Science.gov

Sample records for collagen xiii play

  1. Overexpression of collagen XIII in extraocular fat affected by active thyroid-associated ophthalmopathy: A crucial piece of the puzzle?

    PubMed

    Morris, Olivia Claire; Schebitz Walter, Kirsten; Telemo, Esbjörn; Hintschich, Christoph

    2016-08-01

    Thyroid-associated ophthalmopathy (TAO) causes irreversible increase in extraocular fat volume that contributes to the risk of exophthalmos and compressive optic neuropathy. Collagen XIII is implicated in uncontrolled cell growth in some tumours, but we are not aware of any studies of collagen XIII in TAO-affected solid tissue to date. We conducted immunohistochemical staining for collagen XIII alpha 1 (COL13A1), present in both the transmembrane and cleaved forms of collagen XIII, in consecutive prospectively collected human extraocular tissue specimens from patients with TAO and controls. We identified overexpression of collagen XIII in active TAO-affected fat. We discuss how species and cell-type specific responses of collagen XIII to stressors may help explain the different phenotypes of TAO. PMID:27245701

  2. The shed ectodomain of type XIII collagen affects cell behaviour in a matrix-dependent manner.

    PubMed Central

    Väisänen, Marja-Riitta; Väisänen, Timo; Pihlajaniemi, Taina

    2004-01-01

    Transmembrane type XIII collagen resides in adhesive structures of cells and tissues, and has therefore been implicated in cell adhesion and in adhesion-dependent cell functions. This collagen also exists as a soluble protein in the pericellular matrix, as the ectodomain is released from the plasma membrane by proteolytic cleavage. Analysis with various protease inhibitors led to confirmation of the furin family of proprotein convertases as the protease group responsible for the shedding of the ectodomain, cleaving at a site conforming to the consensus sequence for the proprotein convertases at the stem of the ectodomain. Both the trans -Golgi network and the plasma membrane were used as cleavage locations. Mammalian cells employed various intracellular mechanisms to modulate shedding of the ectodomain, all resulting in a similar cleavage event. Cell detachment from the underlying substratum was also found to augment the excision. The released ectodomain rendered the pericellular surroundings less supportive of cell adhesion, migration and proliferation, as seen specifically on a vitronectin substratum. Type XIII collagen ectodomain shedding thus resulted in the formation of a soluble, biologically active molecule, which eventually modulated cell behaviour in a reciprocal and substratum-specific manner. The dual existence of membrane-bound and soluble variants widens our biological understanding of type XIII collagen. PMID:15005656

  3. Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction

    NASA Technical Reports Server (NTRS)

    Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.

    1991-01-01

    provide evidence that collagen telopeptide sites play a role in collagen gel lattice contraction.

  4. Gene structure for the. alpha. 1 chain of a human short-chain collagen (type XIII) with alternatively spliced transcripts and translation termination codon at the 5' end of the last exon

    SciTech Connect

    Tikka, L.; Pihlajaniemi, T.; Henttu, P.; Prockop, D.J.; Tryggvason, K. )

    1988-10-01

    Two overlapping human genomic clones that encode a short-chain collagen, designated {alpha}1(XIII), were isolated by using recently described cDNA clones. Characterization of the cosmid clones that span {approx} 65,000 base pairs (bp) of the 3' end of the gene established several unusual features of this collagen gene. The last exon encodes solely the 3' untranslated region and it begins with a complete stop codon. The 10 adjacent exons vary in size from 27 to 87 bp and two of them are 54 bp. Therefore, the {alpha}1-chain gene of type XIII collagen has some features found in genes for fibrillar collagens but other features that are distinctly different. Previous analysis of overlapping cDNA clones and nuclease S1 mapping of mRNAs indicated one alternative splicing site causing a deletion of 36 bp from the mature mRNA. The present study showed that the 36 bp is contained within the gene as a single exon and also that the gene has a 45-bp -Gly-Xaa-Xaa- repeat coding exon not found in the cDNA clones previously characterized. Nuclease S1 mapping experiments indicated that this 45-bp exon is found in normal human skin fibroblast mRNAs. Accordingly, the data demonstrate that there is alternative splicing of at least two exons of the type {alpha}1(XIII)-chain gene.

  5. Congenital Myasthenic Syndrome Type 19 Is Caused by Mutations in COL13A1, Encoding the Atypical Non-fibrillar Collagen Type XIII α1 Chain

    PubMed Central

    Logan, Clare V.; Cossins, Judith; Rodríguez Cruz, Pedro M.; Parry, David A.; Maxwell, Susan; Martínez-Martínez, Pilar; Riepsaame, Joey; Abdelhamed, Zakia A.; Lake, Alice V.R.; Moran, Maria; Robb, Stephanie; Chow, Gabriel; Sewry, Caroline; Hopkins, Philip M.; Sheridan, Eamonn; Jayawant, Sandeep; Palace, Jacqueline; Johnson, Colin A.; Beeson, David

    2015-01-01

    The neuromuscular junction (NMJ) consists of a tripartite synapse with a presynaptic nerve terminal, Schwann cells that ensheathe the terminal bouton, and a highly specialized postsynaptic membrane. Synaptic structural integrity is crucial for efficient signal transmission. Congenital myasthenic syndromes (CMSs) are a heterogeneous group of inherited disorders that result from impaired neuromuscular transmission, caused by mutations in genes encoding proteins that are involved in synaptic transmission and in forming and maintaining the structural integrity of NMJs. To identify further causes of CMSs, we performed whole-exome sequencing (WES) in families without an identified mutation in known CMS-associated genes. In two families affected by a previously undefined CMS, we identified homozygous loss-of-function mutations in COL13A1, which encodes the alpha chain of an atypical non-fibrillar collagen with a single transmembrane domain. COL13A1 localized to the human muscle motor endplate. Using CRISPR-Cas9 genome editing, modeling of the COL13A1 c.1171delG (p.Leu392Sfs∗71) frameshift mutation in the C2C12 cell line reduced acetylcholine receptor (AChR) clustering during myotube differentiation. This highlights the crucial role of collagen XIII in the formation and maintenance of the NMJ. Our results therefore delineate a myasthenic disorder that is caused by loss-of-function mutations in COL13A1, encoding a protein involved in organization of the NMJ, and emphasize the importance of appropriate symptomatic treatment for these individuals. PMID:26626625

  6. Congenital Myasthenic Syndrome Type 19 Is Caused by Mutations in COL13A1, Encoding the Atypical Non-fibrillar Collagen Type XIII α1 Chain.

    PubMed

    Logan, Clare V; Cossins, Judith; Rodríguez Cruz, Pedro M; Parry, David A; Maxwell, Susan; Martínez-Martínez, Pilar; Riepsaame, Joey; Abdelhamed, Zakia A; Lake, Alice V R; Moran, Maria; Robb, Stephanie; Chow, Gabriel; Sewry, Caroline; Hopkins, Philip M; Sheridan, Eamonn; Jayawant, Sandeep; Palace, Jacqueline; Johnson, Colin A; Beeson, David

    2015-12-01

    The neuromuscular junction (NMJ) consists of a tripartite synapse with a presynaptic nerve terminal, Schwann cells that ensheathe the terminal bouton, and a highly specialized postsynaptic membrane. Synaptic structural integrity is crucial for efficient signal transmission. Congenital myasthenic syndromes (CMSs) are a heterogeneous group of inherited disorders that result from impaired neuromuscular transmission, caused by mutations in genes encoding proteins that are involved in synaptic transmission and in forming and maintaining the structural integrity of NMJs. To identify further causes of CMSs, we performed whole-exome sequencing (WES) in families without an identified mutation in known CMS-associated genes. In two families affected by a previously undefined CMS, we identified homozygous loss-of-function mutations in COL13A1, which encodes the alpha chain of an atypical non-fibrillar collagen with a single transmembrane domain. COL13A1 localized to the human muscle motor endplate. Using CRISPR-Cas9 genome editing, modeling of the COL13A1 c.1171delG (p.Leu392Sfs(∗)71) frameshift mutation in the C2C12 cell line reduced acetylcholine receptor (AChR) clustering during myotube differentiation. This highlights the crucial role of collagen XIII in the formation and maintenance of the NMJ. Our results therefore delineate a myasthenic disorder that is caused by loss-of-function mutations in COL13A1, encoding a protein involved in organization of the NMJ, and emphasize the importance of appropriate symptomatic treatment for these individuals. PMID:26626625

  7. Genetics Home Reference: factor XIII deficiency

    MedlinePlus

    ... This protein plays a critical role in the coagulation cascade, which is a series of chemical reactions ... Biswas A, Ivaskevicius V, Thomas A, Oldenburg J. Coagulation factor XIII deficiency. Diagnosis, prevalence and management of ...

  8. Arf6 plays an early role in platelet activation by collagen and convulxin.

    PubMed

    Choi, Wangsun; Karim, Zubair A; Whiteheart, Sidney W

    2006-04-15

    Small GTPases play critical roles in hemostasis, though the roster of such molecules in platelets is not complete. In this study, we report the presence of Ras-related GTPases of the ADP-ribosylation factor (Arf) family. Platelets contain Arf1 or 3 and Arf6, with the latter being predominantly membrane associated. Using effector domain pull-down assays, we show, counter to other GTPases, that Arf6-GTP is present in resting platelets and decreases rapidly upon activation with collagen or convulxin. This decrease does not completely rely on secondary agonists (ADP and thromboxane A2) or require integrin signaling. The decrease in free Arf6-GTP temporally precedes activation of Rho family GTPases (RhoA, Cdc42, and Rac1). Using a membrane-permeant, myristoylated peptide, which mimics the N-terminus of Arf6, we show that the Arf6-GTP decrease is essential for collagen- and convulxin-induced aggregation, platelet adherence, and spreading on collagen-coated glass. Treatment with this peptide also affects the activation of Rho family GTPases, but has little effect on RalA and Rap1 or on agonist-induced calcium mobilization. These data show that Arf6 is a key element in activation through GPVI, and is required for activation of the Rho family GTPases and the subsequent cytoskeletal rearrangements needed for full platelet function. PMID:16352809

  9. OSCAR-collagen signaling in monocytes plays a proinflammatory role and may contribute to the pathogenesis of rheumatoid arthritis.

    PubMed

    Schultz, Heidi S; Guo, Li; Keller, Pernille; Fleetwood, Andrew J; Sun, Mingyi; Guo, Wei; Ma, Chunyan; Hamilton, John A; Bjørkdahl, Olle; Berchtold, Martin W; Panina, Svetlana

    2016-04-01

    Osteoclast-associated receptor (OSCAR) is an activating receptor expressed by human myeloid cells. Collagen type I (ColI) and collagen type II (ColII) serve as ligands for OSCAR. OSCAR-collagen interaction stimulates RANK-dependent osteoclastogenesis. We have recently reported that OSCAR promotes functional maturation of monocyte-derived dendritic cells. OSCAR is upregulated on monocytes from rheumatoid arthritis (RA) patients with active disease, and these monocytes show an increased proosteoclastogenic potential. In the current study, we have addressed a functional role for an OSCAR-collagen interaction on monocytes. We show that OSCAR-ColII signaling promoted the survival of monocytes. Moreover, ColII stimulated the release of proinflammatory cytokines by monocytes from healthy donors, which could be completely blocked by an anti-OSCAR monoclonal antibody. Mononuclear cells from the synovial fluid of RA patients plated on ColII secreted TNF-α and IL-8 in an OSCAR-dependent manner. Global RNA profiling showed that components of multiple signaling pathways relevant to RA pathogenesis are regulated at the transcriptional level by OSCAR in monocytes. Thus, OSCAR can play a proinflammatory role in monocyte-derived cells and may contribute crucially on multiple levels to RA pathogenesis. PMID:26786702

  10. NLRP3 Inflammasome Plays an Important Role in the Pathogenesis of Collagen-Induced Arthritis

    PubMed Central

    Zhang, Yongfeng; Zheng, Yi; Li, Hongbin

    2016-01-01

    Objective. To investigate the relationship between NLRP3 and the pathogenesis of collagen-induced arthritis. Methods. We used the collagen-induced arthritis (CIA) mouse model. The mice were divided into two groups: the model group (CIA, n = 16) and the control group (Normal, n = 8). The mice were sacrificed seven weeks after immunization. The arthritis score and imaging evaluation (X-rays, Micro-CT, and MRI) were performed. Synovial tissue NLRP3 expression and peripheral blood cytokine levels were analyzed. Results. The arthritis score (6.00 ± 2.52), imaging score (4.63 ± 0.92), and synovial tissue NLRP3 expression (4.00 ± 2.03) significantly increased in the CIA mice. The expression of synovial NLRP3 was positively correlated with arthritis clinical and radiographic scores (r = 0.792 and r = 0.669, resp.). Conclusions. The synovial NLRP3 expression increased at the early onset of RA. Synovial NLRP3 expression level was correlated with the clinical arthritis severity and extent of radiological destruction, suggesting that NLRP3 is involved in the pathogenesis of RA. PMID:27034595

  11. Play.

    ERIC Educational Resources Information Center

    Rogers, Fred; Sharapan, Hedda

    1993-01-01

    Contends that, in childhood, work and play seem to come together. Says that for young children their play is their work, and the more adults encourage children to play, the more they emphasize important lifelong resource. Examines some uses of children's play, making and building, artwork, dramatic play, monsters and superheroes, gun play, and…

  12. The NC16A Domain of Collagen XVII Plays a Role in Triple Helix Assembly and Stability*

    PubMed Central

    Van den Bergh, Françoise; Fu, Chang-Ling; Olague-Marchan, Monica; Giudice, George J.

    2007-01-01

    Collagen XVII/BP180 is a transmembrane constituent of the epidermal anchoring complex. To study the role of its non-collagenous linker domain, NC16A, in protein assembly and stability, we analyzed the following recombinant proteins: the collagen XVII extracellular domain with or without NC16A, and a pair of truncated proteins comprising the COL15-NC15 stretch expressed with or without NC16A. All four proteins were found to exist as stable collagen triple helices; however, the two missing NC16A exhibited melting temperatures significantly lower than their NC16A-containing counterparts. Protein refolding experiments revealed that the rate of triple helix assembly of the collagen model peptide GPP10 is greatly increased by the addition of an upstream NC16A domain. In summary, the NC16A linker domain of collagen XVII exhibits a positive effect on both the rate of assembly and the stability of the adjoining collagen structure. PMID:17045967

  13. Play

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    Designing a game with a serious purpose involves considering the worlds of Reality and Meaning yet it is undeniably impossible to create a game without a third world, one that is specifically concerned with what makes a game a game: the play elements. This third world, the world of people like designers and artists, and disciplines as computer science and game design, I call the world of Play and this level is devoted to it. The level starts off with some of the misperceptions people have of play. Unlike some may think, we play all the time, even when we grow old—this was also very noticeable in designing the game Levee Patroller as the team exhibited very playful behavior at many occasions. From there, I go into the aspects that characterize this world. The first concerns the goal of the game. This relates to the objectives people have to achieve within the game. This is constituted by the second aspect: the gameplay. Taking actions and facing challenges is subsequently constituted by a gameworld, which concerns the third aspect. And all of it is not possible without the fourth and final aspect, the type of technology that creates and facilitates the game. The four aspects together make up a “game concept” and from this world such a concept can be judged on the basis of three closely interrelated criteria: engagement, immersion, and fun.

  14. Matrix Metalloproteinase 2 (MMP-2) Plays a Critical Role in the Softening of Common Carp Muscle during Chilled Storage by Degradation of Type I and V Collagens.

    PubMed

    Xu, Chao; Wang, Cheng; Cai, Qiu-Feng; Zhang, Qian; Weng, Ling; Liu, Guang-Ming; Su, Wen-Jin; Cao, Min-Jie

    2015-12-30

    Matrix metalloproteinases (MMPs) are proposed to play important roles in the degradation of collagens, thus causing the post-mortem softening of fish muscle, although the specific mechanism remains largely unresolved. Previously, we reported the existence of gelatinase-like proteinases in common carp (Cyprinus carpio) muscle. The primary structures of these proteinases, however, have never been investigated. In the present study, two MMPs with molecular masses of 66 and 65 kDa were purified to homogeneity from common carp muscle by ammonium sulfate fractionation and a series of column chromatographies. Matrix-assisted laser desorption/ionization-tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS) analysis indicated that they are completely identical to MMP-2 from common carp. During chilled storage of common carp at 4 °C, the enzymatic activity of MMP-2 increased to 212% in 12 h while the texture profile increased over the first 2 h and gradually decreased. On the other hand, type V collagen was purified to homogeneity and a specific polyclonal antibody against this protein was prepared. Both type I and V collagens were effectively hydrolyzed by MMP-2 at 30 °C and even at 4 °C. Furthermore, injection of metalloproteinase proteinase inhibitor EDTA into the blood vessel of live common carp suppressed post-mortem tenderization significantly. All of these results confirmed that MMP-2 is a major proteinase responsible for the degradation of collagens, resulting in the softening of fish muscle during chilled storage. PMID:26653826

  15. Factor XIII: Structure and Function.

    PubMed

    Schroeder, Verena; Kohler, Hans P

    2016-06-01

    Over the last two decades, it became evident that factor XIII (FXIII) is not only a crucial determinant of clot characteristics but also has potentially important functions in many various fields such as bone biology, immunity, and adipogenesis. In this review, we aim to summarize the latest findings regarding structure and function of FXIII. In regard to FXIII structure, much progress has been made recently to understand how its subunits are held together. In the A subunit, the activation peptide has a crucial role in the formation of FXIII-A2 dimers. In the B subunit, Sushi domains that are involved in binding to the A subunit and in B2 dimer formation have been identified. In regard to FXIII function, interactions with immune cells and the complement system have been described. A novel function of FXIII-A in adipogenesis has been suggested. The role of FXIII-A in osteoblast differentiation has been further investigated; however, a novel double knockout mouse deficient in both FXIII-A and transglutaminase 2 showed normal bone formation. Thus, more research, in particular, into the cellular functions of FXIII-A is still required. PMID:27019464

  16. Interaction of factor XIII subunits.

    PubMed

    Katona, Eva; Pénzes, Krisztina; Csapó, Andrea; Fazakas, Ferenc; Udvardy, Miklós L; Bagoly, Zsuzsa; Orosz, Zsuzsanna Z; Muszbek, László

    2014-03-13

    Coagulation factor XIII (FXIII) is a heterotetramer consisting of 2 catalytic A subunits (FXIII-A2) and 2 protective/inhibitory B subunits (FXIII-B2). FXIII-B, a mosaic protein consisting of 10 sushi domains, significantly prolongs the lifespan of catalytic subunits in the circulation and prevents their slow progressive activation in plasmatic conditions. In this study, the biochemistry of the interaction between the 2 FXIII subunits was investigated. Using a surface plasmon resonance technique and an enzyme-linked immunosorbent assay-type binding assay, the equilibrium dissociation constant (Kd) for the interaction was established in the range of 10(-10) M. Based on the measured Kd, it was calculated that in plasma approximately 1% of FXIII-A2 should be in free form. This value was confirmed experimentally by measuring FXIII-A2 in plasma samples immunodepleted of FXIII-A2B2. Free plasma FXIII-A2 is functionally active, and when activated by thrombin and Ca(2+), it can cross-link fibrin. In cerebrospinal fluid and tears with much lower FXIII subunit concentrations, >80% of FXIII-A2 existed in free form. A monoclonal anti-FXIII-B antibody that prevented the interaction between the 2 subunits reacted with the recombinant combined first and second sushi domains of FXIII-B, and its epitope was localized to the peptide spanning positions 96 to 103 in the second sushi domain. PMID:24408323

  17. Collagenous gastroduodenitis.

    PubMed

    Rustagi, Tarun; Rai, Mridula; Scholes, John V

    2011-10-01

    Collagenous gastroduodenitis is a rare histopathologic entity characterized by marked subepithelial collagen deposition with associated mucosal inflammatory infiltrate. Only 4 cases have been reported, of which 3 had associated collagenous colitis. Collagenous gastroduodenitis without colonic involvement is exceptionally rare with only 1 case reported so far in the literature. We present a case of a 68-year-old woman with dyspepsia and mild anemia, who was found to have nodular gastric and duodenal mucosa on endoscopic examination. Histopathology showed collagenous gastroduodenitis. To the best of our knowledge, this is the second (and first in English literature) reported case of isolated collagenous gastroduodenitis.

  18. Collagenous gastroduodenitis.

    PubMed

    Rustagi, Tarun; Rai, Mridula; Scholes, John V

    2011-10-01

    Collagenous gastroduodenitis is a rare histopathologic entity characterized by marked subepithelial collagen deposition with associated mucosal inflammatory infiltrate. Only 4 cases have been reported, of which 3 had associated collagenous colitis. Collagenous gastroduodenitis without colonic involvement is exceptionally rare with only 1 case reported so far in the literature. We present a case of a 68-year-old woman with dyspepsia and mild anemia, who was found to have nodular gastric and duodenal mucosa on endoscopic examination. Histopathology showed collagenous gastroduodenitis. To the best of our knowledge, this is the second (and first in English literature) reported case of isolated collagenous gastroduodenitis. PMID:21346601

  19. Collagen fillers.

    PubMed

    Baumann, Leslie; Kaufman, Joely; Saghari, Sogol

    2006-01-01

    Collagen implants, both animal and human derived, have been used for soft tissue augmentation for many years. Bovine collagen fillers were the most popular injectable implants for nearly two decades in the United States. Since then, human bioengineered collagen products have been available in addition to hyaluronic acid-containing fillers. This article outlines the different types of injectable collagen implants, injection techniques, preferred methods of treatment, and possible adverse reactions to the injectable materials.

  20. Factor XIII Deficiency Causes Cardiac Rupture, Impairs Wound Healing, and Aggravates Cardiac Remodeling in Mice With Myocardial Infarction

    PubMed Central

    Nahrendorf, Matthias; Hu, Kai; Frantz, Stefan; Jaffer, Farouc A.; Tung, Ching-Hsuan; Hiller, Karl-Heinz; Voll, Sabine; Nordbeck, Peter; Sosnovik, David; Gattenlöhner, Stefan; Novikov, Mikhail; Dickneite, Gerhard; Reed, Guy L.; Jakob, Peter; Rosenzweig, Anthony; Bauer, Wolfgang R.; Weissleder, Ralph; Ertl, Georg

    2014-01-01

    Background Identification of key molecular players in myocardial healing could lead to improved therapies, reduction of scar formation, and heart failure after myocardial infarction (MI). We hypothesized that clotting factor XIII (FXIII), a transglutaminase involved in wound healing, may play an important role in MI given prior clinical and mouse model data. Methods and Results To determine whether a truly causative relationship existed between FXIII activity and myocardial healing, we prospectively studied myocardial repair in FXIII-deficient mice. All FXIII−/− and FXIII−/+ (FXIII activity <5% and 70%) mice died within 5 days after MI from left ventricular rupture. In contradistinction, FXIII−/− mice that received 5 days of intravenous FXIII replacement therapy had normal survival rates; however, cardiac MRI demonstrated worse left ventricular remodeling in these reconstituted FXIII−/− mice. Using a FXIII-sensitive molecular imaging agent, we found significantly greater FXIII activity in wild-type mice and FXIII−/− mice receiving supplemental FXIII than in FXIII−/− mice (P<0.05). In FXIII−/− but not in reconstituted FXIII−/− mice, histology revealed diminished neutrophil migration into the MI. Reverse transcriptase–polymerase chain reaction studies suggested that the impaired inflammatory response in FXIII−/− mice was independent of intercellular adhesion molecule and lipopolysaccharide-induced CXC chemokine, both important for cell migration. After MI, expression of matrix metalloproteinase-9 was 650% higher and collagen-1 was 53% lower in FXIII−/− mice, establishing an imbalance in extracellular matrix turnover and providing a possible mechanism for the observed cardiac rupture in the FXIII−/− mice. Conclusions These data suggest that FXIII has an important role in murine myocardial healing after infarction. PMID:16505171

  1. Collagenous gastritis.

    PubMed

    Colletti, R B; Trainer, T D

    1989-12-01

    Subepithelial fibrosis has previously been reported in the small intestine (collagenous sprue) and colon (collagenous colitis). We report a 15-yr-old girl with chronic gastritis and subepithelial fibrosis of the gastric corpus who presented with recurrent abdominal pain and acute upper gastrointestinal bleeding. Nodularity and erythema of the gastric corpus were persistent endoscopic findings. Biopsies revealed patchy chronic active gastritis with a striking focal thick band of collagen immediately beneath the surface epithelial cells that did not extend to deeper portions of the lamina propria. Contrast radiography demonstrated an abnormal mucosa of the gastric corpus with a mosaiclike surface pattern. Numerous studies have failed to elucidate the etiology. Despite treatment with ranitidine, sucralfate, and furazolidone, there has been no clinical or pathologic improvement. The pathogenesis and prognosis of collagenous gastritis, and its relationship to collagenous sprue and collagenous colitis, remain to be defined. PMID:2583419

  2. Collagenous gastritis.

    PubMed

    Jain, Richa; Chetty, Runjan

    2010-12-01

    A 25-year-old patient presented with epigastric pain, which on gastric biopsy revealed the characteristic appearance of collagenous gastritis. There was a thick prominent subepithelial band that was confirmed to be collagen with a Masson's trichrome stain. There was associated Helicobacter pylori gastritis but no evidence of a lymphocytic gastritis. The patient did not have watery diarrhea. Collagenous gastritis can occur in young patients, be restricted to the stomach, and can be associated with celiac disease. PMID:19103610

  3. 21 CFR 866.5330 - Factor XIII, A, S, immuno-logical test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Factor XIII, A, S, immuno-logical test system. 866.5330 Section 866.5330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5330 Factor XIII, A, S, immuno-logical test system. (a) Identification. A factor XIII, A,...

  4. 21 CFR 866.5330 - Factor XIII, A, S, immuno-logical test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5330 Factor XIII, A, S, immuno-logical test system. (a) Identification. A factor XIII, A, S... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Factor XIII, A, S, immuno-logical test system....

  5. 21 CFR 866.5330 - Factor XIII, A, S, immuno-logical test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5330 Factor XIII, A, S, immuno-logical test system. (a) Identification. A factor XIII, A, S... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Factor XIII, A, S, immuno-logical test system....

  6. Bioengineered collagens

    PubMed Central

    Ramshaw, John AM; Werkmeister, Jerome A; Dumsday, Geoff J

    2014-01-01

    Mammalian collagen has been widely used as a biomedical material. Nevertheless, there are still concerns about the variability between preparations, particularly with the possibility that the products may transmit animal-based diseases. Many groups have examined the possible application of bioengineered mammalian collagens. However, translating laboratory studies into large-scale manufacturing has often proved difficult, although certain yeast and plant systems seem effective. Production of full-length mammalian collagens, with the required secondary modification to give proline hydroxylation, has proved difficult in E. coli. However, recently, a new group of collagens, which have the characteristic triple helical structure of collagen, has been identified in bacteria. These proteins are stable without the need for hydroxyproline and are able to be produced and purified from E. coli in high yield. Initial studies indicate that they would be suitable for biomedical applications. PMID:24717980

  7. Collagenous gastroduodenitis on collagenous colitis.

    PubMed

    Stolte, M; Ritter, M; Borchard, F; Koch-Scherrer, G

    1990-07-01

    We report on a case of collagenous gastroduodenitis with concomitant collagenous colitis in a 75-year-old woman with watery diarrhea of approximately six months' standing. The step biopsy material obtained from the colon revealed continuous collagenous colitis with thickening of the basal membrane to 30 microns. The biopsies taken from the stomach and duodenum also revealed a band-like deposition of collagen in the duodenum (bulb and proximal portion of the descending portion) along the basal membrane of the lining epithelium, associated with partial atrophy of the villi. In the stomach, this band of collagen was located, parallel to the mucosal surface, at the level of the floor of the foveolae. PMID:2209504

  8. Collagen for bone tissue regeneration.

    PubMed

    Ferreira, Ana Marina; Gentile, Piergiorgio; Chiono, Valeria; Ciardelli, Gianluca

    2012-09-01

    In the last decades, increased knowledge about the organization, structure and properties of collagen (particularly concerning interactions between cells and collagen-based materials) has inspired scientists and engineers to design innovative collagen-based biomaterials and to develop novel tissue-engineering products. The design of resorbable collagen-based medical implants requires understanding the tissue/organ anatomy and biological function as well as the role of collagen's physicochemical properties and structure in tissue/organ regeneration. Bone is a complex tissue that plays a critical role in diverse metabolic processes mediated by calcium delivery as well as in hematopoiesis whilst maintaining skeleton strength. A wide variety of collagen-based scaffolds have been proposed for different tissue engineering applications. These scaffolds are designed to promote a biological response, such as cell interaction, and to work as artificial biomimetic extracellular matrices that guide tissue regeneration. This paper critically reviews the current understanding of the complex hierarchical structure and properties of native collagen molecules, and describes the scientific challenge of manufacturing collagen-based materials with suitable properties and shapes for specific biomedical applications, with special emphasis on bone tissue engineering. The analysis of the state of the art in the field reveals the presence of innovative techniques for scaffold and material manufacturing that are currently opening the way to the preparation of biomimetic substrates that modulate cell interaction for improved substitution, restoration, retention or enhancement of bone tissue function. PMID:22705634

  9. Collagenous gastritis.

    PubMed

    Jin, Xiaoyi; Koike, Tomoyuki; Chiba, Takashi; Kondo, Yutaka; Ara, Nobuyuki; Uno, Kaname; Asano, Naoki; Iijima, Katsunori; Imatani, Akira; Watanabe, Mika; Shirane, Akio; Shimosegawa, Tooru

    2013-09-01

    In the present paper, we report a case of rare collagenous gastritis. The patient was a 25-year-old man who had experienced nausea, abdominal distention and epigastralgia since 2005. Esophagogastroduodenoscopy (EGD) carried out at initial examination by the patient's local doctor revealed an extensively discolored depression from the upper gastric body to the lower gastric body, mainly including the greater curvature, accompanied by residual mucosa with multiple islands and nodularity with a cobblestone appearance. Initial biopsies sampled from the nodules and accompanying atrophic mucosa were diagnosed as chronic gastritis. In August, 2011, the patient was referred to Tohoku University Hospital for observation and treatment. EGD at our hospital showed the same findings as those by the patient's local doctor. Pathological findings included a membranous collagen band in the superficial layer area of the gastric mucosa, which led to a diagnosis of collagenous gastritis. Collagenous gastritis is an extremely rare disease, but it is important to recognize its characteristic endoscopic findings to make a diagnosis. PMID:23363075

  10. Coated platelets function in platelet-dependent fibrin formation via integrin αIIbβ3 and transglutaminase factor XIII

    PubMed Central

    Mattheij, Nadine J.A.; Swieringa, Frauke; Mastenbroek, Tom G.; Berny-Lang, Michelle A.; May, Frauke; Baaten, Constance C.F.M.J.; van der Meijden, Paola E.J.; Henskens, Yvonne M.C.; Beckers, Erik A.M.; Suylen, Dennis P.L.; Nolte, Marc W.; Hackeng, Tilman M.; McCarty, Owen J.T.; Heemskerk, Johan W.M.; Cosemans, Judith M.E.M.

    2016-01-01

    Coated platelets, formed by collagen and thrombin activation, have been characterized in different ways: i) by the formation of a protein coat of α-granular proteins; ii) by exposure of procoagulant phosphatidylserine; or iii) by high fibrinogen binding. Yet, their functional role has remained unclear. Here we used a novel transglutaminase probe, Rhod-A14, to identify a subpopulation of platelets with a cross-linked protein coat, and compared this with other platelet subpopulations using a panel of functional assays. Platelet stimulation with convulxin/thrombin resulted in initial integrin αIIbβ3 activation, the appearance of a platelet population with high fibrinogen binding, (independently of active integrins, but dependent on the presence of thrombin) followed by phosphatidylserine exposure and binding of coagulation factors Va and Xa. A subpopulation of phosphatidylserine-exposing platelets bound Rhod-A14 both in suspension and in thrombi generated on a collagen surface. In suspension, high fibrinogen and Rhod-A14 binding were antagonized by combined inhibition of transglutaminase activity and integrin αIIbβ3. Markedly, in thrombi from mice deficient in transglutaminase factor XIII, platelet-driven fibrin formation and Rhod-A14 binding were abolished by blockage of integrin αIIbβ3. Vice versa, star-like fibrin formation from platelets of a patient with deficiency in αIIbβ3 (Glanzmann thrombasthenia) was abolished upon blockage of transglutaminase activity. We conclude that coated platelets, with initial αIIbβ3 activation and high fibrinogen binding, form a subpopulation of phosphatidylserine-exposing platelets, and function in platelet-dependent star-like fibrin fiber formation via transglutaminase factor XIII and integrin αIIbβ3. PMID:26721892

  11. [Clinical course and management of severe congenital factor XIII deficiency].

    PubMed

    Meili, E O

    2002-02-01

    Severe homozygous factor XIII deficiency was first described in Switzerland, in 1961. At present 14 patients are known here. Nine are of Swiss origin, the others are immigrants from eastern Europe. A 27-year-old woman with many haemorrhages during childhood immigrated to Switzerland and went through four episodes of haemorrhagic corpus luteum cyst rupture with life-threatening blood loss into the abdomen and three haemorrhages into the retroperitoneal muscles causing sensomotoric palsies, before the diagnosis was established. A monthly prophylactic replacement therapy of 500 IE factor XIII concentrate was started. Since then no signs of haemorrhage occurred. For the last trimester of pregnancy treatment intervals were shortened and dosage increased. Haemorrhage from the umbilical cord for weeks, subcutaneous haematomas, intracranial haemorrhage, muscle haemorrhage and wound bleeding with impaired wound healing as well as tendency to marked scar formation are characteristic for severe homozygous factor XIII deficiency. Without replacement therapy women suffer from obligate abortion. Diagnosis is made by the solubility of fibrin clots in urea (5 mol/l) or monochloroacetic acid (1-2%). For confirmation and monitoring of replacement therapy a quantitative incorporation assay is used. Replacement therapy is necessary in case of haemorrhage, injury, and surgery. Because of the high risk of intracranial haemorrhage prophylaxis is strongly recommended.

  12. Collagen fibril formation during development

    SciTech Connect

    Fleischmajer, R.; Perlish, J.S.; Timpl, R.; Olsen, B.R.

    1987-05-01

    Studies with embryonic skin and bone suggested that the aminopropeptide (AP) and carboxylpropeptide (CP) of type I pro-callagen (pro-col) play a role in fibril formation. Chick leg metatarsal tendons were studied by electron microscopy. AP and CP of type I pro-col were purified from chick leg tendons; antibodies developed in rabbits and purity tested by radioimmunoassays. Antibodies were used for immunofluorescence microscopy (IFM) and immunoblotting (IB). The peritendineum, consisting of thin 20-30 nm fibrils, revealed the AP of type I and type III procol. In the tendon area, collagen fibrils were arranged within small compartments and were of uniform diameter at 10d, 14d and 18d. However, beyond 21d, there was confluency of the compartments and a wide range of fibril diameters. IFM revealed fine streaks of collagen, staining with the AP of type I throughout the tendon. The CP was mainly intracellular with only a small amount present in the extracellular space. IB revealed procollagen, pN-collagen (AP+collagen) and pC-collagen, (CP+collagen) at all stages of development. Ratios of pN/pC collagen, determined by spectrophotometric scanning of autoradiographs, correlated well with the distribution of fibril diameter. This study suggests the hypothesis that AP initiates fibrillogenesis while CP may regulate additional fibril growth.

  13. Targeting and mimicking collagens via triple helical peptide assembly

    PubMed Central

    Li, Yang; Yu, S. Michael

    2013-01-01

    As the major structural component of the extracellular matrix, collagen plays a crucial role in tissue development and regeneration. Since structural and metabolic abnormalities of collagen are associated with numerous debilitating diseases and pathologic conditions, the ability to target collagens of diseased tissues could lead to new diagnostics and therapeutics. Collagen is also a natural biomaterial widely used in drug delivery and tissue engineering, and construction of synthetic collagen-like materials is gaining interests in the biomaterials community. The unique triple helical structure of collagen has been explored for targeting collagen strands, and for engineering collagen-like functional assemblies and conjugates. This review focuses on the forefront of research activities in the use of the collagen mimetic peptide for both targeting and mimicking collagens via its triple helix mediated strand hybridization and higher order assembly. PMID:24210894

  14. Medical and Surgical Management of Postpartum Hemorrhage in a Woman with Factor XIII Deficiency

    PubMed Central

    Srey, Krisna; Canales, Alexander; Kiffin, Chauniqua; Ashmawy, Yessin

    2016-01-01

    Factor XIII deficiency is a rare inherited coagulopathy. Factor XIII is the last clotting factor in the coagulation cascade to insure strength and stability to fibrin clots. Without this enzyme, the fibrous clot is unstable and nonresistant to fibrinolysis. Gravid women with this congenital disease are especially at risk for complications including miscarriages and hemorrhage without appropriate interventions. We present a case of a woman in her 20s with Factor XIII deficiency who was treated with cryoprecipitate and had a successful normal spontaneous vaginal delivery; subsequently, patient suffered from postpartum hemorrhage and consumptive coagulopathy due to consumption of Factor XIII, requiring emergency surgical intervention. Intraoperative management was challenged by an ethical dilemma involving the patient's religious beliefs about not receiving blood. This paper will discuss the mechanism of Factor XIII and the medical and surgical management involved with this patient. PMID:27635271

  15. Medical and Surgical Management of Postpartum Hemorrhage in a Woman with Factor XIII Deficiency.

    PubMed

    Cheng, Michael; Nassim, Janelle; Angha, Ario; Srey, Krisna; Canales, Alexander; Kiffin, Chauniqua; Ashmawy, Yessin; Rosenthal, Andrew A

    2016-01-01

    Factor XIII deficiency is a rare inherited coagulopathy. Factor XIII is the last clotting factor in the coagulation cascade to insure strength and stability to fibrin clots. Without this enzyme, the fibrous clot is unstable and nonresistant to fibrinolysis. Gravid women with this congenital disease are especially at risk for complications including miscarriages and hemorrhage without appropriate interventions. We present a case of a woman in her 20s with Factor XIII deficiency who was treated with cryoprecipitate and had a successful normal spontaneous vaginal delivery; subsequently, patient suffered from postpartum hemorrhage and consumptive coagulopathy due to consumption of Factor XIII, requiring emergency surgical intervention. Intraoperative management was challenged by an ethical dilemma involving the patient's religious beliefs about not receiving blood. This paper will discuss the mechanism of Factor XIII and the medical and surgical management involved with this patient. PMID:27635271

  16. Medical and Surgical Management of Postpartum Hemorrhage in a Woman with Factor XIII Deficiency

    PubMed Central

    Srey, Krisna; Canales, Alexander; Kiffin, Chauniqua; Ashmawy, Yessin

    2016-01-01

    Factor XIII deficiency is a rare inherited coagulopathy. Factor XIII is the last clotting factor in the coagulation cascade to insure strength and stability to fibrin clots. Without this enzyme, the fibrous clot is unstable and nonresistant to fibrinolysis. Gravid women with this congenital disease are especially at risk for complications including miscarriages and hemorrhage without appropriate interventions. We present a case of a woman in her 20s with Factor XIII deficiency who was treated with cryoprecipitate and had a successful normal spontaneous vaginal delivery; subsequently, patient suffered from postpartum hemorrhage and consumptive coagulopathy due to consumption of Factor XIII, requiring emergency surgical intervention. Intraoperative management was challenged by an ethical dilemma involving the patient's religious beliefs about not receiving blood. This paper will discuss the mechanism of Factor XIII and the medical and surgical management involved with this patient.

  17. A nanostructured synthetic collagen mimic for hemostasis.

    PubMed

    Kumar, Vivek A; Taylor, Nichole L; Jalan, Abhishek A; Hwang, Lyahn K; Wang, Benjamin K; Hartgerink, Jeffery D

    2014-04-14

    Collagen is a major component of the extracellular matrix and plays a wide variety of important roles in blood clotting, healing, and tissue remodeling. Natural, animal derived, collagen is used in many clinical applications but concerns exist with respect to its role in inflammation, batch-to-batch variability, and possible disease transfection. Therefore, development of synthetic nanomaterials that can mimic the nanostructure and properties of natural collagen has been a heavily pursued goal in biomaterials. Previously, we reported on the design and multihierarchial self-assembly of a 36 amino acid collagen mimetic peptide (KOD) that forms nanofibrous triple helices that entangle to form a hydrogel. In this report, we utilize this nanofiber forming collagen mimetic peptide as a synthetic biomimetic matrix useful in thrombosis. We demonstrate that nanofibrous KOD synthetic collagen matrices adhere platelets, activate them (indicated by soluble P-selectin secretion), and clot plasma and blood similar to animal derived collagen and control surfaces. In addition to the thrombotic potential, THP-1 monocytes incubated with our KOD collagen mimetic showed minimal proinflammatory cytokine (TNF-α or IL-1β) production. Together, the data presented demonstrates the potential of a novel synthetic collagen mimetic as a hemostat.

  18. A nanostructured synthetic collagen mimic for hemostasis.

    PubMed

    Kumar, Vivek A; Taylor, Nichole L; Jalan, Abhishek A; Hwang, Lyahn K; Wang, Benjamin K; Hartgerink, Jeffery D

    2014-04-14

    Collagen is a major component of the extracellular matrix and plays a wide variety of important roles in blood clotting, healing, and tissue remodeling. Natural, animal derived, collagen is used in many clinical applications but concerns exist with respect to its role in inflammation, batch-to-batch variability, and possible disease transfection. Therefore, development of synthetic nanomaterials that can mimic the nanostructure and properties of natural collagen has been a heavily pursued goal in biomaterials. Previously, we reported on the design and multihierarchial self-assembly of a 36 amino acid collagen mimetic peptide (KOD) that forms nanofibrous triple helices that entangle to form a hydrogel. In this report, we utilize this nanofiber forming collagen mimetic peptide as a synthetic biomimetic matrix useful in thrombosis. We demonstrate that nanofibrous KOD synthetic collagen matrices adhere platelets, activate them (indicated by soluble P-selectin secretion), and clot plasma and blood similar to animal derived collagen and control surfaces. In addition to the thrombotic potential, THP-1 monocytes incubated with our KOD collagen mimetic showed minimal proinflammatory cytokine (TNF-α or IL-1β) production. Together, the data presented demonstrates the potential of a novel synthetic collagen mimetic as a hemostat. PMID:24694012

  19. Probing multiscale mechanics of collagen with optical tweezers

    NASA Astrophysics Data System (ADS)

    Shayegan, Marjan; Rezaei, Naghmeh; Lam, Norman H.; Altindal, Tuba; Wieczorek, Andrew; Forde, Nancy R.

    2013-09-01

    How the molecular structure of the structural, extracellular matrix protein collagen correlates with its mechanical properties at different hierarchical structural levels is not known. We demonstrate the utility of optical tweezers to probe collagen's mechanical response throughout its assembly hierarchy, from single molecule force-extension measurements through microrheology measurements on solutions of collagen molecules, collagen fibrillar gels and gelatin. These experiments enable the determination of collagen's flexibility, mechanics, and timescales and strengths of interaction at different levels of hierarchy, information critical to developing models of how collagen's physiological function and stability are influenced by its chemical composition. By investigating how the viscoelastic properties of collagen are affected by the presence of telopeptides, protein domains that strongly influence fibril formation, we demonstrate that these play a role in conferring transient elasticity to collagen solutions.

  20. A new family with congenital factor XIII deficiency showing a deficit of both subunit A and B. Type I factor XIII deficiency.

    PubMed

    Capellato, M G; Lazzaro, A R; Marafioti, F; Polato, G; Girolami, A

    1987-01-01

    In this study we present a new case of Factor XIII deficiency. The proposita, a 34 year old woman, showed a deficiency of both subunit a and subunit b, and a moderate bleeding tendency. Because of the concomitant decrease of subunits a and b the proposita is considered to be an example of Type I disease. Factor XIII levels were less than 10% both as activity and antigen. Several family members showed intermediate levels of both subunit a and b and were asymptomatic. They were considered to be heterozygotes. The hereditary pattern is autosomal incompletely recessive. Type I disease appears much less frequent than Type II.

  1. Collagen vascular disease

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001223.htm Collagen vascular disease To use the sharing features on ... were previously said to have "connective tissue" or "collagen vascular" disease. We now have names for many ...

  2. Factor XIII-A subunit Val34Leu polymorphism in fatal hemorrhagic stroke.

    PubMed

    Antalfi, B; Pongrácz, E; Csiki, Z; Mezei, Z A; Shemirani, A H

    2013-02-01

    Blood coagulation factor XIII (FXIII) plays a key role in the protection of fibrin clot against fibrinolysis, in the cross-linking of fibrin and its mechanical strength. The role of the FXIII-A subunit Val34Leu polymorphism with fatal primary intracerebral hemorrhages (PICH) has not been studied. We evaluated retrospectively the prevalence of this polymorphism in stroke patients with fatal PICH and population control matched for age and gender. The prevalence of this polymorphism was determined for patients with fatal PICH (n = 98, female/male: 41/57) and controls. DNA was obtained from peripheral white blood cells in case of controls and from paraffin-embedded tissue sections in case of fatal PICH. The odds for increasing the risk of PICH against the control group were 5.429, 3.286, and 7.661 for total, female, and male patients, respectively. The Leu34Leu homozygous variant of the FXIII Val34Leu polymorphism significantly increased the risk of fatal PICH stroke in men. PMID:22909010

  3. Complications of collagenous colitis.

    PubMed

    Freeman, Hugh-James

    2008-03-21

    Microscopic forms of colitis have been described, including collagenous colitis. This disorder generally has an apparently benign clinical course. However, a number of gastric and intestinal complications, possibly coincidental, may develop with collagenous colitis. Distinctive inflammatory disorders of the gastric mucosa have been described, including lymphocytic gastritis and collagenous gastritis. Celiac disease and collagenous sprue (or collagenous enteritis) may occur. Colonic ulceration has been associated with use of nonsteroidal anti-inflammatory drugs, while other forms of inflammatory bowel disease, including ulcerative colitis and Crohn's disease, may evolve from collagenous colitis. Submucosal "dissection", colonic fractures or mucosal tears and perforation from air insufflation during colonoscopy may occur and has been hypothesized to be due to compromise of the colonic wall from submucosal collagen deposition. Similar changes may result from increased intraluminal pressure during barium enema contrast studies. Finally, malignant disorders have also been reported, including carcinoma and lymphoproliferative disease. PMID:18350593

  4. Recombinant human-like collagen directed growth of hydroxyapatite nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhai, Y.; Cui, F. Z.

    2006-05-01

    Bones are biocomposites with hierarchical structure that require controlled mineral deposition during their self-assembly to form tissues with unique mechanical properties. Type I collagen proteins, acidic extracellular matrix proteins, play a critical role in mineral formation and many researches on artificial bones have been made inspired by nature using type I collagen derived from animal tissues. Here we report that recombinant human-like type I collagen, an acidic protein, can direct growth of hydroxyapatite (HA) nanocrystals in vitro in the form of self-assembly of nano-fibrils of mineralized collagen resembling extracellular matrix. The mineralized collagen fibrils aligned parallel to each other to form mineralized collagen fibers. HA nanocrystals grew on the surface of these collagen fibrils with the c-axis of nanocrystals of HA orienting along the longitudinal axis of the fibrils. These artificial analogs of bone have a potential clinical application in bone repair.

  5. Ulcerative colitis and Crohn's disease: factor XIII, inflammation and haemostasis.

    PubMed

    Seitz, R; Leugner, F; Katschinski, M; Immel, A; Kraus, M; Egbring, R; Göke, B

    1994-01-01

    An important role has been ascribed to plasma factor XIII (FXIII) in inflammation and wound healing. FXIII is necessary for fibrin stabilization and interacts with connective tissue and adhesive proteins and cells. In a prospective study, FXIII activity and parameters of coagulation, fibrinolysis and inflammation, were determined in patients with ulcerative colitis (UC; 13 active, 22 moderate) and Crohn's disease (CD; 36 active, 45 moderate). FXIII levels were lower in active than in moderate UC and CD, and were < 70% of normal values in 7/13 patients with active UC, and in 7/36 patients with active CD, although the median values did not fall below the normal range. FXIII was somewhat higher in active UC patients responding to therapy. The FXIII levels were widely scattered, and low values appear to be due to greatly enhanced turnover. A correlation between FXIII and the systemic levels of markers of activation of haemostasis and inflammation was lacking, but there was a correlation with the extent of bowel involvement. FXIII levels were lower in the patients with involvement beyond the sigmoid colon in CU (p = 0.0045), and both small and large bowel segments in CD (p = 0.0223) patients. This points to local consumption and/or loss of FXIII within the inflamed tissue, and provides an argument for FXIII substitution in the treatment of acute episodes of inflammatory bowel diseases.

  6. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units XIII Appendix XIII to Part 266 Protection of...

  7. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units XIII Appendix XIII to Part 266 Protection of...

  8. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units XIII Appendix XIII to Part 266 Protection of...

  9. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units XIII Appendix XIII to Part 266 Protection of...

  10. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units XIII Appendix XIII to Part 266 Protection of...

  11. The collagen binding domain of gelatinase A modulates degradation of collagen IV by gelatinase B.

    PubMed

    Gioia, Magda; Monaco, Susanna; Van Den Steen, Philippe E; Sbardella, Diego; Grasso, Giuseppe; Marini, Stefano; Overall, Christopher M; Opdenakker, Ghislain; Coletta, Massimo

    2009-02-20

    Type IV collagen remodeling plays a critical role in inflammatory responses, angiogenesis and metastasis. Its remodeling is executed by a family of matrix metalloproteinases (MMPs), of which the constitutive gelatinase A (MMP2) and the inducible gelatinase B (MMP9) are key examples. Thus, in many pathological conditions, both gelatinases act together. Kinetic data are reported for the enzymatic processing at 37 degrees C of type IV collagen from human placenta by MMP9 and its modulation by the fibronectin-like collagen binding domain (CBD) of MMP2. The alpha1 and alpha2 chain components of type IV collagen were cleaved by gelatinases and identified by mass spectrometry as well as Edman sequencing. Surface plasmon resonance interaction assays showed that CBD bound type IV collagen at two topologically distinct sites. On the basis of linked-function analysis, we demonstrated that CBD of MMP2 tuned the cleavage of collagen IV by MMP9, presumably by inducing a ligand-linked structural change on the type IV collagen. At low concentrations, the CBD bound the first site and thereby allosterically modulated the binding of MMP9 to collagen IV, thus enhancing the collagenolytic activity of MMP9. At high concentrations, CBD binding to the second site interfered with MMP9 binding to collagen IV, acting as a competitive inhibitor. Interestingly, modulation of collagen IV degradation by inactive forms of MMP2 also occurred in a cell-based system, revealing that this interrelationship affected neutrophil migration across a collagen IV membrane. The regulation of the proteolytic processing by a catalytically inactive domain (i.e., CBD) suggests that the two gelatinases might cooperate in degrading substrates even when either one is inactive. This observation reinforces the idea of exosite targets for MMP inhibitors, which should include all macromolecular substrate recognition sites.

  12. Enigmatic insight into collagen.

    PubMed

    Deshmukh, Shrutal Narendra; Dive, Alka M; Moharil, Rohit; Munde, Prashant

    2016-01-01

    Collagen is a unique, triple helical molecule which forms the major part of extracellular matrix. It is the most abundant protein in the human body, representing 30% of its dry weight. It is the fibrous structural protein that makes up the white fibers (collagen fibers) of skin, tendons, bones, cartilage and all other connective tissues. Collagens are not only essential for the mechanical resistance and resilience of multicellular organisms, but are also signaling molecules defining cellular shape and behavior. The human body has at least 16 types of collagen, but the most prominent types are I, II and III. Collagens are produced by several cell types and are distinguishable by their molecular compositions, morphologic characteristics, distribution, functions and pathogenesis. This is the major fibrous glycoprotein present in the extracellular matrix and in connective tissue and helps in maintaining the structural integrity of these tissues. It has a triple helical structure. Various studies have proved that mutations that modify folding of the triple helix result in identifiable genetic disorders. Collagen diseases share certain similarities with autoimmune diseases, because autoantibodies specific to each collagen disease are produced. Therefore, this review highlights the role of collagen in normal health and also the disorders associated with structural and functional defects in collagen. PMID:27601823

  13. Enigmatic insight into collagen

    PubMed Central

    Deshmukh, Shrutal Narendra; Dive, Alka M; Moharil, Rohit; Munde, Prashant

    2016-01-01

    Collagen is a unique, triple helical molecule which forms the major part of extracellular matrix. It is the most abundant protein in the human body, representing 30% of its dry weight. It is the fibrous structural protein that makes up the white fibers (collagen fibers) of skin, tendons, bones, cartilage and all other connective tissues. Collagens are not only essential for the mechanical resistance and resilience of multicellular organisms, but are also signaling molecules defining cellular shape and behavior. The human body has at least 16 types of collagen, but the most prominent types are I, II and III. Collagens are produced by several cell types and are distinguishable by their molecular compositions, morphologic characteristics, distribution, functions and pathogenesis. This is the major fibrous glycoprotein present in the extracellular matrix and in connective tissue and helps in maintaining the structural integrity of these tissues. It has a triple helical structure. Various studies have proved that mutations that modify folding of the triple helix result in identifiable genetic disorders. Collagen diseases share certain similarities with autoimmune diseases, because autoantibodies specific to each collagen disease are produced. Therefore, this review highlights the role of collagen in normal health and also the disorders associated with structural and functional defects in collagen.

  14. Enigmatic insight into collagen

    PubMed Central

    Deshmukh, Shrutal Narendra; Dive, Alka M; Moharil, Rohit; Munde, Prashant

    2016-01-01

    Collagen is a unique, triple helical molecule which forms the major part of extracellular matrix. It is the most abundant protein in the human body, representing 30% of its dry weight. It is the fibrous structural protein that makes up the white fibers (collagen fibers) of skin, tendons, bones, cartilage and all other connective tissues. Collagens are not only essential for the mechanical resistance and resilience of multicellular organisms, but are also signaling molecules defining cellular shape and behavior. The human body has at least 16 types of collagen, but the most prominent types are I, II and III. Collagens are produced by several cell types and are distinguishable by their molecular compositions, morphologic characteristics, distribution, functions and pathogenesis. This is the major fibrous glycoprotein present in the extracellular matrix and in connective tissue and helps in maintaining the structural integrity of these tissues. It has a triple helical structure. Various studies have proved that mutations that modify folding of the triple helix result in identifiable genetic disorders. Collagen diseases share certain similarities with autoimmune diseases, because autoantibodies specific to each collagen disease are produced. Therefore, this review highlights the role of collagen in normal health and also the disorders associated with structural and functional defects in collagen. PMID:27601823

  15. Extreme Ultraviolet Emission Lines of Iron Fe XI-XIII

    NASA Astrophysics Data System (ADS)

    Lepson, Jaan; Beiersdorfer, P.; Brown, G. V.; Liedahl, D. A.; Brickhouse, N. S.; Dupree, A. K.

    2013-04-01

    The extreme ultraviolet (EUV) spectral region (ca. 20--300 Å) is rich in emission lines from low- to mid-Z ions, particularly from the middle charge states of iron. Many of these emission lines are important diagnostics for astrophysical plasmas, providing information on properties such as elemental abundance, temperature, density, and even magnetic field strength. In recent years, strides have been made to understand the complexity of the atomic levels of the ions that emit the lines that contribute to the richness of the EUV region. Laboratory measurements have been made to verify and benchmark the lines. Here, we present laboratory measurements of Fe XI, Fe XII, and Fe XIII between 40-140 Å. The measurements were made at the Lawrence Livermore electron beam ion trap (EBIT) facility, which has been optimized for laboratory astrophysics, and which allows us to select specific charge states of iron to help line identification. We also present new calculations by the Hebrew University - Lawrence Livermore Atomic Code (HULLAC), which we also utilized for line identification. We found that HULLAC does a creditable job of reproducing the forest of lines we observed in the EBIT spectra, although line positions are in need of adjustment, and line intensities often differed from those observed. We identify or confirm a number of new lines for these charge states. This work was supported by the NASA Solar and Heliospheric Program under Contract NNH10AN31I and the DOE General Plasma Science program. Work was performed in part under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344.

  16. Outdoor Play and Play Equipment.

    ERIC Educational Resources Information Center

    Naylor, Heather

    1985-01-01

    Discusses aspects of the play environment and its effect on children's play behavior. Indoor and outdoor play spaces are considered along with factors affecting the use of outdoor environments for play. Children's preferences for different outdoor play environments and for various play structures are explored. Guides for choosing play equipment…

  17. Collagenous gastritis: Review

    PubMed Central

    Kamimura, Kenya; Kobayashi, Masaaki; Sato, Yuichi; Aoyagi, Yutaka; Terai, Shuji

    2015-01-01

    Collagenous gastritis is a rare disease characterized by the subepithelial deposition of collagen bands thicker than 10 μm and the infiltration of inflammatory mononuclear cells in the lamina propria. Collagenous colitis and collagenous sprue have similar histological characteristics to collagenous gastritis and are thought to be part of the same disease entity. However, while collagenous colitis has become more common in the field of gastroenterology, presenting with clinical symptoms of chronic diarrhea in older patients, collagenous gastritis is rare. Since the disease was first reported in 1989, only 60 cases have been documented in the English literature. No safe and effective treatments have been identified from randomized, controlled trials. Therefore, better understanding of the disease and the reporting of more cases will help to establish diagnostic criteria and to develop therapeutic strategies. Therefore, here we review the clinical characteristics, endoscopic and histological findings, treatment, and clinical outcomes from case reports and case series published to date, and provide a summary of the latest information on the disease. This information will contribute to improved knowledge of collagenous gastritis so physicians can recognize and correctly diagnose the disease, and will help to develop a standard therapeutic strategy for future clinical trials. PMID:25789098

  18. Collagenous gastritis: Review.

    PubMed

    Kamimura, Kenya; Kobayashi, Masaaki; Sato, Yuichi; Aoyagi, Yutaka; Terai, Shuji

    2015-03-16

    Collagenous gastritis is a rare disease characterized by the subepithelial deposition of collagen bands thicker than 10 μm and the infiltration of inflammatory mononuclear cells in the lamina propria. Collagenous colitis and collagenous sprue have similar histological characteristics to collagenous gastritis and are thought to be part of the same disease entity. However, while collagenous colitis has become more common in the field of gastroenterology, presenting with clinical symptoms of chronic diarrhea in older patients, collagenous gastritis is rare. Since the disease was first reported in 1989, only 60 cases have been documented in the English literature. No safe and effective treatments have been identified from randomized, controlled trials. Therefore, better understanding of the disease and the reporting of more cases will help to establish diagnostic criteria and to develop therapeutic strategies. Therefore, here we review the clinical characteristics, endoscopic and histological findings, treatment, and clinical outcomes from case reports and case series published to date, and provide a summary of the latest information on the disease. This information will contribute to improved knowledge of collagenous gastritis so physicians can recognize and correctly diagnose the disease, and will help to develop a standard therapeutic strategy for future clinical trials. PMID:25789098

  19. Collagen: Biochemistry, biomechanics, biotechnology

    SciTech Connect

    Nimni, M.E.

    1988-01-01

    This book is an up-to-date reference for new ideas, information, and concepts in collagen research. The first volume emphasizes the relationship between the molecular structure and function of collagen, including descriptions of collagen types which exist in tissues as well as how these molecules organize into fibrils and the nature of the chemical crosslinks which stabilize them. In Volume II the biomechanical behavior of various specialized tissues, abnormal accumulation of collagen in the form of scars of fibrous infiltration are examined/and wound healing, tissue regulation and repair are covered in detail. Volume III explores the increasing application of collagen technology to the field of bioprosthesis, including the production of heart valve bioprosthesis, blood vessels, ligament substitutes, and bone substitutes.

  20. Backbone dynamics in collagen

    NASA Astrophysics Data System (ADS)

    Aliev, Abil E.

    2004-11-01

    Peptide backbone motions of collagen have been extensively studied in the past. The experimental results were interpreted using a model of a collagen rod librating about its helix axis. Considering the size of the collagen molecule and the presence of cross-linked molecules, motional amplitudes derived for the helix axis libration were unusually high. Using solid-state NMR 13C chemical shift anisotropy and 2H quadrupolar lineshape analysis for five different isotope labelled collagens we show that motional averaging of the NMR interactions occurs primarily via small-angle librations about internal bond directions. This type of dynamics is compatible with both the presence of cross-links in collagen and the X-ray data, as well as dynamic models used for other proteins.

  1. Expression of Functional Human Coagulation Factor XIII A-domain in Plant Cell Suspensions and Whole Plants

    SciTech Connect

    Gao, Johnway; Hooker, Brian S.; Anderson, Daniel B.

    2004-09-01

    Coagulation factor XIII, a zymogen present in blood as a tetramer (A2B2) of A- and B-domains, is one of the components of many ''wound sealants'' which are proposed for use or currently in use as effective hemostatic agents, sealants and tissue adhesives in surgery. After activation by ?-thrombin cleavage, coagulation factor XIII A-domain, a transglutaminase, is formed and catalyzes the covalent crosslinking of the ?- and ?-chains of linear fibrin to form homopolymers, which can quickly stop bleeding. We have successfully expressed the A-domain of factor XIII in both plant cell cultures and whole plants. Transgenic plant cell culture allows a rapid method for testing production feasibility while expression in whole plants demonstrates an economic production system for recombinant human plasma-based proteins. The expressed factor XIII A-domain had a similar size as that of human plasma-derived factor XIII. Crude plant extract containing recombinant factor XIII A-domain showed transglutaminase activity with monodansylcadaverine and casein as substrates and crosslinking activity in the presence of linear fibrin. The expression of factor XIII A-domain was not affected by plant leaf position.

  2. Type VI Collagen Regulates Dermal Matrix Assembly and Fibroblast Motility.

    PubMed

    Theocharidis, Georgios; Drymoussi, Zoe; Kao, Alexander P; Barber, Asa H; Lee, David A; Braun, Kristin M; Connelly, John T

    2016-01-01

    Type VI collagen is a nonfibrillar collagen expressed in many connective tissues and implicated in extracellular matrix (ECM) organization. We hypothesized that type VI collagen regulates matrix assembly and cell function within the dermis of the skin. In the present study we examined the expression pattern of type VI collagen in normal and wounded skin and investigated its specific function in new matrix deposition by human dermal fibroblasts. Type VI collagen was expressed throughout the dermis of intact human skin, at the expanding margins of human keloid samples, and in the granulation tissue of newly deposited ECM in a mouse model of wound healing. Generation of cell-derived matrices (CDMs) by human dermal fibroblasts with stable knockdown of COL6A1 revealed that type VI collagen-deficient matrices were significantly thinner and contained more aligned, thicker, and widely spaced fibers than CDMs produced by normal fibroblasts. In addition, there was significantly less total collagen and sulfated proteoglycans present in the type VI collagen-depleted matrices. Normal fibroblasts cultured on de-cellularized CDMs lacking type VI collagen displayed increased cell spreading, migration speed, and persistence. Taken together, these findings indicate that type VI collagen is a key regulator of dermal matrix assembly, composition, and fibroblast behavior and may play an important role in wound healing and tissue regeneration. PMID:26763426

  3. 25 CFR 36.40 - Standard XIII-Library/media program.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Standard XIII-Library/media program. 36.40 Section 36.40... § 36.40 Standard XIII—Library/media program. (a) Each school shall provide a library/media program... philosophy. The librarian or educational media specialist, with students and staff, shall set...

  4. 25 CFR 36.40 - Standard XIII-Library/media program.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Standard XIII-Library/media program. 36.40 Section 36.40... § 36.40 Standard XIII—Library/media program. (a) Each school shall provide a library/media program... philosophy. The librarian or educational media specialist, with students and staff, shall set...

  5. 25 CFR 36.40 - Standard XIII-Library/media program.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Standard XIII-Library/media program. 36.40 Section 36.40... § 36.40 Standard XIII—Library/media program. (a) Each school shall provide a library/media program... philosophy. The librarian or educational media specialist, with students and staff, shall set...

  6. 25 CFR 36.40 - Standard XIII-Library/media program.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Standard XIII-Library/media program. 36.40 Section 36.40... § 36.40 Standard XIII—Library/media program. (a) Each school shall provide a library/media program... philosophy. The librarian or educational media specialist, with students and staff, shall set...

  7. 25 CFR 36.40 - Standard XIII-Library/media program.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Standard XIII-Library/media program. 36.40 Section 36.40... § 36.40 Standard XIII—Library/media program. (a) Each school shall provide a library/media program... philosophy. The librarian or educational media specialist, with students and staff, shall set...

  8. OATYC Journal, Vol. XIII, Nos. 1-2, Fall 1987-Spring 1988.

    ERIC Educational Resources Information Center

    Fullen, James, Ed.

    1988-01-01

    "OATYC Journal," which is published by the Ohio Association of Two-Year Colleges, is designed as a forum for the exchange of concepts, methods, and findings relevant to the two-year college classroom. Along with commentaries and letters of reaction from the readership, the two issues of volume XIII contain: (1) "Focus: The University of Akron…

  9. EDITORIAL: XIII Mexican Workshop on Particles and Fields

    NASA Astrophysics Data System (ADS)

    Barranco, Juan; Contreras, Guillermo; Delepine, David; Napsuciale, Mauro

    2012-08-01

    Juan Barranco Physics Department, Guanajuato University, Loma del Bosque 103, col. Loma del Campestre, 37150, Leon (Mexico) jbarranc@fisica.ugto.mx Guillermo Contreras Departamento de Fisica Aplicada Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Merida (Mexico) jgcn@mda.cinvestav.mx David Delepine Physics Department, Guanajuato University, Loma del Bosque 103, col. Loma del Campestre, 37150, Leon (Mexico) delepine@fisica.ugto.mx Mauro Napsuciale Physics Department, Guanajuato University, Loma del Bosque 103, col. Loma del Campestre, 37150, Leon (Mexico) mauro@fisica.ugto.mx The XIII Mexican Workshop on Particles and Fields (MWPF) took place from 20-26 October 2011, in the city of León, Guanajuato, México. This is a biennial meeting organized by the Division of Particles and Fields of the Mexican Physical Society designed to gather specialists in different areas of high energy physics to discuss the latest developments in the field. The thirteenth edition of this meeting was hosted by the Department of Cultural Studies of Guanajuato University in a nice environment dedicated to the Arts and Culture. The XIII MWPF was organized by three working groups who organized the corresponding sessions around three topics. The first one was Strings, Cosmology, Astroparticles and Physics Beyond the Standard Model. In this category we included: Cosmic Rays, Gamma Ray Bursts, Physics Beyond the Standard Model (theory and experimental searches), Strings and Cosmology. The working group for this topic was formed by Arnulfo Zepeda, Oscar Loaiza, Axel de la Macorra and Myriam Mondragón. The second topic was Hadronic Matter which included Perturbative QCD, Jets and Diffractive Physics, Hadronic Structure, Soft QCD, Hadron Spectroscopy, Heavy Ion Collisions and Soft Physics at Hadron Colliders, Lattice Results and Instrumentation. The working group for this topic was integrated by Wolfgang Bietenholz and Mariana Kirchbach. The third topic was

  10. Are the polarization colors of picrosirius red-stained collagen determined only by the diameter of the fibers?

    PubMed

    Dayan, D; Hiss, Y; Hirshberg, A; Bubis, J J; Wolman, M

    1989-01-01

    Polarization colors of various purified collagens were studied in fibers of similar thickness. Three different soluble collagens of type I, insoluble collagen type I, lathyritic collagen type I, two p-N-collagens type I, pepsin extract collagen type II, two soluble collagens type III, p-N-collagen type III, and soluble collagen type V were submitted to a routine histopathologic procedure of fixation, preparation of 5-microns-thick sections, staining with Picrosirius red and examination under crossed polars. Polarization colors were determined for thin fibers (0.8 micron or less) an thick fibers, (1.6-2.4 microns). Most thin fibers of collagens and p-N-collagens showed green to yellowish-green polarization colors with no marked differences between the various samples. Thick fibers of all p-N-collagens, lathyritic and normal 0.15 M NaCl-soluble collagens showed green to greenish-yellow polarization colors, while in all other collagens, polarization colors of longer wavelengths (from yellowish-orange to red) were observed. These data suggested that fiber thickness was not the only factor involved in determining the polarization colors of Picrosirius red-stained collagens. Tightly packed and presumably, better aligned collagen molecules showed polarization colors of longer wavelengths. Thus, packing of collagen molecules and not only fiber thickness plays a role in the pattern of polarization colors of Picrosirius red-stained collagens.

