Thievessen, Ingo; Fakhri, Nikta; Steinwachs, Julian; Kraus, Viola; McIsaac, R Scott; Gao, Liang; Chen, Bi-Chang; Baird, Michelle A; Davidson, Michael W; Betzig, Eric; Oldenbourg, Rudolf; Waterman, Clare M; Fabry, Ben
2015-11-01
Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton-ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell-ECM adhesion and traction force generation. © FASEB.
Thievessen, Ingo; Fakhri, Nikta; Steinwachs, Julian; Kraus, Viola; McIsaac, R. Scott; Gao, Liang; Chen, Bi-Chang; Baird, Michelle A.; Davidson, Michael W.; Betzig, Eric; Oldenbourg, Rudolf; Waterman, Clare M.; Fabry, Ben
2015-01-01
Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton–ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell–ECM adhesion and traction force generation.—Thievessen, I., Fakhri, N., Steinwachs, J., Kraus, V., McIsaac, R. S., Gao, L., Chen, B.-C., Baird, M. A., Davidson, M. W., Betzig, E., Oldenbourg, R., Waterman, C., M., Fabry, B. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen. PMID:26195589
Dynamics of Cancer Cell near Collagen Fiber Chain
NASA Astrophysics Data System (ADS)
Kim, Jihan; Sun, Bo
Cell migration is an integrated process that is important in life. Migration is essential for embryonic development as well as homeostatic processes such as wound healing and immune responses. When cell migrates through connective extracellular matrix (ECM), it applies cellular traction force to ECM and senses the rigidity of their local environment. We used human breast cancer cell (MDA-MB-231) which is highly invasive and applies strong traction force to ECM. As cancer cell applies traction force to type I collage-based ECM, it deforms collagen fibers near the surface. Patterns of deforming collagen fibers are significantly different with pairs of cancer cells compared to a single cancer cell. While a pair of cancer cells within 60 um creates aligned collagen fiber chains between them permanently, a single cancer cell does not form any fiber chains. In this experiment we measured a cellular response and an interaction between a pair of cells through the chain. Finally, we analyzed correlation of directions between cancer cell migration and the collagen chain alignment.
Kutys, Matthew L; Yamada, Kenneth M
2014-09-01
Rho-family GTPases govern distinct types of cell migration on different extracellular matrix proteins in tissue culture or three-dimensional (3D) matrices. We searched for mechanisms selectively regulating 3D cell migration in different matrix environments and discovered a form of Cdc42-RhoA crosstalk governing cell migration through a specific pair of GTPase activator and inhibitor molecules. We first identified βPix, a guanine nucleotide exchange factor (GEF), as a specific regulator of migration in 3D collagen using an affinity-precipitation-based GEF screen. Knockdown of βPix specifically blocks cell migration in fibrillar collagen microenvironments, leading to hyperactive cellular protrusion accompanied by increased collagen matrix contraction. Live FRET imaging and RNAi knockdown linked this βPix knockdown phenotype to loss of polarized Cdc42 but not Rac1 activity, accompanied by enhanced, de-localized RhoA activity. Mechanistically, collagen phospho-regulates βPix, leading to its association with srGAP1, a GTPase-activating protein (GAP), needed to suppress RhoA activity. Our results reveal a matrix-specific pathway controlling migration involving a GEF-GAP interaction of βPix with srGAP1 that is critical for maintaining suppressive crosstalk between Cdc42 and RhoA during 3D collagen migration.
Ishida, Sumire; Tanaka, Ryosuke; Yamaguchi, Naoya; Ogata, Genki; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi
2014-01-01
Lumen formation is important for morphogenesis; however, an unanswered question is whether it involves the collective migration of epithelial cells. Here, using a collagen gel overlay culture method, we show that Madin-Darby canine kidney cells migrated collectively and formed a luminal structure in a collagen gel. Immediately after the collagen gel overlay, an epithelial sheet folded from the periphery, migrated inwardly, and formed a luminal structure. The inhibition of integrin-β1 or Rac1 activity decreased the migration rate of the peripheral cells after the sheets folded. Moreover, lumen formation was perturbed by disruption of apical-basolateral polarity induced by transforming growth factor-β1. These results indicate that cell migration and cell polarity play an important role in folding. To further explore epithelial sheet folding, we developed a computer-simulated mechanical model based on the rigidity of the extracellular matrix. It indicated a soft substrate is required for the folding movement.
Yao, Li; Flynn, Nikol
2018-06-01
Advances in the development of biomaterials and stem cell therapy provide a promising approach to regenerating degenerated discs. The normal nucleus pulposus (NP) cells exhibit similar phenotype to chondrocytes. Because dental pulp stem cells (DPSCs) can be differentiated into chondrogenic cells, the DPSCs and DPSCs-derived chondrogenic cells encapsulated in type I and type II collagen hydrogels can potentially be transplanted into degenerated NP to repair damaged tissue. The motility of transplanted cells is critical because the cells need to migrate away from the hydrogels containing the cells of high density and disperse through the NP tissue after implantation. The purpose of this study was to determine the motility of DPSC and DPSC-derived chondrogenic cells in type I and type II collagen hydrogels. The time lapse imaging that recorded cell migration was analyzed to quantify the cell migration velocity and distance. The cell viability of DPSCs in native or poly(ethylene glycol) ether tetrasuccinimidyl glutarate (4S-StarPEG)-crosslinked type I and type II collagen hydrogels was determined using LIVE/DEAD cell viability assay and AlamarBlue assay. DPSCs were differentiated into chondrogenic cells. The migration of DPSCs and DPSC-derived chondrogenic cells in these hydrogels was recorded using a time lapse imaging system. This study was funded by the Regional Institute on Aging and Wichita Medical Research and Education Foundation, and the authors declare no competing interest. DPSCs showed high cell viability in non-crosslinked and crosslinked collagen hydrogels. DPSCs migrated in collagen hydrogels, and the cell migration speed was not significantly different in either type I collagen or type II collagen hydrogels. The migration speed of DPSC-derived chondrogenic cells was higher in type I collagen hydrogel than in type II collagen hydrogel. Crosslinking of type I collagen with 4S-StarPEG significantly reduced the cell migration speed of DPSC-derived chondrogenic cells. After implantation of collagen hydrogels encapsulating DPSCs or DPSC-derived chondrogenic cells, the cells can potentially migrate from the hydrogels and migrate into the NP tissue. This study also explored the differential cell motility of DPSCs and DPSC-derived chondrogenic cells in these collagen hydrogels. Copyright © 2018 Elsevier Inc. All rights reserved.
Effects of dynamic matrix remodelling on en masse migration of fibroblasts on collagen matrices.
Ozcelikkale, Altug; Dutton, J Craig; Grinnell, Frederick; Han, Bumsoo
2017-10-01
Fibroblast migration plays a key role during various physiological and pathological processes. Although migration of individual fibroblasts has been well studied, migration in vivo often involves simultaneous locomotion of fibroblasts sited in close proximity, so-called ' en masse migration', during which intensive cell-cell interactions occur. This study aims to understand the effects of matrix mechanical environments on the cell-matrix and cell-cell interactions during en masse migration of fibroblasts on collagen matrices. Specifically, we hypothesized that a group of migrating cells can significantly deform the matrix, whose mechanical microenvironment dramatically changes compared with the undeformed state, and the alteration of the matrix microenvironment reciprocally affects cell migration. This hypothesis was tested by time-resolved measurements of cell and extracellular matrix movement during en masse migration on collagen hydrogels with varying concentrations. The results illustrated that a group of cells generates significant spatio-temporal deformation of the matrix before and during the migration. Cells on soft collagen hydrogels migrate along tortuous paths, but, as the matrix stiffness increases, cell migration patterns become aligned with each other and show coordinated migration paths. As cells migrate, the matrix is locally compressed, resulting in a locally stiffened and dense matrix across the collagen concentration range studied. © 2017 The Author(s).
Anguiano, María; Castilla, Carlos; Maška, Martin; Ederra, Cristina; Peláez, Rafael; Morales, Xabier; Muñoz-Arrieta, Gorka; Mujika, Maite; Kozubek, Michal; Muñoz-Barrutia, Arrate; Rouzaut, Ana; Arana, Sergio; Garcia-Aznar, José Manuel; Ortiz-de-Solorzano, Carlos
2017-01-01
Microfluidic devices are becoming mainstream tools to recapitulate in vitro the behavior of cells and tissues. In this study, we use microfluidic devices filled with hydrogels of mixed collagen-Matrigel composition to study the migration of lung cancer cells under different cancer invasion microenvironments. We present the design of the microfluidic device, characterize the hydrogels morphologically and mechanically and use quantitative image analysis to measure the migration of H1299 lung adenocarcinoma cancer cells in different experimental conditions. Our results show the plasticity of lung cancer cell migration, which turns from mesenchymal in collagen only matrices, to lobopodial in collagen-Matrigel matrices that approximate the interface between a disrupted basement membrane and the underlying connective tissue. Our quantification of migration speed confirms a biphasic role of Matrigel. At low concentration, Matrigel facilitates migration, most probably by providing a supportive and growth factor retaining environment. At high concentration, Matrigel slows down migration, possibly due excessive attachment. Finally, we show that antibody-based integrin blockade promotes a change in migration phenotype from mesenchymal or lobopodial to amoeboid and analyze the effect of this change in migration dynamics, in regards to the structure of the matrix. In summary, we describe and characterize a robust microfluidic platform and a set of software tools that can be used to study lung cancer cell migration under different microenvironments and experimental conditions. This platform could be used in future studies, thus benefitting from the advantages introduced by microfluidic devices: precise control of the environment, excellent optical properties, parallelization for high throughput studies and efficient use of therapeutic drugs.
Behavior of sea urchin primary mesenchyme cells in artificial extracellular matrices.
Katow, H
1986-02-01
The primary mesenchyme cells (PMCs) were separated from the mesenchyme blastulae of Pseudocentrotus depressus using differential adhesiveness of these cells to plastic Petri dishes. These cells were incubated in various artificial extracellular matrices (ECMs) including horse serum plasma fibronectin, mouse EHS sarcoma laminin, mouse EHS sarcoma type IV collagen, and porcine skin dermatan sulfate. The cell behavior was monitored by a time-lapse videomicrograph and analysed with a microcomputer. The ultrastructure of the artificial ECM was examined by transmission electron microscopy (TEM), while the ultrastructure of the PMCs was examined by scanning electron microscopy (SEM). The PMCs did not migrate in type IV collagen gel, laminin or dermatan sulfate matrix either with or without collagen gel, whereas PMCs in the matrix which was composed of fibronectin and collagen gel migrated considerably. However, the most active and extensive PMC migration was seen in the matrix which contained dermatan sulfate in addition to fibronectin and collagen gel. This PMC migration involved an increase not only of migration speed but also of proportion of migration-promoted cells. These results support the hypothesis that the mechanism of PMC migration involves fibronectin, collagen and sulfated proteoglycans which contain dermatan sulfate.
Epitaxially grown collagen fibrils reveal diversity in contact guidance behavior among cancer cells.
Wang, Juan; Petefish, Joseph W; Hillier, Andrew C; Schneider, Ian C
2015-01-01
Invasion of cancer cells into the surrounding tissue is an important step during cancer progression and is driven by cell migration. Cell migration can be random, but often it is directed by various cues such as aligned fibers composed of extracellular matrix (ECM), a process called contact guidance. During contact guidance, aligned fibers bias migration along the long axis of the fibers. These aligned fibers of ECM are commonly composed of type I collagen, an abundant structural protein around tumors. In this paper, we epitaxially grew several different patterns of organized type I collagen on mica and compared the morphology and contact guidance behavior of two invasive breast cancer cell lines (MDA-MB-231 and MTLn3 cells). Others have shown that these cells randomly migrate in qualitatively different ways. MDA-MB-231 cells exert large traction forces, tightly adhere to the ECM, and migrate with spindle-shaped morphology and thus adopt a mesenchymal mode of migration. MTLn3 cells exert small traction forces, loosely adhere to the ECM, and migrate with a more rounded morphology and thus adopt an amoeboid mode of migration. As the degree of alignment of type I collagen fibrils increases, cells become more elongated and engage in more directed contact guidance. MDA-MB-231 cells perceive the directional signal of highly aligned type I collagen fibrils with high fidelity, elongating to large extents and migrating directionally. Interestingly, behavior in MTLn3 cells differs. While highly aligned type I collagen fibril patterns facilitate spreading and random migration of MTLn3 cells, they do not support elongation or directed migration. Thus, different contact guidance cues bias cell migration differently and the fidelity of contact guidance is cell type dependent, suggesting that ECM alignment is a permissive cue for contact guidance, but requires a cell to have certain properties to interpret that cue.
Petit, Valérie; Boyer, Brigitte; Lentz, Delphine; Turner, Christopher E.; Thiery, Jean Paul; Vallés, Ana M.
2000-01-01
Identification of signaling molecules that regulate cell migration is important for understanding fundamental processes in development and the origin of various pathological conditions. The migration of Nara Bladder Tumor II (NBT-II) cells was used to determine which signaling molecules are specifically involved in the collagen-mediated locomotion. We show here that paxillin is tyrosine phosphorylated after induction of motility on collagen. Overexpression of paxillin mutants in which tyrosine 31 and/or tyrosine 118 were replaced by phenylalanine effectively impaired cell motility. Moreover, stimulation of motility by collagen preferentially enhanced the association of paxillin with the SH2 domain of the adaptor protein CrkII. Mutations in both tyrosine 31 and 118 diminished the phosphotyrosine content of paxillin and prevented the formation of the paxillin–Crk complex, suggesting that this association is necessary for collagen-mediated NBT-II cell migration. Other responses to collagen, such as cell adhesion and spreading, were not affected by these mutations. Overexpression of wild-type paxillin or Crk could bypass the migration-deficient phenotype. Both the SH2 and the SH3 domains of CrkII are shown to play a critical role in this collagen-mediated migration. These results demonstrate the important role of the paxillin–Crk complex in the collagen-induced cell motility. PMID:10704446
Maška, Martin; Ederra, Cristina; Peláez, Rafael; Morales, Xabier; Muñoz-Arrieta, Gorka; Mujika, Maite; Kozubek, Michal; Muñoz-Barrutia, Arrate; Rouzaut, Ana; Arana, Sergio; Garcia-Aznar, José Manuel; Ortiz-de-Solorzano, Carlos
2017-01-01
Microfluidic devices are becoming mainstream tools to recapitulate in vitro the behavior of cells and tissues. In this study, we use microfluidic devices filled with hydrogels of mixed collagen-Matrigel composition to study the migration of lung cancer cells under different cancer invasion microenvironments. We present the design of the microfluidic device, characterize the hydrogels morphologically and mechanically and use quantitative image analysis to measure the migration of H1299 lung adenocarcinoma cancer cells in different experimental conditions. Our results show the plasticity of lung cancer cell migration, which turns from mesenchymal in collagen only matrices, to lobopodial in collagen-Matrigel matrices that approximate the interface between a disrupted basement membrane and the underlying connective tissue. Our quantification of migration speed confirms a biphasic role of Matrigel. At low concentration, Matrigel facilitates migration, most probably by providing a supportive and growth factor retaining environment. At high concentration, Matrigel slows down migration, possibly due excessive attachment. Finally, we show that antibody-based integrin blockade promotes a change in migration phenotype from mesenchymal or lobopodial to amoeboid and analyze the effect of this change in migration dynamics, in regards to the structure of the matrix. In summary, we describe and characterize a robust microfluidic platform and a set of software tools that can be used to study lung cancer cell migration under different microenvironments and experimental conditions. This platform could be used in future studies, thus benefitting from the advantages introduced by microfluidic devices: precise control of the environment, excellent optical properties, parallelization for high throughput studies and efficient use of therapeutic drugs. PMID:28166248
3D cancer cell migration in a confined matrix
NASA Astrophysics Data System (ADS)
Alobaidi, Amani; Sun, Bo
Cancer cell migration is widely studied in 2D motion, which does not mimic the invasion processes in vivo. More recently, 3D cell migration studies have been performed. The ability of cancer cells to migrate within the extracellular matrix depends on the physical and biochemical features of the extracellular matrix. We present a model of cell motility in confined matrix geometry. The aim of the study is to study cancer migration in collagen matrix, as a soft tissue, to investigate their motility within the confined and surrounding collagen environment. Different collagen concentrations have been used to show the ability of these cancer cells to move through such a complex structure by measuring Cancer cell migration velocity as well as the displacement. Graduate student physics department.
FK506-binding protein 10 (FKBP10) regulates lung fibroblast migration via collagen VI synthesis.
Knüppel, Larissa; Heinzelmann, Katharina; Lindner, Michael; Hatz, Rudolf; Behr, Jürgen; Eickelberg, Oliver; Staab-Weijnitz, Claudia A
2018-04-19
In idiopathic pulmonary fibrosis (IPF), fibroblasts gain a more migratory phenotype and excessively secrete extracellular matrix (ECM), ultimately leading to alveolar scarring and progressive dyspnea. Here, we analyzed the effects of deficiency of FK506-binding protein 10 (FKBP10), a potential IPF drug target, on primary human lung fibroblast (phLF) adhesion and migration. Using siRNA, FKBP10 expression was inhibited in phLF in absence or presence of 2ng/ml transforming growth factor-β1 (TGF-β1) and 0.1mM 2-phosphoascorbate. Effects on cell adhesion and migration were monitored by an immunofluorescence (IF)-based attachment assay, a conventional scratch assay, and single cell tracking by time-lapse microscopy. Effects on expression of key players in adhesion dynamics and migration were analyzed by qPCR and Western Blot. Colocalization was evaluated by IF microscopy and by proximity ligation assays. FKBP10 knockdown significantly attenuated adhesion and migration of phLF. Expression of collagen VI was decreased, while expression of key components of the focal adhesion complex was mostly upregulated. The effects on migration were 2-phosphoascorbate-dependent, suggesting collagen synthesis as the underlying mechanism. FKBP10 colocalized with collagen VI and coating culture dishes with collagen VI, and to a lesser extent with collagen I, abolished the effect of FKBP10 deficiency on migration. These findings show, to our knowledge for the first time, that FKBP10 interacts with collagen VI and that deficiency of FKBP10 reduces phLF migration mainly by downregulation of collagen VI synthesis. The results strengthen FKBP10 as an important intracellular regulator of ECM remodeling and support the concept of FKBP10 as drug target in IPF.
Lafyatis, Robert; Burkly, Linda C.
2017-01-01
Systemic sclerosis (SSc) is a devastating disease affecting the skin and internal organs. Dermal fibrosis manifests early and Modified Rodnan Skin Scores (MRSS) correlate with disease progression. Transcriptomics of SSc skin biopsies suggest the role of the in vivo microenvironment in maintaining the pathological myofibroblasts. Therefore, defining the structural changes in dermal collagen in SSc patients could inform our understanding of fibrosis pathogenesis. Here, we report a method for quantitative whole-slide image analysis of dermal collagen from SSc patients, and our findings of more aligned dermal collagen bundles in diffuse cutaneous SSc (dcSSc) patients. Using the bleomycin-induced mouse model of SSc, we identified a distinct high dermal collagen bundle alignment gene signature, characterized by a concerted upregulation in cell migration, adhesion, and guidance pathways, and downregulation of spindle, replication, and cytokinesis pathways. Furthermore, increased bundle alignment induced a cell migration gene signature in fibroblasts in vitro, and these cells demonstrated increased directed migration on aligned ECM fibers that is dependent on expression of Arhgdib (Rho GDP-dissociation inhibitor 2). Our results indicate that increased cell migration is a cellular response to the increased collagen bundle alignment featured in fibrotic skin. Moreover, many of the cell migration genes identified in our study are shared with human SSc skin and may be new targets for therapeutic intervention. PMID:28662216
Human Th17 Migration in Three-Dimensional Collagen Involves p38 MAPK.
Kadiri, Maleck; El Azreq, Mohammed-Amine; Berrazouane, Sofiane; Boisvert, Marc; Aoudjit, Fawzi
2017-09-01
T cell migration across extracellular matrix (ECM) is an important step of the adaptive immune response but is also involved in the development of inflammatory autoimmune diseases. Currently, the molecular mechanisms regulating the motility of effector T cells in ECM are not fully understood. Activation of p38 MAPK has been implicated in T cell activation and is critical to the development of immune and inflammatory responses. In this study, we examined the implication of p38 MAPK in regulating the migration of human Th17 cells through collagen. Using specific inhibitor and siRNA, we found that p38 is necessary for human Th17 migration in three-dimensional (3D) collagen and that 3D collagen increases p38 phosphorylation. We also provide evidence that the collagen receptor, discoidin domain receptor 1 (DDR1), which promotes Th17 migration in 3D collagen, is involved in p38 activation. Together, our findings suggest that targeting DDR1/p38 MAPK pathway could be beneficial for the treatment of Th17-mediated inflammatory diseases. J. Cell. Biochem. 118: 2819-2827, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Nanotopography guides and directs cell migration in amoeboid and epithelial cells
NASA Astrophysics Data System (ADS)
Lee, Rachel; Das, Satarupa; Hourwitz, Matthew; Sun, Xiaoyu; Parent, Carole; Fourkas, John; Losert, Wolfgang
Cell migration plays a critical role in development, angiogenesis, immune response, wound healing, and cancer metastasis. In many cases, cells also move in the context of a matrix of collagen fibers, and the alignment of these fibers can both affect the migration phenotype and guide cells. Here we show that both fast and slow migrating cells - amoeboid HL-60 and epithelial MCF10A - are affected in similar ways by micro/nanostructures with dimensions similar to those of collagen fibers. Cell alignment enhances the efficiency of migration by increasing directional persistence.
Valverde, Thalita M; Castro, Elisandra G; Cardoso, Maíssa H S; Martins-Júnior, Paulo A; Souza, Lívia M O; Silva, Patrícia P; Ladeira, Luiz O; Kitten, Gregory T
2016-10-01
This study characterized a three-dimensional (3D) biocomposite scaffolds produced using type I collagen, mineral trioxide aggregate (MTA) and multi-walled carbon nanotubes (MWCNT) to be used in bone tissue regeneration. The scaffolds were analyzed via scanning (SEM) and transmission (TEM) electron microscopy, as well as the viability and migration of osteoblasts and mineralization of the scaffolds. SEM and TEM analyses showed that MTA and MWCNT were distributed as both large agglomerates entrapped within the collagen network and as smaller accumulations or individual molecules dispersed throughout the scaffold. Ultrastructural analysis revealed that osteoblastic MC3T3-E1 cells grown in the biocomposite endocytosed MWCNT, which were localized in the cytoplasm and in vesicles. Analysis of cells grown in the 3D scaffolds demonstrated that >95% of the cells remained viable in all tested combinations and concentrations of the biocomposite. MC3T3-E1 osteoblasts migrated into scaffolds formed with concentrations of type I collagen between 1.75 and 3.0mg/mL. Cells displayed increased migration into scaffolds formed with collagen and a range of low to high concentrations of MTA. In contrast, the presence of MWCNT in the biocomposite had a slight negative effect on migration. Collagen gels containing specific concentrations of MTA, or MWCNT, or combinations of MTA/MWCNT, caused an increase in mineralization of scaffolds. Scaffolds composed of defined concentrations of type I collagen, MTA and MWCNT are biocompatible, promote migration and mineralization of osteoblasts, and hence may be useful as bone tissue mimetics. Copyright © 2016 Elsevier Inc. All rights reserved.
