Science.gov

Sample records for collagen xiii play

  1. Collagen XIII secures pre- and postsynaptic integrity of the neuromuscular synapse.

    PubMed

    Härönen, Heli; Zainul, Zarin; Tu, Hongmin; Naumenko, Nikolay; Sormunen, Raija; Miinalainen, Ilkka; Shakirzyanova, Anastasia; Oikarainen, Tuomo; Abdullin, Azat; Martin, Paula; Santoleri, Sabrina; Koistinaho, Jari; Silmanl, Israel; Giniatullin, Rashid; Fox, Michael A; Heikkinen, Anne; Pihlajaniemi, Taina

    2017-03-24

    Both transmembrane and extracellular cues, one of which is collagen XIII, regulate formation and function of the neuromuscular synapse, and their absence results in myasthenia. We show that the phenotypical changes in collagen XIII knock-out mice are milder than symptoms in human patients, but the Col13a1-/- mice recapitulate major muscle findings of congenital myasthenic syndrome type 19 and serve as a disease model. In the lack of collagen XIII neuromuscular synapses do not reach full size, alignment, complexity and function resulting in reduced muscle strength. Collagen XIII is particularly important for the preterminal integrity, and when absent, destabilization of the motor nerves results in muscle regeneration and in atrophy especially in the case of slow muscle fibers. Collagen XIII was found to affect synaptic integrity through binding the ColQ tail of acetylcholine esterase. Although collagen XIII is a muscle-bound transmembrane molecule it also undergoes ectodomain shedding to become, a synaptic basal lamina component. We investigated the two forms' roles by novel Col13a1tm/tm mice in which ectodomain shedding is impaired. While postsynaptic maturation, terminal branching and neurotransmission was exaggerated in the Col13a1tm/tm mice, the transmembrane form's presence sufficed to prevent defects in transsynaptic adhesion, Schwann cell invagination/retraction, vesicle accumulation and acetylcholine receptor clustering and acetylcholinesterase dispersion seen in the Col13a1-/- mice, pointing to the transmembrane form as the major conductor of collagen XIII effects. Altogether, collagen XIII secures postsynaptic, synaptic and presynaptic integrity, and it is required for gaining and maintaining normal size, complexity and functional capacity of the neuromuscular synapse.

  2. Overexpression of collagen XIII in extraocular fat affected by active thyroid-associated ophthalmopathy: A crucial piece of the puzzle?

    PubMed

    Morris, Olivia Claire; Schebitz Walter, Kirsten; Telemo, Esbjörn; Hintschich, Christoph

    2016-08-01

    Thyroid-associated ophthalmopathy (TAO) causes irreversible increase in extraocular fat volume that contributes to the risk of exophthalmos and compressive optic neuropathy. Collagen XIII is implicated in uncontrolled cell growth in some tumours, but we are not aware of any studies of collagen XIII in TAO-affected solid tissue to date. We conducted immunohistochemical staining for collagen XIII alpha 1 (COL13A1), present in both the transmembrane and cleaved forms of collagen XIII, in consecutive prospectively collected human extraocular tissue specimens from patients with TAO and controls. We identified overexpression of collagen XIII in active TAO-affected fat. We discuss how species and cell-type specific responses of collagen XIII to stressors may help explain the different phenotypes of TAO.

  3. Expression of mRNAs coding for the alpha 1 chain of type XIII collagen in human fetal tissues: comparison with expression of mRNAs for collagen types I, II, and III

    PubMed Central

    1989-01-01

    This paper describes the topographic distribution of the multiple mRNAs coding for a novel human short-chain collagen, the alpha 1 chain of type XIII collagen. To identify the tissues and cells expressing these mRNAs, human fetal tissues of 15-19 gestational wk were studied by Northern and in situ hybridizations. The distribution pattern of the type XIII collagen mRNAs was compared with that of fibrillar collagen types I, II, and III using specific human cDNA probes for each collagen type. Northern hybridization showed the bone, cartilage, intestine, skin, and striated muscle to contain mRNAs for type XIII collagen. An intense in situ hybridization signal was obtained with the type XIII collagen cDNAs in the epidermis, hair follicles, and nail root cells of the skin, whereas the fibrillar collagen mRNAs were detected in the dermis. Cells in the intestinal mucosal layer also appeared to contain high levels of alpha 1(XIII) collagen mRNAs, but contained none of the fibrillar collagen mRNAs. In the bone and striated muscle, alpha 1(XIII) collagen mRNAs were detected in the mesenchymal cells forming the reticulin fibers of the bone marrow and endomycium. The hybridization signal obtained with the alpha 1(XIII) collagen cDNA probe in cartilaginous areas of the growth plates was similar, but less intense, to that obtained with the type II collagen probe. A clear hybridization signal was also detected at the (pre)articular surfaces and at the margins of the epiphyses, whereas it was weaker in the resting chondrocytes in the middle of the epiphyses. The brain, heart, kidney, liver, lung, placenta, spleen, testis, tendon, and thymus did not appear to contain alpha 1(XIII) collagen mRNAs. PMID:2768343

  4. Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction

    NASA Technical Reports Server (NTRS)

    Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.

    1991-01-01

    provide evidence that collagen telopeptide sites play a role in collagen gel lattice contraction.

  5. Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction

    NASA Technical Reports Server (NTRS)

    Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.

    1991-01-01

    provide evidence that collagen telopeptide sites play a role in collagen gel lattice contraction.

  6. Constitutively low expression of collagen XIII alpha 1 may help explain the vulnerability of the inferior rectus muscle to thyroid-associated ophthalmopathy.

    PubMed

    Morris, Olivia Claire; Schebitz Walter, Kirsten; Telemo, Esbjörn; Hintschich, Christoph

    2016-12-01

    Thyroid-associated ophthalmopathy (TAO) has a predilection for inferior rectus muscle that has never been explained. We conducted immunohistochemical staining for the soluble cleaved form of collagen XIII alpha 1 (COL13A1) and found constitutively low expression of COL13A1 in normal human inferior rectus muscles and moderate expression of COL13A1 in normal human medial rectus muscles. COL13A1 is known to be essential to development and maintenance of neuromuscular junctions and there is some evidence to suggest it may help support normal immune function. The combination of constitutively low expression of COL13A1, high physiological and metabolic demands, and consequentially relatively high exposure to stressors via the blood stream may help explain the particular vulnerability of inferior rectus to TAO compared to other extraocular muscles.

  7. Collagen VII plays a dual role in wound healing.

    PubMed

    Nyström, Alexander; Velati, Daniela; Mittapalli, Venugopal R; Fritsch, Anja; Kern, Johannes S; Bruckner-Tuderman, Leena

    2013-08-01

    Although a host of intracellular signals is known to contribute to wound healing, the role of the cell microenvironment in tissue repair remains elusive. Here we employed 2 different mouse models of genetic skin fragility to assess the role of the basement membrane protein collagen VII (COL7A1) in wound healing. COL7A1 secures the attachment of the epidermis to the dermis, and its mutations cause a human skin fragility disorder coined recessive dystrophic epidermolysis bullosa (RDEB) that is associated with a constant wound burden. We show that COL7A1 is instrumental for skin wound closure by 2 interconnected mechanisms. First, COL7A1 was required for re-epithelialization through organization of laminin-332 at the dermal-epidermal junction. Its loss perturbs laminin-332 organization during wound healing, which in turn abrogates strictly polarized expression of integrin α6β4 in basal keratinocytes and negatively impacts the laminin-332/integrin α6β4 signaling axis guiding keratinocyte migration. Second, COL7A1 supported dermal fibroblast migration and regulates their cytokine production in the granulation tissue. These findings, which were validated in human wounds, identify COL7A1 as a critical player in physiological wound healing in humans and mice and may facilitate development of therapeutic strategies not only for RDEB, but also for other chronic wounds.

  8. Collagen type IV alpha 1 (COL4A1) and collagen type XIII alpha 1 (COL13A1) produced in cancer cells promote tumor budding at the invasion front in human urothelial carcinoma of the bladder.

    PubMed

    Miyake, Makito; Hori, Shunta; Morizawa, Yosuke; Tatsumi, Yoshihiro; Toritsuka, Michihiro; Ohnishi, Sayuri; Shimada, Keiji; Furuya, Hideki; Khadka, Vedbar S; Deng, Youping; Ohnishi, Kenta; Iida, Kota; Gotoh, Daisuke; Nakai, Yasushi; Inoue, Takeshi; Anai, Satoshi; Torimoto, Kazumasa; Aoki, Katsuya; Tanaka, Nobumichi; Konishi, Noboru; Fujimoto, Kiyohide

    2017-05-30

    Current knowledge of the molecular mechanism driving tumor budding is limited. Here, we focused on elucidating the detailed mechanism underlying tumor budding in urothelial cancer of the bladder. Invasive urothelial cancer was pathologically classified into three groups as follows: nodular, trabecular, and infiltrative (tumor budding). Pathohistological analysis of the orthotopic tumor model revealed that human urothelial cancer cell lines MGH-U3, UM-UC-14, and UM-UC-3 displayed typical nodular, trabecular, and infiltrative patterns, respectively. Based on the results of comprehensive gene expression analysis using microarray (25 K Human Oligo chip), we identified two collagens, COL4A1 and COL13A1, which may contribute to the formation of the infiltrative pattern. Visualization of protein interaction networks revealed that proteins associated with connective tissue disorders, epithelial-mesenchymal transition, growth hormone, and estrogen were pivotal factors in tumor cells. To evaluate the invasion pattern of tumor cells in vitro, 3-D collective cell invasion assay using Matrigel was performed. Invadopodial formation was evaluated using Gelatin Invadopodia Assay. Knockdown of collagens with siRNA led to dramatic changes in invasion patterns and a decrease in invasion capability through decreased invadopodia. The in vivo orthotopic experimental model of bladder tumors showed that intravesical treatment with siRNA targeting COL4A1 and COL13A1 inhibited the formation of the infiltrative pattern. COL4A1 and COL13A1 production by cancer cells plays a pivotal role in tumor invasion through the induction of tumor budding. Blocking of these collagens may be an attractive therapeutic approach for treatment of human urothelial cancer of the bladder.

  9. Plasma factor XIII and platelet factor XIII in hyperlipaemia.

    PubMed

    Cucuianu, M P; Miloszewski, K; Porutiu, D; Losowsky, M S

    1976-12-31

    Plasma factor XIII activity measured by a quantitative assay was found to be significantly higher in hypertriglyceridaemic patients (type IV and combined hyperlipoproteinaemia), as compared to normolipaemic controls. No such elevation in plasma factor XIII activity was found in patients with type Ha hyperlipaemia. Plasma pseudocholinesterase was found to parallel the elevated factor XIII activity in hypertriglyceridaemic subjects. In contrast, platelet factor XIII activity was not raised in hyperlipaemic subjects, and plasma factor XIII was found to be normal in a normolipaemic subjects with thrombocythaemia. It was concluded that there is no significant contribution from platelets to plasma factor XIII activity, and that the observed increase in plasma factor XIII in hypertriglyceridaemia results from enhanced hepatic synthesis of the enzyme.

  10. Advances of Coagulation Factor XIII

    PubMed Central

    Shi, Da-Yu; Wang, Shu-Jie

    2017-01-01

    Objective: To provide a comprehensive literature review on roles of coagulation factor XIII (FXIII) in coagulation, wound healing, neoplasm, bone metabolism, and pregnancy. Data Sources: All articles in PubMed with key words Coagulation factor XIII, wound, leukemia, tumor, bone, and pregnancy with published date from 2001 to 2016 were included in the study. Frequently cited publications before 2000 were also included. Study Selection: We reviewed the role of FXIII in biologic processes as documented in clinical, animal, and in vitro studies. Results: FXIII, a member of the transglutaminase (TG) family, plays key roles in various biological processes. Besides its well-known function in coagulation, the cross-linking of small molecules catalyzed by FXIII has been found in studies to help promote wound healing, improve bone metabolism, and prevent miscarriages. The study has also shown that FXIII concentration level differs in the blood of patients with leukemia and solid tumors and offers promises as a diagnostic indicator. Conclusions: FXIII has many more biologic functions besides being known as coagulation factor. The TG activity of FXIII contributes to several processes, including wound healing, bone extracellular matrix stabilization, and the interaction between embryo and decidua of uterus. Further research is needed to elucidate the link between FXIII and leukemia and solid tumors. PMID:28091415

  11. OSCAR-collagen signaling in monocytes plays a proinflammatory role and may contribute to the pathogenesis of rheumatoid arthritis.

    PubMed

    Schultz, Heidi S; Guo, Li; Keller, Pernille; Fleetwood, Andrew J; Sun, Mingyi; Guo, Wei; Ma, Chunyan; Hamilton, John A; Bjørkdahl, Olle; Berchtold, Martin W; Panina, Svetlana

    2016-04-01

    Osteoclast-associated receptor (OSCAR) is an activating receptor expressed by human myeloid cells. Collagen type I (ColI) and collagen type II (ColII) serve as ligands for OSCAR. OSCAR-collagen interaction stimulates RANK-dependent osteoclastogenesis. We have recently reported that OSCAR promotes functional maturation of monocyte-derived dendritic cells. OSCAR is upregulated on monocytes from rheumatoid arthritis (RA) patients with active disease, and these monocytes show an increased proosteoclastogenic potential. In the current study, we have addressed a functional role for an OSCAR-collagen interaction on monocytes. We show that OSCAR-ColII signaling promoted the survival of monocytes. Moreover, ColII stimulated the release of proinflammatory cytokines by monocytes from healthy donors, which could be completely blocked by an anti-OSCAR monoclonal antibody. Mononuclear cells from the synovial fluid of RA patients plated on ColII secreted TNF-α and IL-8 in an OSCAR-dependent manner. Global RNA profiling showed that components of multiple signaling pathways relevant to RA pathogenesis are regulated at the transcriptional level by OSCAR in monocytes. Thus, OSCAR can play a proinflammatory role in monocyte-derived cells and may contribute crucially on multiple levels to RA pathogenesis.

  12. ASC plays a role in the priming phase of the immune response to type II collagen in collagen-induced arthritis.

    PubMed

    Yamazaki, Hideshi; Takeoka, Michiko; Kitazawa, Masato; Ehara, Takashi; Itano, Naoki; Kato, Hiroyuki; Taniguchi, Shun'ichiro

    2012-06-01

    Although rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology, the role of IL-1β and IL-18 in the pathophysiology of RA has been well established. IL-1β and IL-18 are generated via cleavage of their pro-forms in the presence of the apoptosis-associated speck-like protein containing a caspase recruit domain (ASC), a known adaptor protein that activates procaspase-1. As such, we investigated the involvement of ASC in the progression of murine collagen-induced arthritis (CIA) and collagen antibody-induced arthritis (CAIA) using ASC-deficient (ASC(-/-)) and wild-type (ASC(+/+)) mice. Analyses were performed by immunohistochemistry for tissues and ELISA for sera. We observed an increase in the expression of ASC, as well as IL-1β and IL-18, in the joints of CIA DBA mice, which indicated that ASC is involved in disease development. Next, we demonstrated that the infiltration of inflammatory cells and cartilage/bone destruction in CIA knee joints were significantly increased in ASC(+/+) mice compared with ASC(-/-) mice. No such differences were noted in ASC(+/+) and ASC(-/-) CAIA mice. In terms of cytokine expression in knee joints, IL-1β and IL-18 were depressed in ASC-deficient CIA mice compared with wild-type mice, but were similarly expressed in CAIA joints in both mice groups. Taken together, we can conclude that ASC is involved in the development of CIA and plays a role in the priming phase of the immune response to type II collagen.

  13. Evidence that translocation of collagen fibril segments plays a role in early intrinsic tendon repair.

    PubMed

    Gunn, J Stephen; Ehrlich, H Paul

    2012-02-01

    Severed tendon repair advances with either a scar through extrinsic repair or regeneration through intrinsic repair. The authors examined whether intrinsic tendon repair reintroduces embryonic fibrillogenesis, whereby preformed collagen fibril segments are incorporated into growing collagen fibers at wound edges. Isolated tendons from 10-day-old chicken embryos were suspended in 1 mg/ml of the antibiotic gentamicin for 90 days, which released fibril segments that were fluorescently tagged with rhodamine. Tendons isolated from 14-day-old chicken embryos were wounded to half their diameter and then maintained as explants in stationary organ culture. Fluorescent-tagged fibril segments were introduced to wounded tendon explants in the presence of high concentrations of neomycin, an antibiotic; cycloheximide, a protein synthesis inhibitor; cytochalasin D, a disruptor of microfilaments; and colchicine, a disruptor of microtubules. At 24 hours, explants were viewed by means of fluorescent microscopy. Untreated, wounded tendon explants showed the translocation of fluorescent-tagged fibril segments from the explant surface to accumulation at wound edges. In the presence of high concentrations of neomycin, cytochalasin D, or colchicine, fluorescent-tagged fibril segments failed to accumulate at wound edges and were retained on the explant surface. Inhibition of protein synthesis by cycloheximide did not alter the accumulation of fluorescent-tagged fibril segments at wound edges. Inhibiting fluorescent-tagged fibril segment accumulation by antibiotics is consistent with their role in releasing fibril segments. Experimental findings show fibril segment translocation and accumulation at wound edges involves microfilaments and microtubules, but not protein synthesis. The experiments support the hypothesis that intrinsic tendon repair advances through the incorporation of fibril segments at wound edges.

  14. Play.

    ERIC Educational Resources Information Center

    Rogers, Fred; Sharapan, Hedda

    1993-01-01

    Contends that, in childhood, work and play seem to come together. Says that for young children their play is their work, and the more adults encourage children to play, the more they emphasize important lifelong resource. Examines some uses of children's play, making and building, artwork, dramatic play, monsters and superheroes, gun play, and…

  15. The NC16A domain of collagen XVII plays a role in triple helix assembly and stability.

    PubMed

    Van den Bergh, Françoise; Fu, Chang-Ling; Olague-Marchan, Monica; Giudice, George J

    2006-12-01

    Collagen XVII/BP180 is a transmembrane constituent of the epidermal anchoring complex. To study the role of its non-collagenous linker domain, NC16A, in protein assembly and stability, we analyzed the following recombinant proteins: the collagen XVII extracellular domain with or without NC16A, and a pair of truncated proteins comprising the COL15-NC15 stretch expressed with or without NC16A. All four proteins were found to exist as stable collagen triple helices; however, the two missing NC16A exhibited melting temperatures significantly lower than their NC16A-containing counterparts. Protein refolding experiments revealed that the rate of triple helix assembly of the collagen model peptide GPP(10) is greatly increased by the addition of an upstream NC16A domain. In summary, the NC16A linker domain of collagen XVII exhibits a positive effect on both the rate of assembly and the stability of the adjoining collagen structure.

  16. Myeloid-derived suppressor cells play crucial roles in the regulation of mouse collagen-induced arthritis.

    PubMed

    Fujii, Wataru; Ashihara, Eishi; Hirai, Hideyo; Nagahara, Hidetake; Kajitani, Naoko; Fujioka, Kazuki; Murakami, Ken; Seno, Takahiro; Yamamoto, Aihiro; Ishino, Hidetaka; Kohno, Masataka; Maekawa, Taira; Kawahito, Yutaka

    2013-08-01

    Myeloid-derived suppressor cells (MDSCs) are of myeloid origin and are able to suppress T cell responses. The role of MDSCs in autoimmune diseases remains controversial, and little is known about the function of MDSCs in autoimmune arthritis. In this study, we clarify that MDSCs play crucial roles in the regulation of proinflammatory immune response in a collagen-induced arthritis (CIA) mouse model. MDSCs accumulated in the spleens of mice with CIA when arthritis severity peaked. These MDSCs inhibited the proliferation of CD4(+) T cells and their differentiation into Th17 cells in vitro. Moreover, MDSCs inhibited the production of IFN-γ, IL-2, TNF-α, and IL-6 by CD4(+) T cells in vitro, whereas they promoted the production of IL-10. Adoptive transfer of MDSCs reduced the severity of CIA in vivo, which was accompanied by a decrease in the number of CD4(+) T cells and Th17 cells in the draining lymph nodes. However, depletion of MDSCs abrogated the spontaneous improvement of CIA. In conclusion, MDSCs in CIA suppress the progression of CIA by inhibiting the proinflammatory immune response of CD4(+) T cells. These observations suggest that MDSCs play crucial roles in the regulation of autoimmune arthritis, which could be exploited in new cell-based therapies for human rheumatoid arthritis.

  17. DDR2 plays a role in fibroblast migration independent of adhesion ligand and collagen activated DDR2 tyrosine kinase.

    PubMed

    Herrera-Herrera, Mireya Liliana; Quezada-Calvillo, Roberto

    2012-12-07

    Discoidin domain receptor-2 (DDR2) is a cell surface tyrosine kinase receptor that can be activated by soluble collagen and has been implicated in diverse physiological functions including organism growth and wound repair. In the current studies, we used fibronectin and collagen-coated 2D surfaces and collagen matrices in combination with siRNA technology to investigate the role of DDR2 in a range of fibroblast motile activities. Silencing DDR2 with siRNA inhibited cell spreading and migration, and similar inhibition occurred regardless whether cells were interacting with fibronectin or collagen surfaces. Under the assay conditions used, DDR2 tyrosine kinase activation was not observed unless soluble collagen was added to the incubation medium. Finally silencing DDR2 also inhibited human fibroblast migration in 3D collagen matrices but had no effect on 3D collagen matrix remodeling and contraction. Taken together, our findings suggest that DDR2 is required for normal fibroblast spreading and migration independent of adhesion ligand and collagen activation of DDR2 tyrosine kinase.

  18. Play

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    Designing a game with a serious purpose involves considering the worlds of Reality and Meaning yet it is undeniably impossible to create a game without a third world, one that is specifically concerned with what makes a game a game: the play elements. This third world, the world of people like designers and artists, and disciplines as computer science and game design, I call the world of Play and this level is devoted to it. The level starts off with some of the misperceptions people have of play. Unlike some may think, we play all the time, even when we grow old—this was also very noticeable in designing the game Levee Patroller as the team exhibited very playful behavior at many occasions. From there, I go into the aspects that characterize this world. The first concerns the goal of the game. This relates to the objectives people have to achieve within the game. This is constituted by the second aspect: the gameplay. Taking actions and facing challenges is subsequently constituted by a gameworld, which concerns the third aspect. And all of it is not possible without the fourth and final aspect, the type of technology that creates and facilitates the game. The four aspects together make up a “game concept” and from this world such a concept can be judged on the basis of three closely interrelated criteria: engagement, immersion, and fun.

  19. Region- and Cell-Specific Expression of Transmembrane Collagens in Mouse Brain.

    PubMed

    Monavarfeshani, Aboozar; Knill, Courtney N; Sabbagh, Ubadah; Su, Jianmin; Fox, Michael A

    2017-01-01

    Unconventional collagens are nonfribrillar proteins that not only contribute to the structure of extracellular matrices but exhibit unique bio-activities. Although roles for unconventional collagens have been well-established in the development and function of non-neural tissues, only recently have studies identified roles for these proteins in brain development, and more specifically, in the formation and refinement of synaptic connections between neurons. Still, our understanding of the full cohort of unconventional collagens that are generated in the mammalian brain remains unclear. Here, we sought to address this gap by assessing the expression of transmembrane collagens (i.e., collagens XIII, XVII, XXIII and XXV) in mouse brain. Using quantitative PCR and in situ hybridization (ISH), we demonstrate both region- and cell-specific expression of these unique collagens in the developing brain. For the two most highly expressed transmembrane collagens (i.e., collagen XXIII and XXV), we demonstrate that they are expressed by select subsets of neurons in different parts of the brain. For example, collagen XXIII is selectively expressed by excitatory neurons in the mitral/tufted cell layer of the accessory olfactory bulb (AOB) and by cells in the inner nuclear layer (INL) of the retina. On the other hand, collagen XXV, which is more broadly expressed, is generated by subsets of excitatory neurons in the dorsal thalamus and midbrain and by inhibitory neurons in the retina, ventral thalamus and telencephalon. Not only is col25a1 expression present in retina, it appears specifically enriched in retino-recipient nuclei within the brain (including the suprachiasmatic nucleus (SCN), lateral geniculate complex, olivary pretectal nucleus (OPN) and superior colliculus). Taken together, the distinct region- and cell-specific expression patterns of transmembrane collagens suggest that this family of unconventional collagens may play unique, yet-to-be identified roles in brain

  20. The Collagen Family

    PubMed Central

    Ricard-Blum, Sylvie

    2011-01-01

    Collagens are the most abundant proteins in mammals. The collagen family comprises 28 members that contain at least one triple-helical domain. Collagens are deposited in the extracellular matrix where most of them form supramolecular assemblies. Four collagens are type II membrane proteins that also exist in a soluble form released from the cell surface by shedding. Collagens play structural roles and contribute to mechanical properties, organization, and shape of tissues. They interact with cells via several receptor families and regulate their proliferation, migration, and differentiation. Some collagens have a restricted tissue distribution and hence specific biological functions. PMID:21421911

  1. Localisation of factor XIII in human tissues using an immunoperoxidase technique.

    PubMed Central

    Fear, J D; Jackson, P; Gray, C; Miloszewski, K J; Losowsky, M S

    1984-01-01

    An immunoperoxidase technique has been used to localise clotting factor XIII subunits A and S in human tissues. The presence of factor XIII in placenta and megakaryocytes was confirmed. Factor XIII was also found in fibroblasts, a hitherto unreported finding. Factor XIII subunits were not detected in hepatocytes, although factor XIII was found in fibroblasts in portal tracts. These findings suggest that factor XIII is not synthesised in the liver as previously thought. Images PMID:6373832

  2. The effect of factor XIII on bleeding in coronary surgery.

    PubMed

    Gödje, O; Haushofer, M; Lamm, P; Reichart, B

    1998-10-01

    One cause of diffuse bleeding after cardiac operations may be a low plasma concentration of Factor XIII, which is essential for coagulation, but is not covered by standard coagulation monitoring. In a prospective pilot study, Factor XIII levels before and after extracorporeal circulation were investigated, and drain volumes and blood transfusions of a control group of 11 patients were compared with a group of 11 patients who received 2500 units Factor XIII postoperatively. Factor XIII fell significantly from preoperative values of 96.1% and 88.7% (control) to 55.7% and 51.8% (control) postoperatively. By administration of Factor XIII, plasma level rose significantly from 55.7% to 103.1%; in the control group the value remained low. Drain volumes on the first and second postoperative day were significantly lower in the Factor XIII group. In the control group 1.9 units of red blood cells and 1.6 units fresh frozen plasma were administered, in the Factor XIII group 0.9 and 0.6 units were necessary. Factor XIII influences bleeding after coronary surgery and can reduce the need for blood transfusions. In patients with prolonged diffuse bleeding, we therefore recommend substitution of Factor XIII.

  3. Factor XIII deficiency: a rare cause of repeated abortions.

    PubMed

    Padmanabhan, L D; Mhaskar, R; Mhaskar, A; Ross, C R

    2004-04-01

    Factor XIII deficiency is a rare cause of early abortion. The obstetrical outcome of four pregnancies in two women with factor XIII deficiency is reported. Both women were treated with substitution therapy using locally-prepared cryoprecipitate. The outcome in these two women demonstrated the need for substitution therapy in early pregnancy leading to an increased chance of obstetrical success.

  4. [Coagulation factor XIII – Pathophysiology, clinic and therapy of factor XIII deficiency].

    PubMed

    Weber, Christian Friedrich; Adam, Elisabeth Hannah; Pape, Andreas; Jöst, Marina; Meybohm, Patrick; Schmitz, Katja; Zacharowski, Kai; Hermann, Martin; Fries, Dietmar

    2015-11-01

    The complex activity of the transglutaminase factor XIII (FXIII) comprises central functions in secondary hemostasis. Congenital or acquired FXIII deficiencies may be associated with habitual abortions, impaired wound healing, coagulopathy and fatal hemorrhage. The present review describes physiological functions of FXIII, as well as pathophysiology, diagnostic and therapeutic options of FXIII deficiencies.

  5. [Implant fixation strength and osseointegration following systemic administration of recombinant factor XIII and factor XIII concentrate. Animal experiment with implant fixation strength and osseointegration of porous surface implants].

    PubMed

    Kienapfel, H; Wilke, A; Dörner, P; Jürgensen, R; Prinz, H; Hettel, A; Swain, R; Griss, P

    1995-01-01

    30 cylindrical commercially pure titanium fiber porous coated Ti6A14V implants were inserted press-fit into the proximal humeral portion of 30 sheep humeri to determine the systemic effect of recombinant factor XIII and placenta-derived factor XIII concentrate on bone ingrowth and on strength of fixation. For both the recombinant factor XIII and the factor XIII concentrate group the volume fraction of bone ingrowth and the strength of fixation was higher when compared with the control specimens. However the difference was only significant for the factor XIII concentrate group.

  6. [Molecular biology of haemostasis: fibrinogen, factor XIII].

    PubMed

    Meyer, M

    2004-05-01

    Genetic defects of fibrinogen are caused by a broad spectrum of mutations in one of the three structural genes FGA, FGB and FGG. They result in complete or partial lack of plasma fibrinogen (a- or hypofibrinogenaemia) or in structural abnormalities affecting protein function (dysfibrinogenaemia). In contrast to afibrinogenaemia mainly caused by nonsense, frameshift, and splice site mutations resulting in substantially truncated polypeptide chains (mainly Aalpha), in hypo- and dysfibrinogenaemias missense mutations lead to the exchange of single amino acids as dominating underlying defect. In the cases with quantitative disorders, bleeding with various degrees of severity is generally observed. Dysfibrinogenaemia is associated with both bleeding or thrombosis or even a combination of haemorrhagic and thromboembolic symptoms. About one half of the dysfibrinogenaemic cases is clinically asymptomatic. The plasmatic factor XIII (FXIII) is a heterotetramer composed of two A and two B subunits encoded by two different genes. FXIII deficiency is associated with bleeding, wound dehiscence and recurrent spontaneous abortions. The most frequent form is caused by defects in the A subunit with a broad spectrum of underlying mutations. Defects of the B subunit are very rare and were molecularly elucidated in only a few cases.

  7. Recombinant and nonrecombinant factor XIII and its effect on bone ingrowth and strength of fixation.

    PubMed

    Kienapfel, H; Swain, R; Hettel, A; Wilke, A; Koller, M; Griss, P

    1997-01-01

    Thirty cylindrical, commercially pure, titanium fiber, porous-coated Ti6Al4V implants were inserted press-fit into the proximal humeral portion of 30 sheep humeri to determine the systemic effect of recombinant factor XIII and placenta-derived factor XIII concentrate on bone ingrowth and strength of fixation. For both the recombinant factor XIII and the factor XIII concentrate group, the volume of bone ingrowth and the strength of fixation were higher than for the control specimens. However, the difference was only significant for the factor XIII concentrate group.

  8. Platelets activated by collagen through the immunoreceptor tyrosine-based activation motif in the Fc receptor gamma-chain play a pivotal role in the development of myocardial ischemia-reperfusion injury.

    PubMed

    Takaya, Norihide; Katoh, Youichi; Iwabuchi, Kazuhisa; Hayashi, Ichiro; Konishi, Hakuoh; Itoh, Seigo; Okumura, Ko; Ra, Chisei; Nagaoka, Isao; Daida, Hiroyuki

    2005-12-01

    Platelet activation and the formation of platelet microaggregates in coronary vessels play pivotal roles in myocardial ischemia and reperfusion injury. The Fc receptor gamma-chain (FcR gamma) is coexpressed with glycoprotein (GP) VI, forming a platelet collagen receptor, and the activation of platelets by collagen is closely coupled with tyrosine phosphorylation of the FcRgamma. To examine the functional significance of platelet FcR gamma/GPVI complex in the early phase of myocardial ischemia and reperfusion injury in mice, we performed coronary occlusion and reperfusion experiments using wild type mice and FcRgamma-deficient (FcRgamma(-/-)) mice that lack GPVI. The infarct size was significantly smaller in FcRgamma(-/-) mice subjected to occlusion and reperfusion of the coronary artery than in control FcR gamma(+/+) mice. Twenty-four hours after the reperfusion, electron microscopy of the injured tissue showed substantially more platelet aggregation and occlusive platelet microthrombi in the capillaries of the damaged areas of the wild type mice than in those of the FcR gamma(-/-) mice. Platelet Syk was scarcely activated in the FcR gamma(-/-) mice after myocardial ischemia and reperfusion, but significantly activated in the FcR gamma(+/+) mice. CD11b expression on neutrophils was elevated after myocardial ischemia and reperfusion in both mouse groups, whereas myeloperoxidase activity in the injured areas was significantly lower in the FcRgamma(-/-) mice than in the FcRgamma(+/+) mice. These results suggest that the collagen-induced activation of platelets through the FcR gamma plays a pivotal role in the extension of myocardial ischemia-reperfusion injury. FcRgamma and GPVI may be important therapeutic targets for myocardial ischemia-reperfusion injury.

  9. Bioengineered collagens

    PubMed Central

    Ramshaw, John AM; Werkmeister, Jerome A; Dumsday, Geoff J

    2014-01-01

    Mammalian collagen has been widely used as a biomedical material. Nevertheless, there are still concerns about the variability between preparations, particularly with the possibility that the products may transmit animal-based diseases. Many groups have examined the possible application of bioengineered mammalian collagens. However, translating laboratory studies into large-scale manufacturing has often proved difficult, although certain yeast and plant systems seem effective. Production of full-length mammalian collagens, with the required secondary modification to give proline hydroxylation, has proved difficult in E. coli. However, recently, a new group of collagens, which have the characteristic triple helical structure of collagen, has been identified in bacteria. These proteins are stable without the need for hydroxyproline and are able to be produced and purified from E. coli in high yield. Initial studies indicate that they would be suitable for biomedical applications. PMID:24717980

  10. A microtiter plate assay for factor XIII A-chain-fibrin interactions.

    PubMed

    Achyuthan, K E; Santiago, M A; Greenberg, C S

    1994-05-15

    Factor XIII A-chain-fibrin interactions regulate factor XIIIa formation and fibrin cross-linking. A microtiter plate assay was developed for studying these interactions. Microtiter plate wells were coated with fibrinogen and converted to fibrin by thrombin. After blocking the wells with bovine serum albumin, factor XIII A-chain was added and binding was monitored by incubating first with anti-factor XIII followed by anti-rabbit IgG-alkaline phosphatase. Enzymatic hydrolysis of p-nitrophenyl phosphate was quantitated by the absorbance at 405 nm. BInding was specific, sensitive, rapid, saturable, and reversible, requiring only nanograms of either factor XIII or fibrin. Binding was time- and concentration-dependent and independent of divalent cations. The bound material was identified as factor XIII A-chain by sodium dodecylsulfate-polyacrylamide gel electrophoresis and immunoblotting. Factor XIII binding was inhibited > 75% by 250 mM sodium chloride or 250 nM anti-factor XIII IgG. The method was also suitable for demonstrating binding using 0.8% plasma or with r-factor XIII expressed in Saccharomyces cerevisiae or Escherichia coli. This method is suitable for identifying the binding sites that are important for plasma factor XIII activation and factor XIIIa activity.

  11. Coated platelets function in platelet-dependent fibrin formation via integrin αIIbβ3 and transglutaminase factor XIII

    PubMed Central

    Mattheij, Nadine J.A.; Swieringa, Frauke; Mastenbroek, Tom G.; Berny-Lang, Michelle A.; May, Frauke; Baaten, Constance C.F.M.J.; van der Meijden, Paola E.J.; Henskens, Yvonne M.C.; Beckers, Erik A.M.; Suylen, Dennis P.L.; Nolte, Marc W.; Hackeng, Tilman M.; McCarty, Owen J.T.; Heemskerk, Johan W.M.; Cosemans, Judith M.E.M.

    2016-01-01

    Coated platelets, formed by collagen and thrombin activation, have been characterized in different ways: i) by the formation of a protein coat of α-granular proteins; ii) by exposure of procoagulant phosphatidylserine; or iii) by high fibrinogen binding. Yet, their functional role has remained unclear. Here we used a novel transglutaminase probe, Rhod-A14, to identify a subpopulation of platelets with a cross-linked protein coat, and compared this with other platelet subpopulations using a panel of functional assays. Platelet stimulation with convulxin/thrombin resulted in initial integrin αIIbβ3 activation, the appearance of a platelet population with high fibrinogen binding, (independently of active integrins, but dependent on the presence of thrombin) followed by phosphatidylserine exposure and binding of coagulation factors Va and Xa. A subpopulation of phosphatidylserine-exposing platelets bound Rhod-A14 both in suspension and in thrombi generated on a collagen surface. In suspension, high fibrinogen and Rhod-A14 binding were antagonized by combined inhibition of transglutaminase activity and integrin αIIbβ3. Markedly, in thrombi from mice deficient in transglutaminase factor XIII, platelet-driven fibrin formation and Rhod-A14 binding were abolished by blockage of integrin αIIbβ3. Vice versa, star-like fibrin formation from platelets of a patient with deficiency in αIIbβ3 (Glanzmann thrombasthenia) was abolished upon blockage of transglutaminase activity. We conclude that coated platelets, with initial αIIbβ3 activation and high fibrinogen binding, form a subpopulation of phosphatidylserine-exposing platelets, and function in platelet-dependent star-like fibrin fiber formation via transglutaminase factor XIII and integrin αIIbβ3. PMID:26721892

  12. Speckle Interferometry at the US Naval Observatory. XIII

    DTIC Science & Technology

    2007-10-01

    SPECKLE INTERFEROMETRY AT THE US NAVAL OBSERVATORY. XIII. Brian D. Mason, William I. Hartkopf, Gary L. Wycoff, and Gary Wieder US Naval Observatory...was 185 yr, as HJ 729 was initially resolved by J. Herschel in 1820 ( Herschel 1829). The long delay in confirming these historic pairs was simply due...was first resolved by J. Herschel in 1827 ( Herschel 1870). The mean separation for the measurements presented in Tables 5 and 6 is 16.9700. A high

  13. Second harmonic generation in collagen

    NASA Astrophysics Data System (ADS)

    Reiser, Karen M.; Stoller, Patrick; Celliers, Peter; Rubenchik, Alexander; Bratton, Clay; Yankelevich, Diego

    2003-11-01

    Collagen possesses a strong second order nonlinear susceptibility; when it is irradiated with intense laser light, some of the reflected and transmitted light will have twice the frequency of the incident beam, a phenomenon known as second harmonic generation (SHG). Polarization modulation of an ultra-short pulse laser beam can be used to simultaneously measure collagen fiber orientation, SHG intensity, and a parameter related to the second order non-linear susceptibility. This technique has made it possible to discriminate among patterns of fibrillar orientation in many tissues. In the present study the role that organizational complexity plays in the relationship between nonlinear optical properties and collagen structure is investigated. As a component of tissues and organs, collagen"s structure and function is inextricably intertwined with that of the many other matrix components; to what extent do these noncollagenous components affect its nonlinear properties? To answer this, we investigated SHG in two different collagenous tissues, liver and cartilage; in addition we looked at the effect of progressive pathological changes in these tissues on SHG. At the other end of the spectrum, we studied collagen organized at the minimal level of complexity necessary for SHG detection: fibrils generated from solutions containing only a single type of collagen. Data obtained from these studies suggest that collagen"s strong nonlinear susceptibility, a property no other biologically significant macromolecule shares to the same degree, may serve as more than the basis of a novel imaging device for soft tissue. Collagen"s nonlinear optical properties in conjunction with its vast capacity for self-initiated conformational change--through self-assembly, site recognition, post-translational modification, and the like -make it an attractive candidate molecule for any of several demanding engineering applications, such as nanopatterning.

  14. Factor XIII levels and factor XIII B subunit polymorphisms in patients with venous thromboembolism.

    PubMed

    Mezei, Zoltán A; Katona, Éva; Kállai, Judit; Bereczky, Zsuzsanna; Somodi, Laura; Molnár, Éva; Kovács, Bettina; Miklós, Tünde; Ajzner, Éva; Muszbek, László

    2017-08-26

    The association of plasma factor XIII (FXIII) level with venous thromboembolism (VTE) is still controversial and the effect of sex and FXIII B subunit (FXIII-B) polymorphisms in this respect have not been explored. 1/ To determine FXIII activity and antigen levels in patients with a history of VTE and how they are influenced by sex and FXIII-B polymorphisms. 2/ To explore the association of FXIII levels and FXIII-B polymorphisms with the risk of VTE. 218 VTE patients and equal number of age and sex matched controls were enrolled in the study. FXIII activity was measured by ammonia release assay; FXIII-A2B2 and FXIII-B levels were determined by ELISAs. FXIII-B polymorphisms were identified by RT-PCR using melting point analysis. Adjusted FXIII activity and FXIII-A2B2 antigen levels were significantly higher in females with a history of VTE than in the respective controls. FXIII-B levels were significantly lower in male VTE patients than in controls. FXIII-A2B2 antigen levels in the upper tertile increased the risk of VTE in females (adjusted OR: 2.52; CI: 1.18-5.38). Elevated FXIII-B antigen level had a protective effect only in males (adjusted OR: 0.19; CI: 0.08-0.46). FXIII-B Intron K c.1952+144 C>G polymorphism significantly lowered FXIII activity, FXIII-A2B2 and FXIII-B antigen levels in both groups. FXIII-B polymorphisms did not influence the risk of VTE. In VTE patients the changes of FXIII level and their effect on the risk of VTE show considerable sex-specific differences. Intron K polymorphism results in decreased FXIII levels, but does not influence the risk of VTE. Copyright © 2017. Published by Elsevier Ltd.

  15. Functional factor XIII-A is exposed on the stimulated platelet surface

    PubMed Central

    Mitchell, Joanne L.; Lionikiene, Ausra S.; Fraser, Steven R.; Whyte, Claire S.; Booth, Nuala A.

    2014-01-01

    Factor XIII (FXIII) stabilizes thrombi against fibrinolysis by cross-linking α2-antiplasmin (α2AP) to fibrin. Cellular FXIII (FXIII-A) is abundant in platelets, but the extracellular functions of this pool are unclear because it is not released by classical secretion mechanisms. We examined the function of platelet FXIII-A using Chandler model thrombi formed from FXIII-depleted plasma. Platelets stabilized FXIII-depleted thrombi in a transglutaminase-dependent manner. FXIII-A activity on activated platelets was unstable and was rapidly lost over 1 hour. Inhibiting platelet activation abrogated the ability of platelets to stabilize thrombi. Incorporating a neutralizing antibody to α2AP into FXIII-depleted thrombi revealed that the stabilizing effect of platelet FXIII-A on lysis was α2AP dependent. Platelet FXIII-A activity and antigen were associated with the cytoplasm and membrane fraction of unstimulated platelets, and these fractions were functional in stabilizing FXIII-depleted thrombi against lysis. Fluorescence confocal microscopy and flow cytometry revealed exposure of FXIII-A on activated membranes, with maximal signal detected with thrombin and collagen stimulation. FXIII-A was evident in protruding caps on the surface of phosphatidylserine-positive platelets. Our data show a functional role for platelet FXIII-A through exposure on the activated platelet membrane where it exerts antifibrinolytic function by cross-linking α2AP to fibrin. PMID:25331118

  16. Impaired clot retraction in factor XIII A subunit-deficient mice.

    PubMed

    Kasahara, Kohji; Souri, Masayoshi; Kaneda, Mizuho; Miki, Toshiaki; Yamamoto, Naomasa; Ichinose, Akitada

    2010-02-11

    Factor XIII (FXIII) is a plasma transglutaminase that cross-links fibrin monomers, alpha(2)-plasmin inhibitor, and so forth. Congenital FXIII deficiency causes lifelong bleeding symptoms. To understand the molecular pathology of FXIII deficiency in vivo, its knockout mice have been functionally analyzed. Because prolonged bleeding times, a sign of defective/abnormal primary hemostasis, were commonly observed in 2 separate lines of FXIII A subunit (FXIII-A) knockout mice, a possible role or roles of FXIII in platelet-related function was investigated in the present study. Although platelet aggregation induced by adenosine diphosphate or collagen was normal, clot retraction (CR) was lost in the platelet-rich plasma (PRP) of FXIII-A knockout mice. In contrast, there was no CR impairment in the PRP of tissue transglutaminase-knockout mice compared with that of wild-type mice. Furthermore, a transglutaminase inhibitor, cystamine, halted CR in the PRP of wild-type mice. These results indicate that the enzymatic activity of FXIII is necessary for CR, at least in mice.

  17. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units XIII Appendix XIII to Part 266 Protection of Environment... XIII to Part 266—Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units These...

  18. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units XIII Appendix XIII to Part 266 Protection of Environment... XIII to Part 266—Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units These...

  19. Collagen for bone tissue regeneration.

    PubMed

    Ferreira, Ana Marina; Gentile, Piergiorgio; Chiono, Valeria; Ciardelli, Gianluca

    2012-09-01

    In the last decades, increased knowledge about the organization, structure and properties of collagen (particularly concerning interactions between cells and collagen-based materials) has inspired scientists and engineers to design innovative collagen-based biomaterials and to develop novel tissue-engineering products. The design of resorbable collagen-based medical implants requires understanding the tissue/organ anatomy and biological function as well as the role of collagen's physicochemical properties and structure in tissue/organ regeneration. Bone is a complex tissue that plays a critical role in diverse metabolic processes mediated by calcium delivery as well as in hematopoiesis whilst maintaining skeleton strength. A wide variety of collagen-based scaffolds have been proposed for different tissue engineering applications. These scaffolds are designed to promote a biological response, such as cell interaction, and to work as artificial biomimetic extracellular matrices that guide tissue regeneration. This paper critically reviews the current understanding of the complex hierarchical structure and properties of native collagen molecules, and describes the scientific challenge of manufacturing collagen-based materials with suitable properties and shapes for specific biomedical applications, with special emphasis on bone tissue engineering. The analysis of the state of the art in the field reveals the presence of innovative techniques for scaffold and material manufacturing that are currently opening the way to the preparation of biomimetic substrates that modulate cell interaction for improved substitution, restoration, retention or enhancement of bone tissue function.

  20. Collagenous gastritis.

    PubMed

    Jin, Xiaoyi; Koike, Tomoyuki; Chiba, Takashi; Kondo, Yutaka; Ara, Nobuyuki; Uno, Kaname; Asano, Naoki; Iijima, Katsunori; Imatani, Akira; Watanabe, Mika; Shirane, Akio; Shimosegawa, Tooru

    2013-09-01

    In the present paper, we report a case of rare collagenous gastritis. The patient was a 25-year-old man who had experienced nausea, abdominal distention and epigastralgia since 2005. Esophagogastroduodenoscopy (EGD) carried out at initial examination by the patient's local doctor revealed an extensively discolored depression from the upper gastric body to the lower gastric body, mainly including the greater curvature, accompanied by residual mucosa with multiple islands and nodularity with a cobblestone appearance. Initial biopsies sampled from the nodules and accompanying atrophic mucosa were diagnosed as chronic gastritis. In August, 2011, the patient was referred to Tohoku University Hospital for observation and treatment. EGD at our hospital showed the same findings as those by the patient's local doctor. Pathological findings included a membranous collagen band in the superficial layer area of the gastric mucosa, which led to a diagnosis of collagenous gastritis. Collagenous gastritis is an extremely rare disease, but it is important to recognize its characteristic endoscopic findings to make a diagnosis.

  1. Collagenous colitis.

    PubMed Central

    Kingham, J G; Levison, D A; Morson, B C; Dawson, A M

    1986-01-01

    Clinical and pathological aspects of six patients with collagenous colitis are presented. These patients have been observed for between four and 15 years and the evolution of the condition is documented in three (cases 1, 3 and 5). Management and possible pathogenetic mechanisms of this enigmatic condition are discussed. Images Fig. 1 Fig. 2 PMID:3699567

  2. Medical and Surgical Management of Postpartum Hemorrhage in a Woman with Factor XIII Deficiency

    PubMed Central

    Srey, Krisna; Canales, Alexander; Kiffin, Chauniqua; Ashmawy, Yessin

    2016-01-01

    Factor XIII deficiency is a rare inherited coagulopathy. Factor XIII is the last clotting factor in the coagulation cascade to insure strength and stability to fibrin clots. Without this enzyme, the fibrous clot is unstable and nonresistant to fibrinolysis. Gravid women with this congenital disease are especially at risk for complications including miscarriages and hemorrhage without appropriate interventions. We present a case of a woman in her 20s with Factor XIII deficiency who was treated with cryoprecipitate and had a successful normal spontaneous vaginal delivery; subsequently, patient suffered from postpartum hemorrhage and consumptive coagulopathy due to consumption of Factor XIII, requiring emergency surgical intervention. Intraoperative management was challenged by an ethical dilemma involving the patient's religious beliefs about not receiving blood. This paper will discuss the mechanism of Factor XIII and the medical and surgical management involved with this patient. PMID:27635271

  3. Fibrinogen, red blood cells, and factor XIII in venous thrombosis.

    PubMed

    Walton, B L; Byrnes, J R; Wolberg, A S

    2015-06-01

    Cardiovascular disease is the leading cause of death and disability worldwide. Among cardiovascular causes of death, venous thrombosis (VT) is ranked third most common in the world. Venous thrombi have high red blood cell and fibrin content; however, the pathophysiologic mechanisms that contribute to venous thrombus composition and stability are still poorly understood. This article reviews biological, biochemical, and biophysical contributions of fibrinogen, factor XIII, and red blood cells to VT, and new evidence suggesting interactions between these components mediate venous thrombus composition and size.

  4. Planck 2013 results. XIII. Galactic CO emission

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Dempsey, J. T.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Fukui, Y.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Handa, T.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hily-Blant, P.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Moore, T. J. T.; Morgante, G.; Morino, J.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nakajima, T.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Okuda, T.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Thomas, H. S.; Toffolatti, L.; Tomasi, M.; Torii, K.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yamamoto, H.; Yoda, T.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    Rotational transition lines of CO play a major role in molecular radio astronomy as a mass tracer and in particular in the study of star formation and Galactic structure. Although a wealth of data exists for the Galactic plane and some well-known molecular clouds, there is no available high sensitivity all-sky survey of CO emission to date. Such all-sky surveys can be constructed using the Planck HFI data because the three lowest CO rotational transition lines at 115, 230 and 345 GHz significantly contribute to the signal of the 100, 217 and 353 GHz HFI channels, respectively. Two different component separation methods are used to extract the CO maps from Planck HFI data. The maps obtained are then compared to one another and to existing external CO surveys. From these quality checks the best CO maps, in terms of signal to noise ratio and/or residual contamination by other emission, are selected. Three different sets of velocity-integrated CO emission maps are produced with different trade-offs between signal-to-noise, angular resolution, and reliability. Maps for the CO J = 1 → 0, J = 2 → 1, and J = 3 → 2 rotational transitions are presented and described in detail. They are shown to be fully compatible with previous surveys of parts of the Galactic plane as well as with undersampled surveys of the high latitude sky. The Planck HFI velocity-integrated CO maps for the J = 1 → 0, J = 2 → 1, and J = 3 →2 rotational transitions provide an unprecedented all-sky CO view of the Galaxy. These maps are also of great interest to monitor potential CO contamination of the Planck studies of the cosmological microwave background.

  5. On play and playing.

    PubMed

    Rudan, Dusko

    2013-12-01

    The paper offers a review of the development of the concept of play and playing. The true beginnings of the development of the theories of play are set as late as in the 19th century. It is difficult to define play as such; it may much more easily be defined through its antipode--work. In the beginning, play used to be connected with education; it was not before Freud's theory of psychoanalysis and Piaget's developmental psychology that the importance of play in a child's development began to be explained in more detail. The paper further tackles the role of play in the adult age. Detailed attention is paid to psychodynamic and psychoanalytic authors, in particular D. W. Winnicott and his understanding of playing in the intermediary (transitional) empirical or experiential space. In other words, playing occupies a space and time of its own. The neuroscientific concept of playing is also tackled, in the connection with development as well.

  6. Clinical studies on plasma fibronectin and factor XIII; with special reference to hyperlipoproteinemia.

    PubMed

    Cucuianu, M; Rus, H G; Cristea, A; Niculescu, F; Bedeleanu, D; Poruţiu, D; Roman, S

    1985-04-30

    When compared to age-matched normal weight normolipidemic control subjects, plasma factor XIII, plasma fibronectin and serum cholinesterase levels were found to be markedly decreased in patients with decompensated cirrhosis of the liver, not significantly changed in hyperlipoproteinemia type IIa (heterozygous subjects) and increased in hypertriglyceridemic subjects (type IIb and IV) as well as in hyperlipidemic nephrotic patients. A possible accelerated hepatic synthesis of certain plasma proteins including factor XIII and fibronectin in patients with the nephrotic syndrome as well as in endogenous hypertriglyceridemia is envisaged. It is also considered that mural thrombi, richer in factor XIII and fibronectin, would be more resistant to fibrinolysis and more readily attached to subendothelial structures.

  7. Fibrillar, fibril-associated and basement membrane collagens of the arterial wall: architecture, elasticity and remodeling under stress.

    PubMed

    Osidak, M S; Osidak, E O; Akhmanova, M A; Domogatsky, S P; Domogatskaya, A S

    2015-01-01

    The ability of a human artery to pass through 150 million liters of blood sustaining 2 billion pulsations of blood pressure with minor deterioration depends on unique construction of the arterial wall. Viscoelastic properties of this construction enable to re-seal the occuring damages apparently without direct immediate participance of the constituent cells. Collagen structures are considered to be the elements that determine the mechanoelastic properties of the wall in parallel with elastin responsible for elasticity and resilience. Collagen scaffold architecture is the function-dependent dynamic arrangement of a dozen different collagen types composing three distinct interacting forms inside the extracellular matrix of the wall. Tightly packed molecules of collagen types I, III, V provide high tensile strength along collagen fibrils but toughness of the collagen scaffold as a whole depends on molecular bonds between distinct fibrils. Apart of other macromolecules in the extracellular matrix (ECM), collagen-specific interlinks involve microfilaments of collagen type VI, meshwork-organized collagen type VIII, and FACIT collagen type XIV. Basement membrane collagen types IV, XV, XVIII and cell-associated collagen XIII enable transmission of mechanical signals between cells and whole artery matrix. Collagen scaffold undergoes continuous remodeling by decomposition promoted with MMPs and reconstitution from newly produced collagen molecules. Pulsatile stress-strain load modulates both collagen synthesis and MMP-dependent collagen degradation. In this way the ECM structure becomes adoptive to mechanical challenges. The mechanoelastic properties of the arterial wall are changed in atherosclerosis concomitantly with collagen turnover both type-specific and dependent on the structure. Improving the feedback could be another approach to restore sufficient blood circulation.

  8. ε-(γ-Glutamyl)lysine in Fibrin: Lack of Crosslink Formation in Factor XIII Deficiency

    PubMed Central

    Pisano, J. J.; Finlayson, J. S.; Peyton, Marjorie P.; Nagai, Yumiko

    1971-01-01

    Fibrin clots formed in normal plasma contained about 6 mol of ε-(γ-glutamyl)lysine per mol of fibrin, whereas those formed in plasma from individuals with Factor XIII deficiency contained little or none of this crosslink (0.02-0.64 mol/mol of fibrin). Partial supplementation of the plasma with Factor XIII, at a single concentration tested, commensurately increased the number of crosslinks. PMID:5279517

  9. JZTX-XIII, a Kv channel gating modifier toxin from Chinese tarantula Chilobrachys jingzhao.

    PubMed

    Yuan, Chunhua; Liu, Zhonghua; Hu, Weijun; Gao, Tianming; Liang, Songping

    2012-02-01

    Jingzhaotoxin-XIII (JZTX-XIII), a 35 residue polypeptide, with the ability to inhibit voltage-dependent potassium channels in the shab (Kv2) and shal (Kv4) subfamilies, was purified from the venom of the Chinese tarantula Chilobrachys jingzhao. Electrophysiological recordings carried out in Xenopus laevis oocytes showed that JZTX-XIII acted as gating modifier of voltage-dependent K+ channels which inhibited the Kv2.1 channel and Kv4.1 channel, with the IC50 value of 0.47 μM and 1.17 μM, respectively. JZTX-XIII shares high sequence similarity with gating modifier toxins inhibiting a wide variety of ion channels including Nav1.5 subtype, but it showed no Nav1.5 channel activity. Structure-function analysis indicates that the acidic residues of Glu10 and Glu17 in JZTX-XIII might be responsible for the loss of the Nav1.5 channel inhibitory potency for JZTX-XIII. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. A Novel Functional Role of Collagen Glycosylation

    PubMed Central

    Jürgensen, Henrik J.; Madsen, Daniel H.; Ingvarsen, Signe; Melander, Maria C.; Gårdsvoll, Henrik; Patthy, Laszlo; Engelholm, Lars H.; Behrendt, Niels

    2011-01-01

    Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains, the function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose receptor protein family. These proteins all include a fibronectin type II domain and a series of C-type lectin-like domains, of which only a minor part possess carbohydrate recognition activity. At least two of the family members, uPARAP/Endo180 and the mannose receptor, interact with collagens. The molecular basis for this interaction is known to involve the fibronectin type II domain but nothing is known about the function of the lectin domains in this respect. In this study, we have investigated a possible role of the single active lectin domain of uPARAP/Endo180 in the interaction with collagens. By expressing truncated recombinant uPARAP/Endo180 proteins and analyzing their interaction with collagens with high and low levels of glycosylation we demonstrated that this lectin domain interacts directly with glycosylated collagens. This interaction is functionally important because it was found to modulate the endocytic efficiency of the receptor toward highly glycosylated collagens such as basement membrane collagen IV. Surprisingly, this property was not shared by the mannose receptor, which internalized glycosylated collagens independently of its lectin function. This role of modulating its uptake efficiency by a specific receptor is a previously unrecognized function of collagen glycosylation. PMID:21768090

  11. Airway Factor XIII associates with type-2 inflammation and airway obstruction in asthma

    PubMed Central

    Esnault, Stephane; Kelly, Elizabeth A.; Sorkness, Ronald L.; Evans, Michael D.; Busse, William W.; Jarjour, Nizar N.

    2016-01-01

    Background Coagulation factor XIII (FXIII) plays an important role in wound healing by stabilizing fibrin clots and crosslinking extracellular matrix proteins. FXIII is expressed in cells of the monocyte/macrophage and dendritic cell lineages in response to type-2 cytokines. Objective We sought to determine the association between FXIII and asthma pathobiology. Methods We analyzed the expression of FXIII mRNA and protein level in bronchoalveolar lavages obtained before and after segmental allergen challenge from mild asthma subjects, and in induced sputum samples collected from subjects with mild-moderate and severe asthma. Results FXIII mRNA and protein were highly upregulated in bronchoalveolar cells and fluid after allergen challenge and mRNA level correlated with protein amount. In sputum of asthmatic subjects, FXIII was positively correlated with type-2 immune response and markers of the dendritic cells (CD209 and CD207). FXIII expression was also associated with increased airflow limitation (FEV1/FVC and RV/TLC) and greater reversibility to β-agonist. Conclusions FXIII was upregulated in the airway of asthma subjects after allergen exposure. Its expression in the sputum of asthma patients correlated with the type-2 immune response and airflow limitation. Excessive activity of FXIII could contribute to the pathophysiology of airway obstruction in asthma. PMID:26525229

  12. Nonlinear optical response of the collagen triple helix and second harmonic microscopy of collagen liquid crystals

    NASA Astrophysics Data System (ADS)

    Deniset-Besseau, A.; De Sa Peixoto, P.; Duboisset, J.; Loison, C.; Hache, F.; Benichou, E.; Brevet, P.-F.; Mosser, G.; Schanne-Klein, M.-C.

    2010-02-01

    Collagen is characterized by triple helical domains and plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) and SHG microscopy proved to be a sensitive tool to score fibrotic pathologies. However, the nonlinear optical response of fibrillar collagen is not fully characterized yet and quantitative data are required to further process SHG images. We therefore performed Hyper-Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its amino-acid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro-Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagen liquid solutions by achieving liquid crystalline ordering of the collagen triple helices.

  13. Probing multiscale mechanics of collagen with optical tweezers

    NASA Astrophysics Data System (ADS)

    Shayegan, Marjan; Rezaei, Naghmeh; Lam, Norman H.; Altindal, Tuba; Wieczorek, Andrew; Forde, Nancy R.

    2013-09-01

    How the molecular structure of the structural, extracellular matrix protein collagen correlates with its mechanical properties at different hierarchical structural levels is not known. We demonstrate the utility of optical tweezers to probe collagen's mechanical response throughout its assembly hierarchy, from single molecule force-extension measurements through microrheology measurements on solutions of collagen molecules, collagen fibrillar gels and gelatin. These experiments enable the determination of collagen's flexibility, mechanics, and timescales and strengths of interaction at different levels of hierarchy, information critical to developing models of how collagen's physiological function and stability are influenced by its chemical composition. By investigating how the viscoelastic properties of collagen are affected by the presence of telopeptides, protein domains that strongly influence fibril formation, we demonstrate that these play a role in conferring transient elasticity to collagen solutions.

  14. Structural insight for chain selection and stagger control in collagen

    PubMed Central

    Boudko, Sergei P.; Bächinger, Hans Peter

    2016-01-01

    Collagen plays a fundamental role in all known metazoans. In collagens three polypeptides form a unique triple-helical structure with a one-residue stagger to fit every third glycine residue in the inner core without disturbing the poly-proline type II helical conformation of each chain. There are homo- and hetero-trimeric types of collagen consisting of one, two or three distinct chains. Thus there must be mechanisms that control composition and stagger during collagen folding. Here, we uncover the structural basis for both chain selection and stagger formation of a collagen molecule. Three distinct chains (α1, α2 and α3) of the non-collagenous domain 2 (NC2) of type IX collagen are assembled to guide triple-helical sequences in the leading, middle and trailing positions. This unique domain opens the door for generating any fragment of collagen in its native composition and stagger. PMID:27897211

  15. Adherence of Actinobacillus pleuropneumoniae to swine-lung collagen.

    PubMed

    Enríquez-Verdugo, Idalia; Guerrero, Alma L; Serrano, J Jesús; Godínez, Delfino; Rosales, J Luis; Tenorio, Víctor; de la Garza, Mireya

    2004-07-01

    Actinobacillus pleuropneumoniae serotype 1 adhered to immobilized swine-lung collagen. Bacteria bound to collagen type I, III, IV and V. At 5 min incubation, 30 % of bacteria adhered to collagen, reaching saturation in around 90 min. Treatment of bacteria with divalent-metal chelators diminished their attachment to collagen, and Ca(2+) but not Mg(2+) increased it, suggesting Ca(2+) dependence for adherence. Proteolytic enzymes drastically reduced bacterial adherence to collagen, showing that binding involved bacterial surface proteins. Porcine fibrinogen, haemoglobin and gelatin partially reduced collagen adhesion. A 60 kDa outer-membrane protein of A. pleuropneumoniae recognized the swine collagens by overlay. This membrane protein was apparently involved in adhesion to collagen and fibrinogen, but not to fibronectin and laminin. Antibodies against the 60 kDa protein inhibited the adhesion to collagen by 70 %, whereas pig convalescent-phase antibodies inhibited it by only 40 %. Serotypes 1 and 7 were the most adherent to pig collagen (taken as 100 %); serotypes 6 and 11 were the lowest (approximately 50 %), and neither showed the 60 kDa adhesin to biotinylated collagens. By negative staining, cells were observed initially to associate with collagen fibres in a polar manner, and the adhesin was detected on the bacterial surface. The results suggest that swine-lung collagen is an important target for A. pleuropneumoniae colonization and spreading, and that the attachment to this protein could play a relevant role in pathogenesis.

  16. Collagen-mediated hemostasis.

    PubMed

    Manon-Jensen, T; Kjeld, N G; Karsdal, M A

    2016-03-01

    Collagens mediate essential hemostasis by maintaining the integrity and stability of the vascular wall. Imbalanced turnover of collagens by uncontrolled formation and/or degradation may result in pathologic conditions such as fibrosis. Thickening of the vessel wall because of accumulation of collagens may lead to arterial occlusion or thrombosis. Thinning of the wall because of collagen degradation or deficiency may lead to rupture of the vessel wall or aneurysm. Preventing excessive hemorrhage or thrombosis relies on collagen-mediated actions. Von Willebrand factor, integrins and glycoprotein VI, as well as clotting factors, can bind collagen to restore normal hemostasis after trauma. This review outlines the essential roles of collagens in mediating hemostasis, with a focus on collagens types I, III, IV, VI, XV, and XVIII.

  17. Biomedical applications of collagens.

    PubMed

    Ramshaw, John A M

    2016-05-01

    Collagen-based biomedical materials have developed into important, clinically effective materials used in a range of devices that have gained wide acceptance. These devices come with collagen in various formats, including those based on stabilized natural tissues, those that are based on extracted and purified collagens, and designed composite, biosynthetic materials. Further knowledge on the structure and function of collagens has led to on-going developments and improvements. Among these developments has been the production of recombinant collagen materials that are well defined and are disease free. Most recently, a group of bacterial, non-animal collagens has emerged that may provide an excellent, novel source of collagen for use in biomaterials and other applications. These newer collagens are discussed in detail. They can be modified to direct their function, and they can be fabricated into various formats, including films and sponges, while solutions can also be adapted for use in surface coating technologies.

  18. Immunohistochemical localization of collagen VI in arthrofibrosis.

    PubMed

    Zeichen, J; van Griensven, M; Albers, I; Lobenhoffer, P; Bosch, U

    1999-01-01

    Arthrofibrosis is a disabling complication after knee trauma and surgery. Clinically, it is characterized by pain and joint stiffness due to massive connective tissue proliferation. In similar pathological conditions with fibrotic transformation such as lung fibrosis or superficial fibromatoses, an increased expression of collagen type VI has been reported. Collagen VI, which forms a filamentous network, is thought to serve as an anchoring element between collagen I/III fibrils and basement membranes and as a cell binding structure. Collagen VI may also play a contributing role in the pathogenesis of arthrofibrosis. The aim of the present study was therefore to demonstrate the localization and distribution of type VI collagen in arthrofibrotic tissue. Tissue samples from the infrapatellar fat pad and intercondylar synovia of 13 patients suffering from arthrofibrosis were taken at surgery. The expression of type VI collagen was studied immunohistochemically using an immunoperoxidase method for light microscopic visualization. Histologic analysis showed a synovial hyperplasia with inflammatory cell infiltration and vascular proliferation. Compared with normal synovial tissue, type VI collagen was widely distributed as a network subsynovially and around the capillary walls. The results of the present study suggest that dysregulation of collagen VI synthesis could be an important contributing factor in the complex mechanisms of disordered matrix protein deposition leading to arthrofibrosis.

  19. Extreme Ultraviolet Emission Lines of Iron Fe XI-XIII

    NASA Astrophysics Data System (ADS)

    Lepson, Jaan; Beiersdorfer, P.; Brown, G. V.; Liedahl, D. A.; Brickhouse, N. S.; Dupree, A. K.

    2013-04-01

    The extreme ultraviolet (EUV) spectral region (ca. 20--300 Å) is rich in emission lines from low- to mid-Z ions, particularly from the middle charge states of iron. Many of these emission lines are important diagnostics for astrophysical plasmas, providing information on properties such as elemental abundance, temperature, density, and even magnetic field strength. In recent years, strides have been made to understand the complexity of the atomic levels of the ions that emit the lines that contribute to the richness of the EUV region. Laboratory measurements have been made to verify and benchmark the lines. Here, we present laboratory measurements of Fe XI, Fe XII, and Fe XIII between 40-140 Å. The measurements were made at the Lawrence Livermore electron beam ion trap (EBIT) facility, which has been optimized for laboratory astrophysics, and which allows us to select specific charge states of iron to help line identification. We also present new calculations by the Hebrew University - Lawrence Livermore Atomic Code (HULLAC), which we also utilized for line identification. We found that HULLAC does a creditable job of reproducing the forest of lines we observed in the EBIT spectra, although line positions are in need of adjustment, and line intensities often differed from those observed. We identify or confirm a number of new lines for these charge states. This work was supported by the NASA Solar and Heliospheric Program under Contract NNH10AN31I and the DOE General Plasma Science program. Work was performed in part under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344.

  20. Expression of Functional Human Coagulation Factor XIII A-domain in Plant Cell Suspensions and Whole Plants

    SciTech Connect

    Gao, Johnway; Hooker, Brian S.; Anderson, Daniel B.

    2004-09-01

    Coagulation factor XIII, a zymogen present in blood as a tetramer (A2B2) of A- and B-domains, is one of the components of many ''wound sealants'' which are proposed for use or currently in use as effective hemostatic agents, sealants and tissue adhesives in surgery. After activation by ?-thrombin cleavage, coagulation factor XIII A-domain, a transglutaminase, is formed and catalyzes the covalent crosslinking of the ?- and ?-chains of linear fibrin to form homopolymers, which can quickly stop bleeding. We have successfully expressed the A-domain of factor XIII in both plant cell cultures and whole plants. Transgenic plant cell culture allows a rapid method for testing production feasibility while expression in whole plants demonstrates an economic production system for recombinant human plasma-based proteins. The expressed factor XIII A-domain had a similar size as that of human plasma-derived factor XIII. Crude plant extract containing recombinant factor XIII A-domain showed transglutaminase activity with monodansylcadaverine and casein as substrates and crosslinking activity in the presence of linear fibrin. The expression of factor XIII A-domain was not affected by plant leaf position.