  11. The fibrillar collagen family.

    PubMed

    Exposito, Jean-Yves; Valcourt, Ulrich; Cluzel, Caroline; Lethias, Claire

    2010-01-01

    Collagens, or more precisely collagen-based extracellular matrices, are often considered as a metazoan hallmark. Among the collagens, fibrillar collagens are present from sponges to humans, and are involved in the formation of the well-known striated fibrils. In this review we discuss the different steps in the evolution of this protein family, from the formation of an ancestral fibrillar collagen gene to the formation of different clades. Genomic data from the choanoflagellate (sister group of Metazoa) Monosiga brevicollis, and from diploblast animals, have suggested that the formation of an ancestral alpha chain occurred before the metazoan radiation. Phylogenetic studies have suggested an early emergence of the three clades that were first described in mammals. Hence the duplication events leading to the formation of the A, B and C clades occurred before the eumetazoan radiation. Another important event has been the two rounds of "whole genome duplication" leading to the amplification of fibrillar collagen gene numbers, and the importance of this diversification in developmental processes. We will also discuss some other aspects of fibrillar collagen evolution such as the development of the molecular mechanisms involved in the formation of procollagen molecules and of striated fibrils. PMID:20386646

  12. Playful Gaming.

    ERIC Educational Resources Information Center

    Makedon, Alexander

    A philosophical analysis of play and games is undertaken in this paper. Playful gaming, which is shown to be a synthesis of play and games, is utilized as a category for undertaking the examination of play and games. The significance of playful gaming to education is demonstrated through analyses of Plato's, Dewey's, Sartre's, and Marcuse's…

  13. The Role of Collagen Organization on the Properties of Bone.

    PubMed

    Garnero, Patrick

    2015-09-01

    Bone is a complex tissue constituted by a collagen matrix filled in with crystal of hydroxyapatite (HAP). Bone mechanical properties are influenced by the collagen matrix which is organized into hierarchical structures from the individual type I collagen heterotrimer flanked by linear telopeptides at each end to the collagen fibrils that are interconnected by enzymatic and non-enzymatic cross-links. Although most studies focused on the role of collagen cross-links in bone strength, other organizational features may also play a role. At the molecular level it has been shown that homotrimer of type I collagen found in bone tissue of some patients with osteogenesis imperfecta (OI) is characterized by decreased mechanical competence compared to the regular heterotrimer. The state of C-telopeptide isomerization-which can be estimated by the measurement in body fluids of the native and isomerized isoforms-has also been shown to be associated with bone strength, particularly the post-yield properties independent of bone size and bone mineral density. Other higher hierarchical features of collagen organization have shown to be associated with changes in bone mechanical behavior in ex vivo models and may also be relevant to explain bone fragility in diseases characterized by collagen abnormalities e.g., OI and Paget's disease. These include the orientation of collagen fibrils in a regular longitudinal direction, the D-spacing period between collagen fibrils and the collagen-HAP interfacial bonding. Preliminary data indicate that some of these organizational features can change during treatment with bisphosphonate, raloxifene, and PTH suggesting that they may contribute to their anti-fracture efficacy. It remains however to be determined which of these parameters play a specific and independent role in bone matrix properties, what is the magnitude of mechanical strength explained by collagen organization, whether they are relevant to explain osteoporosis-induced bone

  14. Characterization of carbonic anhydrase XIII in the erythrocytes of the Burmese python, Python molurus bivittatus.

    PubMed

    Esbaugh, A J; Secor, S M; Grosell, M

    2015-09-01

    Carbonic anhydrase (CA) is one of the most abundant proteins found in vertebrate erythrocytes with the majority of species expressing a low activity CA I and high activity CA II. However, several phylogenetic gaps remain in our understanding of the expansion of cytoplasmic CA in vertebrate erythrocytes. In particular, very little is known about isoforms from reptiles. The current study sought to characterize the erythrocyte isoforms from two squamate species, Python molurus and Nerodia rhombifer, which was combined with information from recent genome projects to address this important phylogenetic gap. Obtained sequences grouped closely with CA XIII in phylogenetic analyses. CA II mRNA transcripts were also found in erythrocytes, but found at less than half the levels of CA XIII. Structural analysis suggested similar biochemical activity as the respective mammalian isoforms, with CA XIII being a low activity isoform. Biochemical characterization verified that the majority of CA activity in the erythrocytes was due to a high activity CA II-like isoform; however, titration with copper supported the presence of two CA pools. The CA II-like pool accounted for 90 % of the total activity. To assess potential disparate roles of these isoforms a feeding stress was used to up-regulate CO2 excretion pathways. Significant up-regulation of CA II and the anion exchanger was observed; CA XIII was strongly down-regulated. While these results do not provide insight into the role of CA XIII in the erythrocytes, they do suggest that the presence of two isoforms is not simply a case of physiological redundancy.

  15. Language Play.

    ERIC Educational Resources Information Center

    Schwartz, Judy I.

    This paper discusses kinds and characteristics of language play, explores the relationship of such play to wider domains of language and play, and speculates on the possible contributions of language play for language mastery and cognitive development. Jump rope chants and ritual insults ("Off my case, potato face") and other expressive language…

  16. Complications of collagen fillers.

    PubMed

    Lucey, Patricia; Goldberg, David J

    2014-12-01

    As the skin ages, a deficiency in collagen occurs, thus injectable collagen products have become a sensible and popular option for dermal filling and volume enhancement. Several types of collagen have been developed over the years, including animal sources such as bovine and porcine collagen, as well as human-based sources derived from pieces of the patient's own skin, cadaver skin, and later cultured from human dermal fibroblasts. While collagen overall has a relatively safe, side effect profile, there are several complications, both early and late onset, that practitioners and patients should be aware of. Early complications, occurring within days of the procedure, can be divided into non-hypersensitivity and hypersensitivity reactions. The non-hypersensitive reactions include injection site reactions, discoloration, maldistribution, infection, skin necrosis, and the very rare but dreaded risk of vision loss, whereas the hypersensitivity reactions present usually as delayed type IV reactions, but can also rarely present as an immediate type I reaction. Late complications, occurring within weeks to even years after injection, include granuloma formation, foreign body reactions, and infection secondary to atypical mycobacteria or biofilms. This review will give a detailed overview of the complications secondary to cutaneous collagen injections.

  17. Nanomechanics of collagen microfibrils

    PubMed Central

    Vesentini, Simone; Redaelli, Alberto; Gautieri, Alfonso

    2013-01-01

    Summary Collagen constitutes one third of the human proteome, providing mechanical stability, elasticity and strength to organisms and is thus the prime construction material in biology. Collagen is also the dominating material in the extracellular matrix where its stiffness controls cell differentiation, growth and pathology. We use atomistic-based hierarchical multiscale modeling to describe this complex biological material from the bottom up. This includes the use and development of large-scale computational modeling tools to investigate several aspects related to collagen-based tissues, including source of visco-elasticity and deformation mechanisms at the nanoscale level. The key innovation of this research is that until now, collagen materials have primarily been described at macroscopic scales, without explicitly understanding the mechanical contributions at the molecular and fibrillar levels. The major impact of this research will be the development of fundamental models of collagenous tissues, important to the design of new scaffolding biomaterials for regenerative medicine as well as for the understanding of collagen-related diseases. PMID:23885342

  18. Biology of collagen-proteoglycan interaction.

    PubMed

    Junqueira, L C; Montes, G S

    1983-12-01

    The purpose of this article is to review our knowledge to date of collagen-proteoglycan interaction. Many topics have been taken into account in order to provide a reasonably complete picture of this highly complex subject. Basic information about collagen biology, and an overview of the current concepts and advances regarding proteoglycans, have served as a basis to elucidate collagen-proteoglycan interaction. The bases of some methods of study have been reviewed in order to provide a fuller understanding of the results that are cited in this article. The experimental models and biological examples discussed herein demonstrate that collagen-proteoglycan interaction is essential to the extracellular matrix resiliency. The organization of these macromolecules is critical: collagen molecules become assembled into fibrils, fibrils aggregate to form fibers, fibers associate into bundles of fibers, and proteoglycans in the ground substance play a major role in the ordering process; on the other hand, glycosaminoglycans (GAGs) are composed of repeating monomers--GAGs linked to a same protein core form a proteoglycan--which, in turn, may bind to a hyaluronic acid molecule to form a proteoglycan aggregate together with other proteoglycans. Further growth of these complex macromolecules at higher hierarchical levels occurs by interaction of collagen with proteoglycans. A striking correlation between the tissue distribution of the genetically-distinct types of interstitial collagen and the occurrence of the different GAGs (which argues strongly in favour of a specific interaction) is demonstrated comprehensively in this review. Tissues composed of collagen type I possess small amounts of proteoglycans which contain almost exclusively dermatan sulfate; while tissues containing only collagen type II have high amounts of chondroitin sulfates. Collagen type III is the major fibrillary constituent of tissues that possess intermediate levels of proteoglycans, which contain great

  19. Photo-active collagen systems with controlled triple helix architecture

    PubMed Central

    Tronci, Giuseppe; Russell, Stephen J.; Wood, David J.

    2016-01-01

    The design of photo-active collagen systems is presented as a basis for establishing biomimetic materials with varied network architecture and programmable macroscopic properties. Following in-house isolation of type I collagen, reaction with vinyl-bearing compounds of varied backbone rigidity, i.e. 4-vinylbenzyl chloride (4VBC) and glycidyl methacrylate (GMA), was carried out. TNBS colorimetric assay, 1H-NMR and ATR-FTIR confirmed covalent and tunable functionalization of collagen lysines. Depending on the type and extent of functionalization, controlled stability and thermal denaturation of triple helices were observed via circular dichroism (CD), whereby the hydrogen-bonding capability of introduced moieties was shown to play a major role. Full gel formation was observed following photo-activation of functionalized collagen solutions. The presence of a covalent network only slightly affected collagen triple helix conformation (as observed by WAXS and ATR-FTIR), confirming the structural organization of functionalized collagen precursors. Photo-activated hydrogels demonstrated an increased denaturation temperature (DSC) with respect to native collagen, suggesting that the formation of the covalent network successfully stabilized collagen triple helices. Moreover, biocompatibility and mechanical competence of obtained hydrogels were successfully demonstrated under physiologically-relevant conditions. These results demonstrate that this novel synthetic approach enabled the formation of biocompatible collagen systems with defined network architecture and programmable macroscopic properties, which can only partially be obtained with current synthetic methods. PMID:27398214

  20. Type V collagen controls the initiation of collagen fibril assembly.

    PubMed

    Wenstrup, Richard J; Florer, Jane B; Brunskill, Eric W; Bell, Sheila M; Chervoneva, Inna; Birk, David E

    2004-12-17

    Vertebrate collagen fibrils are heterotypically composed of a quantitatively major and minor fibril collagen. In non-cartilaginous tissues, type I collagen accounts for the majority of the collagen mass, and collagen type V, the functions of which are poorly understood, is a minor component. Type V collagen has been implicated in the regulation of fibril diameter, and we reported recently preliminary evidence that type V collagen is required for collagen fibril nucleation (Wenstrup, R. J., Florer, J. B., Cole, W. G., Willing, M. C., and Birk, D. E. (2004) J. Cell. Biochem. 92, 113-124). The purpose of this study was to define the roles of type V collagen in the regulation of collagen fibrillogenesis and matrix assembly. Mouse embryos completely deficient in pro-alpha1(V) chains were created by homologous recombination. The col5a1-/- animals die in early embryogenesis, at approximately embryonic day 10. The type V collagen-deficient mice demonstrate a virtual lack of collagen fibril formation. In contrast, the col5a1+/- animals are viable. The reduced type V collagen content is associated with a 50% reduction in fibril number and dermal collagen content. In addition, relatively normal, cylindrical fibrils are assembled with a second population of large, structurally abnormal collagen fibrils. The structural properties of the abnormal matrix are decreased relative to the wild type control animals. These data indicate a central role for the evolutionary, ancient type V collagen in the regulation of fibrillogenesis. The complete dependence of fibril formation on type V collagen is indicative of the critical role of the latter in early fibril initiation. In addition, this fibril collagen is important in the determination of fibril structure and matrix organization. PMID:15383546

  1. Play Therapy

    PubMed Central

    Kool, Ritesh

    2010-01-01

    Play therapy represents a unique form of treatment that is not only geared toward young children, but is translated into a language children can comprehend and utilize—the language of play. For the referring provider or practitioner, questions may remain regarding the nature, course, and efficacy of play therapy. This article reviews the theoretical underpinnings of play therapy, some practical considerations, and finally a summary of the current state of research in regard to play therapy. The authors present the practicing psychiatrist with a road map for referring a patient to play therapy or initiating it in appropriate cases. PMID:21103141

  2. City Play.

    ERIC Educational Resources Information Center

    Dargan, Amanda; Zeitlin, Steve

    2000-01-01

    Today, fewer city blocks preserve the confidence of lifestyle and urban geography that sustain traditional games and outdoor play. Large groups of children choosing sides and organizing Red Rover games are no longer commonplace. Teachers must encourage free play; urban planners must build cities that are safe play havens. (MLH)

  3. Dirac R-matrix calculations of photoionization cross-sections of Ni XIII

    NASA Astrophysics Data System (ADS)

    Sardar, S.; Bilal, M.; Bari, M. A.; Nazir, R. T.; Hannan, A.; Salahuddin, M.; Nasim, M. H.

    2016-05-01

    In this paper, we report total photoionization cross-sections of Ni XIII in the ground state (3P2) and four excited states (3P1,0, 1D2, 1S0) for the first time over the photon energy range 380-480 eV. The target wavefunctions are constructed with fully relativistic atomic structure GRASP code. Our calculated energy levels and oscillator strengths of core ion Ni XIV agree well with available experimental and theoretical results. The ionization threshold value of ground state of Ni XIII is found to be more closer to the experimental ionization energy and improved over the previous calculations. The photoionization cross-sections are calculated using the fully relativistic DARC code with an appropriate energy step of 0.01 eV to delineate the resonance structures. The calculated ionization cross-sections are important for the modelling of features of photoionized plasmas and for stellar opacities.

  4. Measurement and Modeling of Density-Sensitive Lines of Fe XIII in the Extreme Ultraviolet

    SciTech Connect

    Yamamoto, N; Kato, T; Beiersdorfer, P; Lepson, J K

    2008-01-17

    We present an analysis of the spectral emission of Fe XIII near 200 {angstrom}. High resolution spectra were recorded at two densities ({approx} x 10{sup 11} and {approx} 10{sup 13} cm{sup -3}) in the laboratory and compared to collisional radiative model calculations based on the CHIANTI data base as well as to models using atomic data from distorted-wave and R-matrix calculations. The Fe XIII lines in this wavelength range are sensitive indicators of plasma density below {approx} 10{sup 11} cm{sup -3}. The laboratory data thus test the calculations in the astrophysically high-density limit. Significant differences between the measurements and models were found for several line ratios. Differences in the wavelengths employed in the different models also changed the agreement with the measurements. Best agreement was found in the comparisons with CHIANTI.

  5. [Condition setting for the measurement of blood coagulation factor XIII activity using a fully automated blood coagulation analyzer, COAGTRON-350].

    PubMed

    Kanno, Nobuko; Kaneko, Makoto; Tanabe, Kumiko; Jyona, Masahiro; Yokota, Hiromitsu; Yatomi, Yutaka

    2012-12-01

    The automated laboratory analyzer COAGTRON-350 (Trinity Biotech) is used for routine and specific coagulation testing for the detection of fibrin formation utilizing either mechanical principles (ball method) or photo-optical principles, chromogenic kinetic enzyme analysis, and immune-turbidimetric detection systems in one benchtop unit. In this study, we demonstrated and established a parameter for the measurement of factor XIII (FXIII) activity using Berichrom FXIII reagent and the COAGTRON-350 analyzer. The usual protocol used for this reagent, based on the handling method, was slightly modified for this device. The analysis showed that fundamental study for the measurement of FXIII activity under our condition setting was favorable in terms of reproducibility, linearity, and correlation with another assays. Since FXIII is the key enzyme that plays important roles in hemostasis by stabilizing fibrin formation, the measurement of FXIII is essential for the diagnosis of bleeding disorders. Therefore, FXIII activity assessment as well as a routine coagulation testing can be conducted simultaneously with one instrument, which is useful in coagulopathy assessment.

  6. Collagen Fibrils: Nanoscale Ropes

    PubMed Central

    Bozec, Laurent; van der Heijden, Gert; Horton, Michael

    2007-01-01

    The formation of collagen fibrils from staggered repeats of individual molecules has become “accepted” wisdom. However, for over thirty years now, such a model has failed to resolve several structural and functional questions. In a novel approach, it was found, using atomic force microscopy, that tendon collagen fibrils are composed of subcomponents in a spiral disposition—that is, their structure is similar to that of macroscale ropes. Consequently, this arrangement was modeled and confirmed using elastic rod theory. This work provides new insight into collagen fibril structure and will have wide application—from the design of scaffolds for tissue engineering and a better understanding of pathogenesis of diseases of bone and tendon, to the conservation of irreplaceable parchment-based museum exhibits. PMID:17028135

  7. Collagen in organ development

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Spooner, B. S.

    1992-01-01

    It is important to know whether microgravity will adversely affect developmental processes. Collagens are macromolecular structural components of the extracellular matrix (ECM) which may be altered by perturbations in gravity. Interstitial collagens have been shown to be necessary for normal growth and morphogenesis in some embryonic organs, and in the mouse salivary gland, the biosynthetic pattern of these molecules changes during development. Determination of the effects of microgravity on epithelial organ development must be preceded by crucial ground-based studies. These will define control of normal synthesis, secretion, and deposition of ECM macromolecules and the relationship of these processes to morphogenesis.

  8. d-alpha-tocopherol inhibits collagen alpha 1(I) gene expression in cultured human fibroblasts. Modulation of constitutive collagen gene expression by lipid peroxidation.

    PubMed Central

    Houglum, K; Brenner, D A; Chojkier, M

    1991-01-01

    Ascorbic acid stimulates collagen gene transcription in cultured fibroblasts, and this effect is mediated through the induction of lipid peroxidation by ascorbic acid. Quiescent cultured fibroblasts in the absence of ascorbic acid have a high constitutive level of collagen production, but the mechanisms of collagen gene regulation in this unstimulated state are not known. Because lipid peroxidation also occurs in normal cells, we wondered if lipid peroxidation plays a role in the regulation of basal collagen gene expression. Inhibition of lipid peroxidation in cultured human fibroblasts with d-alpha-tocopherol or methylene blue decreased the synthesis of collagen, the steady-state levels of procollagen alpha 1(I) mRNA and the transcription of the procollagen alpha 1(I) gene. This effect on collagen gene expression was selective and not associated with cellular toxicity. Thus, these experiments suggest a role for lipid peroxidation in the modulation of constitutive collagen gene expression. Images PMID:2040703

  9. Structure and function of collagen types

    SciTech Connect

    Mayne, R.; Burgeson, R.E.

    1987-01-01

    This book contains 10 chapters. Some of the chapter titles are: The Classical Collagens: Types I, II, and III; Type IV Collagen; Type IX Collagen; and Analysis of Collagen Structure by Molecular Biology Techniques.

  10. Pretend play.

    PubMed

    Weisberg, Deena Skolnick

    2015-01-01

    Pretend play is a form of playful behavior that involves nonliteral action. Although on the surface this activity appears to be merely for fun, recent research has discovered that children's pretend play has connections to important cognitive and social skills, such as symbolic thinking, theory of mind, and counterfactual reasoning. The current article first defines pretend play and then reviews the arguments and evidence for these three connections. Pretend play has a nonliteral correspondence to reality, hence pretending may provide children with practice with navigating symbolic relationships, which may strengthen their language skills. Pretend play and theory of mind reasoning share a focus on others' mental states in order to correctly interpret their behavior, hence pretending and theory of mind may be mutually supportive in development. Pretend play and counterfactual reasoning both involve representing nonreal states of affairs, hence pretending may facilitate children's counterfactual abilities. These connections make pretend play an important phenomenon in cognitive science: Studying children's pretend play can provide insight into these other abilities and their developmental trajectories, and thereby into human cognitive architecture and its development.

  11. Pretend play.

    PubMed

    Weisberg, Deena Skolnick

    2015-01-01

    Pretend play is a form of playful behavior that involves nonliteral action. Although on the surface this activity appears to be merely for fun, recent research has discovered that children's pretend play has connections to important cognitive and social skills, such as symbolic thinking, theory of mind, and counterfactual reasoning. The current article first defines pretend play and then reviews the arguments and evidence for these three connections. Pretend play has a nonliteral correspondence to reality, hence pretending may provide children with practice with navigating symbolic relationships, which may strengthen their language skills. Pretend play and theory of mind reasoning share a focus on others' mental states in order to correctly interpret their behavior, hence pretending and theory of mind may be mutually supportive in development. Pretend play and counterfactual reasoning both involve representing nonreal states of affairs, hence pretending may facilitate children's counterfactual abilities. These connections make pretend play an important phenomenon in cognitive science: Studying children's pretend play can provide insight into these other abilities and their developmental trajectories, and thereby into human cognitive architecture and its development. PMID:26263228

  12. Genetic disorders of collagen.

    PubMed Central

    Tsipouras, P; Ramirez, F

    1987-01-01

    Osteogenesis imperfecta, Ehlers-Danlos syndrome, and Marfan syndrome form a group of genetic disorders of connective tissue. These disorders exhibit remarkable clinical heterogeneity which reflects their underlying biochemical and molecular differences. Defects in collagen types I and III have been found in all three syndromes. PMID:3543367

  13. Playing Shakespeare.

    ERIC Educational Resources Information Center

    Bashian, Kathleen Ryniker

    1993-01-01

    Describes a yearlong project at 12 Catholic middle schools in the Diocese of Arlington, Virginia, to incorporate the plays of William Shakespeare into the curriculum. Teachers attended university lectures and directed students in performances of the plays. Concludes that Shakespeare can be understood and enjoyed by middle school students. (BCY)

  14. Why Play?

    ERIC Educational Resources Information Center

    Weininger, O.

    This paper draws together briefly theories and knowledge from research in morphology and cognitive psychology, as well as some hypothetical information from traditional psychiatry, to show the ramifications of play in children's development. Play is defined as any of a wide variety of behaviors through which an individual attempts to discover what…

  15. Shadow Play

    ERIC Educational Resources Information Center

    Trundle, Kathy Cabe; Hilson, Margilee P.

    2012-01-01

    A bunny rabbit playfully hops across the wall. Then hands realign and fingers shift to make a hawk soar toward the ceiling. Most children have enjoyed the delightful experience of playing with shadow puppets. The authors build on this natural curiosity to help students link shadows to complex astronomical concepts such as seasons. The…

  16. Collagen hydrolysate based collagen/hydroxyapatite composite materials

    NASA Astrophysics Data System (ADS)

    Ficai, Anton; Albu, Madalina Georgiana; Birsan, Mihaela; Sonmez, Maria; Ficai, Denisa; Trandafir, Viorica; Andronescu, Ecaterina

    2013-04-01

    The aim of this study was to study the influence of collagen hydrolysate (HAS) on the formation of ternary collagen-hydrolysate/hydroxyapatite composite materials (COLL-HAS/HA). During the precipitation process of HA, a large amount of brushite is resulted at pH = 7 but, practically pure HA is obtained at pH ⩾ 8. The FTIR data reveal the duplication of the most important collagen absorption bands due to the presence of the collagen hydrolysate. The presence of collagen hydrolysate is beneficial for the management of bone and joint disorders such as osteoarthritis and osteoporosis.

  17. Label-free visualization of collagen in submucosa as a potential diagnostic marker for early detection of colorectal cancer

    NASA Astrophysics Data System (ADS)

    Qiu, Jingting; Yang, Yinghong; Jiang, Weizhong; Feng, Changyin; Chen, Zhifen; Guan, Guoxian; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Jianxin

    2014-09-01

    The collagen signature in colorectal submucosa is changed due to remodeling of the extracellular matrix during the malignant process and plays an important role in noninvasive early detection of human colorectal cancer. In this work, multiphoton microscopy (MPM) was used to monitor the changes of collagen in normal colorectal submucosa (NCS) and cancerous colorectal submucosa (CCS). What's more, the collagen content was quantitatively measured. It was found that in CCS the morphology of collagen becomes much looser and the collagen content is significantly reduced compared to NCS. These results suggest that MPM has the ability to provide collagen signature as a potential diagnostic marker for early detection of colorectal cancer.

  18. Topographic mapping of collagenous gastritis.

    PubMed

    Freeman, H J

    2001-07-01

    A 74-year-old woman was investigated for abdominal pain and diarrhea. Endoscopic examinations including biopsies of the stomach and colon demonstrated the typical subepithelial deposits characteristic of collagenous gastritis and collagenous colitis. Histochemical and ultrastructural methods confirmed the presence of collagen in the subepithelial deposits. The topographic distribution of these collagen deposits and their relationship to the inflammatory process in the stomach were then defined by endoscopic mapping and multiple site biopsies of the mucosa in the gastric body and antrum. These studies indicate that collagenous gastritis not only is distinctive, but also is a far more extensive and diffuse inflammatory process than has previously been appreciated. PMID:11493952

  19. LARP6 Meets Collagen mRNA: Specific Regulation of Type I Collagen Expression

    PubMed Central

    Zhang, Yujie; Stefanovic, Branko

    2016-01-01

    Type I collagen is the most abundant structural protein in all vertebrates, but its constitutive rate of synthesis is low due to long half-life of the protein (60–70 days). However, several hundred fold increased production of type I collagen is often seen in reparative or reactive fibrosis. The mechanism which is responsible for this dramatic upregulation is complex, including multiple levels of regulation. However, posttranscriptional regulation evidently plays a predominant role. Posttranscriptional regulation comprises processing, transport, stabilization and translation of mRNAs and is executed by RNA binding proteins. There are about 800 RNA binding proteins, but only one, La ribonucleoprotein domain family member 6 (LARP6), is specifically involved in type I collagen regulation. In the 5′untranslated region (5’UTR) of mRNAs encoding for type I and type III collagens there is an evolutionally conserved stem-loop (SL) structure; this structure is not found in any other mRNA, including any other collagen mRNA. LARP6 binds to the 5′SL in sequence specific manner to regulate stability of collagen mRNAs and their translatability. Here, we will review current understanding of how is LARP6 involved in posttranscriptional regulation of collagen mRNAs. We will also discuss how other proteins recruited by LARP6, including nonmuscle myosin, vimentin, serine threonine kinase receptor associated protein (STRAP), 25 kD FK506 binding protein (FKBP25) and RNA helicase A (RHA), contribute to this process. PMID:27011170

  20. Play & Play Grounds. A Report.

    ERIC Educational Resources Information Center

    Stone, Jeannette Galambos

    Using camera and tape recorder, a photographer and an early childhood specialist explored as a team the universe of children's outdoor play, seeking worthy and innovative ideas and stressing urban playground problems and solutions. The resulting photographs and text focus on (1) the characteristics of play, (2) the nature of playgrounds, and (3)…

  1. Shadow Play

    ERIC Educational Resources Information Center

    Ward, Alan

    1974-01-01

    Discusses the use of shadows to explain such scientific phenomena as umbra and penumbra, eclipses, day and night, seasons, and length of day. Indicates that shadow plays can serve to help the students in understanding more about light. (CC)

  2. Peroxidase enzymes regulate collagen extracellular matrix biosynthesis.

    PubMed

    DeNichilo, Mark O; Panagopoulos, Vasilios; Rayner, Timothy E; Borowicz, Romana A; Greenwood, John E; Evdokiou, Andreas

    2015-05-01

    Myeloperoxidase and eosinophil peroxidase are heme-containing enzymes often physically associated with fibrotic tissue and cancer in various organs, without any direct involvement in promoting fibroblast recruitment and extracellular matrix (ECM) biosynthesis at these sites. We report herein novel findings that show peroxidase enzymes possess a well-conserved profibrogenic capacity to stimulate the migration of fibroblastic cells and promote their ability to secrete collagenous proteins to generate a functional ECM both in vitro and in vivo. Mechanistic studies conducted using cultured fibroblasts show that these cells are capable of rapidly binding and internalizing both myeloperoxidase and eosinophil peroxidase. Peroxidase enzymes stimulate collagen biosynthesis at a post-translational level in a prolyl 4-hydroxylase-dependent manner that does not require ascorbic acid. This response was blocked by the irreversible myeloperoxidase inhibitor 4-amino-benzoic acid hydrazide, indicating peroxidase catalytic activity is essential for collagen biosynthesis. These results suggest that peroxidase enzymes, such as myeloperoxidase and eosinophil peroxidase, may play a fundamental role in regulating the recruitment of fibroblast and the biosynthesis of collagen ECM at sites of normal tissue repair and fibrosis, with enormous implications for many disease states where infiltrating inflammatory cells deposit peroxidases.

  3. Collagen Homeostasis and Metabolism.

    PubMed

    Magnusson, S Peter; Heinemeier, Katja M; Kjaer, Michael

    2016-01-01

    The musculoskeletal system and its collagen rich tissue is important for ensuring architecture of skeletal muscle, energy storage in tendon and ligaments, joint surface protection, and for ensuring the transfer of muscular forces into resulting limb movement. Structure of tendon is stable and the metabolic activity is low, but mechanical loading and subsequent mechanotransduction and molecular anabolic signaling can result in some adaptation of the tendon especially during youth and adolescence. Within short time, tendon will get stiffer with training and lack of mechanical tissue loading through inactivity or immobilization of the human body will conversely result in a dramatic loss in tendon stiffness and collagen synthesis. This illustrates the importance of regular mechanical load in order to preserve the stabilizing role of the connective tissue for the overall function of the musculoskeletal system in both daily activity and exercise. Adaptive responses may vary along the tendon, and differ between mid-substance and insertional areas of the tendon. PMID:27535245

  4. Stress-strain experiments on individual collagen fibrils.

    PubMed

    Shen, Zhilei L; Dodge, Mohammad Reza; Kahn, Harold; Ballarini, Roberto; Eppell, Steven J

    2008-10-01

    Collagen, a molecule consisting of three braided protein helices, is the primary building block of many biological tissues including bone, tendon, cartilage, and skin. Staggered arrays of collagen molecules form fibrils, which arrange into higher-ordered structures such as fibers and fascicles. Because collagen plays a crucial role in determining the mechanical properties of these tissues, significant theoretical research is directed toward developing models of the stiffness, strength, and toughness of collagen molecules and fibrils. Experimental data to guide the development of these models, however, are sparse and limited to small strain response. Using a microelectromechanical systems platform to test partially hydrated collagen fibrils under uniaxial tension, we obtained quantitative, reproducible mechanical measurements of the stress-strain curve of type I collagen fibrils, with diameters ranging from 150-470 nm. The fibrils showed a small strain (epsilon < 0.09) modulus of 0.86 +/- 0.45 GPa. Fibrils tested to strains as high as 100% demonstrated strain softening (sigma(yield) = 0.22 +/- 0.14 GPa; epsilon(yield) = 0.21 +/- 0.13) and strain hardening, time-dependent recoverable residual strain, dehydration-induced embrittlement, and susceptibility to cyclic fatigue. The results suggest that the stress-strain behavior of collagen fibrils is dictated by global characteristic dimensions as well as internal structure. PMID:18641067

  5. Sweet Play

    ERIC Educational Resources Information Center

    Leung, Shuk-kwan S.; Lo, Jane-Jane

    2010-01-01

    This article features Sweet play math, a "math by the month" activity that involves decorating and making sugar cubes. Teachers may want to substitute straws, paper squares, alphabet blocks, or such commercially made manipulatives as Unifix[R] cubes for the real sweets. Given no allergy concerns, teachers and students alike would enjoy some sweet…

  6. Game playing.

    PubMed

    Rosin, Christopher D

    2014-03-01

    Game playing has been a core domain of artificial intelligence research since the beginnings of the field. Game playing provides clearly defined arenas within which computational approaches can be readily compared to human expertise through head-to-head competition and other benchmarks. Game playing research has identified several simple core algorithms that provide successful foundations, with development focused on the challenges of defeating human experts in specific games. Key developments include minimax search in chess, machine learning from self-play in backgammon, and Monte Carlo tree search in Go. These approaches have generalized successfully to additional games. While computers have surpassed human expertise in a wide variety of games, open challenges remain and research focuses on identifying and developing new successful algorithmic foundations. WIREs Cogn Sci 2014, 5:193-205. doi: 10.1002/wcs.1278 CONFLICT OF INTEREST: The author has declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. PMID:26304308

  7. Clay Play

    ERIC Educational Resources Information Center

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  8. Saccharin sulfonamides as inhibitors of carbonic anhydrases I, II, VII, XII, and XIII.

    PubMed

    Morkūnaitė, Vaida; Baranauskienė, Lina; Zubrienė, Asta; Kairys, Visvaldas; Ivanova, Jekaterina; Trapencieris, Pēteris; Matulis, Daumantas

    2014-01-01

    A series of modified saccharin sulfonamides have been designed as carbonic anhydrase (CA) inhibitors and synthesized. Their binding to CA isoforms I, II, VII, XII, and XIII was measured by the fluorescent thermal shift assay (FTSA) and isothermal titration calorimetry (ITC). Saccharin bound the CAs weakly, exhibiting the affinities of 1-10 mM for four CAs except CA I where binding could not be detected. Several sulfonamide-bearing saccharines exhibited strong affinities of 1-10 nM towards particular CA isoforms. The functional group binding Gibbs free energy additivity maps are presented which may provide insights into the design of compounds with increased affinity towards selected CAs.

  9. Heterogeneity of collagens in rabbit cornea: type III collagen

    SciTech Connect

    Cintron, C.; Hong, B.S.; Covington, H.I.; Macarak, E.J.

    1988-05-01

    Whole neonate rabbit corneas and adult corneas containing 2-week-old scars were incubated in the presence of (/sup 14/C) glycine. Radiolabeled collagen extracted from the corneas and scar tissue were analyzed by sodium dodecylsulfate/polyacrylamide gel electrophoresis and fluorography to determine the types and relative quantity of collagen polypeptides present and synthesized by these tissues. In addition to other collagen types, type III was found in both neonate cornea and scar tissue from adult cornea, albeit in relatively small quantities. Type III collagen in normal cornea was associated with the residue after pepsin digestion and formic acid extraction of the tissue, and the same type of collagen was extracted from scar tissue after similar treatment. Type III collagen-specific monoclonal antibody bound to developing normal corneas and healing adult tissue sections, as determined by immunofluorescence. Antibody binding was localized to the endothelium and growing Descemet's membrane in fetal and neonate corneas, and restricted to the most posterior region of the corneal scar tissue. Although monoclonal antibody to keratan sulfate, used as a marker for stromal fibroblasts, bound to most of the scar tissue, the antibody failed to bind to the posterior scar tissue positive for type III collagen. We conclude that endothelial cells from fetal and neonate rabbit cornea and endothelium-derived fibroblasts from healing wounds of adult cornea synthesize and deposit type III collagen. Moreover, this collagen appears to be incorporated into the growing Descemet's membrane of normal corneas and narrow posterior portion of the scar tissue.

  10. Collagen macromolecular drug delivery systems

    SciTech Connect

    Gilbert, D.L.

    1988-01-01

    The objective of this study was to examine collagen for use as a macromolecular drug delivery system by determining the mechanism of release through a matrix. Collagen membranes varying in porosity, crosslinking density, structure and crosslinker were fabricated. Collagen characterized by infrared spectroscopy and solution viscosity was determined to be pure and native. The collagen membranes were determined to possess native vs. non-native quaternary structure and porous vs. dense aggregate membranes by electron microscopy. Collagen monolithic devices containing a model macromolecule (inulin) were fabricated. In vitro release rates were found to be linear with respect to t{sup {1/2}} and were affected by crosslinking density, crosslinker and structure. The biodegradation of the collagen matrix was also examined. In vivo biocompatibility, degradation and {sup 14}C-inulin release rates were evaluated subcutaneously in rats.

  11. A calorimetric study on the low temperature dynamics of doped ice V and its reversible phase transition to hydrogen ordered ice XIII.

    PubMed

    Salzmann, Christoph G; Radaelli, Paolo G; Finney, John L; Mayer, Erwin

    2008-11-01

    Doped ice V samples made from solutions containing 0.01 M HCl (DCl), HF (DF), or KOH (KOD) in H(2)O (D(2)O) were slow-cooled from 250 to 77 K at 0.5 GPa. The effect of the dopant on the hydrogen disorder --> order transition and formation of hydrogen ordered ice XIII was studied by differential scanning calorimetry (DSC) with samples recovered at 77 K. DSC scans of acid-doped samples are consistent with a reversible ice XIII <--> ice V phase transition at ambient pressure, showing an endothermic peak on heating due to the hydrogen ordered ice XIII --> disordered ice V phase transition, and an exothermic peak on subsequent cooling due to the ice V --> ice XIII phase transition. The equilibrium temperature (T(o)) for the ice V <--> ice XIII phase transition is 112 K for both HCl doped H(2)O and DCl doped D(2)O. From the maximal enthalpy change of 250 J mol(-1) on the ice XIII --> ice V phase transition and T(o) of 112 K, the change in configurational entropy for the ice XIII --> ice V transition is calculated as 2.23 J mol(-1) K(-1) which is 66% of the Pauling entropy. For HCl, the most effective dopant, the influence of HCl concentration on the formation of ice XIII was determined: on decreasing the concentration of HCl from 0.01 to 0.001 M, its effectiveness is only slightly lowered. However, further HCl decrease to 0.0001 M drastically lowered its effectiveness. HF (DF) doping is less effective in inducing formation of ice XIII than HCl (DCl) doping. On heating at a rate of 5 K min(-1), kinetic unfreezing starts in pure ice V at approximately 132 K, whereas in acid doped ice XIII it starts at about 105 K due to acceleration of reorientation of water molecules. KOH doping does not lead to formation of hydrogen ordered ice XIII, a result which is consistent with our powder neutron diffraction study (C. G. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer, J. L. Finney, Science, 2006, 311, 1758). We further conjecture whether or not ice XIII has a stable region in

  12. Cryptic Peptides from Collagen: A Critical Review.

    PubMed

    Banerjee, Pradipta; Shanthi, C

    2016-01-01

    Collagen, a predominant structural protein in extracellular matrix (ECM), is now considered to have probable roles in many biological activities and hence, in different forms have found application as nutraceutical or pharmaceutical therapy option. Many of the biological properties are believed to be due to small hidden peptide residues in the collagen molecules, which come into play after the biodegradation or biosorption of the parent molecule. These peptide regions are called cryptic peptides or by some, as cryptides. The proteolytic hydrolysis of the ECM protein releases the cryptic peptides with many novel biological activities not exhibited directly by the parental protein which include angiogenic, antimicrobial, mitogenic and chemotactic properties. The research for understanding the role of these cryptic peptide regions and making use of them in medical field is very active. Such an understanding could lead to the development of peptide supplements for many biomedical applications. The prolific research in this area is reviewed in this paper. PMID:27173646

  13. Osmotic pressure induced tensile forces in tendon collagen.

    PubMed

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J; Fratzl, Peter

    2015-01-01

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.

  14. Osmotic pressure induced tensile forces in tendon collagen

    NASA Astrophysics Data System (ADS)

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J.; Fratzl, Peter

    2015-01-01

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.

  15. Osmotic pressure induced tensile forces in tendon collagen

    PubMed Central

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J.; Fratzl, Peter

    2015-01-01

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone. PMID:25608644

  16. Structural properties of pepsin-solubilized collagen acylated by lauroyl chloride along with succinic anhydride.

    PubMed

    Li, Conghu; Tian, Zhenhua; Liu, Wentao; Li, Guoying

    2015-10-01

    The structural properties of pepsin-solubilized calf skin collagen acylated by lauroyl chloride along with succinic anhydride were investigated in this paper. Compared with native collagen, acylated collagen retained the unique triple helix conformation, as determined by amino acid analysis, circular dichroism and X-ray diffraction. Meanwhile, the thermostability of acylated collagen using thermogravimetric measurements was enhanced as the residual weight increased by 5%. With the temperature increased from 25 to 115 °C, the secondary structure of native and acylated collagens using Fourier transform infrared spectroscopy measurements was destroyed since the intensity of the major amide bands decreased and the positions of the major amide bands shifted to lower wavenumber, respectively. Meanwhile, two-dimensional correlation spectroscopy revealed that the most sensitive bands for acylated and native collagens were amide I and II bands, respectively. Additionally, the corresponding order of the groups between native and acylated collagens was different and the correlation degree for acylated collagen was weaker than that of native collagen, suggesting that temperature played a small influence on the conformation of acylated collagen, which might be concluded that the hydrophobic interaction improved the thermostability of collagen.

  17. Lysyl Hydroxylase 3-mediated Glucosylation in Type I Collagen

    PubMed Central

    Sricholpech, Marnisa; Perdivara, Irina; Yokoyama, Megumi; Nagaoka, Hideaki; Terajima, Masahiko; Tomer, Kenneth B.; Yamauchi, Mitsuo

    2012-01-01

    Recently, by employing the short hairpin RNA technology, we have generated MC3T3-E1 (MC)-derived clones stably suppressing lysyl hydroxylase 3 (LH3) (short hairpin (Sh) clones) and demonstrated the LH3 function as glucosyltransferase in type I collagen (Sricholpech, M., Perdivara, I., Nagaoka, H., Yokoyama, M., Tomer, K. B., and Yamauchi, M. (2011) Lysyl hydroxylase 3 glucosylates galactosylhydroxylysine residues in type I collagen in osteoblast culture. J. Biol. Chem. 286, 8846–8856). To further elucidate the biological significance of this modification, we characterized and compared type I collagen phenotypes produced by Sh clones and two control groups, MC and those transfected with empty vector. Mass spectrometric analysis identified five glycosylation sites in type I collagen (i.e. α1,2-87, α1,2-174, and α2-219. Of these, the predominant glycosylation site was α1-87, one of the major helical cross-linking sites. In Sh collagen, the abundance of glucosylgalactosylhydroxylysine was significantly decreased at all of the five sites with a concomitant increase in galactosylhydroxylysine at four of these sites. The collagen cross-links were significantly diminished in Sh clones, and, for the major cross-link, dihydroxylysinonorleucine (DHLNL), glucosylgalactosyl-DHLNL was diminished with a concomitant increase in galactosyl-DHLNL. When subjected to in vitro incubation, in Sh clones, the rate of decrease in DHLNL was lower, whereas the rate of increase in its maturational cross-link, pyridinoline, was comparable with controls. Furthermore, in Sh clones, the mean diameters of collagen fibrils were significantly larger, and the onset of mineralized nodule formation was delayed when compared with those of controls. These results indicate that the LH3-mediated glucosylation occurs at the specific molecular loci in the type I collagen molecule and plays critical roles in controlling collagen cross-linking, fibrillogenesis, and mineralization. PMID:22573318

  18. Type XIV Collagen Regulates Fibrillogenesis

    PubMed Central

    Ansorge, Heather L.; Meng, Xianmin; Zhang, Guiyun; Veit, Guido; Sun, Mei; Klement, John F.; Beason, David P.; Soslowsky, Louis J.; Koch, Manuel; Birk, David E.

    2009-01-01

    Type XIV collagen is a fibril-associated collagen with an interrupted triple helix. This collagen interacts with the fibril surface and has been implicated as a regulator of fibrillogenesis; however, a specific role has not been elucidated. Functional roles for type XIV collagen were defined utilizing a new type XIV collagen-deficient mouse line. This line was produced using a conventional targeted knock-out approach. Col14a1(–/–) mice were devoid of type XIV collagen, whereas heterozygous mice had reduced synthesis. Both mutant Col14a1 genotypes were viable with a grossly normal phenotype; however, mature skin exhibited altered mechanical properties. Prior to evaluating tendon fibrillogenesis in type XIV collagen-deficient mice, the developmental expression patterns were analyzed in wild-type flexor digitorum longus (FDL) tendons. Analyses of mRNA and protein expression indicated tissue-specific temporal expression that was associated with the early stages in fibrillogenesis. Ultrastructural analyses of wild-type and null tendons demonstrated premature fibril growth and larger fibril diameters in tendons from null mice at postnatal day 4 (P4). However, fibril structure in mature tendons was normal. Biomechanical studies established a direct structure/function relationship with reduced strength in P7-null tendons. However, the biomechanical properties in P60 tendons were comparable in null and wild-type mice. Our results indicate a regulatory function for type XIV collagen in early stages of collagen fibrillogenesis with tissue differences. PMID:19136672

  19. Arterial calcification: Conscripted by collagen

    NASA Astrophysics Data System (ADS)

    Miller, Jordan D.

    2016-03-01

    In atherosclerotic plaques, patterns of calcification -- which have profound implications for plaque stability and vulnerability to rupture -- are determined by the collagen's content and patterning throughout the plaque.

  20. Congenital factor XIII deficiency in women: a systematic review of literature.

    PubMed

    Sharief, L A T; Kadir, R A

    2013-11-01

    Factor XIII (FXIII) deficiency is a rare congenital bleeding disorder. There is a paucity of data in the literature about obstetrics and gynaecological problems in women affected by FXIII deficiency. The aim of this study was to examine gynaecological problems and obstetric complications and outcome in women with congenital FXIII deficiency. An electronic search was performed to identify the published literature on PUBMED, MEDLINE, EMBASE, Journals @OVID and CINAHL Plus databases using the following keywords: 'congenital factor XIII deficiency' AND 'women OR Pregnancy'. A total of 39 relevant articles were found and included in this systematic review; 27 case reports and 12 case series dating from 1964 to 2012. A total of 121 women were identified. Menorrhagia (26%) was the second most common bleeding reported after umbilical bleeding. Ovulation bleeding reported in 8% of women. Among 63 women, 192 pregnancies were reported; of these, 127 (66%) resulted in a miscarriage and 65 (34%) reached viability stage. In 136 pregnancies without prophylactic therapy, 124 (91%) resulted in a miscarriage and 12(9%) progressed to viability stage. Antepartum haemorrhage occurred in 5/65 (8%) pregnancies reaching viability stage while postpartum haemorrhage (PPH) seen in 16 (25%) cases. Women with congenital FXIII deficiency suffer significant bleeding complications. Menorrhagia and ovulation bleeding are common gynaecological problems and more prevalent than reported. Pregnancies in women with FXIII deficiency have a significant risk of miscarriage, placental abruption and PPH if not on prophylaxis treatment. PMID:23992439

  1. FE-XIII Infrared / FE-XIV Green Line Ratio Diagnostics (P55)

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; et al.

    2006-11-01

    aks.astro.itbhu@gmail.com We consider the first 27-level atomic model of Fe XIII (5.9 < log Te < 6.4 K) to estimate its ground level populations, taking account of electron as well as proton collisional excitations and de-excitations, radiative cascades, radiative excitations and de-excitations. Radiative cascade is important but the effect of dilution factor is negligible at higher electron densities. The 3 P1-3P0 and 3P2-3P1 transitions in the ground configuration 3s2 3p2 of Fe XIII result in two forbidden coronal emission lines in the infrared region, namely 10747 Å and 10798 Å., while the 5303 Å green line is formed in the 3s2 3p 2 2 ground configuration of Fe XIV as a result of P3 / 2 - P1 / 2 magnetic dipole transition. The line-widths of appropriate pair of forbidden coronal emission lines observed simultaneously can be useful diagnostic tool to deduce temperature and non-thermal velocity in the large scale coronal structures using intensity ratios of the lines as the temperature signature, instead of assuming ion temperature to be equal to the electron temperature. Since the line intensity ratios IG5303/IIR10747 and IG5303/IIR10798 have very week density dependence, they are ideal monitors of temperature mapping in the solar corona.

  2. VizieR Online Data Catalog: SiXIII and SXV collision strengths (Fernandez-Menchero+, 2016)

    NASA Astrophysics Data System (ADS)

    Fernandez-Menchero, L.; Del Zanna, G.; Badnell, N. R.

    2016-07-01

    In present online material we provide in CDS format the extrapolated values of energies, radiative parameters (gf), and electron-impact excitation effective collision strengths (Upsilon) obtained with the extrapolation rules described in the manuscript for the two test ions: He-like Si XIII and S XV. (6 data files).

  3. Effect of photon energy in collagen generation by interstitial low level laser stimulation

    NASA Astrophysics Data System (ADS)

    Jun, Eunkwon; Ha, Myungjin; Lee, Sangyeob; Radfar, Edalat; Park, Jihoon; Jung, Byungjo

    2015-03-01

    Although the mechanism of low level laser therapy (LLLT) is unclear, many studies demonstrated the positive clinical performance of LLLT for skin rejuvenation. An increase in dermal collagen plays an important role in skin rejuvenation and wound healing. This study aimed to investigate collagen generation after interstitial low level laser stimulation (ILLS). Rabbits were divided into two groups: surfacing irradiation and minimally invasive irradiation. 660nm diode laser of 20mW with 10J, 13J and 15J was applied to the backside of rabbits. Collagen formation was evaluated with ultrasound skin scanner every 12 hours. Results shows that ILLS groups have denser collagen density than surfacing groups.

  4. Mechano-regulation of Collagen Biosynthesis in Periodontal Ligament

    PubMed Central

    Kaku, Masaru; Yamauchi, Mitsuo

    2014-01-01

    Purpose Periodontal ligament (PDL) plays critical roles in the development and maintenance of periodontium such as tooth eruption and dissipation of masticatory force. The mechanical properties of PDL are mainly derived from fibrillar type I collagen, the most abundant extracellular component. Study selection The biosynthesis of type I collagen is a long, complex process including a number of intra- and extracellular post-translational modifications. The final modification step is the formation of covalent intra- and intermolecular cross-links that provide collagen fibrils with stability and connectivity. Results It is now clear that collagen post-translational modifications are regulated by groups of specific enzymes and associated molecules in a tissue-specific manner; and these modifications appear to change in response to mechanical force. Conclusions This review focuses on the effect of mechanical loading on collagen biosynthesis and fibrillogenesis in PDL with emphasis on the post-translational modifications of collagens, which is an important molecular aspect to understand in the field of prosthetic dentistry. PMID:25311991

  5. Type I Collagen and Collagen Mimetics as Angiogenesis Promoting Superpolymers

    SciTech Connect

    Twardowski, T.; Fertala, A.; Orgel, J.P.R.O.; San Antonio, J.D.

    2008-07-18

    Angiogenesis, the development of blood vessels from the pre-existing vasculature, is a key component of embryogenesis and tissue regeneration. Angiogenesis also drives pathologies such as tumor growth and metastasis, and hemangioma development in newborns. On the other hand, promotion of angiogenesis is needed in tissues with vascular insufficiencies, and in bioengineering, to endow tissue substitutes with appropriate microvasculatures. Therefore, much research has focused on defining mechanisms of angiogenesis, and identifying pro- and anti-angiogenic molecules. Type I collagen, the most abundant protein in humans, potently stimulates angiogenesis in vitro and in vivo. Crucial to its angiogenic activity appears to be ligation and possibly clustering of endothelial cell (EC) surface {alpha}1{beta}1/{alpha}2{beta}1 integrin receptors by the GFPGER502-507 sequence of the collagen fibril. However, additional aspects of collagen structure and function that may modulate its angiogenic properties are discussed. Moreover, type I collagen and fibrin, another angiogenic polymer, share several structural features. These observations suggest strategies for creating 'angiogenic superpolymers', including: modifying type I collagen to influence its biological half-life, immunogenicity, and integrin binding capacity; genetically engineering fibrillar collagens to include additional integrin binding sites or angiogenic determinants, and remove unnecessary or deleterious sequences without compromising fibril integrity; and exploring the suitability of poly(ortho ester), PEG-lysine copolymer, tubulin, and cholesteric cuticle as collagen mimetics, and suggesting means of modifying them to display ideal angiogenic properties. The collagenous and collagen mimetic angiogenic superpolymers described here may someday prove useful for many applications in tissue engineering and human medicine.

  6. Binding of Clostridium perfringens to collagen correlates with the ability to cause necrotic enteritis in chickens.

    PubMed

    Wade, B; Keyburn, A L; Seemann, T; Rood, J I; Moore, R J

    2015-11-18

    This study investigated the ability of Clostridium perfringens isolates derived from chickens to bind to collagen types I-V and gelatin. In total 21 strains from three distinct backgrounds were studied: (i) virulent strains isolated from birds suffering from necrotic enteritis, (ii) avirulent strains isolated from birds suffering from necrotic enteritis and (iii) strains isolated from healthy birds. All strains isolated from diseased birds had been assessed for virulence in a disease induction model. The virulent isolates all displayed collagen binding ability. However, most strains in the other two classes showed negligible binding to collagen. The prevalence of a previously described C. perfringens putative collagen adhesin-encoding gene was investigated by PCR screening. It was found that five of the strains carried the putative collagen adhesin-encoding gene and that all of these strains were virulent isolates. Based on these studies it is postulated that collagen adhesion may play a role in the pathogenesis of necrotic enteritis.

  7. Lymphocytic and Collagenous Colitis.

    PubMed

    Cruz-Correa; Giardiello

    2000-06-01

    Patients with symptomatic collagenous-lymphocytic colitis should eliminate dietary secretagogues such as caffeine- or lactose-containing food from their diet. When possible, use of nonsteroidal anti-inflammatory drugs should be discontinued. If steatorrhea is documented, a low-fat diet may be helpful. In the presence of bile salt malabsorption, binding resins such as cholestyramine might be useful. Nonspecific diarrheal agents such as loperamide hydrochloride, diphenoxylate hydrochloride and atropine, deodorized tincture of opium, or codeine might prove effective in some patients. Antibacterial agents such as bismuth subsalicylate (8 chewable 262-mg tablets daily) have been effective in symptom control. Metronidazole and erythromycin achieve response rates of 60%. Sulfasalazine, at the usual dose of 2 to 4 g daily, used in collagenous-lymphocytic colitis, demonstrated cessation of diarrhea in 1 to 2 weeks for 50% of patients. Other 5-aminosalicylic (5-ASA) compounds are preferred for patients with a history of sulfa allergy, and those who experience adverse reactions to sulfasalazine. Adrenocorticoid medication is reserved for patients whose conventional treatment with sulfasalazine or 5-ASA has failed. Resolution of diarrhea has been documented in 80% to 90% of patients within 1 week of treatment, however, in most patients, long-term therapy is required. Surgical management is reserved for those patients with disease refractory to medical therapy. Colectomy with ileostomy resulted in clinical and histologic resolution in small case series. If there is no abatement of symptoms, rule out other etiologies of diarrhea such as thyroid dysfunction, celiac disease, or bacterial overgrowth. PMID:11097741

  8. Lumican deficiency results in cardiomyocyte hypertrophy with altered collagen assembly.

    PubMed

    Dupuis, Loren E; Berger, Matthew G; Feldman, Samuel; Doucette, Lorna; Fowlkes, Vennece; Chakravarti, Shukti; Thibaudeau, Sarah; Alcala, Nicolas E; Bradshaw, Amy D; Kern, Christine B

    2015-07-01

    The ability of the heart to adapt to increased stress is dependent on the modification of its extracellular matrix (ECM) architecture that is established during postnatal development as cardiomyocytes differentiate, a process that is poorly understood. We hypothesized that the small leucine-rich proteoglycan (SLRP) lumican (LUM), which binds collagen and facilitates collagen assembly in other tissues, may play a critical role in establishing the postnatal murine myocardial ECM. Although previous studies suggest that LUM deficient mice (lum(-/-)) exhibit skin anomalies consistent with Ehlers-Danlos syndrome, lum(-/-) hearts have not been evaluated. These studies show that LUM was immunolocalized to non-cardiomyocytes of the cardiac ventricles and its expression increased throughout development. Lumican deficiency resulted in significant (50%) perinatal death and further examination of the lum(-/-) neonatal hearts revealed an increase in myocardial tissue without a significant increase in cell proliferation. However cardiomyocytes from surviving postnatal day 0 (P0), 1 month (1 mo) and adult (4 mo) lum(-/-) hearts were significantly larger than their wild type (WT) littermates. Immunohistochemistry revealed that the increased cardiomyocyte size in the lum(-/-) hearts correlated with alteration of the cardiomyocyte pericellular ECM components collagenα1(I) and the class I SLRP decorin (DCN). Western blot analysis demonstrated that the ratio of glycosaminoglycan (GAG) decorated DCN to core DCN was reduced in P0 and 1 mo lum(-/-) hearts. There was also a reduction in the β and γ forms of collagenα1(I) in lum(-/-) hearts. While the total insoluble collagen content was significantly reduced, the fibril size was increased in lum(-/-) hearts, indicating that LUM may play a role in collagen fiber stability and lateral fibril assembly. These results suggest that LUM controls cardiomyocyte growth by regulating the pericellular ECM and also indicates that LUM may coordinate

  9. Lumican deficiency results in cardiomyocyte hypertrophy with altered collagen assembly.

    PubMed

    Dupuis, Loren E; Berger, Matthew G; Feldman, Samuel; Doucette, Lorna; Fowlkes, Vennece; Chakravarti, Shukti; Thibaudeau, Sarah; Alcala, Nicolas E; Bradshaw, Amy D; Kern, Christine B

    2015-07-01

    The ability of the heart to adapt to increased stress is dependent on the modification of its extracellular matrix (ECM) architecture that is established during postnatal development as cardiomyocytes differentiate, a process that is poorly understood. We hypothesized that the small leucine-rich proteoglycan (SLRP) lumican (LUM), which binds collagen and facilitates collagen assembly in other tissues, may play a critical role in establishing the postnatal murine myocardial ECM. Although previous studies suggest that LUM deficient mice (lum(-/-)) exhibit skin anomalies consistent with Ehlers-Danlos syndrome, lum(-/-) hearts have not been evaluated. These studies show that LUM was immunolocalized to non-cardiomyocytes of the cardiac ventricles and its expression increased throughout development. Lumican deficiency resulted in significant (50%) perinatal death and further examination of the lum(-/-) neonatal hearts revealed an increase in myocardial tissue without a significant increase in cell proliferation. However cardiomyocytes from surviving postnatal day 0 (P0), 1 month (1 mo) and adult (4 mo) lum(-/-) hearts were significantly larger than their wild type (WT) littermates. Immunohistochemistry revealed that the increased cardiomyocyte size in the lum(-/-) hearts correlated with alteration of the cardiomyocyte pericellular ECM components collagenα1(I) and the class I SLRP decorin (DCN). Western blot analysis demonstrated that the ratio of glycosaminoglycan (GAG) decorated DCN to core DCN was reduced in P0 and 1 mo lum(-/-) hearts. There was also a reduction in the β and γ forms of collagenα1(I) in lum(-/-) hearts. While the total insoluble collagen content was significantly reduced, the fibril size was increased in lum(-/-) hearts, indicating that LUM may play a role in collagen fiber stability and lateral fibril assembly. These results suggest that LUM controls cardiomyocyte growth by regulating the pericellular ECM and also indicates that LUM may coordinate

  10. Laboratory Diagnosis of Factor XIII Deficiency in Developing Countries: An Iranian Experience.

    PubMed

    Dorgalaleh, Akbar; Tabibian, Shadi; Shams, Mahmood; Tavasoli, Behnaz; Gheidishahran, Maryam; Shamsizadeh, Morteza

    2016-08-01

    Factor XIII (FXIII) deficiency is an extremely rare bleeding disorder with an approximately 12-times higher than the rest of the world. The International Society for Thrombosis and Hemostasis (ISTH) suggested a standard algorithm for precise diagnosis and classification of FXIII deficiency (FXIIID). However, due to lack of investment in proper equipment and procedures in Iran, almost no part of this algorithm can be used to diagnose Iranian patients. Thus, this study proposes a guideline for accurate molecular and laboratory diagnosis of FXIIID based on the available tools. Because this study suggests a simple and reliable algorithm for early diagnosis, it can therefore, reduce the rates of morbidity and mortality of FXIIID patients with this condition. PMID:27346867

  11. SULFUR IX TO XIII SPECTRAL MEASURMENTS BETWEEN 170 AND 500 A

    SciTech Connect

    Yang, Z. H.; Zhang, B. L.; Wang, W.; Yu, D.Y.; Cai, X. H.; Du, S. B.; Zeng, X. T.; Chang, H. W.

    2009-04-15

    This paper reports laboratory measurements of the spectrum of highly ionized sulfur. The spectrum of S IX-S XIII has been observed in the wavelength range 170-500 A. A total of 54 lines have been measured. Forty-two of them have been classified as 2s {sup 2}2p{sup k} -2s2p{sup k} {sup +1} and 2s2p{sup k} -2p{sup k} {sup +1} transitions. Twelve other lines have been ascribed to 2s-2p, 4p-5s, 5p-6s, 5d-6p, and 6p-8d transitions. These spectral lines have been identified, among which 22 are new and accurately measured. The analysis of the spectra was based on a comparison with other experimental results and calculated values.

  12. PIXE and IL analysis of an archeologically problematic XIII century ceramic production

    NASA Astrophysics Data System (ADS)

    Zucchiatti, Alessandro; Jiménez-Rey, David; Climent-Font, Aurelio; Martina, Silvia; Faieta, Rosangela; Maggi, Marco; Giuntini, Lorenzo; Calusi, Silvia

    2015-11-01

    At the beginning of the XIII century the archaeologists have found evidence of a singular, transitional, pottery technique limited to a small area around western Liguria (Northwest of Italy). Known as Ligurian Protomajolica (PML), it shows in the same ceramic body and on the same surface white slip and enamel together, addressing questions about the technical reasons of this unusual combination, its origin and evolution. To integrate previous morphological and mineralogical studies, we have analysed by particle induced X-ray emission (also with mapping) and ionoluminescence (IL) the ceramic body, slip and glaze composition of 56 samples, of which 25 PML's. We have identified some PML's compositional features which are distinct from those of other coeval or later productions from the same area. A few PML imitations are described. A plausible explanation of the origin of the PML's, based both on the archaeometric results and the archaeological and historical knowledge, is presented.

  13. ADAM10 controls collagen signaling and cell migration on collagen by shedding the ectodomain of discoidin domain receptor 1 (DDR1)

    PubMed Central

    Shitomi, Yasuyuki; Thøgersen, Ida B.; Ito, Noriko; Leitinger, Birgit; Enghild, Jan J.; Itoh, Yoshifumi

    2015-01-01

    Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that binds and transmits signals from various collagens in epithelial cells. However, how DDR1–dependent signaling is regulated has not been understood. Here we report that collagen binding induces ADAM10-dependent ectodomain shedding of DDR1. DDR1 shedding is not a result of an activation of its signaling pathway, since DDR1 mutants defective in signaling were shed in an efficient manner. DDR1 and ADAM10 were found to be in a complex on the cell surface, but shedding did not occur unless collagen bound to DDR1. Using a shedding-resistant DDR1 mutant, we found that ADAM10-dependent DDR1 shedding regulates the half-life of collagen-induced phosphorylation of the receptor. Our data also revealed that ADAM10 plays an important role in regulating DDR1-mediated cell adhesion to achieve efficient cell migration on collagen matrices. PMID:25540428

  14. Platelet factor XIII increases the fibrinolytic resistance of platelet-rich clots by accelerating the crosslinking of alpha 2-antiplasmin to fibrin

    NASA Technical Reports Server (NTRS)

    Reed, G. L.; Matsueda, G. R.; Haber, E.

    1992-01-01

    Platelet clots resist fibrinolysis by plasminogen activators. We hypothesized that platelet factor XIII may enhance the fibrinolytic resistance of platelet-rich clots by catalyzing the crosslinking of alpha 2-antiplasmin (alpha 2AP) to fibrin. Analysis of plasma clot structure by polyacrylamide gel electrophoresis and immunoblotting revealed accelerated alpha 2AP-fibrin crosslinking in platelet-rich compared with platelet-depleted plasma clots. A similar study of clots formed with purified fibrinogen (depleted of factor XIII activity), isolated platelets, and specific factor XIII inhibitors indicated that this accelerated crosslinking was due to the catalytic activity of platelet factor XIII. Moreover, when washed platelets were aggregated by thrombin, there was evidence of platelet factor XIII-mediated crosslinking between platelet alpha 2AP and platelet fibrin(ogen). Specific inhibition (by a monoclonal antibody) of the alpha 2AP associated with washed platelet aggregates accelerated the fibrinolysis of the platelet aggregate. Thus in platelet-rich plasma clots, and in thrombin-induced platelet aggregates, platelet factor XIII actively formed alpha 2AP-fibrin crosslinks, which appeared to enhance the resistance of platelet-rich clots to fibrinolysis.

  15. Nonlinear microscopy of collagen fibers

    NASA Astrophysics Data System (ADS)

    Strupler, M.; Pena, A.-M.; Hernest, M.; Tharaux, P.-L.; Fabre, A.; Marchal-Somme, J.; Crestani, B.; Débarre, D.; Martin, J.-L.; Beaurepaire, E.; Schanne-Klein, M.-C.

    2007-02-01

    We used intrinsic Second Harmonic Generation (SHG) by fibrillar collagen to visualize the three-dimensional architecture of collagen fibrosis at the micrometer scale using laser scanning nonlinear microscopy. We showed that SHG signals are highly specific to fibrillar collagen and provide a sensitive probe of the micrometer-scale structural organization of collagen in tissues. Moreover, recording simultaneously other nonlinear optical signals in a multimodal setup, we visualized the tissue morphology using Two-Photon Excited Fluorescence (2PEF) signals from endogenous chromophores such as NADH or elastin. We then compared different methods to determine accurate indexes of collagen fibrosis using nonlinear microscopy, given that most collagen fibrils are smaller than the microscope resolution and that second harmonic generation is a coherent process. In order to define a robust method to process our three-dimensional images, we either calculated the fraction of the images occupied by a significant SHG signal, or averaged SHG signal intensities. We showed that these scores provide an estimation of the extension of renal and pulmonary fibrosis in murine models, and that they clearly sort out the fibrotic mice.

  16. Analysis of human collagen sequences.

    PubMed

    Nassa, Manisha; Anand, Pracheta; Jain, Aditi; Chhabra, Aastha; Jaiswal, Astha; Malhotra, Umang; Rani, Vibha

    2012-01-01

    The extracellular matrix is fast emerging as important component mediating cell-cell interactions, along with its established role as a scaffold for cell support. Collagen, being the principal component of extracellular matrix, has been implicated in a number of pathological conditions. However, collagens are complex protein structures belonging to a large family consisting of 28 members in humans; hence, there exists a lack of in depth information about their structural features. Annotating and appreciating the functions of these proteins is possible with the help of the numerous biocomputational tools that are currently available. This study reports a comparative analysis and characterization of the alpha-1 chain of human collagen sequences. Physico-chemical, secondary structural, functional and phylogenetic classification was carried out, based on which, collagens 12, 14 and 20, which belong to the FACIT collagen family, have been identified as potential players in diseased conditions, owing to certain atypical properties such as very high aliphatic index, low percentage of glycine and proline residues and their proximity in evolutionary history. These collagen molecules might be important candidates to be investigated further for their role in skeletal disorders. PMID:22359431

  17. Human collagen produced in plants

    PubMed Central

    Shoseyov, Oded; Posen, Yehudit; Grynspan, Frida

    2014-01-01

    Consequential to its essential role as a mechanical support and affinity regulator in extracellular matrices, collagen constitutes a highly sought after scaffolding material for regeneration and healing applications. However, substantiated concerns have been raised with regard to quality and safety of animal tissue-extracted collagen, particularly in relation to its immunogenicity, risk of disease transmission and overall quality and consistency. In parallel, contamination with undesirable cellular factors can significantly impair its bioactivity, vis-a-vis its impact on cell recruitment, proliferation and differentiation. High-scale production of recombinant human collagen Type I (rhCOL1) in the tobacco plant provides a source of an homogenic, heterotrimeric, thermally stable “virgin” collagen which self assembles to fine homogenous fibrils displaying intact binding sites and has been applied to form numerous functional scaffolds for tissue engineering and regenerative medicine. In addition, rhCOL1 can form liquid crystal structures, yielding a well-organized and mechanically strong membrane, two properties indispensable to extracellular matrix (ECM) mimicry. Overall, the shortcomings of animal- and cadaver-derived collagens arising from their source diversity and recycled nature are fully overcome in the plant setting, constituting a collagen source ideal for tissue engineering and regenerative medicine applications. PMID:23941988

  18. Characterisations of collagen-silver-hydroxyapatite nanocomposites

    NASA Astrophysics Data System (ADS)

    Ciobanu, C. S.; Popa, C. L.; Petre, C. C.; Jiga, G.; Trusca, R.; Predoi, D.

    2016-05-01

    The XRD analysis were performed to confirm the formation of hydroxyapatite structure in collagen-silver-hydroxyapatite nanocomposites. The molecular interaction in collagen-hydroxyapatite nanocomposites was highlighted by Fourier transform infrared spectroscopy (FTIR) analysis. The SEM showed a nanostructure of collagen-silverhydroxyapatite nanocomposites composed of nano needle-like particles in a veil with collagen texture. The presence of vibrational groups characteristics to the hydroxyapatite structure in collagen-silver-hydroxyapatite (AgHApColl) nanocomposites was investigated by FTIR.