Ghousifam, Neda; Mortazavian, Seyyed Hamid; Bhowmick, Rudra; Vasquez, Yolanda; Blum, Frank D.; Gappa-Fahlenkamp, Heather
2017-01-01
Monocyte transendothelial migration is a multi-step process critical for the initiation and development of atherosclerosis. The chemokine monocyte chemoattractant protein-1 (MCP-1) is overexpressed during atheroma and its concentration gradients in the extracellular matrix (ECM) is critical for the transendothelial recruitment of monocytes. Based on prior observations, we hypothesize that both free and bound gradients of MCP-1 within the ECM are involved in directing monocyte migration. The interaction between a three-dimensional (3D), cell-free, collagen matrix and MCP-1; and its effect on monocyte migration was measured in this study. Our results showed such an interaction existed between MCP-1 and collagen, as 26% of the total MCP-1 added to the collagen matrix was bound to the matrix after extensive washes. We also characterized the collagen-MCP-1 interaction using biophysical techniques. The treatment of the collagen matrix with MCP-1 lead to increased monocyte migration, and this phenotype was abrogated by treating the matrix with an anti-MCP-1 antibody. Thus, our results indicate a binding interaction between MCP-1 and the collagen matrix, which could elicit a haptotactic effect on monocyte migration. A better understanding of such mechanisms controlling monocyte migration will help identify target cytokines and lead to the development of better anti-inflammatory therapeutic strategies. PMID:28041913
He, Jing; Meng, Guolong; Yao, Ruijuan; Jiang, Bo; Wu, Yao; Wu, Fang
2016-06-01
The physical environment, which is an integral part of the stem cell niche, is critical in regulating stem cell functions and differentiation into specific lineages. Previous studies have primarily focused on modulating the polymeric matrixes, including the extracellular matrix. Here, we report that the presence of the inorganic substrate (Ti and hydroxyapatite (HA)) in addition to the collagen overlayer plays an essential role in cytoskeletal organization, migration and differentiation of mesenchymal stem cells (MSCs). The osteogenic differentiation of MSCs was suppressed on pure collagen substrate alone, despite collagen greatly enhancing the MSC adhesion and proliferation. The results indicated a strong correlation between MSC motility and osteoblastic differentiation. In particular, the presence of the inorganic matrix promoted the activation of the canonical WNT-β-Catenin pathway and stimulated transcription, leading to osteoblastic differentiation, which was likely due to the internal forces generated "dynamically" during cell migration. Compared to the Ti substrate, hydroxyapatite promoted the collagen self-assembly and the formation of the collagen fibrous network, which is critical for MSC motility and osteogenic differentiation. The HA-collagen matrix exhibited the most favourable stress fibre formation, the longest migration distance (2.8-fold higher than that of the pure collagen sample and 1.9-fold higher than that of Ti-collagen), and the best osteogenic differentiation activities. These findings might have important implications for our understanding of the fundamental MSC functions and the optimal design of bone regeneration materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shitomi, Yasuyuki; Thøgersen, Ida B.; Ito, Noriko; Leitinger, Birgit; Enghild, Jan J.; Itoh, Yoshifumi
2015-01-01
Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that binds and transmits signals from various collagens in epithelial cells. However, how DDR1–dependent signaling is regulated has not been understood. Here we report that collagen binding induces ADAM10-dependent ectodomain shedding of DDR1. DDR1 shedding is not a result of an activation of its signaling pathway, since DDR1 mutants defective in signaling were shed in an efficient manner. DDR1 and ADAM10 were found to be in a complex on the cell surface, but shedding did not occur unless collagen bound to DDR1. Using a shedding-resistant DDR1 mutant, we found that ADAM10-dependent DDR1 shedding regulates the half-life of collagen-induced phosphorylation of the receptor. Our data also revealed that ADAM10 plays an important role in regulating DDR1-mediated cell adhesion to achieve efficient cell migration on collagen matrices. PMID:25540428
Liu, Xiaoling; Xu, Qian; Liu, Weiwei; Yao, Guodong; Zhao, Yeli; Xu, Fanxing; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-Ichi; Onodera, Satoshi; Yamato, Masayuki; Ikejima, Takashi
2018-04-01
Migration of fibroblast-like preadipocytes is important for the development of adipose tissue, whereas excessive migration is often responsible for impaired adipose tissue related with obesity and fibrotic diseases. Type I collagen (collagen I) is the most abundant component of extracellular matrix and has been shown to regulate fibroblast migration in vitro, but its role in adipose tissue is not known. Silibinin is a bioactive natural flavonoid with antioxidant and antimetastasis activities. In this study, we found that type I collagen coating promoted the proliferation and migration of murine 3T3-L1 preadipocytes in a dose-dependent manner, implying that collagen I could be an extracellular signal. Regarding the mechanisms of collagen I-stimulated 3T3-L1 migration, we found that NF-κB p65 is activated, including the increased nuclear translocation of NF-κB p65 as well as the upregulation of NF-κB p65 phosphorylation and acetylation, accompanied by the increased expressions of proinflammatory factors and the generation of reactive oxygen species (ROS). Reduction of collagen I-enhanced migration of cells by treatment with silibinin was associated with suppression of NF-κB p65 activity and ROS generation, and negatively correlated with the increasing sirt1 expression. Taken together, the enhanced migration of 3T3-L1 cells induced on collagen I-coated dish is mediated by the activation of NF-κB p65 function and ROS generation that can be alleviated with silibinin by upregulation of sirt1, leading to the repression of NF-κB p65 function and ROS generation.
Reprogramming of the Ovarian Tumor Stroma by Activation of a Biomechanical ECM Switch
2016-09-01
Denatured collagen was detec- ted with anticollagen antibody (1:1000). For integrin-blocking enzyme -linked immunosorbent assay, wells were coated with...migration on denatured collagen; it failed to reduce cell adhesion. Moreover a peptide antagonist of alpha 10 beta 1 may inhibit ovarian tumor growth in...stromal cell adhesion, migration and proliferation on distinct ECM substrates including native and denatured collagen. 4 D). As outlined in aim 2
NASA Astrophysics Data System (ADS)
Nan, Hanqing; Liang, Long; Chen, Guo; Liu, Liyu; Liu, Ruchuan; Jiao, Yang
2018-03-01
Three-dimensional (3D) collective cell migration in a collagen-based extracellular matrix (ECM) is among one of the most significant topics in developmental biology, cancer progression, tissue regeneration, and immune response. Recent studies have suggested that collagen-fiber mediated force transmission in cellularized ECM plays an important role in stress homeostasis and regulation of collective cellular behaviors. Motivated by the recent in vitro observation that oriented collagen can significantly enhance the penetration of migrating breast cancer cells into dense Matrigel which mimics the intravasation process in vivo [Han et al. Proc. Natl. Acad. Sci. USA 113, 11208 (2016), 10.1073/pnas.1610347113], we devise a procedure for generating realizations of highly heterogeneous 3D collagen networks with prescribed microstructural statistics via stochastic optimization. Specifically, a collagen network is represented via the graph (node-bond) model and the microstructural statistics considered include the cross-link (node) density, valence distribution, fiber (bond) length distribution, as well as fiber orientation distribution. An optimization problem is formulated in which the objective function is defined as the squared difference between a set of target microstructural statistics and the corresponding statistics for the simulated network. Simulated annealing is employed to solve the optimization problem by evolving an initial network via random perturbations to generate realizations of homogeneous networks with randomly oriented fibers, homogeneous networks with aligned fibers, heterogeneous networks with a continuous variation of fiber orientation along a prescribed direction, as well as a binary system containing a collagen region with aligned fibers and a dense Matrigel region with randomly oriented fibers. The generation and propagation of active forces in the simulated networks due to polarized contraction of an embedded ellipsoidal cell and a small group of cells are analyzed by considering a nonlinear fiber model incorporating strain hardening upon large stretching and buckling upon compression. Our analysis shows that oriented fibers can significantly enhance long-range force transmission in the network. Moreover, in the oriented-collagen-Matrigel system, the forces generated by a polarized cell in collagen can penetrate deeply into the Matrigel region. The stressed Matrigel fibers could provide contact guidance for the migrating cell cells, and thus enhance their penetration into Matrigel. This suggests a possible mechanism for the observed enhanced intravasation by oriented collagen.
Guillaume, Olivier; Naqvi, Syeda Masooma; Lennon, Kerri; Buckley, Conor Timothy
2015-04-01
Lower lumbar disc disorders pose a significant problem in an aging society with substantial socioeconomic consequences. Both inner tissue (nucleus pulposus) and outer tissue (annulus fibrosus) of the intervertebral disc are affected by such debilitating disorders and can lead to disc herniation and lower back pain. In this study, we developed an alginate-collagen composite porous scaffold with shape-memory properties to fill defects occurring in annulus fibrosus tissue of degenerated intervertebral discs, which has the potential to be administered using minimal invasive surgery. In the first part of this work, we assessed how collagen incorporation on preformed alginate scaffolds influences the physical properties of the final composite scaffold. We also evaluated the ability of annulus fibrosus cells to attach, migrate, and proliferate on the composite alginate-collagen scaffolds compared to control scaffolds (alginate only). In vitro experiments, performed in intervertebral disc-like microenvironmental conditions (low glucose and low oxygen concentrations), revealed that for alginate only scaffolds, annulus fibrosus cells agglomerated in clusters with limited infiltration and migration capacity. In comparison, for alginate-collagen scaffolds, annulus fibrosus cells readily attached and colonized constructs, while preserving their typical fibroblastic-like cell morphology with spreading behavior and intense cytoskeleton expression. In a second part of this study, we investigated the effects of alginate-collagen scaffold when seeded with bone marrow derived mesenchymal stem cells. In vitro, we observed that alginate-collagen porous scaffolds supported cell proliferation and extracellular matrix deposition (collagen type I), with secretion amplified by the local release of transforming growth factor-β3. In addition, when cultured in ex vivo organ defect model, alginate-collagen scaffolds maintained viability of transplanted mesenchymal stem cells for up to 5 weeks. Taken together, these findings illustrate the advantages of incorporating collagen as a means to enhance cell migration and proliferation in porous scaffolds which could be used to augment tissue repair strategies. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Park, Soo-Yeong; Lim, Hee Kyoung; Lee, Seogjae; Hwang, Hyeong Cheol; Cho, Somi K; Cho, Moonjae
2012-05-01
Pepsin-solubilised collagen (PSC) from Red Sea cucumber (Stichopus japonicus) was studied with respect to its wound-healing effects on a human keratinocyte (HaCaT) cell line. Disaggregated collagen fibres were treated with 0.1M NaOH for 24h and digested with pepsin for 72h to reach maximum yield of 26.6%. The results of an in vitro wound-healing test showed that migration of HaCaT cells was 1.5-fold faster on PSC-coated plates than on untreated plates. The migration rate of sea cucumber PSC was similar to that of rat PSC, but five times higher than that of bovine gelatin. HaCaT cells grown on PSC-coated plates revealed increased fibronectin synthesis (6-fold and 3-fold compared to gelatin and rat PSC, respectively). Additionally, sea cucumber PSCs induced HaCaT cell proliferation by decreasing the G1 phase by 5% and maintaining a larger population (8%) of cells in mitosis. Collagen from Red Sea cucumber might be useful as an alternative to mammalian collagen in the nutraceutical and pharmaceutical industries. Copyright © 2011 Elsevier Ltd. All rights reserved.
Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser
Hribar, Kolin C.; Meggs, Kyle; Liu, Justin; Zhu, Wei; Qu, Xin; Chen, Shaochen
2015-01-01
We report a methodology for three-dimensional (3D) cell patterning in a hydrogel in situ. Gold nanorods within a cell-encapsulating collagen hydrogel absorb a focused near-infrared femtosecond laser beam, locally denaturing the collagen and forming channels, into which cells migrate, proliferate, and align in 3D. Importantly, pattern resolution is tunable based on writing speed and laser power, and high cell viability (>90%) is achieved using higher writing speeds and lower laser intensities. Overall, this patterning technique presents a flexible direct-write method that is applicable in tissue engineering systems where 3D alignment is critical (such as vascular, neural, cardiac, and muscle tissue). PMID:26603915
How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration
NASA Astrophysics Data System (ADS)
Chevalier, N. R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.
2016-02-01
Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.
Planar Gradient Diffusion System to Investigate Chemotaxis in a 3D Collagen Matrix.
Stout, David A; Toyjanova, Jennet; Franck, Christian
2015-06-12
The importance of cell migration can be seen through the development of human life. When cells migrate, they generate forces and transfer these forces to their surrounding area, leading to cell movement and migration. In order to understand the mechanisms that can alter and/or affect cell migration, one can study these forces. In theory, understanding the fundamental mechanisms and forces underlying cell migration holds the promise of effective approaches for treating diseases and promoting cellular transplantation. Unfortunately, modern chemotaxis chambers that have been developed are usually restricted to two dimensions (2D) and have complex diffusion gradients that make the experiment difficult to interpret. To this end, we have developed, and describe in this paper, a direct-viewing chamber for chemotaxis studies, which allows one to overcome modern chemotaxis chamber obstacles able to measure cell forces and specific concentration within the chamber in a 3D environment to study cell 3D migration. More compelling, this approach allows one to successfully model diffusion through 3D collagen matrices and calculate the coefficient of diffusion of a chemoattractant through multiple different concentrations of collagen, while keeping the system simple and user friendly for traction force microscopy (TFM) and digital volume correlation (DVC) analysis.
Xiong, Zekang; Lin, Hui; Zhao, Lei; Li, Zhiliang; Wang, Zhe; Peggrem, Shaun; Xia, Zhidao
2018-01-01
Background Link protein N-terminal peptide (LPP) in extracellular matrix (ECM) of cartilage could induce synthesis of proteoglycans and collagen type II in cartilaginous cells. Cartilage stem/progenitor cells (CSPCs), the endogenous stem cells in cartilage, are important in cartilage degeneration and regeneration. We hypothesized that LPP could be a stimulator for stem cell-based cartilage regeneration by affecting biological behaviors of CSPC. Methods CSPCs were isolated from rat knee cartilage. We evaluated the promoting effect of LPP on proliferation, migration, and chondrogenic differentiation of CSPCs. The chondrogenic differentiation-related genes and proteins were quantitated. Three-dimensional culture of CSPC was conducted in the presence of TGF-β3 or LPP, and the harvested pellets were analyzed to assess the function of LPP on cartilage regeneration. Results LPP stimulated the proliferation of CSPC and accelerated the site-directional migration. Higher expression of SOX9, collagen II, and aggrecan were demonstrated in CSPCs treated with LPP. The pellets treated with LPP showed more distinct characteristics of chondroid differentiation than those with TGF-β3. Conclusion LPP showed application prospect in cartilage regeneration medicine by stimulating proliferation, migration, and chondrogenic differentiation of cartilage stem/progenitor cells. PMID:29531532
Cell-ECM Interactions During Cancer Invasion
NASA Astrophysics Data System (ADS)
Jiang, Yi
The extracellular matrix (ECM), a fibrous material that forms a network in a tissue, significantly affects many aspects of cellular behavior, including cell movement and proliferation. Transgenic mouse tumor studies indicate that excess collagen, a major component of ECM, enhances tumor formation and invasiveness. Clinically, tumor associated collagen signatures are strong markers for breast cancer survival. However, the underlying mechanisms are unclear since the properties of ECM are complex, with diverse structural and mechanical properties depending on various biophysical parameters. We have developed a three-dimensional elastic fiber network model, and parameterized it with in vitro collagen mechanics. Using this model, we study ECM remodeling as a result of local deformation and cell migration through the ECM as a network percolation problem. We have also developed a three-dimensional, multiscale model of cell migration and interaction with ECM. Our model reproduces quantitative single cell migration experiments. This model is a first step toward a fully biomechanical cell-matrix interaction model and may shed light on tumor associated collagen signatures in breast cancer. This work was partially supported by NIH-U01CA143069.
Local alignment vectors reveal cancer cell-induced ECM fiber remodeling dynamics
Lee, Byoungkoo; Konen, Jessica; Wilkinson, Scott; Marcus, Adam I.; Jiang, Yi
2017-01-01
Invasive cancer cells interact with the surrounding extracellular matrix (ECM), remodeling ECM fiber network structure by condensing, degrading, and aligning these fibers. We developed a novel local alignment vector analysis method to quantitatively measure collagen fiber alignment as a vector field using Circular Statistics. This method was applied to human non-small cell lung carcinoma (NSCLC) cell lines, embedded as spheroids in a collagen gel. Collagen remodeling was monitored using second harmonic generation imaging under normal conditions and when the LKB1-MARK1 pathway was disrupted through RNAi-based approaches. The results showed that inhibiting LKB1 or MARK1 in NSCLC increases the collagen fiber alignment and captures outward alignment vectors from the tumor spheroid, corresponding to high invasiveness of LKB1 mutant cancer cells. With time-lapse imaging of ECM micro-fiber morphology, the local alignment vector can measure the dynamic signature of invasive cancer cell activity and cell-migration-induced ECM and collagen remodeling and realigning dynamics. PMID:28045069
Campbell, Jonathan J; Husmann, Anke; Hume, Robert D; Watson, Christine J; Cameron, Ruth E
2017-01-01
Cancer is characterized by cell heterogeneity and the development of 3D in vitro assays that can distinguish more invasive or migratory phenotypes could enhance diagnosis or drug discovery. 3D collagen scaffolds have been used to develop analogues of complex tissues in vitro and are suited to routine biochemical and immunological assays. We sought to increase 3D model tractability and modulate the migration rate of seeded cells using an ice-templating technique to create either directional/anisotropic or non-directional/isotropic porous architectures within cross-linked collagen scaffolds. Anisotropic scaffolds supported the enhanced migration of an invasive breast cancer cell line MDA-MB-231 with an altered spatial distribution of proliferative cells in contrast to invasive MDA-MB-468 and non-invasive MCF-7 cells lines. In addition, MDA-MB-468 showed increased migration upon epithelial-to-mesenchymal transition (EMT) in anisotropic scaffolds. The provision of controlled architecture in this system may act both to increase assay robustness and as a tuneable parameter to capture detection of a migrated population within a set time, with consequences for primary tumour migration analysis. The separation of invasive clones from a cancer biomass with in vitro platforms could enhance drug development and diagnosis testing by contributing assay metrics including migration rate, as well as modelling cell-cell and cell-matrix interaction in a system compatible with routine histopathological testing. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Jung, Im Hee; Park, Jung Chul; Kim, Jane C; Jeon, Dong Won; Choi, Seong Ho; Cho, Kyoo Sung; Im, Gun Il; Kim, Byung Soo; Kim, Chang Sung
2012-03-01
Human periodontal ligament stem cells (hPDLSCs) have been proposed as an alternative to conventional cosmetic fillers because they display an innate ability to synthesize collagen. The aims of this study were to determine the effects of water-soluble chitin (WSC) on the proliferation and migration of hPDLSCs, and to quantify collagen synthesis in vitro and in vivo compared with human adipose-derived stem cell (hADSC)s. hPDLSCs were isolated from healthy extracted teeth, and the cell proliferation and cell migration capacities of untreated hPDLSCs (control group) and WSC-treated hPDLSCs (test group) were compared. Insoluble/soluble collagen synthesis were also assessed, and collagen related markers were evaluated including lysyl oxidase (LOX), lysyl oxidase like (LOXL)1, LOXL2, and hydroxyproline. In vivo collagen formation was examined by transplanting hyaluronic acid as a cell carrier into the subcutaneous pockets of immunocompromised mice in the control and test groups; histology and immunohistochemistry analyses were performed 4 (n=4) and 8 (n=4) weeks later. There was a dose-dependent enhancement of hPDLSCs proliferation in the test group, and a concomitant reduction in cell migration. The amount of insoluble collagen formed was greater in the test group than in the control group (p<0.05), whereas soluble collagen formation was significantly reduced in the test group (p<0.05). The histology and immunohistochemistry results revealed that the amount of collagen formed in vivo was greater in WSC-treated hPDLSCs than in the control cells at 4 and 8 weeks (p<0.05), and histometric analysis at 8 weeks revealed that enhancement of collagen formation by hPDLSCs was greater than by hADSCs. These results indicate that WSC modulates the properties of hPDLSCs, rendering them more suitable for cosmetic soft-tissue augmentation.
Goncharova, Elena A; Goncharov, Dmitry A; Krymskaya, Vera P
2006-01-01
Migration of human pulmonary vascular smooth muscle (VSM) cells contributes to vascular remodeling in pulmonary arterial hypertension and atherosclerosis. Evidence also indicates that, in part, migration of airway smooth muscle (ASM) cells may contribute to airway remodeling associated with asthma. Here we describe migration of VSM and ASM cells in vitro using Transwell or Boyden chamber assays. Because dissecting signaling mechanisms regulating cell migration requires molecular approaches, our protocol also describes how to assess migration of transfected VSM and ASM cells. Transwell or Boyden chamber assays can be completed in approximately 8 h and include plating of serum-deprived VSM or ASM cell suspension on membrane precoated with collagen, migration of cells toward chemotactic gradient and visual (Transwell) or digital (Boyden chamber) analysis of membrane. Although the Transwell assay is easy, the Boyden chamber assay requires hands-on experience; however, both assays are reliable cell-based approaches providing valuable information on how chemotactic and inflammatory factors modulate VSM and ASM migration.
Acceleration of Ligament Healing with Cellular Attractants
2008-07-01
major cause of morbidity in the armed forces. type VI collagen is a haptotactic cell attractant. We have shown that type VI collagen with bound...heparin/FGF-2 or hyaluronan or fibronectin promotes migration of canine ACL and DET cells. Insertion of type VI collagen into a wound in the canine...1984). Type I collagen is known to be the predominant fibrillar collagen in the meniscus. Smaller amounts of type II collagen are also present. In
Kim, Bo Ra; Jeon, Young Keul; Nam, Myeong Jin
2011-07-01
Apigenin (APG) has been shown to have a strong anti-cancer effect on various cancer models via a programmed cell death, apoptosis. However, the fundamental mechanisms of these effects are still unclear. In the present study, we examined the question of whether or not APG can inhibit proliferation of hepatocellular carcinoma (HCC), huh-7 cells, resulting in apoptosis. In APG-treated cells, we observed typical features of apoptosis. To identify the proteins related to APG-induced apoptosis, we performed two-dimensional electrophoresis analysis and identified differentially expressed proteins. Among these proteins, we focused on vimentin, which plays a physiological role, such as cell migration and adhesion. We validated expression of vimentin in both mRNA and protein levels, verifying its decrease. In addition, we observed that APG down-regulated the expression levels of type I collagen, which collaborated with vimentin in cell migration and decreased the releasing amounts of VEGF and MMP-8, which are closely relevant to angiogenic activity. Finally, we confirmed the decreased capacity of cell migration due to down-regulation of vimentin, type I collagen, VEGF, and MMP-8 induced by APG. Based on the overall results, we suggested that vimentin was potentially associated with APG-induced apoptosis, as a key regulator in angiogenesis and migration. Copyright © 2011 Elsevier Ltd. All rights reserved.
1986-01-01
It is generally proposed that embryonic mesenchymal cells use sulfated macromolecules during in situ migration. Attempts to resolve the molecular mechanisms for this hypothesis using planar substrates have been met with limited success. In the present study, we provide evidence that the functional significance of certain sulfated macromolecules during mesenchyme migration required the presence of the endogenous migratory template; i.e., native collagen fibrils. Using three-dimensional collagen gel lattices and whole embryo culture procedures to produce metabolically labeled sulfated macromolecules in embryonic chick cardiac tissue, we show that these molecules were primarily proteoglycan (PG) in nature and that their distribution was class specific; i.e., heparan sulfate PG, the minor labeled component (15%), remained pericellular while chondroitin sulfate (CS) PG, the predominately labeled PG (85%), was associated with collagen fibrils as "trails" of 50-60-nm particles when viewed by scanning electron microscopy. Progressive "conditioning" of collagen with CS-PG inhibited the capacity of the template to support subsequent cell migration. Lastly, metabolically labeled, PG-derived CS chains were compared with respect to degree of sulfation in either the C-6 or C-4 position by chromatographic separation of chondroitinase AC digestion products. Results from temporal and regional comparisons of in situ-labeled PGs indicated a positive correlation between the presence of mesenchyme and an enrichment of disaccharide-4S relative to that from regions lacking mesenchyme (i.e., principally myocardial tissue). The suggestion of a mesenchyme-specific CS-PG was substantiated by similarly examining the PGs synthesized solely by cardiac mesenchymal cells migrating within hydrated collagen lattice in culture. These data were incorporated into a model of "substratum conditioning" which provides a molecular mechanism by which secretion of mesenchyme-specific CS-PGs not only provides for directed and sustained cell movement, but ultimately inhibits migration of the cell population as a whole. PMID:3782305
Computational model of mesenchymal migration in 3D under chemotaxis.