  1. Outdoor Play and Play Equipment.

    ERIC Educational Resources Information Center

    Naylor, Heather

    1985-01-01

    Discusses aspects of the play environment and its effect on children's play behavior. Indoor and outdoor play spaces are considered along with factors affecting the use of outdoor environments for play. Children's preferences for different outdoor play environments and for various play structures are explored. Guides for choosing play equipment…

  2. Outdoor Play and Play Equipment.

    ERIC Educational Resources Information Center

    Naylor, Heather

    1985-01-01

    Discusses aspects of the play environment and its effect on children's play behavior. Indoor and outdoor play spaces are considered along with factors affecting the use of outdoor environments for play. Children's preferences for different outdoor play environments and for various play structures are explored. Guides for choosing play equipment…

  3. EDITORIAL: XIII Mexican Workshop on Particles and Fields

    NASA Astrophysics Data System (ADS)

    Barranco, Juan; Contreras, Guillermo; Delepine, David; Napsuciale, Mauro

    2012-08-01

    Juan Barranco Physics Department, Guanajuato University, Loma del Bosque 103, col. Loma del Campestre, 37150, Leon (Mexico) jbarranc@fisica.ugto.mx Guillermo Contreras Departamento de Fisica Aplicada Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Merida (Mexico) jgcn@mda.cinvestav.mx David Delepine Physics Department, Guanajuato University, Loma del Bosque 103, col. Loma del Campestre, 37150, Leon (Mexico) delepine@fisica.ugto.mx Mauro Napsuciale Physics Department, Guanajuato University, Loma del Bosque 103, col. Loma del Campestre, 37150, Leon (Mexico) mauro@fisica.ugto.mx The XIII Mexican Workshop on Particles and Fields (MWPF) took place from 20-26 October 2011, in the city of León, Guanajuato, México. This is a biennial meeting organized by the Division of Particles and Fields of the Mexican Physical Society designed to gather specialists in different areas of high energy physics to discuss the latest developments in the field. The thirteenth edition of this meeting was hosted by the Department of Cultural Studies of Guanajuato University in a nice environment dedicated to the Arts and Culture. The XIII MWPF was organized by three working groups who organized the corresponding sessions around three topics. The first one was Strings, Cosmology, Astroparticles and Physics Beyond the Standard Model. In this category we included: Cosmic Rays, Gamma Ray Bursts, Physics Beyond the Standard Model (theory and experimental searches), Strings and Cosmology. The working group for this topic was formed by Arnulfo Zepeda, Oscar Loaiza, Axel de la Macorra and Myriam Mondragón. The second topic was Hadronic Matter which included Perturbative QCD, Jets and Diffractive Physics, Hadronic Structure, Soft QCD, Hadron Spectroscopy, Heavy Ion Collisions and Soft Physics at Hadron Colliders, Lattice Results and Instrumentation. The working group for this topic was integrated by Wolfgang Bietenholz and Mariana Kirchbach. The third topic was

  4. OATYC Journal, Vol. XIII, Nos. 1-2, Fall 1987-Spring 1988.

    ERIC Educational Resources Information Center

    Fullen, James, Ed.

    1988-01-01

    "OATYC Journal," which is published by the Ohio Association of Two-Year Colleges, is designed as a forum for the exchange of concepts, methods, and findings relevant to the two-year college classroom. Along with commentaries and letters of reaction from the readership, the two issues of volume XIII contain: (1) "Focus: The…

  5. 25 CFR 36.40 - Standard XIII-Library/media program.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Standard XIII-Library/media program. 36.40 Section 36.40... § 36.40 Standard XIII—Library/media program. (a) Each school shall provide a library/media program... philosophy. The librarian or educational media specialist, with students and staff, shall set objectives...

  6. Promotion of thrombin-catalyzed activation of factor XIII by fibrinogen.

    PubMed

    Janus, T J; Lewis, S D; Lorand, L; Shafer, J A

    1983-12-20

    High-performance liquid chromatography was used to analyze the kinetics of the thrombin-catalyzed release of the activation peptide from the factor XIII zymogen (fibrin-stabilizing factor). The specificity constant (kcat/Km) for this reaction, measured at factor XIII concentrations much below Km, was (0.13-0.16) X 10(6) M-1 s-1 at pH 7.4, mu = 0.15, and 37 degrees C. Separate estimates, obtained from the dependence of the initial rates of release of the activation peptide on the concentration of factor XIII, gave values of 10 (+/- 3) s-1 for kcat and 84 (+/- 30) microM for Km, in terms of ab protomers of the zymogen. The thrombin-mediated release of the activation peptide was dramatically enhanced in the presence of fibrinogen. Furthermore, the time course of release, in relation to that of fibrinopeptide A, suggested that some des-A-fibrinogen species (e.g., alpha 2B beta 2 gamma 2) may be the true activator for promoting the cleavage of the Arg-36 peptide bonds in the a subunits of factor XIII. This observation suggests that generation of factor XIIIa and its substrate (fibrin) is coordinated so that thrombin-mediated zymogen activation proceeds efficiently only after the process of clotting has been initiated by the removal of fibrinopeptide A from fibrinogen.

  7. 25 CFR 36.40 - Standard XIII-Library/media program.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Standard XIII-Library/media program. 36.40 Section 36.40... § 36.40 Standard XIII—Library/media program. (a) Each school shall provide a library/media program... developed by a library committee in collaboration with the librarian and be approved by the school...

  8. 25 CFR 36.40 - Standard XIII-Library/media program.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Standard XIII-Library/media program. 36.40 Section 36.40... § 36.40 Standard XIII—Library/media program. (a) Each school shall provide a library/media program... developed by a library committee in collaboration with the librarian and be approved by the school...

  9. 25 CFR 36.40 - Standard XIII-Library/media program.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Standard XIII-Library/media program. 36.40 Section 36.40... § 36.40 Standard XIII—Library/media program. (a) Each school shall provide a library/media program... developed by a library committee in collaboration with the librarian and be approved by the school...

  10. Quantity change in collagen following 830-nm diode laser welding

    NASA Astrophysics Data System (ADS)

    Tang, Jing; O'Callaghan, David; Rouy, Simone; Godlewski, Guilhem; Prudhomme, Michel

    1996-12-01

    The actual mechanism for production of laser welding of tissue is presently unknown, but collagen plays an important role is tissue welded after laser irradiance. The quantity change in collagen extracted from the abdominal aorta of Wistar rats after tissue welding using an 830 nm diode laser was investigated. The collagen contents following repeated pepsin digestion after acetic acid extraction were determined with Sircol collagen assay. Compared with untreated aorta, the collagen content of the treated vessel was obvious decreased immediately after laser irradiation and following an initial increase on day 3, there was a peak at day 10. The results suggest that a part of collagen molecules is denatured by the heat of laser. There is an effect of stimulating collagen synthesis after laser welding with parameters used in this study.

  11. Evidence for a Structural Requirement for the Aggregation of Platelets by Collagen

    PubMed Central

    Jaffe, Russell; Deykin, Daniel

    1974-01-01

    the minimal structural unit; and that cross-linkages within collagen do not play a critical role in platelet aggregation. Images PMID:4855862

  12. Characterization of carbonic anhydrase XIII in the erythrocytes of the Burmese python, Python molurus bivittatus.

    PubMed

    Esbaugh, A J; Secor, S M; Grosell, M

    2015-09-01

    Carbonic anhydrase (CA) is one of the most abundant proteins found in vertebrate erythrocytes with the majority of species expressing a low activity CA I and high activity CA II. However, several phylogenetic gaps remain in our understanding of the expansion of cytoplasmic CA in vertebrate erythrocytes. In particular, very little is known about isoforms from reptiles. The current study sought to characterize the erythrocyte isoforms from two squamate species, Python molurus and Nerodia rhombifer, which was combined with information from recent genome projects to address this important phylogenetic gap. Obtained sequences grouped closely with CA XIII in phylogenetic analyses. CA II mRNA transcripts were also found in erythrocytes, but found at less than half the levels of CA XIII. Structural analysis suggested similar biochemical activity as the respective mammalian isoforms, with CA XIII being a low activity isoform. Biochemical characterization verified that the majority of CA activity in the erythrocytes was due to a high activity CA II-like isoform; however, titration with copper supported the presence of two CA pools. The CA II-like pool accounted for 90 % of the total activity. To assess potential disparate roles of these isoforms a feeding stress was used to up-regulate CO2 excretion pathways. Significant up-regulation of CA II and the anion exchanger was observed; CA XIII was strongly down-regulated. While these results do not provide insight into the role of CA XIII in the erythrocytes, they do suggest that the presence of two isoforms is not simply a case of physiological redundancy.

  13. Playful Gaming.

    ERIC Educational Resources Information Center

    Makedon, Alexander

    A philosophical analysis of play and games is undertaken in this paper. Playful gaming, which is shown to be a synthesis of play and games, is utilized as a category for undertaking the examination of play and games. The significance of playful gaming to education is demonstrated through analyses of Plato's, Dewey's, Sartre's, and Marcuse's…

  14. Enigmatic insight into collagen

    PubMed Central

    Deshmukh, Shrutal Narendra; Dive, Alka M; Moharil, Rohit; Munde, Prashant

    2016-01-01

    Collagen is a unique, triple helical molecule which forms the major part of extracellular matrix. It is the most abundant protein in the human body, representing 30% of its dry weight. It is the fibrous structural protein that makes up the white fibers (collagen fibers) of skin, tendons, bones, cartilage and all other connective tissues. Collagens are not only essential for the mechanical resistance and resilience of multicellular organisms, but are also signaling molecules defining cellular shape and behavior. The human body has at least 16 types of collagen, but the most prominent types are I, II and III. Collagens are produced by several cell types and are distinguishable by their molecular compositions, morphologic characteristics, distribution, functions and pathogenesis. This is the major fibrous glycoprotein present in the extracellular matrix and in connective tissue and helps in maintaining the structural integrity of these tissues. It has a triple helical structure. Various studies have proved that mutations that modify folding of the triple helix result in identifiable genetic disorders. Collagen diseases share certain similarities with autoimmune diseases, because autoantibodies specific to each collagen disease are produced. Therefore, this review highlights the role of collagen in normal health and also the disorders associated with structural and functional defects in collagen. PMID:27601823

  15. Collagen and gelatin.

    PubMed

    Liu, Dasong; Nikoo, Mehdi; Boran, Gökhan; Zhou, Peng; Regenstein, Joe M

    2015-01-01

    Collagen and gelatin have been widely used in the food, pharmaceutical, and cosmetic industries due to their excellent biocompatibility, easy biodegradability, and weak antigenicity. Fish collagen and gelatin are of renewed interest, owing to the safety and religious concerns of their mammalian counterparts. The structure of collagen has been studied using various modern technologies, and interpretation of the raw data should be done with caution. The structure of collagen may vary with sources and seasons, which may affect its applications and optimal extraction conditions. Numerous studies have investigated the bioactivities and biological effects of collagen, gelatin, and their hydrolysis peptides, using both in vitro and in vivo assay models. In addition to their established nutritional value as a protein source, collagen and collagen-derived products may exert various potential biological activities on cells in the extracellular matrix through the corresponding food-derived peptides after ingestion, and this might justify their applications in dietary supplements and pharmaceutical preparations. Moreover, an increasing number of novel applications have been found for collagen and gelatin. Therefore, this review covers the current understanding of the structure, bioactivities, and biological effects of collagen, gelatin, and gelatin hydrolysates as well as their most recent applications.

  16. Haemorrhoids - a collagen disease?

    PubMed

    Willis, S; Junge, K; Ebrahimi, R; Prescher, A; Schumpelick, V

    2010-12-01

    The cause of haemorrhoidal disease is unknown, epidemiological data and histopathological findings support the hypothesis that reduced connective tissue stability is associated with the incidence of haemorrhoids. Therefore the aim of this study was to analyse the quantity and quality of collagen formation in the corpus cavernosum recti in patients with III°/IV° haemorrhoids in comparison with persons without haemorrhoids. Haemorrhoidectomy specimens of 31 patients with III°/IV° haemorrhoids were examined. The specimens of 20 persons who died a natural death and who had no haemorrhoidal disease served as the controls. The amount of collagen was estimated photometrically by calculating the collagen/protein ratio. The collagen I/III ratio served as parameter for the quality of collagen formation and was calculated using cross polarization spectroscopy. Patients with haemorrhoids had a significantly reduced collagen/protein ratio (42.2 ± 16.2μg/mg vs 72.5±31.0μg/mg; P= 0.02) and a significantly reduced collagen I/III ratio (2.0±0.1 vs 4.6±0.3; P<0.001) compared with persons without haemorrhoidal disease. There was no correlation with patients' age or gender.  There is a fundamental disorder of collagen metabolism in patients with haemorrhoidal disease. It remains unclear whether this is due to exogenous or endogenous influences. © 2010 The Authors. Colorectal Disease © 2010 The Association of Coloproctology of Great Britain and Ireland.

  17. Dirac R-matrix calculations of photoionization cross-sections of Ni XIII

    NASA Astrophysics Data System (ADS)

    Sardar, S.; Bilal, M.; Bari, M. A.; Nazir, R. T.; Hannan, A.; Salahuddin, M.; Nasim, M. H.

    2016-05-01

    In this paper, we report total photoionization cross-sections of Ni XIII in the ground state (3P2) and four excited states (3P1,0, 1D2, 1S0) for the first time over the photon energy range 380-480 eV. The target wavefunctions are constructed with fully relativistic atomic structure GRASP code. Our calculated energy levels and oscillator strengths of core ion Ni XIV agree well with available experimental and theoretical results. The ionization threshold value of ground state of Ni XIII is found to be more closer to the experimental ionization energy and improved over the previous calculations. The photoionization cross-sections are calculated using the fully relativistic DARC code with an appropriate energy step of 0.01 eV to delineate the resonance structures. The calculated ionization cross-sections are important for the modelling of features of photoionized plasmas and for stellar opacities.

  18. Play Therapy

    PubMed Central

    Kool, Ritesh

    2010-01-01

    Play therapy represents a unique form of treatment that is not only geared toward young children, but is translated into a language children can comprehend and utilize—the language of play. For the referring provider or practitioner, questions may remain regarding the nature, course, and efficacy of play therapy. This article reviews the theoretical underpinnings of play therapy, some practical considerations, and finally a summary of the current state of research in regard to play therapy. The authors present the practicing psychiatrist with a road map for referring a patient to play therapy or initiating it in appropriate cases. PMID:21103141

  19. Pathogenetic difference between collagen arthritis and adjuvant arthritis

    PubMed Central

    1984-01-01

    Daily treatment with cyclosporin at a dose of 25 mg/kg for 14 d gave complete suppression of the development of collagen arthritis and adjuvant arthritis in Sprague-Dawley rats during an observation period of 45 d. To study whether the immunologic unresponsiveness produced by cyclosporin is antigen specific, we rechallenged the cyclosporin- protected rats with either type II collagen or complete Freund's adjuvant (CFA) after discontinuation of cyclosporin treatment. Type II collagen-immunized, cyclosporin-protected rats did not develop arthritis in response to reimmunization with type II collagen, but, they did develop arthritis in response to a subsequent injection of CFA. Similarly, CFA-injected, cyclosporin-protected rats showed a suppressed arthritogenic reaction in response to reinjection of CFA, whereas their response to a subsequent immunization with type II collagen was unaffected. On the other hand, the rats that were treated with cyclosporin without any prior antigenic challenge could develop arthritis in response to a subsequent injection of CFA or type II collagen after cessation of cyclosporin treatment. These results indicate that specific immunologic unresponsiveness can be induced by cyclosporin in the two experimental models of polyarthritis, collagen arthritis and adjuvant arthritis, and that there is no cross-reactivity between type II collagen and the mycobacterial cell wall components. The results further indicate that immunity to type II collagen plays a critical role in the pathogenesis of collagen arthritis but that its pathogenetic role in adjuvant arthritis is insignificant. PMID:6201583

  20. [Condition setting for the measurement of blood coagulation factor XIII activity using a fully automated blood coagulation analyzer, COAGTRON-350].

    PubMed

    Kanno, Nobuko; Kaneko, Makoto; Tanabe, Kumiko; Jyona, Masahiro; Yokota, Hiromitsu; Yatomi, Yutaka

    2012-12-01

    The automated laboratory analyzer COAGTRON-350 (Trinity Biotech) is used for routine and specific coagulation testing for the detection of fibrin formation utilizing either mechanical principles (ball method) or photo-optical principles, chromogenic kinetic enzyme analysis, and immune-turbidimetric detection systems in one benchtop unit. In this study, we demonstrated and established a parameter for the measurement of factor XIII (FXIII) activity using Berichrom FXIII reagent and the COAGTRON-350 analyzer. The usual protocol used for this reagent, based on the handling method, was slightly modified for this device. The analysis showed that fundamental study for the measurement of FXIII activity under our condition setting was favorable in terms of reproducibility, linearity, and correlation with another assays. Since FXIII is the key enzyme that plays important roles in hemostasis by stabilizing fibrin formation, the measurement of FXIII is essential for the diagnosis of bleeding disorders. Therefore, FXIII activity assessment as well as a routine coagulation testing can be conducted simultaneously with one instrument, which is useful in coagulopathy assessment.

  1. Free oscillation rheometry monitoring of haemodilution and hypothermia and correction with fibrinogen and factor XIII concentrates

    PubMed Central

    2013-01-01

    Background Haemodilution and hypothermia induce coagulopathy separately, but their combined effect on coagulation has not been widely studied. Fibrinogen concentrate can correct dilutional coagulopathy and has an additional effect when combined with factor XIII concentrate. However, their effect on dilutional coagulopathy concomitant with hypothermia has not been studied previously. Free oscillation rheometry – FOR (Reorox®) – is a novel viscoelastic haemostatic assay that has not been studied in this context before. Methods Blood from 10 healthy volunteers was diluted by 33% with hydroxyethyl starch or Ringer’s acetate solutions. Effects of fibrinogen added in vitro with and without factor XIII were studied at 33°C and 37°C. Coagulation velocity (coagulation time) and clot strength (elasticity) were assessed with FOR. Coagulation was initiated in vitro with thromboplastin alone, or thromboplastin plus a platelet inhibitor. Results Hydroxyethyl starch increased the coagulation time and decreased clot strength significantly more than Ringer’s acetate solution, both in the presence and absence of a platelet inhibitor. There was a significant interaction between haemodilution with hydroxyethyl starch and hypothermia, resulting in increased coagulation time. After addition of fibrinogen, coagulation time shortened and elasticity increased, with the exception of fibrinogen-dependent clot strength (i.e., elasticity in the presence of a platelet inhibitor) after hydroxyethyl starch haemodilution. Factor XIII had an additional effect with fibrinogen on fibrinogen-dependent clot strength in blood diluted with Ringer’s acetate solution. Hypothermia did not influence any of the coagulation factor effects. Conclusions Both haemodilution and mild hypothermia impaired coagulation. Coagulopathy was more pronounced after haemodilution with hydroxyethyl starch than with Ringer’s acetate. Addition of fibrinogen with factor XIII was unable to reverse hydroxyethyl

  2. Evidence of independent evolution of genotype XIII Newcastle disease viruses in India.

    PubMed

    Das, Moushumee; Kumar, Sachin

    2017-04-01

    Despite the prevalence of Newcastle disease virus (NDV) outbreaks in India through the decades, there has been little genetic characterisation of the virulent strains circulating in Northeast India. In 2014, a poultry farm in the Kamrup district of Assam reported an ND outbreak. In this study, genetic analysis and clinicopathological tests showed the virulent nature of the isolate Kamrup. Based on prudent classification criteria, the virulent strain Kamrup was found to be most closely related to members of genotype XIII of class II NDV. A phylogenetic analysis of NDV strains suggested three sub-genotypes: XIIIa, XIIIb and XIIIc. NDV strain Kamrup belonged to sub-genotype XIIIc. Sub-genotype XIIIc isolates were similar to the 1982 isolate from cockatoo and appeared to have evolved parallel to the preceding genotype XIII viruses circulating in India. The high genetic diversity and frequency of mutations observed in the envelope glycoproteins of strain Kamrup demonstrate the evolution of the pandemic genotype XIII NDV in India, which further undermines and complicates of NDV management in India.

  3. The Role of Collagen Organization on the Properties of Bone.

    PubMed

    Garnero, Patrick

    2015-09-01

    Bone is a complex tissue constituted by a collagen matrix filled in with crystal of hydroxyapatite (HAP). Bone mechanical properties are influenced by the collagen matrix which is organized into hierarchical structures from the individual type I collagen heterotrimer flanked by linear telopeptides at each end to the collagen fibrils that are interconnected by enzymatic and non-enzymatic cross-links. Although most studies focused on the role of collagen cross-links in bone strength, other organizational features may also play a role. At the molecular level it has been shown that homotrimer of type I collagen found in bone tissue of some patients with osteogenesis imperfecta (OI) is characterized by decreased mechanical competence compared to the regular heterotrimer. The state of C-telopeptide isomerization-which can be estimated by the measurement in body fluids of the native and isomerized isoforms-has also been shown to be associated with bone strength, particularly the post-yield properties independent of bone size and bone mineral density. Other higher hierarchical features of collagen organization have shown to be associated with changes in bone mechanical behavior in ex vivo models and may also be relevant to explain bone fragility in diseases characterized by collagen abnormalities e.g., OI and Paget's disease. These include the orientation of collagen fibrils in a regular longitudinal direction, the D-spacing period between collagen fibrils and the collagen-HAP interfacial bonding. Preliminary data indicate that some of these organizational features can change during treatment with bisphosphonate, raloxifene, and PTH suggesting that they may contribute to their anti-fracture efficacy. It remains however to be determined which of these parameters play a specific and independent role in bone matrix properties, what is the magnitude of mechanical strength explained by collagen organization, whether they are relevant to explain osteoporosis-induced bone

  4. City Play.

    ERIC Educational Resources Information Center

    Dargan, Amanda; Zeitlin, Steve

    2000-01-01

    Today, fewer city blocks preserve the confidence of lifestyle and urban geography that sustain traditional games and outdoor play. Large groups of children choosing sides and organizing Red Rover games are no longer commonplace. Teachers must encourage free play; urban planners must build cities that are safe play havens. (MLH)

  5. Wanna Play?

    ERIC Educational Resources Information Center

    Chenfeld, Mimi Brodsky

    2006-01-01

    In this article, the author talks about the importance of play in the lives of children and describes how games and imaginative play contribute to the development of children. From her decades-old collection of countless incidents demonstrating children's love for self-directed, informal, imaginative play, the author shares three incidents that…

  6. City Play.

    ERIC Educational Resources Information Center

    Dargan, Amanda; Zeitlin, Steve

    2000-01-01

    Today, fewer city blocks preserve the confidence of lifestyle and urban geography that sustain traditional games and outdoor play. Large groups of children choosing sides and organizing Red Rover games are no longer commonplace. Teachers must encourage free play; urban planners must build cities that are safe play havens. (MLH)

  7. Control of Collagen Triple Helix Stability by Phosphorylation.

    PubMed

    Acevedo-Jake, Amanda M; Ngo, Daniel H; Hartgerink, Jeffrey D

    2017-03-10

    The phosphorylation of the collagen triple helix plays an important role in collagen synthesis, assembly, signaling, and immune response, although no reports detailing the effect this modification has on the structure and stability of the triple helix exist. Here we investigate the changes in stability and structure resulting from the phosphorylation of collagen. Additionally, the formation of pairwise interactions between phosphorylated residues and lysine is examined. In all tested cases, phosphorylation increases helix stability. When charged-pair interactions are possible, stabilization via phosphorylation can play a very large role, resulting inasmuch as a 13.0 °C increase in triple helix stability. Two-dimensional NMR and molecular modeling are used to study the local structure of the triple helix. Our results suggest a mechanism of action for phosphorylation in the regulation of collagen and also expand upon our understanding of pairwise amino acid stabilization of the collagen triple helix.

  8. Play Therapy

    PubMed Central

    Lawver, Timothy; Blankenship, Kelly

    2008-01-01

    Play therapy is a treatment modality in which the therapist engages in play with the child. Its use has been documented in a variety of settings and with a variety of diagnoses. Treating within the context of play brings the therapist and the therapy to the level of the child. By way of an introduction to this approach, a case is presented of a six-year-old boy with oppositional defiant disorder. The presentation focuses on the events and interactions of a typical session with an established patient. The primary issues of the session are aggression, self worth, and self efficacy. These themes manifest themselves through the content of the child’s play and narration of his actions. The therapist then reflects these back to the child while gently encouraging the child toward more positive play. Though the example is one of nondirective play therapy, a wide range of variation exists under the heading of play therapy. PMID:19724720

  9. A novel functional role of collagen glycosylation: interaction with the endocytic collagen receptor uparap/ENDO180.

    PubMed

    Jürgensen, Henrik J; Madsen, Daniel H; Ingvarsen, Signe; Melander, Maria C; Gårdsvoll, Henrik; Patthy, Laszlo; Engelholm, Lars H; Behrendt, Niels

    2011-09-16

    Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains, the function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose receptor protein family. These proteins all include a fibronectin type II domain and a series of C-type lectin-like domains, of which only a minor part possess carbohydrate recognition activity. At least two of the family members, uPARAP/Endo180 and the mannose receptor, interact with collagens. The molecular basis for this interaction is known to involve the fibronectin type II domain but nothing is known about the function of the lectin domains in this respect. In this study, we have investigated a possible role of the single active lectin domain of uPARAP/Endo180 in the interaction with collagens. By expressing truncated recombinant uPARAP/Endo180 proteins and analyzing their interaction with collagens with high and low levels of glycosylation we demonstrated that this lectin domain interacts directly with glycosylated collagens. This interaction is functionally important because it was found to modulate the endocytic efficiency of the receptor toward highly glycosylated collagens such as basement membrane collagen IV. Surprisingly, this property was not shared by the mannose receptor, which internalized glycosylated collagens independently of its lectin function. This role of modulating its uptake efficiency by a specific receptor is a previously unrecognized function of collagen glycosylation.

  10. Play Sheets. Let's Play! Project.

    ERIC Educational Resources Information Center

    State Univ. of New York, Buffalo. Center for Assistive Technology.

    This collection of play sheets for parents and early intervention personnel was developed by the "Let's Play! Project," a 3-year federally supported project that worked to promote play in infants and toddlers with disabilities through the use of "low-tech" assistive technology. Each single page guide provides guidance to…

  11. Nanomechanics of collagen microfibrils

    PubMed Central

    Vesentini, Simone; Redaelli, Alberto; Gautieri, Alfonso

    2013-01-01

    Summary Collagen constitutes one third of the human proteome, providing mechanical stability, elasticity and strength to organisms and is thus the prime construction material in biology. Collagen is also the dominating material in the extracellular matrix where its stiffness controls cell differentiation, growth and pathology. We use atomistic-based hierarchical multiscale modeling to describe this complex biological material from the bottom up. This includes the use and development of large-scale computational modeling tools to investigate several aspects related to collagen-based tissues, including source of visco-elasticity and deformation mechanisms at the nanoscale level. The key innovation of this research is that until now, collagen materials have primarily been described at macroscopic scales, without explicitly understanding the mechanical contributions at the molecular and fibrillar levels. The major impact of this research will be the development of fundamental models of collagenous tissues, important to the design of new scaffolding biomaterials for regenerative medicine as well as for the understanding of collagen-related diseases. PMID:23885342

  12. Pretend play.

    PubMed

    Weisberg, Deena Skolnick

    2015-01-01

    Pretend play is a form of playful behavior that involves nonliteral action. Although on the surface this activity appears to be merely for fun, recent research has discovered that children's pretend play has connections to important cognitive and social skills, such as symbolic thinking, theory of mind, and counterfactual reasoning. The current article first defines pretend play and then reviews the arguments and evidence for these three connections. Pretend play has a nonliteral correspondence to reality, hence pretending may provide children with practice with navigating symbolic relationships, which may strengthen their language skills. Pretend play and theory of mind reasoning share a focus on others' mental states in order to correctly interpret their behavior, hence pretending and theory of mind may be mutually supportive in development. Pretend play and counterfactual reasoning both involve representing nonreal states of affairs, hence pretending may facilitate children's counterfactual abilities. These connections make pretend play an important phenomenon in cognitive science: Studying children's pretend play can provide insight into these other abilities and their developmental trajectories, and thereby into human cognitive architecture and its development. © 2015 John Wiley & Sons, Ltd.

  13. Photo-active collagen systems with controlled triple helix architecture.

    PubMed

    Tronci, Giuseppe; Russell, Stephen J; Wood, David J

    2013-08-14

    The design of photo-active collagen systems is presented as a basis for establishing biomimetic materials with varied network architecture and programmable macroscopic properties. Following in-house isolation of type I collagen, reaction with vinyl-bearing compounds of varied backbone rigidity, i.e. 4-vinylbenzyl chloride (4VBC) and glycidyl methacrylate (GMA), was carried out. TNBS colorimetric assay, (1)H-NMR and ATR-FTIR confirmed covalent and tunable functionalization of collagen lysines. Depending on the type and extent of functionalization, controlled stability and thermal denaturation of triple helices were observed via circular dichroism (CD), whereby the hydrogen-bonding capability of introduced moieties was shown to play a major role. Full gel formation was observed following photo-activation of functionalized collagen solutions. The presence of a covalent network only slightly affected collagen triple helix conformation (as observed by WAXS and ATR-FTIR), confirming the structural organization of functionalized collagen precursors. Photo-activated hydrogels demonstrated an increased denaturation temperature (DSC) with respect to native collagen, suggesting that the formation of the covalent network successfully stabilized collagen triple helices. Moreover, biocompatibility and mechanical competence of obtained hydrogels were successfully demonstrated under physiologically-relevant conditions. These results demonstrate that this novel synthetic approach enabled the formation of biocompatible collagen systems with defined network architecture and programmable macroscopic properties, which can only partially be obtained with current synthetic methods.

  14. Shadow Play

    ERIC Educational Resources Information Center

    Trundle, Kathy Cabe; Hilson, Margilee P.

    2012-01-01

    A bunny rabbit playfully hops across the wall. Then hands realign and fingers shift to make a hawk soar toward the ceiling. Most children have enjoyed the delightful experience of playing with shadow puppets. The authors build on this natural curiosity to help students link shadows to complex astronomical concepts such as seasons. The…

  15. Playful Gaming.

    ERIC Educational Resources Information Center

    Makedon, Alex

    1984-01-01

    Discusses the concept of playful gaming (an idea not expressed fully by either term alone) and uses it as an analytical tool to study the playfulness of games in the context of several social phenomena; i.e., social change, socialization, utopian systems, and educational gaming. An extensive reference list is provided. (MBR)

  16. Why Play?

    ERIC Educational Resources Information Center

    Weininger, O.

    This paper draws together briefly theories and knowledge from research in morphology and cognitive psychology, as well as some hypothetical information from traditional psychiatry, to show the ramifications of play in children's development. Play is defined as any of a wide variety of behaviors through which an individual attempts to discover what…

  17. Shadow Play

    ERIC Educational Resources Information Center

    Trundle, Kathy Cabe; Hilson, Margilee P.

    2012-01-01

    A bunny rabbit playfully hops across the wall. Then hands realign and fingers shift to make a hawk soar toward the ceiling. Most children have enjoyed the delightful experience of playing with shadow puppets. The authors build on this natural curiosity to help students link shadows to complex astronomical concepts such as seasons. The…

  18. Playing Shakespeare.

    ERIC Educational Resources Information Center

    Bashian, Kathleen Ryniker

    1993-01-01

    Describes a yearlong project at 12 Catholic middle schools in the Diocese of Arlington, Virginia, to incorporate the plays of William Shakespeare into the curriculum. Teachers attended university lectures and directed students in performances of the plays. Concludes that Shakespeare can be understood and enjoyed by middle school students. (BCY)

  19. Glomerular Collagen V Codeposition and Hepatic Perisinusoidal Collagen III Accumulation in Canine Collagen Type III Glomerulopathy.

    PubMed

    Rørtveit, R; Reiten, M R; Lingaas, F; Sveri, S B; Brech, A; Espenes, A; Jansen, J H

    2015-11-01

    Collagen type III glomerulopathy, also known as collagenofibrotic glomerulopathy, is a rare renal disease of unknown pathogenesis. The disease occurs in humans and animals and is characterized by massive glomerular accumulations of collagen type III. In the present study, we describe a Drever dog litter affected by an early onset variant of this glomerular disease, where 4 of 9 puppies developed renal failure within 50 days of age. Necropsy specimens of kidney from the 4 affected cases were studied by light microscopy, electron microscopy, and immunohistochemistry, and characteristic lesions compatible with a diagnosis of collagen type III glomerulopathy were found. In addition, 2 cases showed atypical epithelium in the collecting ducts of the medulla, so-called adenomatoid change. Immunohistochemistry of renal specimens from collagen type III glomerulopathy-affected dogs (n = 10) originating from two different dog strains, the Drever dogs and a mixed-breed strain, demonstrated that the deposited glomerular collagen is composed of a mixture of collagen III and collagen V. The distribution of the collagen V corresponded to the localization of collagen III; however, differences in staining intensity showed that collagen type III is the dominating component. Immunohistochemistry for collagen III (n = 9) and a transmission electron microscopic study (n = 1) showed hepatic perisinusoidal collagen type III deposition in affected cases from both dog strains. This is the first report documenting glomerular accumulations of collagen type V and perisinusoidal liver collagen III deposition in canine collagen type III glomerulopathy. © The Author(s) 2014.

  20. Oleanane-type triterpene saponins with collagen synthesis-promoting activity from the flowers of Bellis perennis.

    PubMed

    Morikawa, Toshio; Ninomiya, Kiyofumi; Takamori, Yasunobu; Nishida, Eriko; Yasue, Misato; Hayakawa, Takao; Muraoka, Osamu; Li, Xuezheng; Nakamura, Seikou; Yoshikawa, Masayuki; Matsuda, Hisashi

    2015-08-01

    The methanol extract from Bellis perennis (Asteraceae) flowers was found to promote collagen synthesis in normal human dermal fibroblasts (NHDFs). Seven oleanane-type triterpene saponins, perennisosides XIII-XIX, and two known saponins, bellissaponins BS5 and BS9, were isolated from the methanol extract. The structures were determined based on chemical and physicochemical data, and confirmed using previously isolated related compounds as references. Among the isolates, including 19 previously reported saponins, perennisosides XVIII, I, II, VII, IX, and XI, asterbatanoside D, bernardioside B2, and bellissaponins BS5 and BS9 significantly promoted collagen synthesis at 3-30μM without cytotoxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Development of multifunctional collagen scaffolds directed by collagen mimetic peptides

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Lan (Allen)

    Collagen is widely used for soft tissue replacement and tissue engineering scaffold. Functionalized collagen may offer new and improved applications for collagen-based biomaterials. But passively adsorbed molecules readily diffuse out from collagen matrix, and conventional chemical reactions on collagen are difficult to control and may compromise the biochemical feature of natural collagen. Hence, the aim of this dissertation is to develop a new physical collagen modification method through the non-covalent immobilization of collagen mimetic peptides (CMPs) and CMP derivatives on collagen scaffolds, thereby evading the drawbacks of passive and chemical modifications. Most of the research on CMPs over the past three decades has focused on synthesizing CMPs and understanding the effects of amino acid sequence on the peptide structural stability. Although few attempts have been made to develop biomaterials based on pure CMP, CMP has never used in complex with natural collagen. We demonstrate that CMPs with varying chain lengths have strong propensity to associate with natural 2-D and 3-D collagen substrates. We also show that CMPs can recognize and bind to reconstituted type I collagen fibers as well as collagens of ex vivo human liver tissue. The practical use of CMPs conjugated with linear and multi-arm poly(ethylene glycol)s allows to control cell organization in 2-D collagen substrates. Our cell adhesion studies suggest that under certain conditions (e.g. high incubation temperature, small CMP size), the bound CMP derivatives can be released from the collagen matrix, which may provide new opportunities for manipulating cell behavior especially by dynamically controlling the amount of signaling molecules in the collagen matrix. Polyanionic charged CMP was synthesized to modulate tubulogenesis of endothelial cells by attracting VEGF with 3-D collagen gel and a new PEG hydrogel using bifunctional CMP conjugates was synthesized as physico-chemical crosslinkers for

  2. Collagen fibrils: nanoscale ropes.

    PubMed

    Bozec, Laurent; van der Heijden, Gert; Horton, Michael

    2007-01-01

    The formation of collagen fibrils from staggered repeats of individual molecules has become "accepted" wisdom. However, for over thirty years now, such a model has failed to resolve several structural and functional questions. In a novel approach, it was found, using atomic force microscopy, that tendon collagen fibrils are composed of subcomponents in a spiral disposition-that is, their structure is similar to that of macroscale ropes. Consequently, this arrangement was modeled and confirmed using elastic rod theory. This work provides new insight into collagen fibril structure and will have wide application-from the design of scaffolds for tissue engineering and a better understanding of pathogenesis of diseases of bone and tendon, to the conservation of irreplaceable parchment-based museum exhibits.

  3. Saccharin sulfonamides as inhibitors of carbonic anhydrases I, II, VII, XII, and XIII.

    PubMed

    Morkūnaitė, Vaida; Baranauskienė, Lina; Zubrienė, Asta; Kairys, Visvaldas; Ivanova, Jekaterina; Trapencieris, Pēteris; Matulis, Daumantas

    2014-01-01

    A series of modified saccharin sulfonamides have been designed as carbonic anhydrase (CA) inhibitors and synthesized. Their binding to CA isoforms I, II, VII, XII, and XIII was measured by the fluorescent thermal shift assay (FTSA) and isothermal titration calorimetry (ITC). Saccharin bound the CAs weakly, exhibiting the affinities of 1-10 mM for four CAs except CA I where binding could not be detected. Several sulfonamide-bearing saccharines exhibited strong affinities of 1-10 nM towards particular CA isoforms. The functional group binding Gibbs free energy additivity maps are presented which may provide insights into the design of compounds with increased affinity towards selected CAs.

  4. Collagen in organ development

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Spooner, B. S.

    1992-01-01

    It is important to know whether microgravity will adversely affect developmental processes. Collagens are macromolecular structural components of the extracellular matrix (ECM) which may be altered by perturbations in gravity. Interstitial collagens have been shown to be necessary for normal growth and morphogenesis in some embryonic organs, and in the mouse salivary gland, the biosynthetic pattern of these molecules changes during development. Determination of the effects of microgravity on epithelial organ development must be preceded by crucial ground-based studies. These will define control of normal synthesis, secretion, and deposition of ECM macromolecules and the relationship of these processes to morphogenesis.

  5. Collagen in organ development

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Spooner, B. S.

    1992-01-01

    It is important to know whether microgravity will adversely affect developmental processes. Collagens are macromolecular structural components of the extracellular matrix (ECM) which may be altered by perturbations in gravity. Interstitial collagens have been shown to be necessary for normal growth and morphogenesis in some embryonic organs, and in the mouse salivary gland, the biosynthetic pattern of these molecules changes during development. Determination of the effects of microgravity on epithelial organ development must be preceded by crucial ground-based studies. These will define control of normal synthesis, secretion, and deposition of ECM macromolecules and the relationship of these processes to morphogenesis.

  6. [The genetics of collagen diseases].

    PubMed

    Kaplan, J; Maroteaux, P; Frezal, J

    1986-01-01

    Heritable disorders of collagen include Ehler-Danlos syndromes (11 types are actually known), Larsen syndrome and osteogenesis imperfecta. Their clinical, genetic and biochemical features are reviewed. Marfan syndrome is closely related to heritable disorders of collagen.

  7. Serotonin (5-HT) inhibits Factor XIII-A-mediated plasma fibronectin matrix assembly and crosslinking in osteoblast cultures via direct competition with transamidation.

    PubMed

    Cui, Cui; Kaartinen, Mari T

    2015-03-01

    Serotonin (5-HT)--a monoamine with a variety of physiological functions--has recently emerged as a major regulator of bone mass. 5-HT is synthesized in the brain and the gut, and gut-derived 5-HT contributes to circulating 5-HT levels and is a negative modulator of bone mass and quality. 5-HT's negative effects on the skeleton are considered to be mediated via its receptors and transporter in osteoblasts and osteoclasts; however, 5-HT can also incorporate covalently into proteins via a transglutaminase-mediated serotonylation reaction, which in turn can alter protein function. Plasma fibronectin (pFN)--a major component of the bone extracellular matrix that regulates bone matrix quality in vivo--is a major transglutaminase substrate in bone and in osteoblast cultures. We have recently demonstrated that pFN assembly into osteoblast culture matrix requires a Factor XIII-A (FXIII-A) transglutaminase-mediated crosslinking step that regulates both quantity and quality of type I collagen matrix in vitro. In this study, we show that 5-HT interferes with pFN assembly into the extracellular matrix in osteoblast cultures, which in turn has major consequences on matrix assembly and mineralization. 5-HT treatment of MC3T3-E1 osteoblast cultures dramatically decreased both pFN fibrillogenesis as analyzed by immunofluorescence microscopy and pFN levels in DOC-soluble and DOC-insoluble matrix fractions. This was accompanied by an increase in pFN levels in the culture media. Analysis of the media showed covalent incorporation of 5-HT into pFN. Minor co-localization of pFN with 5-HT was also seen in extracellular fibrils. 5-HT also showed co-localization with FXIII-A on the cell surface and inhibited its transamidation activity directly. 5-HT treatment of osteoblast cultures resulted in a discontinuous pFN matrix and impaired type I collagen deposition, decreased alkaline phosphatase and lysyl oxidase activity, and delayed mineralization of the cultures. Addition of excess

  8. Factor XIII A-Subunit V34L Variant Affects Thrombus Cross-Linking in a Murine Model of Thrombosis.

    PubMed

    Duval, Cédric; Ali, Majid; Chaudhry, Waleed W; Ridger, Victoria C; Ariëns, Robert A S; Philippou, Helen

    2016-02-01

    Factor XIII (FXIII) cross-links fibrin upon activation by thrombin. Activation involves cleavage at residue 37 by thrombin, releasing an activation peptide. A common polymorphism (valine to leucine variant at residue 34, V34L), located in the activation peptide, has been associated with increased activation rates and paradoxically a protective effect in cardiovascular disease. There is, currently, no data available on the effects of V34L from in vivo models of thrombosis. We examined the effect of FXIII V34L on clot formation and cross-linking in vivo. We generated a panel of full-length recombinant human FXIII-A2 variants with amino acid substitutions in the activation peptide to investigate the effect of these variants on activation rate, and we used wild-type, V34L, and alanine to glycine variant at residue 33 variants to study the effects of varying FXIII activation rate on thrombus formation in a murine model of FeCl3 injury. FXIII activation assay showed that residues 29, 30, 33, and 34 play a critical role in thrombin interaction. Full-length recombinant human FXIII-A2 V34L has significant effects on clot formation, structure, and lysis in vitro, using turbidity assay. This variant influenced fibrin cross-linking but not size of the thrombus in vivo. Mutations in the activation peptide of full-length recombinant FXIII regulate activation rates by thrombin, and V34L influences in vivo thrombus formation by increased cross-linking of the clot. © 2016 American Heart Association, Inc.

  9. Sweet Play

    ERIC Educational Resources Information Center

    Leung, Shuk-kwan S.; Lo, Jane-Jane

    2010-01-01

    This article features Sweet play math, a "math by the month" activity that involves decorating and making sugar cubes. Teachers may want to substitute straws, paper squares, alphabet blocks, or such commercially made manipulatives as Unifix[R] cubes for the real sweets. Given no allergy concerns, teachers and students alike would enjoy some sweet…

  10. Game playing.

    PubMed

    Rosin, Christopher D

    2014-03-01

    Game playing has been a core domain of artificial intelligence research since the beginnings of the field. Game playing provides clearly defined arenas within which computational approaches can be readily compared to human expertise through head-to-head competition and other benchmarks. Game playing research has identified several simple core algorithms that provide successful foundations, with development focused on the challenges of defeating human experts in specific games. Key developments include minimax search in chess, machine learning from self-play in backgammon, and Monte Carlo tree search in Go. These approaches have generalized successfully to additional games. While computers have surpassed human expertise in a wide variety of games, open challenges remain and research focuses on identifying and developing new successful algorithmic foundations. WIREs Cogn Sci 2014, 5:193-205. doi: 10.1002/wcs.1278 CONFLICT OF INTEREST: The author has declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. © 2014 John Wiley & Sons, Ltd.

  11. Water Play

    ERIC Educational Resources Information Center

    Cline, Jane E.; Smith, Brandy A.

    The inclusion of activities to develop sensory awareness, spatial thinking, and physical dexterity, operationalized through hands-on science lessons such as water play, have long been part of early childhood education. This practical article addresses Next Generation Science Standards K-2 ETS1-3 and K-2 ETS1-2 by having four-year-old…

  12. Clay Play

    ERIC Educational Resources Information Center

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  13. Play School

    ERIC Educational Resources Information Center

    Rich, Jennifer L.

    2004-01-01

    This article describes Fifth Dimension, an after-school program which mixes play and computer games to improve the education and social skills of mostly poor, disadvantaged kids. Although Fifth Dimension seems tailor-made for a poor, rural community, its roots are urban. The after-school program was founded by a group of researchers in San Diego…

  14. Playing Teacher.

    ERIC Educational Resources Information Center

    Gilbert, Juan E.

    The acceptance of animation technologies is increasing. Video games, such as Sony PlayStation (SONY, 2002), have become part of the culture for young people from kindergarten through undergraduate school. Animation technologies have been implemented into educational systems in the form of animated pedagogical agents (Johnson, 2000). The research…

  15. Clay Play

    ERIC Educational Resources Information Center

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  16. Sweet Play

    ERIC Educational Resources Information Center

    Leung, Shuk-kwan S.; Lo, Jane-Jane

    2010-01-01

    This article features Sweet play math, a "math by the month" activity that involves decorating and making sugar cubes. Teachers may want to substitute straws, paper squares, alphabet blocks, or such commercially made manipulatives as Unifix[R] cubes for the real sweets. Given no allergy concerns, teachers and students alike would enjoy some sweet…

  17. Role of protein kinase C signaling in collagen degradation by rabbit corneal fibroblasts cultured in three-dimensional collagen gels.

    PubMed

    Nagano, Takashi; Hao, Ji-Long; Nakamura, Masatsugu; Nishida, Teruo

    2002-08-01

    To understand the mechanism of corneal ulceration by characterizing the intracellular signaling pathways that regulate collagen degradation by corneal fibroblasts cultured in three-dimensional type I collagen gels. Specifically, the potential roles of protein kinase C (PKC) and protein kinase A (PKA) in collagen degradation were investigated. Rabbit corneal fibroblasts were cultured in three-dimensional type I collagen gels for 24 hours in the presence of plasminogen and in the absence or presence of activators or inhibitors of PKC or PKA. Degradation of collagen fibrils was then evaluated by measurement of released hydroxyproline, and the production of matrix metalloproteinases (MMPs) was assessed by gelatin zymography and immunoblot analysis. The PKC activator phorbol 12-myristate 13-acetate (PMA) increased the extent of collagen degradation by corneal fibroblasts in a dose-dependent manner, with the maximal effect apparent at a concentration of 0.1 microM. The inactive analog 4alpha-PMA had no effect on collagen degradation. The PKC inhibitor H-7 reduced the extent of collagen degradation by corneal fibroblasts in the absence or presence of PMA. Phorbol 12-myristate 13-acetate also increased the production of proMMP-1, -3, and -9 by corneal fibroblasts, whereas H-7 inhibited this effect. Neither the PKA activators 8-bromo-cAMP, isobutylmethylxanthine, and forskolin nor the PKA inhibitor HA1004 affected collagen degradation by corneal fibroblasts. These results demonstrate that PKC plays an important role in collagen degradation by corneal fibroblasts in three-dimensional type I collagen gels, whereas PKA does not appear to participate in this process.

  18. Collagen hydrolysate based collagen/hydroxyapatite composite materials

    NASA Astrophysics Data System (ADS)

    Ficai, Anton; Albu, Madalina Georgiana; Birsan, Mihaela; Sonmez, Maria; Ficai, Denisa; Trandafir, Viorica; Andronescu, Ecaterina

    2013-04-01

    The aim of this study was to study the influence of collagen hydrolysate (HAS) on the formation of ternary collagen-hydrolysate/hydroxyapatite composite materials (COLL-HAS/HA). During the precipitation process of HA, a large amount of brushite is resulted at pH = 7 but, practically pure HA is obtained at pH ⩾ 8. The FTIR data reveal the duplication of the most important collagen absorption bands due to the presence of the collagen hydrolysate. The presence of collagen hydrolysate is beneficial for the management of bone and joint disorders such as osteoarthritis and osteoporosis.

  19. Role of nitric oxide synthase in collagen-platelet interaction: involvement of platelet nonintegrin collagen receptor nitrotyrosylation.

    PubMed

    Chiang, T M; Cole, F; Woo-Rasberry, V; Kang, E S

    2001-05-15

    Platelets possess the endothelial isoform of nitric oxide synthase (eNOS), which plays an important role in platelet function. Other laboratories, including ours, have reported that nitric oxide (NO) is released upon exposure of platelets to collagen, but the mechanism of the interaction is not yet established. The objective of this study is to examine the possible role of nonintegrin receptor nitrotyrosylation on collagen-induced platelet aggregation. Results of the study show that two platelet proteins with M(r) of 65- and 23-kDa proteins are nitrotyrosylated in a time-dependent manner after the addition of type I collagen. The M(r) 65-kDa protein is identified as the platelet receptor for type I collagen. The recombinant protein of the platelet receptor for type I collagen can also be nitrotyrosylated. The nitrotyrosylated recombinant protein loses its ability to inhibit type I collagen-induced platelet aggregation. In addition, the polyclonal anti-65 kDa immunoprecipitates eNOS suggesting that the platelet nonintegrin receptor for type I collagen is closely linked to the eNOS. These results demonstrate that the inhibitory effect of NO on collagen-induced platelet aggregation may be mediated by the nitrotyrosylation of the 65-kDa receptor.

  20. Dirac R-matrix calculation for electron-impact excitation of S xiii

    NASA Astrophysics Data System (ADS)

    Li, F.; Liang, G. Y.; Bari, M. A.; Zhao, G.

    2013-08-01

    Context. Sulfur emission lines in the soft X-ray and extreme-ultraviolet regions are observed in a variety of laboratory and astrophysical spectra. But accurate electron impact excitation data for S xiii for state-of-the-art NLTE spectral models are scarce. Aims: We calculated electron-impact excitation collision strengths and effective collision strengths of S xiii for transitions among the lowest-lying 98 fine-structure states 1s22lnl' corresponding to principal quantum numbers n = 2,3,4. The effective collision strengths for these transitions were computed over a wide temperature range (log 10Te (K) = 4.53-7.53) for various astrophysical plasma conditions. Methods: We used the fully-relativistic parallel Dirac R-matrix code to calculate collision strengths. To generate target wavefunctions and energy levels for scattering calculations, we employed the GRASP0 multi-configuration Dirac-Fock code for states up to n = 5. Results: The wavefunctions are generated from 27 configurations - 1s22lnl'(n = 2,3,4,5) - giving rise to 166 jj energy levels. The collision and effective collision strengths among the lowest 98 fine-structure levels are compared with the previous theoretical calculations. The collision strengths for most transitions agree well at higher incident electron energies. Conclusions: The resonant contributions to effective collision strengths are most dominant at lower temperatures.

  1. FE-XIII Infrared / FE-XIV Green Line Ratio Diagnostics (P55)

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; et al.

    2006-11-01

    aks.astro.itbhu@gmail.com We consider the first 27-level atomic model of Fe XIII (5.9 < log Te < 6.4 K) to estimate its ground level populations, taking account of electron as well as proton collisional excitations and de-excitations, radiative cascades, radiative excitations and de-excitations. Radiative cascade is important but the effect of dilution factor is negligible at higher electron densities. The 3 P1-3P0 and 3P2-3P1 transitions in the ground configuration 3s2 3p2 of Fe XIII result in two forbidden coronal emission lines in the infrared region, namely 10747 Å and 10798 Å., while the 5303 Å green line is formed in the 3s2 3p 2 2 ground configuration of Fe XIV as a result of P3 / 2 - P1 / 2 magnetic dipole transition. The line-widths of appropriate pair of forbidden coronal emission lines observed simultaneously can be useful diagnostic tool to deduce temperature and non-thermal velocity in the large scale coronal structures using intensity ratios of the lines as the temperature signature, instead of assuming ion temperature to be equal to the electron temperature. Since the line intensity ratios IG5303/IIR10747 and IG5303/IIR10798 have very week density dependence, they are ideal monitors of temperature mapping in the solar corona.

  2. Spatial play.

    PubMed

    Forrest, D V

    1978-02-01

    More than sharpening our tools or making them sterile, our task in psychotherapy and analysis is to enliven them, find in them the organic, the animate, and the fecund. For our tools are formed of language, more like living nets than like knives, dies, taps, or templates, and our familiary with them might as well be a marriage of love as one of convenience. One's own onymy (Forrest, 1973) of words and phrases that seem to be one's property and private treasury will include, in the case of a doctor who uses words, several such verbal tools that have acquired greater frequency of use and richer and deeper meanings with experience. For me the word play in its affinity for very spatial senses has grown increasingly helpful in meeting both the practical demands of therapeutic communication and the personal need to maintain theoretical structures to support therapeutic work. I wish here to explore the concept of play--contributions to its definition, its developmental stages, applications of play, and its extended properties.

  3. Label-free visualization of collagen in submucosa as a potential diagnostic marker for early detection of colorectal cancer

    NASA Astrophysics Data System (ADS)

    Qiu, Jingting; Yang, Yinghong; Jiang, Weizhong; Feng, Changyin; Chen, Zhifen; Guan, Guoxian; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Jianxin

    2014-09-01

    The collagen signature in colorectal submucosa is changed due to remodeling of the extracellular matrix during the malignant process and plays an important role in noninvasive early detection of human colorectal cancer. In this work, multiphoton microscopy (MPM) was used to monitor the changes of collagen in normal colorectal submucosa (NCS) and cancerous colorectal submucosa (CCS). What's more, the collagen content was quantitatively measured. It was found that in CCS the morphology of collagen becomes much looser and the collagen content is significantly reduced compared to NCS. These results suggest that MPM has the ability to provide collagen signature as a potential diagnostic marker for early detection of colorectal cancer.

  4. LARP6 Meets Collagen mRNA: Specific Regulation of Type I Collagen Expression

    PubMed Central

    Zhang, Yujie; Stefanovic, Branko

    2016-01-01

    Type I collagen is the most abundant structural protein in all vertebrates, but its constitutive rate of synthesis is low due to long half-life of the protein (60–70 days). However, several hundred fold increased production of type I collagen is often seen in reparative or reactive fibrosis. The mechanism which is responsible for this dramatic upregulation is complex, including multiple levels of regulation. However, posttranscriptional regulation evidently plays a predominant role. Posttranscriptional regulation comprises processing, transport, stabilization and translation of mRNAs and is executed by RNA binding proteins. There are about 800 RNA binding proteins, but only one, La ribonucleoprotein domain family member 6 (LARP6), is specifically involved in type I collagen regulation. In the 5′untranslated region (5’UTR) of mRNAs encoding for type I and type III collagens there is an evolutionally conserved stem-loop (SL) structure; this structure is not found in any other mRNA, including any other collagen mRNA. LARP6 binds to the 5′SL in sequence specific manner to regulate stability of collagen mRNAs and their translatability. Here, we will review current understanding of how is LARP6 involved in posttranscriptional regulation of collagen mRNAs. We will also discuss how other proteins recruited by LARP6, including nonmuscle myosin, vimentin, serine threonine kinase receptor associated protein (STRAP), 25 kD FK506 binding protein (FKBP25) and RNA helicase A (RHA), contribute to this process. PMID:27011170

  5. Dirac R-matrix calculations of photoionization cross sections of Ni XII and atomic structure data of Ni XIII

    NASA Astrophysics Data System (ADS)

    Nazir, R. T.; Bari, M. A.; Bilal, M.; Sardar, S.; Nasim, M. H.; Salahuddin, M.

    2017-02-01

    We performed R-matrix calculations for photoionization cross sections of the two ground state configuration 3s23p5 (^2P^o3/2,1/2) levels and 12 excited states of Ni XII using relativistic Dirac Atomic R-matrix Codes (DARC) across the photon energy range between the ionizations thresholds of the corresponding states and well above the thresholds of the last level of the Ni XIII target ion. Generally, a good agreement is obtained between our results and the earlier theoretical photoionization cross sections. Moreover, we have used two independent fully relativistic GRASP and FAC codes to calculate fine-structure energy levels, wavelengths, oscillator strengths, transitions rates among the lowest 48 levels belonging to the configuration (3s23p4, 3s3p5, 3p6, 3s23p33d) in Ni XIII. Additionally, radiative lifetimes of all the excited states of Ni XIII are presented. Our results of the atomic structure of Ni XIII show good agreement with other theoretical and experimental results available in the literature. A good agreement is found between our calculated lifetimes and the experimental ones. Our present results are useful for plasma diagnostic of fusion and astrophysical plasmas.

  6. Proceedings of the XIII International Symposium on Biological Control of Weeds; September 11-16, 2011; Waikoloa, Hawaii, USA

    Treesearch

    Yun Wu; Tracy Johnson; Sharlene Sing; S. Raghu; Greg Wheeler; Paul Pratt; Keith Warner; Ted Center; John Goolsby; Richard Reardon

    2013-01-01

    A total of 208 participants from 78 organizations in 19 countries gathered at the Waikoloa Beach Marriott on the Big Island of Hawaii on September 11-16, 2011 for the XIII International Symposium on Biological Control of Weeds. Following a reception on the first evening, Symposium co-chairs Tracy Johnson and Pat Conant formally welcomed the attendees on the morning of...

  7. VizieR Online Data Catalog: SiXIII and SXV collision strengths (Fernandez-Menchero+, 2016)

    NASA Astrophysics Data System (ADS)

    Fernandez-Menchero, L.; Del Zanna, G.; Badnell, N. R.

    2016-07-01

    In present online material we provide in CDS format the extrapolated values of energies, radiative parameters (gf), and electron-impact excitation effective collision strengths (Upsilon) obtained with the extrapolation rules described in the manuscript for the two test ions: He-like Si XIII and S XV. (6 data files).

  8. Calcium concentration dependent collagen mineralization.

    PubMed

    Niu, Xufeng; Fan, Rui; Tian, Feng; Guo, Xiaolin; Li, Ping; Feng, Qingling; Fan, Yubo

    2017-04-01

    Mineralization of collagen fibrils is a regular combination process of organic and mineral components mainly involving calcium, phosphate and collagen. We report the influence of calcium to the self-assembly of collagen by changing the concentration of calcium ion in the process of mineralization. Low concentration of calcium results in the well collagen self-assembly while poor mineral crystallization. Relatively, high concentration of calcium can hinder collagen self-assembly, whereas it is benefited to mineral crystallization. We also reveal that collagen self-assembly happens in advance of the formation of better mineral crystals. These results interpret the mechanism of collagen mineralization further. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Liquid Collagen Wound Coverings.

    DTIC Science & Technology

    1992-05-13

    3-compart- metal iodide with a suitable oxidizing agent such as ment sterile blood bag type container which is then heat persulfate, perborate and a...Time oxidizing agent is selected from the group consisting of10 persulfates, perborates , hydrogen peroxide, tertary 2.24 11.25 107 5.0 butyl... perborates , hydrogen peroxide, tertary butyl per- What is claimed is. oxide, alkali metal periodate, hypochlorite salts and free 1. A collagen gel

  10. Effect of supramolecular organization of a cartilaginous tissue on thermal stability of collagen II

    NASA Astrophysics Data System (ADS)

    Ignat'eva, N. Yu.; Averkiev, S. V.; Lunin, V. V.; Grokhovskaya, T. E.; Obrezkova, M. V.

    2006-08-01

    The thermal stability of collagen II in various cartilaginous tissues was studied. It was found that heating a tissue of nucleus pulposus results in collagen II melting within a temperature range of 60-70°C; an intact tissue of hyaline cartilage (of nasal septum and cartilage endplates) is a thermally stable system, where collagen II is not denatured completely up to 100°C. It was found that partial destruction of glycosaminoglycans in hyaline cartilage leads to an increase in the degree of denaturation of collagen II upon heating, although a significant fraction remains unchanged. It was shown that electrostatic interactions of proteoglycans and collagen only slightly affect the thermal stability of collagen II in the tissues. Evidently, proteoglycan aggregates play a key role: they create topological hindrances for moving polypeptide chains, thereby reducing the configurational entropy of collagen macromolecules in the state of a random coil.

  11. [Expression of type VI collagen in arthrofibrosis. An immunohistochemical study].

    PubMed

    Zeichen, J; van Griensven, M; Lobenhoffer, P; Bosch, U

    2000-08-01

    Arthrofibrosis is a disabling complication after trauma and surgery due to massive connective tissue proliferation. The etiology and pathogenesis have never been fully understood. A strong immune response may lead to activation and proliferation of fibroblasts with excessive and disordered deposition of matrix proteins. In similar pathological conditions, like lung fibrosis or superficial fibromatoses with fibrotic transformation an increased expression of collagen type VI has been reported. We investigated fibrotic tissue samples taken from 18 patients (average age: 32.7 years), who underwent arthrolysis of the knee joint because of symptomatic arthrofibrosis following ligament injury. The mean interval between trauma and arthrolysis was 13.8 months (range 4-50 months). Tissue samples were taken from the infrapatellar fat pad and intercondylar connective tissue. All samples were stained with HE. The expression of type III and VI collagen was studied immunohistochemically using an immunoperoxidase method for light microscopic visualization. Histologic analysis from patients with arthrofibrosis showed a synovial hyperplasia with cell infiltration and vascular proliferation compared to synovial tissue samples from knee joints without any detectable pathology. Subsynovial an increased deposition of matrix proteins was visible. Type VI collagen was widely distributed as a network subsynovial and around capillary walls. Type III collagen showed a diffuse distribution. Arthrofibrotic tissue is, similar to pathological conditions with fibrotic transformation characterized by an increased expression of collagen type VI. Collagen type VI may play an important role in matrix homeostasis. It serves as an anchoring element between collagen fibers and as a cell binding structure.

  12. Stress-strain experiments on individual collagen fibrils.

    PubMed

    Shen, Zhilei L; Dodge, Mohammad Reza; Kahn, Harold; Ballarini, Roberto; Eppell, Steven J

    2008-10-01

    Collagen, a molecule consisting of three braided protein helices, is the primary building block of many biological tissues including bone, tendon, cartilage, and skin. Staggered arrays of collagen molecules form fibrils, which arrange into higher-ordered structures such as fibers and fascicles. Because collagen plays a crucial role in determining the mechanical properties of these tissues, significant theoretical research is directed toward developing models of the stiffness, strength, and toughness of collagen molecules and fibrils. Experimental data to guide the development of these models, however, are sparse and limited to small strain response. Using a microelectromechanical systems platform to test partially hydrated collagen fibrils under uniaxial tension, we obtained quantitative, reproducible mechanical measurements of the stress-strain curve of type I collagen fibrils, with diameters ranging from 150-470 nm. The fibrils showed a small strain (epsilon < 0.09) modulus of 0.86 +/- 0.45 GPa. Fibrils tested to strains as high as 100% demonstrated strain softening (sigma(yield) = 0.22 +/- 0.14 GPa; epsilon(yield) = 0.21 +/- 0.13) and strain hardening, time-dependent recoverable residual strain, dehydration-induced embrittlement, and susceptibility to cyclic fatigue. The results suggest that the stress-strain behavior of collagen fibrils is dictated by global characteristic dimensions as well as internal structure.

  13. UV damage of collagen: insights from model collagen peptides.

    PubMed

    Jariashvili, Ketevan; Madhan, Balaraman; Brodsky, Barbara; Kuchava, Ana; Namicheishvili, Louisa; Metreveli, Nunu

    2012-03-01

    Fibrils of Type I collagen in the skin are exposed to ultraviolet (UV) light and there have been claims that collagen photo-degradation leads to wrinkles and may contribute to skin cancers. To understand the effects of UV radiation on collagen, Type I collagen solutions were exposed to the UV-C wavelength of 254 nm for defined lengths of time at 4°C. Circular dichroism (CD) experiments show that irradiation of collagen leads to high loss of triple helical content with a new lower thermal stability peak and SDS-gel electrophoresis indicates breakdown of collagen chains. To better define the effects of UV radiation on the collagen triple-helix, the studies were extended to peptides which model the collagen sequence and conformation. CD studies showed irradiation for days led to lower magnitudes of the triple-helix maximum at 225 nm and lower thermal stabilities for two peptides containing multiple Gly-Pro-Hyp triplets. In contrast, the highest radiation exposure led to little change in the T(m) values of (Gly-Pro-Pro)(10) and (Ala-Hyp-Gly)(10) , although (Gly-Pro-Pro)(10) did show a significant decrease in triple helix intensity. Mass spectroscopy indicated preferential cleavage sites within the peptides, and identification of some of the most susceptible sites of cleavage. The effect of radiation on these well defined peptides gives insight into the sequence and conformational specificity of photo-degradation of collagen.

  14. Heterogeneity of collagens in rabbit cornea: type VI collagen

    SciTech Connect

    Cintron, C.; Hong, B.S.

    1988-05-01

    Normal adult rabbit corneas were digested with 5% pepsin and their collagens extracted with acetic acid. Collagen extracts were fractionated by differential salt precipitation. The 2.5 M NaCl fraction was then redissolved with tris buffer and precipitated with sodium acetate. The precipitate contained a high-molecular-weight disulfide-bonded aggregate which, upon reduction with mercaptoethanol, was converted into three distinct polypeptides having molecular weights between 45 and 66 Kd. These physical characteristics, together with the susceptibility of these polypeptides to collagenase and their amino acid composition, identified the high molecular weight aggregate as type VI collagen. Corneas from neonate rabbits and adult corneas containing 2-week-old scars were organ cultured in the presence of (/sup 14/C) glycine to incorporate radiolabel into collagen. Tissues were digested with 0.02% pepsin and their collagens extracted with formic acid. The total radioactivity of the extracts and tissue residues was determined before the collagens were separated by SDS-polyacrylamide slab gel electrophoresis. Radioactive collagen polypeptides bands were then stained with Coomassie blue, processed for fluorography, and analyzed by densitometry. The results show that: (1) type VI collagen is synthesized by neonate corneas and healing adult corneas; (2) it is not readily solubilized from either corneal tissue by 0.02% pepsin digestion and formic acid extraction; and (3) the proportion of type VI collagen deposited in scar tissue is markedly lower than that found in neonate corneas.

  15. Heterogeneity of collagens in rabbit cornea: type III collagen

    SciTech Connect

    Cintron, C.; Hong, B.S.; Covington, H.I.; Macarak, E.J.

    1988-05-01

    Whole neonate rabbit corneas and adult corneas containing 2-week-old scars were incubated in the presence of (/sup 14/C) glycine. Radiolabeled collagen extracted from the corneas and scar tissue were analyzed by sodium dodecylsulfate/polyacrylamide gel electrophoresis and fluorography to determine the types and relative quantity of collagen polypeptides present and synthesized by these tissues. In addition to other collagen types, type III was found in both neonate cornea and scar tissue from adult cornea, albeit in relatively small quantities. Type III collagen in normal cornea was associated with the residue after pepsin digestion and formic acid extraction of the tissue, and the same type of collagen was extracted from scar tissue after similar treatment. Type III collagen-specific monoclonal antibody bound to developing normal corneas and healing adult tissue sections, as determined by immunofluorescence. Antibody binding was localized to the endothelium and growing Descemet's membrane in fetal and neonate corneas, and restricted to the most posterior region of the corneal scar tissue. Although monoclonal antibody to keratan sulfate, used as a marker for stromal fibroblasts, bound to most of the scar tissue, the antibody failed to bind to the posterior scar tissue positive for type III collagen. We conclude that endothelial cells from fetal and neonate rabbit cornea and endothelium-derived fibroblasts from healing wounds of adult cornea synthesize and deposit type III collagen. Moreover, this collagen appears to be incorporated into the growing Descemet's membrane of normal corneas and narrow posterior portion of the scar tissue.

  16. Atomic data for astrophysics: Fe xiii soft X-ray lines

    NASA Astrophysics Data System (ADS)

    Del Zanna, G.; Storey, P. J.