  19. The role of the amorphous phase on the biomimetic mineralization of collagen

    PubMed Central

    Nudelman, Fabio; Bomans, Paul H. H.; George, Anne; de With, Gijsbertus

    2012-01-01

    Bone is a hierarchically structured composite material whose basic building block is the mineralized collagen fibril, where the collagen is the scaffold into which the hydroxyapatite (HA) crystals nucleate and grow. Understanding the mechanisms of hydroxyapatite formation inside the collagen is key to unravelling osteogenesis. In this work, we employed a biomimetic in vitro mineralization system to investigate the role of the amorphous precursor calcium phosphate phase in the mineralization of collagen. We observed that the rate of collagen mineralization is highly dependent on the concentration of polyaspartic acid, an inhibitor of hydroxyapatite nucleation and inducer of intrafibrillar mineralization. The lower the concentration of the polymer, the faster the mineralization and crystallization. Addition of the non-collagenous protein C-DMP1, a nucleator of hydroxyapatite, substantially accelerates mineral infiltration as well as HA nucleation. We have also demonstrated that Cu ions interfere with the mineralization process first by inhibiting the entry of the calcium phosphate into the collagen, and secondly by stabilizing the ACP, such that it does not convert into HA. Interestingly, under these conditions mineralization happens preferentially in the overlap regions of the collagen fibril. Our results show that the interactions between the amorphous precursor phase and the collagen fibril play an important role in the control over mineralization. PMID:25383016

  20. An update on the constitutive relation of ligament tissues with the effects of collagen types.

    PubMed

    Wan, Chao; Hao, Zhixiu; Tong, Lingying; Lin, Jianhao; Li, Zhichang; Wen, Shizhu

    2015-10-01

    The musculoskeletal ligament is a kind of multiscale composite material with collagen fibers embedded in a ground matrix. As the major constituent in ligaments to bear external loads, collagens are composed mainly of two collagen contents with different mechanical properties, i.e., types I and III collagen. The constitutive relation of ligaments plays a critical role in the stability and normal function of human joints. However, collagen types have not been distinguished in the previous constitutive relations. In this paper a constitutive relation for ligament tissues was modified based on the previous constitutive relation by considering the effects of collagen types. Both the collagen contents and the mechanical properties of sixteen ligament specimens from four cadaveric human knee joints were measured for determining their material coefficients in the constitutive relation. The mechanical behaviors of ligaments were obtained from both the uniaxial tensile and simple shear tests. A linear regression between joint kinematic results from in vitro and in silico experiments was made to validate the accuracy of this constitutive relation. The high correlation coefficient (R(2)=0.93) and significance (P<0.0001) of the regression equation revealed that this modified constitutive relation of ligaments was accurate to be used in studying joint biomechanics. Another finite element analysis with collagen contents changing demonstrated that the effect of variations in collagen ratios on both joint kinematics and ligament biomechanics could be simulated by this constitutive relation.

  1. Estrogen and progesterone differentially regulate carbonic anhydrase II, III, IX, XII, and XIII in ovariectomized rat uteri.

    PubMed

    Karim, Kamarulzaman; Giribabu, Nelli; Muniandy, Sekaran; Salleh, Naguib

    2016-01-01

    Changes in the uterus expression of carbonic anhydrase (CA) II, III, IX, XII, and XIII were investigated under the influence of sex-steroids in order to elucidate mechanisms underlying differential effects of these hormones on uterine pH. Uteri of ovariectomised rats receiving over three days either vehicle, estrogen, or progesterone or three days estrogen followed by three days either vehicle or progesterone were harvested. Messenger RNA (mRNA) and protein levels were quantified by real-time PCR and Western blotting, respectively. The distribution of CA isoenzymes proteins were examined by immunohistochemistry. The levels of CAII, III, XII, and XIII mRNAs and proteins were elevated while levels of CAIX mRNA and protein were reduced following progesterone-only and estrogen plus progesterone treatment, compared to the control and estrogen plus vehicle, respectively. Following estrogen treatment, expression of CAII, IX, XII, and CAXIII mRNAs and proteins were reduced, but remained at a level higher than control, except for CAIX, where its level was higher than the control and following progesterone treatment. Under progesterone-only and estrogen plus progesterone influences, high levels of CAII, III, XII, and XIII were observed in uterine lumenal and glandular epithelia and myometrium. However, a high level of CAIX was observed only under the influence of estrogen at the similar locations. In conclusion, high expression of CAII, III, XII, and XIII under the influence of progesterone and estrogen plus progesterone could result in the reduction of uterine tissue and fluid pH; however, the significance of high levels of CAIX expression under the influence of estrogen remains unclear. PMID:26709452

  2. Measurement of the Mechanical Properties of Intact Collagen Fibrils

    NASA Astrophysics Data System (ADS)

    Mercedes, H.; Heim, A.; Matthews, W. G.; Koob, T.

    2006-03-01

    Motivated by the genetic disorder Ehlers-Danlos syndrome (EDS), in which proper collagen synthesis is interrupted, we are investigating the structural and mechanical properties of collagen fibrils. The fibrous glycoprotein collagen is the most abundant protein found in the human body and plays a key role in the extracellular matrix of the connective tissue, the properties of which are altered in EDS. We have selected as our model system the collagen fibrils of the sea cucumber dermis, a naturally mutable tissue. This system allows us to work with native fibrils which have their proteoglycan complement intact, something that is not possible with reconstituted mammalian collagen fibrils. Using atomic force microscopy, we measure, as a function of the concentration of divalent cations, the fibril diameter, its response to force loading, and the changes in its rigidity. Through these experiments, we will shed light on the mechanisms which control the properties of the sea cucumber dermis and hope to help explain the altered connective tissue extracellular matrix properties associated with EDS.

  3. Efficacy of Collagen Particles in Chronic Non Healing Ulcers

    PubMed Central

    Kumar, Yogesh; Kini, U Anand

    2015-01-01

    Introduction Chronic foot ulcers will lead to a significant and prolonged stress to the patients. Pain and discomfort that may be acute or continuous is the usual complaint in chronic non healing ulcers that may even exacerbate with change of the dressings. The end process in any wound healing is wound contracture and scar formation. Collagen plays an important role in this stage of wound healing. Collagen particles were used in chronic non healing ulcer management to prove their efficacy when compared with conventional dressing in a study conducted by us. Objective To compare the healing process in non healing ulcers using collagen particles with those of conventional method of dressing (betadine). Materials and Methods It was a non randomized, prospective study conducted for a period of October 2012 to October 2014 in hospitals belonging to Kasturba medical college. Non concurrent pre and post comparative study; between collagen group and conventional dressing group. A total of 110 patients with chronic ulcers were included; each group comprising 55 patients. Results There was a significant decrease in wound size with a mean difference of 37.29 in experimental group when compared to 14.29 in control group. Conclusion Collagen dressing is effective in management of chronic non healing ulcers when compared to conventional betadine dressing. It heals by forming an early granulation tissue and thus reducing the length of hospital stay. PMID:26266157

  4. Nanomechanics of Type I Collagen.

    PubMed

    Varma, Sameer; Orgel, Joseph P R O; Schieber, Jay D

    2016-07-12

    Type I collagen is the predominant collagen in mature tendons and ligaments, where it gives them their load-bearing mechanical properties. Fibrils of type I collagen are formed by the packing of polypeptide triple helices. Higher-order structures like fibril bundles and fibers are assembled from fibrils in the presence of other collagenous molecules and noncollagenous molecules. Curiously, however, experiments show that fibrils/fibril bundles are less resistant to axial stress compared to their constituent triple helices-the Young's moduli of fibrils/fibril bundles are an order-of-magnitude smaller than the Young's moduli of triple helices. Given the sensitivity of the Young's moduli of triple helices to solvation environment, a plausible explanation is that the packing of triple helices into fibrils perhaps reduces the Young's modulus of an individual triple helix, which results in fibrils having smaller Young's moduli. We find, however, from molecular dynamics and accelerated conformational sampling simulations that the Young's modulus of the buried core of the fibril is of the same order as that of a triple helix in aqueous phase. These simulations, therefore, suggest that the lower Young's moduli of fibrils/fibril bundles cannot be attributed to the specific packing of triple helices in the fibril core. It is not the fibril core that yields initially to axial stress. Rather, it must be the portion of the fibril exposed to the solvent and/or the fibril-fibril interface that bears the initial strain. Overall, this work provides estimates of Young's moduli and persistence lengths at two levels of collagen's structural assembly, which are necessary to quantitatively investigate the response of various biological factors on collagen mechanics, including congenital mutations, posttranslational modifications and ligand binding, and also engineer new collagen-based materials. PMID:27410733

  5. Enhanced stabilization of collagen by furfural.

    PubMed

    Lakra, Rachita; Kiran, Manikantan Syamala; Usha, Ramamoorthy; Mohan, Ranganathan; Sundaresan, Raja; Korrapati, Purna Sai

    2014-04-01

    Furfural (2-furancarboxaldehyde), a product derived from plant pentosans, has been investigated for its interaction with collagen. Introduction of furfural during fibril formation enhanced the thermal and mechanical stability of collagen. Collagen films treated with furfural exhibited higher denaturation temperature (Td) (p<0.04) and showed a 3-fold increase in Young's modulus (p<0.04) at higher concentration. Furfural and furfural treated collagen films did not have any cytotoxic effect. Rheological characterization showed an increase in shear stress and shear viscosity with increasing shear rate for treated collagen. Circular dichroism (CD) studies indicated that the furfural did not have any impact on triple helical structure of collagen. Scanning electron microscopy (SEM) of furfural treated collagen exhibited small sized porous structure in comparison with untreated collagen. Thus this study provides an alternate ecologically safe crosslinking agent for improving the stability of collagen for biomedical and industrial applications.

  6. Extracellular collagenous spherules in salivary gland tumors. Immunohistochemical analysis of laminin and various types of collagen.

    PubMed

    Skalova, A; Leivo, I

    1992-06-01

    Collagenous spherulosis is a benign breast lesion involving lobular acini and ductules and containing eosinophilic spherules measuring up to 100 microns in diameter. We present an immunohistochemical analysis of similar collagen-rich spherules that are also found in salivary gland tumors. These collagenous spherules contain varying amounts of acidic mucins, elastin, basement membrane proteins including type IV collagen and laminin, and considerable amounts of interstitial collagen types I and III. Types II and VI collagen were not detected in collagenous spherules of salivary gland tumors. The cells surrounding these collagenous spherules expressed muscle actin, S100 protein, vimentin, and cytokeratins 8, 18, and 19, indicating that these cells have myoepithelial characteristics.

  7. Collagen-derived matricryptins promote inhibitory nerve terminal formation in the developing neocortex.

    PubMed

    Su, Jianmin; Chen, Jiang; Lippold, Kumiko; Monavarfeshani, Aboozar; Carrillo, Gabriela Lizana; Jenkins, Rachel; Fox, Michael A

    2016-03-14

    Inhibitory synapses comprise only ∼20% of the total synapses in the mammalian brain but play essential roles in controlling neuronal activity. In fact, perturbing inhibitory synapses is associated with complex brain disorders, such as schizophrenia and epilepsy. Although many types of inhibitory synapses exist, these disorders have been strongly linked to defects in inhibitory synapses formed by Parvalbumin-expressing interneurons. Here, we discovered a novel role for an unconventional collagen-collagen XIX-in the formation of Parvalbumin(+) inhibitory synapses. Loss of this collagen results not only in decreased inhibitory synapse number, but also in the acquisition of schizophrenia-related behaviors. Mechanistically, these studies reveal that a proteolytically released fragment of this collagen, termed a matricryptin, promotes the assembly of inhibitory nerve terminals through integrin receptors. Collectively, these studies not only identify roles for collagen-derived matricryptins in cortical circuit formation, but they also reveal a novel paracrine mechanism that regulates the assembly of these synapses.

  8. Collagen shield delivery of trifluorothymidine.

    PubMed

    Gussler, J R; Ashton, P; VanMeter, W S; Smith, T J

    1990-11-01

    Corneal and aqueous levels of topically applied trifluorothymidine (F3T) were compared with and without the collagen shield in normal and damaged rabbit eyes. Shields were presoaked in 1% F3T for 15 minutes prior to application. Rabbits received either a presoaked shield, 1% F3T drops every two hours, or both. Corneal and aqueous levels of F3T were measured at 30 minutes, two, four, and eight hours. If 5 mm epithelial defects were created, the collagen shield and topical F3T drops produced significantly higher levels of F3T than drops alone at all periods tested (P less than .05). A presoaked shield alone produced greater levels of F3T than drops alone at 30 minutes and two hours (P less than .05). Collagen shields did not enhance F3T levels in eyes with intact epithelium. Implications for treatment of herpetic keratouveitis are discussed.

  9. Collagen VI related muscle disorders

    PubMed Central

    Lampe, A; Bushby, K

    2005-01-01

    Mutations in the genes encoding collagen VI (COL6A1, COL6A2, and COL6A3) cause Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD), two conditions which were previously believed to be completely separate entities. BM is a relatively mild dominantly inherited disorder characterised by proximal weakness and distal joint contractures. UCMD was originally described as an autosomal recessive condition causing severe muscle weakness with proximal joint contractures and distal hyperlaxity. Here we review the clinical phenotypes of BM and UCMD and their diagnosis and management, and provide an overview of the current knowledge of the pathogenesis of collagen VI related disorders. PMID:16141002

  10. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts.

    PubMed

    Chu, Chenyu; Deng, Jia; Xiang, Lin; Wu, Yingying; Wei, Xiawei; Qu, Yili; Man, Yi

    2016-10-01

    Collagen membranes have ideal biological and mechanical properties for supporting infiltration and proliferation of osteoblasts and play a vital role in guided bone regeneration (GBR). However, pure collagen can lead to inflammation, resulting in progressive bone resorption. Therefore, a method for regulating the level of inflammatory cytokines at surgical sites is paramount for the healing process. Epigallocatechin-3-gallate (EGCG) is a component extracted from green tea with numerous biological activities including an anti-inflammatory effect. Herein, we present a novel cross-linked collagen membrane containing different concentrations of EGCG (0.0064%, 0.064%, and 0.64%) to regulate the level of inflammatory factors secreted by pre-osteoblast cells; improve cell proliferation; and increase the tensile strength, wettability, and thermal stability of collagen membranes. Scanning electron microscope images show that the surfaces of collagen membranes became smoother and the collagen fiber diameters became larger with EGCG treatment. Measurement of the water contact angle demonstrated that introducing EGCG improved membrane wettability. Fourier transform infrared spectroscopy analyses indicated that the backbone of collagen was intact, and the thermal stability was significant improved in differential scanning calorimetry. The mechanical properties of 0.064% and 0.64% EGCG-treated collagen membranes were 1.5-fold greater than those of the control. The extent of cross-linking was significantly increased, as determined by a 2,4,6-trinitrobenzenesulfonic acid solution assay. The Cell Counting Kit-8 (CCK-8) and live/dead assays revealed that collagen membrane cross-linked by 0.0064% EGCG induced greater cell proliferation than pure collagen membranes. Additionally, real-time polymerase chain reaction and enzyme-linked immunosorbent assay results showed that EGCG significantly affected the production of inflammatory factors secreted by MC3T3-E1 cells. Taken together, our

  11. Type IV Collagen is a Novel DEJ Biomarker that is Reduced by Radiotherapy

    PubMed Central

    McGuire, J.D.; Gorski, J.P.; Dusevich, V.; Wang, Y.; Walker, M.P.

    2014-01-01

    The dental basement membrane (BM) is composed of collagen types IV, VI, VII, and XVII, fibronectin, and laminin and plays an inductive role in epithelial-mesenchymal interactions during tooth development. The BM is degraded and removed during later-stage tooth morphogenesis; however, its original position defines the location of the dentin-enamel junction (DEJ) in mature teeth. We recently demonstrated that type VII collagen is a novel component of the inner enamel organic matrix layer contiguous with the DEJ. Since it is frequently co-expressed with and forms functional complexes with type VII collagen, we hypothesized that type IV collagen should also be localized to the DEJ in mature human teeth. To identify collagen IV, we first evaluated defect-free erupted teeth from various donors. To investigate a possible stabilizing role, we also evaluated extracted teeth exposed to high-dose radiotherapy – teeth that manifest post-radiotherapy DEJ instability. We now show that type IV collagen is a component within the morphological DEJ of posterior and anterior teeth from individuals aged 18 to 80 yr. Confocal microscopy revealed that immunostained type IV collagen was restricted to the 5- to 10-µm-wide optical DEJ, while collagenase treatment or previous in vivo tooth-level exposure to > 60 Gray irradiation severely reduced immunoreactivity. This assignment was confirmed by Western blotting with whole-tooth crown and enamel extracts. Without reduction, type IV collagen contained macromolecular α-chains of 225 and 250 kDa. Compositionally, our results identify type IV collagen as the first macromolecular biomarker of the morphological DEJ of mature teeth. Given its network structure and propensity to stabilize the dermal-epidermal junction, we propose that a collagen-IV-enriched DEJ may, in part, explain its well-known fracture toughness, crack propagation resistance, and stability. In contrast, loss of type IV collagen may represent a biochemical rationale for the

  12. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts.

    PubMed

    Chu, Chenyu; Deng, Jia; Xiang, Lin; Wu, Yingying; Wei, Xiawei; Qu, Yili; Man, Yi

    2016-10-01

    Collagen membranes have ideal biological and mechanical properties for supporting infiltration and proliferation of osteoblasts and play a vital role in guided bone regeneration (GBR). However, pure collagen can lead to inflammation, resulting in progressive bone resorption. Therefore, a method for regulating the level of inflammatory cytokines at surgical sites is paramount for the healing process. Epigallocatechin-3-gallate (EGCG) is a component extracted from green tea with numerous biological activities including an anti-inflammatory effect. Herein, we present a novel cross-linked collagen membrane containing different concentrations of EGCG (0.0064%, 0.064%, and 0.64%) to regulate the level of inflammatory factors secreted by pre-osteoblast cells; improve cell proliferation; and increase the tensile strength, wettability, and thermal stability of collagen membranes. Scanning electron microscope images show that the surfaces of collagen membranes became smoother and the collagen fiber diameters became larger with EGCG treatment. Measurement of the water contact angle demonstrated that introducing EGCG improved membrane wettability. Fourier transform infrared spectroscopy analyses indicated that the backbone of collagen was intact, and the thermal stability was significant improved in differential scanning calorimetry. The mechanical properties of 0.064% and 0.64% EGCG-treated collagen membranes were 1.5-fold greater than those of the control. The extent of cross-linking was significantly increased, as determined by a 2,4,6-trinitrobenzenesulfonic acid solution assay. The Cell Counting Kit-8 (CCK-8) and live/dead assays revealed that collagen membrane cross-linked by 0.0064% EGCG induced greater cell proliferation than pure collagen membranes. Additionally, real-time polymerase chain reaction and enzyme-linked immunosorbent assay results showed that EGCG significantly affected the production of inflammatory factors secreted by MC3T3-E1 cells. Taken together, our

  13. The evolution of fibrillar collagens: a sea-pen collagen shares common features with vertebrate type V collagen.

    PubMed

    Tillet, E; Franc, J M; Franc, S; Garrone, R

    1996-02-01

    The extracellular matrix of marine primitive invertebrates (sponges, polyps and jellyfishes) contains collagen fibrils with narrow diameters. From various data, it has been hypothesized that these primitive collagens could represent ancestral forms of the vertebrate minor collagens, i.e., types V or XI. Recently we have isolated a primitive collagen from the soft tissues of the sea-pen Veretillum cynomorium. This report examines whether the sea-pen collagen shares some features with vertebrate type V collagen. Rotary shadowed images of acid-soluble collagen molecules extracted from beta-APN treated animals, positive staining of segment-long-spacing crystallites precipitated from pepsinized collagen, Western blots of the pepsinized alpha1 and alpha2 chains with antibodies to vertebrate types I, III and V collagens, and in situ gold immunolabeling of ECM collagen fibrils were examined. Our results showed that the tissue form of the sea-pen collagen is a 340-nm threadlike molecule, which is close to the vertebrate type V collagen with its voluminous terminal globular domain, the distribution of most of its polar amino-acid residues, and its antigenic properties.

  14. The evolution of fibrillar collagens: a sea-pen collagen shares common features with vertebrate type V collagen.

    PubMed

    Tillet, E; Franc, J M; Franc, S; Garrone, R

    1996-02-01

    The extracellular matrix of marine primitive invertebrates (sponges, polyps and jellyfishes) contains collagen fibrils with narrow diameters. From various data, it has been hypothesized that these primitive collagens could represent ancestral forms of the vertebrate minor collagens, i.e., types V or XI. Recently we have isolated a primitive collagen from the soft tissues of the sea-pen Veretillum cynomorium. This report examines whether the sea-pen collagen shares some features with vertebrate type V collagen. Rotary shadowed images of acid-soluble collagen molecules extracted from beta-APN treated animals, positive staining of segment-long-spacing crystallites precipitated from pepsinized collagen, Western blots of the pepsinized alpha1 and alpha2 chains with antibodies to vertebrate types I, III and V collagens, and in situ gold immunolabeling of ECM collagen fibrils were examined. Our results showed that the tissue form of the sea-pen collagen is a 340-nm threadlike molecule, which is close to the vertebrate type V collagen with its voluminous terminal globular domain, the distribution of most of its polar amino-acid residues, and its antigenic properties. PMID:8653581

  15. Impaired Activity of Blood Coagulant Factor XIII in Patients with Necrotizing Enterocolitis.

    PubMed

    Tao, Guo-Zhong; Liu, Bo; Zhang, Rong; Liu, Gigi; Abdullah, Fizan; Harris, Mary Cay; Brandt, Mary L; Ehrenkranz, Richard A; Bowers, Corinna; Martin, Camilia R; Moss, R Lawrence; Sylvester, Karl G

    2015-01-01

    Necrotizing enterocolitis (NEC) is the most common gastrointestinal (GI) medical/surgical emergency of the newborn and a leading cause of preterm neonate morbidity and mortality. NEC is a challenge to diagnose since it often shares similar clinical features with neonatal sepsis. In the present study, plasma protein profiling was compared among NEC, sepsis and control cohorts using gel electrophoresis, immunoblot and mass spectrometry. We observed significant impairment in the formation of fibrinogen-γ dimers (FGG-dimer) in the plasma of newborns with NEC that could efficiently differentiate NEC and sepsis with a high level of sensitivity and specificity. Interestingly, the impaired FGG-dimer formation could be restored in NEC plasma by the addition of exogenous active factor XIII (FXIII). Enzymatic activity of FXIII was determined to be significantly lower in NEC subject plasma for crosslinking FGG when compared to sepsis. These findings demonstrate a potential novel biomarker and related biologic mechanism for diagnosing NEC, as well as suggest a possible therapeutic strategy. PMID:26277871

  16. Safety of Factor XIII Concentrate: Analysis of More than 20 Years of Pharmacovigilance Data

    PubMed Central

    Solomon, Cristina; Korte, Wolfgang; Fries, Dietmar; Pendrak, Inna; Joch, Christine; Gröner, Albrecht; Birschmann, Ingvild

    2016-01-01

    Background Plasma-derived factor XIII (FXIII) concentrate is an effective treatment for FXIII deficiency. We describe adverse drug reactions (ADRs) reported during pharmacovigilance monitoring of Fibrogammin®/Corifact® and review published safety data. Methods Postmarketing safety reports recorded by CSL Behring from June 1993 to September 2013 were analyzed. Clinical studies published during the same period were also reviewed. Results Commercial data indicated that 1,653,450,333 IU FXIII concentrate were distributed over the review period, equivalent to 1,181,036 doses for a 70 kg patient. 75 cases were reported (one/15,700 standard doses or 22,046,000 IU). Reports of special interest included 12 cases of possible hypersensitivity reactions (one/98,400 doses or 137,787,500 IU), 7 with possible thromboembolic events (one/168,700 doses or 236,207,200 IU), 5 of possible inhibitor development (one/236,200 doses or 330,690,100 IU), and 20 of possible pathogen transmission (one/59,100 doses or 82,672,500 IU). 19 pathogen transmission cases involved viral infection; 4 could not be analyzed due to insufficient data, but for all others a causal relationship to the product was assessed as unlikely. A review of published literature revealed a similar safety profile. Conclusion Assessment of ADRs demonstrated that FXIII concentrate carries a low risk of ADRs across various clinical situations, suggesting a favorable safety profile. PMID:27781024

  17. Impaired Activity of Blood Coagulant Factor XIII in Patients with Necrotizing Enterocolitis.

    PubMed

    Tao, Guo-Zhong; Liu, Bo; Zhang, Rong; Liu, Gigi; Abdullah, Fizan; Harris, Mary Cay; Brandt, Mary L; Ehrenkranz, Richard A; Bowers, Corinna; Martin, Camilia R; Moss, R Lawrence; Sylvester, Karl G

    2015-08-17

    Necrotizing enterocolitis (NEC) is the most common gastrointestinal (GI) medical/surgical emergency of the newborn and a leading cause of preterm neonate morbidity and mortality. NEC is a challenge to diagnose since it often shares similar clinical features with neonatal sepsis. In the present study, plasma protein profiling was compared among NEC, sepsis and control cohorts using gel electrophoresis, immunoblot and mass spectrometry. We observed significant impairment in the formation of fibrinogen-γ dimers (FGG-dimer) in the plasma of newborns with NEC that could efficiently differentiate NEC and sepsis with a high level of sensitivity and specificity. Interestingly, the impaired FGG-dimer formation could be restored in NEC plasma by the addition of exogenous active factor XIII (FXIII). Enzymatic activity of FXIII was determined to be significantly lower in NEC subject plasma for crosslinking FGG when compared to sepsis. These findings demonstrate a potential novel biomarker and related biologic mechanism for diagnosing NEC, as well as suggest a possible therapeutic strategy.

  18. Impaired Activity of Blood Coagulant Factor XIII in Patients with Necrotizing Enterocolitis

    PubMed Central

    Tao, Guo-Zhong; Liu, Bo; Zhang, Rong; Liu, Gigi; Abdullah, Fizan; Harris, Mary Cay; Brandt, Mary L.; Ehrenkranz, Richard A.; Bowers, Corinna; Martin, Camilia R.; Moss, R. Lawrence; Sylvester, Karl G.

    2015-01-01

    Necrotizing enterocolitis (NEC) is the most common gastrointestinal (GI) medical/surgical emergency of the newborn and a leading cause of preterm neonate morbidity and mortality. NEC is a challenge to diagnose since it often shares similar clinical features with neonatal sepsis. In the present study, plasma protein profiling was compared among NEC, sepsis and control cohorts using gel electrophoresis, immunoblot and mass spectrometry. We observed significant impairment in the formation of fibrinogen-γ dimers (FGG-dimer) in the plasma of newborns with NEC that could efficiently differentiate NEC and sepsis with a high level of sensitivity and specificity. Interestingly, the impaired FGG-dimer formation could be restored in NEC plasma by the addition of exogenous active factor XIII (FXIII). Enzymatic activity of FXIII was determined to be significantly lower in NEC subject plasma for crosslinking FGG when compared to sepsis. These findings demonstrate a potential novel biomarker and related biologic mechanism for diagnosing NEC, as well as suggest a possible therapeutic strategy. PMID:26277871

  19. Factor XIII deficiency in Iran: a comprehensive review of the literature.

    PubMed

    Dorgalaleh, Akbar; Naderi, Majid; Hosseini, Maryam Sadat; Alizadeh, Shaban; Hosseini, Soudabeh; Tabibian, Shadi; Eshghi, Peyman

    2015-04-01

    Factor XIII deficiency (FXIIID) is a rare bleeding disorder with an estimated prevalence of 1 in 2-million population worldwide. In Iran, a Middle Eastern country with a high rate of consanguineous marriages, there are approximately 473 patients afflicted with FXIIID. An approximately 12-fold higher prevalence of FXIIID is estimated in Iran in comparison with overall worldwide frequency. In this study, we have undertaken a comprehensive review on different aspects of FXIIID in the Iranian population. The distribution of this disease in different regions of Iran reveals that Sistan and Baluchestan Province has not only the highest number of patients with FXIIID in Iran but the highest global incidence of this condition. Among Iranian patients, umbilical cord bleeding, hematoma, and prolonged wound bleeding are the most frequent clinical manifestations. There are several disease causing mutations in Iranian patients with FXIIID, with Trp187Arg being the most common mutation in FXIIID in Iran. Traditionally, the management of FXIIID in Iran was only based on administration of fresh frozen plasma or cryoprecipitate, until 2009 when FXIII concentrate became available for patient management. Various studies have evaluated the efficacy and safety of prophylactic regimens in different situations with valuable findings. Although the focus of this study is on Iran, it offers considerable insight into FXIIID, which can be applied more extensively to improve the management and quality of life in all affected patients.

  20. Revisiting the mechanism of coagulation factor XIII activation and regulation from a structure/functional perspective

    PubMed Central

    Gupta, Sneha; Biswas, Arijit; Akhter, Mohammad Suhail; Krettler, Christoph; Reinhart, Christoph; Dodt, Johannes; Reuter, Andreas; Philippou, Helen; Ivaskevicius, Vytautas; Oldenburg, Johannes

    2016-01-01

    The activation and regulation of coagulation Factor XIII (FXIII) protein has been the subject of active research for the past three decades. Although discrete evidence exists on various aspects of FXIII activation and regulation a combinatorial structure/functional view in this regard is lacking. In this study, we present results of a structure/function study of the functional chain of events for FXIII. Our study shows how subtle chronological submolecular changes within calcium binding sites can bring about the detailed transformation of the zymogenic FXIII to its activated form especially in the context of FXIIIA and FXIIIB subunit interactions. We demonstrate what aspects of FXIII are important for the stabilization (first calcium binding site) of its zymogenic form and the possible modes of deactivation (thrombin mediated secondary cleavage) of the activated form. Our study for the first time provides a structural outlook of the FXIIIA2B2 heterotetramer assembly, its association and dissociation. The FXIIIB subunits regulatory role in the overall process has also been elaborated upon. In summary, this study provides detailed structural insight into the mechanisms of FXIII activation and regulation that can be used as a template for the development of future highly specific therapeutic inhibitors targeting FXIII in pathological conditions like thrombosis. PMID:27453290

  1. Pulsational frequencies of the eclipsing δ Scuti star HD 172189. Results of the STEPHI XIII campaign

    NASA Astrophysics Data System (ADS)

    Costa, J. E. S.; Michel, E.; Peña, J.; Creevey, O.; Li, Z. P.; Chevreton, M.; Belmonte, J. A.; Alvarez, M.; Fox Machado, L.; Parrao, L.; Pérez Hernández, F.; Fernández, A.; Fremy, J. R.; Pau, S.; Alonso, R.

    2007-06-01

    Context: The eclipsing δ Scuti star HD 172189 is a probable member of the open cluster IC 4756 and a promising candidate target for the CoRoT mission. Aims: The detection of pulsation modes is the first step in the asteroseismological study of the star. Further, the calculation of the orbital parameters of the binary system allows us to make a dynamical determination of the mass of the star, which works as an important constraint to test and calibrate the asteroseismological models. Methods: We performed a detailed frequency analysis of 210 hours of photometric data of HD 172189 obtained from the STEPHI XIII campaign. Results: We have identified six pulsation frequencies with a confidence level of 99% and a seventh with a 65% confidence level of 65%, in the range between 100-300 μHz. In addiction, three eclipses were observed during the campaign, allowing us to improve the determination of the orbital period of the system. Table 1 is only available in electronic form at http://www.aanda.org

  2. Class XIII myosins from the green alga Acetabularia: driving force in organelle transport and tip growth?

    PubMed

    Vugrek, Oliver; Sawitzky, Heiko; Menzel, Diedrik

    2003-01-01

    The green alga Acetabularia cliftonii (Dasycladales) contains at least two myosin genes, which already have been assigned class XIII of the myosin superfamily (Cope et al., 1996, Structure 4: 969-987). Here we report a complete analysis of their gene structure and their corresponding transcripts Aclmyo1 and Aclmyo2. Despite promising Northern blot data no evidence for alternative splicing could be found. Dissecting the primary structure at complementary deoxyribonucleic acid (cDNA) level we found a myosin typical organization in head, neck and variable tail region. Most striking is the extremely short tail region of Aclmyo1 with only 18 residues and the maximum number of 7 IQ motifs in Aclmyo2. Probing Acetabularia protein extracts with an antibody raised to a synthetic peptide derived from the amino terminal region in Alcmyo1 showed cross-reactivity to a polypeptide with a molecular mass of approximately 100 kD. This corresponds to the predicted molecular weight of Aclmyo1, which is 106 kD as deduced from the amino acid sequence. Additionally, the same cross-reactive protein is capable of binding F-actin as indicated by a co-sedimentation assay. Confocal laser scanning microscopy with raised antibody revealed co-localization with organelles, the budding region of lateral whorls and the cell apex suggesting involvement of putative Acetabularia myosin in organelle transport and tip growth.

  3. Mussel adhesive protein provides cohesive matrix for collagen type-1α

    PubMed Central

    Martinez Rodriguez, Nadine R.; Das, Saurabh; Kaufman, Yair; Wei, Wei; Israelachvili, Jacob N.; Waite, J. Herbert

    2015-01-01

    Understanding the interactions between collagen and adhesive mussel foot proteins (mfps) can lead to improved medical and dental adhesives, particularly for collagen-rich tissues. Here we investigated interactions between collagen type-1, the most abundant loadbearing animal protein, and mussel foot protein-3 (mfp-3) using a quartz crystal microbalance and surface forces apparatus (SFA). Both hydrophilic and hydrophobic variants of mfp-3 were exploited to probe the nature of the interaction between the protein and collagen. Our chief findings are: 1) mfp-3 is an effective chaperone for tropocollagen adsorption to TiO2 and mica surfaces; 2) at pH 3, collagen addition between two mfp-3 films (Wc = 5.4 ± 0.2 mJ/m2) increased their cohesion by nearly 35%; 3) oxidation of Dopa in mfp-3 by periodate did not abolish the adhesion between collagen and mfp-3 films, and 4) collagen bridging between both hydrophilic and hydrophobic mfp-3 variant films is equally robust, suggesting that hydrophobic interactions play a minor role. Extensive H-bonding, π-cation and electrostatic interactions are more plausible to explain the reversible bridging of mfp-3 films by collagen. PMID:25770997

  4. Propolis Modifies Collagen Types I and III Accumulation in the Matrix of Burnt Tissue

    PubMed Central

    Olczyk, Pawel; Wisowski, Grzegorz; Komosinska-Vassev, Katarzyna; Stojko, Jerzy; Klimek, Katarzyna; Olczyk, Monika; Kozma, Ewa M.

    2013-01-01

    Wound healing represents an interactive process which requires highly organized activity of various cells, synthesizing cytokines, growth factors, and collagen. Collagen types I and III, serving as structural and regulatory molecules, play pivotal roles during wound healing. The aim of this study was to compare the propolis and silver sulfadiazine therapeutic efficacy throughout the quantitative and qualitative assessment of collagen types I and III accumulation in the matrix of burnt tissues. Burn wounds were inflicted on pigs, chosen for the evaluation of wound repair because of many similarities between pig and human skin. Isolated collagen types I and III were estimated by the surface plasmon resonance method with a subsequent collagenous quantification using electrophoretic and densitometric analyses. Propolis burn treatment led to enhanced collagens and its components expression, especially during the initial stage of the study. Less expressed changes were observed after silver sulfadiazine (AgSD) application. AgSD and, with a smaller intensity, propolis stimulated accumulation of collagenous degradation products. The assessed propolis therapeutic efficacy, throughout quantitatively and qualitatively analyses of collagen types I and III expression and degradation in wounds matrix, may indicate that apitherapeutic agent can generate favorable biochemical environment supporting reepithelization. PMID:23781260

  5. A graphene oxide-based FRET sensor for rapid and specific detection of unfolded collagen fragments.

    PubMed

    Sun, Xiuxia; Fan, Jun; Zhang, Yuping; Chen, Hongli; Zhao, Yongqing; Xiao, Jianxi

    2016-05-15

    The unstructured collagen species plays a critical role in a variety of important biological processes as well as pathological conditions. In order to develop novel diagnosis and therapies for collagen-related diseases, it is essential to construct simple and efficient methods to detect unfolded collagen fragments. We therefore have designed a FITC-labeled collagen mimic triple helical peptide, whose adsorption on the surface of GO effectively quenches its fluorescence. The newly constructed GO/FITC-GPO complex specifically detects unstructured collagen fragments, but not fully folded triple helix species. The detection shows a clear preference for the collagen targets with complementary GPO-rich sequences. The conformation-sensitive, sequence-specific GO-based approach can be applied as an efficient biosensor for rapid detection of unfolded collagen fragments at nM level, and may have great potential in drug screening for inhibitors of unfolded collagen. It may provide a prototype to develop GO-based assays to detect other important unstructured proteins involved in diseases.

  6. Propolis Modifies Collagen Types I and III Accumulation in the Matrix of Burnt Tissue.

    PubMed

    Olczyk, Pawel; Wisowski, Grzegorz; Komosinska-Vassev, Katarzyna; Stojko, Jerzy; Klimek, Katarzyna; Olczyk, Monika; Kozma, Ewa M

    2013-01-01

    Wound healing represents an interactive process which requires highly organized activity of various cells, synthesizing cytokines, growth factors, and collagen. Collagen types I and III, serving as structural and regulatory molecules, play pivotal roles during wound healing. The aim of this study was to compare the propolis and silver sulfadiazine therapeutic efficacy throughout the quantitative and qualitative assessment of collagen types I and III accumulation in the matrix of burnt tissues. Burn wounds were inflicted on pigs, chosen for the evaluation of wound repair because of many similarities between pig and human skin. Isolated collagen types I and III were estimated by the surface plasmon resonance method with a subsequent collagenous quantification using electrophoretic and densitometric analyses. Propolis burn treatment led to enhanced collagens and its components expression, especially during the initial stage of the study. Less expressed changes were observed after silver sulfadiazine (AgSD) application. AgSD and, with a smaller intensity, propolis stimulated accumulation of collagenous degradation products. The assessed propolis therapeutic efficacy, throughout quantitatively and qualitatively analyses of collagen types I and III expression and degradation in wounds matrix, may indicate that apitherapeutic agent can generate favorable biochemical environment supporting reepithelization.

  7. Transformation of amorphous calcium carbonate to rod-like single crystal calcite via "copying" collagen template.

    PubMed

    Xue, Zhonghui; Hu, Binbin; Dai, Shuxi; Du, Zuliang

    2015-10-01

    Collagen Langmuir films were prepared by spreading the solution of collagen over deionized water, CaCl2 solution and Ca(HCO3)2 solution. Resultant collagen Langmuir monolayers were then compressed to a lateral pressure of 10 mN/m and held there for different duration, allowing the crystallization of CaCO3. The effect of crystallization time on the phase composition and microstructure of CaCO3 was investigated. It was found that amorphous calcium carbonate (ACC) was obtained at a crystallization time of 6 h. The amorphous CaCO3 was transformed to rod-like single crystal calcite crystals at an extended crystallization time of 12 h and 24 h, via "copying" the symmetry and dimensionalities of collagen fibers. Resultant calcite crystallites were well oriented along the longitudinal axis of collagen fibers. The ordered surface structure of collagen fibers and electrostatic interactions played key roles in tuning the oriented nucleation and growth of the calcite crystallites. The mineralized collagen possessing both desired mechanical properties of collagen fiber and good biocompatibility of calcium carbonate may be assembled into an ideal biomaterial for bone implants.

  8. Biology, chemistry and pathology of collagen

    SciTech Connect

    Fleischmajer, R.; Olsen, B.R.; Kuhn, K.

    1985-01-01

    This book consists of five parts and a section of poster papers. Some of the articles are: Structure of the Type II Collagen Gene; Structural and Functional Analysis of the Genes for ..cap alpha..2(1) and ..cap alpha..1(III) collagens; Structure and Expression of the Collagen Genes of C. Elegans; Molecular Basis of Clinical Heterogeneity in the Ehlers-Danlos Syndrome; and Normal and Mutant Human Collagen Genes.

  9. Down-regulation of collagen arthritis after in vivo treatment with a syngeneic monoclonal anti-idiotypic antibody to a cross-reactive idiotope on collagen II auto-antibodies.

    PubMed Central

    Nordling, C; Holmdahl, R; Klareskog, L

    1991-01-01

    Monoclonal anti-idiotypic antibodies previously shown to react with a cross-reactive idiotope of anti-collagen II auto-antibodies were used for in vivo treatment of DBA/1 mice receiving immunization with arthritogenic native rat collagen type II. Injection of 100 micrograms of the anti-idiotypic antibody 3 weeks before the collagen immunization resulted in a significant suppression of collagen arthritis, compared with mice treated with a monoclonal control antibody. The treatment with anti-idiotypic antibody 3 weeks before collagen immunization could also cause a marked down-regulation of the total serum levels of anti-collagen II antibodies. When the anti-idiotypic antibodies were administered near the time for induction of arthritis (2 days after collagen immunization) a significant effect was seen on the collagen arthritis, but not on the levels of anti-collagen antibody. As collagen-induced arthritis is a disease where both T- and B-cell mediated immunity are believed to play critical roles, the present effects of the in vivo anti-idiotype treatment on arthritis development could provide an interesting system for the study of idiotype regulation on both B- and T-cell arthritis-associated autoimmunity. PMID:2037311

  10. Phospholipase D1 decreases type I collagen levels in hepatic stellate cells via induction of autophagy.

    PubMed

    Seo, H-Y; Jang, B-K; Jung, Y-A; Lee, E-J; Kim, H-S; Jeon, J-H; Kim, J-G; Lee, I-K; Kim, M-K; Park, K-G

    2014-06-20

    Hepatic stellate cells (HSCs) are major players in liver fibrogenesis. Accumulating evidence shows that suppression of autophagy plays an important role in the development and progression of liver disease. Phospholipase D1 (PLD1), which catalyzes the hydrolysis of phosphatidylcholine to yield phosphatidic acid (PA) and choline, was recently shown to modulate autophagy. However, little is known about the effects of PLD1 on the production of type I collagen that characterizes liver fibrosis. Here, we examined whether PLD1 regulates type I collagen levels in HSCs through induction of autophagy. Adenovirus-mediated overexpression of PLD-1 (Ad-PLD1) reduced type I collagen levels in the activated human HSC lines, hTERT and LX2. Overexpression of PLD1 in HSCs led to induction of autophagy as demonstrated by increased LC3-II conversion and formation of LC3 puncta, and decreased p62 abundance. Moreover, inhibiting the induction of autophagy by treating cells with bafilomycin or a small interfering (si)RNA for ATG7 rescued Ad-PLD1-induced suppression of type I collagen accumulation in HSCs. The effects of PLD on type I collagen levels were not related to TGF-β/Smad signaling. Furthermore, treatment of cells with PA induced autophagy and inhibited type I collagen accumulation. The present study indicates that PLD1 plays a role in regulating type I collagen accumulation through induction of autophagy. PMID:24802400

  11. Inhibition of collagen-induced platelet aggregation by antibodies to distinct types of collagens.

    PubMed Central

    Balleisen, L; Nowack, H; Gay, S; Timpl, R

    1979-01-01

    Aggregation of platelets by fibrils formed from collagens type I, II and III could be inhibited by coating the fibrils with anti-collagen antibodies or Fab fragments. Similar results were obtained in a clot-retraction assay. Inhibition was achieved with stoichiometric amounts of antibodies and was specific for each type of collagen. Aggregation caused by a mixture of type-I and -III collagens could only be inhibited by a mixture of antibodies against both collagens. The data show that each interstitial collagen is capable of interacting with platelets and do not support the concept of an outstanding activity of type-III collagen. Images PLATE 1 PMID:395952

  12. Collagens in the aged human macula.

    PubMed

    Marshall, G E; Konstas, A G; Reid, G G; Edwards, J G; Lee, W R

    1994-03-01

    Immunogold cytochemistry was used to investigate the fine structural distribution of collagen types I-VI in Bruch's membrane and choroid of the aged human macula. Macular tissue was obtained from ten eyes, and processed for cryoultramicrotomy and London Resin white embedding. Striated collagen fibrils within the inner and outer collagenous layers were found to contain collagen types I, III and V. In addition, type V collagen was also present in the basement membrane of the choriocapillaris. Gross thickening of the choriocapillaris basement membrane was attributed to the deposition of type IV collagen. However, type IV collagen appeared to be absent from the basement membrane of the retinal pigment epithelium. The interesting location of type VI collagen on the choroidal side of the choriocapillaris suggested that its function is to anchor the choriocapillaris onto the choroid. The collagens studied were absent from fibrous banded material, long-spacing collagen, the elastic layer and amorphous granular material. It was concluded that, of the collagen types studied, only the deposition of type IV collagen contributes to the age-related thickening of Bruch's membrane.

  13. Collagen binding to OSCAR: the odd couple.

    PubMed

    An, Bo; Brodsky, Barbara

    2016-02-01

    In this issue of Blood, Zhou et al reported the high-resolution structure of the collagen-activated osteoclast-associated receptor (OSCAR) bound to a collagen model peptide. Together with binding studies, the results confirm a novel recognition mechanism for collagen by immunoglobulin-like motifs. PMID:26847065

  14. Exposure to Mimivirus Collagen Promotes Arthritis

    PubMed Central

    Shah, Nikunj; Hülsmeier, Andreas J.; Hochhold, Nina; Neidhart, Michel; Gay, Steffen

    2014-01-01

    Collagens, the most abundant proteins in animals, also occur in some recently described nucleocytoplasmic large DNA viruses such as Mimiviridae, which replicate in amoebae. To clarify the impact of viral collagens on the immune response of animals exposed to Mimiviridae, we have investigated the localization of collagens in Acanthamoeba polyphaga mimivirus particles and the response of mice to immunization with mimivirus particles. Using protein biotinylation, we have first shown that viral collagen encoded by open reading frame L71 is present at the surface of mimivirus particles. Exposure to mimivirus collagens elicited the production of anti-collagen antibodies in DBA/1 mice immunized intradermally with mimivirus protein extracts. This antibody response also targeted mouse collagen type II and was accompanied by T-cell reactivity to collagen and joint inflammation, as observed in collagen-induced arthritis following immunization of mice with bovine collagen type II. The broad distribution of nucleocytoplasmic large DNA viruses in the environment suggests that humans are constantly exposed to such large virus particles. A survey of blood sera from healthy human subjects and from rheumatoid arthritis patients indeed demonstrated that 30% of healthy-subject and 36% of rheumatoid arthritis sera recognized the major mimivirus capsid protein L425. Moreover, whereas 6% of healthy-subject sera recognized the mimivirus collagen protein L71, 22% of rheumatoid arthritis sera were positive for mimivirus L71. Accordingly, our study shows that environmental exposure to mimivirus represents a risk factor in triggering autoimmunity to collagens. PMID:24173233

  15. Micromechanical analysis of native and cross-linked collagen type I fibrils supports the existence of microfibrils.

    PubMed

    Yang, L; van der Werf, K O; Dijkstra, P J; Feijen, J; Bennink, M L

    2012-02-01

    The mechanical properties of individual collagen fibrils of approximately 200 nm in diameter were determined using a slightly adapted AFM system. Single collagen fibrils immersed in PBS buffer were attached between an AFM cantilever and a glass surface to perform tensile tests at different strain rates and stress relaxation measurements. The stress-strain behavior of collagen fibrils immersed in PBS buffer comprises a toe region up to a stress of 5 MPa, followed by the heel and linear region at higher stresses. Hysteresis and strain-rate dependent stress-strain behavior of collagen fibrils were observed, which suggest that single collagen fibrils have viscoelastic properties. The stress relaxation process of individual collagen fibrils could be best fitted using a two-term Prony series. Furthermore, the influence of different cross-linking agents on the mechanical properties of single collagen fibrils was investigated. Based on these results, we propose that sliding of microfibrils with respect to each other plays a role in the viscoelastic behavior of collagen fibrils in addition to the sliding of collagen molecules with respect to each other. Our finding provides a better insight into the relationship between the structure and mechanical properties of collagen and the micro-mechanical behavior of tissues. PMID:22301184

  16. Investigating the relationship between changes in collagen fiber orientation during skin aging and collagen/water interactions by polarized-FTIR microimaging.

    PubMed

    Eklouh-Molinier, Christophe; Happillon, Teddy; Bouland, Nicole; Fichel, Caroline; Diébold, Marie-Danièle; Angiboust, Jean-François; Manfait, Michel; Brassart-Pasco, Sylvie; Piot, Olivier

    2015-09-21

    Upon chronological aging, human skin undergoes structural and molecular modifications, especially at the level of type I collagen. This macromolecule is one of the main dermal structural proteins and presents several age-related alterations. It exhibits a triple helical structure and assembles itself to form fibrils and fibers. In addition, water plays an important role in stabilizing the collagen triple helix by forming hydrogen-bonds between collagen residues. However, the influence of water on changes of dermal collagen fiber orientation with age has not been yet understood. Polarized-Fourier Transform Infrared (P-FTIR) imaging is an interesting biophotonic approach to determine in situ the orientation of type I collagen fibers, as we have recently shown by comparing skin samples of different ages. In this work, P-FTIR spectral imaging was performed on skin samples from two age groups (35- and 38-year-old on the one hand, 60- and 66-year-old on the other hand), and our analyses were focused on the effect of H2O/D2O substitution. Spectral data were processed with fuzzy C-means (FCM) clustering in order to distinguish different orientations of collagen fibers. We demonstrated that the orientation was altered with aging, and that D2O treatment, affecting primarily highly bound water molecules, is more marked for the youngest skin samples. Collagen-bound water-related spectral markers were also highlighted. Our results suggest a weakening of water/collagen interactions with age. This non-destructive and label-free methodology allows us to understand better the importance of bound water in collagen fiber orientation alterations occurring with skin aging. Obtaining such structural information could find benefits in dermatology as well as in cosmetics.

  17. The collagenous gastroenteritides: similarities and differences.

    PubMed

    Gopal, Purva; McKenna, Barbara J

    2010-10-01

    Collagenous gastritis, collagenous sprue, and collagenous colitis share striking histologic similarities and occur together in some patients. They also share some drug and disease associations. Pediatric cases of collagenous gastritis, however, lack most of these associations. The etiologies of the collagenous gastroenteritides are not known, so it is not clear whether they are similar because they share pathogeneses, or because they indicate a common histologic response to varying injuries. The features, disease and drug associations, and the inquiries into the pathogenesis of these disorders are reviewed. PMID:20923305

  18. Collagen interactions: Drug design and delivery.

    PubMed

    An, Bo; Lin, Yu-Shan; Brodsky, Barbara

    2016-02-01

    Collagen is a major component in a wide range of drug delivery systems and biomaterial applications. Its basic physical and structural properties, together with its low immunogenicity and natural turnover, are keys to its biocompatibility and effectiveness. In addition to its material properties, the collagen triple-helix interacts with a large number of molecules that trigger biological events. Collagen interactions with cell surface receptors regulate many cellular processes, while interactions with other ECM components are critical for matrix structure and remodeling. Collagen also interacts with enzymes involved in its biosynthesis and degradation, including matrix metalloproteinases. Over the past decade, much information has been gained about the nature and specificity of collagen interactions with its partners. These studies have defined collagen sequences responsible for binding and the high-resolution structures of triple-helical peptides bound to its natural binding partners. Strategies to target collagen interactions are already being developed, including the use of monoclonal antibodies to interfere with collagen fibril formation and the use of triple-helical peptides to direct liposomes to melanoma cells. The molecular information about collagen interactions will further serve as a foundation for computational studies to design small molecules that can interfere with specific interactions or target tumor cells. Intelligent control of collagen biological interactions within a material context will expand the effectiveness of collagen-based drug delivery.

  19. PREFACE: MCWASP XIII: International Conference on Modeling of Casting, Welding and Advanced Solidification Processes

    NASA Astrophysics Data System (ADS)

    Ludwig, Andreas

    2012-07-01

    Due to fast-paced development in computer technologies during the last three decades, computer-based process modeling has become an important tool for the improvement of existing process technologies and the development of new, innovative technologies. With the help of numerical process simulations, complex and costly experimental trials can now be reduced to a minimum. For metallurgical processes in particular, computer simulations are of outstanding importance, as the flow and solidification of molten alloys or the formation of microstructure and defects can hardly be observed experimentally. Corresponding computer simulations allow us inside views into the key process phenomena and so offer great potential for optimization. In 1980 the conference series 'Modeling of Casting, Welding and Advanced Solidification Processes (MCWASP)' was started up, and has now been continued by holding the 13th international conference on 'Modeling of Casting, Welding and Advanced Solidification Processes', MCWASP XIII, in Schladming, Austria, from June 17-22 2012. Around 200 scientists from industry and academia, coming from 20 countries around the globe attended 78 oral and 50 poster presentations on different aspects of solidification-related modeling topics. Besides process-related sessions such as (i) Ingot and Shape Casting, (ii) Continuous Casting and Direct Chill Casting, (iii) Directional Solidification and Zone Melting, (iv) Welding, and (v) Centrifugal Casting, a larger focus was put on (vi) Experimental Investigation and In-Situ Observations. In recent years, this topic has been significantly strengthened as advanced synchrotron technologies allow fantastic in-situ observations of phenomena happening inside small metallic samples. These observations will definitely serve as a benchmark for the modeling community. Further macroscopic aspects of advanced solidification science were tackled in the sessions (vii) Electromagnetic Coupling, (viii) Thermomechanics, (ix

  20. Novel aspects of blood coagulation factor XIII. I. Structure, distribution, activation, and function

    SciTech Connect

    Muszbek, L.; Adany, R.; Mikkola, H.

    1996-10-01

    Blood coagulation factor XIII (FXIII) is a protransglutaminase that becomes activated by the concerted action of thrombin and Ca{sup 2+} in the final stage of the clotting cascade. In addition to plasma, FXIII also occurs in platelets, monocytes, and monocyte-derived macrophages. While the plasma factor is a heterotetramer consisting of paired A and B subunits (A{sub 2}B{sub 2}), its cellular counterpart lacks the B subunits and is a homodimer of potentially active A subunits (A{sub 2}). The gene coding for the A and B subunits has been localized to chromosomes 6p24-25 and 1q31-32.1, respectively. The genomic as well as the primary protein structure of both subunits has been established. Plasma FXIII circulates in association with its substrate precursor, fibrinogen. Fibrin(ogen) has an important regulatory role in the activation of plasma FXIII, for instance the proteolytic removal of activation peptide by thrombin, the dissociation of subunits A and B, and the exposure of the originally buried active site on the free A subunits. The end result of this process is the formation of an active transglutaminase, which crosslinks peptide chains through {epsilon}({gamma}-glutamyl)lysyl isopeptide bonds. The protein substrates of activated FXIII include components of the clotting-fibrinolytic system, adhesive and contractile proteins. The main physiological function of plasma FXIII is to cross-link fibrin and protect it from the fibrinolytic enzyme plasmin. The latter effect is achieved mainly by covalently linking {alpha}{sub 2} antiplasmin, the most potent physiological inhibitor of plasmin, to fibrin. Plasma FXIII seems to be involved in wound healing and tissue repair, and it is essential to maintaining pregnancy. Cellular FXIII, if exposed to the surface of the cells, might support or perhaps take over the hemostatic functions of plasma FXIII; however, its intracellular role has remained mostly unexplored. 328 refs., 4 figs.

  1. Factor XIII Transglutaminase Supports the Resolution of Mucosal Damage in Experimental Colitis

    PubMed Central

    Andersson, Christina; Kvist, Peter H.; McElhinney, Kathryn; Baylis, Richard; Gram, Luise K.; Pelzer, Hermann; Lauritzen, Brian; Holm, Thomas L.; Hogan, Simon; Wu, David; Turpin, Brian; Miller, Whitney; Palumbo, Joseph S.

    2015-01-01

    The thrombin-activated transglutaminase factor XIII (FXIII) that covalently crosslinks and stablizes provisional fibrin matrices is also thought to support endothelial and epithelial barrier function and to control inflammatory processes. Here, gene-targeted mice lacking the FXIII catalytic A subunit were employed to directly test the hypothesis that FXIII limits colonic pathologies associated with experimental colitis. Wildtype (WT) and FXIII-/- mice were found to be comparable in their initial development of mucosal damage following exposure to dextran sulfate sodium (DSS) challenge. However, unlike FXIII-sufficient mice, FXIII-deficient cohorts failed to efficiently resolve colonic inflammatory pathologies and mucosal damage following withdrawal of DSS. Consistent with prior evidence of ongoing coagulation factor activation and consumption in individuals with active colitis, plasma FXIII levels were markedly decreased in colitis-challenged WT mice. Treatment of colitis-challenged mice with recombinant human FXIII-A zymogen significantly mitigated weight loss, intestinal bleeding, and diarrhea, regardless of whether cohorts were FXIII-sufficient or were genetically devoid of FXIII. Similarly, both qualitative and quantitative microscopic analyses of colonic tissues revealed that exogenous FXIII improved the resolution of multiple colitis disease parameters in both FXIII-/- and WT mice. The most striking differences were seen in the resolution of mucosal ulceration, the most severe histopathological manifestation of DSS-induced colitis. These findings directly demonstrate that FXIII is a significant determinant of mucosal healing and clinical outcome following inflammatory colitis induced mucosal injury and provide a proof-of-principle that clinical interventions supporting FXIII activity may be a means to limit colitis pathology and improve resolution of mucosal damage. PMID:26098308

  2. Sushi domains in the B subunit of factor XIII responsible for oligomer assembly.

    PubMed

    Souri, Masayoshi; Kaetsu, Hiroshi; Ichinose, Akitada

    2008-08-19

    Factor XIII (FXIII) is a heterotetramer composed of two catalytic A subunits (FXIII-A) and two B subunits (FXIII-B). FXIII-B has 10 Sushi domains. To explore the structure-function relationship of FXIII-B, we looked for domains in FXIII-B responsible for its homodimer and heterotetramer assembly with FXIII-A. Full-length recombinant human FXIII-B (rFXIII-B) and truncated rFXIII-Bs with various numbers of Sushi domains (rFXIII-B x- y ) were expressed in a baculovirus expression system. rFXIII-B was indistinguishable from purified human plasma FXIII-B, in terms of the molecular weight (after being deglycosylated by glycosidases) and the ability to form complexes between the two subunits. rFXIII-B was in dimer form and produced a heterotetramer complex with FXIII-A. Gel-filtration and FXIII-A binding analysis of the various truncated forms of rFXIII-B x- y revealed that the first Sushi domain was responsible for the binding of FXIII-B to FXIII-A and that the fourth and ninth Sushi domains were involved in the FXIII-B homodimer assembly. rFXIII-B and rFXIII-B 1-9, which formed a heterotetramer complex with FXIII-A, protected FXIII-A from proteolytic digestion. These findings suggest that only full-length or nearly full-length FXIII-B is large enough to cover the exposed surface of FXIII-A. In conclusion, at least 3 out of the 10 Sushi domains of FXIII-B have the distinct function of forming a homodimer and a heterotetramer, which should be ascribed to the differences in their amino acid sequences. The present studies, however, do not exclude the possibility that additional Sushi domains may also support either or both functions.

  3. Nucleotide sequence of the gene for the b subunit of human factor XIII

    SciTech Connect

    Bottenus, R.E.; Ichinose, A.; Davie, E.W. )

    1990-12-01

    Factor XIII (M{sub r} 320 000) is a blood coagulation factor that stabilizes and strengthens the fibrin clot. It circulates in blood as a tetramer composed of two a subunits (M{sub r} 75 000 each) and two b subunits (M{sub r} 80 000 each). The b subunit consists of 641 amino acids and includes 10 tandem repeats of 60 amino acids known as GP-I structures, short consensus repeats (SCR), or sushi domains. In the present study, the human gene for the b subunit has been isolated from three different genomic libraries prepared in {lambda} phage. Fifteen independent phage with inserts coding for the entire gene were isolated and characterized by restriction mapping, Southern blotting, and DNA sequencing. The gene was found to be 28 kilobases in length and consisted of 12 exons (I-XII) separated by 11 intervening sequences. The leader sequence was encoded by exon I, while the carbonyl-terminal region of the protein was encoded by exon XII. Exons II-XI each coded for a single sushi domain, suggesting that the gene evolved through exon shuffling and duplication. The 12 exons in the gene ranged in size from 64 to 222 base pairs, while the introns ranged in size from 87 to 9970 nucleotides and made up 92{percent} of the gene. One nucleotide change was found in the coding region of the gene when its sequence was compared to that of the cDNA. This difference, however, did not result in a change in the amino acid sequence of the protein.

  4. Factor XIII-A subunit Val34Leu polymorphism in fatal atherothrombotic ischemic stroke.

    PubMed

    Shemirani, Amir-Houshang; Antalfi, Bálint; Pongrácz, Endre; Mezei, Zoltán András; Bereczky, Zsuzsanna; Csiki, Zoltán

    2014-06-01

    Factor XIII (FXIII) is a regulator of fibrinolysis and clot firmness. Val34Leu polymorphism of its potentially active A subunit (FXIII-A) leads to faster activation of FXIII, influences clot structure and provides a moderate protection against coronary artery disease. The effect of FXIII-A Val34Leu polymorphism on the risk of atherothrombotic ischemic stroke (AIS) has been investigated in a few studies with contradictory results. In all previous studies, only patients surviving AIS were enrolled and sex-specific effects were not explored. In this retrospective multicenter cohort, we investigated the effect of FXIII-A Val34Leu polymorphism on the risk of fatal AIS in women and men. DNA isolation and genetic determinations in the case of 316 patients who died of AIS were carried out on paraffin-embedded tissue specimens. Genetic analyses for population controls, patients with history of AIS and sex-matched controls were performed on extracted genomic DNA from peripheral blood leukocytes. The prevalence of homozygous wild-type, and heterozygous genotypes, Leu34 carriers and Leu34 allele was not different significantly between the patients with fatal AIS and their respective controls. Logistic regression analysis with age as co-variant demonstrated that in women, homozygous presentation of Leu34 allele represented a more than three-fold increased risk of AIS with fatal outcome. The results demonstrate that FXIII-A Val34Leu polymorphism does not influence the occurrence of AIS, but has an effect on the severity of its outcome. This effect is sex-specific and in homozygous women, the prothrombotic/antifibrinolytic effects of FXIII-A Val34Leu polymorphism seem to prevail. PMID:24686102

  5. Factor XIII Val34Leu polymorphism and recurrent myocardial infarction in patients with coronary artery disease.

    PubMed

    Kreutz, Rolf P; Bitar, Abbas; Owens, Janelle; Desta, Zeruesenay; Breall, Jeffrey A; von der Lohe, Elisabeth; Sinha, Anjan; Vatta, Matteo; Nystrom, Perry; Jin, Yan; Flockhart, David A

    2014-10-01

    Factor XIII (FXIII) is necessary for cross linking of fibrin strands and generation of stable fibrin clot. FXIII Val34Leu is a common genetic single nucleotide polymorphism that has been associated with accelerated fibrin stabilization and reduced rate of fibrinolysis. The contribution of Val34Leu to long term risk of recurrent myocardial infarction (MI) in patients with coronary stenting has not been conclusively established. The objective of the study was to examine the effects of Val34Leu on fibrin generation, platelet aggregation, and long term clinical outcomes in patients with coronary artery disease treated with dual antiplatelet therapy. Patients with angiographically documented coronary artery disease who were treated with aspirin and clopidogrel were enrolled (n = 211). Light transmittance aggregometry and plasma fibrin clot formation using thrombelastography (TEG) were determined. Genotyping of Val34Leu was performed using Taqman assay. Clinical events during follow up were recorded. Homozygous carriers of 34 Leu variant had significantly shorter fibrin clot formation time as compared to wild type individuals (TEG K: 1.27 ± 0.3 vs. 1.68 ± 1.1 min, p = 0.011). The Val34Leu variant was associated with gene dose dependent increased risk of MI (log rank, p = 0.002) or occurrence of composite of MI and CV death (log rank, p = 0.005) with highest event rates observed in homozygous carriers of 34 Leu. In summary, FXIII Val34Leu polymorphism was associated with increased rate of fibrin stabilization in homozygous carriers of the variant and may increase risk of recurrent MI and death in patients with angiographically established coronary artery disease treated with dual antiplatelet therapy. PMID:24510702

  6. Cholesterol-induced changes of type VIII collagen expression and distribution in carotid arteries of rabbit.

    PubMed

    Plenz, G; Dorszewski, A; Völker, W; Ko, Y S; Severs, N J; Breithardt, G; Robenek, H

    1999-10-01

    Lipoproteins play a major role in cardiovascular disease and atherosclerosis. In the vascular wall, they strongly influence the organization of extracellular matrix. The present study set out to investigate the changes in the extracellular matrix of the vessel wall induced by atherogenic diet, focusing on type VIII collagen, a vascular collagen that has not previously been investigated in detail. The influence of cholesterol diet on the expression, distribution, and deposition of type VIII collagen was examined in carotid arteries of New Zealand White rabbits. Carotid arteries of rabbits receiving diet supplemented with 1% cholesterol for 6 weeks and those on the same regimen followed by normal chow for 1 day, 10 days, 5 weeks, and 12 weeks were studied and compared with controls not exposed to the cholesterol diet. Carotid arteries of normocholesterolemic rabbits contained type VIII collagen-expressing cells in all layers, with focal accumulations of expressing cells in the subendothelial areas, the outer medial zone, and the adventitia. In response to cholesterol diet, type VIII collagen synthesis was reduced in media and adventitia and the distribution patterns changed. Expressing cells were found predominantly in the endothelium, and type VIII collagen accumulated in the intimal space. Immunogold labeling for electron microscopy revealed that type VIII collagen in the intima is associated with microfibrils extending from the internal elastic lamina. Withdrawal of cholesterol resulted in reestablishment of the normal distribution pattern. Northern and Western blot analyses supported the immunoconfocal and in situ hybridization data, demonstrating decreased type VIII collagen expression in response to cholesterol diet and progressive recovery to normal levels with time after withdrawal of cholesterol. Our study demonstrates that type VIII collagen is modulated in the presence of cholesterol. The data indicate that type VIII collagen is specifically remodeled

  7. Factor XIII V34L polymorphism modulates the risk of chronic venous leg ulcer progression and extension.

    PubMed

    Gemmati, Donato; Tognazzo, Silvia; Serino, Maria L; Fogato, Luisella; Carandina, Sergio; De Palma, Massimiliano; Izzo, Marcello; De Mattei, Monica; Ongaro, Alessia; Scapoli, Gian L; Caruso, Angelo; Liboni, Alberto; Zamboni, Paolo

    2004-01-01

    Low Factor XIII (FXIII) activity has been reported in the blood of patients with chronic venous leg ulcer (CVU). In vivo studies have described increased wound healing in CVU patients treated with FXIII concentrate, and in vitro studies have shown increased regenerative capacity in FXIII-treated fibroblasts. In addition, a common G-to-T polymorphism in the FXIIIA-subunit gene (V34L) significantly increases the activity and modifies the cross-linking properties of the FXIII molecule and this variant has been investigated as a protective factor against thrombosis, a recognized risk factor for CVU establishment. Therefore, the role of FXIII levels, FXIII V34L, FVR506Q, and FIIG20210A, common gene polymorphisms in the pathogenesis of CVU was investigated. Ninety-one patients with CVU and 195 healthy controls (91 of them sex- and age-matched) were PCR-genotyped for the FXIIIV34L, FVR506Q, and FIIG20210A substitutions and FXIIIA-subunit levels were determined by immuno-electrophoresis. The extent of the venous ulcer surface in patients was measured by computer software. The allele frequency and the genotype distribution of the FXIII polymorphism did not show significant differences between the whole group of cases and controls as well as prothrombin variants did. On the contrary, the FVR506Q variant (FV Leiden) allele was more frequent in patients, yielding a significant OR value of 5.93 (95 percent CI, 1.83-19.17; p= 0.003). Considering only CVU cases secondary to a post-thrombotic syndrome (n= 24), FV Leiden yielded a greater OR value of 16.08 (95 percent CI, 4.33-59.6; p < 0.0001). When the CVU cases were stratified by the three possible FXIII genotypes, a significant trend toward a lower mean value of the ulcerated area was clearly evident as the number of the polymorphic alleles (L34) increased in the genotype of patients (VV = 11.9 cm(2,)+/- 23.6; VL = 6.1 cm(2,)+/- 6.9; LL = 4.1 cm(2,)+/- 2.8; p= 0.01). On the other hand, FXIIIA antigen levels were similar between

  8. Play Therapy: A Review

    ERIC Educational Resources Information Center

    Porter, Maggie L.; Hernandez-Reif, Maria; Jessee, Peggy

    2009-01-01

    This article discusses the current issues in play therapy and its implications for play therapists. A brief history of play therapy is provided along with the current play therapy approaches and techniques. This article also touches on current issues or problems that play therapists may face, such as interpreting children's play, implementing…

  9. WOUND HEALING AND COLLAGEN FORMATION

    PubMed Central

    Ross, Russell; Benditt, Earl P.