Ribeiro, F O; Gómez-Benito, M J; Folgado, J; Fernandes, P R; García-Aznar, J M
2017-01-01
Cell chemotaxis is an important characteristic of cellular migration, which takes part in crucial aspects of life and development. In this work, we propose a novel in silico model of mesenchymal 3D migration with competing protrusions under a chemotactic gradient. Based on recent experimental observations, we identify three main stages that can regulate mesenchymal chemotaxis: chemosensing, dendritic protrusion dynamics and cell-matrix interactions. Therefore, each of these features is considered as a different module of the main regulatory computational algorithm. The numerical model was particularized for the case of fibroblast chemotaxis under a PDGF-bb gradient. Fibroblasts migration was simulated embedded in two different 3D matrices - collagen and fibrin - and under several PDGF-bb concentrations. Validation of the model results was provided through qualitative and quantitative comparison with in vitro studies. Our numerical predictions of cell trajectories and speeds were within the measured in vitro ranges in both collagen and fibrin matrices. Although in fibrin, the migration speed of fibroblasts is very low, because fibrin is a stiffer and more entangling matrix. Testing PDGF-bb concentrations, we noticed that an increment of this factor produces a speed increment. At 1 ng mL -1 a speed peak is reached after which the migration speed diminishes again. Moreover, we observed that fibrin exerts a dampening behavior on migration, significantly affecting the migration efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eke, Iris; Storch, Katja; Kaestner, Ina
Purpose: Cell invasion represents one of the major determinants that treatment has failed for patients suffering from glioblastoma. Contrary findings have been reported for cell migration upon exposure to ionizing radiation. Here, the migration and invasion capability of glioblastoma cells on and in collagen type I were evaluated upon irradiation with X-rays or carbon ions. Methods and Materials: Migration on and invasion in collagen type I were evaluated in four established human glioblastoma cell lines exposed to either X-rays or carbon ions. Furthermore, clonogenic radiation survival, proliferation (5-bromo-2-deoxyuridine positivity), DNA double-strand breaks ({gamma}H2AX/53BP1-positive foci), and expression of invasion-relevant proteins (eg,more » {beta}1 integrin, FAK, MMP2, and MMP9) were explored. Migration and invasion assays for primary glioblastoma cells also were carried out with X-ray irradiation. Results: Neither X-ray nor carbon ion irradiation affected glioblastoma cell migration and invasion, a finding similarly observed in primary glioblastoma cells. Intriguingly, irradiated cells migrated unhampered, despite DNA double-strand breaks and reduced proliferation. Clonogenic radiation survival was increased when cells had contact with extracellular matrix. Specific inhibition of the {beta}1 integrin or proliferation-associated signaling molecules revealed a critical function of JNK, PI3K, and p38 MAPK in glioblastoma cell invasion. Conclusions: These findings indicate that X-rays and carbon ion irradiation effectively reduce proliferation and clonogenic survival without modifying the migration and invasion ability of glioblastoma cells in a collagen type I environment. Addition of targeted agents against members of the MAPK and PI3K signaling axis to conventional chemoradiation therapy seems potentially useful to optimize glioblastoma therapy.« less
Toward single cell traction microscopy within 3D collagen matrices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Matthew S.; Long, Rong; Feng, Xinzeng
Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives onmore » the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.« less
Ricard-Blum, Sylvie
2011-01-01
Collagens are the most abundant proteins in mammals. The collagen family comprises 28 members that contain at least one triple-helical domain. Collagens are deposited in the extracellular matrix where most of them form supramolecular assemblies. Four collagens are type II membrane proteins that also exist in a soluble form released from the cell surface by shedding. Collagens play structural roles and contribute to mechanical properties, organization, and shape of tissues. They interact with cells via several receptor families and regulate their proliferation, migration, and differentiation. Some collagens have a restricted tissue distribution and hence specific biological functions. PMID:21421911
NASA Astrophysics Data System (ADS)
Stylianou, A.; Yova, D.; Alexandratou, E.; Petri, A.
2013-02-01
Collagen is the major fibrous protein in the extracellular matrix and consists a significant component of skin, bone, cartilage and tendon. Due to its unique properties, it has been widely used as scaffold or culture substrate for tissue regeneration or/and cell-substrate interaction studies. The ultraviolet light-collagen interaction investigations are crucial for the improvement of many applications such as that of the UV irradiation in the field of biomaterials, as sterilizing and photo-cross-linking method. The aim of this paper was to investigate the mechanisms of UV-collagen interactions by developing a collagen-based, well characterized, surface with controlled topography of collagen thin films in the nanoscale range. The methodology was to quantify the collagen surface modification induced on ultraviolet radiation and correlate it with changes induced in cells. Surface nanoscale characterization was performed by Atomic Force Microscopy (AFM) which is a powerful tool and offers quantitative and qualitative information with a non-destructive manner. In order to investigate cells behavior, the irradiated films were used for in vitro cultivation of human skin fibroblasts and the cells morphology, migration and alignment were assessed with fluorescence microscopy imaging and image processing methods. The clarification of the effects of UV light on collagen thin films and the way of cells behavior to the different modifications that UV induced to the collagen-based surfaces will contribute to the better understanding of cell-matrix interactions in the nanoscale and will assist the appropriate use of UV light for developing biomaterials.
Defective Wound-healing in Aging Gingival Tissue.
Cáceres, M; Oyarzun, A; Smith, P C
2014-07-01
Aging may negatively affect gingival wound-healing. However, little is known about the mechanisms underlying this phenomenon. The present study examined the cellular responses associated with gingival wound-healing in aging. Primary cultures of human gingival fibroblasts were obtained from healthy young and aged donors for the analysis of cell proliferation, cell invasion, myofibroblastic differentiation, and collagen gel remodeling. Serum from young and old rats was used to stimulate cell migration. Gingival repair was evaluated in Sprague-Dawley rats of different ages. Data were analyzed by the Mann-Whitney and Kruskal-Wallis tests, with a p value of .05. Fibroblasts from aged donors showed a significant decrease in cell proliferation, migration, Rac activation, and collagen remodeling when compared with young fibroblasts. Serum from young rats induced higher cell migration when compared with serum from old rats. After TGF-beta1 stimulation, both young and old fibroblasts demonstrated increased levels of alpha-SMA. However, alpha-SMA was incorporated into actin stress fibers in young but not in old fibroblasts. After 7 days of repair, a significant delay in gingival wound-healing was observed in old rats. The present study suggests that cell migration, myofibroblastic differentiation, collagen gel remodeling, and proliferation are decreased in aged fibroblasts. In addition, altered cell migration in wound-healing may be attributable not only to cellular defects but also to changes in serum factors associated with the senescence process. © International & American Associations for Dental Research.
c-Src activity is differentially required by cancer cell motility modes.
Logue, Jeremy S; Cartagena-Rivera, Alexander X; Chadwick, Richard S
2018-04-01
Cancer cell migration requires that cells respond and adapt to their surroundings. In the absence of extracellular matrix cues, cancer cells will undergo a mesenchymal to ameboid transition, whereas a highly confining space will trigger a switch to "leader bleb-based" migration. To identify oncogenic signaling pathways mediating these transitions, we undertook a targeted screen using clinically useful inhibitors. Elevated Src activity was found to change actin and focal adhesion dynamics, whereas inhibiting Src triggered focal adhesion disassembly and blebbing. On non-adherent substrates and in collagen matrices, amoeboid-like, blebbing cells having high Src activity formed protrusions of the plasma membrane. To evaluate the role of Src in confined cells, we use a novel approach that places cells under a slab of polydimethylsiloxane (PDMS), which is held at a defined height. Using this method, we find that leader bleb-based migration is resistant to Src inhibition. High Src activity was found to markedly change the architecture of cortical actomyosin, reduce cell mechanical properties, and the percentage of cells that undergo leader bleb-based migration. Thus, Src is a signal transducer that can potently influence transitions between migration modes with implications for the rational development of metastasis inhibitors.
Kang, Yong Guk; Jang, Hwanseok; Yang, Taeseok Daniel; Notbohm, Jacob; Choi, Youngwoon; Park, Yongdoo; Kim, Beop-Min
2018-06-01
Mechanical interactions of living cells with the surrounding environment via focal adhesion (FA) in three dimensions (3-D) play a key role in dynamic biological events, such as tissue regeneration, wound healing, and cancer invasion. Recently, several methods for observing 3-D cell-extracellular matrix (ECM) interactions have been reported, lacking solid and quantitative analysis on the dynamics of the physical interaction between the cell and the ECM. We measured the submicron displacements of ECM deformation in 3-D due to protrusion-retraction dynamics during cell migration, using second-harmonic generation without labeling the matrix structures. We then quantitatively analyzed the mechanical deformation between the ECM and the cells based on spatiotemporal volumetric correlations. The greatest deformations within the collagen matrix were found to occur at sites of colocalization of the FA site-related proteins vinculin and actin, which confirms that FA sites play a critical role in living cells within the ECM as a point for adhesion, traction, and migration. We believe that this modality can be used in studies of cell-ECM interaction during angiogenesis, wound healing, and metastasis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Biphasic response of cell invasion to matrix stiffness in 3-dimensional biopolymer networks
Lang, Nadine R.; Skodzek, Kai; Hurst, Sebastian; Mainka, Astrid; Steinwachs, Julian; Schneider, Julia; Aifantis, Katerina E.; Fabry, Ben
2015-01-01
When cells come in contact with an adhesive matrix, they begin to spread and migrate with a speed that depends on the stiffness of the extracellular matrix. On a flat surface, migration speed decreases with matrix stiffness mainly due to an increased stability of focal adhesions. In a 3-dimensional (3D) environment, cell migration is thought to be additionally impaired by the steric hindrance imposed by the surrounding matrix. For porous 3D biopolymer networks such as collagen gels, however, the effect of matrix stiffness on cell migration is difficult to separate from effects of matrix pore size and adhesive ligand density, and is therefore unknown. Here we used glutaraldehyde as a crosslinker to increase the stiffness of self-assembled collagen biopolymer networks independently of collagen concentration or pore size. Breast carcinoma cells were seeded onto the surface of 3D collagen gels, and the invasion depth was measured after 3 days of culture. Cell invasion in gels with pore sizes larger than 5 μm increased with higher gel stiffness, whereas invasion in gels with smaller pores decreased with higher gel stiffness. These data show that 3D cell invasion is enhanced by higher matrix stiffness, opposite to cell behavior in 2D, as long as the pore size does not fall below a critical value where it causes excessive steric hindrance. These findings may be important for optimizing the recellularization of soft tissue implants or for the design of 3D invasion models in cancer research. PMID:25462839
Periodontal regeneration with stem cells-seeded collagen-hydroxyapatite scaffold.
Liu, Zeping; Yin, Xing; Ye, Qingsong; He, Wulin; Ge, Mengke; Zhou, Xiaofu; Hu, Jing; Zou, Shujuan
2016-07-01
Re-establishing compromised periodontium to its original structure, properties and function is demanding, but also challenging, for successful orthodontic treatment. In this study, the periodontal regeneration capability of collagen-hydroxyapatite scaffolds, seeded with bone marrow stem cells, was investigated in a canine labial alveolar bone defect model. Bone marrow stem cells were isolated, expanded and characterized. Porous collagen-hydroxyapatite scaffold and cross-linked collagen-hydroxyapatite scaffold were prepared. Attachment, migration, proliferation and morphology of bone marrow stem cells, co-cultured with porous collagen-hydroxyapatite or cross-linked collagen-hydroxyapatite, were evaluated in vitro. The periodontal regeneration capability of collagen-hydroxyapatite scaffold with or without bone marrow stem cells was tested in six beagle dogs, with each dog carrying one sham-operated site as healthy control, and three labial alveolar bone defects untreated to allow natural healing, treated with bone marrow stem cells - collagen-hydroxyapatite scaffold implant or collagen-hydroxyapatite scaffold implant, respectively. Animals were euthanized at 3 and 6 months (3 animals per group) after implantation and the resected maxillary and mandibular segments were examined using micro-computed tomography scan, H&E staining, Masson's staining and histometric evaluation. Bone marrow stem cells were successfully isolated and demonstrated self-renewal and multi-potency in vitro. The porous collagen-hydroxyapatite and cross-linked collagen-hydroxyapatite had average pore sizes of 415 ± 20 µm and 203 ± 18 µm and porosity of 69 ± 0.5% and 50 ± 0.2%, respectively. The attachment, proliferation and migration of bone marrow stem cells were satisfactory on both porous collagen-hydroxyapatite and cross-linked collagen-hydroxyapatite scaffolds. Implantation of bone marrow stem cells - collagen-hydroxyapatite or collagen-hydroxyapatite scaffold in beagle dogs with experimental periodontal defects resulted in significantly enhanced periodontal regeneration characterized by formation of new bone, periodontal ligament and cementum, compared with the untreated defects, as evidenced by histological and micro-computed tomography examinations. The prepared collagen-hydroxyapatite scaffolds possess favorable bio-compatibility. The bone marrow stem cells - collagen-hydroxyapatite and collagen-hydroxyapatite scaffold - induced periodontal regeneration, with no aberrant events complicating the regenerative process. Further research is necessary to improve the bone marrow stem cells behavior in collagen-hydroxyapatite scaffolds after implantation. © The Author(s) 2016.
Profibrotic Phenotype of Conjunctival Fibroblasts from Mucous Membrane Pemphigoid
Saw, Valerie P.J.; Schmidt, Enno; Offiah, Ifeoma; Galatowicz, Grazyna; Zillikens, Detlef; Dart, John K.G.; Calder, Virginia L.; Daniels, Julie T.
2011-01-01
Ocular mucous membrane pemphigoid is an immunobullous disease in which excessive conjunctival fibrosis causes blindness, and the pathogenesis of scarring is incompletely understood. To establish whether profibrotic fibroblasts with an altered phenotype exist in ocular mucous membrane pemphigoid, we compared the functional characteristics of pemphigoid conjunctival fibroblasts to normal conjunctival fibroblasts with respect to cell division; migration; collagen contraction; matrix metalloproteinase, secretion of collagen and chemokines; and myofibroblast differentiation. We found that pemphigoid fibroblasts showed increased cell division (P = 0.01), increased migration in serum-free medium (72 ± 18 migrated cells versus 33 ± 11, P = 0.04), increased collagen contraction in the presence of 10 ng/ml tumor necrosis factor-α, increased collagen type I secretion (P = 0.03), increased secretion of matrix metalloproteinase-3 (P = 0.03), and increased secretion of eotaxin in response to interleukin-13 (P = 0.04). Differences between pemphigoid and normal conjunctival fibroblasts with respect to collagen contraction and MMP secretion in the presence of interleukin-13 were also observed. Together, these findings indicate that pemphigoid conjunctival fibroblasts have a profibrotic phenotype that is maintained in vitro. No differences between pemphigoid fibroblasts obtained from acutely inflamed versus clinically uninflamed conjunctiva were observed. Developing effective antifibrotic therapies will require understanding of the mechanisms that both induce and maintain the profibrotic phenotype. PMID:21224056
Kwak, Tae Kyoung; Lee, Mi-Sook; Ryu, Jihye; Choi, Yoon-Ju; Kang, Minkyung; Jeong, Doyoung; Lee, Jung Weon
2012-01-01
Integrin-mediated adhesion to extracellular matrix proteins is dynamically regulated during morphological changes and cell migration. Upon cell adhesion, protein-protein interactions among molecules at focal adhesions (FAs) play major roles in the regulation of cell morphogenesis and migration. Although tyrosine phosphorylation of paxillin is critically involved in adhesion-mediated signaling, the significance of paxillin phosphorylation at Ser-85 and the mechanism by which it regulates cell migration remain unclear. In this study, we examined how Ser-85 phosphorylation of paxillin affects FA formation and cell migration. We found that paxillin phosphorylation at Ser-85 occurred during HeLa cell adhesion to collagen I and was concomitant with tyrosine phosphorylation of both focal adhesion kinase and talin. However, the non-phosphorylatable S85A mutant of paxillin impaired cell spreading, FA turnover, and migration toward collagen I but not toward serum. Furthermore, whereas the (presumably indirect) interaction between paxillin and the C-terminal tail of talin led to dynamic FAs at the cell boundary, S85A paxillin did not bind talin and caused stabilized FAs in the central region of cells. Together, these observations suggest that cell adhesion-dependent Ser-85 phosphorylation of paxillin is important for its interaction with talin and regulation of dynamic FAs and cell migration. PMID:22761432
Coombes, Janine L.; Han, Seong-Ji; van Rooijen, Nico; Raulet, David H.; Robey, Ellen A.
2012-01-01
Summary Infection leads to heightened activation of natural killer (NK) cells, a process that likely involves direct cell-to-cell contact, but how this occurs in vivo is poorly understood. We have used two-photon laser-scanning microscopy in conjunction with Toxoplasma gondii-mouse infection models to address this question. We found that NK cells accumulated in the subcapsular region of the lymph node following infection where they formed low motility contacts with collagen fibers and CD169+ macrophages. We provide evidence that interactions with collagen regulate NK cell migration, whereas CD169+ macrophages increase the activation state of NK cells. Interestingly, a subset of CD169+ macrophages that co-express the inflammatory monocyte marker Ly6C had the most potent ability to activate NK cells. Our data reveal pathways through which NK cell migration and function are regulated following infection, and identify an important accessory cell population for activation of NK cell responses in lymph nodes. PMID:22840403
NASA Astrophysics Data System (ADS)
Kemper, Björn; Schnekenburger, Jürgen; Ketelhut, Steffi
2017-02-01
We investigated the capabilities of digital holographic microscopy (DHM) for label-free quantification of the response of living single cells to chemical stimuli in 3D assays. Fibro sarcoma cells were observed in a collagen matrix inside 3D chemotaxis chambers with a Mach-Zehnder interferometer-based DHM setup. From the obtained series of quantitative phase images, the migration trajectories of single cells were retrieved by automated cell tracking and subsequently analyzed for maximum migration distance and motility. Our results demonstrate DHM as a highly reliable and efficient tool for label-free quantification of chemotaxis in 2D and 3D environments.
Cougoule, Céline; Lastrucci, Claire; Guiet, Romain; Mascarau, Rémi; Meunier, Etienne; Lugo-Villarino, Geanncarlo; Neyrolles, Olivier; Poincloux, Renaud; Maridonneau-Parini, Isabelle
2018-01-01
Dendritic cells (DC) are professional Antigen-Presenting Cells scattered throughout antigen-exposed tissues and draining lymph nodes, and survey the body for pathogens. Their ability to migrate through tissues, a 3D environment, is essential for an effective immune response. Upon infection, recognition of Pathogen-Associated Molecular Patterns (PAMP) by Toll-like receptors (TLR) triggers DC maturation. Mature DC (mDC) essentially use the protease-independent, ROCK-dependent amoeboid mode in vivo , or in collagen matrices in vitro . However, the mechanisms of 3D migration used by human immature DC (iDC) are still poorly characterized. Here, we reveal that human monocyte-derived DC are able to use two migration modes in 3D. In porous matrices of fibrillar collagen I, iDC adopted the amoeboid migration mode. In dense matrices of gelled collagen I or Matrigel, iDC used the protease-dependent, ROCK-independent mesenchymal migration mode. Upon TLR4 activation by LPS, mDC-LPS lose the capacity to form podosomes and degrade the matrix along with impaired mesenchymal migration. TLR2 activation by Pam 3 CSK 4 resulted in DC maturation, podosome maintenance, and efficient mesenchymal migration. Under all these conditions, when DC used the mesenchymal mode in dense matrices, they formed 3D podosomes at the tip of cell protrusions. Using PGE 2 , known to disrupt podosomes in DC, we observed that the cells remained in an immature status and the mesenchymal migration mode was abolished. We also observed that, while CCL5 (attractant of iDC) enhanced both amoeboid and mesenchymal migration of iDC, CCL19 and CCL21 (attractants of mDC) only enhanced mDC-LPS amoeboid migration without triggering mesenchymal migration. Finally, we examined the migration of iDC in tumor cell spheroids, a tissue-like 3D environment. We observed that iDC infiltrated spheroids of tumor cells using both migration modes. Altogether, these results demonstrate that human DC adopt the mesenchymal mode to migrate in 3D dense environments, which relies on their capacity to form podosomes independent of their maturation status, paving the way of further investigations on in vivo DC migration in dense tissues and its regulation during infections.
Designer self-assembling hydrogel scaffolds can impact skin cell proliferation and migration
Bradshaw, Michael; Ho, Diwei; Fear, Mark W.; Gelain, Fabrizio; Wood, Fiona M.; Iyer, K. Swaminathan
2014-01-01
There is a need to develop economical, efficient and widely available therapeutic approaches to enhance the rate of skin wound healing. The optimal outcome of wound healing is restoration to the pre-wound quality of health. In this study we investigate the cellular response to biological stimuli using functionalized nanofibers from the self-assembling peptide, RADA16. We demonstrate that adding different functional motifs to the RADA16 base peptide can influence the rate of proliferation and migration of keratinocytes and dermal fibroblasts. Relative to unmodified RADA16; the Collagen I motif significantly promotes cell migration, and reduces proliferation. PMID:25384420
Collagenase Santyl ointment: a selective agent for wound debridement.
Shi, Lei; Carson, Dennis
2009-01-01
Enzymatic debridement is a frequently used technique for removal of necrotic tissue from wounds. Proteases with specificity to break down the collagenous materials in necrotic tissues can achieve selective debridement, digesting denatured collagen in eschar while sparing nonnecrotic tissues. This article provides information about the selectivity of a collagenase-based debriding agent, including evidence of its safe and efficacious uses. Recent research has been conducted, investigating the chemical and biological properties of collagenase ointment, including healing in animal models, digestion power on different collagen types, cell migration activity from collagen degradation products, and compatibility with various wound dressings and metal ions. Evidence presented demonstrates that collagenase ointment is an effective, selective, and safe wound debriding agent.
A Three-Dimensional Computational Model of Collagen Network Mechanics
Lee, Byoungkoo; Zhou, Xin; Riching, Kristin; Eliceiri, Kevin W.; Keely, Patricia J.; Guelcher, Scott A.; Weaver, Alissa M.; Jiang, Yi
2014-01-01
Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions. PMID:25386649
Du, Lingqian; Yang, Pishan; Ge, Shaohua
2012-03-01
The pivotal role of chemokine stromal cell-derived factor-1 (SDF-1) in bone marrow mesenchymal stem cells recruitment and tissue regeneration has already been reported. However, its roles in human periodontal ligament stem cells (PDLSCs) remain unknown. PDLSCs are regarded as candidates for periodontal tissue regeneration and are used in stem cell-based periodontal tissue engineering. The expression of chemokine receptors on PDLSCs and the migration of these cells induced by chemokines and their subsequent function in tissue repair may be a crucial procedure for periodontal tissue regeneration. PDL tissues were obtained from clinically healthy premolars extracted for orthodontic reasons and used to isolate single-cell colonies by the limited-dilution method. Immunocytochemical staining was used to detect the expression of the mesenchymal stem cell marker STRO-1. Differentiation potentials were assessed by alizarin-red staining and oil-red O staining. The expression of SDF-1 receptor CXCR4 was evaluated by real-time polymerase chain reaction (PCR) and immunocytochemical staining. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and bromodeoxyuridine incorporation assay were used to determine the viability and proliferation of the PDLSC subpopulation. Expression of collagen type I and alkaline phosphatase was detected by real-time PCR to determine the effect of SDF-1 on cells differentiation. Twenty percent of PDL single-cell colonies expressed STRO-1 positively, and this specific subpopulation was positive for CXCR4 and formed minerals and lipid vacuoles after 4 weeks induction. SDF-1 significantly increased proliferation and stimulated the migration of this PDLSC subpopulation at concentrations between 100 and 400 ng/mL. CXCR4 neutralizing antibody could block cell proliferation and migration, suggesting that SDF-1 exerted its effects on cells through CXCR4. SDF-1 promoted collagen type I level significantly but had little effect on alkaline phosphatase level. SDF-1 may have the potential of promoting periodontal tissue regeneration by the mechanism of guiding PDLSCs to destructive periodontal tissue, promoting their activation and proliferation and influencing the differentiation of these stem cells.
