with homology to the chemokine receptor family of G protein-coupled receptors (GPCRs). The US27 protein has no known chemokine ligands but can modulate the signaling activity of host receptor CXCR4. We investigated the mechanism for enhanced CXCR4 signaling in the presence of US27 using a novel biosensor system comprised of fluorogen activating proteins (FAPs). FAP-tagged CXCR4 and US27 were used to explore receptor internalization and recovery dynamics, and the results demonstrate that significantly more CXCR4 internalization was observed in the presence of US27 compared to CXCR4 alone upon stimulation with CXCL12. While ligand-induced endocytosis rates were higher, steady state internalization of CXCR4 was not affected by US27. Additionally, US27 underwent rapid endocytosis at a rate that was independent of either CXCR4 expression or CXCL12 stimulation. These results demonstrate that one mechanism by which US27 can enhance CXCR4 signaling is to alter receptor internalization dynamics, which could ultimately have the effect of promoting virus dissemination by increasing trafficking of HCMV-infected cells to tissues where CXCL12 is highly expressed. PMID:28207860

  8. Imaging the Insertion of Superecliptic pHluorin-Labeled Dopamine D2 Receptor Using Total Internal Reflection Fluorescence Microscopy.

    PubMed

    Daly, Kathryn M; Li, Yun; Lin, Da-Ting

    2015-01-05

    A better understanding of mechanisms governing receptor insertion to the plasma membrane (PM) requires an experimental approach with excellent spatial and temporal resolutions. Here we present a strategy that enables dynamic visualization of insertion events for dopamine D2 receptors into the PM. This approach includes tagging a pH-sensitive GFP, superecliptic pHluorin, to the extracellular domain of the receptor. By imaging pHluorin-tagged receptors under total internal reflection fluorescence microscopy (TIRFM), we were able to directly visualize individual receptor insertion events into the PM in cultured neurons. This novel imaging approach can be applied to both secreted proteins and many membrane proteins with an extracellular domain labeled with superecliptic pHluorin, and will ultimately allow for detailed dissections of the key mechanisms governing secretion of soluble proteins or the insertion of different membrane proteins to the PM.

  9. Peptide modifications differentially alter G protein-coupled receptor internalization and signaling bias.

    PubMed

    Mäde, Veronika; Babilon, Stefanie; Jolly, Navjeet; Wanka, Lizzy; Bellmann-Sickert, Kathrin; Diaz Gimenez, Luis E; Mörl, Karin; Cox, Helen M; Gurevich, Vsevolod V; Beck-Sickinger, Annette G

    2014-09-15

    Although G protein-coupled receptors (GPCRs) are targeted by more clinically used drugs than any other type of protein, their ligand development is particularly challenging. Humans have four neuropeptide Y receptors: hY1R and hY5R are orexigenic, while hY2R and hY4R are anorexigenic, and represent important anti-obesity drug targets. We show for the first time that PEGylation and lipidation, chemical modifications that prolong the plasma half-lives of peptides, confer additional benefits. Both modifications enhance pancreatic polypeptide preference for hY2R/hY4R over hY1R/hY5R. Lipidation biases the ligand towards arrestin recruitment and internalization, whereas PEGylation confers the opposite bias. These effects were independent of the cell system and modified residue. We thus provide novel insights into the mode of action of peptide modifications and open innovative venues for generating peptide agonists with extended therapeutic potential.

  10. Peptide Modifications Differentially Alter G Protein-Coupled Receptor Internalization and Signaling Bias**

    PubMed Central

    Mäde, Veronika; Babilon, Stefanie; Jolly, Navjeet; Wanka, Lizzy; Bellmann-Sickert, Kathrin; Diaz Gimenez, Luis E.; Mörl, Karin; Cox, Helen M.; Gurevich, Vsevolod V.; Beck-Sickinger, Annette G.

    2016-01-01

    Although G protein-coupled receptors (GPCRs) are targeted by more clinically used drugs than any other type of protein, their ligand development is particularly challenging. Humans have four neuropeptide Y receptors: hY1R and hY5R are orexigenic, while hY2R and hY4R are anorexigenic, and represent important anti-obesity drug targets. We show for the first time that PEGylation and lipidation, chemical modifications that prolong the plasma half-lives of peptides, confer additional benefits. Both modifications enhance pancreatic polypeptide preference for hY2R/hY4R over hY1R/hY5R. Lipidation biases the ligand towards arrestin recruitment and internalization, whereas PEGylation confers the opposite bias. These effects were independent of the cell system and modified residue. We thus provide novel insights into the mode of action of peptide modifications and open innovative venues for generating peptide agonists with extended therapeutic potential. PMID:25065900

  11. Receptor Crosslinking: A General Method to Trigger Internalization and Lysosomal Targeting of Therapeutic Receptor:Ligand Complexes.

    PubMed

    Moody, Paul R; Sayers, Edward J; Magnusson, Johannes P; Alexander, Cameron; Borri, Paola; Watson, Peter; Jones, Arwyn T

    2015-12-01

    A major unmet clinical need is a universal method for subcellular targeting of bioactive molecules to lysosomes. Delivery to this organelle enables either degradation of oncogenic receptors that are overexpressed in cancers, or release of prodrugs from antibody-drug conjugates. Here, we describe a general method that uses receptor crosslinking to trigger endocytosis and subsequently redirect trafficking of receptor:cargo complexes from their expected route, to lysosomes. By incubation of plasma membrane receptors with biotinylated cargo and subsequent addition of streptavidin to crosslink receptor:cargo-biotin complexes, we achieved rapid and selective lysosomal targeting of transferrin, an anti-MHC class I antibody, and the clinically approved anti-Her2 antibody trastuzumab. These three protein ligands each target a receptor with a distinct cellular function and intracellular trafficking profile. Importantly, we confirmed that crosslinking of trastuzumab increased lysosomal degradation of its cognate oncogenic receptor Her2 in breast cancer cell lines SKBR3 and BT474. These data suggest that crosslinking could be exploited for a wide range of target receptors, for navigating therapeutics through the endolysosomal pathway, for significant therapeutic benefit.

  12. Receptor Crosslinking: A General Method to Trigger Internalization and Lysosomal Targeting of Therapeutic Receptor:Ligand Complexes

    PubMed Central

    Moody, Paul R; Sayers, Edward J; Magnusson, Johannes P; Alexander, Cameron; Borri, Paola; Watson, Peter; Jones, Arwyn T

    2015-01-01

    A major unmet clinical need is a universal method for subcellular targeting of bioactive molecules to lysosomes. Delivery to this organelle enables either degradation of oncogenic receptors that are overexpressed in cancers, or release of prodrugs from antibody–drug conjugates. Here, we describe a general method that uses receptor crosslinking to trigger endocytosis and subsequently redirect trafficking of receptor:cargo complexes from their expected route, to lysosomes. By incubation of plasma membrane receptors with biotinylated cargo and subsequent addition of streptavidin to crosslink receptor:cargo–biotin complexes, we achieved rapid and selective lysosomal targeting of transferrin, an anti-MHC class I antibody, and the clinically approved anti-Her2 antibody trastuzumab. These three protein ligands each target a receptor with a distinct cellular function and intracellular trafficking profile. Importantly, we confirmed that crosslinking of trastuzumab increased lysosomal degradation of its cognate oncogenic receptor Her2 in breast cancer cell lines SKBR3 and BT474. These data suggest that crosslinking could be exploited for a wide range of target receptors, for navigating therapeutics through the endolysosomal pathway, for significant therapeutic benefit. PMID:26412588

  13. Intranasally Administered Neuropeptide S (NPS) Exerts Anxiolytic Effects Following Internalization Into NPS Receptor-Expressing Neurons

    PubMed Central

    Ionescu, Irina A; Dine, Julien; Yen, Yi-Chun; Buell, Dominik R; Herrmann, Leonie; Holsboer, Florian; Eder, Matthias; Landgraf, Rainer; Schmidt, Ulrike

    2012-01-01

    Experiments in rodents revealed neuropeptide S (NPS) to constitute a potential novel treatment option for anxiety diseases such as panic and post-traumatic stress disorder. However, both its cerebral target sites and the molecular underpinnings of NPS-mediated effects still remain elusive. By administration of fluorophore-conjugated NPS, we pinpointed NPS target neurons in distinct regions throughout the entire brain. We demonstrated their functional relevance in the hippocampus. In the CA1 region, NPS modulates synaptic transmission and plasticity. NPS is taken up into NPS receptor-expressing neurons by internalization of the receptor–ligand complex as we confirmed by subsequent cell culture studies. Furthermore, we tracked internalization of intranasally applied NPS at the single-neuron level and additionally demonstrate that it is delivered into the mouse brain without losing its anxiolytic properties. Finally, we show that NPS differentially modulates the expression of proteins of the glutamatergic system involved inter alia in synaptic plasticity. These results not only enlighten the path of NPS in the brain, but also establish a non-invasive method for NPS administration in mice, thus strongly encouraging translation into a novel therapeutic approach for pathological anxiety in humans. PMID:22278093

  14. Differential β-arrestin2 requirements for constitutive and agonist-induced internalization of the CB1 cannabinoid receptor.

    PubMed

    Gyombolai, Pál; Boros, Eszter; Hunyady, László; Turu, Gábor

    2013-06-15

    CB1 cannabinoid receptor (CB1R) undergoes both constitutive and agonist-induced internalization, but the underlying mechanisms of these processes and the role of β-arrestins in the regulation of CB1R function are not completely understood. In this study, we followed CB1R internalization using confocal microscopy and bioluminescence resonance energy transfer measurements in HeLa and Neuro-2a cells. We found that upon activation CB1R binds β-arrestin2 (β-arr2), but not β-arrestin1. Furthermore, both the expression of dominant-negative β-arr2 (β-arr2-V54D) and siRNA-mediated knock-down of β-arr2 impaired the agonist-induced internalization of CB1R. In contrast, neither β-arr2-V54D nor β-arr2-specific siRNA had a significant effect on the constitutive internalization of CB1R. However, both constitutive and agonist-induced internalization of CB1R were impaired by siRNA-mediated depletion of clathrin heavy chain. We conclude that although clathrin is required for both constitutive and agonist-stimulated internalization of CB1R, β-arr2 binding is only required for agonist-induced internalization of the receptor suggesting that the molecular mechanisms underlying constitutive and agonist-induced internalization of CB1R are different.

  15. Collagen-type specificity of glycoprotein VI as a determinant of platelet adhesion.

    PubMed

    Jung, Stephanie M; Takemura, Yukitoshi; Imamura, Yasutada; Hayashi, Toshihiko; Adachi, Eijiro; Moroi, Masaaki

    2008-02-01

    Of the two physiologically important platelet collagen receptors, glycoprotein (GP) VI is the receptor responsible for platelet activation. However, its reactivities towards different types of vascular collagen have not been directly and quantitatively analysed with collagen preparations of defined composition, although the other major platelet collagen receptor integrin alpha(2)beta(1) was shown to react with collagen types I-VI and VIII under either static or flow conditions. We analysed the collagen type specificity of GPVI binding to identify the physiological contribution of the various vascular collagens and how platelet reactivity towards the various collagens may be affected by fibril size. We used two methods to analyse the binding of recombinant GPVI (GPVI-Fc(2)) to different types of bovine collagen: binding to collagen microparticles in suspension and binding to immobilized collagen. GPVI-Fc(2) bound to type I-III collagens that can form large fibrils, but not to type V that only forms small fibrils. The apparent GPVI binding to types IV and V could be ascribed to type I collagen that was a contaminant in each of these preparations. Kinetic analyses of the binding data showed that type III collagen fibrils have both a higher Kd and Bmax than types I and II. Flow adhesion studies demonstrated that type III collagen supports the formation of larger platelet aggregates than type I. Our present results suggest that the physiological importance of type III collagen is to induce thrombus formation. Furthermore, these studies indicate that GPVI mainly binds to collagen types that can form large collagen fibrils.

  16. Two steps of insulin receptor internalization depend on different domains of the beta-subunit [published erratum appears in J Cell Biol 1993 Nov;123(4):1047

    PubMed Central

    1993-01-01

    The internalization of signaling receptors such as the insulin receptor is a complex, multi-step process. The aim of the present work was to determine the various steps in internalization of the insulin receptor and to establish which receptor domains are implicated in each of these by the use of receptors possessing in vitro mutations. We find that kinase activation and autophosphorylation of all three regulatory tyrosines 1146, 1150, and 1151, but not tyrosines 1316 and 1322 in the COOH-terminal domain, are required for the ligand-specific stage of the internalization process; i.e., the surface redistribution of the receptor from microvilli where initial binding occurs to the nonvillous domain of the cell. Early intracellular steps in insulin signal transduction involving the activation of phosphatidylinositol 3'-kinase are not required for this redistribution. The second step of internalization consists in the anchoring of the receptors in clathrin- coated pits. In contrast to the first ligand specific step, this step is common to many receptors including those for transport proteins and occurs in the absence of kinase activation and receptor autophosphorylation, but requires a juxta-membrane cytoplasmic segment of the beta-subunit of the receptor including a NPXY sequence. Thus, there are two independent mechanisms controlling insulin receptor internalization which depend on different domains of the beta-subunit. PMID:8376461

  17. Internalization and Down-Regulation of the ALK Receptor in Neuroblastoma Cell Lines upon Monoclonal Antibodies Treatment

    PubMed Central

    Mazot, Pierre; Cazes, Alex; Dingli, Florent; Degoutin, Joffrey; Irinopoulou, Théano; Boutterin, Marie-Claude; Lombard, Bérangère; Loew, Damarys; Hallberg, Bengt; Palmer, Ruth Helen; Delattre, Olivier

    2012-01-01

    Recently, activating mutations of the full length ALK receptor, with two hot spots at positions F1174 and R1275, have been characterized in sporadic cases of neuroblastoma. Here, we report similar basal patterns of ALK phosphorylation between the neuroblastoma IMR-32 cell line, which expresses only the wild-type receptor (ALKWT), and the SH-SY5Y cell line, which exhibits a heterozygous ALK F1174L mutation and expresses both ALKWT and ALKF1174L receptors. We demonstrate that this lack of detectable increased phosphorylation in SH-SY5Y cells is a result of intracellular retention and proteasomal degradation of the mutated receptor. As a consequence, in SH-SY5Y cells, plasma membrane appears strongly enriched for ALKWT whereas both ALKWT and ALKF1174L were present in intracellular compartments. We further explored ALK receptor trafficking by investigating the effect of agonist and antagonist mAb (monoclonal antibodies) on ALK internalization and down-regulation, either in SH-SY5Y cells or in cells expressing only ALKWT. We observe that treatment with agonist mAbs resulted in ALK internalization and lysosomal targeting for receptor degradation. In contrast, antagonist mAb induced ALK internalization and recycling to the plasma membrane. Importantly, we correlate this differential trafficking of ALK in response to mAb with the recruitment of the ubiquitin ligase Cbl and ALK ubiquitylation only after agonist stimulation. This study provides novel insights into the mechanisms regulating ALK trafficking and degradation, showing that various ALK receptor pools are regulated by proteasome or lysosome pathways according to their intracellular localization. PMID:22479414

  18. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein–Coupled Receptors

    PubMed Central

    Aust, Gabriela; Araç, Demet; Engel, Felix B.; Formstone, Caroline; Fredriksson, Robert; Hall, Randy A.; Harty, Breanne L.; Kirchhoff, Christiane; Knapp, Barbara; Krishnan, Arunkumar; Liebscher, Ines; Lin, Hsi-Hsien; Martinelli, David C.; Monk, Kelly R.; Peeters, Miriam C.; Piao, Xianhua; Prömel, Simone; Schöneberg, Torsten; Schwartz, Thue W.; Singer, Kathleen; Stacey, Martin; Ushkaryov, Yuri A.; Vallon, Mario; Wolfrum, Uwe; Wright, Mathew W.; Xu, Lei; Langenhan, Tobias

    2015-01-01

    The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein–coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential. PMID:25713288

  19. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors.

    PubMed

    Hamann, Jörg; Aust, Gabriela; Araç, Demet; Engel, Felix B; Formstone, Caroline; Fredriksson, Robert; Hall, Randy A; Harty, Breanne L; Kirchhoff, Christiane; Knapp, Barbara; Krishnan, Arunkumar; Liebscher, Ines; Lin, Hsi-Hsien; Martinelli, David C; Monk, Kelly R; Peeters, Miriam C; Piao, Xianhua; Prömel, Simone; Schöneberg, Torsten; Schwartz, Thue W; Singer, Kathleen; Stacey, Martin; Ushkaryov, Yuri A; Vallon, Mario; Wolfrum, Uwe; Wright, Mathew W; Xu, Lei; Langenhan, Tobias; Schiöth, Helgi B

    2015-01-01

    The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential.

  20. Enigmatic insight into collagen

    PubMed Central

    Deshmukh, Shrutal Narendra; Dive, Alka M; Moharil, Rohit; Munde, Prashant

    2016-01-01

    Collagen is a unique, triple helical molecule which forms the major part of extracellular matrix. It is the most abundant protein in the human body, representing 30% of its dry weight. It is the fibrous structural protein that makes up the white fibers (collagen fibers) of skin, tendons, bones, cartilage and all other connective tissues. Collagens are not only essential for the mechanical resistance and resilience of multicellular organisms, but are also signaling molecules defining cellular shape and behavior. The human body has at least 16 types of collagen, but the most prominent types are I, II and III. Collagens are produced by several cell types and are distinguishable by their molecular compositions, morphologic characteristics, distribution, functions and pathogenesis. This is the major fibrous glycoprotein present in the extracellular matrix and in connective tissue and helps in maintaining the structural integrity of these tissues. It has a triple helical structure. Various studies have proved that mutations that modify folding of the triple helix result in identifiable genetic disorders. Collagen diseases share certain similarities with autoimmune diseases, because autoantibodies specific to each collagen disease are produced. Therefore, this review highlights the role of collagen in normal health and also the disorders associated with structural and functional defects in collagen. PMID:27601823

  1. Collagen and gelatin.

    PubMed

    Liu, Dasong; Nikoo, Mehdi; Boran, Gökhan; Zhou, Peng; Regenstein, Joe M

    2015-01-01

    Collagen and gelatin have been widely used in the food, pharmaceutical, and cosmetic industries due to their excellent biocompatibility, easy biodegradability, and weak antigenicity. Fish collagen and gelatin are of renewed interest, owing to the safety and religious concerns of their mammalian counterparts. The structure of collagen has been studied using various modern technologies, and interpretation of the raw data should be done with caution. The structure of collagen may vary with sources and seasons, which may affect its applications and optimal extraction conditions. Numerous studies have investigated the bioactivities and biological effects of collagen, gelatin, and their hydrolysis peptides, using both in vitro and in vivo assay models. In addition to their established nutritional value as a protein source, collagen and collagen-derived products may exert various potential biological activities on cells in the extracellular matrix through the corresponding food-derived peptides after ingestion, and this might justify their applications in dietary supplements and pharmaceutical preparations. Moreover, an increasing number of novel applications have been found for collagen and gelatin. Therefore, this review covers the current understanding of the structure, bioactivities, and biological effects of collagen, gelatin, and gelatin hydrolysates as well as their most recent applications.

  2. The internalization signal and the phosphorylation site of transferrin receptor are distinct from the main basolateral sorting information.

    PubMed Central

    Dargemont, C; Le Bivic, A; Rothenberger, S; Iacopetta, B; Kühn, L C

    1993-01-01

    Wild-type human transferrin receptor (hTfR), like endogenous canine receptor, is expressed almost exclusively (97%) at the basolateral membrane of transfected Madin-Darbey canine kidney (MDCK) cells. We investigated the role of two distinct features of the hTfR cytoplasmic domain, namely the endocytic signal and the unique phosphorylation site, in polarized cell surface delivery. Basolateral location was not altered by point mutation of Ser24-->Ala24, indicating that phosphorylation is not involved in vectorial sorting of hTfR. The steady state distribution of hTfR was partially affected by a deletion of 36 cytoplasmic residues encompassing the internalization sequence. However, 80% of the receptors were still basolateral. As assessed by pulse-chase experiments in combination with biotinylation, newly synthesized wild-type and deletion mutant receptors were directly sorted to the domain of their steady state residency. Although both receptors could bind human transferrin, endocytosis of the deletion mutant was strongly impaired at either surface. These data indicate that the predominant basolateral targeting signal of hTfR is independent of the internalization sequence. Images PMID:8467813

  3. Flumazenil decreases surface expression of α4β2δ GABAA receptors by increasing the rate of receptor internalization

    PubMed Central

    Kuver, Aarti; Smith, Sheryl S.

    2015-01-01

    Increases in expression of α4βδ GABAA receptors (GABARs), triggered by fluctuations in the neurosteroid THP (3α-OH-5α[β]-pregnan-20-one), are associated with changes in mood and cognition. We tested whether α4βδ trafficking and surface expression would be altered by in vitro exposure to flumazenil, a benzodiazepine ligand which reduces α4βδ expression in vivo. We first determined that flumazenil (100 nM – 100 μM, IC50=~1 μM) acted as a negative modulator, reducing GABA (10 μM)-gated current in the presence of 100 nM THP (to increase receptor efficacy), assessed with whole cell patch clamp recordings of recombinant α4β2δ expressed in HEK-293 cells. Surface expression of recombinant α4β2δ receptors was detected using a 3XFLAG reporter at the C-terminus of α4 (α4F) using confocal immunocytochemical techniques following 48 h exposure of cells to GABA (10 μM) + THP (100 nM). Flumazenil (10 μM) decreased surface expression of α4F by ~60%, while increasing its intracellular accumulation, after 48 h. Reduced surface expression of α4β2δ after flumazenil treatment was confirmed by decreases in the current responses to 100 nM of the GABA agonist gaboxadol. Flumazenil-induced decreases in surface expression of α4β2δ were prevented by the dynamin blocker, dynasore, and by leupeptin, which blocks lysosomal enzymes, suggesting that flumazenil is acting to increase endocytosis and lysosomal degradation of the receptor. Flumazenil increased the rate of receptor removal from the cell surface by 2-fold, assessed using botulinum toxin B to block insertion of new receptors. These findings may suggest new therapeutic strategies for regulation of α4β2δ expression using flumazenil. PMID:26592470

  4. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli

    PubMed Central

    Unal, Hamiyet; Kemp, Jacqueline R.; Tirupula, Kalyan C.; Eguchi, Satoru; Vanderheyden, Patrick M. L.; Thomas, Walter G.

    2015-01-01

    The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein–coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments. PMID:26315714

  5. The Aryl Hydrocarbon Receptor: A Key Bridging Molecule of External and Internal Chemical Signals

    PubMed Central

    Tian, Jijing; Feng, Yu; Fu, Hualing; Xie, Heidi Qunhui; Jiang, Joy Xiaosong; Zhao, Bin

    2015-01-01

    The aryl hydrocarbon receptor (AhR) is a highly evolutionary conserved, ligand-activated transcription factor that is best known to mediate the toxicities of dioxins and dioxin-like compounds. Phenotype of AhR-null mice, together with the recent discovery of a variety of endogenous and plant-derived ligands, point to the integral roles of AhR in normal cell physiology, in addition to its roles in sensing the environmental chemicals. Here, we summarize the current knowledge about AhR signaling pathways, its ligands and AhR-mediated effects on cell specialization, host defense and detoxification. AhR-mediated health effects particularly in liver, immune, and nervous systems, as well as in tumorgenesis are discussed. Dioxin-initiated embryotoxicity and immunosuppressive effects in fish and birds are reviewed. Recent data demonstrate that AhR is a convergence point of multiple signaling pathways that inform the cell of its external and internal environments. As such, AhR pathway is a promising potential target for therapeutics targeting nervous, liver, and autoimmune diseases through AhR ligand-mediated interventions and other perturbations of AhR signaling. Additionally, using available laboratory data obtained on animal models, AhR-centered adverse outcome pathway analysis is useful in reexamining known and potential adverse outcomes of specific or mixed compounds on wildlife. PMID:26079192

  6. Involvement of PRMT1 in hnRNPQ activation and internalization of insulin receptor

    SciTech Connect

    Iwasaki, Hiroaki

    2008-07-25

    Insulin signaling in skeletal L6 myotubes is known to be affected by arginine methylation catalyzed by protein N-arginine methyltransferase 1 (PRMT1), however, the mechanism by which this occurs has not yet been defined. This study aimed to determine the exact substrate involved in the methylation and regulating insulin signaling in cells. Insulin enhanced arginine methylation of a 66-kDa protein (p66) concomitant with translocation of PRMT1 to the membrane fraction. Peptide mass fingerprinting identified p66 as a heterogeneous nuclear ribonucleoprotein, hnRNPQ that was bound to and methylated by PRMT1. Pharmacological inhibition of methylation (MTA) and small interfering RNA against PRMT1 (PRMT1-siRNA) attenuated insulin-stimulated tyrosine phosphorylation of hnRNPQ and insulin receptor (IR), and the interaction between hnRNPQ and IR. MTA, PRMT1-siRNA, and hnRNPQ-siRNA inhibited internalization of IR in the same manner. These data suggest that the PRMT1-mediated methylation of hnRNPQ is implicated in IR trafficking and insulin signaling in skeletal L6 myotubes.

  7. MIF interacts with CXCR7 to promote receptor internalization, ERK1/2 and ZAP-70 signaling, and lymphocyte chemotaxis.

    PubMed

    Alampour-Rajabi, Setareh; El Bounkari, Omar; Rot, Antal; Müller-Newen, Gerhard; Bachelerie, Françoise; Gawaz, Meinrad; Weber, Christian; Schober, Andreas; Bernhagen, Jürgen

    2015-11-01

    Macrophage migration-inhibitory factor (MIF) is a pleiotropic cytokine with chemokine-like functions and is a mediator in numerous inflammatory conditions. Depending on the context, MIF signals through 1 or more of its receptors cluster of differentiation (CD)74, CXC-motif chemokine receptor (CXCR)2, and CXCR4. In addition, heteromeric receptor complexes have been identified. We characterized the atypical chemokine receptor CXCR7 as a novel receptor for MIF. MIF promoted human CXCR7 internalization up to 40%, peaking at 50-400 nM and 30 min, but CXCR7 internalization by MIF was not dependent on CXCR4. Yet, by coimmunoprecipitation, fluorescence microscopy, and a proximity ligation assay, CXCR7 was found to engage in MIF receptor complexes with CXCR4 and CD74, both after ectopic overexpression and in endogenous conditions in a human B-cell line. Receptor competition binding and coimmunoprecipitation studies combined with sulfo-SBED-biotin-transfer provided evidence for a direct interaction between MIF and CXCR7. Finally, we demonstrated MIF/CXCR7-mediated functional responses. Blockade of CXCR7 suppressed MIF-mediated ERK- and zeta-chain-associated protein kinase (ZAP)-70 activation (from 2.1- to 1.2-fold and from 2.5- to 1.6-fold, respectively) and fully abrogated primary murine B-cell chemotaxis triggered by MIF, but not by CXCL12. B cells from Cxcr7(-/-) mice exhibited an ablated transmigration response to MIF, indicating that CXCR7 is essential for MIF-promoted B-cell migration. Our findings provide biochemical and functional evidence that MIF is an alternative ligand of CXCR7 and suggest a functional role of the MIF-CXCR7 axis in B-lymphocyte migration.

  8. Role of internalization of M2 muscarinic receptor via clathrin-coated vesicles in desensitization of the muscarinic K+ current in heart.

    PubMed

    Yamanushi, T T; Shui, Z; Leach, R N; Dobrzynski, H; Claydon, T W; Boyett, M R

    2007-04-01

    In the heart, ACh activates the ACh-activated K(+) current (I(K,ACh)) via the M(2) muscarinic receptor. The relationship between desensitization of I(K,ACh) and internalization of the M(2) receptor has been studied in rat atrial cells. On application of the stable muscarinic agonist carbachol for 2 h, I(K,ACh) declined by approximately 62% with time constants of 1.5 and 26.9 min, whereas approximately 83% of the M(2) receptor was internalized from the cell membrane with time constants of 2.9 and 51.6 min. Transfection of the cells with beta-adrenergic receptor kinase 1 (G protein-receptor kinase 2) and beta-arrestin 2 significantly increased I(K,ACh) desensitization and M(2) receptor internalization during a 3-min application of agonist. Internalized M(2) receptor in cells exposed to carbachol for 2 h was colocalized with clathrin and not caveolin. It is concluded that a G protein-receptor kinase 2- and beta-arrestin 2-dependent internalization of the M(2) receptor into clathrin-coated vesicles could play a major role in I(K,ACh) desensitization.

  9. Establishment of the first WHO International Standard for etanercept, a TNF receptor II Fc fusion protein: Report of an international collaborative study.

    PubMed

    Wadhwa, Meenu; Bird, Chris; Dilger, Paula; Rigsby, Peter; Jia, Haiyan; Gross, Marie Emmanuelle Behr

    2017-03-10

    Etanercept, a recombinant human tumor necrosis factor (TNF) receptor Fc fusion protein is an effective treatment option in adults with rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis or plaque psoriasis and paediatrics with juvenile idiotypic arthritis and plaque psoriasis. Patent expiration in Europe and intense development of various etanercept products worldwide triggered a need for an international reference standard to facilitate determination of biological activity. Therefore, three candidate preparations of etanercept were lyophilized and evaluated in a multi-centre collaborative study comprising twenty eight laboratories from 15 countries for their suitability to serve as an international standard for the bioactivity of TNF receptor II Fc fusion proteins (international nonproprietary name, Etanercept). The preparations were tested for neutralization activity against the third TNF-α international standard (IS) in different in vitro cell-based assays, e.g., cytotoxicity, apoptosis and reporter gene methods. Regardless of the assay and the amount of TNF-α IS used, potency estimates for the different preparations were very similar. An indication of the inhibitory activity of etanercept in terms of the biological activity of the TNF-α IS based on ED50 data derived from a limited number of laboratories using a cytotoxicity assay was also derived. Results indicated that the candidate preparation coded 13/204 was stable and suitable to serve as an international standard for the biological activity of etanercept. Therefore, the preparation coded 13/204 was established by the WHO Expert Committee on Biological Standardization (ECBS) in 2015 as the WHO first International Standard for TNF receptor II Fc fusion protein (INN, etanercept) with an assigned in vitro bioactivity of 10,000IU per ampoule. It should be noted that this first-in-class international standard for a Fc fusion protein, available from the National Institute for Biological

  10. Comparative analysis of the internalization of the macrophage receptor sialoadhesin in human and mouse primary macrophages and cell lines.

    PubMed

    De Schryver, Marjorie; Leemans, Annelies; Pintelon, Isabel; Cappoen, Davie; Maes, Louis; Caljon, Guy; Cos, Paul; Delputte, Peter L

    2016-11-21

    Sialoadhesin (Sn) is a surface receptor expressed on resident macrophages with the ability to bind with sialic acids. During inflammation, an upregulation of Sn is observed. Upon binding of monoclonal antibodies to Sn, the receptor becomes internalized and this has been observed in multiple species. The latter characteristic, combined with the strong upregulation of Sn on inflammatory macrophages and the fact that Sn-positive macrophages contribute to certain inflammatory diseases, makes Sn an interesting entry portal for phenotype-modulating or cytotoxic drugs. Such drugs or toxins can be linked to Sn-specific antibodies which should enable their targeted uptake by macrophages. However, the activity of such drugs depends not only on their internalization but also on the intracellular trafficking and final fate in the endolysosomal system. Although information is available for porcine Sn, the detailed mechanisms of human and mouse Sn internalization and subsequent intracellular trafficking are currently unknown. To allow development of Sn-targeted therapies, differences across species and cellular background need to be characterized in more detail. In the current report, we show that internalization of human and mouse Sn is dynamin-dependent and clathrin-mediated, both in primary macrophages and CHO cell lines expressing a recombinant Sn. In primary macrophages, internalized Sn-specific F(ab')2 fragments are located mostly in the early endosomes. With Fc containing Sn-specific antibodies, there is a slight shift towards lysosomal localization in mouse macrophages, possibly because of an interaction with Fc receptors. Surprisingly, in CHO cell lines expressing Sn, there is a predominant lysosomal localization. Our results show that the mechanism of Sn internalization and intracellular trafficking is concurrent in the tested species. The cellular background in which Sn is expressed and the type of antibody used can affect the intracellular fate, which in turn can

  11. Collagen Type II and a Thermo-Responsive Polymer of N-Isopropylacrylamide Induce Arthritis Independent of Toll-Like Receptors

    PubMed Central

    Shakya, Akhilesh Kumar; Kumar, Ashok; Klaczkowska, Dorota; Hultqvist, Malin; Hagenow, Kristin; Holmdahl, Rikard; Nandakumar, Kutty Selva

    2011-01-01

    We established and characterized an arthritis mouse model using collagen type II (CII) and a thermo-responsive polymer, poly(N-isopropylacrylamide) (PNiPAAm). The new PNiPAAm adjuvant is TLR-independent, as all immunized TLR including MyD88-deficient mice developed an anti-CII response. Unlike other adjuvants, PNiPPAm did not skew the cytokine response (IL-1β, IFN-γ, IL-4, and IL-17), as there was no immune deviation towards any one type of immune spectrum after immunization with CII/PNiPPAm. Hence, using PNiPAAm, we studied the actual immune response to the self-protein, CII. We observed arthritis and autoimmunity development in several murine strains having different major histocompatibility complex (MHC) haplotypes after CII/PNiPAAm immunization but with a clear MHC association pattern. Interestingly, C57Bl/6 mice did not develop CII-induced arthritis, with PNiPAAm demonstrating absolute requirement for a classical adjuvant. Presence of a gene (Ncf1) mutation in the NADPH oxidation complex has a profound influence in arthritis and using PNiPAAm we could show that the high CIA severity in Ncf1 mutated mice is independent of any classical adjuvant. Macrophages, neutrophils, eosinophils, and osteoclasts but not mast cells dominated the inflamed joints. Furthermore, arthritis induction in the adjuvant-free, eosinophil-dependent Vβ12 DBA/1 mice could be shown to develop arthritis independent of eosinophils using CII/PNiPAAm. Thus, biocompatible and biodegradable PNiPAAm offers unique opportunities to study actual autoimmunity independent of TLR and a particular cytokine phenotype profile. PMID:21933654

  12. C-terminal of human histamine H1 receptors regulates their agonist-induced clathrin-mediated internalization and G-protein signaling.

    PubMed

    Hishinuma, Shigeru; Nozawa, Hiroki; Akatsu, Chizuru; Shoji, Masaru

    2016-11-01

    It has been suggested that the agonist-induced internalization of G-protein-coupled receptors from the cell surface into intracellular compartments regulates cellular responsiveness. We previously reported that Gq/11 -protein-coupled human histamine H1 receptors internalized via clathrin-dependent mechanisms upon stimulation with histamine. However, the molecular determinants of H1 receptors responsible for agonist-induced internalization remain unclear. In this study, we evaluated the roles of the intracellular C-terminal of human histamine H1 receptors tagged with hemagglutinin (HA) at the N-terminal in histamine-induced internalization in Chinese hamster ovary cells. The histamine-induced internalization was evaluated by the receptor binding assay with [(3) H]mepyramine and confocal immunofluorescence microscopy with an anti-HA antibody. We found that histamine-induced internalization was inhibited under hypertonic conditions or by pitstop, a clathrin terminal domain inhibitor, but not by filipin or nystatin, disruptors of the caveolar structure and function. The histamine-induced internalization was also inhibited by truncation of a single amino acid, Ser487, located at the end of the intracellular C-terminal of H1 receptors, but not by its mutation to alanine. In contrast, the receptor-G-protein coupling, which was evaluated by histamine-induced accumulation of [(3) H]inositol phosphates, was potentiated by truncation of Ser487, but was lost by its mutation to alanine. These results suggest that the intracellular C-terminal of human H1 receptors, which only comprises 17 amino acids (Cys471-Ser487), plays crucial roles in both clathrin-dependent internalization of H1 receptors and G-protein signaling, in which truncation of Ser487 and its mutation to alanine are revealed to result in biased signaling toward activation of G-proteins and clathrin-mediated internalization, respectively.

  13. Combination of MTX and LEF attenuates inflammatory bone erosion by down-regulation of receptor activator of NF-kB ligand and interleukin-17 in type II collagen-induced arthritis rats.