    2012-07-01

    We present new large-scale R-matrix (up to n = 4) and distorted wave (up to n = 6) scattering calculations for electron collisional excitation of Fe xiii. We aim to provide accurate atomic data for the soft X-rays, where strong n = 4 → n = 3 transitions are present. As found in previous work on Fe x, resonances from within the n = 4 levels and cascading from higher levels significantly increase the intensities of these lines. We provide a number of models and line intensities, and list a number of strong unidentified lines. The full dataset (energies, transition probabilities and rates) are available in electronic form at our APAP website (http://www.apap-network.org) as well as at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/543/A144

  17. Saccharin Sulfonamides as Inhibitors of Carbonic Anhydrases I, II, VII, XII, and XIII

    PubMed Central

    Morkūnaitė, Vaida; Baranauskienė, Lina; Zubrienė, Asta; Trapencieris, Pēteris

    2014-01-01

    A series of modified saccharin sulfonamides have been designed as carbonic anhydrase (CA) inhibitors and synthesized. Their binding to CA isoforms I, II, VII, XII, and XIII was measured by the fluorescent thermal shift assay (FTSA) and isothermal titration calorimetry (ITC). Saccharin bound the CAs weakly, exhibiting the affinities of 1–10 mM for four CAs except CA I where binding could not be detected. Several sulfonamide-bearing saccharines exhibited strong affinities of 1–10 nM towards particular CA isoforms. The functional group binding Gibbs free energy additivity maps are presented which may provide insights into the design of compounds with increased affinity towards selected CAs. PMID:25276805

  18. Factor XIII Subunit A in the Skin: Applications in Diagnosis and Treatment

    PubMed Central

    2017-01-01

    The role of factor XIII subunit A (FXIII-A) is not restricted to hemostasis. FXIII-A is also present intracellularly in several human cells and serves as a diagnostic marker in a wide range of dermatological diseases from inflammatory conditions to malignancies. In this review, we provide a guide on the still controversial interpretation of dermal cell types expressing FXIII-A and assess the previously described mechanisms behind their accumulation under physiological and pathological conditions of the human skin. We summarize the intracellular functions of FXIII-A as well as its possible sources in the extracellular space of the dermis with a focus on its relevance to skin homeostasis and disease pathogenesis. Finally, the potential role of FXIII-A in wound healing, as a field with long-term therapeutic implications, is also discussed. PMID:28894750

  19. PIXE and IL analysis of an archeologically problematic XIII century ceramic production

    NASA Astrophysics Data System (ADS)

    Zucchiatti, Alessandro; Jiménez-Rey, David; Climent-Font, Aurelio; Martina, Silvia; Faieta, Rosangela; Maggi, Marco; Giuntini, Lorenzo; Calusi, Silvia

    2015-11-01

    At the beginning of the XIII century the archaeologists have found evidence of a singular, transitional, pottery technique limited to a small area around western Liguria (Northwest of Italy). Known as Ligurian Protomajolica (PML), it shows in the same ceramic body and on the same surface white slip and enamel together, addressing questions about the technical reasons of this unusual combination, its origin and evolution. To integrate previous morphological and mineralogical studies, we have analysed by particle induced X-ray emission (also with mapping) and ionoluminescence (IL) the ceramic body, slip and glaze composition of 56 samples, of which 25 PML's. We have identified some PML's compositional features which are distinct from those of other coeval or later productions from the same area. A few PML imitations are described. A plausible explanation of the origin of the PML's, based both on the archaeometric results and the archaeological and historical knowledge, is presented.

  20. Cryptic Peptides from Collagen: A Critical Review.

    PubMed

    Banerjee, Pradipta; Shanthi, C

    2016-01-01

    Collagen, a predominant structural protein in extracellular matrix (ECM), is now considered to have probable roles in many biological activities and hence, in different forms have found application as nutraceutical or pharmaceutical therapy option. Many of the biological properties are believed to be due to small hidden peptide residues in the collagen molecules, which come into play after the biodegradation or biosorption of the parent molecule. These peptide regions are called cryptic peptides or by some, as cryptides. The proteolytic hydrolysis of the ECM protein releases the cryptic peptides with many novel biological activities not exhibited directly by the parental protein which include angiogenic, antimicrobial, mitogenic and chemotactic properties. The research for understanding the role of these cryptic peptide regions and making use of them in medical field is very active. Such an understanding could lead to the development of peptide supplements for many biomedical applications. The prolific research in this area is reviewed in this paper.

  1. Collagen macromolecular drug delivery systems

    SciTech Connect

    Gilbert, D.L.

    1988-01-01

    The objective of this study was to examine collagen for use as a macromolecular drug delivery system by determining the mechanism of release through a matrix. Collagen membranes varying in porosity, crosslinking density, structure and crosslinker were fabricated. Collagen characterized by infrared spectroscopy and solution viscosity was determined to be pure and native. The collagen membranes were determined to possess native vs. non-native quaternary structure and porous vs. dense aggregate membranes by electron microscopy. Collagen monolithic devices containing a model macromolecule (inulin) were fabricated. In vitro release rates were found to be linear with respect to t{sup {1/2}} and were affected by crosslinking density, crosslinker and structure. The biodegradation of the collagen matrix was also examined. In vivo biocompatibility, degradation and {sup 14}C-inulin release rates were evaluated subcutaneously in rats.

  2. Psychofarmakologika XIII.

    PubMed

    Quak, J; Korf, J

    1996-06-01

    Inleiding In deze rubriek zal worden ingegaan op recente observaties betreffende de psychofarmakologie in de breedst mogelijke zin. Vaak zullen zaken uit de literatuur worden behandeld. De gekozen onderwerpen dienen altijd klinische relevantie te hebben. Ook zal deze rubriek gaan over gewoontes die in psychofarmakologische behandeling of in onderzoek zijn geslopen die volgens de auteur lang niet altijd logisch zijn. Soms zal deze rubriek een oproep bevatten om te reageren op een bijdrage gepubliceerd in dit of in een ander tijdschrift. Ook zal de lezer worden aangemoedigd hier zijn eigen ervaringen mee te delen. Het is niet de bedoeling in deze rubriek onderzoeken uitvoerig te rapporteren. Daarvoor staan andere pagina 's van de Acta Neuropsychiatrica voor u open.

  3. Osmotic pressure induced tensile forces in tendon collagen

    NASA Astrophysics Data System (ADS)

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J.; Fratzl, Peter

    2015-01-01

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.

  4. Expression of coagulation factor XIII subunit A in acute promyelocytic leukemia.

    PubMed

    Simon, Ágnes; Bagoly, Zsuzsa; Hevessy, Zsuzsanna; Csáthy, László; Katona, Éva; Vereb, György; Ujfalusi, Anikó; Szerafin, László; Muszbek, László; Kappelmayer, János

    2012-07-01

    Leukemic cells often express markers, which are not characteristic of their particular cell lineage. In this study, we identified the "A" subunit of coagulation factor XIII (FXIII-A) in leukemic promyelocytes in de novo AML M3 cases. The cytoplasmic presence of factor XIII-A has previously been shown only in platelets/megakaryocytes and monocytes/macrophages. Furthermore, more recently we described the presence of FXIII-A in leukemic lymphoblasts. We studied 14 patients with this rare type of acute leukemia in a period of 4 years and investigated their bone marrow samples by 3-color flow cytometry upon diagnosis, mainly focusing on FXIII-A expression of leukemic cells. We detected FXIII-A also by ELISA, Western-blot, and confocal laser scanning microscopy. This was a homogenous group of AML M3 patients with translocation t(15;17)(q22;q21) detected by fluorescence in situ hybridization (FISH). In 10 out of 14 samples, FXIII-A was detectable by flow cytometry and was coexpressed with markers characteristic for leukemic promyleocytes (CD45dim/CD13+/CD33+/CD117+/cyMPO+ and HLA-DR-/CD34-/CD14-/CD15-). Staining for the markers GPIIb and GPIX were negative, and FXIII-A was identified in the cytoplasm of the cells by confocal microscopy in a relatively high quantity, as measured by ELISA. By Western blot analysis we could identify FXIII-A in the native 82 kDa form and in cleaved forms corresponding to cleavage products observed when purified FXIII-A was treated by human neutrophil elastase. This novel expression site of FXIII-A in AML M3 can be considered as a leukemia associated immunophenotype and may have pathophysiological significance. Copyright © 2012 International Clinical Cytometry Society.

  5. Comparison of Type I, Type III, and Type VI Collagen Binding Assays in Diagnosis of VWD

    PubMed Central

    Flood, Veronica H.; Gill, Joan Cox; Christopherson, Pamela A.; Wren, Jeffrey S.; Friedman, Kenneth D.; Haberichter, Sandra L.; Hoffmann, Raymond G.; Montgomery, Robert R.

    2013-01-01

    Summary Background Von Willebrand factor (VWF) plays a key role in coagulation by tethering platelets to injured subendothelium through binding sites for collagen and platelet GPIb. Collagen binding assays (VWF:CB), however, are not part of the routine workup for von Willebrand disease (VWD). Objectives This study presents data on collagen binding for healthy controls and VWD subjects to compare three different collagens. Patients/Methods VWF antigen (VWF:Ag), VWF ristocetin cofactor activity, and VWF:CB with types I, III, and VI collagen were examined for samples obtained from the Zimmerman Program. Results Mean VWF:CB in healthy controls was similar and highly correlated for types I, III, and VI collagen. The mean VWF:CB/VWF:Ag ratios for types I, III, and VI collagen were 1.31, 1.19, and 1.21 respectively. In type 1 VWD subjects, VWF:CB was similar to VWF:Ag with mean VWF:CB/VWF:Ag ratios for types I, III, and VI collagen of 1.32, 1.08, and 1.1 respectively. For type 2A and 2B subjects, VWF:CB was uniformly low, with mean ratios of 0.62 and 0.7 for type I collagen, 0.38 and 0.4 for type III collagen, and 0.5 and 0.47 for type VI collagen. Conclusions Normal ranges for type I, III, and VI collagen are correlated, but higher values were obtained with type I collagen as compared to types III and VI. The low VWF:CB in type 2A and 2B subjects suggests that VWF:CB may also supplement analysis of multimer distribution. However, these results reflect only one set of assay conditions per collagen type and therefore may not be generalizable to all collagen assays. PMID:22507643

  6. Collagenous colitis: an unrecognised entity.

    PubMed Central

    Bogomoletz, W V; Adnet, J J; Birembaut, P; Feydy, P; Dupont, P

    1980-01-01

    A patient is reported with chronic abdominal pain, diarrhoea, and associated radiological and endoscopic abnormalities of the sigmoid colon. Light and electron microscopic study of colorectal mucosa showed abnormal collagenous thickening of the subepithelial basement membrane. The authors felt that the clinical and morphological features justified a diagnosis of collagenous colitis. Review of the literature suggested that collagenous colitis was still an unrecognised entity. Images Fig. 1 Fig. 2 Fig. 3 PMID:7380341

  7. Structural properties of pepsin-solubilized collagen acylated by lauroyl chloride along with succinic anhydride.

    PubMed

    Li, Conghu; Tian, Zhenhua; Liu, Wentao; Li, Guoying

    2015-10-01

    The structural properties of pepsin-solubilized calf skin collagen acylated by lauroyl chloride along with succinic anhydride were investigated in this paper. Compared with native collagen, acylated collagen retained the unique triple helix conformation, as determined by amino acid analysis, circular dichroism and X-ray diffraction. Meanwhile, the thermostability of acylated collagen using thermogravimetric measurements was enhanced as the residual weight increased by 5%. With the temperature increased from 25 to 115 °C, the secondary structure of native and acylated collagens using Fourier transform infrared spectroscopy measurements was destroyed since the intensity of the major amide bands decreased and the positions of the major amide bands shifted to lower wavenumber, respectively. Meanwhile, two-dimensional correlation spectroscopy revealed that the most sensitive bands for acylated and native collagens were amide I and II bands, respectively. Additionally, the corresponding order of the groups between native and acylated collagens was different and the correlation degree for acylated collagen was weaker than that of native collagen, suggesting that temperature played a small influence on the conformation of acylated collagen, which might be concluded that the hydrophobic interaction improved the thermostability of collagen.

  8. Biological role of prolyl 3-hydroxylation in type IV collagen.

    PubMed

    Pokidysheva, Elena; Boudko, Sergei; Vranka, Janice; Zientek, Keith; Maddox, Kerry; Moser, Markus; Fässler, Reinhard; Ware, Jerry; Bächinger, Hans Peter

    2014-01-07

    Collagens constitute nearly 30% of all proteins in our body. Type IV collagen is a major and crucial component of basement membranes. Collagen chains undergo several posttranslational modifications that are indispensable for proper collagen function. One of these modifications, prolyl 3-hydroxylation, is accomplished by a family of prolyl 3-hydroxylases (P3H1, P3H2, and P3H3). The present study shows that P3H2-null mice are embryonic-lethal by embryonic day 8.5. The mechanism of the unexpectedly early lethality involves the interaction of non-3-hydroxylated embryonic type IV collagen with the maternal platelet-specific glycoprotein VI (GPVI). This interaction results in maternal platelet aggregation, thrombosis of the maternal blood, and death of the embryo. The phenotype is completely rescued by producing double KOs of P3H2 and GPVI. Double nulls are viable and fertile. Under normal conditions, subendothelial collagens bear the GPVI-binding sites that initiate platelet aggregation upon blood exposure during injuries. In type IV collagen, these sites are normally 3-hydroxylated. Thus, prolyl 3-hydroxylation of type IV collagen has an important function preventing maternal platelet aggregation in response to the early developing embryo. A unique link between blood coagulation and the ECM is established. The newly described mechanism may elucidate some unexplained fetal losses in humans, where thrombosis is often observed at the maternal/fetal interface. Moreover, epigenetic silencing of P3H2 in breast cancers implies that the interaction between GPVI and non-3-hydroxylated type IV collagen might also play a role in the progression of malignant tumors and metastasis.

  9. Lysyl Hydroxylase 3-mediated Glucosylation in Type I Collagen

    PubMed Central

    Sricholpech, Marnisa; Perdivara, Irina; Yokoyama, Megumi; Nagaoka, Hideaki; Terajima, Masahiko; Tomer, Kenneth B.; Yamauchi, Mitsuo

    2012-01-01

    Recently, by employing the short hairpin RNA technology, we have generated MC3T3-E1 (MC)-derived clones stably suppressing lysyl hydroxylase 3 (LH3) (short hairpin (Sh) clones) and demonstrated the LH3 function as glucosyltransferase in type I collagen (Sricholpech, M., Perdivara, I., Nagaoka, H., Yokoyama, M., Tomer, K. B., and Yamauchi, M. (2011) Lysyl hydroxylase 3 glucosylates galactosylhydroxylysine residues in type I collagen in osteoblast culture. J. Biol. Chem. 286, 8846–8856). To further elucidate the biological significance of this modification, we characterized and compared type I collagen phenotypes produced by Sh clones and two control groups, MC and those transfected with empty vector. Mass spectrometric analysis identified five glycosylation sites in type I collagen (i.e. α1,2-87, α1,2-174, and α2-219. Of these, the predominant glycosylation site was α1-87, one of the major helical cross-linking sites. In Sh collagen, the abundance of glucosylgalactosylhydroxylysine was significantly decreased at all of the five sites with a concomitant increase in galactosylhydroxylysine at four of these sites. The collagen cross-links were significantly diminished in Sh clones, and, for the major cross-link, dihydroxylysinonorleucine (DHLNL), glucosylgalactosyl-DHLNL was diminished with a concomitant increase in galactosyl-DHLNL. When subjected to in vitro incubation, in Sh clones, the rate of decrease in DHLNL was lower, whereas the rate of increase in its maturational cross-link, pyridinoline, was comparable with controls. Furthermore, in Sh clones, the mean diameters of collagen fibrils were significantly larger, and the onset of mineralized nodule formation was delayed when compared with those of controls. These results indicate that the LH3-mediated glucosylation occurs at the specific molecular loci in the type I collagen molecule and plays critical roles in controlling collagen cross-linking, fibrillogenesis, and mineralization. PMID:22573318

  10. Platelet factor XIII increases the fibrinolytic resistance of platelet-rich clots by accelerating the crosslinking of alpha 2-antiplasmin to fibrin

    NASA Technical Reports Server (NTRS)

    Reed, G. L.; Matsueda, G. R.; Haber, E.

    1992-01-01

    Platelet clots resist fibrinolysis by plasminogen activators. We hypothesized that platelet factor XIII may enhance the fibrinolytic resistance of platelet-rich clots by catalyzing the crosslinking of alpha 2-antiplasmin (alpha 2AP) to fibrin. Analysis of plasma clot structure by polyacrylamide gel electrophoresis and immunoblotting revealed accelerated alpha 2AP-fibrin crosslinking in platelet-rich compared with platelet-depleted plasma clots. A similar study of clots formed with purified fibrinogen (depleted of factor XIII activity), isolated platelets, and specific factor XIII inhibitors indicated that this accelerated crosslinking was due to the catalytic activity of platelet factor XIII. Moreover, when washed platelets were aggregated by thrombin, there was evidence of platelet factor XIII-mediated crosslinking between platelet alpha 2AP and platelet fibrin(ogen). Specific inhibition (by a monoclonal antibody) of the alpha 2AP associated with washed platelet aggregates accelerated the fibrinolysis of the platelet aggregate. Thus in platelet-rich plasma clots, and in thrombin-induced platelet aggregates, platelet factor XIII actively formed alpha 2AP-fibrin crosslinks, which appeared to enhance the resistance of platelet-rich clots to fibrinolysis.

  11. Platelet factor XIII increases the fibrinolytic resistance of platelet-rich clots by accelerating the crosslinking of alpha 2-antiplasmin to fibrin

    NASA Technical Reports Server (NTRS)

    Reed, G. L.; Matsueda, G. R.; Haber, E.

    1992-01-01

    Platelet clots resist fibrinolysis by plasminogen activators. We hypothesized that platelet factor XIII may enhance the fibrinolytic resistance of platelet-rich clots by catalyzing the crosslinking of alpha 2-antiplasmin (alpha 2AP) to fibrin. Analysis of plasma clot structure by polyacrylamide gel electrophoresis and immunoblotting revealed accelerated alpha 2AP-fibrin crosslinking in platelet-rich compared with platelet-depleted plasma clots. A similar study of clots formed with purified fibrinogen (depleted of factor XIII activity), isolated platelets, and specific factor XIII inhibitors indicated that this accelerated crosslinking was due to the catalytic activity of platelet factor XIII. Moreover, when washed platelets were aggregated by thrombin, there was evidence of platelet factor XIII-mediated crosslinking between platelet alpha 2AP and platelet fibrin(ogen). Specific inhibition (by a monoclonal antibody) of the alpha 2AP associated with washed platelet aggregates accelerated the fibrinolysis of the platelet aggregate. Thus in platelet-rich plasma clots, and in thrombin-induced platelet aggregates, platelet factor XIII actively formed alpha 2AP-fibrin crosslinks, which appeared to enhance the resistance of platelet-rich clots to fibrinolysis.

  12. Agreement between factor XIII activity and antigen assays in measurement of factor XIII: A French multicenter study of 147 human plasma samples.

    PubMed

    Caron, C; Meley, R; Le Cam Duchez, V; Aillaud, M F; Lavenu-Bombled, C; Dutrillaux, F; Flaujac, C; Ryman, A; Ternisien, C; Lasne, D; Galinat, H; Pouplard, C

    2017-06-01

    Factor XIII (FXIII) deficiency is a rare hemorrhagic disorder whose early diagnosis is crucial for appropriate treatment and prophylactic supplementation in cases of severe deficiency. International guidelines recommend a quantitative FXIII activity assay as first-line screening test. FXIII antigen measurement may be performed to establish the subtype of FXIII deficiency (FXIIID) when activity is decreased. The aim of this multicenter study was to evaluate the analytical and diagnostic levels of performance of a new latex immunoassay, K-Assay(®) FXIII reagent from Stago, for first-line measurement of FXIII antigen. Results were compared to those obtained with the Berichrom(®) FXIII chromogenic assay for measurement of FXIII activity. Of the 147 patient plasma samples, 138 were selected for analysis. The accuracy was very good, with intercenter reproducibility close to 7%. Five groups were defined on FXIII activity level (<5% (n = 5), 5%-30% (n = 23), 30%-60% (n = 17), 60%-120% (n = 69), above 120% (n = 24)), without statistical differences between activity and antigen levels (P value >0.05). Correlation of the K-Assay(®) with the Berichrom(®) FXIII activity results was excellent (r = 0.919). Good agreement was established by the Bland and Altman method, with a bias of +9.4% on all samples, and of -1.4% for FXIII levels lower than 30%. One patient with afibrinogenemia showed low levels of Berichrom(®) FXIII activity but normal antigen level and clot solubility as expected. The measurement of FXIII antigen using the K-Assay(®) is a reliable first-line tool for detection of FXIII deficiency when an activity assay is not available. © 2017 John Wiley & Sons Ltd.

  13. Membrane-associated collagens with interrupted triple-helices (MACITs): evolution from a bilaterian common ancestor and functional conservation in C. elegans.

    PubMed

    Tu, Hongmin; Huhtala, Pirkko; Lee, Hang-Mao; Adams, Josephine C; Pihlajaniemi, Taina

    2015-12-14

    Collagens provide structural support and guidance cues within the extracellular matrix of metazoans. Mammalian collagens XIII, XXIII and XXV form a unique subgroup of type II transmembrane proteins, each comprising a short N-terminal cytosolic domain, a transmembrane domain and a largely collagenous ectodomain. We name these collagens as MACITs (Membrane-Associated Collagens with Interrupted Triple-helices), and here investigate their evolution and conserved properties. To date, these collagens have been studied only in mammals. Knowledge of the representation of MACITs in other extant metazoans is lacking. This question is of interest for understanding structural/functional relationships in the MACIT family and also for insight into the evolution of MACITs in relation to the secreted, fibrillar collagens that are present throughout the metazoa. MACITs are restricted to bilaterians and are represented in the Ecdysozoa, Hemichordata, Urochordata and Vertebrata (Gnathostomata). They were not identified in available early-diverging metazoans, Lophotrochozoa, Echinodermata, Cephalochordata or Vertebrata (Cyclostomata). Whereas invertebrates encode a single MACIT, collagens XIII/XXIII/XXV of jawed vertebrates are paralogues that originated from the two rounds of en-bloc genome duplication occurring early in vertebrate evolution. MACITs have conserved domain architecture in which a juxta-membrane furin-cleavage site and the C-terminal 34 residues are especially highly conserved, whereas the cytoplasmic domains are weakly conserved. To study protein expression and function in a metazoan with a single MACIT gene, we focused on Caenorhabditis elegans and its col-99 gene. A col-99 cDNA was cloned and expressed as protein in mammalian CHO cells, two antibodies against COL-99 protein were generated, and a col-99-bearing fosmid gene construct col-99::egfp::flag was used to generate transgenic C. elegans lines. The encoded COL-99 polypeptide is 85 kDa in size and forms a

  14. Raman spectroscopic study of hydrogen ordered ice XIII and of its reversible phase transition to disordered ice V.

    PubMed

    Salzmann, Christoph G; Hallbrucker, Andreas; Finney, John L; Mayer, Erwin

    2006-07-14

    Raman spectra of recovered ordered H(2)O (D(2)O) ice XIII doped with 0.01 M HCl (DCl) recorded in vacuo at 80 K are reported in the range 3600-200 cm(-1). The bands are assigned to the various types of modes on the basis of isotope ratios. On thermal cycling between 80 and 120 K, the reversible phase transition to disordered ice V is observed. The remarkable effect of HCl (DCl) on orientational ordering in ice V and its phase transition to ordered ice XIII, first reported in a powder neutron diffraction study of DCl doped D(2)O ice V (C. G. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer, J. L. Finney, Science, 2006, 311, 1758), is demonstrated by Raman spectroscopy and discussed. The dopants KOH and HF have only a minor effect on hydrogen ordering in ice V, as shown by the Raman spectra.

  15. Recurrent Post Tonsillectomy Secondary Hemorrhage in Patients with Factor XIII Deficiency: A Case Series and Review of Literature

    PubMed Central

    ALtamimi, Zaid Abu Rajab; Sheikh, Rashid; Omar, Hassen; Taweel, Hayam Al; Ganesan, Shanmugam

    2016-01-01

    Case series Patients: Male, 20 • Male, 4 • Male, 27 • Male, 25 • Female, 5 • Female, 26 Final Diagnosis: Post tonsillectomy secondary hemorrhage Symptoms: Bleeding • bleeding per oral Medication: — Clinical Procedure: Control of post tonsillectomy secondary hemorrhage Specialty: Otolaryngology Objective: Rare disease Background: Post-tonsillectomy hemorrhage (PTH) has been reported in the literature as a serious complication after tonsillectomy that has high morbidity and can be life threatening. In cases of recurrent secondary PTH, one should consider coagulopathies as the hidden pathology. Factor XIII deficiency is very rare, suggested to be present 1 in 2 million people. Patients with undiagnosed factor XIII deficiency with secondary PTH are extremely rare. Case Report: We report on the cases of six patients (four adults and two children) who presented with recurrent attacks of secondary PTH. Conclusion: Recurrent, severe PTH could be related to undiagnosed hematological disorders. PMID:27843132

  16. Who was the Red Queen? Identity of the female Maya dignitary from the sarcophagus tomb of Temple XIII, Palenque, Mexico.

    PubMed

    Tiesler, V; Cucina, A; Pacheco, A Romano

    2004-01-01

    The present investigation aims at contributing to the ongoing discussion on the unconfirmed identity of the Red Queen, a Classic Maya dignitary discovered in Temple XIII at Palenque, Mexico, by comparing her reconstructed facial profile to the portraiture of known female personages from the site. The comparison rests upon individual cranial features, like buccal prognatism, nasal root and inclination, chin prominence and the artificially shaped forehead. The similarities between the reconstruction, the female's funerary mask and local portraiture appear to identify the Red Queen as Lady Ix Tz'akb'u Ajaw (Ahpo Hel), the wife of Janaab' Pakal, one of the famous Maya rulers of the Classic Period. The proposed match and her family relationship with the king might explain the spatial closeness of their burial places in the Temple of the Inscriptions and Temple XIII.

  17. Effect of photon energy in collagen generation by interstitial low level laser stimulation

    NASA Astrophysics Data System (ADS)

    Jun, Eunkwon; Ha, Myungjin; Lee, Sangyeob; Radfar, Edalat; Park, Jihoon; Jung, Byungjo

    2015-03-01

    Although the mechanism of low level laser therapy (LLLT) is unclear, many studies demonstrated the positive clinical performance of LLLT for skin rejuvenation. An increase in dermal collagen plays an important role in skin rejuvenation and wound healing. This study aimed to investigate collagen generation after interstitial low level laser stimulation (ILLS). Rabbits were divided into two groups: surfacing irradiation and minimally invasive irradiation. 660nm diode laser of 20mW with 10J, 13J and 15J was applied to the backside of rabbits. Collagen formation was evaluated with ultrasound skin scanner every 12 hours. Results shows that ILLS groups have denser collagen density than surfacing groups.

  18. Meprin β contributes to collagen deposition in lung fibrosis

    PubMed Central

    Biasin, V.; Wygrecka, M.; Marsh, L. M.; Becker-Pauly, C.; Brcic, L.; Ghanim, B.; Klepetko, W.; Olschewski, A.; Kwapiszewska, G.

    2017-01-01

    Lung fibrosis is a severe disease characterized by epithelial cell injury, inflammation and collagen deposition. The metalloproteases meprinα and meprinβ have been shown to enhance collagen maturation and inflammatory cell infiltration via cleavage of cell-cell contact molecules; therefore we hypothesized that meprins could play a role in lung fibrosis. An exhaustive characterization of bleomycin-treated meprinα, meprinβ and the double meprinsαβ knock-out (KO) with respective wt-littermates was performed by using several different methods. We observed no difference in lung function parameters and no change in inflammatory cells infiltrating the lung between wt and all meprins KO mice after 14 days bleomycin. No difference in epithelial integrity as assessed by e-cadherin protein level was detected in bleomycin-treated lungs. However, morphological analysis in the bleomycin-treated mice revealed decrease collagen deposition and tissue density in meprinβ KO, but not in meprinα and meprinαβ KO mice. This finding was accompanied by localization of meprinβ to epithelial cells in regions with immature collagen in mice. Similarly, in human IPF lungs meprinβ was mostly localized in epithelium. These findings suggest that local environment triggers meprinβ expression to support collagen maturation. In conclusion, our data demonstrate the in vivo relevance of meprinβ in collagen deposition in lung fibrosis. PMID:28059112

  19. Mechano-regulation of Collagen Biosynthesis in Periodontal Ligament

    PubMed Central

    Kaku, Masaru; Yamauchi, Mitsuo

    2014-01-01

    Purpose Periodontal ligament (PDL) plays critical roles in the development and maintenance of periodontium such as tooth eruption and dissipation of masticatory force. The mechanical properties of PDL are mainly derived from fibrillar type I collagen, the most abundant extracellular component. Study selection The biosynthesis of type I collagen is a long, complex process including a number of intra- and extracellular post-translational modifications. The final modification step is the formation of covalent intra- and intermolecular cross-links that provide collagen fibrils with stability and connectivity. Results It is now clear that collagen post-translational modifications are regulated by groups of specific enzymes and associated molecules in a tissue-specific manner; and these modifications appear to change in response to mechanical force. Conclusions This review focuses on the effect of mechanical loading on collagen biosynthesis and fibrillogenesis in PDL with emphasis on the post-translational modifications of collagens, which is an important molecular aspect to understand in the field of prosthetic dentistry. PMID:25311991

  20. Collagen-binding proteins of Streptococcus mutans and related streptococci.

    PubMed

    Avilés-Reyes, A; Miller, J H; Lemos, J A; Abranches, J

    2017-04-01

    The ability of Streptococcus mutans to interact with collagen through the expression of collagen-binding proteins (CBPs) bestows this oral pathogen with an alternative to the sucrose-dependent mechanism of colonization classically attributed to caries development. Based on the abundance and distribution of collagen throughout the human body, stringent adherence to this molecule grants S. mutans with the opportunity to establish infection at different host sites. Surface proteins, such as SpaP, WapA, Cnm and Cbm, have been shown to bind collagen in vitro, and it has been suggested that these molecules play a role in colonization of oral and extra-oral tissues. However, robust collagen binding is not achieved by all strains of S. mutans, particularly those that lack Cnm or Cbm. These observations merit careful dissection of the contribution from these different CBPs towards tissue colonization and virulence. In this review, we will discuss the current understanding of mechanisms used by S. mutans and related streptococci to colonize collagenous tissues, and the possible contribution of CBPs to infections in different sites of the host. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Hydroxyproline-free single composition ABC collagen heterotrimer.

    PubMed

    Jalan, Abhishek A; Demeler, Borries; Hartgerink, Jeffrey D

    2013-04-24

    Hydroxyproline plays a major role in stabilizing collagenous domains in eukaryotic organisms. Lack of this modification is associated with significant lowering in the thermal stability of the collagen triple helix and may also affect fibrillogenesis and folding of the peptide chains. In contrast, even though bacterial collagens lack hydroxyproline, their thermal stability is comparable to that of fibrillar collagen. This has been attributed to the high frequency of charged amino acids found in bacterial collagen. Here we report a thermally stable hydroxyproline-free ABC heterotrimeric collagen mimetic system composed of decapositive and decanegative peptides and a zwitterionic peptide. None of the peptides contain hydroxyproline, and furthermore the zwitterionic peptide does not even contain proline. The heterotrimer is electrostatically stabilized via multiple interpeptide lysine-aspartate and lysine-glutamate salt bridges and maintains good thermal stability with a melting temperature of 37 °C. The ternary peptide mixture also populates a single composition ABC heterotrimer as confirmed by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. This system illustrates the power of axial salt bridges to direct and stabilize the self-assembly of a triple helix and may be useful in analogous designs in expression systems where the incorporation of hydroxyproline is challenging.

  2. Mechanical Properties of Single Collagen Fibrils Revealed by Force Spectroscopy

    NASA Astrophysics Data System (ADS)

    Graham, John; Phillips, Charlotte; Grandbois, Michel

    2004-03-01

    In the field of biomechanics, collagen fibrils are believed to be robust mechanical structures characterized by a low extensibility. Until very recently, information on the mechanical properties of collagen fibrils could only be derived from ensemble measurements performed on complete tissues such as bone, skin and tendon. Here we measure force-elongation/relaxation profiles of single collagen fibrils using atomic force microscopy-based force spectroscopy. The elongation profiles indicate that in vitro assembled heterotrimeric type I collagen fibrils are characterized by a large extensibility. Numerous discontinuities and a plateau in the force profile indicate major reorganization occurs within the fibrils in the 1.5 -- 4.5 nN range. Our study demonstrates that newly assembled collagen fibrils are robust structures with a significant reserve of elasticity that could play a determinant role in cellular motion in the context of tissue growth and morphogenesis. In contrast, homotrimeric collagen fibrils corresponding to osteogenesis imperfecta pathology exhibit a marked difference in their elasticity profile.

  3. Type I Collagen and Collagen Mimetics as Angiogenesis Promoting Superpolymers

    SciTech Connect

    Twardowski, T.; Fertala, A.; Orgel, J.P.R.O.; San Antonio, J.D.

    2008-07-18

    Angiogenesis, the development of blood vessels from the pre-existing vasculature, is a key component of embryogenesis and tissue regeneration. Angiogenesis also drives pathologies such as tumor growth and metastasis, and hemangioma development in newborns. On the other hand, promotion of angiogenesis is needed in tissues with vascular insufficiencies, and in bioengineering, to endow tissue substitutes with appropriate microvasculatures. Therefore, much research has focused on defining mechanisms of angiogenesis, and identifying pro- and anti-angiogenic molecules. Type I collagen, the most abundant protein in humans, potently stimulates angiogenesis in vitro and in vivo. Crucial to its angiogenic activity appears to be ligation and possibly clustering of endothelial cell (EC) surface {alpha}1{beta}1/{alpha}2{beta}1 integrin receptors by the GFPGER502-507 sequence of the collagen fibril. However, additional aspects of collagen structure and function that may modulate its angiogenic properties are discussed. Moreover, type I collagen and fibrin, another angiogenic polymer, share several structural features. These observations suggest strategies for creating 'angiogenic superpolymers', including: modifying type I collagen to influence its biological half-life, immunogenicity, and integrin binding capacity; genetically engineering fibrillar collagens to include additional integrin binding sites or angiogenic determinants, and remove unnecessary or deleterious sequences without compromising fibril integrity; and exploring the suitability of poly(ortho ester), PEG-lysine copolymer, tubulin, and cholesteric cuticle as collagen mimetics, and suggesting means of modifying them to display ideal angiogenic properties. The collagenous and collagen mimetic angiogenic superpolymers described here may someday prove useful for many applications in tissue engineering and human medicine.

  4. Measurement of the quadratic hyperpolarizability of the collagen triple helix and application to second harmonic imaging of natural and biomimetic collagenous tissues

    NASA Astrophysics Data System (ADS)

    Deniset-Besseau, A.; Strupler, M.; Duboisset, J.; De Sa Peixoto, P.; Benichou, E.; Fligny, C.; Tharaux, P.-L.; Mosser, G.; Brevet, P.-F.; Schanne-Klein, M.-C.

    2009-09-01

    Collagen is a major protein of the extracellular matrix that is characterized by triple helical domains. It plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) so that SHG microscopy proved to be a sensitive tool to probe the three-dimensional architecture of fibrillar collagen and to assess the progression of fibrotic pathologies. We obtained sensitive and reproducible measurements of the fibrosis extent, but we needed quantitative data at the molecular level to further process SHG images. We therefore performed Hyper- Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its aminoacid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro- Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagenous biomimetic matrices.

  5. Gel-spinning of mimetic collagen and collagen/nano-carbon fibers: Understanding multi-scale influences on molecular ordering and fibril alignment.

    PubMed

    Green, Emily C; Zhang, Yiying; Li, Heng; Minus, Marilyn L

    2017-01-01

    Synthetic gel-spun collagen and collagen/nano-carbon fibers were found to exhibit structural mimicry comparable to native tendons. X-ray scattering and microscopy analyses are used to characterize the molecular and fibrillar alignment in the synthetic fibers, where D-banding is observed throughout the spun fibers - consistent with native collagen. For the composite collagen/nano-carbon fibers, the morphology and dispersion quality of the nano-carbons within was found to play a significant role in influencing collagen molecular ordering and fibril alignment. Fibrillar and molecular alignment was also better preserved during elongation of the composites as compared to the control collagen fibers. These results show the structural influence of a rigid inclusion on the collagen fibril structure. Both dry- and wet-state tensile testing were performed on the collagen fibers, and these results show behavior comparable to the native materials. Dry-state tests also reveal interfacial interaction between the nano-fillers and the collagen fibrils through theoretical analysis. Wet-state tensile testing indicates the structure-property behavior of the mimetic hierarchical structure within the synthetic fibers.

  6. Second-harmonic generation imaging of collagen fibers in myocardium for atrial fibrillation diagnosis

    NASA Astrophysics Data System (ADS)

    Tsai, Ming-Rung; Chiu, Yu-Wei; Lo, Men Tzung; Sun, Chi-Kuang

    2010-03-01

    Atrial fibrillation (AF) is the most common irregular heart rhythm and the mortality rate for patients with AF is approximately twice the mortality rate for patients with normal sinus rhythm (NSR). Some research has indicated that myocardial fibrosis plays an important role in predisposing patients to AF. Therefore, realizing the relationship between myocardial collagen fibrosis and AF is significant. Second-harmonic generation (SHG) is an optically nonlinear coherent process to image the collagen network. We perform SHG microscopic imaging of the collagen fibers in the human atrial myocardium. Utilizing the SHG images, we can identify the differences in morphology and the arrangement of collagen fibers between NSR and AF tissues. We also quantify the arrangement of the collagen fibers using Fourier transform images and calculating the values of angle entropy. We indicate that SHG imaging, a nondestructive and reproducible method to analyze the arrangement of collagen fibers, can provide explicit information about the relationship between myocardial fibrosis and AF.

  7. Binding of Clostridium perfringens to collagen correlates with the ability to cause necrotic enteritis in chickens.

    PubMed

    Wade, B; Keyburn, A L; Seemann, T; Rood, J I; Moore, R J

    2015-11-18

    This study investigated the ability of Clostridium perfringens isolates derived from chickens to bind to collagen types I-V and gelatin. In total 21 strains from three distinct backgrounds were studied: (i) virulent strains isolated from birds suffering from necrotic enteritis, (ii) avirulent strains isolated from birds suffering from necrotic enteritis and (iii) strains isolated from healthy birds. All strains isolated from diseased birds had been assessed for virulence in a disease induction model. The virulent isolates all displayed collagen binding ability. However, most strains in the other two classes showed negligible binding to collagen. The prevalence of a previously described C. perfringens putative collagen adhesin-encoding gene was investigated by PCR screening. It was found that five of the strains carried the putative collagen adhesin-encoding gene and that all of these strains were virulent isolates. Based on these studies it is postulated that collagen adhesion may play a role in the pathogenesis of necrotic enteritis.

  8. Immunohistochemical localization of collagen type XI alpha1 and alpha2 chains in human colon tissue.

    PubMed

    Bowen, Kara B; Reimers, Aaron P; Luman, Sarah; Kronz, Joseph D; Fyffe, William E; Oxford, Julia Thom

    2008-03-01

    In previous studies, collagen XI mRNA has been detected in colon cancer, but its location in human colon tissue has not been determined. The heterotrimeric collagen XI consists of three alpha chains. While it is known that collagen XI plays a regulatory role in collagen fibril formation, its function in the colon is unknown. The characterization of normal human colon tissue will allow a better understanding of the variance of collagen XI in abnormal tissues. Grossly normal and malignant human colon tissue was obtained from pathology archives. Immunohistochemical staining with a 58K Golgi marker and alpha1(XI) and alpha2(XI) antisera was used to specifically locate their presence in normal colon tissue. A comparative bright field microscopic analysis showed the presence of collagen XI in human colon. The juxtanuclear, dot-like collagen XI staining in the Golgi apparatus of goblet cells in normal tissue paralleled the staining of the 58K Golgi marker. Ultra light microscopy verified these results. Staining was also confirmed in malignant colon tissue. This study is the first to show that collagen XI is present in the Golgi apparatus of normal human colon goblet cells and localizes collagen XI in both normal and malignant tissue. Although the function of collagen XI in the colon is unknown, our immunohistochemical characterization provides the foundation for future immunohistopathology studies of the colon.

  9. Characterization of collagenous matrix assembly in a chondrocyte model system

    PubMed Central

    Yingst, Sorcha; Bloxham, Kaci; Warner, Lisa R.; Brown, Raquel J.; Cole, Jennifer; Kenoyer, Linda; Knowlton, William B.; Oxford, Julia Thom

    2010-01-01

    Collagen is a major component of the newly synthesized pericellular microenvironment of chondrocytes. Collagen types II, IX, and XI are synthesized and assembled into higher ordered complexes by a mechanism in which type XI collagen plays a role in nucleation of new fibrils, and in limiting fibril diameter. This study utilizes a cell line derived from the Swarm rat chondrosarcoma that allows the accumulation and assembly of pericellular matrix. Immunofluorescence and atomic force microscopy were used to assess early intermediates of fibril formation. Results indicate that this cell line synthesizes and secretes chondrocyte-specific pericellular matrix molecules including types II, IX, and XI collagen and is suitable for the study of newly synthesized collagen matrix under the experimental conditions used. AFM data indicate that small fibrils or assemblies of microfibrils are detectable and may represent precursors of the ~20 nm thin fibrils reported in cartilage. Treatment with hyaluronidase indicates that the dimensions of the small fibrils may be dependent upon the presence of hyaluronan within the matrix. This study provides information on the composition and organization of the newly synthesized extracellular matrix that plays a role in establishing the material properties and performance of biological materials such as cartilage. PMID:18496861

  10. Collagen binding to Staphylococcus aureus

    SciTech Connect

    Holderbaum, D.; Hall, G.S.; Ehrhart, L.A.

    1986-11-01

    Staphylococcus aureus can bind soluble collagen in a specific, saturable manner. We have previously shown that some variability exists in the degree of collagen binding between different strains of heat-killed, formaldehyde-fixed S. aureus which are commercially available as immunologic reagents. The present study demonstrates that live S. aureus of the Cowan 1 strain binds amounts of collagen per organism equivalent to those demonstrated previously in heat-killed, formaldehyde-fixed bacteria but has an affinity over 100 times greater, with Kd values of 9.7 X 10(-11) M and 4.3 X 10(-8) M for live and heat-killed organisms, respectively. Studies were also carried out with S. aureus killed by ionizing radiation, since this method of killing the organism seemed less likely to alter the binding moieties on the surface than did heat killing. Bacteria killed by exposure to gamma radiation bound collagen in a manner essentially indistinguishable from that of live organisms. Binding of collagen to irradiated cells of the Cowan 1 strain was rapid, with equilibrium reached by 30 min at 22 degrees C, and was fully reversible. The binding was not inhibited by fibronectin, fibrinogen, C1q, or immunoglobulin G, suggesting a binding site for collagen distinct from those for these proteins. Collagen binding was virtually eliminated in trypsin-treated organisms, indicating that the binding site has a protein component. Of four strains examined, Cowan 1 and S. aureus ATCC 25923 showed saturable, specific binding, while strains Woods and S4 showed a complete lack of binding. These results suggest that some strains of S. aureus contain high-affinity binding sites for collagen. While the number of binding sites per bacterium varied sixfold in the two collagen-binding strains, the apparent affinity was similar.

  11. Electrostatic effects in collagen fibrillization

    NASA Astrophysics Data System (ADS)

    Morozova, Svetlana; Muthukumar, Murugappan

    2014-03-01

    Using light scattering and AFM techniques, we have measured the kinetics of fibrillization of collagen (pertinent to the vitreous of human eye) as a function of pH and ionic strength. At higher and lower pH, collagen triple-peptides remain stable in solution without fibrillization. At neutral pH, the fibrillization occurs and its growth kinetics is slowed upon either an increase in ionic strength or a decrease in temperature. We present a model, based on polymer crystallization theory, to describe the observed electrostatic nature of collagen assembly.

  12. Sterile Keratitis following Collagen Crosslinking.

    PubMed

    Javadi, Mohammad-Ali; Feizi, Sepehr

    2014-01-01

    To report a keratoconic eye that developed severe sterile keratitis and corneal scar after collagen crosslinking necessitating corneal transplantation. A 26-year-old man with progressive keratoconus underwent collagen crosslinking and presented with severe keratitis 72 hours after the procedure. The initial impression was infectious corneal ulcer and a fortified antibiotic regimen was administered. However, the clinical course and confocal microscopy results prompted a diagnosis of sterile keratitis. The eye developed severe corneal scars leading to reduced visual acuity and necessitating corneal transplantation. Sterile keratitis may develop after collagen crosslinking resulting in profound visual loss leading to corneal transplantation.

  13. Bacterial collagen-binding domain targets undertwisted regions of collagen

    PubMed Central

    Philominathan, Sagaya Theresa Leena; Koide, Takaki; Matsushita, Osamu; Sakon, Joshua

    2012-01-01

    Clostridium histolyticum collagenase causes extensive degradation of collagen in connective tissue that results in gas gangrene. The C-terminal collagen-binding domain (CBD) of these enzymes is the minimal segment required to bind to a collagen fibril. CBD binds unidirectionally to the undertwisted C-terminus of triple helical collagen. Here, we examine whether CBD could also target undertwisted regions even in the middle of the triple helix. Collageneous peptides with an additional undertwisted region were synthesized by introducing a Gly → Ala substitution [(POG)xPOA(POG)y]3, where x + y = 9 and x > 3). 1H–15N heteronuclear single quantum coherence nuclear magnetic resonance (HSQC NMR) titration studies with 15N-labeled CBD demonstrated that the minicollagen binds to a 10 Å wide 25 Å long cleft. Six collagenous peptides each labeled with a nitroxide radical were then titrated with 15N-labeled CBD. CBD binds to either the Gly → Ala substitution site or to the C-terminus of each minicollagen. Small-angle X-ray scattering measurements revealed that CBD prefers to bind the Gly → Ala site to the C-terminus. The HSQC NMR spectra of 15N-labeled minicollagen and minicollagen with undertwisted regions were unaffected by the titration of unlabeled CBD. The results imply that CBD binds to the undertwisted region of the minicollagen but does not actively unwind the triple helix. PMID:22898990

  14. Factor XIII activity mediates red blood cell retention in venous thrombi

    PubMed Central

    Aleman, Maria M.; Byrnes, James R.; Wang, Jian-Guo; Tran, Reginald; Lam, Wilbur A.; Di Paola, Jorge; Mackman, Nigel; Degen, Jay L.; Flick, Matthew J.; Wolberg, Alisa S.

    2014-01-01

    Venous thrombi, fibrin- and rbc-rich clots triggered by inflammation and blood stasis, underlie devastating, and sometimes fatal, occlusive events. During intravascular fibrin deposition, rbc are thought to become passively trapped in thrombi and therefore have not been considered a modifiable thrombus component. In the present study, we determined that activity of the transglutaminase factor XIII (FXIII) is critical for rbc retention within clots and directly affects thrombus size. Compared with WT mice, mice carrying a homozygous mutation in the fibrinogen γ chain (Fibγ390–396A) had a striking 50% reduction in thrombus weight due to reduced rbc content. Fibrinogen from mice harboring the Fibγ390–396A mutation exhibited reduced binding to FXIII, and plasma from these mice exhibited delayed FXIII activation and fibrin crosslinking, indicating these residues mediate FXIII binding and activation. FXIII-deficient mice phenocopied mice carrying Fibγ390–396A and produced smaller thrombi with fewer rbc than WT mice. Importantly, FXIII-deficient human clots also exhibited reduced rbc retention. The addition of FXIII to FXIII-deficient clots increased rbc retention, while inhibition of FXIII activity in normal blood reduced rbc retention and produced smaller clots. These findings establish the FXIII-fibrinogen axis as a central determinant in venous thrombogenesis and identify FXIII as a potential therapeutic target for limiting venous thrombosis. PMID:24983320

  15. Pulsational frequencies of the eclipsing δ Scuti star HD 172189. Results of the STEPHI XIII campaign

    NASA Astrophysics Data System (ADS)

    Costa, J. E. S.; Michel, E.; Peña, J.; Creevey, O.; Li, Z. P.; Chevreton, M.; Belmonte, J. A.; Alvarez, M.; Fox Machado, L.; Parrao, L.; Pérez Hernández, F.; Fernández, A.; Fremy, J. R.; Pau, S.; Alonso, R.

    2007-06-01

    Context: The eclipsing δ Scuti star HD 172189 is a probable member of the open cluster IC 4756 and a promising candidate target for the CoRoT mission. Aims: The detection of pulsation modes is the first step in the asteroseismological study of the star. Further, the calculation of the orbital parameters of the binary system allows us to make a dynamical determination of the mass of the star, which works as an important constraint to test and calibrate the asteroseismological models. Methods: We performed a detailed frequency analysis of 210 hours of photometric data of HD 172189 obtained from the STEPHI XIII campaign. Results: We have identified six pulsation frequencies with a confidence level of 99% and a seventh with a 65% confidence level of 65%, in the range between 100-300 μHz. In addiction, three eclipses were observed during the campaign, allowing us to improve the determination of the orbital period of the system. Table 1 is only available in electronic form at http://www.aanda.org

  16. On the reconstructing the coronal magnetic field from Fe XIII 10747 A emission line observations

    NASA Astrophysics Data System (ADS)

    Kramar, M.; Lin, H.; Inhester, B.

    2009-12-01

    Magnetic fields in the solar corona are the dominant fields that determine the static and dynamic properties of this outermost region of the solar atmosphere. It is within this tenuous region that the magnetic force dominates the gas pressure. Direct measurement of the coronal magnetic field is one of the most challenging problems in observational solar astronomy. To date, one of the promising measurement methods that have been successfully demonstrated is the spectropolarimetric measurement of the Fe XIII 10747 A forbidden emission line (CEL) (Lin, Penn, Tomczyk 2000; Lin, Kuhn, Coulter 2004; Tomczyk et al. 2007) formed due to Hanle and Zeeman effects. However, because coronal measurements are integrated over line-of-site (LOS), it is impossible to derive the configuration of the coronal magnetic field from a single observation (from a single viewing direction). Recent development in vector tomography techniques based on IR forbidden CEL polarization measurements from several viewing direction (Kramar, Inhester, Solanki 2006; Kramar, Inhester 2007) has the potential to resolve the 3D coronal magnetic field structure. In this paper, we will present a study of the effects of instrumental characteristics on the results of vector tomographic inversion using simulated data. We also investigate the sensitivity of the vector tomographic inversion to different coronal magnetic field configuration.

  17. Safety of Factor XIII Concentrate: Analysis of More than 20 Years of Pharmacovigilance Data

    PubMed Central

    Solomon, Cristina; Korte, Wolfgang; Fries, Dietmar; Pendrak, Inna; Joch, Christine; Gröner, Albrecht; Birschmann, Ingvild

    2016-01-01

    Background Plasma-derived factor XIII (FXIII) concentrate is an effective treatment for FXIII deficiency. We describe adverse drug reactions (ADRs) reported during pharmacovigilance monitoring of Fibrogammin®/Corifact® and review published safety data. Methods Postmarketing safety reports recorded by CSL Behring from June 1993 to September 2013 were analyzed. Clinical studies published during the same period were also reviewed. Results Commercial data indicated that 1,653,450,333 IU FXIII concentrate were distributed over the review period, equivalent to 1,181,036 doses for a 70 kg patient. 75 cases were reported (one/15,700 standard doses or 22,046,000 IU). Reports of special interest included 12 cases of possible hypersensitivity reactions (one/98,400 doses or 137,787,500 IU), 7 with possible thromboembolic events (one/168,700 doses or 236,207,200 IU), 5 of possible inhibitor development (one/236,200 doses or 330,690,100 IU), and 20 of possible pathogen transmission (one/59,100 doses or 82,672,500 IU). 19 pathogen transmission cases involved viral infection; 4 could not be analyzed due to insufficient data, but for all others a causal relationship to the product was assessed as unlikely. A review of published literature revealed a similar safety profile. Conclusion Assessment of ADRs demonstrated that FXIII concentrate carries a low risk of ADRs across various clinical situations, suggesting a favorable safety profile. PMID:27781024

  18. Emission Lines of Fe XI - XIII in the Extreme Ultraviolet Region

    NASA Astrophysics Data System (ADS)

    Lepson, Jaan; Beiersdorfer, Peter; Liedahl, Duane; Desai, Priya; Brickhouse, Nancy; Dupree, Andrea; Kahn, Steven

    2009-05-01

    Iron is one of the most abundant heavy elements in extreme ultraviolet spectra of astrophysical and laboratory plasmas, and its various ions radiate profusely in the extreme ultraviolet (EUV) wavelength band. Iron emission in the EUV provides important d iagnostic tools for such properties as plasma temperature and density, and perhaps even magnetic field strength. Despite its importance to astrophysics and magnetic fusion, knowledge of the EUV spectrum of iron is incomplete. Identification of iron emis sion lines is hampered by the paucity of accurate laboratory measurements and the uncertainty of even the best atomic models. As part of a project to measure and compile emission line data in the EUV, we present here spectra and lines of Fe XI - XIII recorded on the Livermore EBIT-II electron beam ion trap in the 50 - 120 åregion. We measured line positions to 0.02 åand relative intensities with an accuracy of one part in twenty. Many new lines are identified and added to the available databa ses. Part of this work was performed under the auspices of the U S Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was supported by NASA's Astronomy and Physics Research and Analysis Program under Con t ract NNH07AF811.

  19. Class XIII myosins from the green alga Acetabularia: driving force in organelle transport and tip growth?

    PubMed

    Vugrek, Oliver; Sawitzky, Heiko; Menzel, Diedrik

    2003-01-01

    The green alga Acetabularia cliftonii (Dasycladales) contains at least two myosin genes, which already have been assigned class XIII of the myosin superfamily (Cope et al., 1996, Structure 4: 969-987). Here we report a complete analysis of their gene structure and their corresponding transcripts Aclmyo1 and Aclmyo2. Despite promising Northern blot data no evidence for alternative splicing could be found. Dissecting the primary structure at complementary deoxyribonucleic acid (cDNA) level we found a myosin typical organization in head, neck and variable tail region. Most striking is the extremely short tail region of Aclmyo1 with only 18 residues and the maximum number of 7 IQ motifs in Aclmyo2. Probing Acetabularia protein extracts with an antibody raised to a synthetic peptide derived from the amino terminal region in Alcmyo1 showed cross-reactivity to a polypeptide with a molecular mass of approximately 100 kD. This corresponds to the predicted molecular weight of Aclmyo1, which is 106 kD as deduced from the amino acid sequence. Additionally, the same cross-reactive protein is capable of binding F-actin as indicated by a co-sedimentation assay. Confocal laser scanning microscopy with raised antibody revealed co-localization with organelles, the budding region of lateral whorls and the cell apex suggesting involvement of putative Acetabularia myosin in organelle transport and tip growth.

  20. Factor XIII subunits in human tears; their highly elevated levels following penetrating keratoplasty.

    PubMed

    Orosz, Zsuzsanna Z; Katona, Éva; Facskó, Andrea; Módis, László; Muszbek, László; Berta, András

    2011-01-30

    As blood coagulation factor XIII (FXIII) is of high importance in wound healing, we determined the concentrations of FXIII A and B subunits (FXIII-A and FXIII-B) and their complex (FXIII-A(2)B(2)) in normal tears and in tears from patients undergoing penetrating keratoplasty (PKP). FXIII complex and subunit concentrations were measured by highly sensitive chemiluminescent ELISAs in tears from 60 healthy volunteers and from 31 patients undergoing corneal transplantation. In non-stimulated tears from healthy volunteers, low but consistent amounts of FXIII-A and FXIII-B (medians: 2.13 μg/L and 7.22 μg/L, respectively) were measured, mostly in non-complexed form. Following stimulation of tear secretion FXIII levels moderately decreased, but if normalized to protein concentration they did not change. One day after PKP FXIII levels became highly elevated, then gradually decreased, but even on day 7 significantly exceeded pre-surgery values. The elevation of tear FXIII levels was significantly higher in PKP patients who later developed neovascularization of donor cornea. FXIII subunits are low concentration components of normal tear. The striking elevation of FXIII subunit and FXIII-A(2)B(2) concentrations after PKP suggests the involvement of FXIII in corneal wound healing. Perioperatively measured high FXIII levels in tears seem to represent a risk of neovascularization. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Factor XIII deficiency in Iran: a comprehensive review of the literature.

    PubMed

    Dorgalaleh, Akbar; Naderi, Majid; Hosseini, Maryam Sadat; Alizadeh, Shaban; Hosseini, Soudabeh; Tabibian, Shadi; Eshghi, Peyman

    2015-04-01

    Factor XIII deficiency (FXIIID) is a rare bleeding disorder with an estimated prevalence of 1 in 2-million population worldwide. In Iran, a Middle Eastern country with a high rate of consanguineous marriages, there are approximately 473 patients afflicted with FXIIID. An approximately 12-fold higher prevalence of FXIIID is estimated in Iran in comparison with overall worldwide frequency. In this study, we have undertaken a comprehensive review on different aspects of FXIIID in the Iranian population. The distribution of this disease in different regions of Iran reveals that Sistan and Baluchestan Province has not only the highest number of patients with FXIIID in Iran but the highest global incidence of this condition. Among Iranian patients, umbilical cord bleeding, hematoma, and prolonged wound bleeding are the most frequent clinical manifestations. There are several disease causing mutations in Iranian patients with FXIIID, with Trp187Arg being the most common mutation in FXIIID in Iran. Traditionally, the management of FXIIID in Iran was only based on administration of fresh frozen plasma or cryoprecipitate, until 2009 when FXIII concentrate became available for patient management. Various studies have evaluated the efficacy and safety of prophylactic regimens in different situations with valuable findings. Although the focus of this study is on Iran, it offers considerable insight into FXIIID, which can be applied more extensively to improve the management and quality of life in all affected patients. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Revisiting the mechanism of coagulation factor XIII activation and regulation from a structure/functional perspective

    PubMed Central

    Gupta, Sneha; Biswas, Arijit; Akhter, Mohammad Suhail; Krettler, Christoph; Reinhart, Christoph; Dodt, Johannes; Reuter, Andreas; Philippou, Helen; Ivaskevicius, Vytautas; Oldenburg, Johannes

    2016-01-01

    The activation and regulation of coagulation Factor XIII (FXIII) protein has been the subject of active research for the past three decades. Although discrete evidence exists on various aspects of FXIII activation and regulation a combinatorial structure/functional view in this regard is lacking. In this study, we present results of a structure/function study of the functional chain of events for FXIII. Our study shows how subtle chronological submolecular changes within calcium binding sites can bring about the detailed transformation of the zymogenic FXIII to its activated form especially in the context of FXIIIA and FXIIIB subunit interactions. We demonstrate what aspects of FXIII are important for the stabilization (first calcium binding site) of its zymogenic form and the possible modes of deactivation (thrombin mediated secondary cleavage) of the activated form. Our study for the first time provides a structural outlook of the FXIIIA2B2 heterotetramer assembly, its association and dissociation. The FXIIIB subunits regulatory role in the overall process has also been elaborated upon. In summary, this study provides detailed structural insight into the mechanisms of FXIII activation and regulation that can be used as a template for the development of future highly specific therapeutic inhibitors targeting FXIII in pathological conditions like thrombosis. PMID:27453290

  3. Clinical uses of collagen shields.

    PubMed

    Poland, D E; Kaufman, H E

    1988-09-01

    Collagen shields immersed in tobramycin solution for one minute were applied to one eye each of 60 patients who had had cataract extraction, penetrating keratoplasty, or epikeratophakia or who had nonsurgical epithelial healing problems. The shields were well tolerated; one patient had the shield removed and one patient lost the shield in the early postoperative period. The surgical patients showed more rapid healing of epithelial defects after surgery with the use of the collagen shield. Patients with acute nonsurgical epithelial problems, such as contact lens abrasions and recurrent erosion, responded to the use of the collagen shield with improved healing. Patients with chronic epithelial defects responded poorly, presumably because underlying abnormalities in Bowman's layer prevented epithelial growth in the area of the defect. No infections were noted in any of the patients. The collagen shields appear to promote enhanced healing in patients with postsurgical and acute epithelial defects and to provide adequate antibiotic prophylaxis against infection in these vulnerable eyes.

  4. Human collagen produced in plants

    PubMed Central

    Shoseyov, Oded; Posen, Yehudit; Grynspan, Frida

    2014-01-01

    Consequential to its essential role as a mechanical support and affinity regulator in extracellular matrices, collagen constitutes a highly sought after scaffolding material for regeneration and healing applications. However, substantiated concerns have been raised with regard to quality and safety of animal tissue-extracted collagen, particularly in relation to its immunogenicity, risk of disease transmission and overall quality and consistency. In parallel, contamination with undesirable cellular factors can significantly impair its bioactivity, vis-a-vis its impact on cell recruitment, proliferation and differentiation. High-scale production of recombinant human collagen Type I (rhCOL1) in the tobacco plant provides a source of an homogenic, heterotrimeric, thermally stable “virgin” collagen which self assembles to fine homogenous fibrils displaying intact binding sites and has been applied to form numerous functional scaffolds for tissue engineering and regenerative medicine. In addition, rhCOL1 can form liquid crystal structures, yielding a well-organized and mechanically strong membrane, two properties indispensable to extracellular matrix (ECM) mimicry. Overall, the shortcomings of animal- and cadaver-derived collagens arising from their source diversity and recycled nature are fully overcome in the plant setting, constituting a collagen source ideal for tissue engineering and regenerative medicine applications. PMID:23941988

  5. Nonlinear microscopy of collagen fibers

    NASA Astrophysics Data System (ADS)

    Strupler, M.; Pena, A.-M.; Hernest, M.; Tharaux, P.-L.; Fabre, A.; Marchal-Somme, J.; Crestani, B.; Débarre, D.; Martin, J.-L.; Beaurepaire, E.; Schanne-Klein, M.-C.

    2007-02-01

    We used intrinsic Second Harmonic Generation (SHG) by fibrillar collagen to visualize the three-dimensional architecture of collagen fibrosis at the micrometer scale using laser scanning nonlinear microscopy. We showed that SHG signals are highly specific to fibrillar collagen and provide a sensitive probe of the micrometer-scale structural organization of collagen in tissues. Moreover, recording simultaneously other nonlinear optical signals in a multimodal setup, we visualized the tissue morphology using Two-Photon Excited Fluorescence (2PEF) signals from endogenous chromophores such as NADH or elastin. We then compared different methods to determine accurate indexes of collagen fibrosis using nonlinear microscopy, given that most collagen fibrils are smaller than the microscope resolution and that second harmonic generation is a coherent process. In order to define a robust method to process our three-dimensional images, we either calculated the fraction of the images occupied by a significant SHG signal, or averaged SHG signal intensities. We showed that these scores provide an estimation of the extension of renal and pulmonary fibrosis in murine models, and that they clearly sort out the fibrotic mice.

  6. Role of collagen fibers in acupuncture analgesia therapy on rats.

    PubMed

    Yu, Xiaojia; Ding, Guanghong; Huang, Hong; Lin, Jun; Yao, Wei; Zhan, Rui

    2009-01-01

    Acupuncture, a traditional Chinese therapeutic technique, has been put into practice for more than 4000 years and widely used for pain management since 1958. However, what is the mechanism underlying the acupuncture for analgesia effects by stimulation of acupoints, what substances receive the original mechanical acupuncture signals from the acupoints, or what transforms these signals into effective biological signals are not well understood. In this work, the role of collagen fibers at acupoints during acupuncture analgesia on rats was investigated. When the structure of the collagen fibers at Zusanli (ST36) was destroyed by injection of type I collagenase, the needle force caused by the acupuncture declined and the analgesic effects of rotation or lift-thrusting manipulations was attenuated accompanying the restraint of the degranulation ratios of mast cells. We propose that collagen fibers play an important role in acupuncture-induced analgesia, and they participate in signal transmission and transform processes.

  7. Heterogeneous force network in 3D cellularized collagen networks.

    PubMed

    Liang, Long; Jones, Christopher; Chen, Shaohua; Sun, Bo; Jiao, Yang

    2016-10-25

    Collagen networks play an important role in coordinating and regulating collective cellular dynamics via a number of signaling pathways. Here, we investigate the transmission of forces generated by contractile cells in 3D collagen-I networks. Specifically, the graph (bond-node) representations of collagen networks with collagen concentrations of 1, 2 and 4 mg ml(-1) are derived from confocal microscopy data and used to model the network microstructure. Cell contraction is modeled by applying correlated displacements at specific nodes of the network, representing the focal adhesion sites. A nonlinear elastic model is employed to characterize the mechanical behavior of individual fiber bundles including strain hardening during stretching and buckling under compression. A force-based relaxation method is employed to obtain equilibrium network configurations under cell contraction. We find that for all collagen concentrations, the majority of the forces are carried by a small number of heterogeneous force chains emitted from the contracting cells, which is qualitatively consistent with our experimental observations. The force chains consist of fiber segments that either possess a high degree of alignment before cell contraction or are aligned due to fiber reorientation induced by cell contraction. The decay of the forces along the force chains is significantly slower than the decay of radially averaged forces in the system, suggesting that the fibreous nature of biopolymer network structure can support long-range force transmission. The force chains emerge even at very small cell contractions, and the number of force chains increases with increasing cell contraction. At large cell contractions, the fibers close to the cell surface are in the nonlinear regime, and the nonlinear region is localized in a small neighborhood of the cell. In addition, the number of force chains increases with increasing collagen concentration, due to the larger number of focal adhesion sites

  8. Heterogeneous force network in 3D cellularized collagen networks

    NASA Astrophysics Data System (ADS)

    Liang, Long; Jones, Christopher; Chen, Shaohua; Sun, Bo; Jiao, Yang

    2016-12-01

    Collagen networks play an important role in coordinating and regulating collective cellular dynamics via a number of signaling pathways. Here, we investigate the transmission of forces generated by contractile cells in 3D collagen-I networks. Specifically, the graph (bond-node) representations of collagen networks with collagen concentrations of 1, 2 and 4 mg ml-1 are derived from confocal microscopy data and used to model the network microstructure. Cell contraction is modeled by applying correlated displacements at specific nodes of the network, representing the focal adhesion sites. A nonlinear elastic model is employed to characterize the mechanical behavior of individual fiber bundles including strain hardening during stretching and buckling under compression. A force-based relaxation method is employed to obtain equilibrium network configurations under cell contraction. We find that for all collagen concentrations, the majority of the forces are carried by a small number of heterogeneous force chains emitted from the contracting cells, which is qualitatively consistent with our experimental observations. The force chains consist of fiber segments that either possess a high degree of alignment before cell contraction or are aligned due to fiber reorientation induced by cell contraction. The decay of the forces along the force chains is significantly slower than the decay of radially averaged forces in the system, suggesting that the fibreous nature of biopolymer network structure can support long-range force transmission. The force chains emerge even at very small cell contractions, and the number of force chains increases with increasing cell contraction. At large cell contractions, the fibers close to the cell surface are in the nonlinear regime, and the nonlinear region is localized in a small neighborhood of the cell. In addition, the number of force chains increases with increasing collagen concentration, due to the larger number of focal adhesion sites

  9. Resliced image space construction for coronary artery collagen fibers

    PubMed Central

    Luo, Tong; Chen, Huan; Kassab, Ghassan S.

    2017-01-01

    Collagen fibers play an important role in the biomechanics of the blood vessel wall. The objective of this study was to determine the 3D microstructure of collagen fibers in the media and adventitia of coronary arteries. We present a novel optimal angle consistence algorithm to reform image slices in the visualization and analysis of 3D collagen images. 3D geometry was reconstructed from resliced image space where the 3D skeleton was extracted as the primary feature for accurate reconstruction of geometrical parameters. Collagen fibers (range 80–200) were reconstructed from the porcine coronary artery wall for the measurement of various morphological parameters. Collagen waviness and diameters were 1.37 ± 0.19 and 2.61 ± 0.89 μm, respectively. The biaxial distributions of orientation had two different peaks at 110.7 ± 25.2° and 18.4 ± 19.3°. Results for width, waviness, and orientation were found to be in good agreement with manual measurements. In addition to accurately measuring 2D features more efficiently than the manual approach, the present method produced 3D features that could not be measured in the 2D manual approach. These additional parameters included the tilt angle (5.10 ± 2.95°) and cross-sectional area (CSA; 5.98 ± 3.79 μm2) of collagen fibers. These 3D collagen reconstructions provide accurate and reliable microstructure for biomechanical modeling of vessel wall mechanics. PMID:28953913

  10. Comparative studies of type X collagen expression in normal and rachitic chicken epiphyseal cartilage

    PubMed Central

    1989-01-01

    The levels of type X collagen in mineralizing normal chicken epiphyses and nonmineralizing rachitic chicken tibial epiphyses were measured and compared. Qualitative immunoperoxidase studies with anti-chick type X collagen monoclonal antibodies on sections from normal and rachitic cartilage demonstrated that the type X collagen levels in rachitic growth plates are reduced. Northern hybridization of mRNA and biosynthetic studies have confirmed that type X collagen synthesis in rickets is also decreased. In hypocalcemic rickets, the level of type X collagen mRNA is reduced by 80% whereas the level of type X collagen mRNA is only reduced by 50% in normocalcemic rickets. These observations provide additional evidence that type X collagen is involved in the process of cartilage mineralization and also suggest that the partial recovery of type X collagen synthesis in normocalcemic rickets may be related to the elevated plasma concentration of calcium. Calcium concentration may therefore play an important role in the control of type X collagen synthesis. PMID:2477383

  11. Regulation of collagen fibrillogenesis by cell-surface expression of kinase dead DDR2.

    PubMed

    Blissett, Angela R; Garbellini, Derek; Calomeni, Edward P; Mihai, Cosmin; Elton, Terry S; Agarwal, Gunjan

    2009-01-23

    The assembly of collagen fibers, the major component of the extracellular matrix (ECM), governs a variety of physiological processes. Collagen fibrillogenesis is a tightly controlled process in which several factors, including collagen binding proteins, have a crucial role. Discoidin domain receptors (DDR1 and DDR2) are receptor tyrosine kinases that bind to and are phosphorylated upon collagen binding. The phosphorylation of DDRs is known to activate matrix metalloproteases, which in turn cleave the ECM. In our earlier studies, we established a novel mechanism of collagen regulation by DDRs; that is, the extracellular domain (ECD) of DDR2, when used as a purified, soluble protein, inhibits collagen fibrillogenesis in-vitro. To extend this novel observation, the current study investigates how the DDR2-ECD, when expressed as a membrane-anchored, cell-surface protein, affects collagen fibrillogenesis by cells. We generated a mouse osteoblast cell line that stably expresses a kinase-deficient form of DDR2, termed DDR2/-KD, on its cell surface. Transmission electron microscopy, fluorescence microscopy, and hydroxyproline assays demonstrated that the expression of DDR2/-KD reduced the rate and abundance of collagen deposition and induced significant morphological changes in the resulting fibers. Taken together, our observations extend the functional roles that DDR2 and possibly other membrane-anchored, collagen-binding proteins can play in the regulation of cell adhesion, migration, proliferation and in the remodeling of the extracellular matrix.