2D and 3D Matrices to Study Linear Invadosome Formation and Activity.
Di Martino, Julie; Henriet, Elodie; Ezzoukhry, Zakaria; Mondal, Chandrani; Bravo-Cordero, Jose Javier; Moreau, Violaine; Saltel, Frederic
2017-06-02
Cell adhesion, migration, and invasion are involved in many physiological and pathological processes. For example, during metastasis formation, tumor cells have to cross anatomical barriers to invade and migrate through the surrounding tissue in order to reach blood or lymphatic vessels. This requires the interaction between cells and the extracellular matrix (ECM). At the cellular level, many cells, including the majority of cancer cells, are able to form invadosomes, which are F-actin-based structures capable of degrading ECM. Invadosomes are protrusive actin structures that recruit and activate matrix metalloproteinases (MMPs). The molecular composition, density, organization, and stiffness of the ECM are crucial in regulating invadosome formation and activation. In vitro, a gelatin assay is the standard assay used to observe and quantify invadosome degradation activity. However, gelatin, which is denatured collagen I, is not a physiological matrix element. A novel assay using type I collagen fibrils was developed and used to demonstrate that this physiological matrix is a potent inducer of invadosomes. Invadosomes that form along the collagen fibrils are known as linear invadosomes due to their linear organization on the fibers. Moreover, molecular analysis of linear invadosomes showed that the discoidin domain receptor 1 (DDR1) is the receptor involved in their formation. These data clearly demonstrate the importance of using a physiologically relevant matrix in order to understand the complex interactions between cells and the ECM.
NASA Astrophysics Data System (ADS)
Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.
2015-11-01
The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.
Quantification of collagen contraction in three-dimensional cell culture.
Kopanska, Katarzyna S; Bussonnier, Matthias; Geraldo, Sara; Simon, Anthony; Vignjevic, Danijela; Betz, Timo
2015-01-01
Many different cell types including fibroblasts, smooth muscle cells, endothelial cells, and cancer cells exert traction forces on the fibrous components of the extracellular matrix. This can be observed as matrix contraction both macro- and microscopically in three-dimensional (3D) tissues models such as collagen type I gels. The quantification of local contraction at the micron scale, including its directionality and speed, in correlation with other parameters such as cell invasion, local protein or gene expression, can provide useful information to study wound healing, organism development, and cancer metastasis. In this article, we present a set of tools to quantify the flow dynamics of collagen contraction, induced by cells migrating out of a multicellular cancer spheroid into a three-dimensional (3D) collagen matrix. We adapted a pseudo-speckle technique that can be applied to bright-field and fluorescent microscopy time series. The image analysis presented here is based on an in-house written software developed in the Matlab (Mathworks) programming environment. The analysis program is freely available from GitHub following the link: http://dx.doi.org/10.5281/zenodo.10116. This tool provides an automatized technique to measure collagen contraction that can be utilized in different 3D cellular systems. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chan, Tania R.
Long term survival of artificial tissue constructs depends greatly on proper vascularization. In nature, differentiation of endothelial cells and formation of vasculature are directed by dynamic spatio-temporal cues in the extracellular matrix that are difficult to reproduce in vitro. In this dissertation, we present a novel bifunctional peptide that mimics matrix-bound vascular endothelial growth factor (VEGF), which can be used to encode spatially controlled angiogenic signals in collagen-based scaffolds. The peptide, QKCMP, contains a collagen mimetic domain (CMP) that binds to type I collagen by a unique triple helix hybridization mechanism and a VEGF mimetic domain (QK) with pro-angiogenic activity. We demonstrate QKCMP's ability to hybridize with native and heat denatured collagens through a series of binding studies on collagen and gelatin substrates. Circular dichroism experiments show that the peptide retains the triple helical structure vital for collagen binding, and surface plasmon resonance study confirms the molecular interaction between the peptide and collagen strands. Cell culture studies demonstrate QKCMP's ability to induce endothelial cell morphogenesis and network formation as a matrix-bound factor in 2D and 3D collagen scaffolds. We also show that the peptide can be used to spatially modify collagen-based substrates to promote localized endothelial cell activation and network formation. To probe the biological events that govern these angiogenic cellular responses, we investigated the cell signaling pathways activated by collagen-bound QKCMP and determined short and long-term endothelial cell response profiles for p38, ERK1/2, and Akt signal transduction cascades. Finally, we present our efforts to translate the peptide's in vitro bioactivity to an in vivo burn injury animal model. When implanted at the wound site, QKCMP functionalized biodegradable hydrogels induce enhanced neovascularization in the granulation tissue. The results show QKCMP's efficacy as a matrix-bound angiogenic factor that directs endothelial cell proliferation and migration. These findings suggest that QKCMP can be used to enhance microvasculature formation during wound healing as well as to promote spatially controlled microvasculature for tissue engineering applications.
Coombes, Janine L; Han, Seong-Ji; van Rooijen, Nico; Raulet, David H; Robey, Ellen A
2012-07-26
Infection leads to heightened activation of natural killer (NK) cells, a process that likely involves direct cell-to-cell contact, but how this occurs in vivo is poorly understood. We have used two-photon laser-scanning microscopy in conjunction with Toxoplasma gondii mouse infection models to address this question. We found that after infection, NK cells accumulated in the subcapsular region of the lymph node, where they formed low-motility contacts with collagen fibers and CD169(+) macrophages. We provide evidence that interactions with collagen regulate NK cell migration, whereas CD169(+) macrophages increase the activation state of NK cells. Interestingly, a subset of CD169(+) macrophages that coexpress the inflammatory monocyte marker Ly6C had the most potent ability to activate NK cells. Our data reveal pathways through which NK cell migration and function are regulated after infection and identify an important accessory cell population for activation of NK cell responses in lymph nodes. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.
Slack, Barbara E.; Siniaia, Marina S.; Blusztajn, Jan K.
2008-01-01
The discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that is highly expressed in breast carcinoma cells. Upon binding to collagen, DDR1 undergoes autophosphorylation followed by limited proteolysis to generate a tyrosine phosphorylated C-terminal fragment (CTF). Although it was postulated that this fragment is formed as a result of shedding of the N-terminal ectodomain, collagen-dependent release of the DDR1 extracellular domain has not been demonstrated. We now report that, in conjunction with CTF formation, collagen type I stimulates concentration-dependent, saturable shedding of the DDR1 ectodomain from two carcinoma cell lines, and from transfected cells. In contrast, collagen did not promote cleavage of other transmembrane proteins including the amyloid precursor protein (APP), ErbB2, and E-cadherin. Collagen-dependent tyrosine phosphorylation and proteolysis of DDR1 in carcinoma cells were reduced by a pharmacologic Src inhibitor. Moreover, expression of a dominant negative Src mutant protein in human embryonic kidney cells inhibited collagen-dependent phosphorylation and shedding of co-transfected DDR1. The hydroxamate-based metalloproteinase inhibitor TAPI-1 (tumor necrosis factor-α protease inhibitor-1), and tissue inhibitor of metalloproteinase (TIMP)-3, also blocked collagen-evoked DDR1 shedding, but did not reduce levels of the phosphorylated CTF. Neither shedding nor CTF formation were affected by the γ-secretase inhibitor, L-685,458. The results demonstrate that collagen-evoked ectodomain cleavage of DDR1 is mediated in part by Src-dependent activation or recruitment of a matrix- or disintegrin metalloproteinase, and that CTF formation can occur independently of ectodomain shedding. Delayed shedding of the DDR1 ectodomain may represent a mechanism that limits DDR1-dependent cell adhesion and migration on collagen matrices. PMID:16440311
3D imaging of cells in scaffolds: direct labelling for micro CT.
Shepherd, David V; Shepherd, Jennifer H; Best, Serena M; Cameron, Ruth E
2018-06-12
The development of in-vitro techniques to characterise the behaviour of cells in biomedical scaffolds is a rapidly developing field. However, until now it has not been possible to visualise, directly in 3D, the extent of cell migration using a desktop X-ray microCT. This paper describes a new technique based on cell labelling with a radio opacifier (barium sulphate), which permits cell tracking without the need for destructive sample preparation. The ability to track cells is highlighted via a comparison of cell migration through demonstrator lyophilised collagen scaffolds with contrasting pore size and interconnectivity. The results demonstrate the ease with which the technique can be used to characterise the effects of scaffold architecture on cell infiltration.
Fisher, Kevin E; Pop, Andreia; Koh, Wonshill; Anthis, Nicholas J; Saunders, W Brian; Davis, George E
2006-12-08
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are bioactive lipid signaling molecules implicated in tumor dissemination. Membrane-type matrix metalloproteinase 1 (MT1-MMP) is a membrane-tethered collagenase thought to be involved in tumor invasion via extracellular matrix degradation. In this study, we investigated the molecular requirements for LPA- and S1P-regulated tumor cell migration in two dimensions (2D) and invasion of three-dimensional (3D) collagen matrices and, in particular, evaluated the role of MT1-MMP in this process. LPA stimulated while S1P inhibited migration of most tumor lines in Boyden chamber assays. Conversely, HT1080 fibrosarcoma cells migrated in response to both lipids. HT1080 cells also markedly invaded 3D collagen matrices (approximatly 700 microm over 48 hours) in response to either lipid. siRNA targeting of LPA1 and Rac1, or S1P1, Rac1, and Cdc42 specifically inhibited LPA- or S1P-induced HT1080 invasion, respectively. Analysis of LPA-induced HT1080 motility on 2D substrates vs. 3D matrices revealed that synthetic MMP inhibitors markedly reduced the distance (approximately 125 microm vs. approximately 45 microm) and velocity of invasion (approximately 0.09 microm/min vs. approximately 0.03 microm/min) only when cells navigated 3D matrices signifying a role for MMPs exclusively in invasion. Additionally, tissue inhibitors of metalloproteinases (TIMPs)-2, -3, and -4, but not TIMP-1, blocked lipid agonist-induced invasion indicating a role for membrane-type (MT)-MMPs. Furthermore, MT1-MMP expression in several tumor lines directly correlated with LPA-induced invasion. HEK293s, which neither express MT1-MMP nor invade in the presence of LPA, were transfected with MT1-MMP cDNA, and subsequently invaded in response to LPA. When HT1080 cells were seeded on top of or within collagen matrices, siRNA targeting of MT1-MMP, but not other MMPs, inhibited lipid agonist-induced invasion establishing a requisite role for MT1-MMP in this process. LPA is a fundamental regulator of MT1-MMP-dependent tumor cell invasion of 3D collagen matrices. In contrast, S1P appears to act as an inhibitory stimulus in most cases, while stimulating only select tumor lines. MT1-MMP is required only when tumor cells navigate 3D barriers and not when cells migrate on 2D substrata. We demonstrate that tumor cells require coordinate regulation of LPA/S1P receptors and Rho GTPases to migrate, and additionally, require MT1-MMP in order to invade collagen matrices during neoplastic progression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karki, Rajendra; Department of Oriental Medicine Resources, Mokpo National University; Kim, Seong-Bin
Background: Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. Methods: The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by westernmore » blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. Results: VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Conclusions: Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. General significance: This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. - Highlights: • Magnolol strongly inhibited migration of VSMCs. • Magnolol inhibited stress fibers formation. • MLC20 phosphorylation was also inhibited by magnolol. • Anti-migratory effect of magnolol was cytoskeletal dependent. • Magnolol inhibited β1-integrin and collagen expression in vivo.« less
Matrix remodeling between cells and cellular interactions with collagen bundle
NASA Astrophysics Data System (ADS)
Kim, Jihan; Sun, Bo
When cells are surrounded by complex environment, they continuously probe and interact with it by applying cellular traction forces. As cells apply traction forces, they can sense rigidity of their local environment and remodel the matrix microstructure simultaneously. Previous study shows that single human carcinoma cell (MDA-MB-231) remodeled its surrounding extracellular matrix (ECM) and the matrix remodeling was reversible. In this study we examined the matrix microstructure between cells and cellular interaction between them using quantitative confocal microscopy. The result shows that the matrix microstructure is the most significantly remodeled between cells consisting of aligned, and densified collagen fibers (collagen bundle)., the result shows that collagen bundle is irreversible and significantly change micromechanics of ECM around the bundle. We further examined cellular interaction with collagen bundle by analyzing dynamics of actin and talin formation along with the direction of bundle. Lastly, we analyzed dynamics of cellular protrusion and migrating direction of cells along the bundle.
Texture sensing of cytoskeletal dynamics in cell migration
NASA Astrophysics Data System (ADS)
Das, Satarupa; Lee, Rachel; Hourwitz, Matthew J.; Sun, Xiaoyu; Parent, Carole; Fourkas, John T.; Losert, Wolfgang
Migrating cells can be directed towards a target by gradients in properties such as chemical concentration or mechanical properties of the surrounding microenvironment. In previous studies we have shown that micro/nanotopographical features on scales comparable to those of natural collagen fibers can guide fast migrating amoeboid cells by aligning actin polymerization waves to such nanostructures. We find that actin microfilaments and microtubules are aligned along the nanoridge topographies, modulating overall cell polarity and directional migration in epithelial cells. This work shows that topographic features on a biologically relevant length scale can modulate migration outcomes by affecting the texture sensing property of the cytoskeleton.
Karki, Rajendra; Kim, Seong-Bin; Kim, Dong-Wook
2013-12-10
Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by western blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Reboredo, Jenny W; Weigel, Tobias; Steinert, Andre; Rackwitz, Lars; Rudert, Maximilian; Walles, Heike
2016-09-01
Cartilage degeneration is the major cause of chronic pain, lost mobility, and reduced quality of life for over estimated 150 million osteoarthritis sufferers worldwide. Despite intensive research, none of the available therapies can restore the hyaline cartilage surface beyond just fibrous repair. To overcome these limitations, numerous cell-based approaches for cartilage repair are being explored that aim to provide an appropriate microenvironment for chondrocyte maintenance and differentiation of multipotent mesenchymal stem cells (MSCs) toward the chondrogenic lineage. Articular cartilage is composed of highly organized collagen network that entails the tissue into four distinct zones and each zone into three different regions based on differences in matrix morphology and biochemistry. Current cartilage implants cannot establish the hierarchical tissue organization that seems critical for normal cartilage function. Therefore, in this study, a structured, multilayered collagen scaffold designed for the replacement of damaged cartilage is presented that allows repopulation by host cells and synthesis of a new natural matrix. By using the electrospinning method, the potential to engineer a scaffold consisting of two different collagen types is obtained. With the developed collagen scaffold, a five-layered biomaterial is created that has the potency to induce the differentiation of human bone marrow derived MSCs toward the chondrogenic lineage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hahner, J; Hoyer, M; Hillig, S; Schulze-Tanzil, G; Meyer, M; Schröpfer, M; Lohan, A; Garbe, L-A; Heinrich, G; Breier, A
2015-01-01
A temporary barrier separating scaffold zones seeded with different cell types prevents faster growing cells from overgrowing co-cultured cells within the same construct. This barrier should allow sufficient nutrient diffusion through the scaffold. The aim of this study was to test the effect of two variants of collagen-based barriers on macromolecule diffusion, viability, and the spreading efficiency of primary ligament cells on embroidered scaffolds. Two collagen barriers, a thread consisting of a twisted film tape and a sponge, were integrated into embroidered poly(lactic-co-caprolactone) and polypropylene scaffolds, which had the dimension of lapine anterior cruciate ligaments (ACL). A diffusion chamber system was designed and established to monitor nutrient diffusion using fluorescein isothiocyanate-labeled dextran of different molecular weights (20, 40, 150, 500 kDa). Vitality of primary lapine ACL cells was tested at days 7 and 14 after seeding using fluorescein diacetate and ethidium bromide staining. Cell spreading on the scaffold surface was measured using histomorphometry. Nuclei staining of the cross-sectioned scaffolds revealed the penetration of ligament cells through both barrier types. The diffusion chamber was suitable to characterize the diffusivity of dextran molecules through embroidered scaffolds with or without integrated collagen barriers. The diffusion coefficients were generally significantly lower in scaffolds with barriers compared to those without barriers. No significant differences between diffusion coefficients of both barrier types were detected. Both barriers were cyto-compatible and prevented most of the ACL cells from crossing the barrier, whereby the collagen thread was easier to handle and allowed a higher rate of cell spreading.
EPAC expression and function in cardiac fibroblasts and myofibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olmedo, Ivonne; Muñoz, Claudia; Guzmán, Nancy
In the heart, cardiac fibroblasts (CF) and cardiac myofibroblasts (CMF) are the main cells responsible for wound healing after cardiac insult. Exchange protein activated by cAMP (EPAC) is a downstream effector of cAMP, and it has been not completely studied on CF. Moreover, in CMF, which are the main cells responsible for cardiac healing, EPAC expression and function are unknown. We evaluated in both CF and CMF the effect of transforming growth factor β1 (TGF-β1) on EPAC-1 expression. We also studied the EPAC involvement on collagen synthesis, adhesion, migration and collagen gel contraction. Method: Rat neonatal CF and CMF weremore » treated with TGF-β1 at different times and concentrations. EPAC-1 protein levels and Rap1 activation were measured by western blot and pull down assay respectively. EPAC cellular functions were determined by adhesion, migration and collagen gel contraction assay; and collagen expression was determined by western blot. Results: TGF-β1 through Smad and JNK significantly reduced EPAC-1 expression in CF, while in CMF this cytokine increased EPAC-1 expression through ERK1/2, JNK, p38, AKT and Smad3. EPAC activation was able to induce higher Rap1-GTP levels in CMF than in CF. EPAC and PKA, both cAMP effectors, promoted CF and CMF adhesion on fibronectin, as well as CF migration; however, this effect was not observed in CMF. EPAC but not PKA activation mediated collagen gel contraction in CF, while in CMF both PKA and EPAC mediated collagen gel contraction. Finally, the EPAC and PKA activation reduced collagen synthesis in CF and CMF. Conclusion: TGF-β1 differentially regulates the expression of EPAC in CF and CMF; and EPAC regulates differentially CF and CMF functions associated with cardiac remodeling. - Highlights: • TGF-β1 regulates EPAC-1 expression in cardiac fibroblast and myofibroblast. • Rap-1GTP levels are higher in cardiac myofibroblast than fibroblast. • EPAC-1 controls adhesion, migration and collagen synthesis in cardiac fibroblast. • PKA regulates collagen gel contraction in cardiac myofibroblast.« less
Fabrication of three-dimensional collagen scaffold using an inverse mould-leaching process.
Ahn, SeungHyun; Lee, SuYeon; Cho, Youngseok; Chun, Wook; Kim, GeunHyung
2011-09-01
Natural biopolymers, such as collagen or chitosan, are considered ideal for biomedical scaffolds. However, low processability of the materials has hindered the fabrication of designed pore structures controlled by various solid freeform-fabrication methods. A new technique to fabricate a biomedical three-dimensional collagen scaffold, supplemented with a sacrificial poly(ethylene oxide) mould is proposed. The fabricated collagen scaffold shows a highly porous surface and a three-dimensional structure with high porosity as well as mechanically stable structure. To show its feasibility for biomedical applications, fibroblasts/keratinocytes were co-cultured on the scaffold, and the cell proliferation and cell migration of the scaffold was more favorable than that obtained with a spongy-type collagen scaffold.
Cell Invasion in Collagen Scaffold Architectures Characterized by Percolation Theory.
Ashworth, Jennifer C; Mehr, Marco; Buxton, Paul G; Best, Serena M; Cameron, Ruth E
2015-06-24
The relationship between biological scaffold interconnectivity and cell migration is an important but poorly understood factor in tissue regeneration. Here a scale-independent technique for characterization of collagen scaffold interconnectivity is presented, using a combination of X-ray microcomputed tomography and percolation theory. Confocal microscopy of connective tissue cells reveals this technique as highly relevant for determining the extent of cell invasion. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Nguyen, Thanh C.; Nehmetallah, George; Lam, Van; Chung, Byung Min; Raub, Christopher
2017-02-01
Digital holographic microscopy (DHM) provides label-free and real-time quantitative phase information relevant to the analysis of dynamic biological systems. A DHM based on telecentric configuration optically mitigates phase aberrations due to the microscope objective and linear high frequency fringes due to the reference beam thus minimizing digital aberration correction needed for distortion free 3D reconstruction. The purpose of this work is to quantitatively assess growth and migratory behavior of invasive cancer cells using a telecentric DHM system. Together, the height and lateral shape features of individual cells, determined from time-lapse series of phase reconstructions, should reveal aspects of cell migration, cell-matrix adhesion, and cell cycle phase transitions. To test this, MDA-MB-231 breast cancer cells were cultured on collagen-coated or un-coated glass, and 3D holograms were reconstructed over 2 hours. Cells on collagencoated glass had an average 14% larger spread area than cells on uncoated glass (n=18-22 cells/group). The spread area of cells on uncoated glass were 15-21% larger than cells seeded on collagen hydrogels (n=18-22 cells/group). Premitotic cell rounding was observed with average phase height increasing 57% over 10 minutes. Following cell division phase height decreased linearly (R2=0.94) to 58% of the original height pre-division. Phase objects consistent with lamellipodia were apparent from the reconstructions at the leading edge of migrating cells. These data demonstrate the ability to track quantitative phase parameters and relate them to cell morphology during cell migration and division on adherent substrates, using telecentric DHM. The technique enables future studies of cell-matrix interactions relevant to cancer.
Azorín, Erika; Solano-Agama, Carmen; Mendoza-Garrido, M Eugenia
2012-12-15
The adaptation of GH(3) cells to different microenvironments is a consequence of a partial compromise with the tumor phenotype. A collagen type IV enriched microenvironment favors an invasive phenotype and increases the substrate adhesion capacity, whereas it decreases the phosphorylation of the regulatory myosin light chain and the aggregation capacity. In contrast, the higher internal tension and increased aggregation capacity induced by collagen type I/III are factors that reduce the invasion rate. Our results show, for the first time, the importance of collagen subtypes in determining the migratory strategy: collagen I/III favors mesenchymal-like motility, whereas collagen type IV induces an ameboid-type displacement. The reciprocal modulation of the myosin light chain kinase and the Rho-kinase determines the invasive capacity through changes in tissue cohesion, extracellular matrix affinity, regulatory myosin light chain phosphorylation and spatial distribution. The collagen subtype determines which of the mechano-transduction signaling pathways will regulate the tensional homeostasis and affect the invasion ability as well as the preferred migration strategy of the cells. Copyright © 2012 Elsevier Inc. All rights reserved.