    PubMed

    Yao, Yao; Ding, Cong-zhu; Fang, Yun

    2013-07-01

    The objectives of this study were to determine the effect of combination of methotrexate (MTX) and leflunomide (LEF) on type II collagen-induced arthritis rats and its mechanism. Curative effect was confirmed on CIA rats, which were randomized and divided into model, MTX, LEF and MTX + LEF group. Weights and joint swelling scores of rats were recorded. Interleukin (IL)-17, receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) concentration in serum were determined by ELISA. H&E dyeing of joint was used to estimate the inflammation and osteoclasia extent. The mechanism was investigated through fibroblast-like synoviocytes isolated from RA patients. The effect of MTX and LEF on cell viability, and RANKL and OPG expression were indicated through MTT and RT-PCR analysis, respectively. Combination therapy would be effective in treating CIA rats. Joint swelling scores and IL-17 and RANKL level in serum were decreased obviously (P < 0.05), while OPG level was elevated (P < 0.05). Anti-inflammatory and anti-osteoclasia effect would be indicated by H&E dyeing results. Moreover, FLS cell viability was inhibited by combination treatment in vitro (P < 0.05), and expression of osteoclasia-related genes (RANKL and OPG) was modified (P < 0.05). Combination therapy would relive the synovium hypertrophy through depressing cell viability and osteoclasia through decreasing RANKL and increasing OPG expression. Otherwise, combination was superior to monotherapy.

  14. P2X7 Receptor Regulates Internalization of Antimicrobial Peptide LL-37 by Human Macrophages That Promotes Intracellular Pathogen Clearance.

    PubMed

    Tang, Xiao; Basavarajappa, Devaraj; Haeggström, Jesper Z; Wan, Min

    2015-08-01

    Bioactive peptide LL-37/hCAP18, the only human member of the cathelicidin family, plays important roles in killing various pathogens, as well as in immune modulation. We demonstrate that LL-37 is internalized by human macrophages in a time-, dose-, temperature-, and peptide sequence-dependent endocytotic process. Both clathrin- and caveolae/lipid raft-mediated endocytosis pathways are involved in LL-37 internalization. We find that the P2X7 receptor (P2X7R) plays an important role in LL-37 internalization by human macrophages because significantly less internalized LL-37 was detected in macrophages pretreated with P2X7R antagonists or, more specifically, in differentiated THP-1 cells in which the P2X7R gene had been silenced. Furthermore, this P2X7R-mediated LL-37 internalization is primarily connected to the clathrin-mediated endocytosis pathway. In addition, our results demonstrate that internalized LL-37 traffics to endosomes and lysosomes and contributes to intracellular clearance of bacteria by human macrophages, coinciding with increased reactive oxygen species and lysosome formation. Finally, we show that human macrophages have the potential to import LL-37 released from activated human neutrophils. In conclusion, our study unveils a novel mechanism by which human macrophages internalize antimicrobial peptides to improve their intracellular pathogen clearance.

  15. Ligand- and cell-dependent determinants of internalization and cAMP modulation by delta opioid receptor (DOR) agonists.

    PubMed

    Charfi, Iness; Nagi, Karim; Mnie-Filali, Ouissame; Thibault, Dominic; Balboni, Gianfranco; Schiller, Peter W; Trudeau, Louis-Eric; Pineyro, Graciela

    2014-04-01

    Signaling bias refers to G protein-coupled receptor ligand ability to preferentially activate one type of signal over another. Bias to evoke signaling as opposed to sequestration has been proposed as a predictor of opioid ligand potential for generating tolerance. Here we measured whether delta opioid receptor agonists preferentially inhibited cyclase activity over internalization in HEK cells. Efficacy (τ) and affinity (KA) values were estimated from functional data and bias was calculated from efficiency coefficients (log τ/KA). This approach better represented the data as compared to alternative methods that estimate bias exclusively from τ values. Log (τ/KA) coefficients indicated that SNC-80 and UFP-512 promoted cyclase inhibition more efficiently than DOR internalization as compared to DPDPE (bias factor for SNC-80: 50 and for UFP-512: 132). Molecular determinants of internalization were different in HEK293 cells and neurons with βarrs contributing to internalization in both cell types, while PKC and GRK2 activities were only involved in neurons. Rank orders of ligand ability to engage different internalization mechanisms in neurons were compared to rank order of E max values for cyclase assays in HEK cells. Comparison revealed a significant reversal in rank order for cyclase E max values and βarr-dependent internalization in neurons, indicating that these responses were ligand-specific. Despite this evidence, and because kinases involved in internalization were not the same across cellular backgrounds, it is not possible to assert if the magnitude and nature of bias revealed by rank orders of maximal responses is the same as the one measured in HEK cells.

  16. Interleukin-10 attenuation of collagen-induced arthritis is associated with suppression of interleukin-17 and retinoid-related orphan receptor γt production in macrophages and repression of classically activated macrophages

    PubMed Central

    2014-01-01

    Introduction Our objective in the present study was to determine the signaling pathway of interleukin 10 (IL-10) for modulating IL-17 expression in macrophages and the importance of this mediation in collagen-induced arthritis (CIA). Methods IL-10-knockout (IL-10−/−) mice and wild-type (WT) mice were immunized with chicken type II collagen (CII) to induce arthritis. The expression levels of IL-17 and retinoid-related orphan receptor γt (RORγt) in macrophages and joint tissues of IL-10−/− and WT mice were analyzed by enzyme-linked immunosorbent assay, quantitative RT-PCR (qRT-PCR) and Western blotting. The F4/80 macrophages and positive IL-17-producing macrophages in synovial tissues of the mice were determined by immunohistochemistry. The populations of classically activated macrophage (M1) and alternatively activated macrophage (M2) phenotypes were analyzed by flow cytometry. The expression of genes associated with M1 and M2 markers was analyzed by qRT-PCR. Results Compared to WT mice, IL-10−/− mice had exacerbated CIA development, which was associated with increased production of T helper 17 cell (Th17)/Th1 proinflammatory cytokines and CII-specific immunoglobulin G2a antibody after CII immunization. Macrophages in IL-10−/− mice had increased amounts of IL-17 and RORγt compared with the amounts in WT mice with CIA. Immunofluorescence microscopy showed that the number of IL-17-producing macrophages in synovial tissues was significantly higher in IL-10−/− mice than in WT mice. IL-10 deficiency might promote macrophage polarization toward the proinflammatory M1 phenotype, which contributes to the rheumatoid arthritis inflammation response. Conclusion IL-10 inhibits IL-17 and RORγt expression in macrophages and suppresses macrophages toward the proinflammatory M1 phenotype, which is important for the role of IL-10 in mediating the pathogenesis of CIA. PMID:24742125

  17. Collagen XVII: A Shared Antigen in Neurodermatological Interactions?

    PubMed Central

    2013-01-01

    Collagen XVII is a nonfibril-forming transmembrane collagen, which functions as both a matrix protein and a cell-surface receptor. It is particularly copious in the skin, where it is known to be a structural component of hemidesmosomes. In addition, collagen XVII has been found to be present in the central nervous system, thus offering an explanation for the statistical association between bullous pemphigoid, in which autoimmunity is directed against dermal collagen XVII, and neurological diseases. In support of the hypothesis that collagen XVII serves as a shared antigen mediating an immune response between skin and brain, research on animal and human tissue, as well as numerous epidemiological and case studies, is presented. PMID:23878581

  18. Collagen vascular disease

    MedlinePlus

    ... developed these disorders were previously said to have "connective tissue" or "collagen vascular" disease. We now have names ... be used. These include as undifferentiated systemic rheumatic (connective tissue) diseases or overlap syndromes. Images Dermatomyositis, heliotrope eyelids ...

  19. Different amounts of ejaculatory activity, a natural rewarding behavior, induce differential mu and delta opioid receptor internalization in the rat's ventral tegmental area.

    PubMed

    Garduño-Gutiérrez, René; León-Olea, Martha; Rodríguez-Manzo, Gabriela

    2013-12-06

    Opioid receptors internalize upon specific agonist stimulation. The in vivo significance of receptor internalization is not well established, partly due to the limited in vivo models used to study this phenomenon. Ejaculation promotes endogenous opioid release which activates opioid receptors at the brain, including the mesolimbic system and medial preoptic area. The objective of the present work was to analyze if there was a correlation between the degree of in vivo mu (MOR) and delta opioid receptor (DOR) internalization in the ventral tegmental area and the execution of different amounts of ejaculatory behavior of male rats. To this aim, we analyzed the brains of rats that ejaculated once or six successive times and of sexually exhausted rats with an established sexual inhibition, using immunofluorescence and confocal microscopy. Results showed that MOR and DOR internalization increased as a consequence of ejaculation. There was a relationship between the amount of sexual activity executed and the degree of internalization for MOR, but not for DOR. MOR internalization was larger in rats that ejaculated repeatedly than in animals ejaculating only once. Significant DOR internalization was found only in animals ejaculating once. Changes in MOR, DOR and beta arrestin2 detection, associated to sexual activity, were also found. It is suggested that copulation to satiety might be useful as a model system to study the biological significance of receptor internalization.

  20. Nanomechanics of collagen microfibrils

    PubMed Central

    Vesentini, Simone; Redaelli, Alberto; Gautieri, Alfonso

    2013-01-01

    Summary Collagen constitutes one third of the human proteome, providing mechanical stability, elasticity and strength to organisms and is thus the prime construction material in biology. Collagen is also the dominating material in the extracellular matrix where its stiffness controls cell differentiation, growth and pathology. We use atomistic-based hierarchical multiscale modeling to describe this complex biological material from the bottom up. This includes the use and development of large-scale computational modeling tools to investigate several aspects related to collagen-based tissues, including source of visco-elasticity and deformation mechanisms at the nanoscale level. The key innovation of this research is that until now, collagen materials have primarily been described at macroscopic scales, without explicitly understanding the mechanical contributions at the molecular and fibrillar levels. The major impact of this research will be the development of fundamental models of collagenous tissues, important to the design of new scaffolding biomaterials for regenerative medicine as well as for the understanding of collagen-related diseases. PMID:23885342

  1. Identification of specific sites in the third intracellular loop and carboxyl terminus of the Bombyx mori PBAN receptor crucial for ligand-induced internalization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sex pheromone production in most moths is mediated by the pheromone biosynthesis activating neuropeptide receptor (PBANR). Similar to other rhodopsin-like G protein-coupled receptors, the silkmoth Bombyx mori PBANR (BmPBANR) undergoes agonist-induced internalization. Despite interest in developing...

  2. International Union of Basic and Clinical Pharmacology. XCIII. The Parathyroid Hormone Receptors—Family B G Protein–Coupled Receptors

    PubMed Central

    Vilardaga, Jean-Pierre

    2015-01-01

    The type-1 parathyroid hormone receptor (PTHR1) is a family B G protein–coupled receptor (GPCR) that mediates the actions of two polypeptide ligands; parathyroid hormone (PTH), an endocrine hormone that regulates the levels of calcium and inorganic phosphate in the blood by acting on bone and kidney, and PTH-related protein (PTHrP), a paracrine-factor that regulates cell differentiation and proliferation programs in developing bone and other tissues. The type-2 parathyroid hormone receptor (PTHR2) binds a peptide ligand, called tuberoinfundibular peptide-39 (TIP39), and while the biologic role of the PTHR2/TIP39 system is not as defined as that of the PTHR1, it likely plays a role in the central nervous system as well as in spermatogenesis. Mechanisms of action at these receptors have been explored through a variety of pharmacological and biochemical approaches, and the data obtained support a basic “two-site” mode of ligand binding now thought to be used by each of the family B peptide hormone GPCRs. Recent crystallographic studies on the family B GPCRs are providing new insights that help to further refine the specifics of the overall receptor architecture and modes of ligand docking. One intriguing pharmacological finding for the PTHR1 is that it can form surprisingly stable complexes with certain PTH/PTHrP ligand analogs and thereby mediate markedly prolonged cell signaling responses that persist even when the bulk of the complexes are found in internalized vesicles. The PTHR1 thus appears to be able to activate the Gαs/cAMP pathway not only from the plasma membrane but also from the endosomal domain. The cumulative findings could have an impact on efforts to develop new drug therapies for the PTH receptors. PMID:25713287

  3. Monoclonal antibody-induced ErbB3 receptor internalization and degradation inhibits growth and migration of human melanoma cells.

    PubMed

    Belleudi, Francesca; Marra, Emanuele; Mazzetta, Francesca; Fattore, Luigi; Giovagnoli, Maria Rosaria; Mancini, Rita; Aurisicchio, Luigi; Torrisi, Maria Rosaria; Ciliberto, Gennaro

    2012-04-01

    Members of the ErbB receptor family are targets of a growing numbers of small molecules and monoclonal antibodies inhibitors currently under development for the treatment of cancer. Although historical efforts have been directed against ErbB1 (EGFR) and ErbB2 (HER2/neu), emerging evidences have pointed to ErbB3 as a key node in the activation of proliferation/survival pathways from the ErbB receptor family and have fueled enthusiasm toward the clinical development of anti-ErbB3 agents. In this study, we have evaluated the potential therapeutic efficacy of a set of three recently generated anti-human ErbB3 monoclonals, A2, A3 and A4, in human primary melanoma cells. We show that in melanoma cells expressing ErbB1, ErbB3 and ErbB4 but not ErbB2 receptor ligands activate the PI3K/AKT pathway, and this leads to increased cell proliferation and migration. While antibodies A3 and A4 are able to potently inhibit ligand-induced signaling, proliferation and migration, antibody A2 is unable to exert this effect. In attempt to understand the mechanism of action and the basis of this different behavior, we demonstrate, through a series of combined approaches, that antibody efficacy strongly correlates with antibody-induced receptor internalization, degradation and inhibition of receptor recycling to the cell surface. Finally, fine epitope mapping studies through a peptide array show that inhibiting vs. non-inhibiting antibodies have a dramatically different mode of binding to the to the receptor extracellular domain. Our study confirms the key role of ErbB3 and points to exploitation of novel combination therapies for treatment of malignant melanoma.

  4. Prophylactic and therapeutic effects of a humanized monoclonal antibody against the IL-2 receptor (DACLIZUMAB) on collagen-induced arthritis (CIA) in rhesus monkeys

    PubMed Central

    Brok, H P M; Tekoppele, J M; Hakimi, J; Kerwin, J A; Nijenhuis, E M; De Groot, C W; Bontrop, R E; ‘T Hart, B A

    2001-01-01

    CIA in the rhesus monkey is an autoimmune-based polyarthritis with inflammation and erosion of synovial joints that shares various features with human rheumatoid arthritis (RA). The close phylogenetic relationship between man and rhesus monkey makes the model very suitable for preclinical safety and efficacy testing of new therapeutics with exclusive reactivity in primates. In this study we have investigated the prophylactic and therapeutic effects of a humanized monoclonal antibody (Daclizumab) against the α-chain of the IL-2 receptor (CD25). When Daclizumab treatment was started well after immunization but before the expected onset of CIA a significant reduction of joint-inflammation and joint-erosion was observed. A therapeutic treatment, initiated as soon as the first clinical signs of CIA were observed, proved also effective since joint-degradation was abrogated. The results of this study indicate that Daclizumab has clinical potential for the treatment of RA during periods of active inflammation and suppression of the destruction of the joint tissues. PMID:11359452

  5. Capillary morphogenesis protein-2 is required for mouse parturition by maintaining uterine collagen homeostasis.

    PubMed

    Peters, Diane E; Zhang, Yi; Molinolo, Alfredo A; Miller-Randolph, Sharmina; Szabo, Roman; Bugge, Thomas H; Leppla, Stephen H; Liu, Shihui

    2012-06-08

    Capillary morphogenesis protein-2 (CMG2) functions as an anthrax toxin receptor that plays an essential role in anthrax pathogenesis. Although mutations in CMG2 have been identified to cause two human autosomal recessive disorders, Juvenile Hyaline Fibromatosis and Infantile Systemic Hyalinosis, both characterized by excess hyaline material deposition in connective tissues, the physiologic function of CMG2 remains elusive. To study the roles of CMG2 in normal physiology, here we performed detailed histological analyses of the CMG2-null mice we generated previously. While no morphological or histological defects were observed in CMG2(-/-) male mice, CMG2(-/-) female mice were unable to produce any offspring due to a defect in parturition. We found that deletion of CMG2 resulted in a diffuse deposition of collagen within the myometrium of CMG2(-/-) females, causing remarkable morphological changes to their uteri. This collagen accumulation also led to loss of smooth muscle cells in the myometrium of CMG2(-/-) mice, apparently disabling uterine contractile function during parturition. As a consequence, even though pregnant CMG2(-/-) mice were able to carry the gestation to full term, they were unable to deliver pups. However, the fully-developed fetuses could be successfully delivered by Cesarean section and survived to adulthood when fostered. Our results demonstrate that CMG2 is not required for normal mouse embryonic development but is indispensable for murine parturition. In parallel to its role in anthrax toxin binding and internalization, herein we provide evidence that CMG2 may function as a collagen receptor which is essential for maintaining collagen homeostasis in the uterus.

  6. A novel dwarfism with gonadal dysfunction due to loss-of-function allele of the collagen receptor gene, Ddr2, in the mouse.

    PubMed

    Kano, Kiyoshi; Marín de Evsikova, C; Young, James; Wnek, Christopher; Maddatu, Terry P; Nishina, Patsy M; Naggert, Jürgen K

    2008-08-01

    Smallie (slie), a spontaneous, autosomal-recessive mutation causes dwarfing and infertility in mice. The purpose of this study was to determine and characterize the underlying molecular genetic basis for its phenotype. The slie locus was mapped to chromosome 1, and fine-structure mapping narrowed the slie allele within 2 Mb between genetic markers D1Mit36 and Mpz. To pinpoint the underlying mutation quantitative real-time PCR was used to measure the relative expression levels for the genes residing within this region. Expression of one gene, Ddr2, which encodes discoidin domain receptor 2 (DDR2), was absent in slie homozygote mice. Genomic sequencing analysis detected a 150-kb deletion that extended into the Ddr2 gene transcript. Detailed phenotype analysis revealed that gonadal dysregulation underlies infertility in slie mice because all females were anovulatory and most adult males lacked spermatogenesis. The pituitary gland of prepubertal slie mice was smaller than in wild-type mice. The basal levels and gene expression for pituitary and hypothalamic hormones, and gene expression for hypothalamic-releasing hormones, were not significantly different between slie and wild-type mice. Circulating levels of IGF-1 did not differ in slie mice despite lower Igf-1 mRNA expression in the liver. After exogenous gonadotropin administration, the levels of secreted steroid hormones in both male and female adult slie mice were blunted compared to adult wild-type, but was similar to prepubertal wild-type mice. Taken together, our results indicate that the absence of DDR2 leads to growth retardation and gonadal dysfunction due to peripheral defects in hormonal-responsive pathways in slie mice.

  7. A Novel Dwarfism with Gonadal Dysfunction Due to Loss-of-Function Allele of the Collagen Receptor Gene, Ddr2, in the Mouse

    PubMed Central

    Kano, Kiyoshi; Marín de Evsikova, C.; Young, James; Wnek, Christopher; Maddatu, Terry P.; Nishina, Patsy M.; Naggert, Jürgen K.

    2008-01-01

    Smallie (slie), a spontaneous, autosomal-recessive mutation causes dwarfing and infertility in mice. The purpose of this study was to determine and characterize the underlying molecular genetic basis for its phenotype. The slie locus was mapped to chromosome 1, and fine-structure mapping narrowed the slie allele within 2 Mb between genetic markers D1Mit36 and Mpz. To pinpoint the underlying mutation quantitative real-time PCR was used to measure the relative expression levels for the genes residing within this region. Expression of one gene, Ddr2, which encodes discoidin domain receptor 2 (DDR2), was absent in slie homozygote mice. Genomic sequencing analysis detected a 150-kb deletion that extended into the Ddr2 gene transcript. Detailed phenotype analysis revealed that gonadal dysregulation underlies infertility in slie mice because all females were anovulatory and most adult males lacked spermatogenesis. The pituitary gland of prepubertal slie mice was smaller than in wild-type mice. The basal levels and gene expression for pituitary and hypothalamic hormones, and gene expression for hypothalamic-releasing hormones, were not significantly different between slie and wild-type mice. Circulating levels of IGF-1 did not differ in slie mice despite lower Igf-1 mRNA expression in the liver. After exogenous gonadotropin administration, the levels of secreted steroid hormones in both male and female adult slie mice were blunted compared to adult wild-type, but was similar to prepubertal wild-type mice. Taken together, our results indicate that the absence of DDR2 leads to growth retardation and gonadal dysfunction due to peripheral defects in hormonal-responsive pathways in slie mice. PMID:18483174

  8. Potency of Fish Collagen as a Scaffold for Regenerative Medicine

    PubMed Central

    Yamamoto, Kohei; Yanagiguchi, Kajiro

    2014-01-01

    Cells, growth factors, and scaffold are the crucial factors for tissue engineering. Recently, scaffolds consisting of natural polymers, such as collagen and gelatin, bioabsorbable synthetic polymers, such as polylactic acid and polyglycolic acid, and inorganic materials, such as hydroxyapatite, as well as composite materials have been rapidly developed. In particular, collagen is the most promising material for tissue engineering due to its biocompatibility and biodegradability. Collagen contains specific cell adhesion domains, including the arginine-glycine-aspartic acid (RGD) motif. After the integrin receptor on the cell surface binds to the RGD motif on the collagen molecule, cell adhesion is actively induced. This interaction contributes to the promotion of cell growth and differentiation and the regulation of various cell functions. However, it is difficult to use a pure collagen scaffold as a tissue engineering material due to its low mechanical strength. In order to make up for this disadvantage, collagen scaffolds are often modified using a cross-linker, such as gamma irradiation and carbodiimide. Taking into account the possibility of zoonosis, a variety of recent reports have been documented using fish collagen scaffolds. We herein review the potency of fish collagen scaffolds as well as associated problems to be addressed for use in regenerative medicine. PMID:24982861

  9. Cryptococcus neoformans Is Internalized by Receptor-Mediated or ‘Triggered’ Phagocytosis, Dependent on Actin Recruitment

    PubMed Central

    Guerra, Caroline Rezende; Seabra, Sergio Henrique; de Souza, Wanderley; Rozental, Sonia

    2014-01-01

    Cryptococcosis by the encapsulated yeast Cryptococcus neoformans affects mostly immunocompromised individuals and is a frequent neurological complication in AIDS patients. Recent studies support the idea that intracellular survival of Cryptococcus yeast cells is important for the pathogenesis of cryptococcosis. However, the initial steps of Cryptococcus internalization by host cells remain poorly understood. Here, we investigate the mechanism of Cryptococcus neoformans phagocytosis by peritoneal macrophages using confocal and electron microscopy techniques, as well as flow cytometry quantification, evaluating the importance of fungal capsule production and of host cell cytoskeletal elements for fungal phagocytosis. Electron microscopy analyses revealed that capsular and acapsular strains of C. neoformans are internalized by macrophages via both ‘zipper’ (receptor-mediated) and ‘trigger’ (membrane ruffle-dependent) phagocytosis mechanisms. Actin filaments surrounded phagosomes of capsular and acapsular yeasts, and the actin depolymerizing drugs cytochalasin D and latrunculin B inhibited yeast internalization and actin recruitment to the phagosome area. In contrast, nocodazole and paclitaxel, inhibitors of microtubule dynamics decreased internalization but did not prevent actin recruitment to the site of phagocytosis. Our results show that different uptake mechanisms, dependent on both actin and tubulin dynamics occur during yeast internalization by macrophages, and that capsule production does not affect the mode of Cryptococcus uptake by host cells. PMID:24586631

  10. Platelets interact with soluble and insoluble collagens through characteristically different reactions.

    PubMed

    Jung, S M; Moroi, M

    1998-06-12

    Platelet interaction with soluble and insoluble collagens was characterized through binding studies. In contrast to resting platelets, cells reacted with activators, TS2/16 (integrin alpha2 beta1-activating antibody), thrombin, collagen-related peptide, or ADP, exhibited specific soluble collagen binding that is Mg2+-dependent, but inhibited by prostaglandin I2, Ca2+, and Gi9 (anti-integrin alpha2 beta1 antibody). Each platelet has 1500-3500 soluble collagen binding sites, with a dissociation constant of 3. 5-9 x 10(-8) M. This is the first study to show the specific binding of soluble collagen to platelets; our data strongly suggest that the receptor is integrin alpha2 beta1 after it becomes activated upon platelet activation. These results suggest that activation of platelets transforms integrin alpha2 beta1 to a state with higher affinity binding sites for soluble collagen. The soluble collagen-platelet interaction was compared with the platelet interaction with fibrillar collagen, which has until now not been demonstrated to bind specifically to platelets. Here, we demonstrated specific, biphasic fibrillar collagen binding. One phase is rapid and metal ion-independent, and accounts for most of the binding. The other phase is slow and Mg2+-dependent. The characteristic differences in the specific bindings of soluble and fibrous collagens demonstrate the different contributions of two different collagen receptors.

  11. Epidermal growth factor receptors destined for the nucleus are internalized via a clathrin-dependent pathway

    SciTech Connect

    De Angelis Campos, Ana Carolina; Rodrigues, Michele Angela; Andrade, Carolina de; Miranda de Goes, Alfredo; Nathanson, Michael H.; Gomes, Dawidson A.

    2011-08-26

    Highlights: {yields} EGF and its receptor translocates to the nucleus in liver cells. {yields} Real time imaging shows that EGF moves to the nucleus. {yields} EGF moves with its receptor to the nucleus. {yields} Dynamin and clathrin are necessary for EGFR nuclear translocation. -- Abstract: The epidermal growth factor (EGF) transduces its actions via the EGF receptor (EGFR), which can traffic from the plasma membrane to either the cytoplasm or the nucleus. However, the mechanism by which EGFR reaches the nucleus is unclear. To investigate these questions, liver cells were analyzed by immunoblot of cell fractions, confocal immunofluorescence and real time confocal imaging. Cell fractionation studies showed that EGFR was detectable in the nucleus after EGF stimulation with a peak in nuclear receptor after 10 min. Movement of EGFR to the nucleus was confirmed by confocal immunofluorescence and labeled EGF moved with the receptor to the nucleus. Small interference RNA (siRNA) was used to knockdown clathrin in order to assess the first endocytic steps of EGFR nuclear translocation in liver cells. A mutant dynamin (dynamin K44A) was also used to determine the pathways for this traffic. Movement of labeled EGF or EGFR to the nucleus depended upon dynamin and clathrin. This identifies the pathway that mediates the first steps for EGFR nuclear translocation in liver cells.

  12. International Union of Basic and Clinical Pharmacology. LXXXII: Nomenclature and Classification of Hydroxy-carboxylic Acid Receptors (GPR81, GPR109A, and GPR109B).

    PubMed

    Offermanns, Stefan; Colletti, Steven L; Lovenberg, Timothy W; Semple, Graeme; Wise, Alan; IJzerman, Adriaan P

    2011-06-01

    The G-protein-coupled receptors GPR81, GPR109A, and GPR109B share significant sequence homology and form a small group of receptors, each of which is encoded by clustered genes. In recent years, endogenous ligands for all three receptors have been described. These endogenous ligands have in common that they are hydroxy-carboxylic acid metabolites, and we therefore have proposed that this receptor family be named hydroxy-carboxylic acid (HCA) receptors. The HCA(1) receptor (GPR81) is activated by 2-hydroxy-propanoic acid (lactate), the HCA(2) receptor (GPR109A) is a receptor for the ketone body 3-hydroxy-butyric acid, and the HCA(3) receptor (GPR109B) is activated by the β-oxidation intermediate 3-hydroxy-octanoic acid. HCA(1) and HCA(2) receptors are found in most mammalian species, whereas the HCA(3) receptor is present only in higher primates. The three receptors have in common that they are expressed in adipocytes and are coupled to G(i)-type G-proteins mediating antilipolytic effects in fat cells. HCA(2) and HCA(3) receptors are also expressed in a variety of immune cells. HCA(2) is a receptor for the antidyslipidemic drug nicotinic acid (niacin) and related compounds, and there is an increasing number of synthetic ligands mainly targeted at HCA(2) and HCA(3) receptors. The aim of this article is to give an overview on the discovery and pharmacological characterization of HCAs, and to introduce an International Union of Basic and Clinical Pharmacology (IUPHAR)-recommended nomenclature. We will also discuss open questions regarding this receptor family as well as their physiological role and therapeutic potential.

  13. Development of multifunctional collagen scaffolds directed by collagen mimetic peptides

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Lan (Allen)

    Collagen is widely used for soft tissue replacement and tissue engineering scaffold. Functionalized collagen may offer new and improved applications for collagen-based biomaterials. But passively adsorbed molecules readily diffuse out from collagen matrix, and conventional chemical reactions on collagen are difficult to control and may compromise the biochemical feature of natural collagen. Hence, the aim of this dissertation is to develop a new physical collagen modification method through the non-covalent immobilization of collagen mimetic peptides (CMPs) and CMP derivatives on collagen scaffolds, thereby evading the drawbacks of passive and chemical modifications. Most of the research on CMPs over the past three decades has focused on synthesizing CMPs and understanding the effects of amino acid sequence on the peptide structural stability. Although few attempts have been made to develop biomaterials based on pure CMP, CMP has never used in complex with natural collagen. We demonstrate that CMPs with varying chain lengths have strong propensity to associate with natural 2-D and 3-D collagen substrates. We also show that CMPs can recognize and bind to reconstituted type I collagen fibers as well as collagens of ex vivo human liver tissue. The practical use of CMPs conjugated with linear and multi-arm poly(ethylene glycol)s allows to control cell organization in 2-D collagen substrates. Our cell adhesion studies suggest that under certain conditions (e.g. high incubation temperature, small CMP size), the bound CMP derivatives can be released from the collagen matrix, which may provide new opportunities for manipulating cell behavior especially by dynamically controlling the amount of signaling molecules in the collagen matrix. Polyanionic charged CMP was synthesized to modulate tubulogenesis of endothelial cells by attracting VEGF with 3-D collagen gel and a new PEG hydrogel using bifunctional CMP conjugates was synthesized as physico-chemical crosslinkers for

  14. [TOLL-LIKE RECEPTORS IN COSMONAUT'S PERIPHERAL BLOOD CELLS AFTER LONG-DURATION MISSIONS TO THE INTERNATIONAL SPACE STATION].

    PubMed

    Berendeeva, T A; Ponomarev, S A; Antropova, E N; Rykova, M P

    2015-01-01

    Studies of Toll-like receptors (TLR) in 20 cosmonauts-members of long-duration (124-199-day) missions to the International space station evidenced changes in relative and absolute counts of peripheral blood monocytes with TLR2, TLR4 and TLR6 on the surface, expression of TLR2 and TLR6 genes, and genes of molecules involved in the TLR signaling pathway and TLR-related NF-KB-, JNK/p38- and IRF pathways on the day of return to Earth. The observed changes displayed individual variability.

  15. N-methyl-D-aspartate receptors and large conductance calcium-sensitive potassium channels inhibit the release of opioid peptides that induce mu-opioid receptor internalization in the rat spinal cord.

    PubMed

    Song, B; Marvizón, J C G

    2005-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the mu-opioid receptor, we measured mu-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced mu-opioid receptor internalization in half of the mu-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-D-aspartate (IC50=2 microM), and N-methyl-D-aspartate antagonists prevented this effect. mu-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-D-aspartate receptor activation. N-methyl-D-aspartate did not affect mu-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-D-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-D-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase mu-opioid receptor internalization in the absence of N-methyl-D-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked mu-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-D-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since mu-opioid receptors in the dorsal horn

  16. N-METHYL-d-ASPARTATE RECEPTORS AND LARGE CONDUCTANCE CALCIUM-SENSITIVE POTASSIUM CHANNELS INHIBIT THE RELEASE OF OPIOID PEPTIDES THAT INDUCE μ-OPIOID RECEPTOR INTERNALIZATION IN THE RAT SPINAL CORD

    PubMed Central

    SONG, B.; MARVIZÓN, J. C. G.

    2006-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the μ-opioid receptor, we measured μ-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced μ-opioid receptor internalization in half of the μ-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-d-aspartate (IC50=2 μM), and N-methyl-d-aspartate antagonists prevented this effect. μ-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-d-aspartate receptor activation. N-methyl-d-aspartate did not affect μ-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-d-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-d-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase μ-opioid receptor internalization in the absence of N-methyl-d-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked μ-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-d-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since μ-opioid receptors in the dorsal horn

  17. The receptor and transporter for internalization of Clostridium botulinum type C progenitor toxin into HT-29 cells.

    PubMed

    Nishikawa, Atsushi; Uotsu, Nobuo; Arimitsu, Hideyuki; Lee, Jae-Chul; Miura, Yutaka; Fujinaga, Yukako; Nakada, Hiroshi; Watanabe, Toshihiro; Ohyama, Tohru; Sakano, Yoshiyuki; Oguma, Keiji

    2004-06-25

    Orally ingested botulinum toxin enters the circulatory system and eventually reaches the peripheral nerves, where it elicits a response of neurological dysfunction. In this study, we report the important findings concerning the mechanism of Clostridium botulinum type C progenitor toxin (C16S) endocytic mechanism. C16S toxin bound to high molecular weight proteins on the surface of human colon carcinoma HT-29 cells and was internalized, but not if the cells were pretreated with neuraminidase. Benzyl-GalNAc which inhibited O-glycosylation of glycoproteins also interfered in the toxin's ability to bind the cell surface. On the other hand, the toxin was internalized in spite of pretreatment of the cells with PPMP, an inhibitor of ganglioside synthesis. These results suggest that the glycoproteins, like mucin, fulfill the important roles of receptor and transporter of C16S toxin.

  18. Internalization of Met requires the co-receptor CD44v6 and its link to ERM proteins.

    PubMed

    Hasenauer, Susanne; Malinger, Dieter; Koschut, David; Pace, Giuseppina; Matzke, Alexandra; von Au, Anja; Orian-Rousseau, Véronique

    2013-01-01

    Receptor Tyrosine Kinases (RTKs) are involved in many cellular processes and play a major role in the control of cell fate. For these reasons, RTK activation is maintained under tight control. Met is an essential RTK that induces proliferation, differentiation, migration, survival and branching morphogenesis. Deregulation of Met by overexpression, amplification or lack of effective degradation leads to cancer and metastasis. We have shown that Met relies on CD44v6 for its activation and for signaling in several cancer cell lines and also in primary cells. In this paper, we show that internalization of Met is dependent on CD44v6 and the binding of Ezrin to the CD44v6 cytoplasmic domain. Both CD44v6 and Met are co-internalized upon Hepatocyte Growth Factor induction suggesting that Met-induced signaling from the endosomes relies on its collaboration with CD44v6 and the link to the cytoskeleton provided by ERM proteins.

  19. Internalization and down-regulation of mu opioid receptors by endomorphins and morphine in SH-SY5Y human neuroblastoma cells.

    PubMed

    Horner, Kristen A; Zadina, James E

    2004-12-03

    The human neuroblastoma cell line, SH-SY5Y, was used to examine the effects of morphine and the endogenous opioid peptides, endomorphin-1 (EM-1) and endomorphin-2 (EM-2), on mu opioid receptor (MOR) internalization and down-regulation. Treatment for 24 h with EM-1, EM-2 or morphine at 100 nM, 1 microM and 10 microM resulted in a dose-dependent down-regulation of mu receptors. Exposure of cells to 10 microM EM-1 for 2.5, 5 and 24 h resulted in a time-dependent down-regulation of mu receptors. Down-regulation of mu receptors by morphine and EM-1 was blocked by treatment with hypertonic sucrose, consistent with an endocytosis-dependent mechanism. Sensitive cell-surface binding studies with a radiolabeled mu antagonist revealed that morphine was able to induce internalization of mu receptors naturally expressed in SH-SY5Y cells. EM-1 produced a more rapid internalization of mu receptors than morphine, but hypertonic sucrose blocked the internalization induced by each of these agonists. This study demonstrates that, like morphine, the endomorphins down-regulate mu opioid receptors in a dose- and time-dependent manner. This study also demonstrates that morphine, as well as EM-1, can induce rapid, endocytosis-dependent internalization of mu opioid receptors in SH-SY5Y cells. These results may help elucidate the ability of mu agonists to regulate the number and responsiveness of their receptors.

  20. Functional properties of internalization-deficient P2X4 receptors reveal a novel mechanism of ligand-gated channel facilitation by ivermectin.