    1961-01-01

    The regular sequence encountered in healing guinea pig skin wounds has been examined by methods of light and electron microscopy. Observations on cell populations, their fine structure, and fibril formation in the connective tissue have been made. Linear incisions in the skin of normal female guinea pigs weighing 300 to 350 grams were allowed to heal. The wounds were then excised, fixed with buffered 2 per cent osmium tetroxide, and postfixed in neutral buffered formalin, at 16 and 24 hours and at 3, 5, 9, and 14 days after wounding. They were then embedded in epoxy resin. In the inflammatory phase the exudate observed in the early wounds consists largely of polymorphonuclear neutrophilic leukocytes, macrophages, fibrin, and free extracellular organelles from the disrupted inflammatory cells. These organelles later appear in vacuoles in the cytoplasm of the macrophages. Fibroblasts first appear at 24 hours, and show extensive development and dilatation of the endoplasmic reticulum, which sometimes contains moderately dense flocculent material. In addition, these fibroblasts have enlarged mitochondria and condensations of filamentous material within the cytoplasm near the cell surface. Occasional myelin figures and moderately dense, 0.5 to 1.0 micron bodies are found within the cytoplasm of the early fibroblasts. Collagen fibrils are first seen at 3 days extracellularly near the cell surfaces. They appear at the later times in two populations of sizes. With increasing wound age the fibroblasts retain their morphology and the wounds decrease in cellularity concomitantly with the formation of increasing amounts of collagen. Several proposed mechanisms of collagen fibril formation are discussed in relation to the observed phenomena. The problem of correlating fibril diameter with the appearance of the periodic structure of collagen in relation to the minimal size fibril which would be anticipated to display this appearance is discussed. PMID:14494202

  10. Asymmetrical hypersensitivity to bovine collagen.

    PubMed

    Somerville, P; Wray, R C

    1993-05-01

    We report a unique patient with true asymmetrical hypersensitivity to bovine collagen. Hypersensitivity is the development of an inflammatory response at a treatment site after a negative skin test. She developed an inflammatory response in only one of two simultaneously injected sites. About 1.5% of patients with a negative skin test have a hypersensitivity reaction consisting of firmness, erythema, and swelling. The signs and symptoms generally resolve spontaneously in a few months.

  11. Immunostimulation effect of jellyfish collagen.

    PubMed

    Sugahara, Takuya; Ueno, Masashi; Goto, Yoko; Shiraishi, Ryusuke; Doi, Mikiharu; Akiyama, Koichi; Yamauchi, Satoshi

    2006-09-01

    Certain edible large jellyfishes belonging to the order Rhizostomeae are consumed in large quantities in China and Japan. The exumbrella part of the edible jellyfish Stomolophus nomurai was cut and soaked in dilute hydrochloric acid solution (pH 3.0) for 12 h, and heated at 121 degrees C for 20 min. The immunostimulation effects of the jellyfish extract were examined. The jellyfish extract enhanced IgM production of human hybridoma HB4C5 cells 34-fold. IgM and IgG production of human peripheral blood lymphocytes (PBL) were also accelerated, 2.8- and 1.4-fold respectively. Moreover, production of interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha by human PBL was stimulated 100- and 17-fold respectively. Collagenase treatment inactivated the immunostimulation activity of the jellyfish extract. In addition, purified collagen from bovine Achilles' tendon accelerated IgM production of hybridoma cells. These facts mean that collagen has an immunostimulation effect, and that the active substance in jellyfish extract is collagen.

  12. Immunostimulation effect of jellyfish collagen.

    PubMed

    Sugahara, Takuya; Ueno, Masashi; Goto, Yoko; Shiraishi, Ryusuke; Doi, Mikiharu; Akiyama, Koichi; Yamauchi, Satoshi

    2006-09-01

    Certain edible large jellyfishes belonging to the order Rhizostomeae are consumed in large quantities in China and Japan. The exumbrella part of the edible jellyfish Stomolophus nomurai was cut and soaked in dilute hydrochloric acid solution (pH 3.0) for 12 h, and heated at 121 degrees C for 20 min. The immunostimulation effects of the jellyfish extract were examined. The jellyfish extract enhanced IgM production of human hybridoma HB4C5 cells 34-fold. IgM and IgG production of human peripheral blood lymphocytes (PBL) were also accelerated, 2.8- and 1.4-fold respectively. Moreover, production of interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha by human PBL was stimulated 100- and 17-fold respectively. Collagenase treatment inactivated the immunostimulation activity of the jellyfish extract. In addition, purified collagen from bovine Achilles' tendon accelerated IgM production of hybridoma cells. These facts mean that collagen has an immunostimulation effect, and that the active substance in jellyfish extract is collagen. PMID:16960386

  13. Collagen defects in lethal perinatal osteogenesis imperfecta.

    PubMed

    Bateman, J F; Chan, D; Mascara, T; Rogers, J G; Cole, W G

    1986-12-15

    Quantitative and qualitative abnormalities of collagen were observed in tissues and fibroblast cultures from 17 consecutive cases of lethal perinatal osteogenesis imperfecta (OI). The content of type I collagen was reduced in OI dermis and bone and the content of type III collagen was also reduced in the dermis. Normal bone contained 99.3% type I and 0.7% type V collagen whereas OI bone contained a lower proportion of type I, a greater proportion of type V and a significant amount of type III collagen. The type III and V collagens appeared to be structurally normal. In contrast, abnormal type I collagen chains, which migrated slowly on electrophoresis, were observed in all babies with OI. Cultured fibroblasts from five babies produced a mixture of normal and abnormal type I collagens; the abnormal collagen was not secreted in two cases and was slowly secreted in the others. Fibroblasts from 12 babies produced only abnormal type I collagens and they were also secreted slowly. The slower electrophoretic migration of the abnormal chains was due to enzymic overmodification of the lysine residues. The distribution of the cyanogen bromide peptides containing the overmodified residues was used to localize the underlying structural abnormalities to three regions of the type I procollagen chains. These regions included the carboxy-propeptide of the pro alpha 1(I)-chain, the helical alpha 1(I) CB7 peptide and the helical alpha 1(I) CB8 and CB3 peptides. In one baby a basic charge mutation was observed in the alpha 1(I) CB7 peptide and in another baby a basic charge mutation was observed in the alpha 1(I) CB8 peptide. The primary defects in lethal perinatal OI appear to reside in the type I collagen chains. Type III and V collagens did not appear to compensate for the deficiency of type I collagen in the tissues.

  14. The Staphylococcus aureus collagen adhesin is a virulence determinant in experimental septic arthritis.

    PubMed Central

    Patti, J M; Bremell, T; Krajewska-Pietrasik, D; Abdelnour, A; Tarkowski, A; Rydén, C; Höök, M

    1994-01-01

    The importance of a collagen-binding adhesin in the pathogenesis of septic arthritis has been examined by comparing the virulence of two sets of Staphylococcus aureus mutants in an animal model. Collagen adhesin-negative mutant PH100 was constructed by replacing the chromosomal collagen adhesin gene (cna) in a clinical strain, Phillips, with an inactivated copy of the gene. Collagen adhesin-positive mutant S. aureus CYL574 was generated by introducing the cna gene into CYL316, a strain that normally lacks the cna gene. Biochemical, immunological, and functional analyses of the generated mutants and their respective parent strains showed that binding of 125I-labeled collagen, expression of an immunoreactive collagen adhesin, and bacterial adherence to cartilage were directly correlated with the presence of a functional cna gene. Greater than 70% of the mice injected with the Cna+ strains developed clinical signs of arthritis, whereas less than 27% of the animals injected with Cna- strains showed symptoms of disease. Furthermore, mice injected with the Cna+ strain Phillips had remarkably elevated levels of immunoglobulin G1 and interleukin-6 compared with mice injected with the Cna- mutant PH100. Taken together, these results demonstrate that collagen adhesin plays an important role in the pathogenesis of septic arthritis induced by S. aureus. Images PMID:8262622

  15. Preferential sites for intramolecular glucosepane cross-link formation in type I collagen: A thermodynamic study

    PubMed Central

    Collier, Thomas A.; Nash, Anthony; Birch, Helen L.; de Leeuw, Nora H.

    2015-01-01

    The extracellular matrix (ECM) undergoes progressive age-related stiffening and loss of proteolytic digestibility due to an increase in concentration of advanced glycation end products (AGEs). The most abundant AGE, glucosepane, accumulates in collagen with concentrations over 100 times greater than all other AGEs. Detrimental collagen stiffening properties are believed to play a significant role in several age-related diseases such as osteoporosis and cardiovascular disease. Currently little is known of the potential location of covalently cross-linked glucosepane formation within collagen molecules; neither are there reports on how the respective cross-link sites affect the physical and biochemical properties of collagen. Using fully atomistic molecular dynamics simulations (MD) we have identified six sites where the formation of a covalent intra-molecular glucosepane cross-link within a single collagen molecule in a fibrillar environment is energetically favourable. Identification of these favourable sites enables us to align collagen cross-linking with experimentally observed changes to the ECM. For example, formation of glucosepane was found to be energetically favourable within close proximity of the Matrix Metalloproteinase-1 (MMP1) binding site, which could potentially disrupt collagen degradation. PMID:26049074

  16. Increase in the relative level of type V collagen during development and ageing of the placenta.

    PubMed Central

    Iwahashi, M; Ooshima, A; Nakano, R

    1996-01-01

    AIM: To obtain some insight into the extracellular matrix in the placenta, changes in the composition of collagens during placental development were investigated. METHODS: Collagen was extracted from placentas (group 1, 25-30 weeks, n = 21; group 2, 31-36 weeks, n = 32; and group 3, 37-41 weeks of gestation, n = 40) and the relative concentrations of various collagens were evaluated by SDS-PAGE. RESULTS: The ratio of the intensity of the alpha 1 (III) band to that of alpha 1 (I) chain collagen in group 3 placentas were lower than those in group 1 placentas. In contrast, the ratio of the intensity of the alpha 1 (V) band to that of alpha 1 (I) chain collagen in group 3 placentas were higher than those in group 1 and group 2 placentas. CONCLUSIONS: These results suggest that type V collagen might play an important role in the function of the placenta and that an increased relative concentration of type V collagen might be closely associated with the development and ageing of the placenta. Images PMID:8944612

  17. An uncovered XIII century icon: particular use of organic pigments and gilding techniques highlighted by analytical methods.

    PubMed

    Daveri, Alessia; Doherty, Brenda; Moretti, Patrizia; Grazia, Chiara; Romani, Aldo; Fiorin, Enrico; Brunetti, Brunetto Giovanni; Vagnini, Manuela

    2015-01-25

    The restoration of a panel painting depicting a Madonna and Child listed as an unknown Tuscan artist of the nineteenth century, permitted the hidden original version, a XIII century Medieval icon to be uncovered. It is discovery provided the opportunity for an extensive in situ campaign of non-invasive analytical investigations by portable imaging and spectroscopic techniques (infrared, X-ray fluorescence and diffraction, UV-Vis absorption and emission), followed by aimed micro-destructive investigations (Raman and SEM-EDS). This approach permitted characterization of the original ground and paint layers by complementary techniques. Furthermore, this protocol allowed supplementary particularities of great interest to be highlighted. Namely, numerous original gilding techniques have been accentuated in diverse areas and include the use of surrogate gold (disulphur tin), orpiment as a further false gold and an area with an original silver rich layer. Moreover, pigments including azurite mixed with indigo have been non-invasively identified. Micro-invasive analyses also allowed the diagnosis of organic colorants, namely, an animal anthraquinone lake, kermes and an unusual vegetal chalcone pigment, possibly safflower. The identification of the latter is extremely rare as a painting pigment and has been identified using an innovative adaption to surface enhanced Raman techniques on a cross-section. The resulting data contributes new hypotheses to the historic and artistic knowledge of materials and techniques utilized in XIII century icon paintings and ultimately provides scientific technical support of the recent restoration. PMID:25105261

  18. An uncovered XIII century icon: Particular use of organic pigments and gilding techniques highlighted by analytical methods

    NASA Astrophysics Data System (ADS)

    Daveri, Alessia; Doherty, Brenda; Moretti, Patrizia; Grazia, Chiara; Romani, Aldo; Fiorin, Enrico; Brunetti, Brunetto Giovanni; Vagnini, Manuela

    2015-01-01

    The restoration of a panel painting depicting a Madonna and Child listed as an unknown Tuscan artist of the nineteenth century, permitted the hidden original version, a XIII century Medieval icon to be uncovered. It is discovery provided the opportunity for an extensive in situ campaign of non-invasive analytical investigations by portable imaging and spectroscopic techniques (infrared, X-ray fluorescence and diffraction, UV-Vis absorption and emission), followed by aimed micro-destructive investigations (Raman and SEM-EDS). This approach permitted characterization of the original ground and paint layers by complementary techniques. Furthermore, this protocol allowed supplementary particularities of great interest to be highlighted. Namely, numerous original gilding techniques have been accentuated in diverse areas and include the use of surrogate gold (disulphur tin), orpiment as a further false gold and an area with an original silver rich layer. Moreover, pigments including azurite mixed with indigo have been non-invasively identified. Micro-invasive analyses also allowed the diagnosis of organic colorants, namely, an animal anthraquinone lake, kermes and an unusual vegetal chalcone pigment, possibly safflower. The identification of the latter is extremely rare as a painting pigment and has been identified using an innovative adaption to surface enhanced Raman techniques on a cross-section. The resulting data contributes new hypotheses to the historic and artistic knowledge of materials and techniques utilized in XIII century icon paintings and ultimately provides scientific technical support of the recent restoration.

  19. Characterisation of Ascaridoid larvae from marine fish off New Caledonia, with description of new Hysterothylacium larval types XIII and XIV.

    PubMed

    Shamsi, Shokoofeh; Poupa, Anita; Justine, Jean-Lou

    2015-10-01

    Here we report occurrence of six different morphotypes of ascaridoid type larvae from 28 species of fish collected from New Caledonian waters. The larvae were morphologically identified as Anisakis type I, Hysterothylacium type VI and new larval types XIII and XIV, Raphidascaris larval type and Terranova larval type II. Representatives of each morphotype were subjected to the amplification of the second internal transcribed spacers (ITS-2) of ribosomal DNA (rDNA) and those sequences were compared with ITS-2 sequences of other ascaridoid nematodes previously deposited in GenBank. ITS-2 sequences of Anisakis larval type I were identical to those of A. typica. ITS-2 sequences of Hysterothylacium larval type VI in the present study were identical to those previously found in Eastern Australian waters. No match was found for ITS-2 sequences of Hysterothylacium larval types XIII and XIV; therefore, the specific identities of these larval types remain unclear. ITS-2 sequences of Raphidascaris larval type were identical to those of R. trichiuri, which have previously been reported in Taiwanese waters. Terranova larval type II in the present study had identical ITS-2 sequences with Terranova larval types reported from Australian waters, however, the specific identity is unknown. This taxonomic work is essential if further research on these zoonotic parasites is to be effective. This includes investigations into such aspects as life cycle studies, impacts on human health and risk assessment for their transmission to humans. PMID:26014853

  20. Quantitative changes of collagen in human normal breast tissue and invasive ductal carcinoma using nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Li, Weiqiang; Wu, Yan; Lian, Yuane; Fu, Fangmeng; Wang, Chuan; Zhuo, Shuangmu; Chen, Jianxin

    2014-11-01

    Multiphoton microscopy (MPM) imaging of collagen plays a key role in noninvasive diagnosis of human tissue. During the experiment, we observed an interesting phenomenon which two-photon excited fluorescence (TPEF) signal of collagen in human invasive ductal carcinoma of breast tissue becomes much weaker than the normal breast tissue, but the second harmonic generation (SHG) signal of collagen does not get an obvious change . In order to explain the phenomena,this paper emphasizes on the intensity of TPEF and SHG signal from collagen in human invasive ductal carcinoma of breast tissues and normal breast tissue. Further, we respectively obtain the intensity spectral information from collagen in the above two tissues with all parameter unaltered. Our quantitative results show that the intensity of TPEF from collagen in human invasive ductal carcinoma of breast tissue is much lower than the intensity of TPEF from collagen in normal breast tissue. According to the theoretic analysis, it was concluded that the intensity of TPEF declined due to the reduction of the quantum yield when the collagen was intruded by cancer cells. However, the invasion of cancer cells has no effect on decisive factor of SHG. Our theoretical analysis brings more detailed information about intensity of SHG and TPEF from collagen in the above two tissues.

  1. Collagen-Based Biomaterials for Wound Healing

    PubMed Central

    Chattopadhyay, Sayani; Raines, Ronald T.

    2014-01-01

    With its wide distribution in soft and hard connective tissues, collagen is the most abundant of animal proteins. In vitro, natural collagen can be formed into highly organized, three-dimensional scaffolds that are intrinsically biocompatible, biodegradable, non-toxic upon exogenous application, and endowed with high tensile strength. These attributes make collagen the material of choice for wound healing and tissue engineering applications. In this article, we review the structure and molecular interactions of collagen in vivo; the recent use of natural collagen in sponges, injectables, films and membranes, dressings, and skin grafts; and the on-going development of synthetic collagen mimetic peptides as pylons to anchor cytoactive agents in wound beds. PMID:24633807

  2. Stress controls the mechanics of collagen networks

    PubMed Central

    Licup, Albert James; Münster, Stefan; Sharma, Abhinav; Sheinman, Michael; Jawerth, Louise M.; Fabry, Ben; Weitz, David A.; MacKintosh, Fred C.

    2015-01-01

    Collagen is the main structural and load-bearing element of various connective tissues, where it forms the extracellular matrix that supports cells. It has long been known that collagenous tissues exhibit a highly nonlinear stress–strain relationship, although the origins of this nonlinearity remain unknown. Here, we show that the nonlinear stiffening of reconstituted type I collagen networks is controlled by the applied stress and that the network stiffness becomes surprisingly insensitive to network concentration. We demonstrate how a simple model for networks of elastic fibers can quantitatively account for the mechanics of reconstituted collagen networks. Our model points to the important role of normal stresses in determining the nonlinear shear elastic response, which can explain the approximate exponential relationship between stress and strain reported for collagenous tissues. This further suggests principles for the design of synthetic fiber networks with collagen-like properties, as well as a mechanism for the control of the mechanics of such networks. PMID:26195769

  3. The Massive Bleeding after the Operation of Hip Joint Surgery with the Acquired Haemorrhagic Coagulation Factor XIII(13) Deficiency: Two Case Reports.

    PubMed

    Kanda, Akio; Kaneko, Kazuo; Obayashi, Osamu; Mogami, Atsuhiko

    2013-01-01

    Two women, aged 81 and 61, became haemorrhagic after surgery. Their previous surgeries were uneventful with no unexpected bleeding observed. Blood tests prior to the current surgeries indicated normal values including those related to coagulation. There were no problems with the current surgeries prior to leaving the operating room. At 3 hours after the surgery, the 81-year-old patient had an outflow of the drain at 1290 grams and her blood pressure decreased. She had disseminated intravascular coagulation (DIC). The 61-year-old woman had repeated haemorrhages after her current surgery for a long time. Their abnormal haemorrhages were caused by a deficiency of coagulation factor XIII(13). The mechanism of haemorrhagic coagulation factor XIII(13) deficiency is not understood, and it is a rare disorder. The only diagnostic method to detect this disorder is to measure factor XIII(13) activity in the blood. In this paper, we used Arabic and Roman numerals at the same time to avoid confusion of coagulation factor XIII(13) with coagulation factor VIII(8) that causes hemophilia A. PMID:23533879

  4. They Too Should Play.

    ERIC Educational Resources Information Center

    Hirst, Cyntha C.; Shelley, Eva Y.

    1989-01-01

    Children with mental retardation and multiple handicaps can effectively participate in play activities and games, but the experience must be structured for them. Techniques for organizing play activities involving handicapped and nonhandicapped children are offered. Examples of singles play, rotation play, and associative play are described. (JDD)

  5. Children's Play and Television.

    ERIC Educational Resources Information Center

    Powell, Mark

    2001-01-01

    Discusses adverse effects of FCC deregulation of children's television programming on children's play behavior. Discusses the difference between play and imitation, the role of high quality dramatic play in healthy child development, the popularity of war play, and use of toys to increase dramatic play. Considers ways to help children gain control…

  6. The Denial of Play.

    ERIC Educational Resources Information Center

    Sutton-Smith, Brian

    Well meaning parents and teachers often use children's play for the purposes of literacy and socialization. Yet, these attempts may deny play to children by subordinating play to some other concept. Evidence shows that even when parents play with their very young children they generally play games like shopping, cooking, and eating; whereas when…

  7. Second harmonic generation imaging of the collagen in myocardium for atrial fibrillation diagnosis

    NASA Astrophysics Data System (ADS)

    Tsai, Ming-Rung; Chiou, Yu-We; Sun, Chi-Kuang

    2009-02-01

    Myocardial fibrosis, a common sequela of cardiac hypertrophy, has been shown to be associated with arrhythmias in experimental models. Some research has indicated that myocardial fibrosis plays an important role in predisposing patients to atrial fibrillation. Second harmonic generation (SHG) is an optically nonlinear coherent process to image the collagen network. In this presentation, we observe the SHG images of the collagen matrix in atrial myocardium and we analyzed of collagen fibers arrangement by using Fourier-transform analysis. Moreover, comparing the SHG images of the collagen fibers in atrial myocardium between normal sinus rhythm (NSR) and atrial fibrillation (AF), our result indicated that it is possible to realize the relation between myocardial fibrosis and AF.

  8. Collagen-derived matricryptins promote inhibitory nerve terminal formation in the developing neocortex

    PubMed Central

    Su, Jianmin; Chen, Jiang; Lippold, Kumiko; Monavarfeshani, Aboozar; Carrillo, Gabriela Lizana; Jenkins, Rachel

    2016-01-01

    Inhibitory synapses comprise only ∼20% of the total synapses in the mammalian brain but play essential roles in controlling neuronal activity. In fact, perturbing inhibitory synapses is associated with complex brain disorders, such as schizophrenia and epilepsy. Although many types of inhibitory synapses exist, these disorders have been strongly linked to defects in inhibitory synapses formed by Parvalbumin-expressing interneurons. Here, we discovered a novel role for an unconventional collagen—collagen XIX—in the formation of Parvalbumin+ inhibitory synapses. Loss of this collagen results not only in decreased inhibitory synapse number, but also in the acquisition of schizophrenia-related behaviors. Mechanistically, these studies reveal that a proteolytically released fragment of this collagen, termed a matricryptin, promotes the assembly of inhibitory nerve terminals through integrin receptors. Collectively, these studies not only identify roles for collagen-derived matricryptins in cortical circuit formation, but they also reveal a novel paracrine mechanism that regulates the assembly of these synapses. PMID:26975851

  9. Structural and functional influences of coagulation factor XIII subunit B heterozygous missense mutants

    PubMed Central

    Thomas, Anne; Biswas, Arijit; Ivaskevicius, Vytautas; Oldenburg, Johannes

    2015-01-01

    The coagulation factor XIII(FXIII) is a plasma circulating heterotetrameric protransglutaminase that acts at the end of the coagulation cascade by covalently cross-linking preformed fibrin clots (to themselves and to fibrinolytic inhibitors) in order to stabilize them against fibrinolysis. It circulates in the plasma as a heterotetramer composed of two homomeric catalytic Factor XIIIA2 (FXIIIA2) and two homomeric protective/carrier Factor XIIIB2 subunit (FXIIIB2). Congenital deficiency of FXIII is of two types: severe homozygous/compound heterozygous FXIII deficiency which results in severe bleeding symptoms and mild heterozygous FXIII deficiency which is associated with mild bleeding (only upon trauma) or an asymptomatic phenotype. Defects in the F13B gene (Factor XIIIB subunit) occur more frequently in mild FXIII deficiency patients than in severe FXIII deficiency. We had recently reported secretion-related defects for seven previously reported F13B missense mutations. In the present study we further analyze the underlying molecular pathological mechanisms as well as the heterozygous expression phenotype for these mutations using a combination of in vitro heterologous expression (in HEK293T cells) and confocal microscopy. In combination with the in vitro work we have also performed an in silico solvated molecular dynamic simulation study on previously reported FXIIIB subunit sushi domain homology models in order to predict the putative structure-functional impact of these mutations. We were able to categorize the mutations into the following functional groups that: (1) affect antigenic stability as well as binding to FXIIIA subunit, that is, Cys5Arg, Cys316Phe, and Pro428Ser (2) affect binding to FXIIIA subunit with little or no influence on antigenic stability, that is, Ile81Asn and Val401Gln c) influence neither aspects and are most likely causality linked polymorphisms or functional polymorphisms, that is, Leu116Phe and Val217Ile. The Cys5Arg mutation was the

  10. Structural and functional influences of coagulation factor XIII subunit B heterozygous missense mutants.

    PubMed

    Thomas, Anne; Biswas, Arijit; Ivaskevicius, Vytautas; Oldenburg, Johannes

    2015-07-01

    The coagulation factor XIII(FXIII) is a plasma circulating heterotetrameric protransglutaminase that acts at the end of the coagulation cascade by covalently cross-linking preformed fibrin clots (to themselves and to fibrinolytic inhibitors) in order to stabilize them against fibrinolysis. It circulates in the plasma as a heterotetramer composed of two homomeric catalytic Factor XIIIA2 (FXIIIA2) and two homomeric protective/carrier Factor XIIIB2 subunit (FXIIIB2). Congenital deficiency of FXIII is of two types: severe homozygous/compound heterozygous FXIII deficiency which results in severe bleeding symptoms and mild heterozygous FXIII deficiency which is associated with mild bleeding (only upon trauma) or an asymptomatic phenotype. Defects in the F13B gene (Factor XIIIB subunit) occur more frequently in mild FXIII deficiency patients than in severe FXIII deficiency. We had recently reported secretion-related defects for seven previously reported F13B missense mutations. In the present study we further analyze the underlying molecular pathological mechanisms as well as the heterozygous expression phenotype for these mutations using a combination of in vitro heterologous expression (in HEK293T cells) and confocal microscopy. In combination with the in vitro work we have also performed an in silico solvated molecular dynamic simulation study on previously reported FXIIIB subunit sushi domain homology models in order to predict the putative structure-functional impact of these mutations. We were able to categorize the mutations into the following functional groups that: (1) affect antigenic stability as well as binding to FXIIIA subunit, that is, Cys5Arg, Cys316Phe, and Pro428Ser (2) affect binding to FXIIIA subunit with little or no influence on antigenic stability, that is, Ile81Asn and Val401Gln c) influence neither aspects and are most likely causality linked polymorphisms or functional polymorphisms, that is, Leu116Phe and Val217Ile. The Cys5Arg mutation was the

  11. Capsaicin inhibits collagen fibril formation and increases the stability of collagen fibers.

    PubMed

    Perumal, Sathiamurthi; Dubey, Kriti; Badhwar, Rahul; George, Kodimattan Joseph; Sharma, Rakesh Kumar; Bagler, Ganesh; Madhan, Balaraman; Kar, Karunakar

    2015-02-01

    Capsaicin is a versatile plant product which has been ascribed several health benefits and anti-inflammatory and analgesic properties. We have investigated the effect of capsaicin on the molecular stability, self-assembly, and fibril stability of type-I collagen. It was found that capsaicin suppresses collagen fibril formation, increases the stability of collagen fibers in tendons, and has no effect on the molecular stability of collagen. Turbidity assay data show that capsaicin does not promote disassembly of collagen fibrils. However, capsaicin moderately protects collagen fibrils from enzymatic degradation. Computational studies revealed the functions of the aromatic group and amide region of capsaicin in the collagen-capsaicin interaction. The results may have significant implications for capsaicin-based therapeutics that target excess collagen accumulation-linked pathology, for example thrombosis, fibrosis, and sclerosis.

  12. Collagenous skeleton of the rat mystacial pad.

    PubMed

    Haidarliu, Sebastian; Simony, Erez; Golomb, David; Ahissar, Ehud

    2011-05-01

    Anatomical and functional integrity of the rat mystacial pad (MP) is dependent on the intrinsic organization of its extracellular matrix. By using collagen autofluorescence, in the rat MP, we revealed a collagenous skeleton that interconnects whisker follicles, corium, and deep collagen layers. We suggest that this skeleton supports MP tissues, mediates force transmission from muscles to whiskers, facilitates whisker retraction after protraction, and limits MP extensibility.

  13. War, Conflict and Play. Debating Play

    ERIC Educational Resources Information Center

    Hyder, Tina

    2004-01-01

    Young refugees from many parts of the world are increasingly present in UK early years settings. This book explores the crucial importance of play for young refugee children's development. It considers the implications of war and conflict on young children and notes how opportunities for play are denied. It provides a framework for early years…

  14. Objective Assessment of Endogenous Collagen In Vivo during Tissue Repair by Laser Induced Fluorescence

    PubMed Central

    Prabhu, Vijendra; Rao, Satish B. S.; Fernandes, Edward Mark; Rao, Anuradha C. K.; Prasad, Keerthana; Mahato, Krishna K.

    2014-01-01

    Collagen, a triple helical protein with the primary role of mechanical function, provides tensile strength to the skin, and plays a pivotal task in tissue repair. During tissue regeneration, collagen level increases gradually and therefore, monitoring of such changes in vivo by laser induced fluorescence was the main objective behind the present study. In order to accomplish this, 15 mm diameter excisional wounds were created on six to eight week old Swiss albino mice. The collagen deposition accelerated upon irradiation of single exposure of 2 J/cm2 He-Ne laser dose immediately after wounding was recorded by laser induced autofluorescence in vivo along with un-illuminated and un-wounded controls. Autofluorescence spectra were recorded for each animal of the experimental groups on 0, 5, 10, 30, 45 and 60 days post-wounding, by exciting the granulation tissue/skin with 325 nm He-Cd laser. The variations in the average collagen intensities from the granulation tissue/skin of mice were inspected as a function of age and gender. Further, the spectral findings of the collagen synthesis in wound granulation tissue/un-wounded skin tissues were validated by Picro-Sirius red- polarized light microscopy in a blinded manner through image analysis of the respective collagen birefringence. The in vivo autofluorescence studies have shown a significant increase in collagen synthesis in laser treated animals as compared to the un-illuminated controls. Image analysis of the collagen birefringence further authenticated the ability of autofluorescence in the objective monitoring of collagen in vivo. Our results clearly demonstrate the potential of laser induced autofluorescence in the monitoring of collegen synthesis during tissue regeneration, which may have clinical implications. PMID:24874229

  15. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts

    SciTech Connect

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo; Kim, So Young; Jang, Hwan-Hee; Ryu, Sung Ho; Kim, Beom Joon; Lee, Taehoon G.

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer We identify a function of the YIGSR peptide to enhance collagen synthesis in Hs27. Black-Right-Pointing-Pointer YIGSR peptide enhanced collagen type 1 synthesis both of gene and protein levels. Black-Right-Pointing-Pointer There were no changes in cell proliferation and MMP-1 level in YIGSR treatment. Black-Right-Pointing-Pointer The YIGSR effect on collagen synthesis mediated activation of FAK, pyk2 and ERK. Black-Right-Pointing-Pointer The YIGSR-induced FAK and ERK activation was modulated by FAK and MEK inhibitors. -- Abstract: The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the {beta}1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67 kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate

  16. Objective assessment of endogenous collagen in vivo during tissue repair by laser induced fluorescence.

    PubMed

    Prabhu, Vijendra; Rao, Satish B S; Fernandes, Edward Mark; Rao, Anuradha C K; Prasad, Keerthana; Mahato, Krishna K

    2014-01-01

    Collagen, a triple helical protein with the primary role of mechanical function, provides tensile strength to the skin, and plays a pivotal task in tissue repair. During tissue regeneration, collagen level increases gradually and therefore, monitoring of such changes in vivo by laser induced fluorescence was the main objective behind the present study. In order to accomplish this, 15 mm diameter excisional wounds were created on six to eight week old Swiss albino mice. The collagen deposition accelerated upon irradiation of single exposure of 2 J/cm2 He-Ne laser dose immediately after wounding was recorded by laser induced autofluorescence in vivo along with un-illuminated and un-wounded controls. Autofluorescence spectra were recorded for each animal of the experimental groups on 0, 5, 10, 30, 45 and 60 days post-wounding, by exciting the granulation tissue/skin with 325 nm He-Cd laser. The variations in the average collagen intensities from the granulation tissue/skin of mice were inspected as a function of age and gender. Further, the spectral findings of the collagen synthesis in wound granulation tissue/un-wounded skin tissues were validated by Picro-Sirius red- polarized light microscopy in a blinded manner through image analysis of the respective collagen birefringence. The in vivo autofluorescence studies have shown a significant increase in collagen synthesis in laser treated animals as compared to the un-illuminated controls. Image analysis of the collagen birefringence further authenticated the ability of autofluorescence in the objective monitoring of collagen in vivo. Our results clearly demonstrate the potential of laser induced autofluorescence in the monitoring of collegen synthesis during tissue regeneration, which may have clinical implications. PMID:24874229

  17. Magnetic Resonance Microscopy of Collagen Mineralization

    PubMed Central

    Chesnick, Ingrid E.; Mason, Jeffrey T.; Giuseppetti, Anthony A.; Eidelman, Naomi; Potter, Kimberlee

    2008-01-01

    A model mineralizing system was subjected to magnetic resonance microscopy to investigate how water proton transverse (T2) relaxation times and magnetization transfer ratios can be applied to monitor collagen mineralization. In our model system, a collagen sponge was mineralized with polymer-stabilized amorphous calcium carbonate. The lower hydration and water proton T2 values of collagen sponges during the initial mineralization phase were attributed to the replacement of the water within the collagen fibrils by amorphous calcium carbonate. The significant reduction in T2 values by day 6 (p < 0.001) was attributed to the appearance of mineral crystallites, which were also detected by x-ray diffraction and scanning electron microscopy. In the second phase, between days 6 and 13, magnetic resonance microscopy properties appear to plateau as amorphous calcium carbonate droplets began to coalesce within the intrafibrillar space of collagen. In the third phase, after day 15, the amorphous mineral phase crystallized, resulting in a reduction in the absolute intensity of the collagen diffraction pattern. We speculate that magnetization transfer ratio values for collagen sponges, with similar collagen contents, increased from 0.25 ± 0.02 for control strips to a maximum value of 0.31 ± 0.04 at day 15 (p = 0.03) because mineral crystals greatly reduce the mobility of the collagen fibrils. PMID:18487295

  18. Collagenous gastritis: a report of six cases.

    PubMed

    Lagorce-Pages, C; Fabiani, B; Bouvier, R; Scoazec, J Y; Durand, L; Flejou, J F

    2001-09-01

    Collagenous gastritis is an exceptional entity with eight cases documented to date characterized by the presence of a thick subepithelial collagen band associated with an inflammatory infiltrate of the gastric mucosa. The aim of our study was to describe the clinical and histologic characteristics of six new cases of collagenous gastritis. All cases showed a subepithelial collagen band that averaged 30 microm but often measured up to 120 microm. This finding was almost always accompanied by mixed chronic inflammation in the lamina propria and by surface epithelial damage of varying severity. Our study seems to delineate two subsets in patients with collagenous gastritis: 1) collagenous gastritis occurring in children and young adults presenting with severe anemia, a nodular pattern on endoscopy, and a disease limited to the gastric mucosa without evidence of colonic involvement, and 2) collagenous gastritis associated with collagenous colitis occurring in adult patients presenting with chronic watery diarrhea. These findings highlight the fact that subepithelial collagen deposition may be a generalized disease affecting the entire gastrointestinal tract. PMID:11688577

  19. Ionic solutes impact collagen scaffold bioactivity.

    PubMed

    Pawelec, K M; Husmann, A; Wardale, R J; Best, S M; Cameron, R E

    2015-02-01

    The structure of ice-templated collagen scaffolds is sensitive to many factors. By adding 0.5 wt% of sodium chloride or sucrose to collagen slurries, scaffold structure could be tuned through changes in ice growth kinetics and interactions of the solute and collagen. With ionic solutes (sodium chloride) the entanglements of the collagen molecule decreased, leading to fibrous scaffolds with increased pore size and decreased attachment of chondrocytes. With non-ionic solutes (sucrose) ice growth was slowed, leading to significantly reduced pore size and up-regulated cell attachment. This highlights the large changes in structure and biological function stimulated by solutes in ice-templating systems. PMID:25649518

  20. The Uses of Play

    ERIC Educational Resources Information Center

    Cabaniss, Thomas

    2005-01-01

    Teaching artists have techniques for keeping play alive and vital in their work. But how do they think of play as TAs? In this article, the author examines the role of play in the work and life of teaching artists.

  1. Collagenous gastritis and collagenous colitis: a report with sequential histological and ultrastructural findings.

    PubMed

    Pulimood, A B; Ramakrishna, B S; Mathan, M M

    1999-06-01

    The case is reported of a young adult man with collagenous gastritis, an extremely rare disorder with only three case reports in the English literature, who subsequently presented with collagenous colitis. Sequential gastric biopsies showed a notable increase in thickness of the subepithelial collagen band. Ultrastructural study of gastric and rectal mucosa showed the characteristic subepithelial band composed of haphazardly arranged collagen fibres, prominent degranulating eosinophils, and activated pericryptal fibroblasts. PMID:10323893

  2. Abnormal collagen I to III distribution in the skin of patients with incisional hernia.

    PubMed

    Klinge, U; Si, Z Y; Zheng, H; Schumpelick, V; Bhardwaj, R S; Klosterhalfen, B

    2000-01-01

    The surgical mesh-free repair of incisional hernias has to face recurrence rates of up to 50%. Apart from technical faults this is probably due to collagen metabolic disorders, known to play an important role in the development of inguinal hernia. In particular an altered ratio of collagen types I and III with an increase in collagen type III has been claimed to reduce the mechanical strength of connective tissues. Therefore, we investigated the content of collagen types I and III in the skin of patients with incisional hernia (n = 7) and recurrent incisional hernia (n = 5) in comparison to controls with healthy skin (n = 7) and normal skin scar (n = 7) both by immunohistochemistry and Western blot analysis. Both immunohistochemistry and Western blot analysis revealed a decrease in the ratio of collagen I/III due to a concomitant increase in collagen III. The patients with incisional hernias and with recurrent incisional hernias showed a ratio of 1.0 +/- 0.1 and 0.8 +/- 0.1, respectively, whereas the controls exhibit a ratio of 2.1 +/- 0.2 in healthy skin and of 1.2 +/- 0.2 in normal skin scar, respectively. The decrease was highly significant (p < 0.01) between the patients with either primary or recurrent hernia and the controls or the normal scar, as well as between controls and normal scar, whereas there was not any significant difference between primary and recurrent hernia (p > 0.05). Our data for the first time confirmed that the presence of incisional hernia is accompanied by impaired collagen synthesis in the skin. The decreased tensile strength of collagen type III may play a key role in the development of incisional hernias. Furthermore, it might explain the high recurrence rates of hernia repair by simple closure, as a repetition of the primarily failing technique, and the improvement by the additional use of alloplastic material.

  3. Injectable collagen implant--update.

    PubMed

    Castrow, F F; Krull, E A

    1983-12-01

    Injectable collagen implant (ICI), a new biomaterial reportedly useful for correction of scars and certain aging skin lines (wrinkles), was recently introduced. The purpose of this paper is to evaluate the safety and efficacy of this product. Data for this study were obtained from a survey which was sent to a group of cutaneous surgeons. They were asked about test site and treatment site reactions and about their satisfaction with ICI. The incidence of adverse reactions is low, and the severity of the reactions does not appear to be serious. The long-term benefit of ICI has not been established.

  4. [Collagenous crystalloids and collagenous spherules in salivary gland tumors. A light microscopy and immunohistochemistry study].

    PubMed

    Skálová, A; Michal, M; Leivo, I

    1993-04-01

    In a series of 354 salivary gland tumors, the morphological and immunohistochemical study of two distinctive types of extracellular matrix deposits was carried out. First, collagenous crystalloids, distinct spherical crystalloids composed of radially arranged needle-shaped collagen fibres, were found in twelve cases of benign salivary gland tumors. Second, collagenous spherules, globoid structures often showing concentric lamellar or radial pattern, were found in 46 cases of both benign and malignant salivary gland tumors. Immunohistochemically, collagenous crystalloids and collagenous spherules contain varying amounts of type I and III collagens, proteoglycans and elastic fibres but not collagen types II and VI. Strong linear deposition of basement membrane proteins, collagen type IV and laminin, surrounded collagenous spherules. Discontinuous patchy deposits of both proteins were, however, found near collagenous crystalloids. The cells surrounding these collagenous crystalloids and collagenous spherules showed immunohistochemical and morphological features of modified myoepithelial cells. Our observations may improve a terminology of the structures in question. Proposed active role of modified myoepithelial cells in the origin of these extracellular deposits still remains open for discussion.

  5. Understanding Playful Pedagogies, Play Narratives and Play Spaces

    ERIC Educational Resources Information Center

    Goouch, Kathy

    2008-01-01

    This paper is a tentative attempt to unwrap and understand one aspect of playful practice and the influences which determine its existence in early years settings. "Storying" events, those occasions when teachers and children together "make up" stories or parts of stories, develop roles or co-construct fantasies, occur moment by moment in some…

  6. Nanolayered Features of Collagen-like Peptides

    NASA Technical Reports Server (NTRS)

    Valluzzi, Regina; Bini, Elisabetta; Haas, Terry; Cebe, Peggy; Kaplan, David L.

    2003-01-01

    We have been investigating collagen-like model oligopeptides as molecular bases for complex ordered biomimetic materials. The collagen-like molecules incorporate aspects of native collagen sequence and secondary structure. Designed modifications to native primary and secondary structure have been incorporated to control the nanostructure and microstructure of the collagen-like materials produced. We find that the collagen-like molecules form a number of lyotropic rod liquid crystalline phases, which because of their strong temperature dependence in the liquid state can also be viewed as solvent intercalated thermotropic liquid crystals. The liquid crystalline phases formed by the molecules can be captured in the solid state by drying off solvent, resulting in solid nanopatterned (chemically and physically) thermally stable (to greater than 100 C) materials. Designed sequences which stabilize smectic phases have allowed a variety of nanoscale multilayered biopolymeric materials to be developed. Preliminary investigations suggest that chemical patterns running perpendicular to the smectic layer plane can be functionalized and used to localize a variety of organic, inorganic, and organometallic moieties in very simple multilayered nanocomposites. The phase behavior of collagen-like oligopeptide materials is described, emphasizing the correlation between mesophase, molecular orientation, and chemical patterning at the microscale and nanoscale. In many cases, the textures observed for smectic and hexatic phase collagens are remarkably similar to the complex (and not fully understood) helicoids observed in biological collagen-based tissues. Comparisons between biological morphologies and collagen model liquid crystalline (and solidified materials) textures may help us understand the molecular features which impart order and function to the extracellular matrix and to collagen-based mineralized tissues. Initial studies have utilized synthetic collagen-like peptides while

  7. Collagen structure: new tricks from a very old dog.

    PubMed

    Bella, Jordi

    2016-04-15

    The main features of the triple helical structure of collagen were deduced in the mid-1950s from fibre X-ray diffraction of tendons. Yet, the resulting models only could offer an average description of the molecular conformation. A critical advance came about 20 years later with the chemical synthesis of sufficiently long and homogeneous peptides with collagen-like sequences. The availability of these collagen model peptides resulted in a large number of biochemical, crystallographic and NMR studies that have revolutionized our understanding of collagen structure. High-resolution crystal structures from collagen model peptides have provided a wealth of data on collagen conformational variability, interaction with water, collagen stability or the effects of interruptions. Furthermore, a large increase in the number of structures of collagen model peptides in complex with domains from receptors or collagen-binding proteins has shed light on the mechanisms of collagen recognition. In recent years, collagen biochemistry has escaped the boundaries of natural collagen sequences. Detailed knowledge of collagen structure has opened the field for protein engineers who have used chemical biology approaches to produce hyperstable collagens with unnatural residues, rationally designed collagen heterotrimers, self-assembling collagen peptides, etc. This review summarizes our current understanding of the structure of the collagen triple helical domain (COL×3) and gives an overview of some of the new developments in collagen molecular engineering aiming to produce novel collagen-based materials with superior properties.

  8. Laser welding and collagen crosslinks

    SciTech Connect

    Reiser, K.M.; Last, J.A.; Small, W. IV; Maitland, D.J.; Heredia, N.J.; Da Silva, L.B.; Matthews, D.L.

    1997-02-20

    Strength and stability of laser-welded tissue may be influenced, in part, by effects of laser exposure on collagen crosslinking. We therefore studied effects of diode laser exposure (805 nm, 1-8 watts, 30 seconds) + indocyanine green dye (ICG) on calf tail tendon collagen crosslinks. Effect of ICG dye alone on crosslink content prior to laser exposure was investigated; unexpectedly, we found that ICG-treated tissue had significantly increased DHLNL and OHP, but not HLNL. Laser exposure after ICG application reduced elevated DHLNL and OHP crosslink content down to their native levels. The monohydroxylated crosslink HLNL was inversely correlated with laser output (p<0.01 by linear regression analysis). DHLNL content was highly correlated with content of its maturational product, OHP, suggesting that precursor-product relations are maintained. We conclude that: (1)ICG alone induces DHLNL and OHP crosslink formation; (2)subsequent laser exposure reduces the ICG-induced crosslinks down to native levels; (3)excessive diode laser exposure destroys normally occurring HLNL crosslinks.

  9. The Play of Psychotherapy

    ERIC Educational Resources Information Center

    Marks-Tarlow, Terry

    2012-01-01

    The author reviews the role of play within psychotherapy. She does not discuss the formal play therapy especially popular for young children, nor play from the Jungian perspective that encourages the use of the sand tray with adults. Instead, she focuses on the informal use of play during psychotherapy as it is orchestrated intuitively. Because…

  10. Genetics Home Reference: collagen VI-related myopathy

    MedlinePlus

    ... Genetics Home Health Conditions collagen VI-related myopathy collagen VI-related myopathy Enable Javascript to view the ... boxes. Download PDF Open All Close All Description Collagen VI-related myopathy is a group of disorders ...

  11. Collagen breakdown and nitrogen dioxide inhalation.

    PubMed

    Hatton, D V; Leach, C S; Nicogossian, A E

    1977-01-01

    Measurements of urinary hydroxylysine glycosides indicate that considerable collagen degradation occurred during the reentry into the earth's atmosphere of the American astronauts of the Apollo-Soyuz mission. Since the crew accidentally inhaled nitrogen dioxide, a recognized pulmonary irritant, and showed clinical and roentgenographic signs of diffuse chemical pneumonitis, it is likely that collagen degradation occurred in the pulmonary parenchyma.

  12. Cartilage collagen analysis in the chondrodystrophies.

    PubMed

    Horton, W A; Chou, J W; Machado, M A

    1985-09-01

    A simple and reproducible method for analyzing small samples of cartilage collagens was developed. Following extraction with guanidine HCl, the cartilage specimens were digested directly with CNBr and the resultant peptides separated by gel-permeation high-performance liquid chromatography. Resting cartilage collagen CNBr peptide maps differed from normal in two inherited chondrodystrophies, achondrogenesis II and spondyloepiphyseal dysplasia congenita. PMID:4053564

  13. Formation of apatite-collagen complexes.

    PubMed

    Doi, Y; Horiguchi, T; Moriwaki, Y; Kitago, H; Kajimoto, T; Iwayama, Y

    1996-05-01

    An apatite-collagen complex was prepared in calcium beta-glycerophosphate solutions at pH 9.0 and 37 degrees C with the purpose of developing new bone substitutes that more closely resemble bone than currently available materials. Reconstituted type I collagen as well as sheet collagen were crosslinked in the presence of alkaline phosphatase and egg-yolk phosvitin. The crosslinked collagens were immersed in daily-renewed calcium beta-glycerophosphate solutions for 2 and 4 weeks to induce the deposition of apatite on the collagen fibers. After 2 weeks of reaction, for example, apatites deposited approximately two times the crosslinked collagen in weight. With reconstituted collagen, the complex showed some elasticity but no apatite was visually observed to detach under deformation with fingers and forceps. The complex, moreover, did not disintegrate when immersed in saline or animal blood. Nevertheless, the complex resorbed with no evidence of cytotoxicity when implanted in muscle tissues. These findings suggest that the apatite-collagen complex prepared would be useful as bone substitutes, especially for periodontal osseous lesion repair and alveolar ridge augmentation. PMID:8731148

  14. Collagenous gastritis in a young Japanese woman.

    PubMed

    Kajino, Yuri; Kushima, Ryoji; Koyama, Shigeki; Fujiyama, Yoshihide; Okabe, Hidetoshi

    2003-03-01

    Collagenous gastritis, a counterpart of collagenous colitis, is a rare disorder with less than 20 cases reported in the literature. A case of collagenous gastritis in a Japanese woman in her early 20s who had been receiving treatment for atopic dermatitis and bronchial asthma is reported. The patient complained of repeated epigastric pain, and endoscopy revealed multifocal atrophic areas and scars in the gastric body. Biopsy specimens showed a thickened eosinophilic band-like structure with entrapped capillaries approximately 30-70 micro m thick beneath the surface epithelium. It was regarded as a collagen band because it was positive on Azan staining but negative on amyloid staining. This finding was accompanied by marked infiltration of mononuclear cells and eosinophils in the lamina propria; however, no evidence of lymphocytic gastritis was found. Helicobacter pylori infection was not detected and inflammatory cell infiltration was minimal in the mucosa without the collagen band. Immunohistochemical analysis revealed that the band was positive for type III and type VI collagen. The size of the collagen band did not change for 2 years. These findings suggest that subepithelial collagen deposition was due to an abnormal local immune response based on generalized allergic disorder. PMID:12608899

  15. Effects of Ultraviolet-A and Riboflavin on the Interaction of Collagen and Proteoglycans during Corneal Cross-linking*

    PubMed Central

    Zhang, Yuntao; Conrad, Abigail H.; Conrad, Gary W.

    2011-01-01

    Corneal cross-linking using riboflavin and ultraviolet-A (RFUVA) is a clinical treatment targeting the stroma in progressive keratoconus. The stroma contains keratocan, lumican, mimecan, and decorin, core proteins of major proteoglycans (PGs) that bind collagen fibrils, playing important roles in stromal transparency. Here, a model reaction system using purified, non-glycosylated PG core proteins in solution in vitro has been compared with reactions inside an intact cornea, ex vivo, revealing effects of RFUVA on interactions between PGs and collagen cross-linking. Irradiation with UVA and riboflavin cross-links collagen α and β chains into larger polymers. In addition, RFUVA cross-links PG core proteins, forming higher molecular weight polymers. When collagen type I is mixed with individual purified, non-glycosylated PG core proteins in solution in vitro and subjected to RFUVA, both keratocan and lumican strongly inhibit collagen cross-linking. However, mimecan and decorin do not inhibit but instead form cross-links with collagen, forming new high molecular weight polymers. In contrast, corneal glycosaminoglycans, keratan sulfate and chondroitin sulfate, in isolation from their core proteins, are not cross-linked by RFUVA and do not form cross-links with collagen. Significantly, when RFUVA is conducted on intact corneas ex vivo, both keratocan and lumican, in their natively glycosylated form, do form cross-links with collagen. Thus, RFUVA causes cross-linking of collagen molecules among themselves and PG core proteins among themselves, together with limited linkages between collagen and keratocan, lumican, mimecan, and decorin. RFUVA as a diagnostic tool reveals that keratocan and lumican core proteins interact with collagen very differently than do mimecan and decorin. PMID:21335557

  16. Play: early and eternal.

    PubMed Central

    Mears, C E; Harlow, H F

    1975-01-01

    A systematic 12-week investigation of development of play behavior was conducted with eight socially reared rhesus monkey infants. A new, basic and primary play form termed self-motion play or peragration was identified and examined. This behavior follows a human model which includes a wide range of pleasurable activities involving motion of the body through space, e.g., rocking, swinging, running, leaping, and water or snow skiing. It can be argued that self-motion play is the initial primate play form and because of its persistence constitutes a reinforcing agent for maintaining many complex patterns and even pastimes. Monkey self-motion play in the present study was divided into five separate patterns in order to compare the relative importance of social and individual peragration play, the role of apparatus and the overall developmental relationships between the different individual and social self-motion play patterns. The data showed that from 90 to 180 days of age self-motion play was independent of other forms of play, that individual self-motion play appeared earlier and with significantly greater increases in frequency than did social self-motion play, and that apparatus was a necessary component for significant increases in social self-motion play. Other findings were that self-motion play existed independent of locomotion and, though initiated by exploration, was separate from it. Therapeutic implications of self-motion play were discussed. Images PMID:1057178

  17. Influence of collagen source on fibrillar architecture and properties of vitrified collagen membranes.

    PubMed

    Majumdar, Shoumyo; Guo, Qiongyu; Garza-Madrid, Marcos; Calderon-Colon, Xiomara; Duan, Derek; Carbajal, Priscilla; Schein, Oliver; Trexler, Morgana; Elisseeff, Jennifer

    2016-02-01

    Collagen vitrigel membranes are transparent biomaterials characterized by a densely organized, fibrillar nanostructure that show promise in the treatment of corneal injury and disease. In this study, the influence of different type I collagen sources and processing techniques, including acid-solubilized collagen from bovine dermis (Bov), pepsin-solubilized collagen from human fibroblast cell culture (HuCC), and ficin-solubilized collagen from recombinant human collagen expressed in tobacco leaves (rH), on the properties of the vitrigel membranes was evaluated. Postvitrification carbodiimide crosslinking (CX) was also carried out on the vitrigels from each collagen source, forming crosslinked counterparts BovXL, HuCCXL, and rHXL, respectively. Collagen membrane ultrastructure and biomaterial properties were found to rely heavily on both collagen source and crosslinking. Bov and HuCC samples showed a random fibrillar organization of collagen, whereas rH vitrigels showed remarkable regional fibril alignment. After CX, light transmission was enhanced in all groups. Denaturation temperatures after CX increased in all membranes, of which the highest increase was seen in rH (14.71°C), suggesting improved thermal stability of the collagen fibrils in the membranes. Noncrosslinked rH vitrigels may be reinforced through CX to reach levels of mechanical strength and thermal stability comparable to Bov.

  18. A novel benign solution for collagen processing

    NASA Astrophysics Data System (ADS)

    Arnoult, Olivier

    Collagen is the main protein constituting the extracellular matrix (ECM) of tissues in the body (skin, cartilage, blood vessels...). It exists many types of collagen, this work studies only fibrillar collagen (e.g. collagen type I contained in the skin) that exhibits a triple helical structure composed of 3 alpha-helical collagen chains. This particular and defined hierarchical structure is essential to the biological and mechanical properties of the collagen. Processing collagen into scaffolds to mimic the ECM is crucial for successful tissue engineering. Recently collagen was processed into fibrous and porous scaffold using electrospinning process. However the solvent (HFIP) used for electrospinning is extremely toxic for the user and expensive. This work shows that HFIP can be replaced by a benign mixture composed of water, salt and alcohol. Yet only three alcohols (methanol, ethanol and iso-propanol) enable the dissolution of large quantity of collagen in the benign mixture, with a wide range of alcohol to buffer ratio, and conserve the collagen hierarchical structure at least as well as the HFIP. Collagen can be electrospun from the benign mixture into sub-micron fibers with concentrations as low as 6 wt-% for a wide range of alcohol to buffer ratio, with at least 10wt-% of salt, and any of the three alcohols. Specific conditions yield nano size fibers. After processing from HFIP or a benign mixture, collagen is water soluble and needs to be chemically crosslink for tissue engineering application. Post-crosslinking with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) results in the loss of the scaffold fibrous aspect and porosity, hence it is useless for tissue engineering. Such issue could be prevented by incorporating the crosslinker into the mixture prior to electrospinning. When EDC is used alone, collagen forms a gel in the mixture within minutes, preventing electrospinning. The addition of N-hydroxysuccinimide (NHS) in excess to EDC

  19. Proline puckering parameters for collagen structure simulations

    SciTech Connect

    Wu, Di

    2015-03-15

    Collagen is made of triple helices rich in proline residues, and hence is influenced by the conformational motions of prolines. Because the backbone motions of prolines are restricted by the helical structures, the only side chain motion—proline puckering—becomes an influential factor that may affect the stability of collagen structures. In molecular simulations, a proper proline puckering population is desired so to yield valid results of the collagen properties. Here we design the proline puckering parameters in order to yield suitable proline puckering populations as demonstrated in the experimental results. We test these parameters in collagen and the proline dipeptide simulations. Compared with the results of the PDB and the quantum calculations, we propose the proline puckering parameters for the selected collagen model simulations.

  20. Collagenous gastritis associated with lymphocytic colitis.

    PubMed

    Groisman, G M; Meyers, S; Harpaz, N

    1996-03-01

    Collagenous sprue and collagenous colitis are two well-recognized idiopathic enteritides whose defining histologic attribute is fibrous thickening of the subepithelial basement membrane. Analogous changes in gastric mucosa seem to be quite rare. The term "collagenous gastritis" was recently applied for the first time to an isolated case of refractory gastritis in which distinctive subepithelial gastric fibrosis was noted. We report an additional case of this entity in a 35-year-old woman with refractory dyspepsia. In contrast to the earlier case of collagenous gastritis, our patient also had lymphocytic colitis, a type of colitis associated with watery diarrhea. Collagenous gastritis appears to be a distinct clinicopathologic entity, the histologic changes of which should be sought in patients with unexplained dyspepsia. Increased awareness of this condition and its possible clinical correlates may provide clues to its etiology and pathogenesis. PMID:8742654

  1. Dielectronic satellites of the He{sub {beta}} line of the Si XIII ion in a dense laser plasma

    SciTech Connect

    Skobelev, I Yu; Faenov, A Ya; Bartnik, A; Kostecki, J; Fiedorowicz, H; Szczurek, M; Jarocki, R; Behar, E; Doron, R; Mandelbaum, P; Schwob, J L; Dyakin, V M

    1998-08-31

    The first precision measurements of the wavelengths and identifications were made of the satellites of the Heb line of the Si XIII ion in the emission spectrum of a laser plasma. These satellites were the result of radiation decay of the 1s3l{sub 1}2l{sub 2} levels of the Si XII ion. The wavelengths were determined more accurately for the 1s3l{sub 1}3l{sub 2} configurations. The experimental results obtained were compared with calculations carried out by various methods. The structure of the relative intensities of the 1s3l{sub 1}3l{sub 2} satellites indicated that their emission occurred mainly in a thin overdense plasma region with N{sub e}>N{sub e}{sup cr}. (interaction of laser radiation with matter)

  2. PREFACE: XIII International Conference on Calorimetry in High Energy Physics (CALOR 2008)

    NASA Astrophysics Data System (ADS)

    Livan, Michele

    2009-07-01

    The XIII International Conference on Calorimetry in High Energy Physics was held in Pavia, Italy, 26-30 May 2008, picking up the baton from the 2006 Conference in Chicago. The Conference took place in the unique environment of the Theresian Room of the University Library. The attendees were surrounded by over 40 000 books of general interest and culture, and had the opportunity to see precious volumes written by such people as Galileo, Volta and Faraday. The Workshop brought together more than 120 participants, including senior scientists as well as young physicists, confirming the central and ever-growing role of calorimeters in modern particle physics. The development of these detectors, as stressed by Professor Klaus Pretzl in his lectio magistralis, has made it possible to explore new frontiers in physics, and the present scenario is no exception to this rule. With the LHC experiments almost completely installed and ready to take data, the Conference was an ideal chance to review the status of the different projects, whose development has been followed and discussed throughout the entire Calor series, and to show that they are capable of meeting the design specifications. Other highlights were the performance and physics results of calorimeters installed in currently operating experiments. In the session on astrophysics and neutrinos, the contributions confirmed the key role of calorimeters in this sector and demonstrated their growing application even beyond the field of accelerator physics. Considerable time was devoted to the state-of-the-art techniques in the design and operation of the detectors, while the session on simulation addressed the importance of a thorough understanding of the shower development to meet the demanding requirements of present experiments. Finally, on the R&D side, the particle flow and dual read-out concepts confronted the challenges issued by the next generation of experiments. This complex material was reviewed in 83

  3. MORPHOLOGICAL AND CHEMICAL STUDIES OF COLLAGEN FORMATION

    PubMed Central

    Lowther, D. A.; Green, N. M.; Chapman, J. A.

    1961-01-01

    Electron micrographs of thin sections of nuclear, microsomal, and mitochondrial fractions obtained from a carrageenin-induced granuloma showed considerable contamination of the heavier by the lighter fractions. Striated collagen fibrils could be identified in the nuclei + debris fraction. Only a few striated fibrils occurred in the mitochondrial fraction; very fine filaments (diameter 50 A) could be seen in this fraction, but could not be distinguished with certainty from fibrillar material derived from broken nuclei. 35 per cent of the mitochondrial and 80 per cent of the microsomal collagen was extractable by 0.2 M NaCl and could be purified by the standard methods of solution and reprecipitation. The amino acid composition of these collagen fractions determined by ion exchange chromatography was within the range normally found for collagen and gelatin from other mammalian species, allowing for 10 to 20 per cent of some non-collagenous contaminant of the microsomal collagen. Hydroxyproline and proline were isolated by chromatography on paper from hydrolysates of the nuclear, mitochondrial, and microsomal collagen fractions, after incubation of tissue slices with L-14C-proline. The specific activities of the hydroxyproline from these collagens were in the approximate ratio 1:2:6, while that of bound hydroxyproline derived from the supernatant was only 1, indicating primary synthesis of collagen in the microsomes. Attempts to demonstrate incorporation of L-14C-proline into collagen or into free hydroxyproline in cell free systems were unsuccessful, nor was it possible to demonstrate non-specific incorporation of L-14C-valine into TCA-insoluble material by various combinations of subcellular fractions. PMID:13763869

  4. Guide to collagen characterization for biomaterial studies.

    PubMed

    Abraham, Leah C; Zuena, Erin; Perez-Ramirez, Bernardo; Kaplan, David L

    2008-10-01

    The structure and remodeling of collagen in vivo is critical to the pathology and healing of many human diseases, as well as to normal tissue development and regeneration. In addition, collagen matrices in the form of fibers, coatings, and films are used extensively in biomaterial and biomedical applications. The specific properties of these matrices, both in terms of physical and chemical characteristics, have a direct impact on cellular adhesion, spreading, and proliferation rates, and ultimately on the rate and extent of new extracellular matrix formation in vitro or in vivo. In recent studies, it has also been shown that collagen matrix structure has a major impact on cell and tissue outcomes related to cellular aging and differentiation potential. Collagen structure is complex because of both diversity of source materials, chemistry, and structural hierarchy. With such significant impact of collagen features on biological outcomes, it becomes essential to consider an appropriate set of analytical tools, or guide, so that collagens attained from commercial vendors are characterized in a comparative manner as an integral part of studies focused on biological parameters. The analysis should include as a starting point: (a) structural detail-mainly focused on molecular mass, purity, helical content, and bulk thermal properties, (b) chemical features-mainly focused on surface elemental analysis and hydrophobicity, and (c) morphological features at different length scales. The application of these analytical techniques to the characterization of collagen biomaterial matrices is critical in order to appropriately correlate biological responses from different studies with experimental outcomes in vitro or in vivo. As a case study, the analytical tools employed for collagen biomaterial studies are reviewed in the context of collagen remodeling by fibroblasts. The goal is to highlight the necessity of understanding collagen biophysical and chemical features as a

  5. Changes in corneal collagen induced by holmium:YAG laser irradiation

    NASA Astrophysics Data System (ADS)

    Timberlake, George T.; Reinke, Martin H.; Miller, Alvin

    1996-05-01

    Holmium:YAG laser thermokeratoplasty corrects hyperopia (farsightedness) by producing small areas of corneal collagen shrinkage that cause the central cornea to bulge outward, increasing optical power. Collagen shrinkage is probably caused by laser-heated corneal water, but details of the shrinkage mechanism are not known. We investigated the shrinkage mechanism by measuring changes in corneal ultrastructure, surface shrinkage, water content, and strength following Ho:YAG laser exposures. Morphological changes in collagen were documented by measurements from electron micrographs. Corneal adhesive strength was determined by measuring tearing force in a plane parallel to the corneal surface. Laser-induced water loss was measured by weighing corneal samples before and after exposure. Corneal surface shrinkage was assessed by photographing the movement of particles on the cornea. Lasered collagen fibrils increased in diameter, lost their orderly arrangement, and appeared `frayed.' The corneal surface contracted toward lasered areas with a maximal shift of approximately 190 micrometers , more than could be explained by a model based on collagen fibril changes. Water loss plays a minor role in corneal shrinkage since corneal samples lost about only about 1.4% of their weight after massive laser exposure. Despite marked changes in collagen structure, corneal adhesive force was unchanged.

  6. The role of the non-collagenous matrix in tendon function

    PubMed Central

    Thorpe, Chavaunne T; Birch, Helen L; Clegg, Peter D; Screen, Hazel RC

    2013-01-01

    Tendon consists of highly ordered type I collagen molecules that are grouped together to form subunits of increasing diameter. At each hierarchical level, the type I collagen is interspersed with a predominantly non-collagenous matrix (NCM) (Connect. Tissue Res., 6, 1978, 11). Whilst many studies have investigated the structure, organization and function of the collagenous matrix within tendon, relatively few have studied the non-collagenous components. However, there is a growing body of research suggesting the NCM plays an important role within tendon; adaptations to this matrix may confer the specific properties required by tendons with different functions. Furthermore, age-related alterations to non-collagenous proteins have been identified, which may affect tendon resistance to injury. This review focuses on the NCM within the tensional region of developing and mature tendon, discussing the current knowledge and identifying areas that require further study to fully understand structure–function relationships within tendon. This information will aid in the development of appropriate techniques for tendon injury prevention and treatment. PMID:23718692

  7. Effects of Collagen Crosslinking on Bone Material Properties in Health and Disease.

    PubMed

    Saito, Mitsuru; Marumo, Keishi

    2015-09-01

    Data have accumulated to show that various types of collagen crosslinking are implicated in the health of individuals, as well as in a number of disease states, such as osteoporosis, diabetes mellitus, chronic kidney disease, inflammatory bowel disease, or in conditions of mild hyperhomocysteinemia, or when glucocorticoid use is indicated. Collagen crosslinking is a posttranslational modification of collagen molecules and plays important roles in tissue differentiation and in the mechanical properties of collagenous tissue. The crosslinking of collagen in the body can form via two mechanisms: one is enzymatic crosslinking and the other is nonenzymatic crosslinking. Lysyl hydroxylases and lysyl oxidases regulate tissue-specific crosslinking patterns and quantities. Enzymatic crosslinks initially form via immature divalent crosslinking, and a portion of them convert into mature trivalent forms such as pyridinoline and pyrrole crosslinks. Nonenzymatic crosslinks form as a result of reactions which create advanced glycation end products (AGEs), such as pentosidine and glucosepane. These types of crosslinks differ in terms of their mechanisms of formation and function. Impaired enzymatic crosslinking and/or an increase of AGEs have been proposed as a major cause of bone fragility associated with aging and numerous disease states. This review focuses on the effects of collagen crosslinking on bone material properties in health and disease.

  8. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts.

    PubMed

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo; Kim, So Young; Jang, Hwan-Hee; Ryu, Sung Ho; Kim, Beom Joon; Lee, Taehoon G

    2012-11-23

    The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the β1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate peptide for the treatment of skin aging and wrinkles.

  9. The Respiratory Pathogen Moraxella catarrhalis Targets Collagen for Maximal Adherence to Host Tissues

    PubMed Central

    Singh, Birendra; Alvarado-Kristensson, Maria; Johansson, Martin; Hallgren, Oskar; Westergren-Thorsson, Gunilla; Mörgelin, Matthias

    2016-01-01

    ABSTRACT Moraxella catarrhalis is a human respiratory pathogen that causes acute otitis media in children and is associated with exacerbations in patients suffering from chronic obstructive pulmonary disease (COPD). The first step in M. catarrhalis colonization is adherence to the mucosa, epithelial cells, and extracellular matrix (ECM). The objective of this study was to evaluate the role of M. catarrhalis interactions with collagens from various angles. Clinical isolates (n = 43) were tested for collagen binding, followed by a detailed analysis of protein-protein interactions using recombinantly expressed proteins. M. catarrhalis-dependent interactions with collagen produced by human lung fibroblasts and tracheal tissues were studied by utilizing confocal immunohistochemistry and high-resolution scanning electron microscopy. A mouse smoke-induced chronic obstructive pulmonary disease (COPD) model was used to estimate the adherence of M. catarrhalis in vivo. We found that all M. catarrhalis clinical isolates tested adhered to fibrillar collagen types I, II, and III and network-forming collagens IV and VI. The trimeric autotransporter adhesins ubiquitous surface protein A2 (UspA2) and UspA2H were identified as major collagen-binding receptors. M. catarrhalis wild type adhered to human tracheal tissue and collagen-producing lung fibroblasts, whereas UspA2 and UspA2H deletion mutants did not. Moreover, in the COPD mouse model, bacteria devoid of UspA2 and UspA2H had a reduced level of adherence to the respiratory tract compared to the adherence of wild-type bacteria. Our data therefore suggest that the M. catarrhalis UspA2 and UspA2H-dependent interaction with collagens is highly critical for adherence in the host and, furthermore, may play an important role in the establishment of disease. PMID:27006460

  10. Role-Playing Mitosis.

    ERIC Educational Resources Information Center

    Wyn, Mark A.; Stegink, Steven J.