  12. Collagen organization in canine myxomatous mitral valve disease: an x-ray diffraction study.

    PubMed

    Hadian, Mojtaba; Corcoran, Brendan M; Han, Richard I; Grossmann, J Günter; Bradshaw, Jeremy P

    2007-10-01

    Collagen fibrils, a major component of mitral valve leaflets, play an important role in defining shape and providing mechanical strength and flexibility. Histopathological studies show that collagen fibrils undergo dramatic changes in the course of myxomatous mitral valve disease in both dogs and humans. However, little is known about the detailed organization of collagen in this disease. This study was designed to analyze and compare collagen fibril organization in healthy and lesional areas of myxomatous mitral valves of dogs, using synchrotron small-angle x-ray diffraction. The orientation, density, and alignment of collagen fibrils were mapped across six different valves. The findings reveal a preferred collagen alignment in the main body of the leaflets between two commissures. Qualitative and quantitative analysis of the data showed significant differences between affected and lesion-free areas in terms of collagen content, fibril alignment, and total tissue volume. Regression analysis of the amount of collagen compared to the total tissue content at each point revealed a significant relationship between these two parameters in lesion-free but not in affected areas. This is the first time this technique has been used to map collagen fibrils in cardiac tissue; the findings have important applications to human cardiology.

  13. Characterization of the correlation between collagen fibril thickness and forward and backward second harmonic signal

    NASA Astrophysics Data System (ADS)

    Hsueh, Chiu-Mei; Hovhannisyan, Vladimir A.; Dong, Chen-Yuan

    2011-07-01

    Optical-based microscopy plays an important role in various scientific fields such as physics, chemistry and biology. Second harmonic generation (SHG) microscopy has become one of the indispensable tools for biomedical imaging for the last decade because the signal generated from SHG is sensitive to the objective structure and this amazing non-invasive method can also directly observe the objective without using extra fluorescent labels, especially for collagen molecules. As the most abundant protein in animals, collagen is responsible for a number of important structural and functional roles in vertebrates. For certain diseases, it has been shown that collagen fiber diameter has a significant variation and thus as a vital symptom for diagnosis. Moreover, collagen diameter is also a key parameter for fibrogenesis studying. Therefore, the determination of collagen fiber diameter is important for studying biophysical processes and identifying bioengineering applications. In this study, we investigated various collagen fibril thicknesses and the corresponding forward (FSHG) and backward (BSHG) second harmonic signal intensity variation. Our result exhibits that SHG intensity can quantify describe the relative collagen fibril thickness alteration, which also indicates the coherent effect difference between FSHG and BSHG. This approach demonstrates the capability of SHG imaging in providing collagen mechanical information and that may be applied in the evaluation of advancing collagen issues in vivo.

  14. A Novel Role of Vimentin Filaments: Binding and Stabilization of Collagen mRNAs ▿

    PubMed Central

    Challa, Azariyas A.; Stefanovic, Branko

    2011-01-01

    The stem-loop in the 5′ untranslated region (UTR) of collagen α1(I) and α2(I) mRNAs (5′SL) is the key element regulating their stability and translation. Stabilization of collagen mRNAs is the predominant mechanism for high collagen expression in fibrosis. LARP6 binds the 5′SL of α1(I) and α2(I) mRNAs with high affinity. Here, we report that vimentin filaments associate with collagen mRNAs in a 5′SL- and LARP6-dependent manner and stabilize collagen mRNAs. LARP6 interacts with vimentin filaments through its La domain and colocalizes with the filaments in vivo. Knockdown of LARP6 by small interfering RNA (siRNA) or mutation of the 5′SL abrogates the interaction of collagen mRNAs with vimentin filaments. Vimentin knockout fibroblasts produce reduced amounts of type I collagen due to decreased stability of collagen α1(I) and α2(I) mRNAs. Disruption of vimentin filaments using a drug or by expression of dominant-negative desmin reduces type I collagen expression, primarily due to decreased stability of collagen mRNAs. RNA fluorescence in situ hybridization (FISH) experiments show that collagen α1(I) and α2(I) mRNAs are associated with vimentin filaments in vivo. Thus, vimentin filaments may play a role in the development of tissue fibrosis by stabilizing collagen mRNAs. This finding will serve as a rationale for targeting vimentin in the development of novel antifibrotic therapies. PMID:21746880

  15. Measurement of the Mechanical Properties of Intact Collagen Fibrils

    NASA Astrophysics Data System (ADS)

    Mercedes, H.; Heim, A.; Matthews, W. G.; Koob, T.

    2006-03-01

    Motivated by the genetic disorder Ehlers-Danlos syndrome (EDS), in which proper collagen synthesis is interrupted, we are investigating the structural and mechanical properties of collagen fibrils. The fibrous glycoprotein collagen is the most abundant protein found in the human body and plays a key role in the extracellular matrix of the connective tissue, the properties of which are altered in EDS. We have selected as our model system the collagen fibrils of the sea cucumber dermis, a naturally mutable tissue. This system allows us to work with native fibrils which have their proteoglycan complement intact, something that is not possible with reconstituted mammalian collagen fibrils. Using atomic force microscopy, we measure, as a function of the concentration of divalent cations, the fibril diameter, its response to force loading, and the changes in its rigidity. Through these experiments, we will shed light on the mechanisms which control the properties of the sea cucumber dermis and hope to help explain the altered connective tissue extracellular matrix properties associated with EDS.

  16. A novel fish collagen scaffold as dural substitute.

    PubMed

    Li, Qing; Mu, Lanlan; Zhang, Fenghua; Sun, Yue; Chen, Quan; Xie, Cuicui; Wang, Hongmei

    2017-11-01

    The novel fish collagen scaffolds were prepared by lyophilization. The collagen sponges and chitosan were chemically cross-linked with the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as a cross-linking agent by pressing in one special mould. The collagen scaffolds were analyzed by scanning electron microscopy (SEM) and mechanical property, and the in vitro collagenase degradation was tested. The results revealed that the scaffold has a suitable porosity, elasticity and prevent fluid leakage, suggesting potential applications in the tissue-engineered. In vitro collagenase degradation demonstrated that the collagen cross-linking with EDC by pressing played an important role in their resistance to biodegradation. Moreover, the scaffold proved excellent biocompatibility for the activity and proliferation of mouse embryonic fibroblasts cells (MEFs) in vitro. The rabbit dural defect model demonstrated that the scaffolds could prevent brain tissue adhesion, which reduce the opportunity of inflammation, facilitate the growth of fibroblasts and enhance the tissue regeneration and healing. The novel fish collagen scaffold as dural substitute, demonstrate a capability for using in the field of tissue engineering. Copyright © 2017. Published by Elsevier B.V.

  17. Electromechanical properties of dried tendon and isoelectrically focused collagen hydrogels.

    PubMed

    Denning, D; Abu-Rub, M T; Zeugolis, D I; Habelitz, S; Pandit, A; Fertala, A; Rodriguez, B J

    2012-08-01

    Assembling artificial collagenous tissues with structural, functional, and mechanical properties which mimic natural tissues is of vital importance for many tissue engineering applications. While the electro-mechanical properties of collagen are thought to play a role in, for example, bone formation and remodeling, this functional property has not been adequately addressed in engineered tissues. Here the electro-mechanical properties of rat tail tendon are compared with those of dried isoelectrically focused collagen hydrogels using piezoresponse force microscopy under ambient conditions. In both the natural tissue and the engineered hydrogel D-periodic type I collagen fibrils are observed, which exhibit shear piezoelectricity. While both tissues also exhibit fibrils with parallel orientations, Fourier transform analysis has revealed that the degree of parallel alignment of the fibrils in the tendon is three times that of the dried hydrogel. The results obtained demonstrate that isoelectrically focused collagen has similar structural and electro-mechanical properties to that of tendon, which is relevant for tissue engineering applications.

  18. Biological effect of hydrolyzed collagen on bone metabolism.

    PubMed

    Daneault, Audrey; Prawitt, Janne; Fabien Soulé, Véronique; Coxam, Véronique; Wittrant, Yohann

    2017-06-13

    Osteoporosis is a chronic and asymptomatic disease characterized by low bone mass and skeletal microarchitectural deterioration, increased risk of fracture, and associated comorbidities most prevalent in the elderly. Due to an increasingly aging population, osteoporosis has become a major health issue requiring innovative disease management. Proteins are important for bone by providing building blocks and by exerting specific regulatory function. This is why adequate protein intake plays a considerable role in both bone development and bone maintenance. More specifically, since an increase in the overall metabolism of collagen can lead to severe dysfunctions and a more fragile bone matrix and because orally administered collagen can be digested in the gut, cross the intestinal barrier, enter the circulation, and become available for metabolic processes in the target tissues, one may speculate that a collagen-enriched diet provides benefits for the skeleton. Collagen-derived products such as gelatin or hydrolyzed collagen (HC) are well acknowledged for their safety from a nutritional point of view; however, what is their impact on bone biology? In this manuscript, we critically review the evidence from literature for an effect of HC on bone tissues in order to determine whether HC may represent a relevant alternative in the design of future nutritional approaches to manage osteoporosis prevention.

  19. Biochemical changes in the collagenous matrix of osteoporotic avian bone.

    PubMed Central

    Knott, L; Whitehead, C C; Fleming, R H; Bailey, A J

    1995-01-01

    No detailed biochemical analysis has been carried out of the compositional changes in the collagen matrix of avian bone in relation to increased bone fragility in osteoporosis. We have shown that osteoporosis in avian bone is certainly not just a simple loss of apatite and collagen, but involves significant changes in the biochemistry of the collagen molecule and consequently in the physical properties of the fibre. The decreased mechanical strength and the change in the thermal stability can be directly related to changes in post-translational modifications, i.e. lysine hydroxylation and the intermolecular cross-link profile. The increased hydroxylation and change in cross-linking are consistent with increased turnover of the collagen, possibly in an attempt to initiate a repair mechanism which, in fact, leads to an acceleration in the increase in fragility of the bone. Clearly there are post-translational modifications of the newly synthesized collagen in avian osteoporosis, and these changes may play a role in the pathogenesis of the disease. Images Figure 1 PMID:7575401

  20. Nanomechanics of Type I Collagen.

    PubMed

    Varma, Sameer; Orgel, Joseph P R O; Schieber, Jay D

    2016-07-12

    Type I collagen is the predominant collagen in mature tendons and ligaments, where it gives them their load-bearing mechanical properties. Fibrils of type I collagen are formed by the packing of polypeptide triple helices. Higher-order structures like fibril bundles and fibers are assembled from fibrils in the presence of other collagenous molecules and noncollagenous molecules. Curiously, however, experiments show that fibrils/fibril bundles are less resistant to axial stress compared to their constituent triple helices-the Young's moduli of fibrils/fibril bundles are an order-of-magnitude smaller than the Young's moduli of triple helices. Given the sensitivity of the Young's moduli of triple helices to solvation environment, a plausible explanation is that the packing of triple helices into fibrils perhaps reduces the Young's modulus of an individual triple helix, which results in fibrils having smaller Young's moduli. We find, however, from molecular dynamics and accelerated conformational sampling simulations that the Young's modulus of the buried core of the fibril is of the same order as that of a triple helix in aqueous phase. These simulations, therefore, suggest that the lower Young's moduli of fibrils/fibril bundles cannot be attributed to the specific packing of triple helices in the fibril core. It is not the fibril core that yields initially to axial stress. Rather, it must be the portion of the fibril exposed to the solvent and/or the fibril-fibril interface that bears the initial strain. Overall, this work provides estimates of Young's moduli and persistence lengths at two levels of collagen's structural assembly, which are necessary to quantitatively investigate the response of various biological factors on collagen mechanics, including congenital mutations, posttranslational modifications and ligand binding, and also engineer new collagen-based materials.

  1. Comparison of type I, type III and type VI collagen binding assays in diagnosis of von Willebrand disease.

    PubMed

    Flood, V H; Gill, J C; Christopherson, P A; Wren, J S; Friedman, K D; Haberichter, S L; Hoffmann, R G; Montgomery, R R

    2012-07-01

    von Willebrand factor (VWF) plays a key role in coagulation by tethering platelets to injured subendothelium through binding sites for collagen and platelet GPIb. Collagen binding assays (VWF:CB), however, are not part of the routine work-up for von Willebrand disease (VWD). This study presents data on collagen binding for healthy controls and VWD subjects to compare three different collagens. VWF antigen (VWF:Ag), VWF ristocetin cofactor activity and VWF:CB with types I, III and VI collagen were examined for samples obtained from the Zimmerman Program. Mean VWF:CB in healthy controls was similar and highly correlated for types I, III and VI collagen. The mean VWF:CB/VWF:Ag ratios for types I, III and VI collagen were 1.31, 1.19 and 1.21, respectively. In type 1 VWD subjects, VWF:CB was similar to VWF:Ag with mean VWF:CB/VWF:Ag ratios for types I, III and VI collagen of 1.32, 1.08 and 1.1, respectively. For type 2A and 2B subjects, VWF:CB was uniformly low, with mean ratios of 0.62 and 0.7 for type I collagen, 0.38 and 0.4 for type III collagen, and 0.5 and 0.47 for type VI collagen. Normal ranges for type I, III and VI collagen are correlated, but higher values were obtained with type I collagen as compared with types III and VI. The low VWF:CB in type 2A and 2B subjects suggests that VWF:CB may also supplement analysis of multimer distribution. However, these results reflect only one set of assay conditions per collagen type and therefore may not be generalizable to all collagen assays. © 2012 International Society on Thrombosis and Haemostasis.

  2. PREFACE: MCWASP XIII: International Conference on Modeling of Casting, Welding and Advanced Solidification Processes

    NASA Astrophysics Data System (ADS)

    Ludwig, Andreas

    2012-07-01

    Due to fast-paced development in computer technologies during the last three decades, computer-based process modeling has become an important tool for the improvement of existing process technologies and the development of new, innovative technologies. With the help of numerical process simulations, complex and costly experimental trials can now be reduced to a minimum. For metallurgical processes in particular, computer simulations are of outstanding importance, as the flow and solidification of molten alloys or the formation of microstructure and defects can hardly be observed experimentally. Corresponding computer simulations allow us inside views into the key process phenomena and so offer great potential for optimization. In 1980 the conference series 'Modeling of Casting, Welding and Advanced Solidification Processes (MCWASP)' was started up, and has now been continued by holding the 13th international conference on 'Modeling of Casting, Welding and Advanced Solidification Processes', MCWASP XIII, in Schladming, Austria, from June 17-22 2012. Around 200 scientists from industry and academia, coming from 20 countries around the globe attended 78 oral and 50 poster presentations on different aspects of solidification-related modeling topics. Besides process-related sessions such as (i) Ingot and Shape Casting, (ii) Continuous Casting and Direct Chill Casting, (iii) Directional Solidification and Zone Melting, (iv) Welding, and (v) Centrifugal Casting, a larger focus was put on (vi) Experimental Investigation and In-Situ Observations. In recent years, this topic has been significantly strengthened as advanced synchrotron technologies allow fantastic in-situ observations of phenomena happening inside small metallic samples. These observations will definitely serve as a benchmark for the modeling community. Further macroscopic aspects of advanced solidification science were tackled in the sessions (vii) Electromagnetic Coupling, (viii) Thermomechanics, (ix

  3. PBT assessment using the revised annex XIII of REACH: a comparison with other regulatory frameworks.

    PubMed

    Moermond, Caroline T A; Janssen, Martien P M; de Knecht, Joop A; Montforts, Mark H M M; Peijnenburg, Willie J G M; Zweers, Patrick G P C; Sijm, Dick T H M

    2012-04-01

    There is no uniform Persistent, Bioaccumulative, Toxic (PBT) or very Persistent, very Bioaccumulative (vPvB) assessment of chemicals in Europe, as the various regulatory frameworks use only limited or dissimilar PBT assessments, or none at all. The European REACH Regulation requires a PBT/vPvB assessment for all chemical substances that are produced within or imported into the EU in amounts exceeding 10 tonnes per year, using the criteria as described in REACH Annex XIII. However, not all substances on the EU market need to be screened according to these criteria under REACH. For a number of substances, such as those imported or produced in lower volumes, there is no REACH requirement, and for human and veterinary medicinal products, biocides, plant protection products, and food and feed additives, other EU legislation is in force to regulate their marketing and use. Compounds may also be screened for PBT properties within international agreements, such as the Oslo Paris Convention (OSPAR), the IMO Ballast Water Management Convention, the UNECE POP Protocol, and the UNEP Stockholm Convention on Persistent Organic Pollutants (POPs), which all have their own set of PBT or POP criteria. This study compares the PBT/vPvB assessment under REACH with PBT or POP assessments performed within other regulatory frameworks. Attention is paid to the process of PBT/vPvB/POP identification and which legislative steps can be taken if the PBT/vPvB/POP status is assigned. In addition to the different PBT or POP criteria of the various frameworks, descriptions of these criteria and approaches for application of weight of evidence also vary. Some EU frameworks still refer to the criteria in the former Technical Guidance Documents (TGD) of 2003, which preceded REACH. Although differences between the old TGD criteria and those in the REACH Annex XIII are small, this does cause dissimilarities among the frameworks. The risk management follow-up of a PBT or vPvB identification, which may

  4. Hydroperoxide formation in model collagens and collagen type I.

    PubMed

    Madison, S A; McCallum, J E B; Rojas Wahl, R U

    2002-02-01

    Protein hydroperoxides represent a relatively new concept in understanding biological oxidation chemistry. Here, we show with post-column-chemiluminescence that this sometimes remarkably stable and yet reactive species can be formed in collagen models and collagen type I when submitted to oxidative stress as exemplified by the Fenton reaction. These findings are supported by mass spectrometry and iodometry. Using (Proline-hydroxyproline-glycine)(10) (POG)(10), those hydroperoxides are stable for hours at room temperature and can give rise to free radicals in the presence of ferrous sulphate, as evidenced by EPR spin trapping with DMPO. Possible implications for biological systems are discussed with emphasis on collagen in the extracellular matrix in skin as a major type of connective tissue.

  5. [Religion and healing in the XIII century: some considerations about therapy and holy medical observations in Iacopo da Varagine's Cronica Civitatis Ianuensis].

    PubMed

    Moggia, Carlo

    2004-01-01

    The article is dedicated to recovery and holy therapy in Medieval society. In the XIII century Roman Church define the religious observations of physical and spiritual healing: the intervention of Saints and their holy miracles is very important for a perfect recovery. The article analyse the holy therapy through the study of the Cronica Civitatis Ianuensis read by the Dominican friar Iacopo da Varagine, at the end of the XIII century. This work represents one of the most important literary and hagiographic instrument to comprehend medical medieval imaginary.

  6. Enhanced stabilization of collagen by furfural.

    PubMed

    Lakra, Rachita; Kiran, Manikantan Syamala; Usha, Ramamoorthy; Mohan, Ranganathan; Sundaresan, Raja; Korrapati, Purna Sai

    2014-04-01

    Furfural (2-furancarboxaldehyde), a product derived from plant pentosans, has been investigated for its interaction with collagen. Introduction of furfural during fibril formation enhanced the thermal and mechanical stability of collagen. Collagen films treated with furfural exhibited higher denaturation temperature (Td) (p<0.04) and showed a 3-fold increase in Young's modulus (p<0.04) at higher concentration. Furfural and furfural treated collagen films did not have any cytotoxic effect. Rheological characterization showed an increase in shear stress and shear viscosity with increasing shear rate for treated collagen. Circular dichroism (CD) studies indicated that the furfural did not have any impact on triple helical structure of collagen. Scanning electron microscopy (SEM) of furfural treated collagen exhibited small sized porous structure in comparison with untreated collagen. Thus this study provides an alternate ecologically safe crosslinking agent for improving the stability of collagen for biomedical and industrial applications.

  7. Safety of recombinant human factor XIII in a cynomolgus monkey model of extracorporeal blood circulation.

    PubMed

    Ponce, R; Armstrong, K; Andrews, K; Hensler, J; Waggie, K; Heffernan, J; Reynolds, T; Rogge, M

    2005-01-01

    Factor XIII (FXIII) is a thrombin-activated plasma coagulation factor critical for blood clot stabilization and longevity. Administration of exogenous FXIII to replenish depleted stores after major surgery, including cardiopulmonary bypass, may reduce bleeding complications and transfusion requirements. Thus, a model of extracorporeal circulation (ECC) was developed in adult male cynomolgus monkeys (Macaca fascicularis) to evaluate the nonclinical safety of recombinant human FXIII (rFXIII). The hematological and coagulation profile in study animals during and after 2 h of ECC was similar to that reported for humans during and after cardiopulmonary bypass, including observations of anemia, thrombocytopenia, and activation of coagulation and platelets. Intravenous slow bolus injection of 300 U/kg (2.1 mg/kg) or 1000 U/kg (7 mg/kg) rFXIII after 2 h of ECC was well tolerated in study animals, and was associated with a dose-dependent increase in FXIII activity. No clinically significant effects in respiration, ECG, heart rate, blood pressure, body temperature, clinical chemistry, hematology (including platelet counts), or indicators of thrombosis (thrombin:anti-thrombin complex and D-Dimer) or platelet activation (platelet factor 4 and beta-thromboglobulin) were related to rFXIII administration. Specific examination of brain, heart, lung, liver, and kidney from rFXIII-treated animals provided no evidence of histopathological alterations suggestive of subclinical hemorrhage or thrombosis. Taken as a whole, the results demonstrate the ECC model suitably replicated the clinical presentation reported for humans during and after cardiopulmonary bypass surgery, and do not suggest significant concerns regarding use of rFXIII in replacement therapy after extracorporeal circulation.

  8. Relationship between factor XIII activity, fibrinogen, haemostasis screening tests and postoperative bleeding in cardiopulmonary bypass surgery.

    PubMed

    Blome, Markus; Isgro, Frank; Kiessling, Arndt Holger; Skuras, Jan; Haubelt, Hannelore; Hellstern, Peter; Saggau, Werner

    2005-06-01

    We investigated the relationship between factor XIII, fibrinogen, blood coagulation screening tests and postoperative bleeding in 98 patients undergoing cardiopulmonary bypass (CPB) surgery. All patients received aprotinin. Blood samples were collected preoperatively (T1),after termination of CPB (T2),12 h (T3) and 24 h (T4) after surgery to determine FXIII activity, fibrinogen, platelet count, prothrombin time (PT), activated partial thromboplastin time (APTT) and D-dimers (DD). Laboratory results were correlated with the chest tube drainage 24 h after surgery and compared between patients with 24-hour chest tube drain volumes in the lower (Group 1) with those in the upper tertile (Group 3). Median FXIII and fibrinogen levels dropped by 33.9% and 34.2%, respectively, during CPB. No association between FXIII activity and the extent of postoperative bleeding was found. However, chest tube bleeding was significantly correlated with preoperative and postoperative fibrinogen. This was confirmed by comparing Groups 1 and 3. Group 3 patients had significantly lower fibrinogen levels than Group 1 at T1 - T4, although most fibrinogen values were within or above the reference range (medians, g/l: 3.5 vs. 4.0, p = 0.043 at T1; 2.3 vs. 2.7, p = 0.015 at T2; 2.9 vs. 3.3, p = 0.008 at T3; 4.2 vs. 5.2, p = 0.002 at T4). There was also a significant relationship of platelet count, PT and APTT, as measured after CPB (T2), with postoperative chest tube drainage. In conclusion, plasma FXIII activity does not influence postoperative bleeding in patients undergoing CPB surgery. There is however an inverse association between preoperative or postoperative plasma fibrinogen levels and postoperative bleeding. These findings indicate a modulation of postoperative bleeding by fibrinogen levels.

  9. Novel aspects of blood coagulation factor XIII. I. Structure, distribution, activation, and function

    SciTech Connect

    Muszbek, L.; Adany, R.; Mikkola, H.

    1996-10-01

    Blood coagulation factor XIII (FXIII) is a protransglutaminase that becomes activated by the concerted action of thrombin and Ca{sup 2+} in the final stage of the clotting cascade. In addition to plasma, FXIII also occurs in platelets, monocytes, and monocyte-derived macrophages. While the plasma factor is a heterotetramer consisting of paired A and B subunits (A{sub 2}B{sub 2}), its cellular counterpart lacks the B subunits and is a homodimer of potentially active A subunits (A{sub 2}). The gene coding for the A and B subunits has been localized to chromosomes 6p24-25 and 1q31-32.1, respectively. The genomic as well as the primary protein structure of both subunits has been established. Plasma FXIII circulates in association with its substrate precursor, fibrinogen. Fibrin(ogen) has an important regulatory role in the activation of plasma FXIII, for instance the proteolytic removal of activation peptide by thrombin, the dissociation of subunits A and B, and the exposure of the originally buried active site on the free A subunits. The end result of this process is the formation of an active transglutaminase, which crosslinks peptide chains through {epsilon}({gamma}-glutamyl)lysyl isopeptide bonds. The protein substrates of activated FXIII include components of the clotting-fibrinolytic system, adhesive and contractile proteins. The main physiological function of plasma FXIII is to cross-link fibrin and protect it from the fibrinolytic enzyme plasmin. The latter effect is achieved mainly by covalently linking {alpha}{sub 2} antiplasmin, the most potent physiological inhibitor of plasmin, to fibrin. Plasma FXIII seems to be involved in wound healing and tissue repair, and it is essential to maintaining pregnancy. Cellular FXIII, if exposed to the surface of the cells, might support or perhaps take over the hemostatic functions of plasma FXIII; however, its intracellular role has remained mostly unexplored. 328 refs., 4 figs.

  10. Genetic Factors Influencing Coagulation Factor XIII B-Subunit Contribute to Risk of Ischemic Stroke

    PubMed Central

    Traylor, Matthew; Hysi, Pirro G.; Bevan, Stephen; Dichgans, Martin; Rothwell, Peter M.; Worrall, Bradford B.; Seshadri, Sudha; Sudlow, Cathie; Williams, Frances M.K.; Markus, Hugh S.; Lewis, Cathryn M.

    2015-01-01

    Background and Purpose— Abnormal coagulation has been implicated in the pathogenesis of ischemic stroke, but how this association is mediated and whether it differs between ischemic stroke subtypes is unknown. We determined the shared genetic risk between 14 coagulation factors and ischemic stroke and its subtypes. Methods— Using genome-wide association study results for 14 coagulation factors from the population-based TwinsUK sample (N≈2000 for each factor), meta-analysis results from the METASTROKE consortium ischemic stroke genome-wide association study (12 389 cases, 62 004 controls), and genotype data for 9520 individuals from the WTCCC2 ischemic stroke study (3548 cases, 5972 controls—the largest METASTROKE subsample), we explored shared genetic risk for coagulation and stroke. We performed three analyses: (1) a test for excess concordance (or discordance) in single nucleotide polymorphism effect direction across coagulation and stroke, (2) an estimation of the joint effect of multiple coagulation-associated single nucleotide polymorphisms in stroke, and (3) an evaluation of common genetic risk between coagulation and stroke. Results— One coagulation factor, factor XIII subunit B (FXIIIB), showed consistent effects in the concordance analysis, the estimation of polygenic risk, and the validation with genotype data, with associations specific to the cardioembolic stroke subtype. Effect directions for FXIIIB-associated single nucleotide polymorphisms were significantly discordant with cardioembolic disease (smallest P=5.7×10−04); the joint effect of FXIIIB-associated single nucleotide polymorphisms was significantly predictive of ischemic stroke (smallest P=1.8×10−04) and the cardioembolic subtype (smallest P=1.7×10−04). We found substantial negative genetic covariation between FXIIIB and ischemic stroke (rG=−0.71, P=0.01) and the cardioembolic subtype (rG=−0.80, P=0.03). Conclusions— Genetic markers associated with low FXIIIB levels

  11. Genetic Factors Influencing Coagulation Factor XIII B-Subunit Contribute to Risk of Ischemic Stroke.

    PubMed

    Hanscombe, Ken B; Traylor, Matthew; Hysi, Pirro G; Bevan, Stephen; Dichgans, Martin; Rothwell, Peter M; Worrall, Bradford B; Seshadri, Sudha; Sudlow, Cathie; Williams, Frances M K; Markus, Hugh S; Lewis, Cathryn M

    2015-08-01

    Abnormal coagulation has been implicated in the pathogenesis of ischemic stroke, but how this association is mediated and whether it differs between ischemic stroke subtypes is unknown. We determined the shared genetic risk between 14 coagulation factors and ischemic stroke and its subtypes. Using genome-wide association study results for 14 coagulation factors from the population-based TwinsUK sample (N≈2000 for each factor), meta-analysis results from the METASTROKE consortium ischemic stroke genome-wide association study (12 389 cases, 62 004 controls), and genotype data for 9520 individuals from the WTCCC2 ischemic stroke study (3548 cases, 5972 controls-the largest METASTROKE subsample), we explored shared genetic risk for coagulation and stroke. We performed three analyses: (1) a test for excess concordance (or discordance) in single nucleotide polymorphism effect direction across coagulation and stroke, (2) an estimation of the joint effect of multiple coagulation-associated single nucleotide polymorphisms in stroke, and (3) an evaluation of common genetic risk between coagulation and stroke. One coagulation factor, factor XIII subunit B (FXIIIB), showed consistent effects in the concordance analysis, the estimation of polygenic risk, and the validation with genotype data, with associations specific to the cardioembolic stroke subtype. Effect directions for FXIIIB-associated single nucleotide polymorphisms were significantly discordant with cardioembolic disease (smallest P=5.7×10(-04)); the joint effect of FXIIIB-associated single nucleotide polymorphisms was significantly predictive of ischemic stroke (smallest P=1.8×10(-04)) and the cardioembolic subtype (smallest P=1.7×10(-04)). We found substantial negative genetic covariation between FXIIIB and ischemic stroke (rG=-0.71, P=0.01) and the cardioembolic subtype (rG=-0.80, P=0.03). Genetic markers associated with low FXIIIB levels increase risk of ischemic stroke cardioembolic subtype. © 2015 The

  12. Comparative analysis of the structure and thermal stability of sea urchin peristome and rat tail tendon collagen.

    PubMed

    Mayne, Janice; Robinson, John J

    2002-01-01

    We have purified collagen from two distinct sources; the vertebrate, rat tail tendon and an invertebrate, sea urchin adult tissue, the peristome. The collagenous nature of the purification products was confirmed by amino acid compositional analysis. Both preparations had high contents of glycine and proline residues and hydroxyproline was also present. The total pyrrolidine (proline+hydroxyproline) content decreased from 17.9 mole% in rat tail collagen to 12.9 mole% in peristome collagen. Distinctly different circular dichroic spectra were measured for these collagens. Analyses of spectra, measured as a function of temperature, revealed distinct thermal denaturation profiles. The melting temperature for rat tail collagen was 38.5 degrees C, while the corresponding value for peristome collagen was significantly lower at 27 degrees C. A similar thermal denaturation profile was obtained for rat tail collagen in digestion experiments using a 41-kDa gelatinase activity, isolated from sea urchin eggs. These results identify structural differences between a typical, vertebrate type I fibrillar collagen and an echinoderm collagen which serves as a constituent of a mutable connective tissue. These differences may relate to the functional roles played by collagen in these distinctly different tissues.

  13. Multiphoton microscopy observations of 3D elastin and collagen fiber microstructure changes during pressurization in aortic media.

    PubMed

    Sugita, Shukei; Matsumoto, Takeo

    2017-06-01

    Elastin and collagen fibers play important roles in the mechanical properties of aortic media. Because knowledge of local fiber structures is required for detailed analysis of blood vessel wall mechanics, we investigated 3D microstructures of elastin and collagen fibers in thoracic aortas and monitored changes during pressurization. Using multiphoton microscopy, autofluorescence images from elastin and second harmonic generation signals from collagen were acquired in media from rabbit thoracic aortas that were stretched biaxially to restore physiological dimensions. Both elastin and collagen fibers were observed in all longitudinal-circumferential plane images, whereas alternate bright and dark layers were observed along the radial direction and were recognized as elastic laminas (ELs) and smooth muscle-rich layers (SMLs), respectively. Elastin and collagen fibers are mainly oriented in the circumferential direction, and waviness of collagen fibers was significantly higher than that of elastin fibers. Collagen fibers were more undulated in longitudinal than in radial direction, whereas undulation of elastin fibers was equibiaxial. Changes in waviness of collagen fibers during pressurization were then evaluated using 2-dimensional fast Fourier transform in mouse aortas, and indices of waviness of collagen fibers decreased with increases in intraluminal pressure. These indices also showed that collagen fibers in SMLs became straight at lower intraluminal pressures than those in EL, indicating that SMLs stretched more than ELs. These results indicate that deformation of the aorta due to pressurization is complicated because of the heterogeneity of tissue layers and differences in elastic properties of ELs, SMLs, and surrounding collagen and elastin.

  14. The pathway of collagen secretion.

    PubMed

    Malhotra, Vivek; Erlmann, Patrik

    2015-01-01

    COPII vesicles mediate export of secretory cargo from the endoplasmic reticulum (ER). However, a standard COPII vesicle with a diameter of 60-90 nm is too small to export collagens that are composed of rigid triple helices of up to 400 nm in length. How do cells pack and secrete such bulky molecules? This issue is fundamentally important, as collagens constitute approximately 25% of our dry body weight and are essential for almost all cell-cell interactions. Recently, a potential mechanism for the biogenesis of mega-transport carriers was identified, involving packing collagens and increasing the size of COPII coats. Packing is mediated by TANGO1, which binds procollagen VII in the lumen and interacts with the COPII proteins Sec23/Sec24 on the cytoplasmic side of the ER. Cullin3, an E3 ligase, and its specific adaptor protein, KLHL12, ubiquitinate Sec31, which could increase the size of COPII coats. Recruitment of these proteins and their specific interactors into COPII-mediated vesicle biogenesis may be all that is needed for the export of bulky collagens from the ER. Nonetheless, we present an alternative pathway in which TANGO1 and COPII cooperate to export collagens without generating a mega-transport carrier.

  15. The Role of Collagen Quaternary Structure in the Platelet:Collagen Interaction

    PubMed Central

    Brass, Lawrence F.; Bensusan, Howard B.

    1974-01-01

    We have investigated whether collagen queternary structure is required for the platelet: collagen interaction. Quaternary structure refers to the assembly of collagen monomers (tropocollagen) into polymers (native-type fibrils). Purified monomeric collagen was prepared from acetic acid extracts of fetal calfskin. Polymeric collagen was prepared by dispersion of bovine Achilles tendon collagen and by incubation of monomeric collagen at 37°C and pH 7.4. The state of polymerization was confirmed by electron microscopy. Release of platelet serotonin in the absence of platelet aggregation was used to determine the effectiveness of the platelet: collagen interaction. All forms of collagen produced serotonin release only after a lag period, but polymeric collagen gave a shorter lag period than did monomeric collagen. Monomeric collagen was also quanidinated selectively to convert collagen lysine groups to homoarginine, while leaving the arrangement of polar groups intact. Guanidination of monomeric collagen increased the rate of polymerization and reduced the lag time in serotonin release. Glucosamine (17 mM) retarded polymerization and inhibited the release of platelet serotonin by monomeric collagen but had little effect on release produced by thrombin or polymeric collagen. At the same concentration, glucosamine did not reduce the sensitivity of platelets to stimulation by collagen or block the platelet: collagen interaction. The only effect of glucosamine was on the collagen: collagen interaction. Galactosamine had a similar effect, but glucose, galactose, and N-acetylglycosamine had no effect. We conclude from this data that collagen monomers cannot effectively interact with platelets and that, therefore, collagen quaternary structure has a role in the recognition of collagen by platelets. PMID:4215825

  16. Spectroscopic study of the effect of laser heating on collagen stability: implications for tissue welding

    NASA Astrophysics Data System (ADS)

    Small, Ward, IV; Da Silva, Luiz B.; Matthews, Dennis L.

    1998-07-01

    Collagen is believed to play a major role in laser tissue welding. Furthermore, the fundamental fusion mechanism(s) may include thermal denaturation of the collagen fibers. An in vitro investigation of the effect of laser heating (1.9 micrometer diode laser) on collagen conformation was performed. Fourier transform infrared (FTIR) spectra of native and heated porcine cornea were obtained. A low-frequency shift in the amide A band of collagen around 3320 cm-1 indicated that conformational changes associated with denaturation occurred. Samples heated using a temperature feedback controlled 1.9 micrometer diode laser showed a gradual decrease in the amide A peak frequency with increasing temperature, as did samples heated in a water bath. Complete denaturation was achieved at temperatures above 85 degrees Celsius for both heating protocols. Water loss induced by laser heating may have reduced the mobility of the collagen polypeptide chains, and contributed to the elevated denaturation temperature.

  17. Mandibular Cartilage Collagen Network Nanostructure

    PubMed Central

    Vanden Berg-Foels, Wendy S.

    2015-01-01

    Background Mandibular condyle cartilage (MCC) has a unique structure among articular cartilages; however, little is known about its nanoscale collagen network architecture, hampering design of regeneration therapies and rigorous evaluation of regeneration experiment outcomes in preclinical research. Helium ion microscopy is a novel technology with a long depth of field that is uniquely suited to imaging open 3D collagen networks at multiple scales without obscuring conductive coatings. Objective The objective of this research was to image, at the micro- and nanoscales, the depth-dependent MCC collagen network architecture. Design MCC was collected from New Zealand white rabbits. Images of MCC zones were acquired using helium ion, transmission electron, and light microscopy. Network fibril and canal diameters were measured. Results For the first time, the MCC was visualized as a 3D collagen fibril structure at the nanoscale, the length scale of network assembly. Fibril diameters ranged from 7 to 110 nm and varied by zone. The articular surface was composed of a fine mesh that was woven through thin layers of larger fibrils. The fibrous zone was composed of approximately orthogonal lamellae of aligned fibrils. Fibrocyte processes surrounded collagen bundles forming extracellular compartments. The proliferative, mature, and hypertrophic zones were composed of a branched network that was progressively remodeled to accommodate chondrocyte hypertrophy. Osteoid fibrils were woven around osteoblast cytoplasmic processes to create numerous canals similar in size to canaliculi of mature bone. Conclusion This multiscale investigation advances our foundational understanding of the complex, layered 3D architecture of the MCC collagen network. PMID:27375843

  18. Structural hierarchy controls deformation behavior of collagen.

    PubMed

    Pradhan, Shashindra M; Katti, Kalpana S; Katti, Dinesh R

    2012-08-13

    The structure of collagen, the most abundant protein in mammals, consists of a triple helix composed of three helical polypeptide chains. The deformation behavior of collagen is governed by molecular mechanisms that involve the interaction between different helical hierarchies found in collagen. Here, we report results of Steered Molecular Dynamics study of the full-length collagen molecule (~290 nm). The collagen molecule is extended at various pulling rates ranging from 0.00003/ps to 0.012/ps. These simulations reveal a new level of hierarchy exhibited by collagen: helicity of the triple chain. This level of hierarchy is apparent at the 290 nm length and cannot be observed in the 7-9 nm models often described to evaluate collagen mechanics. The deformation mechanisms in collagen are governed by all three levels of hierarchy, helicity of single chain (level-1), helical triple helix (level-2), and hereby described helicity of the triple chain (level-3). The mechanics resulting from the three levels is described by an interlocking gear analogy. In addition, remarkably, the full-length collagen does not show much unwinding of triple helix unlike that exhibited by short collagen models. Further, the full-length collagen does not show significant unwinding of the triple helix, unlike that exhibited by short collagen. Also reported is that the interchain hydrogen bond energy in the full-length collagen is significantly smaller than the overall interchain nonbonded interaction energies, suggesting that the nonbonded interactions have far more important role than hydrogen bonds in the mechanics of collagen. However, hydrogen bonding is essential for the triple helical conformation of the collagen. Hence, although mechanics of collagen is controlled by nonbonded interchain interaction energies, the confirmation of collagen is attributed to the interchain hydrogen bonding.

  19. An uncovered XIII century icon: particular use of organic pigments and gilding techniques highlighted by analytical methods.

    PubMed

    Daveri, Alessia; Doherty, Brenda; Moretti, Patrizia; Grazia, Chiara; Romani, Aldo; Fiorin, Enrico; Brunetti, Brunetto Giovanni; Vagnini, Manuela

    2015-01-25

    The restoration of a panel painting depicting a Madonna and Child listed as an unknown Tuscan artist of the nineteenth century, permitted the hidden original version, a XIII century Medieval icon to be uncovered. It is discovery provided the opportunity for an extensive in situ campaign of non-invasive analytical investigations by portable imaging and spectroscopic techniques (infrared, X-ray fluorescence and diffraction, UV-Vis absorption and emission), followed by aimed micro-destructive investigations (Raman and SEM-EDS). This approach permitted characterization of the original ground and paint layers by complementary techniques. Furthermore, this protocol allowed supplementary particularities of great interest to be highlighted. Namely, numerous original gilding techniques have been accentuated in diverse areas and include the use of surrogate gold (disulphur tin), orpiment as a further false gold and an area with an original silver rich layer. Moreover, pigments including azurite mixed with indigo have been non-invasively identified. Micro-invasive analyses also allowed the diagnosis of organic colorants, namely, an animal anthraquinone lake, kermes and an unusual vegetal chalcone pigment, possibly safflower. The identification of the latter is extremely rare as a painting pigment and has been identified using an innovative adaption to surface enhanced Raman techniques on a cross-section. The resulting data contributes new hypotheses to the historic and artistic knowledge of materials and techniques utilized in XIII century icon paintings and ultimately provides scientific technical support of the recent restoration.

  20. Characterisation of Ascaridoid larvae from marine fish off New Caledonia, with description of new Hysterothylacium larval types XIII and XIV.

    PubMed

    Shamsi, Shokoofeh; Poupa, Anita; Justine, Jean-Lou

    2015-10-01

    Here we report occurrence of six different morphotypes of ascaridoid type larvae from 28 species of fish collected from New Caledonian waters. The larvae were morphologically identified as Anisakis type I, Hysterothylacium type VI and new larval types XIII and XIV, Raphidascaris larval type and Terranova larval type II. Representatives of each morphotype were subjected to the amplification of the second internal transcribed spacers (ITS-2) of ribosomal DNA (rDNA) and those sequences were compared with ITS-2 sequences of other ascaridoid nematodes previously deposited in GenBank. ITS-2 sequences of Anisakis larval type I were identical to those of A. typica. ITS-2 sequences of Hysterothylacium larval type VI in the present study were identical to those previously found in Eastern Australian waters. No match was found for ITS-2 sequences of Hysterothylacium larval types XIII and XIV; therefore, the specific identities of these larval types remain unclear. ITS-2 sequences of Raphidascaris larval type were identical to those of R. trichiuri, which have previously been reported in Taiwanese waters. Terranova larval type II in the present study had identical ITS-2 sequences with Terranova larval types reported from Australian waters, however, the specific identity is unknown. This taxonomic work is essential if further research on these zoonotic parasites is to be effective. This includes investigations into such aspects as life cycle studies, impacts on human health and risk assessment for their transmission to humans. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. An uncovered XIII century icon: Particular use of organic pigments and gilding techniques highlighted by analytical methods

    NASA Astrophysics Data System (ADS)

    Daveri, Alessia; Doherty, Brenda; Moretti, Patrizia; Grazia, Chiara; Romani, Aldo; Fiorin, Enrico; Brunetti, Brunetto Giovanni; Vagnini, Manuela

    2015-01-01

    The restoration of a panel painting depicting a Madonna and Child listed as an unknown Tuscan artist of the nineteenth century, permitted the hidden original version, a XIII century Medieval icon to be uncovered. It is discovery provided the opportunity for an extensive in situ campaign of non-invasive analytical investigations by portable imaging and spectroscopic techniques (infrared, X-ray fluorescence and diffraction, UV-Vis absorption and emission), followed by aimed micro-destructive investigations (Raman and SEM-EDS). This approach permitted characterization of the original ground and paint layers by complementary techniques. Furthermore, this protocol allowed supplementary particularities of great interest to be highlighted. Namely, numerous original gilding techniques have been accentuated in diverse areas and include the use of surrogate gold (disulphur tin), orpiment as a further false gold and an area with an original silver rich layer. Moreover, pigments including azurite mixed with indigo have been non-invasively identified. Micro-invasive analyses also allowed the diagnosis of organic colorants, namely, an animal anthraquinone lake, kermes and an unusual vegetal chalcone pigment, possibly safflower. The identification of the latter is extremely rare as a painting pigment and has been identified using an innovative adaption to surface enhanced Raman techniques on a cross-section. The resulting data contributes new hypotheses to the historic and artistic knowledge of materials and techniques utilized in XIII century icon paintings and ultimately provides scientific technical support of the recent restoration.

  2. The evolution of fibrillar collagens: a sea-pen collagen shares common features with vertebrate type V collagen.

    PubMed

    Tillet, E; Franc, J M; Franc, S; Garrone, R

    1996-02-01

    The extracellular matrix of marine primitive invertebrates (sponges, polyps and jellyfishes) contains collagen fibrils with narrow diameters. From various data, it has been hypothesized that these primitive collagens could represent ancestral forms of the vertebrate minor collagens, i.e., types V or XI. Recently we have isolated a primitive collagen from the soft tissues of the sea-pen Veretillum cynomorium. This report examines whether the sea-pen collagen shares some features with vertebrate type V collagen. Rotary shadowed images of acid-soluble collagen molecules extracted from beta-APN treated animals, positive staining of segment-long-spacing crystallites precipitated from pepsinized collagen, Western blots of the pepsinized alpha1 and alpha2 chains with antibodies to vertebrate types I, III and V collagens, and in situ gold immunolabeling of ECM collagen fibrils were examined. Our results showed that the tissue form of the sea-pen collagen is a 340-nm threadlike molecule, which is close to the vertebrate type V collagen with its voluminous terminal globular domain, the distribution of most of its polar amino-acid residues, and its antigenic properties.

  3. Collagen advanced glycation inhibits its Discoidin Domain Receptor 2 (DDR2)-mediated induction of lysyl oxidase in osteoblasts.

    PubMed

    Khosravi, Roozbeh; Sodek, Katharine L; Faibish, Michael; Trackman, Philip C

    2014-01-01

    Diabetes increases the risk of bone fracture. Organic and inorganic bone extracellular matrix components determine bone strength. Previous studies indicate that in diabetes, glycation of collagen causes abnormal arrangements of collagen molecules and fragile bones. Diabetic bone fragility is additionally attributed to reduced levels of lysyl oxidase enzyme-dependent collagen cross-links. The mechanism underlying the presence of lower enzymatic collagen cross-links in diabetic bone has not been directly investigated. Here we determine in primary osteoblast cultures the regulation of lysyl oxidase protein by type I collagen and collagen modified by carboxymethylation (CML-collagen), a form of advanced glycation endproducts. Data indicate that non-glycated collagen up-regulates lysyl oxidase levels both in primary non-differentiated and in differentiating mouse and rat osteoblast cultures, while CML-collagen fails to regulate lysyl oxidase in these cells. Collagen binding to Discoidin Domain Receptor-2 (DDR2) mediates lysyl oxidase increases, determined in DDR2 shRNA knockdown studies. DDR2 binding and activation were disrupted by collagen glycation, pointing to a mechanism for the diminished levels of lysyl oxidase and consequently low lysyl oxidase-derived cross-links in diabetic bone. Our studies indicate that collagen-integrin interactions may not play a major role in up-regulating lysyl oxidase. Furthermore, non-collagenous ligands for the receptor for advanced glycation end products (RAGE) failed to alter lysyl oxidase levels. Taken together with published studies a new understanding emerges in which diabetes- and age-dependent inhibition of normal collagen-stimulated DDR2- and integrin-signaling, and independent advanced glycation-stimulated RAGE-signaling, each contributes to different aspects of diabetic osteopenia.

  4. Type IV Collagen is a Novel DEJ Biomarker that is Reduced by Radiotherapy

    PubMed Central

    McGuire, J.D.; Gorski, J.P.; Dusevich, V.; Wang, Y.; Walker, M.P.

    2014-01-01

    The dental basement membrane (BM) is composed of collagen types IV, VI, VII, and XVII, fibronectin, and laminin and plays an inductive role in epithelial-mesenchymal interactions during tooth development. The BM is degraded and removed during later-stage tooth morphogenesis; however, its original position defines the location of the dentin-enamel junction (DEJ) in mature teeth. We recently demonstrated that type VII collagen is a novel component of the inner enamel organic matrix layer contiguous with the DEJ. Since it is frequently co-expressed with and forms functional complexes with type VII collagen, we hypothesized that type IV collagen should also be localized to the DEJ in mature human teeth. To identify collagen IV, we first evaluated defect-free erupted teeth from various donors. To investigate a possible stabilizing role, we also evaluated extracted teeth exposed to high-dose radiotherapy – teeth that manifest post-radiotherapy DEJ instability. We now show that type IV collagen is a component within the morphological DEJ of posterior and anterior teeth from individuals aged 18 to 80 yr. Confocal microscopy revealed that immunostained type IV collagen was restricted to the 5- to 10-µm-wide optical DEJ, while collagenase treatment or previous in vivo tooth-level exposure to > 60 Gray irradiation severely reduced immunoreactivity. This assignment was confirmed by Western blotting with whole-tooth crown and enamel extracts. Without reduction, type IV collagen contained macromolecular α-chains of 225 and 250 kDa. Compositionally, our results identify type IV collagen as the first macromolecular biomarker of the morphological DEJ of mature teeth. Given its network structure and propensity to stabilize the dermal-epidermal junction, we propose that a collagen-IV-enriched DEJ may, in part, explain its well-known fracture toughness, crack propagation resistance, and stability. In contrast, loss of type IV collagen may represent a biochemical rationale for the

  5. Type IV collagen is a novel DEJ biomarker that is reduced by radiotherapy.

    PubMed

    McGuire, J D; Gorski, J P; Dusevich, V; Wang, Y; Walker, M P

    2014-10-01

    The dental basement membrane (BM) is composed of collagen types IV, VI, VII, and XVII, fibronectin, and laminin and plays an inductive role in epithelial-mesenchymal interactions during tooth development. The BM is degraded and removed during later-stage tooth morphogenesis; however, its original position defines the location of the dentin-enamel junction (DEJ) in mature teeth. We recently demonstrated that type VII collagen is a novel component of the inner enamel organic matrix layer contiguous with the DEJ. Since it is frequently co-expressed with and forms functional complexes with type VII collagen, we hypothesized that type IV collagen should also be localized to the DEJ in mature human teeth. To identify collagen IV, we first evaluated defect-free erupted teeth from various donors. To investigate a possible stabilizing role, we also evaluated extracted teeth exposed to high-dose radiotherapy--teeth that manifest post-radiotherapy DEJ instability. We now show that type IV collagen is a component within the morphological DEJ of posterior and anterior teeth from individuals aged 18 to 80 yr. Confocal microscopy revealed that immunostained type IV collagen was restricted to the 5- to 10-µm-wide optical DEJ, while collagenase treatment or previous in vivo tooth-level exposure to > 60 Gray irradiation severely reduced immunoreactivity. This assignment was confirmed by Western blotting with whole-tooth crown and enamel extracts. Without reduction, type IV collagen contained macromolecular α-chains of 225 and 250 kDa. Compositionally, our results identify type IV collagen as the first macromolecular biomarker of the morphological DEJ of mature teeth. Given its network structure and propensity to stabilize the dermal-epidermal junction, we propose that a collagen-IV-enriched DEJ may, in part, explain its well-known fracture toughness, crack propagation resistance, and stability. In contrast, loss of type IV collagen may represent a biochemical rationale for the DEJ

  6. Play Therapy: A Review

    ERIC Educational Resources Information Center

    Porter, Maggie L.; Hernandez-Reif, Maria; Jessee, Peggy

    2009-01-01

    This article discusses the current issues in play therapy and its implications for play therapists. A brief history of play therapy is provided along with the current play therapy approaches and techniques. This article also touches on current issues or problems that play therapists may face, such as interpreting children's play, implementing…

  7. Play Therapy: A Review

    ERIC Educational Resources Information Center

    Porter, Maggie L.; Hernandez-Reif, Maria; Jessee, Peggy

    2009-01-01

    This article discusses the current issues in play therapy and its implications for play therapists. A brief history of play therapy is provided along with the current play therapy approaches and techniques. This article also touches on current issues or problems that play therapists may face, such as interpreting children's play, implementing…

  8. [Disc electrophoresis of collagen protein (author's transl)].

    PubMed

    Reitmayr, P; Verzár, F

    1975-01-01

    The composition of proteins extracted from tendon collagen is investigated by disc electrophoresis. No qualitative differences can be demonstrated between young and old collagen. The action of formaldehyde and methionine on the tendons has no effect on the electrophoretic picture.

  9. Collagen crosslinks in chondromalacia of the patella.

    PubMed

    Väätäinen, U; Kiviranta, I; Jaroma, H; Arokosi, J; Tammi, M; Kovanen, V

    1998-02-01

    The aim of the study was to determine collagen concentration and collagen crosslinks in cartilage samples from chondromalacia of the patella. To study the extracellular matrix alterations associated to chondromalacia, we determined the concentration of collagen (hydroxyproline) and its hydroxylysylpyridinoline and lysylpyridinoline crosslinks from chondromalacia foci of the patellae in 12 patients and 7 controls from apparently normal cadavers. The structure of the collagen network in 8 samples of grades II-IV chondromalacia was examined under polarized light microscopy. The full-thickness cartilage samples taken with a surgical knife from chondromalacia lesions did not show changes in collagen, hydroxylysylpyridinoline and lysylpyridinoline concentration as compared with the controls. Polarized light microscopy showed decreased birefringence in the superficial cartilage of chondromalacia lesions, indicating disorganization or disappearance of collagen fibers in this zone. It is concluded that the collagen network shows gradual disorganization with the severity of chondromalacia lesion of the patella without changes in the concentration or crosslinks of collagen.

  10. Mussel adhesive protein provides cohesive matrix for collagen type-1α

    PubMed Central

    Martinez Rodriguez, Nadine R.; Das, Saurabh; Kaufman, Yair; Wei, Wei; Israelachvili, Jacob N.; Waite, J. Herbert

    2015-01-01

    Understanding the interactions between collagen and adhesive mussel foot proteins (mfps) can lead to improved medical and dental adhesives, particularly for collagen-rich tissues. Here we investigated interactions between collagen type-1, the most abundant loadbearing animal protein, and mussel foot protein-3 (mfp-3) using a quartz crystal microbalance and surface forces apparatus (SFA). Both hydrophilic and hydrophobic variants of mfp-3 were exploited to probe the nature of the interaction between the protein and collagen. Our chief findings are: 1) mfp-3 is an effective chaperone for tropocollagen adsorption to TiO2 and mica surfaces; 2) at pH 3, collagen addition between two mfp-3 films (Wc = 5.4 ± 0.2 mJ/m2) increased their cohesion by nearly 35%; 3) oxidation of Dopa in mfp-3 by periodate did not abolish the adhesion between collagen and mfp-3 films, and 4) collagen bridging between both hydrophilic and hydrophobic mfp-3 variant films is equally robust, suggesting that hydrophobic interactions play a minor role. Extensive H-bonding, π-cation and electrostatic interactions are more plausible to explain the reversible bridging of mfp-3 films by collagen. PMID:25770997

  11. Evidence for a role of collagen synthesis in arterial smooth muscle cell migration.

    PubMed Central

    Rocnik, E F; Chan, B M; Pickering, J G

    1998-01-01

    Migration of smooth muscle cells (SMCs) and collagen synthesis by SMCs are central to the pathophysiology of vascular disease. Both processes can be induced shortly after vascular injury; however, a functional relationship between them has not been established. In this study, we determined if collagen synthesis was required for SMC migration, using ethyl-3,4-dihydroxybenzoate (EDHB), an inhibitor of prolyl-4-hydroxylase, and 3,4-DL-dehydroproline (DHP), a proline analogue, which we demonstrate inhibit collagen elaboration by porcine arterial SMCs. SMCs exposed to EDHB or DHP attached normally to collagen- and vitronectin-coated substrates; however, spreading on collagen but not vitronectin was inhibited. SMC migration speed, quantified by digital time-lapse video microscopy, was significantly and reversibly reduced by EDHB and DHP. Flow cytometry revealed that expression of beta1 integrins, through which SMCs interact with collagen, was unaffected by EDHB or DHP. However, both inhibitors prevented normal clustering of beta1 integrins on the surface of SMCs, consistent with a lack of appropriate matrix ligands for integrin engagement. Moreover, there was impaired recruitment of vinculin into focal adhesion complexes of spreading SMCs and disassembly of the smooth muscle alpha-actin-containing cytoskeleton. These findings suggest that de novo collagen synthesis plays a role in SMC migration and implicates a mechanism whereby newly synthesized collagen may be necessary to maintain the transcellular traction system required for effective locomotion. PMID:9576753

  12. Haemostyptic preparations on the basis of collagen alone and as fixed combination with fibrin glue.

    PubMed

    Schiele, U; Kuntz, G; Riegler, A

    1992-01-01

    Preparations containing collagen play a prominent role among local haemostyptic agents in surgery. Sheets of collagen are used as degradable haemostyptic tampons. Various investigations have shown better haemostasis with collagen compared to other degradable materials, although the haemostyptic effect of these collagen preparations is limited. Concerning the mechanism of haemostasis, not all the reactions stimulated, e.g. by the collagen of an injured vessel wall, may be activated by a haemostyptic tampon from collagen. This depends very much on the kind of preparation. The combined application of a sheet of collagen with fibrin glue improved local haemostasis to a great extent. Large areas of capillary bleeding can be treated successfully with this method. Despite the very good results, this method has not been applied on a broad scale. This is due to the necessary skill and experience and the relatively cumbersome preparation required at the operation site. These drawbacks have been overcome with the latest development in this field--a sheet of collagen covered with a fixed layer of the solid components of a fibrin glue (fibrinogen, thrombin and aprotinin). The performance of this new local haemostyptic agent is described with special emphasis on the results of clinical trials. Haemostasis of large areas of capillary bleeding was very efficient and safe with the new material. Moreover, bile leakage and liquor, pancreatic and aerial fistulae could be sealed without problems.

  13. A graphene oxide-based FRET sensor for rapid and specific detection of unfolded collagen fragments.

    PubMed

    Sun, Xiuxia; Fan, Jun; Zhang, Yuping; Chen, Hongli; Zhao, Yongqing; Xiao, Jianxi

    2016-05-15

    The unstructured collagen species plays a critical role in a variety of important biological processes as well as pathological conditions. In order to develop novel diagnosis and therapies for collagen-related diseases, it is essential to construct simple and efficient methods to detect unfolded collagen fragments. We therefore have designed a FITC-labeled collagen mimic triple helical peptide, whose adsorption on the surface of GO effectively quenches its fluorescence. The newly constructed GO/FITC-GPO complex specifically detects unstructured collagen fragments, but not fully folded triple helix species. The detection shows a clear preference for the collagen targets with complementary GPO-rich sequences. The conformation-sensitive, sequence-specific GO-based approach can be applied as an efficient biosensor for rapid detection of unfolded collagen fragments at nM level, and may have great potential in drug screening for inhibitors of unfolded collagen. It may provide a prototype to develop GO-based assays to detect other important unstructured proteins involved in diseases.

  14. Mussel adhesive protein provides cohesive matrix for collagen type-1α.

    PubMed

    Martinez Rodriguez, Nadine R; Das, Saurabh; Kaufman, Yair; Wei, Wei; Israelachvili, Jacob N; Waite, J Herbert

    2015-05-01

    Understanding the interactions between collagen and adhesive mussel foot proteins (mfps) can lead to improved medical and dental adhesives, particularly for collagen-rich tissues. Here we investigated interactions between collagen type-1, the most abundant load-bearing animal protein, and mussel foot protein-3 (mfp-3) using a quartz crystal microbalance and surface forces apparatus (SFA). Both hydrophilic and hydrophobic variants of mfp-3 were exploited to probe the nature of the interaction between the protein and collagen. Our chief findings are: 1) mfp-3 is an effective chaperone for tropocollagen adsorption to TiO2 and mica surfaces; 2) at pH 3, collagen addition between two mfp-3 films (Wc = 5.4 ± 0.2 mJ/m(2)) increased their cohesion by nearly 35%; 3) oxidation of Dopa in mfp-3 by periodate did not abolish the adhesion between collagen and mfp-3 films, and 4) collagen bridging between both hydrophilic and hydrophobic mfp-3 variant films is equally robust, suggesting that hydrophobic interactions play a minor role. Extensive H-bonding, π-cation and electrostatic interactions are more plausible to explain the reversible bridging of mfp-3 films by collagen.

  15. Transformation of amorphous calcium carbonate to rod-like single crystal calcite via "copying" collagen template.

    PubMed

    Xue, Zhonghui; Hu, Binbin; Dai, Shuxi; Du, Zuliang

    2015-10-01

    Collagen Langmuir films were prepared by spreading the solution of collagen over deionized water, CaCl2 solution and Ca(HCO3)2 solution. Resultant collagen Langmuir monolayers were then compressed to a lateral pressure of 10 mN/m and held there for different duration, allowing the crystallization of CaCO3. The effect of crystallization time on the phase composition and microstructure of CaCO3 was investigated. It was found that amorphous calcium carbonate (ACC) was obtained at a crystallization time of 6 h. The amorphous CaCO3 was transformed to rod-like single crystal calcite crystals at an extended crystallization time of 12 h and 24 h, via "copying" the symmetry and dimensionalities of collagen fibers. Resultant calcite crystallites were well oriented along the longitudinal axis of collagen fibers. The ordered surface structure of collagen fibers and electrostatic interactions played key roles in tuning the oriented nucleation and growth of the calcite crystallites. The mineralized collagen possessing both desired mechanical properties of collagen fiber and good biocompatibility of calcium carbonate may be assembled into an ideal biomaterial for bone implants.

  16. Biology, chemistry and pathology of collagen

    SciTech Connect

    Fleischmajer, R.; Olsen, B.R.; Kuhn, K.

    1985-01-01

    This book consists of five parts and a section of poster papers. Some of the articles are: Structure of the Type II Collagen Gene; Structural and Functional Analysis of the Genes for ..cap alpha..2(1) and ..cap alpha..1(III) collagens; Structure and Expression of the Collagen Genes of C. Elegans; Molecular Basis of Clinical Heterogeneity in the Ehlers-Danlos Syndrome; and Normal and Mutant Human Collagen Genes.

  17. Detection and identification of the heterogeneous novel subgroup 16SrXIII-(A/I)I phytoplasma associated with strawberry green petal disease and Mexican periwinkle virescence.

    PubMed

    Pérez-López, Edel; Dumonceaux, Tim J

    2016-11-01

    Phytoplasmas (species of the genus 'CandidatusPhytoplasma') are insect-vectored phytopathogenic bacteria associated with economically and ecologically important crop diseases. Strawberry production represents an important part of agricultural activity in Mexico and elsewhere, and infection of plants with phytoplasma renders the fruit inedible by altering plant development, resulting in virescence and phyllody. In this study we examined samples taken from four strawberry plants showing symptoms associated with strawberry green petal disease and from two periwinkle plants showing virescence, sampled in different areas of Mexico. Analysis of the 16S rRNA-encoding sequences showed that the plants were infected with a phytoplasma previously identified as Mexican periwinkle virescence (MPV; 16SrXIII). Examination of bacterial sequences from these samples revealed that two distinct 16S rRNA gene sequences were present in each sample along with a single chaperonin-60 (cpn60) sequence and a single rpoB sequence, suggesting that this strain displays 16S rRNA gene sequence heterogeneity. Two distinct rrn operons, identified with subgroup 16SrXIII-A and the newly described subgroup 16SrXIII-I, were identified from the six samples analyzed, delineating the novel subgroup 16SrXIII-(A/I)I, following the nomenclature proposed for heterogeneous subgroups.

  18. Biomimetic Analogs for Collagen Biomineralization

    PubMed Central

    Gu, L.; Kim, Y.K.; Liu, Y.; Ryou, H.; Wimmer, C.E.; Dai, L.; Arola, D.D.; Looney, S.W.; Pashley, D.H.; Tay, F.R.

    2011-01-01

    Inability of chemical phosphorylation of sodium trimetaphosphate to induce intrafibrillar mineralization of type I collagen may be due to the failure to incorporate a biomimetic analog to stabilize amorphous calcium phosphates (ACP) as nanoprecursors. This study investigated adsorption/desorption characteristics of hydrolyzed and pH-adjusted sodium trimetaphosphate (HPA-Na3P3O9) to collagen. Based on those results, a 5-minute treatment time with 2.8 wt% HPA-Na3P3O9 was used in a single-layer reconstituted collagen model to confirm that both the ACP-stabilization analog and matrix phosphoprotein analog must be present for intrafibrillar mineralization. The results of that model were further validated by complete remineralization of phosphoric-acid-etched dentin treated with the matrix phosphoprotein analog and lined with a remineralizing lining composite, and with the ACP-stabilization analog supplied in simulated body fluid. An understanding of the basic processes involved in intrafibrillar mineralization of reconstituted collagen fibrils facilitates the design of novel tissue engineering materials for hard tissue repair and regeneration. PMID:20940362

  19. The materials science of collagen.

    PubMed

    Sherman, Vincent R; Yang, Wen; Meyers, Marc A

    2015-12-01

    Collagen is the principal biopolymer in the extracellular matrix of both vertebrates and invertebrates. It is produced in specialized cells (fibroblasts) and extracted into the body by a series of intra and extracellular steps. It is prevalent in connective tissues, and the arrangement of collagen determines the mechanical response. In biomineralized materials, its fraction and spatial distribution provide the necessary toughness and anisotropy. We review the structure of collagen, with emphasis on its hierarchical arrangement, and present constitutive equations that describe its mechanical response, classified into three groups: hyperelastic macroscopic models based on strain energy in which strain energy functions are developed; macroscopic mathematical fits with a nonlinear constitutive response; structurally and physically based models where a constitutive equation of a linear elastic material is modified by geometric characteristics. Viscoelasticity is incorporated into the existing constitutive models and the effect of hydration is discussed. We illustrate the importance of collagen with descriptions of its organization and properties in skin, fish scales, and bone, focusing on the findings of our group.

  20. Structural and functional influences of coagulation factor XIII subunit B heterozygous missense mutants

    PubMed Central

    Thomas, Anne; Biswas, Arijit; Ivaskevicius, Vytautas; Oldenburg, Johannes

    2015-01-01

    The coagulation factor XIII(FXIII) is a plasma circulating heterotetrameric protransglutaminase that acts at the end of the coagulation cascade by covalently cross-linking preformed fibrin clots (to themselves and to fibrinolytic inhibitors) in order to stabilize them against fibrinolysis. It circulates in the plasma as a heterotetramer composed of two homomeric catalytic Factor XIIIA2 (FXIIIA2) and two homomeric protective/carrier Factor XIIIB2 subunit (FXIIIB2). Congenital deficiency of FXIII is of two types: severe homozygous/compound heterozygous FXIII deficiency which results in severe bleeding symptoms and mild heterozygous FXIII deficiency which is associated with mild bleeding (only upon trauma) or an asymptomatic phenotype. Defects in the F13B gene (Factor XIIIB subunit) occur more frequently in mild FXIII deficiency patients than in severe FXIII deficiency. We had recently reported secretion-related defects for seven previously reported F13B missense mutations. In the present study we further analyze the underlying molecular pathological mechanisms as well as the heterozygous expression phenotype for these mutations using a combination of in vitro heterologous expression (in HEK293T cells) and confocal microscopy. In combination with the in vitro work we have also performed an in silico solvated molecular dynamic simulation study on previously reported FXIIIB subunit sushi domain homology models in order to predict the putative structure-functional impact of these mutations. We were able to categorize the mutations into the following functional groups that: (1) affect antigenic stability as well as binding to FXIIIA subunit, that is, Cys5Arg, Cys316Phe, and Pro428Ser (2) affect binding to FXIIIA subunit with little or no influence on antigenic stability, that is, Ile81Asn and Val401Gln c) influence neither aspects and are most likely causality linked polymorphisms or functional polymorphisms, that is, Leu116Phe and Val217Ile. The Cys5Arg mutation was the

  1. Exposure to Mimivirus Collagen Promotes Arthritis

    PubMed Central

    Shah, Nikunj; Hülsmeier, Andreas J.; Hochhold, Nina; Neidhart, Michel; Gay, Steffen

    2014-01-01

    Collagens, the most abundant proteins in animals, also occur in some recently described nucleocytoplasmic large DNA viruses such as Mimiviridae, which replicate in amoebae. To clarify the impact of viral collagens on the immune response of animals exposed to Mimiviridae, we have investigated the localization of collagens in Acanthamoeba polyphaga mimivirus particles and the response of mice to immunization with mimivirus particles. Using protein biotinylation, we have first shown that viral collagen encoded by open reading frame L71 is present at the surface of mimivirus particles. Exposure to mimivirus collagens elicited the production of anti-collagen antibodies in DBA/1 mice immunized intradermally with mimivirus protein extracts. This antibody response also targeted mouse collagen type II and was accompanied by T-cell reactivity to collagen and joint inflammation, as observed in collagen-induced arthritis following immunization of mice with bovine collagen type II. The broad distribution of nucleocytoplasmic large DNA viruses in the environment suggests that humans are constantly exposed to such large virus particles. A survey of blood sera from healthy human subjects and from rheumatoid arthritis patients indeed demonstrated that 30% of healthy-subject and 36% of rheumatoid arthritis sera recognized the major mimivirus capsid protein L425. Moreover, whereas 6% of healthy-subject sera recognized the mimivirus collagen protein L71, 22% of rheumatoid arthritis sera were positive for mimivirus L71. Accordingly, our study shows that environmental exposure to mimivirus represents a risk factor in triggering autoimmunity to collagens. PMID:24173233

  2. Echinoid skeleton: absence of a collagenous matrix.

    PubMed

    Klein, L; Currey, J D

    1970-09-18

    Lack of hydroxyproline and proline in the calcified distal spines and Aristotle's lantern of the echinoderm Strongylocentrotus indicated the absence of a collagenous matrix. The fact that the small amount of collagen present in the base of the spines and in the test with sutures was removed by bacterial collagenase indicates that this collagen was not calcified.