    PubMed

    Toulmé, Estelle; Soto, Florentina; Garret, Maurice; Boué-Grabot, Eric

    2006-02-01

    Although P2X receptors within the central nervous system mediate excitatory ATP synaptic transmission, the identity of central ATP-gated channels has not yet been elucidated. P2X(4), the most widely expressed subunit in the brain, was previously shown to undergo clathrin-dependent constitutive internalization by direct interaction between activator protein (AP)2 adaptors and a tyrosine-based sorting signal specifically present in the cytosolic C-terminal tail of mammalian P2X(4) sequences. In this study, we first used internalization-deficient P2X(4) receptor mutants to show that suppression of the endocytosis motif significantly increased the apparent sensitivity to ATP and the ionic permeability of P2X(4) channels. These unique properties, observed at low channel density, suggest that interactions with AP2 complexes may modulate the function of P2X(4) receptors. In addition, ivermectin, an allosteric modulator of several receptor channels, including mammalian P2X(4), did not potentiate the maximal current of internalization-deficient rat or human P2X(4) receptors. We demonstrated that binding of ivermectin onto wild-type P2X(4) channels increased the fraction of plasma membrane P2X(4) receptors, whereas surface expression of internalization-deficient P2X(4) receptors remained unchanged. Disruption of the clathrin-mediated endocytosis with the dominant-negative mutants Eps15 or AP-50 abolished the ivermectin potentiation of wild-type P2X(4) channel currents. Likewise, ivermectin increased the membrane fraction of nicotinic alpha7 acetylcholine (nalpha7ACh) receptors and the potentiation of acetylcholine current by ivermectin was suppressed when the same dominant-negative mutants were expressed. These data showed that potentiation by ivermectin of both P2X(4) and nalpha7ACh receptors was primarily caused by an increase in the number of cell surface receptors resulting from a mechanism dependent on clathrin/AP2-mediated endocytosis.

  1. Investigating the molecular mechanisms through which FTY720-P causes persistent S1P1 receptor internalization

    PubMed Central

    Sykes, David A; Riddy, Darren M; Stamp, Craig; Bradley, Michelle E; McGuiness, Neil; Sattikar, Afrah; Guerini, Danilo; Rodrigues, Ines; Glaenzel, Albrecht; Dowling, Mark R; Mullershausen, Florian; Charlton, Steven J

    2014-01-01

    Background and Purpose The molecular mechanism underlying the clinical efficacy of FTY720-P is thought to involve persistent internalization and enhanced degradation of the S1P1 receptor subtype (S1P1R). We have investigated whether receptor binding kinetics and β-arrestin recruitment could play a role in the persistent internalization of the S1P1R by FTY720-P. Experimental Approach [3H]-FTY720-P and [33P]-S1P were used to label CHO-S1P1/3Rs for binding studies. Ligand efficacy was assessed through [35S]-GTPγS binding and β-arrestin recruitment. Metabolic stability was evaluated using a bioassay measuring intracellular Ca2+ release. CHO-S1P1/3R numbers were determined, following FTY720-P treatment using flow cytometry. Key Results The kinetic off-rate of [3H]-FTY720-P from the S1P1R was sixfold slower than from the S1P3R, and comparable to [33P]-S1P dissociation from S1P1/3Rs. S1P and FTY720-P stimulated [35S]-GTPγS incorporation to similar degrees, but FTY720-P was over 30-fold less potent at S1P3Rs. FTY720-P stimulated a higher level of β-arrestin recruitment at S1P1Rs, 132% of the total recruited by S1P. In contrast, FTY720-P was a weak partial agonist at S1P3R, stimulating just 29% of the total β-arrestin recruited by S1P. Internalization experiments confirmed that cell surface expression of the S1P1R but not the S1P3R was reduced following a pulse exposure to FTY720-P, which is metabolically stable unlike S1P. Conclusions and Implications FTY720-P and S1P activation of the S1P1R results in receptor internalization as a consequence of an efficient recruitment of β-arrestin. The combination of slow off-rate, efficacious β-arrestin recruitment and metabolic stability all contribute to FTY720-P's ability to promote prolonged S1P1R internalization and may be critical factors in its efficacy in the clinic. PMID:24641481

  2. Collagen fibrils: nanoscale ropes.

    PubMed

    Bozec, Laurent; van der Heijden, Gert; Horton, Michael

    2007-01-01

    The formation of collagen fibrils from staggered repeats of individual molecules has become "accepted" wisdom. However, for over thirty years now, such a model has failed to resolve several structural and functional questions. In a novel approach, it was found, using atomic force microscopy, that tendon collagen fibrils are composed of subcomponents in a spiral disposition-that is, their structure is similar to that of macroscale ropes. Consequently, this arrangement was modeled and confirmed using elastic rod theory. This work provides new insight into collagen fibril structure and will have wide application-from the design of scaffolds for tissue engineering and a better understanding of pathogenesis of diseases of bone and tendon, to the conservation of irreplaceable parchment-based museum exhibits.

  3. International Union of Basic and Clinical Pharmacology. LXXXVIII. G Protein-Coupled Receptor List: Recommendations for New Pairings with Cognate Ligands

    PubMed Central

    Alexander, Stephen P. H.; Sharman, Joanna L.; Pawson, Adam J.; Benson, Helen E.; Monaghan, Amy E.; Liew, Wen Chiy; Mpamhanga, Chidochangu P.; Bonner, Tom I.; Neubig, Richard R.; Pin, Jean Philippe; Spedding, Michael; Harmar, Anthony J.

    2013-01-01

    In 2005, the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR) published a catalog of all of the human gene sequences known or predicted to encode G protein-coupled receptors (GPCRs), excluding sensory receptors. This review updates the list of orphan GPCRs and describes the criteria used by NC-IUPHAR to recommend the pairing of an orphan receptor with its cognate ligand(s). The following recommendations are made for new receptor names based on 11 pairings for class A GPCRs: hydroxycarboxylic acid receptors [HCA1 (GPR81) with lactate, HCA2 (GPR109A) with 3-hydroxybutyric acid, HCA3 (GPR109B) with 3-hydroxyoctanoic acid]; lysophosphatidic acid receptors [LPA4 (GPR23), LPA5 (GPR92), LPA6 (P2Y5)]; free fatty acid receptors [FFA4 (GPR120) with omega-3 fatty acids]; chemerin receptor (CMKLR1; ChemR23) with chemerin; CXCR7 (CMKOR1) with chemokines CXCL12 (SDF-1) and CXCL11 (ITAC); succinate receptor (SUCNR1) with succinate; and oxoglutarate receptor [OXGR1 with 2-oxoglutarate]. Pairings are highlighted for an additional 30 receptors in class A where further input is needed from the scientific community to validate these findings. Fifty-seven human class A receptors (excluding pseudogenes) are still considered orphans; information has been provided where there is a significant phenotype in genetically modified animals. In class B, six pairings have been reported by a single publication, with 28 (excluding pseudogenes) still classified as orphans. Seven orphan receptors remain in class C, with one pairing described by a single paper. The objective is to stimulate research into confirming pairings of orphan receptors where there is currently limited information and to identify cognate ligands for the remaining GPCRs. Further information can be found on the IUPHAR Database website (http://www.iuphar-db.org). PMID:23686350

  4. Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links with Internalizing Behavior Problems

    ERIC Educational Resources Information Center

    Parade, Stephanie H.; Ridout, Kathryn K.; Seifer, Ronald; Armstrong, David A.; Marsit, Carmen J.; McWilliams, Melissa A.; Tyrka, Audrey R.

    2016-01-01

    Accumulating evidence suggests that early adversity is linked to methylation of the glucocorticoid receptor (GR) gene, "NR3C1," which is a key regulator of the hypothalamic-pituitary-adrenal axis. Yet no prior work has considered the contribution of methylation of "NR3C1" to emerging behavior problems and psychopathology in…

  5. Collagen XII Contributes to Epicardial and Connective Tissues in the Zebrafish Heart during Ontogenesis and Regeneration

    PubMed Central

    Marro, Jan; Pfefferli, Catherine; de Preux Charles, Anne-Sophie; Bise, Thomas

    2016-01-01

    Zebrafish heart regeneration depends on cardiac cell proliferation, epicardium activation and transient reparative tissue deposition. The contribution and the regulation of specific collagen types during the regenerative process, however, remain poorly characterized. Here, we identified that the non-fibrillar type XII collagen, which serves as a matrix-bridging component, is expressed in the epicardium of the zebrafish heart, and is boosted after cryoinjury-induced ventricular damage. During heart regeneration, an intense deposition of Collagen XII covers the outer epicardial cap and the interstitial reparative tissue. Analysis of the activated epicardium and fibroblast markers revealed a heterogeneous cellular origin of Collagen XII. Interestingly, this matrix-bridging collagen co-localized with fibrillar type I collagen and several glycoproteins in the post-injury zone, suggesting its role in tissue cohesion. Using SB431542, a selective inhibitor of the TGF-β receptor, we showed that while the inhibitor treatment did not affect the expression of collagen 12 and collagen 1a2 in the epicardium, it completely suppressed the induction of both genes in the fibrotic tissue. This suggests that distinct mechanisms might regulate collagen expression in the outer heart layer and the inner injury zone. On the basis of this study, we postulate that the TGF-β signaling pathway induces and coordinates formation of a transient collagenous network that comprises fibril-forming Collagen I and fiber-associated Collagen XII, both of which contribute to the reparative matrix of the regenerating zebrafish heart. PMID:27783651

  6. LARP6 Meets Collagen mRNA: Specific Regulation of Type I Collagen Expression

    PubMed Central

    Zhang, Yujie; Stefanovic, Branko

    2016-01-01

    Type I collagen is the most abundant structural protein in all vertebrates, but its constitutive rate of synthesis is low due to long half-life of the protein (60–70 days). However, several hundred fold increased production of type I collagen is often seen in reparative or reactive fibrosis. The mechanism which is responsible for this dramatic upregulation is complex, including multiple levels of regulation. However, posttranscriptional regulation evidently plays a predominant role. Posttranscriptional regulation comprises processing, transport, stabilization and translation of mRNAs and is executed by RNA binding proteins. There are about 800 RNA binding proteins, but only one, La ribonucleoprotein domain family member 6 (LARP6), is specifically involved in type I collagen regulation. In the 5′untranslated region (5’UTR) of mRNAs encoding for type I and type III collagens there is an evolutionally conserved stem-loop (SL) structure; this structure is not found in any other mRNA, including any other collagen mRNA. LARP6 binds to the 5′SL in sequence specific manner to regulate stability of collagen mRNAs and their translatability. Here, we will review current understanding of how is LARP6 involved in posttranscriptional regulation of collagen mRNAs. We will also discuss how other proteins recruited by LARP6, including nonmuscle myosin, vimentin, serine threonine kinase receptor associated protein (STRAP), 25 kD FK506 binding protein (FKBP25) and RNA helicase A (RHA), contribute to this process. PMID:27011170

  7. Collagen in organ development

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Spooner, B. S.

    1992-01-01

    It is important to know whether microgravity will adversely affect developmental processes. Collagens are macromolecular structural components of the extracellular matrix (ECM) which may be altered by perturbations in gravity. Interstitial collagens have been shown to be necessary for normal growth and morphogenesis in some embryonic organs, and in the mouse salivary gland, the biosynthetic pattern of these molecules changes during development. Determination of the effects of microgravity on epithelial organ development must be preceded by crucial ground-based studies. These will define control of normal synthesis, secretion, and deposition of ECM macromolecules and the relationship of these processes to morphogenesis.

  8. A Broad G Protein-Coupled Receptor Internalization Assay that Combines SNAP-Tag Labeling, Diffusion-Enhanced Resonance Energy Transfer, and a Highly Emissive Terbium Cryptate

    PubMed Central

    Levoye, Angélique; Zwier, Jurriaan M.; Jaracz-Ros, Agnieszka; Klipfel, Laurence; Cottet, Martin; Maurel, Damien; Bdioui, Sara; Balabanian, Karl; Prézeau, Laurent; Trinquet, Eric; Durroux, Thierry; Bachelerie, Françoise

    2015-01-01

    Although G protein-coupled receptor (GPCR) internalization has long been considered as a major aspect of the desensitization process that tunes ligand responsiveness, internalization is also involved in receptor resensitization and signaling, as well as the ligand scavenging function of some atypical receptors. Internalization thus contributes to the diversity of GPCR-dependent signaling, and its dynamics and quantification in living cells has generated considerable interest. We developed a robust and sensitive assay to follow and quantify ligand-induced and constitutive-induced GPCR internalization but also receptor recycling in living cells. This assay is based on diffusion-enhanced resonance energy transfer (DERET) between cell surface GPCRs labeled with a luminescent terbium cryptate donor and a fluorescein acceptor present in the culture medium. GPCR internalization results in a quantifiable reduction of energy transfer. This method yields a high signal-to-noise ratio due to time-resolved measurements. For various GPCRs belonging to different classes, we demonstrated that constitutive and ligand-induced internalization could be monitored as a function of time and ligand concentration, thus allowing accurate quantitative determination of kinetics of receptor internalization but also half-maximal effective or inhibitory concentrations of compounds. In addition to its selectivity and sensitivity, we provided evidence that DERET-based internalization assay is particularly suitable for characterizing biased ligands. Furthermore, the determination of a Z′-factor value of 0.45 indicates the quality and suitability of DERET-based internalization assay for high-throughput screening (HTS) of compounds that may modulate GPCRs internalization. PMID:26617570

  9. A Broad G Protein-Coupled Receptor Internalization Assay that Combines SNAP-Tag Labeling, Diffusion-Enhanced Resonance Energy Transfer, and a Highly Emissive Terbium Cryptate.

    PubMed

    Levoye, Angélique; Zwier, Jurriaan M; Jaracz-Ros, Agnieszka; Klipfel, Laurence; Cottet, Martin; Maurel, Damien; Bdioui, Sara; Balabanian, Karl; Prézeau, Laurent; Trinquet, Eric; Durroux, Thierry; Bachelerie, Françoise

    2015-01-01

    Although G protein-coupled receptor (GPCR) internalization has long been considered as a major aspect of the desensitization process that tunes ligand responsiveness, internalization is also involved in receptor resensitization and signaling, as well as the ligand scavenging function of some atypical receptors. Internalization thus contributes to the diversity of GPCR-dependent signaling, and its dynamics and quantification in living cells has generated considerable interest. We developed a robust and sensitive assay to follow and quantify ligand-induced and constitutive-induced GPCR internalization but also receptor recycling in living cells. This assay is based on diffusion-enhanced resonance energy transfer (DERET) between cell surface GPCRs labeled with a luminescent terbium cryptate donor and a fluorescein acceptor present in the culture medium. GPCR internalization results in a quantifiable reduction of energy transfer. This method yields a high signal-to-noise ratio due to time-resolved measurements. For various GPCRs belonging to different classes, we demonstrated that constitutive and ligand-induced internalization could be monitored as a function of time and ligand concentration, thus allowing accurate quantitative determination of kinetics of receptor internalization but also half-maximal effective or inhibitory concentrations of compounds. In addition to its selectivity and sensitivity, we provided evidence that DERET-based internalization assay is particularly suitable for characterizing biased ligands. Furthermore, the determination of a Z'-factor value of 0.45 indicates the quality and suitability of DERET-based internalization assay for high-throughput screening (HTS) of compounds that may modulate GPCRs internalization.

  10. Differential requirements of arrestin-3 and clathrin for ligand-dependent and -independent internalization of human G protein-coupled receptor 40.

    PubMed

    Qian, Jing; Wu, Chun; Chen, Xiaopan; Li, Xiangmei; Ying, Guoyuan; Jin, Lili; Ma, Qiang; Li, Guo; Shi, Ying; Zhang, Guozheng; Zhou, Naiming

    2014-11-01

    G protein-coupled receptor 40 (GPR40) is believed to be an attractive target to enhance insulin secretion in patients with type 2 diabetes. GPR40 has been found to couple to Gq protein, leading to the activation of phospholipase C and subsequent increases in the intracellular Ca(2+) level. However, the underlying mechanisms that regulate the internalization and desensitization of GPR40 remain to be elucidated. In the present study, a construct of GPR40 fused with enhanced green fluorescent protein (EGFP) at its C-terminus was constructed for direct imaging of the localization and internalization of GPR40 by confocal microscopy. In stably transfected HEK-293 cells, GPR40 receptors underwent rapid agonist-induced internalization and constitutive ligand-independent internalization. Our data demonstrated that the agonist-mediated internalization of GPR40 was significantly blocked by hypertonic sucrose treatment and by siRNA mediated depletion of the heavy chain of clathrin. In contrast, constitutive GPR40 internalization was not affected by hypertonic sucrose or by knock-down of clathrin expression, but it was affected by treatment with methyl-β-cyclodextrin (MβCD) and nystatin. Furthermore, our results using an arrestin-3-EGFP redistribution assay and siRNA-mediated knock-down of arrestin-3 and GRK2 expression revealed that arrestin-3 and GRK2 play an essential role in the regulation of agonist-mediated GPR40 internalization, but are not involved in the regulation of constitutive GPR40 internalization. Additionally, our observation showed that upon activation by agonist, the internalized GPR40 receptors were rapidly recycled back to the plasma membrane via Rab4/Rab5 positive endosomes, whereas the constitutively internalized GPR40 receptors were recycled back to the cell surface through Rab5 positive endosomes. Because FFA receptors exhibit a high level of homology, our observations could be applicable to other members of this family.

  11. Mechanisms of modulation by internal protons of cyclic nucleotide-gated channels cloned from sensory receptor cells.

    PubMed Central

    Gavazzo, P; Picco, C; Menini, A

    1997-01-01

    We have examined the modulation by internal protons of cyclic nucleotide-gated (CNG) channels cloned from bovine olfactory receptor cells and retinal rods. CNG channels were studied in excised inside-out membrane patches from Xenopus laevis oocytes previously injected with the mRNA encoding for the subunit 1 of olfactory or rod channels. Channels were activated by cGMP or cAMP, and currents as a function of cyclic nucleotide concentrations were measured as pHi varied between 7.6 and 5.0. Increasing internal proton concentrations caused a partial blockage of the single-channel current, consistent with protonation of a single acidic site with a pK1 of 4.5-4.7, both in rod and in olfactory CNG channels. Channel gating properties were also affected by internal protons. The open probability at low cyclic nucleotide concentrations was greatly increased by lowering pHi, and the increase was larger when channels were activated by cAMP than by cGMP. Therefore, internal protons affected both channel permeation and gating properties, causing a reduction in single-channel current and an increase in open probability. These effects are likely to be caused by different titratable groups on the channel. PMID:9308192

  12. Structure and function of collagen types

    SciTech Connect

    Mayne, R.; Burgeson, R.E.

    1987-01-01

    This book contains 10 chapters. Some of the chapter titles are: The Classical Collagens: Types I, II, and III; Type IV Collagen; Type IX Collagen; and Analysis of Collagen Structure by Molecular Biology Techniques.

  13. [The genetics of collagen diseases].

    PubMed

    Kaplan, J; Maroteaux, P; Frezal, J

    1986-01-01

    Heritable disorders of collagen include Ehler-Danlos syndromes (11 types are actually known), Larsen syndrome and osteogenesis imperfecta. Their clinical, genetic and biochemical features are reviewed. Marfan syndrome is closely related to heritable disorders of collagen.

  14. Addition of interleukin 1 (IL1) and IL17 soluble receptors to a tumour necrosis factor α soluble receptor more effectively reduces the production of IL6 and macrophage inhibitory protein-3α and increases that of collagen in an in vitro model of rheumatoid synoviocyte activation

    PubMed Central

    Chevrel, G; Garnero, P; Miossec, P

    2002-01-01

    Methods: A simplified model was set up to evaluate the effect of tumour necrosis factor α (TNFα) soluble receptors (sTNFR) used alone and in combination with soluble interleukin 1 receptor (sIL1R) and sIL17R on the production of markers of inflammation (IL6), of migration of dendritic cells (macrophage inhibitory protein-3α (MIP-3α)), and of matrix synthesis (C-propeptide of type 1 collagen (P1CP)). Synoviocytes were stimulated with supernatants of activated peripheral blood mononuclear cells (PBMC) from patients with rheumatoid arthritis (RA). Soluble receptors (sR) were preincubated at 1 γg/ml alone or in combination with the supernatants before addition to RA synoviocytes. IL6, MIP-3α, and P1CP production was measured by enzyme linked immunosorbent assay (ELISA) in 48 hour synoviocyte supernatants. Results: IL6 production decreased by 16% with sTNFR alone compared with no sTNFR (p<0.001) and by 41% with the combination of the three sR (p<0.001). MIP-3α production decreased by 77% with sTNFR alone compared with no sTNFR (p<0.001) and by 98% with the combination of the three sR (p<0.001). In the presence of sTNFR alone, P1CP production increased by 25% compared with no sR (p<0.01). The combination of the three sR increased P1CP production by 48% (p<0.01). Conclusion: The effect of sTNFR on IL6, MIP-3α, and P1CP production by RA synoviocytes stimulated by activated PBMC supernatants was further enhanced when combined with sIL1R and sIL17R. PMID:12117682

  15. International Union of Basic and Clinical Pharmacology. XCVI. Pattern recognition receptors in health and disease.

    PubMed

    Bryant, Clare E; Orr, Selinda; Ferguson, Brian; Symmons, Martyn F; Boyle, Joseph P; Monie, Tom P

    2015-01-01

    Since the discovery of Toll, in the fruit fly Drosophila melanogaster, as the first described pattern recognition receptor (PRR) in 1996, many families of these receptors have been discovered and characterized. PRRs play critically important roles in pathogen recognition to initiate innate immune responses that ultimately link to the generation of adaptive immunity. Activation of PRRs leads to the induction of immune and inflammatory genes, including proinflammatory cytokines and chemokines. It is increasingly clear that many PRRs are linked to a range of inflammatory, infectious, immune, and chronic degenerative diseases. Several drugs to modulate PRR activity are already in clinical trials and many more are likely to appear in the near future. Here, we review the different families of mammalian PRRs, the ligands they recognize, the mechanisms of activation, their role in disease, and the potential of targeting these proteins to develop the anti-inflammatory therapeutics of the future.

  16. International Union of Basic and Clinical Pharmacology. XCVI. Pattern Recognition Receptors in Health and Disease

    PubMed Central

    Orr, Selinda; Ferguson, Brian; Symmons, Martyn F.; Boyle, Joseph P.; Monie, Tom P.

    2015-01-01

    Since the discovery of Toll, in the fruit fly Drosophila melanogaster, as the first described pattern recognition receptor (PRR) in 1996, many families of these receptors have been discovered and characterized. PRRs play critically important roles in pathogen recognition to initiate innate immune responses that ultimately link to the generation of adaptive immunity. Activation of PRRs leads to the induction of immune and inflammatory genes, including proinflammatory cytokines and chemokines. It is increasingly clear that many PRRs are linked to a range of inflammatory, infectious, immune, and chronic degenerative diseases. Several drugs to modulate PRR activity are already in clinical trials and many more are likely to appear in the near future. Here, we review the different families of mammalian PRRs, the ligands they recognize, the mechanisms of activation, their role in disease, and the potential of targeting these proteins to develop the anti-inflammatory therapeutics of the future. PMID:25829385

  17. Collagen hydrolysate based collagen/hydroxyapatite composite materials

    NASA Astrophysics Data System (ADS)

    Ficai, Anton; Albu, Madalina Georgiana; Birsan, Mihaela; Sonmez, Maria; Ficai, Denisa; Trandafir, Viorica; Andronescu, Ecaterina

    2013-04-01

    The aim of this study was to study the influence of collagen hydrolysate (HAS) on the formation of ternary collagen-hydrolysate/hydroxyapatite composite materials (COLL-HAS/HA). During the precipitation process of HA, a large amount of brushite is resulted at pH = 7 but, practically pure HA is obtained at pH ⩾ 8. The FTIR data reveal the duplication of the most important collagen absorption bands due to the presence of the collagen hydrolysate. The presence of collagen hydrolysate is beneficial for the management of bone and joint disorders such as osteoarthritis and osteoporosis.

  18. International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy.

    PubMed

    Abbracchio, Maria P; Burnstock, Geoffrey; Boeynaems, Jean-Marie; Barnard, Eric A; Boyer, José L; Kennedy, Charles; Knight, Gillian E; Fumagalli, Marta; Gachet, Christian; Jacobson, Kenneth A; Weisman, Gary A

    2006-09-01

    There have been many advances in our knowledge about different aspects of P2Y receptor signaling since the last review published by our International Union of Pharmacology subcommittee. More receptor subtypes have been cloned and characterized and most orphan receptors de-orphanized, so that it is now possible to provide a basis for a future subdivision of P2Y receptor subtypes. More is known about the functional elements of the P2Y receptor molecules and the signaling pathways involved, including interactions with ion channels. There have been substantial developments in the design of selective agonists and antagonists to some of the P2Y receptor subtypes. There are new findings about the mechanisms underlying nucleotide release and ectoenzymatic nucleotide breakdown. Interactions between P2Y receptors and receptors to other signaling molecules have been explored as well as P2Y-mediated control of gene transcription. The distribution and roles of P2Y receptor subtypes in many different cell types are better understood and P2Y receptor-related compounds are being explored for therapeutic purposes. These and other advances are discussed in the present review.

  19. Regulation of µ-Opioid Receptors: Desensitization, Phosphorylation, Internalization, and Tolerance

    PubMed Central

    Williams, John T.; Ingram, Susan L.; Henderson, Graeme; Chavkin, Charles; von Zastrow, Mark; Schulz, Stefan; Koch, Thomas; Evans, Christopher J.

    2013-01-01

    Morphine and related µ-opioid receptor (MOR) agonists remain among the most effective drugs known for acute relief of severe pain. A major problem in treating painful conditions is that tolerance limits the long-term utility of opioid agonists. Considerable effort has been expended on developing an understanding of the molecular and cellular processes that underlie acute MOR signaling, short-term receptor regulation, and the progression of events that lead to tolerance for different MOR agonists. Although great progress has been made in the past decade, many points of contention and controversy cloud the realization of this progress. This review attempts to clarify some confusion by clearly defining terms, such as desensitization and tolerance, and addressing optimal pharmacological analyses for discerning relative importance of these cellular mechanisms. Cellular and molecular mechanisms regulating MOR function by phosphorylation relative to receptor desensitization and endocytosis are comprehensively reviewed, with an emphasis on agonist-biased regulation and areas where knowledge is lacking or controversial. The implications of these mechanisms for understanding the substantial contribution of MOR signaling to opioid tolerance are then considered in detail. While some functional MOR regulatory mechanisms contributing to tolerance are clearly understood, there are large gaps in understanding the molecular processes responsible for loss of MOR function after chronic exposure to opioids. Further elucidation of the cellular mechanisms that are regulated by opioids will be necessary for the successful development of MOR-based approaches to new pain therapeutics that limit the development of tolerance. PMID:23321159

  20. Inhibition of collagen fibrillogenesis by cells expressing soluble extracellular domains of DDR1 and DDR2.

    PubMed

    Flynn, Lisa A; Blissett, Angela R; Calomeni, Edward P; Agarwal, Gunjan

    2010-01-22

    Collagen fiber assembly affects many physiological processes and is tightly controlled by collagen-binding proteins. However, to what extent membrane-bound versus cell-secreted collagen-binding proteins affect collagen fibrillogenesis is not well understood. In our previous studies, we had demonstrated that the membrane-anchored extracellular domain (ECD) of the collagen receptor discoidin domain receptor 2 (DDR2) inhibits fibrillogenesis of collagen endogenously secreted by the cells. These results led to a novel functional role of the DDR2 ECD. However, since soluble forms of DDR1 and DDR2 containing its ECD are known to naturally exist in the extracellular matrix, in this work we investigated if these soluble DDR ECDs may have a functional role in modulating collagen fibrillogenesis. For this purpose, we created mouse osteoblast cell lines stably secreting DDR1 or DDR2 ECD as soluble proteins. Transmission electron microscopy, fluorescence microscopy, and hydroxyproline assays were used to demonstrate that DDR ECD expression reduced the rate and quantity of collagen deposition and induced significant changes in fiber morphology and matrix mineralization. Collectively, our studies advance our understanding of DDR receptors as powerful regulators of collagen deposition in the ECM and elucidate their multifaceted role in ECM remodeling.

  1. Internalization and activation of the rat liver insulin receptor kinase in vivo.

    PubMed

    Khan, M N; Baquiran, G; Brule, C; Burgess, J; Foster, B; Bergeron, J J; Posner, B I

    1989-08-05

    The preparation of clearly delineated plasmalemma (PM) and endosomal subcellular fractions from rat liver has allowed us to compare insulin receptor (IR) kinase activity at the cell surface and in hepatic endosomes (ENs) as a function of dose and time after injected insulin. Tyrosine kinase activity in PM and ENs was measured, after solubilization and partial purification by wheat germ agglutinin chromatography (lectin-purified), using poly(Glu:Tyr) as substrate. Following the injection of a subsaturating dose of insulin (1.5 micrograms/100 g body weight), lectin-purified receptor showed peak activation at 30 s in PM and at 2 min in ENs. As observed previously (Khan, M. N., Savoie, S., Bergeron, J. J. M., and Posner, B. I. (1986) J. Biol. Chem. 261, 8462-8472) autophosphorylation activity was also augmented following insulin injection. In a pattern virtually identical to that of exogenous kinase activity, autophosphorylation attained peak activity at 30 s in PM and at 2 min in ENs. The time course of IR autophosphorylation in intact membranes was very similar to that observed for lectin purified receptors and was seen with an injected insulin dose as low as 150 ng/100 g body weight. Phosphatase treatment of the solubilized endosomal receptor abolished its enhanced activity. Hence, insulin treatment led to in vivo receptor phosphorylation which was reflected in the enhancement of both tyrosine kinase and autophosphorylation activities. Significant differences in the phosphorylation activities of PM and ENs were observed. Phosphoamino acid analyses revealed that the activated IR of intact PM was autophosphorylated in vitro, at both serine (55%) and tyrosine (45%) residues; whereas the activated IR of intact ENs was phosphorylated in vitro exclusively on tyrosine autophosphorylation specific activity for the activated IR of ENs was 3- to 4-fold that of the IR of PM. This was observed for the lectin purified IRs as well as for IRs of intact cell fractions. The reduced

  2. RGS2 modulates the activity and internalization of dopamine D2 receptors in neuroblastoma N2A cells.

    PubMed

    Luessen, Deborah J; Hinshaw, Tyler P; Sun, Haiguo; Howlett, Allyn C; Marrs, Glen; McCool, Brian A; Chen, Rong

    2016-11-01

    Dysregulated expression and function of dopamine D2 receptors (D2Rs) are implicated in drug addiction, Parkinson's disease and schizophrenia. In the current study, we examined whether D2Rs are modulated by regulator of G protein signaling 2 (RGS2), a member of the RGS family that regulates G protein signaling via acceleration of GTPase activity. Using neuroblastoma 2a (N2A) cells, we found that RGS2 was immunoprecipitated by aluminum fluoride-activated Gαi2 proteins. RGS2 siRNA knockdown enhanced membrane [(35)S] GTPγS binding to activated Gαi/o proteins, augmented inhibition of cAMP accumulation and increased ERK phosphorylation in the presence of a D2/D3R agonist quinpirole when compared to scrambled siRNA treatment. These data suggest that RGS2 is a negative modulator of D2R-mediated Gαi/o signaling. Moreover, RGS2 knockdown slightly increased constitutive D2R internalization and markedly abolished quinpirole-induced D2R internalization assessed by immunocytochemistry. RGS2 knockdown did not compromise agonist-induced β-arrestin membrane recruitment; however, it prevents β-arrestin dissociation from the membrane after prolonged quinpirole treatment during which time β-arrestin moved away from the membrane in control cells. Additionally, confocal microscopy analysis of β-arrestin post-endocytic fate revealed that quinpirole treatment caused β-arrestin to translocate to the early and the recycling endosome in a time-dependent manner in control cells whereas translocation of β-arrestin to these endosomes did not occur in RGS2 knockdown cells. The impaired β-arrestin translocation likely contributed to the abolishment of quinpirole-stimulated D2R internalization in RGS2 knockdown cells. Thus, RGS2 is integral for β-arrestin-mediated D2R internalization. The current study revealed a novel regulation of D2R signaling and internalization by RGS2 proteins.

  3. The carboxy-terminal tail or the intracellular loop 3 is required for β-arrestin-dependent internalization of a mammalian type II GnRH receptor.

    PubMed

    Madziva, Michael T; Mkhize, Nonhlanhla N; Flanagan, Colleen A; Katz, Arieh A

    2015-08-15

    The type II GnRH receptor (GnRH-R2) in contrast to mammalian type I GnRH receptor (GnRH-R1) has a cytosolic carboxy-terminal tail. We investigated the role of β-arrestin 1 in GnRH-R2-mediated signalling and mapped the regions in GnRH-R2 required for recruitment of β-arrestin, employing internalization assays. We show that GnRH-R2 activation of ERK is dependent on β-arrestin and protein kinase C. Appending the tail of GnRH-R2 to GnRH-R1 enabled GRK- and β-arrestin-dependent internalization of the chimaeric receptor. Surprisingly, carboxy-terminally truncated GnRH-R2 retained β-arrestin and GRK-dependent internalization, suggesting that β-arrestin interacts with additional elements of GnRH-R2. Mutating serine and threonine or basic residues of intracellular loop 3 did not abolish β-arrestin 1-dependent internalization but a receptor lacking these basic residues and the carboxy-terminus showed no β-arrestin 1-dependent internalization. Our results suggest that basic residues at the amino-terminal end of intracellular loop 3 or the carboxy-terminal tail are required for β-arrestin dependent internalization.

  4. Down-regulation of insulin receptor substrates (IRS)-1 and IRS-2 and Src homologous and collagen-like protein Shc gene expression by insulin in skeletal muscle is not associated with insulin resistance or type 2 diabetes.

    PubMed

    Huang, Xudong; Vaag, Allan; Hansson, Mona; Groop, Leif

    2002-01-01

    To examine whether altered gene expression of insulin receptor substrates (IRS)-1 and IRS-2 and Src homologous and collagen-like protein Shc is an inherited trait and is associated with muscle insulin resistance or type 2 diabetes, we measured mRNA levels of these genes by a relative quantitative RT-PCR method in muscle biopsies taken before and after an insulin clamp from 12 monozygotic twin pairs discordant for type 2 diabetes and 12 control subjects. Insulin-stimulated glucose uptake was decreased both in the diabetic and nondiabetic twin, compared with healthy control subjects (5.2 +/- 0.7 and 8.5 +/- 0.8 vs. 11.4 +/- 0.9 mg/kg x min(-1); P < 0.01 and P < 0.02, respectively). Basal mRNA levels of IRS-1, IRS-2, and Shc were similar in the diabetic and nondiabetic twins as well as in the control subjects. Insulin decreased mRNA expression of IRS-1 by 72% (from 0.75 +/- 0.06 to 0.21 +/- 0.04 relative units; P < 0.001), IRS-2 by 71% (from 0.55 +/- 0.10 to 0.16 +/- 0.08 relative units; P < 0.03), and Shc by 25% (from 0.95 +/- 0.04 to 0.71 +/- 0.04 relative units; P < 0.01) vs. baseline as demonstrated in the control subjects. The postclamp Shc mRNA level was slightly higher in the diabetic twins (P = 0.05) but similar in the nondiabetic twins, as compared with the control subjects, whereas postclamp IRS-1 and IRS-2 mRNA levels were similar between the study groups. There was an inverse correlation between postclamp Shc mRNA concentration and glucose uptake (r = -0.53, P = 0.01; n = 22) in the controls and nondiabetic twins. However, the decrease in Shc gene expression by insulin was not significantly different between the study groups. In conclusion, because insulin down-regulates IRS-1, IRS-2, and Shc gene expression in skeletal muscle in diabetic and nondiabetic monozygotic twins and control subjects to the same extent, it is unlikely that expression of these genes is an inherited trait or contributes to skeletal muscle insulin resistance.

  5. International Validation of Two Human Recombinant Estrogen Receptor (ERa) Binding Assays

    EPA Science Inventory

    An international validation study has been successfully completed for 2 competitive binding assays using human recombinant ERa. Assays evaluated included the Freyberger-Wilson (FW) assay using a full length human ER, and the Chemical Evaluation and Research Institute (CERI) assay...