In Vitro Engineering of Vascularized Tissue Surrogates
Sakaguchi, Katsuhisa; Shimizu, Tatsuya; Horaguchi, Shigeto; Sekine, Hidekazu; Yamato, Masayuki; Umezu, Mitsuo; Okano, Teruo
2013-01-01
In vitro scaling up of bioengineered tissues is known to be limited by diffusion issues, specifically a lack of vasculature. Here, we report a new strategy for preserving cell viability in three-dimensional tissues using cell sheet technology and a perfusion bioreactor having collagen-based microchannels. When triple-layer cardiac cell sheets are incubated within this bioreactor, endothelial cells in the cell sheets migrate to vascularize in the collagen gel, and finally connect with the microchannels. Medium readily flows into the cell sheets through the microchannels and the newly developed capillaries, while the cardiac construct shows simultaneous beating. When additional triple-layer cell sheets are repeatedly layered, new multi-layer construct spontaneously integrates and the resulting construct becomes a vascularized thick tissue. These results confirmed our method to fabricate in vitro vascularized tissue surrogates that overcomes engineered-tissue thickness limitations. The surrogates promise new therapies for damaged organs as well as new in vitro tissue models. PMID:23419835
Gamal, A Y; Al-Berry, N N; Hassan, A A; Rashed, L A; Iacono, V J
2017-06-01
Migration of gingival fibroblasts/gingival mesenchymal stem cells through macro-perforated barrier membranes may allow them to participate positively in periodontal regeneration. The optimal guided tissue membrane perforation diameter that could favor maximum cell migration into the defect area and at the same time act as an occlusive barrier for gingival epithelium and its associated gingival extracellular matrix component is not yet identified. Cultured human gingival fibroblasts/gingival mesenchymal stem cells were placed in the upper chambers of 12-well collagen-coated polytetrafluoroethylene transwells, which were manually perforated with 0.2, 0.4 and 0.7 mm sized pores. The lower chambers of the transwells received blood clot as an attraction medium. The number of cells that have migrated to the lower chambers was calculated. Proliferation of these cells was evaluated using MTT assay. Scanning electron microscopy images were obtained for the lower surfaces of the transwell membranes. Perforated bovine collagen membranes (Tutopatch ® ) were subjected to mechanical testing to determine the tensile strength and modulus of elasticity. Group 3 (0.7 mm) showed significantly higher values for cell migration and proliferation. All groups showed a small degree of extracellular matrix migration through membrane perforations. Scanning electron microscopy evaluation revealed variable numbers of cells in fibrin matrices located mainly around the pore edges. There were non-significant differences between groups regarding mechanical properties. The present study demonstrated that macro-membrane perforations of 0.2, 0.4 and 0.7 mm are suitable pore diameters that could maintain membrane stiffness and allow for cellular migration. However, these membrane perforation diameters did not allow for total gingival connective tissue isolation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Wiegand, Cornelia; Springer, Steffen; Abel, Martin; Wesarg, Falko; Ruth, Peter; Hipler, Uta-Christina
2013-01-01
Negative-pressure wound therapy (NPWT) is an advantageous treatment option in wound management to promote healing and reduce the risk of complications. NPWT is mainly carried out using open-cell polyurethane (PU) foams that stimulate granulation tissue formation. However, growth of wound bed tissue into foam material, leading to disruption of newly formed tissue upon dressing removal, has been observed. Consequently, it would be of clinical interest to preserve the positive effects of open-cell PU foams while avoiding cellular ingrowth. The study presented analyzed effects of NPWT using large-pored PU foam, fine-pored PU foam, and the combination of large-pored foam with drainage film on human dermal fibroblasts grown in a collagen matrix. The results showed no difference between the dressings in stimulating cellular migration during NPWT. However, when NPWT was applied using a large-pored PU foam, the fibroblasts continued to migrate into the dressing. This led to significant breaches in the cell layers upon removal of the samples after vacuum treatment. In contrast, cell migration stopped at the collagen matrix edge when fine-pored PU foam was used, as well as with the combination of PU foam and drainage film. In conclusion, placing a drainage film between collagen matrix and the large-pored PU foam dressing reduced the ingrowth of cells into the foam significantly. Moreover, positive effects on cellular migration were not affected, and the effect of the foam on tissue surface roughness in vitro was also reduced. © 2013 by the Wound Healing Society.
Paulucci-Holthauzen, Adriana A.; Vergara, Leoncio A.; Bellot, Larry J.; Canton, David; Scott, John D.; O'Connor, Kathleen L.
2009-01-01
Protein kinase A (PKA) has been suggested to be spatially regulated in migrating cells due to its ability to control signaling events that are critical for polarized actin cytoskeletal dynamics. Here, using the fluorescence resonance energy transfer-based A-kinase activity reporter (AKAR1), we find that PKA activity gradients form with the strongest activity at the leading edge and are restricted to the basal surface in migrating cells. The existence of these gradients was confirmed using immunocytochemistry using phospho-PKA substrate antibodies. This observation holds true for carcinoma cells migrating randomly on laminin-1 or stimulated to migrate on collagen I with lysophosphatidic acid. Phosphodiesterase inhibition allows the formation of PKA activity gradients; however, these gradients are no longer polarized. PKA activity gradients are not detected when a non-phosphorylatable mutant of AKAR1 is used, if PKA activity is inhibited with H-89 or protein kinase inhibitor, or when PKA anchoring is perturbed. We further find that a specific A-kinase anchoring protein, AKAP-Lbc, is a major contributor to the formation of these gradients. In summary, our data show that PKA activity gradients are generated at the leading edge of migrating cells and provide additional insight into the mechanisms of PKA regulation of cell motility. PMID:19106088
Moura, Liane I F; Dias, Ana M A; Suesca, Edward; Casadiegos, Sergio; Leal, Ermelindo C; Fontanilla, Marta R; Carvalho, Lina; de Sousa, Hermínio C; Carvalho, Eugénia
2014-01-01
Impaired wound healing is an important clinical problem in diabetes mellitus and results in failure to completely heal diabetic foot ulcers (DFUs), which may lead to lower extremity amputations. In the present study, collagen based dressings were prepared to be applied as support for the delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. The performance of NT alone and NT-loaded collagen matrices to treat wounds in streptozotocin (STZ) diabetic induced mice was evaluated. Results showed that the prepared dressings were not-cytotoxic up to 72h after contact with macrophages (Raw 264.7) and human keratinocyte (HaCaT) cell lines. Moreover, those cells were shown to adhere to the collagen matrices without noticeable change in their morphology. NT-loaded collagen dressings induced faster healing (17% wound area reduction) in the early phases of wound healing in diabetic wounded mice. In addition, they also significantly reduced inflammatory cytokine expression namely, TNF-α (p<0.01) and IL-1β (p<0.01) and decreased the inflammatory infiltrate at day 3 post-wounding (inflammatory phase). After complete healing, metalloproteinase 9 (MMP-9) is reduced in diabetic skin (p<0.05) which significantly increased fibroblast migration and collagen (collagen type I, alpha 2 (COL1A2) and collagen type III, alpha 1 (COL3A1)) expression and deposition. These results suggest that collagen-based dressings can be an effective support for NT release into diabetic wound enhancing the healing process. Nevertheless, a more prominent scar is observed in diabetic wounds treated with collagen when compared to the treatment with NT alone. © 2013.
Dense tissue-like collagen matrices formed in cell-free conditions.
Mosser, Gervaise; Anglo, Anny; Helary, Christophe; Bouligand, Yves; Giraud-Guille, Marie-Madeleine
2006-01-01
A new protocol was developed to produce dense organized collagen matrices hierarchically ordered on a large scale. It consists of a two stage process: (1) the organization of a collagen solution and (2) the stabilization of the organizations by a sol-gel transition that leads to the formation of collagen fibrils. This new protocol relies on the continuous injection of an acid-soluble collagen solution into glass microchambers. It leads to extended concentration gradients of collagen, ranging from 5 to 1000 mg/ml. The self-organization of collagen solutions into a wide array of spatial organizations was investigated. The final matrices obtained by this procedure varied in concentration, structure and density. Changes in the liquid state of the samples were followed by polarized light microscopy, and the final stabilized gel states obtained after fibrillogenesis were analyzed by both light and electron microscopy. Typical organizations extended homogeneously by up to three centimetres in one direction and several hundreds of micrometers in other directions. Fibrillogenesis of collagen solutions of high and low concentrations led to fibrils spatially arranged as has been described in bone and derm, respectively. Moreover, a relationship was revealed between the collagen concentration and the aggregation of and rotational angles between lateral fibrils. These results constitute a strong base from which to further develop highly enriched collagen matrices that could lead to substitutes that mimic connective tissues. The matrices thus obtained may also be good candidates for the study of the three-dimensional migration of cells.
Col-F, a fluorescent probe for ex vivo confocal imaging of collagen and elastin in animal tissues.
Biela, Ewa; Galas, Jerzy; Lee, Brian; Johnson, Gary L; Darzynkiewicz, Zbigniew; Dobrucki, Jurek W
2013-06-01
A new low-molecular-weight fluorescent probe, Col-F, that exhibits affinity to collagen and elastin, was used successfully in imaging of extracellular matrix in freshly excised animal tissues. Col-F readily penetrates between live cells into tissues and binds to fibers of collagen and elastin by a noncovalent mechanism. Fibers of collagen and elastin have been stained in a variety of tissues, including tendon, skeletal muscle, connective tissue, and arteries. Cells migrating in a Col-F-stained collagenous biomaterial were also imaged. No phototoxic effects were detected when live keratocytes were imaged in the in vitro culture in the presence of Col-F. In conclusion, Col-F provides a simple and convenient tool for fluorescence three-dimensional imaging of intricate collagenous and elastic structures in live and fixed animal tissues, as well as in collagen-containing biomaterials. Copyright © 2013 International Society for Advancement of Cytometry.
Modern collagen wound dressings: function and purpose.
Fleck, Cynthia Ann; Simman, Richard
2010-09-01
Collagen, which is produced by fibroblasts, is the most abundant protein in the human body. A natural structural protein, collagen is involved in all 3 phases of the wound-healing cascade. It stimulates cellular migration and contributes to new tissue development. Because of their chemotactic properties on wound fibroblasts, collagen dressings encourage the deposition and organization of newly formed collagen, creating an environment that fosters healing. Collagen-based biomaterials stimulate and recruit specific cells, such as macrophages and fibroblasts, along the healing cascade to enhance and influence wound healing. These biomaterials can provide moisture or absorption, depending on the delivery system. Collagen dressings are easy to apply and remove and are conformable. Collagen dressings are usually formulated with bovine, avian, or porcine collagen. Oxidized regenerated cellulose, a plant-based material, has been combined with collagen to produce a dressing capable of binding to and protecting growth factors by binding and inactivating matrix metalloproteinases in the wound environment. The increased understanding of the biochemical processes involved in chronic wound healing allows the design of wound care products aimed at correcting imbalances in the wound microenvironment. Traditional advanced wound care products tend to address the wound's macroenvironment, including moist wound environment control, fluid management, and controlled transpiration of wound fluids. The newer class of biomaterials and wound-healing agents, such as collagen and growth factors, targets specific defects in the chronic wound environment. In vitro laboratory data point to the possibility that these agents benefit the wound healing process at a biochemical level. Considerable evidence has indicated that collagen-based dressings may be capable of stimulating healing by manipulating wound biochemistry.
Nitinol-based Nanotubular and Nanowell Coatings for the Modulation of Human Vascular Cell Functions
NASA Astrophysics Data System (ADS)
Lee, Phin Peng
Current approaches to reducing restenosis do not balance the reduction of vascular smooth muscle cell proliferation with the increase in the healing of the endothelium. Here, I present my study on the synthesis and characterization of a nanotubular coating on Nitinol substrates. I found that the coating demonstrated 'pro-healing' properties by increasing primary human aortic endothelial cell spreading, migration and collagen and elastin production. Certain cellular functions such as collagen and elastin production were also found to be affected by changes in nanotube diameter. The coating also reduced the proliferation and mRNA expression of collagen I and MMP2 for primary human aortic smooth muscle cells. I will also demonstrate the synthesis of a nanowell coating on Nitinol stents as well as an additional poly(lactic-co-glycolic acid) coating on top of the nanowells that has the potential for controlling drug release. These findings demonstrate the potential for the coatings to aid in the prevention of restenosis and sets up future explorations of ex vivo and in vivo studies.
Carbon nanotubes attenuate cancer and improve healing
NASA Astrophysics Data System (ADS)
Wailes, Elizabeth Marguerite
Breast cancer is the most common cancer in American women and the second largest cause of their cancer mortality. Resection of the primary tumor can greatly improve the prognosis, but if any of the cancerous cells remain, the patient is still at risk. This work investigates the ability of high aspect ratio nanoparticles to both heal injured tissue and attenuate cancer cells' aggression. To assess different particles' utility, carbon nanoparticles were evaluated in a fibroblast and collagen gel model of wound contraction, then polymeric nanoparticles were synthesized and tested similarly. The carbon particles, multi-walled nanotubes (MWNT) in particular, performed the best, strongly inhibiting pathological wound contraction, increasing cell viability, and decreasing reactive oxygen species. Later, carbon nanoparticle coatings with or without collagen were tested with breast cancer cells to assess adhesion, migration, and E-cadherin expression of the cells. The collagen-MWNT coatings were able to increase cancer cell adhesion to their substrate, decrease migration, increase E-cadherin expression, and also increase autophagy. The coatings effected all these changes without increasing proliferation of the cancer cells or affecting non-tumorigenic breast cells. To examine how these two sets of results might act together, co-cultures were then created with both fibroblasts and cancer cells in collagen gels with or without MWNT. The cells' movement and matrix metalloproteinase (MMP) expression were measured to gauge the cells' interaction in that environment, as fibroblasts can encourage or suppress metastasis depending on their behavior. The MWNT were able to decrease cancer cell movement, particularly their invasion into the gel, and selectively promote cancer cell death without harming the non-tumorigenic cells. They also decreased MMP expression. Finally, early in vivo work was undertaken to determine how the collagen-nanoparticle gels are able to control cancer in mice. Early trends suggest that the material might be quite helpful, but more work is necessary. Overall, the collagen-MWNT mixture has shown great promise and sensitivity in targeting pathological cells while improving the characteristics of the supporting cells. This novel method of mechanical control of cancer suggests new possibilities for cancer treatment, which has traditionally been conducted only through biochemical or radiological means.
Zhang, Wei; Chen, Jialin; Tao, Jiadong; Jiang, Yangzi; Hu, Changchang; Huang, Lu; Ji, Junfeng; Ouyang, Hong Wei
2013-01-01
Despite the presence of cartilage-derived mesenchymal stem cells (C-MSCs) and synovial membrane-derived mesenchymal stem cells (SM-MSCs) populations, partial-thickness cartilage defects, in contrast to the full-thickness defects, are devoid of spontaneous repair capacity. This study aims to create an in situ matrix environment conducive to C-MSCs and SM-MSCs to promote cartilage self-repair. Spontaneous repair with MSCs migration into the defect area was observed in full-thickness defects, but not in partial-thickness defects in rabbit model. Ex vivo and in vitro studies showed that subchondral bone or type 1 collagen (col1) scaffold was more permissive for MSCs adhesion than cartilage or type 2 collagen (col2) scaffold and induced robust stromal cell-derived factors-1 (SDF-1) dependent migration of MSCs. Furthermore, creating a matrix environment with col1 scaffold containing SDF-1 enhanced in situ self-repair of partial-thickness defects in rabbit 6 weeks post-injury. Hence, the inferior self-repair capacity in partial-thickness defects is partially owing to the non-permissive matrix environment. Creating an in situ matrix environment conducive to C-MSCs and SM-MSCs migration and adhesion with col1 scaffold containing SDF-1 can be exploited to improve self-repair capacity of cartilage. Copyright © 2012 Elsevier Ltd. All rights reserved.
Antifibrotic effects of tocotrienols on human Tenon's fibroblasts.
Tappeiner, Christoph; Meyenberg, Alexander; Goldblum, David; Mojon, Daniel; Zingg, Jean-Marc; Nesaretnam, Kalanithi; Kilchenmann, Monika; Frueh, Beatrice E
2010-01-01
To compare the antifibrotic effect of vitamin E isoforms alpha-, gamma-, and delta-tocotrienol on human Tenon's fibroblasts (hTf) to the antimetabolite mitomycin C. Antifibrotic effects of alpha- (40, 60, 80, 100, and 120 microM), gamma- (10, 20, 30, and 40 microM) and delta-tocotrienol (10, 20, 30, and 40 microM) on hTf cultures were evaluated by performing proliferation, migration and collagen synthesis assays. Whereas for vitamin E the exposure time was set to 7 days to mimic subconjunctival application, cultures were exposed only 5 min to mitomycin C 100 microg/ml to mimic intraoperative administration. Cell morphology (phase contrast microscopy) as an assessment for cytotoxicity and cell density by measuring DNA content in a fluorometric assay to determine proliferation inhibition was performed on day 0, 4, and 7. Migration ability and collagen synthesis of fibroblasts were measured. All tested tocotrienol isoforms were able to significantly inhibit hTf proliferation in a dose-dependent manner (maximal inhibitory effect without relevant morphological changes at day 4 for alpha-tocotrienol 80 microM with 36.7% and at day 7 for alpha-tocotrienol 80 microM with 42.6% compared to control). Degenerative cell changes were observed in cultures with concentrations above 80 microM for alpha- and above 30 microM for gamma- and delta-tocotrienol. The highest collagen synthesis inhibition has been found with 80 microM alpha-tocotrienol (62.4%) and no significant inhibition for mitomycin C (2.5%). Migration ability was significantly reduced in cultures exposed to 80 microM alpha- and 30 microM gamma-tocotrienol (inhibition of 82.2% and 79.5%, respectively, compared to control) and also after mitomycin C treatment (60.0%). Complete growth inhibition without significant degenerative cell changes could only be achieved with mitomycin C. In vitro, all tested tocotrienol isoforms were able to inhibit proliferation, migration and collagen synthesis of human Tenon's fibroblasts and therefore may have the potential as an anti-scarring agent in filtrating glaucoma surgery.
Koskimaki, Jacob E; Karagiannis, Emmanouil D; Tang, Benjamin C; Hammers, Hans; Watkins, D Neil; Pili, Roberto; Popel, Aleksander S
2010-02-01
Angiogenesis is the formation of neovasculature from a pre-existing vascular network. Progression of solid tumors including lung cancer is angiogenesis-dependent. We previously introduced a bioinformatics-based methodology to identify endogenous anti-angiogenic peptide sequences, and validated these predictions in vitro in human umbilical vein endothelial cell (HUVEC) proliferation and migration assays. One family of peptides with high activity is derived from the alpha-fibrils of type IV collagen. Based on the results from the in vitro screening, we have evaluated the ability of a 20 amino acid peptide derived from the alpha5 fibril of type IV collagen, pentastatin-1, to suppress vessel growth in an angioreactor-based directed in vivo angiogenesis assay (DIVAA). In addition, pentastatin-1 suppressed tumor growth with intraperitoneal peptide administration in a small cell lung cancer (SCLC) xenograft model in nude mice using the NCI-H82 human cancer cell line. Pentastatin-1 decreased the invasion of vessels into angioreactors in vivo in a dose dependent manner. The peptide also decreased the rate of tumor growth and microvascular density in vivo in a small cell lung cancer xenograft model. The peptide treatment significantly decreased the invasion of microvessels in angioreactors and the rate of tumor growth in the xenograft model, indicating potential treatment for angiogenesis-dependent disease, and for translational development as a therapeutic agent for lung cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, P.-F.; Yeh, Alvin T.; Bayless, Kayla J.
The interactions between endothelial cells (ECs) and the extracellular matrix (ECM) are fundamental in mediating various steps of angiogenesis, including cell adhesion, migration and sprout formation. Here, we used a noninvasive and non-destructive nonlinear optical microscopy (NLOM) technique to optically image endothelial sprouting morphogenesis in three-dimensional (3D) collagen matrices. We simultaneously captured signals from collagen fibers and endothelial cells using second harmonic generation (SHG) and two-photon excited fluorescence (TPF), respectively. Dynamic 3D imaging revealed EC interactions with collagen fibers along with quantifiable alterations in collagen matrix density elicited by EC movement through and morphogenesis within the matrix. Specifically, we observedmore » increased collagen density in the area between bifurcation points of sprouting structures and anisotropic increases in collagen density around the perimeter of lumenal structures, but not advancing sprout tips. Proteinase inhibition studies revealed membrane-associated matrix metalloproteinase were utilized for sprout advancement and lumen expansion. Rho-associated kinase (p160ROCK) inhibition demonstrated that the generation of cell tension increased collagen matrix alterations. This study followed sprouting ECs within a 3D matrix and revealed that the advancing structures recognize and significantly alter their extracellular environment at the periphery of lumens as they progress.« less
Micro-composite substrates for the study of cell-matrix mechanical interactions.
Chao, Pen-hsiu Grace; Sheng, Shou-Chien; Chang, Wei-Ren
2014-10-01
The chemical and physical gradients in the native cell microenvironment induce intracellular polarization and control cell behaviors such as morphology, migration and phenotypic changes. Directed cell migration in response to substrate stiffness gradients, known as durotaxis or mechanotaxis, has drawn attention due to its significance in development, metastasis, and wound healing. We developed a microcomposite substrate (μCS) platform with a microfabricated base and collagen hydrogel top to generate physiological linear stiffness gradients without any variation in chemical or transport properties. This platform is compatible with both 2D and 3D cell culturing and can be assembled with common supplies found in most biology labs. Ligament fibroblasts (LFs) and mesenchymal stem cells (MSCs) both respond to the mechanical gradient with directed migration. Interestingly, LFs exhibit higher mechanosensitivity compared with MSCs. Polarized nonmuscle myosin IIB distribution was also found on the μCS gradient, confirming previous reports. This robust system provides an easily accessible platform to study cell mechanosensing and a more physiological microenvironment for cell studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
FS laser processing of bio-polymer thin films for studying cell-to-substrate specific response
NASA Astrophysics Data System (ADS)
Daskalova, A.; Nathala, Chandra S. R.; Kavatzikidou, P.; Ranella, A.; Szoszkiewicz, R.; Husinsky, W.; Fotakis, C.
2016-09-01
The use of ultra-short pulses for nanoengineering of biomaterials opens up possibilities for biological, medical and tissue engineering applications. Structuring the surface of a biomaterial into arrays with micro- and nanoscale features and architectures, defines new roadmaps to innovative engineering of materials. Thin films of novel collagen/elastin composite and gelatin were irradiated by Ti:sapphire fs laser in air at central wavelength 800 nm, with pulse durations in the range of 30 fs. The size and shape as well as morphological forms occurring in the resulted areas of interaction were analyzed as a function of irradiation fluence and number of pulses by atomic force microscopy (AFM). The fs interaction regime allows generation of well defined micro porous surface arrays. In this study we examined a novel composite consisting of collagen and elastin in order to create a biodegradable matrix to serve as a biomimetic surface for cell attachment. Confocal microscopy images of modified zones reveal formation of surface fringe patterns with orientation direction alongside the area of interaction. Outside the crater rim a wave-like topography pattern is observed. Structured, on a nanometer scale, surface array is employed for cell-culture experiments for testing cell's responses to substrate morphology. Mice fibroblasts migration was monitored after 3 days cultivation period using FESEM. We found that fibroblasts cells tend to migrate and adhere along the laser modified zones. The performed study proved that the immobilized collagen based biofilms suite as a template for successful fibroblasts cell guidance and orientation. Fs laser induced morphological modification of biomimetic materials exhibit direct control over fibroblasts behaviour due to induced change in their wettability state.
Park, Ju Young; Choi, Jong-Cheol; Shim, Jin-Hyung; Lee, Jung-Seob; Park, Hyoungjun; Kim, Sung Won; Doh, Junsang; Cho, Dong-Woo
2014-09-01
Bioprinting is a promising technique for engineering composite tissues, such as osteochondral tissues. In this study, as a first step toward bioprinting-based osteochondral tissue regeneration, we systematically examined the behavior of chondrocytes and osteoblasts to hyaluronic acid (HA) and type I collagen (Col-1) hydrogels. First, we demonstrated that cells on hydrogels that were comprised of major native tissue extracellular matrix (ECM) components (i.e. chondrocytes on HA hydrogels and osteoblasts on Col-1 hydrogels) exhibited better proliferation and cell function than cells on non-native ECM hydrogels (i.e., chondrocytes on Col-1 hydrogels and osteoblasts on HA hydrogels). In addition, cells located near their native ECM hydrogels migrated towards them. Finally, we bioprinted three-dimensional (3D) osteochondral tissue-mimetic structures composed of two compartments, osteoblast-encapsulated Col-1 hydrogels and chondrocyte-encapsulated HA hydrogels, and found viability and functions of each cell type were well maintained within the 3D structures up to 14 days in vitro. These results suggest that with proper choice of hydrogel materials, bioprinting-based approaches can be successfully applied for osteochondral tissue regeneration.