  3. Two-photon fluorescence and second-harmonic generation imaging of collagen in human tissue based on multiphoton microscopy.

    PubMed

    Jiang, Xingshan; Zhong, Jiazhao; Liu, Yuchun; Yu, Haibo; Zhuo, Shuangmu; Chen, Jianxin

    2011-01-01

    Multiphoton microscopic imaging of collagen plays an important role in noninvasive diagnoses of human tissue. In this study, two-photon fluorescence and second-harmonic generation (SHG) imaging of collagen in human skin dermis and submucosa of colon and stomach tissues were investigated based on multiphoton microscopy (MPM). Our results show that multiphoton microscopic image of collagen bundles exhibits apparently different pattern in human tissues. The collagen bundles can simultaneously reveal its SHG and two-photon excited fluorescence images in the submucosa of colon and stomach, whereas it solely emit SHG signal in skin dermis. The intensity spectral information from tissues further demonstrated the above results. This indicates that collagen bundles have completely different space arrangement in these tissues. Our experimental results bring more detailed information of collagen for the application of MPM in human noninvasive imaging. Copyright © 2011 Wiley Periodicals, Inc.

  4. Children's Play and Television.

    ERIC Educational Resources Information Center

    Powell, Mark

    2001-01-01

    Discusses adverse effects of FCC deregulation of children's television programming on children's play behavior. Discusses the difference between play and imitation, the role of high quality dramatic play in healthy child development, the popularity of war play, and use of toys to increase dramatic play. Considers ways to help children gain control…

  5. Children's Play and Television.

    ERIC Educational Resources Information Center

    Powell, Mark

    2001-01-01

    Discusses adverse effects of FCC deregulation of children's television programming on children's play behavior. Discusses the difference between play and imitation, the role of high quality dramatic play in healthy child development, the popularity of war play, and use of toys to increase dramatic play. Considers ways to help children gain control…

  6. The Denial of Play.

    ERIC Educational Resources Information Center

    Sutton-Smith, Brian

    Well meaning parents and teachers often use children's play for the purposes of literacy and socialization. Yet, these attempts may deny play to children by subordinating play to some other concept. Evidence shows that even when parents play with their very young children they generally play games like shopping, cooking, and eating; whereas when…

  7. The Denial of Play.

    ERIC Educational Resources Information Center

    Sutton-Smith, Brian

    Well meaning parents and teachers often use children's play for the purposes of literacy and socialization. Yet, these attempts may deny play to children by subordinating play to some other concept. Evidence shows that even when parents play with their very young children they generally play games like shopping, cooking, and eating; whereas when…

  8. The collagenous gastroenteritides: similarities and differences.

    PubMed

    Gopal, Purva; McKenna, Barbara J

    2010-10-01

    Collagenous gastritis, collagenous sprue, and collagenous colitis share striking histologic similarities and occur together in some patients. They also share some drug and disease associations. Pediatric cases of collagenous gastritis, however, lack most of these associations. The etiologies of the collagenous gastroenteritides are not known, so it is not clear whether they are similar because they share pathogeneses, or because they indicate a common histologic response to varying injuries. The features, disease and drug associations, and the inquiries into the pathogenesis of these disorders are reviewed.

  9. Collagen I confers gamma radiation resistance.

    PubMed

    Azorin, E; González-Martínez, P R; Azorin, J

    2012-12-01

    The effect of collagen on the response of somatomammotroph tumor cells (GH3) to gamma, radiation therapy was studied in vitro. After incubating confluent GH3 cell monolayers in a serum-free, maintaining medium, either with or without collagen, the monolayers were irradiated with 137Cs, gamma radiation. Collagen reduces cell mortality via ERK1/2 activation, abolishing gamma radiation, cell death, and promotes cell invasion when acting in synergy with collagen and in association with the, MAPK/ERK1/2 signaling pathway activation. The presence of collagen in somatomammotroph tumors, confers resistance to radiation.

  10. Collagen: a network for regenerative medicine

    PubMed Central

    Pawelec, K. M.; Best, S. M.

    2016-01-01

    The basic building block of the extra-cellular matrix in native tissue is collagen. As a structural protein, collagen has an inherent biocompatibility making it an ideal material for regenerative medicine. Cellular response, mediated by integrins, is dictated by the structure and chemistry of the collagen fibers. Fiber formation, via fibrillogenesis, can be controlled in vitro by several factors: pH, ionic strength, and collagen structure. After formation, fibers are stabilized via cross-linking. The final bioactivity of collagen scaffolds is a result of both processes. By considering each step of fabrication, scaffolds can be tailored for the specific needs of each tissue, improving their therapeutic potential. PMID:27928505

  11. War, Conflict and Play. Debating Play

    ERIC Educational Resources Information Center

    Hyder, Tina

    2004-01-01

    Young refugees from many parts of the world are increasingly present in UK early years settings. This book explores the crucial importance of play for young refugee children's development. It considers the implications of war and conflict on young children and notes how opportunities for play are denied. It provides a framework for early years…

  12. Paradoxical effects of cyclosporin A on collagen arthritis in rats

    PubMed Central

    1983-01-01

    The effect of the immunosuppressive agent cyclosporin A (CS-A) on collagen arthritis in Sprague-Dawley rats is investigated. A 14-d course of CS-A treatment at doses of 15 mg/kg per day or more, begun on the same day as type II collagen immunization, suppressed the development of arthritis as well as humoral and delayed-type hypersensitivity (DTH) skin test responses to type II collagen, possibly by interfering with helper T cells. Additional studies demonstrated that CS-A treatment only during the induction phase of immunity proved to be successful. When CS-A treatment was started only during the immediately preclinical phase of arthritis or after the disease onset, a significant enhancement of the disease was obtained in a dose-dependent manner. This enhancement was accompanied by an augmentation of DTH skin reactions, while antibody responses were either suppressed or unaffected. These results appear to be attributable at least in part to a suppressive effect of CS-A on a population of suppressor T cells, thus resulting in a T cell-mediated helper effect. It is therefore reasonable to assume that the paradoxical effects of CS-A on collagen arthritis in rats might be caused by an altering of the sensitive balance of the two regulatory subpopulations of T cells. It is also possible that cell-mediated immune responses may play an important role in influencing the course of the disease. PMID:6644238

  13. Matrix metalloproteinase 9 modulates collagen matrices and wound repair

    PubMed Central

    LeBert, Danny C.; Squirrell, Jayne M.; Rindy, Julie; Broadbridge, Elizabeth; Lui, Yuming; Zakrzewska, Anna; Eliceiri, Kevin W.; Meijer, Annemarie H.; Huttenlocher, Anna

    2015-01-01

    Acute and chronic injuries are characterized by leukocyte infiltration into tissues. Although matrix metalloproteinase 9 (Mmp9) has been implicated in both conditions, its role in wound repair remains unclear. We previously reported a zebrafish chronic inflammation mutant caused by an insertion in the hepatocyte growth factor activator inhibitor gene 1 (hai1; also known as spint1) that is characterized by epithelial extrusions and neutrophil infiltration into the fin. Here, we performed a microarray analysis and found increased inflammatory gene expression in the mutant larvae, including a marked increase in mmp9 expression. Depletion of mmp9 partially rescued the chronic inflammation and epithelial phenotypes, in addition to restoring collagen fiber organization, as detected by second-harmonic generation imaging. Additionally, we found that acute wounding induces epithelial cell mmp9 expression and is associated with a thickening of collagen fibers. Interestingly, depletion of mmp9 impaired this collagen fiber reorganization. Moreover, mmp9 depletion impaired tissue regeneration after tail transection, implicating Mmp9 in acute wound repair. Thus, Mmp9 regulates both acute and chronic tissue damage and plays an essential role in collagen reorganization during wound repair. PMID:26015541

  14. GH and IGF1 levels are positively associated with musculotendinous collagen expression: experiments in acromegalic and GH deficiency patients.

    PubMed

    Doessing, Simon; Holm, Lars; Heinemeier, Katja M; Feldt-Rasmussen, Ulla; Schjerling, Peter; Qvortrup, Klaus; Larsen, Jytte O; Nielsen, Rie H; Flyvbjerg, Allan; Kjaer, Michael

    2010-12-01

    Disproportionate growth of musculoskeletal tissue is a major cause of morbidity in both acromegalic (ACRO) and GH-deficient (GHD) patients. GH/IGF1 is likely to play an important role in the regulation of tendon and muscle collagen. We hypothesized that the local production of collagen is associated with the level of GH/IGF1. As primary outcomes, collagen mRNA expression and collagen protein fractional synthesis rate (FSR) were determined locally in skeletal muscle and tendon in nine ACRO and nine GHD patients. Moreover, muscle myofibrillar protein synthesis and tendon collagen morphology were determined. Muscle collagen I and III mRNA expression was higher in ACRO patients versus GHD patients (P<0.05), whereas collagen protein FSR did not differ significantly between ACRO and GHD patients in muscle (P=0.21) and tendon (P=0.15). IGF1Ea and IGF1Ec mRNA expression in muscle was higher in ACRO patients versus GHD patients (P<0.01). Muscle IGF1Ea mRNA expression correlated positively with collagen I mRNA expression (P<0.01). Tendon collagen fibrillar area tended to be higher in GHD patients relative to ACRO patients (P=0.07). Thus, we observed a higher expression for collagen and IGF1 mRNA in local musculotendinous tissue in ACRO patients relative to GHD patients. Moreover, there was a tendency towards a higher collagen protein FSR and a smaller collagen fibril diameter in ACRO patients relative to GHD patients. The results indicate a collagen-stimulating role of local IGF1 in human connective tissue and add to the understanding of musculoskeletal pathology in patients with either high or low GH/IGF1 axis activity.

  15. Collagen interactions: Drug design and delivery.

    PubMed

    An, Bo; Lin, Yu-Shan; Brodsky, Barbara

    2016-02-01

    Collagen is a major component in a wide range of drug delivery systems and biomaterial applications. Its basic physical and structural properties, together with its low immunogenicity and natural turnover, are keys to its biocompatibility and effectiveness. In addition to its material properties, the collagen triple-helix interacts with a large number of molecules that trigger biological events. Collagen interactions with cell surface receptors regulate many cellular processes, while interactions with other ECM components are critical for matrix structure and remodeling. Collagen also interacts with enzymes involved in its biosynthesis and degradation, including matrix metalloproteinases. Over the past decade, much information has been gained about the nature and specificity of collagen interactions with its partners. These studies have defined collagen sequences responsible for binding and the high-resolution structures of triple-helical peptides bound to its natural binding partners. Strategies to target collagen interactions are already being developed, including the use of monoclonal antibodies to interfere with collagen fibril formation and the use of triple-helical peptides to direct liposomes to melanoma cells. The molecular information about collagen interactions will further serve as a foundation for computational studies to design small molecules that can interfere with specific interactions or target tumor cells. Intelligent control of collagen biological interactions within a material context will expand the effectiveness of collagen-based drug delivery.

  16. Collagen gene expression during limb cartilage differentiation

    PubMed Central

    1986-01-01

    As limb mesenchymal cells differentiate into chondrocytes, they initiate the synthesis of type II collagen and cease synthesizing type I collagen. Changes in the cytoplasmic levels of type I and type II collagen mRNAs during the course of limb chondrogenesis in vivo and in vitro were examined using cloned cDNA probes. A striking increase in cytoplasmic type II collagen mRNA occurs coincident with the crucial condensation stage of chondrogenesis in vitro, in which prechondrogenic mesenchymal cells become closely juxtaposed before depositing a cartilage matrix. Thereafter, a continuous and progressive increase in the accumulation of cytoplasmic type II collagen mRNA occurs which parallels the progressive accumulation of cartilage matrix by cells. The onset of overt chondrogenesis, however, does not involve activation of the transcription of the type II collagen gene. Low levels of type II collagen mRNA are present in the cytoplasm of prechondrogenic mesenchymal cells at the earliest stages of limb development, well before the accumulation of detectable levels of type II collagen. Type I collagen gene expression during chondrogenesis is regulated, at least in part, at the translational level. Type I collagen mRNAs are present in the cytoplasm of differentiated chondrocytes, which have ceased synthesizing detectable amounts of type I collagen. PMID:3754261

  17. Go natural and smarter: fenugreek as a hydration designer of collagen based biomaterials.

    PubMed

    Kanungo, Ivy; Fathima, Nishter Nishad; Jonnalagadda, Raghava Rao; Nair, Balachandran Unni

    2015-01-28

    Collagen-based biomaterials have received considerable attention for smarter biomedical applications due to their inherent superior mechano-biological properties. However, accumulating evidence suggests that water, as a probe liquid bound in collagen, might be investigated to explore the influence of additives on the static and dynamic solvation behavior of collagen. The structure and dynamics of water near the surface/interface of collagen-fenugreek composites were demonstrated via circular dichroic spectroscopy, thermoporometry and impedimetric measurements to enlighten about the configuration-function relationship of collagen. Thermodynamic parameters of the composites signify the fenugreek concentration dependent structural robustness of collagen. Thermodynamic parameters such as free energies for unfolding, enthalpies, entropies and activation energies indicate that the residual structure modulates the stability of the denatured state up to 22 kcal mol(-1) and the parameters correlate with structural data for collagen complexed with fenugreek. The association constant of fenugreek is found to be 0.5807 M(-1). The binding of fenugreek influences rearrangement of the collagen-water network, resulting in the transition from a disordered (high entropy) unbound state to a structured (lower entropy) bound state. Fenugreek concentration plays a crucial role in shaping up the free energy that governs the folding, structure and stability of collagen. Dielectric data emphasize the effect of hydrophobic and hydrophilic clusters on the side chain motion constraints. The thermoporometry technique probes the pore size distributions of the composites. These methods provide insights into the role of excluded volume, chain stiffness and stability of a new collagen-galactomannan based composite, expanding its utility in "smart biomaterial applications".

  18. Skin as marker for collagen type I/III ratio in abdominal wall fascia.

    PubMed

    Peeters, E; De Hertogh, G; Junge, K; Klinge, U; Miserez, M

    2014-08-01

    An altered collagen metabolism could play an important role in hernia development. This study compared collagen type I/III ratio and organisation between hernia and control patients, and analysed the correlation in collagen type I/III ratio between skin and abdominal wall fascia. Collagen organisation was analysed in Haematoxylin-Eosin sections of anterior rectus sheath fascia, and collagen type I/III ratio, by crosspolarisation microscopy, in Sirius-Red sections of skin and anterior rectus sheath fascia, of 19 control, 10 primary inguinal, 10 recurrent inguinal, 13 primary incisional and 8 recurrent incisional hernia patients. Compared to control patients [7.2 (IQR = 6.8-7.7) and 7.2 (IQR = 5.8-7.9)], collagen type I/III ratio was significantly lower in skin and anterior rectus sheath fascia of primary inguinal [5.2 (IQR = 3.8-6.3) and 4.2 (IQR = 3.8-4.7)], recurrent inguinal [3.2 (IQR = 3.1-3.6) and 3.3 (IQR = 3-3.7)], primary incisional [3.5 (IQR = 3-3.9) and 3.4 (IQR = 3.3-3.6)] and recurrent incisional hernia [3.2 (IQR = 3.1-3.9) and 3.2 (IQR = 2.9-3.2)] patients; also incisional and recurrent inguinal hernia had lower ratio than primary inguinal hernia patients. Furthermore, collagen type I/III ratio was significantly correlated (r = 0.81; P < 0.001) between skin and anterior rectus sheath fascia. Finally, collagen organisation was comparable between hernia and control patients. Furthermore, in both skin and abdominal wall fascia of hernia patients, collagen type I/III ratio was lower compared to control patients, with more pronounced abnormalities in incisional and recurrent inguinal hernia patients. Importantly, collagen type I/III ratio in skin was representative for that in abdominal wall fascia.

  19. Activation of hageman factor by collagen

    PubMed Central

    Wilner, G. D.; Nossel, H. L.; LeRoy, E. C.

    1968-01-01

    Purified acid-soluble and insoluble human collagen accelerated the clotting of plateletpoor plasma in silicone-treated tubes. The clot-promoting effect did not appear to be due to thromboplastic activity since the collagen preparations did not activate factor X in the presence of factor VII and calcium. Instead, collagen appeared to accelerate clotting by activating Hageman factor (factor XII) on the basis of the following findings: collagen increased the clot-promoting activity of partially purified Hageman factor but exerted no further effect in the presence of kaolin, a known activator of Hageman factor; clot-promoting eluates were obtained from collagen exposed to normal, hemophilic, or PTC-deficient plasma but not from collagen exposed to Hageman or PTA-deficient plasma. The collagen molecule itself appeared to be required for the clot-promoting activity since digestion with collagenase or thermal denaturation at pH 2.5 (about 35°C) resulted in very marked reduction in clot-promoting activity. Since thermal denaturation is associated with transformation of collagen structure from triple helical to random coil form, it is suggested that the native form of collagen is essential for the ability to activate Hageman factor. Blockage of the free amino groups by treatment with nitrous acid or dinitrofluorobenzene only slightly reduced the clot-promoting activity of collagen. In contrast, since addition of cationic proteins to collagen markedly reduced pro-coagulant activity it is suggested that negatively charged sites on the collagen molecule are critical for Hageman factor activation. This suggestion is supported by the finding that pepsin treatment of collagen, which removes the predominantly negatively charged telopeptides, results in significant decrease in coagulant activity. Esterification of collagen, which neutralizes 80-90% of the free carboxyl groups, reduced coagulant activity by over 90% and it is suggested that the free carboxyl groups of glutamic and

  20. Teasing out the truth about collagen.

    PubMed

    Rennie, M J

    1999-11-15

    Of all of the non-mineral constituents of the mammalian body there is more collagen than anything else except water and possibly fat. Nevertheless our understanding of the physiology of collagen is rudimentary. All cells and tissues are supported by a network of collagen fibres, the arrangement of which appears to be specifically site adaptive. We know a lot about the biochemistry of collagen, and its many subtypes: for example, all collagen molecules are made within fibroblasts (or modifications of them such as osteocytes), then the oversized collagen molecule is secreted in a soluble form, with hydrophilic ends which are enzymatically cleaved to leave the insoluble core collagen (tropocollagen) beached in the extracellular space. We know that collagen is made relatively immortal by being cross-linked and rather impervious to proteolysis. However, we do not know much about what governs collagen synthesis or its breakdown in the human body. It is important to know, not simply because like Everest, collagen presents a large unignorable mass. We need to understand collagen metabolism in order to understand how we grow, adapt to the environment, maintain our adult shapes and then wrinkle and crumble as we age. Collagen diseases are relatively common and almost certainly if we knew more about how, for example, the collagen framework of bone is laid down and turned over we would understand much more about osteopenia of old age. The problem in finding out has been that collagen is so difficult to study. It turns over relatively slowly, and that part of it that is cross-linked and forms mature collagen is, it seems, with us for life come hell, high-water or famine. The body reduces to mainly skin and bone-collagen in extremis. Because the system as a whole is so sluggish, it is difficult to see changes in indices of collagen metabolism. However, not all the body collagen seems to be as fixed, and indeed collagen in some tissues must turn over, enabling remodelling and

  1. WOUND HEALING AND COLLAGEN FORMATION

    PubMed Central

    Ross, Russell; Benditt, Earl P.

    1961-01-01

    The regular sequence encountered in healing guinea pig skin wounds has been examined by methods of light and electron microscopy. Observations on cell populations, their fine structure, and fibril formation in the connective tissue have been made. Linear incisions in the skin of normal female guinea pigs weighing 300 to 350 grams were allowed to heal. The wounds were then excised, fixed with buffered 2 per cent osmium tetroxide, and postfixed in neutral buffered formalin, at 16 and 24 hours and at 3, 5, 9, and 14 days after wounding. They were then embedded in epoxy resin. In the inflammatory phase the exudate observed in the early wounds consists largely of polymorphonuclear neutrophilic leukocytes, macrophages, fibrin, and free extracellular organelles from the disrupted inflammatory cells. These organelles later appear in vacuoles in the cytoplasm of the macrophages. Fibroblasts first appear at 24 hours, and show extensive development and dilatation of the endoplasmic reticulum, which sometimes contains moderately dense flocculent material. In addition, these fibroblasts have enlarged mitochondria and condensations of filamentous material within the cytoplasm near the cell surface. Occasional myelin figures and moderately dense, 0.5 to 1.0 micron bodies are found within the cytoplasm of the early fibroblasts. Collagen fibrils are first seen at 3 days extracellularly near the cell surfaces. They appear at the later times in two populations of sizes. With increasing wound age the fibroblasts retain their morphology and the wounds decrease in cellularity concomitantly with the formation of increasing amounts of collagen. Several proposed mechanisms of collagen fibril formation are discussed in relation to the observed phenomena. The problem of correlating fibril diameter with the appearance of the periodic structure of collagen in relation to the minimal size fibril which would be anticipated to display this appearance is discussed. PMID:14494202

  2. Understanding Playful Pedagogies, Play Narratives and Play Spaces

    ERIC Educational Resources Information Center

    Goouch, Kathy

    2008-01-01

    This paper is a tentative attempt to unwrap and understand one aspect of playful practice and the influences which determine its existence in early years settings. "Storying" events, those occasions when teachers and children together "make up" stories or parts of stories, develop roles or co-construct fantasies, occur moment by moment in some…

  3. Immunostimulation effect of jellyfish collagen.

    PubMed

    Sugahara, Takuya; Ueno, Masashi; Goto, Yoko; Shiraishi, Ryusuke; Doi, Mikiharu; Akiyama, Koichi; Yamauchi, Satoshi

    2006-09-01

    Certain edible large jellyfishes belonging to the order Rhizostomeae are consumed in large quantities in China and Japan. The exumbrella part of the edible jellyfish Stomolophus nomurai was cut and soaked in dilute hydrochloric acid solution (pH 3.0) for 12 h, and heated at 121 degrees C for 20 min. The immunostimulation effects of the jellyfish extract were examined. The jellyfish extract enhanced IgM production of human hybridoma HB4C5 cells 34-fold. IgM and IgG production of human peripheral blood lymphocytes (PBL) were also accelerated, 2.8- and 1.4-fold respectively. Moreover, production of interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha by human PBL was stimulated 100- and 17-fold respectively. Collagenase treatment inactivated the immunostimulation activity of the jellyfish extract. In addition, purified collagen from bovine Achilles' tendon accelerated IgM production of hybridoma cells. These facts mean that collagen has an immunostimulation effect, and that the active substance in jellyfish extract is collagen.

  4. Doping-enhanced dipolar dynamics in ice V as a precursor of hydrogen ordering in ice XIII

    NASA Astrophysics Data System (ADS)

    Köster, K. W.; Raidt, A.; Fuentes Landete, V.; Gainaru, C.; Loerting, T.; Böhmer, R.

    2016-11-01

    Dielectric spectroscopy measurements are carried out in the temperature range from about 100 to 145 K on nominally pure ice V as well as on crystals doped with KOH and with HCl in order to investigate their reorientation dynamics at ambient pressure. The orientational glass transition temperature of pure ice V is detected at 123 K, in agreement with previous indications from calorimetry. KOH doped ice V displays an about 60-fold enhanced hydrogen dynamics and the dipolar relaxation induced by HCl doping is even by a factor of about 40 000 faster than that of the undoped material. The phase transition of HCl doped ice V to ice XIII is accompanied by a significant reorientational slowdown and a pronounced freeze-out of the electrical susceptibility. The results obtained near this transition are discussed in relation to other order/disorder ice pairs such as ice I/XI and ice XII/XIV.

  5. ESHRE PGD Consortium data collection XIII: cycles from January to December 2010 with pregnancy follow-up to October 2011.

    PubMed

    De Rycke, M; Belva, F; Goossens, V; Moutou, C; SenGupta, S B; Traeger-Synodinos, J; Coonen, E

    2015-08-01

    How do data in the 13th annual data collection (Data XIII) of the European Society of Human Reproduction and Embryology (ESHRE) PGD Consortium compare with the cumulative data for collections I-XII? The 13th retrospective collection represents valuable data on PGD/PGS cycles, pregnancies and children: the main trend observed is the decrease in the routine implementation of PGS. Since 1999, the PGD Consortium has collected, analysed and published 12 data sets and an overview of the first 10 years of data collections. Data were collected from each participating centre using a FileMaker Pro database (versions 5-11). Separate predesigned FileMaker Pro files were used for the cycles, pregnancies and baby records. The study documented cycles performed during the calendar year 2010 and follow-up of the pregnancies and babies born which resulted from these cycles (until October 2011). Data were submitted by 62 centres (full PGD Consortium members). The submitted data were thoroughly analysed to identify incomplete data entries and corrections were requested from the participating centres. Records remaining with incomplete or inconsistent data were excluded from the calculations. Corrections, calculations and tables were made by expert co-authors. For data collection XIII, 62 centres reported data for 5780 cycles with oocyte retrieval (OR), along with details of the follow-up on 1503 pregnancies and 1152 babies born. A total of 1071 OR were reported for chromosomal abnormalities, 108 OR for sexing for X-linked diseases, 1574 OR for monogenic diseases, 2979 OR for preimplantation genetic screening and 48 OR for social sexing. The findings apply to the 62 participating centres and may not represent worldwide trends in PGD. The annual data collections provide an important resource for data mining and for following trends in PGD practice. None. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All

  6. Children's Empowerment in Play

    ERIC Educational Resources Information Center

    Canning, Natalie

    2007-01-01

    This article examines the level of empowerment and autonomy children can create in their play experiences. It examines the play discourses that children build and maintain and considers the importance of play contexts in supporting children's emotional and social development. These aspects of play are often unseen or misunderstood by the adult…

  7. The Play of Psychotherapy

    ERIC Educational Resources Information Center

    Marks-Tarlow, Terry

    2012-01-01

    The author reviews the role of play within psychotherapy. She does not discuss the formal play therapy especially popular for young children, nor play from the Jungian perspective that encourages the use of the sand tray with adults. Instead, she focuses on the informal use of play during psychotherapy as it is orchestrated intuitively. Because…

  8. Two people playing together: some thoughts on play, playing, and playfulness in psychoanalytic work.

    PubMed

    Vliegen, Nicole

    2009-01-01

    Children's play and the playfulness of adolescents and adults are important indicators of personal growth and development. When a child is not able to play, or an adolescent/adult is not able to be playful with thoughts and ideas, psychotherapy can help to find a more playful and creative stance. Elaborating Winnicott's (1968, p. 591) statement that "psychotherapy has to do with two people playing together," three perspectives on play in psychotherapy are discussed. In the first point of view, the child gets in touch with and can work through aspects of his or her inner world, while playing in the presence of the therapist. The power of play is then rooted in the playful communication with the self In a second perspective, in play the child is communicating aspects of his or her inner world to the therapist as a significant other. In a third view, in "playing together" child and therapist are coconstructing new meanings. These three perspectives on play are valid at different moments of a therapy process or for different children, depending on the complex vicissitudes of the child's constitution, life experiences, development, and psychic structure. Concerning these three perspectives, a parallel can be drawn between the therapist's attitude toward the child's play and the way the therapist responds to the verbal play of an adolescent or adult. We illustrate this with the case of Jacob, a late adolescent hardly able to play with ideas.

  9. Collagen defects in lethal perinatal osteogenesis imperfecta.

    PubMed Central

    Bateman, J F; Chan, D; Mascara, T; Rogers, J G; Cole, W G

    1986-01-01

    Quantitative and qualitative abnormalities of collagen were observed in tissues and fibroblast cultures from 17 consecutive cases of lethal perinatal osteogenesis imperfecta (OI). The content of type I collagen was reduced in OI dermis and bone and the content of type III collagen was also reduced in the dermis. Normal bone contained 99.3% type I and 0.7% type V collagen whereas OI bone contained a lower proportion of type I, a greater proportion of type V and a significant amount of type III collagen. The type III and V collagens appeared to be structurally normal. In contrast, abnormal type I collagen chains, which migrated slowly on electrophoresis, were observed in all babies with OI. Cultured fibroblasts from five babies produced a mixture of normal and abnormal type I collagens; the abnormal collagen was not secreted in two cases and was slowly secreted in the others. Fibroblasts from 12 babies produced only abnormal type I collagens and they were also secreted slowly. The slower electrophoretic migration of the abnormal chains was due to enzymic overmodification of the lysine residues. The distribution of the cyanogen bromide peptides containing the overmodified residues was used to localize the underlying structural abnormalities to three regions of the type I procollagen chains. These regions included the carboxy-propeptide of the pro alpha 1(I)-chain, the helical alpha 1(I) CB7 peptide and the helical alpha 1(I) CB8 and CB3 peptides. In one baby a basic charge mutation was observed in the alpha 1(I) CB7 peptide and in another baby a basic charge mutation was observed in the alpha 1(I) CB8 peptide. The primary defects in lethal perinatal OI appear to reside in the type I collagen chains. Type III and V collagens did not appear to compensate for the deficiency of type I collagen in the tissues. Images Fig. 1. Fig. 2. Fig. 4. PMID:3827862

  10. Nanomechanical mapping of hydrated rat tail tendon collagen I fibrils.

    PubMed

    Baldwin, Samuel J; Quigley, Andrew S; Clegg, Charlotte; Kreplak, Laurent

    2014-10-21

    Collagen fibrils play an important role in the human body, providing tensile strength to connective tissues. These fibrils are characterized by a banding pattern with a D-period of 67 nm. The proposed origin of the D-period is the internal staggering of tropocollagen molecules within the fibril, leading to gap and overlap regions and a corresponding periodic density fluctuation. Using an atomic force microscope high-resolution modulus maps of collagen fibril segments, up to 80 μm in length, were acquired at indentation speeds around 10(5) nm/s. The maps revealed a periodic modulation corresponding to the D-period as well as previously undocumented micrometer scale fluctuations. Further analysis revealed a 4/5, gap/overlap, ratio in the measured modulus providing further support for the quarter-staggered model of collagen fibril axial structure. The modulus values obtained at indentation speeds around 10(5) nm/s are significantly larger than those previously reported. Probing the effect of indentation speed over four decades reveals two distinct logarithmic regimes of the measured modulus and point to the existence of a characteristic molecular relaxation time around 0.1 ms. Furthermore, collagen fibrils exposed to temperatures between 50 and 62°C and cooled back to room temperature show a sharp decrease in modulus and a sharp increase in fibril diameter. This is also associated with a disappearance of the D-period and the appearance of twisted subfibrils with a pitch in the micrometer range. Based on all these data and a similar behavior observed for cross-linked polymer networks below the glass transition temperature, we propose that collagen I fibrils may be in a glassy state while hydrated.

  11. Collagen type IV at the fetal-maternal interface.

    PubMed

    Oefner, C M; Sharkey, A; Gardner, L; Critchley, H; Oyen, M; Moffett, A

    2015-01-01

    Extracellular matrix proteins play a crucial role in influencing the invasion of trophoblast cells. However the role of collagens and collagen type IV (col-IV) in particular at the implantation site is not clear. Immunohistochemistry was used to determine the distribution of collagen types I, III, IV and VI in endometrium and decidua during the menstrual cycle and the first trimester of pregnancy. Expression of col-IV alpha chains during the reproductive cycle was determined by qPCR and protein localisation by immunohistochemistry. The structure of col-IV in placenta was examined using transmission electron microscopy. Finally, the expression of col-IV alpha chain NC1 domains and collagen receptors was localised by immunohistochemistry. Col-IV alpha chains were selectively up-regulated during the menstrual cycle and decidualisation. Primary extravillous trophoblast cells express collagen receptors and secrete col-IV in vitro and in vivo, resulting in the increased levels found in decidua basalis compared to decidua parietalis. A novel expression pattern of col-IV in the mesenchyme of placental villi, as a three-dimensional network, was found. NC1 domains of col-IV alpha chains are known to regulate tumour cell migration and the selective expression of these domains in decidua basalis compared to decidua parietalis was determined. Col-IV is expressed as novel forms in the placenta. These findings suggest that col-IV not only represents a structural protein providing tissue integrity but also influences the invasive behaviour of trophoblast cells at the implantation site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Protective effect of Withania somnifera (Solanaceae) on collagen glycation and cross-linking.

    PubMed

    Babu, Pon Velayutham Anandh; Gokulakrishnan, Adikesavan; Dhandayuthabani, Rajendra; Ameethkhan, Dowlath; Kumar, Chandrasekara Vimal Pradeep; Ahamed, Md Iqbal Niyas

    2007-06-01

    Modification of collagen such as non-enzymatic glycation and cross-linking plays an important role in diabetic complications and age-related diseases. We evaluate the effect of Withania somnifera on glucose-mediated collagen glycation and cross-linking in vitro. Extent of glycation, viscosity, collagen-linked fluorescence and pepsin solubility were assessed in different experimental procedures to investigate the effect of W. somnifera. Tail tendons obtained from rats (Rattus norvegicus) weighing 250-275 g were incubated with 50 mM glucose and 100 mg of metformin or Withania root powder or ethanolic extract of Withania under physiological conditions of temperature and pH for 30 days. Formation of advanced glycation end products (AGE) was measured by fluorescent method whereas the cross-linking of collagen was assessed by pepsin digestion and viscosity measurements. Tendon collagen incubated with glucose showed an increase in glycation, AGE and cross-linking of collagen. The collagen incubated with W. somnifera and metformin ameliorates these modifications. The ethanolic extract of Withania showed more prominent effect than Withania root powder. The activity of ethanolic extract of Withania is comparable to metformin, a known antiglycating agent. In conclusion, Withania could have therapeutic role in the prevention of glycation induced pathogenesis in diabetes mellitus and aging.

  13. Collagen fibrillogenesis in the development of the annulus fibrosus of the intervertebral disc.

    PubMed

    Hayes, Anthony J; Isaacs, Marc D; Hughes, C; Caterson, B; Ralphs, J R

    2011-10-11

    The annulus fibrosus of the intervertebral disc is a complex, radial-ply connective tissue consisting of concentric lamellae of oriented collagen. Whilst much is known of the structure of the mature annulus, less is known of how its complex collagenous architecture becomes established; an understanding of which could inform future repair/regenerative strategies. Here, using a rat disc developmental series, we describe events in the establishment of the collagenous framework of the annulus at light and electron microscopic levels and examine the involvement of class I and II small leucine rich proteoglycans (SLRPs) in the matrix assembly process. We show that a period of sustained, ordered matrix deposition follows the initial cellular differentiation/orientation phase within the foetal disc. Fibrillar matrix is deposited from recesses within the plasma membrane into compartments of interstitial space within the outer annulus - the orientation of the secreted collagen reflecting the initial cellular orientation of the laminae. Medially, we demonstrate the development of a reinforcing 'cage' of collagen fibre bundles around the foetal nucleus pulpous. This derives from the fusion of collagen bundles between presumptive end-plate and inner annulus. By birth, the distinct collagenous architectures are established and the disc undergoes considerable enlargement to maturity. We show that fibromodulin plays a prominent role in foetal development of the annulus and its attachment to vertebral bodies. With the exception of keratocan, the other SLRPs appear associated more with cartilage development within the vertebral column, but all become more prominent within the disc during its growth and differentiation.

  14. Collagen Fragmentation Promotes Oxidative Stress and Elevates Matrix Metalloproteinase-1 in Fibroblasts in Aged Human Skin

    PubMed Central

    Fisher, Gary J.; Quan, Taihao; Purohit, Trupta; Shao, Yuan; Cho, Moon Kyun; He, Tianyuan; Varani, James; Kang, Sewon; Voorhees, John J.

    2009-01-01

    Aged human skin is fragile because of fragmentation and loss of type I collagen fibrils, which confer strength and resiliency. We report here that dermal fibroblasts express increased levels of collagen-degrading matrix metalloproteinases-1 (MMP-1) in aged (>80 years old) compared with young (21 to 30 years old) human skin in vivo. Transcription factor AP-1 and α2β1 integrin, which are key regulators of MMP-1 expression, are also elevated in fibroblasts in aged human skin in vivo. MMP-1 treatment of young skin in organ culture causes fragmentation of collagen fibrils and reduces fibroblast stretch, consistent with reduced mechanical tension, as observed in aged human skin. Limited fragmentation of three-dimensional collagen lattices with exogenous MMP-1 also reduces fibroblast stretch and mechanical tension. Furthermore, fibroblasts cultured in fragmented collagen lattices express elevated levels of MMP-1, AP-1, and α2β1 integrin. Importantly, culture in fragmented collagen raises intracellular oxidant levels and treatment with antioxidant MitoQ10 significantly reduces MMP-1 expression. These data identify positive feedback regulation that couples age-dependent MMP-1-catalyzed collagen fragmentation and oxidative stress. We propose that this self perpetuating cycle promotes human skin aging. These data extend the current understanding of the oxidative theory of aging beyond a cellular-centric view to include extracellular matrix and the critical role that connective tissue microenvironment plays in the biology of aging. PMID:19116368

  15. Collagen cross-linking: insights on the evolution of metazoan extracellular matrix

    PubMed Central

    Rodriguez-Pascual, Fernando; Slatter, David Anthony

    2016-01-01

    Collagens constitute a large family of extracellular matrix (ECM) proteins that play a fundamental role in supporting the structure of various tissues in multicellular animals. The mechanical strength of fibrillar collagens is highly dependent on the formation of covalent cross-links between individual fibrils, a process initiated by the enzymatic action of members of the lysyl oxidase (LOX) family. Fibrillar collagens are present in a wide variety of animals, therefore often being associated with metazoan evolution, where the emergence of an ancestral collagen chain has been proposed to lead to the formation of different clades. While LOX-generated collagen cross-linking metabolites have been detected in different metazoan families, there is limited information about when and how collagen acquired this particular modification. By analyzing telopeptide and helical sequences, we identified highly conserved, potential cross-linking sites throughout the metazoan tree of life. Based on this analysis, we propose that they have importantly contributed to the formation and further expansion of fibrillar collagens. PMID:27876853

  16. A peptide study of the relationship between the collagen triple-helix and amyloid.

    PubMed

    Parmar, Avanish S; Nunes, Ana Monica; Baum, Jean; Brodsky, Barbara

    2012-10-01

    Type XXV collagen, or collagen-like amyloidogenic component, is a component of amyloid plaques, and recent studies suggest this collagen affects amyloid fibril elongation and has a genetic association with Alzheimer's disease. The relationship between the collagen triple helix and amyloid fibrils was investigated by studying peptide models, including a very stable triple helical peptide (Pro-Hyp-Gly)₁₀ , an amyloidogenic peptide GNNQQNY, and a hybrid peptide where the GNNQQNY sequence was incorporated between (GPO)(n) domains. Circular dichroism and nuclear magnetic resonance (NMR) spectroscopy showed the GNNQQNY peptide formed a random coil structure, whereas the hybrid peptide contained a central disordered GNNQQNY region transitioning to triple-helical ends. Light scattering confirmed the GNNQQNY peptide had a high propensity to form amyloid fibrils, whereas amyloidogenesis was delayed in the hybrid peptide. NMR data suggested the triple-helix constraints on the GNNQQNY sequence within the hybrid peptide may disfavor the conformational change necessary for aggregation. Independent addition of a triple-helical peptide to the GNNQQNY peptide under aggregating conditions delayed nucleation and amyloid fibril growth. The inhibition of amyloid nucleation depended on the Gly-Xaa-Yaa sequence and required the triple-helix conformation. The inhibitory effect of the collagen triple-helix on an amyloidogenic sequence, when in the same molecule or when added separately, suggests Type XXV collagen, and possibly other collagens, may play a role in regulating amyloid fibril formation.

  17. Structural basis for the platelet-collagen interaction: the smallest motif within collagen that recognizes and activates platelet Glycoprotein VI contains two glycine-proline-hydroxyproline triplets.

    PubMed

    Smethurst, Peter A; Onley, David J; Jarvis, Gavin E; O'Connor, Marie N; Knight, C Graham; Herr, Andrew B; Ouwehand, Willem H; Farndale, Richard W

    2007-01-12

    Collagen-related peptide is a selective agonist for the platelet collagen receptor Glycoprotein VI. The triple helical peptide contains ten GPO triplets/strand (single letter amino acid nomenclature, where O is hydroxyproline) and so over-represents GPO compared with native collagen sequence. To investigate the ability of Glycoprotein VI to recognize GPO triplets in a setting more representative of the collagens, we synthesized a set of triple helical peptides containing fewer GPO triplets, varying their number and spacing within an inert (GPP)n backbone. The adhesion of recombinant human Glycoprotein VI ectodo-main, like that of human platelets, to these peptides increased with their GPO content, and platelet adhesion was abolished by the specific anti-Glycoprotein VI-blocking antibody, 10B12. Platelet aggregation and protein tyrosine phosphorylation were induced only by cross-linked peptides and only those that contained two or more GPO triplets. Such peptides were less potent than cross-linked collagen-related peptide. Our data suggest that both the sequences GPOGPO and GPO.........GPO represent functional Glycoprotein VI recognition motifs within collagen. Furthermore, we propose that the (GPO)4 motif can support simultaneous binding of two glycoprotein VI molecules, in either a parallel or anti-parallel stacking arrangement, which could play an important role in activation of signaling.

  18. Early adsorption of collagen on the reduced rutile (110) surface mediated by water: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zheng, Ting; Wu, Chunya; Chen, Mingjun

    2013-10-01

    The adsorption of collagen on the reduced rutile (110) surface with monatomic step defects in aqueous solution was modeled by classical molecular dynamics simulation. The step defects on the rutile surface were mainly parallel to the <11bar1> crystal orientation. Possible binding modes including direct and indirect binding modes, that were the peptide interacted with substrate surface directly or via the first layer water molecules, and the structural properties of collagen were discussed in order to analyze the adsorption dynamics of collagen on the reduced rutile surface. The simulation results suggested that the initial poses of collagen on the rutile surface could influence the adsorption conformation of collagen. The reduced rutile surface, which could increase the density of water molecules in the first layer, would provide active sites for collagen adsorption. The direct binding mode was responsible for the stable adsorption of collagen. The indirect binding mode may play an important part at the initial adsorption stage, but itself alone could not ‘trap’ the collagen on the surface stably unless the direct binding mode had already been formed. In addition, the triple helical structure of collagen was sustained by the inner-chain hydrogen bonds among different chains.

  19. Collagen expression in fibroblasts with a novel LMNA mutation

    SciTech Connect

    Nguyen, Desiree; Leistritz, Dru F.; Turner, Lesley; MacGregor, David; Ohson, Kamal; Dancey, Paul; Martin, George M.; Oshima, Junko . E-mail: picard@u.washington.edu

    2007-01-19

    Laminopathies are a group of genetic disorders caused by LMNA mutations; they include muscular dystrophies, lipodystrophies, and progeroid syndromes. We identified a novel heterozygous LMNA mutation, L59R, in a patient with the general appearance of mandibuloacral dysplasia and progeroid features. Examination of the nuclei of dermal fibroblasts revealed the irregular morphology characteristic of LMNA mutant cells. The nuclear morphological abnormalities of LMNA mutant lymphoblastoid cell lines were less prominent compared to those of primary fibroblasts. Since it has been reported that progeroid features are associated with increased extracellular matrix in dermal tissues, we compared a subset of these components in fibroblast cultures from LMNA mutants with those of control fibroblasts. There was no evidence of intracellular accumulation or altered mobility of collagen chains, or altered conversion of procollagen to collagen, suggesting that skin fibroblast-mediated matrix production may not play a significant role in the pathogenesis of this particular laminopathy.

  20. Collagen Expression in Fibroblasts with a Novel LMNA Mutation

    PubMed Central

    Nguyen, Desiree; Leistritz, Dru F.; Turner, Lesley; MacGregor, David; Ohson, Kamal; Dancey, Paul; Martin, George M.; Oshima, Junko

    2007-01-01

    Laminopathies are a group of genetic disorders caused by LMNA mutations; they include muscular dystrophies, lipodystrophies and progeroid syndromes. We identified a novel heterozygous LMNA mutation, L59R, in a patient with the general appearance of mandibuloacral dysplasia and progeroid features. Examination of the nuclei of dermal fibroblasts revealed the irregular morphology characteristic of LMNA mutant cells. The nuclear morphological abnormalities of LMNA mutant lymphoblastoid cell lines were less prominent compared to those of primary fibroblasts. Since it has been reported that progeroid features are associated with increased extracellular matrix in dermal tissues, we compared a subset of these components in fibroblast cultures from LMNA mutants with those of control fibroblasts. There was no evidence of intracellular accumulation or altered mobility of collagen chains, or altered conversion of procollagen to collagen, suggesting that skin fibroblast-mediated matrix production may not play a significant role in the pathogenesis of this particular laminopathy. PMID:17150192

  1. Stress controls the mechanics of collagen networks

    PubMed Central

    Licup, Albert James; Münster, Stefan; Sharma, Abhinav; Sheinman, Michael; Jawerth, Louise M.; Fabry, Ben; Weitz, David A.; MacKintosh, Fred C.

    2015-01-01

    Collagen is the main structural and load-bearing element of various connective tissues, where it forms the extracellular matrix that supports cells. It has long been known that collagenous tissues exhibit a highly nonlinear stress–strain relationship, although the origins of this nonlinearity remain unknown. Here, we show that the nonlinear stiffening of reconstituted type I collagen networks is controlled by the applied stress and that the network stiffness becomes surprisingly insensitive to network concentration. We demonstrate how a simple model for networks of elastic fibers can quantitatively account for the mechanics of reconstituted collagen networks. Our model points to the important role of normal stresses in determining the nonlinear shear elastic response, which can explain the approximate exponential relationship between stress and strain reported for collagenous tissues. This further suggests principles for the design of synthetic fiber networks with collagen-like properties, as well as a mechanism for the control of the mechanics of such networks. PMID:26195769

  2. Stress controls the mechanics of collagen networks.

    PubMed

    Licup, Albert James; Münster, Stefan; Sharma, Abhinav; Sheinman, Michael; Jawerth, Louise M; Fabry, Ben; Weitz, David A; MacKintosh, Fred C

    2015-08-04

    Collagen is the main structural and load-bearing element of various connective tissues, where it forms the extracellular matrix that supports cells. It has long been known that collagenous tissues exhibit a highly nonlinear stress-strain relationship, although the origins of this nonlinearity remain unknown. Here, we show that the nonlinear stiffening of reconstituted type I collagen networks is controlled by the applied stress and that the network stiffness becomes surprisingly insensitive to network concentration. We demonstrate how a simple model for networks of elastic fibers can quantitatively account for the mechanics of reconstituted collagen networks. Our model points to the important role of normal stresses in determining the nonlinear shear elastic response, which can explain the approximate exponential relationship between stress and strain reported for collagenous tissues. This further suggests principles for the design of synthetic fiber networks with collagen-like properties, as well as a mechanism for the control of the mechanics of such networks.

  3. Jellyfish collagen scaffolds for cartilage tissue engineering.

    PubMed

    Hoyer, Birgit; Bernhardt, Anne; Lode, Anja; Heinemann, Sascha; Sewing, Judith; Klinger, Matthias; Notbohm, Holger; Gelinsky, Michael

    2014-02-01

    Porous scaffolds were engineered from refibrillized collagen of the jellyfish Rhopilema esculentum for potential application in cartilage regeneration. The influence of collagen concentration, salinity and temperature on fibril formation was evaluated by turbidity measurements and quantification of fibrillized collagen. The formation of collagen fibrils with a typical banding pattern was confirmed by atomic force microscopy and transmission electron microscopy analysis. Porous scaffolds from jellyfish collagen, refibrillized under optimized conditions, were fabricated by freeze-drying and subsequent chemical cross-linking. Scaffolds possessed an open porosity of 98.2%. The samples were stable under cyclic compression and displayed an elastic behavior. Cytotoxicity tests with human mesenchymal stem cells (hMSCs) did not reveal any cytotoxic effects of the material. Chondrogenic markers SOX9, collagen II and aggrecan were upregulated in direct cultures of hMSCs upon chondrogenic stimulation. The formation of typical extracellular matrix components was further confirmed by quantification of sulfated glycosaminoglycans.

  4. Collagen-coated microparticles in drug delivery.

    PubMed

    Sehgal, Praveen Kumar; Srinivasan, Aishwarya

    2009-07-01

    Advantages of drug-incorporated collagen particles have been described for the controlled delivery system for therapeutic actions. The attractiveness of collagen lies in its low immunogenicity and high biocompatibility. It is also recognized by the body as a natural constituent rather than a foreign body. Our research and development efforts are focused towards addressing some of the limitations of collagen, like the high viscosity of an aqueous phase, nondissolution in neutral pH buffers, thermal instability (denaturation) and biodegradability, to make it an ideal material for drug delivery with particular reference to microparticles. These limitations could be overcome by making collagen conjugates with other biomaterials or chemically modifying collagen monomer without affecting its triple helical conformation and maintaining its native properties. This article highlights collagen microparticles' present status as a carrier in drug delivery.

  5. Collagen-Based Biomaterials for Wound Healing

    PubMed Central

    Chattopadhyay, Sayani; Raines, Ronald T.

    2014-01-01

    With its wide distribution in soft and hard connective tissues, collagen is the most abundant of animal proteins. In vitro, natural collagen can be formed into highly organized, three-dimensional scaffolds that are intrinsically biocompatible, biodegradable, non-toxic upon exogenous application, and endowed with high tensile strength. These attributes make collagen the material of choice for wound healing and tissue engineering applications. In this article, we review the structure and molecular interactions of collagen in vivo; the recent use of natural collagen in sponges, injectables, films and membranes, dressings, and skin grafts; and the on-going development of synthetic collagen mimetic peptides as pylons to anchor cytoactive agents in wound beds. PMID:24633807

  6. Targeted Disruption of Decorin Leads to Abnormal Collagen Fibril Morphology and Skin Fragility

    PubMed Central

    Danielson, Keith G.; Baribault, Helene; Holmes, David F.; Graham, Helen; Kadler, Karl E.; Iozzo, Renato V.

    1997-01-01

    Decorin is a member of the expanding group of widely distributed small leucine-rich proteoglycans that are expected to play important functions in tissue assembly. We report that mice harboring a targeted disruption of the decorin gene are viable but have fragile skin with markedly reduced tensile strength. Ultrastructural analysis revealed abnormal collagen morphology in skin and tendon, with coarser and irregular fiber outlines. Quantitative scanning transmission EM of individual collagen fibrils showed abrupt increases and decreases in mass along their axes, thereby accounting for the irregular outlines and size variability observed in cross-sections. The data indicate uncontrolled lateral fusion of collagen fibrils in the decorindeficient mice and provide an explanation for the reduced tensile strength of the skin. These findings demonstrate a fundamental role for decorin in regulating collagen fiber formation in vivo. PMID:9024701

  7. The association between seizures and deposition of collagen in the brain in porcine Taenia solium neurocysticercosis.

    PubMed

    Christensen, Nina M; Trevisan, Chiara; Leifsson, Páll S; Johansen, Maria V

    2016-09-15

    Neurocysticercosis caused by infection with Taenia solium is a significant cause of epilepsy and seizures in humans. The aim of this study was to assess the association between seizures and the deposition of collagen in brain tissue in pigs with T. solium neurocysticercosis. In total 78 brain tissue sections from seven pigs were examined histopathologically i.e. two pigs with epileptic seizures and T. solium cysts, four pigs without seizures but with cysts, and one non-infected control pig. Pigs with epileptic seizures had a larger amount of collagen in their brain tissue, showing as large fibrotic scars and moderate amount of collagen deposited around cysts, compared to pigs without seizures and the negative control pig. Our results indicate that collagen is likely to play a considerable part in the pathogenesis of seizures in T. solium neurocysticercosis.

  8. Collagen-derived matricryptins promote inhibitory nerve terminal formation in the developing neocortex

    PubMed Central

    Su, Jianmin; Chen, Jiang; Lippold, Kumiko; Monavarfeshani, Aboozar; Carrillo, Gabriela Lizana; Jenkins, Rachel

    2016-01-01

    Inhibitory synapses comprise only ∼20% of the total synapses in the mammalian brain but play essential roles in controlling neuronal activity. In fact, perturbing inhibitory synapses is associated with complex brain disorders, such as schizophrenia and epilepsy. Although many types of inhibitory synapses exist, these disorders have been strongly linked to defects in inhibitory synapses formed by Parvalbumin-expressing interneurons. Here, we discovered a novel role for an unconventional collagen—collagen XIX—in the formation of Parvalbumin+ inhibitory synapses. Loss of this collagen results not only in decreased inhibitory synapse number, but also in the acquisition of schizophrenia-related behaviors. Mechanistically, these studies reveal that a proteolytically released fragment of this collagen, termed a matricryptin, promotes the assembly of inhibitory nerve terminals through integrin receptors. Collectively, these studies not only identify roles for collagen-derived matricryptins in cortical circuit formation, but they also reveal a novel paracrine mechanism that regulates the assembly of these synapses. PMID:26975851

  9. Second harmonic generation imaging of the collagen in myocardium for atrial fibrillation diagnosis

    NASA Astrophysics Data System (ADS)

    Tsai, Ming-Rung; Chiou, Yu-We; Sun, Chi-Kuang

    2009-02-01

    Myocardial fibrosis, a common sequela of cardiac hypertrophy, has been shown to be associated with arrhythmias in experimental models. Some research has indicated that myocardial fibrosis plays an important role in predisposing patients to atrial fibrillation. Second harmonic generation (SHG) is an optically nonlinear coherent process to image the collagen network. In this presentation, we observe the SHG images of the collagen matrix in atrial myocardium and we analyzed of collagen fibers arrangement by using Fourier-transform analysis. Moreover, comparing the SHG images of the collagen fibers in atrial myocardium between normal sinus rhythm (NSR) and atrial fibrillation (AF), our result indicated that it is possible to realize the relation between myocardial fibrosis and AF.

  10. Collagens and proteoglycans of the cornea: importance in transparency and visual disorders.

    PubMed

    Massoudi, Dawiyat; Malecaze, Francois; Galiacy, Stephane D

    2016-02-01

    The cornea represents the external part of the eye and consists of an epithelium, a stroma and an endothelium. Due to its curvature and transparency this structure makes up approximately 70% of the total refractive power of the eye. This function is partly made possible by the particular organization of the collagen extracellular matrix contained in the corneal stroma that allows a constant refractive power. The maintenance of such an organization involves other molecules such as type V collagen, FACITs (fibril-associated collagens with interrupted triple helices) and SLRPs (small leucine-rich proteoglycans). These components play crucial roles in the preservation of the correct organization and function of the cornea since their absence or modification leads to abnormalities such as corneal opacities. Thus, the aim of this review is to describe the different corneal collagens and proteoglycans by highlighting their importance in corneal transparency as well as their implication in corneal visual disorders.

  11. Alginate-Collagen Fibril Composite Hydrogel

    PubMed Central

    Baniasadi, Mahmoud; Minary-Jolandan, Majid

    2015-01-01

    We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM)-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of the hydrogel. PMID:28787971

  12. Alginate-Collagen Fibril Composite Hydrogel.

    PubMed

    Baniasadi, Mahmoud; Minary-Jolandan, Majid

    2015-02-16

    We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM)-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of the hydrogel.

  13. STUDIES ON THE FORMATION OF COLLAGEN

    PubMed Central

    Gross, Jerome

    1958-01-01

    Some properties of cold neutral salt extracts of fresh guinea pig dermis have been described in terms of viscosity, electrophoresis and sedimentation patterns, partial composition, the collagen content, conditions for extraction of collagen, and the effect of certain enzymes. Viscosity of the extracts depended on the collagen in solution as demonstrated by removal of this protein by precipitation or enzymatic degradation. The intrinsic viscosity of the crude 0.45 M extract, as well as that of the isolated collagen was 14.5, identical with that for collagen dissolved by dilute acid, indicating the same high asymmetry ratio for both. Electrophoresis of the skin extracts revealed a slow moving, high, sharp, poorly diffusing boundary in addition to a pattern superficially resembling that of serum. The ultracentrifuge pattern revealed a slowly sedimenting, hypersharp boundary following a large rapidly diffusing peak. The slow moving boundaries in both patterns were abolished by collagenase or heat precipitation of the collagen fraction. Hyaluronidase had no effect on either pattern. Neutral sulfate, chloride, and phosphate extracted more collagen than did thiocyanate. Very little collagen was extracted at 37°C. as compared with that removed at 3°C. A two stage fractionation procedure employing dilute trichloroacetic acid and ethanol is described for the isolation and purification of soluble collagen from crude extracts. PMID:13491760

  14. Collagen gene expression in radiation interstitial pneumonitis

    SciTech Connect

    Bai Yun-hong; Wang, De-wen; Cui Cai-bin

    1994-12-31

    By using type I and type III collagen cDNA probe and cDNA-mRNA in situ hybridization, we observed the changes of rat lung {alpha} 1(I) and {alpha} 1(III) collagen gene expression in radiation interstitial pneumonitis. The results showed that the expressed cell of type I and type III collagen were scattered within the fibroblasts in the thickened interalveolar walls. The type I and type III collagen mRNA content in irradiated animals were higher than those in the controls at 0.5, 1, 2, 3, 6, and 12 months. 10 refs., 4 figs., 1 tab.

  15. Identification of prognostic collagen signatures and potential therapeutic stromal targets in canine mammary gland carcinoma

    PubMed Central

    Durham, Amy C.; Rosen, Suzanne; Monslow, James; Buza, Elizabeth; Salah, Pascale; Gillem, Julie; Ruthel, Gordon; Veluvolu, Sridhar; Kristiansen, Veronica; Puré, Ellen; Brown, Dorothy C.; Sørenmo, Karin U.

    2017-01-01

    Increasing evidence indicates that the tumor microenvironment plays a critical role in regulating the biologic behavior of breast cancer. In veterinary oncology, there is a need for improved prognostic markers to accurately identify dogs at risk for local and distant (metastatic) recurrence of mammary gland carcinoma and therefore would benefit from adjuvant therapy. Collagen density and fiber organization have been shown to regulate tumor progression in both mouse and human mammary tumors, with certain collagen signatures predicting poor outcomes in women with breast cancer. We hypothesized that collagen signatures in canine mammary tumor biopsies can serve as prognostic biomarkers and potential targets for treatment. We used second harmonic generation imaging to evaluate fibrillar collagen density, the presence of a tumor-stromal boundary, tumor associated collagen signatures (TACS) and individual collagen fiber characteristics (width, length and straightness) in grade I/II and grade III canine mammary tumors. Collagen density, as well as fiber width, length and straightness, were inversely correlated with patient overall survival time. Notably, grade III cases were less likely to have a tumor-stromal boundary and the lack of a boundary predicted poor outcome. Importantly, a lack of a defined tumor-stromal boundary and an increased collagen fiber width were associated with decreased survival even when tumor grade, patient stage, ovariohysterectomy status at the time of mammary tumor excision, and histologic evidence of lymphovascular invasion were considered in a multivariable model, indicating that these parameters could augment current methods to identify patients at high risk for local or metastatic progression/recurrence. Furthermore, these data, which identify for the first time, prognostic collagen biomarkers in naturally occurring mammary gland neoplasia in the dog, support the use of the dog as a translational model for tumor-stromal interactions in

  16. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts

    SciTech Connect

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo; Kim, So Young; Jang, Hwan-Hee; Ryu, Sung Ho; Kim, Beom Joon; Lee, Taehoon G.

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer We identify a function of the YIGSR peptide to enhance collagen synthesis in Hs27. Black-Right-Pointing-Pointer YIGSR peptide enhanced collagen type 1 synthesis both of gene and protein levels. Black-Right-Pointing-Pointer There were no changes in cell proliferation and MMP-1 level in YIGSR treatment. Black-Right-Pointing-Pointer The YIGSR effect on collagen synthesis mediated activation of FAK, pyk2 and ERK. Black-Right-Pointing-Pointer The YIGSR-induced FAK and ERK activation was modulated by FAK and MEK inhibitors. -- Abstract: The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the {beta}1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67 kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate

  17. Identification of prognostic collagen signatures and potential therapeutic stromal targets in canine mammary gland carcinoma.

    PubMed

    Case, Ashley; Brisson, Becky K; Durham, Amy C; Rosen, Suzanne; Monslow, James; Buza, Elizabeth; Salah, Pascale; Gillem, Julie; Ruthel, Gordon; Veluvolu, Sridhar; Kristiansen, Veronica; Puré, Ellen; Brown, Dorothy C; Sørenmo, Karin U; Volk, Susan W

    2017-01-01

    Increasing evidence indicates that the tumor microenvironment plays a critical role in regulating the biologic behavior of breast cancer. In veterinary oncology, there is a need for improved prognostic markers to accurately identify dogs at risk for local and distant (metastatic) recurrence of mammary gland carcinoma and therefore would benefit from adjuvant therapy. Collagen density and fiber organization have been shown to regulate tumor progression in both mouse and human mammary tumors, with certain collagen signatures predicting poor outcomes in women with breast cancer. We hypothesized that collagen signatures in canine mammary tumor biopsies can serve as prognostic biomarkers and potential targets for treatment. We used second harmonic generation imaging to evaluate fibrillar collagen density, the presence of a tumor-stromal boundary, tumor associated collagen signatures (TACS) and individual collagen fiber characteristics (width, length and straightness) in grade I/II and grade III canine mammary tumors. Collagen density, as well as fiber width, length and straightness, were inversely correlated with patient overall survival time. Notably, grade III cases were less likely to have a tumor-stromal boundary and the lack of a boundary predicted poor outcome. Importantly, a lack of a defined tumor-stromal boundary and an increased collagen fiber width were associated with decreased survival even when tumor grade, patient stage, ovariohysterectomy status at the time of mammary tumor excision, and histologic evidence of lymphovascular invasion were considered in a multivariable model, indicating that these parameters could augment current methods to identify patients at high risk for local or metastatic progression/recurrence. Furthermore, these data, which identify for the first time, prognostic collagen biomarkers in naturally occurring mammary gland neoplasia in the dog, support the use of the dog as a translational model for tumor-stromal interactions in

  18. WOUND HEALING AND COLLAGEN FORMATION

    PubMed Central

    Ross, Russell; Benditt, Earl P.

    1964-01-01

    The changes in scorbutic wounds following the administration of ascorbic acid have been investigated using the techniques of electron microscopy, histochemistry, and autoradioggraphy. Particular attention has been paid to the changes seen in the endoplasmic reticulum of the fibroblasts and to the identity of the extracellular filamentous material characteristic of scorbutic wounds. Seven-day-old wounds in scorbutic guinea pigs were examined prior to and from one to 72 hours following the administration of vitamin C. Fibroblasts from wounds of normal animals demonstrate a characteristic configuration of the ribosomes of the endoplasmic reticulum which is suggested to be analogous to polyribosomes described in cells synthesizing protein such as the reticulocyte. Tangential views of the membranes of the ergastoplasm show the ribosomes to be grouped in paired rows which take both straight and curved paths. This configuration is lost in scurvy and can be seen to begin to reappear as early as 4 hours after giving ascorbic acid. With increasing time, the morphology of the ribosomal aggregates approximates that seen in normal cells, so that by 24 hours their reorientation is complete. It is suggested that one of the disturbances in scurvy may relate to an alteration either in messenger RNA, in the ability of the ribosomes to relate to the messenger, or in the membranes of the ergastoplasm. In addition, the lack of formation of hydroxyamino acids necessary for completing collagen synthesis may be related to the architecture of the ribosomal aggregates. Extracellular collagen fibrils appear concomitant with the restoration of ribosomal and ergastoplasmic morphology as early as 12 hours after administration of ascorbic acid, with complete disappearance of the scorbutic extracellular material within 24 hours. Observations of this scorbutic material do not support the concept that it is a collagen precursor. PMID:14203386

  19. Role-Playing Mitosis.

    ERIC Educational Resources Information Center

    Wyn, Mark A.; Stegink, Steven J.

    2000-01-01

    Introduces a role playing activity that actively engages students in the learning process of mitosis. Students play either chromosomes carrying information, or cells in the cell membrane. (Contains 11 references.) (Author/YDS)

  20. Role-Playing Mitosis.

    ERIC Educational Resources Information Center

    Wyn, Mark A.; Stegink, Steven J.

    2000-01-01

    Introduces a role playing activity that actively engages students in the learning process of mitosis. Students play either chromosomes carrying information, or cells in the cell membrane. (Contains 11 references.) (Author/YDS)

  1. Playing It Right

    ERIC Educational Resources Information Center

    Tooley, Kay

    1973-01-01

    Described is one technique, referred to as "playing it right," to aid the therapist in the treatment of borderline children. "Playing it right" is based on the introduction of reality rules into the fantasy world of the borderline child. (CS)

  2. Playful "Moments" in Psychotherapy

    ERIC Educational Resources Information Center

    Terr, Lenore C.; Deeney, John M.; Drell, Martin; Dodson, Jerry W.; Gaensbauer, Theodore J.; Massie, Henry; Minde, Klaus; Stewart, George; Teal, Stewart; Winters, Nancy C.

    2006-01-01

    This article demonstrates how taking the time out to play, commenting pungently on play, serving up surprise and adventure, and developing mutually understood codes or inside jokes help the psychiatrist to turn a child around. In this article, the authors categorized what principles of treatment their 10 vignettes about playfulness illustrated,…

  3. The Pedagogy of Play

    ERIC Educational Resources Information Center

    Giesbrecht, Sheila

    2012-01-01

    Play is important. Environmental educators Sobel and Louv write about the relationship between children and outside play and suggest that early transcendental experiences within nature allow children to develop empathetic orientations towards the natural world. Children who play out-of-doors develop an appreciation for the environment and…

  4. Life! Through Play.

    ERIC Educational Resources Information Center

    Van Anne, Nancy

    This speech presents a review of research concerning the nature of play. Some of the formal characteristics of play are: (a) it is distinct from ordinary life in its "temporariness" and its limitless location; (b) there is an element of tension in play that leads to uncertainty concerning the outcome but at the same time provides the opportunity…

  5. The Excellence of Play.

    ERIC Educational Resources Information Center

    Moyles, Janet R., Ed.

    Recognizing that for young children, play is a tool for learning, this book compiles contributions by different authors, reflecting both up-to-date research and current classroom practice as they relate to children's play. Part 1 of the book explores the value of play as a cross-cultural concept as well as one rooted in the Western world. Gender…

  6. Playing against the Game

    ERIC Educational Resources Information Center

    Remmele, Bernd

    2017-01-01

    The paper first outlines a differentiation of play/game-motivations that include "negative" attitudes against the play/game itself like cheating or spoilsporting. This problem is of particular importance in concern of learning games because they are not "played" for themselves--at least in the first place--but due to an…

  7. The Importance of Play.

    ERIC Educational Resources Information Center

    Sher, Allen

    Play is the spontaneous or organized recreational activity of children; it is at the heart of the preschool curriculum. Play aids in the development of physical, intellectual, and social skills. Children's play progresses through three developmental stages: solitary, parallel, and social. Preschool teachers should arrange for four kinds of…

  8. Outdoor Creative Play Areas.

    ERIC Educational Resources Information Center

    Miller, Peggy L.