  6. Collagen network strengthening following cyclic tensile loading.

    PubMed

    Susilo, Monica E; Paten, Jeffrey A; Sander, Edward A; Nguyen, Thao D; Ruberti, Jeffrey W

    2016-02-06

    The bulk mechanical properties of tissues are highly tuned to the physiological loads they experience and reflect the hierarchical structure and mechanical properties of their constituent parts. A thorough understanding of the processes involved in tissue adaptation is required to develop multi-scale computational models of tissue remodelling. While extracellular matrix (ECM) remodelling is partly due to the changing cellular metabolic activity, there may also be mechanically directed changes in ECM nano/microscale organization which lead to mechanical tuning. The thermal and enzymatic stability of collagen, which is the principal load-bearing biopolymer in vertebrates, have been shown to be enhanced by force suggesting that collagen has an active role in ECM mechanical properties. Here, we ask how changes in the mechanical properties of a collagen-based material are reflected by alterations in the micro/nanoscale collagen network following cyclic loading. Surprisingly, we observed significantly higher tensile stiffness and ultimate tensile strength, roughly analogous to the effect of work hardening, in the absence of network realignment and alterations to the fibril area fraction. The data suggest that mechanical loading induces stabilizing changes internal to the fibrils themselves or in the fibril-fibril interactions. If such a cell-independent strengthening effect is operational in vivo, then it would be an important consideration in any multiscale computational approach to ECM growth and remodelling.

  7. Palmitoylation of cysteine 415 of CB1 receptor affects ligand-stimulated internalization and selective interaction with membrane cholesterol and caveolin 1.

    PubMed

    Oddi, Sergio; Stepniewski, Tomasz Maciej; Totaro, Antonio; Selent, Jana; Scipioni, Lucia; Dufrusine, Beatrice; Fezza, Filomena; Dainese, Enrico; Maccarrone, Mauro

    2017-02-12

    We previously demonstrated that CB1 receptor is palmitoylated at cysteine 415, and that such a post-translational modification affects its biological activity. To assess the molecular mechanisms responsible for modulation of CB1 receptor function by S-palmitoylation, in this study biochemical and morphological approaches were paralleled with computational analyses. Molecular dynamics simulations suggested that this acyl chain stabilizes helix 8 as well as the interaction of CB1 receptor with membrane cholesterol. In keeping with these in silico data, experimental results showed that the non-palmitoylated CB1 receptor was unable to interact efficaciously with caveolin 1, independently of its activation state. Moreover, in contrast with the wild-type receptor, the lack of S-palmitoylation in the helix 8 made the mutant CB1 receptor completely irresponsive to agonist-induced effects in terms of both lipid raft partitioning and receptor internalization. Overall, our results support the notion that palmitoylation of cysteine 415 modulates the conformational state of helix 8 and influences the interactions of CB1 receptor with cholesterol and caveolin 1, suggesting that the palmitoyl chain may serve as a functional interface for CB1 receptor localization and function.

  8. The modular adaptor protein ARH is required for low density lipoprotein (LDL) binding and internalization but not for LDL receptor clustering in coated pits.

    PubMed

    Michaely, Peter; Li, Wei-Ping; Anderson, Richard G W; Cohen, Jonathan C; Hobbs, Helen H

    2004-08-06

    ARH is an adaptor protein required for efficient endocytosis of low density lipoprotein (LDL) receptors (LDLRs) in selected tissues. Individuals lacking ARH (ARH-/-) have severe hypercholesterolemia due to impaired hepatic clearance of LDL. Immortalized lymphocytes, but not fibroblasts, from ARH-deficient subjects fail to internalize LDL. To further define the role of ARH in LDLR function, we compared the subcellular distribution of the LDLR in lymphocytes from normal and ARH-/- subjects. In normal lymphocytes LDLRs were predominantly located in intracellular compartments, whereas in ARH-/- cells the receptors were almost exclusively on the plasma membrane. Biochemical assays and quantification of LDLR by electron microscopy indicated that ARH-/- lymphocytes had >20-fold more LDLR on the cell surface and a approximately 27-fold excess of LDLR outside of coated pits. The accumulation of LDLR on the cell surface was not due to failure of receptors to localize in coated pits since the number of LDLRs in coated pits was similar in ARH-/- and normal cells. Despite the dramatic increase in cell surface receptors, LDL binding was only 2-fold higher in the ARH-/- lymphocytes. These findings indicate that ARH is required not only for internalization of the LDL.LDLR complex but also for efficient binding of LDL to the receptor and suggest that ARH stabilizes the associations of the receptor with LDL and with the invaginating portion of the budding pit, thereby increasing the efficiency of LDL internalization.

  9. Unit Title: Imaging the Insertion of Superecliptic pHluorin Labeled Dopamine D2 Receptor Using Total Internal Reflection Fluorescence Microscopy

    PubMed Central

    Daly, Kathryn M.; Li, Yun; Lin, Da-Ting

    2015-01-01

    A better understanding of mechanisms governing receptor insertion to the plasma membrane (PM) requires an experimental approach with excellent spatial and temporal resolutions. Here we present a strategy that enables dynamic visualization of insertion events for dopamine D2 receptors into the PM. This approach includes tagging a pH-sensitive GFP, superecliptic pHluorin, to the extracellular domain of the receptor. By imaging pHluorin-tagged receptors under total internal reflection fluorescence microscopy (TIRFM), we were able to directly visualize individual receptor insertion events into the PM in cultured neurons. This novel imaging approach can be applied to both secreted proteins and many membrane proteins with an extracellular domain labeled with superecliptic pHluorin, and will ultimately allow for detailed dissections of the key mechanisms governing secretion of soluble proteins or the insertion of different membrane proteins to the PM. PMID:25559003

  10. Angiotensin-II mediates ACE2 Internalization and Degradation through an Angiotensin-II type I receptor-dependent mechanism

    PubMed Central

    Lazartigues, Eric; Filipeanu, Catalin M.

    2014-01-01

    Angiotensin Converting Enzyme type 2 (ACE2) is a pivotal component of the renin-angiotensin system, promoting the conversion of Angiotensin (Ang)-II to Ang-(1-7). We previously reported that decreased ACE2 expression and activity contribute to the development of Ang-II-mediated hypertension in mice. The present study aimed to investigate the mechanisms involved in ACE2 down-regulation during neurogenic hypertension. In ACE2-transfected Neuro-2A cells, Ang-II treatment resulted in a significant attenuation of ACE2 enzymatic activity. Examination of the subcellular localization of ACE2 revealed that Ang-II treatment leads to ACE2 internalization and degradation into lysosomes. These effects were prevented by both the Ang-II type 1 receptor (AT1R) blocker losartan and the lysosomal inhibitor leupeptin. In contrast, in HEK293T cells, which lack endogenous AT1R, Ang-II failed to promote ACE2 internalization. Moreover, this effect could be induced after AT1R transfection. Further, co-immunoprecipitation experiments demonstrated that AT1R and ACE2 form complexes and these interactions were decreased by Ang-II treatment, which also enhanced ACE2 ubiquitination. In contrast, ACE2 activity was not changed by transfection of AT2 or Mas receptors. In vivo, Ang-II-mediated hypertension was blunted by chronic infusion of leupeptin in wildtype C57Bl/6, but not in ACE2 knockout mice. Overall, this is the first demonstration that elevated Ang-II levels reduce ACE2 expression and activity by stimulation of lysosomal degradation through an AT1R-dependent mechanism. PMID:25225202

  11. Glycan-independent binding and internalization of human IgM to FCMR, its cognate cellular receptor

    NASA Astrophysics Data System (ADS)

    Lloyd, Katy A.; Wang, Jiabin; Urban, Britta C.; Czajkowsky, Daniel M.; Pleass, Richard J.

    2017-02-01

    IgM is the first antibody to be produced in immune responses and plays an important role in the neutralization of bacteria and viruses. Human IgM is heavily glycosylated, featuring five N-linked glycan sites on the μ chain and one on the J-chain. Glycosylation of IgG is known to modulate the effector functions of Fcγ receptors. In contrast, little is known about the effect of glycosylation on IgM binding to the human Fcμ receptor (hFCMR). In this study, we identify the Cμ4 domain of IgM as the target of hFCMR, and show that binding and internalization of IgM by hFCMR is glycan-independent. We generated a homology-based structure for hFCMR and used molecular dynamic simulations to show how this interaction with IgM may occur. Finally, we reveal an inhibitory function for IgM in the proliferation of T cells.

  12. Glycan-independent binding and internalization of human IgM to FCMR, its cognate cellular receptor

    PubMed Central

    Lloyd, Katy A.; Wang, Jiabin; Urban, Britta C.; Czajkowsky, Daniel M.; Pleass, Richard J.

    2017-01-01

    IgM is the first antibody to be produced in immune responses and plays an important role in the neutralization of bacteria and viruses. Human IgM is heavily glycosylated, featuring five N-linked glycan sites on the μ chain and one on the J-chain. Glycosylation of IgG is known to modulate the effector functions of Fcγ receptors. In contrast, little is known about the effect of glycosylation on IgM binding to the human Fcμ receptor (hFCMR). In this study, we identify the Cμ4 domain of IgM as the target of hFCMR, and show that binding and internalization of IgM by hFCMR is glycan-independent. We generated a homology-based structure for hFCMR and used molecular dynamic simulations to show how this interaction with IgM may occur. Finally, we reveal an inhibitory function for IgM in the proliferation of T cells. PMID:28230186

  13. Human circulating monocytes internalize 125I-insulin in a similar fashion to rat hepatocytes: relevance to receptor regulation in target and nontarget tissues.

    PubMed

    Grunberger, G; Robert, A; Carpentier, J L; Dayer, J M; Roth, A; Stevenson, H C; Orci, L; Gorden, P

    1985-08-01

    Circulating monocytes bind 125I-insulin in a specific fashion and have been used to analyze the ambient receptor status in humans. When freshly isolated circulating monocytes are incubated with 125I-insulin and examined by electron microscopic autoradiography, approximately 18% of the labeled material is internalized after 15 minutes at 37 degrees C. By 2 hours at 37 degrees C, approximately one half of the 125I-insulin is internalized. Internalization occurs also at 15 degrees C but at a slower rate. Furthermore, the monocytes bind and internalize 125I-insulin in a manner that mirrors that of major target tissues, such as rat hepatocytes. These data suggest that the insulin receptor of the circulating monocyte might be regulated by adsorptive endocytosis in a manner analogous to that of target tissue, such as the liver.

  14. Imaging Prostate Cancer Microenvironment by Collagen Hybridization

    DTIC Science & Technology

    2015-10-01

    bearing a range of selected subcutaneous prostate cancer xenografts resulted in the observation of a trend in which CMP-800 accumulates with higher...xenogratfs to reflect androgen receptor sensitivity status, expression of the biomarker PSMA and speed at which the tumors were growing. Mice bearing ...2. [111In](CXH-A)-(lys2)-DTPA-CMP9-(cys1)-IRDye800CW SPECT-CT at 3-6 h post-injection. Five mice, each bearing a single PC-3 PIP (higher Δ collagen

  15. Total saponins of Panax ginseng induces K562 cell differentiation by promoting internalization of the erythropoietin receptor.

    PubMed

    Zuo, Guowei; Guan, Tao; Chen, Dilong; Li, Chunli; Jiang, Rong; Luo, Chunyan; Hu, Xiaoshu; Wang, Yaping; Wang, Jianwei

    2009-01-01

    Ginseng is a commonly used herbal medicine with a wide range of therapeutic benefits. Total saponins of Panax ginseng (TSPG) is one of the main effective components of ginseng. Our previous studies have shown that TSPG could promote the production of normal blood cells and inhibition of the leukemia cell proliferation. However, whether ginseng can induce the differentiation of leukemia cells is still unclear. This study was to examine the effect of TSPG or the combination of erythropoietin (EPO) and TSPG on the erythroid differentiation of K562 cells, and their corresponding mechanisms regarding erythropoietin receptor (EPOR) expression. Under light and electron microscopes, the TSPG- or TSPG + EPO-treated K562 cells showed a tendency to undergo erythroid differentiation; early and intermediate erythroblast-like cells were observed. Hemoglobin and HIR2 expressions were significantly increased. As determined by Western blotting analysis, the EPOR protein level in the K562 cytoplasmic membrane was significantly decreased after TSPG treatment, while its cytoplasm level increased in a dose-dependent manner. However, the total cellular EPOR level was unchanged. These results indicate that TSPG-induced erythroid differentiation of K562 cells may be accompanied by the internalization of EPOR. Thus, our study suggests that treatment with a combination of TSPG and EPO may induce erythroid differentiation of K562 cells at least in part through induction of EPOR internalization.

  16. UV damage of collagen: insights from model collagen peptides.

    PubMed

    Jariashvili, Ketevan; Madhan, Balaraman; Brodsky, Barbara; Kuchava, Ana; Namicheishvili, Louisa; Metreveli, Nunu

    2012-03-01

    Fibrils of Type I collagen in the skin are exposed to ultraviolet (UV) light and there have been claims that collagen photo-degradation leads to wrinkles and may contribute to skin cancers. To understand the effects of UV radiation on collagen, Type I collagen solutions were exposed to the UV-C wavelength of 254 nm for defined lengths of time at 4°C. Circular dichroism (CD) experiments show that irradiation of collagen leads to high loss of triple helical content with a new lower thermal stability peak and SDS-gel electrophoresis indicates breakdown of collagen chains. To better define the effects of UV radiation on the collagen triple-helix, the studies were extended to peptides which model the collagen sequence and conformation. CD studies showed irradiation for days led to lower magnitudes of the triple-helix maximum at 225 nm and lower thermal stabilities for two peptides containing multiple Gly-Pro-Hyp triplets. In contrast, the highest radiation exposure led to little change in the T(m) values of (Gly-Pro-Pro)(10) and (Ala-Hyp-Gly)(10) , although (Gly-Pro-Pro)(10) did show a significant decrease in triple helix intensity. Mass spectroscopy indicated preferential cleavage sites within the peptides, and identification of some of the most susceptible sites of cleavage. The effect of radiation on these well defined peptides gives insight into the sequence and conformational specificity of photo-degradation of collagen.

  17. Heterogeneity of collagens in rabbit cornea: type VI collagen

    SciTech Connect

    Cintron, C.; Hong, B.S.

    1988-05-01

    Normal adult rabbit corneas were digested with 5% pepsin and their collagens extracted with acetic acid. Collagen extracts were fractionated by differential salt precipitation. The 2.5 M NaCl fraction was then redissolved with tris buffer and precipitated with sodium acetate. The precipitate contained a high-molecular-weight disulfide-bonded aggregate which, upon reduction with mercaptoethanol, was converted into three distinct polypeptides having molecular weights between 45 and 66 Kd. These physical characteristics, together with the susceptibility of these polypeptides to collagenase and their amino acid composition, identified the high molecular weight aggregate as type VI collagen. Corneas from neonate rabbits and adult corneas containing 2-week-old scars were organ cultured in the presence of (/sup 14/C) glycine to incorporate radiolabel into collagen. Tissues were digested with 0.02% pepsin and their collagens extracted with formic acid. The total radioactivity of the extracts and tissue residues was determined before the collagens were separated by SDS-polyacrylamide slab gel electrophoresis. Radioactive collagen polypeptides bands were then stained with Coomassie blue, processed for fluorography, and analyzed by densitometry. The results show that: (1) type VI collagen is synthesized by neonate corneas and healing adult corneas; (2) it is not readily solubilized from either corneal tissue by 0.02% pepsin digestion and formic acid extraction; and (3) the proportion of type VI collagen deposited in scar tissue is markedly lower than that found in neonate corneas.

  18. Heterogeneity of collagens in rabbit cornea: type III collagen

    SciTech Connect

    Cintron, C.; Hong, B.S.; Covington, H.I.; Macarak, E.J.

    1988-05-01

    Whole neonate rabbit corneas and adult corneas containing 2-week-old scars were incubated in the presence of (/sup 14/C) glycine. Radiolabeled collagen extracted from the corneas and scar tissue were analyzed by sodium dodecylsulfate/polyacrylamide gel electrophoresis and fluorography to determine the types and relative quantity of collagen polypeptides present and synthesized by these tissues. In addition to other collagen types, type III was found in both neonate cornea and scar tissue from adult cornea, albeit in relatively small quantities. Type III collagen in normal cornea was associated with the residue after pepsin digestion and formic acid extraction of the tissue, and the same type of collagen was extracted from scar tissue after similar treatment. Type III collagen-specific monoclonal antibody bound to developing normal corneas and healing adult tissue sections, as determined by immunofluorescence. Antibody binding was localized to the endothelium and growing Descemet's membrane in fetal and neonate corneas, and restricted to the most posterior region of the corneal scar tissue. Although monoclonal antibody to keratan sulfate, used as a marker for stromal fibroblasts, bound to most of the scar tissue, the antibody failed to bind to the posterior scar tissue positive for type III collagen. We conclude that endothelial cells from fetal and neonate rabbit cornea and endothelium-derived fibroblasts from healing wounds of adult cornea synthesize and deposit type III collagen. Moreover, this collagen appears to be incorporated into the growing Descemet's membrane of normal corneas and narrow posterior portion of the scar tissue.

  19. Cryptic collagen IV promotes cell migration and adhesion in myeloid leukemia.

    PubMed

    Favreau, Amanda J; Vary, Calvin P H; Brooks, Peter C; Sathyanarayana, Pradeep

    2014-04-01

    Previously, we showed that discoidin domain receptor 1 (DDR1), a class of collagen-activated receptor tyrosine kinase (RTK) was highly upregulated on bone marrow (BM)-derived CD33+ leukemic blasts of acute myeloid leukemia (AML) patients. Herein as DDR1 is a class of collagen-activated RTK, we attempt to understand the role of native and remodeled collagen IV in BM microenvironment and its functional significance in leukemic cells. Exposure to denatured collagen IV significantly increased the migration and adhesion of K562 cells, which also resulted in increased activation of DDR1 and AKT. Further, levels of MMP9 were increased in conditioned media (CM) of denatured collagen IV exposed cells. Mass spectrometric liquid chromatography/tandem mass spectrometry QSTAR proteomic analysis revealed exclusive presence of Secretogranin 3 and InaD-like protein in the denatured collagen IV CM. Importantly, BM samples of AML patients exhibited increased levels of remodeled collagen IV compared to native as analyzed via anti-HUIV26 antibody. Taken together, for the first time, we demonstrate that remodeled collagen IV is a potent activator of DDR1 and AKT that also modulates both migration and adhesion of myeloid leukemia cells. Additionally, high levels of the HUIV26 cryptic collagen IV epitope are expressed in BM of AML patients. Further understanding of this phenomenon may lead to the development of therapeutic agents that directly modulate the BM microenvironment and attenuate leukemogenesis.

  20. Regulation of collagen fibrillogenesis by cell-surface expression of kinase dead DDR2.

    PubMed

    Blissett, Angela R; Garbellini, Derek; Calomeni, Edward P; Mihai, Cosmin; Elton, Terry S; Agarwal, Gunjan

    2009-01-23

    The assembly of collagen fibers, the major component of the extracellular matrix (ECM), governs a variety of physiological processes. Collagen fibrillogenesis is a tightly controlled process in which several factors, including collagen binding proteins, have a crucial role. Discoidin domain receptors (DDR1 and DDR2) are receptor tyrosine kinases that bind to and are phosphorylated upon collagen binding. The phosphorylation of DDRs is known to activate matrix metalloproteases, which in turn cleave the ECM. In our earlier studies, we established a novel mechanism of collagen regulation by DDRs; that is, the extracellular domain (ECD) of DDR2, when used as a purified, soluble protein, inhibits collagen fibrillogenesis in-vitro. To extend this novel observation, the current study investigates how the DDR2-ECD, when expressed as a membrane-anchored, cell-surface protein, affects collagen fibrillogenesis by cells. We generated a mouse osteoblast cell line that stably expresses a kinase-deficient form of DDR2, termed DDR2/-KD, on its cell surface. Transmission electron microscopy, fluorescence microscopy, and hydroxyproline assays demonstrated that the expression of DDR2/-KD reduced the rate and abundance of collagen deposition and induced significant morphological changes in the resulting fibers. Taken together, our observations extend the functional roles that DDR2 and possibly other membrane-anchored, collagen-binding proteins can play in the regulation of cell adhesion, migration, proliferation and in the remodeling of the extracellular matrix.

  1. Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1

    SciTech Connect

    Veggiani, Gianluca; Ossolengo, Giuseppe; Aliprandi, Marisa; Cavallaro, Ugo; Marco, Ario de

    2011-05-20

    Highlights: {yields} Recombinant antibodies for FGFR1 were isolated from a llama naive library in VHH format. {yields} These antibodies compete with the natural ligand FGF-2 for the same epitope on FGFR1. {yields} The antibody competition inhibits the FGF-2-dependent internalization of FGFR1. -- Abstract: Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naive library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. These antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.

  2. Collagenous colitis: an unrecognised entity.

    PubMed Central

    Bogomoletz, W V; Adnet, J J; Birembaut, P; Feydy, P; Dupont, P

    1980-01-01

    A patient is reported with chronic abdominal pain, diarrhoea, and associated radiological and endoscopic abnormalities of the sigmoid colon. Light and electron microscopic study of colorectal mucosa showed abnormal collagenous thickening of the subepithelial basement membrane. The authors felt that the clinical and morphological features justified a diagnosis of collagenous colitis. Review of the literature suggested that collagenous colitis was still an unrecognised entity. Images Fig. 1 Fig. 2 Fig. 3 PMID:7380341

  3. Second harmonic generation in collagen

    NASA Astrophysics Data System (ADS)

    Reiser, Karen M.; Stoller, Patrick; Celliers, Peter; Rubenchik, Alexander; Bratton, Clay; Yankelevich, Diego

    2003-11-01

    Collagen possesses a strong second order nonlinear susceptibility; when it is irradiated with intense laser light, some of the reflected and transmitted light will have twice the frequency of the incident beam, a phenomenon known as second harmonic generation (SHG). Polarization modulation of an ultra-short pulse laser beam can be used to simultaneously measure collagen fiber orientation, SHG intensity, and a parameter related to the second order non-linear susceptibility. This technique has made it possible to discriminate among patterns of fibrillar orientation in many tissues. In the present study the role that organizational complexity plays in the relationship between nonlinear optical properties and collagen structure is investigated. As a component of tissues and organs, collagen"s structure and function is inextricably intertwined with that of the many other matrix components; to what extent do these noncollagenous components affect its nonlinear properties? To answer this, we investigated SHG in two different collagenous tissues, liver and cartilage; in addition we looked at the effect of progressive pathological changes in these tissues on SHG. At the other end of the spectrum, we studied collagen organized at the minimal level of complexity necessary for SHG detection: fibrils generated from solutions containing only a single type of collagen. Data obtained from these studies suggest that collagen"s strong nonlinear susceptibility, a property no other biologically significant macromolecule shares to the same degree, may serve as more than the basis of a novel imaging device for soft tissue. Collagen"s nonlinear optical properties in conjunction with its vast capacity for self-initiated conformational change--through self-assembly, site recognition, post-translational modification, and the like -make it an attractive candidate molecule for any of several demanding engineering applications, such as nanopatterning.

  4. Induction of the Alternative NF-κB Pathway by Lymphotoxin αβ (LTαβ) Relies on Internalization of LTβ Receptor ▿ †

    PubMed Central

    Ganeff, Corinne; Remouchamps, Caroline; Boutaffala, Layla; Benezech, Cécile; Galopin, Géraldine; Vandepaer, Sarah; Bouillenne, Fabrice; Ormenese, Sandra; Chariot, Alain; Schneider, Pascal; Caamaño, Jorge; Piette, Jacques; Dejardin, Emmanuel

    2011-01-01

    Several tumor necrosis factor receptor (TNFR) family members activate both the classical and the alternative NF-κB pathways. However, how a single receptor engages these two distinct pathways is still poorly understood. Using lymphotoxin β receptor (LTβR) as a prototype, we showed that activation of the alternative, but not the classical, NF-κB pathway relied on internalization of the receptor. Further molecular analyses revealed a specific cytosolic region of LTβR essential for its internalization, TRAF3 recruitment, and p100 processing. Interestingly, we found that dynamin-dependent, but clathrin-independent, internalization of LTβR appeared to be required for the activation of the alternative, but not the classical, NF-κB pathway. In vivo, ligand-induced internalization of LTβR in mesenteric lymph node stromal cells correlated with induction of alternative NF-κB target genes. Thus, our data shed light on LTβR cellular trafficking as a process required for specific biological functions of NF-κB. PMID:21896778

  5. Induction of the alternative NF-κB pathway by lymphotoxin αβ (LTαβ) relies on internalization of LTβ receptor.

    PubMed

    Ganeff, Corinne; Remouchamps, Caroline; Boutaffala, Layla; Benezech, Cécile; Galopin, Géraldine; Vandepaer, Sarah; Bouillenne, Fabrice; Ormenese, Sandra; Chariot, Alain; Schneider, Pascal; Caamaño, Jorge; Piette, Jacques; Dejardin, Emmanuel

    2011-11-01

    Several tumor necrosis factor receptor (TNFR) family members activate both the classical and the alternative NF-κB pathways. However, how a single receptor engages these two distinct pathways is still poorly understood. Using lymphotoxin β receptor (LTβR) as a prototype, we showed that activation of the alternative, but not the classical, NF-κB pathway relied on internalization of the receptor. Further molecular analyses revealed a specific cytosolic region of LTβR essential for its internalization, TRAF3 recruitment, and p100 processing. Interestingly, we found that dynamin-dependent, but clathrin-independent, internalization of LTβR appeared to be required for the activation of the alternative, but not the classical, NF-κB pathway. In vivo, ligand-induced internalization of LTβR in mesenteric lymph node stromal cells correlated with induction of alternative NF-κB target genes. Thus, our data shed light on LTβR cellular trafficking as a process required for specific biological functions of NF-κB.

  6. Stabilization and Anomalous Hydration of Collagen Fibril under Heating

    PubMed Central

    Gevorkian, Sasun G.; Allahverdyan, Armen E.; Gevorgyan, David S.; Simonian, Aleksandr L.; Hu, Chin-Kun

    2013-01-01

    Background Type I collagen is the most common protein among higher vertebrates. It forms the basis of fibrous connective tissues (tendon, chord, skin, bones) and ensures mechanical stability and strength of these tissues. It is known, however, that separate triple-helical collagen macromolecules are unstable at physiological temperatures. We want to understand the mechanism of collagen stability at the intermolecular level. To this end, we study the collagen fibril, an intermediate level in the collagen hierarchy between triple-helical macromolecule and tendon. Methodology/Principal Finding When heating a native fibril sample, its Young’s modulus decreases in temperature range 20–58°C due to partial denaturation of triple-helices, but it is approximately constant at 58–75°C, because of stabilization by inter-molecular interactions. The stabilization temperature range 58–75°C has two further important features: here the fibril absorbs water under heating and the internal friction displays a peak. We relate these experimental findings to restructuring of collagen triple-helices in fibril. A theoretical description of the experimental results is provided via a generalization of the standard Zimm-Bragg model for the helix-coil transition. It takes into account intermolecular interactions of collagen triple-helices in fibril and describes water adsorption via the Langmuir mechanism. Conclusion/Significance We uncovered an inter-molecular mechanism that stabilizes the fibril made of unstable collagen macromolecules. This mechanism can be relevant for explaining stability of collagen. PMID:24244320

  7. Endocytic collagen degradation: a novel mechanism involved in protection against liver fibrosis.

    PubMed

    Madsen, Daniel H; Jürgensen, Henrik J; Ingvarsen, Signe; Melander, Maria C; Vainer, Ben; Egerod, Kristoffer L; Hald, Andreas; Rønø, Birgitte; Madsen, Charlotte A; Bugge, Thomas H; Engelholm, Lars H; Behrendt, Niels

    2012-05-01

    Fibrosis of the liver and its end-stage, cirrhosis, represent major health problems worldwide. In these fibrotic conditions, activated fibroblasts and hepatic stellate cells display a net deposition of collagen. This collagen deposition is a major factor leading to liver dysfunction, thus making it crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked up-regulation of uPARAP/Endo180 in activated fibroblasts and hepatic stellate cells located close to the collagen deposits. In a hepatic stellate cell line, uPARAP/Endo180 was shown to be active in, and required for, the uptake and intracellular degradation of collagen. To evaluate the functional importance of this collagen receptor in vivo, liver fibrosis was induced in uPARAP/Endo180-deficient mice and littermate wild-type mice by chronic CCl(4) administration. A strong up-regulation of uPARAP/Endo180 was observed in wild-type mice, and a quantitative comparison of collagen deposits in the two groups of mice clearly revealed a fibrosis protective role of uPARAP/Endo180. This effect appeared to directly reflect the activity of the collagen receptor, since no compensatory events were noted when comparing the mRNA expression profiles of the two groups of mice in an array system focused on matrix-degrading components. This function of uPARAP/Endo180 defines a novel role of intracellular collagen turnover in fibrosis protection.

  8. Engineering multiple biological functional motifs into a blank collagen-like protein template from Streptococcus pyogenes.

    PubMed

    Peng, Yong Y; Stoichevska, Violet; Schacht, Kristin; Werkmeister, Jerome A; Ramshaw, John A M

    2014-07-01

    Bacterially derived triple-helical, collagen-like proteins are attractive as potential biomedical materials. The collagen-like domain of the Scl2 protein from S. pyogenes lacks any specific binding sites for mammalian cells yet possesses the inherent structural integrity of the collagen triple-helix of animal collagens. It can, therefore, be considered as a structurally-stable "blank slate" into which various defined, biological sequences, derived from animal collagens, can be added by substitutions or insertions, to enable production of novel designed materials to fit specific functional requirements. In the present study, we have used site directed mutagenesis to substitute two functional sequences, one for heparin binding and the other for integrin binding, into different locations in the triple-helical structure. This provided three new constructs, two containing the single substitutions and one containing both substitutions. The stability of these constructs was marginally reduced when compared to the unmodified sequence. When compared to the unmodified bacterial collagen, both the modified collagens that contain the heparin binding site showed marked binding of fluorescently labeled heparin. Similarly, the modified collagens from both constructs containing the integrin binding site showed significant adhesion of L929 cells that are known to possess the appropriate integrin receptor. C2C12 cells that lack any appropriate integrins did not bind. These data show that bacterial collagen-like sequences can be modified to act like natural extracellular matrix collagens by inserting one or more unique biological domains with defined function.

  9. Physiological regulation of extracellular matrix collagen and elastin in the arterial wall of rats by noradrenergic tone and angiotensin II.

    PubMed

    Dab, Houcine; Kacem, Kamel; Hachani, Rafik; Dhaouadi, Nadra; Hodroj, Wassim; Sakly, Mohsen; Randon, Jacques; Bricca, Giampiero

    2012-03-01

    The interactions between the effects of the sympathetic nervous system (SNS) and angiotensin II (ANG II) on vascular extracellular matrix (ECM) synthesis were determined in rats. The mRNA and protein content of collagen I, collagen III and elastin in the abdominal aorta (AA) and femoral artery (FA) was investigated in Wistar-Kyoto rats treated for 5 weeks with guanethidine, a sympathoplegic, losartan, an ANG II AT1 receptor (AT1R) blocker, or both. The effects of noradrenaline (NE) and ANG II on collagen III and elastin mRNA, and the receptor involved, were tested in cultured vascular smooth muscle cells (VSMCs) in vitro. Guanethidine increased collagen types I and III and decreased elastin, while losartan had an opposite effect, although without effect on collagen III. The combination of treatments abrogated changes induced by simple treatment with collagen I and elastin, but increased collagen III mRNA in AA and not in FA. NE stimulated collagen III mRNA via β receptors and elastin via α1 and α2 receptors. ANG II stimulated collagen III but inhibited elastin mRNA via AT1R. Overall, SNS and ANG II exert opposite and antagonistic effects on major components of ECM in the vascular wall. This may be of relevance for the choice of a therapeutic strategy in vascular diseases.

  10. Calcium modulates calmodulin/α-actinin 1 interaction with and agonist-dependent internalization of the adenosine A2A receptor.

    PubMed

    Piirainen, Henni; Taura, Jaume; Kursula, Petri; Ciruela, Francisco; Jaakola, Veli-Pekka

    2017-04-01

    Adenosine receptors are G protein-coupled receptors that sense extracellular adenosine to transmit intracellular signals. One of the four adenosine receptor subtypes, the adenosine A2A receptor (A2AR), has an exceptionally long intracellular C terminus (A2AR-ct) that mediates interactions with a large array of proteins, including calmodulin and α-actinin. Here, we aimed to ascertain the α-actinin 1/calmodulin interplay whilst binding to A2AR and the role of Ca(2+) in this process. First, we studied the A2AR-α-actinin 1 interaction by means of native polyacrylamide gel electrophoresis, isothermal titration calorimetry, and surface plasmon resonance, using purified recombinant proteins. α-Actinin 1 binds the A2AR-ct through its distal calmodulin-like domain in a Ca(2+)-independent manner with a dissociation constant of 5-12μM, thus showing an ~100 times lower affinity compared to the A2AR-calmodulin/Ca(2+) complex. Importantly, calmodulin displaced α-actinin 1 from the A2AR-ct in a Ca(2+)-dependent fashion, disrupting the A2AR-α-actinin 1 complex. Finally, we assessed the impact of Ca(2+) on A2AR internalization in living cells, a function operated by the A2AR-α-actinin 1 complex. Interestingly, while Ca(2+) influx did not affect constitutive A2AR endocytosis, it abolished agonist-dependent internalization. In addition, we demonstrated that the A2AR/α-actinin interaction plays a pivotal role in receptor internalization and function. Overall, our results suggest that the interplay of A2AR with calmodulin and α-actinin 1 is fine-tuned by Ca(2+), a fact that might power agonist-mediated receptor internalization and function.

  11. Internalization and desensitization of the human glucose-dependent-insulinotropic receptor is affected by N-terminal acetylation of the agonist.

    PubMed

    Ismail, Sadek; Dubois-Vedrenne, Ingrid; Laval, Marie; Tikhonova, Irina G; D'Angelo, Romina; Sanchez, Claire; Clerc, Pascal; Gherardi, Marie-Julie; Gigoux, Véronique; Magnan, Remi; Fourmy, Daniel

    2015-10-15

    How incretins regulate presence of their receptors at the cell surface and their activity is of paramount importance for the development of therapeutic strategies targeting these receptors. We have studied internalization of the human Glucose-Insulinotropic Polypeptide receptor (GIPR). GIP stimulated rapid robust internalization of the GIPR, the major part being directed to lysosomes. GIPR internalization involved mainly clathrin-coated pits, AP-2 and dynamin. However, neither GIPR C-terminal region nor β-arrestin1/2 was required. Finally, N-acetyl-GIP recognized as a dipeptidyl-IV resistant analogue, fully stimulated cAMP production with a ∼15-fold lower potency than GIP and weakly stimulated GIPR internalization and desensitization of cAMP response. Furthermore, docking N-acetyl-GIP in the binding site of modeled GIPR showed slighter interactions with residues of helices 6 and 7 of GIPR compared to GIP. Therefore, incomplete or partial activity of N-acetyl-GIP on signaling involved in GIPR desensitization and internalization contributes to the enhanced incretin activity of this peptide.

  12. Extruded collagen-polyethylene glycol fibers for tissue engineering applications.

    PubMed

    Zeugolis, D I; Paul, R G; Attenburrow, G

    2008-05-01

    The repair of anterior cruciate ligament, skin, tendon and cartilage remains a challenging clinical problem. Extruded collagen fibers comprise a promising scaffold for tissue engineering applications; however the engineering of these fibers has still to be improved to bring this material to clinical practice. Herein we investigate the influence of collagen concentration, the amount of PEG Mw 8K and the extrusion tube internal diameter on the properties of these fibers. Ultrastructural evaluation revealed packed intra-fibrillar structure. The thermal properties were found to be independent of the collagen concentration, the amount of PEG or the extrusion tube internal diameter (p > 0.05). An inversely proportional relationship between dry fiber diameter and stress at break was found. The 20% PEG was identified as the optimal amount required for the production of reproducible fibers. Increasing the collagen concentration resulted in fibers with higher diameter (p < 0.001), force (p < 0.001) and strain at break (p < 0.02) values, whilst the stress at break (p < 0.001) and the modulus (p < 0.007) values were decreased. Increasing the extrusion tube internal diameter influence significantly (p < 0.001) all the investigated mechanical properties. Overall, extruded collagen fibers were produced with properties similar to those of native or synthetic fibers to suit a wide range of tissue engineering applications.

  13. Polarization response of second-harmonic images for different collagen spatial distributions

    NASA Astrophysics Data System (ADS)

    Ávila, Francisco J.; del Barco, Oscar; Bueno, Juan M.

    2016-06-01

    The response to polarization of second-harmonic generation (SHG) microscopy images of samples with different collagen distributions (quasialigned, partially organized, and nonorganized) has been analyzed. A linear decay relationship between the external arrangement and polarization sensitivity was found. SHG signal from nonorganized samples presented a large structural dispersion and a weak dependence with incident polarization. Polarization dependence is also associated with the internal organization of the collagen fibers, directly related to the ratio of hyperpolarizabilities ρ. This parameter can experimentally be computed from the modulation of the SHG signal. The results show that both external and internal collagen structures are closely related. This provides a tool to obtain information of internal properties from the polarimetric response of the external spatial distribution of collagen, which might be useful in clinical diagnosis of pathologies related to changes in collagen structure.