Khatau, Shyam B.; Bloom, Ryan J.; Bajpai, Saumendra; Razafsky, David; Zang, Shu; Giri, Anjil; Wu, Pei-Hsun; Marchand, Jorge; Celedon, Alfredo; Hale, Christopher M.; Sun, Sean X.; Hodzic, Didier; Wirtz, Denis
2012-01-01
Cells often migrate in vivo in an extracellular matrix that is intrinsically three-dimensional (3D) and the role of actin filament architecture in 3D cell migration is less well understood. Here we show that, while recently identified linkers of nucleoskeleton to cytoskeleton (LINC) complexes play a minimal role in conventional 2D migration, they play a critical role in regulating the organization of a subset of actin filament bundles – the perinuclear actin cap - connected to the nucleus through Nesprin2giant and Nesprin3 in cells in 3D collagen I matrix. Actin cap fibers prolong the nucleus and mediate the formation of pseudopodial protrusions, which drive matrix traction and 3D cell migration. Disruption of LINC complexes disorganizes the actin cap, which impairs 3D cell migration. A simple mechanical model explains why LINC complexes and the perinuclear actin cap are essential in 3D migration by providing mechanical support to the formation of pseudopodial protrusions. PMID:22761994
Kawano, Shinichi; Esaki, Motohiro; Torisu, Kumiko; Matsuno, Yuichi; Kitazono, Takanari
2017-01-01
ABSTRACT Adhesion of cells to the extracellular matrix (ECM) via focal adhesions (FAs) is crucial for cell survival, migration, and differentiation. Although the regulation of FAs, including by integrins and the ECM, is important to cell behavior, how FAs are regulated is not well known. Autophagy is induced by both cell adhesion and cell detachment. Here, we showed that autophagosomes are located close to internalized collagen and paxillin, which is a well-known marker of FAs. Autophagy-deficient cells showed increased levels of internalized collagen compared with control cells. Moreover, paxillin exhibited a more peripheral distribution and the area of paxillin was increased, and adhesion-induced focal adhesion kinase signaling was impaired and adhesion was enhanced, in autophagy-deficient cells. These results suggest that autophagy suppressed cell adhesion by regulating internalized ECM and FAs. PMID:28970230
2013-09-01
part, on the generation of reactive oxygen species. Surprisingly, while cell adhesion to UVB -irradiated MatrigelTM and collagen was higher than that to...non-irradiated substrates, migration was significantly inhibited. Moreover, UVB -induced cell adhesion to irradiated substrates was not significantly...altered by irradiation of these substrates in the presence of SOD suggesting that UVB -irradiation may cause exposure of a distinct subset of the
Xu, Qian; Liu, Xiaoling; Liu, Weiwei; Hayashi, Toshihiko; Yamato, Masayuki; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi
2018-05-30
The extracellular matrix (ECM) is a major biomechanical environment for all cells in vivo, and tightly controls wound healing and cancer progression. Type I collagen (Col I) is the most abundant component in ECM and plays an essential role for cell motility control and migration beyond structural support. Our previous results showed that Col I increased the length of primary cilia and the expression of primary cilia-associated proteins in 3T3-L1 cells. The Hippo/YAP pathway serves as a major integrator of cell surface-mediated signals and regulates key processes for the development and maintenance of tissue functions. In this study, we investigated the role of Hippo/YAP signaling in primary cilia growth of cells cultured on Col I-coated plate, as well as the potential link between primary cilia and migration. At 2-day post-confluence, YAP localization in the nucleus was dramatically increased when the cells were cultured on Col I-coated plate, accompanied by cilia growth. YAP inhibitor verteporfin repressed the growth of primary cilia as well as the expressions of ciliogenesis-associated proteins in confluent 3T3-L1 cells cultured on Col I-coated plate. Moreover, knockdown of either YAP or IFT88, one of the ciliogenesis-associated proteins, reversed the migration of confluent 3T3-L1 cells promoted by Col I-coating. In conclusion, activation of YAP pathway by Col I-coating of culture plate for confluent 3T3-L1 cells is positively associated with the primary cilia growth, which eventually results in promoted migration.
Nagy, Nandor; Barad, Csilla; Hotta, Ryo; Bhave, Sukhada; Arciero, Emily; Dora, David; Goldstein, Allan M
2018-05-08
The enteric nervous system (ENS) arises from neural crest cells that migrate, proliferate, and differentiate into enteric neurons and glia within the intestinal wall. Many extracellular matrix (ECM) components are present in the embryonic gut, but their role in regulating ENS development is largely unknown. Here, we identify heparan sulfate proteoglycan proteins, including collagen XVIII (Col18) and agrin, as important regulators of enteric neural crest-derived cell (ENCDC) development. In developing avian hindgut, Col18 is expressed at the ENCDC wavefront, while agrin expression occurs later. Both proteins are normally present around enteric ganglia, but are absent in aganglionic gut. Using chick-mouse intestinal chimeras and enteric neurospheres, we show that vagal- and sacral-derived ENCDCs from both species secrete Col18 and agrin. Whereas glia express Col18 and agrin, enteric neurons only express the latter. Functional studies demonstrate that Col18 is permissive whereas agrin is strongly inhibitory to ENCDC migration, consistent with the timing of their expression during ENS development. We conclude that ENCDCs govern their own migration by actively remodeling their microenvironment through secretion of ECM proteins. © 2018. Published by The Company of Biologists Ltd.
Vinculin contributes to Cell Invasion by Regulating Contractile Activation
NASA Astrophysics Data System (ADS)
Mierke, Claudia Tanja
2008-07-01
Vinculin is a component of the focal adhesion complex and is described as a mechano-coupling protein connecting the integrin receptor and the actin cytoskeleton. Vinculin knock-out (k.o.) cells (vin-/-) displayed increased migration on a 2-D collagen- or fibronectin-coated substrate compared to wildtype cells, but the role of vinculin in cell migration through a 3-D connective tissue is unknown. We determined the invasiveness of established tumor cell lines using a 3-D collagen invasion assay. Gene expression analysis of 4 invasive and 4 non-invasive tumor cell lines revealed that vinculin expression was significantly increased in invasive tumor cell lines. To analyze the mechanisms by which vinculin increased cell invasion in a 3-D gel, we studied mouse embryonic fibroblasts wildtype and vin-/- cells. Wildtype cells were 3-fold more invasive compared vin-/- cells. We hypothesized that the ability to generate sufficient traction forces is a prerequisite for tumor cell migration in a 3-D connective tissue matrix. Using traction microscopy, we found that wildtype exerted 3-fold higher tractions on fibronectin-coated polyacrylamide gels compared to vin-/- cells. These results show that vinculin controls two fundamental functions that lead to opposite effects on cell migration in a 2-D vs. a 3-D environment: On the one hand, vinculin stabilizes the focal adhesions (mechano-coupling function) and thereby reduces motility in 2-D. On the other hand, vinculin is also a potent activator of traction generation (mechano-regulating function) that is important for cell invasion in a 3-D environment.
NASA Astrophysics Data System (ADS)
Campagnola, Paul J.; Ajeti, Visar; Lara, Jorge; Eliceiri, Kevin W.; Patankar, Mansh
2016-04-01
A profound remodeling of the extracellular matrix (ECM) occurs in human ovarian cancer but it unknown how this affects tumor growth, where this understanding could lead to better diagnostics and therapeutic approaches. We investigate the role of these ECM alterations by using multiphoton excited (MPE) polymerization to fabricate biomimetic models to investigate operative cell-matrix interactions in invasion/metastasis. First, we create nano/microstructured gradients mimicking the basal lamina to study adhesion/migration dynamics of ovarian cancer cells of differing metastatic potential. We find a strong haptotactic response that depends on both contact guidance and ECM binding cues. While we found enhanced migration for more invasive cells, the specifics of alignment and directed migration also depend on cell polarity. We further use MPE fabrication to create collagen scaffolds with complex, 3D submicron morphology. The stromal scaffold designs are derived directly from "blueprints" based on SHG images of normal, high risk, and malignant ovarian tissues. The models are seeded with different cancer cell lines and this allows decoupling of the roles of cell characteristics (metastatic potential) and ECM structure and composition (normal vs cancer) on adhesion/migration dynamics. We found the malignant stroma structure promotes enhanced migration and proliferation and also cytoskeletal alignment. Creating synthetic models based on fibers patterns further allows decoupling the topographic roles of the fibers themselves vs their alignment within the tissue. These models cannot be synthesized by other conventional fabrication methods and we suggest the MPE image-based fabrication method will enable a variety of studies in cancer biology.
Kaufman, Gili; Whitescarver, Ryan A; Nunes, Laiz; Palmer, Xavier-Lewis; Skrtic, Drago; Tutak, Wojtek
2018-01-24
Deep wounds in the gingiva caused by trauma or surgery require a rapid and robust healing of connective tissues. We propose utilizing gas-brushed nanofibers coated with collagen and fibrin for that purpose. Our hypotheses are that protein-coated nanofibers will: (i) attract and mobilize cells in various spatial orientations, and (ii) regulate the expression levels of specific extracellular matrix (ECM)-associated proteins, determining the initial conformational nature of dense and soft connective tissues. Gingival fibroblast monolayers and 3D spheroids were cultured on ECM substrate and covered with gas-blown poly-(DL-lactide-co-glycolide) (PLGA) nanofibers (uncoated/coated with collagen and fibrin). Cell attraction and rearrangement was followed by F-actin staining and confocal microscopy. Thicknesses of the cell layers, developed within the nanofibers, were quantified by ImageJ software. The expression of collagen1α1 chain (Col1α1), fibronectin, and metalloproteinase 2 (MMP2) encoding genes was determined by quantitative reverse transcription analysis. Collagen- and fibrin- coated nanofibers induced cell migration toward fibers and supported cellular growth within the scaffolds. Both proteins affected the spatial rearrangement of fibroblasts by favoring packed cell clusters or intermittent cell spreading. These cell arrangements resembled the structural characteristic of dense and soft connective tissues, respectively. Within three days of incubation, fibroblast spheroids interacted with the fibers, and grew robustly by increasing their thickness compared to monolayers. While the ECM key components, such as fibronectin and MMP2 encoding genes, were expressed in both protein groups, Col1α1 was predominantly expressed in bundled fibroblasts grown on collagen fibers. This enhanced expression of collagen1 is typical for dense connective tissue. Based on results of this study, our gas-blown, collagen- and fibrin-coated PLGA nanofibers are viable candidates for engineering soft and dense connective tissues with the required structural characteristics and functions needed for wound healing applications. Rapid regeneration of these layers should enhance healing of open wounds in a harsh oral environment.
Kang, Sang-Wook; Kim, Min Soo; Kim, Hyun-Sung; Lee, Yong-Jin; Kang, Young-Hee
2012-06-01
The proliferation and migration of vascular smooth muscle cells (SMCs) play critical roles in intimal thickening and neointimal hyperplasia in early-phase atherosclerosis. This study tested whether wild grape extract (WGE) suppressed the proliferation and migration of human aortic SMCs induced by neighboring macrophages. Cellular expression of fibrogenic connective tissue growth factor (CTGF) and secretion of collagen IV and matrix metalloproteinase (MMP)-2 were determined in SMCs exposed to THP-1-differentiated macrophage-conditioned media. Proliferation was enhanced in SMCs exposed to macrophage-conditioned media collected during the early stage of differentiation, which was attenuated by treatment with ≥ 10 µg/ml WGE. Increased secretion of CTGF and collagen IV macrophage-conditioned media was suppressed in WGE-supplemented SMCs. TGF-β1-promoted production of CTGF and collagen IV was suppressed by blocking TGF-β receptors of R1 and R2 in SMCs. WGE repressed macrophage-conditioned media-upregulated MMP-2 secretion, indicating that WGE had an ability to encumber plaque rupture within atherosclerotic lesions. In addition, ≥ 1 µg/ml WGE ameliorated the migration of SMCs promoted by neighboring macrophages. These results demonstrate that WGE retarded neointimal hyperplasia and thickening within atherosclerotic plaques largely comprising of macrophages and SMCs. Therefore, WGE may be developed as an anti-proliferative and anti-migratory agent targeting SMCs in the proximity of newly differentiated and resident macrophages.
Differential regulation of cell functions by CSD peptide subdomains
2013-01-01
Background In fibrotic lung diseases, expression of caveolin-1 is decreased in fibroblasts and monocytes. The effects of this deficiency are reversed by treating cells or animals with the caveolin-1 scaffolding domain peptide (CSD, amino acids 82–101 of caveolin-1) which compensates for the lack of caveolin-1. Here we compare the function of CSD subdomains (Cav-A, Cav-B, Cav-C, Cav-AB, and Cav-BC) and mutated versions of CSD (F92A and T90A/T91A/F92A). Methods Migration toward the chemokine CXCL12 and the associated expression of F-actin, CXCR4, and pSmad 2/3 were studied in monocytes from healthy donors and SSc patients. Fibrocyte differentiation was studied using PBMC from healthy donors and SSc patients. Collagen I secretion and signaling were studied in fibroblasts derived from the lung tissue of healthy subjects and SSc patients. Results Cav-BC and CSD at concentrations as low as 0.01 μM inhibited the hypermigration of SSc monocytes and TGFβ-activated Normal monocytes and the differentiation into fibrocytes of SSc and Normal monocytes. While CSD also inhibited the migration of poorly migrating Normal monocytes, Cav-A (and other subdomains to a lesser extent) promoted the migration of Normal monocytes while inhibiting the hypermigration of TGFβ-activated Normal monocytes. The effects of versions of CSD on migration may be mediated in part via their effects on CXCR4, F-actin, and pSmad 2/3 expression. Cav-BC was as effective as CSD in inhibiting fibroblast collagen I and ASMA expression and MEK/ERK signaling. Cav-C and Cav-AB also inhibited collagen I expression, but in many cases did not affect ASMA or MEK/ERK. Cav-A increased collagen I expression in scleroderma lung fibroblasts. Full effects on fibroblasts of versions of CSD required 5 μM peptide. Conclusions Cav-BC retains most of the anti-fibrotic functions of CSD; Cav-A exhibits certain pro-fibrotic functions. Results obtained with subdomains and mutated versions of CSD further suggest that the critical functional residues in CSD depend on the cell type and readout being studied. Monocytes may be more sensitive to versions of CSD than fibroblasts and endothelial cells because the baseline level of caveolin-1 in monocytes is much lower than in these other cell types. PMID:24011378
Differential regulation of cell functions by CSD peptide subdomains.
Reese, Charles; Dyer, Shanice; Perry, Beth; Bonner, Michael; Oates, James; Hofbauer, Ann; Sessa, William; Bernatchez, Pascal; Visconti, Richard P; Zhang, Jing; Hatfield, Corey M; Silver, Richard M; Hoffman, Stanley; Tourkina, Elena
2013-09-08
In fibrotic lung diseases, expression of caveolin-1 is decreased in fibroblasts and monocytes. The effects of this deficiency are reversed by treating cells or animals with the caveolin-1 scaffolding domain peptide (CSD, amino acids 82-101 of caveolin-1) which compensates for the lack of caveolin-1. Here we compare the function of CSD subdomains (Cav-A, Cav-B, Cav-C, Cav-AB, and Cav-BC) and mutated versions of CSD (F92A and T90A/T91A/F92A). Migration toward the chemokine CXCL12 and the associated expression of F-actin, CXCR4, and pSmad 2/3 were studied in monocytes from healthy donors and SSc patients. Fibrocyte differentiation was studied using PBMC from healthy donors and SSc patients. Collagen I secretion and signaling were studied in fibroblasts derived from the lung tissue of healthy subjects and SSc patients. Cav-BC and CSD at concentrations as low as 0.01 μM inhibited the hypermigration of SSc monocytes and TGFβ-activated Normal monocytes and the differentiation into fibrocytes of SSc and Normal monocytes. While CSD also inhibited the migration of poorly migrating Normal monocytes, Cav-A (and other subdomains to a lesser extent) promoted the migration of Normal monocytes while inhibiting the hypermigration of TGFβ-activated Normal monocytes. The effects of versions of CSD on migration may be mediated in part via their effects on CXCR4, F-actin, and pSmad 2/3 expression. Cav-BC was as effective as CSD in inhibiting fibroblast collagen I and ASMA expression and MEK/ERK signaling. Cav-C and Cav-AB also inhibited collagen I expression, but in many cases did not affect ASMA or MEK/ERK. Cav-A increased collagen I expression in scleroderma lung fibroblasts. Full effects on fibroblasts of versions of CSD required 5 μM peptide. Cav-BC retains most of the anti-fibrotic functions of CSD; Cav-A exhibits certain pro-fibrotic functions. Results obtained with subdomains and mutated versions of CSD further suggest that the critical functional residues in CSD depend on the cell type and readout being studied. Monocytes may be more sensitive to versions of CSD than fibroblasts and endothelial cells because the baseline level of caveolin-1 in monocytes is much lower than in these other cell types.
Yamaguchi, Naoya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi
2015-01-01
Collective cell migration plays a crucial role in several biological processes, such as embryonic development, wound healing, and cancer metastasis. Here, we focused on collectively migrating Madin-Darby Canine Kidney (MDCK) epithelial cells that follow a leader cell on a collagen gel to clarify the mechanism of collective cell migration. First, we removed a leader cell from the migrating collective with a micromanipulator. This then caused disruption of the cohesive migration of cells that followed in movement, called “follower” cells, which showed the importance of leader cells. Next, we observed localization of active Rac, integrin β1, and PI3K. These molecules were clearly localized in the leading edge of leader cells, but not in follower cells. Live cell imaging using active Rac and active PI3K indicators was performed to elucidate the relationship between Rac, integrin β1, and PI3K. Finally, we demonstrated that the inhibition of these molecules resulted in the disruption of collective migration. Our findings not only demonstrated the significance of a leader cell in collective cell migration, but also showed that Rac, integrin β1, and PI3K are upregulated in leader cells and drive collective cell migration. PMID:25563751
Yamaguchi, Naoya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi
2015-01-07
Collective cell migration plays a crucial role in several biological processes, such as embryonic development, wound healing, and cancer metastasis. Here, we focused on collectively migrating Madin-Darby Canine Kidney (MDCK) epithelial cells that follow a leader cell on a collagen gel to clarify the mechanism of collective cell migration. First, we removed a leader cell from the migrating collective with a micromanipulator. This then caused disruption of the cohesive migration of cells that followed in movement, called "follower" cells, which showed the importance of leader cells. Next, we observed localization of active Rac, integrin β1, and PI3K. These molecules were clearly localized in the leading edge of leader cells, but not in follower cells. Live cell imaging using active Rac and active PI3K indicators was performed to elucidate the relationship between Rac, integrin β1, and PI3K. Finally, we demonstrated that the inhibition of these molecules resulted in the disruption of collective migration. Our findings not only demonstrated the significance of a leader cell in collective cell migration, but also showed that Rac, integrin β1, and PI3K are upregulated in leader cells and drive collective cell migration.
Frequency-dependent micromechanics of cellularized biopolymer networks
NASA Astrophysics Data System (ADS)
Jones, Chris; Kim, Jihan; McIntyre, David; Sun, Bo
Mechanical interactions between cells and the extracellular matrix (ECM) influence many cellular behaviors such as growth, differentiation, and migration. These are dynamic processes in which the cells actively remodel the ECM. Reconstituted collagen gel is a common model ECM for studying cell-ECM interactions in vitro because collagen is the most abundant component of mammalian ECM and gives the ECM its material stiffness. We embed micron-sized particles in collagen and use holographic optical tweezers to apply forces to the particles in multiple directions and over a range of frequencies up to 10 Hz. We calculate the local compliance and show that it is dependent on both the direction and frequency of the applied force. Performing the same measurement on many particles allows us to characterize the spatial inhomogeneity of the mechanical properties and shows that the compliance decreases at higher frequencies. Performing these measurements on cell-populated collagen gels shows that cellular remodeling of the ECM changes the mechanical properties of the collagen and we investigate whether this change is dependent on the local strain and distance from nearby cells.
Park, Eun Hye; Kim, Seokho; Jo, Ji Yoon; Kim, Su Jin; Hwang, Yeonsil; Kim, Jin-Man; Song, Si Young; Lee, Dong-Ki; Koh, Sang Seok
2013-03-01
Collagen triple helix repeat containing-1 (CTHRC1) is a secreted protein involved in vascular remodeling, bone formation and developmental morphogenesis. CTHRC1 has recently been shown to be expressed in human cancers such as breast cancer and melanoma. In this study, we show that CTHRC1 is highly expressed in human pancreatic cancer tissues and plays a role in the progression and metastasis of the disease. CTHRC1 promoted primary tumor growth and metastatic spread of cancer cells to distant organs in orthotopic xenograft tumor mouse models. Overexpression of CTHRC1 in cancer cells resulted in increased motility and adhesiveness, whereas these cellular activities were diminished by down-regulation of the protein. CTHRC1 activated several key signaling molecules, including Src, focal adhesion kinase, paxillin, mitogen-activated protein kinase kinase (MEK), extracellular signal-regulated kinase and Rac1. Treatment with chemical inhibitors of Src, MEK or Rac1 and expression of dominant-negative Rac1 attenuated CTHRC1-induced cell migration and adhesion. Collectively, our results suggest that CTHRC1 has a role in pancreatic cancer progression and metastasis by regulating migration and adhesion activities of cancer cells.
Zanotti, Simona; Bragato, Cinzia; Zucchella, Andrea; Maggi, Lorenzo; Mantegazza, Renato; Morandi, Lucia; Mora, Marina
2016-01-15
Tissue fibrosis, characterized by excessive deposition of extracellular matrix proteins, is the end point of diseases affecting the kidney, bladder, liver, lung, gut, skin, heart and muscle. In Duchenne muscular dystrophy (DMD), connective fibrotic tissue progressively substitutes muscle fibers. So far no specific pharmacological treatment is available for muscle fibrosis. Among promising anti-fibrotic molecules, pirfenidone has shown anti-fibrotic and anti-inflammatory activity in animal and cell models, and has already been employed in clinical trials. Therefore we tested pirfenidone anti-fibrotic properties in an in vitro model of muscle fibrosis. We evaluated effect of pirfenidone on fibroblasts isolated from DMD muscle biopsies. These cells have been previously characterized as having a pro-fibrotic phenotype. We tested cell proliferation and migration, secretion of soluble collagens, intracellular levels of collagen type I and fibronectin, and diameter of 3D fibrotic nodules. We found that pirfenidone significantly reduced proliferation and cell migration of control and DMD muscle-derived fibroblasts, decreased extracellular secretion of soluble collagens by control and DMD fibroblasts, as well as levels of collagen type I and fibronectin, and, in DMD fibroblasts only, reduced synthesis and deposition of intracellular collagen. Furthermore, pirfenidone was able to reduce the diameter of fibrotic-nodules in our 3D model of in vitro fibrosis. These pre-clinical results indicate that pirfenidone has potential anti-fibrotic effects also in skeletal muscle fibrosis, urging further studies in in vivo animal models of muscular dystrophy in order to translate the drug into the treatment of muscle fibrosis in DMD patients. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhan, Yingzhuan; Wang, Nan; Liu, Cuicui; Chen, Yinnan; Zheng, Lei; He, Langchong
2014-05-01
Taspine was screened for the first time from Radix et Rhizoma leonticis (Hong Mao Qi in Chinese) using cell membrane chromatography in our laboratory. Its anticancer and antiangiogenic properties were demonstrated, and it could serve as a lead compound in anticancer agent development. Here, we investigated the role of one of the derivatives, HMQ1611, with increased activity and solubility, on the regulation of breast cancer cell ZR-75-30 adhesion, migration and invasion. The effect of HMQ1611 on adhesion, invasion and migration of human breast cancer cells ZR-75-30 was examined. The migration and invasive potential of ZR-75-30 cells were examined by wound-healing assays and matrigel invasion chamber assays. The adhesion to type IV collagen and laminin were evaluated by MTT assay. The expression and proteinase activity of two matrix metalloproteinases (MMPs), matrix metalloproteinases 2 (MMP-2) and matrix metalloproteinases 9 (MMP-9), were analyzed by Western blot analysis and gelatin zymography, respectively. HMQ1611 effectively inhibited ZR-75-30 cell invasion and significantly suppressed adhesion to type IV collagen and laminin-coated substrate in a dose-dependent manner. Western blot and gelatin zymography analysis showed that HMQ1611 significantly inhibited the expression and secretion of MMP-2 and MMP-9 in ZR-75-30 cells. Additionally, treatment of ZR-75-30 cells with HMQ1611 downregulated the expression of MMP-2 and MMP-9. HMQ1611 had potential to suppress the adhesion, migration and invasion of ZR-75-30 cancer cells, and it could serve as a potential novel therapeutic candidate for the treatment of metastatic breast cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misu, Masayasu; Ouji, Yukiteru, E-mail: oujix@naramed-u.ac.jp; Kawai, Norikazu
In spite of the strong expression of Wnt-10b in melanomas, its role in melanoma cells has not been elucidated. In the present study, the biological effects of Wnt-10b on murine B16F10 (B16) melanoma cells were investigated using conditioned medium from Wnt-10b-producing COS cells (Wnt-CM). After 2 days of culture in the presence of Wnt-CM, proliferation of B16 melanoma cells was inhibited, whereas tyrosinase activity was increased. An in vitro wound healing assay demonstrated that migration of melanoma cells to the wound area was inhibited with the addition of Wnt-CM. Furthermore, evaluation of cellular senescence revealed prominent induction of SA-β-gal-positive senescent cellsmore » in cultures with Wnt-CM. Finally, the growth of B16 melanoma cell aggregates in collagen 3D-gel cultures was markedly suppressed in the presence of Wnt-CM. These results suggest that Wnt-10b represses tumor cell properties, such as proliferation and migration of B16 melanoma cells, driving them toward a more differentiated state along a melanocyte lineage. - Highlights: • Wnt-10b inhibited proliferation and migration of melanoma cells. • Wnt-10b induced tyrosinase activity and senescence of melanoma cells. • Wnt-10b suppressed growth of cell aggregates in collagen 3D-gel cultures. • Wnt-10b represses tumor cell properties, driving them toward a more differentiated state along a melanocyte lineage.« less
Jing, Hui; Song, Jingyuan; Zheng, Junnian
2018-03-01
Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase activated by various types of collagens that performs a critical role in cell attachment, migration, survival and proliferation. The functions of DDR1 in various types of tumor have been studied extensively. However, in breast carcinoma, the roles of collagen-evoked DDR1 remain ill defined. Although a number of studies have reported that DDR1 promotes apoptosis and inhibits migration in breast carcinoma, it has also been reported to be associated with tumor cell survival, chemoresistance to genotoxic drugs and the facilitation of invasion. The present review summarizes current progress and the complex effects of DDR1 in the field of breast carcinoma, and presents DDR1 as a promising therapeutic target.