    Guidelines are given for the development of outdoor play areas on school sites to provide children with natural areas and simple facilities for creative play. Site selection, analysis, and development are discussed. Natural, topographical features of the environment and natural play equipment are suggested. Illustrations are also presented to aid…

  9. Play Is the Way

    ERIC Educational Resources Information Center

    Gross, Steve; Sanderson, Rebecca Cornelli

    2012-01-01

    Historically, play has been viewed as a frivolous break from important endeavors like working and learning when, in fact, a child's ability to fully and freely engage in play is essential to their learning, productivity, and overall development. A natural drive to play is universal across all young mammals. Children from every society on earth…

  10. The Pedagogy of Play

    ERIC Educational Resources Information Center

    Giesbrecht, Sheila

    2012-01-01

    Play is important. Environmental educators Sobel and Louv write about the relationship between children and outside play and suggest that early transcendental experiences within nature allow children to develop empathetic orientations towards the natural world. Children who play out-of-doors develop an appreciation for the environment and…

  11. Play Is the Way

    ERIC Educational Resources Information Center

    Gross, Steve; Sanderson, Rebecca Cornelli

    2012-01-01

    Historically, play has been viewed as a frivolous break from important endeavors like working and learning when, in fact, a child's ability to fully and freely engage in play is essential to their learning, productivity, and overall development. A natural drive to play is universal across all young mammals. Children from every society on earth…

  12. Playful Teaching Practices

    ERIC Educational Resources Information Center

    Michaelis, Bill

    2005-01-01

    In physical education, playful teaching practices are essential to relationship building and creating "connections" for successful group dynamics. Perhaps most importantly, playful teachers develop positive attitudes in their students and help students understand that learning can be fun and joyful. Playful teaching practices also greatly enhance…

  13. Molecules in Focus: Collagen XII: Protecting bone and muscle integrity by organizing collagen fibrils

    PubMed Central

    Chiquet, Matthias; Birk, David E.; Bönnemann, Carsten G.; Koch, Manuel

    2014-01-01

    Collagen XII, largest member of the fibril-associated collagens with interrupted triple helix (FACIT) family, assembles from three identical α-chains encoded by the COL12A1 gene. The molecule consists of three threadlike N-terminal noncollagenous NC3 domains, joined by disulfide bonds and a short interrupted collagen triple helix towards the C-terminus. Splice variants differ considerably in size and properties: "small" collagen XIIB (220 kDa subunit) is similar to collagen XIV, whereas collagen XIIA (350 kDa) has a much larger NC3 domain carrying glycosaminoglycan chains. Collagen XII binds to collagen I-containing fibrils via its collagenous domain, whereas its large noncollagenous arms interact with other matrix proteins such as tenascin-X. In dense connective tissues and bone, collagen XII is thought to regulate organization and mechanical properties of collagen fibril bundles. Accordingly, recent findings show that collagen XII mutations cause Ehlers-Danlos/myopathy overlap syndrome associated with skeletal abnormalities and muscle weakness in mice and humans. PMID:24801612

  14. PREFACE: XIII International Conference on Calorimetry in High Energy Physics (CALOR 2008)

    NASA Astrophysics Data System (ADS)

    Livan, Michele

    2009-07-01

    The XIII International Conference on Calorimetry in High Energy Physics was held in Pavia, Italy, 26-30 May 2008, picking up the baton from the 2006 Conference in Chicago. The Conference took place in the unique environment of the Theresian Room of the University Library. The attendees were surrounded by over 40 000 books of general interest and culture, and had the opportunity to see precious volumes written by such people as Galileo, Volta and Faraday. The Workshop brought together more than 120 participants, including senior scientists as well as young physicists, confirming the central and ever-growing role of calorimeters in modern particle physics. The development of these detectors, as stressed by Professor Klaus Pretzl in his lectio magistralis, has made it possible to explore new frontiers in physics, and the present scenario is no exception to this rule. With the LHC experiments almost completely installed and ready to take data, the Conference was an ideal chance to review the status of the different projects, whose development has been followed and discussed throughout the entire Calor series, and to show that they are capable of meeting the design specifications. Other highlights were the performance and physics results of calorimeters installed in currently operating experiments. In the session on astrophysics and neutrinos, the contributions confirmed the key role of calorimeters in this sector and demonstrated their growing application even beyond the field of accelerator physics. Considerable time was devoted to the state-of-the-art techniques in the design and operation of the detectors, while the session on simulation addressed the importance of a thorough understanding of the shower development to meet the demanding requirements of present experiments. Finally, on the R&D side, the particle flow and dual read-out concepts confronted the challenges issued by the next generation of experiments. This complex material was reviewed in 83

  15. PREFACE: XIII International Seminar on Physics and Chemistry of Solids (ISPCS)

    NASA Astrophysics Data System (ADS)

    Berdowski, Janusz

    2007-06-01

    This volume of Journal of Physics: Conference Series contains some of the papers which were presented at the XIII International Seminar on Physics and Chemistry of Solids (ISPCS) in June 2007, in Ustroń, Poland. As the materials from ISPCS are presented in this Journal for the first time it is a good opportunity to give a brief outline of the Seminar's roots, history and goals. The initiator of the Seminars, conceived as annual meetings of the physicists and chemists from Ukraine and Poland, was the late Professor of the Ivan Franko National University in Lviv, Wlodymyr Sawicki. As Professor Sawicki had also lectured for the students of Jan Dlugosz University in Czȩstochowa he had seen both these universities as future organizers of the conference. Coincidentally rectors of Lviv and Czȩstochowa universities, Professor Ivan Vakarchuk and Professor Józef Światek were physicists so this proposition was received very warmly and got strong support from the officials of the universities. From the early beginnings the Seminar also had wide organizational help from the Research and Development Enterprise 'Carat' from Lviv and especially from its president Dr Mykola Vakiv. The Seminars started in 1996—the first meeting took place in Zakopane (Poland) in May 1996 and the second one in September of the same year in Schack (Ukraine). From 1997, ISPCS Seminars have gathered together a group of chemists and physicists interested in condensed matter physics and chemistry, in even years in Ukraine, in odd years in Poland. This circle is growing: at the first Seminar in Zakopane thirty scientists took part, mainly from Lviv and from Czȩstochowa, ISPCS13 gave us the opportunity to meet over eighty people from several universities and research institutions, including delegates from countries other than Poland and Ukraine, with over seventy presentations. The organizers plan that ISPCS conferences should achieve the following two objectives: help in building closer

  16. African oil plays

    SciTech Connect

    Clifford, A.J. )

    1989-09-01

    The vast continent of Africa hosts over eight sedimentary basins, covering approximately half its total area. Of these basins, only 82% have entered a mature exploration phase, 9% have had little or no exploration at all. Since oil was first discovered in Africa during the mid-1950s, old play concepts continue to bear fruit, for example in Egypt and Nigeria, while new play concepts promise to become more important, such as in Algeria, Angola, Chad, Egypt, Gabon, and Sudan. The most exciting developments of recent years in African oil exploration are: (1) the Gamba/Dentale play, onshore Gabon; (2) the Pinda play, offshore Angola; (3) the Lucula/Toca play, offshore Cabinda; (4) the Metlaoui play, offshore Libya/Tunisia; (5) the mid-Cretaceous sand play, Chad/Sudan; and (6) the TAG-I/F6 play, onshore Algeria. Examples of these plays are illustrated along with some of the more traditional oil plays. Where are the future oil plays likely to develop No doubt, the Saharan basins of Algeria and Libya will feature strongly, also the presalt of Equatorial West Africa, the Central African Rift System and, more speculatively, offshore Ethiopia and Namibia, and onshore Madagascar, Mozambique, and Tanzania.

  17. Development of a high-throughput screening system for the compounds that inhibit collagen-protein interactions.

    PubMed

    Okano-Kosugi, Hitomi; Matsushita, Osamu; Asada, Shinichi; Herr, Andrew B; Kitagawa, Kouki; Koide, Takaki

    2009-11-01

    Collagen-binding proteins (CBPs) play important roles in various physiological events. Some CBPs are regarded as targets for drug development; for example, platelet glycoprotein VI (GPVI) and heat shock protein 47 (HSP47) are promising targets for the development of novel antiplatelet and antifibrotic drugs, respectively. However, no systematic screening method to search compounds that inhibit collagen-CBP interactions have been developed, and only a few CBP inhibitors have been reported to date. In this study, a facile turbidimetric multiwell plate assay was developed to evaluate inhibitors of CBPs. The assay is based on the finding that CBPs retard spontaneous collagen fibril formation in vitro and that fibril formation is restored in the presence of compounds that interfere with the collagen-CBP interactions. Using the same platform, the assay was performed in various combinations of fibril-forming collagen types and CBPs. This homogeneous assay is simple, convenient, and suitable as an automated high-throughput screening system.

  18. Nanolayered Features of Collagen-like Peptides

    NASA Technical Reports Server (NTRS)

    Valluzzi, Regina; Bini, Elisabetta; Haas, Terry; Cebe, Peggy; Kaplan, David L.

    2003-01-01

    We have been investigating collagen-like model oligopeptides as molecular bases for complex ordered biomimetic materials. The collagen-like molecules incorporate aspects of native collagen sequence and secondary structure. Designed modifications to native primary and secondary structure have been incorporated to control the nanostructure and microstructure of the collagen-like materials produced. We find that the collagen-like molecules form a number of lyotropic rod liquid crystalline phases, which because of their strong temperature dependence in the liquid state can also be viewed as solvent intercalated thermotropic liquid crystals. The liquid crystalline phases formed by the molecules can be captured in the solid state by drying off solvent, resulting in solid nanopatterned (chemically and physically) thermally stable (to greater than 100 C) materials. Designed sequences which stabilize smectic phases have allowed a variety of nanoscale multilayered biopolymeric materials to be developed. Preliminary investigations suggest that chemical patterns running perpendicular to the smectic layer plane can be functionalized and used to localize a variety of organic, inorganic, and organometallic moieties in very simple multilayered nanocomposites. The phase behavior of collagen-like oligopeptide materials is described, emphasizing the correlation between mesophase, molecular orientation, and chemical patterning at the microscale and nanoscale. In many cases, the textures observed for smectic and hexatic phase collagens are remarkably similar to the complex (and not fully understood) helicoids observed in biological collagen-based tissues. Comparisons between biological morphologies and collagen model liquid crystalline (and solidified materials) textures may help us understand the molecular features which impart order and function to the extracellular matrix and to collagen-based mineralized tissues. Initial studies have utilized synthetic collagen-like peptides while

  19. Laser welding and collagen crosslinks

    SciTech Connect

    Reiser, K.M.; Last, J.A.; Small, W. IV; Maitland, D.J.; Heredia, N.J.; Da Silva, L.B.; Matthews, D.L.

    1997-02-20

    Strength and stability of laser-welded tissue may be influenced, in part, by effects of laser exposure on collagen crosslinking. We therefore studied effects of diode laser exposure (805 nm, 1-8 watts, 30 seconds) + indocyanine green dye (ICG) on calf tail tendon collagen crosslinks. Effect of ICG dye alone on crosslink content prior to laser exposure was investigated; unexpectedly, we found that ICG-treated tissue had significantly increased DHLNL and OHP, but not HLNL. Laser exposure after ICG application reduced elevated DHLNL and OHP crosslink content down to their native levels. The monohydroxylated crosslink HLNL was inversely correlated with laser output (p<0.01 by linear regression analysis). DHLNL content was highly correlated with content of its maturational product, OHP, suggesting that precursor-product relations are maintained. We conclude that: (1)ICG alone induces DHLNL and OHP crosslink formation; (2)subsequent laser exposure reduces the ICG-induced crosslinks down to native levels; (3)excessive diode laser exposure destroys normally occurring HLNL crosslinks.

  20. Laser welding and collagen crosslinks

    NASA Astrophysics Data System (ADS)

    Reiser, Karen M.; Small, Ward, IV; Maitland, Duncan J.; Heredia, Nicholas J.; Da Silva, Luiz B.; Matthews, Dennis L.; Last, Jerold A.

    1997-05-01

    The strength and stability of laser-welded tissue may be influenced, in part, by the effects of laser exposure on collagen crosslinking. We therefore studied the effects of diode laser exposure (805 nm, 1 - 8 watts, 30 seconds) plus indocyanine green dye (ICG) on calf tail tendon collagen crosslinks. The effect of ICG dye alone on crosslink content prior to laser exposure was investigated; unexpectedly, we found that ICG-treated tissue had significantly increased DHLNL and OHP, but not HLNL. Laser exposure after ICG application reduced elevated DHLNL and OHP crosslink content down to their native levels. The monohydroxylated crosslink HLNL was inversely correlated with laser output (p less than 0.01 by linear regression analysis). DHLNL content was highly correlated with content of its maturational product, OHP, suggesting that precursor-product relationships are maintained. We conclude that: (1) ICG alone induces DHLNL and OHP crosslink formation; (2) subsequent laser exposure reduces the ICG-induced crosslinks down to native levels; (3) excessive diode laser exposure destroys normally occurring HLNL crosslinks.

  1. [Collagen diseases with gastrointestinal manifestations].

    PubMed

    Takahashi, Hiroki; Ohara, Mikiko; Imai, Kohzoh

    2004-06-01

    Collagen vascular diseases are known to present with a diverse array of gastrointestinal manifestations. These can be classified as: 1) gastrointestinal damage due to the collagen vascular disease itself; 2) adverse events caused by pharmacotherapies; or 3) gastrointestinal infections following immunosuppression due to corticosteroid (CS) administration. The first group includes lupus enteritis and protein-losing gastroenteropathy in systemic lupus erythematosus (SLE), reflux esophagitis, chronic intestinal pseudo-obstruction, and pneumatosis cystoids intestinalis in systemic sclerosis, amyloidosis in rheumatoid arthritis, bowel ulcer and bleeding in rheumatoid vasculitis and microscopic polyangiitis, and ileocecal ulcer in Behcet disease. In particular, colonic ulcers associated with SLE represent refractory lesions resistant to CS. Analysis of reported cases showing colonic lesions with SLE (22 cases in Japan) revealed that mean duration of SLE was 9.9 years and 77% of colonic lesions were observed in the rectum and sigmoid colon. Half of the patients developed intestinal perforation or penetration, and 6 of the 11 patients with perforation died. The second group includes lesions in the small and large intestine due to nonsteroidal anti-inflammatory drugs (NSAIDs) and CSs, in addition to peptic ulcers. As perforation in CS-treated patients displays relatively high incidence with poor prognosis, careful attention to such complications is needed. The third group includes candidal esophagitis and cytomegalovirus (CMV) enteritis. Prompt diagnosis is required to prevent colonic bleeding and perforation due to CMV.

  2. Collagen structure: new tricks from a very old dog.

    PubMed

    Bella, Jordi

    2016-04-15

    The main features of the triple helical structure of collagen were deduced in the mid-1950s from fibre X-ray diffraction of tendons. Yet, the resulting models only could offer an average description of the molecular conformation. A critical advance came about 20 years later with the chemical synthesis of sufficiently long and homogeneous peptides with collagen-like sequences. The availability of these collagen model peptides resulted in a large number of biochemical, crystallographic and NMR studies that have revolutionized our understanding of collagen structure. High-resolution crystal structures from collagen model peptides have provided a wealth of data on collagen conformational variability, interaction with water, collagen stability or the effects of interruptions. Furthermore, a large increase in the number of structures of collagen model peptides in complex with domains from receptors or collagen-binding proteins has shed light on the mechanisms of collagen recognition. In recent years, collagen biochemistry has escaped the boundaries of natural collagen sequences. Detailed knowledge of collagen structure has opened the field for protein engineers who have used chemical biology approaches to produce hyperstable collagens with unnatural residues, rationally designed collagen heterotrimers, self-assembling collagen peptides, etc. This review summarizes our current understanding of the structure of the collagen triple helical domain (COL×3) and gives an overview of some of the new developments in collagen molecular engineering aiming to produce novel collagen-based materials with superior properties.

  3. Autologous Marrow-Derived Stem Cell-Seeded Gene-Supplemented Collagen Scaffolds for Spinal Cord Regeneration as a Treatment for Paralysis

    DTIC Science & Technology

    2008-01-01

    electrophoresis. Cationized gelatin-plasmid IGF-1 nanoparticles (CGPIN) were prepared by complex coacervation , which involves separation by the... Composite Scaffolds Hyaluronic acid (HA) plays a vital role in neural tissues and has been shown to have positive biological effects on cell behavior...collagen composite matrices were prepared, and selected properties evaluated. 10 HA-collagen

  4. Thioamides in the collagen triple helix†

    PubMed Central

    Newberry, Robert W.; VanVeller, Brett

    2015-01-01

    To probe noncovalent interactions within the collagen triple helix, backbone amides were replaced with a thioamide isostere. This subtle substitution is the first in the collagen backbone that does not compromise thermostability. A triple helix with a thioamide as a hydrogen bond donor was found to be more stable than triple helices assembled from isomeric thiopeptides. PMID:25967743

  5. Structure, physiology, and biochemistry of collagens.

    PubMed

    Mienaltowski, Michael J; Birk, David E

    2014-01-01

    Tendons and ligaments are connective tissues that guide motion, share loads, and transmit forces in a manner that is unique to each as well as the anatomical site and biomechanical stresses to which they are subjected. Collagens are the major molecular components of both tendons and ligaments. The hierarchical structure of tendon and its functional properties are determined by the collagens present, as well as their supramolecular organization. There are 28 different types of collagen that assemble into a variety of supramolecular structures. The assembly of specific supramolecular structures is dependent on the interaction with other matrix molecules as well as the cellular elements. Multiple suprastructural assemblies are integrated to form the functional tendon/ligament. This chapter begins with a discussion of collagen molecules. This is followed by a definition of the supramolecular structures assembled by different collagen types. The general principles involved in the assembly of collagen-containing suprastructures are presented focusing on the regulation of tendon collagen fibrillogenesis. Finally, site-specific differences are discussed. While generalizations can be made, differences exist between different tendons as well as between tendons and ligaments. Compositional differences will impact structure that in turn will determine functional differences. Elucidation of the unique physiology and pathophysiology of different tendons and ligaments will require an appreciation of the role compositional differences have on collagen suprastructural assembly, tissue organization, and function.

  6. Oriented collagen nanocoatings for tissue engineering.

    PubMed

    Pastorino, Laura; Dellacasa, Elena; Scaglione, Silvia; Giulianelli, Massimo; Sbrana, Francesca; Vassalli, Massimo; Ruggiero, Carmelina

    2014-02-01

    Collagens are among the most widely present and important proteins composing the human total body, providing strength and structural stability to various tissues, from skin to bone. In this paper, we report an innovative approach to bioactivate planar surfaces with oriented collagen molecules to promote cells proliferation and alignment. The Langmuir-Blodgett technique was used to form a stable collagen film at the air-water interface and the Langmuir-Schaefer deposition was adopted to transfer it to the support surface. The deposition process was monitored by estimating the mass of the protein layers after each deposition step. Collagen films were then structurally characterized by atomic force, scanning electron and fluorescent microscopies. Finally, collagen films were functionally tested in vitro. To this aim, 3T3 cells were seeded onto the silicon supports either modified or not (control) by collagen film deposition. Cells adhesion and proliferation on collagen films were found to be greater than those on control both after 1 (p<0.05) and 7 days culture. Moreover, the functionalization of the substrate surface triggered a parallel orientation of cells when cultured on it. In conclusion, these data demonstrated that the Langmuir-Schaefer technique can be successfully used for the deposition of oriented collagen films for tissue engineering applications.

  7. In vitro models of collagen biomineralization.

    PubMed

    Nudelman, Fabio; Lausch, Alexander J; Sommerdijk, Nico A J M; Sone, Eli D

    2013-08-01

    Over the last several years, significant progress has been made toward understanding the mechanisms involved in the mineralization of hard collagenous tissues, such as bone and dentin. Particularly notable are the identification of transient mineral phases that are precursors to carbonated hydroxyapatite, the identification and characterization of non-collagenous proteins that are involved in controlling mineralization, and significant improvements in our understanding of the structure of collagen. These advances not only represent a paradigm shift in the way collagen mineralization is viewed and understood, but have also brought new challenges to light. In this review, we discuss how recent in vitro models have addressed critical questions regarding the role of the non-collagenous proteins in controlling mineralization, the nature of the interactions between amorphous calcium phosphate and collagen during the early stages of mineralization, and the role of collagen in the mineralization process. We discuss the significance of these findings in expanding our understanding of collagen biomineralization, while addressing some of the limitations that are inherent to in vitro systems. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Thioamides in the collagen triple helix.

    PubMed

    Newberry, Robert W; VanVeller, Brett; Raines, Ronald T

    2015-06-14

    To probe noncovalent interactions within the collagen triple helix, backbone amides were replaced with a thioamide isostere. This subtle substitution is the first in the collagen backbone that does not compromise thermostability. A triple helix with a thioamide as a hydrogen bond donor was found to be more stable than triple helices assembled from isomeric thiopeptides.

  9. Proton pump inhibitor induced collagen expression in colonocytes is associated with collagenous colitis

    PubMed Central

    Mori, Shiori; Kadochi, Yui; Luo, Yi; Fujiwara-Tani, Rina; Nishiguchi, Yukiko; Kishi, Shingo; Fujii, Kiyomu; Ohmori, Hitoshi; Kuniyasu, Hiroki

    2017-01-01

    AIM To elucidate the role of proton pump inhibitors (PPIs) in collagenous disease, direct effect of PPI on colonocytes was examined. METHODS Collagenous colitis is a common cause of non-bloody, watery diarrhea. Recently, there has been increasing focus on the use of proton PPIs as a risk factor for developing collagenous colitis. Mouse CT26 colonic cells were treated with PPI and/or PPI-induced alkaline media. Expression of fibrosis-associated genes was examined by RT-PCR. In human materials, collagen expression was examined by immunohistochemistry. RESULTS CT26 cells expressed a Na+-H+ exchanger gene (solute carrier family 9, member A2). Treatment with PPI and/or PPI-induced alkaline media caused growth inhibition and oxidative stress in CT26 cells. The treatment increased expression of fibrosis inducing factors, transforming growth factor β and fibroblast growth factor 2. The treatment also decreased expression of a negative regulator of collagen production, replication factor C1, resulting in increased expression of collagen types III and IV in association with lipid peroxide. In biopsy specimens from patients with collagenous colitis, type III and IV collagen were increased. Increase of type III collagen was more pronounced in PPI-associated collagenous colitis than in non-PPI-associated disease. CONCLUSION From these findings, the reaction of colonocytes to PPI might participate in pathogenesis of collagenous colitis. PMID:28321159

  10. Influence of collagen source on fibrillar architecture and properties of vitrified collagen membranes.

    PubMed

    Majumdar, Shoumyo; Guo, Qiongyu; Garza-Madrid, Marcos; Calderon-Colon, Xiomara; Duan, Derek; Carbajal, Priscilla; Schein, Oliver; Trexler, Morgana; Elisseeff, Jennifer

    2016-02-01

    Collagen vitrigel membranes are transparent biomaterials characterized by a densely organized, fibrillar nanostructure that show promise in the treatment of corneal injury and disease. In this study, the influence of different type I collagen sources and processing techniques, including acid-solubilized collagen from bovine dermis (Bov), pepsin-solubilized collagen from human fibroblast cell culture (HuCC), and ficin-solubilized collagen from recombinant human collagen expressed in tobacco leaves (rH), on the properties of the vitrigel membranes was evaluated. Postvitrification carbodiimide crosslinking (CX) was also carried out on the vitrigels from each collagen source, forming crosslinked counterparts BovXL, HuCCXL, and rHXL, respectively. Collagen membrane ultrastructure and biomaterial properties were found to rely heavily on both collagen source and crosslinking. Bov and HuCC samples showed a random fibrillar organization of collagen, whereas rH vitrigels showed remarkable regional fibril alignment. After CX, light transmission was enhanced in all groups. Denaturation temperatures after CX increased in all membranes, of which the highest increase was seen in rH (14.71°C), suggesting improved thermal stability of the collagen fibrils in the membranes. Noncrosslinked rH vitrigels may be reinforced through CX to reach levels of mechanical strength and thermal stability comparable to Bov.

  11. A novel benign solution for collagen processing

    NASA Astrophysics Data System (ADS)

    Arnoult, Olivier

    Collagen is the main protein constituting the extracellular matrix (ECM) of tissues in the body (skin, cartilage, blood vessels...). It exists many types of collagen, this work studies only fibrillar collagen (e.g. collagen type I contained in the skin) that exhibits a triple helical structure composed of 3 alpha-helical collagen chains. This particular and defined hierarchical structure is essential to the biological and mechanical properties of the collagen. Processing collagen into scaffolds to mimic the ECM is crucial for successful tissue engineering. Recently collagen was processed into fibrous and porous scaffold using electrospinning process. However the solvent (HFIP) used for electrospinning is extremely toxic for the user and expensive. This work shows that HFIP can be replaced by a benign mixture composed of water, salt and alcohol. Yet only three alcohols (methanol, ethanol and iso-propanol) enable the dissolution of large quantity of collagen in the benign mixture, with a wide range of alcohol to buffer ratio, and conserve the collagen hierarchical structure at least as well as the HFIP. Collagen can be electrospun from the benign mixture into sub-micron fibers with concentrations as low as 6 wt-% for a wide range of alcohol to buffer ratio, with at least 10wt-% of salt, and any of the three alcohols. Specific conditions yield nano size fibers. After processing from HFIP or a benign mixture, collagen is water soluble and needs to be chemically crosslink for tissue engineering application. Post-crosslinking with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) results in the loss of the scaffold fibrous aspect and porosity, hence it is useless for tissue engineering. Such issue could be prevented by incorporating the crosslinker into the mixture prior to electrospinning. When EDC is used alone, collagen forms a gel in the mixture within minutes, preventing electrospinning. The addition of N-hydroxysuccinimide (NHS) in excess to EDC

  12. Molecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides

    PubMed Central

    Zitnay, Jared L.; Li, Yang; Qin, Zhao; San, Boi Hoa; Depalle, Baptiste; Reese, Shawn P.; Buehler, Markus J.; Yu, S. Michael; Weiss, Jeffrey A.

    2017-01-01

    Mechanical injury to connective tissue causes changes in collagen structure and material behaviour, but the role and mechanisms of molecular damage have not been established. In the case of mechanical subfailure damage, no apparent macroscale damage can be detected, yet this damage initiates and potentiates in pathological processes. Here, we utilize collagen hybridizing peptide (CHP), which binds unfolded collagen by triple helix formation, to detect molecular level subfailure damage to collagen in mechanically stretched rat tail tendon fascicle. Our results directly reveal that collagen triple helix unfolding occurs during tensile loading of collagenous tissues and thus is an important damage mechanism. Steered molecular dynamics simulations suggest that a likely mechanism for triple helix unfolding is intermolecular shearing of collagen α-chains. Our results elucidate a probable molecular failure mechanism associated with subfailure injuries, and demonstrate the potential of CHP targeting for diagnosis, treatment and monitoring of tissue disease and injury. PMID:28327610

  13. Molecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides

    NASA Astrophysics Data System (ADS)

    Zitnay, Jared L.; Li, Yang; Qin, Zhao; San, Boi Hoa; Depalle, Baptiste; Reese, Shawn P.; Buehler, Markus J.; Yu, S. Michael; Weiss, Jeffrey A.

    2017-03-01

    Mechanical injury to connective tissue causes changes in collagen structure and material behaviour, but the role and mechanisms of molecular damage have not been established. In the case of mechanical subfailure damage, no apparent macroscale damage can be detected, yet this damage initiates and potentiates in pathological processes. Here, we utilize collagen hybridizing peptide (CHP), which binds unfolded collagen by triple helix formation, to detect molecular level subfailure damage to collagen in mechanically stretched rat tail tendon fascicle. Our results directly reveal that collagen triple helix unfolding occurs during tensile loading of collagenous tissues and thus is an important damage mechanism. Steered molecular dynamics simulations suggest that a likely mechanism for triple helix unfolding is intermolecular shearing of collagen α-chains. Our results elucidate a probable molecular failure mechanism associated with subfailure injuries, and demonstrate the potential of CHP targeting for diagnosis, treatment and monitoring of tissue disease and injury.

  14. Collagen based barrier membranes for periodontal guided bone regeneration applications.

    PubMed

    Sheikh, Zeeshan; Qureshi, Javairia; Alshahrani, Abdullah M; Nassar, Heba; Ikeda, Yuichi; Glogauer, Michael; Ganss, Bernhard

    2017-01-01

    Certain cell populations within periodontal tissues possess the ability to induce regeneration, provided they have the opportunity to populate the wound or defect. Guided regeneration techniques have been investigated for regenerating periodontal tissues and such therapies usually utilize barrier membranes. Various natural and synthetic barrier membranes have been fabricated and tested to prevent epithelial and connective tissue cells from invading while allowing periodontal cells to selectively migrate into the defect. This paper focuses on the literature relevant to the use and potential of resorbable collagen membranes in GBR procedures, sites of periodontal and intrabony defects, in cases of socket and alveolar ridge preservation and at implant sites. The results of their use in GBR procedures has shown them to be effective and comparable with non-resorbable membranes with regards to clinical attachment gain, probing depth reduction and defect bone filling. They have also shown to prevent epithelial ingrowth into the defect space during the initial wound healing phase postsurgically. Collagen membranes have also been used for root coverage and GBR procedures and have shown good success rates comparable to subepithelial connective tissue grafts and expanded-polytetrafluoroethylene (e-PTFE) membranes. The future for periodontal tissue engineering is very exciting with the use of barrier membranes expected to continue playing a critical role. However, long-term clinical trials are required to further evaluate and confirm the efficacy of the available collagen barrier membranes for periodontal and bone regeneration use.

  15. Bioengineered collagens: emerging directions for biomedical materials.

    PubMed

    Ramshaw, John A M; Werkmeister, Jerome A; Dumsday, Geoff J

    2014-01-01

    Mammalian collagen has been widely used as a biomedical material. Nevertheless, there are still concerns about the variability between preparations, particularly with the possibility that the products may transmit animal-based diseases. Many groups have examined the possible application of bioengineered mammalian collagens. However, translating laboratory studies into large-scale manufacturing has often proved difficult, although certain yeast and plant systems seem effective. Production of full-length mammalian collagens, with the required secondary modification to give proline hydroxylation, has proved difficult in E. coli. However, recently, a new group of collagens, which have the characteristic triple helical structure of collagen, has been identified in bacteria. These proteins are stable without the need for hydroxyproline and are able to be produced and purified from E. coli in high yield. Initial studies indicate that they would be suitable for biomedical applications.

  16. Proline puckering parameters for collagen structure simulations

    NASA Astrophysics Data System (ADS)

    Wu, Di

    2015-03-01

    Collagen is made of triple helices rich in proline residues, and hence is influenced by the conformational motions of prolines. Because the backbone motions of prolines are restricted by the helical structures, the only side chain motion—proline puckering—becomes an influential factor that may affect the stability of collagen structures. In molecular simulations, a proper proline puckering population is desired so to yield valid results of the collagen properties. Here we design the proline puckering parameters in order to yield suitable proline puckering populations as demonstrated in the experimental results. We test these parameters in collagen and the proline dipeptide simulations. Compared with the results of the PDB and the quantum calculations, we propose the proline puckering parameters for the selected collagen model simulations.

  17. Matrix metalloproteinase interactions with collagen and elastin

    PubMed Central

    Van Doren, Steven R.

    2015-01-01

    Most abundant in the extracellular matrix are collagens, joined by elastin that confers elastic recoil to the lung, aorta, and skin. These fibrils are highly resistant to proteolysis but can succumb to a minority of the matrix metalloproteinases (MMPs). Considerable inroads to understanding how such MMPs move to the susceptible sites in collagen and then unwind the triple helix of collagen monomers have been gained. The essential role in unwinding of the hemopexin-like domain of interstitial collagenases or the collagen binding domain of gelatinases is highlighted. Elastolysis is also facilitated by the collagen binding domain in the cases of MMP-2 and MMP-9, and remote exosites of the catalytic domain in the case of MMP-12. PMID:25599938

  18. Flow of bovine collagen in rectangular slit

    NASA Astrophysics Data System (ADS)

    Skočilas, Jan; Žitný, Rudolf; Štancl, Jaromír; Solnař, Stanislav; Landfeld, Aleš; Houška, Milan

    2017-05-01

    This contribution deals with the investigation of the bovine collagen flow in the rectangular slit. The slightly compressible collagen liquid (9.5% mass fraction of native bovine collagen in water) was extruded by capillary rheometer of given geometry. A piston pushed the collagen sample from a container to the rectangular capillary. The extrusion rheometer is equipped by pressure sensors mounted at wall of capillary and manually adjusted hydraulic drive enables continuous variation of the piston velocity. The pressure profiles are measured in five places along the capillary simultaneously with increasing shear rate within the range from 1500 to 5000 s-1. It is possible to identify non-elastic shear flow characteristic and the compressibility of collagen matter.

  19. Proline puckering parameters for collagen structure simulations

    SciTech Connect

    Wu, Di

    2015-03-15

    Collagen is made of triple helices rich in proline residues, and hence is influenced by the conformational motions of prolines. Because the backbone motions of prolines are restricted by the helical structures, the only side chain motion—proline puckering—becomes an influential factor that may affect the stability of collagen structures. In molecular simulations, a proper proline puckering population is desired so to yield valid results of the collagen properties. Here we design the proline puckering parameters in order to yield suitable proline puckering populations as demonstrated in the experimental results. We test these parameters in collagen and the proline dipeptide simulations. Compared with the results of the PDB and the quantum calculations, we propose the proline puckering parameters for the selected collagen model simulations.

  20. Reduced difference of α₂-plasmin inhibitor levels between plasma and serum in patients with severe factor XIII deficiency, including autoimmune hemorrhaphilia due to anti-factor XIII antibodies.

    PubMed

    Ichinose, Akitada; Souri, Masayoshi

    2012-01-01

    Coagulation factor XIII/13 (FXIII/13) stabilizes fibrin molecules by creating crosslinks with other fibrin molecules as well as with α₂-plasmin inhibitor (α₂-PI). "Hemorrhagic acquired FXIII/13 deficiency" was formerly considered rare, but has been increasing recently in Japan. During the 10 months of our nationwide campaign, we diagnosed five new patients with "acquired hemorrhaphilia due to anti-FXIII/13 autoantibodies," after examining 20 newly suspected cases of "hemorrhagic acquired FXIII/13 deficiency." When FXIII/13 activity was reduced to less than 50% of normal, it was proportional to the difference in α₂-PI levels between plasma and serum (plasma-serum α₂-PI), likely due to its cross-linking to fibrin by activated FXIII/13. Accordingly, decreased amounts of the plasma-serum α₂-PI ex vivo may reflect reduced FXIII/13 activity in vivo. The plasma-serum α₂-PI may thus also be a useful diagnostic marker for severe FXIII/13 deficiency.

  1. Guide to collagen characterization for biomaterial studies.

    PubMed

    Abraham, Leah C; Zuena, Erin; Perez-Ramirez, Bernardo; Kaplan, David L

    2008-10-01

    The structure and remodeling of collagen in vivo is critical to the pathology and healing of many human diseases, as well as to normal tissue development and regeneration. In addition, collagen matrices in the form of fibers, coatings, and films are used extensively in biomaterial and biomedical applications. The specific properties of these matrices, both in terms of physical and chemical characteristics, have a direct impact on cellular adhesion, spreading, and proliferation rates, and ultimately on the rate and extent of new extracellular matrix formation in vitro or in vivo. In recent studies, it has also been shown that collagen matrix structure has a major impact on cell and tissue outcomes related to cellular aging and differentiation potential. Collagen structure is complex because of both diversity of source materials, chemistry, and structural hierarchy. With such significant impact of collagen features on biological outcomes, it becomes essential to consider an appropriate set of analytical tools, or guide, so that collagens attained from commercial vendors are characterized in a comparative manner as an integral part of studies focused on biological parameters. The analysis should include as a starting point: (a) structural detail-mainly focused on molecular mass, purity, helical content, and bulk thermal properties, (b) chemical features-mainly focused on surface elemental analysis and hydrophobicity, and (c) morphological features at different length scales. The application of these analytical techniques to the characterization of collagen biomaterial matrices is critical in order to appropriately correlate biological responses from different studies with experimental outcomes in vitro or in vivo. As a case study, the analytical tools employed for collagen biomaterial studies are reviewed in the context of collagen remodeling by fibroblasts. The goal is to highlight the necessity of understanding collagen biophysical and chemical features as a

  2. Liver collagen synthesis in murine schistosomiasis.

    PubMed Central

    Dunn, M A; Rojkind, M; Warren, K S; Hait, P K; Rifas, L; Seifter, S

    1977-01-01

    Collagen synthesis was measured in liver slices obtained from mice with hepatosplenic schistosomiasis. Enlarged fibrotic livers from these mice contained 20 times more collagen than normal. This model of hepatic fibrosis results from an inflammatory granulomatous host response to Schistosoma mansoni ova in portal tracts, rather than from direct lover cell injury as with carbon tetrachloride-induced liver fibrosis. Collagen synthesis, as measured by the formation of labeled protein-bound hydroxyproline, occurred in granulomas isolated from fibrotic livers. Labeled collagen that cochromatographed with type I collagen was extracted with neutral salt solution from liver slices incubated with labeled proline. The free proline pool of the liver was doubled in infected mice; coordinately, liver slices from these animals showed maximal collagen production when the concentration of free proline in the medium was raised to 0.4 mM, the same level measured in the fibrotic livers. Under such conditions, collagen synthesis was at a rate equivalent to the formation of 5.4 nmol of protein-bound hydroxyproline per g liver in 6 h. In comparative incubations in medium containing 0.2 mM proline, fibrotic liver slices produced 16-fold more collagen than normal slices. The proline analogue, L-azetidine 2-carboxylic acid, effectively inhibited synthesis of labeled collagen by fibrotic liver slices. These studies show the synthesis of collagen in a reproducible animal model of the most prevalent form of human liver fibrosis. Difinitition of the controlling factors in this system is of interest for the general problem of fibrosis produced by immunological responses. Images PMID:845255

  3. Mechanisms and Dynamics of Collagen Assembly

    NASA Astrophysics Data System (ADS)

    Tao, Jinhui; Friddle, Raymond; Wang, Debin; de Yoreo, Jim

    2013-03-01

    Collagen is the major structural protein of bone, dentine and it template the nucleation of biomineral phases. Both collagen conformation and architecture on substrate are critical for its function. We studied the mechanism of collagen I assembly on mica by in-situ AFM. At acidic condition, assembled architecture evolved from random fibers to co-aligned fibers and finally to bundles as the K+ concentration increased from 100 to 300mM. XPS and NEXAFS showed the concentration of K+ within the collagen layer increased and the intensity of absorption peak due to π*(C =O) resonance decreased with higher K+concentration. The magnitude of collagen-mica (C-M) and collagen-collagen (C-C) interactions were measured by dynamic force spectroscopy. The free energy ΔGb for C-M and C-C at 200mM K+were 13.7kT and 1.4kT, while ΔGb at 300mM K+ were 5.7kT and 12.3kT, respectively. The switch from co-aligned fibers to 3D bundles is driven by the reversal in the magnitude of C-C and C-M interactions. Our results indicate K+ complex with C =O of collagen and its effect on the strength of collagen-collagen bridging is the likely source of architecture control. Authors would like to acknowledge grant no. DK61673 from the National Institutes of Health. Theoretical analysis was supported by Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract no. DE-AC02-05CH1123.

  4. A novel collagen gel-based measurement technique for quantitation of cell contraction force

    PubMed Central

    Jin, Tianrong; Li, Li; Siow, Richard C. M.; Liu, Kuo-Kang

    2015-01-01

    Cell contraction force plays an important role in wound healing, inflammation, angiogenesis and metastasis. This study describes a novel method to quantify single cell contraction force in vitro using human aortic adventitial fibroblasts embedded in a collagen gel. The technique is based on a depth sensing nano-indentation tester to measure the thickness and elasticity of collagen gels containing stimulated fibroblasts and a microscopy imaging system to estimate the gel area. In parallel, a simple theoretical model has been developed to calculate cell contraction force based on the measured parameters. Histamine (100 µM) was used to stimulate fibroblast contraction while the myosin light chain kinase inhibitor ML-7 (25 µM) was used to inhibit cell contraction. The collagen matrix used in the model provides a physiological environment for fibroblast contraction studies. Measurement of changes in collagen gel elasticity and thickness arising from histamine treatments provides a novel convenient technique to measure cell contraction force within a collagen matrix. This study demonstrates that histamine can elicit a significant increase in contraction force of fibroblasts embedded in collagen, while the Young's modulus of the gel decreases due to the gel degradation. PMID:25977960

  5. The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering.

    PubMed

    Dai, Wenda; Kawazoe, Naoki; Lin, Xiaoting; Dong, Jian; Chen, Guoping

    2010-03-01

    3D biodegradable porous scaffold plays a very important role in articular cartilage tissue engineering. We developed hybrid structures of 3D scaffolds that combined the advantages of natural type I collagen and synthetic PLGA knitted mesh. The mechanically strong PLGA mesh served as a skeleton while the collagen microsponges facilitated cell seeding and tissue formation. The scaffolds were divided into 3 groups: (1) THIN: collagen microsponge formed in interstices of PLGA mesh; (2) SEMI: collagen microsponge formed on one side of PLGA mesh; (3) SANDWICH: collagen sponge formed on both sides of PLGA mesh. Bovine chondrocytes were cultured in these scaffolds and transplanted subcutaneously into nude mice for 2, 4, and 8 weeks. All three groups of transplants showed homogeneous cell distribution, natural chondrocyte morphology, and abundant cartilaginous ECM deposition. Production of GAGs per DNA and the expression of type II collagen and aggrecan mRNA were much higher in the SEMI and SANDWICH groups than in the THIN group. When compared to native articular cartilage, the mechanical strength of the engineered cartilage reached 54.8%, 49.3% in Young's modulus and 68.8%, 62.7% in stiffness, respectively, in SEMI and SANDWICH. These scaffolds could be used for the tissue engineering of articular cartilage with adjustable thickness. The design of the hybrid structures provides a strategy for the preparation of 3D porous scaffolds.

  6. Cell-layer-associated proteolytic cleavage of the telopeptides of type I collagen in fibroblast culture.

    PubMed Central

    Bateman, J F; Pillow, J J; Mascara, T; Medvedec, S; Ramshaw, J A; Cole, W G

    1987-01-01

    In human skin fibroblast cultures a fraction of the procollagen that was processed to collagen and remained in the cell layer was further proteolytically modified by removal of both N- and C-terminal telopeptides. The proteolytic activity was associated with the cell layer, since secreted collagens were found always to contain intact telopeptides. The inclusion of neutral polymers, which caused the accumulation of the collagen in the cell layer [Bateman, Cole, Pillow & Ramshaw (1986) J. Biol. Chem. 261, 4198-4203], made the telopeptide cleavage more apparent in those cells which expressed the proteolytic activity. The extent of this cleavage was variable from cell culture to cell culture and between experiments with the same fibroblast line. The proteolytic activity was pH-dependent; cleavage was greatest at a culture-medium pH of 7.5 and 8.0 and was completely inhibited at a culture-medium pH of 7.0 and 6.5. The activity was significantly inhibited by soybean trypsin inhibitor, an elastase-specific inhibitor (N-acetylalanylalanylprolylvalylchloromethane) and the thrombin inhibitor hirudin. This cell-associated proteolytic activity may play a role in collagen degradation by removing the telopeptides, which are the primary sites of collagen cross-linking, thus destabilizing the collagen matrix sufficiently to render it susceptible to further proteolytic breakdown. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:3311034

  7. The role of the non-collagenous matrix in tendon function

    PubMed Central

    Thorpe, Chavaunne T; Birch, Helen L; Clegg, Peter D; Screen, Hazel RC

    2013-01-01

    Tendon consists of highly ordered type I collagen molecules that are grouped together to form subunits of increasing diameter. At each hierarchical level, the type I collagen is interspersed with a predominantly non-collagenous matrix (NCM) (Connect. Tissue Res., 6, 1978, 11). Whilst many studies have investigated the structure, organization and function of the collagenous matrix within tendon, relatively few have studied the non-collagenous components. However, there is a growing body of research suggesting the NCM plays an important role within tendon; adaptations to this matrix may confer the specific properties required by tendons with different functions. Furthermore, age-related alterations to non-collagenous proteins have been identified, which may affect tendon resistance to injury. This review focuses on the NCM within the tensional region of developing and mature tendon, discussing the current knowledge and identifying areas that require further study to fully understand structure–function relationships within tendon. This information will aid in the development of appropriate techniques for tendon injury prevention and treatment. PMID:23718692

  8. Decreased type III collagen expression in human uterine cervix of prolapse uteri

    PubMed Central

    IWAHASHI, MASAAKI; MURAGAKI, YASUTERU

    2011-01-01

    The precise mechanism of prolapse uteri is not fully understood. There is evidence to suggest that abnormalities of collagen, the main component of extracellular matrix, or its repair mechanism, may predispose women to prolapse. To investigate the characteristic structure of human uterine cervix of patients with prolapse uteri, various types of collagen expression in the uterine cervix tissues of the prolapse uteri were compared to those of normal uterine cervix. After informed consent, 36 specimens of uterine cervical tissues were obtained at the time of surgery from 16 postmenopausal women with prolapse uteri (stage III–IV by the Pelvic Organ Prolapse Quantification examination) and 20 postmenopausal women without prolapse uteri (control group). Collagens were extracted from the uterine cervix tissues by salt precipitation methods. The relative levels of various collagens were evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The uterine cervix was longer in the patients with prolapse uteri than those of postmenopausal controls without prolapse uteri. The ratios of type III to type I collagen in the uterine cervical tissues were significantly decreased in the prolapse uteri, as compared to those of the postmenopausal uterine cervix without prolapse. These results suggest that decreased type III collagen expression may play an important role in determing the physiology and structure of the uterine cervix tissues of prolapse uteri. PMID:22977496

  9. Collagen V expression is crucial in regional development of the supraspinatus tendon.

    PubMed

    Connizzo, Brianne K; Adams, Sheila M; Adams, Thomas H; Birk, David E; Soslowsky, Louis J

    2016-12-01

    Manipulations in cell culture and mouse models have demonstrated that reduction of collagen V results in altered fibril structure and matrix assembly. A tissue-dependent role for collagen V in determining mechanical function was recently established, but its role in determining regional properties has not been addressed. The objective of this study was to define the role(s) of collagen V expression in establishing the site-specific properties of the supraspinatus tendon. The insertion and midsubstance of tendons from wild type, heterozygous and tendon/ligament-specific null mice were assessed for crimp morphology, fibril morphology, cell morphology, as well as total collagen and pyridinoline cross-link (PYD) content. Fibril morphology was altered at the midsubstance of both groups with larger, but fewer, fibrils and no change in cell morphology or collagen compared to the wild type controls. In contrast, a significant disruption of fibril assembly was observed at the insertion site of the null group with the presence of structurally aberrant fibrils. Alterations were also present in cell density and PYD content. Altogether, these results demonstrate that collagen V plays a crucial role in determining region-specific differences in mouse supraspinatus tendon structure. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2154-2161, 2016.

  10. NMR and Mutational Identification of the Collagen-Binding Site of the Chaperone Hsp47

    PubMed Central

    Yagi-Utsumi, Maho; Yoshikawa, Sumi; Yamaguchi, Yoshiki; Nishi, Yohei; Kurimoto, Eiji; Ishida, Yoshihito; Homma, Takayuki; Hoseki, Jun; Nishikawa, Yoshimi; Koide, Takaki; Nagata, Kazuhiro; Kato, Koichi

    2012-01-01

    Heat shock protein 47 (Hsp47) acts as a client-specific chaperone for collagen and plays a vital role in collagen maturation and the consequent embryonic development. In addition, this protein can be a potential target for the treatment of fibrosis. Despite its physiological and pathological importance, little is currently known about the collagen-binding mode of Hsp47 from a structural aspect. Here, we describe an NMR study that was conducted to identify the collagen-binding site of Hsp47. We used chicken Hsp47, which has higher solubility than its human counterpart, and applied a selective 15N-labeling method targeting its tryptophan and histidine residues. Spectral assignments were made based on site-directed mutagenesis of the individual residues. By inspecting the spectral changes that were observed upon interaction with a trimeric collagen peptide and the mutational data, we successfully mapped the collagen-binding site in the B/C β-barrel domain and a nearby loop in a 3D-homology model based upon a serpin fold. This conclusion was confirmed by mutational analysis. Our findings provide a molecular basis for the design of compounds that target the interaction between Hsp47 and procollagen as therapeutics for fibrotic diseases. PMID:23049894

  11. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts.

    PubMed

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo; Kim, So Young; Jang, Hwan-Hee; Ryu, Sung Ho; Kim, Beom Joon; Lee, Taehoon G

    2012-11-23

    The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the β1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate peptide for the treatment of skin aging and wrinkles.

  12. A novel collagen gel-based measurement technique for quantitation of cell contraction force.

    PubMed

    Jin, Tianrong; Li, Li; Siow, Richard C M; Liu, Kuo-Kang

    2015-05-06

    Cell contraction force plays an important role in wound healing, inflammation,angiogenesis and metastasis. This study describes a novel method to quantify single cell contraction force in vitro using human aortic adventitial fibroblasts embedded in a collagen gel. The technique is based on a depth sensing nano-indentation tester to measure the thickness and elasticity of collagen gels containing stimulated fibroblasts and a microscopy imaging system to estimate the gel area. In parallel, a simple theoretical model has been developed to calculate cell contraction force based on the measured parameters. Histamine (100 mM) was used to stimulate fibroblast contraction while the myosin light chain kinase inhibitor ML-7 (25 mM) was used to inhibit cell contraction. The collagen matrix used in the model provides a physiological environment for fibroblast contraction studies. Measurement of changes in collagen gel elasticity and thickness arising from histamine treatments provides a novel convenient technique to measure cell contraction force within a collagen matrix. This study demonstrates that histamine can elicit a significant increase in contraction force of fibroblasts embedded in collagen,while the Young's modulus of the gel decreases due to the gel degradation.

  13. Contribution of collagen fiber undulation to regional biomechanical properties along porcine thoracic aorta.

    PubMed

    Zeinali-Davarani, Shahrokh; Wang, Yunjie; Chow, Ming-Jay; Turcotte, Raphaël; Zhang, Yanhang

    2015-05-01

    As major extracellular matrix components, elastin, and collagen play crucial roles in regulating the mechanical properties of the aortic wall and, thus, the normal cardiovascular function. The mechanical properties of aorta, known to vary with age and multitude of diseases as well as the proximity to the heart, have been attributed to the variations in the content and architecture of wall constituents. This study is focused on the role of layer-specific collagen undulation in the variation of mechanical properties along the porcine descending thoracic aorta. Planar biaxial tensile tests are performed to characterize the hyperelastic anisotropic mechanical behavior of tissues dissected from four locations along the thoracic aorta. Multiphoton microscopy is used to image the associated regional microstructure. Exponential-based and recruitment-based constitutive models are used to account for the observed mechanical behavior while considering the aortic wall as a composite of two layers with independent properties. An elevated stiffness is observed in distal regions compared to proximal regions of thoracic aorta, consistent with sharper and earlier collagen recruitment estimated for medial and adventitial layers in the models. Multiphoton images further support our prediction that higher stiffness in distal regions is associated with less undulation in collagen fibers. Recruitment-based models further reveal that regardless of the location, collagen in the media is recruited from the onset of stretching, whereas adventitial collagen starts to engage with a delay. A parameter sensitivity analysis is performed to discriminate between the models in terms of the confidence in the estimated model parameters.

  14. The role of the non-collagenous matrix in tendon function.

    PubMed

    Thorpe, Chavaunne T; Birch, Helen L; Clegg, Peter D; Screen, Hazel R C

    2013-08-01

    Tendon consists of highly ordered type I collagen molecules that are grouped together to form subunits of increasing diameter. At each hierarchical level, the type I collagen is interspersed with a predominantly non-collagenous matrix (NCM) (Connect. Tissue Res., 6, 1978, 11). Whilst many studies have investigated the structure, organization and function of the collagenous matrix within tendon, relatively few have studied the non-collagenous components. However, there is a growing body of research suggesting the NCM plays an important role within tendon; adaptations to this matrix may confer the specific properties required by tendons with different functions. Furthermore, age-related alterations to non-collagenous proteins have been identified, which may affect tendon resistance to injury. This review focuses on the NCM within the tensional region of developing and mature tendon, discussing the current knowledge and identifying areas that require further study to fully understand structure-function relationships within tendon. This information will aid in the development of appropriate techniques for tendon injury prevention and treatment. © 2013 The Authors. International Journal of Experimental Pathology © 2013 International Journal of Experimental Pathology.

  15. Use of natural neural scaffolds consisting of engineered vascular endothelial growth factor immobilized on ordered collagen fibers filled in a collagen tube for peripheral nerve regeneration in rats.

    PubMed

    Ma, Fukai; Xiao, Zhifeng; Meng, Danqing; Hou, Xianglin; Zhu, Jianhong; Dai, Jianwu; Xu, Ruxiang

    2014-10-15

    The search for effective strategies for peripheral nerve regeneration has attracted much attention in recent years. In this study, ordered collagen fibers were used as intraluminal fibers after nerve injury in rats. Vascular endothelial growth factor (VEGF) plays an important role in nerve regeneration, but its very fast initial burst of activity within a short time has largely limited its clinical use. For the stable binding of VEGF to ordered collagen fibers, we fused a collagen-binding domain (CBD) to VEGF through recombinant DNA technology. Then, we filled the ordered collagen fibers-CBD-VEGF targeting delivery system in a collagen tube to construct natural neural scaffolds, which were then used to bridge transected nerve stumps in a rat sciatic nerve transection model. After transplantation, the natural neural scaffolds showed minimal foreign body reactions and good integration into the host tissue. Oriented collagen fibers in the collagen tube could guide regenerating axons in an oriented manner to the distal, degenerating nerve segment, maximizing the chance of target reinnervation. Functional and histological analyses indicated that the recovery of nerve function in the natural neural scaffolds-treated group was superior to the other grafted groups. The guiding of oriented axonal regeneration and effective delivery systems surmounting the otherwise rapid and short-lived diffusion of growth factors in body fluids are two important strategies in promoting peripheral nerve regeneration. The natural neural scaffolds described take advantage of these two aspects and may produce synergistic effects. These properties qualified the artificial nerve conduits as a putative candidate system for the fabrication of peripheral nerve reconstruction devices.

  16. Changes induced by ozone and ultraviolet light in type I collagen. Bovine Achilles tendon collagen versus rat tail tendon collagen.

    PubMed

    Fujimori, E

    1985-10-15

    High-molecular-mass aggregates were made soluble from insoluble collagens of bovine Achilles tendon and rat tail tendon by limited thermal hydrolysis. These polymeric collagen aggregates were cross-linked by 390-nm-fluorescent 3-hydroxy-pyridinium residues (excited at 325 nm) in the former tendon and by unknown non-fluorescent residues in the latter. With the solubilized insoluble-collagens from both tendons, as well as with acid-soluble collagen from rat tail tendon, other 350-385-nm fluorescence intensities (excited at 300 nm) were found to be higher in monomeric chains than in dimeric and polymeric chains. Low levels of ozone inhibited fibril formation of acid-soluble collagen particularly from young rat tail tendon, reacting with tyrosine residues and the 350-385-nm fluorophores. Aldehyde groups, involved in cross-linking, were not effectively modified by ozone. beta-Components (alpha-chain dimers) were not efficiently dissociated even by higher doses of ozone compared to gamma-components (alpha-chain trimers). Polymeric chain aggregates from bovine Achilles tendon collagen, whose 3-hydroxy-pyridinium cross-links are cleaved by ozone, were more readily dissociated by ozone than those from rat tail tendon collagen. Ultraviolet (300-nm) light, which destroyed the 350-385-nm fluorophores, inhibited fibril formation less effectively than ultraviolet (275-nm) light, which is absorbed by tyrosine residues, and did not dissociate collagen polymers from rat tail tendon. On the other hand, ultraviolet (320-nm) light, absorbed by 3-hydroxy-pyridinium cross-links which were rapidly photolyzed, partially dissociated polymeric collagen aggregates from bovine Achilles tendon after subsequent heating.

  17. The effect of uniaxial tension on the stability of collagen fibers under the conditions of nonuniform laser heating

    NASA Astrophysics Data System (ADS)

    Zakharkina, O. L.; Ignat'eva, N. Yu.; Iksanov, R. R.; Kamenskii, V. A.; Sobol', E. N.; Lunin, V. V.

    2009-02-01

    Collagen degradation caused by IR laser irradiation in ligament tissues was studied by thermal analysis and cross-polarization optical coherent tomography. It was found that, at 60°C, laser-induced modification of the quasi-crystalline packing of ordered collagen fibers occurred without the helix-coil molecular conformation transition. It was shown that, for uniaxial tension of ligaments, laser irradiation caused serious distortions in the structure of collagen and increased the fraction of macromolecules in the random coil state. It was assumed that the thermomechanical effect of laser treatment during laser heating played an important role.

  18. Growing Up with Play

    ERIC Educational Resources Information Center

    Katch, Jane

    2008-01-01

    Many adults are afraid of boys' play today, believing that the aggression that is so common in boys' fantasies is dangerous and might make them become violent men. This personal reflection describes the importance of multiage play in showing little boys how to become big boys while encouraging empathy and emotional growth in older boys. The author…

  19. Play and Digital Media

    ERIC Educational Resources Information Center

    Johnson, James E.; Christie, James F.

    2009-01-01

    This article examines how play is affected by computers and digital toys. Research indicates that when computer software targeted at children is problem-solving oriented and open-ended, children tend to engage in creative play and interact with peers in a positive manner. On the other hand, drill-and-practice programs can be quite boring and limit…

  20. Return to Play

    ERIC Educational Resources Information Center

    Mangan, Marianne

    2013-01-01

    Call it physical activity, call it games, or call it play. Whatever its name, it's a place we all need to return to. In the physical education, recreation, and dance professions, we need to redesign programs to address the need for and want of play that is inherent in all of us.

  1. Play as Experience

    ERIC Educational Resources Information Center

    Henricks, Thomas S.

    2015-01-01

    The author investigates what he believes one of the more important aspects of play--the experience it generates in its participants. He considers the quality of this experience in relation to five ways of viewing play--as action, interaction, activity, disposition, and within a context. He treats broadly the different forms of affect, including…

  2. Let's Just Play

    ERIC Educational Resources Information Center

    Schmidt, Janet

    2003-01-01

    Children have a right to play. The idea is so simple it seems self-evident. But a stroll through any toy superstore, or any half-hour of so-called "children's" programming on commercial TV, makes it clear that violence, not play, dominates what's being sold. In this article, the author discusses how teachers and parents share the responsibility in…

  3. Clinical Intuition at Play

    ERIC Educational Resources Information Center

    Marks-Tarlow, Terry

    2014-01-01

    A clinical psychologist and consulting psychotherapist discusses how elements of play, inherent in the intuition required in analysis, can provide a cornerstone for serious therapeutic work. She argues that many aspects of play--its key roles in human development, individual growth, and personal creativity, among others--can help therapists and…

  4. The Play's the Thing

    ERIC Educational Resources Information Center

    Bateman, Barbara

    2005-01-01

    The modern special education theater in the United States has hosted many plays, none with a larger or more diverse cast than the learning disabilities (LD) play. During the prologue, the children with LD were waiting in the wings, not yet identified as LD but there, nonetheless. With the advent of compulsory education in this country, awareness…

  5. Let's Just Play

    ERIC Educational Resources Information Center

    Schmidt, Janet

    2003-01-01

    Children have a right to play. The idea is so simple it seems self-evident. But a stroll through any toy superstore, or any half-hour of so-called "children's" programming on commercial TV, makes it clear that violence, not play, dominates what's being sold. In this article, the author discusses how teachers and parents share the responsibility in…

  6. Role Playing and Skits

    ERIC Educational Resources Information Center

    Letwin, Robert, Ed.

    1975-01-01

    Explores non-scripted role playing, dialogue role playing, sociodrama, and skits as variations of simulation techniques. Provides step-by-step guidelines for conducting such sessions. Successful Meetings, Bill Communications, Inc., 1422 Chestnut Street, Philadelphia, Pa. 19102. Subscription Rates: yearly (US, Canada, Mexico) $14.00; elsewhere,…

  7. Role Playing and Skits

    ERIC Educational Resources Information Center

    Letwin, Robert, Ed.

    1975-01-01

    Explores non-scripted role playing, dialogue role playing, sociodrama, and skits as variations of simulation techniques. Provides step-by-step guidelines for conducting such sessions. Successful Meetings, Bill Communications, Inc., 1422 Chestnut Street, Philadelphia, Pa. 19102. Subscription Rates: yearly (US, Canada, Mexico) $14.00; elsewhere,…

  8. Is Play Serious?

    ERIC Educational Resources Information Center

    Darling, John

    1983-01-01

    The importance of play (1) to players--players' values, attitudes, and mental states, and whether or not players take their playing seriously; (2) in child development as argued by Rousseau, Froebel, and Neill; and (3) as serious or nonserious business as argued by Johan Huizinga and R. F. Dearden is examined. (SR)

  9. Return to Play

    ERIC Educational Resources Information Center

    Mangan, Marianne

    2013-01-01

    Call it physical activity, call it games, or call it play. Whatever its name, it's a place we all need to return to. In the physical education, recreation, and dance professions, we need to redesign programs to address the need for and want of play that is inherent in all of us.

  10. Play, Epideictic and Argument.

    ERIC Educational Resources Information Center

    Hoffman, David C.

    This paper explores the relationship between epideictic and argument, noting that the relationship is a "troublesome" one. The first part moves toward new definitions of epideictic and argument (taking the view that epideictic rises out of human play) and locates argument on the boundary where the play-world meets the "real" or…

  11. The Fear of Play

    ERIC Educational Resources Information Center

    Almon, Joan

    2009-01-01

    Real play--play that is initiated and directed by children and that bubbles up from within the child rather than being imposed by adults--has largely disappeared from the landscape of childhood in the United States. There are many reasons for this, such as the long hours spent in front of screens each day or in activities organized by adults. In…

  12. The Fear of Play

    ERIC Educational Resources Information Center

    Almon, Joan

    2009-01-01

    Real play--play that is initiated and directed by children and that bubbles up from within the child rather than being imposed by adults--has largely disappeared from the landscape of childhood in the United States. There are many reasons for this, such as the long hours spent in front of screens each day or in activities organized by adults. In…

  13. Play, Policy & Practice.

    ERIC Educational Resources Information Center

    Klugman, Edgar, Ed.

    In 1992, the U.S.-Israel Binational Science Foundation (BSF), in conjunction with Wheelock College (Boston), sponsored its second workshop on children's play, entitled "Play and Cognitive Ability: The Cultural Context." This volume reflects the presentations and discussions held at the workshop, offering perspectives on children's play…

  14. Play, Policy & Practice.

    ERIC Educational Resources Information Center

    Klugman, Edgar, Ed.

    In 1992, the U.S.-Israel Binational Science Foundation (BSF), in conjunction with Wheelock College (Boston), sponsored its second workshop on children's play, entitled "Play and Cognitive Ability: The Cultural Context." This volume reflects the presentations and discussions held at the workshop, offering perspectives on children's play…

  15. Theories of Play.

    ERIC Educational Resources Information Center

    Peller, Lili E.

    1996-01-01

    Discusses several theories of play advanced before the development of psychoanalysis, including the theories of surplus energy, recreation, and practice. Examines the psychoanalytical view advanced by Freud and others, which focuses on the emotional release of play and its role in discovery and learning. (MDM)

  16. Play, Toys and Television.

    ERIC Educational Resources Information Center

    Brougere, Gilles

    In Western societies, television has transformed the life, culture, and points of reference of the child. Its particular sphere of influence is the child's play culture. This play culture is not hermetic: it is very oriented toward manipulation; has a symbolic role as a representational medium; evolves along with the child; has a certain amount of…

  17. An Invitation to Play.

    ERIC Educational Resources Information Center

    Lange, Jenny; Zieher, Connie

    The manual is intended to provide suggestions for play to parents of young children with exceptional educational needs. Nineteen types of activities are described and pictured, including make believe with boxes, dress-up activities, kitchen play, bubbles, small motor activities using beans and buttons, use of throw-away materials, painting,…

  18. Play, experimentation and creativity.

    PubMed

    Caper, R

    1996-10-01

    Beginning with Klein's description of a psychotic boy's inability to play, published in 1930, the author explores the relationship between play and symbol-formation, and the use of play by children and adults as a serious type of experimentation by means of which one learns about the internal and external worlds. In this view, play is a way of externalising fantasies originating in one's inner world so they may be seen and learned about. Play is also a vehicle of projection, a fact that allows one to use it to assess the impact of one's inner world on the external world, especially on the minds of one's objects. In this way, playing becomes a way of probing external reality as well. This type of learning depends on the ability to keep internal and external realities distinct even while projecting the former into the latter. In psychotic states, this ability is lost, and the psychotic patient's projections, instead of being usable as a form of playful experimentation, lead to delusions and claustrophobic anxiety. A brief clinical vignette is presented to illustrate these points. The author then explores the application of these ideas to an understanding of artistic creativity, and makes some observations about possible underlying unities between play, scientific experimentation and artistic creativity.

  19. The Respiratory Pathogen Moraxella catarrhalis Targets Collagen for Maximal Adherence to Host Tissues

    PubMed Central

    Singh, Birendra; Alvarado-Kristensson, Maria; Johansson, Martin; Hallgren, Oskar; Westergren-Thorsson, Gunilla; Mörgelin, Matthias

    2016-01-01

    ABSTRACT Moraxella catarrhalis is a human respiratory pathogen that causes acute otitis media in children and is associated with exacerbations in patients suffering from chronic obstructive pulmonary disease (COPD). The first step in M. catarrhalis colonization is adherence to the mucosa, epithelial cells, and extracellular matrix (ECM). The objective of this study was to evaluate the role of M. catarrhalis interactions with collagens from various angles. Clinical isolates (n = 43) were tested for collagen binding, followed by a detailed analysis of protein-protein interactions using recombinantly expressed proteins. M. catarrhalis-dependent interactions with collagen produced by human lung fibroblasts and tracheal tissues were studied by utilizing confocal immunohistochemistry and high-resolution scanning electron microscopy. A mouse smoke-induced chronic obstructive pulmonary disease (COPD) model was used to estimate the adherence of M. catarrhalis in vivo. We found that all M. catarrhalis clinical isolates tested adhered to fibrillar collagen types I, II, and III and network-forming collagens IV and VI. The trimeric autotransporter adhesins ubiquitous surface protein A2 (UspA2) and UspA2H were identified as major collagen-binding receptors. M. catarrhalis wild type adhered to human tracheal tissue and collagen-producing lung fibroblasts, whereas UspA2 and UspA2H deletion mutants did not. Moreover, in the COPD mouse model, bacteria devoid of UspA2 and UspA2H had a reduced level of adherence to the respiratory tract compared to the adherence of wild-type bacteria. Our data therefore suggest that the M. catarrhalis UspA2 and UspA2H-dependent interaction with collagens is highly critical for adherence in the host and, furthermore, may play an important role in the establishment of disease. PMID:27006460

  20. Fabrication and evaluation of a biodegradable cohesive plug based on reconstituted collagen/γ-polyglutamic acid.

    PubMed

    Hsu, Fu-Yin; Cheng, Ya-Yun; Tsai, Shiao-Wen; Tsai, Wei-Bor

    2010-10-01

    In the past decade, numerous studies have been devoted to developing natural bioadhesives that have the notable capacity to adhere to wet surfaces. Collagen and γ-polyglutamic acid (γ-PGA) are well-known natural hydrophilic polymers that have both been utilized for their versatility in a wide range of biomedical applications. The aim of this study was the construction and characterization of a cohesive plug composed of γ-PGA and reconstituted collagen fibrils crosslinked with water-soluble carbodiimide. Transmission electron microscopy examinations confirmed that the collagen fibrils in the reconstituted collagen/γ-PGA gel retained their native specific D-period structure. This unique D-pattern structure of collagen plays a major role in hemostasis and is also related to several cellular behaviors. The bonding strength of the reconstituted collagen/γ-PGA adhesive was approximately 42.9 ± 4.0 KPa after 5 min of application and increased to 76.5 ± 15.1 KPa after 24 h. This was much stronger than the fibrin adhesive, whose bonding strength was 30.9 ± 0.2 KPa. Furthermore, the reconstituted collagen/γ-PGA gel degraded gradually after subcutaneous implantation in the backs of rats over a period of 8 weeks, without any severe inflammatory response. On the basis of the histological analysis, fibroblasts migrated into the gel while it degraded, which indicates that the gel is not harmful to cellular activity. Together, these findings demonstrate that using reconstituted collagen with retained D-periodicity as a component of the bioadhesive is a possibly better option to formulate effective adhesiveness and is promising as a scaffold for tissue repair.