  14. Permeation and block of rat GluR6 glutamate receptor channels by internal and external polyamines.

    PubMed Central

    Bähring, R; Bowie, D; Benveniste, M; Mayer, M L

    1997-01-01

    1. Polyamine block of rat GluR6(Q) glutamate receptor channels was studied in outside-out patches from transiently transfected HEK 293 cells. With symmetrical 150 mM Na+ and 30 microM internal spermine there was biphasic voltage dependence with 95% block at +40 mV but only 20% block at +140 mV. Dose-inhibition analysis for external spermine also revealed biphasic block; the Kd at +40 mV (54 microM) was lower than at +80 (167 microM) and -80 mV (78 microM). 2. For internal polyamines relief from block was most pronounced for spermine, weaker for N-(4-hydroxyphenylpropanoyl)-spermine (PPS), and virtually absent for philanthotoxin 343 (PhTX 343), suggesting that permeation of polyamines varies with cross-sectional width (spermine, 0.44 nm; PPS, 0.70 nm; PhTX 343, 0.75 nm). 3. With putrescine, spermidine, or spermine as sole external cations, inward currents at -120 mV confirmed permeation of polyamines. For bi-ionic conditions with 90 mM polyamine and 150 mM Na+i, reversal potentials were -12.4 mV for putrescine (permeability ratio relative to Na+, PPut/PNa = 0.42) and -32.7 mV for spermidine (PSpd/PNa = 0.07). Currents carried by spermine were too small to analyse accurately in the majority of patches. 4. Increasing [Na+]i from 44 to 330 mM had no effect on the potential for 50% block (V1/2) by 30 microM internal spermine; however, relief from block at positive membrane potentials increased with [Na+]i. In contrast, raising [Na+]o from 44 to 330 mM resulted in a depolarizing shift in V1/2, indicating a strong interaction between internal polyamines and external permeant ions. 5. The Woodhull infinite barrier model of ion channel block adequately described the action of spermine at membrane potentials insufficient to produce relief from block. For 30 microM internal spermine such analysis gave Kd(O) = 2.5 microM, z theta = 1.97; block by 30 microM external spermine was weaker and less voltage dependent (Kd(O) = 37.8 microM and z delta = 0.55); delta and theta are

  15. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid Receptors and Their Ligands: Beyond CB1 and CB2

    PubMed Central

    Howlett, A. C.; Abood, M. E.; Alexander, S. P. H.; Di Marzo, V.; Elphick, M. R.; Greasley, P. J.; Hansen, H. S.; Kunos, G.; Mackie, K.; Mechoulam, R.; Ross, R. A.

    2010-01-01

    There are at least two types of cannabinoid receptors (CB1 and CB2). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ9-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB1, non-CB2 established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB1 and/or CB2 receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel “CB3” cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB1, non-CB2 pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB3 receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB1 receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB1/CB2 receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB1, non-CB2 cannabinoid receptors; and 4) current cannabinoid receptor nomenclature. PMID:21079038

  16. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB₁ and CB₂.

    PubMed

    Pertwee, R G; Howlett, A C; Abood, M E; Alexander, S P H; Di Marzo, V; Elphick, M R; Greasley, P J; Hansen, H S; Kunos, G; Mackie, K; Mechoulam, R; Ross, R A

    2010-12-01

    There are at least two types of cannabinoid receptors (CB(1) and CB(2)). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ(9)-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB(1), non-CB(2) established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB(1) and/or CB(2) receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel "CB(3)" cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB(1), non-CB(2) pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB(3) receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB(1) receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB(1)/CB(2) receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB(1), non-CB(2) cannabinoid receptors; and 4) current cannabinoid receptor nomenclature.

  17. Collagen for bone tissue regeneration.

    PubMed

    Ferreira, Ana Marina; Gentile, Piergiorgio; Chiono, Valeria; Ciardelli, Gianluca

    2012-09-01

    In the last decades, increased knowledge about the organization, structure and properties of collagen (particularly concerning interactions between cells and collagen-based materials) has inspired scientists and engineers to design innovative collagen-based biomaterials and to develop novel tissue-engineering products. The design of resorbable collagen-based medical implants requires understanding the tissue/organ anatomy and biological function as well as the role of collagen's physicochemical properties and structure in tissue/organ regeneration. Bone is a complex tissue that plays a critical role in diverse metabolic processes mediated by calcium delivery as well as in hematopoiesis whilst maintaining skeleton strength. A wide variety of collagen-based scaffolds have been proposed for different tissue engineering applications. These scaffolds are designed to promote a biological response, such as cell interaction, and to work as artificial biomimetic extracellular matrices that guide tissue regeneration. This paper critically reviews the current understanding of the complex hierarchical structure and properties of native collagen molecules, and describes the scientific challenge of manufacturing collagen-based materials with suitable properties and shapes for specific biomedical applications, with special emphasis on bone tissue engineering. The analysis of the state of the art in the field reveals the presence of innovative techniques for scaffold and material manufacturing that are currently opening the way to the preparation of biomimetic substrates that modulate cell interaction for improved substitution, restoration, retention or enhancement of bone tissue function.

  18. Scribbled Optimizes BMP Signaling through Its Receptor Internalization to the Rab5 Endosome and Promote Robust Epithelial Morphogenesis.

    PubMed

    Gui, Jinghua; Huang, Yunxian; Shimmi, Osamu

    2016-11-01

    Epithelial cells are characterized by apical-basal polarity. Intrinsic factors underlying apical-basal polarity are crucial for tissue homeostasis and have often been identified to be tumor suppressors. Patterning and differentiation of epithelia are key processes of epithelial morphogenesis and are frequently regulated by highly conserved extrinsic factors. However, due to the complexity of morphogenesis, the mechanisms of precise interpretation of signal transduction as well as spatiotemporal control of extrinsic cues during dynamic morphogenesis remain poorly understood. Wing posterior crossvein (PCV) formation in Drosophila serves as a unique model to address how epithelial morphogenesis is regulated by secreted growth factors. Decapentaplegic (Dpp), a conserved bone morphogenetic protein (BMP)-type ligand, is directionally trafficked from longitudinal veins (LVs) into the PCV region for patterning and differentiation. Our data reveal that the basolateral determinant Scribbled (Scrib) is required for PCV formation through optimizing BMP signaling. Scrib regulates BMP-type I receptor Thickveins (Tkv) localization at the basolateral region of PCV cells and subsequently facilitates Tkv internalization to Rab5 endosomes, where Tkv is active. BMP signaling also up-regulates scrib transcription in the pupal wing to form a positive feedback loop. Our data reveal a unique mechanism in which intrinsic polarity genes and extrinsic cues are coupled to promote robust morphogenesis.

  19. Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization.

    PubMed

    Akopian, Armen N; Ruparel, Nikita B; Jeske, Nathaniel A; Hargreaves, Kenneth M

    2007-08-15

    The pharmacological desensitization of receptors is a fundamental mechanism for regulating the activity of neuronal systems. The TRPA1 channel plays a key role in the processing of noxious information and can undergo functional desensitization by unknown mechanisms. Here we show that TRPA1 is desensitized by homologous (mustard oil; a TRPA1 agonist) and heterologous (capsaicin; a TRPV1 agonist) agonists via Ca2+-independent and Ca2+-dependent pathways, respectively, in sensory neurons. The pharmacological desensitization of TRPA1 by capsaicin and mustard oil is not influenced by activation of protein phosphatase 2B. However, it is regulated by phosphatidylinositol-4,5-bisphosphate depletion after capsaicin, but not mustard oil, application. Using a biosensor, we establish that capsaicin, unlike mustard oil, consistently activates phospholipase C in sensory neurons. We next demonstrate that TRPA1 desensitization is regulated by TRPV1, and it appears that mustard oil-induced TRPA1 internalization is prevented by coexpression with TRPV1 in a heterologous expression system and in sensory neurons. In conclusion, we propose novel mechanisms whereby TRPA1 activity undergoes pharmacological desensitization through multiple cellular pathways that are agonist dependent and modulated by TRPV1.

  20. Scribbled Optimizes BMP Signaling through Its Receptor Internalization to the Rab5 Endosome and Promote Robust Epithelial Morphogenesis

    PubMed Central

    Gui, Jinghua

    2016-01-01

    Epithelial cells are characterized by apical-basal polarity. Intrinsic factors underlying apical-basal polarity are crucial for tissue homeostasis and have often been identified to be tumor suppressors. Patterning and differentiation of epithelia are key processes of epithelial morphogenesis and are frequently regulated by highly conserved extrinsic factors. However, due to the complexity of morphogenesis, the mechanisms of precise interpretation of signal transduction as well as spatiotemporal control of extrinsic cues during dynamic morphogenesis remain poorly understood. Wing posterior crossvein (PCV) formation in Drosophila serves as a unique model to address how epithelial morphogenesis is regulated by secreted growth factors. Decapentaplegic (Dpp), a conserved bone morphogenetic protein (BMP)-type ligand, is directionally trafficked from longitudinal veins (LVs) into the PCV region for patterning and differentiation. Our data reveal that the basolateral determinant Scribbled (Scrib) is required for PCV formation through optimizing BMP signaling. Scrib regulates BMP-type I receptor Thickveins (Tkv) localization at the basolateral region of PCV cells and subsequently facilitates Tkv internalization to Rab5 endosomes, where Tkv is active. BMP signaling also up-regulates scrib transcription in the pupal wing to form a positive feedback loop. Our data reveal a unique mechanism in which intrinsic polarity genes and extrinsic cues are coupled to promote robust morphogenesis. PMID:27814354

  1. Phenylarsine oxide-induced increase in alveolar macrophage surface receptors: evidence for fusion of internal receptor pools with the cell surface

    PubMed Central

    1985-01-01

    Rabbit alveolar macrophages which were treated at 0 degrees C with phenylarsine oxide and then incubated at 37 degrees C for 10 min exhibited a two- to threefold increase in surface receptor activity for macroglobulin.protease complexes, diferric transferrin, and mannose- terminal glycoproteins. Analysis of the concentration-dependence of ligand binding indicated that changes in ligand-binding activity were due to changes in receptor number rather than alterations in ligand- receptor affinity. Surface receptor number could also be increased by treatment of cells with three other sulfhydryl reagents, N- ethylmaleimide, p-chloromercurobenzoate, and iodoacetic acid. The increase in receptor activity was maximal after 10 min and decreased over the next hour. This decrease in cell-associated receptor activity was due to the release of large membrane vesicles which demonstrated a uniform buoyant density by isopycnic sucrose gradient centrifugation. Treatment of cells with phenylarsine oxide did not decrease the cellular content of lactate dehydrogenase or beta-galactosidase, indicating that cell integrity was maintained and lysosomal enzyme release did not occur. Our studies indicate that phenylarsine oxide treatment in the presence of extracellular Ca2+ results in the fusion of receptor-containing vesicles with the cell surface. PMID:2409094

  2. Influence of caffeine and hyaluronic acid on collagen biosynthesis in human skin fibroblasts

    PubMed Central

    Donejko, Magdalena; Przylipiak, Andrzej; Rysiak, Edyta; Głuszuk, Katarzyna; Surażyński, Arkadiusz

    2014-01-01

    Aim The aim of this study was to evaluate the effect of caffeine on collagen biosynthesis in human skin fibroblasts and the influence of hyaluronic acid (HA) on this process. Materials and methods Collagen, [3H]-thymidine incorporation, and prolidase activity were measured in confluent human skin fibroblast cultures that had been treated with 1, 2, and 5 mM caffeine and with caffeine and 500 μg/mL HA. Western immunoblot analysis was performed to evaluate expression of β1-integrin receptor, insulin-like growth factor receptor phospho-Akt protein and mitogen-activated protein kinase (phospho-extracellular signal-regulated kinase). Results Caffeine inhibited collagen biosynthesis in a dose-dependent manner. The mechanism of this process was found at the level of prolidase activity. Caffeine significantly inhibited the enzyme activity. The addition of HA had no effect on collagen biosynthesis or prolidase activity in fibroblasts incubated with caffeine. Caffeine also had an inhibitory effect on DNA biosynthesis. HA, however, did not have any significant effect on this process. The inhibition of the expression of β1-integrin and insulin-like growth factor receptor in fibroblasts incubated with the caffeine indicates a possible mechanism of inhibition of collagen biosynthesis. Conclusion Caffeine reduces collagen synthesis in human cultured skin fibroblasts. HA did not have any significant protective effect on this process. This is the first study to our knowledge that reports caffeine-induced inhibition of collagen synthesis in human skin fibroblasts. PMID:25342885

  3. Collagen binding to Staphylococcus aureus

    SciTech Connect

    Holderbaum, D.; Hall, G.S.; Ehrhart, L.A.

    1986-11-01

    Staphylococcus aureus can bind soluble collagen in a specific, saturable manner. We have previously shown that some variability exists in the degree of collagen binding between different strains of heat-killed, formaldehyde-fixed S. aureus which are commercially available as immunologic reagents. The present study demonstrates that live S. aureus of the Cowan 1 strain binds amounts of collagen per organism equivalent to those demonstrated previously in heat-killed, formaldehyde-fixed bacteria but has an affinity over 100 times greater, with Kd values of 9.7 X 10(-11) M and 4.3 X 10(-8) M for live and heat-killed organisms, respectively. Studies were also carried out with S. aureus killed by ionizing radiation, since this method of killing the organism seemed less likely to alter the binding moieties on the surface than did heat killing. Bacteria killed by exposure to gamma radiation bound collagen in a manner essentially indistinguishable from that of live organisms. Binding of collagen to irradiated cells of the Cowan 1 strain was rapid, with equilibrium reached by 30 min at 22 degrees C, and was fully reversible. The binding was not inhibited by fibronectin, fibrinogen, C1q, or immunoglobulin G, suggesting a binding site for collagen distinct from those for these proteins. Collagen binding was virtually eliminated in trypsin-treated organisms, indicating that the binding site has a protein component. Of four strains examined, Cowan 1 and S. aureus ATCC 25923 showed saturable, specific binding, while strains Woods and S4 showed a complete lack of binding. These results suggest that some strains of S. aureus contain high-affinity binding sites for collagen. While the number of binding sites per bacterium varied sixfold in the two collagen-binding strains, the apparent affinity was similar.

  4. Angiotensin II regulates collagen metabolism through modulating tissue inhibitor of metalloproteinase-1 in diabetic skin tissues.

    PubMed

    Ren, Meng; Hao, Shaoyun; Yang, Chuan; Zhu, Ping; Chen, Lihong; Lin, Diaozhu; Li, Na; Yan, Li

    2013-09-01

    We investigated the effect of angiotensin II (Ang II) on matrix metalloproteinase-1 (MMP-1)/tissue inhibitor of metalloproteinase-1 (TIMP-1) balance in regulating collagen metabolism of diabetic skin. Skin tissues from diabetic model were collected, and the primary cultured fibroblasts were treated with Ang II receptor inhibitors before Ang II treatment. The collagen type I (Coll I) and collagen type III (Coll III) were measured by histochemistry. The expressions of transforming growth factor-β (TGF-β), MMP-1, TIMP-1 and propeptides of types I and III procollagens in skin tissues and fibroblasts were quantified using polymerase chain reaction (PCR), Western blot or enzyme-linked immunosorbent assay (ELISA). Collagen dysfunction was documented by changed collagen I/III ratio in streptozotocin (STZ)-injected mice compared with controls. This was accompanied by increased expression of TGF-β, TIMP-1 and propeptides of types I and III procollagens in diabetic skin tissues. In primary cultured fibroblasts, Ang II prompted collagen synthesis accompanied by increases in the expressions of TGF-β, TIMP-1 and types I and III procollagens, and these increases were inhibited by losartan, an Ang II type 1 (AT1) receptor blocker, but not affected by PD123319, an Ang II type 2 (AT2) receptor antagonist. These findings present evidence that Ang-II-mediated changes in the productions of MMP-1 and TIMP-1 occur via AT1 receptors and a TGF-β-dependent mechanism.

  5. Pregnancy-induced remodeling of collagen architecture and content in the mitral valve.

    PubMed

    Pierlot, Caitlin M; Lee, J Michael; Amini, Rouzbeh; Sacks, Michael S; Wells, Sarah M

    2014-10-01

    Pregnancy produces rapid, non-pathological volume-overload in the maternal circulation due to the demands of the growing fetus. Using a bovine model for human pregnancy, previous work in our laboratory has shown remarkable pregnancy-induced changes in leaflet size and mechanics of the mitral valve. The present study sought to relate these changes to structural alterations in the collagenous leaflet matrix. Anterior mitral valve leaflets were harvested from non-pregnant heifers and pregnant cows (pregnancy stage estimated by fetal length). We measured changes in the thickness of the leaflet and its anatomic layers via Verhoeff-Van Gieson staining, and in collagen crimp (wavelength and percent collagen crimped) via picrosirius red staining and polarized microscopy. Collagen concentration was determined biochemically: hydroxyproline assay for total collagen and pepsin-acid extraction for uncrosslinked collagen. Small-angle light scattering (SALS) assessed changes in internal fiber architecture (characterized by degree of fiber alignment and preferred fiber direction). Pregnancy produced significant changes to collagen structure in the mitral valve. Fiber alignment decreased 17% with an 11.5° rotation of fiber orientation toward the radial axis. Collagen fiber crimp was dramatically lost, accompanied by a 53% thickening of the fibrosa, and a 16% increase in total collagen concentration, both suggesting that new collagen is being synthesized. Extractable collagen concentration was low, both in the non-pregnant and pregnant state, suggesting early crosslinking of newly-synthesized collagen. This study has shown that the mitral valve is strongly adaptive during pregnancy, with significant changes in size, collagen content and architecture in response to rapidly changing demands.

  6. Electrostatic effects in collagen fibrillization

    NASA Astrophysics Data System (ADS)

    Morozova, Svetlana; Muthukumar, Murugappan

    2014-03-01

    Using light scattering and AFM techniques, we have measured the kinetics of fibrillization of collagen (pertinent to the vitreous of human eye) as a function of pH and ionic strength. At higher and lower pH, collagen triple-peptides remain stable in solution without fibrillization. At neutral pH, the fibrillization occurs and its growth kinetics is slowed upon either an increase in ionic strength or a decrease in temperature. We present a model, based on polymer crystallization theory, to describe the observed electrostatic nature of collagen assembly.

  7. Interruption of the ionic lock in the bradykinin B2 receptor results in constitutive internalization and turns several antagonists into strong agonists.

    PubMed

    Leschner, Jasmin; Wennerberg, Goeran; Feierler, Jens; Bermudez, Marcel; Welte, Benjamin; Kalatskaya, Irina; Wolber, Gerhard; Faussner, Alexander

    2013-01-01

    The DRY motif with the highly conserved R3.50 is a hallmark of family A G protein-coupled receptors (GPCRs). The crystal structure of rhodopsin revealed a salt bridge between R135(3.50) and another conserved residue, E247(6.30), in helix 6. This ionic lock was shown to maintain rhodopsin in its inactive state. Thus far, little information is available on how interruption of this ionic bond affects signaling properties of nonrhodopsin GPCRs, because the focus has been on mutations of R3.50, although this residue is indispensable for G protein activation. To investigate the importance of an ionic lock for overall receptor activity in a nonrhodopsin GPCR, we mutated R128(3.50) and E238(6.30) in the bradykinin (BK) B(2) receptor (B(2)R) and stably expressed the constructs in HEK293 cells. As expected, mutation of R3.50 resulted in lack of G protein activation. In addition, this mutation led to considerable constitutive receptor internalization. Mutation of E6.30 (mutants E6.30A and E6.30R) also caused strong constitutive internalization. Most intriguingly, however, although the two E6.30 mutants displayed no increased basal phosphatidylinositol hydrolysis, they gave a response to three different B(2)R antagonists that was almost comparable to that obtained with BK. In contrast, swapping of R3.50 and E6.30, thus allowing the formation of an inverse ionic bond, resulted in rescue of the wild type phenotype. These findings demonstrate for the first time, to our knowledge, that interruption of the ionic lock in a family A GPCR can have distinctly different effects on receptor internalization and G protein stimulation, shedding new light on its role in the activation process.

  8. Noxious mechanical stimulation evokes the segmental release of opioid peptides that induce μ-opioid receptor internalization in the presence of peptidase inhibitors

    PubMed Central

    Lao, Lijun; Song, Bingbing; Chen, Wenling; Marvizón, Juan Carlos G.

    2008-01-01

    The internalization of μ-opioid receptors (MORs) provides an ideal way to locate areas of opioid peptide release. We used this method to study opioid release in the spinal cord evoked by noxious stimuli in anesthetized rats. Previous studies have shown that opioids released in the spinal cord produce MOR internalization only when they are protected from peptidase degradation. Accordingly, rats were implanted with chronic intrathecal catheters that were used to inject a mixture of peptidase inhibitors (amastatin, captopril and phosphoramidon) onto the lumbar spinal cord. Five minutes later, a noxious stimulus was delivered to the paw. Lumbar spinal segments were double-stained with antibodies against MORs and neurokinin 1 receptors (NK1Rs) using immunofluorescence. Mechanical stimulation of the hindpaw consisted of repeated 10 sec clamps with a hemostat for 10 min. In the ipsilateral dorsal horn, the stimulus produced abundant NK1R internalization in segments L3–L6, and a more modest but significant MOR internalization in segments L5 and L6. In the contralateral dorsal horn, NK1R was substantially lower and MOR internalization was negligible. The same mechanical stimulus applied to a forepaw did not produce NK1R or MOR internalization in the lumbar spinal cord. Thermal stimulation consisted of immersing a hindpaw in water at 52 °C for 2 min. It produced substantial NK1R internalization ipsilaterally in segment L6, but no MOR internalization. These results show that mechanical stimulation induces segmental opioid release, i.e., in the dorsal horn receiving the noxious signals and not in other spinal segments. PMID:18207137

  9. Smad, but not MAPK, pathway mediates the expression of type I collagen in radiation induced fibrosis

    SciTech Connect

    Yano, Hiroyuki; Hamanaka, Ryoji; Nakamura, Miki; Sumiyoshi, Hideaki; Matsuo, Noritaka; Yoshioka, Hidekatsu

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer We examine how radiation affects the expression level and signal pathway of collagen. Black-Right-Pointing-Pointer TGF-{beta}1 mRNA is elevated earlier than those of collagen genes after irradiation. Black-Right-Pointing-Pointer Smad pathway mediates the expression of collagen in radiation induced fibrosis. Black-Right-Pointing-Pointer MAPK pathways are not affected in the expression of collagen after irradiation. -- Abstract: Radiation induced fibrosis occurs following a therapeutic or accidental radiation exposure in normal tissues. Tissue fibrosis is the excessive accumulation of collagen and other extracellular matrix components. This study investigated how ionizing radiation affects the expression level and signal pathway of type I collagen. Real time RT-RCR showed that both {alpha}1and {alpha}2 chain of type I collagen mRNA were elevated from 48 h after irradiation with 10 Gy in NIH3T3 cells. The relative luciferase activities of both genes and type I collagen marker were elevated at 72 h. TGF-{beta}1 mRNA was elevated earlier than those of type I collagen genes. A Western blot analysis showed the elevation of Smad phosphorylation at 72 h. Conversely, treatment with TGF-{beta} receptor inhibitor inhibited the mRNA and relative luciferase activity of type I collagen. The phosphorylation of Smad was repressed with the inhibitor, and the luciferase activity was cancelled using a mutant construct of Smad binding site of {alpha}2(I) collagen gene. However, the MAPK pathways, p38, ERK1/2 and JNK, were not affected with specific inhibitors or siRNA. The data showed that the Smad pathway mediated the expression of type I collagen in radiation induced fibrosis.

  10. Estrogen Receptor Alpha Is Expressed in Mesenteric Mesothelial Cells and Is Internalized in Caveolae upon Freund's Adjuvant Treatment

    PubMed Central

    Balogh, Petra; Szabó, Arnold; Katz, Sándor; Likó, István; Patócs, Attila; L.Kiss, Anna

    2013-01-01

    Transformation of epithelial cells into connective tissue cells (epithelial-mesenchymal transition, EMT) is a complex mechanism involved in tumor metastasis, and in normal embryogenesis, while type II EMT is mainly associated with inflammatory events and tissue regenaration. In this study we examined type II EMT at the ultrastructural and molecular level during the inflammatory process induced by Freund's adjuvant treatment in rat mesenteric mesothelial cells. We found that upon the inflammatory stimulus mesothelial cells lost contact with the basal lamina and with each other, and were transformed into spindle-shaped cells. These morphological changes were accompanied by release of interleukins IL-1alpha, -1beta and IL-6 and by secretion of transforming growth factor beta (TGF-β) into the peritoneal cavity. Mesothelial cells also expressed estrogen receptor alpha (ER-α) as shown by immunolabeling at the light and electron microscopical levels, as well as by quantitative RT-PCR. The mRNA level of ER-α showed an inverse correlation with the secretion of TGF-β. At the cellular and subcellular levels ER-α was colocalized with the coat protein caveolin-1 and was found in the plasma membrane of mesothelial cells, in caveolae close to multivesicular bodies (MVBs) or in the membrane of these organelles, suggesting that ER-α is internalized via caveola-mediated endocytosis during inflammation. We found asymmetric, thickened, electron dense areas on the limiting membrane of MVBs (MVB plaques) indicating that these sites may serve as platforms for collecting and organizing regulatory proteins. Our morphological observations and biochemical data can contribute to form a potential model whereby ER-α and its caveola-mediated endocytosis might play role in TGF-β induced type II EMT in vivo. PMID:24244516

  11. Stabilin-1 and Stabilin-2 are specific receptors for the cellular internalization of phosphorothioate-modified antisense oligonucleotides (ASOs) in the liver

    PubMed Central

    Miller, Colton M.; Donner, Aaron J.; Blank, Emma E.; Egger, Andrew W.; Kellar, Brianna M.; Østergaard, Michael E.; Seth, Punit P.; Harris, Edward N.

    2016-01-01

    Phosphorothioate (PS)-modified antisense oligonucleotides (ASOs) have been extensively investigated over the past three decades as pharmacological and therapeutic agents. One second generation ASO, Kynamro™, was recently approved by the FDA for the treatment of homozygous familial hypercholesterolemia and over 35 second generation PS ASOs are at various stages of clinical development. In this report, we show that the Stabilin class of scavenger receptors, which were not previously thought to bind DNA, do bind and internalize PS ASOs. With the use of primary cells from mouse and rat livers and recombinant cell lines each expressing Stabilin-1 and each isoform of Stabilin-2 (315-HARE and 190-HARE), we have determined that PS ASOs bind with high affinity and these receptors are responsible for bulk, clathrin-mediated endocytosis within the cell. Binding is primarily dependent on salt-bridge formation and correct folding of the intact protein receptor. Increased internalization rates also enhanced ASO potency for reducing expression of the non-coding RNA Malat-1, in Stabilin-expressing cell lines. A more thorough understanding of mechanisms by which ASOs are internalized in cells and their intracellular trafficking pathways will aid in the design of next generation antisense agents with improved therapeutic properties. PMID:26908652

  12. Synthesis and biological applications of collagen-model triple-helical peptides.

    PubMed

    Fields, Gregg B

    2010-03-21

    Triple-helical peptides (THPs) have been utilized as collagen models since the 1960s. The original focus for THP-based research was to unravel the structural determinants of collagen. In the last two decades, virtually all aspects of collagen structural biochemistry have been explored with THP models. More specifically, secondary amino acid analogs have been incorporated into THPs to more fully understand the forces that stabilize triple-helical structure. Heterotrimeric THPs have been utilized to better appreciate the contributions of chain sequence diversity on collagen function. The role of collagen as a cell signaling protein has been dissected using THPs that represent ligands for specific receptors. The mechanisms of collagenolysis have been investigated using THP substrates and inhibitors. Finally, THPs have been developed for biomaterial applications. These aspects of THP-based research are overviewed herein.

  13. Clinical uses of collagen shields.

    PubMed

    Poland, D E; Kaufman, H E

    1988-09-01

    Collagen shields immersed in tobramycin solution for one minute were applied to one eye each of 60 patients who had had cataract extraction, penetrating keratoplasty, or epikeratophakia or who had nonsurgical epithelial healing problems. The shields were well tolerated; one patient had the shield removed and one patient lost the shield in the early postoperative period. The surgical patients showed more rapid healing of epithelial defects after surgery with the use of the collagen shield. Patients with acute nonsurgical epithelial problems, such as contact lens abrasions and recurrent erosion, responded to the use of the collagen shield with improved healing. Patients with chronic epithelial defects responded poorly, presumably because underlying abnormalities in Bowman's layer prevented epithelial growth in the area of the defect. No infections were noted in any of the patients. The collagen shields appear to promote enhanced healing in patients with postsurgical and acute epithelial defects and to provide adequate antibiotic prophylaxis against infection in these vulnerable eyes.

  14. Focal adhesion kinase-mediated activation of glycogen synthase kinase 3β regulates IL-33 receptor internalization and IL-33 signaling.

    PubMed

    Zhao, Jing; Wei, Jianxin; Bowser, Rachel K; Traister, Russell S; Fan, Ming-Hui; Zhao, Yutong

    2015-01-15

    IL-33, a relatively new member of the IL-1 cytokine family, plays a crucial role in allergic inflammation and acute lung injury. Long form ST2 (ST2L), the receptor for IL-33, is expressed on immune effector cells and lung epithelia and plays a critical role in triggering inflammation. We have previously shown that ST2L stability is regulated by the ubiquitin-proteasome system; however, its upstream internalization has not been studied. In this study, we demonstrate that glycogen synthase kinase 3β (GSK3β) regulates ST2L internalization and IL-33 signaling. IL-33 treatment induced ST2L internalization, and an effect was attenuated by inhibition or downregulation of GSK3β. GSK3β was found to interact with ST2L on serine residue 446 in response to IL-33 treatment. GSK3β binding site mutant (ST2L(S446A)) and phosphorylation site mutant (ST2L(S442A)) are resistant to IL-33-induced ST2L internalization. We also found that IL-33 activated focal adhesion kinase (FAK). Inhibition of FAK impaired IL-33-induced GSK3β activation and ST2L internalization. Furthermore, inhibition of ST2L internalization enhanced IL-33-induced cytokine release in lung epithelial cells. These results suggest that modulation of the ST2L internalization by FAK/GSK3β might serve as a unique strategy to lessen pulmonary inflammation.

  15. Intracellular localization of the M1 muscarinic acetylcholine receptor through clathrin-dependent constitutive internalization is mediated by a C-terminal tryptophan-based motif.

    PubMed

    Uwada, Junsuke; Yoshiki, Hatsumi; Masuoka, Takayoshi; Nishio, Matomo; Muramatsu, Ikunobu

    2014-07-15

    The M1 muscarinic acetylcholine receptor (M1-mAChR, encoded by CHRM1) is a G-protein-coupled membrane receptor that is activated by extracellular cholinergic stimuli. Recent investigations have revealed the intracellular localization of M1-mAChR. In this study, we observed constitutive internalization of M1-mAChR in mouse neuroblastoma N1E-115 cells without agonist stimulation. Constitutive internalization depended on dynamin, clathrin and the adaptor protein-2 (AP-2) complex. A WxxI motif in the M1-mAChR C-terminus is essential for its constitutive internalization, given that replacement of W(442) or I(445) with alanine residues abolished constitutive internalization. This WxxI motif resembles YxxΦ, which is the canonical binding motif for the μ2 subunit of the AP-2 complex. The M1-mAChR C-terminal WxxI motif interacted with AP-2 μ2. W442A and I445A mutants of the M1-mAChR C-terminal sequence lost AP-2-μ2-binding activity, whereas the W442Y mutant bound more effectively than wild type. Consistent with these results, W442A and I445A M1-mAChR mutants selectively localized to the cell surface. By contrast, the W442Y receptor mutant was found only at intracellular sites. Our data indicate that the cellular distribution of M1-mAChR is governed by the C-terminal tryptophan-based motif, which mediates constitutive internalization.

  16. Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons.

    PubMed

    Yang, Wei-Na; Ma, Kai-Ge; Qian, Yi-Hua; Zhang, Jian-Shui; Feng, Gai-Feng; Shi, Li-Li; Zhang, Zhi-Chao; Liu, Zhao-Hui

    2015-07-01

    Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD) are caused by the intraneuronal accumulation of beta-amyloid protein (Aβ). Reuptake of extracellular Aβ is believed to contribute significantly to the intraneuronal Aβ pool in the early stages of AD. Published reports have claimed that the low-density lipoprotein receptor-related protein 1 (LRP1) mediates Aβ1-42 uptake and lysosomal trafficking in GT1-7 neuronal cells and mouse embryonic fibroblast non-neuronal cells. However, there is no direct evidence supporting the role of LRP1 in Aβ internalization in primary neurons. Our recent study indicated that p38 MAPK and ERK1/2 signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor (α7nAChR)-mediated Aβ1-42 uptake in SH-SY5Y cells. This study was designed to explore the regulation of MAPK signaling pathways on LRP1-mediated Aβ internalization in neurons. We found that extracellular Aβ1-42 oligomers could be internalized into endosomes/lysosomes and mitochondria in cortical neurons. Aβ1-42 and LRP1 were also found co-localized in neurons during Aβ1-42 internalization, and they could form Aβ1-42-LRP1 complex. Knockdown of LRP1 expression significantly decreased neuronal Aβ1-42 internalization. Finally, we identified that p38 MAPK and ERK1/2 signaling pathways regulated the internalization of Aβ1-42 via LRP1. Therefore, these results demonstrated that LRP1, p38 MAPK and ERK1/2 mediated the internalization of Aβ1-42 in neurons and provided evidence that blockade of LRP1 or inhibitions of MAPK signaling pathways might be a potential approach to lowering brain Aβ levels and served a potential therapeutic target for AD.

  17. International Union of Basic and Clinical Pharmacology. XCVII. G Protein–Coupled Estrogen Receptor and Its Pharmacologic Modulators

    PubMed Central

    2015-01-01

    Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein–coupled receptor (GPCR) family (GPR30/G protein–coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor. PMID

  18. Pulse-modulated second harmonic imaging microscope quantitatively demonstrates marked increase of collagen in tumor after chemotherapy

    NASA Astrophysics Data System (ADS)

    Raja, Anju M.; Xu, Shuoyu; Sun, Wanxin; Zhou, Jianbiao; Tai, Dean C. S.; Chen, Chien-Shing; Rajapakse, Jagath C.; So, Peter T. C.; Yu, Hanry

    2010-09-01

    Pulse-modulated second harmonic imaging microscopes (PM-SHIMs) exhibit improved signal-to-noise ratio (SNR) over conventional SHIMs on sensitive imaging and quantification of weak collagen signals inside tissues. We quantify the spatial distribution of sparse collagen inside a xenograft model of human acute myeloid leukemia (AML) tumor specimens treated with a new drug against receptor tyrosine kinase (ABT-869), and observe a significant increase in collagen area percentage, collagen fiber length, fiber width, and fiber number after chemotherapy. This finding reveals new insights into tumor responses to chemotherapy and suggests caution in developing new drugs and therapeutic regimens against cancers.

  19. Human collagen produced in plants

    PubMed Central

    Shoseyov, Oded; Posen, Yehudit; Grynspan, Frida

    2014-01-01

    Consequential to its essential role as a mechanical support and affinity regulator in extracellular matrices, collagen constitutes a highly sought after scaffolding material for regeneration and healing applications. However, substantiated concerns have been raised with regard to quality and safety of animal tissue-extracted collagen, particularly in relation to its immunogenicity, risk of disease transmission and overall quality and consistency. In parallel, contamination with undesirable cellular factors can significantly impair its bioactivity, vis-a-vis its impact on cell recruitment, proliferation and differentiation. High-scale production of recombinant human collagen Type I (rhCOL1) in the tobacco plant provides a source of an homogenic, heterotrimeric, thermally stable “virgin” collagen which self assembles to fine homogenous fibrils displaying intact binding sites and has been applied to form numerous functional scaffolds for tissue engineering and regenerative medicine. In addition, rhCOL1 can form liquid crystal structures, yielding a well-organized and mechanically strong membrane, two properties indispensable to extracellular matrix (ECM) mimicry. Overall, the shortcomings of animal- and cadaver-derived collagens arising from their source diversity and recycled nature are fully overcome in the plant setting, constituting a collagen source ideal for tissue engineering and regenerative medicine applications. PMID:23941988

  20. Collagen hydrolysate inhibits zymosan-induced inflammation.

    PubMed

    Hartog, Anita; Cozijnsen, Miranda; de Vrij, Gerrit; Garssen, Johan

    2013-07-01

    During the past years, evidence accumulated showing that glycine comprises anti-inflammatory activities. These effects occur, at least in part, via the activation of glycine-gated chloride channels (GlyR). Glycine is one of the major structural units of collagen, making up about 30% of the amino acids. This study aims to investigate the anti-inflammatory potential of collagen hydrolysate (CH) using the zymosan-induced ear-skin inflammation mouse model. After oral intake of 12.5, 25 or 50 mg CH the plasma levels of glycine increased in a concentration-dependent manner. CH was able to counteract zymosan-induced ear-skin inflammation locally (ear swelling) as well as systemically (IL-6 production by lipopolysaccharide (LPS)-stimulated whole blood cells). The LPS-stimulated IL-6 production in whole blood correlated positively with the ear swelling response. This correlation was abolished by strychnine (a glycine receptor antagonist), indicating the involvement of GlyR. Collectively, these data show that CH is able to modulate inflammatory responses both locally as well as systemically. This effect might be constituted by inhibiting pro-inflammatory cytokine production via GlyR.