Wolf, Katarina; Te Lindert, Mariska; Krause, Marina; Alexander, Stephanie; Te Riet, Joost; Willis, Amanda L; Hoffman, Robert M; Figdor, Carl G; Weiss, Stephen J; Friedl, Peter
2013-06-24
Cell migration through 3D tissue depends on a physicochemical balance between cell deformability and physical tissue constraints. Migration rates are further governed by the capacity to degrade ECM by proteolytic enzymes, particularly matrix metalloproteinases (MMPs), and integrin- and actomyosin-mediated mechanocoupling. Yet, how these parameters cooperate when space is confined remains unclear. Using MMP-degradable collagen lattices or nondegradable substrates of varying porosity, we quantitatively identify the limits of cell migration by physical arrest. MMP-independent migration declined as linear function of pore size and with deformation of the nucleus, with arrest reached at 10% of the nuclear cross section (tumor cells, 7 µm²; T cells, 4 µm²; neutrophils, 2 µm²). Residual migration under space restriction strongly depended upon MMP-dependent ECM cleavage by enlarging matrix pore diameters, and integrin- and actomyosin-dependent force generation, which jointly propelled the nucleus. The limits of interstitial cell migration thus depend upon scaffold porosity and deformation of the nucleus, with pericellular collagenolysis and mechanocoupling as modulators.
Collagen Scaffolds in Bone Sialoprotein-Mediated Bone Regeneration
Kruger, Thomas E.; Miller, Andrew H.; Wang, Jinxi
2013-01-01
Decades of research in bioengineering have resulted in the development of many types of 3-dimentional (3D) scaffolds for use as drug delivery systems (DDS) and for tissue regeneration. Scaffolds may be comprised of different natural fibers and synthetic polymers as well as ceramics in order to exert the most beneficial attributes including biocompatibility, biodegradability, structural integrity, cell infiltration and attachment, and neovascularization. Type I collagen scaffolds meet most of these criteria. In addition, type I collagen binds integrins through RGD and non-RGD sites which facilitates cell migration, attachment, and proliferation. Type I collagen scaffolds can be used for bone tissue repair when they are coated with osteogenic proteins such as bone morphogenic protein (BMP) and bone sialoprotein (BSP). BSP, a small integrin-binding ligand N-linked glycoprotein (SIBLING), has osteogenic properties and plays an essential role in bone formation. BSP also mediates mineral deposition, binds type I collagen with high affinity, and binds αvβ 3 and αvβ 5 integrins which mediate cell signaling. This paper reviews the emerging evidence demonstrating the efficacy of BSP-collagen scaffolds in bone regeneration. PMID:23653530
Collagen scaffolds in bone sialoprotein-mediated bone regeneration.
Kruger, Thomas E; Miller, Andrew H; Wang, Jinxi
2013-01-01
Decades of research in bioengineering have resulted in the development of many types of 3-dimentional (3D) scaffolds for use as drug delivery systems (DDS) and for tissue regeneration. Scaffolds may be comprised of different natural fibers and synthetic polymers as well as ceramics in order to exert the most beneficial attributes including biocompatibility, biodegradability, structural integrity, cell infiltration and attachment, and neovascularization. Type I collagen scaffolds meet most of these criteria. In addition, type I collagen binds integrins through RGD and non-RGD sites which facilitates cell migration, attachment, and proliferation. Type I collagen scaffolds can be used for bone tissue repair when they are coated with osteogenic proteins such as bone morphogenic protein (BMP) and bone sialoprotein (BSP). BSP, a small integrin-binding ligand N-linked glycoprotein (SIBLING), has osteogenic properties and plays an essential role in bone formation. BSP also mediates mineral deposition, binds type I collagen with high affinity, and binds α v β 3 and α v β 5 integrins which mediate cell signaling. This paper reviews the emerging evidence demonstrating the efficacy of BSP-collagen scaffolds in bone regeneration.
von Köckritz-Blickwede, Maren; Reichart, Donna; McGillvray, Shauna M.; Wingender, Gerhard; Kronenberg, Mitchell; Glass, Christopher K.; Nizet, Victor; Brenner, David A.
2011-01-01
Bone marrow (BM)-derived fibrocytes are a population of CD45+ and collagen Type I-expressing cells that migrate to the spleen and to target injured organs, such as skin, lungs, kidneys, and liver. While CD45+Col+ fibrocytes contribute to collagen deposition at the site of injury, the role of CD45+Col+ cells in spleen has not been elucidated. Here, we demonstrate that hepatotoxic injury (CCl4), TGF-β1, lipopolysaccharide, or infection with Listeria monocytogenes induce rapid recruitment of CD45+Col+ fibrocyte-like cells to the spleen. These cells have a gene expression pattern that includes antimicrobial factors (myleoperoxidase, cathelicidin, and defensins) and MHC II at higher levels than found on quiescent or activated macrophages. The immune functions of these splenic CD45+Col+ fibrocyte-like cells include entrapment of bacteria into extracellular DNA-based structures containing cathelicidin and presentation of antigens to naïve CD8+ T cells to induce their proliferation. Stimulation of these splenic fibrocyte-like cells with granulocyte macrophage-colony stimulating factor or macrophage-colony stimulating factor induces downregulation of collagen expression and terminal differentiation into the dendritic cells or macrophage. Thus, splenic CD45+Col+ cells are a population of rapidly mobilized BM-derived fibrocyte-like cells that respond to inflammation or infection to participate in innate and adaptive immune responses. PMID:21499735
Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts
NASA Technical Reports Server (NTRS)
Eckes, B.; Dogic, D.; Colucci-Guyon, E.; Wang, N.; Maniotis, A.; Ingber, D.; Merckling, A.; Langa, F.; Aumailley, M.; Delouvee, A.;
1998-01-01
Loss of a vimentin network due to gene disruption created viable mice that did not differ overtly from wild-type littermates. Here, primary fibroblasts derived from vimentin-deficient (-/-) and wild-type (+/+) mouse embryos were cultured, and biological functions were studied in in vitro systems resembling stress situations. Stiffness of -/- fibroblasts was reduced by 40% in comparison to wild-type cells. Vimentin-deficient cells also displayed reduced mechanical stability, motility and directional migration towards different chemo-attractive stimuli. Reorganization of collagen fibrils and contraction of collagen lattices were severely impaired. The spatial organization of focal contact proteins, as well as actin microfilament organization was disturbed. Thus, absence of a vimentin filament network does not impair basic cellular functions needed for growth in culture, but cells are mechanically less stable, and we propose that therefore they are impaired in all functions depending upon mechanical stability.
NASA Astrophysics Data System (ADS)
Jain, Anjana; Betancur, Martha; Patel, Gaurangkumar D.; Valmikinathan, Chandra M.; Mukhatyar, Vivek J.; Vakharia, Ajit; Pai, S. Balakrishna; Brahma, Barunashish; MacDonald, Tobey J.; Bellamkonda, Ravi V.
2014-03-01
Glioblastoma multiforme is an aggressive, invasive brain tumour with a poor survival rate. Available treatments are ineffective and some tumours remain inoperable because of their size or location. The tumours are known to invade and migrate along white matter tracts and blood vessels. Here, we exploit this characteristic of glioblastoma multiforme by engineering aligned polycaprolactone (PCL)-based nanofibres for tumour cells to invade and, hence, guide cells away from the primary tumour site to an extracortical location. This extracortial sink is a cyclopamine drug-conjugated, collagen-based hydrogel. When aligned PCL-nanofibre films in a PCL/polyurethane carrier conduit were inserted in the vicinity of an intracortical human U87MG glioblastoma xenograft, a significant number of human glioblastoma cells migrated along the aligned nanofibre films and underwent apoptosis in the extracortical hydrogel. Tumour volume in the brain was significantly lower following insertion of aligned nanofibre implants compared with the application of smooth fibres or no implants.
Fibroblasts regulate the migration of MCF7 mammary carcinoma cells in hydrated collagen gel.
Rossi, L; Reverberi, D; Capurro, C; Aiello, C; Cipolla, M; Bonanno, M; Podestà, G
1994-01-01
We have defined a tissue culture method suitable to study cell-cell interactions in an environmental set close to in vivo conditions. It consists of heterotypic cell populations mixed together inside a collagen gel in a chamber slide for a period of up to 14 days. When the three-dimensional system is saturated, cells will start to move on the plastic surface as monolayers surrounding the gel, with a characteristic speed depending on cell type. Usually fibroblasts move fast, while epithelial cells demonstrate a much lower pace of migration. At any given time gel contraction can be measured, and thus the rate of cell expansion, by knowing the distance from the edge of the gel to the leading edge of cell migration. By using this approach it was found that MCF7 mammary carcinoma cells display a great variety of morphologies following their mixture with different fibroblastic cell lines. In particular, when MCF7 cells were mixed with fibroblasts from human fetus, dog thymus and rat kidney, they migrated up to the leading edge of the fibroblastic front as isolated single cells or as cellular aggregates, many of which became necrotic in time, or took on an elongated morphology. Selective necrosis of MCF7 cells was also induced with serum concentration of 15% and 20% FCS, but only when they were mixed with fibroblasts. No necrosis was induced in MCF7 cells cultured alone. From these observations it is suggested that necrosis may sometimes favor the detachment and infiltration of resistant epithelial tumor cells by increasing their autonomous behaviour. Fibroblasts seem to be instrumental in regulating this process.
Understanding Collagen Organization in Breast Tumors to Predict and Prevent Metastasis
2011-09-01
mechanisms (for example TNF-α has also been shown to increase migration in human chondrosarcoma cells in vitro by upregulating αvβ3 integrin expression... chondrosarcoma cells. J Cell Physiol 2011, 226:792-799. Figure Legends Figure 1: E0771 breast cancer cells do not produce significant TNF-α in vitro
Antimicrobial peptide KSL-W promotes gingival fibroblast healing properties in vitro.
Park, Hyun-Jin; Salem, Mabrouka; Semlali, Abdelhabib; Leung, Kai P; Rouabhia, Mahmoud
2017-07-01
We investigated the effect of synthetic antimicrobial decapeptide KSL-W (KKVVFWVKFK) on normal human gingival fibroblast growth, migration, collagen gel contraction, and α-smooth muscle actin protein expression. Results show that in addition to promoting fibroblast adhesion by increasing F-actin production, peptide KSL-W promoted cell growth by increasing the S and G2/M cell cycle phases, and enhanced the secretion of metalloproteinase (MMP)-1 and MMP-2 by upregulating MMP inhibitors, such as tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 in fibroblasts. An in vitro wound healing assay confirmed that peptide KSL-W promoted fibroblast migration and contraction of a collagen gel matrix. We also demonstrated a high expression of α-smooth muscle actin by gingival fibroblasts being exposed to KSL-W. This work shows that peptide KSL-W enhances gingival fibroblast growth, migration, and metalloproteinase secretion, and the expression of α-smooth muscle actin, thus promoting wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.
An Implantable Device for Manipulation of the in vivo Tumor Microenvironment
NASA Astrophysics Data System (ADS)
Williams, James K.
In the past decade, it has become increasingly recognized that interactions between cancer cells and the tumor microenvironment (TME) regulate metastasis. One such interaction is the paracrine loop between macrophages and cancer cells which drives metastatic invasion in mammary tumors. Tumor associated macrophages release epidermal growth factor (EGF), a chemoattractant which induces the migration of cancer cells toward the blood vessels. The cancer cells reciprocate by releasing a macrophage chemoattractant, colony-stimulating factor 1 (CSF-1), resulting in the co-migration of both cell types and subsequent intravasation. In this work, a new technology has been developed for studying the mechanisms by which invasive tumor cells migrate in vivo toward gradients of EGF. Conventional in vitro methods used for studying tumor cell migration lack the complexity found in the TME and are therefore of limited relevance to in vivo metastasis. The Nano Intravital Device (NANIVID) has been designed as an implantable tool to manipulate the TME through the generation of soluble factor gradients. The NANIVID consists of two etched glass substrates, loaded with a hydrogel containing EGF, and sealed together using a polymer membrane. When implanted in vivo, the hydrogel will swell and release the entrapped EGF, forming a diffusion gradient in the tumor over many hours. The NANIVID design has been optimized for use with multiphoton-based intravital imaging, to monitor migration toward the device at single-cell resolution. Stabilization techniques have been developed to minimize imaging artifacts caused by breathing and specimen movement over the course of the experiment. The NANIVID has been validated in vivo using a mouse model of metastasis. When implanted in MDA-MB-231 xenograft tumors grown in SCID mice, chemotaxis of tumor cells was induced by the EGF gradient generated by the device. Cell motility parameters including velocity, directionality, and chemotactic index were calculated by tracking the migrating cells. Many additional chemicals and proteins are compatible with the NANIVID, providing a platform to initiate controlled changes in the TME that were not possible using conventional methods. Additionally, a one-dimensional (1D) cell migration assay was developed using electrospun nanofibers to mimic the collagen fibers associated with invasive breast tumors. Collagen fibers provide a substrate for cancer cells to migrate upon in vivo, serving as a connection to the blood vessels, to promote metastasis. Development of the migration assay enabled a low cost, versatile platform as a model system for the investigation of the motility processes used by tumor cells while constrained to 1D. The following supplemental material was submitted with this work and is available in the online version of this dissertation: Supp. Movie 1. Specimen Drift in Non-Fixtured Tumor.avi; Supp. Movie 2. Specimen Drift in Fixtured Tumor.avi; Supp. Movie 3. MDA-Mb-231 Cell Chemotaxis in vivo Toward 2 uM EGF NANIVID.avi; Supp. Movie 4. MDA-Mb-231 Cell Background Motility- Control NANIVID.avi; Supp. Movie 5. BAC Macrophage Chemotaxis- 300k U-ml hCSF-1 NANIVID.avi; Supp. Movie 6. BAC Macrophage Control Migration.avi; Supp. Movie 7. MTLn3 cells on Nanofiber-PVA Substrates.avi; Supp. Movie 8. MTLn3 cells on Nanofiber-Glass Substrates.avi.
Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs
Hall, Matthew S.; Alisafaei, Farid; Ban, Ehsan; Feng, Xinzeng; Hui, Chung-Yuen; Shenoy, Vivek B.; Wu, Mingming
2016-01-01
In native states, animal cells of many types are supported by a fibrous network that forms the main structural component of the ECM. Mechanical interactions between cells and the 3D ECM critically regulate cell function, including growth and migration. However, the physical mechanism that governs the cell interaction with fibrous 3D ECM is still not known. In this article, we present single-cell traction force measurements using breast tumor cells embedded within 3D collagen matrices. We recreate the breast tumor mechanical environment by controlling the microstructure and density of type I collagen matrices. Our results reveal a positive mechanical feedback loop: cells pulling on collagen locally align and stiffen the matrix, and stiffer matrices, in return, promote greater cell force generation and a stiffer cell body. Furthermore, cell force transmission distance increases with the degree of strain-induced fiber alignment and stiffening of the collagen matrices. These findings highlight the importance of the nonlinear elasticity of fibrous matrices in regulating cell–ECM interactions within a 3D context, and the cell force regulation principle that we uncover may contribute to the rapid mechanical tissue stiffening occurring in many diseases, including cancer and fibrosis. PMID:27872289
Collagen triple helix repeat containing 1 is a new promigratory marker of arthritic pannus.
Shekhani, Mohammed Talha; Forde, Toni S; Adilbayeva, Altynai; Ramez, Mohamed; Myngbay, Askhat; Bexeitov, Yergali; Lindner, Volkhard; Adarichev, Vyacheslav A
2016-07-19
The formation of destructive hypercellular pannus is critical to joint damage in rheumatoid arthritis (RA). The collagen triple helix repeat containing 1 (CTHRC1) protein expressed by activated stromal cells of diverse origin has previously been implicated in tissue remodeling and carcinogenesis. We recently discovered that the synovial Cthrc1 mRNA directly correlates with arthritis severity in mice. This study characterizes the role of CTHRC1 in arthritic pannus formation. Synovial joints of mice with collagen antibody-induced arthritis (CAIA) and human RA-fibroblast-like synoviocytes (FLS) were immunostained for CTHRC1, FLS and macrophage-specific markers. CTHRC1 levels in plasma from patients with RA were measured using sandwich ELISA. The migratory response of fibroblasts was studied with a transwell migration assay and time-lapse microscopy. Velocity and directness of cell migration was analyzed by recording the trajectories of cells treated with rhCTHRC1. Immunohistochemical analysis of normal and inflamed synovium revealed highly inducible expression of CTHRC1 in arthritis (10.9-fold). At the tissue level, CTHRC1-expressing cells occupied the same niche as large fibroblast-like cells positive for α-smooth muscle actin (α-SMA) and cadherin 11 (CDH11). CTHRC1 was produced by activated FLS predominantly located at the synovial intimal lining and at the bone-pannus interface. Cultured RA-FLS expressed CDH11, α-SMA, and CTHRC1. Upon treatment with exogenous rhCTHRC1, embryonic fibroblasts and RA-FLS significantly increased migration velocity, directness, and cell length along the front-tail axis (1.4-fold, p < 0.01). CTHRC1 was established as a novel marker of activated synoviocytes in murine experimental arthritis and RA. The pro-migratory effect of CTHRC1 on synoviocytes is considered one of the mechanisms promoting hypercellularity of the arthritic pannus.
Osmond, Matthew; Bernier, Sarah M; Pantcheva, Mina B; Krebs, Melissa D
2017-04-01
Glaucoma is a disease in which damage to the optic nerve leads to progressive, irreversible vision loss. The intraocular pressure (IOP) is the only modifiable risk factor for glaucoma and its lowering is considered a useful strategy for preventing or slowing down the progression of glaucomatous neuropathy. Elevated intraocular pressure associated with glaucoma is due to increased aqueous humor outflow resistance, primarily through the trabecular meshwork (TM) of the eye. Current in vitro models of the trabecular meshwork are oversimplified and do not capture the organized and complex three-dimensional nature of this tissue that consists primarily of collagen and glycoasaminoglycans. In this work, collagen and collagen-chondroitin sulfate (CS) scaffolds were fabricated via unidirectional freezing and lyophilization to induce the formation of aligned pores. Scaffolds were characterized by scanning electron microscopy, dynamic mechanical analysis, and a chondroitin sulfate quantification assay. Scaffold characterization confirmed the formation of aligned pores, and also that the CS was leaching out of the scaffolds over time. Primary porcine trabecular meshwork (TM) cells were seeded onto the surface of scaffolds and their gene expression, proliferation, viability, migration into the scaffolds, and morphology were examined. The TM cells were viable and proliferated 2 weeks after seeding. The cells migrated down into the internal scaffold structure and their morphology reflected the topography and alignment of the scaffold structure. This work is a promising step toward the development of a three dimensional in vitro model of the TM that can be used for testing of glaucoma pharmacological agents in future experimentation and to better our understanding of the trabecular meshwork and its complex physiology. Biotechnol. Bioeng. 2017;114: 915-923. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Salmon DNA Accelerates Bone Regeneration by Inducing Osteoblast Migration
Sato, Ayako; Kajiya, Hiroshi; Mori, Nana; Sato, Hironobu; Fukushima, Tadao; Kido, Hirofumi
2017-01-01
The initial step of bone regeneration requires the migration of osteogenic cells to defective sites. Our previous studies suggest that a salmon DNA-based scaffold can promote the bone regeneration of calvarial defects in rats. We speculate that the salmon DNA may possess osteoinductive properties, including the homing of migrating osteogenic cells. In the present study, we investigated the influence of the salmon DNA on osteoblastic differentiation and induction of osteoblast migration using MG63 cells (human preosteoblasts) in vitro. Moreover, we analyzed the bone regeneration of a critical-sized in vivo calvarial bone defect (CSD) model in rats. The salmon DNA enhanced both mRNA and protein expression of the osteogenesis-related factors, runt-related transcription factor 2 (Runx2), alkaline phosphatase, and osterix (OSX) in the MG63 cells, compared with the cultivation using osteogenic induction medium alone. From the histochemical and immunohistochemical assays using frozen sections of the bone defects from animals that were implanted with DNA disks, many cells were found to express aldehyde dehydrogenase 1, one of the markers for mesenchymal stem cells. In addition, OSX was observed in the replaced connective tissue of the bone defects. These findings indicate that the DNA induced the migration and accumulation of osteogenic cells to the regenerative tissue. Furthermore, an in vitro transwell migration assay showed that the addition of DNA enhanced an induction of osteoblast migration, compared with the medium alone. The implantation of the DNA disks promoted bone regeneration in the CSD of rats, compared with that of collagen disks. These results indicate that the salmon DNA enhanced osteoblastic differentiation and induction of migration, resulting in the facilitation of bone regeneration. PMID:28060874
Aijaz, Ayesha; Faulknor, Renea; Berthiaume, François; Olabisi, Ronke M
2015-11-01
Wound healing is a hierarchical process of intracellular and intercellular signaling. Insulin is a potent chemoattractant and mitogen for cells involved in wound healing. Insulin's potential to promote keratinocyte growth and stimulate collagen synthesis in fibroblasts is well described. However, there currently lacks an appropriate delivery mechanism capable of consistently supplying a wound environment with insulin; current approaches require repeated applications of insulin, which increase the chances of infecting the wound. In this study, we present a novel cell-based therapy that delivers insulin to the wound area in a constant or glucose-dependent manner by encapsulating insulin-secreting cells in nonimmunogenic poly(ethylene glycol) diacrylate (PEGDA) hydrogel microspheres. We evaluated cell viability and insulin secretory characteristics of microencapsulated cells. Glucose stimulation studies verified free diffusion of glucose and insulin through the microspheres, while no statistical difference in insulin secretion was observed between cells in microspheres and cells in monolayers. Scratch assays demonstrated accelerated keratinocyte migration in vitro when treated with microencapsulated cells. In excisional wounds on the dorsa of diabetic mice, microencapsulated RIN-m cells accelerated wound closure by postoperative day 7; a statistically significant increase over AtT-20ins-treated and control groups. Histological results indicated significantly greater epidermal thickness in both microencapsulated RIN-m and AtT-20ins-treated wounds. The results suggest that microencapsulation enables insulin-secreting cells to persist long enough at the wound site for a therapeutic effect and thereby functions as an effective delivery vehicle to accelerate wound healing.