  1. Vitamin C-enriched gelatin supplementation before intermittent activity augments collagen synthesis.

    PubMed

    Shaw, Gregory; Lee-Barthel, Ann; Ross, Megan Lr; Wang, Bing; Baar, Keith

    2017-01-01

    Musculoskeletal injuries are the most common complaint in active populations. More than 50% of all injuries in sports can be classified as sprains, strains, ruptures, or breaks of musculoskeletal tissues. Nutritional and/or exercise interventions that increase collagen synthesis and strengthen these tissues could have an important effect on injury rates. This study was designed to determine whether gelatin supplementation could increase collagen synthesis. Eight healthy male subjects completed a randomized, double-blinded, crossover-design study in which they consumed either 5 or 15 g of vitamin C-enriched gelatin or a placebo control. After the initial drink, blood was taken every 30 min to determine amino acid content in the blood. A larger blood sample was taken before and 1 h after consumption of gelatin for treatment of engineered ligaments. One hour after the initial supplement, the subjects completed 6 min of rope-skipping to stimulate collagen synthesis. This pattern of supplementation was repeated 3 times/d with ≥6 h between exercise bouts for 3 d. Blood was drawn before and 4, 24, 48, and 72 h after the first exercise bout for determination of amino-terminal propeptide of collagen I content. Supplementation with increasing amounts of gelatin increased circulating glycine, proline, hydroxyproline, and hydroxylysine, peaking 1 h after the supplement was given. Engineered ligaments treated for 6 d with serum from samples collected before or 1 h after subjects consumed a placebo or 5 or 15 g gelatin showed increased collagen content and improved mechanics. Subjects who took 15 g gelatin 1 h before exercise showed double the amino-terminal propeptide of collagen I in their blood, indicating increased collagen synthesis. These data suggest that adding gelatin to an intermittent exercise program improves collagen synthesis and could play a beneficial role in injury prevention and tissue repair. This trial was registered at the Australian New Zealand Clinical

  2. Highly aligned stromal collagen is a negative prognostic factor following pancreatic ductal adenocarcinoma resection

    PubMed Central

    Drifka, Cole R.; Loeffler, Agnes G.; Mathewson, Kara; Keikhosravi, Adib; Eickhoff, Jens C.; Liu, Yuming; Weber, Sharon M.

    2016-01-01

    Risk factors for pancreatic ductal adenocarcinoma (PDAC) progression after surgery are unclear, and additional prognostic factors are needed to inform treatment regimens and therapeutic targets. PDAC is characterized by advanced sclerosis of the extracellular matrix, and interactions between cancer cells, fibrillar collagen, and other stromal components play an integral role in progression. Changes in stromal collagen alignment have been shown to modulate cancer cell behavior and have important clinical value in other cancer types, but little is known about its role in PDAC and prognostic value. We hypothesized that the alignment of collagen is associated with PDAC patient survival. To address this, pathology-confirmed tissues from 114 PDAC patients that underwent curative-intent surgery were retrospectively imaged with Second Harmonic Generation (SHG) microscopy, quantified with fiber segmentation algorithms, and correlated to patient survival. The same tissue regions were analyzed for epithelial-to-mesenchymal (EMT), α-SMA, and syndecan-1 using complimentary immunohistostaining and visualization techniques. Significant inter-tumoral variation in collagen alignment was found, and notably high collagen alignment was observed in 12% of the patient cohort. Stratification of patients according to collagen alignment revealed that high alignment is an independent negative factor following PDAC resection (p = 0.0153, multivariate). We also found that epithelial expression of EMT and the stromal expression of α-SMA and syndecan-1 were positively correlated with collagen alignment. In summary, stromal collagen alignment may provide additional, clinically-relevant information about PDAC tumors and underscores the importance of stroma-cancer interactions. PMID:27776346

  3. Abnormal deposition of collagen/elastic vascular fibres and prognostic significance in idiopathic interstitial pneumonias

    PubMed Central

    Parra, Edwin Roger; Kairalla, Ronaldo Adib; de Carvalho, Carlos Roberto Ribeiro; Capelozzi, Vera Luiza

    2007-01-01

    Background Vascular remodelling has recently been shown to be a promising pathogenetic indicator in idiopathic interstitial pneumonias (IIPs). Aim To validate the importance of the collagen/elastic system in vascular remodelling and to study the relationships between the collagen/elastic system, survival and the major histological patterns of IIPs. Methods Collagen/elastic system fibres were studied in 25 patients with acute interstitial pneumonia/diffuse alveolar damage, 22 with non‐specific interstitial pneumonia/non‐specific interstitial pneumonia and 55 with idiopathic pulmonary fibrosis/usual interstitial pneumonia. The Picrosirius polarisation method and Weigert's resorcin–fuchsin histochemistry and morphometric analysis were used to evaluate the amount of vascular collagen/elastic system fibres and their association with the histological pattern of IIPs. The association between vascular remodelling and the degree of parenchymal fibrosis in usual interstitial pneumonia (UIP) was also considered. Results The vascular measurement of collagen/elastic fibres was significantly higher in UIP than in the lungs of controls, and in those with diffuse alveolar damage and those with non‐specific interstitial pneumonia. In addition, the increment of collagen/elastic fibres in UIP varied according to the degree and activity of the parenchymal fibrosis. The most important predictors of survival in UIP were vascular remodelling classification and vascular collagen deposition. Conclusion A progressive vascular fibroelastosis occurs in IIP histological patterns, probably indicating evolutionarily adapted responses to parenchymal injury. The vascular remodelling classification and the increase in vascular collagen were related to survival in IIP and possibly play a role in its pathogenesis. Further studies are needed to determine whether this relationship is causal or consequential. PMID:17251318

  4. Venezuela-MEM/USA-DOE Fossil Energy Report XIII-1, Supporting Technology for Enhanced Oil Recovery, Microbial EOR

    SciTech Connect

    Ziritt, Jose Luis

    1999-11-03

    The results from Annex XIII of the Cooperative Agreement between the United States Department of Energy (DOE) and the Ministry of Energy and Mines of the Republic of Venezuela (MEMV) have been documented and published with many researchers involved. Integrate comprehensive research programs in the area of Microbial Enhanced Oil Recovery (MEOR) ranged from feasibility laboratory studies to full-scale multi-well field pilots. The objective, to cooperate in a technical exchange of ideas and information was fully met throughout the life of the Annex. Information has been exchanged between the two countries through published reports and technical meetings between experts in both country's research communities. The meetings occurred every two years in locations coincident with the International MEOR conferences & workshops sponsored by DOE (June 1990, University of Oklahoma, September 1992, Brookhaven, September 1995, National Institute of Petroleum and Energy Research). Reports and publications produced during these years are listed in Appendix B. Several Annex managers have guided the exchange through the years. They included Luis Vierma, Jose Luis Zirritt, representing MEMV and E. B. Nuckols, Edith Allison, and Rhonda Lindsey, representing the U.S. DOE. Funding for this area of research remained steady for a few years but decreased in recent years. Because both countries have reduced research programs in this area, future exchanges on this topic will occur through ANNEX XV. Informal networks established between researchers through the years should continue to function between individuals in the two countries.

  5. The 2001 June 21 Eclipse Polarimetric Observations of the Fe XIII 1074.7 nm Emission Line

    NASA Astrophysics Data System (ADS)

    Habbal, S. R.; Arndt, M. B.; Nayfeh, M. H.; Arnaud, J.; Johnson, J.; Hegwer, S.; Ene, A.

    2003-05-01

    Polarimetric measurements of the coronal forbidden lines have been recognized for quite some time as a diagnostic tool for inferring the direction of the coronal magnetic field. Following the first successful measurements by Eddy et al. (1973) during the total solar eclipse of 1966, an observing campaign using the coronagraph at Sacramento Peak Observatory was pursued between 1977-1980 (Arnaud and Newkirk, 1987). All these measurements yielded the surprising result that the direction of polarization implied a predominantly radial coronal magnetic field. We report on the polarization measurements of the Fe XIII 1074.7nm line, the strongest of the coronal forbidden lines, which were obtained during the total solar eclipse of 2001 June 21 from Zambia. In addition to confirming the earlier results of a predominantly radial field, the signature of nano-size interplanetary dust in the inner corona, most likely in the form of silicon nanoparticles, appeared for the first time in these measurements. The signature of these particles also coincides with the radial expansion of coronal holes outwards from the Sun, a signature that has never appeared in any measurement before. Support for this work was provided by NSF grant ATM-0003661 and NASA grant NAG5-10873

  6. Factor XIII-A transglutaminase deficient mice show signs of metabolically healthy obesity on high fat diet

    PubMed Central

    Myneni, Vamsee D.; Mousa, Aisha; Kaartinen, Mari T.

    2016-01-01

    F13A1 gene, which encodes for Factor XIII-A blood clotting factor and a transglutaminase enzyme, was recently identified as a potential causative gene for obesity in humans. In our previous in vitro work, we showed that FXIII-A regulates preadipocyte differentiation and modulates insulin signaling via promoting plasma fibronectin assembly into the extracellular matrix. To understand the role of FXIII-A in whole body energy metabolism, here we have characterized the metabolic phenotype of F13a1−/− mice. F13a1−/− and F13a1+/+ type mice were fed chow or obesogenic, high fat diet for 20 weeks. Weight gain, total fat mass and fat pad mass, glucose handling, insulin sensitivity, energy expenditure and, morphological and biochemical analysis of adipose tissue was performed. We show that mice lacking FXIII-A gain weight on obesogenic diet, similarly as wild type mice, but exhibit a number of features of metabolically healthy obesity such as protection from developing diet-induced insulin resistance and hyperinsulinemia. Mice also show normal fasting glucose levels, larger adipocytes, decreased extracellular matrix accumulation and inflammation of adipose tissue, as well as decreased circulating triglycerides. This study reveals that FXIII-A transglutaminase can regulate whole body insulin sensitivity and may have a role in the development of diet-induced metabolic disturbances. PMID:27759118

  7. Defective α2 antiplasmin cross-linking and thrombus stability in a case of acquired factor XIII deficiency.

    PubMed

    Mitchell, Joanne L; Wright, Sonja; Kazi, Sajida; Watson, Henry G; Mutch, Nicola J

    2017-09-01

    Acquired factor XIII (FXIII) deficiency is a rare and life-threatening condition that is often misdiagnosed or missed completely. A 72-year-old woman presented with symptoms of major unprovoked bleeding but routine coagulation screening tests and platelet count were normal. Low activated FXIII (FXIIIa) activity levels and abnormal urea clot stability led to diagnosis of acquired FXIII deficiency. A modified Bethesda inhibitor titre of 1.6 Bethesda units/ml indicated the presence of a FXIII inhibitor. Bleeding responded to a single dose of FXIII concentrate and immunosuppression with prednisolone induced remission. A subsequent relapse was treated with combined prednisolone and Rituximab resulting in a prolonged, ongoing remission. Here we analyse the mechanisms underlying this idiopathic case of acquired FXIII deficiency. Prospective analysis of patient plasma revealed minimal FXIIIa activity and antigen in presentation and relapse samples. Thrombi formed from these samples lysed rapidly and showed an absence of cross-linked α2 AP. Western blotting revealed the presence of FXIII-B, indicating only FXIII-A and FXIII-A2 B2 were affected. FXIII activity and antigen levels normalised on remission. Our data suggest the presence of inhibitor-induced clearance of FXIII from plasma. As a consequence, reduced thrombus stability was evident due to defective α2 AP cross-linking, thereby explaining symptoms of excessive bleeding. © 2017 John Wiley & Sons Ltd.

  8. The role of viscoelasticity of collagen fibers in articular cartilage: theory and numerical formulation.

    PubMed

    Li, L P; Herzog, W

    2004-01-01

    The relative importance of fluid-dependent and fluid-independent transient mechanical behavior in articular cartilage was examined for tensile and unconfined compression testing using a fibril reinforced model. The collagen matrix of articular cartilage was modeled as viscoelastic using a quasi-linear viscoelastic formulation with strain-dependent elastic modulus, while the proteoglycan matrix was considered as linearly elastic. The collagen viscoelastic properties were obtained by fitting experimental data from a tensile test. These properties were used to investigate unconfined compression testing, and the sensitivity of the properties was also explored. It was predicted that the stress relaxation observed in tensile tests was not caused by fluid pressurization at the macroscopic level. A multi-step tensile stress relaxation test could be approximated using a hereditary integral in which the elastic fibrillar modulus was taken to be a linear function of the fibrillar strain. Applying the same formulation to the radial fibers in unconfined compression, stress relaxation could not be simulated if fluid pressurization were absent. Collagen viscoelasticity was found to slightly weaken fluid pressurization in unconfined compression, and this effect was relatively more significant at moderate strain rates. Therefore, collagen viscoelasticity appears to play an import role in articular cartilage in tensile testing, while fluid pressurization dominates the transient mechanical behavior in compression. Collagen viscoelasticity plays a minor role in the mechanical response of cartilage in unconfined compression if significant fluid flow is present.

  9. Propranolol-induced elevation of pulmonary collagen

    SciTech Connect

    Lindenschmidt, R.C.; Witschi, H.P.

    1985-01-01

    Current concepts of collagen metabolism suggest that fibroblasts tightly control collagen production. One of the possible mechanisms of control is via the cyclic nucleotides, cyclic AMP (cAMP) and cyclic GMP (cGMP). Beta adrenergic agonists, by elevating intracellular cAMP levels, have been shown in vitro to suppress fibroblast collagen production; whereas beta adrenergic antagonists were effective in removing this suppression by blocking the rise in cAMP. In the present study with mice, the authors showed that administration of the beta adrenergic antagonists, propranolol, at a dose demonstrated to decrease the ratio of cAMP to cGMP, resulted in an elevation in total lung collagen in vivo. The increase in collagen was evident only when propranolol was administered before and during acute lung damage induced by either butylated hydroxytoluene, bleomycin or high concentrations of oxygen. There was no increase in lung collagen when propranolol administration was delayed after injury or when given to an undamaged lung. The authors propose that via beta adrenergic blockage by propranolol, fibroblasts involved in the normal reparative process may have lost a mechanism for regulatory control, resulting in excessive deposition of collagen. 38 references, 3 figures, 2 tables.

  10. Age-related crosslink in skin collagen

    SciTech Connect

    Yamauchi, M.; Mechanic, G.

    1986-05-01

    A stable crosslinking amino acid was isolated from mature bovine skin collagen and its structure was identified as histidinohydroxylysinonorleucine (HHL) using fast atom bombardment mass spectrometry and /sup 1/H, /sup 13/C-NMR. This newly identified crosslink has a linkage between C-2 histidine and C-6 of lysine in the latter's portion of hydroxylysinonorleucine. Quantitative studies using various aged samples of cow and human skin collagen indicated that this acid-heat stable nonreducible compound was the major age-related crosslink. In case of cow skin collagen, for example, during early embryonic development (3 and 5 month old embryos) the content of HHL stayed less than 0.01 residue/mole of collagen, however from the middle of gestation period (7 month old embryo) through the maturation stage it showed rapid increase with age and reached approximately 0.5 residues/mole of collagen in the 3 year old animal. Small increments (up to 0.65 res/mole of collagen) were observed in the 9 year old cow. The amounts of the crosslink unlike pyridinoline do not decrease with aging. Similar patterns were observed in human skin collagen.

  11. Molecular structure of the collagen triple helix.

    PubMed

    Brodsky, Barbara; Persikov, Anton V

    2005-01-01

    The molecular conformation of the collagen triple helix confers strict amino acid sequence constraints, requiring a (Gly-X-Y)(n) repeating pattern and a high content of imino acids. The increasing family of collagens and proteins with collagenous domains shows the collagen triple helix to be a basic motif adaptable to a range of proteins and functions. Its rodlike domain has the potential for various modes of self-association and the capacity to bind receptors, other proteins, GAGs, and nucleic acids. High-resolution crystal structures obtained for collagen model peptides confirm the supercoiled triple helix conformation, and provide new information on hydrogen bonding patterns, hydration, sidechain interactions, and ligand binding. For several peptides, the helix twist was found to be sequence dependent, and such variation in helix twist may serve as recognition features or to orient the triple helix for binding. Mutations in the collagen triple-helix domain lead to a variety of human disorders. The most common mutations are single-base substitutions that lead to the replacement of one Gly residue, breaking the Gly-X-Y repeating pattern. A single Gly substitution destabilizes the triple helix through a local disruption in hydrogen bonding and produces a discontinuity in the register of the helix. Molecular information about the collagen triple helix and the effect of mutations will lead to a better understanding of function and pathology.

  12. Age Increases Monocyte Adhesion on Collagen

    NASA Astrophysics Data System (ADS)

    Khalaji, Samira; Zondler, Lisa; Kleinjan, Fenneke; Nolte, Ulla; Mulaw, Medhanie A.; Danzer, Karin M.; Weishaupt, Jochen H.; Gottschalk, Kay-E.

    2017-05-01

    Adhesion of monocytes to micro-injuries on arterial walls is an important early step in the occurrence and development of degenerative atherosclerotic lesions. At these injuries, collagen is exposed to the blood stream. We are interested whether age influences monocyte adhesion to collagen under flow, and hence influences the susceptibility to arteriosclerotic lesions. Therefore, we studied adhesion and rolling of human peripheral blood monocytes from old and young individuals on collagen type I coated surface under shear flow. We find that firm adhesion of monocytes to collagen type I is elevated in old individuals. Pre-stimulation by lipopolysaccharide increases the firm adhesion of monocytes homogeneously in older individuals, but heterogeneously in young individuals. Blocking integrin αx showed that adhesion of monocytes to collagen type I is specific to the main collagen binding integrin αxβ2. Surprisingly, we find no significant age-dependent difference in gene expression of integrin αx or integrin β2. However, if all integrins are activated from the outside, no differences exist between the age groups. Altered integrin activation therefore causes the increased adhesion. Our results show that the basal increase in integrin activation in monocytes from old individuals increases monocyte adhesion to collagen and therefore the risk for arteriosclerotic plaques.

  13. The Mineral–Collagen Interface in Bone

    PubMed Central

    2015-01-01

    The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone’s remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material’s performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions. PMID:25824581

  14. Discoidin domain receptor 2 inhibits fibrillogenesis of collagen type 1.

    PubMed

    Mihai, Cosmin; Iscru, Daniel F; Druhan, Lawrence J; Elton, Terry S; Agarwal, Gunjan

    2006-09-01

    Discoidin domain receptors (DDR1 and DDR2) are widely expressed cell-surface receptors, which bind to and are activated by collagens, including collagen type 1. Activation of DDRs and the resulting downstream signaling is known to regulate the extracellular matrix. However, little is known about how DDRs interact with collagen and its direct impact on collagen regulation. Here, we have established that by binding to collagen, the extracellular domain (ECD) of DDR2 inhibits collagen fibrillogenesis and alters the morphology of collagen type 1 fibers. Our in vitro assays utilized DDR2-Fc fusion proteins, which contain only the ECD of DDR2. Using surface plasmon resonance, we confirmed that further oligomerization of DDR2-Fc (by means of anti-Fc antibody) greatly enhances its binding to immobilized collagen type 1. Collagen turbidity measurements and biochemical assays indicated that DDR2 delays the formation of collagen fibrils. Atomic force microscopy of soluble collagen revealed that a predominately monomeric state of collagen was present with DDR2, while control solutions had an abundance of polymeric collagen. Transmission electron microscopy of collagen fibers, showed that the native periodic banded structure of collagen fibers was weakened and nearly absent in the presence of DDR2. Further, using a cell-based assay we demonstrate that overexpression of full length DDR2 inhibits fibrillogenesis of collagen type 1. Our results demonstrate a novel and important functional role of the DDR2 ECD that may contribute to collagen regulation via modulation of fibrillogenesis.

  15. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts.

    PubMed

    Chu, Chenyu; Deng, Jia; Xiang, Lin; Wu, Yingying; Wei, Xiawei; Qu, Yili; Man, Yi

    2016-10-01

    Collagen membranes have ideal biological and mechanical properties for supporting infiltration and proliferation of osteoblasts and play a vital role in guided bone regeneration (GBR). However, pure collagen can lead to inflammation, resulting in progressive bone resorption. Therefore, a method for regulating the level of inflammatory cytokines at surgical sites is paramount for the healing process. Epigallocatechin-3-gallate (EGCG) is a component extracted from green tea with numerous biological activities including an anti-inflammatory effect. Herein, we present a novel cross-linked collagen membrane containing different concentrations of EGCG (0.0064%, 0.064%, and 0.64%) to regulate the level of inflammatory factors secreted by pre-osteoblast cells; improve cell proliferation; and increase the tensile strength, wettability, and thermal stability of collagen membranes. Scanning electron microscope images show that the surfaces of collagen membranes became smoother and the collagen fiber diameters became larger with EGCG treatment. Measurement of the water contact angle demonstrated that introducing EGCG improved membrane wettability. Fourier transform infrared spectroscopy analyses indicated that the backbone of collagen was intact, and the thermal stability was significant improved in differential scanning calorimetry. The mechanical properties of 0.064% and 0.64% EGCG-treated collagen membranes were 1.5-fold greater than those of the control. The extent of cross-linking was significantly increased, as determined by a 2,4,6-trinitrobenzenesulfonic acid solution assay. The Cell Counting Kit-8 (CCK-8) and live/dead assays revealed that collagen membrane cross-linked by 0.0064% EGCG induced greater cell proliferation than pure collagen membranes. Additionally, real-time polymerase chain reaction and enzyme-linked immunosorbent assay results showed that EGCG significantly affected the production of inflammatory factors secreted by MC3T3-E1 cells. Taken together, our

  16. Metal-triggered collagen peptide disk formation.

    PubMed

    Przybyla, David E; Chmielewski, Jean

    2010-06-16

    A collagen peptide was designed for metal-triggered, hierarchical assembly through a radial growth mechanism. To achieve radial assembly, H-(byp)(2) containing Pro-Hyp-Gly repeating sequences and two staggered bipyridine ligands within the peptide was synthesized. Triple helix formation resulted in the placement of six bipyridine ligands along the triple helix, and the addition of metal ions resulted in the formation of nanometer-sized collagen peptide disks. These structures were found to disassemble upon the addition of EDTA, demonstrating that radial assembly of collagen peptide triple helices could be realized with the addition of metal ions.

  17. The Scottish Play.

    ERIC Educational Resources Information Center

    Wheat, Chris

    1999-01-01

    Recounts an episode when, as young schoolboys, Prince Charles and classmates presented "Macbeth" as an end-of-term-play. Traces the events at school that took on different meanings when viewed from maturity. (NH)

  18. Collagen scaffolds loaded with collagen-binding NGF-beta accelerate ulcer healing.

    PubMed

    Sun, Wenjie; Lin, Hang; Chen, Bing; Zhao, Wenxue; Zhao, Yannan; Xiao, Zhifeng; Dai, Jianwu

    2010-03-01

    Studies have shown that exogenous nerve growth factor (NGF) accelerates ulcer healing, but the inefficient growth factor delivery system limits its clinical application. In this report, we found that the native human NGF-beta fused with a collagen-binding domain (CBD) could form a collagen-based NGF targeting delivery system, and the CBD-fused NGF-beta could bind to collagen membranes efficiently. Using the rabbit dermal ischemic ulcer model, we have found that this targeting delivery system maintains a higher concentration and stronger bioactivity of NGF-beta on the collagen membranes by promoting peripheral nerve growth. Furthermore, it enhances the rate of ulcer healing through accelerating the re-epithelialization of dermal ulcer wounds and the formation of capillary lumens within the newly formed tissue area. Thus, collagen membranes loaded with collagen-targeting human NGF-beta accelerate ulcer healing efficiently.

  19. Epidermal cells adhere preferentially to type IV (basement membrane) collagen

    PubMed Central

    1979-01-01

    Epidermal cells from adult guinea pig skin attach and differentiate preferentially on substrates of type IV (basement membrane) collagen, compared to those of types I--III collagen. In contrast, guinea pig dermal fibroblasts attach equally well to all four collagen substrates. Fibronectin mediates the attachment of fibroblasts but not of epidermal cells to collagen. PMID:422650

  20. [Characteristics of collagen's material bifidogenic properties].

    PubMed

    Sheveleva, S A; Batishcheva, S Iu

    2012-01-01

    It is still essential to search for new, available food ingredients with bifidogenic effect, to study their safety, efficacy and production effectiveness upon the creation of functional foods. The review considers protein products such as collagens and their hydrolyzates, which are used in culture mediums as growth factor. They are treated, besides carbohydrate prebiotics, as potential bifidogenic nutrients. Collagen hydralyzates contain all amino acids, required for bifidobacteria growth. That is why it is considered essential to provide control over its biosafety. However, recyclable materials of animal origin are included into a list of Specific Risk Materials of prion disease agents transmitting. Collagen hydralyzates are preserved up to distal intestine parts. This fact approximates their qualities to oligosaccharids' type of prebiotic food fibers, related to the lack of absorption and hydrolytic stability. The additional study of mechanisms of bifidobacteria's forcing is required. It can be made at the expense of the modification of the albuminous cell metabolism during the collagen hydralyzats' unilization.

  1. Nanoscale scraping and dissection of collagen fibrils.

    PubMed

    Wenger, M P E; Horton, M A; Mesquida, P

    2008-09-24

    The main function of collagen is mechanical, hence there is a fundamental scientific interest in experimentally investigating the mechanical and structural properties of collagen fibrils on the nanometre scale. Here, we present a novel atomic force microscopy (AFM) based scraping technique that can dissect the outer layer of a biological specimen. Applied to individual collagen fibrils, the technique was successfully used to expose the fibril core and reveal the presence of a D-banding-like structure. AFM nanoindentation measurements of fibril shell and core indicated no significant differences in mechanical properties such as stiffness (reduced modulus), hardness, adhesion and adhesion work. This suggests that collagen fibrils are mechanically homogeneous structures. The scraping technique can be applied to other biological specimens, as demonstrated on the example of bacteria.

  2. Collagen extraction from mussel byssus: a new marine collagen source with physicochemical properties of industrial interest.

    PubMed

    Rodríguez, F; Morán, L; González, G; Troncoso, E; Zúñiga, R N

    2017-04-01

    Mussel byssus is a by-product of mussel production and is a potential source of collagen. The goal of this study was to extract collagen from the byssus of Chilean mussel using an enzymatic method and characterize it. A pepsin-aided extraction method was employed where first an enzymatic hydrolysis at two pepsin/substrate ratios (1:50 or 4:50) and times (4 or 24 h) was done. Extraction was conducted at 80 °C for 24 h, in a 0.5 N acetic acid solution. All samples were analyzed for collagen content, amino acid profile, turbidity, viscosity, solubility, denaturation temperature and surface tension. Hydrolysis time had significant effect on collagen content, hydroxyproline content and extraction yield. Hydrolysis with a pepsin/byssus ratio of 4:50 for 24 h gave the better extraction performance with values of 69 mg/g protein, 1.8 mg/g protein and 30%, for collagen content, hydroxyproline content and extraction yield, respectively. No differences were found for the viscosity and surface tension of collagen dispersions, suggesting that the enzymatic hydrolysis did not affect the integrity of the collagen molecule. Denaturation temperature of freeze-dried byssus collagen presented a high value (83-91 °C), making this kind of collagen a very interesting material for encapsulation of bioactive molecules and for biomedical applications.

  3. Supramolecular assembly of collagen fibrils into collagen fiber in fish scales of red seabream, Pagrus major.

    PubMed

    Youn, Hwa Shik; Shin, Tae Joo

    2009-11-01

    Supramolecular assembly of collagen fibrils into collagen fiber and its distribution in fish scales of red seabream, Pagrus major, were investigated. By virtue of Zernike phase-contrast hard X-ray microscopy, it has been firstly observed that collagen fiber consists of helical substructures of collagen fibrils wrapped with incrustation. As it close to the scalar focus (that is, with aging), loosened- and deteriorated-helical assemblies started to be observed with loosing wrapping incrustation, indicative of the distortion of the basic helical assembly. Various distributions and packing arrangements of collagen fibers were observed dependent on subdivisions of fish scale. Freshly growing edge region of fish scale, embedded into fish skin, showed rarely patched and one directionally arranged collagen fibers, in which specifically triple helical assemblies of collagen fibrils were found. On the contrary, relatively aged region of the rostral field close to the scalar focus displayed randomly directed and densely packed collagen fibers, in which loosened- and deteriorated-helical assemblies of collagen fibrils were mostly found. Our results have demonstrated that hard X-ray microscope can be a powerful tool to study in situ internal structure of biological specimens in an atmospheric pressure.

  4. New functional roles for non-collagenous domains of basement membrane collagens.

    PubMed

    Ortega, Nathalie; Werb, Zena

    2002-11-15

    Collagens IV, XV and XVIII are major components of various basement membranes. In addition to the collagen-specific triple helix, these collagens are characterized by the presence of several non-collagenous domains. It is clear now that these ubiquitous collagen molecules are involved in more subtle and sophisticated functions than just the molecular architecture of basement membranes, particularly in the context of extracellular matrix degradation. Degradation of the basement membrane collagens occurs during numerous physiological and pathological processes such as embryonic development or tumorigenesis and generates collagen fragments. These fragments are involved in the regulation of functions differing from those of their original intact molecules. The non-collagenous C-terminal fragment NC1 of collagen IV, XV and XVIII have been recently highlighted in the literature because of their potential in reducing angiogenesis and tumorigenesis, but it is clear that their biological functions are not limited to these processes. Proteolytic release of soluble NC1 fragments stimulates migration, proliferation, apoptosis or survival of different cell types and suppresses various morphogenetic events.

  5. Collagen Accumulation in Osteosarcoma Cells lacking GLT25D1 Collagen Galactosyltransferase.

    PubMed

    Baumann, Stephan; Hennet, Thierry

    2016-08-26

    Collagen is post-translationally modified by prolyl and lysyl hydroxylation and subsequently by glycosylation of hydroxylysine. Despite the widespread occurrence of the glycan structure Glc(α1-2)Gal linked to hydroxylysine in animals, the functional significance of collagen glycosylation remains elusive. To address the role of glycosylation in collagen expression, folding, and secretion, we used the CRISPR/Cas9 system to inactivate the collagen galactosyltransferase GLT25D1 and GLT25D2 genes in osteosarcoma cells. Loss of GLT25D1 led to increased expression and intracellular accumulation of collagen type I, whereas loss of GLT25D2 had no effect on collagen secretion. Inactivation of the GLT25D1 gene resulted in a compensatory induction of GLT25D2 expression. Loss of GLT25D1 decreased collagen glycosylation by up to 60% but did not alter collagen folding and thermal stability. Whereas cells harboring individually inactivated GLT25D1 and GLT25D2 genes could be recovered and maintained in culture, cell clones with simultaneously inactive GLT25D1 and GLT25D2 genes could be not grown and studied, suggesting that a complete loss of collagen glycosylation impairs osteosarcoma cell proliferation and viability. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Effect of bio-oss collagen and collagen matrix on bone formation.

    PubMed

    Wong, R W K; Rabie, A B M

    2010-03-09

    to compare the amount of new bone produced by Bio-Oss((R)) Collagen to that produced by collagen matrix in vivo. eighteen bone defects, 5mm by 10mm were created in the parietal bone of 9 New Zealand White rabbits. 6 defects were grafted with Bio-Oss((R)) Collagen. 6 defects were grafted with collagen matrix alone (positive control) and 6 were left empty (negative control). Animals were killed on day 14 and the defects were dissected and prepared for histological assessment. Quantitative analysis of new bone formation was made on 100 sections (50 sections for each group) using image analysis. A total of 339% more new bone was present in defects grafted with Bio-Oss((R)) Collagen than those grafted with collagen matrix (positive control). No bone was formed in the negative control group. Bio-Oss((R)) Collagen has the effect of stimulating new bone formation locally compared with collagen matrix in vivo. Bio-Oss((R) )Collagen may be utilized as a bone graft material.

  7. Effect of Bio-Oss® Collagen and Collagen Matrix on Bone Formation

    PubMed Central

    Wong, R.W.K; Rabie, A.B.M

    2010-01-01

    Objective: to compare the amount of new bone produced by Bio-Oss® Collagen to that produced by collagen matrix in vivo. Method: eighteen bone defects, 5mm by 10mm were created in the parietal bone of 9 New Zealand White rabbits. 6 defects were grafted with Bio-Oss® Collagen. 6 defects were grafted with collagen matrix alone (positive control) and 6 were left empty (negative control). Animals were killed on day 14 and the defects were dissected and prepared for histological assessment. Quantitative analysis of new bone formation was made on 100 sections (50 sections for each group) using image analysis. Results: A total of 339% more new bone was present in defects grafted with Bio-Oss® Collagen than those grafted with collagen matrix (positive control). No bone was formed in the negative control group. Conclusion: Bio-Oss® Collagen has the effect of stimulating new bone formation locally compared with collagen matrix in vivo. Bio-Oss® Collagen may be utilized as a bone graft material. PMID:20461225

  8. In vitro Sirius Red collagen assay measures the pattern shift from soluble to deposited collagen.

    PubMed

    Chen, Chun; Yang, Shanmin; Zhang, Mei; Zhang, Zhenhuan; Zhang, Bingrong; Han, Deping; Ma, Jun; Wang, Xiaohui; Hong, Jingshen; Guo, Yansong; Okunieff, Paul; Zhang, Lurong

    2013-01-01

    In this study, we compared two in vitro collagen production assays ([(3)H]-proline incorporation and Sirius Red) for their ability to determine the pattern shift from soluble to deposited collagen. The effect of the antifibrotic agent, triptolide (TPL), on collagen production was also studied. The results showed that: (1) 48 h after NIH 3T3 (murine embryo fibroblast) and HFL-1(human fetal lung fibroblast) were exposed to transforming growth factor-beta 1 (TGF-β), there was an increase in soluble collagen in the culture medium; (2) on day 4, soluble collagen declined, whereas deposited collagen increased; (3) Sirius Red was easier to use than [(3)H]-proline incorporation and more consistently reflected the collagen pattern shift from soluble to deposited; (4) the in vitro Sirius Red assay took less time than the in vivo assay to determine the effect of TPL. Our results suggest that: (a) the newly synthesized soluble collagen can sensitively evaluate an agent's capacity for collagen production and (b) Sirius Red is more useful than [(3)H]-proline because it is easier to use, more convenient, less time consuming, and does not require radioactive material.

  9. Thermal stability of collagen triple helix.

    PubMed

    Xu, Yujia

    2009-01-01

    Chief among the challenges of characterizing the thermal stability of the collagen triple helix are the lack of the reversibility of the thermal transition and the presence of multiple folding-unfolding steps during the thermal transition which rarely follows the simple two-state, all-or-none mechanism. Despite of the difficulties inherited in the quantitative depiction of the thermal transition of collagen, biophysical studies combined with proteolysis and mutagenesis approaches using full-chain collagens, short synthetic peptides, and recombinant collagen fragments have revealed molecular features of the thermal unfolding of the subdomains of collagen and led to a better understanding of the diverse biological functions of this versatile protein. The subdomain of collagen generally refers to a segment of the long, rope-like triple helical molecule that can unfold cooperatively as an independent unit whose properties (their size, location, and thermal stability) are considered essential for the molecular recognition during the self-assembly of collagen and during the interactions of collagen with other macromolecules. While the unfolding of segments of the triple helix at temperatures below the apparent melting temperature of the molecule has been used to interpret much of the features of the thermal unfolding of full-chain collagens, the thermal studies of short, synthetic peptides have firmly established the molecular basis of the subdomains by clearly demonstrating the close dependence of the thermal stability of a triple helix on the constituent amino acid residues at the X and the Y positions of the characteristic Gly-X-Y repeating sequence patterns of the triple helix. Studies using recombinant collagen fragments further revealed that in the context of the long, linear molecule, the stability of a segment of the triple helix is also modulated by long-range impact of the local interactions such as the interchain salt bridges. Together, the combined approaches

  10. Eupatilin ameliorates collagen induced arthritis.

    PubMed

    Kim, Juryun; Kim, Youngkyun; Yi, Hyoju; Jung, Hyerin; Rim, Yeri Alice; Park, Narae; Jung, Seung Min; Park, Sung-Hwan; Ju, Ji Hyeon

    2015-03-01

    Eupatilin is the main active component of DA-9601, an extract from Artemisia. Recently, eupatilin was reported to have anti-inflammatory properties. We investigated the anti-arthritic effect of eupatilin in a murine arthritis model and human rheumatoid synoviocytes. DA-9601 was injected into collagen-induced arthritis (CIA) mice. Arthritis score was regularly evaluated. Mouse monocytes were differentiated into osteoclasts when eupatilin was added simultaneously. Osteoclasts were stained with tartrate-resistant acid phosphatase and then manually counted. Rheumatoid synoviocytes were stimulated with TNF-α and then treated with eupatilin, and the levels of IL-6 and IL-1β mRNA expression in synoviocytes were measured by RT-PCR. Intraperitoneal injection of DA-9601 reduced arthritis scores in CIA mice. TNF-α treatment of synoviocytes increased the expression of IL-6 and IL-1β mRNAs, which was inhibited by eupatilin. Eupatilin decreased the number of osteoclasts in a concentration dependent manner. These findings, showing that eupatilin and DA-9601 inhibited the expression of inflammatory cytokines and the differentiation of osteoclasts, suggest that eupatilin and DA-9601 is a candidate anti-inflammatory agent.

  11. Corneal Collagen Cross-Linking

    PubMed Central

    Jankov II, Mirko R.; Jovanovic, Vesna; Nikolic, Ljubisa; Lake, Jonathan C.; Kymionis, Georgos; Coskunseven, Efekan

    2010-01-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet-A (UVA) is a new technique of corneal tissue strengthening by using riboflavin as a photosensitizer and UVA to increase the formation of intra and interfibrillar covalent bonds by photosensitized oxidation. Keratocyte apoptosis in the anterior segment of the corneal stroma all the way down to a depth of about 300 microns has been described and a demarcation line between the treated and untreated cornea has been clearly shown. It is important to ensure that the cytotoxic threshold for the endothelium has not been exceeded by strictly respecting the minimal corneal thickness. Confocal microscopy studies show that repopulation of keratocytes is already visible 1 month after the treatment, reaching its pre-operative quantity and quality in terms of functional morphology within 6 months after the treatment. The major indication for the use of CXL is to inhibit the progression of corneal ectasias, such as keratoconus and pellucid marginal degeneration. CXL may also be effective in the treatment and prophylaxis of iatrogenic keratectasia, resulting from excessively aggressive photoablation. This treatment has also been used to treat infectious corneal ulcers with apparent favorable results. Combination with other treatments, such as intracorneal ring segment implantation, limited topography-guided photoablation and conductive keratoplasty have been used with different levels of success. PMID:20543933

  12. Imaging Prostate Cancer Microenvironment by Collagen Hybridization

    DTIC Science & Technology

    2015-10-01

    undergoing normal (e.g. skeleton) and pathological (arthritis) remodeling. 2. Demonstration of the use of CMP as collagen staining agent in SDS-PAGE gel...goal of the proposed project; however musculoskeletal injuries are the number one medical issue for the DOD when it comes to encounters and...CMP can be used to detect mechanical damage to collagen in tendon which could be used for diagnostic and therapeutics of musculoskeletal injury which

  13. Techniques for Type I Collagen Organization

    NASA Astrophysics Data System (ADS)

    Anderson-Jackson, LaTecia Diamond

    Tissue Engineering is a process in which cells, engineering, and material methods are used in amalgamation to improve biological functions. The purpose of tissue engineering is to develop alternative solutions to treat or cure tissues and organs that have been severely altered or damaged by diseases, congenital defects, trauma, or cancer. One of the most common and most promising biological materials for tissue engineering to develop scaffolds is Type I collagen. A major challenge in biomedical research is aligning Type I collagen to mimic biological structures, such as ligaments, tendons, bones, and other hierarchal aligned structures within the human body. The intent of this research is to examine possible techniques for organizing Type I collagen and to assess which of the techniques is effective for potential biological applications. The techniques used in this research to organize collagen are soft lithography with solution-assisted sonication embossing, directional freezing, and direct poling. The final concentration used for both soft lithography with solution-assisted sonication embossing and direct poling was 1 mg/ml, whereas for directional freezing the final concentration varied between 4mg/ml, 2mg/ml, and 1 mg/ml. These techniques were characterized using the Atomic Force Microscope (AFM) and Helium Ion Microscope (HIM). In this study, we have found that out of the three techniques, the soft lithography and directional freezing techniques have been successful in organizing collagen in a particular pattern, but not alignment. We concluded alignment may be dependent on the pH of collagen and the amount of acetic acid used in collagen solution. However, experiments are still being conducted to optimize all three techniques to align collagen in a unidirectional arrangement.

  14. Unusual Fragmentation Pathways in Collagen Glycopeptides

    NASA Astrophysics Data System (ADS)

    Perdivara, Irina; Perera, Lalith; Sricholpech, Marnisa; Terajima, Masahiko; Pleshko, Nancy; Yamauchi, Mitsuo; Tomer, Kenneth B.

    2013-07-01

    Collagens are the most abundant glycoproteins in the body. One characteristic of this protein family is that the amino acid sequence consists of repeats of three amino acids -(X—Y—Gly)n. Within this motif, the Y residue is often 4-hydroxyproline (HyP) or 5-hydroxylysine (HyK). Glycosylation in collagen occurs at the 5-OH group in HyK in the form of two glycosides, galactosylhydroxylysine (Gal-HyK) and glucosyl galactosylhydroxylysine (GlcGal-HyK). In collision induced dissociation (CID), collagen tryptic glycopeptides exhibit unexpected gas-phase dissociation behavior compared to typical N- and O-linked glycopeptides (i.e., in addition to glycosidic bond cleavages, extensive cleavages of the amide bonds are observed). The Gal- or GlcGal- glycan modifications are largely retained on the fragment ions. These features enable unambiguous determination of the amino acid sequence of collagen glycopeptides and the location of the glycosylation site. This dissociation pattern was consistent for all analyzed collagen glycopeptides, regardless of their length or amino acid composition, collagen type or tissue. The two fragmentation pathways—amide bond and glycosidic bond cleavage—are highly competitive in collagen tryptic glycopeptides. The number of ionizing protons relative to the number of basic sites (i.e., Arg, Lys, HyK, and N-terminus) is a major driving force of the fragmentation. We present here our experimental results and employ quantum mechanics calculations to understand the factors enhancing the labile character of the amide bonds and the stability of hydroxylysine glycosides in gas phase dissociation of collagen glycopeptides.

  15. Unusual fragmentation pathways in collagen glycopeptides

    PubMed Central

    Perdivara, Irina; Perera, Lalith; Sricholpech, Marnisa; Terajima, Masahiko; Pleshko, Nancy; Yamauchi, Mitsuo; Tomer, Kenneth B.

    2013-01-01

    Collagens are the most abundant glycoproteins in the body. One characteristic of this protein family is that the amino acid sequence consists of repeats of three amino acids –(X—Y—Gly)n. Within this motif, the Y residue is often 4-hydroxyproline (HyP) or 5-hydroxylysine (HyK). Glycosylation in collagen occurs at the 5-OH group in HyK in the form of two glycosides, galactosylhydroxylysine (Gal-HyK) and glucosyl galactosylhydroxylysine (GlcGal-HyK). In collision induced dissociation (CID), collagen tryptic glycopeptides exhibit unexpected gas-phase dissociation behavior compared to typical N- and O-linked glycopeptides, i.e. in addition to glycosidic bond cleavages, extensive cleavages of the amide bonds are observed. The Gal- or GlcGal- glycan modifications are largely retained on the fragment ions. These features enable unambiguous determination of the amino acid sequence of collagen glycopeptides and the location of the glycosylation site. This dissociation pattern was consistent for all analyzed collagen glycopeptides, regardless of their length or amino acid composition, collagen type or tissue. The two fragmentation pathways – amide bond and glycosidic bond cleavage – are highly competitive in collagen tryptic glycopeptides. The number of ionizing protons relative to the number of basic sites (i.e. Arg, Lys, HyK and N-terminus) is a major driving force of the fragmentation. We present here our experimental results and employ quantum mechanics calculations, to understand the factors enhancing the labile character of the amide bonds and the stability of hydroxylysine glycosides in gas phase dissociation of collagen glycopeptides. PMID:23633013

  16. Marine Collagen: An Emerging Player in Biomedical applications.

    PubMed

    Subhan, Fazli; Ikram, Muhammad; Shehzad, Adeeb; Ghafoor, Abdul

    2015-08-01

    Mammalian collagen is a multifactorial biomaterial that is widely used for beneficial purposes in the advanced biomedical technologies. Generally, biomedical applicable collagen is extracted from the mammalian body, but it can also be derived from marine species. Recently, mammalian tissues collagen proteins are considered a great pathological risk for transmitted diseases, because purification of such protein is very challenging and needs efficient tool to avoid structure alteration. Thus, difficult extraction process and high cost decreased mammalian collagen demands for beneficial effects compared to marine collagen. In contrast, marine collagen is safe and easy to extract, however this potential source of collagen is hindered by low denaturing temperature, which is considered a main hurdle in the beneficial effects of marine collagen. Characterization and biomedical applications of marine collagen are in transition state and yet to be discovered. Therefore, an attempt was made to summarize the recent knowledge regarding different aspects of marine collagen applications in the biomedical engineering field.

  17. Marine Origin Collagens and Its Potential Applications

    PubMed Central

    Silva, Tiago H.; Moreira-Silva, Joana; Marques, Ana L. P.; Domingues, Alberta; Bayon, Yves; Reis, Rui L.

    2014-01-01

    Collagens are the most abundant high molecular weight proteins in both invertebrate and vertebrate organisms, including mammals, and possess mainly a structural role, existing different types according with their specific organization in distinct tissues. From this, they have been elected as one of the key biological materials in tissue regeneration approaches. Also, industry is constantly searching for new natural sources of collagen and upgraded methodologies for their production. The most common sources are from bovine and porcine origin, but other ways are making their route, such as recombinant production, but also extraction from marine organisms like fish. Different organisms have been proposed and explored for collagen extraction, allowing the sustainable production of different types of collagens, with properties depending on the kind of organism (and their natural environment) and extraction methodology. Such variety of collagen properties has been further investigated in different ways to render a wide range of applications. The present review aims to shed some light on the contribution of marine collagens for the scientific and technological development of this sector, stressing the opportunities and challenges that they are and most probably will be facing to assume a role as an alternative source for industrial exploitation. PMID:25490254

  18. The peculiar collagens of mussel byssus.

    PubMed

    Waite, J H; Qin, X X; Coyne, K J

    1998-06-01

    The byssal collagens of marine mussels are extracorporeal collagens that function in byssal threads under tension. Each byssal thread resembles a shock absorber in its mechanical design: it is strong and stiff at one end and pliably elastic at the other. Primary structures of three of these collagens (preCols), deduced from cDNAs, reveal signal peptide sequences, but no N-glycosylation sites or propeptides typical of procollagens. The collagen domain (40-50 kDa) represents roughly half the mass of the mature molecules and is distinguished by its central location, abundant Gly-Gly-X repeats, and "flaws" (usually Gly deletions). Flanking the collagen domains on both sides are structural domains that resemble elastin in preCol-P, spider drag-line silk in preCol-D, and Gly-rich cell wall proteins in preCol-NG. Not surprisingly, studies of preCol distribution in byssal threads suggest preCol-P enhancement in the elastic proximal portion, while preCol-D predominates in the stiffer distal portion. PreCol-NG, in contrast, is evenly distributed. Although no data are yet available on the fibrillogenesis and cross-linking of the preCols, the quarter-stagger assembly of fibrillar interstitial collagens does not pertain since preCols lack the terminal peptides of tropocollagen. Metal-binding by histidines may mediate the initial inter- and intramolecular stabilization of preCols in the byssus.

  19. Association of Coagulation Factors VIII/XI/XIII Polymorphisms With Coagulation Factor Activities and Deep Vein Thrombosis After Artificial Joints Replacement.

    PubMed

    Su, Wei; Lv, Meirong; Xu, Xiaodong; Li, Bin; Liu, Hai-Yan; Ning, Bo; Li, Ye

    The study aims at investigating the effects of coagulation factors VIII/XI/XIII polymorphisms in coagulation factor activities and deep vein thrombosis (DVT). A total of 130 patients with history of artificial joint replacement surgery were recruited, including 65 patients with DVT (cases) and 65 patients without DVT (controls). Cases and controls had comparable age, sex, and body mass index. Activities of VIII/XI and XIII were, respectively, detected by 1 phase anticoagulation method and microtitrimetry. Polymorphisms of VIII rs1800291 (3591C>G), XI rs2289252 (25264C>T), and XIII rs5985 (103G>T) were detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Activities of VIII/XI were significantly increased in cases than in controls (P < 0.001 for VIII, P = 0.024 for XI). Activity of XI was significantly increased by 11.11% in CT + TT mutant type (25264C>T) compared with wild-type CC (95% confidence interval (CI), 2.28-19.95). In univariate analysis, incidence of DVT for CT mutant was 2.41-fold compared with wild-type CC (95% CI, 1.16-5.03). T allele had 1.83-fold increased risk of DVT than C allele (95% CI, 1.06-3.14). In multivariate analysis, incidence of DVT for CT + TT mutant type was 2.39-fold compared with wild type (95% CI, 1.07-5.35). Distributions of VIII gene 3951C>G and genotypes were not significant between groups (both P > 0.05). The mutation rate of VIII gene 103G>T was low in study population (0.77%) and was not significant between groups. XI 25264C>T genotype is significantly associated with XI activity. T mutation of this locus significantly increases XI activity and is a risk factor for DVT.

  20. Spherical silver nanoparticles in the detection of thermally denatured collagens.

    PubMed

    Ahumada, Manuel; McLaughlin, Sarah; Pacioni, Natalia L; Alarcon, Emilio I

    2016-03-01

    We have developed a rapid colorimetric method to determine the concentration of denatured collagen in solution, which is based on the collagen-silver nanoparticle corona formation. Using the proposed method, the lowest detectable concentration of denatured collagen protein in a solution of pure collagen was 14.7, 8.5, and 8.6 μg mL(-1) for porcine (PCOL), rat tail (RCOL), and type I human recombinant (HCOL) collagen, respectively.

  1. Looking into Children's Play Communities

    ERIC Educational Resources Information Center

    Mabry, Mark; Fucigna, Carolee

    2009-01-01

    Play, particularly children's sociodramatic play, is the cornerstone of early childhood classrooms in the United States. Early childhood educators learn and expound mantras of "the value of play," "play-based programs," "children learning through play," and "play as child's work." They strive to promote the importance of making a place for play in…

  2. Release of alpha 2-plasmin inhibitor from plasma fibrin clots by activated coagulation factor XIII. Its effect on fibrinolysis.

    PubMed Central

    Mimuro, J; Kimura, S; Aoki, N

    1986-01-01

    When blood coagulation takes place in the presence of calcium ions, alpha 2-plasmin inhibitor (alpha 2PI) is cross-linked to fibrin by activated coagulation Factor XIII (XIIIa) and thereby contributes to the resistance of fibrin to fibrinolysis. It was previously shown that the cross-linking reaction is a reversible one, since the alpha 2PI-fibrinogen cross-linked complex could be dissociated. In the present study we have shown that the alpha 2PI-fibrin cross-linking reaction is also a reversible reaction and alpha 2PI which had been cross-linked to fibrin can be released from fibrin by disrupting the equilibrium, resulting in a decrease of its resistance to fibrinolysis. When the fibrin clot formed from normal plasma in the presence of calcium ions was suspended in alpha 2PI-deficient plasma of buffered saline, alpha 2PI was gradually released from fibrin on incubation. When alpha 2PI was present in the suspending milieu, the release was decreased inversely to the concentrations of alpha 2PI in the suspending milieu. The release was accelerated by supplementing XIIIa or the presence of a high concentration of the NH2-terminal 12-residue peptide of alpha 2PI (N-peptide) which is cross-linked to fibrin in exchange for the release of alpha 2PI. When the release of alpha 2PI from fibrin was accelerated by XIIIa or N-peptide, the fibrin became less resistant to the fibrinolytic process, resulting in an acceleration of fibrinolysis which was proportional to the degree of the release of alpha 2PI. These results suggest the possibility that alpha 2PI could be released from fibrin in vivo by disrupting the equilibrium of the alpha 2PI-fibrin cross-linking reaction, and that the release would result in accelerated thrombolysis. Images PMID:2419360

  3. Combined measurement of factor XIII and D-dimer is helpful for differential diagnosis in patients with suspected pulmonary embolism.

    PubMed

    Tang, Ning; Sun, Ziyong; Li, Dengju; Yang, Jun; Yin, Shiyu; Guan, Qing

    2017-04-17

    D-dimer has been used to rule out pulmonary embolism (PE). Based on previous reports of decreased concentrations of coagulation factor XIII (FXIII) in venous thromboembolism, and no change in FXIII concentration in patients with acute cardiovascular disease, we evaluated the benefit of simultaneously measuring D-dimer and FXIII concentrations for diagnosing PE. In this prospective single-center study, we enrolled 209 patients initially suspected of having PE, and measured their D-dimer and FXIII concentrations. Forty-one patients were diagnosed with PE and 168 with other final diagnoses, including acute coronary syndrome (ACS); aortic dissection (AD); spontaneous pneumothorax (SP); other respiratory, heart, digestive and nervous diseases; and uncertain diagnoses. Patients with PE had significantly higher D-dimer and lower FXIII concentrations than did patients without PE. Combined D-dimer and FXIII measurements provided a higher positive predictive value (76.6%) for PE than single tests, especially in patients with Wells score >4.0 (89.3%). Specifically, patients with AD or ACS showed higher FXIII concentrations and mean platelet volumes than did patients with PE or SP, and patients with PE and AD had higher D-dimer concentrations than did other patients. At the thresholds of 69.0% for FXIII and 1.10 μg/mL for D-dimer, 123/151 patients (81.5%) with serious diseases (PE, AD, ACS and SP) were correctly distinguished. Combined measurement of D-dimer and FXIII helps distinguish PE from serious diseases with similar symptoms and appears to relate to increased FXIII release from active platelets in cardiovascular disease.

  4. Modulation of tumor cell stiffness and migration by type IV collagen through direct activation of integrin signaling pathway.

    PubMed

    Chen, Sheng-Yi; Lin, Jo-Shi; Yang, Bei-Chang

    2014-08-01

    Excessive collagen deposition plays a critical role in tumor progression and metastasis. To understand how type IV collagen affects mechanical stiffness and migration, low-collagen-IV-expressing transfectants of B16F10, U118MG, and Huh7 (denoted shCol cells) were established by the lentiviral-mediated delivery of small interfering RNA against type IV-α1 collagen (Col4A1). Although having similar growth rates, shCol cells showed a flatter morphology compared to that of the corresponding controls. Notably, knocking down the Col4A1 gene conferred the cells with higher levels of elasticity and lower motility. Exposure to blocking antibodies against human β1 integrin or α2β1 integrin or the pharmacological inhibition of Src and ERK activity by PP1 and U0126, respectively, effectively reduced cell motility and raised cell stiffness. Reduced Src and ERK activities in shCol cells indicate the involvement of a collagen IV/integrin signaling pathway. The forced expression of β1 integrin significantly stimulated Src and ERK phosphorylation, reduced cell stiffness, and accelerated cell motility. In an experimental metastasis assay using C57BL/6 mice, B16F10 shCol cells formed significantly fewer and smaller lung nodules, confirming the contribution of collagen to metastasis. In summary, the integrin signaling pathway activated in a tumor environment with collagen deposition is responsible for low cell elasticity and high metastatic ability.

  5. Effect of targeted mutation in collagen V alpha 2 gene on development of cutaneous hyperplasia in tight skin mice.

    PubMed Central

    Phelps, R. G.; Murai, C.; Saito, S.; Hatakeyama, A.; Andrikopoulos, K.; Kasturi, K. N.; Bona, C. A.

    1998-01-01

    Collagen V plays a major regulatory role in the formation of heterotypic fibers of the dermis and cartilaginous tissues as well as in the assembly of extracellular matrix. The pN/pN mouse, which is defective in collagen V alpha 2 gene, exhibits skeletal abnormalities, skin fragility, and alterations in the collagen fiber organization, whereas the TSK/+ mouse, which is defective in fibrillin-1, the major component of microfibrils present in the extracellular matrix, develops cutaneous hyperplasia and autoimmunity. We have studied the role of collagen V in the formation of heterotypic collagen fibers in F1 mice, which are obtained by breeding pN/pN with TSK/+ mice. Our results show that F1 progeny neither develop cutaneous hyperplasia nor produce anti-topoisomerase I autoantibodies, unlike TSK/+ mice. The diameter of the collagen fibrils in the skin is also comparable to that found in control mice. Thus, the phenotypic changes observed in the TSK mouse could be reversed by genetic complementation with a collagen V-defective mouse. Images Fig. 1 Fig. 2 Fig. 3 PMID:9642685

  6. Cleavage of Type I Collagen by Fibroblast Activation Protein-α Enhances Class A Scavenger Receptor Mediated Macrophage Adhesion.

    PubMed

    Mazur, Anna; Holthoff, Emily; Vadali, Shanthi; Kelly, Thomas; Post, Steven R

    2016-01-01

    Pathophysiological conditions such as fibrosis, inflammation, and tumor progression are associated with modification of the extracellular matrix (ECM). These modifications create ligands that differentially interact with cells to promote responses that drive pathological processes. Within the tumor stroma, fibroblasts are activated and increase the expression of type I collagen. In addition, activated fibroblasts specifically express fibroblast activation protein-α (FAP), a post-prolyl peptidase. Although FAP reportedly cleaves type I collagen and contributes to tumor progression, the specific pathophysiologic role of FAP is not clear. In this study, the possibility that FAP-mediated cleavage of type I collagen modulates macrophage interaction with collagen was examined using macrophage adhesion assays. Our results demonstrate that FAP selectively cleaves type I collagen resulting in increased macrophage adhesion. Increased macrophage adhesion to FAP-cleaved collagen was not affected by inhibiting integrin-mediated interactions, but was abolished in macrophages lacking the class A scavenger receptor (SR-A/CD204). Further, SR-A expressing macrophages localize with activated fibroblasts in breast tumors of MMTV-PyMT mice. Together, these results demonstrate that FAP-cleaved collagen is a substrate for SR-A-dependent macrophage adhesion, and suggest that by modifying the ECM, FAP plays a novel role in mediating communication between activated fibroblasts and macrophages.

  7. Modulation of heat shock protein 90 affects TGF-β-induced collagen synthesis in human dermal fibroblast cells.

    PubMed

    Lee, Sae Bin; Lim, A-Ram; Rah, Dong Kyun; Kim, Kyung Soo; Min, Hyun Jin

    2016-12-01

    Heat shock protein 90 is a chaperone molecule that aids in proper folding of target proteins. Recently, heat shock protein 90 was found to play a role in would healing through regulation of fibroblast functions. The aim of the present study was to investigate the role of heat shock protein 90 in collagen synthesis in human dermal fibroblasts. The effects of transforming growth factor-β, 17-N-allylamino-17-demethoxygeldanamycin, and transfection of heat shock protein 90 were evaluated by real-time PCR, western blot, and immunofluorescence assays. The Smad 2/3 and Akt pathways were evaluated to identify the signaling pathways involved in collagen synthesis. Heat shock protein 90 and collagen levels were compared in keloid and control tissues by immunohistochemical analysis. The expression of collagen was significantly increased after treatment with transforming growth factor-β, while 17-N-allylamino-17-demethoxygeldanamycin inhibited transforming growth factor-β-induced collagen synthesis. Overexpression of heat shock protein 90 itself with or without transforming growth factor-β increased collagen synthesis. These effects were dependent on Smad 2/3 pathway signaling. Finally, expression of heat shock protein 90 was increased in keloid tissue compared with control tissues. Taken together, these results demonstrate that modulation of heat shock protein 90 influences transforming growth factor-β-induced collagen synthesis via regulation of Smad 2/3 phosphorylation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effects of baicalin on collagen Ι and collagen ΙΙΙ expression in pulmonary arteries of rats with hypoxic pulmonary hypertension

    PubMed Central

    LIU, PANPAN; YAN, SHUANGQUAN; CHEN, MAYUN; CHEN, ALI; YAO, DAN; XU, XIAOMEI; CAI, XUEDING; WANG, LIANGXING; HUANG, XIAOYING

    2015-01-01

    The synthesis and accumulation of collagen play an important role in the formation and progression of hypoxic pulmonary hypertension. Baicalin has been reported to prevent bleomycin-induced pulmonary fibrosis. However, the role of baicalin in the treatment of pulmonary hypertension remains unknown. A disintegrin and metalloprotease with thrombospondin type-1 motif (ADAMTS-1) is a secreted enzyme that acts on a wide variety of extracellular matrix (ECM) substrates associated with vascular diseases. In this study, we aimed to investigate the effects of baicalin on the synthesis of collagen I in rats with pulmonary hypertension induced by hypoxia and the changes in ADAMTS-1 expression. A total of 24 Sprague Dawley rats were randomly assigned to 3 groups as follows: the control group (C), the hypoxia group (H) and the hypoxia + baicalin group (B). The rats in groups H and B were kept in a normobaric hypoxic chamber for 4 weeks, and the rats in group C were exposed to room air. We measured the hemodynamic indexes, including mean pulmonary artery pressure (mPAP), mean systemic (carotid) artery pressure (mSAP), and then calculated the mass ratio of right ventricle to left ventricle plus septum [RV/(LV + S)] to reflect the extent of right ventricular hypertrophy. We measured the mRNA and protein expression levels of type I collagen, type III collagen and ADAMTS-1 by hybridization in situ, and immunohistochemistry and western blot analysis, respectively. The results revealed that treatment with baicalin significantly reduced pulmonary artery pressure and attenuated the remodeling of the pulmonary artery under hypoxic conditions by increasing the expression of ADAMTS-1, so that the synthesis of type I collagen and its mRNA expression were inhibited. In conclusion, baicalin effectively inhibits the synthesis of collagen I in pulmonary arteries and this is associated with an increase in the expression of ADAMTS-1. Thus, treatment with baicalin may be an effective method for

  9. Effects of baicalin on collagen Ι and collagen ΙΙΙ expression in pulmonary arteries of rats with hypoxic pulmonary hypertension.

    PubMed

    Liu, Panpan; Yan, Shuangquan; Chen, Mayun; Chen, Ali; Yao, Dan; Xu, Xiaomei; Cai, Xueding; Wang, Liangxing; Huang, Xiaoying

    2015-04-01

    The synthesis and accumulation of collagen play an important role in the formation and progression of hypoxic pulmonary hypertension. Baicalin has been reported to prevent bleomycin-induced pulmonary fibrosis. However, the role of baicalin in the treatment of pulmonary hypertension remains unknown. A disintegrin and metalloprotease with thrombospondin type-1 motif (ADAMTS-1) is a secreted enzyme that acts on a wide variety of extracellular matrix (ECM) substrates associated with vascular diseases. In this study, we aimed to investigate the effects of baicalin on the synthesis of collagen I in rats with pulmonary hypertension induced by hypoxia and the changes in ADAMTS-1 expression. A total of 24 Sprague Dawley rats were randomly assigned to 3 groups as follows: the control group (C), the hypoxia group (H) and the hypoxia + baicalin group (B). The rats in groups H and B were kept in a normobaric hypoxic chamber for 4 weeks, and the rats in group C were exposed to room air. We measured the hemodynamic indexes, including mean pulmonary artery pressure (mPAP), mean systemic (carotid) artery pressure (mSAP), and then calculated the mass ratio of right ventricle to left ventricle plus septum [RV/(LV + S)] to reflect the extent of right ventricular hypertrophy. We measured the mRNA and protein expression levels of type I collagen, type III collagen and ADAMTS-1 by hybridization in situ, and immunohistochemistry and western blot analysis, respectively. The results revealed that treatment with baicalin significantly reduced pulmonary artery pressure and attenuated the remodeling of the pulmonary artery under hypoxic conditions by increasing the expression of ADAMTS-1, so that the synthesis of type I collagen and its mRNA expression were inhibited. In conclusion, baicalin effectively inhibits the synthesis of collagen I in pulmonary arteries and this is associated with an increase in the expression of ADAMTS-1. Thus, treatment with baicalin may be an effective method for

  10. Collagen and Its Role in predicting the Biological Behavior of Odontogenic Lesions.

    PubMed

    Kulkarni, Pavan G; Kumari, M Aruna; Jahagirdar, Abhishek; Nandan, Srk; Reddy D, Shyam Prasad; Keerthi, M

    2017-02-01

    Odontogenic cysts and tumors have variable recurrence rates. Recurrence rate is mainly due to the activity of the epithelium. The epithelium of these lesions has been investigated extensively in regard to their role in proliferative and aggressive behavior of the lesions. However, the role of the connective tissue wall in their behavior has not been studied as extensively. Collagen is an essential part of the connective tissue as a whole and fibrous wall of cystic lesions especially. It is demonstrated by picrosirius red dye staining combined with polarization microscopy. This method permits the evaluation of the nature of the collagen fibers in addition to their thickness. A total of 56 histopathologically diagnosed cases comprising odontogenic follicle, dentigerous cyst, unicystic ameloblastoma, keratocystic odontogenic tumor (KCOT), multicystic/solid ameloblastoma, and ameloblastic carcinoma were taken and stained using picrosirius red stain and evaluated using a polarizing microscope. Collagen fibers in odontogenic follicles and dentiger-ous cysts showed predominant orange-red birefringence; fibers in unicystic ameloblastoma and KCOT showed both orange red and greenish-yellow birefringence; and fibers of multicystic/ solid ameloblastoma showed predominant greenish-yellow birefringence and ameloblastic carcinoma that showed almost complete greenish birefringence. As the biological behavior of the lesions in the spectrum studied progress toward aggressive nature, increase in immature collagen fibers is noticed. This study suggests that the nature of collagen fibers plays a pivotal role in predicting the biological behavior of odontogenic lesions. Aggressive nature of the odontogenic lesions is determined by both the epithelium and the connective tissue components (collagen). Studying the nature and type of collagen helps in predicting its biological behavior.

  11. Triple-helical peptides: an approach to collagen conformation, stability, and self-association.

    PubMed

    Brodsky, Barbara; Thiagarajan, Geetha; Madhan, Balaraman; Kar, Karunakar

    2008-05-01

    Peptides have been an integral part of the collagen triple-helix structure story, and have continued to serve as useful models for biophysical studies and for establishing biologically important sequence-structure-function relationships. High resolution structures of triple-helical peptides have confirmed the basic Ramachandran triple-helix model and provided new insights into the hydration, hydrogen bonding, and sequence dependent helical parameters in collagen. The dependence of collagen triple-helix stability on the residues in its (Gly-X-Y)(n) repeating sequence has been investigated by measuring melting temperatures of host-guest peptides and an on-line collagen stability calculator is now available. Although the presence of Gly as every third residue is essential for an undistorted structure, interruptions in the repeating (Gly-X-Y)(n) amino acid sequence pattern are found in the triple-helical domains of all nonfibrillar collagens, and are likely to play a role in collagen binding and degradation. Peptide models indicate that small interruptions can be incorporated into a rod-like triple-helix with a highly localized effect, which perturbs hydrogen bonds and places the standard triple-helices on both ends out of register. In contrast to natural interruptions, missense mutations which replace one Gly in a triple-helix domain by a larger residue have pathological consequences, and studies on peptides containing such Gly substitutions clarify their effect on conformation, stability, and folding. Recent studies suggest peptides may also be useful in defining the basic principles of collagen self-association to the supramolecular structures found in tissues.

  12. Glycation Contributes to Interaction Between Human Bone Alkaline Phosphatase and Collagen Type I.

    PubMed

    Halling Linder, Cecilia; Enander, Karin; Magnusson, Per

    2016-03-01

    Bone is a biological composite material comprised primarily of collagen type I and mineral crystals of calcium and phosphate in the form of hydroxyapatite (HA), which together provide its mechanical properties. Bone alkaline phosphatase (ALP), produced by osteoblasts, plays a pivotal role in the mineralization process. Affinity contacts between collagen, mainly type II, and the crown domain of various ALP isozymes were reported in a few in vitro studies in the 1980s and 1990s, but have not attracted much attention since, although such interactions may have important implications for the bone mineralization process. The objective of this study was to investigate the binding properties of human collagen type I to human bone ALP, including the two bone ALP isoforms B1 and B2. ALP from human liver, human placenta and E. coli were also studied. A surface plasmon resonance-based analysis, supported by electrophoresis and blotting, showed that bone ALP binds stronger to collagen type I in comparison with ALPs expressed in non-mineralizing tissues. Further, the B2 isoform binds significantly stronger to collagen type I in comparison with the B1 isoform. Human bone and liver ALP (with identical amino acid composition) displayed pronounced differences in binding, revealing that post-translational glycosylation properties govern these interactions to a large extent. In conclusion, this study presents the first evidence that glycosylation differences in human ALPs are of crucial importance for protein-protein interactions with collagen type I, although the presence of the ALP crown domain may also be necessary. Different binding affinities among the bone ALP isoforms may influence the mineral-collagen interface, mineralization kinetics, and degree of bone matrix mineralization, which are important factors determining the material properties of bone.

  13. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia.

    PubMed

    Mižíková, Ivana; Ruiz-Camp, Jordi; Steenbock, Heiko; Madurga, Alicia; Vadász, István; Herold, Susanne; Mayer, Konstantin; Seeger, Werner; Brinckmann, Jürgen; Morty, Rory E

    2015-06-01

    Maturation of the lung extracellular matrix (ECM) plays an important role in the formation of alveolar gas exchange units. A key step in ECM maturation is cross-linking of collagen and elastin, which imparts stability and functionality to the ECM. During aberrant late lung development in bronchopulmonary dysplasia (BPD) patients and animal models of BPD, alveolarization is blocked, and the function of ECM cross-linking enzymes is deregulated, suggesting that perturbed ECM cross-linking may impact alveolarization. In a hyperoxia (85% O2)-based mouse model of BPD, blunted alveolarization was accompanied by alterations to lung collagen and elastin levels and cross-linking. Total collagen levels were increased (by 63%). The abundance of dihydroxylysinonorleucine collagen cross-links and the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio were increased by 11 and 18%, respectively, suggestive of a profibrotic state. In contrast, insoluble elastin levels and the abundance of the elastin cross-links desmosine and isodesmosine in insoluble elastin were decreased by 35, 30, and 21%, respectively. The lung collagen-to-elastin ratio was threefold increased. Treatment of hyperoxia-exposed newborn mice with the lysyl oxidase inhibitor β-aminopropionitrile partially restored normal collagen levels, normalized the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio, partially normalized desmosine and isodesmosine cross-links in insoluble elastin, and partially restored elastin foci structure in the developing septa. However, β-aminopropionitrile administration concomitant with hyperoxia exposure did not improve alveolarization, evident from unchanged alveolar surface area and alveoli number, and worsened septal thickening (increased by 12%). These data demonstrate that collagen and elastin cross-linking are perturbed during the arrested alveolarization of developing mouse lungs exposed to hyperoxia.