  1. Infection of epithelial cells with Chlamydia trachomatis inhibits TNF-induced apoptosis at the level of receptor internalization while leaving non-apoptotic TNF-signalling intact.

    PubMed

    Waguia Kontchou, Collins; Tzivelekidis, Tina; Gentle, Ian E; Häcker, Georg

    2016-11-01

    Chlamydia trachomatis is an obligate intracellular bacterial pathogen of medical importance. C. trachomatis develops inside a membranous vacuole in the cytosol of epithelial cells but manipulates the host cell in numerous ways. One prominent effect of chlamydial infection is the inhibition of apoptosis in the host cell, but molecular aspects of this inhibition are unclear. Tumour necrosis factor (TNF) is a cytokine with important roles in immunity, which is produced by immune cells in chlamydial infection and which can have pro-apoptotic and non-apoptotic signalling activity. We here analysed the signalling through TNF in cells infected with C. trachomatis. The pro-apoptotic signal of TNF involves the activation of caspase-8 and is controlled by inhibitor of apoptosis proteins. We found that in C. trachomatis-infected cells, TNF-induced apoptosis was blocked upstream of caspase-8 activation even when inhibitor of apoptosis proteins were inhibited or the inhibitor of caspase-8 activation, cFLIP, was targeted by RNAi. However, when caspase-8 was directly activated by experimental over-expression of its upstream adapter Fas-associated protein with death domain, C. trachomatis was unable to inhibit apoptosis. Non-apoptotic TNF-signalling, particularly the activation of NF-κB, initiates at the plasma membrane, while the activation of caspase-8 and pro-apoptotic signalling occur subsequently to internalization of TNF receptor and the formation of a cytosolic signalling complex. In C. trachomatis-infected cells, NF-κB activation through TNF was unaffected, while the internalization of the TNF-TNF-receptor complex was blocked, explaining the lack of caspase-8 activation. These results identify a dichotomy of TNF signalling in C. trachomatis-infected cells: Apoptosis is blocked at the internalization of the TNF receptor, but non-apoptotic signalling through this receptor remains intact, permitting a response to this cytokine at sites of infection.

  2. Human decay-accelerating factor and CEACAM receptor-mediated internalization and intracellular lifestyle of Afa/Dr diffusely adhering Escherichia coli in epithelial cells.

    PubMed

    Guignot, Julie; Hudault, Sylvie; Kansau, Imad; Chau, Ingrid; Servin, Alain L

    2009-01-01

    We used transfected epithelial CHO-B2 cells as a model to identify the mechanism mediating internalization of Afa/Dr diffusely adhering Escherichia coli. We provide evidence that neither the alpha5 or beta1 integrin subunits nor alpha5beta1 integrin functioned as a receptor mediating the adhesion and/or internalization of Dr or Afa-III fimbria-positive bacteria. We also demonstrated that (i) whether or not the AfaD or DraD invasin subunits were present, there was no difference in the cell association and entry of bacteria and that (ii) DraE or AfaE-III adhesin subunits are necessary and sufficient to promote the receptor-mediated bacterial internalization into epithelial cells expressing human decay-accelerating factor (DAF), CEACAM1, CEA, or CEACAM6. Internalization of Dr fimbria-positive E. coli within CHO-DAF, CHO-CEACAM1, CHO-CEA, or CHO-CEACAM6 cells occurs through a microfilament-independent, microtubule-dependent, and lipid raft-dependent mechanism. Wild-type Dr fimbria-positive bacteria survived better within cells expressing DAF than bacteria internalized within CHO-CEACAM1, CHO-CEA, or CHO-CEACAM6 cells. In DAF-positive cells, internalized Dr fimbria-positive bacteria were located in vacuoles that contained more than one bacterium, displaying some of the features of late endosomes, including the presence of Lamp-1 and Lamp-2, and some of the features of CD63 proteins, but not of cathepsin D, and were acidic. No interaction between Dr fimbria-positive-bacterium-containing vacuoles and the autophagic pathway was observed.

  3. Nanomechanics of Type I Collagen.

    PubMed

    Varma, Sameer; Orgel, Joseph P R O; Schieber, Jay D

    2016-07-12

    Type I collagen is the predominant collagen in mature tendons and ligaments, where it gives them their load-bearing mechanical properties. Fibrils of type I collagen are formed by the packing of polypeptide triple helices. Higher-order structures like fibril bundles and fibers are assembled from fibrils in the presence of other collagenous molecules and noncollagenous molecules. Curiously, however, experiments show that fibrils/fibril bundles are less resistant to axial stress compared to their constituent triple helices-the Young's moduli of fibrils/fibril bundles are an order-of-magnitude smaller than the Young's moduli of triple helices. Given the sensitivity of the Young's moduli of triple helices to solvation environment, a plausible explanation is that the packing of triple helices into fibrils perhaps reduces the Young's modulus of an individual triple helix, which results in fibrils having smaller Young's moduli. We find, however, from molecular dynamics and accelerated conformational sampling simulations that the Young's modulus of the buried core of the fibril is of the same order as that of a triple helix in aqueous phase. These simulations, therefore, suggest that the lower Young's moduli of fibrils/fibril bundles cannot be attributed to the specific packing of triple helices in the fibril core. It is not the fibril core that yields initially to axial stress. Rather, it must be the portion of the fibril exposed to the solvent and/or the fibril-fibril interface that bears the initial strain. Overall, this work provides estimates of Young's moduli and persistence lengths at two levels of collagen's structural assembly, which are necessary to quantitatively investigate the response of various biological factors on collagen mechanics, including congenital mutations, posttranslational modifications and ligand binding, and also engineer new collagen-based materials.

  4. Engineering fibrin-based tissue constructs from myofibroblasts and application of constraints and strain to induce cell and collagen reorganization.

    PubMed

    de Jonge, Nicky; Baaijens, Frank P T; Bouten, Carlijn V C

    2013-10-28

    Collagen content and organization in developing collagenous tissues can be influenced by local tissue strains and tissue constraint. Tissue engineers aim to use these principles to create tissues with predefined collagen architectures. A full understanding of the exact underlying processes of collagen remodeling to control the final tissue architecture, however, is lacking. In particular, little is known about the (re)orientation of collagen fibers in response to changes in tissue mechanical loading conditions. We developed an in vitro model system, consisting of biaxially-constrained myofibroblast-seeded fibrin constructs, to further elucidate collagen (re)orientation in response to i) reverting biaxial to uniaxial static loading conditions and ii) cyclic uniaxial loading of the biaxially-constrained constructs before and after a change in loading direction, with use of the Flexcell FX4000T loading device. Time-lapse confocal imaging is used to visualize collagen (re)orientation in a nondestructive manner. Cell and collagen organization in the constructs can be visualized in real-time, and an internal reference system allows us to relocate cells and collagen structures for time-lapse analysis. Various aspects of the model system can be adjusted, like cell source or use of healthy and diseased cells. Additives can be used to further elucidate mechanisms underlying collagen remodeling, by for example adding MMPs or blocking integrins. Shape and size of the construct can be easily adapted to specific needs, resulting in a highly tunable model system to study cell and collagen (re)organization.

  5. Enhanced stabilization of collagen by furfural.

    PubMed

    Lakra, Rachita; Kiran, Manikantan Syamala; Usha, Ramamoorthy; Mohan, Ranganathan; Sundaresan, Raja; Korrapati, Purna Sai

    2014-04-01

    Furfural (2-furancarboxaldehyde), a product derived from plant pentosans, has been investigated for its interaction with collagen. Introduction of furfural during fibril formation enhanced the thermal and mechanical stability of collagen. Collagen films treated with furfural exhibited higher denaturation temperature (Td) (p<0.04) and showed a 3-fold increase in Young's modulus (p<0.04) at higher concentration. Furfural and furfural treated collagen films did not have any cytotoxic effect. Rheological characterization showed an increase in shear stress and shear viscosity with increasing shear rate for treated collagen. Circular dichroism (CD) studies indicated that the furfural did not have any impact on triple helical structure of collagen. Scanning electron microscopy (SEM) of furfural treated collagen exhibited small sized porous structure in comparison with untreated collagen. Thus this study provides an alternate ecologically safe crosslinking agent for improving the stability of collagen for biomedical and industrial applications.

  6. Hydroperoxide formation in model collagens and collagen type I.

    PubMed

    Madison, S A; McCallum, J E B; Rojas Wahl, R U

    2002-02-01

    Protein hydroperoxides represent a relatively new concept in understanding biological oxidation chemistry. Here, we show with post-column-chemiluminescence that this sometimes remarkably stable and yet reactive species can be formed in collagen models and collagen type I when submitted to oxidative stress as exemplified by the Fenton reaction. These findings are supported by mass spectrometry and iodometry. Using (Proline-hydroxyproline-glycine)(10) (POG)(10), those hydroperoxides are stable for hours at room temperature and can give rise to free radicals in the presence of ferrous sulphate, as evidenced by EPR spin trapping with DMPO. Possible implications for biological systems are discussed with emphasis on collagen in the extracellular matrix in skin as a major type of connective tissue.

  7. The Role of Collagen Quaternary Structure in the Platelet:Collagen Interaction

    PubMed Central

    Brass, Lawrence F.; Bensusan, Howard B.

    1974-01-01

    We have investigated whether collagen queternary structure is required for the platelet: collagen interaction. Quaternary structure refers to the assembly of collagen monomers (tropocollagen) into polymers (native-type fibrils). Purified monomeric collagen was prepared from acetic acid extracts of fetal calfskin. Polymeric collagen was prepared by dispersion of bovine Achilles tendon collagen and by incubation of monomeric collagen at 37°C and pH 7.4. The state of polymerization was confirmed by electron microscopy. Release of platelet serotonin in the absence of platelet aggregation was used to determine the effectiveness of the platelet: collagen interaction. All forms of collagen produced serotonin release only after a lag period, but polymeric collagen gave a shorter lag period than did monomeric collagen. Monomeric collagen was also quanidinated selectively to convert collagen lysine groups to homoarginine, while leaving the arrangement of polar groups intact. Guanidination of monomeric collagen increased the rate of polymerization and reduced the lag time in serotonin release. Glucosamine (17 mM) retarded polymerization and inhibited the release of platelet serotonin by monomeric collagen but had little effect on release produced by thrombin or polymeric collagen. At the same concentration, glucosamine did not reduce the sensitivity of platelets to stimulation by collagen or block the platelet: collagen interaction. The only effect of glucosamine was on the collagen: collagen interaction. Galactosamine had a similar effect, but glucose, galactose, and N-acetylglycosamine had no effect. We conclude from this data that collagen monomers cannot effectively interact with platelets and that, therefore, collagen quaternary structure has a role in the recognition of collagen by platelets. PMID:4215825

  8. Cholesterol oxidation switches the internalization pathway of endothelin receptor type A from caveolae to clathrin-coated pits in Chinese hamster ovary cells.

    PubMed

    Okamoto, Y; Ninomiya, H; Miwa, S; Masaki, T

    2000-03-03

    We investigated the mechanism of endothelin receptor type A (ETA) internalization in Chinese hamster ovary cells using two assays; flow cytometric quantification of cell surface myc-ETA and in situ localization of Cy5-labeled ET-1. In both assays, agonist-dependent internalization of myc-ETA was inhibited by nystatin and filipin, both of which disrupt internalization via caveolae, whereas it was barely affected by chlorpromazine and hypertonic sucrose, both of which disrupt internalization via clathrin-coated pits. In addition to myc-ETA, ET-1 caused intracellular translocation of caveolin-1 and this translocation was also blocked by nystatin but not by chlorpromazine. These results strongly argue that ETA is internalized via caveolae but not clathrin-coated pits. Treatment of the cells with cholesterol oxidase reduced cellular cholesterol and caused intracellular translocation of caveolin-1 but did not affect cell surface localization of myc-ETA. In cholesterol oxidase-treated cells, however, both chlorpromazine and hypertonic sucrose effectively blocked ET-1-induced myc-ETA internalization and nystatin was less effective than in untreated cells. Accordingly, expression of a dominant negative form of beta-arrestin blocked myc-ETA internalization in cholesterol oxidase-treated cells but not in untreated cells. These results suggest that, in Chinese hamster ovary cells, 1) agonist-occupied ETA can be internalized either via caveolae or clathrin-coated pits; 2) of the two, the former is the default pathway; and 3) the oxidative state of cell surface cholesterol is one of the factors involved in the pathway selection.

  9. Plasma membrane cholesterol level and agonist-induced internalization of δ-opioid receptors; colocalization study with intracellular membrane markers of Rab family.

    PubMed

    Brejchova, Jana; Vosahlikova, Miroslava; Roubalova, Lenka; Parenti, Marco; Mauri, Mario; Chernyavskiy, Oleksandr; Svoboda, Petr

    2016-08-01

    Decrease of cholesterol level in plasma membrane of living HEK293 cells transiently expressing FLAG-δ-OR by β-cyclodextrin (β-CDX) resulted in a slight internalization of δ-OR. Massive internalization of δ-OR induced by specific agonist DADLE was diminished in cholesterol-depleted cells. These results suggest that agonist-induced internalization of δ-OR, which has been traditionally attributed exclusively to clathrin-mediated pathway, proceeds at least partially via membrane domains. Identification of internalized pools of FLAG-δ-OR by colocalization studies with proteins of Rab family indicated the decreased presence of receptors in early endosomes (Rab5), late endosomes and lysosomes (Rab7) and fast recycling vesicles (Rab4). Slow type of recycling (Rab11) was unchanged by cholesterol depletion. As expected, agonist-induced internalization of oxytocin receptors was totally suppressed in β-CDX-treated cells. Determination of average fluorescence lifetime of TMA-DPH, the polar derivative of hydrophobic membrane probe diphenylhexatriene, in live cells by FLIM indicated a significant alteration of the overall PM structure which may be interpreted as an increased "water-accessible space" within PM area. Data obtained by studies of HEK293 cells transiently expressing FLAG-δ-OR by "antibody feeding" method were extended by analysis of the effect of cholesterol depletion on distribution of FLAG-δ-OR in sucrose density gradients prepared from HEK293 cells stably expressing FLAG-δ-OR. Major part of FLAG-δ-OR was co-localized with plasma membrane marker Na,K-ATPase and β-CDX treatment resulted in shift of PM fragments containing both FLAG-δ-OR and Na,K-ATPase to higher density. Thus, the decrease in content of the major lipid constituent of PM resulted in increased density of resulting PM fragments.

  10. Hyaluronic acid abrogates ethanol-dependent inhibition of collagen biosynthesis in cultured human fibroblasts

    PubMed Central

    Donejko, Magdalena; Przylipiak, Andrzej; Rysiak, Edyta; Miltyk, Wojciech; Galicka, Elżbieta; Przylipiak, Jerzy; Zaręba, Ilona; Surazynski, Arkadiusz

    2015-01-01

    Introduction The aim of the study was to evaluate the effect of ethanol on collagen biosynthesis in cultured human skin fibroblasts, and the role of hyaluronic acid (HA) in this process. Regarding the mechanism of ethanol action on human skin fibroblasts we investigated: expression of β1 integrin and insulin-like growth factor 1 receptor (IGF-IR), signaling pathway protein expression: mitogen-activated protein kinases (MAPKs), protein kinase B (Akt), nuclear factor kappa B (NF-κB) transcription factor, cytotoxicity assay and apoptosis, metalloproteinase activity, as well as the influence of HA on these processes. Materials and methods Collagen biosynthesis, activity of prolidase, DNA biosynthesis, and cytotoxicity were measured in confluent human skin fibroblast cultures that have been treated with 25, 50, and 100 mM ethanol and with ethanol and 500 µg/mL HA. Western blot analysis and zymography were performed to evaluate expression of collagen type I, β1 integrin receptor, IGF-IR, NF-κB protein, phospho-Akt protein, kinase MAPK, caspase 9 activity, and matrix metalloproteinases (MMP-9 and MMP-2). Results Ethanol in a dose-dependent manner lead to the impairment of collagen biosynthesis in fibroblast cultures through decreasing prolidase activity and expression of β1 integrin and IGF-IR. This was accompanied by an increased cytotoxicity, apoptosis and lowered expression of the signaling pathway proteins induced by β1 integrin and IGF-IR, that is, MAPK (ERK1/2) kinases. The lowered amount of synthesized collagen and prolidase activity disturbance may also be due to the activation of NF-κB transcription factor, which inhibits collagen gene expression. It suggests that the decrease in fibroblast collagen production may be caused by the disturbance in its biosynthesis but not degradation. The application of HA has a protective effect on disturbances caused by the examined substances. It seems that regulatory mechanism of ethanol-induced collagen aberration take

  11. Effect of vaginal or systemic estrogen on dynamics of collagen assembly in the rat vaginal wall.

    PubMed

    Montoya, T Ignacio; Maldonado, P Antonio; Acevedo, Jesus F; Word, R Ann

    2015-02-01

    The objective of this study was to compare the effects of systemic and local estrogen treatment on collagen assembly and biomechanical properties of the vaginal wall. Ovariectomized nulliparous rats were treated with estradiol or conjugated equine estrogens (CEEs) either systemically, vaginal CEE, or vaginal placebo cream for 4 wk. Low-dose local CEE treatment resulted in increased vaginal epithelial thickness and significant vaginal growth without uterine hyperplasia. Furthermore, vaginal wall distensibility increased without compromise of maximal force at failure. Systemic estradiol resulted in modest increases in collagen type I with no change in collagen type III mRNA. Low-dose vaginal treatment, however, resulted in dramatic increases in both collagen subtypes whereas moderate and high dose local therapies were less effective. Consistent with the mRNA results, low-dose vaginal estrogen resulted in increased total and cross-linked collagen content. The inverse relationship between vaginal dose and collagen expression may be explained in part by progressive downregulation of estrogen receptor-alpha mRNA with increasing estrogen dose. We conclude that, in this menopausal rat model, local estrogen treatment increased total and cross-linked collagen content and markedly stimulated collagen mRNA expression in an inverse dose-effect relationship. High-dose vaginal estrogen resulted in downregulation of estrogen receptor-alpha and loss of estrogen-induced increases in vaginal collagen. These results may have important clinical implications regarding the use of local vaginal estrogen therapy and its role as an adjunctive treatment in women with loss of vaginal support.

  12. Internalization of Tissue Factor-Rich Microvesicles by Platelets Occurs Independently of GPIIb-IIIa, and Involves CD36 Receptor, Serotonin Transporter and Cytoskeletal Assembly.

    PubMed

    Lopez-Vilchez, Irene; Diaz-Ricart, Maribel; Galan, Ana M; Roque, Merce; Caballo, Carolina; Molina, Patricia; White, James G; Escolar, Gines

    2016-02-01

    Platelets are important in hemostasis, but also detect particles and pathogens in the circulation. Phagocytic and endocytic activities of platelets are widely recognized; however, receptors and mechanisms involved remain poorly understood. We previously demonstrated that platelets internalize and store phospholipid microvesicles enriched in human tissue factor (TF+MVs) and that platelet-associated TF enhances thrombus formation at sites of vascular damage. Here, we investigate the mechanisms implied in the interactions of TF+MVs with platelets and the effects of specific inhibitory strategies. Aggregometry and electron microscopy were used to assess platelet activation and TF+MVs uptake. Cytoskeletal assembly and activation of phosphoinositide 3-kinase (PI3K) and RhoA were analyzed by western blot and ELISA. Exposure of platelets to TF+MVs caused reversible platelet aggregation, actin polymerization and association of contractile proteins to the cytoskeleton being maximal at 1 min. The same kinetics were observed for activation of PI3K and translocation of RhoA to the cytoskeleton. Inhibitory strategies to block glycoprotein IIb-IIIa (GPIIb-IIIa), scavenger receptor CD36, serotonin transporter (SERT) and PI3K, fully prevented platelet aggregation by TF+MVs. Ultrastructural techniques revealed that uptake of TF+MVs was efficiently prevented by anti-CD36 and SERT inhibitor, but only moderately interfered by GPIIb-IIIa blockade. We conclude that internalization of TF+MVs by platelets occurs independently of receptors related to their main hemostatic function (GPIIb-IIIa), involves the scavenger receptor CD36, SERT and engages PI3-Kinase activation and cytoskeletal assembly. CD36 and SERT appear as potential therapeutic targets to interfere with the association of TF+MVs with platelets and possibly downregulate their prothrombotic phenotype.

  13. Mandibular Cartilage Collagen Network Nanostructure

    PubMed Central

    Vanden Berg-Foels, Wendy S.

    2015-01-01

    Background Mandibular condyle cartilage (MCC) has a unique structure among articular cartilages; however, little is known about its nanoscale collagen network architecture, hampering design of regeneration therapies and rigorous evaluation of regeneration experiment outcomes in preclinical research. Helium ion microscopy is a novel technology with a long depth of field that is uniquely suited to imaging open 3D collagen networks at multiple scales without obscuring conductive coatings. Objective The objective of this research was to image, at the micro- and nanoscales, the depth-dependent MCC collagen network architecture. Design MCC was collected from New Zealand white rabbits. Images of MCC zones were acquired using helium ion, transmission electron, and light microscopy. Network fibril and canal diameters were measured. Results For the first time, the MCC was visualized as a 3D collagen fibril structure at the nanoscale, the length scale of network assembly. Fibril diameters ranged from 7 to 110 nm and varied by zone. The articular surface was composed of a fine mesh that was woven through thin layers of larger fibrils. The fibrous zone was composed of approximately orthogonal lamellae of aligned fibrils. Fibrocyte processes surrounded collagen bundles forming extracellular compartments. The proliferative, mature, and hypertrophic zones were composed of a branched network that was progressively remodeled to accommodate chondrocyte hypertrophy. Osteoid fibrils were woven around osteoblast cytoplasmic processes to create numerous canals similar in size to canaliculi of mature bone. Conclusion This multiscale investigation advances our foundational understanding of the complex, layered 3D architecture of the MCC collagen network. PMID:27375843

  14. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, Classification, and Pharmacology of G Protein-Coupled Melatonin Receptors

    PubMed Central

    Delagrange, Philippe; Krause, Diana N.; Sugden, David; Cardinali, Daniel P.; Olcese, James

    2010-01-01

    The hormone melatonin (5-methoxy-N-acetyltryptamine) is synthesized primarily in the pineal gland and retina, and in several peripheral tissues and organs. In the circulation, the concentration of melatonin follows a circadian rhythm, with high levels at night providing timing cues to target tissues endowed with melatonin receptors. Melatonin receptors receive and translate melatonin's message to influence daily and seasonal rhythms of physiology and behavior. The melatonin message is translated through activation of two G protein-coupled receptors, MT1 and MT2, that are potential therapeutic targets in disorders ranging from insomnia and circadian sleep disorders to depression, cardiovascular diseases, and cancer. This review summarizes the steps taken since melatonin's discovery by Aaron Lerner in 1958 to functionally characterize, clone, and localize receptors in mammalian tissues. The pharmacological and molecular properties of the receptors are described as well as current efforts to discover and develop ligands for treatment of a number of illnesses, including sleep disorders, depression, and cancer. PMID:20605968

  15. The evolution of fibrillar collagens: a sea-pen collagen shares common features with vertebrate type V collagen.

    PubMed

    Tillet, E; Franc, J M; Franc, S; Garrone, R

    1996-02-01

    The extracellular matrix of marine primitive invertebrates (sponges, polyps and jellyfishes) contains collagen fibrils with narrow diameters. From various data, it has been hypothesized that these primitive collagens could represent ancestral forms of the vertebrate minor collagens, i.e., types V or XI. Recently we have isolated a primitive collagen from the soft tissues of the sea-pen Veretillum cynomorium. This report examines whether the sea-pen collagen shares some features with vertebrate type V collagen. Rotary shadowed images of acid-soluble collagen molecules extracted from beta-APN treated animals, positive staining of segment-long-spacing crystallites precipitated from pepsinized collagen, Western blots of the pepsinized alpha1 and alpha2 chains with antibodies to vertebrate types I, III and V collagens, and in situ gold immunolabeling of ECM collagen fibrils were examined. Our results showed that the tissue form of the sea-pen collagen is a 340-nm threadlike molecule, which is close to the vertebrate type V collagen with its voluminous terminal globular domain, the distribution of most of its polar amino-acid residues, and its antigenic properties.

  16. The binding capacity of α1β1-, α2β1- and α10β1-integrins depends on non-collagenous surface macromolecules rather than the collagens in cartilage fibrils.

    PubMed

    Woltersdorf, Christian; Bonk, Melanie; Leitinger, Birgit; Huhtala, Mikko; Käpylä, Jarmo; Heino, Jyrki; Gil Girol, Christian; Niland, Stephan; Eble, Johannes A; Bruckner, Peter; Dreier, Rita; Hansen, Uwe

    2017-02-10

    Interactions of cells with supramolecular aggregates of the extracellular matrix (ECM) are mediated, in part, by cell surface receptors of the integrin family. These are important molecular components of cell surface-suprastructures regulating cellular activities in general. A subfamily of β1-integrins with von Willebrand-factor A-like domains (I-domains) in their α-chains can bind to collagen molecules and, therefore, are considered as important cellular mechano-receptors. Here we show that chondrocytes strongly bind to cartilage collagens in the form of individual triple helical molecules but very weakly to fibrils formed by the same molecules. We also find that chondrocyte integrins α1β1-, α2β1- and α10β1-integrins and their I-domains have the same characteristics. Nevertheless we find integrin binding to mechanically generated cartilage fibril fragments, which also comprise peripheral non-collagenous material. We conclude that cell adhesion results from binding of integrin-containing adhesion suprastructures to the non-collagenous fibril periphery but not to the collagenous fibril cores. The biological importance of the well-investigated recognition of collagen molecules by integrins is unknown. Possible scenarios may include fibrillogenesis, fibril degradation and/or phagocytosis, recruitment of cells to remodeling sites, or molecular signaling across cytoplasmic membranes. In these circumstances, collagen molecules may lack a fibrillar organization. However, other processes requiring robust biomechanical functions, such as fibril organization in tissues, cell division, adhesion, or migration, do not involve direct integrin-collagen interactions.

  17. Collagen crosslinks in chondromalacia of the patella.

    PubMed

    Väätäinen, U; Kiviranta, I; Jaroma, H; Arokosi, J; Tammi, M; Kovanen, V

    1998-02-01

    The aim of the study was to determine collagen concentration and collagen crosslinks in cartilage samples from chondromalacia of the patella. To study the extracellular matrix alterations associated to chondromalacia, we determined the concentration of collagen (hydroxyproline) and its hydroxylysylpyridinoline and lysylpyridinoline crosslinks from chondromalacia foci of the patellae in 12 patients and 7 controls from apparently normal cadavers. The structure of the collagen network in 8 samples of grades II-IV chondromalacia was examined under polarized light microscopy. The full-thickness cartilage samples taken with a surgical knife from chondromalacia lesions did not show changes in collagen, hydroxylysylpyridinoline and lysylpyridinoline concentration as compared with the controls. Polarized light microscopy showed decreased birefringence in the superficial cartilage of chondromalacia lesions, indicating disorganization or disappearance of collagen fibers in this zone. It is concluded that the collagen network shows gradual disorganization with the severity of chondromalacia lesion of the patella without changes in the concentration or crosslinks of collagen.

  18. [Disc electrophoresis of collagen protein (author's transl)].

    PubMed

    Reitmayr, P; Verzár, F

    1975-01-01

    The composition of proteins extracted from tendon collagen is investigated by disc electrophoresis. No qualitative differences can be demonstrated between young and old collagen. The action of formaldehyde and methionine on the tendons has no effect on the electrophoretic picture.

  19. Roofed grooves: rapid layer engineering of perfusion channels in collagen tissue models.

    PubMed

    Tan, Noah S; Alekseeva, Tijna; Brown, Robert A

    2014-10-01

    Surface patterning (micro-moulding) of dense, biomimetic collagen is a simple tool to produce complex tissues using layer-by-layer assembly. The aim here was to channelise three-dimensional constructs for improved perfusion. Firstly, collagen fibril accumulation was measured by comparative image analysis to understand the mechanisms of structure formation in plastically compressed collagen during µ-moulding. This showed that shape (circular or rectangular) and dimensions of the template affected collagen distribution around moulded grooves and consequently their stability. In the second part, this was used for effective fabrication of multi-layered plastically compressed collagen constructs with internal channels by roofing the grooves with a second layer. Using rectangular templates of 25/50/100 µm widths and 75 µm depth, grooves were µ-moulded into the fluid-leaving surface of collagen layers with predictable width/depth fidelities. These grooves were then roofed by addition of a second plastically compressed collagen layer on top to produce µ-channels. Resulting µ-channels retained their dimensions and were stable over time in culture with fibroblasts and could be cell seeded with a lining layer by simple transfer of epithelial cells. The results of this study provide a valuable platform for rapid fabrication of complex collagen-based tissues in particular for provision of perfusing microchannels through the bulk material for improved core nutrient supply.

  20. Biology, chemistry and pathology of collagen

    SciTech Connect

    Fleischmajer, R.; Olsen, B.R.; Kuhn, K.

    1985-01-01

    This book consists of five parts and a section of poster papers. Some of the articles are: Structure of the Type II Collagen Gene; Structural and Functional Analysis of the Genes for ..cap alpha..2(1) and ..cap alpha..1(III) collagens; Structure and Expression of the Collagen Genes of C. Elegans; Molecular Basis of Clinical Heterogeneity in the Ehlers-Danlos Syndrome; and Normal and Mutant Human Collagen Genes.

  1. DDR2 plays a role in fibroblast migration independent of adhesion ligand and collagen activated DDR2 tyrosine kinase.

    PubMed

    Herrera-Herrera, Mireya Liliana; Quezada-Calvillo, Roberto

    2012-12-07

    Discoidin domain receptor-2 (DDR2) is a cell surface tyrosine kinase receptor that can be activated by soluble collagen and has been implicated in diverse physiological functions including organism growth and wound repair. In the current studies, we used fibronectin and collagen-coated 2D surfaces and collagen matrices in combination with siRNA technology to investigate the role of DDR2 in a range of fibroblast motile activities. Silencing DDR2 with siRNA inhibited cell spreading and migration, and similar inhibition occurred regardless whether cells were interacting with fibronectin or collagen surfaces. Under the assay conditions used, DDR2 tyrosine kinase activation was not observed unless soluble collagen was added to the incubation medium. Finally silencing DDR2 also inhibited human fibroblast migration in 3D collagen matrices but had no effect on 3D collagen matrix remodeling and contraction. Taken together, our findings suggest that DDR2 is required for normal fibroblast spreading and migration independent of adhesion ligand and collagen activation of DDR2 tyrosine kinase.

  2. The GR127935-sensitive 5-HT1 receptors mediating canine internal carotid vasoconstriction: resemblance to the 5-HT1B, but not to the 5-HT1D or 5-ht1F, receptor subtype

    PubMed Central

    Centurión, David; Sánchez-López, Araceli; De Vries, Peter; Saxena, Pramod R; Villalón, Carlos M

    2001-01-01

    This study has further investigated the pharmacological profile of the GR127935-sensitive 5-HT1 receptors mediating vasoconstriction in the internal carotid bed of anaesthetized vagosympathectomized dogs. One-minute intracarotid infusions of the agonists 5-hydroxytryptamine (5-HT; 0.1–10 μg min−1; endogenous ligand) and sumatriptan (0.3–10 μg min−1; 5-HT1B/1D), but not PNU-142633 (1–1000 μg min−1; 5-HT1D) or LY344864 (1–1000 μg min−1; 5-ht1F), produced dose-dependent decreases in internal carotid blood flow without changing blood pressure or heart rate. The responses to 5-HT were apparently resistant to blockade by i.v. administration of the antagonists SB224289 (300 μg kg−1; 5-HT1B), BRL15572 (300 μg kg−1; 5-HT1D) or ritanserin (100 μg kg−1; 5-HT2). In contrast, the responses to sumatriptan were antagonized by SB224289, but not by BRL15572. In the animals receiving SB224289, but not those receiving BRL15572, the subsequent administration of ritanserin abolished the 5-HT-induced vasoconstriction and unmasked a vasodilator component. Similarly, in ritanserin-treated animals, the subsequent administration of SB224289, but not BRL15572, completely blocked the 5-HT-induced vasoconstriction, revealing vasodilatation. In animals receiving initially BRL15572, the subsequent administration of SB224289 did not affect (except at 10 μg min−1) the vasoconstrictor responses to 5-HT. Notably, in animals pretreated with 1000 μg kg−1 of mesulergine, a 5-HT2/7 receptor antagonist, 5-HT produced a dose-dependent vasoconstriction, which was practically abolished by SB224289. After BRL15572, no further blockade was produced and the subsequent administration of ritanserin was similarly inactive. These results suggest that the GR127935-sensitive 5-HT1 receptors mediating canine internal carotid vasoconstriction resemble the 5-HT1B but not the 5-HT1D or 5-ht1F, receptor subtype. PMID:11226129

  3. Stability of Silk and Collagen Protein Materials in Space

    PubMed Central

    Hu, Xiao; Raja, Waseem K.; An, Bo; Tokareva, Olena; Cebe, Peggy; Kaplan, David L.

    2013-01-01

    Collagen and silk materials, in neat forms and as silica composites, were flown for 18 months on the International Space Station [Materials International Space Station Experiment (MISSE)-6] to assess the impact of space radiation on structure and function. As natural biomaterials, the impact of the space environment on films of these proteins was investigated to understand fundamental changes in structure and function related to the future utility in materials and medicine in space environments. About 15% of the film surfaces were etched by heavy ionizing particles such as atomic oxygen, the major component of the low-Earth orbit space environment. Unexpectedly, more than 80% of the silk and collagen materials were chemically crosslinked by space radiation. These findings are critical for designing next-generation biocompatible materials for contact with living systems in space environments, where the effects of heavy ionizing particles and other cosmic radiation need to be considered. PMID:24305951

  4. Stability of silk and collagen protein materials in space.

    PubMed

    Hu, Xiao; Raja, Waseem K; An, Bo; Tokareva, Olena; Cebe, Peggy; Kaplan, David L

    2013-12-05

    Collagen and silk materials, in neat forms and as silica composites, were flown for 18 months on the International Space Station [Materials International Space Station Experiment (MISSE)-6] to assess the impact of space radiation on structure and function. As natural biomaterials, the impact of the space environment on films of these proteins was investigated to understand fundamental changes in structure and function related to the future utility in materials and medicine in space environments. About 15% of the film surfaces were etched by heavy ionizing particles such as atomic oxygen, the major component of the low-Earth orbit space environment. Unexpectedly, more than 80% of the silk and collagen materials were chemically crosslinked by space radiation. These findings are critical for designing next-generation biocompatible materials for contact with living systems in space environments, where the effects of heavy ionizing particles and other cosmic radiation need to be considered.