    2000-01-01

    Introduces a role playing activity that actively engages students in the learning process of mitosis. Students play either chromosomes carrying information, or cells in the cell membrane. (Contains 11 references.) (Author/YDS)

  11. The Excellence of Play.

    ERIC Educational Resources Information Center

    Moyles, Janet R., Ed.

    Recognizing that for young children, play is a tool for learning, this book compiles contributions by different authors, reflecting both up-to-date research and current classroom practice as they relate to children's play. Part 1 of the book explores the value of play as a cross-cultural concept as well as one rooted in the Western world. Gender…

  12. Play Is the Way

    ERIC Educational Resources Information Center

    Gross, Steve; Sanderson, Rebecca Cornelli

    2012-01-01

    Historically, play has been viewed as a frivolous break from important endeavors like working and learning when, in fact, a child's ability to fully and freely engage in play is essential to their learning, productivity, and overall development. A natural drive to play is universal across all young mammals. Children from every society on earth…

  13. Dimensions of Infant Play.

    ERIC Educational Resources Information Center

    Fenson, Larry

    Changes in manipulative play with objects were examined in a longitudinal sample of 10 boys and 9 girls tested at ages 9, 13, and 18 months. Stability of individual differences in play was also examined. Each child was observed individually for 7 minutes in a room in which a tea set was the only toy present. Seven types of play behavior were…

  14. The Pedagogy of Play

    ERIC Educational Resources Information Center

    Giesbrecht, Sheila

    2012-01-01

    Play is important. Environmental educators Sobel and Louv write about the relationship between children and outside play and suggest that early transcendental experiences within nature allow children to develop empathetic orientations towards the natural world. Children who play out-of-doors develop an appreciation for the environment and…

  15. The Importance of Play.

    ERIC Educational Resources Information Center

    Sher, Allen

    Play is the spontaneous or organized recreational activity of children; it is at the heart of the preschool curriculum. Play aids in the development of physical, intellectual, and social skills. Children's play progresses through three developmental stages: solitary, parallel, and social. Preschool teachers should arrange for four kinds of…

  16. Literacy through Play.

    ERIC Educational Resources Information Center

    Owocki, Gretchen

    When young children play in a purposefully designed, literacy-rich environment, teachers can discover and capitalize on teachable moments. This book discusses how children develop literacy and how early childhood teachers use play and other child-centered experiences to facilitate literacy development. Chapter 1, "Play and Developmentally…

  17. Play, Policy & Practice.

    ERIC Educational Resources Information Center

    Klugman, Edgar, Ed.

    In 1992, the U.S.-Israel Binational Science Foundation (BSF), in conjunction with Wheelock College (Boston), sponsored its second workshop on children's play, entitled "Play and Cognitive Ability: The Cultural Context." This volume reflects the presentations and discussions held at the workshop, offering perspectives on children's play that, taken…

  18. Cloning of an annelid fibrillar-collagen gene and phylogenetic analysis of vertebrate and invertebrate collagens.

    PubMed

    Sicot, F X; Exposito, J Y; Masselot, M; Garrone, R; Deutsch, J; Gaill, F

    1997-05-15

    Arenicola marina possesses cuticular and interstitial collagens, which are mostly synthesised by its epidermis. A cDNA library was constructed from the body wall. This annelid cDNA library was screened with a sea-urchin-collagen cDNA probe, and several overlapping clones were isolated. Nucleotide sequencing of these clones revealed an open reading frame of 2052 nucleotides. The translation product exhibits a triple helical domain of 138 Gly-Xaa-Yaa repeats followed by a 269-residue-long C-terminal non-collagenous domain (C-propeptide). The triple helical domain exhibits an imperfection that has been previously described in a peptide produced by cyanogen bromide digestion (CNBr peptide) of A. marina interstitial collagen. This imperfection occurs at the same place in the interstitial collagen of the vestimentiferan Riftia pachyptila. This identifies the clone as coding for the C-terminal part of a fibrillar collagen chain. It was called FAm1alpha, for fibrillar collagen 1alpha chain of A. marina. The non-collagenous domain possesses a structure similar to carboxy-terminal propeptides of fibrillar pro-alpha chains. Only six conserved cysteine residues are observed in A. marina compared with seven or eight in all other known C-propeptides. This provides information on the importance of disulfide bonds in C-propeptide interactions and in the collagen-assembly process. Phylogenetic studies indicate that the fibrillar collagen 1alpha chain of A. marina is homologous to the R. pachyptila interstitial collagen and that the FAm1alpha gene evolved independently from the other alpha-chain genes. Complementary analyses indicate that the vertebrate fibrillar collagen family is composed of two monophyletic subgroups with a specific position of the collagen type-V chains. PMID:9210465

  19. The Mineral–Collagen Interface in Bone

    PubMed Central

    2015-01-01

    The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone’s remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material’s performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions. PMID:25824581

  20. Single-molecule studies of collagen mechanics

    NASA Astrophysics Data System (ADS)

    Forde, Nancy; Rezaei, Naghmeh; Kirkness, Michael

    Collagen is the fundamental structural protein in vertebrates. Its triple helical structure at the molecular level is believed to be strongly related to its mechanical role in connective tissues. However, the mechanics of collagen at the single-molecule level remain contentious. Estimates of its persistence length span an order of magnitude, from 15-180 nm for this biopolymer of 300 nm contour length. How collagen responds to applied force is also controversial, with different single-molecule studies suggesting one of three different responses: extending entropically, overwinding, or unwinding, all at forces below 10 pN. Using atomic force microscopy to image collagens deposited from solution, we find that their flexibility depends strongly on ionic strength and pH. To study force-dependent structural changes, we are performing highly parallelized enzymatic cleavage assays of triple helical collagen in our new compact centrifuge force microscope. Because proteolytic cleavage requires a locally unwound triple helix, these experiments are revealing how local collagen structure changes in response to applied force. Our results can help to resolve long-standing debates about collagen mechanics and structure at the molecular level.

  1. Fibrillogenesis in Continuously Spun Synthetic Collagen Fiber

    PubMed Central

    Caves, Jeffrey M.; Kumar, Vivek A.; Wen, Jing; Cui, Wanxing; Martinez, Adam; Apkarian, Robert; Coats, Julie E.; Berland, Keith; Chaikof, Elliot L.

    2013-01-01

    The universal structural role of collagen fiber networks has motivated the development of collagen gels, films, coatings, injectables, and other formulations. However, reported synthetic collagen fiber fabrication schemes have either culminated in short, discontinuous fiber segments at unsuitably low production rates, or have incompletely replicated the internal fibrillar structure that dictates fiber mechanical and biological properties. We report a continuous extrusion system with an off-line phosphate buffer incubation step for the manufacture of synthetic collagen fiber. Fiber with a cross-section of 53±14 by 21±3 µm and an ultimate tensile strength of 94±19 MPa was continuously produced at 60 m/hr from an ultrafiltered monomeric collagen solution. The effect of collagen solution concentration, flow rate, and spinneret size on fiber size was investigated. The fiber was further characterized by microdifferential scanning calorimetry, transmission electron microscopy (TEM), second harmonic generation (SHG) analysis, and in a subcutaneous murine implant model. Calorimetry demonstrated stabilization of the collagen triple helical structure, while TEM and SHG revealed a dense, axially aligned D-periodic fibril structure throughout the fiber cross-section. Implantation of glutaraldehyde crosslinked and non-crosslinked fiber in the subcutaneous tissue of mice demonstrated limited inflammatory response and biodegradation after a 6-week implant period. PMID:20024969

  2. The Mineral-Collagen Interface in Bone.

    PubMed

    Stock, S R

    2015-09-01

    The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone's remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material's performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions. PMID:25824581

  3. Propranolol-induced elevation of pulmonary collagen

    SciTech Connect

    Lindenschmidt, R.C.; Witschi, H.P.

    1985-01-01

    Current concepts of collagen metabolism suggest that fibroblasts tightly control collagen production. One of the possible mechanisms of control is via the cyclic nucleotides, cyclic AMP (cAMP) and cyclic GMP (cGMP). Beta adrenergic agonists, by elevating intracellular cAMP levels, have been shown in vitro to suppress fibroblast collagen production; whereas beta adrenergic antagonists were effective in removing this suppression by blocking the rise in cAMP. In the present study with mice, the authors showed that administration of the beta adrenergic antagonists, propranolol, at a dose demonstrated to decrease the ratio of cAMP to cGMP, resulted in an elevation in total lung collagen in vivo. The increase in collagen was evident only when propranolol was administered before and during acute lung damage induced by either butylated hydroxytoluene, bleomycin or high concentrations of oxygen. There was no increase in lung collagen when propranolol administration was delayed after injury or when given to an undamaged lung. The authors propose that via beta adrenergic blockage by propranolol, fibroblasts involved in the normal reparative process may have lost a mechanism for regulatory control, resulting in excessive deposition of collagen. 38 references, 3 figures, 2 tables.

  4. Probing interactions between collagen proteins via microrheology

    NASA Astrophysics Data System (ADS)

    Shayegan, Marjan; Forde, Nancy R.

    2012-10-01

    Collagen is the major structural protein of our connective tissues. It provides integrity and mechanical strength through its hierarchical organization. Defects in collagen can lead to serious connective tissue diseases. Collagen is also widely used as a biomaterial. Given that mechanical properties are related to the structure of materials, the main goal of our research is to understand how molecular structure correlates with microscale mechanical properties of collagen solutions and networks. We use optical tweezers to trap and monitor thermal fluctuations of an embedded probe particle, from which viscoelastic properties of the solution are extracted. We find that elasticity becomes comparable to viscous behavior at collagen concentrations of 5mg/ml. Furthermore, by simultaneously neutralizing pH and adding salt, we observe changes in viscosity and elasticity of the solution over time. We attribute this to the self-assembly process of collagen molecules into fibrils with different mechanical properties. Self-assembly of collagen under these conditions is verified by turbidity measurements as well as electron microscopy. By comparing results from these local studies of viscoelasticity, we can detect spatial heterogeneity of fibril formation throughout the solution.

  5. Collagen II Is Essential for the Removal of the Notochord and the Formation of Intervertebral Discs

    PubMed Central

    Aszódi, Attila; Chan, Danny; Hunziker, Ernst; Bateman, John F.; Fässler, Reinhard

    1998-01-01

    Collagen II is a fibril-forming collagen that is mainly expressed in cartilage. Collagen II–deficient mice produce structurally abnormal cartilage that lacks growth plates in long bones, and as a result these mice develop a skeleton without endochondral bone formation. Here, we report that Col2a1-null mice are unable to dismantle the notochord. This defect is associated with the inability to develop intervertebral discs (IVDs). During normal embryogenesis, the nucleus pulposus of future IVDs forms from regional expansion of the notochord, which is simultaneously dismantled in the region of the developing vertebral bodies. However, in Col2a1-null mice, the notochord is not removed in the vertebral bodies and persists as a rod-like structure until birth. It has been suggested that this regional notochordal degeneration results from changes in cell death and proliferation. Our experiments with wild-type mice showed that differential proliferation and apoptosis play no role in notochordal reorganization. An alternative hypothesis is that the cartilage matrix exerts mechanical forces that induce notochord removal. Several of our findings support this hypothesis. Immunohistological analyses, in situ hybridization, and biochemical analyses demonstrate that collagens I and III are ectopically expressed in Col2a1-null cartilage. Assembly of the abnormal collagens into a mature insoluble matrix is retarded and collagen fibrils are sparse, disorganized, and irregular. We propose that this disorganized abnormal cartilage collagen matrix is structurally weakened and is unable to constrain proteoglycan-induced osmotic swelling pressure. The accumulation of fluid leads to tissue enlargement and a reduction in the internal swelling pressure. These changes may be responsible for the abnormal notochord removal in Col2a1-null mice. Our studies also show that chondrocytes do not need a collagen II environment to express cartilage-specific matrix components and to hypertrophy

  6. African oil plays

    SciTech Connect

    Clifford, A.J. )

    1989-09-01

    The vast continent of Africa hosts over eight sedimentary basins, covering approximately half its total area. Of these basins, only 82% have entered a mature exploration phase, 9% have had little or no exploration at all. Since oil was first discovered in Africa during the mid-1950s, old play concepts continue to bear fruit, for example in Egypt and Nigeria, while new play concepts promise to become more important, such as in Algeria, Angola, Chad, Egypt, Gabon, and Sudan. The most exciting developments of recent years in African oil exploration are: (1) the Gamba/Dentale play, onshore Gabon; (2) the Pinda play, offshore Angola; (3) the Lucula/Toca play, offshore Cabinda; (4) the Metlaoui play, offshore Libya/Tunisia; (5) the mid-Cretaceous sand play, Chad/Sudan; and (6) the TAG-I/F6 play, onshore Algeria. Examples of these plays are illustrated along with some of the more traditional oil plays. Where are the future oil plays likely to develop No doubt, the Saharan basins of Algeria and Libya will feature strongly, also the presalt of Equatorial West Africa, the Central African Rift System and, more speculatively, offshore Ethiopia and Namibia, and onshore Madagascar, Mozambique, and Tanzania.

  7. Collagenous spherulosis in an oral mucous cyst.

    PubMed

    Henry, Cathy Renee; Nace, Mindy; Helm, Klaus F

    2008-04-01

    Collagenous spherulosis is a histological pattern that has been described in both benign and malignant salivary gland tumors, proliferative lesions of breast ductal epithelium, chondroid syringomas and schwannomas. Histologic structures of similar appearance have also been reported in oral extravasation mucoceles as questionable myxoglobulosis or myxoglobulosis-like change. We report collagenous spherulosis within a mucocele removed from the lower lip of a 17-year-old female. Based upon histologic appearance, immunophenotypic data and review of the literature, we hypothesize that collagenous spherulosis and myxoglobulosis are morphologically related reaction patterns. PMID:18333906

  8. Collagen stability, hydration and native state.

    PubMed

    Mogilner, Inés G; Ruderman, Graciela; Grigera, J Raúl

    2002-12-01

    Molecular dynamics simulations of a collagen-like peptide (Pro-Hyp-Gly)4-Pro-Hyp-Ala-(Pro-Hyp-Gly)5 have been done in order to study the contribution of the hydration structure on keeping the native structure of collagen. The simulation shows that the absence of water produces a distortion on the molecular conformation and an increase in the number of intra-molecular hydrogen bonds. This is in agreement with previous experimental results showing the stiffness of collagen under severe drying and its increase in the thermal stability. This dehydrated material does not keep, however, the native structure.

  9. Collagenous spherulosis in an oral mucous cyst.

    PubMed

    Henry, Cathy Renee; Nace, Mindy; Helm, Klaus F

    2008-04-01

    Collagenous spherulosis is a histological pattern that has been described in both benign and malignant salivary gland tumors, proliferative lesions of breast ductal epithelium, chondroid syringomas and schwannomas. Histologic structures of similar appearance have also been reported in oral extravasation mucoceles as questionable myxoglobulosis or myxoglobulosis-like change. We report collagenous spherulosis within a mucocele removed from the lower lip of a 17-year-old female. Based upon histologic appearance, immunophenotypic data and review of the literature, we hypothesize that collagenous spherulosis and myxoglobulosis are morphologically related reaction patterns.

  10. Collagen-silica hybrid materials: sodium silicate and sodium chloride effects on type I collagen fibrillogenesis.

    PubMed

    Eglin, David; Coradin, Thibaud; Giraud Guille, Marie M; Helary, Christophe; Livage, Jacques

    2005-01-01

    Collagen-silica hybrid materials have been considered for potential biomedical applications. Understanding of the collagen-silica interactions is the key to control hybrids structure and properties. For this purpose, the effect of sodium silicate and sodium chloride addition at two concentrations, 0.83 and 10 mM, on the kinetic of the type I collagen fibrillogenesis at 20 degrees C, and pH 7.4 were studied. Absorbance profiles of fibrillogenesis experiments were collected together with measures of silicic acid concentration and transmission electron microscopy analysis. The specific effect of silica addition on the collagen fibrils self-assembly mechanisms was demonstrated by comparison with the sodium chloride. Sodium silicate at 10 mM inhibited the collagen fibrillogenesis. At the same concentration, the sodium chloride decreased the rate of the collagen fibril assembly. Collagen fibrillogenesis kinetic was not significantly disturbed by the presence of 0.83 mM of sodium chloride. However, the same concentration of sodium silicate modified the collagen fibrillogenesis kinetic. Transmission electron microscopy indicated for experiment with 0.83 mM of sodium silicate, the formation of longer and wider fibrils than for the equivalent collagen fibrillogenesis experiment with sodium chloride. The effect of sodium chloride is explained in terms of osmotic exclusion and influence on electrostatic interactions between collagen fibrils. The specific involvement of silicic acid in collagen helices hydrogen-bond interactions is suggested. Finally, the results of this study are discussed regarding the preparation of composites by co-gelation of type I collagen and sodium silicate, for potential application as bone repair device.

  11. PREFACE: XIII International Conference on Calorimetry in High Energy Physics (CALOR 2008)

    NASA Astrophysics Data System (ADS)

    Livan, Michele

    2009-07-01

    The XIII International Conference on Calorimetry in High Energy Physics was held in Pavia, Italy, 26-30 May 2008, picking up the baton from the 2006 Conference in Chicago. The Conference took place in the unique environment of the Theresian Room of the University Library. The attendees were surrounded by over 40 000 books of general interest and culture, and had the opportunity to see precious volumes written by such people as Galileo, Volta and Faraday. The Workshop brought together more than 120 participants, including senior scientists as well as young physicists, confirming the central and ever-growing role of calorimeters in modern particle physics. The development of these detectors, as stressed by Professor Klaus Pretzl in his lectio magistralis, has made it possible to explore new frontiers in physics, and the present scenario is no exception to this rule. With the LHC experiments almost completely installed and ready to take data, the Conference was an ideal chance to review the status of the different projects, whose development has been followed and discussed throughout the entire Calor series, and to show that they are capable of meeting the design specifications. Other highlights were the performance and physics results of calorimeters installed in currently operating experiments. In the session on astrophysics and neutrinos, the contributions confirmed the key role of calorimeters in this sector and demonstrated their growing application even beyond the field of accelerator physics. Considerable time was devoted to the state-of-the-art techniques in the design and operation of the detectors, while the session on simulation addressed the importance of a thorough understanding of the shower development to meet the demanding requirements of present experiments. Finally, on the R&D side, the particle flow and dual read-out concepts confronted the challenges issued by the next generation of experiments. This complex material was reviewed in 83

  12. PREFACE: XIII International Seminar on Physics and Chemistry of Solids (ISPCS)

    NASA Astrophysics Data System (ADS)

    Berdowski, Janusz

    2007-06-01

    This volume of Journal of Physics: Conference Series contains some of the papers which were presented at the XIII International Seminar on Physics and Chemistry of Solids (ISPCS) in June 2007, in Ustroń, Poland. As the materials from ISPCS are presented in this Journal for the first time it is a good opportunity to give a brief outline of the Seminar's roots, history and goals. The initiator of the Seminars, conceived as annual meetings of the physicists and chemists from Ukraine and Poland, was the late Professor of the Ivan Franko National University in Lviv, Wlodymyr Sawicki. As Professor Sawicki had also lectured for the students of Jan Dlugosz University in Czȩstochowa he had seen both these universities as future organizers of the conference. Coincidentally rectors of Lviv and Czȩstochowa universities, Professor Ivan Vakarchuk and Professor Józef Światek were physicists so this proposition was received very warmly and got strong support from the officials of the universities. From the early beginnings the Seminar also had wide organizational help from the Research and Development Enterprise 'Carat' from Lviv and especially from its president Dr Mykola Vakiv. The Seminars started in 1996—the first meeting took place in Zakopane (Poland) in May 1996 and the second one in September of the same year in Schack (Ukraine). From 1997, ISPCS Seminars have gathered together a group of chemists and physicists interested in condensed matter physics and chemistry, in even years in Ukraine, in odd years in Poland. This circle is growing: at the first Seminar in Zakopane thirty scientists took part, mainly from Lviv and from Czȩstochowa, ISPCS13 gave us the opportunity to meet over eighty people from several universities and research institutions, including delegates from countries other than Poland and Ukraine, with over seventy presentations. The organizers plan that ISPCS conferences should achieve the following two objectives: help in building closer

  13. Folliculocystic and Collagen Hamartoma: A New Entity?

    PubMed Central

    An, Je Min; Kim, Ye Seul; Park, Young Lip

    2015-01-01

    Folliculocystic and collagen hamartoma is a newly described complex hamartoma characterized by abundant collagen deposition, concentric perifollicular fibrosis, and keratin- filled infundibular cysts that are visible on histopathological examination. Here, we report the case of a 19-year-old Korean man who had large brownish infiltrated plaques with numerous follicular comedo-like openings and subcutaneous cystic masses on his right temporal scalp and ear since birth. Histopathological examination showed abundant collagen deposition in the dermis that extended up to the subcutaneous fat layer, multifocal infundibular cysts packed with keratin, and perifollicular inflammation and fibrosis. Hence, we describe a new type of hamartoma with folliculocystic and collagen components but without tuberous sclerosis. PMID:26512173

  14. In vitro Sirius Red collagen assay measures the pattern shift from soluble to deposited collagen.

    PubMed

    Chen, Chun; Yang, Shanmin; Zhang, Mei; Zhang, Zhenhuan; Zhang, Bingrong; Han, Deping; Ma, Jun; Wang, Xiaohui; Hong, Jingshen; Guo, Yansong; Okunieff, Paul; Zhang, Lurong

    2013-01-01

    In this study, we compared two in vitro collagen production assays ([(3)H]-proline incorporation and Sirius Red) for their ability to determine the pattern shift from soluble to deposited collagen. The effect of the antifibrotic agent, triptolide (TPL), on collagen production was also studied. The results showed that: (1) 48 h after NIH 3T3 (murine embryo fibroblast) and HFL-1(human fetal lung fibroblast) were exposed to transforming growth factor-beta 1 (TGF-β), there was an increase in soluble collagen in the culture medium; (2) on day 4, soluble collagen declined, whereas deposited collagen increased; (3) Sirius Red was easier to use than [(3)H]-proline incorporation and more consistently reflected the collagen pattern shift from soluble to deposited; (4) the in vitro Sirius Red assay took less time than the in vivo assay to determine the effect of TPL. Our results suggest that: (a) the newly synthesized soluble collagen can sensitively evaluate an agent's capacity for collagen production and (b) Sirius Red is more useful than [(3)H]-proline because it is easier to use, more convenient, less time consuming, and does not require radioactive material.

  15. A first census of collagen interruptions: collagen's own stutters and stammers.

    PubMed

    Bella, Jordi

    2014-06-01

    The repetitive Gly-X-Y sequence is the telltale sign of triple helical domains in collagens and collagen-like proteins. Most collagen sequences contain sporadic interruptions of this pattern, which may have functional roles in molecular flexibility, assembly or molecular recognition. However, the structural signatures of the different interruptions are not well defined. Here, a first comprehensive survey of collagen interruptions on collagen sequences from different taxonomic groups is presented. Amino acid preferences at the sites of interruption and the flanking triplets are analysed separately for metazoan and prokaryotic collagens and the concept of commensurateness between interruptions is introduced. Known structural information from model peptides is used to present a common framework for hydrogen bonding topology and variations in superhelical twist for the different types of interruptions. Several collagen interruptions are further classified here as stutters or stammers in analogy to the heptad breaks observed in alpha-helical coiled coils, and the structural consequences of commensurate interruptions in heterotrimeric collagens are briefly discussed. Data presented here will be useful for further investigation on the relation between structure and function of collagen interruptions.

  16. Collagenous gastrobulbitis and collagenous colitis. Case report and review of the literature.

    PubMed

    Castellano, V M; Muñoz, M T; Colina, F; Nevado, M; Casis, B; Solís-Herruzo, J A

    1999-06-01

    A case is reported of collagenous gastrobulbitis on collagenous colitis in a 57-year-old woman with a 6-month history of watery diarrhea. Low serum levels of total proteins and albumin and increased fecal elimination of alpha1-antitrypsin were the only abnormal laboratory test results. Biopsy specimens from the colon, rectum, antrum, fundus, and duodenal bulb showed a thick subepithelial band composed of ultrastructurally normal collagen immunohistochemically negative for collagen IV and laminin. The diarrhea resolved with prednisone and responded to this treatment after a relapse 6 months later. One year later the patient developed severe alimentary intolerance and secondary weight loss. This symptom also responded to the same treatment. However, the collagen deposition did not disappear in the second biopsy samples of colonic and gastric mucosa. Only six cases have been previously reported with gastric and/or duodenal subepithelial collagenous deposition. Four were associated with collagenous colitis. One of these presented a subepithelial collagenous band in the terminal ileum. All these features suggest that this collagen deposition may affect the entire digestive tract with variable intensity, extension, and symptoms. PMID:10440616

  17. Collagen Accumulation in Osteosarcoma Cells lacking GLT25D1 Collagen Galactosyltransferase.

    PubMed

    Baumann, Stephan; Hennet, Thierry

    2016-08-26

    Collagen is post-translationally modified by prolyl and lysyl hydroxylation and subsequently by glycosylation of hydroxylysine. Despite the widespread occurrence of the glycan structure Glc(α1-2)Gal linked to hydroxylysine in animals, the functional significance of collagen glycosylation remains elusive. To address the role of glycosylation in collagen expression, folding, and secretion, we used the CRISPR/Cas9 system to inactivate the collagen galactosyltransferase GLT25D1 and GLT25D2 genes in osteosarcoma cells. Loss of GLT25D1 led to increased expression and intracellular accumulation of collagen type I, whereas loss of GLT25D2 had no effect on collagen secretion. Inactivation of the GLT25D1 gene resulted in a compensatory induction of GLT25D2 expression. Loss of GLT25D1 decreased collagen glycosylation by up to 60% but did not alter collagen folding and thermal stability. Whereas cells harboring individually inactivated GLT25D1 and GLT25D2 genes could be recovered and maintained in culture, cell clones with simultaneously inactive GLT25D1 and GLT25D2 genes could be not grown and studied, suggesting that a complete loss of collagen glycosylation impairs osteosarcoma cell proliferation and viability. PMID:27402836

  18. [Clinical and pathogenetic significance of collagen metabolism disorder in children with gastroesophageal reflux disease].

    PubMed

    Butorina, N V; Zaprudnov, A M; Vakhrushev, Ia M; Sharaev, P N

    2013-01-01

    In 62 children with gastroesophageal reflux disease (GERD) and 32 with gastroduodenitis (DG) aged 9-17 years, the peculiarities of metabolism of collagen were studied. High levels of fractions of sialic acids were set, that was associated with the protein fructose, fractions of hydroxyproline in children with GERD compared with the patients with DG, which testify to the process of degradation of collagen and may be one of the factors contributing to the local inflammation of the esophagus and gastroduodenal zone of the digestive tract. The prevalence of Helicobacter pylori, as well as violations of diet, play an important role in maintaining the inflammatory process.

  19. Studies on fish scale collagen of Pacific saury (Cololabis saira).

    PubMed

    Mori, Hideki; Tone, Yurie; Shimizu, Kouske; Zikihara, Kazunori; Tokutomi, Satoru; Ida, Tomoaki; Ihara, Hideshi; Hara, Masayuki

    2013-01-01

    We purified and characterized Type I collagen from the scales of the Pacific saury (Cololabis saira) and compared it with collagen from other organisms. Subunit composition of C. saira collagen (2α1+α2) was similar to that of red sea bream (Pagrus major) and porcine collagen. C. saira collagen did not form a firm gel after neutralization of pH in solution. The temperature of denaturation (24-25 °C) of C. saira collagen was slightly lower than that of P. major collagen (26-27 °C). The contents of proline and hydroxyproline were lower in red sea bream and Pacific saury collagen than in porcine collagen. Circular dichroism spectra and Fourier-transformed infrared spectra showed that heat denaturation caused unfolding of the triple helices in all three collagens. PMID:25428059

  20. Collagenous ileitis: a study of 13 cases.

    PubMed

    O'Brien, Blake Hugh; McClymont, Kelly; Brown, Ian

    2011-08-01

    Collagenous ileitis (CI), characterized by subepithelial collagen deposition in the terminal ileum, is an uncommon condition. The few cases reported to date have been associated with collagenous colitis (CC) or lymphocytic colitis. Thirteen cases of CI retrieved over a 9-year period were retrospectively studied. There were 7 female and 6 male patients, with an age range of 39 to 72 years (mean, 64 y). Two groups were identified: (1) CI associated with collagenous or lymphocytic disease elsewhere in the gastrointestinal tract and (2) CI as an isolated process. Diarrhea was the presenting symptom in 11 cases. Most patients had no regular medication use. Subepithelial collagen thickness ranged from 15 to 100 μm (mean, 32 μm) and involved 5% to 80% of the subepithelial region of the submitted biopsies. Six cases had >25 intraepithelial lymphocytes (IELs)/100 epithelial cells, and villous blunting was observed in 11 cases. Chronic inflammation of the lamina propria was present in 9 cases, and focal neutrophil infiltration was identified in 3 cases. In biopsies taken from other sites, 7 of 13 colonic biopsies showed CC, 4 of 9 gastric biopsies showed collagenous gastritis, and 2 of 10 duodenal biopsies were abnormal with collagenous sprue (n=1) and partial villous atrophy and increased IELs (n=1) (both celiac disease related). Resolution of the subepithelial collagen deposition was found in the 1 case in which follow-up of terminal ileal biopsies were taken. There was partial or complete resolution of symptoms in 6 of 9 patients for whom follow-up information was available. PMID:21716082

  1. Techniques for Type I Collagen Organization

    NASA Astrophysics Data System (ADS)

    Anderson-Jackson, LaTecia Diamond

    Tissue Engineering is a process in which cells, engineering, and material methods are used in amalgamation to improve biological functions. The purpose of tissue engineering is to develop alternative solutions to treat or cure tissues and organs that have been severely altered or damaged by diseases, congenital defects, trauma, or cancer. One of the most common and most promising biological materials for tissue engineering to develop scaffolds is Type I collagen. A major challenge in biomedical research is aligning Type I collagen to mimic biological structures, such as ligaments, tendons, bones, and other hierarchal aligned structures within the human body. The intent of this research is to examine possible techniques for organizing Type I collagen and to assess which of the techniques is effective for potential biological applications. The techniques used in this research to organize collagen are soft lithography with solution-assisted sonication embossing, directional freezing, and direct poling. The final concentration used for both soft lithography with solution-assisted sonication embossing and direct poling was 1 mg/ml, whereas for directional freezing the final concentration varied between 4mg/ml, 2mg/ml, and 1 mg/ml. These techniques were characterized using the Atomic Force Microscope (AFM) and Helium Ion Microscope (HIM). In this study, we have found that out of the three techniques, the soft lithography and directional freezing techniques have been successful in organizing collagen in a particular pattern, but not alignment. We concluded alignment may be dependent on the pH of collagen and the amount of acetic acid used in collagen solution. However, experiments are still being conducted to optimize all three techniques to align collagen in a unidirectional arrangement.

  2. Collagen-like antimicrobial peptides.

    PubMed

    Masuda, Ryo; Kudo, Masakazu; Dazai, Yui; Mima, Takehiko; Koide, Takaki

    2016-11-01

    Combinatorial library composed of rigid rod-like peptides with a triple-helical scaffold was constructed. The component peptides were designed to have various combinations of basic and neutral (or hydrophobic) amino acid residues based on collagen-like (Gly-Pro-Yaa)-repeating sequences, inspired from the basic and amphiphilic nature of naturally occurring antimicrobial peptides. Screening of the peptide pools resulted in identification of antimicrobial peptides. A structure-activity relationship study revealed that the position of Arg-cluster at N-terminus and cystine knots at C-terminus in the triple helix significantly contributed to the antimicrobial activity. The most potent peptide RO-A showed activity against Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. In addition, Escherichia coli exposed to RO-A resulted in abnormal elongation of the cells. RO-A was also shown to have remarkable stability in human serum and low cytotoxicity to mammalian cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 453-459, 2016. PMID:27271210

  3. Polymethyl methacrylate microspheres in collagen.

    PubMed

    Haneke, Eckart

    2004-12-01

    Artecoll was developed about 20 years ago and underwent a number of production changes until it recently became FDA approved under the new name of Artefill. This product contains 20% polymethyl methacrylate (PMMA) microspheres with a diameter of 30 to 40 microm, which are suspended in a 3.5% atelo-collagen solution. The PMMA microspheres are now purified and no longer have an electrostatic charge, which in part was the cause for the early granulomatous reactions. Further, PMMA has long been known as bone cement and has been used in cosmetic surgery with a very good safety record. PMMA microspheres are biologically inert and nondegradable. The treatment results are therefore permanent and technical errors as well as incorrect injections will last. Due to the early record of granuloma formation, there is still a debate as to whether this product-as well as all other permanent fillers-should be injected for cosmetic reasons or not. With proper indications, excellent injection techniques, and realistic expectations as to what can be expected, this product has now proved to be one of the superior permanent filler substances.

  4. Corneal Collagen Cross-Linking

    PubMed Central

    Jankov II, Mirko R.; Jovanovic, Vesna; Nikolic, Ljubisa; Lake, Jonathan C.; Kymionis, Georgos; Coskunseven, Efekan

    2010-01-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet-A (UVA) is a new technique of corneal tissue strengthening by using riboflavin as a photosensitizer and UVA to increase the formation of intra and interfibrillar covalent bonds by photosensitized oxidation. Keratocyte apoptosis in the anterior segment of the corneal stroma all the way down to a depth of about 300 microns has been described and a demarcation line between the treated and untreated cornea has been clearly shown. It is important to ensure that the cytotoxic threshold for the endothelium has not been exceeded by strictly respecting the minimal corneal thickness. Confocal microscopy studies show that repopulation of keratocytes is already visible 1 month after the treatment, reaching its pre-operative quantity and quality in terms of functional morphology within 6 months after the treatment. The major indication for the use of CXL is to inhibit the progression of corneal ectasias, such as keratoconus and pellucid marginal degeneration. CXL may also be effective in the treatment and prophylaxis of iatrogenic keratectasia, resulting from excessively aggressive photoablation. This treatment has also been used to treat infectious corneal ulcers with apparent favorable results. Combination with other treatments, such as intracorneal ring segment implantation, limited topography-guided photoablation and conductive keratoplasty have been used with different levels of success. PMID:20543933

  5. Collagen shield delivery of amphotericin B.

    PubMed

    Schwartz, S D; Harrison, S A; Engstrom, R E; Bawdon, R E; Lee, D A; Mondino, B J

    1990-06-15

    By using a high-pressure liquid chromatography assay, we investigated the ability of collagen shield therapeutic contact lenses to release amphotericin B and deliver it to the anterior segment of rabbit eyes. In vitro studies showed that presoaked collagen shields released most of the amphotericin B within the first hour of elution. We compared the corneal and aqueous humor amphotericin B levels produced by collagen shields soaked in amphotericin B and frequent-drop therapy at four time points over a six-hour period. The collagen shields soaked in amphotericin B produced corneal levels that were higher than those produced by frequent-drop therapy at one hour, equivalent to drop therapy at two and three hours, and lower than drop therapy at six hours. There were no differences in amphotericin B levels in aqueous humor at any time point between rabbits treated with collagen shield delivery and rabbits treated with frequent-drop delivery. The results of this study suggest that amphotericin B delivery to the cornea by collagen shields is comparable to frequent-drop delivery but has the potential benefit of added convenience and compliance.

  6. Marine Origin Collagens and Its Potential Applications

    PubMed Central

    Silva, Tiago H.; Moreira-Silva, Joana; Marques, Ana L. P.; Domingues, Alberta; Bayon, Yves; Reis, Rui L.

    2014-01-01

    Collagens are the most abundant high molecular weight proteins in both invertebrate and vertebrate organisms, including mammals, and possess mainly a structural role, existing different types according with their specific organization in distinct tissues. From this, they have been elected as one of the key biological materials in tissue regeneration approaches. Also, industry is constantly searching for new natural sources of collagen and upgraded methodologies for their production. The most common sources are from bovine and porcine origin, but other ways are making their route, such as recombinant production, but also extraction from marine organisms like fish. Different organisms have been proposed and explored for collagen extraction, allowing the sustainable production of different types of collagens, with properties depending on the kind of organism (and their natural environment) and extraction methodology. Such variety of collagen properties has been further investigated in different ways to render a wide range of applications. The present review aims to shed some light on the contribution of marine collagens for the scientific and technological development of this sector, stressing the opportunities and challenges that they are and most probably will be facing to assume a role as an alternative source for industrial exploitation. PMID:25490254

  7. Thoracic manifestations of collagen vascular diseases.

    PubMed

    Capobianco, Julia; Grimberg, Alexandre; Thompson, Bruna M; Antunes, Viviane B; Jasinowodolinski, Dany; Meirelles, Gustavo S P

    2012-01-01

    Collagen vascular diseases are a diverse group of immunologically mediated systemic disorders that often lead to thoracic changes. The collagen vascular diseases that most commonly involve the lung are rheumatoid arthritis, progressive systemic sclerosis, systemic lupus erythematosus, polymyositis and dermatomyositis, mixed connective tissue disease, and Sjögren syndrome. Interstitial lung disease and pulmonary arterial hypertension are the main causes of mortality and morbidity among patients with collagen vascular diseases. Given the broad spectrum of possible thoracic manifestations and the varying frequency with which different interstitial lung diseases occur, the interpretation of thoracic images obtained in patients with collagen vascular diseases can be challenging. The task may be more difficult in the presence of treatment-related complications such as drug toxicity and infections, which are common in this group of patients. Although chest radiography is most often used for screening and monitoring of thoracic alterations, high-resolution computed tomography can provide additional information about lung involvement in collagen vascular diseases and may be especially helpful for differentiating specific disease patterns in the lung. General knowledge about the manifestations of thoracic involvement in collagen vascular diseases allows radiologists to provide better guidance for treatment and follow-up of these patients.

  8. Collagenous gastritis: reports and systematic review.

    PubMed

    Brain, Oliver; Rajaguru, Chandima; Warren, Bryan; Booth, Jonathan; Travis, Simon

    2009-12-01

    Collagenous gastritis is a rare disorder first described in 1989. After encountering two cases, we decided to review the literature and evaluate the collagen band. A systematic review of PubMed and EMBASE databases was performed. Twenty-eight cases have been previously described and two patterns of presentations are identifiable: children or young adults (median age 12 years, range 2-22 years) presenting with symptoms attributable to the gastritis (anaemia and pain); and older adults (median age 52 years, range 35-77 years) presenting with loose stools, often associated with collagenous colitis or coeliac disease. Our two cases (one child and one adult) matched this pattern. Immunostaining of the collagen band for collagens II, III, IV and VI, and tenascin showed that the band in our cases was predominantly tenascin. In conclusion, collagenous gastritis is a rare entity whose presentation depends on the age of the patient. An autoimmune aetiology seems possible given its associations. Treatment is empirical. The 30 cases now reported show that the disorder can relapse or persist for years. PMID:19730387

  9. Glucose stabilizes collagen sterilized with gamma irradiation.

    PubMed

    Ohan, Mark P; Dunn, Michael G

    2003-12-15

    Gamma irradiation sterilization (gamma-irradiation) fragments and denatures collagen, drastically decreasing critical physical properties. Our goal was to maintain strength and stability of gamma-irradiated collagen by adding glucose, which in theory can initiate crosslink formation in collagen during exposure to gamma-irradiation. Collagen films prepared with and without glucose were gamma-irradiated with a standard dose of 2.5 Mrad. Relative amounts of crosslinking and denaturation were approximated based on solubility and the mechanical properties of the films after hydration, heat denaturation, or incubation in enzymes (collagenase and trypsin). After exposure to gamma-irradiation, collagen films containing glucose had significantly higher mechanical properties, greater resistance to enzymatic degradation, and decreased solubility compared with control films. The entire experiment was repeated with a second set of films that were exposed first to ultraviolet irradiation (254 nm) to provide higher initial strength and then gamma-irradiated. Again, films containing glucose had significantly greater mechanical properties and resistance to enzymatic degradation compared with controls. Gel electrophoresis showed that glucose did not prevent peptide fragmentation; therefore, the higher strength and stability in glucose-incorporated films may be due to glucose-derived crosslinks. The results of this study suggest that glucose may be a useful additive to stabilize collagenous materials or tissues sterilized by gamma-irradiation.

  10. Play and Digital Media

    ERIC Educational Resources Information Center

    Johnson, James E.; Christie, James F.

    2009-01-01

    This article examines how play is affected by computers and digital toys. Research indicates that when computer software targeted at children is problem-solving oriented and open-ended, children tend to engage in creative play and interact with peers in a positive manner. On the other hand, drill-and-practice programs can be quite boring and limit…

  11. Play as Experience

    ERIC Educational Resources Information Center

    Henricks, Thomas S.

    2015-01-01

    The author investigates what he believes one of the more important aspects of play--the experience it generates in its participants. He considers the quality of this experience in relation to five ways of viewing play--as action, interaction, activity, disposition, and within a context. He treats broadly the different forms of affect, including…

  12. Play, Toys and Television.

    ERIC Educational Resources Information Center

    Brougere, Gilles

    In Western societies, television has transformed the life, culture, and points of reference of the child. Its particular sphere of influence is the child's play culture. This play culture is not hermetic: it is very oriented toward manipulation; has a symbolic role as a representational medium; evolves along with the child; has a certain amount of…

  13. An Invitation to Play.

    ERIC Educational Resources Information Center

    Lange, Jenny; Zieher, Connie

    The manual is intended to provide suggestions for play to parents of young children with exceptional educational needs. Nineteen types of activities are described and pictured, including make believe with boxes, dress-up activities, kitchen play, bubbles, small motor activities using beans and buttons, use of throw-away materials, painting,…

  14. Let's Just Play

    ERIC Educational Resources Information Center

    Schmidt, Janet

    2003-01-01

    Children have a right to play. The idea is so simple it seems self-evident. But a stroll through any toy superstore, or any half-hour of so-called "children's" programming on commercial TV, makes it clear that violence, not play, dominates what's being sold. In this article, the author discusses how teachers and parents share the responsibility in…

  15. Television at Play.

    ERIC Educational Resources Information Center

    Reid, Leonard N.; Frazer, Charles F.

    1980-01-01

    Discusses children as television viewers capable of manipulating the co-viewing setting by interpreting, constructing, and carrying out planned lines of play in relation to television and its content. Examples illustrate program-oriented and free-form improvisational play situations. (JMF)

  16. Return to Play

    ERIC Educational Resources Information Center

    Mangan, Marianne

    2013-01-01

    Call it physical activity, call it games, or call it play. Whatever its name, it's a place we all need to return to. In the physical education, recreation, and dance professions, we need to redesign programs to address the need for and want of play that is inherent in all of us.

  17. Role Playing and Skits

    ERIC Educational Resources Information Center

    Letwin, Robert, Ed.

    1975-01-01

    Explores non-scripted role playing, dialogue role playing, sociodrama, and skits as variations of simulation techniques. Provides step-by-step guidelines for conducting such sessions. Successful Meetings, Bill Communications, Inc., 1422 Chestnut Street, Philadelphia, Pa. 19102. Subscription Rates: yearly (US, Canada, Mexico) $14.00; elsewhere,…

  18. The Fear of Play

    ERIC Educational Resources Information Center

    Almon, Joan

    2009-01-01

    Real play--play that is initiated and directed by children and that bubbles up from within the child rather than being imposed by adults--has largely disappeared from the landscape of childhood in the United States. There are many reasons for this, such as the long hours spent in front of screens each day or in activities organized by adults. In…

  19. Theories of Play.

    ERIC Educational Resources Information Center

    Peller, Lili E.

    1996-01-01

    Discusses several theories of play advanced before the development of psychoanalysis, including the theories of surplus energy, recreation, and practice. Examines the psychoanalytical view advanced by Freud and others, which focuses on the emotional release of play and its role in discovery and learning. (MDM)

  20. Why People Play.

    ERIC Educational Resources Information Center

    Ellis, M. J.

    A critical analysis is made of the content and assumptions of the many theories or explanations for play behavior. The seven chapters of the book are as follows. Chapter One, A Purview of the Problems, is a brief overview of the problems inherent in attempting to manage play, and the arguments for and against. The second chapter, Definitions of…

  1. Poetry and Play.

    ERIC Educational Resources Information Center

    Law, Richard A.

    Philosophers and poets from classical times to the present have argued that playful and amiable discourse are conducive to teaching and learning. The play principle enhances reading and study and should be applied by teachers to benefit their students. Teachers should help their students see that it is fun to enliven the imagination with good…

  2. Clinical Intuition at Play

    ERIC Educational Resources Information Center

    Marks-Tarlow, Terry

    2014-01-01

    A clinical psychologist and consulting psychotherapist discusses how elements of play, inherent in the intuition required in analysis, can provide a cornerstone for serious therapeutic work. She argues that many aspects of play--its key roles in human development, individual growth, and personal creativity, among others--can help therapists and…

  3. Intergenerational Learning through Play.

    ERIC Educational Resources Information Center

    Davis, Lindsay; Larkin, Elizabeth; Graves, Stephen B.

    2002-01-01

    Argues that shared play experiences are a good way to build mutually beneficial relationships among older and younger generations. Outlines why intergenerational play is important, focusing on its cognitive, social, physical, and emotional benefits for both older adults and young children. Describes toys, materials, and games conducive to positive…

  4. Family Play Therapy.

    ERIC Educational Resources Information Center

    Ariel, Shlomo

    This paper examines a case study of family play therapy in Israel. The unique contributions of play therapy are evaluated including the therapy's accessibility to young children, its richness and flexibility, its exposure of covert patterns, its wealth of therapeutic means, and its therapeutic economy. The systematization of the therapy attempts…

  5. MMP Regulation of Corneal Keratocyte Motility and Mechanics in 3-D Collagen Matrices

    PubMed Central

    Zhou, Chengxin; Petroll, W. Matthew

    2014-01-01

    outcome measures, the inhibitory effect of BB-94 was significantly greater than that of GM6001. Overall, the data demonstrate for the first time that even under conditions in which low levels of contractility and extracellular matrix proteolysis are maintained, MMPs still play an important role in mediating cell spreading and migration within 3-D collagen matrices. This appears to be mediated at least in part by membrane-tethered MMPs, such as MT1-MMP. PMID:24530619

  6. Effects of baicalin on collagen Ι and collagen ΙΙΙ expression in pulmonary arteries of rats with hypoxic pulmonary hypertension

    PubMed Central

    LIU, PANPAN; YAN, SHUANGQUAN; CHEN, MAYUN; CHEN, ALI; YAO, DAN; XU, XIAOMEI; CAI, XUEDING; WANG, LIANGXING; HUANG, XIAOYING

    2015-01-01

    The synthesis and accumulation of collagen play an important role in the formation and progression of hypoxic pulmonary hypertension. Baicalin has been reported to prevent bleomycin-induced pulmonary fibrosis. However, the role of baicalin in the treatment of pulmonary hypertension remains unknown. A disintegrin and metalloprotease with thrombospondin type-1 motif (ADAMTS-1) is a secreted enzyme that acts on a wide variety of extracellular matrix (ECM) substrates associated with vascular diseases. In this study, we aimed to investigate the effects of baicalin on the synthesis of collagen I in rats with pulmonary hypertension induced by hypoxia and the changes in ADAMTS-1 expression. A total of 24 Sprague Dawley rats were randomly assigned to 3 groups as follows: the control group (C), the hypoxia group (H) and the hypoxia + baicalin group (B). The rats in groups H and B were kept in a normobaric hypoxic chamber for 4 weeks, and the rats in group C were exposed to room air. We measured the hemodynamic indexes, including mean pulmonary artery pressure (mPAP), mean systemic (carotid) artery pressure (mSAP), and then calculated the mass ratio of right ventricle to left ventricle plus septum [RV/(LV + S)] to reflect the extent of right ventricular hypertrophy. We measured the mRNA and protein expression levels of type I collagen, type III collagen and ADAMTS-1 by hybridization in situ, and immunohistochemistry and western blot analysis, respectively. The results revealed that treatment with baicalin significantly reduced pulmonary artery pressure and attenuated the remodeling of the pulmonary artery under hypoxic conditions by increasing the expression of ADAMTS-1, so that the synthesis of type I collagen and its mRNA expression were inhibited. In conclusion, baicalin effectively inhibits the synthesis of collagen I in pulmonary arteries and this is associated with an increase in the expression of ADAMTS-1. Thus, treatment with baicalin may be an effective method for

  7. Glycation Contributes to Interaction Between Human Bone Alkaline Phosphatase and Collagen Type I.

    PubMed

    Halling Linder, Cecilia; Enander, Karin; Magnusson, Per

    2016-03-01

    Bone is a biological composite material comprised primarily of collagen type I and mineral crystals of calcium and phosphate in the form of hydroxyapatite (HA), which together provide its mechanical properties. Bone alkaline phosphatase (ALP), produced by osteoblasts, plays a pivotal role in the mineralization process. Affinity contacts between collagen, mainly type II, and the crown domain of various ALP isozymes were reported in a few in vitro studies in the 1980s and 1990s, but have not attracted much attention since, although such interactions may have important implications for the bone mineralization process. The objective of this study was to investigate the binding properties of human collagen type I to human bone ALP, including the two bone ALP isoforms B1 and B2. ALP from human liver, human placenta and E. coli were also studied. A surface plasmon resonance-based analysis, supported by electrophoresis and blotting, showed that bone ALP binds stronger to collagen type I in comparison with ALPs expressed in non-mineralizing tissues. Further, the B2 isoform binds significantly stronger to collagen type I in comparison with the B1 isoform. Human bone and liver ALP (with identical amino acid composition) displayed pronounced differences in binding, revealing that post-translational glycosylation properties govern these interactions to a large extent. In conclusion, this study presents the first evidence that glycosylation differences in human ALPs are of crucial importance for protein-protein interactions with collagen type I, although the presence of the ALP crown domain may also be necessary. Different binding affinities among the bone ALP isoforms may influence the mineral-collagen interface, mineralization kinetics, and degree of bone matrix mineralization, which are important factors determining the material properties of bone. PMID:26645431

  8. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia.

    PubMed

    Mižíková, Ivana; Ruiz-Camp, Jordi; Steenbock, Heiko; Madurga, Alicia; Vadász, István; Herold, Susanne; Mayer, Konstantin; Seeger, Werner; Brinckmann, Jürgen; Morty, Rory E

    2015-06-01

    Maturation of the lung extracellular matrix (ECM) plays an important role in the formation of alveolar gas exchange units. A key step in ECM maturation is cross-linking of collagen and elastin, which imparts stability and functionality to the ECM. During aberrant late lung development in bronchopulmonary dysplasia (BPD) patients and animal models of BPD, alveolarization is blocked, and the function of ECM cross-linking enzymes is deregulated, suggesting that perturbed ECM cross-linking may impact alveolarization. In a hyperoxia (85% O2)-based mouse model of BPD, blunted alveolarization was accompanied by alterations to lung collagen and elastin levels and cross-linking. Total collagen levels were increased (by 63%). The abundance of dihydroxylysinonorleucine collagen cross-links and the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio were increased by 11 and 18%, respectively, suggestive of a profibrotic state. In contrast, insoluble elastin levels and the abundance of the elastin cross-links desmosine and isodesmosine in insoluble elastin were decreased by 35, 30, and 21%, respectively. The lung collagen-to-elastin ratio was threefold increased. Treatment of hyperoxia-exposed newborn mice with the lysyl oxidase inhibitor β-aminopropionitrile partially restored normal collagen levels, normalized the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio, partially normalized desmosine and isodesmosine cross-links in insoluble elastin, and partially restored elastin foci structure in the developing septa. However, β-aminopropionitrile administration concomitant with hyperoxia exposure did not improve alveolarization, evident from unchanged alveolar surface area and alveoli number, and worsened septal thickening (increased by 12%). These data demonstrate that collagen and elastin cross-linking are perturbed during the arrested alveolarization of developing mouse lungs exposed to hyperoxia.

  9. Abortion in mice induced by intravenous injections of antibodies to type IV collagen or laminin.

    PubMed

    Foidart, J M; Yaar, M; Figueroa, A; Wilk, A; Brown, K S; Liotta, L A

    1983-03-01

    Purified antibodies to laminin or Type IV collagen administered intravenously to pregnant mice were found to localize in the basement membranes of all maternal tissues as well as the parietal and visceral yolk sacs and trophoblast basement membranes but not in embryonic tissues. Antibodies to Type IV collagen induced a higher incidence of abortions, retroplacental hematomas and fetal deaths. When administered intraamniotically, both antiserums were embryotoxic. The functional consequences of the attachment of antibodies to these specific basement membrane antigens appear to be hemorrhage within the parietal and visceral yolk sacs and separation of fetal from maternal tissues. Complement activation appears to play an important role in the interruptions of pregnancy, because this was not observed in strains of mice lacking C5, the fifth component of complement, in mice depleted of C3 by administration of cobra venom factor, or in mice injected with the F(ab) fragments of antibody to Type IV collagen or laminin.

  10. On the activation of bovine plasma factor XIII. Amino acid sequence of the peptide released by thrombin and the terminal residues of the subunit polypeptides.

    PubMed

    Nakamura, S; Iwanaga, S; Suzuki, T

    1975-12-01

    A blood coagulation factor, Factor XIII, was highly purified from bovine fresh plasma by a method similar to those used for human plasma Factor XIII. The isolated Factor XIII consisted of two subunit polypeptides, a and b chains, with molecular weights of 79,000 +/- 2,000 and 75,000 +/- 2,000, respectively. In the conversion of Factor XIII to the active enzyme, Factor XIIIa, by bovine thrombin [EC 3.4.21.5], a peptide was liberated. This peptide, designated tentatively as "activation peptide," was isolated by gel-filtration on a Sephadex G-75 column. It contained a total of 37 amino acid residues with a masked N-terminal residue and C-terminal arginine. The whole amino acid sequence of "Activation peptide" was established by the dansyl-Edman method and standard enzymatic techniques, and the masked N-terminal residue was identified as N-acetylserine by using a rat liver acylamino acid-releasing enzyme. This enzyme specifically cleaved the N-acetylserylglutamyl peptide bond serine and the remaining peptide, which was now reactive to 1-dimethylamino-naphthalene-5-sulfonyl chloride. A comparison of the sequences of human and bovine "Activation peptide" revealed five amino acids replacements, Ser-3 to Thr; Gly-5 to Arg; Ile-14 to Val; Thr-18 to Asn, and Pro-26 to Leu. Another difference was the deletion of Leu-34 in the human peptide. Adsorption chromatography on a hydroxylapatite column in the presence of 0.1% sodium dodecyl sulfate was developed as a preparative procedure for the resolution of the two subunit polypeptides, a or a' chain and b chain, constituting the protein molecule of Factor XIII or Factor XIIIa. End group analyses on the isolated pure chains revealed that the structural change of Factor XIII during activation with thrombin occurs only in the N-terminal portion of the a chain, not in the N-terminal end of the b chain or in the C-terminal ends of the a and b chains. From these results, it was concluded that the activation of bovine plasma Factor XIII

  11. Imaging Denatured Collagen Strands In vivo and Ex vivo via Photo-triggered Hybridization of Caged Collagen Mimetic Peptides

    PubMed Central

    Li, Yang; Foss, Catherine A.; Pomper, Martin G.; Yu, S. Michael

    2014-01-01

    Collagen is a major structural component of the extracellular matrix that supports tissue formation and maintenance. Although collagen remodeling is an integral part of normal tissue renewal, excessive amount of remodeling activity is involved in tumors, arthritis, and many other pathological conditions. During collagen remodeling, the triple helical structure of collagen molecules is disrupted by proteases in the extracellular environment. In addition, collagens present in many histological tissue samples are partially denatured by the fixation and preservation processes. Therefore, these denatured collagen strands can serve as effective targets for biological imaging. We previously developed a caged collagen mimetic peptide (CMP) that can be photo-triggered to hybridize with denatured collagen strands by forming triple helical structure, which is unique to collagens. The overall goals of this procedure are i) to image denatured collagen strands resulting from normal remodeling activities in vivo, and ii) to visualize collagens in ex vivo tissue sections using the photo-triggered caged CMPs. To achieve effective hybridization and successful in vivo and ex vivo imaging, fluorescently labeled caged CMPs are either photo-activated immediately before intravenous injection, or are directly activated on tissue sections. Normal skeletal collagen remolding in nude mice and collagens in prefixed mouse cornea tissue sections are imaged in this procedure. The imaging method based on the CMP-collagen hybridization technology presented here could lead to deeper understanding of the tissue remodeling process, as well as allow development of new diagnostics for diseases associated with high collagen remodeling activity. PMID:24513868

  12. Stable isotope-labeled collagen: a novel and versatile tool for quantitative collagen analyses using mass spectrometry.

    PubMed

    Taga, Yuki; Kusubata, Masashi; Ogawa-Goto, Kiyoko; Hattori, Shunji

    2014-08-01

    Collagens are the most abundant proteins in animals and are involved in many physiological/pathological events. Although various methods have been used to quantify collagen and its post-translational modifications (PTMs) over the years, it is still difficult to accurately quantify type-specific collagen and minor collagen PTMs. We report a novel quantitative method targeting collagen using stable isotope-labeled collagen named "SI-collagen", which was labeled with isotopically heavy lysine, arginine, and proline in fibroblasts culture. We prepared highly labeled and purified SI-collagen for use as an internal standard in mass spectrometric analysis, particularly for a new approach using amino acid hydrolysis. Our method enabled accurate collagen analyses, including quantification of (1) type-specific collagen (types I and III in this paper), (2) total collagen, and (3) collagen PTMs by LC-MS with high sensitivity. SI-collagen is also applicable to other diverse analyses of collagen and can be a powerful tool for various studies, such as detailed investigation of collagen-related disorders.

  13. Interruptions in the collagen repeating tripeptide pattern can promote supramolecular association.

    PubMed

    Hwang, Eileen S; Thiagarajan, Geetha; Parmar, Avanish S; Brodsky, Barbara

    2010-05-01

    The standard collagen triple-helix requires a perfect (Gly-Xaa-Yaa)(n) sequence, yet all nonfibrillar collagens contain interruptions in this tripeptide repeating pattern. Defining the structural consequences of disruptions in the sequence pattern may shed light on the biological role of sequence interruptions, which have been suggested to play a role in molecular flexibility, collagen degradation, and ligand binding. Previous studies on model peptides with 1- and 4-residue interruptions showed a localized perturbation within the triple-helix, and this work is extended to introduce natural collagen interruptions up to nine residue in length within a fixed (Gly-Pro-Hyp)(n) peptide context. All peptides in this set show decreases in triple-helix content and stability, with greater conformational perturbations for the interruptions longer than five residue. The most stable and least perturbed structure is seen for the 5-residue interruption peptide, whose sequence corresponds to a Gly to Ala missense mutation, such as those leading to collagen genetic diseases. The triple-helix peptides containing 8- and 9-residue interruptions exhibit a strong propensity for self-association to fibrous structures. In addition, a small peptide modeling only the 9-residue sequence within the interruption aggregates to form amyloid-like fibrils with antiparallel beta-sheet structure. The 8- and 9-residue interruption sequences studied here are predicted to have significant cross-beta aggregation potential, and a similar propensity is reported for approximately 10% of other naturally occurring interruptions. The presence of amyloidogenic sequences within or between triple-helix domains may play a role in molecular association to normal tissue structures and could participate in observed interactions between collagen and amyloid.

  14. Configurational effects of collagen/ALP coatings on enzyme immobilization and surface mineralization

    NASA Astrophysics Data System (ADS)

    Bosco, R.; Leeuwenburgh, S. C. G.; Jansen, J. A.; van den Beucken, J. J. J. P.

    2014-08-01

    The ultimate goal for surface modifications in bone implants is to achieve biologically active surface able to control and trigger specific tissue response. In this study was evaluated the effects of organic compound, derived from extracellular matrix, involved in tissue mineralization. Alkaline phosphatase (ALP) plays a fundamental role in bone mineralization concurrently with collagen, the main organic components of bones. Electrospray deposition (ESD) was used to coat titanium disks with ALP and collagen at room temperature. To verify the synergistic role of ALP and collagen different conformations of coatings (mixed and layered) were obtained and their mineralization capacity was tested in vitro. The mineralization tests indicated the fundamental role of collagen to increase ALP coating retention. Analyses indicated that the coating conformation has a role; in fact the mixed group showed improved ALP retention, enzymatic activity and unique mineralized surface morphology. ESD demonstrated to be a successful method to deposit organic molecules preserving their properties as indicated by the in vitro results. These findings proved the synergistic effect of ALP and collagen in inducing mineralization offering an intriguing coating constituent for medical device that aim to trigger surface mineralization such as bone implants.

  15. Apatite coating on anionic and native collagen films by an alternate soaking process.

    PubMed

    Góes, J C; Figueiró, S D; Oliveira, A M; Macedo, A A M; Silva, C C; Ricardo, N M P S; Sombra, A S B

    2007-09-01

    The present study focuses on apatite coating on collagen films, with various different densities of carboxyl groups, using an alternate soaking process. Anionic collagen (AC), which has different densities of carboxylic groups compared to native collagen (NC), was obtained by hydrolysis of carboxyamides of asparagine and glutamine residues. From X-ray diffraction analysis, apatite was found to be coated on AC and NC films. Peaks ascribed to apatite were observed at 26 degrees and 32 degrees in the diffraction patterns of hydroxyapatite crystals. The amount of apatite coated on both AC and NC collagen films continued to increase up to 100 reaction cycles. However, there is a significant difference in apatite coating between the two films. The amount of apatite formed on the surface of AC film increased 1.24 times faster than on NC film. The scanning electron photomicrograph images of the mineralized NC and the AC film coatings formed after 100cycles show that regular porous apatite coating had formed within the collagen fibrils. These results suggest that the higher content of carboxyl groups in AC plays an effective role in the heterogeneous nucleation of apatite in the body environment.

  16. Dynamic behaviors of astrocytes in chemically modified fibrin and collagen hydrogels.

    PubMed

    Seyedhassantehrani, Negar; Li, Yongchao; Yao, Li

    2016-05-16

    Astrocytes play a critical role in supporting the normal physiological function of neurons in the central nervous system (CNS). Astrocyte transplantation can potentially promote axonal regeneration and functional recovery after spinal cord injury (SCI). Fibrin and collagen hydrogels provide growth-permissive substrates and serve as carriers for therapeutic cell transplantation into an injured spinal cord. However, the application of fibrin and collagen hydrogels may be limited due to their relatively rapid degradation rate in vivo. In this study, immature astrocytes isolated from neonatal rats were grown in fibrin hydrogels containing aprotinin and collagen hydrogels crosslinked with poly(ethylene glycol) ether tetrasuccinimidyl glutarate (4S-StarPEG), and the cell behavior in these hydrogels was studied. The cell viability of astrocytes in the hydrogels was tested using the LIVE/DEAD® assay and the AlamarBlue® assay, and this study showed that astrocytes maintained good viability in these hydrogels. The cell migration study showed that astrocytes migrated in the fibrin and collagen hydrogels, and the migration speed is similar in these hydrogels. The crosslinking of collagen hydrogels with 4S-StarPEG did not change the astrocyte migration speed. However, the addition of aprotinin in the fibrin hydrogel inhibited astrocyte migration. The expression of chondroitin sulfate proteoglycan (CSPG), including NG2, neurocan, and versican, by astrocytes grown in the hydrogels was analyzed by quantitative RT-PCR. The expression of NG2, neurocan, and versican by the cells in these hydrogels was not significantly different. PMID:27079938

  17. A comparative study of skin cell activities in collagen and fibrin constructs.

    PubMed

    Law, Jia Xian; Musa, Faiza; Ruszymah, Bt Hj Idrus; El Haj, Alicia J; Yang, Ying

    2016-09-01

    Collagen and fibrin are widely used in tissue engineering due to their excellent biocompatibility and bioactivities that support in vivo tissue formation. These two hydrogels naturally present in different wound healing stages with different regulatory effects on cells, and both of them are mechanically weak in the reconstructed hydrogels. We conducted a comparative study by the growth of rat dermal fibroblasts or dermal fibroblasts and epidermal keratinocytes together in collagen and fibrin constructs respectively with and without the reinforcement of electrospun poly(lactic acid) nanofiber mesh. Cell proliferation, gel contraction and elastic modulus of the constructs were measured on the same gels at multiple time points during the 22 day culturing period using multiple non-destructive techniques. The results demonstrated considerably different cellular activities within the two types of constructs. Co-culturing keratinocytes with fibroblasts in the collagen constructs reduced the fibroblast proliferation, collagen contraction and mechanical strength at late culture point regardless of the presence of nanofibers. Co-culturing keratinocytes with fibroblasts in the fibrin constructs promoted fibroblast proliferation but exerted no influence on fibrin contraction and mechanical strength. The presence of nanofibers in the collagen and fibrin constructs played a favorable role on the fibroblast proliferation when keratinocytes were absent. Thus, this study exhibited new evidence of the strong cross-talk between keratinocytes and fibroblasts, which can be used to control fibroblast proliferation and construct contraction. This cross-talk activity is extracellular matrix-dependent in terms of the fibrous network morphology, density and strength. PMID:27349492

  18. Nitroxides are more efficient inhibitors of oxidative damage to calf skin collagen than antioxidant vitamins.

    PubMed

    Venditti, Elisabetta; Scirè, Andrea; Tanfani, Fabio; Greci, Lucedio; Damiani, Elisabetta

    2008-01-01

    Reactive oxygen species generated upon UV-A exposure appear to play a major role in dermal connective tissue transformations including degradation of skin collagen. Here we investigate on oxidative damage to collagen achieved by exposure to (i) UV-A irradiation and to (ii) AAPH-derived radicals and on its possible prevention using synthetic and natural antioxidants. Oxidative damage was identified through SDS-PAGE, circular dichroism spectroscopy and quantification of protein carbonyl residues. Collagen (2 mg/ml) exposed to UV-A and to AAPH-derived radicals was degraded in a time- and dose-dependent manner. Upon UV-A exposure, maximum damage was observable at 730 kJ/m2 UV-A, found to be equivalent to roughly 2 h of sunshine, while exposure to 5 mM AAPH for 2 h at 50 degrees C lead to maximum collagen degradation. In both cases, dose-dependent protection was achieved by incubation with muM concentrations of nitroxide radicals, where the extent of protection was shown to be dictated by their structural differences whereas the vitamins E and C proved less efficient inhibitors of collagen damage. These results suggest that nitroxide radicals may be able to prevent oxidative injury to dermal tissues in vivo alternatively to commonly used natural antioxidants.