  14. Collagen fibre arrangement and functional crimping pattern of the medial collateral ligament in the rat knee.

    PubMed

    Franchi, Marco; Quaranta, Marilisa; Macciocca, Maria; Leonardi, Luisa; Ottani, Vittoria; Bianchini, Paolo; Diaspro, Alberto; Ruggeri, Alessandro

    2010-12-01

    Ligaments have been described as multifascicular structures with collagen fibres cross-connecting to each other or running straight and parallel also showing a waviness or crimping pattern playing as a shock absorber/recoiling system during joint motions. A particular collagen array and crimping pattern in different ligaments may reflect different biomechanical roles and properties. The aim of the study was to relate the 3D collagen arrangement in the crimping pattern of the medial collateral ligament (MCL) to its functional role. The MCL is one of the most injured ligaments during sports activities and an experimental model to understand the rate, quality and composition of ligaments healing. A deep knowledge of structure-function relationship of collagen fibres array will improve the development of rehabilitation protocols and more appropriate exercises for recovery of functional activity. The rat MCL was analysed by polarized light microscopy, confocal laser microscopy and scanning electron microscopy (SEM). Histomorphometric analysis demonstrated that MCL crimps have a smaller base length versus other tendons. SEM observations demonstrated that collagen fibres showing few crimps were composed of fibrils intertwining and crossing one another in the outer region. Confocal laser analyses excluded a helical array of collagen fibres. By contrast, in the core portion, densely packed straight collagen fibres ran parallel to the main axis of the ligament being interrupted both by planar crimps, similar to tendon crimps, and by newly described right-handed twisted crimps. It is concluded that planar crimps could oppose or respond exclusively to tensional forces parallel to the main ligament axis, whereas the right-handed twisted crimps could better resist/respond to a complex of tensional/rotational forces within the ligament thus opposing to an external rotation of tibia.

  15. Promoter and transcription of type X collagen gene in broiler chickens with tibial dyschondroplasia.

    PubMed

    Zhang, X; McDaniel, G R; Giambrone, J J; Smith, E

    1996-06-01

    Type X collagen is produced exclusively in hypertrophic chondrocytes of the growth plate of the proximal tibiotarsus and is believed to play an important role during normal development from chondrogenesis to osteogenesis. Chondrocytes of chickens with tibial dyschondroplasia (TD) fail to attain full hypertrophy and the amount of type X collagen, being a marker of hypertrophy, is likely to be reduced. It is not clear whether transcriptional regulation is functional for expression of the type X collagen gene in TD birds. Nucleotide sequence of the type X collagen gene promoter was determined by sequencing PCR-based DNA clones. Nucleotide identity of this fragment between the normal and TD carriers was 97.6%. Both normal and TD birds were similar in a putative transcription start site, the site of TATAA box, and neither had a CCAAT box. However, there were two gaps in TD carriers, four gaps in normals, and five nucleotide substitution sites. By rapid amplification of cDNA ends by PCR (RACE-PCR), transcription of the gene was assessed using total RNA and mRNA from both normal chondrocytes and TD lesions at 3 and 4 wk of age. The RACE-PCR product for type X collagen mRNA was detectable in both normal and TD birds at two stages. No difference was found between them. This result does not support the hypothesis that transcriptional regulation of type X collagen gene is important in TD development of chickens. Variations in the promoter region did not affect transcription of type X collagen gene in TD carrier chickens.

  16. Exosite Interactions Impact Matrix Metalloproteinase Collagen Specificities*

    PubMed Central

    Robichaud, Trista K.; Steffensen, Bjorn; Fields, Gregg B.

    2011-01-01

    Members of the matrix metalloproteinase (MMP) family selectively cleave collagens in vivo. However, the substrate structural determinants that facilitate interaction with specific MMPs are not well defined. We hypothesized that type I–III collagen sequences located N- or C-terminal to the physiological cleavage site mediate substrate selectivity among MMP-1, MMP-2, MMP-8, MMP-13, and MMP-14/membrane-type 1 (MT1)-MMP. The enzyme kinetics for hydrolysis of three fluorogenic triple-helical peptides (fTHPs) was evaluated herein. The first fTHP contained consensus residues 769–783 from type I–III collagens, the second inserted α1(II) collagen residues 763–768 N-terminal to the consensus sequence, and the third inserted α1(II) collagen residues 784–792 C-terminal to the consensus sequence. Our analyses showed that insertion of the C-terminal residues significantly increased kcat/Km and kcat for MMP-1. MMP-13 showed the opposite behavior with a decreased kcat/Km and kcat and a greatly improved Km in response to the C-terminal residues. Insertion of the N-terminal residues enhanced kcat/Km and kcat for MMP-8 and MT1-MMP. For MMP-2, the C-terminal residues enhanced Km and dramatically decreased kcat, resulting in a decrease in the overall activity. These changes in activities and kinetic parameters represented the collagen preferences of MMP-8, MMP-13, and MT1-MMP well. Thus, interactions with secondary binding sites (exosites) helped direct the specificity of these enzymes. However, MMP-1 collagen preferences were not recapitulated by the fTHP studies. The preference of MMP-1 for type III collagen appears to be primarily based on the flexibility of the hydrolysis site of type III collagen compared with types I and II. Further characterization of exosite determinants that govern interactions of MMPs with collagenous substrates should aid the development of pharmacotherapeutics that target individual MMPs. PMID:21896477

  17. Effect of green tea extract on advanced glycation and cross-linking of tail tendon collagen in streptozotocin induced diabetic rats.

    PubMed

    Babu, Pon Velayutham Anandh; Sabitha, Kuruvimalai Ekambaram; Shyamaladevi, Chennam Srinivasulu

    2008-01-01

    Diabetes leads to modification of collagen such as advanced glycation and cross-linking which play an important role in the pathogenesis of diabetes mellitus. We have investigated the effect of green tea on modification of collagen in streptozotocin (60 mg/kg body weight) induced diabetic rats. To investigate the therapeutic effect of green tea, treatment was begun six weeks after the onset of diabetes and green tea extract (300 mg/kg body weight) was given orally for 4 weeks. The collagen content, extent of advanced glycation, advanced glycation end products (AGE) and cross-linking of tail tendon collagen were investigated. Green tea reduced the tail tendon collagen content which increased in diabetic rats. Accelerated advanced glycation and AGE in diabetic animals, as detected by Ehrlich's-positive material and collagen linked fluorescence respectively were reduced significantly by green tea. The solubility of tail tendon collagen decreased significantly in diabetic rats indicating a remarkable increase in the cross-linking, whereas green tea increases the solubility of collagen in diabetic rats. The present study reveals that green tea is effective in reducing the modification of tail tendon collagen in diabetic rats. Thus green tea may have a therapeutic effect in the treatment of glycation induced complications of diabetes.

  18. Playing with Light.

    ERIC Educational Resources Information Center

    Cavicchi, Elizabeth; Lucht, Petra; Hughes-McDonnell, Fiona

    2000-01-01

    Challenges the belief that high stakes tests are the keystone of students' educational attainment, describing a series of exploratory workshops, developed in reaction to this issue, in which teachers (as essential preparation for developing students' curiosity) deepened their understanding of the principles of physics by playing with light. Such…

  19. Playing To Learn.

    ERIC Educational Resources Information Center

    Mann, Dale; Shakeshaft, Charol; Kottkamp, Robert; Becker, Jonathan

    2000-01-01

    A study to determine effects of Lightspan Partnership Inc.'s interactive materials on student achievement in a Denver- area elementary school revealed higher reading and math test scores for Lightspan schools, compared to control schools. This serious play curriculum, assisted by parents, benefited neediest kids most. (MLH)

  20. Bicentennial Plays and Programs.

    ERIC Educational Resources Information Center

    Fisher, Aileen

    This book contains royalty-free material on bicentennial themes for presentation by schools and amateur groups. The first section, Plays and Pageants, contains "Our Great Declaration,""A Star for Old Glory,""Sing, America, Sing,""Washington Marches On,""When Freedom Was News," and "A Dish of…

  1. Play's Importance in School

    ERIC Educational Resources Information Center

    Sandberg, Anette; Heden, Rebecca

    2011-01-01

    The purpose of this study is to contribute knowledge on and gain an understanding of elementary school teachers' perspectives on the function of play in children's learning processes. The study is qualitative with a hermeneutical approach and has George Herbert Mead as a theoretical frame of reference. Interviews have been carried out with seven…

  2. Games Professors Play

    ERIC Educational Resources Information Center

    Kenny, James A.; Herzing, Thomas W.

    1969-01-01

    The games are Build a Reputation (REP), Confuse the Student (CON), Blame the Opposition (BOP), and Pass the Buck (BUCK). Professors play these games because they "want to show off on occasion, . . . want to get off the hook and avoid responsibility, . . . are prone to blame others, or simply because they are lazy. (WM)

  3. Creative Outdoor Play Areas.

    ERIC Educational Resources Information Center

    Miller, Peggy L.

    Considering the creation of proper play areas for children (school sites, municipal and mini parks, private homes and backyards, shopping centers, apartment complexes, recreational areas, roadside parks, nursery schools, churches, summer camps, and drive-in theaters) as one of today's major challenges, the author recommends that professional…

  4. Creative Outdoor Play Areas.

    ERIC Educational Resources Information Center

    Miller, Peggy L.

    Considering the creation of proper play areas for children (school sites, municipal and mini parks, private homes and backyards, shopping centers, apartment complexes, recreational areas, roadside parks, nursery schools, churches, summer camps, and drive-in theaters) as one of today's major challenges, the author recommends that professional…

  5. Play's Importance in School

    ERIC Educational Resources Information Center

    Sandberg, Anette; Heden, Rebecca

    2011-01-01

    The purpose of this study is to contribute knowledge on and gain an understanding of elementary school teachers' perspectives on the function of play in children's learning processes. The study is qualitative with a hermeneutical approach and has George Herbert Mead as a theoretical frame of reference. Interviews have been carried out with seven…

  6. Integrated Play Groups

    ERIC Educational Resources Information Center

    Glovak, Sandra

    2007-01-01

    As an occupational therapist running social play groups with sensory integration for children on the autism spectrum, the author frequently doubted the wisdom of combining several children on the spectrum into a group. In fact, as the owner of a clinic she said, "No more!" The groups seemed like a waste of parents' time and money, and she refused…

  7. "Playing" with Science

    ERIC Educational Resources Information Center

    Allen, Dave

    2012-01-01

    When faced with a multitude of tasks, any opportunity to "kill two birds with one stone" is welcome. Drama has always excited the author: as a child performing in plays, later as a student and now as a teacher directing performances and improvising within lessons. The author was lucky enough to have inspirational teachers during his…

  8. Playing with Science

    ERIC Educational Resources Information Center

    Vieyra, Rebecca; Edwards, Teon; Rowe, Elizabeth; Asbell-Clarke, Jodi

    2015-01-01

    Gaming is becoming an effective form of learning and assessment and shouldn't be overlooked in an increasingly technological world. The games described in this article ("Impulse," "Quantum Spectre," and "Ravenous"), entertaining enough to be played by the general public, are also appropriate and useful in a classroom…

  9. Integrated Play Groups

    ERIC Educational Resources Information Center

    Glovak, Sandra

    2007-01-01

    As an occupational therapist running social play groups with sensory integration for children on the autism spectrum, the author frequently doubted the wisdom of combining several children on the spectrum into a group. In fact, as the owner of a clinic she said, "No more!" The groups seemed like a waste of parents' time and money, and she refused…

  10. Playing It Safe.

    ERIC Educational Resources Information Center

    Jones, Rebecca

    1997-01-01

    Offers tips for avoiding sports-related injuries: (1) expect more of coaches; (2) develop an athletic-safety plan; (3) consider hiring an athletic trainer; (4) check facilities and equipment regularly; (5) recognize athletes' limitations; (6) take precautions beyond the playing field; and (7) check liability coverage and obtain informed consent.…

  11. Children as Playing Citizens

    ERIC Educational Resources Information Center

    Grindheim, Liv Torunn

    2017-01-01

    In this article, play is understood as activities of major importance for child-citizens and as activities that constitute various ways of participating. The researcher joined children in three early childhood education institutions in Norway in their activities and categorised their participation in their everyday life. The study depicts that, in…

  12. The Paradoxes of Play.

    ERIC Educational Resources Information Center

    Rokosz, Francis M.

    1988-01-01

    The article makes a case against the structuring of intramural sports programs on the basis of the varsity athletics model, arguing that the latter model's components of competition and aggression mar the former's intrinsic rewards of play, creativity, and enhanced human relationships. (CB)

  13. "Playing" with Science

    ERIC Educational Resources Information Center

    Allen, Dave

    2012-01-01

    When faced with a multitude of tasks, any opportunity to "kill two birds with one stone" is welcome. Drama has always excited the author: as a child performing in plays, later as a student and now as a teacher directing performances and improvising within lessons. The author was lucky enough to have inspirational teachers during his…

  14. Playing with Science

    ERIC Educational Resources Information Center

    Vieyra, Rebecca; Edwards, Teon; Rowe, Elizabeth; Asbell-Clarke, Jodi

    2015-01-01

    Gaming is becoming an effective form of learning and assessment and shouldn't be overlooked in an increasingly technological world. The games described in this article ("Impulse," "Quantum Spectre," and "Ravenous"), entertaining enough to be played by the general public, are also appropriate and useful in a classroom…

  15. One Play a Day

    ERIC Educational Resources Information Center

    Blankenship, Mark

    2007-01-01

    Undergraduate theater students rarely get the chance to work on a major world premiere, but this year hundreds of them will. Currently, more than 70 colleges and universities are participating in "365 Days/365 Plays," an ambitious project from Pulitzer Prize-winning playwright Suzan-Lori Parks. Every week, as they mount their portion of this epic…

  16. Abstraction through Game Play

    ERIC Educational Resources Information Center

    Avraamidou, Antri; Monaghan, John; Walker, Aisha

    2012-01-01

    This paper examines the computer game play of an 11-year-old boy. In the course of building a virtual house he developed and used, without assistance, an artefact and an accompanying strategy to ensure that his house was symmetric. We argue that the creation and use of this artefact-strategy is a mathematical abstraction. The discussion…

  17. One Play a Day

    ERIC Educational Resources Information Center

    Blankenship, Mark

    2007-01-01

    Undergraduate theater students rarely get the chance to work on a major world premiere, but this year hundreds of them will. Currently, more than 70 colleges and universities are participating in "365 Days/365 Plays," an ambitious project from Pulitzer Prize-winning playwright Suzan-Lori Parks. Every week, as they mount their portion of this epic…

  18. Collagen scaffold microenvironments modulate cell lineage commitment for differentiation of bone marrow cells into regulatory dendritic cells

    PubMed Central

    Fang, Yongxiang; Wang, Bin; Zhao, Yannan; Xiao, Zhifeng; Li, Jing; Cui, Yi; Han, Sufang; Wei, Jianshu; Chen, Bing; Han, Jin; Meng, Qingyuan; Hou, Xianglin; Luo, Jianxun; Dai, Jianwu; Jing, Zhizhong

    2017-01-01

    The microenvironment plays a pivotal role for cell survival and functional regulation, and directs the cell fate determination. The biological functions of DCs have been extensively investigated to date. However, the influences of the microenvironment on the differentiation of bone marrow cells (BMCs) into dendritic cells (DCs) are not well defined. Here, we established a 3D collagen scaffold microenvironment to investigate whether such 3D collagen scaffolds could provide a favourable niche for BMCs to differentiate into specialised DCs. We found that BMCs embedded in the 3D collagen scaffold differentiated into a distinct subset of DC, exhibiting high expression of CD11b and low expression of CD11c, co-stimulator (CD40, CD80, CD83, and CD86) and MHC-II molecules compared to those grown in 2D culture. DCs cultured in the 3D collagen scaffold possessed weak antigen uptake ability and inhibited T-cell proliferation in vitro; in addition, they exhibited potent immunoregulatory function to alleviate allo-delay type hypersensitivity when transferred in vivo. Thus, DCs differentiated in the 3D collagen scaffold were defined as regulatory DCs, indicating that collagen scaffold microenvironments probably play an important role in modulating the lineage commitment of DCs and therefore might be applied as a promising tool for generation of specialised DCs. PMID:28169322

  19. Collagen Fiber Orientation and Dispersion in the Upper Cervix of Non-Pregnant and Pregnant Women

    PubMed Central

    Myers, Kristin M.; Vink, Joy Y.; Wapner, Ronald J.; Hendon, Christine P.

    2016-01-01

    The structural integrity of the cervix in pregnancy is necessary for carrying a pregnancy until term, and the organization of human cervical tissue collagen likely plays an important role in the tissue’s structural function. Collagen fibers in the cervical extracellular matrix exhibit preferential directionality, and this collagen network ultrastructure is hypothesized to reorient and remodel during cervical softening and dilation at time of parturition. Within the cervix, the upper half is substantially loaded during pregnancy and is where the premature funneling starts to happen. To characterize the cervical collagen ultrastructure for the upper half of the human cervix, we imaged whole axial tissue slices from non-pregnant and pregnant women undergoing hysterectomy or cesarean hysterectomy respectively using optical coherence tomography (OCT) and implemented a pixel-wise fiber orientation tracking method to measure the distribution of fiber orientation. The collagen fiber orientation maps show that there are two radial zones and the preferential fiber direction is circumferential in a dominant outer radial zone. The OCT data also reveal that there are two anatomic regions with distinct fiber orientation and dispersion properties. These regions are labeled: Region 1—the posterior and anterior quadrants in the outer radial zone and Region 2—the left and right quadrants in the outer radial zone and all quadrants in the inner radial zone. When comparing samples from nulliparous vs multiparous women, no differences in these fiber properties were noted. Pregnant tissue samples exhibit an overall higher fiber dispersion and more heterogeneous fiber properties within the sample than non-pregnant tissue. Collectively, these OCT data suggest that collagen fiber dispersion and directionality may play a role in cervical remodeling during pregnancy, where distinct remodeling properties exist according to anatomical quadrant. PMID:27898677

  20. Retinoic acid modulates rat Ito cell proliferation, collagen, and transforming growth factor beta production.

    PubMed Central

    Davis, B H; Kramer, R T; Davidson, N O

    1990-01-01

    Recent studies suggest that vitamin A plays an inhibitory role with respect to "activation" of the hepatic Ito cell, a likely effector of hepatic fibrogenesis. Ito cell "activation" during fibrogenesis is characterized by a decrease in intracellular vitamin A and an increase in cellular proliferation and collagen production. To explore the hypothesis that retinoids have the capacity to diminish Ito cell activation, cultured Ito cells were exposed to retinoic acid and its effects assessed on three key features: cell proliferation, collagen protein production and mRNA abundance, and transforming growth factor beta protein production. Retinoic acid was 100-1,000X more potent than retinol with respect to inhibition of Ito cell proliferation. Interstitial collagen and transforming growth factor beta production were also reduced by 10(-6) M retinoic acid. The relative abundance of type I collagen mRNA however, was not significantly altered. By contrast, retinoic acid administration to rats caused a marked reduction in the abundance of type I collagen mRNA in both total hepatic and purified Ito cell RNA. The relative abundance of rat hepatic fibronectin or apolipoprotein E mRNA was not significantly altered. These studies demonstrate that retinoic acid can differentially modulate several key features of hepatic fibrogenesis in vitro and in vivo. Images PMID:2254460

  1. Effects of Panax ginseng extract on human dermal fibroblast proliferation and collagen synthesis.

    PubMed

    Lee, Geum-Young; Park, Kang-Gyun; Namgoong, Sik; Han, Seung-Kyu; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung

    2016-03-01

    Current studies of Panax ginseng (or Korean ginseng) have demonstrated that it has various biological effects, including angiogenesis, immunostimulation, antimicrobial and anti-inflammatory effects. Therefore, we hypothesised that P. ginseng may also play an important role in wound healing. However, few studies have been conducted on the wound-healing effects of P. ginseng. Thus, the purpose of this in vitro pilot study was to determine the effects of P. ginseng on the activities of fibroblasts, which are key wound-healing cells. Cultured human dermal fibroblasts were treated with one of six concentrations of P. ginseng: 0, 1, 10 and 100 ng/ml and 1 and 10 µg/ml. Cell proliferation was determined 3 days post-treatment using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay, and collagen synthesis was evaluated by the collagen type I carboxy-terminal propeptide method. Cell proliferation levels and collagen synthesis were compared among the groups. The 10 ng/ml to 1 µg/ml P. ginseng treatments significantly increased cell proliferation, and the 1 ng/ml to 1 µg/ml concentrations significantly increased collagen synthesis. The maximum effects for both parameters were observed at 10 ng/ml. P. ginseng stimulated human dermal fibroblast proliferation and collagen synthesis at an optimal concentration of 10 ng/ml.

  2. Endothelial monolayers on collagen-coated nanofibrous membranes: cell-cell and cell-ECM interactions.

    PubMed

    Kang, Donggu; Kim, Jeong Hwa; Jeong, Young Hun; Kwak, Jong-Young; Yoon, Sik; Jin, Songwan

    2016-05-17

    Endothelial cells (ECs) form a monolayer lining over the entire vascular wall and play an important role in maintaining vascular homeostasis and cancer metastasis. Loss of proper endothelial function can lead to vascular diseases. Therefore, the endothelial monolayer is particularly important in tissue regeneration and mimicking vascular tissue in vitro. Numerous studies have described the effects of ECs on nanofibers made from a variety of synthetic polymer materials designed to mimic the extracellular matrix (ECM). However, little is known about maintaining the integrity of ECs in in vitro systems. Here we describe polycaprolactone nanofibrous membranes coated with collagen gel that overcome many limitations of conventional nanofibers used for engineering endothelia. We investigated cell-cell and cell-ECM junctional complexes using collagen-coated and conventional nanofibrous membranes. Conventional nanofibrous membranes alone did not form a monolayer with ECs, whereas collagen-coated nanofibrous membranes did. Several concentrations of collagen in the gel coating promoted the formation of cell-cell junctional complexes, facilitated the deposition of laminin, and increased the focal contact organization of ECs. These results suggest the possible use of collagen-coated nanofibrous membranes for vascular tissue engineering applications and a vascular platform for organ-on-a-chip systems.

  3. Characterization of Fibrin and Collagen Gels for Engineering Wound Healing Models

    PubMed Central

    Moreno-Arotzena, Oihana; Meier, Johann G.; del Amo, Cristina; García-Aznar, José Manuel

    2015-01-01

    Hydrogels are used for 3D in vitro assays and tissue engineering and regeneration purposes. For a thorough interpretation of this technology, an integral biomechanical characterization of the materials is required. In this work, we characterize the mechanical and functional behavior of two specific hydrogels that play critical roles in wound healing, collagen and fibrin. A coherent and complementary characterization was performed using a generalized and standard composition of each hydrogel and a combination of techniques. Microstructural analysis was performed by scanning electron microscopy and confocal reflection imaging. Permeability was measured using a microfluidic-based experimental set-up, and mechanical responses were analyzed by rheology. We measured a pore size of 2.84 and 1.69 μm for collagen and fibrin, respectively. Correspondingly, the permeability of the gels was 1.00·10−12 and 5.73·10−13 m2. The shear modulus in the linear viscoelastic regime was 15 Pa for collagen and 300 Pa for fibrin. The gels exhibited strain-hardening behavior at ca. 10% and 50% strain for fibrin and collagen, respectively. This consistent biomechanical characterization provides a detailed and robust starting point for different 3D in vitro bioapplications, such as collagen and/or fibrin gels. These features may have major implications for 3D cellular behavior by inducing divergent microenvironmental cues. PMID:26290683

  4. Configurational effects of collagen/ALP coatings on enzyme immobilization and surface mineralization

    NASA Astrophysics Data System (ADS)

    Bosco, R.; Leeuwenburgh, S. C. G.; Jansen, J. A.; van den Beucken, J. J. J. P.

    2014-08-01

    The ultimate goal for surface modifications in bone implants is to achieve biologically active surface able to control and trigger specific tissue response. In this study was evaluated the effects of organic compound, derived from extracellular matrix, involved in tissue mineralization. Alkaline phosphatase (ALP) plays a fundamental role in bone mineralization concurrently with collagen, the main organic components of bones. Electrospray deposition (ESD) was used to coat titanium disks with ALP and collagen at room temperature. To verify the synergistic role of ALP and collagen different conformations of coatings (mixed and layered) were obtained and their mineralization capacity was tested in vitro. The mineralization tests indicated the fundamental role of collagen to increase ALP coating retention. Analyses indicated that the coating conformation has a role; in fact the mixed group showed improved ALP retention, enzymatic activity and unique mineralized surface morphology. ESD demonstrated to be a successful method to deposit organic molecules preserving their properties as indicated by the in vitro results. These findings proved the synergistic effect of ALP and collagen in inducing mineralization offering an intriguing coating constituent for medical device that aim to trigger surface mineralization such as bone implants.

  5. Lipocytes from normal rat liver release a neutral metalloproteinase that degrades basement membrane (type IV) collagen.

    PubMed Central

    Arthur, M J; Friedman, S L; Roll, F J; Bissell, D M

    1989-01-01

    We report a proteinase that degrades basement-membrane (type IV) collagen and is produced by the liver. Its cellular source is lipocytes (fat-storing or Ito cells). Lipocytes were isolated from normal rat liver and established in primary culture. The cells synthesize and secrete a neutral proteinase, which by gelatin-substrate gel electrophoresis and gel filtration chromatography, has a molecular mass of 65,000 D. The enzyme is secreted in latent form and is activated by p-aminophenylmercuric acetate but not by trypsin. Enzyme activity in the presence of EDTA is restored selectively by zinc and is unaffected by serine-protease inhibitors. In assays with radiolabeled soluble substrates, it degrades native type IV (basement membrane) collagen but not interstitial collagen types I or V and exhibits no activity against laminin or casein. At temperatures causing partial denaturation of soluble collagen in vitro, it rapidly degrades types I and V. Thus, it is both a type IV collagenase and gelatinase. The enzyme may play a role in initiating breakdown of the subendothelial matrix in the Disse space as well as augmenting the effects of collagenases that attack native interstitial collagen. Images PMID:2551922

  6. Collagen VI regulates satellite cell self-renewal and muscle regeneration

    PubMed Central

    Urciuolo, Anna; Quarta, Marco; Morbidoni, Valeria; Gattazzo, Francesca; Molon, Sibilla; Grumati, Paolo; Montemurro, Francesca; Tedesco, Francesco Saverio; Blaauw, Bert; Cossu, Giulio; Vozzi, Giovanni; Rando, Thomas A.; Bonaldo, Paolo

    2013-01-01

    Adult muscle stem cells, or satellite cells play essential roles in homeostasis and regeneration of skeletal muscles. Satellite cells are located within a niche that includes myofibers and extracellular matrix. The function of specific extracellular matrix molecules in regulating SCs is poorly understood. Here we show that the extracellular matrix protein collagen VI is a key component of the satellite cell niche. Lack of collagen VI in Col6a1−/− mice causes impaired muscle regeneration and reduced satellite cell self-renewal capability after injury. Collagen VI null muscles display significant decrease of stiffness, which is able to compromise the in vitro and in vivo activity of wild-type satellite cells. When collagen VI is reinstated in vivo by grafting wild-type fibroblasts, the biomechanical properties of Col6a1−/− muscles are ameliorated and satellite cell defects rescued. Our findings establish a critical role for an extracellular matrix molecule in satellite cell self-renewal and open new venues for therapies of collagen VI-related muscle diseases. PMID:23743995

  7. Molecular Characterization of Collagen Hydroxylysine O-Glycosylation by Mass Spectrometry: Current Status

    PubMed Central

    Perdivara, Irina; Yamauchi, Mitsuo; Tomer, Kenneth B.

    2014-01-01

    The most abundant proteins in vertebrates – the collagen family proteins – play structural and biological roles in the body. The predominant member, type I collagen, provides tissues and organs with structure and connectivity. This protein has several unique post-translational modifications that take place intra- and extra-cellularly. With growing evidence of the relevance of such post-translational modifications in health and disease, the biological significance of O-linked collagen glycosylation has recently drawn increased attention. However, several aspects of this unique modification – the requirement for prior lysyl hydroxylation as a substrate, involvement of at least two distinct glycosyl transferases, its involvement in intermolecular crosslinking – have made its molecular mapping and quantitative characterization challenging. Such characterization is obviously crucial for understanding its biological significance. Recent progress in mass spectrometry has provided an unprecedented opportunity for this type of analysis. This review summarizes recent advances in the area of O-glycosylation of fibrillar collagens and their characterization using state-of-the-art liquid chromatography–mass spectrometry-based methodologies, and perspectives on future research. The analytical characterization of collagen crosslinking and advanced glycation end-products are not addressed here. PMID:25414518

  8. Collagen Unfolding Accelerates Water Influx, Determining Hydration in the Interstitial Matrix

    PubMed Central

    McGee, Maria P.; Morykwas, Michael; Shelton, Julie; Argenta, Louis

    2012-01-01

    In the interstitial matrix, collagen unfolding at physiologic temperatures is thought to facilitate interactions with enzymes and scaffold molecules during inflammation, tissue remodeling, and wound healing. We tested the hypothesis that it also plays a role in modulating flows and matrix hydration potential. After progressively unfolding dermal collagen in situ, we measured the hydration parameters by osmotic stress techniques and modeled them as linear functions of unfolded collagen, quantified by differential scanning calorimetry after timed heat treatment. Consistent with the hypothetical model, the thermodynamic and flow parameters obtained experimentally were related linearly to the unfolded collagen fraction. The increases in relative humidity and intensity of T2 maps were also consistent with interfacial energy contributions to the hydration potential and the hydrophobic character of the newly formed protein/water interfaces. As a plausible explanation, we propose that increased tension at interfaces formed during collagen unfolding generate local gradients in the matrix that accelerate water transfer in the dermis. This mechanism adds a convective component to interstitial transfer of biological fluids that, unlike diffusion, can speed the dispersion of water and large solutes within the matrix. PMID:23200049

  9. Immunohistochemical expression of Type IV Collagen and Autocrine Motility Factor Receptor in Odontogenic Tumours

    PubMed Central

    Sethi, Sneha

    2014-01-01

    Background: Autocrine motility factor receptor (AMFR) is a tumour motility stimulating protein secreted by tumour cells. The protein encoded by this gene is a glycosylated transmembrane protein and a receptor for autocrine motility factor. It has been known to play a role in progression of neoplastic lesions. Basement membranes are specialized extracellular matrices that serve as structural barriers as well as substrates for cellular interactions. The network of type IV collagen is thought to define the scaffold integrating other components such as laminins and perlecan into highly organized supramolecular architecture. The aim of this study was to determine and evaluate the immunohistochemical expression of Type IV Collagen and Autocrine motility factor receptor in odontogenic lesions. Materials and Methods: Immunohistochemical expression of Type IV Collagen and Autocrine motility factor receptor was evaluated in 31 odontogenic lesions, including unicystic ameloblastoma, multicystic ameloblastoma, keratocystic odontogenic tumour and ameloblastic carcinoma. Normal follicular tissue formed the control. Results: Maximum expression for Type IV Collagen was seen in multicystic ameloblastoma and minimum expression in keratocystic odontogenic tumour. The maximum expression of AMFR was seen in ameloblastic carcinoma and minimum expression in multicystic ameloblastoma. Conclusion: The results of this study suggested an association of loss of expression of type IV Collagen with progression of lesion. AMFR expression was found to be associated with the aggressive potential of tumours. PMID:25478440

  10. Contributions of cation-π interactions to the collagen triple helix stability.

    PubMed

    Chen, Chia-Ching; Hsu, Wei; Hwang, Kuo-Chu; Hwu, Jih Ru; Lin, Chun-Cheng; Horng, Jia-Cherng

    2011-04-01

    Cation-π interactions are found to be an important noncovalent force in proteins. Collagen is a right-handed triple helix composed of three left-handed PPII helices, in which (X-Y-Gly) repeats dominate in the sequence. Molecular modeling indicates that cation-π interactions could be formed between the X and Y positions in adjacent collagen strands. Here, we used a host-guest peptide system: (Pro-Hyp-Gly)(3)-(Pro-Y-Gly-X-Hyp-Gly)-(Pro-Hyp-Gly)(3), where X is an aromatic residue and Y is a cationic residue, to study the cation-π interaction in the collagen triple helix. Circular dichroism (CD) measurements and Tm data analysis show that the cation-π interactions involving Arg have a larger contribution to the conformational stability than do those involving Lys, and Trp forms a weaker cation-π interaction with cationic residues than expected as a result of steric effects. The results also show that the formation of cation-π interactions between Arg and Phe depends on their relative positions in the strand. Moreover, the fluorinated and methylated Phe substitutions show that an electron-withdrawing or electron-donating substituent on the aromatic ring can modulate its π-electron density and the cation-π interaction in collagen. Our data demonstrate that the cation-π interaction could play an important role in stabilizing the collagen triple helix.

  11. Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces.

    PubMed

    Suki, Béla; Ito, Satoru; Stamenovic, Dimitrije; Lutchen, Kenneth R; Ingenito, Edward P

    2005-05-01

    The biomechanical properties of connective tissues play fundamental roles in how mechanical interactions of the body with its environment produce physical forces at the cellular level. It is now recognized that mechanical interactions between cells and the extracellular matrix (ECM) have major regulatory effects on cellular physiology and cell-cycle kinetics that can lead to the reorganization and remodeling of the ECM. The connective tissues are composed of cells and the ECM, which includes water and a variety of biological macromolecules. The macromolecules that are most important in determining the mechanical properties of these tissues are collagen, elastin, and proteoglycans. Among these macromolecules, the most abundant and perhaps most critical for structural integrity is collagen. In this review, we examine how mechanical forces affect the physiological functioning of the lung parenchyma, with special emphasis on the role of collagen. First, we overview the composition of the connective tissue of the lung and their complex structural organization. We then describe how mechanical properties of the parenchyma arise from its composition as well as from the architectural organization of the connective tissue. We argue that, because collagen is the most important load-bearing component of the parenchymal connective tissue, it is also critical in determining the homeostasis and cellular responses to injury. Finally, we overview the interactions between the parenchymal collagen network and cellular remodeling and speculate how mechanotransduction might contribute to disease propagation and the development of small- and large-scale heterogeneities with implications to impaired lung function in emphysema.

  12. Collagen-Binding Peptidoglycans Inhibit MMP Mediated Collagen Degradation and Reduce Dermal Scarring

    PubMed Central

    Snyder, Paul W.; Freeman, Lynetta; Panitch, Alyssa

    2011-01-01

    Scarring of the skin is a large unmet clinical problem that is of high patient concern and impact. Wound healing is complex and involves numerous pathways that are highly orchestrated, leaving the skin sealed, but with abnormal organization and composition of tissue components, namely collagen and proteoglycans, that are then remodeled over time. To improve healing and reduce or eliminate scarring, more rapid restoration of healthy tissue composition and organization offers a unique approach for development of new therapeutics. A synthetic collagen-binding peptidoglycan has been developed that inhibits matrix metalloproteinase-1 and 13 (MMP-1 and MMP-13) mediated collagen degradation. We investigated the synthetic peptidoglycan in a rat incisional model in which a single dose was delivered in a hyaluronic acid (HA) vehicle at the time of surgery prior to wound closure. The peptidoglycan treatment resulted in a significant reduction in scar tissue at 21 days as measured by histology and visual analysis. Improved collagen architecture of the treated wounds was demonstrated by increased tensile strength and transmission electron microscopy (TEM) analysis of collagen fibril diameters compared to untreated and HA controls. The peptidoglycan's mechanism of action includes masking existing collagen and inhibiting MMP-mediated collagen degradation while modulating collagen organization. The peptidoglycan can be synthesized at low cost with unique design control, and together with demonstrated preclinical efficacy in reducing scarring, warrants further investigation for dermal wound healing. PMID:21779387

  13. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix

    PubMed Central

    Liang, Hui; Li, Xiaoran; Wang, Bin; Chen, Bing; Zhao, Yannan; Sun, Jie; Zhuang, Yan; Shi, Jiajia; Shen, He; Zhang, Zhijun; Dai, Jianwu

    2016-01-01

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of cetuximab was fused with CBD (CBD-Fab) and expressed in Pichia pastoris. CBD-Fab maintained antigen binding and anti-tumor activity of cetuximab and obtained a collagen-binding ability in vitro. The results also showed CBD-Fab was mainly enriched in tumors and had longer retention time in tumors in A431 s.c. xenografts. Furthermore, CBD-Fab showed a similar therapeutic efficacy as cetuximab in A431 xenografts. Although CBD-Fab hasn’t showed better therapeutic effects than cetuximab, its smaller molecular and special target may be applicable as antibody–drug conjugates (ADC) or immunotoxins. PMID:26883295

  14. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix.

    PubMed

    Liang, Hui; Li, Xiaoran; Wang, Bin; Chen, Bing; Zhao, Yannan; Sun, Jie; Zhuang, Yan; Shi, Jiajia; Shen, He; Zhang, Zhijun; Dai, Jianwu

    2016-02-17

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of cetuximab was fused with CBD (CBD-Fab) and expressed in Pichia pastoris. CBD-Fab maintained antigen binding and anti-tumor activity of cetuximab and obtained a collagen-binding ability in vitro. The results also showed CBD-Fab was mainly enriched in tumors and had longer retention time in tumors in A431 s.c. xenografts. Furthermore, CBD-Fab showed a similar therapeutic efficacy as cetuximab in A431 xenografts. Although CBD-Fab hasn't showed better therapeutic effects than cetuximab, its smaller molecular and special target may be applicable as antibody-drug conjugates (ADC) or immunotoxins.

  15. Hydroxyapatite-reinforced collagen tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Kane, Robert J.

    Scaffolds have been fabricated from a wide variety of materials and most have showed some success, either as bone graft substitutes or as tissue engineering scaffolds. However, all current scaffold compositions and architectures suffer from one or more flaws including poor mechanical properties, lack of biological response, nondegradability, or a scaffold architecture not conducive to osteointegration. Biomimetic approaches to scaffold design using the two main components of bone tissue, collagen and hydroxyapatite, resulted in scaffolds with superior biological properties but relatively poor mechanical properties and scaffold architecture. It was hypothesized that by optimizing scaffold composition and architecture, HA-collagen bone tissue engineering scaffolds could provide both an excellent biological response along with improved structural properties. The mechanical properties of freeze-dried HA-collagen scaffolds, the most common type of porous HA-collagen material, were first shown to be increased by the addition of HA reinforcements, but scaffold stiffness still fell far short of the desired range. Based on limitations inherent in the freeze-dried process, a new type of leached-porogen scaffold fabrication process was developed. Proof-of-concept scaffolds demonstrated the feasibility of producing leached-porogen HA-collagen materials, and the scaffold architecture was optimized though careful selection of porogen particle size and shape along with an improved crosslinking technique. The final scaffolds exhibited substantially increased compressive modulus compared to previous types HA-collagen scaffolds, while the porosity, pore size, and scaffold permeability were tailored to be suitable for bone tissue ingrowth. An in vitro study demonstrated the capacity of the leached-porogen scaffolds to serve as a substrate for the differentiation of osteoblasts and subsequent production of new bone tissue. The new leached-porogen scaffold HA-collagen scaffolds were

  16. Effect of kiwifruit juice on beef collagen.

    PubMed

    Sugiyama, Sumi; Hirota, Aya; Okada, Chikako; Yorita, Taeko; Sato, Kenji; Ohtsuki, Kozo

    2005-02-01

    The objective of this study is to clarify the difference in susceptibility to protease digestion by kiwifruit juice between collagen domains under different conditions. In addition, the effect of pre-treatment with kiwifruit juice on collagen in meat during cooking processes was examined. Kiwifruit juice can degrade denatured collagen, but it can not cleave the triple helical domain of collagen. Thus, kiwifruit juice does not have collagenase activity. On the other hand, the cross-linked subunits of acid-soluble collagen were converted to monomeric subunits by kiwifruit juice treatment at acidic pH, suggesting that the globular domains, in which cross-links preferentially occur, can be degraded by kiwifruit juice. The pre-treatment with kiwifruit juice significantly decreased the shear force of connective tissue in comparison with other pre-treatments without protease activity, but inversely increased the liberation of collagen-related peptides in the outer solution by heating processes at 50 and 70 degrees C or by a shorter heating time at 100 degrees C. This can be explained by the protease-mediated degradation of globular domains. However, this effect was not observed with a prolonged heating period at 100 degrees C, and the liberation of collagen-related peptides by pre-treatment with kiwifruit juice at 100 degrees C was less than that at 70 degrees C for all heating periods. Thus, it can be suggested that the pre-treatment with kiwifruit juice might be useful in meat softening under vacuum-cooking and grilling, but not under stewing.

  17. Analysis of forward and backward Second Harmonic Generation images to probe the nanoscale structure of collagen within bone and cartilage.

    PubMed

    Houle, Marie-Andrée; Couture, Charles-André; Bancelin, Stéphane; Van der Kolk, Jarno; Auger, Etienne; Brown, Cameron; Popov, Konstantin; Ramunno, Lora; Légaré, François

    2015-11-01

    Collagen ultrastructure plays a central role in the function of a wide range of connective tissues. Studying collagen structure at the microscopic scale is therefore of considerable interest to understand the mechanisms of tissue pathologies. Here, we use second harmonic generation microscopy to characterize collagen structure within bone and articular cartilage in human knees. We analyze the intensity dependence on polarization and discuss the differences between Forward and Backward images in both tissues. Focusing on articular cartilage, we observe an increase in Forward/Backward ratio from the cartilage surface to the bone. Coupling these results to numerical simulations reveals the evolution of collagen fibril diameter and spatial organization as a function of depth within cartilage.

  18. Orally Available Collagen Tripeptide: Enzymatic Stability, Intestinal Permeability, and Absorption of Gly-Pro-Hyp and Pro-Hyp.

    PubMed

    Sontakke, Sneha B; Jung, Jin-Hee; Piao, Zhe; Chung, Hye Jin

    2016-09-28

    Collagen-derived small peptides, such as Gly-Pro-Hyp (GPH) and Pro-Hyp (PH), play a role in various physiological functions. Although collagen degrades in the gastrointestinal tract randomly and easily, it is not readily cleaved into bioactive peptides. To increase the bioavailability of bioactive peptides, a collagen tripeptide (CTP) was prepared from fish scales by the digestion method using collagenase from nonpathogenic Bacillus bacteria. It was demonstrated that Hyp-containing peptides-GPH and PH-were better absorbed and reached higher plasma levels after the oral administration of CTPs in rats compared to high molecular weight collagen peptide (H-CP). GPH and PH were stable in gastrointestinal fluid and rat plasma for 2 h, and GPH was able to be transported across the intestinal cell monolayer. These results suggest that the ingestion of CTP is an efficient method for taking bioactive peptides orally due to the enzymatic stability and intestinal permeability of GPH and PH.

  19. Molecular assessment of collagen denaturation in decellularized tissues using a collagen hybridizing peptide.

    PubMed

    Hwang, Jeongmin; San, Boi Hoa; Turner, Neill J; White, Lisa J; Faulk, Denver M; Badylak, Stephen F; Li, Yang; Yu, S Michael

    2017-04-15

    Decellularized extracellular matrix (ECM) derived from tissues and organs are emerging as important scaffold materials for regenerative medicine. Many believe that preservation of the native ECM structure during decellularization is highly desirable. However, because effective techniques to assess the structural damage in ECM are lacking, the disruptive effects of a decellularization method and the impact of the associated structural damage upon the scaffold's regenerative capacity are often debated. Using a novel collagen hybridizing peptide (CHP) that specifically binds to unfolded collagen chains, we investigated the molecular denaturation of collagen in the ECM decellularized by four commonly used cell-removing detergents: sodium dodecyl sulfate (SDS), 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), sodium deoxycholate (SD), and Triton X-100. Staining of the detergent-treated porcine ligament and urinary bladder matrix with carboxyfluorescein-labeled CHP demonstrated that SDS and Triton X-100 denature the triple helical collagen molecule while CHAPS and SD do not, although second harmonic generation imaging and transmission electron microscopy (TEM) revealed that all four detergents disrupt collagen fibrils. Our findings from the CHP staining were further confirmed by the circular dichroism spectra of intact triple helical collagen molecules in CHAPS and SD solutions, and the TEM images of CHP-conjugated gold nanoparticles binding only to the SDS and Triton X-100 treated collagen fibrils. CHP is a powerful new tool for direct and reliable measurement of denatured collagen molecules in decellularized tissues. It is expected to have wide applications in the development and standardization of the tissue/organ decellularization technology. Preservation of the native ECM structure in decellularized tissues is highly desirable, since denaturation of ECM molecules (e.g., collagen) during decellularization can strongly influence the cellular response

  20. Molecular assessment of collagen denaturation in decellularized tissues using a collagen hybridizing peptide

    PubMed Central

    Hwang, Jeongmin; San, Boi Hoa; Turner, Neill J.; White, Lisa J.; Faulk, Denver M.; Badylak, Stephen F.; Li, Yang; Yu, S. Michael

    2017-01-01

    Decellularized extracellular matrix (ECM) derived from tissues and organs are emerging as important scaffold materials for regenerative medicine. Many believe that preservation of the native ECM structure during decellularization is highly desirable. However, because effective techniques to assess the structural damage in ECM are lacking, the disruptive effects of a decellularization method and the impact of the associated structural damage upon the scaffold’s regenerative capacity are often debated. Using a novel collagen hybridizing peptide (CHP) that specifically binds to unfolded collagen chains, we investigated the molecular denaturation of collagen in the ECM decellularized by four commonly used cellremoving detergents: sodium dodecyl sulfate (SDS), 3-[(3-cholamidopropyl)dimethylammonio]-1-propa nesulfonate (CHAPS), sodium deoxycholate (SD), and Triton X-100. Staining of the detergent-treated porcine ligament and urinary bladder matrix with carboxyfluorescein-labeled CHP demonstrated that SDS and Triton X-100 denature the triple helical collagen molecule while CHAPS and SD do not, although second harmonic generation imaging and transmission electron microscopy (TEM) revealed that all four detergents disrupt collagen fibrils. Our findings from the CHP staining were further confirmed by the circular dichroism spectra of intact triple helical collagen molecules in CHAPS and SD solutions, and the TEM images of CHP-conjugated gold nanoparticles binding only to the SDS and Triton X-100 treated collagen fibrils. CHP is a powerful new tool for direct and reliable measurement of denatured collagen molecules in decellularized tissues. It is expected to have wide applications in the development and standardization of the tissue/organ decellularization technology. Statement of Significance Preservation of the native ECM structure in decellularized tissues is highly desirable, since denaturation of ECM molecules (e.g., collagen) during decellularization can strongly

  1. Daily consumption of the collagen supplement Pure Gold Collagen® reduces visible signs of aging

    PubMed Central

    Borumand, Maryam; Sibilla, Sara

    2014-01-01

    With age, changes in the metabolic processes of structural components of the skin lead to visible signs of aging, such as increased dryness and wrinkle formation. The nutritional supplement, Pure Gold Collagen®, which consists of hydrolyzed collagen, hyaluronic acid, vitamins, and minerals, was developed to counteract these signs. An open-label study was conducted to investigate the effects of this nutritional supplement on skin properties. Supplementation with 50 mL of Pure Gold Collagen on a daily basis for 60 days led to a noticeable reduction in skin dryness, wrinkles, and nasolabial fold depth. In addition, a significant increase in collagen density and skin firmness was observed after 12 weeks. The data from this study suggest that Pure Gold Collagen can counteract signs of natural aging. PMID:25342893

  2. Plasma clot-promoting effect of collagen in relation to collagen-platelet interaction

    SciTech Connect

    Gentry, P.A.; Schneider, M.D.; Miller, J.K.

    1981-01-01

    The hemostatic function of several acid-soluble collagen preparations and a fibrillar-form collagen preparation have been compared. Pepsin-treated acid-soluble collagen isolated from burro and horse aortic tissue and acid-soluble colagen isolated from human umbilical cord readily promoted platelet aggregation, but failed to activate the coagulation mechanism even after prolonged incubation with plasma at 37 C. By contrast, fibrillar-form collagen isolated from burro aorta was both an efficient stimulant for the induction of platelet aggregation and a potent clot-promoting agent. Similar results were found for all the collagen preparations irrespective of whether the studies were conducted with sheep or with burro plasma. Heat denaturation studies showed that the hemostatic functon of the fibrillar-form colagen was dependent on an intact tirple-helical structure.

  3. Viewpoints: The High School Play.

    ERIC Educational Resources Information Center

    Harbison, Lawrence; And Others

    1981-01-01

    Presents opinions of professionals on the current state of the high school play. Participants include a playwright, play supplier, high school theater instructor, workshop leader, and play publisher. Discusses selection, production, and performance of plays. (JMF)

  4. Playing tricks to ions

    NASA Astrophysics Data System (ADS)

    Leibfried, Dietrich

    2017-01-01

    Ted Hänsch's career is defined by breaking new ground in experimental physics. Curiosity, vivid imagination, deep understanding, patience and tenacity are part of the winning formula, but perhaps an equally important ingredient may be Ted's favorite past-time of exploring new tricks in his "Spiellabor" (play-lab), that often resurfaced as key ingredients in rather serious experiments later. On the occasion of Ted's 75th birthday, a few past and potential future experiments with trapped ions are playfully surveyed here. Some of these tricks are already part of the trade, some are currently emerging and a few are mostly speculation today. Maybe some of the latter will be realized and even prove useful in the future.

  5. Lipoid proteinosis: an inherited disorder of collagen metabolism?

    PubMed

    Harper, J I; Duance, V C; Sims, T J; Light, N D

    1985-08-01

    The dermal collagen of a patient with lipoid proteinosis was investigated by immunohistochemistry and biochemical analysis. The affected skin was found to contain significantly less collagen per unit dry weight than normal dermis but showed elevated levels of type 3 collagen with respect to type I. Purification of collagen types from affected skin after pepsin digestion showed no novel forms, but a doubling in the yield of type 5 collagen. These results correlated well with those of immunohistochemistry which showed a patchy, diffuse, widely distributed type 3 collagen and an increase in types 4 and 5 collagens associated with 'onion skin' endothelial basement membrane thickening. Estimation of collagen cross-links showed an abnormal pattern with a preponderance of the keto-imine form not normally associated with skin. These results strongly suggest that lipoid proteinosis involves a primary perturbation of collagen metabolism.

  6. Recombinant expression of hydroxylated human collagen in Escherichia coli.

    PubMed

    Rutschmann, Christoph; Baumann, Stephan; Cabalzar, Jürg; Luther, Kelvin B; Hennet, Thierry

    2014-05-01

    Collagen is the most abundant protein in the human body and thereby a structural protein of considerable biotechnological interest. The complex maturation process of collagen, including essential post-translational modifications such as prolyl and lysyl hydroxylation, has precluded large-scale production of recombinant collagen featuring the biophysical properties of endogenous collagen. The characterization of new prolyl and lysyl hydroxylase genes encoded by the giant virus mimivirus reveals a method for production of hydroxylated collagen. The coexpression of a human collagen type III construct together with mimivirus prolyl and lysyl hydroxylases in Escherichia coli yielded up to 90 mg of hydroxylated collagen per liter culture. The respective levels of prolyl and lysyl hydroxylation reaching 25 % and 26 % were similar to the hydroxylation levels of native human collagen type III. The distribution of hydroxyproline and hydroxylysine along recombinant collagen was also similar to that of native collagen as determined by mass spectrometric analysis of tryptic peptides. The triple helix signature of recombinant hydroxylated collagen was confirmed by circular dichroism, which also showed that hydroxylation increased the thermal stability of the recombinant collagen construct. Recombinant hydroxylated collagen produced in E. coli supported the growth of human umbilical endothelial cells, underlining the biocompatibility of the recombinant protein as extracellular matrix. The high yield of recombinant protein expression and the extensive level of prolyl and lysyl hydroxylation achieved indicate that recombinant hydroxylated collagen can be produced at large scale for biomaterials engineering in the context of biomedical applications.

  7. Collagen gel protects L929 cells from TNFα-induced death by activating NF-κB.

    PubMed

    Wang, Hong-Ju; Li, Meng-Qi; Liu, Wei-Wei; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2017-09-01

    Type I collagen is one of the most abundant components of extracellular matrix. We previously illustrated that murine fibrosarcoma L929 cells grew well on type I collagen gel and escaped from TNFα-induced cell death. In this study, we investigated the mechanism underlying the protective effect of collagen gel. We used western blot, confocal microscopy, MTT assay and flow cytometry by introducing fluorescence staining to determine the expression levels of nuclear factor kappa B (NF-κB), inhibitory ratio and autophagy. L929 cells on collagen gel showed higher expression of NF-κB in the nucleus. Inhibition of NF-κB with pyrrolidine dithiocarbamate hydrochloride (PDTC) or knockdown by NF-κB-siRNA canceled the protective effect of collagen gel on L929 cells from TNFα-induced death, suggesting for the role of NF-κB in the protection from cell death. We found a new aspect of the effect of PDTC on L929 cells cultured on collagen gel. PDTC alone without TNFα induced apoptosis in the L929 cells cultured on collagen gel but not the cells on plastic dish. The apoptosis induction of the L929 cells cultured on collagen gel with PDTC was repressed by inhibiting autophagy with chloroquine, an autophagy inhibitor, suggesting that autophagy contributes to the death induced by the treatment with PDTC. Possible underlying mechanism of this finding is discussed. NF-κB played an important role in protecting the L929 cells cultured on collagen gel from TNFα-induced death.

  8. Collagen polymorphism in idiopathic chronic pulmonary fibrosis.

    PubMed Central

    Seyer, J M; Hutcheson, E T; Kang, A H

    1976-01-01

    Collagens in normal human lung and in idiopathic chronic fibrosis were investigated in terms of their covalent structure and compared for possible alterations in the diseased state. Collagens were solubilized by limited digestion with pepsin under nondenaturing conditions, and after purification they, were fractionated into types I and III. Carboxymethylcellulose and agarose chromatography of both types I and III collagens, and amino acid and carbohydrate analyses of the resulting alpha-chains indicated that the alpha 1 (I), alpha 2, and alpha 1 (III) chains of normal human lung were identical with the human skin alpha-chains in all respects examined except that the normal lung chains contained higher levels of hydroxylysine. Examination of collagens obtained from the diseased lung revealed that the content of hydroxylysine of the alpha 1 (I) and the alpha 1 (III) chains appeared to be diminished as compared to the normal lung chains. The values, expressed as residues per 1,000 residues, are 7.1 and 8.3 for the alpha 1 (I) and the alpha 1 (III) chains, respectively, as compared to 10.0 and 11.1 for the alpha-chains from the normal tissue. The chromatographic properties and amino acid and carbohydrate composition of the alpha-chains from the diseased tissue were otherwise indistinguishable from those of normal lung. In addition, isolation and characterization of the CNBr peptides of alpha 1 (I), alpha 2 and alpha 1 (III) from the diseased lung revealed no significant differences from the CNBr peptides from other human tissues reported previously. Normal and diseased lungs were also digested with CNBr, and the resultant alpha 1 (I) and alpha 1 (III) peptides were separated chromatographically. The relative quantities of these peptides indicate that type III collagen constitutes 33% of the total collagen in normal human lung, with the remainder being type I, whereas in idiopathic chronic pulmonary fibrosis, the relative content of type III collagen is markedly

  9. New recommendations for measuring collagen solubility.

    PubMed

    Latorre, María E; Lifschitz, Adrian L; Purslow, Peter P

    2016-08-01

    The heat-solubility of intramuscular collagen is usually conducted in 1/4 Ringer's solution at pH7.4, despite this ionic strength and pH being inappropriate for post-rigor meat. The current work studied the percentage of soluble collagen and hydrothermal isometric tension characteristics of perimysial strips on bovine semitendinosus muscles in either 1/4 Ringer's solution, distilled water, PBS, or a solution of the same salt concentration as 1/4 Ringer's but at pH5.6. Values of % soluble collagen were lower at pH7.4 than 5.6. Increasing ionic strength reduced % soluble collagen. The maximum perimysial isometric tension was independent of the bathing medium, but the percent relaxation was higher at pH7.4 than at pH5.6, and increased with ionic strength of the media. It is recommended that future measurements of collagen solubility and tests on connective tissue components of post-rigor meat should be carried out in a solution of concentrations NaCl and KCl equivalent to those in 1/4 Ringer's, but at pH5.6, a pH relevant to post-rigor meat.

  10. Collagenous colitis: new diagnostic possibilities with endomicroscopy

    NASA Astrophysics Data System (ADS)

    Hoffman, A.; Goetz, M.; Biesterfeld, S.; Galle, P. R.; Neurath, M. F.; Kiesslich, R.

    2006-02-01

    Collagenous colitis is a kind of microscopic colitis. It is characterized by chronic watery diarrhea and abdominal pain. The etiology is still unknown. So far, for the diagnose a histological evaluation was necessary with the presence of thickened subepithelial collagneous bands in the lamina propria. A new developed endoscope with a confocal laser allows analysing cellular and subcellular details of the mucosal layer at high resolution in vivo. In this case report we describe for the first time to diagnose collagenous colitis during ongoing colonoscopy by using this confocal endomicroscopy. In a 67 year old female patient with typical symptoms the characteristic histological changes could be identified in the endomicroscopic view. Biopsies could be targeted to affected areas and endomicroscopic prediction of the presence of collagenous bands could be confirmed in all targeted biopsies. First endomicroscopic experience in microscopic colitis could be confirmed in four additional patients. Future prospective studies are warranted to further evaluate these initial findings. However, collagenous colitis is frequently missed and endomicroscopy seems to be the ideal tool for accurate diagnosing collagenous colitis during ongoing endoscopy.

  11. Collagen degrading activity associated with Mycobacterium species

    PubMed Central

    Masso, F; Paez, A; Varela, E; d Diaz; Zenteno, E; Montano, L

    1999-01-01

    BACKGROUND—The mechanism of Mycobacterium tuberculosis penetration into tissues is poorly understood but it is reasonable to assume that there is a contribution from proteases capable of disrupting the extracellular matrix of the pulmonary epithelium and the blood vessels. A study was undertaken to identify and characterise collagen degrading activity of M tuberculosis.
METHODS—Culture filtrate protein extract (CFPE) was obtained from reference mycobacterial strains and mycobacteria isolated from patients with tuberculosis. The collagen degrading activity of CFPE was determined according to the method of Johnson-Wint using 3H-type I collagen. The enzyme was identified by the Birkedal-Hansen and Taylor method and its molecular mass determined by SDS-PAGE and Sephacryl S-300 gel filtration chromatography using an electroelution purified enzyme.
RESULTS—CFPE from Mycobacterium tuberculosis strain H37Rv showed collagenolytic activity that was four times higher than that of the avirulent strain H37Ra. The 75 kDa enzyme responsible was divalent cation dependent. Other mycobacterial species and those isolated from patients with tuberculosis also had collagen degrading activity.
CONCLUSIONS—Mycobacterium species possess a metalloprotease with collagen degrading activity. The highest enzymatic activity was found in the virulent reference strain H37Rv.

 PMID:10212111

  12. [Fibril formation in solutions of solubilized collagen].

    PubMed

    Istranov, L P; Belova, L A; Shekhter, A B; Sychenikov, I A

    1975-01-01

    Influence of the preparations of bacterial proteinases, protorisine and prototerrisine, was studied on the stability of the mature collagen of beef skin. The chemical composition of the tissue has been shown to be changed by these enzymes inconsiderably. The tissue treated by orisine and terrisine is completely dissolved in 0.5 M acetic acid (solubilized collagen). When the solutions of such collagen are heated to 37 degrees within the pH range from 4 to 10 at the ionic strength of 0.25 fibrils are formed. Under electron microscope fibres are cross-striated that is typical of native collagen fibres with periodicity of about 640 A. After chilling to 4 degrees, a part of fibrils is dissolved again. Nephlometry was used to study the rate of fibril formation as a function of pH and temperature values. A conclusion has been drawn that the mature collagne dissolved after incubation with bacterial proteinases is close to the acid-soluble collagen fraction in the ability to produce fibres upon heating.

  13. Limb-brightening observations from the OSO-7 satellite. II - Comparison of Abel-inverted intensities of Fe XIV and Fe XIII EUV emission lines with predictions

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Rothe, E. D.; Neupert, W. M.

    1976-01-01

    Intensities of Fe XIV and Fe XIII EUV emission lines obtained at coronal locations beyond the limb by the Goddard spectroheliograph on the OSO 7 satellite have been corrected for the wavelength dependence of the instrument's sensitivity and have been Abel-inverted to provide a valid comparison with theoretical predictions for each ion. Details of the Abel-inversion procedure are given, including explicit formulas for application of Bracewell's (1956) method. The intensity ratios of pairs of lines originating from a common level are compared with expected theoretical transition probability ratios over a range of heliocentric distance; deviations in some cases yield information about adjacent unclassified lines. Comparison of the observations with predictions for Fe XIV and Fe XIII shows generally good agreement, with a few interesting discrepancies that may imply a corresponding need for more accurate collisional excitation cross sections. The same comparison yields the variation of electron density with heliocentric radius for each ion separately; the two density functions are found to agree within a factor of three.

  14. Suppression of hedgehog signaling regulates hepatic stellate cell activation and collagen secretion.

    PubMed

    Li, Tao; Leng, Xi-Sheng; Zhu, Ji-Ye; Wang, Gang

    2015-01-01

    Hepatic stellate cells (HSCs) play an important role in liver fibrosis. This study investigates the expression of hedgehog in HSC and the role of hedgehog signaling on activation and collagen secretion of HSC. Liver ex vivo perfusion with collagenase IV and density gradient centrifugation were used to isolate HSC. Expression of hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 in HSC were detected by RT-PCR. Hedgehog siRNA vectors targeting Ihh, Smo and Gli2 were constructed and transfected into HSC respectively. Suppression of hedgehog signaling were detected by SYBR Green fluorescence quantitative RT-PCR. Effects of hedgehog signaling inhibition on HSC activation and collagen I secretion were analyzed. Hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 were expressed in HSC. siRNA vectors targeting Ihh, Smo and Gli2 were successfully constructed and decreased target gene expression. Suppression of hedgehog signaling significantly decreased the expression of α-SMA in HSC (P<0.01). Collagen type I secretion of HSC were also significantly decreased (P<0.01). In summary, HSC activation and collagen secretion can be regulated by hedgehog signaling. Hedgehog may play a role in the pathogenesis of liver fibrosis.

  15. Role of side chains in collagen triple helix stabilization and partner recognition.

    PubMed

    Berisio, Rita; De Simone, Alfonso; Ruggiero, Alessia; Improta, Roberto; Vitagliano, Luigi

    2009-03-01

    Collagen is a widespread protein family involved in a variety of biological processes. The complexity of collagen and its fibrous nature prevent detailed investigations on the full-length protein. Reductionist approaches conducted by dissecting the protein complexity through the use of model peptides have proved to be quite effective. There are, however, several issues regarding structure-stability relationships, aggregation in higher-order assemblies, and partner recognition that are still extensively investigated. In this review, we discuss the role that side chains play in triple helix stabilization and in partner recognition. On the basis of recent literature data, we show that collagen triple helix stability is the result of the interplay of different factors. As a general trend, interactions established by amino/imino acid side chains within the triple helix scaffold effectively modulate the intrinsic residue propensity for this common structural motif. The use of peptide models has also highlighted the role that side chains play in collagen self-association and in its interactions with receptors. Valuable examples in these fields are illustrated. Finally, future actions required to obtain more detailed information on the structure and the function of this complex protein are also delineated.

  16. Arecoline and oral keratinocytes may affect the collagen metabolism of fibroblasts.

    PubMed

    Xia, Li; Tian-You, Ling; Yi-Jun, Gao; Dong-Sheng, Tang; Wen-Hui, Li

    2009-05-01

    The characteristic of oral submucous fibrosis (OSF) is related with the disturbance of synthesis and degradation of extracellular matrix. Arecoline, the areca nut (betel nut) component of betel quid, plays a major role in pathogenesis of OSF. But the exact mechanism how arecoline influences the collagen metabolism is unclear. Oral keratinocytes and fibroblasts were cocultured and keratinocytes were pre-treated by arecoline. Fibroblasts alone, fibroblasts stimulated by arecoline, fibroblasts cocultured with keratinocytes and fibroblasts cocultured with keratinocyte pre-treated by arecoline were included as the four groups in the present study. The concentration of collagen, the content and activity of matrix metalloproteinase (MMP) and the concentration of tissue inhibitor of metalloproteinase (TIMP) were assessed. The collagen production of fibroblasts decreased when cocultured with keratinocytes; when cocultured with keratinocytes pre-treated by arecoline, fibroblasts produced more soluble collagen than non-pretreated coculture group. MMP-9 was produced only in coculture groups. There was no significant difference in the two coculture groups. The activation ratio of pro-MMP-2 in arecoline pre-treated keratinocytes-fibroblasts coculture group was significantly higher than that of non-coculture groups, but no significant difference existed in the two coculture groups. TIMP-1 produced by arecoline pre-treated keratinocytes-fibroblasts coculture group was significantly higher than those by the other three groups. TIMP-1 and the interaction of oral keratinocytes and fibroblasts play important role in pathogenesis of OSF.

  17. [Collagenous colitis. Morphologic and immunohistochemical study].

    PubMed

    Genova, G; Arena, N; Guddo, F; Vita, C; Reitano, R; Nagar, C; Tralongo, V

    1993-01-01

    Collagenous colitis is a clinico-pathological entity characterized by chronic diarrhoeas and deposition of collagen beneath the epithelium surface of large bowel. We revised 265 endoscopy biopsy specimens of the large bowel from 198 consecutive patients with "aspecific chronic colitis". Morphometric study showed that were not significant differences among various tracts in the same patients regarding to the thickness of basament membrane. It was more than 11.9 +/- 0.49 mu only in 13 pts (6.6%), while it was 3.96 +/- 1.4 mu in the others. Immunohistochemistry study confirmed the normality of subepithelial basement membrane and the below deposition of the large quantity of collagen IV.

  18. Collagen nerve wrap for median nerve scarring.

    PubMed

    Kokkalis, Zinon T; Mavrogenis, Andreas F; Ballas, Efstathios G; Papagelopoulos, Panayiotis J; Soucacos, Panayotis N

    2015-02-01

    Nerve wrapping materials have been manufactured to inhibit nerve tissue adhesions and diminish inflammatory and immunologic reactions in nerve surgery. Collagen nerve wrap is a biodegradable type I collagen material that acts as an interface between the nerve and the surrounding tissues. Its main advantage is that it stays in place during the period of tissue healing and is then gradually absorbed once tissue healing is completed. This article presents a surgical technique that used a collagen nerve wrap for the management of median nerve tissue adhesions in 2 patients with advanced carpal tunnel syndrome due to median nerve scarring and adhesions. At last follow-up, both patients had complete resolution with no recurrence of their symptoms. Complications related to the biodegradable material were not observed. Copyright 2015, SLACK Incorporated.

  19. Physical crosslinkings of edible collagen casing.

    PubMed

    Wang, Wenhang; Zhang, Yi; Ye, Ran; Ni, Yonghao

    2015-11-01

    Although edible collagen casing has been commercially used in meat industry, the safety and effectiveness of collagen cross-linking with minimally invasive treatments are still big concerns for manufacturers. In this study, ultraviolet irradiation (UV) and dehydrothermal treatment (DHT) were used to improve the properties of casing. UV, DHT, and their combination (UV+DHT) significantly increased tensile strength and decreased elongation at break of casing, in which DHT showed the best performance. Swelling of casing was also partially inhibited by the treatments. Furthermore, UV and DHT slightly improved thermal stability of the casings. In addition, X-ray diffraction patterns showed the treatments caused different extents of denaturation of collagen. No obvious effects in thickness and light transparency except for surface roughness were observed in the treated casings. The physical treatments could potentially be used as safe and effective alternatives to chemical cross-linking for the production of collage casing.

  20. On the Collagen Mineralization. A Review

    PubMed Central

    TOMOAIA, GHEORGHE; PASCA, ROXANA-DIANA

    2015-01-01

    Collagen mineralization (CM) is a challenging process that has received a lot of attention in the past years. Among the reasons for this interest, the key role is the importance of collagen and hydroxyapatite in natural bone, as major constituents. Different protocols of mineralization have been developed, specially using simulated body fluid (SBF) and many methods have been used to characterize the systems obtained, starting with methods of determining the mineral content (XRD, FTIR, Raman, High-Resolution Spectral Ultrasound Imaging), continuing with imaging methods (AFM, TEM, SEM, Fluorescence Microscopy), thermal analysis (DSC and TGA), evaluation of the mechanical and biological properties, including statistical methods and molecular modeling. In spite of the great number of studies regarding collagen mineralization, its mechanism, both in vivo and in vitro, is not completely understood. Some of the methods used in vitro and investigation methods are reviewed here. PMID:26528042