  5. Exposure to Mimivirus Collagen Promotes Arthritis

    PubMed Central

    Shah, Nikunj; Hülsmeier, Andreas J.; Hochhold, Nina; Neidhart, Michel; Gay, Steffen

    2014-01-01

    Collagens, the most abundant proteins in animals, also occur in some recently described nucleocytoplasmic large DNA viruses such as Mimiviridae, which replicate in amoebae. To clarify the impact of viral collagens on the immune response of animals exposed to Mimiviridae, we have investigated the localization of collagens in Acanthamoeba polyphaga mimivirus particles and the response of mice to immunization with mimivirus particles. Using protein biotinylation, we have first shown that viral collagen encoded by open reading frame L71 is present at the surface of mimivirus particles. Exposure to mimivirus collagens elicited the production of anti-collagen antibodies in DBA/1 mice immunized intradermally with mimivirus protein extracts. This antibody response also targeted mouse collagen type II and was accompanied by T-cell reactivity to collagen and joint inflammation, as observed in collagen-induced arthritis following immunization of mice with bovine collagen type II. The broad distribution of nucleocytoplasmic large DNA viruses in the environment suggests that humans are constantly exposed to such large virus particles. A survey of blood sera from healthy human subjects and from rheumatoid arthritis patients indeed demonstrated that 30% of healthy-subject and 36% of rheumatoid arthritis sera recognized the major mimivirus capsid protein L425. Moreover, whereas 6% of healthy-subject sera recognized the mimivirus collagen protein L71, 22% of rheumatoid arthritis sera were positive for mimivirus L71. Accordingly, our study shows that environmental exposure to mimivirus represents a risk factor in triggering autoimmunity to collagens. PMID:24173233

  6. The materials science of collagen.

    PubMed

    Sherman, Vincent R; Yang, Wen; Meyers, Marc A

    2015-12-01

    Collagen is the principal biopolymer in the extracellular matrix of both vertebrates and invertebrates. It is produced in specialized cells (fibroblasts) and extracted into the body by a series of intra and extracellular steps. It is prevalent in connective tissues, and the arrangement of collagen determines the mechanical response. In biomineralized materials, its fraction and spatial distribution provide the necessary toughness and anisotropy. We review the structure of collagen, with emphasis on its hierarchical arrangement, and present constitutive equations that describe its mechanical response, classified into three groups: hyperelastic macroscopic models based on strain energy in which strain energy functions are developed; macroscopic mathematical fits with a nonlinear constitutive response; structurally and physically based models where a constitutive equation of a linear elastic material is modified by geometric characteristics. Viscoelasticity is incorporated into the existing constitutive models and the effect of hydration is discussed. We illustrate the importance of collagen with descriptions of its organization and properties in skin, fish scales, and bone, focusing on the findings of our group.

  7. PAF-receptor is preferentially expressed in a distinct synthetic phenotype of smooth muscle cells cloned from human internal thoracic artery: Functional implications in cell migration

    SciTech Connect

    Stengel, Dominique; O'Neil, Caroline; Brocheriou, Isabelle; Karabina, Sonia-Athina; Durand, Herve; Caplice, Noel M.; Pickering, J. Geoffrey; Ninio, Ewa . E-mail: ninio@chups.jussieu.fr

    2006-08-04

    Platelet-activating-Factor (PAF) and its structural analogues formed upon low density lipoprotein oxidation are involved in atherosclerotic plaque formation and may signal through PAF-receptor (PAF-R) expressed in human macrophages and in certain smooth muscle cells (SMCs) in the media, but rarely in the intima of human plaques. Our aim was to determine which SMC phenotype expresses PAF-R and whether this receptor is functional in cell migration. Circulating SMC progenitors and two phenotypically distinct clones of proliferative, epithelioid phenotype vs contractile, spindle-shaped SMCs from the media of adult internal thoracic artery were studied for the presence of PAF-receptor (PAF-R). The levels of specific mRNA were obtained by reverse transcription/real-time PCR, the protein expression was deduced from immunohistochemistry staining, and the functional transmigration assay was performed by Boyden chamber-type chemotaxis assay. Only SMCs of spindle-shape and synthetic phenotype expressed both mRNA and PAF-R protein and in the functional test migrated at low concentrations of PAF. Two unrelated, specific PAF-R antagonists inhibited PAF-induced migration, but did not modify the migration initiated by PDGF. The presence of functional PAF-R in arterial spindle-shaped SMCs of synthetic phenotype may be important for their migration from the media into the intima and atherosclerotic plaques formation.

  8. Caffeine, Through Adenosine A3 Receptor-Mediated Actions, Suppresses Amyloid-β Protein Precursor Internalization and Amyloid-β Generation.

    PubMed

    Li, Shanshan; Geiger, Nicholas H; Soliman, Mahmoud L; Hui, Liang; Geiger, Jonathan D; Chen, Xuesong

    2015-01-01

    Intraneuronal accumulation and extracellular deposition of amyloid-β (Aβ) protein continues to be implicated in the pathogenesis of Alzheimer's disease (AD), be it familial in origin or sporadic in nature. Aβ is generated intracellularly following endocytosis of amyloid-β protein precursor (AβPP), and, consequently, factors that suppress AβPP internalization may decrease amyloidogenic processing of AβPP. Here we tested the hypothesis that caffeine decreases Aβ generation by suppressing AβPP internalization in primary cultured neurons. Caffeine concentration-dependently blocked low-density lipoprotein (LDL) cholesterol internalization and a specific adenosine A3 receptor (A3R) antagonist as well as siRNA knockdown of A3Rs mimicked the effects of caffeine on neuronal internalization of LDL cholesterol. Further implicating A3Rs were findings that a specific A3R agonist increased neuronal internalization of LDL cholesterol. In addition, caffeine as well as siRNA knockdown of A3Rs blocked the ability of LDL cholesterol to increase Aβ levels. Furthermore, caffeine blocked LDL cholesterol-induced decreases in AβPP protein levels in neuronal plasma membranes, increased surface expression of AβPP on neurons, and the A3R antagonist as well as siRNA knockdown of A3Rs mimicked the effects of caffeine on AβPP surface expression. Moreover, the A3R agonist decreased neuronal surface expression of AβPP. Our findings suggest that caffeine exerts protective effects against amyloidogenic processing of AβPP at least in part by suppressing A3R-mediated internalization of AβPP.

  9. B cell receptor-mediated internalization of salmonella: a novel pathway for autonomous B cell activation and antibody production.

    PubMed

    Souwer, Yuri; Griekspoor, Alexander; Jorritsma, Tineke; de Wit, Jelle; Janssen, Hans; Neefjes, Jacques; van Ham, S Marieke

    2009-06-15

    The present paradigm is that primary B cells are nonphagocytosing cells. In this study, we demonstrate that human primary B cells are able to internalize bacteria when the bacteria are recognized by the BCR. BCR-mediated internalization of Salmonella typhimurium results in B cell differentiation and secretion of anti-Salmonella Ab by the Salmonella-specific B cells. In addition, BCR-mediated internalization leads to efficient Ag delivery to the MHC class II Ag-loading compartments, even though Salmonella remains vital intracellularly in primary B cells. Consequently, BCR-mediated bacterial uptake induces efficient CD4(+) T cell help, which boosts Salmonella-specific Ab production. BCR-mediated internalization of Salmonella by B cells is superior over extracellular Ag extraction to induce rapid and specific humoral immune responses and efficiently combat infection.

  10. Collagen-derived matricryptins promote inhibitory nerve terminal formation in the developing neocortex

    PubMed Central

    Su, Jianmin; Chen, Jiang; Lippold, Kumiko; Monavarfeshani, Aboozar; Carrillo, Gabriela Lizana; Jenkins, Rachel

    2016-01-01

    Inhibitory synapses comprise only ∼20% of the total synapses in the mammalian brain but play essential roles in controlling neuronal activity. In fact, perturbing inhibitory synapses is associated with complex brain disorders, such as schizophrenia and epilepsy. Although many types of inhibitory synapses exist, these disorders have been strongly linked to defects in inhibitory synapses formed by Parvalbumin-expressing interneurons. Here, we discovered a novel role for an unconventional collagen—collagen XIX—in the formation of Parvalbumin+ inhibitory synapses. Loss of this collagen results not only in decreased inhibitory synapse number, but also in the acquisition of schizophrenia-related behaviors. Mechanistically, these studies reveal that a proteolytically released fragment of this collagen, termed a matricryptin, promotes the assembly of inhibitory nerve terminals through integrin receptors. Collectively, these studies not only identify roles for collagen-derived matricryptins in cortical circuit formation, but they also reveal a novel paracrine mechanism that regulates the assembly of these synapses. PMID:26975851

  11. The collagenous gastroenteritides: similarities and differences.

    PubMed

    Gopal, Purva; McKenna, Barbara J

    2010-10-01

    Collagenous gastritis, collagenous sprue, and collagenous colitis share striking histologic similarities and occur together in some patients. They also share some drug and disease associations. Pediatric cases of collagenous gastritis, however, lack most of these associations. The etiologies of the collagenous gastroenteritides are not known, so it is not clear whether they are similar because they share pathogeneses, or because they indicate a common histologic response to varying injuries. The features, disease and drug associations, and the inquiries into the pathogenesis of these disorders are reviewed.

  12. Collagen I confers gamma radiation resistance.

    PubMed

    Azorin, E; González-Martínez, P R; Azorin, J

    2012-12-01

    The effect of collagen on the response of somatomammotroph tumor cells (GH3) to gamma, radiation therapy was studied in vitro. After incubating confluent GH3 cell monolayers in a serum-free, maintaining medium, either with or without collagen, the monolayers were irradiated with 137Cs, gamma radiation. Collagen reduces cell mortality via ERK1/2 activation, abolishing gamma radiation, cell death, and promotes cell invasion when acting in synergy with collagen and in association with the, MAPK/ERK1/2 signaling pathway activation. The presence of collagen in somatomammotroph tumors, confers resistance to radiation.

  13. Collagen: a network for regenerative medicine

    PubMed Central

    Pawelec, K. M.; Best, S. M.

    2016-01-01

    The basic building block of the extra-cellular matrix in native tissue is collagen. As a structural protein, collagen has an inherent biocompatibility making it an ideal material for regenerative medicine. Cellular response, mediated by integrins, is dictated by the structure and chemistry of the collagen fibers. Fiber formation, via fibrillogenesis, can be controlled in vitro by several factors: pH, ionic strength, and collagen structure. After formation, fibers are stabilized via cross-linking. The final bioactivity of collagen scaffolds is a result of both processes. By considering each step of fabrication, scaffolds can be tailored for the specific needs of each tissue, improving their therapeutic potential. PMID:27928505

  14. Supra-molecular assembly of a lumican-derived peptide amphiphile enhances its collagen-stimulating activity.

    PubMed

    Walter, Merlin N M; Dehsorkhi, Ashkan; Hamley, Ian W; Connon, Che J

    2016-02-01

    C16-YEALRVANEVTLN, a peptide amphiphile (PA) incorporating a biologically active amino acid sequence found in lumican, has been examined for its influence upon collagen synthesis by human corneal fibroblasts in vitro, and the roles of supra-molecular assembly and activin receptor-like kinase ALK receptor signaling in this effect were assessed. Cell viability was monitored using the Alamar blue assay, and collagen synthesis was assessed using Sirius red. The role of ALK signaling was studied by receptor inhibition. Cultured human corneal fibroblasts synthesized significantly greater amounts of collagen in the presence of the PA over both 7-day and 21-day periods. The aggregation of the PA to form nanotapes resulted in a notable enhancement in this activity, with an approximately two-fold increase in collagen production per cell. This increase was reduced by the addition of an ALK inhibitor. The data presented reveal a stimulatory effect upon collagen synthesis by the primary cells of the corneal stroma, and demonstrate a direct influence of supra-molecular assembly of the PA upon the cellular response observed. The effects of PA upon fibroblasts were dependent upon ALK receptor function. These findings elucidate the role of self-assembled nanostructures in the biological activity of peptide amphiphiles, and support the potential use of a self-assembling lumican derived PA as a novel biomaterial, intended to promote collagen deposition for wound repair and tissue engineering purposes.

  15. Cross-linking and the molecular packing of corneal collagen

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Chandler, G. S.; Tanzawa, H.; Katz, E. P.

    1996-01-01

    We have quantitatively characterized, for the first time, the cross-linking in bovine cornea collagen as a function of age. The major iminium reducible cross-links were dehydro-hydroxylysinonorleucine (deH-HLNL) and dehydro-histidinohydroxymerodesmosine (deH-HHMD). The former rapidly diminished after birth; however, the latter persisted in mature animals at a level of 0.3 - 0.4 moles/mole of collagen. A nonreducible cross-link, histidinohydroxylysinonorleucine (HHL), previously found only in skin, was also found to be a major mature cross-link in cornea. The presence of HHL indicates that cornea fibrils have a molecular packing similar to skin collagen. However, like deH-HHMD, the HHL content in corneal fibrils only reaches a maximum value with time about half that of skin. These data suggest that the corneal fibrils are comprised of discrete filaments that are internally stabilized by HHL and deH-HHMD cross-links. This pattern of intermolecular cross-linking would facilitate the special collagen swelling property required for corneal transparency.

  16. YTRF is the conserved internalization signal of the transferrin receptor, and a second YTRF signal at position 31-34 enhances endocytosis.

    PubMed

    Collawn, J F; Lai, A; Domingo, D; Fitch, M; Hatton, S; Trowbridge, I S

    1993-10-15

    By functional analysis of mutant human transferrin receptors (TR) expressed in chicken embryo fibroblasts, we previously identified a tetrapeptide sequence, Y20TRF23, within the 61-residue cytoplasmic tail as the signal for high-efficiency endocytosis (Collawn, J. F., Stangel, M., Kuhn, L. A., Esekogwu, V., Jing, S., Trowbridge, I.S., and Tainer, J.A. (1990) Cell 63, 1061-1072). It has been inferred from other studies, however, that the TR internalization signal was localized to a much larger region, residues 7 through 26 (Girones, N., Alvarez, E., Seth, A., Lin, I-M., Latour, D.A., and Davis, R.J. (1991) J. Biol. Chem. 266, 19006-19012). Additionally, Tyr20 was reported to not be conserved in the Chinese hamster cytoplasmic tail sequence (Alvarez, E., Girones, N., and Davis, R.J. (1990) Biochem. J. 267, 31-35). In the studies reported here, we examined the effect of insertion of an extra copy of a YTRF sequence at three different locations within the human TR cytoplasmic domain and show that the insertion of another YTRF signal at position 31-34 in the wild-type TR, but not the other two locations, increases the rate of endocytosis 2-fold. Furthermore, introduction of YTRF at position 31-34 in an internalization-defective mutant receptor restores endocytosis to wild-type levels, indicating that YTRF signals at either positions 20-23 or 31-34 are necessary and sufficient to promote TR internalization and function in an independent and additive manner. We also report the complete primary structure of the Chinese hamster TR deduced from its cDNA sequence and show that the Tyr20 as well as the complete YTRF motif is conserved.

  17. Activation of hageman factor by collagen

    PubMed Central

    Wilner, G. D.; Nossel, H. L.; LeRoy, E. C.

    1968-01-01

    Purified acid-soluble and insoluble human collagen accelerated the clotting of plateletpoor plasma in silicone-treated tubes. The clot-promoting effect did not appear to be due to thromboplastic activity since the collagen preparations did not activate factor X in the presence of factor VII and calcium. Instead, collagen appeared to accelerate clotting by activating Hageman factor (factor XII) on the basis of the following findings: collagen increased the clot-promoting activity of partially purified Hageman factor but exerted no further effect in the presence of kaolin, a known activator of Hageman factor; clot-promoting eluates were obtained from collagen exposed to normal, hemophilic, or PTC-deficient plasma but not from collagen exposed to Hageman or PTA-deficient plasma. The collagen molecule itself appeared to be required for the clot-promoting activity since digestion with collagenase or thermal denaturation at pH 2.5 (about 35°C) resulted in very marked reduction in clot-promoting activity. Since thermal denaturation is associated with transformation of collagen structure from triple helical to random coil form, it is suggested that the native form of collagen is essential for the ability to activate Hageman factor. Blockage of the free amino groups by treatment with nitrous acid or dinitrofluorobenzene only slightly reduced the clot-promoting activity of collagen. In contrast, since addition of cationic proteins to collagen markedly reduced pro-coagulant activity it is suggested that negatively charged sites on the collagen molecule are critical for Hageman factor activation. This suggestion is supported by the finding that pepsin treatment of collagen, which removes the predominantly negatively charged telopeptides, results in significant decrease in coagulant activity. Esterification of collagen, which neutralizes 80-90% of the free carboxyl groups, reduced coagulant activity by over 90% and it is suggested that the free carboxyl groups of glutamic and

  18. Dwarfism in mice lacking collagen-binding integrins α2β1 and α11β1 is caused by severely diminished IGF-1 levels.

    PubMed

    Blumbach, Katrin; Niehoff, Anja; Belgardt, Bengt F; Ehlen, Harald W A; Schmitz, Markus; Hallinger, Ralf; Schulz, Jan-Niklas; Brüning, Jens C; Krieg, Thomas; Schubert, Markus; Gullberg, Donald; Eckes, Beate

    2012-02-24

    Mice with a combined deficiency in the α2β1 and α11β1 integrins lack the major receptors for collagen I. These mutants are born with inconspicuous differences in size but develop dwarfism within the first 4 weeks of life. Dwarfism correlates with shorter, less mineralized and functionally weaker bones that do not result from growth plate abnormalities or osteoblast dysfunction. Besides skeletal dwarfism, internal organs are correspondingly smaller, indicating proportional dwarfism and suggesting a systemic cause for the overall size reduction. In accordance with a critical role of insulin-like growth factor (IGF)-1 in growth control and bone mineralization, circulating IGF-1 levels in the sera of mice lacking either α2β1 or α11β1 or both integrins were sharply reduced by 39%, 64%, or 81% of normal levels, respectively. Low hepatic IGF-1 production resulted from diminished growth hormone-releasing hormone expression in the hypothalamus and, subsequently, reduced growth hormone expression in the pituitary glands of these mice. These findings point out a novel role of collagen-binding integrin receptors in the control of growth hormone/IGF-1-dependent biological activities. Thus, coupling hormone secretion to extracellular matrix signaling via integrins represents a novel concept in the control of endocrine homeostasis.

  19. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts

    SciTech Connect

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo; Kim, So Young; Jang, Hwan-Hee; Ryu, Sung Ho; Kim, Beom Joon; Lee, Taehoon G.

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer We identify a function of the YIGSR peptide to enhance collagen synthesis in Hs27. Black-Right-Pointing-Pointer YIGSR peptide enhanced collagen type 1 synthesis both of gene and protein levels. Black-Right-Pointing-Pointer There were no changes in cell proliferation and MMP-1 level in YIGSR treatment. Black-Right-Pointing-Pointer The YIGSR effect on collagen synthesis mediated activation of FAK, pyk2 and ERK. Black-Right-Pointing-Pointer The YIGSR-induced FAK and ERK activation was modulated by FAK and MEK inhibitors. -- Abstract: The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the {beta}1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67 kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate

  20. Class A scavenger receptor-mediated dsRNA internalization is independent of innate antiviral signaling and does not require PI3K activity1

    PubMed Central

    Nellimarla, Srinivas; Baid, Kaushal; Loo, Yueh-Ming; Gale, Michael; Bowdish, Dawn M.; Mossman, Karen L.

    2016-01-01

    Double-stranded RNA is a potent trigger of innate immune signaling, eliciting effects within virally infected cells and following release from dying cells. Given its inherent stability, extracellular dsRNA induces both local and systemic effects. Although the class A scavenger receptors (SR-As)3 mediate dsRNA entry, it is unknown if they contribute to signaling beyond ligand internalization. Here, we investigated if SR-As contribute to innate immune signaling independent of the classic TLR and RLR pathways. We generated a stable A549 human epithelial cell line with inducible expression of the Hepatitis C virus protease NS3/4A, which efficiently cleaves TRIF and IPS-1, adaptors for TLR3 and the RLRs respectively. Cells expressing NS3/4A as well as TLR3/MDA5/IPS-1−/− mouse embryonic fibroblasts completely lacked antiviral activity to extracellular dsRNA relative to control cells, suggesting that SR-As do not possess signaling capacity independent of TLR3 or the RLRs. Previous studies implicated PI3K signaling in SR-A-mediated activities and in downstream production of type I interferon. We found that SR-A-mediated dsRNA internalization occurs independent of PI3K activation, while downstream signaling leading to interferon production was partially dependent on PI3K activity. Overall, these findings suggest that SR-A-mediated dsRNA internalization is independent of innate antiviral signaling. PMID:26363049

  1. Metabolic flux-driven sialylation alters internalization, recycling, and drug sensitivity of the epidermal growth factor receptor (EGFR) in SW1990 pancreatic cancer cells

    PubMed Central

    Mathew, Mohit P.; Tan, Elaine; Saeui, Christopher T.; Bovonratwet, Patawut; Sklar, Samuel; Bhattacharya, Rahul; Yarema, Kevin J.

    2016-01-01

    In prior work we reported that advanced stage, drug-resistant pancreatic cancer cells (the SW1990 line) can be sensitized to the EGFR-targeting tyrosine kinase inhibitors (TKIs) erlotinib and gefitinib by treatment with 1,3,4-O-Bu3ManNAc (Bioorg. Med. Chem. Lett. (2015) 25(6):1223-7). Here we provide mechanistic insights into how this compound inhibits EGFR activity and provides synergy with TKI drugs. First, we showed that the sialylation of the EGFR receptor was at most only modestly enhanced (by ∼20 to 30%) compared to overall ∼2-fold increase in cell surface levels of this sugar. Second, flux-driven sialylation did not alter EGFR dimerization as has been reported for cancer cell lines that experience increased sialylation due to spontaneous mutations. Instead, we present evidence that 1,3,4-O-Bu3ManNAc treatment weakens the galectin lattice, increases the internalization of EGFR, and shifts endosomal trafficking towards non-clathrin mediated (NCM) endocytosis. Finally, by evaluating downstream targets of EGFR signaling, we linked synergy between 1,3,4-O-Bu3ManNAc and existing TKI drugs to a shift from clathrin-coated endocytosis (which allows EGFR signaling to continue after internalization) towards NCM endocytosis, which targets internalized moieties for degradation and thereby rapidly diminishes signaling. PMID:27613843

  2. Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction

    NASA Technical Reports Server (NTRS)

    Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.

    1991-01-01

    Solubilized interstitial collagens will form a fibrillar, gel-like lattice when brought to physiologic conditions. In the presence of human dermal fibroblasts the collagen lattice will contract. The rate of contraction can be determined by computer-assisted planemetry. The mechanisms involved in contraction are as yet unknown. Using this system it was found that the rate of contraction was markedly decreased when collagen lacking telopeptides was substituted for native collagen. Histidinohydroxylysinonorleucine (HHL) is a major stable trifunctional collagen cross-link in mature skin that involves a carboxyl terminal, telopeptide site 16c, the sixteenth amino acid residue from the carboxy terminal of the telopeptide region of alpha 1 (I) in type I collagen. Little, if any, HHL was present in native, purified, reconstituted, soluble collagen fibrils from 1% acetic acid-extracted 2-year-old bovine skin. In contrast, HHL cross-links were present (0.22 moles of cross-link per mole of collagen) in lattices of the same collagen contracted by fibroblasts. However, rat tail tendon does not contain HHL cross-links, and collagen lattices made of rat tail tendon collagen are capable of contraction. This suggests that telopeptide sites, and not mature HHL cross-links per se, are essential for fibroblasts to contract collagen lattices. Beta-aminopropionitrile fumarate (BAPN), a potent lathyrogen that perturbs collagen cross-linking by inhibition of lysyl oxidase, also inhibited the rate of lattice cell contraction in lattices composed of native collagen. However, the concentrations of BAPN that were necessary to inhibit the contraction of collagen lattices also inhibited fibroblast growth suggestive of cellular toxicity. In accordance with other studies, we found no inhibition of the rate of lattice contraction when fibronectin-depleted serum was used. Electron microscopy of contracted gels revealed typical collagen fibers with a characteristic axial periodicity. The data

  3. An internally modulated, thermostable, pH-sensitive Cys loop receptor from the hydrothermal vent worm Alvinella pompejana.

    PubMed

    Juneja, Puneet; Horlacher, Reinhold; Bertrand, Daniel; Krause, Ryoko; Marger, Fabrice; Welte, Wolfram

    2014-05-23

    Cys loop receptors (CLRs) are commonly known as ligand-gated channels that transiently open upon binding of neurotransmitters to modify the membrane potential. However, a class of cation-selective bacterial homologues of CLRs have been found to open upon a sudden pH drop, suggesting further ligands and more functions of the homologues in prokaryotes. Here we report an anion-selective CLR from the hydrothermal vent annelid worm Alvinella pompejana that opens at low pH. A. pompejana expressed sequence tag databases were explored by us, and two full-length CLR sequences were identified, synthesized, cloned, expressed in Xenopus oocytes, and studied by two-electrode voltage clamp. One channel, named Alv-a1-pHCl, yielded functional receptors and opened upon a sudden pH drop but not by other known agonists. Sequence comparison showed that both CLR proteins share conserved characteristics with eukaryotic CLRs, such as an N-terminal helix, a cysteine loop motif, and an intracellular loop intermediate in length between the long loops of other eukaryotic CLRs and those of prokaryotic CLRs. Both full-length Alv-a1-pHCl and a truncated form, termed tAlv-a1-pHCl, lacking 37 amino-terminal residues that precede the N-terminal helix, formed functional channels in oocytes. After pH activation, tAlv-a1-pHCl showed desensitization and was not modulated by ivermectin. In contrast, pH-activated, full-length Alv-a1-pHCl showed a marked rebound current and was modulated significantly by ivermectin. A thermostability assay indicated that purified tAlv-a1-pHCl expressed in Sf9 cells denatured at a higher temperature than the nicotinic acetylcholine receptor from Torpedo californica.

  4. Evidence for 5-HT1B/1D and 5-HT2A receptors mediating constriction of the canine internal carotid circulation

    PubMed Central

    Centurión, David; Ortiz, Mario I; Sánchez-López, Araceli; De Vries, Peter; Saxena, Pramod R; Villalón, Carlos M

    2001-01-01

    The present study has investigated the preliminary pharmacological profile of the receptors mediating vasoconstriction to 5-hydroxytryptamine (5-HT) in the internal carotid bed of vagosympathectomised dogs. One minute intracarotid infusions of the agonists 5-HT (0.1–10 μg min−1), sumatriptan (0.3–10 μg min−1; 5-HT1B/1D), 5-methoxytryptamine (1–100 μg min−1; 5-HT1, 5-HT2, 5-HT4, 5-ht6 and 5-HT7) or DOI (0.31–10 μg min−1; 5-HT2), but not 5-carboxamidotryptamine (0.01–0.3 μg min−1; 5-HT1, 5-ht5A and 5-HT7), 1-(m-chlorophenyl)-biguanide (mCPBG; 1–1000 μg min−1; 5-HT3) or cisapride (1–1000 μg min−1; 5-HT4), resulted in dose-dependent decreases in internal carotid blood flow, without changing blood pressure or heart rate. The vasoconstrictor responses to 5-HT, which remained unaffected after saline, were resistant to blockade by i.v. administration of the antagonists ritanserin (100 μg kg−1; 5-HT2A/2B/2C) in combination with tropisetron (3000 μg kg−1; 5-HT3/4) or the cyclo-oxygenase inhibitor, indomethacin (5000 μg kg−1), but were abolished by the 5-HT1B/1D receptor antagonist, GR127935 (30 μg kg−1). Interestingly, after administration of GR127935, the subsequent administration of ritanserin unmasked a dose-dependent vasodilator component. GR127935 or saline did not practically modify the vasoconstrictor effects of 5-MeO-T. In animals receiving GR127935, the subsequent administration of ritanserin abolished the vasoconstrictor responses to 5-MeO-T unmasking a dose-dependent vasodilator component. The vasoconstriction induced by sumatriptan was antagonized by GR127935, but not by ritanserin. Furthermore, ritanserin (100 μg kg−1) or ketanserin (100 μg kg−1; 5-HT2A), but not GR127935, abolished DOI-induced vasoconstrictor responses. The above results suggest that 5-HT-induced internal carotid vasoconstriction is predominantly mediated by 5-HT1B/1D and 5-HT2A receptors

  5. Immunostimulation effect of jellyfish collagen.

    PubMed

    Sugahara, Takuya; Ueno, Masashi; Goto, Yoko; Shiraishi, Ryusuke; Doi, Mikiharu; Akiyama, Koichi; Yamauchi, Satoshi

    2006-09-01

    Certain edible large jellyfishes belonging to the order Rhizostomeae are consumed in large quantities in China and Japan. The exumbrella part of the edible jellyfish Stomolophus nomurai was cut and soaked in dilute hydrochloric acid solution (pH 3.0) for 12 h, and heated at 121 degrees C for 20 min. The immunostimulation effects of the jellyfish extract were examined. The jellyfish extract enhanced IgM production of human hybridoma HB4C5 cells 34-fold. IgM and IgG production of human peripheral blood lymphocytes (PBL) were also accelerated, 2.8- and 1.4-fold respectively. Moreover, production of interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha by human PBL was stimulated 100- and 17-fold respectively. Collagenase treatment inactivated the immunostimulation activity of the jellyfish extract. In addition, purified collagen from bovine Achilles' tendon accelerated IgM production of hybridoma cells. These facts mean that collagen has an immunostimulation effect, and that the active substance in jellyfish extract is collagen.

  6. Carbohydrate-functionalized collagen matrices: design and characterization of a novel neoglycosylated biomaterial.

    PubMed

    Russo, Laura; Gautieri, Alfonso; Raspanti, Mario; Taraballi, Francesca; Nicotra, Francesco; Vesentini, Simone; Cipolla, Laura

    2014-05-07

    Collagen matrices have been neoglycosylated with lactose by reductive amination at lysine side chains. AFM analysis highlights that the chemical does not affect molecular assembly into fibrils. Moreover, ELLA biochemical assays show that the glycan moiety is efficiently exposed on the matrix surface for receptor recognition.

  7. Calcyon is Necessary for Activity Dependent AMPA Receptor Internalization and LTD in CA1 Neurons of Hippocampus

    PubMed Central

    Davidson, Heather Trantham; Xiao, Jiping; Dai, Rujuan; Bergson, Clare

    2009-01-01

    Calcyon is a single transmembrane endocytic protein that regulates clathrin assembly and clathrin mediated endocytosis in brain. Ultrastructural studies indicate that calcyon localizes to spines, but whether it regulates glutamate neurotransmission is not known. Here, we show that deletion of the calcyon gene in mice inhibits agonist stimulated endocytosis of AMPA receptors, without altering basal surface levels of the GluR1 or GluR2 subunits. Whole cell patch clamp studies of hippocampal neurons in culture and CA1 synapses in slices revealed that knockout of calcyon abolishes long term synaptic depression (LTD) whereas mini-analysis in slices indicated basal transmission in hippocampus is unaffected by the deletion. Further, transfection of GFP-tagged calcyon rescued the ability of knockout cultures to undergo LTD. In contrast, intracellular dialysis of a fusion protein containing the clathrin light chain binding domain of calcyon blocked the induction of LTD in wild type hippocampal slices. Taken together, the present studies involving biochemical, immunological and electrophysiological analyses raise the possibility that calcyon plays a specialized role in regulating activity-dependent removal of synaptic AMPA receptors. PMID:19120439

  8. Nanomechanical mapping of hydrated rat tail tendon collagen I fibrils.

    PubMed

    Baldwin, Samuel J; Quigley, Andrew S; Clegg, Charlotte; Kreplak, Laurent

    2014-10-21

    Collagen fibrils play an important role in the human body, providing tensile strength to connective tissues. These fibrils are characterized by a banding pattern with a D-period of 67 nm. The proposed origin of the D-period is the internal staggering of tropocollagen molecules within the fibril, leading to gap and overlap regions and a corresponding periodic density fluctuation. Using an atomic force microscope high-resolution modulus maps of collagen fibril segments, up to 80 μm in length, were acquired at indentation speeds around 10(5) nm/s. The maps revealed a periodic modulation corresponding to the D-period as well as previously undocumented micrometer scale fluctuations. Further analysis revealed a 4/5, gap/overlap, ratio in the measured modulus providing further support for the quarter-staggered model of collagen fibril axial structure. The modulus values obtained at indentation speeds around 10(5) nm/s are significantly larger than those previously reported. Probing the effect of indentation speed over four decades reveals two distinct logarithmic regimes of the measured modulus and point to the existence of a characteristic molecular relaxation time around 0.1 ms. Furthermore, collagen fibrils exposed to temperatures between 50 and 62°C and cooled back to room temperature show a sharp decrease in modulus and a sharp increase in fibril diameter. This is also associated with a disappearance of the D-period and the appearance of twisted subfibrils with a pitch in the micrometer range. Based on all these data and a similar behavior observed for cross-linked polymer networks below the glass transition temperature, we propose that collagen I fibrils may be in a glassy state while hydrated.

  9. The EBV oncogene LMP1 protects lymphoma cells from cell death through the collagen-mediated activation of DDR1.

    PubMed

    Cader, Fathima Zumla; Vockerodt, Martina; Bose, Shikha; Nagy, Eszter; Brundler, Marie-Anne; Kearns, Pamela; Murray, Paul G

    2013-12-19

    The malignant Hodgkin and Reed-Sternberg (HRS) cells of Hodgkin lymphoma are surrounded by a tumor microenvironment that is composed of a variety of cell types, as well as noncellular components such as collagen. Although HRS cells harbor oncogenic Epstein-Barr virus (EBV) in approximately 50% of cases, it is not known if the tumor microenvironment contributes to EBV-driven lymphomagenesis. We show that expression of the EBV-encoded latent membrane protein-1 (LMP1) in primary human germinal center B cells, the presumed progenitors of HRS cells, upregulates discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase activated by collagen. We also show that HRS cells intimately associated with collagen frequently overexpress DDR1 and that short-term exposure to collagen is sufficient to activate DDR1 in Hodgkin lymphoma-derived cell lines. The ectopic expression of DDR1 significantly increased the survival of collagen-treated DG75 Burkitt lymphoma cells, following etoposide treatment. Conversely, knockdown of DDR1 significantly decreased the survival of collagen-treated L428 Hodgkin lymphoma cells in the absence of specific apoptotic stimulus, suggesting that DDR1 also influences baseline survival. Our results identify a hitherto unknown function for collagen in protecting Hodgkin lymphoma cells from apoptosis and suggest an important contribution of the tumor microenvironment in promoting the oncogenic effects of EBV.

  10. Glassy state of native collagen fibril?

    NASA Astrophysics Data System (ADS)

    Gevorkian, S. G.; Allahverdyan, A. E.; Gevorgyan, D. S.; Hu, C.-K.

    2011-07-01

    Our micromechanical experiments show that viscoelastic features of type-I collagen fibril at physiological temperatures display essential dependence on the frequency and speed of heating. For temperatures of 20-30 °C the internal friction has a sharp maximum for a frequency less than 2 kHz. Upon heating the internal friction displays a peak at a temperature Tsoft(v) that essentially depends on the speed of heating v: Tsoft≈70°C for v=1°C/min, and Tsoft≈25°C for v=0.1°C/min. At the same temperature Tsoft(v) Young's modulus passes through a minimum. All these effects are specific for the native state of the fibril and disappear after heat-denaturation. Taken together with the known facts that the fibril is axially ordered as quasicrystal, but disordered laterally, we interpret our findings as indications of a glassy state, where Tsoft is the softening transition.

  11. Serotonin Receptors in the Medulla Oblongata of the Human Fetus and Infant: The Analytic Approach of the International Safe Passage Study

    PubMed Central

    Folkerth, Rebecca D.; Paterson, David S.; Broadbelt, Kevin G.; Dan Zaharie, S.; Hewlett, Richard H.; Dempers, Johan J.; Burger, Elsie; Wadee, Shabbir; Schubert, Pawel; Wright, Colleen; Sens, Mary Ann; Nelsen, Laura; Randall, Bradley B.; Tran, Hoa; Geldenhuys, Elaine; Elliott, Amy J.; Odendaal, Hein J.; Kinney, Hannah C.