  19. Characterization of Fibrin and Collagen Gels for Engineering Wound Healing Models

    PubMed Central

    Moreno-Arotzena, Oihana; Meier, Johann G.; del Amo, Cristina; García-Aznar, José Manuel

    2015-01-01

    Hydrogels are used for 3D in vitro assays and tissue engineering and regeneration purposes. For a thorough interpretation of this technology, an integral biomechanical characterization of the materials is required. In this work, we characterize the mechanical and functional behavior of two specific hydrogels that play critical roles in wound healing, collagen and fibrin. A coherent and complementary characterization was performed using a generalized and standard composition of each hydrogel and a combination of techniques. Microstructural analysis was performed by scanning electron microscopy and confocal reflection imaging. Permeability was measured using a microfluidic-based experimental set-up, and mechanical responses were analyzed by rheology. We measured a pore size of 2.84 and 1.69 μm for collagen and fibrin, respectively. Correspondingly, the permeability of the gels was 1.00·10−12 and 5.73·10−13 m2. The shear modulus in the linear viscoelastic regime was 15 Pa for collagen and 300 Pa for fibrin. The gels exhibited strain-hardening behavior at ca. 10% and 50% strain for fibrin and collagen, respectively. This consistent biomechanical characterization provides a detailed and robust starting point for different 3D in vitro bioapplications, such as collagen and/or fibrin gels. These features may have major implications for 3D cellular behavior by inducing divergent microenvironmental cues. PMID:26290683

  20. Collagen V Is a Potential Substrate for Clostridial Collagenase G in Pancreatic Islet Isolation

    PubMed Central

    Shima, Hiroki; Inagaki, Akiko; Imura, Takehiro; Yamagata, Youhei; Watanabe, Kimiko; Igarashi, Kazuhiko; Goto, Masafumi; Murayama, Kazutaka

    2016-01-01

    The clostridial collagenases, H and G, play key roles in pancreatic islet isolation. Collagenases digest the peptide bond between Yaa and the subsequent Gly in Gly-Xaa-Yaa repeats. To fully understand the pancreatic islet isolation process, identification of the collagenase substrates in the tissue is very important. Although collagen types I and III were reported as possible substrates for collagenase H, the substrate for collagenase G remains unknown. In this study, collagen type V was focused upon as the target for collagenases. In vitro digestion experiments for collagen type V were performed and analyzed by SDS-PAGE and mass spectrometry. Porcine pancreatic tissues were digested in vitro under three conditions and observed during digestion. The results revealed that collagen type V was only digested by collagenase G and that the digestion was initiated from the N-terminal part. Tissue degradation during porcine islet isolation was only observed in the presence of both collagenases H and G. These findings suggest that collagen type V is one of the substrates for collagenase G. The enzymatic activity of collagenase G appears to be more important for pancreatic islet isolation in large mammals such as pigs and humans. PMID:27195301

  1. Retinoic acid modulates rat Ito cell proliferation, collagen, and transforming growth factor beta production.

    PubMed Central

    Davis, B H; Kramer, R T; Davidson, N O

    1990-01-01

    Recent studies suggest that vitamin A plays an inhibitory role with respect to "activation" of the hepatic Ito cell, a likely effector of hepatic fibrogenesis. Ito cell "activation" during fibrogenesis is characterized by a decrease in intracellular vitamin A and an increase in cellular proliferation and collagen production. To explore the hypothesis that retinoids have the capacity to diminish Ito cell activation, cultured Ito cells were exposed to retinoic acid and its effects assessed on three key features: cell proliferation, collagen protein production and mRNA abundance, and transforming growth factor beta protein production. Retinoic acid was 100-1,000X more potent than retinol with respect to inhibition of Ito cell proliferation. Interstitial collagen and transforming growth factor beta production were also reduced by 10(-6) M retinoic acid. The relative abundance of type I collagen mRNA however, was not significantly altered. By contrast, retinoic acid administration to rats caused a marked reduction in the abundance of type I collagen mRNA in both total hepatic and purified Ito cell RNA. The relative abundance of rat hepatic fibronectin or apolipoprotein E mRNA was not significantly altered. These studies demonstrate that retinoic acid can differentially modulate several key features of hepatic fibrogenesis in vitro and in vivo. Images PMID:2254460

  2. Effects of Panax ginseng extract on human dermal fibroblast proliferation and collagen synthesis.

    PubMed

    Lee, Geum-Young; Park, Kang-Gyun; Namgoong, Sik; Han, Seung-Kyu; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung

    2016-03-01

    Current studies of Panax ginseng (or Korean ginseng) have demonstrated that it has various biological effects, including angiogenesis, immunostimulation, antimicrobial and anti-inflammatory effects. Therefore, we hypothesised that P. ginseng may also play an important role in wound healing. However, few studies have been conducted on the wound-healing effects of P. ginseng. Thus, the purpose of this in vitro pilot study was to determine the effects of P. ginseng on the activities of fibroblasts, which are key wound-healing cells. Cultured human dermal fibroblasts were treated with one of six concentrations of P. ginseng: 0, 1, 10 and 100 ng/ml and 1 and 10 µg/ml. Cell proliferation was determined 3 days post-treatment using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay, and collagen synthesis was evaluated by the collagen type I carboxy-terminal propeptide method. Cell proliferation levels and collagen synthesis were compared among the groups. The 10 ng/ml to 1 µg/ml P. ginseng treatments significantly increased cell proliferation, and the 1 ng/ml to 1 µg/ml concentrations significantly increased collagen synthesis. The maximum effects for both parameters were observed at 10 ng/ml. P. ginseng stimulated human dermal fibroblast proliferation and collagen synthesis at an optimal concentration of 10 ng/ml.

  3. Diabetes alters mechanical properties and collagen fiber re-alignment in multiple mouse tendons.

    PubMed

    Connizzo, Brianne K; Bhatt, Pankti R; Liechty, Kenneth W; Soslowsky, Louis J

    2014-09-01

    Tendons function to transfer load from muscle to bone through their complex composition and hierarchical structure, consisting mainly of type I collagen. Recent evidence suggests that type II diabetes may cause alterations in collagen structure, such as irregular fibril morphology and density, which could play a role in the mechanical function of tendons. Using the db/db mouse model of type II diabetes, the diabetic skin was found to have impaired biomechanical properties when compared to the non-diabetic group. The purpose of this study was to assess the effect of diabetes on biomechanics, collagen fiber re-alignment, and biochemistry in three functionally different tendons (Achilles, supraspinatus, patellar) using the db/db mouse model. Results showed that cross-sectional area and stiffness, but not modulus, were significantly reduced in all three tendons. However, the tendon response to load (transition strain, collagen fiber re-alignment) occurred earlier in the mechanical test, contrary to expectations. In addition, the patellar tendon had an altered response to diabetes when compared to the other two tendons, with no changes in fiber re-alignment and decreased collagen content at the midsubstance of the tendon. Overall, type II diabetes alters tendon mechanical properties and the dynamic response to load.

  4. Decreased type V collagen expression in human decidual tissues of spontaneous abortion during early pregnancy.

    PubMed Central

    Iwahashi, M; Nakano, R

    1998-01-01

    AIM: To provide some insight into the aetiology of spontaneous abortion, the contents of type V collagen was investigated in human decidual tissues in spontaneous abortion and normal pregnancy. METHODS: Collagens were extracted from decidual tissues in spontaneous abortion (n = 19) and normal pregnancy (n = 25). The different types of collagen alpha chains were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), stained with Coomassie brilliant blue, and measured by densitometry. The relative amounts of the alpha 1 (III) and alpha 1 (V) chains were calculated by dividing the band intensities of the alpha 1 (III) and alpha 1 (V) chains by that of the alpha 1 (I) chain. RESULTS: The ratio of the alpha 1 (V) chain to that of the alpha 1 (I) chain in decidual tissues in spontaneous abortion was significantly lower than that found in normal pregnancy (p < 0.05). CONCLUSIONS: These results suggest that type V collagen might play an important role in the maintenance of pregnancy and that decreased expression of this collagen could be associated with spontaneous abortion. Images PMID:9577371

  5. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix

    PubMed Central

    Liang, Hui; Li, Xiaoran; Wang, Bin; Chen, Bing; Zhao, Yannan; Sun, Jie; Zhuang, Yan; Shi, Jiajia; Shen, He; Zhang, Zhijun; Dai, Jianwu

    2016-01-01

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of cetuximab was fused with CBD (CBD-Fab) and expressed in Pichia pastoris. CBD-Fab maintained antigen binding and anti-tumor activity of cetuximab and obtained a collagen-binding ability in vitro. The results also showed CBD-Fab was mainly enriched in tumors and had longer retention time in tumors in A431 s.c. xenografts. Furthermore, CBD-Fab showed a similar therapeutic efficacy as cetuximab in A431 xenografts. Although CBD-Fab hasn’t showed better therapeutic effects than cetuximab, its smaller molecular and special target may be applicable as antibody–drug conjugates (ADC) or immunotoxins. PMID:26883295

  6. Hydroxyapatite-reinforced collagen tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Kane, Robert J.

    Scaffolds have been fabricated from a wide variety of materials and most have showed some success, either as bone graft substitutes or as tissue engineering scaffolds. However, all current scaffold compositions and architectures suffer from one or more flaws including poor mechanical properties, lack of biological response, nondegradability, or a scaffold architecture not conducive to osteointegration. Biomimetic approaches to scaffold design using the two main components of bone tissue, collagen and hydroxyapatite, resulted in scaffolds with superior biological properties but relatively poor mechanical properties and scaffold architecture. It was hypothesized that by optimizing scaffold composition and architecture, HA-collagen bone tissue engineering scaffolds could provide both an excellent biological response along with improved structural properties. The mechanical properties of freeze-dried HA-collagen scaffolds, the most common type of porous HA-collagen material, were first shown to be increased by the addition of HA reinforcements, but scaffold stiffness still fell far short of the desired range. Based on limitations inherent in the freeze-dried process, a new type of leached-porogen scaffold fabrication process was developed. Proof-of-concept scaffolds demonstrated the feasibility of producing leached-porogen HA-collagen materials, and the scaffold architecture was optimized though careful selection of porogen particle size and shape along with an improved crosslinking technique. The final scaffolds exhibited substantially increased compressive modulus compared to previous types HA-collagen scaffolds, while the porosity, pore size, and scaffold permeability were tailored to be suitable for bone tissue ingrowth. An in vitro study demonstrated the capacity of the leached-porogen scaffolds to serve as a substrate for the differentiation of osteoblasts and subsequent production of new bone tissue. The new leached-porogen scaffold HA-collagen scaffolds were

  7. Daily consumption of the collagen supplement Pure Gold Collagen® reduces visible signs of aging.

    PubMed

    Borumand, Maryam; Sibilla, Sara

    2014-01-01

    With age, changes in the metabolic processes of structural components of the skin lead to visible signs of aging, such as increased dryness and wrinkle formation. The nutritional supplement, Pure Gold Collagen(®), which consists of hydrolyzed collagen, hyaluronic acid, vitamins, and minerals, was developed to counteract these signs. An open-label study was conducted to investigate the effects of this nutritional supplement on skin properties. Supplementation with 50 mL of Pure Gold Collagen on a daily basis for 60 days led to a noticeable reduction in skin dryness, wrinkles, and nasolabial fold depth. In addition, a significant increase in collagen density and skin firmness was observed after 12 weeks. The data from this study suggest that Pure Gold Collagen can counteract signs of natural aging.

  8. Plasma clot-promoting effect of collagen in relation to collagen-platelet interaction

    SciTech Connect

    Gentry, P.A.; Schneider, M.D.; Miller, J.K.

    1981-01-01

    The hemostatic function of several acid-soluble collagen preparations and a fibrillar-form collagen preparation have been compared. Pepsin-treated acid-soluble collagen isolated from burro and horse aortic tissue and acid-soluble colagen isolated from human umbilical cord readily promoted platelet aggregation, but failed to activate the coagulation mechanism even after prolonged incubation with plasma at 37 C. By contrast, fibrillar-form collagen isolated from burro aorta was both an efficient stimulant for the induction of platelet aggregation and a potent clot-promoting agent. Similar results were found for all the collagen preparations irrespective of whether the studies were conducted with sheep or with burro plasma. Heat denaturation studies showed that the hemostatic functon of the fibrillar-form colagen was dependent on an intact tirple-helical structure.

  9. Daily consumption of the collagen supplement Pure Gold Collagen® reduces visible signs of aging

    PubMed Central

    Borumand, Maryam; Sibilla, Sara

    2014-01-01

    With age, changes in the metabolic processes of structural components of the skin lead to visible signs of aging, such as increased dryness and wrinkle formation. The nutritional supplement, Pure Gold Collagen®, which consists of hydrolyzed collagen, hyaluronic acid, vitamins, and minerals, was developed to counteract these signs. An open-label study was conducted to investigate the effects of this nutritional supplement on skin properties. Supplementation with 50 mL of Pure Gold Collagen on a daily basis for 60 days led to a noticeable reduction in skin dryness, wrinkles, and nasolabial fold depth. In addition, a significant increase in collagen density and skin firmness was observed after 12 weeks. The data from this study suggest that Pure Gold Collagen can counteract signs of natural aging. PMID:25342893

  10. Lipoid proteinosis: an inherited disorder of collagen metabolism?

    PubMed

    Harper, J I; Duance, V C; Sims, T J; Light, N D

    1985-08-01

    The dermal collagen of a patient with lipoid proteinosis was investigated by immunohistochemistry and biochemical analysis. The affected skin was found to contain significantly less collagen per unit dry weight than normal dermis but showed elevated levels of type 3 collagen with respect to type I. Purification of collagen types from affected skin after pepsin digestion showed no novel forms, but a doubling in the yield of type 5 collagen. These results correlated well with those of immunohistochemistry which showed a patchy, diffuse, widely distributed type 3 collagen and an increase in types 4 and 5 collagens associated with 'onion skin' endothelial basement membrane thickening. Estimation of collagen cross-links showed an abnormal pattern with a preponderance of the keto-imine form not normally associated with skin. These results strongly suggest that lipoid proteinosis involves a primary perturbation of collagen metabolism.

  11. Lipoid proteinosis: an inherited disorder of collagen metabolism?

    PubMed

    Harper, J I; Duance, V C; Sims, T J; Light, N D

    1985-08-01

    The dermal collagen of a patient with lipoid proteinosis was investigated by immunohistochemistry and biochemical analysis. The affected skin was found to contain significantly less collagen per unit dry weight than normal dermis but showed elevated levels of type 3 collagen with respect to type I. Purification of collagen types from affected skin after pepsin digestion showed no novel forms, but a doubling in the yield of type 5 collagen. These results correlated well with those of immunohistochemistry which showed a patchy, diffuse, widely distributed type 3 collagen and an increase in types 4 and 5 collagens associated with 'onion skin' endothelial basement membrane thickening. Estimation of collagen cross-links showed an abnormal pattern with a preponderance of the keto-imine form not normally associated with skin. These results strongly suggest that lipoid proteinosis involves a primary perturbation of collagen metabolism. PMID:3896292

  12. Play Spaces in Denmark.

    ERIC Educational Resources Information Center

    Mitchell, Edna; Anderson, Robert T.

    1980-01-01

    Describes the variety of play spaces found in urban areas in Denmark: in banks, stores and individual businesses, neighborhood parks and small pocket playgrounds, specialized adventure and traffic playgrounds with supervised activities, and commercial amusement parks. (CM)

  13. The Scottish Play.

    ERIC Educational Resources Information Center

    Wheat, Chris

    1999-01-01

    Recounts an episode when, as young schoolboys, Prince Charles and classmates presented "Macbeth" as an end-of-term-play. Traces the events at school that took on different meanings when viewed from maturity. (NH)

  14. Venezuela-MEM/USA-DOE Fossil Energy Report XIII-1, Supporting Technology for Enhanced Oil Recovery, Microbial EOR

    SciTech Connect

    Ziritt, Jose Luis

    1999-11-03

    The results from Annex XIII of the Cooperative Agreement between the United States Department of Energy (DOE) and the Ministry of Energy and Mines of the Republic of Venezuela (MEMV) have been documented and published with many researchers involved. Integrate comprehensive research programs in the area of Microbial Enhanced Oil Recovery (MEOR) ranged from feasibility laboratory studies to full-scale multi-well field pilots. The objective, to cooperate in a technical exchange of ideas and information was fully met throughout the life of the Annex. Information has been exchanged between the two countries through published reports and technical meetings between experts in both country's research communities. The meetings occurred every two years in locations coincident with the International MEOR conferences & workshops sponsored by DOE (June 1990, University of Oklahoma, September 1992, Brookhaven, September 1995, National Institute of Petroleum and Energy Research). Reports and publications produced during these years are listed in Appendix B. Several Annex managers have guided the exchange through the years. They included Luis Vierma, Jose Luis Zirritt, representing MEMV and E. B. Nuckols, Edith Allison, and Rhonda Lindsey, representing the U.S. DOE. Funding for this area of research remained steady for a few years but decreased in recent years. Because both countries have reduced research programs in this area, future exchanges on this topic will occur through ANNEX XV. Informal networks established between researchers through the years should continue to function between individuals in the two countries.

  15. The 2001 June 21 Eclipse Polarimetric Observations of the Fe XIII 1074.7 nm Emission Line

    NASA Astrophysics Data System (ADS)

    Habbal, S. R.; Arndt, M. B.; Nayfeh, M. H.; Arnaud, J.; Johnson, J.; Hegwer, S.; Ene, A.

    2003-05-01

    Polarimetric measurements of the coronal forbidden lines have been recognized for quite some time as a diagnostic tool for inferring the direction of the coronal magnetic field. Following the first successful measurements by Eddy et al. (1973) during the total solar eclipse of 1966, an observing campaign using the coronagraph at Sacramento Peak Observatory was pursued between 1977-1980 (Arnaud and Newkirk, 1987). All these measurements yielded the surprising result that the direction of polarization implied a predominantly radial coronal magnetic field. We report on the polarization measurements of the Fe XIII 1074.7nm line, the strongest of the coronal forbidden lines, which were obtained during the total solar eclipse of 2001 June 21 from Zambia. In addition to confirming the earlier results of a predominantly radial field, the signature of nano-size interplanetary dust in the inner corona, most likely in the form of silicon nanoparticles, appeared for the first time in these measurements. The signature of these particles also coincides with the radial expansion of coronal holes outwards from the Sun, a signature that has never appeared in any measurement before. Support for this work was provided by NSF grant ATM-0003661 and NASA grant NAG5-10873

  16. Factor XIII-A transglutaminase deficient mice show signs of metabolically healthy obesity on high fat diet

    PubMed Central

    Myneni, Vamsee D.; Mousa, Aisha; Kaartinen, Mari T.

    2016-01-01

    F13A1 gene, which encodes for Factor XIII-A blood clotting factor and a transglutaminase enzyme, was recently identified as a potential causative gene for obesity in humans. In our previous in vitro work, we showed that FXIII-A regulates preadipocyte differentiation and modulates insulin signaling via promoting plasma fibronectin assembly into the extracellular matrix. To understand the role of FXIII-A in whole body energy metabolism, here we have characterized the metabolic phenotype of F13a1−/− mice. F13a1−/− and F13a1+/+ type mice were fed chow or obesogenic, high fat diet for 20 weeks. Weight gain, total fat mass and fat pad mass, glucose handling, insulin sensitivity, energy expenditure and, morphological and biochemical analysis of adipose tissue was performed. We show that mice lacking FXIII-A gain weight on obesogenic diet, similarly as wild type mice, but exhibit a number of features of metabolically healthy obesity such as protection from developing diet-induced insulin resistance and hyperinsulinemia. Mice also show normal fasting glucose levels, larger adipocytes, decreased extracellular matrix accumulation and inflammation of adipose tissue, as well as decreased circulating triglycerides. This study reveals that FXIII-A transglutaminase can regulate whole body insulin sensitivity and may have a role in the development of diet-induced metabolic disturbances. PMID:27759118

  17. [Study on the n = 5 complex transitions for ions Nd XIII-Sm XV in Cd I isoelectronic sequence].

    PubMed

    Ding, Kai; Mu, Zhi-Dong; Ye, Shi-Wang

    2011-01-01

    The energy levels of the n = 5 complex configuration 5s2, 5s5p, 5s5d and 5p2 were computed for Cd I isoelectronic sequence ions from I VI to Sm XV by Hartree-Fock with relativistic corrections (HFR) method. By analyzing the variation of difference deltaE between energy levels calculated by HFR method and the experimental values with Z(c) along this isoelectronic sequence, the authors put forward a new fitting formula for generalized-least-square-fit (LSF) calculation. Using this formula and the FORTRAN programme designed by us, the energy levels of configurations mentioned above were calculated. The unknown energy levels of configuration 5s2 , 5s5p, 5s5d and 5p2 for ions from Nd XIII-Sm XV were predicted by extrapolation (or interpolation). Also, the wavelengths and HFR probabilities of transition 5s2-5s5p, 5s5p-5p2 and 5s5p-5s5d were computed. The calculated energy levels and wavelength results are in good agreement with corresponding experimental data reported in the references. PMID:21428048

  18. G protein-coupled receptor kinase-2 is a novel regulator of collagen synthesis in adult human cardiac fibroblasts.

    PubMed

    D'Souza, Karen M; Malhotra, Ricky; Philip, Jennifer L; Staron, Michelle L; Theccanat, Tiju; Jeevanandam, Valluvan; Akhter, Shahab A

    2011-04-29

    Cardiac fibroblasts (CF) make up 60-70% of the total cell number in the heart and play a critical role in regulating normal myocardial function and in adverse remodeling following myocardial infarction and the transition to heart failure. Recent studies have shown that increased intracellular cAMP can inhibit CF transformation and collagen synthesis in adult rat CF; however, mechanisms by which cAMP production is regulated in CF have not been elucidated. We investigated the potential role of G protein-coupled receptor kinase-2 (GRK2) in modulating collagen synthesis by adult human CF isolated from normal and failing left ventricles. Baseline collagen synthesis was elevated in failing CF and was not inhibited by β-agonist stimulation in contrast to normal controls. β-adrenergic receptor (β-AR) signaling was markedly uncoupled in the failing CF, and expression and activity of GRK2 were increased 3-fold. Overexpression of GRK2 in normal CF recapitulated a heart failure phenotype with minimal inhibition of collagen synthesis following β-agonist stimulation. In contrast, knockdown of GRK2 expression in normal CF enhanced cAMP production and led to greater β-agonist-mediated inhibition of basal and TGFβ-stimulated collagen synthesis versus control. Inhibition of GRK2 activity in failing CF by expression of the GRK2 inhibitor, GRK2ct, or siRNA-mediated knockdown restored β-agonist-stimulated inhibition of collagen synthesis and decreased collagen synthesis in response to TGFβ stimulation. GRK2 appears to play a significant role in regulating collagen synthesis in adult human CF, and increased activity of this kinase may be an important mechanism of maladaptive ventricular remodeling as mediated by cardiac fibroblasts.

  19. Collagenous colitis: new diagnostic possibilities with endomicroscopy

    NASA Astrophysics Data System (ADS)

    Hoffman, A.; Goetz, M.; Biesterfeld, S.; Galle, P. R.; Neurath, M. F.; Kiesslich, R.

    2006-02-01

    Collagenous colitis is a kind of microscopic colitis. It is characterized by chronic watery diarrhea and abdominal pain. The etiology is still unknown. So far, for the diagnose a histological evaluation was necessary with the presence of thickened subepithelial collagneous bands in the lamina propria. A new developed endoscope with a confocal laser allows analysing cellular and subcellular details of the mucosal layer at high resolution in vivo. In this case report we describe for the first time to diagnose collagenous colitis during ongoing colonoscopy by using this confocal endomicroscopy. In a 67 year old female patient with typical symptoms the characteristic histological changes could be identified in the endomicroscopic view. Biopsies could be targeted to affected areas and endomicroscopic prediction of the presence of collagenous bands could be confirmed in all targeted biopsies. First endomicroscopic experience in microscopic colitis could be confirmed in four additional patients. Future prospective studies are warranted to further evaluate these initial findings. However, collagenous colitis is frequently missed and endomicroscopy seems to be the ideal tool for accurate diagnosing collagenous colitis during ongoing endoscopy.

  20. New recommendations for measuring collagen solubility.

    PubMed

    Latorre, María E; Lifschitz, Adrian L; Purslow, Peter P

    2016-08-01

    The heat-solubility of intramuscular collagen is usually conducted in 1/4 Ringer's solution at pH7.4, despite this ionic strength and pH being inappropriate for post-rigor meat. The current work studied the percentage of soluble collagen and hydrothermal isometric tension characteristics of perimysial strips on bovine semitendinosus muscles in either 1/4 Ringer's solution, distilled water, PBS, or a solution of the same salt concentration as 1/4 Ringer's but at pH5.6. Values of % soluble collagen were lower at pH7.4 than 5.6. Increasing ionic strength reduced % soluble collagen. The maximum perimysial isometric tension was independent of the bathing medium, but the percent relaxation was higher at pH7.4 than at pH5.6, and increased with ionic strength of the media. It is recommended that future measurements of collagen solubility and tests on connective tissue components of post-rigor meat should be carried out in a solution of concentrations NaCl and KCl equivalent to those in 1/4 Ringer's, but at pH5.6, a pH relevant to post-rigor meat. PMID:27057755

  1. Collagen degrading activity associated with Mycobacterium species

    PubMed Central

    Masso, F; Paez, A; Varela, E; d Diaz; Zenteno, E; Montano, L

    1999-01-01

    BACKGROUND—The mechanism of Mycobacterium tuberculosis penetration into tissues is poorly understood but it is reasonable to assume that there is a contribution from proteases capable of disrupting the extracellular matrix of the pulmonary epithelium and the blood vessels. A study was undertaken to identify and characterise collagen degrading activity of M tuberculosis.
METHODS—Culture filtrate protein extract (CFPE) was obtained from reference mycobacterial strains and mycobacteria isolated from patients with tuberculosis. The collagen degrading activity of CFPE was determined according to the method of Johnson-Wint using 3H-type I collagen. The enzyme was identified by the Birkedal-Hansen and Taylor method and its molecular mass determined by SDS-PAGE and Sephacryl S-300 gel filtration chromatography using an electroelution purified enzyme.
RESULTS—CFPE from Mycobacterium tuberculosis strain H37Rv showed collagenolytic activity that was four times higher than that of the avirulent strain H37Ra. The 75 kDa enzyme responsible was divalent cation dependent. Other mycobacterial species and those isolated from patients with tuberculosis also had collagen degrading activity.
CONCLUSIONS—Mycobacterium species possess a metalloprotease with collagen degrading activity. The highest enzymatic activity was found in the virulent reference strain H37Rv.

 PMID:10212111

  2. Collagenous gastritis: a case report and review.

    PubMed

    Ravikumara, Madhur; Ramani, Pramila; Spray, Christine H

    2007-08-01

    In this article, we report a case of collagenous gastritis in a child and review the paediatric cases reported to date. Collagenous gastritis is a rare entity, with only less than 30 cases reported so far, including 12 children, since the first description of this entity by Colletti and Trainer in 1989. This is a histological diagnosis characterised by a dramatically thickened subepithelial collagen band in the gastric mucosa associated with an inflammatory infiltrate. Children with this condition often present with epigastric pain and severe anaemia, with no evidence of extragastric involvement, in contrast to the adult patients, where chronic watery diarrhoea is the main presentation due to associated collagenous colitis. A macroscopic pattern of gastritis with nodularity of gastric mucosa, erythema and erosions are characteristic endoscopic findings in paediatric patients. Specific therapy has not been established and resolution of the abnormalities, either endoscopic or histological, has not been documented. In conclusion, collagenous gastritis is a rare entity of unknown aetiology, pathogenesis and prognosis. Gastroenterologists and pathologists need to be aware of this condition when evaluating a child with epigastric pain, anaemia and upper gastrointestinal bleeding, particularly when endoscopy reveals the nodularity of gastric mucosa. The identification, reporting and long-term follow-up of cases will shed more light on this puzzling condition. PMID:17453238

  3. Play: Children's Business and a Guide to Play Materials.

    ERIC Educational Resources Information Center

    Markun, Patricia Maloney, Ed.

    This collection of articles presents ideas about the value of children's play and suggests practical ways to implement good play experiences and select appropriate play materials. Articles examine play as an agent of social values, play and thinking, play and child development, the environmental opportunities for play factors that can destroy the…

  4. Regional differences in water content, collagen content, and collagen degradation in the cervix of nonpregnant cows.

    PubMed

    Breeveld-Dwarkasing, V N A; de Boer-Brouwer, M; te Koppele, J M; Bank, R A; van der Weijden, G C; Taverne, M A M; van Dissel-Emiliani, F M F

    2003-11-01

    The cow could be a suitable model for studies concerning functional changes of the cervix. However, as in many species, the bovine cervix becomes softer in texture during the follicular phase of the estrous cycle compared to the luteal phase. In the present study, we explored if changes in the collagen network take place that could be responsible for this phenomenon and if regional differences in water content, collagen content, and collagen degradation along the cross-sectional and longitudinal axes of the cervix were present. Two groups of nonpregnant animals with different progesterone status were studied. One group (n = 11) was under high progesterone influence, and the other group (n = 12) was under low progesterone influence. The water content was derived from the weight of the samples before and after lyophilization. The collagen content and the ratio of collagenous to noncollagenous proteins (hydroxyproline:proline ratio) were determined by performing amino acid analysis on hydrolyzed samples using high-performance liquid chromatography. Collagen denaturation was quantified with a colorimetric assay by determining the amount of hydroxyproline released from samples treated with alpha-chymotrypsine. The water content of the superficial layer of the submucosa was always significantly (P < 0.01) higher than the water content of the deep layer in the vaginal, mid, and uterine segments, but this was unrelated to the progesterone status of the animals. No effect of the tissue layers or of the progesterone status of the animals on the collagen content was observed, but an effect of segment was noted. The collagen content (mug/mg dry wt) in the vaginal segment of the cervix was significantly higher than in the mid (P < 0.05) and the uterine (P < 0.01) segments. The hydroxyproline:proline ratio showed the same pattern as the collagen content. The percentage of collagen denaturation in the superficial layer was always significantly (P < 0.01) higher than that in the

  5. Extracellular matrix of smooth muscle cells: interaction of collagen type V with heparan sulfate proteoglycan

    SciTech Connect

    Gay, S.; Hoeoek, M.; Gay, R.E.; Magargal, W.W.; Reynertson, R.H.

    1986-03-05

    Alteration in the extracellular matrix produced by smooth muscle cells may play a role in the development of atherosclerotic lesions. Consequently the authors have initiated studies on the structural organization of the extracellular matrix produced by cultured smooth muscle cells. Immunohisotological examination of this matrix using well-characterized mono- and polyclonal antibodies showed a partial codistribution of heparan sulfate (HS) proteoglycans with a number of different matrix components including collagen types I, III, IV, V and VI, laminin and fibronectin. Subsequent binding studies between isolated matrix proteins and HS showed that the polysaccharide interacts strongly with type V collagen and to a lesser extent with fibronectin as well as collagen types III and VI. The interaction between type V and HS was readily inhibited by heparin and highly sulfated HS but not be dermatan sulfate, chondroitin sulfate or HS with a low sulfate content. Furthermore, (/sup 35/S)-HS proteoglycans isolated from cultured smooth muscle cells could be adsorbed on a column of sepharose conjugated with native type V collagen and eluted in a salt gradient. Hence, the interaction between type V and HS may play a major part in stabilizing the extracellular matrix of the vessel wall.

  6. Type I collagen-mediated synthesis of noble metallic nanoparticles networks and the applications in Surface-Enhanced Raman Scattering and electrochemistry.

    PubMed

    Sun, Yujing; Sun, Lanlan; Zhang, Baohua; Xu, Fugang; Liu, Zhelin; Guo, Cunlan; Zhang, Yue; Li, Zhuang

    2009-08-15

    In this paper, we demonstrated an effective environmentally friendly synthesis route to prepare noble metallic (Au, Ag, Pt and Pd) nanoparticles (NPs) networks mediated by type I collagen in the absence of any seeds or surfactants. In the reactions, type I collagen served as stabilizing agent and assembly template for the synthesized metallic NPs. The hydrophobic interaction between collagen and mica interface as well as the hydrogen bonds between inter- and intra-collagen molecules play important roles in the formation of collagen-metallic NPs networks. The noble metallic NPs networks have many advantages in the applications of Surface-Enhanced Raman Scattering (SERS) and electrochemistry detection. Typically, the as-prepared Ag NPs networks reveal great Raman enhancement activity for 4-ATP, and can even be used to detect low concentration of DNA base, adenine, without any label step. Furthermore, the cyclic voltammograms showed Pt NPs networks have good electrocatalytic ability for the reduction of O(2).

  7. On the Collagen Mineralization. A Review

    PubMed Central

    TOMOAIA, GHEORGHE; PASCA, ROXANA-DIANA

    2015-01-01

    Collagen mineralization (CM) is a challenging process that has received a lot of attention in the past years. Among the reasons for this interest, the key role is the importance of collagen and hydroxyapatite in natural bone, as major constituents. Different protocols of mineralization have been developed, specially using simulated body fluid (SBF) and many methods have been used to characterize the systems obtained, starting with methods of determining the mineral content (XRD, FTIR, Raman, High-Resolution Spectral Ultrasound Imaging), continuing with imaging methods (AFM, TEM, SEM, Fluorescence Microscopy), thermal analysis (DSC and TGA), evaluation of the mechanical and biological properties, including statistical methods and molecular modeling. In spite of the great number of studies regarding collagen mineralization, its mechanism, both in vivo and in vitro, is not completely understood. Some of the methods used in vitro and investigation methods are reviewed here. PMID:26528042

  8. Regulation of collagen synthesis by ascorbic acid.

    PubMed Central

    Murad, S; Grove, D; Lindberg, K A; Reynolds, G; Sivarajah, A; Pinnell, S R

    1981-01-01

    After prolonged exposure to ascorbate, collagen synthesis in cultured human skin fibroblasts increased approximately 8-fold with no significant change in synthesis of noncollagen protein. This effect of ascorbate appears to be unrelated to its cofactor function in collagen hydroxylation. The collagenous protein secreted in the absence of added ascorbate was normal in hydroxylysine but was mildly deficient in hydroxyproline. In parallel experiments, lysine hydroxylase (peptidyllysine, 2-oxoglutarate:oxygen 5-oxidoreductase, EC 1.14.11.4) activity increased 3-fold in response to ascorbate administration whereas proline hydroxylase (prolyl-glycyl-peptide, 2-oxoglutarate:oxygen oxidoreductase, EC 1.14.11.2) activity decreased considerably. These results suggest that collage polypeptide synthesis, posttranslational hydroxylations, and activities of the two hydroxylases are independently regulated by ascorbate. PMID:6265920

  9. Physical crosslinkings of edible collagen casing.

    PubMed

    Wang, Wenhang; Zhang, Yi; Ye, Ran; Ni, Yonghao

    2015-11-01

    Although edible collagen casing has been commercially used in meat industry, the safety and effectiveness of collagen cross-linking with minimally invasive treatments are still big concerns for manufacturers. In this study, ultraviolet irradiation (UV) and dehydrothermal treatment (DHT) were used to improve the properties of casing. UV, DHT, and their combination (UV+DHT) significantly increased tensile strength and decreased elongation at break of casing, in which DHT showed the best performance. Swelling of casing was also partially inhibited by the treatments. Furthermore, UV and DHT slightly improved thermal stability of the casings. In addition, X-ray diffraction patterns showed the treatments caused different extents of denaturation of collagen. No obvious effects in thickness and light transparency except for surface roughness were observed in the treated casings. The physical treatments could potentially be used as safe and effective alternatives to chemical cross-linking for the production of collage casing.

  10. Biomimetic silicification of demineralized hierarchical collagenous tissues

    PubMed Central

    Ryou, Heonjune; Diogenes, Anibal; Yiu, Cynthia K.Y.; Mazzoni, Annalisa; Chen, Ji-hua; Arola, Dwayne D.; Hargreaves, Kenneth M.; Pashley, David H.; Tay, Franklin R.

    2013-01-01

    Unlike man-made composite materials, natural biominerals containing composites usually demonstrate different levels of sophisticated hierarchical structures which are responsible for their mechanical properties and other metabolic functions. However, the complex spatial organizations of the organic-inorganic phases are far beyond what they be achieved by contemporary engineering techniques. Here, we demonstrate that carbonated apatite present in collagen matrices derived from fish scale and bovine bone may be replaced by amorphous silica, using an approach that simulates what is utilized by phylogenetically ancient glass sponges. The structural hierarchy of these collagen-based biomaterials is replicated by the infiltration and condensation of fluidic polymer-stabilized silicic acid precursors within the intrafibrillar milieu of type I collagen fibrils. This facile biomimetic silicification strategy may be used for fabricating silica-based, three-dimensional functional materials with specific morphological and hierarchical requirements. PMID:23586938

  11. Biomimetic silicification of demineralized hierarchical collagenous tissues.

    PubMed

    Niu, Li-na; Jiao, Kai; Ryou, Heonjune; Diogenes, Anibal; Yiu, Cynthia K Y; Mazzoni, Annalisa; Chen, Ji-hua; Arola, Dwayne D; Hargreaves, Kenneth M; Pashley, David H; Tay, Franklin R

    2013-05-13

    Unlike man-made composite materials, natural biominerals containing composites usually demonstrate different levels of sophisticated hierarchical structures which are responsible for their mechanical properties and other metabolic functions. However, the complex spatial organizations of the organic-inorganic phases are far beyond what they achieved by contemporary engineering techniques. Here, we demonstrate that carbonated apatite present in collagen matrices derived from fish scale and bovine bone may be replaced by amorphous silica, using an approach that simulates what is utilized by phylogenetically ancient glass sponges. The structural hierarchy of these collagen-based biomaterials is replicated by the infiltration and condensation of fluidic polymer-stabilized silicic acid precursors within the intrafibrillar milieu of type I collagen fibrils. This facile biomimetic silicification strategy may be used for fabricating silica-based, three-dimensional functional materials with specific morphological and hierarchical requirements.

  12. Collagenous gastritis in the pediatric age.

    PubMed

    Rosell-Camps, Antonio; Riera-Llodrá, Joana María; Colom-Segui, Marina; Zibetti, Sara; Amengual-Antich, Isabel

    2015-05-01

    Collagenous gastritis (CG) is an uncommon condition known in the pediatric age. It is characterized by the presence of subepithelial collagen bands (> 10 microm) associated with lymphoplasmacytic infiltration of the stomach's lamina propria. Symptoms manifested by patients with CG may be common with many other disorders. It typically manifests with epigastralgia, vomiting, and iron deficiency during pre-adolescence. This condition's pathophysiology remains unclear. In contrast to adults, where association with collagenous colitis and other autoimmune conditions is more common, pediatric involvement is usually confined to the stomach. Drugs of choice include proton pump inhibitors and corticoids. A case is reported of a 12-year-old girl with abdominal pain and ferritin deficiency who was diagnosed with CG based on gastric biopsy and experienced a favorable outcome. PMID:25952808

  13. Eccentric rehabilitation exercise increases peritendinous type I collagen synthesis in humans with Achilles tendinosis.

    PubMed

    Langberg, H; Ellingsgaard, H; Madsen, T; Jansson, J; Magnusson, S P; Aagaard, P; Kjaer, M

    2007-02-01

    It has been shown that 12 weeks of eccentric heavy resistance training can reduce pain in runners suffering from chronic Achilles tendinosis, but the mechanism behind the effectiveness of this treatment is unknown. The present study investigates the local effect of an eccentric training regime on elite soccer players suffering from chronic Achilles tendinosis on the turnover of the peritendinous connective tissue. Twelve elite male soccer players, of whom six suffered from unilateral tendinosis and six were healthy controls, participated in this study. All participants performed 12 weeks of heavy-resistance eccentric training apart from their regular training and soccer activity. Before and after the training period the tissue concentration of indicators of collagen turnover was measured by the use of the microdialysis technique. After training, collagen synthesis was increased in the initially injured tendon (n=6; carboxyterminal propeptide of type I collagen (PICP): pre 3.9+/-2.5 microg/L to post 19.7+/-5.4 microg/L, P<0.05). The collagen synthesis was unchanged in healthy tendons in response to training (n=6; PICP: pre 8.3+/-5.2 microg/L to post 11.5+/-5.0 microg/L, P>0.05). Collagen degradation, measured as carboxyterminal telopeptide region of type I collagen (ICTP), was not affected by training neither in the injured nor in the healthy tendons. The clinical effect of the 12 weeks of eccentric training was determined by using a standardized loading procedure of the Achilles tendons showing a decrease in pain in all the chronic injured tendons (VAS before 44+/-9, after 13+/-9; P<0.05), and all subjects were back playing soccer following the eccentric training regime. The present study demonstrates that chronically injured Achilles tendons respond to 12 weeks of eccentric training by increasing collagen synthesis rate. In contrast, the collagen metabolism in healthy control tendons seems not to be affected by eccentric training. These findings could indicate a

  14. Femtosecond laser collagen cross-linking without traditional photosensitizers

    NASA Astrophysics Data System (ADS)

    Guo, Yizang; Wang, Chao; Celi, Nicola; Vukelic, Sinisa

    2015-03-01

    Collagen cross-linking in cornea has the capability of enhancing its mechanical properties and thereby providing an alternative treatment for eye diseases such as keratoconus. Currently, riboflavin assisted UVA light irradiation is a method of choice for cross-link induction in eyes. However, ultrafast pulsed laser interactions may be a powerful alternative enabling in-depth treatment while simultaneously diminishing harmful side effects such as, keratocyte apoptosis. In this study, femtosecond laser is utilized for treatment of bovine cornea slices. It is hypothesized that nonlinear absorption of femtosecond laser pulses plays a major role in the maturation of immature cross-links and the promotion of their growth. Targeted irradiation with tightly focused laser pulses allows for the absence of a photosensitizing agent. Inflation test was conducted on half treated porcine cornea to identify the changes of mechanical properties due to laser treatment. Raman spectroscopy was utilized to study subtle changes in the chemical composition of treated cornea. The effects of treatment are analyzed by observing shifts in Amide I and Amide III bands, which suggest deformation of the collagen structure in cornea due to presence of newly formed cross-links.

  15. Genetic elimination of α3(IV) collagen fails to rescue anti-collagen B cells

    PubMed Central

    Clark, Amy G.; Mackin, Katherine M.; Foster, Mary H.

    2011-01-01

    Organ deposition of autoantibodies against the noncollagenous-1 domain of the α3 chain of type IV collagen leads to severe kidney and lung injury in anti-glomerular basement membrane disease. The origin and regulation of these highly pathogenic autoantibodies remains unknown. Anti-α3(IV) collagen B lymphocytes are predicted to mature in vivo ignorant of target antigen because α3(IV) collagen expression is highly tissue restricted and pathogenic epitopes are cryptic. However, a recent analysis of an anti-α3(IV)NC1 collagen autoantibody transgenic mouse model revealed that developing B cells are rapidly silenced by deletion and editing in the bone marrow. To dissect the role of collagen as central tolerogen in this model, we determined B cell fate in autoantibody transgenic mice genetically lacking α3(IV) collagen. We found that absence of the tissue target autoantigen has little impact on the fate of anti-α3(IV)NC1 B cells. This implies a more complex regulatory mechanism for preventing anti-glomerular basement membrane disease than has been previously considered, including the possibility that a second antigen present in bone marrow engages and tolerizes anti-α3(IV)NC1 collagen B cells. PMID:21963654

  16. Game-playing epilepsy.

    PubMed

    Siegel, M; Kurzrok, N; Barr, W B; Rowan, A J

    1992-01-01

    A 25-year-old woman with documented generalized seizures evoked by playing checkers was given a battery of psychological tests as well as a series of cognitive and non-game-related tasks during a session of intensive EEG-video monitoring. Generalized epileptiform discharges during each task, as well as during intervals of checkers playing, were quantified to determine possible triggering factors. Previous reports have discussed the roles of attention, concentration, stress, thinking, and spatial processing in similar cases. Our analysis showed significant activation of the EEG only with tasks involving strategic thinking, i.e., considering a sequence of moves based on evaluating the consequences of previous moves.

  17. Reprogramming cellular phenotype by soft collagen gels.

    PubMed

    Ali, M Yakut; Chuang, Chih-Yuan; Saif, M Taher A

    2014-11-28

    A variety of cell types exhibit phenotype changes in response to the mechanical stiffness of the substrate. Many cells excluding neurons display an increase in the spread area, actin stress fiber formation and larger focal adhesion complexes as substrate stiffness increases in a sparsely populated culture. Cell proliferation is also known to directly correlate with these phenotype changes/changes in substrate stiffness. Augmented spreading and proliferation on stiffer substrates require nuclear transcriptional regulator YAP (Yes associated protein) localization in the cell nucleus and is tightly coupled to larger traction force generation. In this study, we show that different types of fibroblasts can exhibit spread morphology, well defined actin stress fibers, and larger focal adhesions even on very soft collagen gels (modulus in hundreds of Pascals) as if they are on hard glass substrates (modulus in GPa, several orders of magnitude higher). Strikingly, we show, for the first time, that augmented spreading and other hard substrate cytoskeleton architectures on soft collagen gels are not correlated with the cell proliferation pattern and do not require YAP localization in the cell nucleus. Finally, we examine the response of human colon carcinoma (HCT-8) cells on soft collagen gels. Recent studies show that human colon carcinoma (HCT-8) cells form multicellular clusters by 2-3 days when cultured on soft polyacrylamide (PA) gels with a wide range of stiffness (0.5-50 kPa) and coated with an extracellular matrix, ECM (collagen monomer/fibronectin). These clusters show limited spreading/wetting on PA gels, form 3D structures at the edges, and eventually display a remarkable, dissociative metastasis like phenotype (MLP), i.e., epithelial to rounded morphological transition after a week of culture on PA gels only, but not on collagen monomer coated stiff polystyrene/glass where they exhibit enhanced wetting and form confluent monolayers. Here, we show that HCT-8 cell

  18. Ordered collagen membranes: production and characterization.

    PubMed

    Ruderman, G; Mogilner, I G; Tolosa, E J; Massa, N; Garavaglia, M; Grigera, J R

    2012-01-01

    A collagen membrane with microscopic order is presented. The membranes were produced with acid-soluble collagen, using two different methods to obtain orientation. The product was characterized by mean of UV and IR spectra, scanning electronic microscopy, optical microscopy and laser diffractometry. The results clearly show a high level of order in the membranes obtained by both techniques. Permeability for rifamycin, ascorbic acid and NaCl was also measured. Due to the characteristics of the membranes, they have a potential application for treatment of surface injuries.

  19. Looking into Children's Play Communities

    ERIC Educational Resources Information Center

    Mabry, Mark; Fucigna, Carolee

    2009-01-01

    Play, particularly children's sociodramatic play, is the cornerstone of early childhood classrooms in the United States. Early childhood educators learn and expound mantras of "the value of play," "play-based programs," "children learning through play," and "play as child's work." They strive to promote the importance of making a place for play in…

  20. "Playing" with Science

    ERIC Educational Resources Information Center

    Allen, Dave

    2012-01-01

    When faced with a multitude of tasks, any opportunity to "kill two birds with one stone" is welcome. Drama has always excited the author: as a child performing in plays, later as a student and now as a teacher directing performances and improvising within lessons. The author was lucky enough to have inspirational teachers during his primary and…

  1. Play's Importance in School

    ERIC Educational Resources Information Center

    Sandberg, Anette; Heden, Rebecca

    2011-01-01

    The purpose of this study is to contribute knowledge on and gain an understanding of elementary school teachers' perspectives on the function of play in children's learning processes. The study is qualitative with a hermeneutical approach and has George Herbert Mead as a theoretical frame of reference. Interviews have been carried out with seven…

  2. Who's Calling the Plays?

    ERIC Educational Resources Information Center

    Goldman, Jay P.

    1990-01-01

    Without an enforceable policy, school athletics programs are beset by politics, high finance, and public sentiment. The most nettlesome problems include loss of instructional time to sports and extracurricular activities; the appropriateness and effectiveness of no-pass/no-play rules; lack of sportsmanship; proliferation of interstate competition;…

  3. Bicentennial Plays and Programs.

    ERIC Educational Resources Information Center

    Fisher, Aileen

    This book contains royalty-free material on bicentennial themes for presentation by schools and amateur groups. The first section, Plays and Pageants, contains "Our Great Declaration,""A Star for Old Glory,""Sing, America, Sing,""Washington Marches On,""When Freedom Was News," and "A Dish of Green Peas." The second section, Playlets and…

  4. Abstraction through Game Play

    ERIC Educational Resources Information Center

    Avraamidou, Antri; Monaghan, John; Walker, Aisha

    2012-01-01

    This paper examines the computer game play of an 11-year-old boy. In the course of building a virtual house he developed and used, without assistance, an artefact and an accompanying strategy to ensure that his house was symmetric. We argue that the creation and use of this artefact-strategy is a mathematical abstraction. The discussion…

  5. Writing as Play.

    ERIC Educational Resources Information Center

    Rensenbrink, Carla

    1987-01-01

    Reveals ways to help students learn that writing can be similar to play, in that they can use their imaginations to create new settings and even new worlds. Suggests using toys, imaginary trips, and including friends in stories as inspiration for writing. (SKC)

  6. The Games Children Play

    ERIC Educational Resources Information Center

    Padak, Nancy; Rasinski, Timothy

    2008-01-01

    The games that children play are not just for fun-they often lead to important skill development. Likewise, word games are fun opportunities for parents and children to spend time together and for children to learn a lot about sounds and words. In this Family Involvement column, the authors describe 12 easy-to-implement word games that parents and…

  7. Statistics at Play

    ERIC Educational Resources Information Center

    English, Lyn D.

    2014-01-01

    An exciting event had occurred for the grade 3 classes at Woodlands State School. A new play space designated for the older grades had now been opened to the third graders. In sharing their excitement over this "real treat, real privilege," the teachers invited the children to find out more about playgrounds and, in particular, their new…

  8. Integrated Play Groups

    ERIC Educational Resources Information Center

    Glovak, Sandra

    2007-01-01

    As an occupational therapist running social play groups with sensory integration for children on the autism spectrum, the author frequently doubted the wisdom of combining several children on the spectrum into a group. In fact, as the owner of a clinic she said, "No more!" The groups seemed like a waste of parents' time and money, and she refused…

  9. Playing It Safe.

    ERIC Educational Resources Information Center

    Jones, Rebecca

    1997-01-01

    Offers tips for avoiding sports-related injuries: (1) expect more of coaches; (2) develop an athletic-safety plan; (3) consider hiring an athletic trainer; (4) check facilities and equipment regularly; (5) recognize athletes' limitations; (6) take precautions beyond the playing field; and (7) check liability coverage and obtain informed consent.…

  10. Games Professors Play

    ERIC Educational Resources Information Center

    Kenny, James A.; Herzing, Thomas W.

    1969-01-01

    The games are Build a Reputation (REP), Confuse the Student (CON), Blame the Opposition (BOP), and Pass the Buck (BUCK). Professors play these games because they "want to show off on occasion, . . . want to get off the hook and avoid responsibility, . . . are prone to blame others, or simply because they are lazy. (WM)

  11. PlayWrite.

    ERIC Educational Resources Information Center

    Amodeo, Janis

    This report describes the PlayWrite Program, which was developed in the Montville Township School District, New Jersey, to encourage children in grades K-6 to write. The primary objectives of the program are to increase students' motivation to write; to improve their writing skills through the process of brainstorming, composing, revising, and…

  12. Creative Outdoor Play Areas.

    ERIC Educational Resources Information Center

    Miller, Peggy L.

    Considering the creation of proper play areas for children (school sites, municipal and mini parks, private homes and backyards, shopping centers, apartment complexes, recreational areas, roadside parks, nursery schools, churches, summer camps, and drive-in theaters) as one of today's major challenges, the author recommends that professional…

  13. One Play a Day

    ERIC Educational Resources Information Center

    Blankenship, Mark

    2007-01-01

    Undergraduate theater students rarely get the chance to work on a major world premiere, but this year hundreds of them will. Currently, more than 70 colleges and universities are participating in "365 Days/365 Plays," an ambitious project from Pulitzer Prize-winning playwright Suzan-Lori Parks. Every week, as they mount their portion of this epic…

  14. The Paradoxes of Play.

    ERIC Educational Resources Information Center

    Rokosz, Francis M.

    1988-01-01

    The article makes a case against the structuring of intramural sports programs on the basis of the varsity athletics model, arguing that the latter model's components of competition and aggression mar the former's intrinsic rewards of play, creativity, and enhanced human relationships. (CB)

  15. Fully automated, quantitative, noninvasive assessment of collagen fiber content and organization in thick collagen gels

    NASA Astrophysics Data System (ADS)

    Bayan, Christopher; Levitt, Jonathan M.; Miller, Eric; Kaplan, David; Georgakoudi, Irene

    2009-05-01

    Collagen is the most prominent protein of human tissues. Its content and organization define to a large extent the mechanical properties of tissue as well as its function. Methods that have been used traditionally to visualize and analyze collagen are invasive, provide only qualitative or indirect information, and have limited use in studies that aim to understand the dynamic nature of collagen remodeling and its interactions with the surrounding cells and other matrix components. Second harmonic generation (SHG) imaging emerged as a promising noninvasive modality for providing high-resolution images of collagen fibers within thick specimens, such as tissues. In this article, we present a fully automated procedure to acquire quantitative information on the content, orientation, and organization of collagen fibers. We use this procedure to monitor the dynamic remodeling of collagen gels in the absence or presence of fibroblasts over periods of 12 or 14 days. We find that an adaptive thresholding and stretching approach provides great insight to the content of collagen fibers within SHG images without the need for user input. An additional feature-erosion and feature-dilation step is useful for preserving structure and noise removal in images with low signal. To quantitatively assess the orientation of collagen fibers, we extract the orientation index (OI), a parameter based on the power distribution of the spatial-frequency-averaged, two-dimensional Fourier transform of the SHG images. To measure the local organization of the collagen fibers, we access the Hough transform of small tiles of the image and compute the entropy distribution, which represents the probability of finding the direction of fibers along a dominant direction. Using these methods we observed that the presence and number of fibroblasts within the collagen gel significantly affects the remodeling of the collagen matrix. In the absence of fibroblasts, gels contract, especially during the first few

  16. Fish collagen is an important panallergen in the Japanese population.

    PubMed

    Kobayashi, Y; Akiyama, H; Huge, J; Kubota, H; Chikazawa, S; Satoh, T; Miyake, T; Uhara, H; Okuyama, R; Nakagawara, R; Aihara, M; Hamada-Sato, N

    2016-05-01

    Collagen was identified as a fish allergen in early 2000s. Although its allergenic potential has been suggested to be low, risks associated with collagen as a fish allergen have not been evaluated to a greater extent. In this study, we aimed to clarify the importance of collagen as a fish allergen. Our results showed that 50% of Japanese patients with fish allergy had immunoglobulin E (IgE) against mackerel collagen, whereas 44% had IgE against mackerel parvalbumin. IgE inhibition assay revealed high cross-reactivity of mackerel collagen to 22 fish species (inhibition rates: 87-98%). Furthermore, a recently developed allergy test demonstrated that collagen triggered IgE cross-linking on mast cells. These data indicate that fish collagen is an important and very common panallergen in fish consumed in Japan. The high rate of individuals' collagen allergy may be attributable to the traditional Japanese custom of raw fish consumption. PMID:26785247

  17. Modeling and testing of formaldehyde emission characteristics of pressed-wood products. Reports XII, XIII, and XIV to the US Consumer Product Safety Commission, 1985

    SciTech Connect

    Matthews, T.G.

    1985-12-01

    A survey of the CH/sub 2/O emissions from pressed-wood products was conducted by selecting random samples of particleboard, hardwood plywood paneling, and medium density fiberboard from the largest US manufacturers and measuring their emissions using the formaldehyde surface emission monitor (FSEM). The product sampling protocols, results of the FSEM measurements, and statistical modeling of the intra-board, inter-board, and inter-product variation in CH/sub 2/O emission strength are discussed in Reports XII and XIII. A second project concerns the CH/sub 2/O permeability of common decorative floor coverings that can influence the CH/sub 2/O emissions from particleboard underlayment in homes. The test design and preliminary experimental results for CH/sub 2/O transport coefficient measurements of these flooring materials are presented in Reports XIII and XIV. A third project concerns an inter-laboratory test comparison of the FSEM. The first phase of this project, consisting of an inter-laboratory test comparison of the CH/sub 2/O analysis of uniformly exposed 13X molecular sieve samples, is presented in Report XIII. A fourth project concerns the experimental measurement and modeling of the temperature, relative humidity, and CH/sub 2/O concentration dependence of CH/sub 2/O emissions from particleboard and hardwood paneling products. A preliminary report of the environmental chamber data for the first of two environmental parameters studies is given in Report XIV. Preliminary models are developed from a physical theory of CH/sub 2/O transport across the bulk-vapor interface at the surface of pressed-wood products to describe the CH/sub 2/O environmental parameters data.

  18. In situ time-series monitoring of collagen fibers produced by standing-cultured osteoblasts using a second-harmonic-generation microscope.

    PubMed

    Hase, Eiji; Matsubara, Oki; Minamikawa, Takeo; Sato, Katsuya; Yasui, Takeshi

    2016-04-20

    In bone tissue engineering and regeneration, there is a considerable need for an unstained method of monitoring collagen fibers produced by osteoblasts. This is because collagen fibers play an important role as a bone matrix and continuous monitoring of their temporal dynamics is important in clarifying the organization process toward forming bone tissue. In the work described here, using a second-harmonic-generation (SHG) microscope, we performed in situ time-series monitoring of collagen fibers produced by cultured osteoblasts without the need for staining. Use of the 19 fs near-infrared pulsed light enables us to visualize the temporal dynamics in a thin layer of collagen fibers produced by a single layer of osteoblasts in high-contrast SHG images. While the collagen fibers were produced and stored inside the osteoblasts at an early stage of culturing, the network structure of collagen fibers was formed and locally condensed at a late stage. Furthermore, we extracted a quantitative parameter of collagen maturity degree in the cultured sample by use of image analysis based on a two-dimensional Fourier transform of the SHG image. The proposed method will be useful for in situ quality and quantity control of collagen fibers in bone tissue engineering and regeneration.

  19. Contribution of collagen fiber undulation to regional biomechanical properties along porcine thoracic aorta.

    PubMed

    Zeinali-Davarani, Shahrokh; Wang, Yunjie; Chow, Ming-Jay; Turcotte, Raphaël; Zhang, Yanhang

    2015-05-01

    As major extracellular matrix components, elastin, and collagen play crucial roles in regulating the mechanical properties of the aortic wall and, thus, the normal cardiovascular function. The mechanical properties of aorta, known to vary with age and multitude of diseases as well as the proximity to the heart, have been attributed to the variations in the content and architecture of wall constituents. This study is focused on the role of layer-specific collagen undulation in the variation of mechanical properties along the porcine descending thoracic aorta. Planar biaxial tensile tests are performed to characterize the hyperelastic anisotropic mechanical behavior of tissues dissected from four locations along the thoracic aorta. Multiphoton microscopy is used to image the associated regional microstructure. Exponential-based and recruitment-based constitutive models are used to account for the observed mechanical behavior while considering the aortic wall as a composite of two layers with independent properties. An elevated stiffness is observed in distal regions compared to proximal regions of thoracic aorta, consistent with sharper and earlier collagen recruitment estimated for medial and adventitial layers in the models. Multiphoton images further support our prediction that higher stiffness in distal regions is associated with less undulation in collagen fibers. Recruitment-based models further reveal that regardless of the location, collagen in the media is recruited from the onset of stretching, whereas adventitial collagen starts to engage with a delay. A parameter sensitivity analysis is performed to discriminate between the models in terms of the confidence in the estimated model parameters. PMID:25612301

  20. Visualisation of newly synthesised collagen in vitro and in vivo

    PubMed Central

    Oostendorp, Corien; Uijtdewilligen, Peter J.E.; Versteeg, Elly M.; Hafmans, Theo G.; van den Bogaard, Ellen H.; de Jonge, Paul K.J.D.; Pirayesh, Ali; Von den Hoff, Johannes W.; Reichmann, Ernst; Daamen, Willeke F.; van Kuppevelt, Toin H.

    2016-01-01

    Identifying collagen produced de novo by cells in a background of purified collagenous biomaterials poses a major problem in for example the evaluation of tissue-engineered constructs and cell biological studies to tumor dissemination. We have developed a universal strategy to detect and localize newly deposited collagen based on its inherent association with dermatan sulfate. The method is applicable irrespective of host species and collagen source. PMID:26738984

  1. Characterization of pepsin-solubilized bovine heart-valve collagen.

    PubMed Central

    Bashey, R I; Bashey, H M; Jimenez, S A

    1978-01-01

    Collagens extracted from heart valves by using limited pepsin digestion were fractionated by differential salt precipitation. Collagen types were identified by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, amino acid analysis and cleavage with CNBr. Heart-valve collagen was heterogeneous in nature, consisting of a mixture of type-I and type-III collagens. The identity of type-III collagen was established on the basis of (a) insolubility in 1.7 M-NaC1 at neutral pH, (b) behaviour of this collagen fraction on gel electrophoresis under reducing and non-reducing conditions, (c) amino acid analysis showing a hydroxyproline/proline ratio greater than 1, and (d) profile of CNBr peptides on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis showing a peak characteristic for type-III collagen containing peptides alpha1(III)CB8 and alpha1(III)CB3. In addition to types-I and -III collagen, a collagen polypeptide not previously described in heart valves was identified. This polypeptide represented approx. 30% of the collagen fraction precipitated at 4.0 M-NaCl, it migrated between beta- and alpha1-collagen chains on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and its electrophoretic behaviour was not affected by disulphide-bond reduction. All collagen fractions from the heart valves contained increased amounts of hydroxylysine when compared with type-I and -III collagens from other tissues. The presence of beta- and gamma-chains and higher aggregates in pepsin-solubilized collagen indicated that these collagens were highly cross-linked and suggested that some of these cross-links involved the triple-helical regions of the molecule. It is likely that the higher hydroxylysine content of heart-valve collagen is responsible for the high degree of intermolecular cross-linking and may be the result of an adaptive mechanism for the specialized function of these tissues. Images Fig. 5. PMID:361035

  2. Effect of age on mechanical properties of the collagen phase in different orientations of human cortical bone.

    PubMed

    Leng, Huijie; Reyes, Michael J; Dong, Xuanliang N; Wang, Xiaodu

    2013-08-01

    The collagen phase plays an important role in mechanical behaviors of cortical bone. However, aging effects on the mechanical behavior of the collagen phase is still poorly understood. In this study, micro-tensile tests were performed on demineralized human cortical bone samples from young, middle-aged, and elderly donors and aging effects on the mechanical properties of the collagen phase in different orientations (i.e. longitudinal and transverse directions of bone) were examined. The results of this study indicated that the elastic modulus and ultimate strength of the demineralized bone specimens decreased with aging in both the longitudinal and transverse orientations. However, the failure strain exhibited no significant changes in both orientations regardless of aging. These results suggest that the stiffness and strength of the collagen phase in bone are deteriorated with aging in both longitudinal and transverse directions. However, the aging effect is not reflected in the failure strain of the collagen phase in both longitudinal and transverse orientations, implying that the maximum sustainable deformation of the collagen phase is independent of aging and orientation.

  3. Engineering D-Amino Acid Containing Collagen Like Peptide at the Cleavage Site of Clostridium histolyticum Collagenase for Its Inhibition

    PubMed Central

    Velmurugan, Punitha; Jonnalagadda, Raghava Rao; Unni Nair, Balachandran

    2015-01-01

    Collagenase is an important enzyme which plays an important role in degradation of collagen in wound healing, cancer metastasis and even in embryonic development. However, the mechanism of this degradation has not yet been completely understood. In the field of biomedical and protein engineering, the design and development of new peptide based materials is of main concern. In the present work an attempt has been made to study the effect of DAla in collagen like peptide (imino-poor region of type I collagen) on the structure and stability of peptide against enzyme hydrolysis. Effect of replacement of DAla in the collagen like peptide has been studied using circular dichroic spectroscopy (CD). Our findings suggest that, DAla substitution leads to conformational changes in the secondary structure and favours the formation of polyproline II conformation than its L-counterpart in the imino-poor region of collagen like peptides. Change in the chirality of alanine at the cleavage site of collagenase in the imino-poor region inhibits collagenolytic activity. This may find application in design of peptides and peptidomimics for enzyme-substrate interaction, specifically with reference to collagen and other extra cellular matrix proteins. PMID:25973613

  4. Regulation of collagen production in freshly isolated cell populations from normal and cirrhotic rat liver: Effect of lactate

    SciTech Connect

    Cerbon-Ambriz, J.; Cerbon-Solorzano, J.; Rojkind, M. )

    1991-03-01

    Previous work has shown that lactic acid, and to a lesser extent pyruvic acid, is able to increase collagen synthesis significantly in liver slices of CCl4-treated rats but not normal rats. The purpose of this report is to document which cells in the cirrhotic liver are responsible for the lactate-stimulated increase in collagen synthesis. It was found that (a) incorporation of 3H-proline into protein-bound 3H-hydroxyproline is increased threefold to fourfold in hepatocytes from CCl4-treated rats as compared with normal rat hepatocytes; (b) neither the hepatocytes from normal nor those from CCl4-treated rats modify their collagen synthesizing capacity when 30 mmol/L lactic acid was added to the incubation medium; (c) nonparenchymal cells obtained from livers of CCl4-treated rats synthesize much less collagen than hepatocytes, but their synthesis is stimulated twofold by lactic acid; (d) from the different nonparenchymal cells, only fat-storing (Ito) cells increase collagen synthesis when lactic acid is present in the incubation medium. These results suggest that the increased lactic acid levels observed in patients with alcoholic hepatic cirrhosis may play an important role in the development of fibrosis by stimulating collagen production by fat-storing (Ito) cells.

  5. Colloids decrease clot propagation and strength: role of factor XIII-fibrin polymer and thrombin-fibrinogen interactions.

    PubMed

    Nielsen, V G

    2005-09-01

    Colloid-mediated hypocoagulability is clinically important, but the mechanisms responsible for coagulopathy have been incompletely defined. Thus, my goal was to elucidate how colloids decrease plasma coagulation function. Plasma was diluted 0% or 40% with 0.9% NaCl, three different hydroxyethyl starches (HES, mean molecular weight 450, 220 or 130 kDa), or 5% human albumin. Samples (n=6 per condition) were activated with celite, and diluted samples had either no additions or addition of fibrinogen (FI), thrombin (FIIa) or activated Factor XIII (FXIIIa) to restore protein function to prediluted values. Thrombelastographic variables measured included clot propagation (angle, alpha), and clot strength (amplitude, A; or shear elastic modulus, G). Dilution with 0.9% NaCl significantly decreased alpha, A and G-values compared to undiluted samples. Supplementation with FI, but not FIIa or FXIIIa, resulted in 0.9% NaCl-diluted thrombelastographic variable values not different from those of undiluted samples. FI supplementation of HES 450, HES 220, HES 130 and albumin-diluted samples only partially restored alpha, A and G-values compared to undiluted samples. FIIa addition only improved clot propagation and strength in albumin-diluted samples. FXIIIa supplementation improved propagation in samples diluted with HES 450, HES 220 and albumin, and clot strength improved in HES 450 and albumin-diluted plasma. Considered as a whole, these data support compromise of FIIa-FI and FXIIIa--fibrin polymer interactions as the mechanisms by which colloids compromise plasma coagulation. Investigation to determine if clinical enhancement of FXIII activity and/or FI concentration (e.g. fresh-frozen plasma, cryoprecipitate) can attenuate colloid-mediated decreases in hemostasis is warranted.

  6. Collagen fibril diameter and leather strength.

    PubMed

    Wells, Hannah C; Edmonds, Richard L; Kirby, Nigel; Hawley, Adrian; Mudie, Stephen T; Haverkamp, Richard G

    2013-11-27

    The main structural component of leather and skin is type I collagen in the form of strong fibrils. Strength is an important property of leather, and the way in which collagen contributes to the strength is not fully understood. Synchrotron-based small angle X-ray scattering (SAXS) is used to measure the collagen fibril diameter of leather from a range of animals, including sheep and cattle, that had a range of tear strengths. SAXS data were fit to a cylinder model. The collagen fibril diameter and tear strength were found to be correlated in bovine leather (r(2) = 0.59; P = 0.009), with stronger leather having thicker fibrils. There was no correlation between orientation index, i.e., fibril alignment, and fibril diameter for this data set. Ovine leather showed no correlation between tear strength and fibril diameter, nor was there a correlation across a selection of other animal leathers. The findings presented here suggest that there may be a different structural motif in skin compared with tendon, particularly ovine skin or leather, in which the diameter of the individual fibrils contributes less to strength than fibril alignment does.

  7. Temporary granulomatous inflammation following collagen implantation.

    PubMed

    Heise, H; Zimmermann, R; Heise, P

    2001-08-01

    Injections of bovine collagen are a common procedure for correction of folds in the face. However, this therapy is not free from side effects. We present a patient in whom a granulomatous inflammation occurred following implantation of this material. We therefore now insist on an observation interval of 4 weeks between test injection and actual treatment, as is recommended by the manufacturer.

  8. Collagenous spherulosis. A comment on its histogenesis.

    PubMed

    Michal, M; Skálova, A

    1990-06-01

    Collagenous spherulosis is a benign breast lesion involving lobular acini and ductules consisting of eosinophilic spherules measuring up to 100 mu in diameter. It is a myoepithelial product. We described similar lesions in salivary gland tumors and a benign lymphoepithelial lesion of the parotid gland.