    2016-01-01

    The Safe Passage Study is an international, prospective study of approximately 12 000 pregnancies to determine the effects of prenatal alcohol exposure (PAE) upon stillbirth and the sudden infant death syndrome (SIDS). A key objective of the study is to elucidate adverse effects of PAE upon binding to serotonin (5-HT) 1A receptors in brainstem homeostatic networks postulated to be abnormal in unexplained stillbirth and/or SIDS. We undertook a feasibility assessment of 5-HT1A receptor binding using autoradiography in the medulla oblongata (6 nuclei in 27 cases). 5-HT1A binding was compared to a reference dataset from the San Diego medical examiner’s system. There was no adverse effect of postmortem interval ≤100 h. The distribution and quantitated values of 5-HT1A binding in Safe Passage Study cases were essentially identical to those in the reference dataset, and virtually identical between stillbirths and live born fetal cases in grossly non-macerated tissues. The pattern of binding was present at mid-gestation with dramatic changes in binding levels in the medullary 5-HT nuclei over the second half of gestation; there was a plateau at lower levels in the neonatal period and into infancy. This study demonstrates feasibility of 5-HT1A binding analysis in the medulla in the Safe Passage Study. PMID:27634962

  12. Jellyfish collagen scaffolds for cartilage tissue engineering.

    PubMed

    Hoyer, Birgit; Bernhardt, Anne; Lode, Anja; Heinemann, Sascha; Sewing, Judith; Klinger, Matthias; Notbohm, Holger; Gelinsky, Michael

    2014-02-01

    Porous scaffolds were engineered from refibrillized collagen of the jellyfish Rhopilema esculentum for potential application in cartilage regeneration. The influence of collagen concentration, salinity and temperature on fibril formation was evaluated by turbidity measurements and quantification of fibrillized collagen. The formation of collagen fibrils with a typical banding pattern was confirmed by atomic force microscopy and transmission electron microscopy analysis. Porous scaffolds from jellyfish collagen, refibrillized under optimized conditions, were fabricated by freeze-drying and subsequent chemical cross-linking. Scaffolds possessed an open porosity of 98.2%. The samples were stable under cyclic compression and displayed an elastic behavior. Cytotoxicity tests with human mesenchymal stem cells (hMSCs) did not reveal any cytotoxic effects of the material. Chondrogenic markers SOX9, collagen II and aggrecan were upregulated in direct cultures of hMSCs upon chondrogenic stimulation. The formation of typical extracellular matrix components was further confirmed by quantification of sulfated glycosaminoglycans.

  13. Collagen-coated microparticles in drug delivery.

    PubMed

    Sehgal, Praveen Kumar; Srinivasan, Aishwarya

    2009-07-01

    Advantages of drug-incorporated collagen particles have been described for the controlled delivery system for therapeutic actions. The attractiveness of collagen lies in its low immunogenicity and high biocompatibility. It is also recognized by the body as a natural constituent rather than a foreign body. Our research and development efforts are focused towards addressing some of the limitations of collagen, like the high viscosity of an aqueous phase, nondissolution in neutral pH buffers, thermal instability (denaturation) and biodegradability, to make it an ideal material for drug delivery with particular reference to microparticles. These limitations could be overcome by making collagen conjugates with other biomaterials or chemically modifying collagen monomer without affecting its triple helical conformation and maintaining its native properties. This article highlights collagen microparticles' present status as a carrier in drug delivery.

  14. Collagen-Based Biomaterials for Wound Healing

    PubMed Central

    Chattopadhyay, Sayani; Raines, Ronald T.

    2014-01-01

    With its wide distribution in soft and hard connective tissues, collagen is the most abundant of animal proteins. In vitro, natural collagen can be formed into highly organized, three-dimensional scaffolds that are intrinsically biocompatible, biodegradable, non-toxic upon exogenous application, and endowed with high tensile strength. These attributes make collagen the material of choice for wound healing and tissue engineering applications. In this article, we review the structure and molecular interactions of collagen in vivo; the recent use of natural collagen in sponges, injectables, films and membranes, dressings, and skin grafts; and the on-going development of synthetic collagen mimetic peptides as pylons to anchor cytoactive agents in wound beds. PMID:24633807

  15. Stress controls the mechanics of collagen networks

    PubMed Central

    Licup, Albert James; Münster, Stefan; Sharma, Abhinav; Sheinman, Michael; Jawerth, Louise M.; Fabry, Ben; Weitz, David A.; MacKintosh, Fred C.

    2015-01-01

    Collagen is the main structural and load-bearing element of various connective tissues, where it forms the extracellular matrix that supports cells. It has long been known that collagenous tissues exhibit a highly nonlinear stress–strain relationship, although the origins of this nonlinearity remain unknown. Here, we show that the nonlinear stiffening of reconstituted type I collagen networks is controlled by the applied stress and that the network stiffness becomes surprisingly insensitive to network concentration. We demonstrate how a simple model for networks of elastic fibers can quantitatively account for the mechanics of reconstituted collagen networks. Our model points to the important role of normal stresses in determining the nonlinear shear elastic response, which can explain the approximate exponential relationship between stress and strain reported for collagenous tissues. This further suggests principles for the design of synthetic fiber networks with collagen-like properties, as well as a mechanism for the control of the mechanics of such networks. PMID:26195769

  16. Stress controls the mechanics of collagen networks.

    PubMed

    Licup, Albert James; Münster, Stefan; Sharma, Abhinav; Sheinman, Michael; Jawerth, Louise M; Fabry, Ben; Weitz, David A; MacKintosh, Fred C

    2015-08-04

    Collagen is the main structural and load-bearing element of various connective tissues, where it forms the extracellular matrix that supports cells. It has long been known that collagenous tissues exhibit a highly nonlinear stress-strain relationship, although the origins of this nonlinearity remain unknown. Here, we show that the nonlinear stiffening of reconstituted type I collagen networks is controlled by the applied stress and that the network stiffness becomes surprisingly insensitive to network concentration. We demonstrate how a simple model for networks of elastic fibers can quantitatively account for the mechanics of reconstituted collagen networks. Our model points to the important role of normal stresses in determining the nonlinear shear elastic response, which can explain the approximate exponential relationship between stress and strain reported for collagenous tissues. This further suggests principles for the design of synthetic fiber networks with collagen-like properties, as well as a mechanism for the control of the mechanics of such networks.

  17. Imaging Prostate Cancer Microenvironment by Collagen Hybridization

    DTIC Science & Technology

    2015-10-01

    INVESTIGATOR: Dr. Michael S. Yu CONTRACTING ORGANIZATION: University of Utah Salt Lake City, UT 84112 REPORT DATE: October 2015 TYPE OF REPORT: Annual...SUBTITLE Imaging Prostate Cancer Microenvironment by Collagen Hybridization 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0555 5c. PROGRAM ELEMENT...peptide (CMP) as a collagen targeting agents that will allow imaging of invasive PCa. Since CMP binds to unstructured collagens more readily, it is

  18. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts.

    PubMed

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo; Kim, So Young; Jang, Hwan-Hee; Ryu, Sung Ho; Kim, Beom Joon; Lee, Taehoon G

    2012-11-23

    The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the β1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate peptide for the treatment of skin aging and wrinkles.

  19. Roles of fragile X mental retardation protein in dopaminergic stimulation-induced synapse-associated protein synthesis and subsequent alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) receptor internalization.

    PubMed

    Wang, Hansen; Kim, Susan S; Zhuo, Min

    2010-07-09

    Fragile X syndrome, the most common form of inherited mental retardation, is caused by the absence of the RNA-binding protein fragile X mental retardation protein (FMRP). FMRP regulates local protein synthesis in dendritic spines. Dopamine (DA) is involved in the modulation of synaptic plasticity. Activation of DA receptors can regulate higher brain functions in a protein synthesis-dependent manner. Our recent study has shown that FMRP acts as a key messenger for DA modulation in forebrain neurons. Here, we demonstrate that FMRP is critical for DA D1 receptor-mediated synthesis of synapse-associated protein 90/PSD-95-associated protein 3 (SAPAP3) in the prefrontal cortex (PFC). DA D1 receptor stimulation induced dynamic changes of FMRP phosphorylation. The changes in FMRP phosphorylation temporally correspond with the expression of SAPAP3 after D1 receptor stimulation. Protein phosphatase 2A, ribosomal protein S6 kinase, and mammalian target of rapamycin are the key signaling molecules for FMRP linking DA D1 receptors to SAPAP3. Knockdown of SAPAP3 did not affect surface expression of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) GluR1 receptors induced by D1 receptor activation but impaired their subsequent internalization in cultured PFC neurons; the subsequent internalization of GluR1 was also impaired in Fmr1 knock-out PFC neurons, suggesting that FMRP may be involved in subsequent internalization of GluR1 through regulating the abundance of SAPAP3 after DA D1 receptor stimulation. Our study thus provides further insights into FMRP involvement in DA modulation and may help to reveal the molecular mechanisms underlying impaired learning and memory in fragile X syndrome.

  20. STUDIES ON THE FORMATION OF COLLAGEN

    PubMed Central

    Gross, Jerome

    1958-01-01

    Some properties of cold neutral salt extracts of fresh guinea pig dermis have been described in terms of viscosity, electrophoresis and sedimentation patterns, partial composition, the collagen content, conditions for extraction of collagen, and the effect of certain enzymes. Viscosity of the extracts depended on the collagen in solution as demonstrated by removal of this protein by precipitation or enzymatic degradation. The intrinsic viscosity of the crude 0.45 M extract, as well as that of the isolated collagen was 14.5, identical with that for collagen dissolved by dilute acid, indicating the same high asymmetry ratio for both. Electrophoresis of the skin extracts revealed a slow moving, high, sharp, poorly diffusing boundary in addition to a pattern superficially resembling that of serum. The ultracentrifuge pattern revealed a slowly sedimenting, hypersharp boundary following a large rapidly diffusing peak. The slow moving boundaries in both patterns were abolished by collagenase or heat precipitation of the collagen fraction. Hyaluronidase had no effect on either pattern. Neutral sulfate, chloride, and phosphate extracted more collagen than did thiocyanate. Very little collagen was extracted at 37°C. as compared with that removed at 3°C. A two stage fractionation procedure employing dilute trichloroacetic acid and ethanol is described for the isolation and purification of soluble collagen from crude extracts. PMID:13491760

  1. Fibrin binds to collagen and provides a bridge for αVβ3 integrin-dependent contraction of collagen gels.

    PubMed

    Reyhani, Vahid; Seddigh, Pegah; Guss, Bengt; Gustafsson, Renata; Rask, Lars; Rubin, Kristofer

    2014-08-15

    The functional significance of fibrin deposits typically seen in inflammatory lesions, carcinomas and in healing wounds is not fully understood. In the present study, we demonstrate that fibrinogen/fibrin specifically bound to native Col I (collagen type I) and used the Col I fibre network as a base to provide a functional interface matrix that connects cells to the Col I fibres through αVβ3 integrins. This allowed murine myoblast C2C12 cells to contract the collagenous composite gel via αVβ3 integrin. We show that fibrinogen specifically bound to immobilized native Col I at the site known to bind matrix metalloproteinase-1, discoidin domain receptor-2 and fibronectin, and that binding had no effect on Col I fibrillation. A specific competitive inhibitor blocking the Col-I-binding site for fibrinogen abolished the organization of fibrin into discernable fibrils, as well as the C2C12-mediated contraction of Col I gels. Our data show that fibrin can function as a linkage protein between Col I fibres and cells, and suggest that fibrin at inflammatory sites indirectly connects αVβ3 integrins to Col I fibres and thereby promotes cell-mediated contraction of collagenous tissue structures.

  2. Morphine drives internal ribosome entry site-mediated hnRNP K translation in neurons through opioid receptor-dependent signaling.

    PubMed

    Lee, Pin-Tse; Chao, Po-Kuan; Ou, Li-Chin; Chuang, Jian-Ying; Lin, Yen-Chang; Chen, Shu-Chun; Chang, Hsiao-Fu; Law, Ping-Yee; Loh, Horace H; Chao, Yu-Sheng; Su, Tsung-Ping; Yeh, Shiu-Hwa

    2014-12-01

    Heterogeneous nuclear ribonucleoprotein K (hnRNP K) binds to the promoter region of mu-opioid receptor (MOR) to regulate its transcriptional activity. How hnRNP K contributes to the analgesic effects of morphine, however, is largely unknown. We provide evidence that morphine increases hnRNP K protein expression via MOR activation in rat primary cortical neurons and HEK-293 cells expressing MORs, without increasing mRNA levels. Using the bicistronic reporter assay, we examined whether morphine-mediated accumulation of hnRNP K resulted from translational control. We identified potential internal ribosome entry site elements located in the 5' untranslated regions of hnRNP K transcripts that were regulated by morphine. This finding suggests that internal translation contributes to the morphine-induced accumulation of hnRNP K protein in regions of the central nervous system correlated with nociceptive and antinociceptive modulatory systems in mice. Finally, we found that down-regulation of hnRNP K mediated by siRNA attenuated morphine-induced hyperpolarization of membrane potential in AtT20 cells. Silencing hnRNP K expression in the spinal cord increased nociceptive sensitivity in wild-type mice, but not in MOR-knockout mice. Thus, our findings identify the role of translational control of hnRNP K in morphine-induced analgesia through activation of MOR.

  3. Molecules in Focus: Collagen XII: Protecting bone and muscle integrity by organizing collagen fibrils

    PubMed Central

    Chiquet, Matthias; Birk, David E.; Bönnemann, Carsten G.; Koch, Manuel

    2014-01-01

    Collagen XII, largest member of the fibril-associated collagens with interrupted triple helix (FACIT) family, assembles from three identical α-chains encoded by the COL12A1 gene. The molecule consists of three threadlike N-terminal noncollagenous NC3 domains, joined by disulfide bonds and a short interrupted collagen triple helix towards the C-terminus. Splice variants differ considerably in size and properties: "small" collagen XIIB (220 kDa subunit) is similar to collagen XIV, whereas collagen XIIA (350 kDa) has a much larger NC3 domain carrying glycosaminoglycan chains. Collagen XII binds to collagen I-containing fibrils via its collagenous domain, whereas its large noncollagenous arms interact with other matrix proteins such as tenascin-X. In dense connective tissues and bone, collagen XII is thought to regulate organization and mechanical properties of collagen fibril bundles. Accordingly, recent findings show that collagen XII mutations cause Ehlers-Danlos/myopathy overlap syndrome associated with skeletal abnormalities and muscle weakness in mice and humans. PMID:24801612

  4. Collagen XIII secures pre- and postsynaptic integrity of the neuromuscular synapse.

    PubMed

    Härönen, Heli; Zainul, Zarin; Tu, Hongmin; Naumenko, Nikolay; Sormunen, Raija; Miinalainen, Ilkka; Shakirzyanova, Anastasia; Oikarainen, Tuomo; Abdullin, Azat; Martin, Paula; Santoleri, Sabrina; Koistinaho, Jari; Silmanl, Israel; Giniatullin, Rashid; Fox, Michael A; Heikkinen, Anne; Pihlajaniemi, Taina

    2017-03-24

    Both transmembrane and extracellular cues, one of which is collagen XIII, regulate formation and function of the neuromuscular synapse, and their absence results in myasthenia. We show that the phenotypical changes in collagen XIII knock-out mice are milder than symptoms in human patients, but the Col13a1-/- mice recapitulate major muscle findings of congenital myasthenic syndrome type 19 and serve as a disease model. In the lack of collagen XIII neuromuscular synapses do not reach full size, alignment, complexity and function resulting in reduced muscle strength. Collagen XIII is particularly important for the preterminal integrity, and when absent, destabilization of the motor nerves results in muscle regeneration and in atrophy especially in the case of slow muscle fibers. Collagen XIII was found to affect synaptic integrity through binding the ColQ tail of acetylcholine esterase. Although collagen XIII is a muscle-bound transmembrane molecule it also undergoes ectodomain shedding to become, a synaptic basal lamina component. We investigated the two forms' roles by novel Col13a1tm/tm mice in which ectodomain shedding is impaired. While postsynaptic maturation, terminal branching and neurotransmission was exaggerated in the Col13a1tm/tm mice, the transmembrane form's presence sufficed to prevent defects in transsynaptic adhesion, Schwann cell invagination/retraction, vesicle accumulation and acetylcholine receptor clustering and acetylcholinesterase dispersion seen in the Col13a1-/- mice, pointing to the transmembrane form as the major conductor of collagen XIII effects. Altogether, collagen XIII secures postsynaptic, synaptic and presynaptic integrity, and it is required for gaining and maintaining normal size, complexity and functional capacity of the neuromuscular synapse.

  5. The Respiratory Pathogen Moraxella catarrhalis Targets Collagen for Maximal Adherence to Host Tissues

    PubMed Central

    Singh, Birendra; Alvarado-Kristensson, Maria; Johansson, Martin; Hallgren, Oskar; Westergren-Thorsson, Gunilla; Mörgelin, Matthias

    2016-01-01

    ABSTRACT Moraxella catarrhalis is a human respiratory pathogen that causes acute otitis media in children and is associated with exacerbations in patients suffering from chronic obstructive pulmonary disease (COPD). The first step in M. catarrhalis colonization is adherence to the mucosa, epithelial cells, and extracellular matrix (ECM). The objective of this study was to evaluate the role of M. catarrhalis interactions with collagens from various angles. Clinical isolates (n = 43) were tested for collagen binding, followed by a detailed analysis of protein-protein interactions using recombinantly expressed proteins. M. catarrhalis-dependent interactions with collagen produced by human lung fibroblasts and tracheal tissues were studied by utilizing confocal immunohistochemistry and high-resolution scanning electron microscopy. A mouse smoke-induced chronic obstructive pulmonary disease (COPD) model was used to estimate the adherence of M. catarrhalis in vivo. We found that all M. catarrhalis clinical isolates tested adhered to fibrillar collagen types I, II, and III and network-forming collagens IV and VI. The trimeric autotransporter adhesins ubiquitous surface protein A2 (UspA2) and UspA2H were identified as major collagen-binding receptors. M. catarrhalis wild type adhered to human tracheal tissue and collagen-producing lung fibroblasts, whereas UspA2 and UspA2H deletion mutants did not. Moreover, in the COPD mouse model, bacteria devoid of UspA2 and UspA2H had a reduced level of adherence to the respiratory tract compared to the adherence of wild-type bacteria. Our data therefore suggest that the M. catarrhalis UspA2 and UspA2H-dependent interaction with collagens is highly critical for adherence in the host and, furthermore, may play an important role in the establishment of disease. PMID:27006460

  6. Disabled-2 is a negative immune regulator of lipopolysaccharide-stimulated Toll-like receptor 4 internalization and signaling

    PubMed Central

    Hung, Wei-Shan; Ling, Pin; Cheng, Ju-Chien; Chang, Shy-Shin; Tseng, Ching-Ping

    2016-01-01

    Toll-like receptor 4 (TLR4) plays a pivotal role in the host response to lipopolysaccharide (LPS), a major cell wall component of Gram-negative bacteria. Here, we elucidated whether the endocytic adaptor protein Disabled-2 (Dab2), which is abundantly expressed in macrophages, plays a role in LPS-stimulated TLR4 signaling and trafficking. Molecular analysis and transcriptome profiling of RAW264.7 macrophage-like cells expressing short-hairpin RNA of Dab2 revealed that Dab2 regulated the TLR4/TRIF pathway upon LPS stimulation. Knockdown of Dab2 augmented TRIF-dependent interferon regulatory factor 3 activation and the expression of subsets of inflammatory cytokines and interferon-inducible genes. Dab2 acted as a clathrin sponge and sequestered clathrin from TLR4 in the resting stage of macrophages. Upon LPS stimulation, clathrin was released from Dab2 to facilitate endocytosis of TLR4 for triggering the TRIF-mediated pathway. Dab2 functions as a negative immune regulator of TLR4 endocytosis and signaling, supporting a novel role for a Dab2-associated regulatory circuit in controlling the inflammatory response of macrophages to endotoxin. PMID:27748405

  7. Calcyon is necessary for activity-dependent AMPA receptor internalization and LTD in CA1 neurons of hippocampus.

    PubMed

    Davidson, Heather Trantham; Xiao, Jiping; Dai, Rujuan; Bergson, Clare

    2009-01-01

    Calcyon is a single transmembrane endocytic protein that regulates clathrin assembly and clathrin-mediated endocytosis in the brain. Ultrastructural studies indicate that calcyon localizes to spines, but whether it regulates glutamate neurotransmission is not known. Here, we show that deletion of the calcyon gene in mice inhibits agonist-stimulated endocytosis of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), without altering basal surface levels of the GluR1 or GluR2 subunits. Whole-cell patch-clamp studies of hippocampal neurons in culture and CA1 synapses in slices revealed that knockout (KO) of calcyon abolishes long-term synaptic depression (LTD), whereas mini-analysis in slices indicated basal transmission in the hippocampus is unaffected by the deletion. Further, transfection of green fluorescent protein-tagged calcyon rescued the ability of KO cultures to undergo LTD. In contrast, intracellular dialysis of a fusion protein containing the clathrin light-chain-binding domain of calcyon blocked the induction of LTD in wild-type hippocampal slices. Taken together, the present studies involving biochemical, immunological and electrophysiological analyses raise the possibility that calcyon plays a specialized role in regulating activity-dependent removal of synaptic AMPARs.

  8. Nanolayered Features of Collagen-like Peptides

    NASA Technical Reports Server (NTRS)

    Valluzzi, Regina; Bini, Elisabetta; Haas, Terry; Cebe, Peggy; Kaplan, David L.

    2003-01-01

    We have been investigating collagen-like model oligopeptides as molecular bases for complex ordered biomimetic materials. The collagen-like molecules incorporate aspects of native collagen sequence and secondary structure. Designed modifications to native primary and secondary structure have been incorporated to control the nanostructure and microstructure of the collagen-like materials produced. We find that the collagen-like molecules form a number of lyotropic rod liquid crystalline phases, which because of their strong temperature dependence in the liquid state can also be viewed as solvent intercalated thermotropic liquid crystals. The liquid crystalline phases formed by the molecules can be captured in the solid state by drying off solvent, resulting in solid nanopatterned (chemically and physically) thermally stable (to greater than 100 C) materials. Designed sequences which stabilize smectic phases have allowed a variety of nanoscale multilayered biopolymeric materials to be developed. Preliminary investigations suggest that chemical patterns running perpendicular to the smectic layer plane can be functionalized and used to localize a variety of organic, inorganic, and organometallic moieties in very simple multilayered nanocomposites. The phase behavior of collagen-like oligopeptide materials is described, emphasizing the correlation between mesophase, molecular orientation, and chemical patterning at the microscale and nanoscale. In many cases, the textures observed for smectic and hexatic phase collagens are remarkably similar to the complex (and not fully understood) helicoids observed in biological collagen-based tissues. Comparisons between biological morphologies and collagen model liquid crystalline (and solidified materials) textures may help us understand the molecular features which impart order and function to the extracellular matrix and to collagen-based mineralized tissues. Initial studies have utilized synthetic collagen-like peptides while

  9. [Collagen diseases with gastrointestinal manifestations].

    PubMed

    Takahashi, Hiroki; Ohara, Mikiko; Imai, Kohzoh

    2004-06-01

    Collagen vascular diseases are known to present with a diverse array of gastrointestinal manifestations. These can be classified as: 1) gastrointestinal damage due to the collagen vascular disease itself; 2) adverse events caused by pharmacotherapies; or 3) gastrointestinal infections following immunosuppression due to corticosteroid (CS) administration. The first group includes lupus enteritis and protein-losing gastroenteropathy in systemic lupus erythematosus (SLE), reflux esophagitis, chronic intestinal pseudo-obstruction, and pneumatosis cystoids intestinalis in systemic sclerosis, amyloidosis in rheumatoid arthritis, bowel ulcer and bleeding in rheumatoid vasculitis and microscopic polyangiitis, and ileocecal ulcer in Behcet disease. In particular, colonic ulcers associated with SLE represent refractory lesions resistant to CS. Analysis of reported cases showing colonic lesions with SLE (22 cases in Japan) revealed that mean duration of SLE was 9.9 years and 77% of colonic lesions were observed in the rectum and sigmoid colon. Half of the patients developed intestinal perforation or penetration, and 6 of the 11 patients with perforation died. The second group includes lesions in the small and large intestine due to nonsteroidal anti-inflammatory drugs (NSAIDs) and CSs, in addition to peptic ulcers. As perforation in CS-treated patients displays relatively high incidence with poor prognosis, careful attention to such complications is needed. The third group includes candidal esophagitis and cytomegalovirus (CMV) enteritis. Prompt diagnosis is required to prevent colonic bleeding and perforation due to CMV.

  10. Laser welding and collagen crosslinks

    SciTech Connect

    Reiser, K.M.; Last, J.A.; Small, W. IV; Maitland, D.J.; Heredia, N.J.; Da Silva, L.B.; Matthews, D.L.

    1997-02-20

    Strength and stability of laser-welded tissue may be influenced, in part, by effects of laser exposure on collagen crosslinking. We therefore studied effects of diode laser exposure (805 nm, 1-8 watts, 30 seconds) + indocyanine green dye (ICG) on calf tail tendon collagen crosslinks. Effect of ICG dye alone on crosslink content prior to laser exposure was investigated; unexpectedly, we found that ICG-treated tissue had significantly increased DHLNL and OHP, but not HLNL. Laser exposure after ICG application reduced elevated DHLNL and OHP crosslink content down to their native levels. The monohydroxylated crosslink HLNL was inversely correlated with laser output (p<0.01 by linear regression analysis). DHLNL content was highly correlated with content of its maturational product, OHP, suggesting that precursor-product relations are maintained. We conclude that: (1)ICG alone induces DHLNL and OHP crosslink formation; (2)subsequent laser exposure reduces the ICG-induced crosslinks down to native levels; (3)excessive diode laser exposure destroys normally occurring HLNL crosslinks.

  11. Engineering Fibrin-based Tissue Constructs from Myofibroblasts and Application of Constraints and Strain to Induce Cell and Collagen Reorganization

    PubMed Central

    de Jonge, Nicky; Baaijens, Frank P. T.; Bouten, Carlijn V. C.

    2013-01-01

    Collagen content and organization in developing collagenous tissues can be influenced by local tissue strains and tissue constraint. Tissue engineers aim to use these principles to create tissues with predefined collagen architectures. A full understanding of the exact underlying processes of collagen remodeling to control the final tissue architecture, however, is lacking. In particular, little is known about the (re)orientation of collagen fibers in response to changes in tissue mechanical loading conditions. We developed an in vitro model system, consisting of biaxially-constrained myofibroblast-seeded fibrin constructs, to further elucidate collagen (re)orientation in response to i) reverting biaxial to uniaxial static loading conditions and ii) cyclic uniaxial loading of the biaxially-constrained constructs before and after a change in loading direction, with use of the Flexcell FX4000T loading device. Time-lapse confocal imaging is used to visualize collagen (re)orientation in a nondestructive manner. Cell and collagen organization in the constructs can be visualized in real-time, and an internal reference system allows us to relocate cells and collagen structures for time-lapse analysis. Various aspects of the model system can be adjusted, like cell source or use of healthy and diseased cells. Additives can be used to further elucidate mechanisms underlying collagen remodeling, by for example adding MMPs or blocking integrins. Shape and size of the construct can be easily adapted to specific needs, resulting in a highly tunable model system to study cell and collagen (re)organization. PMID:24192534

  12. Thioamides in the collagen triple helix†

    PubMed Central

    Newberry, Robert W.; VanVeller, Brett

    2015-01-01

    To probe noncovalent interactions within the collagen triple helix, backbone amides were replaced with a thioamide isostere. This subtle substitution is the first in the collagen backbone that does not compromise thermostability. A triple helix with a thioamide as a hydrogen bond donor was found to be more stable than triple helices assembled from isomeric thiopeptides. PMID:25967743

  13. Oriented collagen nanocoatings for tissue engineering.

    PubMed

    Pastorino, Laura; Dellacasa, Elena; Scaglione, Silvia; Giulianelli, Massimo; Sbrana, Francesca; Vassalli, Massimo; Ruggiero, Carmelina

    2014-02-01

    Collagens are among the most widely present and important proteins composing the human total body, providing strength and structural stability to various tissues, from skin to bone. In this paper, we report an innovative approach to bioactivate planar surfaces with oriented collagen molecules to promote cells proliferation and alignment. The Langmuir-Blodgett technique was used to form a stable collagen film at the air-water interface and the Langmuir-Schaefer deposition was adopted to transfer it to the support surface. The deposition process was monitored by estimating the mass of the protein layers after each deposition step. Collagen films were then structurally characterized by atomic force, scanning electron and fluorescent microscopies. Finally, collagen films were functionally tested in vitro. To this aim, 3T3 cells were seeded onto the silicon supports either modified or not (control) by collagen film deposition. Cells adhesion and proliferation on collagen films were found to be greater than those on control both after 1 (p<0.05) and 7 days culture. Moreover, the functionalization of the substrate surface triggered a parallel orientation of cells when cultured on it. In conclusion, these data demonstrated that the Langmuir-Schaefer technique can be successfully used for the deposition of oriented collagen films for tissue engineering applications.

  14. Thioamides in the collagen triple helix.

    PubMed

    Newberry, Robert W; VanVeller, Brett; Raines, Ronald T

    2015-06-14

    To probe noncovalent interactions within the collagen triple helix, backbone amides were replaced with a thioamide isostere. This subtle substitution is the first in the collagen backbone that does not compromise thermostability. A triple helix with a thioamide as a hydrogen bond donor was found to be more stable than triple helices assembled from isomeric thiopeptides.

  15. Structure, physiology, and biochemistry of collagens.

    PubMed

    Mienaltowski, Michael J; Birk, David E

    2014-01-01

    Tendons and ligaments are connective tissues that guide motion, share loads, and transmit forces in a manner that is unique to each as well as the anatomical site and biomechanical stresses to which they are subjected. Collagens are the major molecular components of both tendons and ligaments. The hierarchical structure of tendon and its functional properties are determined by the collagens present, as well as their supramolecular organization. There are 28 different types of collagen that assemble into a variety of supramolecular structures. The assembly of specific supramolecular structures is dependent on the interaction with other matrix molecules as well as the cellular elements. Multiple suprastructural assemblies are integrated to form the functional tendon/ligament. This chapter begins with a discussion of collagen molecules. This is followed by a definition of the supramolecular structures assembled by different collagen types. The general principles involved in the assembly of collagen-containing suprastructures are presented focusing on the regulation of tendon collagen fibrillogenesis. Finally, site-specific differences are discussed. While generalizations can be made, differences exist between different tendons as well as between tendons and ligaments. Compositional differences will impact structure that in turn will determine functional differences. Elucidation of the unique physiology and pathophysiology of different tendons and ligaments will require an appreciation of the role compositional differences have on collagen suprastructural assembly, tissue organization, and function.

  16. Polarization effects in SHG of collagen

    NASA Astrophysics Data System (ADS)

    Xu, Paul; Cox, Guy C.; Ramshaw, John A. M.; Lukins, Philip B.; Sheppard, Colin J. R.

    2004-06-01

    The polarization dependence of the second harmonic emission of purified in-vitro reconstituted fibrils of collagen has been examined. The results confirmed the quasi-hexagonal crystalline structure within the fibrils. Interesting different polarization behaviours were seen between collagen types I and II, which can be utilized as an experimental technique for differentiation.

  17. Proton pump inhibitor induced collagen expression in colonocytes is associated with collagenous colitis

    PubMed Central

    Mori, Shiori; Kadochi, Yui; Luo, Yi; Fujiwara-Tani, Rina; Nishiguchi, Yukiko; Kishi, Shingo; Fujii, Kiyomu; Ohmori, Hitoshi; Kuniyasu, Hiroki

    2017-01-01

    AIM To elucidate the role of proton pump inhibitors (PPIs) in collagenous disease, direct effect of PPI on colonocytes was examined. METHODS Collagenous colitis is a common cause of non-bloody, watery diarrhea. Recently, there has been increasing focus on the use of proton PPIs as a risk factor for developing collagenous colitis. Mouse CT26 colonic cells were treated with PPI and/or PPI-induced alkaline media. Expression of fibrosis-associated genes was examined by RT-PCR. In human materials, collagen expression was examined by immunohistochemistry. RESULTS CT26 cells expressed a Na+-H+ exchanger gene (solute carrier family 9, member A2). Treatment with PPI and/or PPI-induced alkaline media caused growth inhibition and oxidative stress in CT26 cells. The treatment increased expression of fibrosis inducing factors, transforming growth factor β and fibroblast growth factor 2. The treatment also decreased expression of a negative regulator of collagen production, replication factor C1, resulting in increased expression of collagen types III and IV in association with lipid peroxide. In biopsy specimens from patients with collagenous colitis, type III and IV collagen were increased. Increase of type III collagen was more pronounced in PPI-associated collagenous colitis than in non-PPI-associated disease. CONCLUSION From these findings, the reaction of colonocytes to PPI might participate in pathogenesis of collagenous colitis. PMID:28321159

  18. Influence of collagen source on fibrillar architecture and properties of vitrified collagen membranes.

    PubMed

    Majumdar, Shoumyo; Guo, Qiongyu; Garza-Madrid, Marcos; Calderon-Colon, Xiomara; Duan, Derek; Carbajal, Priscilla; Schein, Oliver; Trexler, Morgana; Elisseeff, Jennifer

    2016-02-01

    Collagen vitrigel membranes are transparent biomaterials characterized by a densely organized, fibrillar nanostructure that show promise in the treatment of corneal injury and disease. In this study, the influence of different type I collagen sources and processing techniques, including acid-solubilized collagen from bovine dermis (Bov), pepsin-solubilized collagen from human fibroblast cell culture (HuCC), and ficin-solubilized collagen from recombinant human collagen expressed in tobacco leaves (rH), on the properties of the vitrigel membranes was evaluated. Postvitrification carbodiimide crosslinking (CX) was also carried out on the vitrigels from each collagen source, forming crosslinked counterparts BovXL, HuCCXL, and rHXL, respectively. Collagen membrane ultrastructure and biomaterial properties were found to rely heavily on both collagen source and crosslinking. Bov and HuCC samples showed a random fibrillar organization of collagen, whereas rH vitrigels showed remarkable regional fibril alignment. After CX, light transmission was enhanced in all groups. Denaturation temperatures after CX increased in all membranes, of which the highest increase was seen in rH (14.71°C), suggesting improved thermal stability of the collagen fibrils in the membranes. Noncrosslinked rH vitrigels may be reinforced through CX to reach levels of mechanical strength and thermal stability comparable to Bov.

  19. A novel benign solution for collagen processing

    NASA Astrophysics Data System (ADS)

    Arnoult, Olivier

    Collagen is the main protein constituting the extracellular matrix (ECM) of tissues in the body (skin, cartilage, blood vessels...). It exists many types of collagen, this work studies only fibrillar collagen (e.g. collagen type I contained in the skin) that exhibits a triple helical structure composed of 3 alpha-helical collagen chains. This particular and defined hierarchical structure is essential to the biological and mechanical properties of the collagen. Processing collagen into scaffolds to mimic the ECM is crucial for successful tissue engineering. Recently collagen was processed into fibrous and porous scaffold using electrospinning process. However the solvent (HFIP) used for electrospinning is extremely toxic for the user and expensive. This work shows that HFIP can be replaced by a benign mixture composed of water, salt and alcohol. Yet only three alcohols (methanol, ethanol and iso-propanol) enable the dissolution of large quantity of collagen in the benign mixture, with a wide range of alcohol to buffer ratio, and conserve the collagen hierarchical structure at least as well as the HFIP. Collagen can be electrospun from the benign mixture into sub-micron fibers with concentrations as low as 6 wt-% for a wide range of alcohol to buffer ratio, with at least 10wt-% of salt, and any of the three alcohols. Specific conditions yield nano size fibers. After processing from HFIP or a benign mixture, collagen is water soluble and needs to be chemically crosslink for tissue engineering application. Post-crosslinking with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) results in the loss of the scaffold fibrous aspect and porosity, hence it is useless for tissue engineering. Such issue could be prevented by incorporating the crosslinker into the mixture prior to electrospinning. When EDC is used alone, collagen forms a gel in the mixture within minutes, preventing electrospinning. The addition of N-hydroxysuccinimide (NHS) in excess to EDC

  20. Molecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides

    NASA Astrophysics Data System (ADS)

    Zitnay, Jared L.; Li, Yang; Qin, Zhao; San, Boi Hoa; Depalle, Baptiste; Reese, Shawn P.; Buehler, Markus J.; Yu, S. Michael; Weiss, Jeffrey A.

    2017-03-01

    Mechanical injury to connective tissue causes changes in collagen structure and material behaviour, but the role and mechanisms of molecular damage have not been established. In the case of mechanical subfailure damage, no apparent macroscale damage can be detected, yet this damage initiates and potentiates in pathological processes. Here, we utilize collagen hybridizing peptide (CHP), which binds unfolded collagen by triple helix formation, to detect molecular level subfailure damage to collagen in mechanically stretched rat tail tendon fascicle. Our results directly reveal that collagen triple helix unfolding occurs during tensile loading of collagenous tissues and thus is an important damage mechanism. Steered molecular dynamics simulations suggest that a likely mechanism for triple helix unfolding is intermolecular shearing of collagen α-chains. Our results elucidate a probable molecular failure mechanism associated with subfailure injuries, and demonstrate the potential of CHP targeting for diagnosis, treatment and monitoring of tissue disease and injury.