  9. Propylthiouracil, independent of its antithyroid effect, decreases VSMC collagen expression.

    PubMed

    Chen, Wei-Jan; Pang, Jong-Hwei S; Lin, Kwang-Huei; Yang, Su-Hui

    2009-01-01

    Propylthiouracil (PTU), in addition to its antithyroid effect, is recently found to have a potent antiatherosclerotic effect. Because collagen accumulation is the major contributor to the growth of atherosclerotic lesions and the neointimal formation after arterial injury, the aim of this study is to investigate the impact of PTU on collagen regulation. In the rat carotid injury model, PTU administration reversed the up-regulation of collagen in the neointima induced by balloon injury. In vitro, vascular smooth muscle cells (VSMCs), the main origin of arterial collagen, were treated with PTU. Propylthiouracil caused a concentration-dependent decrease in collagen I and III steady-state protein and mRNA levels, as determined by immuno-cytochemistry, Western, and/or Northern blot analyses. Transient transfection experiments using rat type I collagen promoter construct showed that PTU failed to affect collagen gene transcription in VSMCs. Actinomycin D studies demonstrated that the half-life of collagens mRNA decreased with PTU treatment, suggesting that PTU down-regulates collagen expression predominantly at the post-transcriptional level. Taken together, these data suggest that PTU inhibits VSMC collagen production via destabilization of collagen mRNA that contributes to its beneficial effect on atherogenesis and neointimal formation after arterial injury. However, whether the destabilization of collagen may induce plaque rupture in PTU-treated arteries merits further investigation.

  10. Photodynamically crosslinked and chitosan-incorporated dentin collagen.

    PubMed

    Shrestha, A; Friedman, S; Kishen, A

    2011-11-01

    A lingering concern with restored root-filled teeth is the loss of structural integrity of the dentin and dentin-sealer interface over time. We hypothesized that crosslinking of dentin collagen with simultaneous incorporation of a biopolymer into collagen matrix would improve its structural stability. This study aimed to investigate the effects of combining chemical/photodynamic crosslinking of dentin collagen with the incorporation of carboxymethyl-chitosan (CMCS) on the resistance to enzymatic degradation and mechanical properties of dentin collagen. Ninety-six demineralized dentin collagen specimens (human, n = 72; and bovine, n = 24) were prepared and crosslinked chemically/ photodynamically, with/without CMCS. Glutaraldehyde and carbodiimides were used for chemical crosslinking, while rose Bengal activated with a non-coherent light (540 nm) at 20 J/cm(2) was applied for photodynamic crosslinking. The crosslinked human dentin collagen was subjected to chemical characterization, 7 days enzymatic degradation, and transmission electron microscopy (TEM), while the bovine dentin collagen was used for tensile-testing. Crosslinked collagen showed significantly higher resistance to enzymatic degradation (p < 0.01), stable ultrastructure, and increased tensile strength (p < 0.05). Crosslinking CMCS with collagen matrix as observed in the TEM further improved the mechanical properties of dentin collagen (p < 0.01). This study highlighted the possibility of improving the resistance and toughness of dentin collagen by chemically/photodynamically crosslinking collagen matrix with CMCS.

  11. Spontaneous Gastric Perforation in a Case of Collagenous Gastritis.

    PubMed

    Appelman, Marly H; de Meij, Tim G J; Neefjes-Borst, E Andra; Kneepkens, C M F

    2016-01-01

    Collagenous gastritis is an extremely rare disease, both in children and adults. Symptoms vary depending on the extent of collagenous changes in the bowel. In most of the children, iron deficiency anemia and abdominal pain are the presenting symptoms. We present a 15-year-old boy with acute abdomen due to gastric perforation the cause of which was collagenous gastritis. PMID:26816680

  12. Urethral tissue regeneration using collagen scaffold modified with collagen binding VEGF in a beagle model.

    PubMed

    Jia, Weisheng; Tang, He; Wu, Jianjian; Hou, Xianglin; Chen, Bing; Chen, Wei; Zhao, Yannan; Shi, Chunying; Zhou, Feng; Yu, Wei; Huang, Shengquan; Ye, Gang; Dai, Jianwu

    2015-11-01

    Extensive urethral defects have a serious impact on quality of life, and treatment is challenging. A shortage of material for reconstruction is a key limitation. Improving the properties of biomaterials and making them suitable for urethral reconstruction will be helpful. Previously, we constructed a fusion protein, collagen-binding VEGF (CBD-VEGF), which can bind to collagen scaffold, stimulate cell proliferation, and promote angiogenesis and tissue regeneration. We proposed that CBD-VEGF could improve the performance of collagen in reconstruction of extensive urethral defects. Our results showed that collagen scaffolds modified with CBD-VEGF could promote urethral tissue regeneration and improve the function of the neo-urethra in a beagle extensive urethral defect model. Thus, modifying biomaterials with bioactive factors provides an alternative strategy for the production of suitable biomaterials for urethral reconstruction.

  13. Accelerated postero-lateral spinal fusion by collagen scaffolds modified with engineered collagen-binding human bone morphogenetic protein-2 in rats.

    PubMed

    Han, Xinglong; Zhang, Wen; Gu, Jun; Zhao, Huan; Ni, Li; Han, Jiajun; Zhou, Yun; Gu, Yannan; Zhu, Xuesong; Sun, Jie; Hou, Xianglin; Yang, Huilin; Dai, Jianwu; Shi, Qin

    2014-01-01

    Bone morphogenetic protein-2 (BMP-2) is a potent osteoinductive cytokine that plays a critical role in bone regeneration and repair. However, its distribution and side effects are major barriers to its success as therapeutic treatment. The improvement of therapy using collagen delivery matrices has been reported. To investigate a delivery system on postero-lateral spinal fusion, both engineered human BMP-2 with a collagen binding domain (CBD-BMP-2) and collagen scaffolds were developed and their combination was implanted into Sprague-Dawley (SD) rats to study Lumbar 4-5 (L4-L5) posterolateral spine fusion. We divided SD rats into three groups, the sham group (G1, n = 20), the collagen scaffold-treated group (G2, n = 20) and the BMP-2-loaded collagen scaffolds group (G3, n = 20). 16 weeks after surgery, the spines of the rats were evaluated by X-radiographs, high-resolution micro-computed tomography (micro-CT), manual palpation and hematoxylin and eosin (H&E) staining. The results showed that spine L4-L5 fusions occurred in G2(40%) and G3(100%) group, while results from the sham group were inconsistent. Moreover, G3 had better results than G2, including higher fusion efficiency (X score, G2 = 2.4±0.163, G3 = 3.0±0, p<0.05), higher bone mineral density (BMD, G2: 0.3337±0.0025g/cm3, G3: 0.4353±0.0234g/cm3. p<0.05) and more bone trabecular formation. The results demonstrated that with site-specific collagen binding domain, a dose of BMP-2 as low as 0.02mg CBD-BMP-2/cm3 collagen scaffold could enhance the posterolateral intertransverse process fusion in rats. It suggested that combination delivery could be an alternative in spine fusion with dramatically decreased side effects caused by high dose of BMP-2.

  14. Accelerated Postero-Lateral Spinal Fusion by Collagen Scaffolds Modified with Engineered Collagen-Binding Human Bone Morphogenetic Protein-2 in Rats

    PubMed Central

    Zhao, Huan; Ni, Li; Han, Jiajun; Zhou, Yun; Gu, Yannan; Zhu, Xuesong; Sun, Jie; Hou, Xianglin; Yang, Huilin; Dai, Jianwu; Shi, Qin

    2014-01-01

    Bone morphogenetic protein-2 (BMP-2) is a potent osteoinductive cytokine that plays a critical role in bone regeneration and repair. However, its distribution and side effects are major barriers to its success as therapeutic treatment. The improvement of therapy using collagen delivery matrices has been reported. To investigate a delivery system on postero-lateral spinal fusion, both engineered human BMP-2 with a collagen binding domain (CBD-BMP-2) and collagen scaffolds were developed and their combination was implanted into Sprague-Dawley (SD) rats to study Lumbar 4–5 (L4–L5) posterolateral spine fusion. We divided SD rats into three groups, the sham group (G1, n = 20), the collagen scaffold-treated group (G2, n = 20) and the BMP-2-loaded collagen scaffolds group (G3, n = 20). 16 weeks after surgery, the spines of the rats were evaluated by X-radiographs, high-resolution micro-computed tomography (micro-CT), manual palpation and hematoxylin and eosin (H&E) staining. The results showed that spine L4–L5 fusions occurred in G2(40%) and G3(100%) group, while results from the sham group were inconsistent. Moreover, G3 had better results than G2, including higher fusion efficiency (X score, G2 = 2.4±0.163, G3 = 3.0±0, p<0.05), higher bone mineral density (BMD, G2: 0.3337±0.0025g/cm3, G3: 0.4353±0.0234g/cm3. p<0.05) and more bone trabecular formation. The results demonstrated that with site-specific collagen binding domain, a dose of BMP-2 as low as 0.02mg CBD-BMP-2/cm3 collagen scaffold could enhance the posterolateral intertransverse process fusion in rats. It suggested that combination delivery could be an alternative in spine fusion with dramatically decreased side effects caused by high dose of BMP-2. PMID:24869484

  15. Collagen esterification enhances the function and survival of pancreatic β cells in 2D and 3D culture systems

    SciTech Connect

    Ko, Jae Hyung; Kim, Yang Hee; Jeong, Seong Hee; Lee, Song; Park, Si-Nae; Shim, In Kyong; Kim, Song Cheol

    2015-08-07

    Collagen, one of the most important components of the extracellular matrix (ECM), may play a role in the survival of pancreatic islet cells. In addition, chemical modifications that change the collagen charge profile to a net positive charge by esterification have been shown to increase the adhesion and proliferation of various cell types. The purpose of this study was to characterize and compare the effects of native collagen (NC) and esterified collagen (EC) on β cell function and survival. After isolation by the collagenase digestion technique, rat islets were cultured with NC and EC in 2 dimensional (2D) and 3 dimensional (3D) environments for a long-term duration in vitro. The cells were assessed for islet adhesion, morphology, viability, glucose-induced insulin secretion, and mRNA expression of glucose metabolism-related genes, and visualized by scanning electron microscopy (SEM). Islet cells attached tightly in the NC group, but islet cell viability was similar in both the NC and EC groups. Glucose-stimulated insulin secretion was higher in the EC group than in the NC group in both 2D and 3D culture. Furthermore, the mRNA expression levels of glucokinase in the EC group were higher than those in the NC group and were associated with glucose metabolism and insulin secretion. Finally, SEM observation confirmed that islets had more intact component cells on EC sponges than on NC sponges. These results indicate that modification of collagen may offer opportunities to improve function and viability of islet cells. - Highlights: • We changed the collagen charge profile to a net positive charge by esterification. • Islets cultured on esterified collagen improved survival in both 2D and 3D culture. • Islets cultured on esterified collagen enhanced glucose-stimulated insulin release. • High levels of glucokinase mRNA may be associated with increased insulin release.

  16. Canada's east coast play

    SciTech Connect

    Doig, I.M.

    1984-02-01

    The intent of this paper is to give a basic overview presentation on Canada's east coast play - most likely the number one offshore play in the free world - and possibly the world. The play stretches 2,500 miles north and south, as it follows the Labrador Coast, past the Strait of Belle Isle and onto the Grand Banks of Newfoundland and as it makes a 90 degree turn, 1,000 miles east to west along the coast of Nova Scotia to the Georges Bank. 3,500 miles in all - which if placed in western Canada, would stretch from northern Alberta to southern Mexico. It's geologic potential is immense - 15-20 billion barrels of oil and 80-90 Tcf of natural gas. And so far only approximately 2 billion barrels of oil and 5 Tcf of natural gas have been found. There is more out there. And less than 200 wells have been drilled - still very virgin territory. Two world size discoveries have been made in the area. Hibernia, on the Grand Banks, is estimated to contain 1.8 billion barrels. Venture, on the Scotian Shelf, has a natural gas reserve of 2.5 Tcf - big by Canadian standards and significant in that Mobil Oil has also made some other interesting discoveries on the same Sable Island block which have not been delineated.

  17. Molecular Crowding of Collagen: A Pathway to Produce Highly-Organized Collagenous Structures

    PubMed Central

    Saeidi, Nima; Karmelek, Kathryn N.; Paten, Jeffrey. A; Zareian, Ramin; DiMasi, Elaine

    2013-01-01

    Collagen in vertebrate animals is often arranged in alternating lamellae or in bundles of aligned fibrils which are designed to withstand in vivo mechanical loads. The formation of these organized structures is thought to result from a complex, large-area integration of individual cell motion and locally-controlled synthesis of fibrillar arrays via cell-surface fibripositors (direct matrix printing). The difficulty of reproducing such a process in vitro has prevented tissue engineers from constructing clinically useful load-bearing connective tissue directly from collagen. However, we and others have taken the view that long-range organizational information is potentially encoded into the structure of the collagen molecule itself, allowing the control of fibril organization to extend far from cell (or bounding) surfaces. We here demonstrate a simple, fast, cell-free method capable of producing highly-organized, anistropic collagen fibrillar lamellae de novo which persist over relatively long-distances (tens to hundreds of microns). Our approach to nanoscale organizational control takes advantage of the intrinsic physiochemical properties of collagen molecules by inducing collagen association through molecular crowding and geometric confinement. To mimic biological tissues which comprise planar, aligned collagen lamellae (e.g. cornea, lamellar bone or annulus fibrosus), type I collagen was confined to a thin, planar geometry, concentrated through molecular crowding and polymerized. The resulting fibrillar lamellae show a striking resemblance to native load-bearing lamellae in that the fibrils are small, generally aligned in the plane of the confining space and change direction en masse throughout the thickness of the construct. The process of organizational control is consistent with embryonic development where the bounded planar cell sheets produced by fibroblasts suggest a similar confinement/concentration strategy. Such a simple approach to nanoscale

  18. Ovine-Based Collagen Matrix Dressing: Next-Generation Collagen Dressing for Wound Care

    PubMed Central

    Bohn, Gregory; Liden, Brock; Schultz, Gregory; Yang, Qingping; Gibson, Daniel J.

    2016-01-01

    Significance: Broad-spectrum metalloproteinase (MMP) reduction along with inherent aspects of an extracellular matrix (ECM) dressing can bring about improved wound healing outcomes and shorter treatment duration. Initial reports of clinical effectiveness of a new ovine-based collagen extracellular matrix (CECM) dressing demonstrate benefits in chronic wound healing. Recent Advances: CECM dressings are processed differently than oxidized regenerated cellulose/collagen dressings. CECM dressings consist primarily of collagens I and III arranged as native fibers that retain the three-dimensional architecture present in tissue ECM. As such, ovine-based ECM dressings represent a new generation of collagen dressings capable of impacting a broad spectrum of MMP excess known to be present in chronic wounds. Critical Issues: While MMPs are essential in normal healing, elevated presence of MMPs has been linked to wound failure. Collagen has been shown to reduce levels of MMPs, acting as a sacrificial substrate for excessive proteases in a chronic wound. Preserving collagen dressings in a more native state enhances bioactivity in terms of the ability to affect the chronic wound environment. Clinical observation and assessment may not be sufficient to identify a wound with elevated protease activity that can break down ECM, affect wound fibroblasts, and impair growth factor response. Future Directions: Collagen dressings that target broad-spectrum excessive MMP levels and can be applied early in the course of care may positively impact healing rates in difficult wounds. Next-generation collagen dressings offer broader MMP reduction capacity while providing a provisional dermal matrix or ECM. PMID:26858910

  19. Molecular crowding of collagen: a pathway to produce highly-organized collagenous structures.

    PubMed

    Saeidi, Nima; Karmelek, Kathryn P; Paten, Jeffrey A; Zareian, Ramin; DiMasi, Elaine; Ruberti, Jeffrey W

    2012-10-01

    Collagen in vertebrate animals is often arranged in alternating lamellae or in bundles of aligned fibrils which are designed to withstand in vivo mechanical loads. The formation of these organized structures is thought to result from a complex, large-area integration of individual cell motion and locally-controlled synthesis of fibrillar arrays via cell-surface fibripositors (direct matrix printing). The difficulty of reproducing such a process in vitro has prevented tissue engineers from constructing clinically useful load-bearing connective tissue directly from collagen. However, we and others have taken the view that long-range organizational information is potentially encoded into the structure of the collagen molecule itself, allowing the control of fibril organization to extend far from cell (or bounding) surfaces. We here demonstrate a simple, fast, cell-free method capable of producing highly-organized, anistropic collagen fibrillar lamellae de novo which persist over relatively long-distances (tens to hundreds of microns). Our approach to nanoscale organizational control takes advantage of the intrinsic physiochemical properties of collagen molecules by inducing collagen association through molecular crowding and geometric confinement. To mimic biological tissues which comprise planar, aligned collagen lamellae (e.g. cornea, lamellar bone or annulus fibrosus), type I collagen was confined to a thin, planar geometry, concentrated through molecular crowding and polymerized. The resulting fibrillar lamellae show a striking resemblance to native load-bearing lamellae in that the fibrils are small, generally aligned in the plane of the confining space and change direction en masse throughout the thickness of the construct. The process of organizational control is consistent with embryonic development where the bounded planar cell sheets produced by fibroblasts suggest a similar confinement/concentration strategy. Such a simple approach to nanoscale

  20. Collagen studies in newborn rat kidneys with incomplete ureteric obstruction.

    PubMed

    Haralambous-Gasser, A; Chan, D; Walker, R G; Powell, H R; Becker, G J; Jones, C L

    1993-09-01

    Collagen studies in newborn rats with incomplete ureteric obstruction were performed to describe and quantify changes in collagen deposition resulting from urinary tract obstruction at an early developmental age. Incomplete ureteric obstruction was created in three-day-old rats by placing the left ureter in a tunnel formed by the psoas muscle, and sham-operated controls underwent a laparotomy. The rats were sacrificed at 10, 17, 24 or 31 days. Collagen types I, III, IV, and V were localized by indirect immunofluorescence microscopy, the total collagen content of the kidney was quantitated using hydroxyproline analysis, and collagen types I and III were quantitated using cyanogen bromide (CNBr) peptide analysis. Increased immunofluorescent staining for all of the collagens was found in the diffusely widened medullary interstitium of the obstructed kidney, and more focally in the cortical interstitium. Collagen types I, III and V, but not collagen type IV, were also found in bands in the interstitium at the junction of the cortex with the medulla. Increased staining for collagen type IV was found in thickened and tortuous tubular basement membranes (TBM) of the obstructed kidneys. The total collagen content of the obstructed kidney was significantly increased compared to the amounts in both the contralateral kidneys and in the kidneys from sham-operated controls at 24 and 31 days of age (P < 0.01 in each case, Wilcoxon matched pairs rank sum test and Mann Whitney U-test, respectively). The amount of collagen in the kidneys correlated with the degree of hydronephrosis (Spearman correlation test, r = 0.78, P < 0.02). CNBr peptide analysis demonstrated that over 50% of the collagen in the normal neonatal rat kidney was collagen type I and approximately 25% was collagen type III. In the obstructed kidneys most of the collagen was also collagen type I and collagen type III, although the proportion of total collagen comprised by these collagen types was decreased compared

  1. Nature and specificity of the immune response to collagen in type II collagen-induced arthritis in mice.

    PubMed Central

    Stuart, J M; Townes, A S; Kang, A H

    1982-01-01

    To determine the role of collagen-immunity in the development of collagen-induced arthritis, DBA/1 mice were immunized with type II collagen and observed for the development of polyarthritis. 96% of the mice immunized with native type II collagen developed inflammatory arthritis between 4 and 5 wk after primary immunization. Immunization with denatured type II collagen in exactly the same manner was not effective in inducing arthritis. Cell-mediated immunity in arthritic mice was assessed by measuring [3H]thymidine incorporation by mononuclear cells cultured in the presence of collagen. The maximal proliferative response to collagen occurred at 2 wk after immunization. Equally good incorporation of label occurred when cells were cultured with native or denatured type II collagen or type I collagen. The cellular response of nonarthritic mice immunized with denatured collagen was indistinguishable from that seen in arthritic mice. Humoral immunity was assessed by an ELISA assay for antibodies to collagen. The immunoglobulin M (IgM) response peaked at 2 wk and the IgG response at 5 wk after immunization. Antisera from arthritic mice immunized with native type II collagen were relatively specific for conformational determinants on the native type II molecule although some reactivity with denatured collagen was noted. Antisera from nonarthritic mice immunized with denatured collagen primarily recognized covalent structural determinants. It was concluded that native type II collagen was essential for the induction of arthritis and that an antibody response specific for native type II collagen may be important for the development of arthritis. Images PMID:6174550

  2. Microscale Mechanical Testing of Individual Collagen Fibers

    NASA Astrophysics Data System (ADS)

    Poissant, Jeffrey

    Collagen is a key constituent for a large number of biological materials including bone, tendon, cartilage, skin and fish scales. Understanding the mechanical behavior of collagen's microscale structural components (fibers and fibrils) is therefore of utmost importance for fields such as biomimetics and biomedical engineering. However, the mechanics of collagen fibers and fibrils remain largely unexplored. The main research challenges are the small sample sizes (diameters less than 1 im) and the need to maintain physiologically relevant conditions. In this work, a microscale mechanical testing device (MMTD) capable of measuring the stress-strain response of individual collagen fibers and fibrils was developed. The MMTD consists of: (i) a transducer from a commercial nanoindenter to measure load and displacement, (ii) an optical microscope to observe the deformation of the sample in-situ and (iii) micromanipulators to isolate, position and fix samples. Collagen fibers and fibrils were extracted from fish scales using a novel dissection procedure and tested using the MMTD. A variety of tensile tests were performed including monotonic loading and cyclic tests with increasing loading rate or maximum displacement. The monotonic test results found that the elastic modulus, ultimate tensile strength and strain at failure range from 0.5 to 1.3 GPa, 100 to 200 MPa and 20% to 60%, respectively. The cyclic tests revealed that the largest increase in damage accumulation occurs at strains between 10% and 20%, when hydrogen bonds at the molecular level are ruptured. Further straining the fibril causes little additional damage accumulation and signals the approach of failure. The addition of water is shown to increase damage tolerance and strain to failure.

  3. Tuning 3D Collagen Matrix Stiffness Independently of Collagen Concentration Modulates Endothelial Cell Behavior

    PubMed Central

    Mason, Brooke N.; Starchenko, Alina; Williams, Rebecca M.; Bonassar, Lawrence J.; Reinhart-King, Cynthia A.

    2012-01-01

    Numerous studies have described the effects of matrix stiffening on cell behavior using two dimensional (2D) synthetic surfaces; however less is known about the effects of matrix stiffening on cells embedded in three dimensional (3D) in vivo-like matrices. A primary limitation in investigating the effects of matrix stiffness in 3D is the lack of materials that can be tuned to control stiffness independently of matrix density. Here, we use collagen-based scaffolds where the mechanical properties are tuned using non-enzymatic glycation of the collagen in solution, prior to polymerization. Collagen solutions glycated prior to polymerization result in collagen gels with a 3-fold increase in compressive modulus without significant changes to the collagen architecture. Using these scaffolds, we show that endothelial cell spreading increases with matrix stiffness, as does the number and length of angiogenic sprouts and the overall spheroid outgrowth. Differences in sprout length are maintained even when the receptor for advanced glycation endproducts is inhibited. Our results demonstrate the ability to de-couple matrix stiffness from matrix density and structure in collagen gels, and that increased matrix stiffness results in increased sprouting and outgrowth. PMID:22902816

  4. IL-13 mediates collagen deposition via STAT6 and microRNA-135b: a role for epigenetics

    PubMed Central

    O’Reilly, Steven; Ciechomska, Marzena; Fullard, Nicola; Przyborski, Stefan; van Laar, Jacob M.

    2016-01-01

    Systemic sclerosis is an autoimmune connective tissue disease in which T cells play a prominent role. We and others have previously demonstrated a role for T cell-derived IL-13 in mediating the induction of collagen in dermal fibroblasts and that blockade with IL-13 antibodies attenuates this increase. In this study we want to probe the signalling that underpins IL-13 mediated matrix deposition. Isolated dermal fibroblasts were incubated with recombinant IL-13 and gene expression by qRT-PCR was performed for collagen1A1 and TGF-β1. Small interfering RNA (siRNA) was used to knock down STAT6 and a small molecule inhibitor was also used to block this pathway. MiR-135b was transfected into fibroblasts plus and minus IL-13 to see if this miR plays a role. miR-135b was measured in systemic sclerosis fibroblasts isolated from patients and also in serum. Results showed that IL-13 increased collagen expression and that this is independent from TGF-β1. This is dependent on STAT6 as targeting this blocked induction. MiR-135b reduces collagen induction in fibroblasts and scleroderma fibroblasts have lower constitutive levels of the miR. We further demonstrate that miR135b is repressed by methylation and may include MeCP2. In conclusion we show that STAT6 and miR-135b regulate IL-13-mediated collagen production by fibroblasts. PMID:27113293

  5. Collagen sponge: theory and practice of medical applications.

    PubMed

    Chvapil, M

    1977-09-01

    Theoretical as well as practical-clinical applications of one form of collagen (collagen sponge) as a biodegradable material is reviewed. The role of porosity of the sponge and surface characteristics of the meshwork in relation to cell ingrowth are considered essential features of collagen sponge. Rate of resorption and antigenicity could be controlled by graded crosslinking of collagenous framework. Four basic examples of clinical use of collagen sponge are presented: as wound (burn) dressing material, as a matrix, for bone and cartilage repair, as an intravaginal contraceptive diaphragm, and as surgical tampons.

  6. Play in Practice: Case Studies in Young Children's Play.

    ERIC Educational Resources Information Center

    Brown, Cheryl Render, Ed.; Marchant, Catherine, Ed.

    This book uses a collection of stories, or "cases," as a basis for reflection, discussion, and learning about the many roles "play" has in children's lives. Each of the 12 cases addresses an issue of play from one of three categories--the role of adults in play, the cultural meanings of play, and the issues related to play in special settings.…

  7. Cloning, expression and antioxidant activity of a novel collagen from Pelodiscus sinensis.

    PubMed

    Xu, Ran; Li, Dengfeng; Peng, Jiao; Fang, Jing; Zhang, Liping; Liu, Lianguo

    2016-06-01

    Collagen is the main structural protein of various connective tissues in animals and naturally plays an important role within the body. It is increasingly used within certain areas, such as medicine, citology and cosmetology. The soft-shelled turtle (Pelodiscus sinensis) is a commercially important aquatic species rich in collagen. In this study, a novel collagen gene fragment of 756 bp, which encodes 252 deduced amino acid residues, including 25 conserved Gly-X-Y motifs, was cloned from a soft-shelled turtle. Recombinant soft-shelled turtle collagen (rSTC) was stably expressed in Escherichia coli Rosetta and purified by His GraviTrap affinity columns. The antioxidant activities of rSTC were measured using hydroxyl and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The results showed that rSTC quenched the free radicals in a dose-dependent manner. The hydroxyl radical scavenging activity (HRSA) of rSTC was 98.9 % at a concentration of 3 mg/mL. At a concentration of 5 mg/mL, rSTC exhibited a DPPH radical scavenging activity of 32.7 %. At the tested concentrations, rSTC exhibited higher HRSA and lower DPPH radical scavenging activity. PMID:27116966

  8. Calcific Aortic Valve Disease Is Associated with Layer-Specific Alterations in Collagen Architecture

    PubMed Central

    Hutson, Heather N.; Marohl, Taylor; Anderson, Matthew; Eliceiri, Kevin; Campagnola, Paul

    2016-01-01

    Disorganization of the valve extracellular matrix (ECM) is a hallmark of calcific aortic valve disease (CAVD). However, while microarchitectural features of the ECM can strongly influence the biological and mechanical behavior of tissues, little is known about the ECM microarchitecture in CAVD. In this work, we apply advanced imaging techniques to quantify spatially heterogeneous changes in collagen microarchitecture in CAVD. Human aortic valves were obtained from individuals between 50 and 75 years old with no evidence of valvular disease (healthy) and individuals who underwent valve replacement surgery due to severe stenosis (diseased). Second Harmonic Generation microscopy and subsequent image quantification revealed layer-specific changes in fiber characteristics in healthy and diseased valves. Specifically, the majority of collagen fiber changes in CAVD were found to occur in the spongiosa, where collagen fiber number increased by over 2-fold, and fiber width and density also significantly increased. Relatively few fibrillar changes occurred in the fibrosa in CAVD, where fibers became significantly shorter, but did not otherwise change in terms of number, width, density, or alignment. Immunohistochemical staining for lysyl oxidase showed localized increased expression in the diseased fibrosa. These findings reveal a more complex picture of valvular collagen enrichment and arrangement in CAVD than has previously been described using traditional analysis methods. Changes in fiber architecture may play a role in regulating the pathobiological events and mechanical properties of valves during CAVD. Additionally, characterization of the ECM microarchitecture can inform the design of fibrous scaffolds for heart valve tissue engineering. PMID:27685946

  9. Peroxidase Enzymes Regulate Collagen Biosynthesis and Matrix Mineralization by Cultured Human Osteoblasts.

    PubMed

    DeNichilo, Mark O; Shoubridge, Alexandra J; Panagopoulos, Vasilios; Liapis, Vasilios; Zysk, Aneta; Zinonos, Irene; Hay, Shelley; Atkins, Gerald J; Findlay, David M; Evdokiou, Andreas

    2016-03-01

    The early recruitment of inflammatory cells to sites of bone fracture and trauma is a critical determinant in successful fracture healing. Released by infiltrating inflammatory cells, myeloperoxidase (MPO) and eosinophil peroxidase (EPO) are heme-containing enzymes, whose functional involvement in bone repair has mainly been studied in the context of providing a mechanism for oxidative defense against invading microorganisms. We report here novel findings that show peroxidase enzymes have the capacity to stimulate osteoblastic cells to secrete collagen I protein and generate a mineralized extracellular matrix in vitro. Mechanistic studies conducted using cultured osteoblasts show that peroxidase enzymes stimulate collagen biosynthesis at a post-translational level in a prolyl hydroxylase-dependent manner, which does not require ascorbic acid. Our studies demonstrate that osteoblasts rapidly bind and internalize both MPO and EPO, and the catalytic activity of these peroxidase enzymes is essential to support collagen I biosynthesis and subsequent release of collagen by osteoblasts. We show that EPO is capable of regulating osteogenic gene expression and matrix mineralization in culture, suggesting that peroxidase enzymes may play an important role not only in normal bone repair, but also in the progression of pathological states where infiltrating inflammatory cells are known to deposit peroxidases.

  10. Preserving the longevity of long-lived type II collagen and its implication for cartilage therapeutics.

    PubMed

    Tiku, Moti L; Madhan, Balaraman

    2016-07-01

    Human life expectancy has been steadily increasing at a rapid rate, but this increasing life span also brings about increases in diseases, dementia, and disability. A global burden of disease 2010 study revealed that hip and knee osteoarthritis ranked the 11th highest in terms of years lived with disability. Wear and tear can greatly influence the quality of life during ageing. In particular, wear and tear of the articular cartilage have adverse effects on joints and result in osteoarthritis. The articular cartilage uses longevity of type II collagen as the foundation around which turnover of proteoglycans and the homeostatic activity of chondrocytes play central roles thereby maintaining the function of articular cartilage in the ageing. The longevity of type II collagen involves a complex interaction of the scaffolding needs of the cartilage and its biochemical, structural and mechanical characteristics. The covalent cross-linking of heterotypic polymers of collagens type II, type IX and type XI hold together cartilage, allowing it to withstand ageing stresses. Discerning the biological clues in the armamentarium for preserving cartilage appears to be collagen cross-linking. Therapeutic methods to crosslink in in-vivo are non-existent. However intra-articular injections of polyphenols in vivo stabilize the cartilage and make it resistant to degradation, opening a new therapeutic possibility for prevention and intervention of cartilage degradation in osteoarthritis of aging. PMID:27133944

  11. Surface modification of electrospun PLGA scaffold with collagen for bioengineered skin substitutes.

    PubMed

    Sadeghi, A R; Nokhasteh, S; Molavi, A M; Khorsand-Ghayeni, M; Naderi-Meshkin, H; Mahdizadeh, A

    2016-09-01

    In skin tissue engineering, surface feature of the scaffolds plays an important role in cell adhesion and proliferation. In this study, non-woven fibrous substrate based on poly (lactic-co-glycolic acid) (PLGA) (75/25) were hydrolyzed in various concentrations of NaOH (0.05N, 0.1N, 0.3N) to increase carboxyl and hydroxyl groups on the fiber surfaces. These functional groups were activated by EDC/NHS to create chemical bonding with collagen. To improve bioactivity, the activated substrates were coated with a collagen solution (2mg/ml) and cross-linking was carried out using the EDC/NHS in MES buffer. The effectiveness of the method was evaluated by contact angle measurements, porosimetry, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), tensile and degradation tests as well as in vitro cell attachment and cytotoxicity assays. Cell culture results of human dermal fibroblasts (HDF) and keratinocytes cell line (HaCat) revealed that the cells could attach to the scaffold. Further investigation with MTT assay showed that the cell proliferation of HaCat significantly increases with collagen coating. It seems that sufficient stability of collagen on the surface due to proper chemical bonding and cross-linking has increased the bioactivity of surface remarkably which can be promising for bioengineered skin applications. PMID:27207046

  12. Northern pike (Esox lucius) collagen: Extraction, characterization and potential application.

    PubMed

    Kozlowska, J; Sionkowska, A; Skopinska-Wisniewska, J; Piechowicz, K

    2015-11-01

    Acid soluble collagen (ASC) and pepsin soluble collagen (PSC) from the scales of northern pike (Esox lucius) were extracted and characterized. It was the first time that this species was used as sources of collagen. FT-IR and amino acid analysis results revealed the presence of collagen. Glycine accounts for one-third of its amino acid residues and specific for collagen amino acid - hydroxyproline - is present in isolated protein. The content of imino acid: proline and hydroxyproline in ASC and PSC was similar (12.5% Pro and 6.5% Hyp). Both ASC and PSC were type I collagen. The denaturation temperature of ASC and PSC were 28.5 and 27°C, respectively. Thin collagen films were obtained by casting of collagen solution onto glass plates. The surface properties of ASC and PSC films were different - the surface of ASC collagen film was more polar and less rough than PSC and we can observe the formation of collagen fibrils after solvent evaporation. ASC films showed much higher tensile properties than PSC. The obtained results suggest that northern pike scales have potential as an alternative source of collagen for use in various fields.

  13. Clot retraction is mediated by factor XIII-dependent fibrin-αIIbβ3-myosin axis in platelet sphingomyelin-rich membrane rafts.

    PubMed

    Kasahara, Kohji; Kaneda, Mizuho; Miki, Toshiaki; Iida, Kazuko; Sekino-Suzuki, Naoko; Kawashima, Ikuo; Suzuki, Hidenori; Shimonaka, Motoyuki; Arai, Morio; Ohno-Iwashita, Yoshiko; Kojima, Soichi; Abe, Mitsuhiro; Kobayashi, Toshihide; Okazaki, Toshiro; Souri, Masayoshi; Ichinose, Akitada; Yamamoto, Naomasa

    2013-11-01

    Membrane rafts are spatially and functionally heterogenous in the cell membrane. We observed that lysenin-positive sphingomyelin (SM)-rich rafts are identified histochemically in the central region of adhered platelets where fibrin and myosin are colocalized on activation by thrombin. The clot retraction of SM-depleted platelets from SM synthase knockout mouse was delayed significantly, suggesting that platelet SM-rich rafts are involved in clot retraction. We found that fibrin converted by thrombin translocated immediately in platelet detergent-resistant membrane (DRM) rafts but that from Glanzmann's thrombasthenic platelets failed. The fibrinogen γ-chain C-terminal (residues 144-411) fusion protein translocated to platelet DRM rafts on thrombin activation, but its mutant that was replaced by A398A399 at factor XIII crosslinking sites (Q398Q399) was inhibited. Furthermore, fibrin translocation to DRM rafts was impaired in factor XIII A subunit-deficient mouse platelets, which show impaired clot retraction. In the cytoplasm, myosin translocated concomitantly with fibrin translocation into the DRM raft of thrombin-stimulated platelets. Furthermore, the disruption of SM-rich rafts by methyl-β-cyclodextrin impaired myosin activation and clot retraction. Thus, we propose that clot retraction takes place in SM-rich rafts where a fibrin-αIIbβ3-myosin complex is formed as a primary axis to promote platelet contraction. PMID:24002447

  14. Anti-collagen antibodies in sera from rheumatoid arthritis patients.

    PubMed Central

    Beard, H K; Ryvar, R; Skingle, J; Greenbury, C L

    1980-01-01

    Anti-cartilage antibodies, demonstrable by immunofluorescence, were found in 3.3% of rheumatoid arthritis patients. In most of these patients antibodies to type II collagen were detected. In specificity studies on these anti-collagen antibodies, they appeared to be type specific, showing no reaction with collagen types I and III. Denatured type II collagen reacted much less well than native type II, but isolated peptides from different regions of the collagen molecule were differentiated by individual sera. Removal of the glycoside side chains from native type II collagen had no effect on its antigenicity. The findings suggest that these patients produce highly specific antibodies which react with the triple helix of type II collagen. PMID:6255015

  15. Anti-collagen antibodies in sera from rheumatoid arthritis patients.

    PubMed

    Beard, H K; Ryvar, R; Skingle, J; Greenbury, C L

    1980-11-01

    Anti-cartilage antibodies, demonstrable by immunofluorescence, were found in 3.3% of rheumatoid arthritis patients. In most of these patients antibodies to type II collagen were detected. In specificity studies on these anti-collagen antibodies, they appeared to be type specific, showing no reaction with collagen types I and III. Denatured type II collagen reacted much less well than native type II, but isolated peptides from different regions of the collagen molecule were differentiated by individual sera. Removal of the glycoside side chains from native type II collagen had no effect on its antigenicity. The findings suggest that these patients produce highly specific antibodies which react with the triple helix of type II collagen.

  16. Transdermal Delivery of Functional Collagen Via Polyvinylpyrrolidone Microneedles.

    PubMed

    Sun, Wenchao; Inayathullah, Mohammed; Manoukian, Martin A C; Malkovskiy, Andrey V; Manickam, Sathish; Marinkovich, M Peter; Lane, Alfred T; Tayebi, Lobat; Seifalian, Alexander M; Rajadas, Jayakumar

    2015-12-01

    Collagen makes up a large proportion of the human body, particularly the skin. As the body ages, collagen content decreases, resulting in wrinkled skin and decreased wound healing capabilities. This paper presents a method of delivering type I collagen into porcine and human skin utilizing a polyvinylpyrrolidone microneedle delivery system. The microneedle patches were made with concentrations of 1, 2, 4, and 8% type I collagen (w/w). Microneedle structures and the distribution of collagen were characterized using scanning electron microscopy and confocal microscopy. Patches were then applied on the porcine and human skin, and their effectiveness was examined using fluorescence microscopy. The results illustrate that this microneedle delivery system is effective in delivering collagen I into the epidermis and dermis of porcine and human skin. Since the technique presented in this paper is quick, safe, effective and easy, it can be considered as a new collagen delivery method for cosmetic and therapeutic applications. PMID:26066056

  17. Transdermal Delivery of Functional Collagen Via Polyvinylpyrrolidone Microneedles.

    PubMed

    Sun, Wenchao; Inayathullah, Mohammed; Manoukian, Martin A C; Malkovskiy, Andrey V; Manickam, Sathish; Marinkovich, M Peter; Lane, Alfred T; Tayebi, Lobat; Seifalian, Alexander M; Rajadas, Jayakumar

    2015-12-01

    Collagen makes up a large proportion of the human body, particularly the skin. As the body ages, collagen content decreases, resulting in wrinkled skin and decreased wound healing capabilities. This paper presents a method of delivering type I collagen into porcine and human skin utilizing a polyvinylpyrrolidone microneedle delivery system. The microneedle patches were made with concentrations of 1, 2, 4, and 8% type I collagen (w/w). Microneedle structures and the distribution of collagen were characterized using scanning electron microscopy and confocal microscopy. Patches were then applied on the porcine and human skin, and their effectiveness was examined using fluorescence microscopy. The results illustrate that this microneedle delivery system is effective in delivering collagen I into the epidermis and dermis of porcine and human skin. Since the technique presented in this paper is quick, safe, effective and easy, it can be considered as a new collagen delivery method for cosmetic and therapeutic applications.

  18. Type VII collagen is enriched in the enamel organic matrix associated with the dentin-enamel junction of mature human teeth.

    PubMed

    McGuire, Jacob D; Walker, Mary P; Mousa, Ahmad; Wang, Yong; Gorski, Jeff P

    2014-06-01

    The inner enamel region of erupted teeth is known to exhibit higher fracture toughness and crack growth resistance than bulk phase enamel. However, an explanation for this behavior has been hampered by the lack of compositional information for the residual enamel organic matrix. Since enamel-forming ameloblasts are known to express type VII collagen and type VII collagen null mice display abnormal amelogenesis, the aim of this study was to determine whether type VII collagen is a component of the enamel organic matrix at the dentin-enamel junction (DEJ) of mature human teeth. Immunofluorescent confocal microscopy of demineralized tooth sections localized type VII collagen to the organic matrix surrounding individual enamel rods near the DEJ. Morphologically, immunoreactive type VII collagen helical-bundles resembled the gnarled-pattern of enamel rods detected by Coomassie Blue staining. Western blotting of whole crown or enamel matrix extracts also identified characteristic Mr=280 and 230 kDa type VII dimeric forms, which resolved into 75 and 25 kDa bands upon reduction. As expected, the collagenous domain of type VII collagen was resistant to pepsin digestion, but was susceptible to purified bacterial collagenase. These results demonstrate the inner enamel organic matrix in mature teeth contains macromolecular type VII collagen. Based on its physical association with the DEJ and its well-appreciated capacity to complex with other collagens, we hypothesize that enamel embedded type VII collagen fibrils may contribute not only to the structural resilience of enamel, but may also play a role in bonding enamel to dentin.

  19. Development through Work and Play.

    ERIC Educational Resources Information Center

    Hartung, Paul J.

    2002-01-01

    Five proposals are made for incorporating a work-play perspective in career development research: (1) fuse work and play conceptually over the life course; (2) imbue developmental career theory with a work-play fusion; (3) study work and play across the life span; (4) investigate work and play within the life space; and (5) consider a work-play…

  20. The Neglected Factor-Play

    ERIC Educational Resources Information Center

    Feitelson, Dina; Ross, Gail S.

    1973-01-01

    Spontaneous thematic play behavior in children is investigated. Environmental prerequisites of play and possible functions of play in cognitive and personality development are discussed. Whether modelling is a prerequisite for thematic play, and the relationship between level of play and creativity test performance in children are assessed. (DP)

  1. Farm Hall: The Play

    NASA Astrophysics Data System (ADS)

    Cassidy, David C.

    2013-03-01

    It's July 1945. Germany is in defeat and the atomic bombs are on their way to Japan. Under the direction of Samuel Goudsmit, the Allies are holding some of the top German nuclear scientists-among them Heisenberg, Hahn, and Gerlach-captive in Farm Hall, an English country manor near Cambridge, England. As secret microphones record their conversations, the scientists are unaware of why they are being held or for how long. Thinking themselves far ahead of the Allies, how will they react to the news of the atomic bombs? How will these famous scientists explain to themselves and to the world their failure to achieve even a chain reaction? How will they come to terms with the horror of the Third Reich, their work for such a regime, and their behavior during that period? This one-act play is based upon the transcripts of their conversations as well as the author's historical work on the subject.

  2. Study of Native Type I Collagen Fibrils

    NASA Astrophysics Data System (ADS)

    Heim, August

    2006-03-01

    Presented in this work is direct imaging and force microscopy of native, intact type I collagen fibrils extracted from the sea cucumber Cucumaria frondosa dermis with affiliated proteoglycan molecules. The prototypical collagen fibril structure is well conserved through higher mammalian species and presents a model for study of the mechanical properties of the primary individual components of the dermis and skeletal ligature. Common practice is to use reconstituted fibrils which lack the precise conformal structure and affiliated proteoglycans. We have performed force microscopy to probe the mechanical properties of native fibrils and extract the elastic modulus under natural conditions. This knowledge is combined transmission and atomic force imaging, in conjunction with applied computation models, to demonstrate an inherent semitubular structure of these fibrils.

  3. About collagen, a tribute to Yves Bouligand.

    PubMed

    Charvolin, Jean; Sadoc, Jean-François

    2012-10-01

    Yves Bouligand's analysis of the organizations of biological materials in relation to those of liquid crystals enabled the development of the idea that physical forces exerting their actions under strong spatial constraints determine the structures and morphologies of these materials. The different levels of organization in collagen have preoccupied him for a long time. We present here our recent works in this domain that we were still discussing with him a few months before his death at the age of 76 on 21 January 2011. After recalling the hierarchical set of structures built by collagen molecules, we analyse them, exploiting the properties of the curved space of the hypersphere and of the algorithm of phyllotaxis. Those two geometrical concepts can be proposed as structural archetypes founding the polymorphism of this complex material of biological origin. PMID:24098840

  4. About collagen, a tribute to Yves Bouligand

    PubMed Central

    Charvolin, Jean; Sadoc, Jean-François

    2012-01-01

    Yves Bouligand's analysis of the organizations of biological materials in relation to those of liquid crystals enabled the development of the idea that physical forces exerting their actions under strong spatial constraints determine the structures and morphologies of these materials. The different levels of organization in collagen have preoccupied him for a long time. We present here our recent works in this domain that we were still discussing with him a few months before his death at the age of 76 on 21 January 2011. After recalling the hierarchical set of structures built by collagen molecules, we analyse them, exploiting the properties of the curved space of the hypersphere and of the algorithm of phyllotaxis. Those two geometrical concepts can be proposed as structural archetypes founding the polymorphism of this complex material of biological origin. PMID:24098840

  5. Acquired Factor XIII Inhibitor in Hospitalized and Perioperative Patients: A Systematic Review of Case Reports and Case Series.

    PubMed

    Tone, Kira J; James, Tyler E; Fergusson, Dean A; Tinmouth, Alan; Tay, Jason; Avey, Marc T; Kilty, Shaun; Lalu, Manoj M

    2016-07-01

    Factor XIII (FXIII) cross-links fibrin monomers to support clot stabilization and wound healing. Acquired FXIII deficiency is caused by autoantibodies that inhibit FXIII and can result in bleeding despite normal routine coagulation test results. Given the rarity of this disease, large clinical studies are not feasible. We therefore conducted a systematic review of case reports and case series of acquired FXIII inhibitor to evaluate potential management and treatment strategies for acquired FXIII inhibitor in hospitalized and/or perioperative patients. A systematic search of MEDLINE, Embase, and Web of Science identified reports of hospitalized and perioperative patients with acquired FXIII deficiency. No restrictions were placed on language or publication type. Article screening and data extraction were performed independently by 2 abstractors. Completeness of reporting was evaluated according to modified elements from the CAse REport (CARE) guidelines. A total of 1028 citations were reviewed, with 36 case reports and 3 case series meeting eligibility criteria (63 patients total). The mean age was 60 (range, 9-87) years with balanced sex representation. At presentation, 48 patients (76%) had intramuscular or subcutaneous bleeding, and 34 patients (54%) had external or surgical bleeding. All cases were diagnosed by initially detecting a FXIII deficiency and then identifying the inhibitor. Clinical improvement in bleeding was seen in patients receiving FXIII concentrate (13/17 patients), cryoprecipitate (5/8), and plasma (10/18). Inhibitor reduction was seen in patients who received rituximab (6/6 patients), plasma exchange (2/2), intravenous immunoglobulin (4/5), steroid (15/20), and cyclophosphamide (10/15). Concurrent initiation of multiple therapies and obvious lack of control comparisons made direct association to outcomes difficult to establish. Outcomes were reported for 55 patients, with 25 patients (45%) having complete inhibitor eradication and 15 patients

  6. First cases of severe congenital factor XIII deficiency in Southwestern Afghanistan in the vicinity of southeast of Iran.

    PubMed

    Hosseini, Soudabeh; Dorgalaleh, Akbar; Bamedi, Taregh; Tavakol, Khanagha; Tabibian, Shadi; Naderi, Majid; Alizadeh, Shaban; Varmaghani, Bijan; Shamsizadeh, Morteza; Rahimizadeh, Aziz; Ebrahimi, Sharif

    2015-12-01

    Factor XIII deficiency (FXIIID) is an extremely rare bleeding disorder with the highest global incidence in southeast of Iran. Southwestern Afghanistan (Nimruz Province) is located near the border with Iran in the vicinity of Sistan and Baluchestan Province in southeast Iran, and there seems to be a high prevalence of FXIIID in Nimruz. Thus, this cross-sectional study was designed to assess the prevalence of FXIIID, molecular basis as well as clinical manifestations of FXIIID in Southwestern Afghanistan. During the course of the study, all patients suspected of FXIIID were clinically examined and assessed by routine coagulation tests, including bleeding time, activated partial thromboplastin time, prothrombin time, as well as platelet count and clot solubility test. Patients with normal routine coagulation tests, but abnormal clot solubility test, underwent further investigations by FXIII activity, as well as molecular analysis for FXIII-A gene mutation (Trp187Arg) by PCR-restriction fragment length polymorphism that confirmed by sequencing. Patients with confirmed FXIIID deficiency were registered to receive prophylaxis treatment. All data including demographic information, clinical manifestations, as well as therapeutic response and type and duration of treatment, were recorded, and the data were analyzed by SPSS software. In this cross-sectional study, we found five patients with abnormal clot solubility test, among whom two patients abandoned the study, whereas three patients remained for a more precise study. All the patients were residents of Zaranj city, the capital of Nimruz Province. All these patients had undetectable activity of FXIII, which indicates a severe deficiency. Molecular analysis of patients showed mutation of Trp187Arg in all of them. Hematoma was the most common clinical presentation leading to diagnosis of FXIIID in these patients (100%). Epistaxis (67%), gum bleeding (33%), and hematuria (33%) were other recurrent clinical presentations of

  7. Urinary polypeptides related to collagen synthesis

    PubMed Central

    Krane, Stephen M.; Muñoz, Alberto J.; Harris, Edward D.

    1970-01-01

    Of the total urinary hydroxyproline in normal subjects and those with skeletal disorders, between 4 and 20% was nondialyzable. In some patients with Paget's disease of bone, hyperparathyroidism with osteitis fibrosa, hyperphosphatasia, and extensive fibrous dysplasia the total urinary hydroxyproline was sufficiently high to permit purification of this polypeptide hydroxyproline by gel filtration and ion exchange chromatography. The partially purified polypeptides had molecular weights between 4500 and 10,000 and amino acid compositions and physical properties resembling those of gelatin. The polypeptide fractions also contained neutral sugar and glucosamine. These fragments had been shown to be susceptible to cleavage by purified bacterial collagenase suggesting the presence of the sequence-Pro-X-Gly-Pro-Y-. After administration of proline-14C to patients with Paget's disease hydroxyproline-14C was excreted in the urine. The hydroxyproline-14C specific activity reached a peak in 2-4 hr and declined rapidly. The specific activity of the polypeptide (retentate) portion was severalfold greater than that of the raw urine and diffusate. When the labeled urines were subjected to gel filtration the hydroxyproline-14C fractions of highest molecular weight which were eluted first from the columns had the highest specific activities. Exposure of the hydroxyproline-14C-containing polypeptides to bacterial collagenase rendered them dialyzable. Four patients with hyperparathyroidism and osteitis fibrosa were studied before and after removal of a parathyroid adenoma, a period of transition from a predominance of bone collagen resorption to one of relatively increased bone collagen synthesis. The total urinary hydroxyproline fell rapidly after operation whereas the ratio of the polypeptide fraction to the total rose three- to fourfold. The results of these studies suggest that the urinary polypeptides represent fragments of collagen related to collagen synthesis. Changes in the

  8. Dynamics of collagen from bovine connective tissues

    NASA Astrophysics Data System (ADS)

    Renou, J.-P.; Foucat, L.; Corsaro, C.; Ollivier, J.; Zanotti, J.-M.; Middendorf, H. D.

    2004-07-01

    We present first results from neutron studies of ns to ps relaxations in bovine collagen, comparing data for a minimally cross-linked sample (young calf) with those for a highly cross-linked one (old cow). Proton displacements derived from quasielastic scans (30

  9. Type XII collagen. A large multidomain molecule with partial homology to type IX collagen.

    PubMed

    Gordon, M K; Gerecke, D R; Dublet, B; van der Rest, M; Olsen, B R

    1989-11-25

    Three overlapping cDNAs encoding alpha 1 (XII) collagen have been isolated and sequenced. The DNAs define five sequence domains within the chain. Three domains are nontriple-helical; two are relatively short triple-helical regions. The amino acid sequences of tryptic peptides derived from 16- and 10-kDa pepsin-resistant fragments isolated from tendon extracts are in full agreement with the deduced sequences of the triple-helical regions. Two of the five sequence domains in alpha 1 (XII), one triple-helical and one nontriple-helical, show a high degree of similarity to regions in type IX collagen chains. In addition, examination of seven exons in the alpha 1 (XII) gene shows that the gene is, in part, similar to the structure of type IX collagen genes. Therefore, collagen types IX and XII are partially homologous. The alpha 1 (XII) sequence data predict an asymmetric structure for type XII collagen molecules, fully consistent with the rotary shadowing images. These images show a triple-helical 75-nm tail attached through a central globule to three finger-like structures, each 60 nm long (Dublet, B., Oh, S., Sugrue, S. P., Gordon, M. K., Gerecke, D. R., Olsen, B. R., and van der Rest, M. (1989) J. Biol. Chem. 264, 13150-13156).

  10. MORPHOLOGICAL AND CHEMICAL STUDIES OF COLLAGEN FORMATION

    PubMed Central

    Chapman, J. A.

    1961-01-01

    This paper describes electron microscopic studies of developing connective tissue in granulomata induced by the subcutaneous injection of carrageenin into guinea pigs. Seven days after injection the granulomata contained many fibroblasts and exhibited rapid production of collagen. The fibroblasts were characterised by an extensively developed endoplasmic reticulum and showed numbers of fine, unstriated filaments in the outer regions of the cytoplasm. The filaments, about 50 A in diameter, tended to lie parallel to and closely adjacent to the cell boundary. The cytoplasmic membrane was frequently ill defined or disrupted, particularly bordering regions in which filaments occurred. In longitudinal sections of extended cell processes, filaments were abundant and, in some instances, the cytoplasmic membrane was barely detectable. In the extracellular space striated collagen fibrils were usually accompanied by filaments, 50 to 100 A in diameter, and these often exhibited the characteristic periodicity of collagen, particularly after intense electron bombardment. Much cellular debris was present in the extracellular space. These observations have led to the suggestion that connective tissue precursors are released from fibroblasts by the disintegration or dissolution of the cytoplasmic membrane and the shedding of cytoplasmic material, as in the apocrine gland cells. In some instances this release may take the form of the elongation from the cell of extended processes; disintegration of the cytoplasmic membrane surrounding these processes then leaves the contents in the extracellular phase. PMID:13692398

  11. Strain-Induced Alignment in Collagen Gels

    PubMed Central

    Vader, David; Kabla, Alexandre; Weitz, David; Mahadevan, Lakshminarayana

    2009-01-01

    Collagen is the most abundant extracellular-network-forming protein in animal biology and is important in both natural and artificial tissues, where it serves as a material of great mechanical versatility. This versatility arises from its almost unique ability to remodel under applied loads into anisotropic and inhomogeneous structures. To explore the origins of this property, we develop a set of analysis tools and a novel experimental setup that probes the mechanical response of fibrous networks in a geometry that mimics a typical deformation profile imposed by cells in vivo. We observe strong fiber alignment and densification as a function of applied strain for both uncrosslinked and crosslinked collagenous networks. This alignment is found to be irreversibly imprinted in uncrosslinked collagen networks, suggesting a simple mechanism for tissue organization at the microscale. However, crosslinked networks display similar fiber alignment and the same geometrical properties as uncrosslinked gels, but with full reversibility. Plasticity is therefore not required to align fibers. On the contrary, our data show that this effect is part of the fundamental non-linear properties of fibrous biological networks. PMID:19529768

  12. Viscoelastic properties of isolated collagen fibrils.

    PubMed

    Shen, Zhilei Liu; Kahn, Harold; Ballarini, Roberto; Eppell, Steven J

    2011-06-22

    Understanding the viscoelastic behavior of collagenous tissues with complex hierarchical structures requires knowledge of the properties at each structural level. Whole tissues have been studied extensively, but less is known about the mechanical behavior at the submicron, fibrillar level. Using a microelectromechanical systems platform, in vitro coupled creep and stress relaxation tests were performed on collagen fibrils isolated from the sea cucumber dermis. Stress-strain-time data indicate that isolated fibrils exhibit viscoelastic behavior that could be fitted using the Maxwell-Weichert model. The fibrils showed an elastic modulus of 123 ± 46 MPa. The time-dependent behavior was well fit using the two-time-constant Maxwell-Weichert model with a fast time response of 7 ± 2 s and a slow time response of 102 ± 5 s. The fibrillar relaxation time was smaller than literature values for tissue-level relaxation time, suggesting that tissue relaxation is dominated by noncollagenous components (e.g., proteoglycans). Each specimen was tested three times, and the only statistically significant difference found was that the elastic modulus is larger in the first test than in the subsequent two tests, indicating that viscous properties of collagen fibrils are not sensitive to the history of previous tests.

  13. Viscoelastic Properties of Isolated Collagen Fibrils

    PubMed Central

    Shen, Zhilei Liu; Kahn, Harold; Ballarini, Roberto; Eppell, Steven J.

    2011-01-01

    Understanding the viscoelastic behavior of collagenous tissues with complex hierarchical structures requires knowledge of the properties at each structural level. Whole tissues have been studied extensively, but less is known about the mechanical behavior at the submicron, fibrillar level. Using a microelectromechanical systems platform, in vitro coupled creep and stress relaxation tests were performed on collagen fibrils isolated from the sea cucumber dermis. Stress-strain-time data indicate that isolated fibrils exhibit viscoelastic behavior that could be fitted using the Maxwell-Weichert model. The fibrils showed an elastic modulus of 123 ± 46 MPa. The time-dependent behavior was well fit using the two-time-constant Maxwell-Weichert model with a fast time response of 7 ± 2 s and a slow time response of 102 ± 5 s. The fibrillar relaxation time was smaller than literature values for tissue-level relaxation time, suggesting that tissue relaxation is dominated by noncollagenous components (e.g., proteoglycans). Each specimen was tested three times, and the only statistically significant difference found was that the elastic modulus is larger in the first test than in the subsequent two tests, indicating that viscous properties of collagen fibrils are not sensitive to the history of previous tests. PMID:21689535

  14. Collagenous gastritis: a case report, morphologic evaluation, and review.

    PubMed

    Vesoulis, Z; Lozanski, G; Ravichandran, P; Esber, E

    2000-05-01

    Collagenous gastritis is rare; there are only four previous case reports. Histologic features seem to overlap with the other "collagenous enterocolitides"; however, pathologic criteria are not yet established for the diagnosis of collagenous gastritis. We describe an additional case of ostensible collagenous gastritis in a patient who initially presented with celiac sprue and subsequently developed colonic manifestations of mucosal ulcerative colitis. Endoscopic biopsies of the stomach revealed deposition of patchy, very thick bandlike subepithelial collagen in gastric antral mucosa, focal superficial epithelial degeneration, numerous intraepithelial lymphocytes, and a dense lamina propria lymphoplasmacytic infiltrate. Image analysis evaluation of gastric antral biopsies demonstrated a mean thickness of subepithelial collagen of 27.07 micron. Morphologic comparison was made with age-matched control groups of 10 patients who had normal gastric mucosal biopsies and 10 patients who had "chronic" gastritis, which revealed mean subepithelial collagen measures of 1.37 micron and 1.19 micron, respectively. We compared these morphologic findings with those of all previous case reports of collagenous gastritis and propose a pathologic definition based on the limited combined data. It seems that subepithelial collagen is dramatically thickened in reported cases of collagenous gastritis, with a cumulative mean measure of 36.9 micron. It is also apparent from this and previous reports that the thickened subepithelial collagen is accompanied by a chronic or chronic active gastritis and sometimes intraepithelial lymphocytes and surface epithelial damage. Recently described associations of lymphocytic gastritis, sprue, and lymphocytic colitis as well as collagenous and lymphocytic colitis suggest a common pathogenesis that empirically may include collagenous gastritis in the same disease spectrum. We propose that collagenous gastritis can be confidently identified by using

  15. Enhanced osteoblast proliferation and collagen gene expression by estradiol

    SciTech Connect

    Ernest, M.; Schmid, Ch.; Froesch, E.R. )

    1988-04-01

    Estrogens play a crucial role in the development of postmenopausal osteoporosis. However, the mechanism by which estrogens exert their effects on bone is unknown. To examine possible direct effects of 17{beta}-estradiol on bone-forming cells, the authors used pure rat osteoblast-like cells in vitro as a model. Osteoblast-like cells prepared from calvaria of newborn rats were cultured serum-free in methylcellulose-containing medium for 21 days. Osteoblast-like cells proliferate selectively into clonally derived cell clusters of spherical morphorlogy. 17{beta}-Estradiol at concentrations of 0.1 nM and 1 nM enhanced osteoblast-like cell proliferation by 41% and 68% above vehicle-treated controls. The biologically inactive stereoisomer 17{alpha}-estradiol (same concentrations) had no effect. Moreover, the antiestrogen tamoxifen abolished the stimulation of osteoblast-like cell proliferation by 17{beta}-estradiol. After 21 days of culture, RNA was prepared and analyzed in a dot-hybridization assay for the abundance of pro{alpha}1(I) collagen mRNA. Steady-state mRNA levels were increased in cultures treated with 17{beta}-estradiol in a dose-dependent manner with maximal stimulation at 1 nM and 10 nM. At the same concentrations, the percentage of synthesized protein (labeled by ({sup 3}H)proline pulse) that was digestible by collagenase was increased, indicating that 17{beta}-estradiol acts as pretranslational levels to enhance synthesis of bone collagen. These data show that the osteoblast is a direct target for 17{beta}-estradiol.

  16. Playing My Heart Out: Original Play as Adventure.

    ERIC Educational Resources Information Center

    Donaldson, O. Fred

    1999-01-01

    "Original" play denotes play that is pre-cultural--before conceptualizations and learned responses. Four anecdotes about play with an infant with Down's syndrome, a child with leukemia, a lioness, and a dying woman illustrate the connections between beings and between the ordinary and the sacred during trusting, fearless, playful encounters. (SV)

  17. Imagination, Playfulness, and Creativity in Children's Play with Different Toys

    ERIC Educational Resources Information Center

    Mo????ller, Signe?? Juhl?

    2015-01-01

    Based on a four-month experimental study of preschool children's play with creative-construction and social-fantasy toys, the author examines the in?uence of both types of toys on the play of preschool children. Her comparative analysis considers the impact of transformative play on the development of imagination during play activities and…

  18. Child's Play: Revisiting Play in Early Childhood Settings.

    ERIC Educational Resources Information Center

    Dau, Elizabeth, Ed.; Jones, Elizabeth, Ed.

    Noting that play is an essential aspect of learning for young children, this book presents a collection of articles on children's play in Australia. Part 1, "Play, Development, and Learning," contains the following chapters: (1) "The Role of Play in Development and Learning" (Ann Glover); (2) "Stop, Look, and Listen: Adopting an Investigative…

  19. In vivo determination of arterial collagen synthesis in atherosclerotic rabbits

    SciTech Connect

    Opsahl, W.P.; DeLuca, D.J.; Ehrhart, L.A.

    1986-03-01

    Collagen and non-collagen protein synthesis rates were determined in vivo in tissues from rabbits fed a control or atherogenic diet supplemented with 2% peanut oil and 0.25% cholesterol for 4 months. Rabbits received a bolus intravenous injection of L-(/sup 3/H)-proline (1.0 mCi/kg) and unlabeled L-proline (7 mmoles/kg) in 0.9% NaCl. Plasma proline specific activity decreased only 20% over 5 hr and was similar to the specific activity of free proline in tissues. Thoracic aortas from atherosclerotic rabbits exhibited raised plaques covering at least 75% of the surface. Thoracic intima plus a portion of the media (TIM) was separated from the remaining media plus adventitia (TMA). Dry delipidated weight, total collagen content, and collagen as a percent of dry weight were increased significantly in the TIM of atherosclerotic rabbits. Collagen synthesis rates and collagen synthesis as a percent of total protein synthesis were likewise increased both in the TIM and in the abdominal aortas. No differences from controls either in collagen content or collagen synthesis rates were observed in the TMA, lung or skin. These results demonstrate for the first time in vivo that formation of atherosclerotic plaques is associated with increased rates of collagen synthesis. Furthermore, as previously observed with incubations in vitro, collagen synthesis was elevated to a greater extent than noncollagen protein synthesis in atherosclerotic aortas from rabbits fed cholesterol plus peanut oil.

  20. Binding of collagens to an enterotoxigenic strain of Escherichia coli

    SciTech Connect

    Visai, L.; Speziale, P.; Bozzini, S. )

    1990-02-01

    An enterotoxigenic strain of Escherichia coli, B34289c, has been shown to bind the N-terminal region of fibronectin with high affinity. We now report that this strain also binds collagen. The binding of 125I-labeled type II collagen to bacteria was time dependent and reversible. Bacteria expressed a limited number of collagen receptors (2.2 x 10(4) per cell) and bound collagen with a Kd of 20 nM. All collagen types tested (I to V) as well as all tested cyanogen bromide-generated peptides (alpha 1(I)CB2, alpha 1(I)CB3, alpha 1(I)CB7, alpha 1(I)CB8, and alpha 2(I)CB4) were recognized by bacterial receptors, as demonstrated by the ability of these proteins to inhibit the binding of 125I-labeled collagen to bacteria. Of several unlabeled proteins tested in competition experiments, fibronectin and its N-terminal region strongly inhibited binding of the radiolabeled collagen to E. coli cells. Conversely, collagen competed with an 125I-labeled 28-kilodalton fibronectin fragment for bacterial binding. Collagen bound to bacteria could be displaced by excess amounts of either unlabeled fibronectin or its N-terminal fragment. Similarly, collagen could displace 125I-labeled N-terminal peptide of fibronectin bound to the bacterial cell surface. Bacteria grown at 41 degrees C or in the presence of glucose did not express collagen or fibronectin receptors. These results indicate the presence of specific binding sites for collagen on the surface of E. coli cells and furthermore that the collagen and fibronectin binding sites are located in close proximity, possibly on the same structure.

  1. Collagen Structural Hierarchy and Susceptibility to Degradation by Ultraviolet Radiation.

    PubMed

    Rabotyagova, Olena S; Cebe, Peggy; Kaplan, David L

    2008-12-01

    Collagen type I is the most abundant extracellular matrix protein in the human body, providing the basis for tissue structure and directing cellular functions. Collagen has complex structural hierarchy, organized at different length scales, including the characteristic triple helical feature. In the present study, the relationship between collagen structure (native vs. denatured) and sensitivity to UV radiation was assessed, with a focus on changes in primary structure, changes in conformation, microstructure and material properties. A brief review of free radical reactions involved in collagen degradation is also provided as a mechanistic basis for the changes observed in the study. Structural and functional changes in the collagens were related to the initial conformation (native vs. denatured) and the energy of irradiation. These changes were tracked using SDS-PAGE to assess molecular weight, Fourier transform infrared (FTIR) spectroscopy to study changes in the secondary structure, and atomic force microscopy (AFM) to characterize changes in mechanical properties. The results correlate differences in sensitivity to irradiation with initial collagen structural state: collagen in native conformation vs. heat-treated (denatured) collagen. Changes in collagen were found at all levels of the hierarchical structural organization. In general, the native collagen triple helix is most sensitive to UV-254nm radiation. The triple helix delays single chain degradation. The loss of the triple helix in collagen is accompanied by hydrogen abstraction through free radical mechanisms. The results received suggest that the effects of electromagnetic radiation on biologically relevant extracellular matrices (collagen in the present study) are important to assess in the context of the state of collagen structure. The results have implications in tissue remodeling, wound repair and disease progression.

  2. Analysis of Cell Migration within a Three-dimensional Collagen Matrix

    PubMed Central

    Rommerswinkel, Nadine; Niggemann, Bernd; Keil, Silvia; Zänker, Kurt S.; Dittmar, Thomas

    2014-01-01

    The ability to migrate is a hallmark of various cell types and plays a crucial role in several physiological processes, including embryonic development, wound healing, and immune responses. However, cell migration is also a key mechanism in cancer enabling these cancer cells to detach from the primary tumor to start metastatic spreading. Within the past years various cell migration assays have been developed to analyze the migratory behavior of different cell types. Because the locomotory behavior of cells markedly differs between a two-dimensional (2D) and three-dimensional (3D) environment it can be assumed that the analysis of the migration of cells that are embedded within a 3D environment would yield in more significant cell migration data. The advantage of the described 3D collagen matrix migration assay is that cells are embedded within a physiological 3D network of collagen fibers representing the major component of the extracellular matrix. Due to time-lapse video microscopy real cell migration is measured allowing the determination of several migration parameters as well as their alterations in response to pro-migratory factors or inhibitors. Various cell types could be analyzed using this technique, including lymphocytes/leukocytes, stem cells, and tumor cells. Likewise, also cell clusters or spheroids could be embedded within the collagen matrix concomitant with analysis of the emigration of single cells from the cell cluster/ spheroid into the collagen lattice. We conclude that the 3D collagen matrix migration assay is a versatile method to analyze the migration of cells within a physiological-like 3D environment. PMID:25350138

  3. Analysis of cell migration within a three-dimensional collagen matrix.

    PubMed

    Rommerswinkel, Nadine; Niggemann, Bernd; Keil, Silvia; Zänker, Kurt S; Dittmar, Thomas

    2014-10-05

    The ability to migrate is a hallmark of various cell types and plays a crucial role in several physiological processes, including embryonic development, wound healing, and immune responses. However, cell migration is also a key mechanism in cancer enabling these cancer cells to detach from the primary tumor to start metastatic spreading. Within the past years various cell migration assays have been developed to analyze the migratory behavior of different cell types. Because the locomotory behavior of cells markedly differs between a two-dimensional (2D) and three-dimensional (3D) environment it can be assumed that the analysis of the migration of cells that are embedded within a 3D environment would yield in more significant cell migration data. The advantage of the described 3D collagen matrix migration assay is that cells are embedded within a physiological 3D network of collagen fibers representing the major component of the extracellular matrix. Due to time-lapse video microscopy real cell migration is measured allowing the determination of several migration parameters as well as their alterations in response to pro-migratory factors or inhibitors. Various cell types could be analyzed using this technique, including lymphocytes/leukocytes, stem cells, and tumor cells. Likewise, also cell clusters or spheroids could be embedded within the collagen matrix concomitant with analysis of the emigration of single cells from the cell cluster/ spheroid into the collagen lattice. We conclude that the 3D collagen matrix migration assay is a versatile method to analyze the migration of cells within a physiological-like 3D environment.

  4. Collagen VI regulates pericellular matrix properties, chondrocyte swelling, and mechanotransduction in articular cartilage

    PubMed Central

    Zelenski, Nicole A.; Leddy, Holly A.; Sanchez-Adams, Johannah; Zhang, Jinzi; Bonaldo, Paolo; Liedtke, Wolfgang; Guilak, Farshid

    2015-01-01

    Objective Mechanical factors play a critical role in the physiology and pathology of articular cartilage, although the mechanisms of mechanical signal transduction are not fully understood. We examined the hypothesis that type VI collagen is necessary for mechanotransduction in articular cartilage, by determining the effects of type VI collagen knockout on the activation of the mechano-osmosensitive calcium-permeable channel, transient receptor potential vanilloid 4 (TRPV4), osmotically-induced chondrocyte swelling, and pericellular matrix (PCM) mechanical properties. Methods Confocal laser scanning microscopy was used to image TRPV4-mediated calcium signaling and osmotically-induced cell swelling in intact femora from 2 and 9 month old wild type (WT) and type VI collagen deficient (Col6a1−/−) mice. Immunofluorescence-guided atomic force microscopy was used to map PCM mechanical properties based on the presence of perlecan. Results Hypo-osmotic stress induced TRPV4-mediated calcium signaling was increased in Col6a1−/− mice relative to WT controls at 2 months. Col6a1−/− mice exhibited significantly increased osmotically-induced cell swelling and decreased PCM moduli relative to WT controls at both ages. Conclusion In contrast to our original hypothesis, type VI collagen was not required for TRPV4-mediated Ca2+ signaling; however, knockout of type VI collagen altered the mechanical properties of the PCM, which in turn increased the extent of cell swelling and osmotically-induced TRPV4 signaling in an age-dependent manner. These findings emphasize the role of the PCM as a transducer of mechanical and physicochemical signals, and suggest that alterations in PCM properties, as may occur with aging or osteoarthritis, can influence mechanotransduction via TRPV4 or other ion channels. PMID:25604429

  5. Nanointerfacial strength between non-collagenous protein and collagen fibrils in antler bone

    PubMed Central

    Hang, Fei; Gupta, Himadri S.; Barber, Asa H.

    2014-01-01

    Antler bone displays considerable toughness through the use of a complex nanofibrous structure of mineralized collagen fibrils (MCFs) bound together by non-collagenous proteins (NCPs). While the NCP regions represent a small volume fraction relative to the MCFs, significant surface area is evolved upon failure of the nanointerfaces formed at NCP–collagen fibril boundaries. The mechanical properties of nanointerfaces between the MCFs are investigated directly in this work using an in situ atomic force microscopy technique to pull out individual fibrils from the NCP. Results show that the NCP–fibril interfaces in antler bone are weak, which highlights the propensity for interface failure at the nanoscale in antler bone and extensive fibril pullout observed at antler fracture surfaces. The adhesion between fibrils and NCP is additionally suggested as being rate dependent, with increasing interfacial strength and fracture energy observed when pullout velocity decreases. PMID:24352676

  6. Effects of jump training on procollagen alpha(1)(i) mRNA expression and its relationship with muscle collagen concentration.

    PubMed

    Ducomps, Christophe; Larrouy, Dominique; Mairal, Aline; Doutreloux, Jean-Paul; Lebas, Francois; Mauriege, Pascale

    2004-04-01

    The aim of this study was to examine the effects of a prolonged high-intensity exercise, jumping, on procollagen alpha(1)(I) mRNA level and collagen concentration in different muscles of trained (T) and control (C) rabbits. Procollagen alpha(1)(I) mRNA expression was much higher (2.8 to 23.5 times) in semimembranosus proprius (SMP), a slow-twitch oxidative muscle, than in extensor digitorum longus (EDL), rectus femoris (RF), and psoas major (Psoas) muscles, both fast-twitch mixed and glycolytic, whatever group was considered (p < 0.001). Procollagen alpha(1)(I) mRNA level also decreased significantly between 50 and 140 days in all muscles (0.001< p < 0.01). However, mRNA levels were 16 to 97% greater at 140 days in all muscles of T animals compared to C ones (0.01< p <0.05). Collagen concentrations of EDL and RF muscles were also higher (14 to 19%) in T than in C rabbits at 90 and 140 days (0.001 < p < 0.05). In the whole sample, collagen concentration was negatively associated with the procollagen alpha(1)(I) mRNA level in EDL and RF muscles (- 0.49 < r < (- 0.44, p < 0.05), while being positively related to mRNA expression in SMP and Psoas muscles (0.65 < r < 0.85, p < 0.01). It is concluded that jump training clearly restricts the decrease of procollagen (I) mRNA level and probably affects collagen synthesis level. In trained rabbit muscles, the maintenance of a better synthesis level could partly explain the higher collagen concentrations found in EDL and RF at 140 days. Nevertheless, the collagen degradation process seems to play the main role in the increase of total collagen concentration with age in EDL and RF muscles. PMID:15064425

  7. Alpha 1(XVIII), a collagen chain with frequent interruptions in the collagenous sequence, a distinct tissue distribution, and homology with type XV collagen.

    PubMed Central

    Rehn, M; Pihlajaniemi, T

    1994-01-01

    We report on the isolation of mouse cDNA clones which encode a collagenous sequence designated here as the alpha 1 chain of type XVIII collagen. The overlapping clones cover 2.8 kilobases and encode an open reading frame of 928 amino acid residues comprising a putative signal peptide of 25 residues, an amino-terminal noncollagenous domain of 301 residues, and a primarily collagenous stretch of 602 residues. The clones do not cover the carboxyl-terminal end of the polypeptide, since the translation stop codon is absent. Characteristic of the deduced polypeptide is the possession of eight noncollagenous interruptions varying in length from 10 to 24 residues in the collagenous amino acid sequence. Other features include the presence of several putative sites for both N-linked glycosylation and O-linked glycosaminoglycan attachment and homology of the amino-terminal noncollagenous domain with thrombospondin. It is of particular interest that five of the eight collagenous sequences of type XVIII show homology to the previously reported type XV collagen, suggesting that the two form a distinct subgroup among the diverse family of collagens. Northern blot hybridization analysis revealed a striking tissue distribution for type XVIII collagen mRNAs, as the clones hybridized strongly with mRNAs of 4.3 and 5.3 kilobases that were present only in lung and liver of the eight mouse tissues studied. Images PMID:8183894

  8. Inhibition of Ovarian Tumor Growth by Targeting the HU177 Cryptic Collagen Epitope.

    PubMed

    Caron, Jennifer M; Ames, Jacquelyn J; Contois, Liangru; Liebes, Leonard; Friesel, Robert; Muggia, Franco; Vary, Calvin P H; Oxburgh, Leif; Brooks, Peter C

    2016-06-01

    Evidence suggests that stromal cells play critical roles in tumor growth. Uncovering new mechanisms that control stromal cell behavior and their accumulation within tumors may lead to development of more effective treatments. We provide evidence that the HU177 cryptic collagen epitope is selectively generated within human ovarian carcinomas and this collagen epitope plays a role in SKOV-3 ovarian tumor growth in vivo. The ability of the HU177 epitope to regulate SKOV-3 tumor growth depends in part on its ability to modulate stromal cell behavior because targeting this epitope inhibited angiogenesis and, surprisingly, the accumulation of α-smooth muscle actin-expressing stromal cells. Integrin α10β1 can serve as a receptor for the HU177 epitope in α-smooth muscle actin-expressing stromal cells and subsequently regulates Erk-dependent migration. These findings are consistent with a mechanism by which the generation of the HU177 collagen epitope provides a previously unrecognized α10β1 ligand that selectively governs angiogenesis and the accumulation of stromal cells, which in turn secrete protumorigenic factors that contribute to ovarian tumor growth. Our findings provide a new mechanistic understanding into the roles by which the HU177 epitope regulates ovarian tumor growth and provide new insight into the clinical results from a phase 1 human clinical study of the monoclonal antibody D93/TRC093 in patients with advanced malignant tumors.

  9. Mass transfer of large molecules through collagen and collagen-silica hybrid membranes

    NASA Astrophysics Data System (ADS)

    Jofre-Lora, Pedro

    Diabetes is a growing concern in the United States and around the world that must be addressed through new treatment options. Current standard treatment options of diabetes are limiting and have tremendous impacts on patient's lives. Emerging therapies, such as the implantation of encapsulated islets, are promising treatment options, but have not yet materialized due to unsolved problems with material properties. Hybrid silica-collagen membranes address some of these unsolved problems and are a promising material for cell encapsulation. However, the mass transfer properties of large molecules, such as insulin, TNF-alpha, IL1beta, and other important proteins in the etiology of diabetes, through these hybrid membranes are poorly characterized. In order to begin characterizing these properties, a device was constructed to accurately and efficiently measure the mass transfer of other similar large molecules, fluorescein isothiocyanate dextrans (FITC-dextran), through collagen-silica hybrid membranes. The device was used to measure diffusion coefficients of 4, 20, 40, and 150 kDa FITC-dextrans through non-silicified and silicified samples of 200 and 1000 Pa porcine skin collagen. Diffusion coefficients were found to be in the 10-7-10-6 cm2s -1 range, which is in agreement with previously published data for similar molecules through similar hydrogels. The effects of collagen stiffness, FITC-dextran molecular weight, and silicification treatment on diffusion were investigated. It was found that collagen stiffness and FITC-dextran molecular weight had a negative correlation with diffusion, whereas silicification treatment had no global impact on diffusion. The device created, and the results of this preliminary investigation, can be used to develop collagen-silica hybrid membranes as an alternative material for cell encapsulation in a forward-design manner.

  10. ISOCT study of collagen crosslinking of collagen in cancer models (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Spicer, Graham; Young, Scott T.; Yi, Ji; Shea, Lonnie D.; Backman, Vadim

    2016-03-01

    The role of extracellular matrix modification and signaling in cancer progression is an increasingly recognized avenue for the progression of the disease. Previous study of field effect carcinogenesis with Inverse Spectroscopic Optical Coherence Tomography (ISOCT) has revealed pronounced changes in the nanoscale-sensitive mass fractal dimension D measured from field effect tissue when compared to healthy tissue. However, the origin of this difference in tissue ultrastructure in field effect carcinogenesis has remained poorly understood. Here, we present findings supporting the idea that enzymatic crosslinking of the extracellular matrix is an effect that presents at the earliest stages of carcinogenesis. We use a model of collagen gel with crosslinking induced by lysyl oxidase (LOXL4) to recapitulate the difference in D previously reported from healthy and cancerous tissue biopsies. Furthermore, STORM imaging of this collagen gel model verifies the morphologic effects of enzymatic crosslinking at length scales as small as 40 nm, close to the previously reported lower length scale sensitivity threshold of 35 nm for ISOCT. Analysis of the autocorrelation function from STORM images of collagen gels and subsequent fitting to the Whittle-Matérn correlation function shows a similar effect of LOXL4 on D from collagen measured with ISOCT and STORM. We extend this to mass spectrometric study of tissue to directly measure concentrations of collagen crosslink residues. The validation of ISOCT as a viable tool for non-invasive rapid quantification of collagen ultrastructure lends it to study other physiological phenomena involving ECM restructuring such as atherosclerotic plaque screening or cervical ripening during pregnancy.

  11. Collagenous colitis and collagenous gastritis in a 9 year old girl: a case report and review of the literature.

    PubMed

    Camarero Salces, C; Enes Romero, P; Redondo, C; Rizo Pascual, J M; Roy Ariño, G

    2011-09-01

    Collagenous gastritis is a rare disease in the general population and collagenous colitis has seldom been reported in children. We report a girl with both diseases and review the literature on this association afetr a systematic search of Pubmed, Medline and Embase databases.. The girl, diagnosed of collagenous colitis at the age of 2 years, started with abdominal pain and anaemia at the age of 9 years and was diagnosed of collagenous gastritis in the gastric biopsies. After review of the literature, we found 66 reported cases (33 children, 33 adults, 68% females), 56 patients with collagenous gastritis and 16 children with collagenous colitis. Both disorders coexisted in 20 patients. The main presenting symptoms are abdominal pain and anaemia in patients with collagenous gastritis and diarrhoea and weight loss in patients with both disorders. Hypoalbuminemia was found in 9 patients with both diseases and protein losing enteropathy was demonstrated in 3 cases. Deposits of collagen in the duodenum were observed in 13 of 19 patients with both diseases. Seventeen of 66 patients had associated autoimmune disorders, particularly in patients with both diseases (35%). These conditions have a chronic course but gastric or colonic malignancies have not been communicated to date. In conclusion, collagenous gastritis and collagenous colitis mainly affects women and can occur at any age. Their association is exceptional. These disorders, although rare, should be considered in patients with anaemia and epigastric pain, watery diarrhoea or protein losing enteropathy. PMID:22103057

  12. Remodeling of Intramural Thrombus and Collagen in an Ang-II Infusion ApoE−/− Model of Dissecting Aortic Aneurysms

    PubMed Central

    Schriefl, A.J.; Collins, M.J.; Pierce, D.M.; Holzapfel, G.A.; Niklason, L.E.; Humphrey, J.D.

    2012-01-01

    Fibrillar collagen endows the normal aortic wall with significant stiffness and strength and similarly plays important roles in many disease processes. For example, because of the marked loss of elastic fibers and functional smooth cells in aortic aneurysms, collagen plays a particularly important role in controlling the dilatation of these lesions and governing their rupture potential. Recent findings suggest further that collagen remodeling may also be fundamental to the intramural healing of arterial or aneurysmal dissections. To explore this possibility further, we identified and correlated regions of intramural thrombus and newly synthesized fibrillar collagen in a well-established mouse model of dissecting aortic aneurysms. Our findings suggest that intramural thrombus that is isolated from free-flowing blood creates a permissive environment for the synthesis of fibrillar collagen that, albeit initially less dense and organized, could protect that region of the dissected wall from subsequent expansion of the dissection or rupture. Moreover, alpha-smooth muscle actin positive cells appeared to be responsible for the newly produced collagen, which co-localized with significant production of glycosaminoglycans. PMID:22560850

  13. Collagen osteoid-like model allows kinetic gene expression studies of non-collagenous proteins in relation with mineral development to understand bone biomineralization.

    PubMed

    Silvent, Jérémie; Nassif, Nadine; Helary, Christophe; Azaïs, Thierry; Sire, Jean-Yves; Guille, Marie Madeleine Giraud

    2013-01-01

    Among persisting questions on bone calcification, a major one is the link between protein expression and mineral deposition. A cell culture system is here proposed opening new integrative studies on biomineralization, improving our knowledge on the role played by non-collagenous proteins in bone. This experimental in vitro model consisted in human primary osteoblasts cultured for 60 days at the surface of a 3D collagen scaffold mimicking an osteoid matrix. Various techniques were used to analyze the results at the cellular and molecular level (adhesion and viability tests, histology and electron microscopy, RT- and qPCR) and to characterize the mineral phase (histological staining, EDX, ATG, SAED and RMN). On long term cultures human bone cells seeded on the osteoid-like matrix displayed a clear osteoblast phenotype as revealed by the osteoblast-like morphology, expression of specific protein such as alkaline phosphatase and expression of eight genes classically considered as osteoblast markers, including BGLAP, COL1A1, and BMP2. Von Kossa and alizarine red allowed us to identify divalent calcium ions at the surface of the matrix, EDX revealed the correct Ca/P ratio, and SAED showed the apatite crystal diffraction pattern. In addition RMN led to the conclusion that contaminant phases were absent and that the hydration state of the mineral was similar to fresh bone. A temporal correlation was established between quantified gene expression of DMP1 and IBSP, and the presence of hydroxyapatite, confirming the contribution of these proteins to the mineralization process. In parallel a difference was observed in the expression pattern of SPP1 and BGLAP, which questioned their attributed role in the literature. The present model opens new experimental possibilities to study spatio-temporal relations between bone cells, dense collagen scaffolds, NCPs and hydroxyapatite mineral deposition. It also emphasizes the importance of high collagen density environment in bone cell

  14. Specific recognition of the collagen triple helix by chaperone HSP47. II. The HSP47-binding structural motif in collagens and related proteins.

    PubMed

    Koide, Takaki; Nishikawa, Yoshimi; Asada, Shinichi; Yamazaki, Chisato M; Takahara, Yoshifumi; Homma, Daisuke L; Otaka, Akira; Ohtani, Katsuki; Wakamiya, Nobutaka; Nagata, Kazuhiro; Kitagawa, Kouki

    2006-04-21

    The endoplasmic reticulum-resident chaperone heat-shock protein 47 (HSP47) plays an essential role in procollagen biosynthesis. The function of HSP47 relies on its specific interaction with correctly folded triple-helical regions comprised of Gly-Xaa-Yaa repeats, and Arg residues at Yaa positions have been shown to be important for this interaction. The amino acid at the Yaa position (Yaa(-3)) in the N-terminal-adjoining triplet containing the critical Arg (defined as Arg(0)) was also suggested to be directly recognized by HSP47 (Koide, T., Asada, S., Takahara, Y., Nishikawa, Y., Nagata, K., and Kitagawa, K. (2006) J. Biol. Chem. 281, 3432-3438). Based on this finding, we examined the relationship between the structure of Yaa(-3) and HSP47 binding using synthetic collagenous peptides. The results obtained indicated that the structure of Yaa(-3) determined the binding affinity for HSP47. Maximal binding was observed when Yaa(-3) was Thr. Moreover, the required relative spatial arrangement of these key residues in the triple helix was analyzed by taking advantage of heterotrimeric collagen-model peptides, each of which contains one Thr(-3) and one Arg(0). The results revealed that HSP47 recognizes the Yaa(-3) and Arg(0) residues only when they are on the same peptide strand. Taken together, the data obtained led us to define the HSP47-binding structural epitope in the collagen triple helix and also define the HSP47-binding motif in the primary structure. A motif search against human protein database predicted candidate clients for this molecular chaperone. The search result indicated that not all collagen family proteins require the chaperoning by HSP47.

  15. Play and Positive Group Dynamics

    ERIC Educational Resources Information Center

    Thompson, Pam; White, Samantha

    2010-01-01

    Play is an important part of a child's life and essential to learning and development (Vygotsky, 1978). It is vital that students participate in play and that play be conducted in a restorative manner. Play allows a variety of group dynamics to emerge. Irvin Yalom (1995) identifies 11 curative factors of the group experience. These factors include…

  16. Play Therapy in Elementary Schools

    ERIC Educational Resources Information Center

    Landreth, Garry L.; Ray, Dee C.; Bratton, Sue C.

    2009-01-01

    Because the child's world is a world of action and activity, play therapy provides the psychologist in elementary-school settings with an opportunity to enter the child's world. In the play therapy relationship, toys are like the child's words and play is the child's language. Therefore, children play out their problems, experiences, concerns, and…

  17. Playful Learning and Montessori Education

    ERIC Educational Resources Information Center

    Lillard, Angeline S.

    2013-01-01

    Although Montessori education is often considered a form of playful learning, Maria Montessori herself spoke negatively about a major component of playful learning--pretend play, or fantasy--for young children. In this essay, the author discusses this apparent contradiction: how and why Montessori education includes elements of playful learning…

  18. Signatures of the non-Maxwellian κ-distributions in optically thin line spectra. I. Theory and synthetic Fe IX-XIII spectra

    NASA Astrophysics Data System (ADS)

    Dudík, J.; Del Zanna, G.; Mason, H. E.; Dzifčáková, E.

    2014-10-01

    Aims: We investigate the possibility of diagnosing the degree of departure from the Maxwellian distribution using single-ion spectra originating in astrophysical plasmas in collisional ionization equilibrium. Methods: New atomic data for excitation of Fe ix - Fe xiii are integrated under the assumption of a κ-distribution of electron energies. Diagnostic methods using lines of a single ion formed at any wavelength are explored. Such methods minimize uncertainties from the ionization and recombination rates, as well as the possible presence of non-equilibrium ionization. Approximations to the collision strengths are also investigated. Results: The calculated intensities of most of the Fe ix - Fe xiii EUV lines show consistent behaviour with κ at constant temperature. Intensities of these lines decrease with κ, with the vast majority of ratios of strong lines showing little or no sensitivity to κ. Several of the line ratios, especially involving temperature-sensitive lines, show a sensitivity to κ that is of the order of several tens of per cent, or, in the case of Fe ix, up to a factor of two. Forbidden lines in the near-ultraviolet, visible, or infrared parts of the spectrum are an exception, with smaller intensity changes or even a reverse behaviour with κ. The most conspicuous example is the Fe x 6378.26 Å red line, whose intensity incerases with κ. This line is a potentially strong indicator of departures from the Maxwellian distribution. We find that it is possible to perform density diagnostics independently of κ, with many Fe xi, Fe xii, and Fe xiii line ratios showing strong density-sensitivity and negligible sensitivity to κ and temperature. We also tested different averaging of the collision strengths. It is found that averaging over 0.01 interval in log(E [ Ryd ]) is sufficient to produce accurate distribution-averaged collision strengths Υ(T,κ) at temperatures of the ion formation in ionization equilibrium. Appendices are available in

  19. Chemical and histochemical studies of human alveolar collagen fibers.

    PubMed Central

    Huang, W.

    1977-01-01

    Light and electron microscopic studies have established that the normal human alveolar argyrophilic (reticulum) fiber is collagen fiber. The silver impregnation method is highly sensitive and specific for histologic demonstration of the elaborate collagen fiber network of alveolar septa. The argyrophilic alveolar collagen fiber does not stain with the periodic acid-Schiff (PAS) or periodic acid-thiocarbohydrazide-osmium tetroxide (PTO) reaction. The materials positive for the PAS and PTO reactions in alveolar septa are epithelial and endothelial basal laminas, which are nonargyrophilic. Chemically, lung collagen fibers are composed of Type I and Type III collagens, which differ in amino acid composition, chain composition, and carbohydrate content. The chemical heterogeneity of lung collagen may have important biologic implications in the maintenance of normal structure and in the repair of lung injury. Images Figure 8 Figure 9 Figure 10 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:64120

  20. Immunogold labelling of human von Willebrand factor adsorbed to collagen.

    PubMed

    Furlan, M; Robles, R; Lämmle, B; Zimmermann, J; Hunziker, E

    1991-06-01

    von Willebrand factor (vWF) mediates adhesion of platelets to the exposed subendothelium at sites of vascular injury. This function is expressed through binding of vWF to both collagen and receptors on the platelet membrane. We have developed a new method using immunogold staining and electron microscopy, permitting visualization of human vWF adsorbed to collagen fibrils. The electron micrographs revealed strings of gold beads reflecting the polymeric structure of vWF. Our data showed dramatic differences in the binding of vWF to collagens of different sources: high binding density was observed using a collagen preparation isolated from aortic tissue whereas colloidal gold was virtually absent from tendon collagen. Using the immunogold labelling method we demonstrated that high shear rate enhanced vWF binding to aortic collagen.

  1. Gap Dependent Rheology in Type I Collagen Gels

    NASA Astrophysics Data System (ADS)

    Arevalo, Richard; Urbach, Jeffrey; Blair, Daniel

    2010-03-01

    Branched type I collagen fiber networks provide extracellular support in mammalian tissues. The intricate network structure can succumb to partial or complete tearing under sufficient applied strain. Under small shear strains, in vitro collagen gels exhibit strain-stiffening while maintaining overall network integrity. Higher shear strains lead to network failure through discrete yielding events. We perform rheology and confocal-rheology experiments to fully elucidate the strain-stiffening and yielding behavior in these highly nonlinear materials. We apply continuous shear strains to collagen gels confined within the rheometer at fixed gaps. We observe that sheared collagen in the strain-stiffening and yielding regime has an apparent modulus that is strongly dependent on the collagen thickness. Moreover, we demonstrate that network yielding is universally controlled by the ratio of the collagen thickness to the mesh size. These results have broad implications for the interpretation of rheological data of extracellular matrix proteins and for the design of biomimetic scaffolds.

  2. Alternating potentials assisted electrochemical deposition of mineralized collagen coatings.

    PubMed

    Zhuang, Junjun; Lin, Jun; Li, Juan; Weng, Wenjian; Cheng, Kui; Wang, Huiming

    2015-12-01

    Mineralized collagen coatings were synthesized by electrochemical deposition with alternating negative and positive potentials. The obtained coatings demonstrated a multi-layer structure alternating consisting of weakly and highly mineralized collagen layers and the proportion of each layer could be controlled by adjusting the deposition time. The coatings deposited using alternating potentials assisted electrochemical deposition (AP-ECD) showed significantly enhanced osteoblasts proliferation, and rhBMP-2 loading capability compared to those of the coatings deposited using constant potential electrochemical deposition (CP-ECD). The enhanced cytocompatibility and rhBMP-2 loading capability of the coatings might be attributed to their high proportion of weakly mineralized collagen layer. Furthermore, the deposition mechanism for alternating potentials is proposed as that positive potential induces deposition of negatively charged collagen fibrils to form a weakly mineralized collagen layer. Our results suggest that the present deposition method could be a promising approach to engineer mineralized collagen coating with better biological performances.

  3. Amyotrophic lateral sclerosis: increased solubility of skin collagen

    NASA Technical Reports Server (NTRS)

    Ono, S.; Yamauchi, M.

    1992-01-01

    We studied the solubility of skin collagen from six patients with amyotrophic lateral sclerosis (ALS) and six controls. The amount of collagen extracted with neutral salt solution was significantly greater in patients with ALS than in controls. In addition, there was a statistically significant increase in the proportion of collagen extracted from ALS patients with increased duration of illness. The collagen solubilized by pepsin and cyanogen bromide treatments was significantly higher in ALS patients than in controls, and its proportion was positively and significantly associated with duration of illness in ALS patients. These results indicate that the metabolism of skin collagen may be affected in the disease process of ALS, causing an increase in immature soluble collagen in the tissue, which is the opposite to that which occurs in the normal aging process.

  4. Nanorod mediated collagen scaffolds as extra cellular matrix mimics.

    PubMed

    Vedhanayagam, Mohan; Mohan, Ranganathan; Nair, Balachandran Unni; Sreeram, Kalarical Janardhanan

    2015-12-01

    Creating collagen scaffolds that mimic extracellular matrices without using toxic exogenous materials remains a big challenge. A new strategy to create scaffolds through end-to-end crosslinking through functionalized nanorods leading to well-designed architecture is presented here. Self-assembled scaffolds with a denaturation temperature of 110 °C, porosity of 70%, pore size of 0.32 μm and Young's modulus of 231 MPa were developed largely driven by imine bonding between 3-mercapto-1-propanal (MPA) functionalized ZnO nanorods and collagen. The mechanical properties obtained were much higher than that of native collagen, collagen-MPA, collagen-3-mercapto-1-propanol (3MPOH) or collagen- 3-MPOH-ZnO, clearly bringing out the relevance of nanorod mediated assembly of fibrous networks. This new strategy has led to scaffolds with mechanical properties much higher than earlier reports and can provide support for cell growth and facilitation of cell attachment. PMID:26586667

  5. Collagenous gastritis associated with lymphocytic gastritis and celiac disease.

    PubMed

    Stancu, M; De Petris, G; Palumbo, T P; Lev, R

    2001-12-01

    Collagenous gastritis is a rare disorder, with only 8 cases reported in the literature, 2 in children and 6 in adults. We report an additional case of collagenous gastritis in a 42-year-old man with celiac disease. A thickened (>10 microm) subepithelial collagen band with entrapped capillaries, fibroblasts, and inflammatory cells was seen in the stomach, associated with lymphocytic gastritis. The duodenal mucosa showed severe villous atrophy but no subepithelial collagen deposition. No evidence of lymphocytic or collagenous colitis was found in the colon. The patient became symptom-free on a gluten exclusion diet and showed partial improvement of histopathologic findings after 3 months. Collagenous gastritis is a rare disease, but a wider recognition of its histopathologic features and clinical associations may bring more cases to light and provide additional clues in determining its etiology and pathogenesis. PMID:11735694

  6. Intrafibrillar silicification of collagen scaffolds for sustained release of stem cell homing chemokine in hard tissue regeneration.

    PubMed

    Niu, Li-Na; Jiao, Kai; Qi, Yi-Pin; Nikonov, Sergey; Yiu, Cynthia K Y; Arola, Dwayne D; Gong, Shi-Qiang; El-Marakby, Ahmed; Carrilho, Marcela R O; Hamrick, Mark W; Hargreaves, Kenneth M; Diogenes, Anibal; Chen, Ji-Hua; Pashley, David H; Tay, Franklin R

    2012-11-01

    Traditional bone regeneration strategies relied on supplementation of biomaterials constructs with stem or progenitor cells or growth factors. By contrast, cell homing strategies employ chemokines to mobilize stem or progenitor cells from host bone marrow and tissue niches to injured sites. Although silica-based biomaterials exhibit osteogenic and angiogenic potentials, they lack cell homing capability. Stromal cell-derived factor-1 (SDF-1) plays a pivotal role in mobilization and homing of stem cells to injured tissues. In this work, we demonstrated that 3-dimensional collagen scaffolds infiltrated with intrafibrillar silica are biodegradable and highly biocompatible. They exhibit improved compressive stress-strain responses and toughness over nonsilicified collagen scaffolds. They are osteoconductive and up-regulate expressions of osteogenesis- and angiogenesis-related genes more significantly than nonsilicified collagen scaffolds. In addition, these scaffolds reversibly bind SDF-1α for sustained release of this chemokine, which exhibits in vitro cell homing characteristics. When implanted subcutaneously in an in vivo mouse model, SDF-1α-loaded silicified collagen scaffolds stimulate the formation of ectopic bone and blood capillaries within the scaffold and abrogate the need for cell seeding or supplementation of osteogenic and angiogenic growth factors. Intrafibrillar-silicified collagen scaffolds with sustained SDF-1α release represent a less costly and complex alternative to contemporary cell seeding approaches and provide new therapeutic options for in situ hard tissue regeneration.

  7. miRNA-29a targets COL3A1 to regulate the level of type III collagen in pig.

    PubMed

    Chuan-Hao, Li; Wei, Chen; Jia-Qing, Hu; Yan-Dong, Wang; Shou-Dong, Wang; Yong-Qing, Zeng; Hui, Wang

    2016-10-30

    COL3A1 encodes the protein, collagen type III alpha 1, which is an important component of collagen. Collagen can have a considerable effect on the processing quality of meat, and is nutritious. Bioinformatic analysis using Targetscan showed that COL3A1 could be a target gene of miRNA-29a. Moreover, we found that Laiwu pigs have higher levels of type III collagen and lower levels of miRNA-29a than Landrace pigs. Therefore, we hypothesized that miRNA-29a suppresses the expression of COL3A1 by targeting its 3'-UTR. miRNA-29a appears to play an inhibitory role in the regulation of COL3A1 in PK15 cells because of the following: (1) overexpression of miRNA-29a resulted in a significant down-regulation of COL3A1 protein levels (2) overexpression of miRNA-29a significantly decreased the level of COL3A1 mRNA. (3) The activity of a COL3A1 luciferase reporter was significant reduced by miRNA-29a. Furthermore, the levels of miRNA-29a and collagen type III in four tissues in Laiwu and Landrace pigs were consistent with the above observations. In this study, we identified COL3A1 as a direct target for miRNA-29a, which will inform further studies of meat quality. PMID:27476968

  8. Molecular mechanics and dynamics studies on the interaction of gallic acid with collagen-like peptides

    NASA Astrophysics Data System (ADS)

    Madhan, B.; Thanikaivelan, P.; Subramanian, V.; Raghava Rao, J.; Unni Nair, Balachandran; Ramasami, T.

    2001-10-01

    Molecular modelling approaches have been used to understand the interaction of collagen-like peptides with gallic acid, which mimic vegetable tanning processes involved in protein stabilization. Several interaction sites have been identified and the binding energies of the complexes have been calculated. The calculated binding energies for various geometries are in the range 6-13 kcal/mol. It is found that some complexes exhibit hydrogen bonding, and electrostatic interaction plays a dominant role in the stabilization of the peptide by gallic acid. The π-OH type of interaction is also observed in the peptide stabilization. Molecular dynamics (MD) simulation for 600 ps revealed the possibility of hydrogen bonding between the collagen-like peptide and gallic acid.

  9. Imaging and modeling collagen architecture from the nano to micro scale

    PubMed Central

    Brown, Cameron P.; Houle, Marie-Andree; Popov, Konstantin; Nicklaus, Mischa; Couture, Charles-Andre; Laliberté, Matthieu; Brabec, Thomas; Ruediger, Andreas; Carr, Andrew J.; Price, Andrew J.; Gill, Harinderjit S.; Ramunno, Lora; Légaré, Francois

    2013-01-01

    The collagen meshwork plays a central role in the functioning of a range of tissues including cartilage, tendon, arteries, skin, bone and ligament. Because of its importance in function, it is of considerable interest for studying development, disease and regeneration processes. Here, we have used second harmonic generation (SHG) to image human tissues on the hundreds of micron scale, and developed a numerical model to quantitatively interpret the images in terms of the underlying collagen structure on the tens to hundreds of nanometer scale. Focusing on osteoarthritic changes in cartilage, we have demonstrated that this combination of polarized SHG imaging and numerical modeling can estimate fibril diameter, filling fraction, orientation and bundling. This extends SHG microscopy from a qualitative to quantitative imaging technique, providing a label-free and non-destructive platform for characterizing the extracellular matrix that can expand our understanding of the structural mechanisms in disease. PMID:24466490

  10. Alkaline phosphatase induces the mineralization of sheets of collagen implanted subcutaneously in the rat.

    PubMed Central

    Beertsen, W; van den Bos, T

    1992-01-01

    To determine whether alkaline phosphatase (ALP) can cause the mineralization of collagenous matrices in vivo, bovine intestinal ALP was covalently bound to slices of guanidine-extracted demineralized bovine dentin (DDS). The preparations were implanted subcutaneously over the right half of the rat skull. Control slices not treated with the enzyme were implanted over the left half of the skull of the same animals. Specimens were harvested after periods varying from 1 to 4 wk. It was shown that ALP-coupled DDS rapidly accumulated hydroxyapatite crystals. 4 wk after implantation, the content of calcium and phosphate per microgram of hydroxyproline amounted up to 80 and 60%, respectively, of that found in normal bovine dentin. Our observations present direct evidence that ALP may play a crucial role in the induction of hydroxyapatite deposition in collagenous matrices in vivo. Images PMID:1602003

  11. Rough and Tumble Play 101

    ERIC Educational Resources Information Center

    Carlson, Frances

    2009-01-01

    Many people fear that play-fighting or rough and tumble play is the same as real fighting. There is also a fear that this rough play will become real fighting if allowed to continue. Most of all, parents and teachers fear that during the course of rough and tumble play a child may be hurt. To provide for and allow children to play rough without…

  12. Raman study of the shockwave effect on collagens.

    PubMed

    Cárcamo, José J; Aliaga, Alvaro E; Clavijo, R Ernesto; Brañes, Manuel R; Campos-Vallette, Marcelo M

    2012-02-01

    The Raman spectra (1800-200 cm(-1)) of isolated dried collagen types I and III were recorded at different times after shockwave (SW) application in aqueous media. SWs were applied in a single session. One week after the SW application the vibrational data analysis indicates changes in the conformation of the collagens; orientational changes are also inferred. During the next three weeks collagens tended to recover the conformation and orientation existing before SW application.

  13. [The use of collagen in the cicatrization of wounds].

    PubMed

    Torra i Bou, J E; Casaroli-Marano, R P; Martínez Cuervo, F; Reina, M; Soldevilla Agreda, J J; Vilaró, S

    2000-10-01

    The authors review the use of collagen in the cicatrization of wounds, analyzing what this process consists of and what its regeneration and reparation phases are. The authors also summarize some fundamental biological aspects collagen has, their functions in hemostasia and in cicatrization; they develop the use of heterologous collagen in the cicatrization process. Expressive illustrations and a selection of bibliographical references accompany this article.

  14. Fibrous long-spacing collagen in bacillary angiomatosis.

    PubMed

    Borczuk, A C; Niedt, G; Sablay, L B; Kress, Y; Mannion, C M; Factor, S M; Tanaka, K E

    1998-01-01

    Fibrous long-spacing (FLS) collagen is a distinct ultrastructural form of collagen present in normal tissue, various tumors, and tissues degraded by bacterial collagenases in vivo and in vitro. An association between FLS collagen and bacillary angiomatosis has not been previously described. Six cases of bacillary angiomatosis, including one autopsy case with disseminated disease, were examined ultrastructurally. In addition, Kaposi sarcoma (3), pyogenic granuloma (3), capillary hemangioma (3), and cavernous hemangioma (2) were examined for comparison. A vascular proliferation in a lymph node from a patient with AIDS (1) and a case of pulmonary capillary hemangiomatosis (1), also in an AIDS patient, were studied. Abundant FLS collagen was identified in 4 of 6 cases of bacillary angiomatosis, in close association with the organisms. FLS collagen was not seen beyond the immediate vicinity of the organisms. The FLS collagen in bacillary angiomatosis was seen in skin biopsies and in lung and skeletal muscle in the autopsy case; in the latter case, as well as in the two AIDS-associated, nonbacillary angiomatosis, non-Kaposi sarcoma vascular proliferations, there was a striking distribution of FLS collagen around small blood vessels. Occasional FLS collagen was observed in all three pyogenic granuloma. When present in pyogenic granuloma, FLS collagen was intermixed with subendothelial collagen. Abundant FLS collagen was identified in close association with the organisms of bacillary angiomatosis in four cases; this morphologic alteration was seen in skin as well as lung and skeletal muscle. An association between FLS collagen and endothelial cells in normal tissue (Descemet's membrane) and in certain vascular proliferations appears to exist.

  15. Collagenous gastritis: a morphologic and immunohistochemical study of 40 patients.

    PubMed

    Arnason, Thomas; Brown, Ian S; Goldsmith, Jeffrey D; Anderson, William; O'Brien, Blake H; Wilson, Claire; Winter, Harland; Lauwers, Gregory Y

    2015-04-01

    Collagenous gastritis is a rare condition defined histologically by a superficial subepithelial collagen layer. This study further characterizes the morphologic spectrum of collagenous gastritis by evaluating a multi-institutional series of 40 patients (26 female and 14 male). The median age at onset was 16 years (range 3-89 years), including 24 patients (60%) under age 18. Twelve patients (30%) had associated celiac disease, collagenous sprue, or collagenous colitis. Hematoxylin and eosin slides were reviewed in biopsies from all patients and tenascin, gastrin, eotaxin, and IgG4/IgG immunohistochemical stains were applied to a subset. The distribution of subepithelial collagen favored the body/fundus in pediatric patients and the antrum in adults. There were increased surface intraepithelial lymphocytes (>25 lymphocytes/100 epithelial cells) in five patients. Three of these patients had associated celiac and/or collagenous sprue/colitis, while the remaining two had increased duodenal lymphocytosis without specific etiology. An eosinophil-rich pattern (>30 eosinophils/high power field) was seen in 21/40 (52%) patients. Seven patients' biopsies demonstrated atrophy of the gastric corpus mucosa. Tenascin immunohistochemistry highlighted the subepithelial collagen in all 21 specimens evaluated and was a more sensitive method of collagen detection in biopsies from two patients with subtle subepithelial collagen. No increased eotaxin expression was identified in 16 specimens evaluated. One of the twenty-three biopsies tested had increased IgG4-positive cells (100/high power field) with an IgG4/IgG ratio of 55%. In summary, collagenous gastritis presents three distinct histologic patterns including a lymphocytic gastritis-like pattern, an eosinophil-rich pattern, and an atrophic pattern. Eotaxin and IgG4 were not elevated enough to implicate these pathways in the pathogenesis. Tenascin immunohistochemistry can be used as a sensitive method of collagen detection. PMID

  16. Collagenous gastritis: an unusual association with profound weight loss.

    PubMed

    Wang, Hanlin L; Shah, Amit G; Yerian, Lisa M; Cohen, Russell D; Hart, John

    2004-02-01

    Collagenous gastritis is a distinctive disorder characterized by thickening of the subepithelial collagen layer in the gastric mucosa. Although this entity was recognized in 1989, its etiology, pathogenesis, and clinicopathologic features remain poorly understood because of its rarity. An unusual case of collagenous gastritis was observed in a 37-year-old man who presented with profound weight loss, a feature that has not previously been emphasized. PMID:14736276

  17. Preliminary evaluation of collagen as a component in the thermally induced 'weld'

    NASA Astrophysics Data System (ADS)

    Lemole, G. M., Jr.; Anderson, R. Rox; DeCoste, Sue

    1991-06-01

    A simple thermodynamic approach to tissue 'welding' was studied. Fresh bovine tendon (67% type I collagen) was sectioned into disk shaped pieces, pairs of which were inserted between bowed glass coverslips and wrapped in aluminum foil. The packets were heated in a waterbath according to two protocols. In group I, packets were tested for four minutes at temperatures between 55-65 degree(s)C, in 1 degree(s)C intervals. In group II, the packets were kept at 62 degree(s)C for 4 minutes while the rate of cooling was altered. The force necessary to separate the tendon disks was then measured. The optimal temperature for tissue bonding (group I) was 62 degree(s)C (598 gm/in2). Stress values below 250 gm/in2 could be achieved without heat application and were considered non-welds. Group II showed that the faster the sample cools, the stronger the bond. Several conclusions can be postulated. The narrow temperature region necessary for tissue 'welding' strongly suggests that melting of type I collagen fibrils is involved. Bonding presumably occurs at 62 degree(s)C by allowing (alpha) -strands from the collagen super-helix molecule to form new, random connections. Group II results suggest that trans-incisional reannealing of unraveled helices does not play a role in tissue bonding. Rapid cooling allows less time for extended helix reformation; same-side a-helix reannealing may inhibit effective welds by reducing sites for trans-incisional visco-elastic bonding. Although the exact nature and optimization of thermal tissue 'welds' remains unclear, the behavior of collagen appears to play a central role.

  18. Distinct roles of sphingosine kinase 1 and 2 in murine collagen-induced arthritis.

    PubMed

    Lai, Wen-Qi; Irwan, Anastasia Windy; Goh, Hong Heng; Melendez, Alirio J; McInnes, Iain B; Leung, Bernard P

    2009-08-01

    Sphingosine kinase (SphK) phosphorylates sphingosine into sphingosine-1-phosphate (S1P). S1P plays a critical role in angiogenesis, inflammation, and various pathologic conditions. To date, two mammalian isoenzymes, SphK1 and SphK2, have been identified. Although both SphK1 and SphK2 share overall homology and produce the common product, S1P, it has been proposed they display different unique and separate functions. In this study, we examined the role of SphK1 and SphK2 in a murine collagen-induced arthritis model by down-regulating each isoenzyme via specific small interfering RNA (siRNA). Prophylactic i.p. administration of SphK1 siRNA significantly reduced the incidence, disease severity, and articular inflammation compared with control siRNA recipients. Treatment of SphK1 siRNA also down-regulated serum levels of S1P, IL-6, TNF-alpha, IFN-gamma, and IgG2a anti-collagen Ab. Ex vivo analysis demonstrated significant suppression of collagen-specific proinflammatory/Th1 cytokine (IL-6, TNF-alpha, IFN-gamma) release in SphK siRNA-treated mice. Interestingly, mice received with SphK2 siRNA develop more aggressive disease; higher serum levels of IL-6, TNF-alpha, and IFN-gamma; and proinflammatory cytokine production to collagen in vitro when compared with control siRNA recipients. Together, these results demonstrate the distinct immunomodulatory roles of SphK1 and SphK2 in the development of inflammatory arthritis by regulating the release of proinflammatory cytokines and T cell responses. These findings raise the possibility that drugs which specifically target SphK1 activity may play a beneficial role in the treatment of inflammatory arthritis.

  19. Degradation of type IV collagen by neoplastic human skin fibroblasts

    SciTech Connect

    Sheela, S.; Barrett, J.C.

    1985-02-01

    An assay for the degradation of type IV (basement membrane) collagen was developed as a biochemical marker for neoplastic cells from chemically transformed human skin fibroblasts. Type IV collagen was isolated from basement membrane of Syrian hamster lung and type I collagen was isolated from rat tails; the collagens were radioactively labelled by reductive alkylation. The abilities of normal (KD) and chemically transformed (Hut-11A) human skin fibroblasts to degrade the collagens were studied. A cell-associated assay was performed by growing either normal or transformed cells in the presence of radioactively labelled type IV collagen and measuring the released soluble peptides in the medium. This assay also demonstrated that KD cells failed to synthesize an activity capable of degrading type IV collagen whereas Hut-11A cells degraded type IV collagen in a linear manner for up to 4 h. Human serum at very low concentrations, EDTA and L-cysteine inhibited the enzyme activity, whereas protease inhibitors like phenylmethyl sulfonyl fluoride, N-ethyl maleimide or soybean trypsin inhibitor did not inhibit the enzyme from Hut-11A cells. These results suggest that the ability to degrade specifically type IV collagen may be an important marker for neoplastic human fibroblasts and supports a role for this collagenase in tumor cell invasion.

  20. Polarized Microscopy in Lesions With Altered Dermal Collagen.

    PubMed

    Elbendary, Amira; Valdebran, Manuel; Parikh, Kruti; Elston, Dirk M

    2016-08-01

    Alterations in dermal collagen are noted in dermatofibroma, dermatofibrosarcoma protuberans, morphea, lichen sclerosus et atrophicus, hypertrophic scars, and keloids. The authors sought to determine whether variations in birefringence of collagen by polarized microscopy could be of help in diagnosing such conditions. Representative hematoxylin and eosin sections of 400 cases, including dermatofibroma, dermatofibrosarcoma protuberans, hypertrophic scars, keloid, morphea, and lichen sclerosus, were examined under polarized microscopy. Distinct patterns of birefringence of collagen for each disease were noted under polarized microscopy. This study highlights the use of polarized microscopy as adjunctive tool in differentiating different diseases with collagen alteration. PMID:26959692

  1. Collagen fibril arrangement and size distribution in monkey oral mucosa

    PubMed Central

    OTTANI, V.; FRANCHI, M.; DE PASQUALE, V.; LEONARDI, L.; MOROCUTTI, M.; RUGGERI, A.

    1998-01-01

    Collagen fibre organisation and fibril size were studied in the buccal gingival and hard palate mucosa of Macacus rhesus monkey. Light and electron microscopy analysis showed connective papillae exhibiting a similar inner structure in the different areas examined, but varying in distribution, shape and size. Moving from the deep to surface layers of the buccal gingival mucosa (free and attached portions), large collagen fibril bundles became smaller and progressively more wavy with decreasing collagen fibril diameter. This gradual diameter decrease did not occur in the hard palate mucosa (free portion, rugae and interrugal regions) where the fibril diameter remained constant. A link between collagen fibril diameter and mechanical function is discussed. PMID:9688498

  2. Fabrication of homobifunctional crosslinker stabilized collagen for biomedical application.

    PubMed

    Lakra, Rachita; Kiran, Manikantan Syamala; Sai, Korrapati Purna

    2015-12-01

    Collagen biopolymer has found widespread application in the field of tissue engineering owing to its excellent tissue compatibility and negligible immunogenicity. Mechanical strength and enzymatic degradation of the collagen necessitates the physical and chemical strength enhancement. One such attempt deals with the understanding of crosslinking behaviour of EGS (ethylene glycol-bis (succinic acid N-hydroxysuccinimide ester)) with collagen to improve the physico-chemical properties. The incorporation of a crosslinker during fibril formation enhanced the thermal and mechanical stability of collagen. EGS crosslinked collagen films exhibited higher denaturation temperature (T d) and the residue left after thermogravimetric analysis was about 16 ± 5.2%. Mechanical properties determined by uniaxial tensile tests showed a threefold increase in tensile strength and Young's modulus at higher concentration (100 μM). Water uptake capacity reduced up to a moderate extent upon crosslinking which is essential for the transport of nutrients to the cells. Cell viability was found to be 100% upon treatment with 100 μM EGS whereas only 30% viability could be observed with glutaraldehyde. Rheological studies of crosslinked collagen showed an increase in shear stress and shear viscosity at 37 °C. Crosslinking with EGS resulted in the formation of a uniform fibrillar network. Trinitrobenzene sulfonate (TNBS) assay confirmed that EGS crosslinked collagen by forming a covalent interaction with ε-amino acids of collagen. The homobifunctional crosslinker used in this study enhanced the effectiveness of collagen as a biomaterial for biomedical application. PMID:26610606

  3. Play, Play Therapy, Play Research. Proceedings of the International Symposium (Amsterdam, the Netherlands, September 1985).

    ERIC Educational Resources Information Center

    Kooij, Rimmert van der; Hellendoorn, Joop

    After an introduction which briefly discusses emotional, therapeutic, phenomenological, cognitive, and developmental perspectives on play, this volume presents the complete texts of all the main lectures and a few short papers that were given at the International Symposium on Play, Play Therapy, and Play Research. Papers in part 1 concern certain…

  4. Elastic Response of Crimped Collagen Fibrils

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Doehring, Todd C.

    2005-01-01

    A physiologic constitutive expression is presented in algorithmic format for the elastic response of wavy collagen fibrils found in soft connective tissues. The model is based on the observation that crimped fibrils have a three-dimensional structure at the micrometer scale that we approximate as a helical spring. The symmetry of this waveform allows the force/displacement relationship derived from Castigliano's theorem to be solved in closed form. Model predictions are in good agreement with experimental observations for mitral-valve chordae tendineae

  5. Elastic model for crimped collagen fibrils

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Doehring, Todd C.

    2005-01-01

    A physiologic constitutive expression is presented in algorithmic format for the nonlinear elastic response of wavy collagen fibrils found in soft connective tissues. The model is based on the observation that crimped fibrils in a fascicle have a three-dimensional structure at the micron scale that we approximate as a helical spring. The symmetry of this wave form allows the force/displacement relationship derived from Castigliano's theorem to be solved in closed form: all integrals become analytic. Model predictions are in good agreement with experimental observations for mitral-valve chordae tendinece.

  6. Tension tests on mammalian collagen fibrils.

    PubMed

    Liu, Yehe; Ballarini, Roberto; Eppell, Steven J

    2016-02-01

    A brief overview of isolated collagen fibril mechanics testing is followed by presentation of the first results testing fibrils isolated from load-bearing mammalian tendons using a microelectromechanical systems platform. The in vitro modulus (326 ± 112 MPa) and fracture stress (71 ± 23 MPa) are shown to be lower than previously measured on fibrils extracted from sea cucumber dermis and tested with the same technique. Scanning electron microscope images show the fibrils can fail with a mechanism that involves circumferential rupture, whereas the core of the fibril stays at least partially intact. PMID:26855757

  7. Pulmonary manifestations of the collagen vascular diseases.

    PubMed

    Wiedemann, H P; Matthay, R A

    1989-12-01

    The collagen vascular diseases are a heterogeneous group of immunologically mediated inflammatory disorders. The organs and tissues that compose the respiratory system are frequently affected by these diseases. Potential targets of the inflammation and injury include the lung parenchyma, tracheobronchial tree, pulmonary vasculature, pleura, larynx, and respiratory muscles. In this article, the spectrum of respiratory disease caused by systemic lupus erythematosus, rheumatoid arthritis, scleroderma, polymyositis/dermatomyositis, mixed connective tissue disease, ankylosing spondylitis, relapsing polychondritis, and Sjögren's syndrome is reviewed. Where appropriate, therapeutic options are discussed.

  8. Quantification of human neutrophil motility in three-dimensional collagen gels. Effect of collagen concentration.

    PubMed Central

    Parkhurst, M R; Saltzman, W M

    1992-01-01

    Leukocytes must migrate through tissues to fulfill their role in the immune response, but direct methods for observing and quantifying cell motility have mostly been limited to migration on two-dimensional surfaces. We have now developed methods for examining neutrophil movement in a three-dimensional gel containing 0.1 to 0.7 mg/ml rat tail tendon collagen. Neutrophil-populated collagen gels were formed within flat glass capillary tubes, permitting direct observation with light microscopy. By following the tracks of individual cells over a 13.5-min observation period and comparing them to a stochastic model of cell movement, we quantified cell speed within a given gel by estimating a random motility coefficient (mu) and persistence time (P). The random motility coefficient changed significantly with collagen concentration in the gel, varying from 1.6 to 13.3 x 10(-9) cm2/s, with the maximum occurring at a collagen gel concentration of 0.3 mg/ml. The methods described may be useful for studying tissue dynamics and for evaluating the mechanism of cell movement in three-dimensional gels of extracellular matrix (ECM) molecules. PMID:1547321

  9. Cell Alignment Driven by Mechanically Induced Collagen Fiber Alignment in Collagen/Alginate Coatings

    PubMed Central

    Chaubaroux, Christophe; Perrin-Schmitt, Fabienne; Senger, Bernard; Vidal, Loïc; Voegel, Jean-Claude; Schaaf, Pierre; Haikel, Youssef; Boulmedais, Fouzia; Lavalle, Philippe

    2015-01-01

    For many years it has been a major challenge to regenerate damaged tissues using synthetic or natural materials. To favor the healing processes after tendon, cornea, muscle, or brain injuries, aligned collagen-based architectures are of utmost interest. In this study, we define a novel aligned coating based on a collagen/alginate (COL/ALG) multilayer film. The coating exhibiting a nanofibrillar structure is cross-linked with genipin for stability in physiological conditions. By stretching COL/ALG-coated polydimethylsiloxane substrates, we developed a versatile method to align the collagen fibrils of the polymeric coating. Assays on cell morphology and alignment were performed to investigate the properties of these films. Microscopic assessments revealed that cells align with the stretched collagen fibrils of the coating. The degree of alignment is tuned by the stretching rate (i.e., the strain) of the COL/ALG-coated elastic substrate. Such coatings are of great interest for strategies that require aligned nanofibrillar biological material as a substrate for tissue engineering. PMID:25658028

  10. Lamprey type II collagen and Sox9 reveal an ancient origin of the vertebrate collagenous skeleton.

    PubMed

    Zhang, Guangjun; Miyamoto, Michael M; Cohn, Martin J

    2006-02-28

    Type II collagen is the major cartilage matrix protein in the jawed vertebrate skeleton. Lampreys and hagfishes, by contrast, are thought to have noncollagenous cartilage. This difference in skeletal structure has led to the hypothesis that the vertebrate common ancestor had a noncollagenous skeleton, with type II collagen becoming the predominant cartilage matrix protein after the divergence of jawless fish from the jawed vertebrates approximately 500 million years ago. Here we report that lampreys have two type II collagen (Col2alpha1) genes that are expressed during development of the cartilaginous skeleton. We also demonstrate that the adult lamprey skeleton is rich in Col2alpha1 protein. Furthermore, we have isolated a lamprey orthologue of Sox9, a direct transcriptional regulator of Col2alpha1 in jawed vertebrates, and show that it is coexpressed with both Col2alpha1 genes during skeletal development. These results reveal that the genetic pathway for chondrogenesis in lampreys and gnathostomes is conserved through the activation of cartilage matrix molecules and suggest that a collagenous skeleton evolved surprisingly early in vertebrate evolution.

  11. Effects of Factor XIII Deficiency on Thromboelastography. Thromboelastography with Calcium and Streptokinase Addition is more Sensitive than Solubility Tests

    PubMed Central

    Martinuzzo, M.; Barrera, L.; Altuna, D.; Baña, F. Tisi; Bieti, J.; Amigo, Q.; D’Adamo, M.; López, M.S.; Oyhamburu, J.; Otaso, J.C.

    2016-01-01

    Background Homozygous or double heterozygous factor XIII (FXIII) deficiency is characterized by soft tissue hematomas, intracranial and delayed spontaneous bleeding. Alterations of thromboelastography (TEG) parameters in these patients have been reported. The aim of the study was to show results of TEG, TEG Lysis (Lys 60) induced by subthreshold concentrations of streptokinase (SK), and to compare them to the clot solubility studies results in samples of a 1-year-old girl with homozygous or double heterozygous FXIII deficiency. Case A year one girl with a history of bleeding from the umbilical cord. During her first year of life, several hematomas appeared in soft upper limb tissue after punctures for vaccination and a gluteal hematoma. One additional sample of a heterozygous patient and three samples of acquired FXIII deficiency were also evaluated. Materials and Methods Clotting tests, von Willebrand factor (vWF) antigen and activity, plasma FXIII-A subunit (pFXIII-A) were measured by an immunoturbidimetric assay in a photo-optical coagulometer. Solubility tests were performed with Ca2+-5 M urea and thrombin-2% acetic acid. Basal and post-FXIII concentrate infusion samples were studied. TEG was performed with CaCl2 or CaCl2 + SK (3.2 U/mL) in a Thromboelastograph. Results Prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time, fibrinogen, factor VIIIc, vWF, and platelet aggregation were normal. Antigenic pFXIII-A subunit was < 2%. TEG, evaluated at diagnosis and post FXIII concentrate infusion (pFXIII-A= 37%), presented a normal reaction time (R), 8 min, prolonged k (14 and 11min respectively), a low Maximum-Amplitude (MA) ( 39 and 52 mm respectively), and Clot Lysis (Lys60) slightly increased (23 and 30% respectively). In the sample at diagnosis, clot solubility was abnormal, 50 and 45 min with Ca-Urea and thrombin-acetic acid, respectively, but normal (>16 hours) 1-day post-FXIII infusion. Analysis of FXIII deficient and normal

  12. Effects of Factor XIII Deficiency on Thromboelastography. Thromboelastography with Calcium and Streptokinase Addition is more Sensitive than Solubility Tests

    PubMed Central

    Martinuzzo, M.; Barrera, L.; Altuna, D.; Baña, F. Tisi; Bieti, J.; Amigo, Q.; D’Adamo, M.; López, M.S.; Oyhamburu, J.; Otaso, J.C.

    2016-01-01

    Background Homozygous or double heterozygous factor XIII (FXIII) deficiency is characterized by soft tissue hematomas, intracranial and delayed spontaneous bleeding. Alterations of thromboelastography (TEG) parameters in these patients have been reported. The aim of the study was to show results of TEG, TEG Lysis (Lys 60) induced by subthreshold concentrations of streptokinase (SK), and to compare them to the clot solubility studies results in samples of a 1-year-old girl with homozygous or double heterozygous FXIII deficiency. Case A year one girl with a history of bleeding from the umbilical cord. During her first year of life, several hematomas appeared in soft upper limb tissue after punctures for vaccination and a gluteal hematoma. One additional sample of a heterozygous patient and three samples of acquired FXIII deficiency were also evaluated. Materials and Methods Clotting tests, von Willebrand factor (vWF) antigen and activity, plasma FXIII-A subunit (pFXIII-A) were measured by an immunoturbidimetric assay in a photo-optical coagulometer. Solubility tests were performed with Ca2+-5 M urea and thrombin-2% acetic acid. Basal and post-FXIII concentrate infusion samples were studied. TEG was performed with CaCl2 or CaCl2 + SK (3.2 U/mL) in a Thromboelastograph. Results Prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time, fibrinogen, factor VIIIc, vWF, and platelet aggregation were normal. Antigenic pFXIII-A subunit was < 2%. TEG, evaluated at diagnosis and post FXIII concentrate infusion (pFXIII-A= 37%), presented a normal reaction time (R), 8 min, prolonged k (14 and 11min respectively), a low Maximum-Amplitude (MA) ( 39 and 52 mm respectively), and Clot Lysis (Lys60) slightly increased (23 and 30% respectively). In the sample at diagnosis, clot solubility was abnormal, 50 and 45 min with Ca-Urea and thrombin-acetic acid, respectively, but normal (>16 hours) 1-day post-FXIII infusion. Analysis of FXIII deficient and normal

  13. Adopting the principles of collagen biomineralization for intrafibrillar infiltration of yttria-stabilized zirconia into three-dimensional collagen scaffolds

    PubMed Central

    Zhou, Bin; Niu, Li-na; Shi, Wei; Zhang, Wei; Arola, Dwayne D.; Breschi, Lorenzo; Mao, Jing; Pashley, David H.

    2014-01-01

    In this paper, we report a process for generating collagen-yttria-stabilized amorphous zirconia hybrid scaffolds by introducing acetylacetone-inhibited zirconia precursor nanodroplets into a poly(allylamine)-coated collagen matrix. This polyelectrolyte coating triggers intrafibrillar condensation of the precursors into amorphous zirconia, which is subsequently transformed into tetragonal yttria-stabilized zirconia after calcination. Our findings represent a new paradigm in the synthesis of non-naturally occurring collagen-based hybrid scaffolds under alcoholic mineralizing conditions. PMID:25477773

  14. Playing with Switches, Birth through Two. Let's Play! Project.

    ERIC Educational Resources Information Center

    State Univ. of New York, Buffalo. Center for Assistive Technology.

    This guide to playing with switches for parents and early intervention personnel was developed by the "Let's Play! Project," a 3-year federally supported project that worked to promote play in infants and toddlers with disabilities through the use of assistive technology. Switches are used with electronic toys to help young children easily…

  15. "Normal" Childhood Sexual Play and Games: Differentiating Play from Abuse.

    ERIC Educational Resources Information Center

    Lamb, Sharon; Coakley, Mary

    1993-01-01

    A survey of 128 undergraduate female students indicated that 44% had experienced cross-gender sexual play as children, which was often seen as involving persuasion, manipulation, or coercion. A typology of six kinds of sexual play experiences was derived. Discussion focuses on the differentiation of childhood sexual abuse from play and gender…

  16. Solar Power at Play

    NASA Astrophysics Data System (ADS)

    2007-03-01

    For the very first time, astronomers have witnessed the speeding up of an asteroid's rotation, and have shown that it is due to a theoretical effect predicted but never seen before. The international team of scientists used an armada of telescopes to discover that the asteroid's rotation period currently decreases by 1 millisecond every year, as a consequence of the heating of the asteroid's surface by the Sun. Eventually it may spin faster than any known asteroid in the solar system and even break apart. ESO PR Photo 11a/07 ESO PR Photo 11a/07 Asteroid 2000 PH5 "The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is believed to alter the way small bodies in the Solar System rotate," said Stephen Lowry (Queens University Belfast, UK), lead-author of one of the two companion papers in which this work is reported [1, 2]. "The warming caused by sunlight hitting the surfaces of asteroids and meteoroids leads to a gentle recoil effect as the heat is released," he added. "By analogy, if one were to shine light on a propeller over a long enough period, it would start spinning." Although this is an almost immeasurably weak force, its effect over millions of years is far from negligible. Astronomers believe the YORP effect may be responsible for spinning some asteroids up so fast that they break apart, perhaps leading to the formation of double asteroids. Others may be slowed down so that they take many days to complete a full turn. The YORP effect also plays an important role in changing the orbits of asteroids between Mars and Jupiter, including their delivery to planet-crossing orbits, such as those of near-Earth asteroids. Despite its importance, the effect has never been seen acting on a solar system body, until now. Using extensive optical and radar imaging from powerful Earth-based observatories, astronomers have directly observed the YORP effect in action on a small near-Earth asteroid, known as (54509) 2000 PH5. Shortly after its discovery in 2000, it was

  17. Play technique in psychodynamic psychotherapy.

    PubMed

    Yanof, Judith A

    2013-04-01

    Imaginary play is often a child's best way of communicating affects, fantasies, and internal states. In play children are freer to express their forbidden and conflicted thoughts. Consequently, one of the best ways for the therapist to enter the child's world is to do so from within the displacement of the play process. For children who cannot play, the therapist's goal is to teach the child to use play as a means of communication and to create meaning. This article present clinical examples to illustrate how the author uses play in the clinical situation.

  18. Introduction: Invertebrate Neuropeptides XIII

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication represents an introduction to the thirteenth in a series of special issues of the Peptides journal dedicated to invertebrate neuropeptides. The issue addresses a number of aspects of invertebrate neuropeptide research including identification of novel invertebrate neuropeptide sequ...

  19. New Identifications of Fe IX, Fe X, Fe XI, Fe XII, and Fe XIII Lines in the Spectrum of Procyon Observed with the Chandra X-Ray Observatory

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Lepson, J. K.; Desai, P.; Díaz, F.; Ishikawa, Y.

    2014-02-01

    We have analyzed 280 ks of co-added observations performed with Chandra's Low Energy Transmission Grating Spectrometer using theoretical spectra of Fe VIII through Fe XVII. The model spectral data were produced by combining collisional excitation data generated with the Flexible Atomic Code and transition energies generated with a relativistic code based on the multi-reference Møller-Plesset perturbation theory. The spectroscopic accuracy of the theoretical Fe IX wavelengths was ascertained in a comparison with existing laboratory measurements. We find several new Fe IX lines in the 100-140 Å region and confirm two previous identifications. We also have identified a new line from Fe X near 111 Å several weak features near 102 Å may also be ascribed to Fe X. A line near 100.5 Å is identified as originating from Fe XI; a neighboring feature near 101 Å may also be from Fe XI. A cluster of three weak lines between 117 and 118 Å may be ascribed to Fe XII. Two lines near 104 and 106 Å, respectively, have been assigned to Fe XIII. In addition, we confirmed the presence of two out of four Fe VIII lines that were thought to exist in the spectrum. These two lines are located near 131 Å. The Fe IX emission is weakly sensitive to the assumed electron density, while the Fe XIII is strongly dependent on density. We find that a density between 109 and 1010 cm-3 provides the best fit to the Procyon spectrum. We note that several of the new identifications have come at the expense of prior assignments to magnesium or calcium lines, removing evidence for the presence of these elements in this spectral region. No evidence for Fe XVIII, Fe XIX, or Fe XX was found.

  20. Defective collagen VI α6 chain expression in the skeletal muscle of patients with collagen VI-related myopathies.

    PubMed

    Tagliavini, F; Pellegrini, C; Sardone, F; Squarzoni, S; Paulsson, M; Wagener, R; Gualandi, F; Trabanelli, C; Ferlini, A; Merlini, L; Santi, S; Maraldi, N M; Faldini, C; Sabatelli, P

    2014-09-01

    Collagen VI is a non-fibrillar collagen present in the extracellular matrix (ECM) as a complex polymer; the mainly expressed form is composed of α1, α2 and α3 chains; mutations in genes encoding these chains cause myopathies known as Ullrich congenital muscular dystrophy (UCMD), Bethlem myopathy (BM) and myosclerosis myopathy (MM). The collagen VI α6 chain is a recently identified component of the ECM of the human skeletal muscle. Here we report that the α6 chain was dramatically reduced in skeletal muscle and muscle cell cultures of genetically characterized UCMD, BM and MM patients, independently of the clinical phenotype, the gene involved and the effect of the mutation on the expression of the "classical" α1α2α3 heterotrimer. By contrast, the collagen VI α6 chain was normally expressed or increased in the muscle of patients affected by other forms of muscular dystrophy, the overexpression matching with areas of increased fibrosis. In vitro treatment with TGF-β1, a potent collagen inducer, promoted the collagen VI α6 chain deposition in the ECM of normal muscle cells, whereas, in cultures derived from collagen VI-related myopathy patients, the collagen VI α6 chain failed to develop a network outside the cells and accumulated in the endoplasmic reticulum. The defect of the α6 chain points to a contribution to the pathogenesis of collagen VI-related disorders.