A microfluidic device for 2D to 3D and 3D to 3D cell navigation
NASA Astrophysics Data System (ADS)
Shamloo, Amir; Amirifar, Leyla
2016-01-01
Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.
Cellular Interaction of Integrin α3β1 with Laminin 5 Promotes Gap Junctional Communication
Lampe, Paul D.; Nguyen, Beth P.; Gil, Susana; Usui, Marcia; Olerud, John; Takada, Yoshikazu; Carter, William G.
1998-01-01
Wounding of skin activates epidermal cell migration over exposed dermal collagen and fibronectin and over laminin 5 secreted into the provisional basement membrane. Gap junctional intercellular communication (GJIC) has been proposed to integrate the individual motile cells into a synchronized colony. We found that outgrowths of human keratinocytes in wounds or epibole cultures display parallel changes in the expression of laminin 5, integrin α3β1, E-cadherin, and the gap junctional protein connexin 43. Adhesion of keratinocytes on laminin 5, collagen, and fibronectin was found to differentially regulate GJIC. When keratinocytes were adhered on laminin 5, both structural (assembly of connexin 43 in gap junctions) and functional (dye transfer) assays showed a two- to threefold increase compared with collagen and five- to eightfold over fibronectin. Based on studies with immobilized integrin antibody and integrin-transfected Chinese hamster ovary cells, the interaction of integrin α3β1 with laminin 5 was sufficient to promote GJIC. Mapping of intermediate steps in the pathway linking α3β1–laminin 5 interactions to GJIC indicated that protein trafficking and Rho signaling were both required. We suggest that adhesion of epithelial cells to laminin 5 in the basement membrane via α3β1 promotes GJIC that integrates individual cells into synchronized epiboles. PMID:9852164
NASA Astrophysics Data System (ADS)
Fraley, Stephanie I.; Wu, Pei-Hsun; He, Lijuan; Feng, Yunfeng; Krisnamurthy, Ranjini; Longmore, Gregory D.; Wirtz, Denis
2015-10-01
Multiple attributes of the three-dimensional (3D) extracellular matrix (ECM) have been independently implicated as regulators of cell motility, including pore size, crosslink density, structural organization, and stiffness. However, these parameters cannot be independently varied within a complex 3D ECM protein network. We present an integrated, quantitative study of these parameters across a broad range of complex matrix configurations using self-assembling 3D collagen and show how each parameter relates to the others and to cell motility. Increasing collagen density resulted in a decrease and then an increase in both pore size and fiber alignment, which both correlated significantly with cell motility but not bulk matrix stiffness within the range tested. However, using the crosslinking enzyme Transglutaminase II to alter microstructure independently of density revealed that motility is most significantly predicted by fiber alignment. Cellular protrusion rate, protrusion orientation, speed of migration, and invasion distance showed coupled biphasic responses to increasing collagen density not predicted by 2D models or by stiffness, but instead by fiber alignment. The requirement of matrix metalloproteinase (MMP) activity was also observed to depend on microstructure, and a threshold of MMP utility was identified. Our results suggest that fiber topography guides protrusions and thereby MMP activity and motility.
Shamloo, Amir; Mohammadaliha, Negar; Heilshorn, Sarah C; Bauer, Amy L
2016-04-01
A thorough understanding of determining factors in angiogenesis is a necessary step to control the development of new blood vessels. Extracellular matrix density is known to have a significant influence on cellular behaviors and consequently can regulate vessel formation. The utilization of experimental platforms in combination with numerical models can be a powerful method to explore the mechanisms of new capillary sprout formation. In this study, using an integrative method, the interplay between the matrix density and angiogenesis was investigated. Owing the fact that the extracellular matrix density is a global parameter that can affect other parameters such as pore size, stiffness, cell-matrix adhesion and cross-linking, deeper understanding of the most important biomechanical or biochemical properties of the ECM causing changes in sprout morphogenesis is crucial. Here, we implemented both computational and experimental methods to analyze the mechanisms responsible for the influence of ECM density on the sprout formation that is difficult to be investigated comprehensively using each of these single methods. For this purpose, we first utilized an innovative approach to quantify the correspondence of the simulated collagen fibril density to the collagen density in the experimental part. Comparing the results of the experimental study and computational model led to some considerable achievements. First, we verified the results of the computational model using the experimental results. Then, we reported parameters such as the ratio of proliferating cells to migrating cells that was difficult to obtain from experimental study. Finally, this integrative system led to gain an understanding of the possible mechanisms responsible for the effect of ECM density on angiogenesis. The results showed that stable and long sprouts were observed at an intermediate collagen matrix density of 1.2 and 1.9 mg/ml due to a balance between the number of migrating and proliferating cells. As a result of weaker connections between the cells and matrix, a lower collagen matrix density (0.7 mg/ml) led to unstable and broken sprouts. However, higher matrix density (2.7 mg/ml) suppressed sprout formation due to the high level of matrix entanglement, which inhibited cell migration. This study also showed that extracellular matrix density can influence sprout branching. Our experimental results support this finding.
Wirohadidjojo, Yohanes Widodo; Budiyanto, Arief; Soebono, Hardyanto
2016-09-01
To determine whether platelet-rich fibrin lysate (PRF-L) could restore the function of chronically ultraviolet-A (UVA)-irradiated human dermal fibroblasts (HDFs), we isolated and sub-cultured HDFs from six different human foreskins. HDFs were divided into two groups: those that received chronic UVA irradiation (total dosages of 10 J cm⁻²) and those that were not irradiated. We compared the proliferation rates, collagen deposition, and migration rates between the groups and between chronically UVA-irradiated HDFs in control and PRF-L-treated media. Our experiment showed that chronic UVA irradiation significantly decreased (p<0.05) the proliferation rates, migration rates, and collagen deposition of HDFs, compared to controls. Compared to control media, chronically UVA-irradiated HDFs in 50% PRF-L had significantly increased proliferation rates, migration rates, and collagen deposition (p<0.05), and the migration rates and collagen deposition of chronically UVA-irradiated HDFs in 50% PRF-L were equal to those of normal fibroblasts. Based on this experiment, we concluded that PRF-L is a good candidate material for treating UVA-induced photoaging of skin, although the best method for its clinical application remains to be determined.
Hypoxia-Dependent Modification of Collagen Networks Promotes Sarcoma Metastasis
Eisinger-Mathason, T.S. Karin; Zhang, Minsi; Qiu, Qiong; Skuli, Nicolas; Nakazawa, Michael S.; Karakasheva, Tatiana; Mucaj, Vera; Shay, Jessica E.S.; Stangenberg, Lars; Sadri, Navid; Puré, Ellen; Yoon, Sam S.; Kirsch, David G.; Simon, M. Celeste
2013-01-01
Intratumoral hypoxia and expression of Hypoxia Inducible Factor 1α (HIF1α) correlate with metastasis and poor survival in sarcoma patients. We demonstrate here that hypoxia controls sarcoma metastasis through a novel mechanism wherein HIF1α enhances expression of the intracellular enzyme procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2). We show that loss of HIF1α or PLOD2 expression disrupts collagen modification, cell migration and pulmonary metastasis (but not primary tumor growth) in allograft and autochthonous LSLKrasG12D/+; Trp53fl/fl murine sarcoma models. Furthermore, ectopic PLOD2 expression restores migration and metastatic potential in HIF1α-deficient tumors, and analysis of human sarcomas reveal elevated HIF1α and PLOD2 expression in metastatic primary lesions. Pharmacological inhibition of PLOD enzymatic activity suppresses metastases. Collectively, these data indicate that HIF1α controls sarcoma metastasis through PLOD2-dependent collagen modification and organization in primary tumors. We conclude that PLOD2 is a novel therapeutic target in sarcomas and successful inhibition of this enzyme may reduce tumor cell dissemination. PMID:23906982
Metallic nanoparticles reduce the migration of human fibroblasts in vitro.
Vieira, Larissa Fernanda de Araújo; Lins, Marvin Paulo; Viana, Iana Mayane Mendes Nicácio; Dos Santos, Jeniffer Estevão; Smaniotto, Salete; Reis, Maria Danielma Dos Santos
2017-12-01
Nanoparticles have extremely wide applications in the medical and biological fields. They are being used in biosensors, local drug delivery, diagnostics, and medical therapy. However, the potential effects of nanoparticles on target cell and tissue function, apart from cytotoxicity, are not completely understood. Thus, the aim of this study was to investigate the in vitro effects of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) on human fibroblasts with respect to their interaction with the extracellular matrix and in cell migration. Immunofluorescence analysis revealed that treatment with AgNPs or AuNPs decreased collagen and laminin production at all the concentrations tested (0.1, 1, and 10 μg/mL). Furthermore, cytofluorometric analysis showed that treatment with AgNPs reduced the percentage of cells expressing the collagen receptor very late antigen 2, α 2 β 1 integrin (VLA-2) and the laminin receptor very late antigen 6, α 6 β 1 integrin (VLA-6). In contrast, AuNP treatment increased and decreased the percentages of VLA-2-positive and VLA-6-positive cells, respectively, as compared to the findings for the controls. Analysis of cytoskeletal reorganization showed that treatment with both types of nanoparticles increased the formation of stress fibres and number of cell protrusions and impaired cell polarity. Fibroblasts exposed to different concentrations of AuNPs and AgNPs showed reduced migration through transwell chambers in the functional chemotaxis assay. These results demonstrated that metal nanoparticles may influence fibroblast function by negatively modulating the deposition of extracellular matrix molecules (ECM) and altering the expression of ECM receptors, cytoskeletal reorganization, and cell migration.
Metallic nanoparticles reduce the migration of human fibroblasts in vitro
NASA Astrophysics Data System (ADS)
Vieira, Larissa Fernanda de Araújo; Lins, Marvin Paulo; Viana, Iana Mayane Mendes Nicácio; dos Santos, Jeniffer Estevão; Smaniotto, Salete; Reis, Maria Danielma dos Santos
2017-03-01
Nanoparticles have extremely wide applications in the medical and biological fields. They are being used in biosensors, local drug delivery, diagnostics, and medical therapy. However, the potential effects of nanoparticles on target cell and tissue function, apart from cytotoxicity, are not completely understood. Thus, the aim of this study was to investigate the in vitro effects of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) on human fibroblasts with respect to their interaction with the extracellular matrix and in cell migration. Immunofluorescence analysis revealed that treatment with AgNPs or AuNPs decreased collagen and laminin production at all the concentrations tested (0.1, 1, and 10 μg/mL). Furthermore, cytofluorometric analysis showed that treatment with AgNPs reduced the percentage of cells expressing the collagen receptor very late antigen 2, α2β1 integrin (VLA-2) and the laminin receptor very late antigen 6, α6β1 integrin (VLA-6). In contrast, AuNP treatment increased and decreased the percentages of VLA-2-positive and VLA-6-positive cells, respectively, as compared to the findings for the controls. Analysis of cytoskeletal reorganization showed that treatment with both types of nanoparticles increased the formation of stress fibres and number of cell protrusions and impaired cell polarity. Fibroblasts exposed to different concentrations of AuNPs and AgNPs showed reduced migration through transwell chambers in the functional chemotaxis assay. These results demonstrated that metal nanoparticles may influence fibroblast function by negatively modulating the deposition of extracellular matrix molecules (ECM) and altering the expression of ECM receptors, cytoskeletal reorganization, and cell migration.
Kaufman, Gili; Whitescarver, Ryan; Nunes, Laiz; Palmer, Xavier-Lewis; Skrtic, Drago; Tutak, Wojtek
2017-10-09
Deep wounds in the gingiva caused by trauma or surgery require a rapid and robust healing of connective tissues. We propose utilizing gas-brushed nanofibers coated with collagen and fibrin for that purpose. Our hypotheses are that protein-coated nanofibers will: (i) attract and mobilize cells in various spatial orientations, and (ii) regulate the expression levels of specific extracellular matrix (ECM)-associated proteins, determining the initial conformational nature of dense and soft connective tissues. Gingival fibroblast monolayers and 3D spheroids were cultured on ECM substrate and covered with gas-blown poly-(DL-lactide-co-glycolide) (PLGA) nanofibers (uncoated/coated with collagen and fibrin). Cell attraction and rearrangement was followed by F-actin staining and confocal microscopy. Thicknesses of the cell layers, developed within the nanofibers, were quantified by imageJ software. The expression of collagen1α1 chain (Col1α1), fibronectin, and metalloproteinase 2 (MMP2) encoding genes was determined by quantitative reverse transcription analysis. Collagen- and fibrin- coated nanofibers induced cell migration toward fibers and supported cellular growth within the scaffolds. Both proteins affected the spatial rearrangement of fibroblasts by favoring packed cell clusters or intermittent cell spreading. These cell arrangements resembled the structural characteristic of dense and soft connective tissues, respectively. Within 3 days of incubation, fibroblast spheroids interacted with the fibers and grew robustly by increasing their thickness compared to monolayers. While the ECM key components, such as fibronectin and MMP2 encoding genes, were expressed in both protein groups, Col1α1 was predominantly expressed in bundled fibroblasts grown on collagen fibers. This enhanced expression of collagen1 is typical for dense connective tissue. Based on results of this study, our gas-blown, collagen- and fibrin-coated PLGA nanofibers are viable candidates for engineering soft and dense connective tissues with the required structural characteristics and functions needed for wound healing applications. Rapid regeneration of these layers should enhance healing of open wounds in a harsh oral environment. © 2017 IOP Publishing Ltd.
Combined use of bFGF and GDF-5 enhances the healing of medial collateral ligament injury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saiga, Kenta; Furumatsu, Takayuki, E-mail: matino@md.okayama-u.ac.jp; Yoshida, Aki
Research highlights: {yields} bFGF/GDF-5 treatment increases cellular proliferation and migration of MCL fibroblasts. {yields} bFGF/GDF-5 hydrogels stimulate the healing of MCL injury in vivo. {yields} bFGF/GDF-5 hydrogels stimulate Col1a1 expression and type I collagen synthesis. {yields} Combined use of bFGF/GDF-5 enhances MCL healing. -- Abstract: Basic fibroblast growth factor (bFGF) and growth and differentiation factor (GDF)-5 stimulate the healing of medial collateral ligament (MCL) injury. However, the effect of isolated and combined use of bFGF/GDF-5 remains still unclear. We investigated cellular proliferation and migration responding to bFGF/GDF-5 using rabbit MCL fibroblasts. Rabbit MCL injury was treated by bFGF and/or GDF-5more » with peptide hydrogels. Gene expression and deposition of collagens in healing tissues were evaluated. bFGF/GDF-5 treatment additively enhanced cell proliferation and migration. bFGF/GDF-5 hydrogels stimulated Col1a1 expression without increasing Col3a1 expression. Combined use of bFGF/GDF-5 stimulated type I collagen deposition and the reorganization of fiber alignment, and induced better morphology of fibroblasts in healing MCLs. Our study indicates that combined use of bFGF/GDF-5 might enhance MCL healing by increasing proliferation and migration of MCL fibroblasts, and by regulating collagen synthesis and connective fiber alignment.« less
Inhibition of melanoma cell motility by the snake venom disintegrin eristostatin
Tian, Jing; Paquette-Straub, Carrie; Sage, E. Helene; Funk, Sarah E.; Patel, Vivek; Galileo, Deni; McLane, Mary Ann
2007-01-01
Eristostatin, an RGD-containing disintegrin isolated from the venom of Eristicophis macmahoni, inhibits lung or liver colonization of melanoma cells in a mouse model. In this study, transwell migration and in vitro wound closure assays were used to determine the effect of eristostatin on the migration of melanoma cells. Eristostatin significantly impaired the migration of 5 human melanoma cell lines. Furthermore, it specifically inhibited cell migration on fibronectin in a concentration-dependent manner, but not that on collagen IV or laminin. In contrast, eristostatin was found to have no effect on cell proliferation or angiogenesis. These results indicate that the interaction between eristostatin and melanoma cells may involve fibronectin-binding integrins that mediate cell migration. Mutations to alanine of seven residues within the RGD loop of eristostatin and four residues outside the RGD loop of eristostatin resulted in significantly less potency in both platelet aggregation and wound closure assays. For six of the mutations, however, decreased activity was found only in the latter assay. We conclude that a different mechanism and/or integrin is involved in these two cell activities. PMID:17316731
Cartilage proteoglycans inhibit fibronectin-mediated adhesion
NASA Astrophysics Data System (ADS)
Rich, A. M.; Pearlstein, E.; Weissmann, G.; Hoffstein, S. T.
1981-09-01
Normal tissues and organs show, on histological examination, a pattern of cellular and acellular zones that is characteristic and unique for each organ or tissue. This pattern is maintained in health but is sometimes destroyed by disease. For example, in mobile joints, the articular surfaces consist of relatively acellular hyaline cartilage, and the joint space is enclosed by a capsule of loose connective tissue with a lining of fibroblasts and macrophages. In the normal joint these cells are confined to the synovial lining and the articular surface remains acellular. In in vitro culture, macrophages and their precursor monocytes are very adhesive, and fibroblasts can migrate and overgrow surfaces such as collagen or plastic used for tissue culture. The fibroblasts adhere to collagen by means of fibronectin, which they synthesize and secrete1. Because the collagen of cartilage is capable of binding serum fibronectin2 and fibronectin is present in cartilage during its development3, these cells should, in theory, slowly migrate from the synovial lining to the articular surface. It is their absence from the articular cartilage in normal circumstances, and then presence in such pathological states as rheumatoid arthritis, that is striking. We therefore set out to determine whether a component of cartilage could prevent fibroblast adherence in a defined adhesion assay. As normal cartilage is composed of 50% proteoglycans and 50% collagen by dry weight4, we tested the possibility that the proteoglycans in cartilage inhibit fibroblast adhesion to collagen. We present here evidence that fibroblast spreading and adhesion to collagenous substrates is inhibited by cartilage proteoglycans.
Stoppato, M; Carletti, E; Maniglio, D; Migliaresi, C; Motta, A
2013-02-01
Bone tissue regeneration involves different healing stages and the resulting final hard tissue is formed from natural templates such as fibrous collagen, soft and hard callus and capillary bed. This work aims to evaluate the efficiency of different scaffold geometries with a novel approach: exploring the relationships among scaffold morphologies, cell activity and collagen 3D organization, which serves as a natural template for subsequent mineralization. Among the possible systems to fabricate scaffolds, solvent casting with particulate leaching and microfabrication were used to produce random vs ordered structures from poly(D,L-lactic acid). In vitro biological testing was carried out by culturing a human osteosarcoma-derived osteoblast cell line (MG63) and measuring material cytotoxicity, cell proliferation and migration. Assemblage of collagen fibres was evaluated. A preliminary study of collagen distribution over the two different matrices was performed by confocal laser microscopy after direct red 80 staining. Both of the scaffolds were seen to be a good substrate for cell attachment, growth and proliferation. However, it seems that random, rather than regular, well-ordered porosity induces a more proper collagen fibre distribution and organization, similar to the natural one formed in the early stages of bone repair. Copyright © 2011 John Wiley & Sons, Ltd.
He, Xianghui; Dai, Jinhua; Fan, Youfen; Zhang, Chun; Zhao, Xihong
2017-01-01
ABSTRACT Cutaneous wound healing is a complex physiological process that requires the efforts of various cell types and signaling pathways and often results in thickened collagen-enriched healed tissue called a scar. Therefore, the identification of the mechanism of cutaneous wound healing is necessary and has great value in providing better treatment. Here, we demonstrated that MMP-1 inhibition could promote cell proliferation in dermal fibroblasts via the MTT assay. Meanwhile, we investigated cell migration by flow cytometry and tested type I collagenase activity. We found that MMP-1 inhibition promoted cell proliferation and inhibited cell migration and type I collagenase activity. In conclusion, our study demonstrated that MMP-1 might be a potential therapeutic target in cutaneous wound healing. PMID:28277161
Zou, Fengjuan; Li, Runrun; Jiang, Jianjun; Mo, Xiumei; Gu, Guofeng; Guo, Zhongwu; Chen, Zonggang
2017-12-01
The collagen-chitosan complex with a three-dimensional nanofiber structure was fabricated to mimic native ECM for tissue repair and biomedical applications. Though the three-dimensional hierarchical fibrous structures of collagen-chitosan composites could provide more adequate stimulus to facilitate cell adhesion, migrate and proliferation, and thus have the potential as tissue engineering scaffolding, there are still limitations in their applications due to the insufficient mechanical properties of natural materials. Because poly (vinyl alcohol) (PVA) and thermoplastic polyurethane (TPU) as biocompatible synthetic polymers can offer excellent mechanical properties, they were introduced into the collagen-chitosan composites to fabricate the mixed collagen/chitosan/PVA fibers and a sandwich structure (collagen/chitosan-TPU-collagen/chitosan) of nanofiber in order to enhance the mechanical properties of the nanofibrous collagen-chitosan scaffold. The results showed that the tensile behavior of materials was enhanced to different degrees with the difference of collagen content in the fibers. Besides the Young's modulus had no obvious changes, both the break strength and the break elongation of materials were heightened after reinforced by PVA. For the collagen-chitosan nanofiber reinforced by TPU, both the break strength and the Young's modulus of materials were heightened in different degrees with the variety of collagen content in the fibers despite the decrease of the break elongation of materials to some extent. In vitro cell test demonstrated that the materials could provide adequate environment for cell adhesion and proliferation. All these indicated that the reinforced collagen-chitosan nanofiber could be as potential scaffold for tissue engineering according to the different mechanical requirements in clinic.
Bourget, Jean-Michel; Kérourédan, Olivia; Medina, Manuela; Rémy, Murielle; Thébaud, Noélie Brunehilde; Bareille, Reine; Chassande, Olivier; Amédée, Joëlle; Catros, Sylvain; Devillard, Raphaël
2016-01-01
Tissue engineering of large organs is currently limited by the lack of potent vascularization in vitro . Tissue-engineered bone grafts can be prevascularized in vitro using endothelial cells (ECs). The microvascular network architecture could be controlled by printing ECs following a specific pattern. Using laser-assisted bioprinting, we investigated the effect of distance between printed cell islets and the influence of coprinted mesenchymal cells on migration. When printed alone, ECs spread out evenly on the collagen hydrogel, regardless of the distance between cell islets. However, when printed in coculture with mesenchymal cells by laser-assisted bioprinting, they remained in the printed area. Therefore, the presence of mesenchymal cell is mandatory in order to create a pattern that will be conserved over time. This work describes an interesting approach to study cell migration that could be reproduced to study the effect of trophic factors.
Medina, Manuela; Rémy, Murielle; Thébaud, Noélie Brunehilde; Bareille, Reine; Chassande, Olivier; Amédée, Joëlle; Catros, Sylvain
2016-01-01
Tissue engineering of large organs is currently limited by the lack of potent vascularization in vitro. Tissue-engineered bone grafts can be prevascularized in vitro using endothelial cells (ECs). The microvascular network architecture could be controlled by printing ECs following a specific pattern. Using laser-assisted bioprinting, we investigated the effect of distance between printed cell islets and the influence of coprinted mesenchymal cells on migration. When printed alone, ECs spread out evenly on the collagen hydrogel, regardless of the distance between cell islets. However, when printed in coculture with mesenchymal cells by laser-assisted bioprinting, they remained in the printed area. Therefore, the presence of mesenchymal cell is mandatory in order to create a pattern that will be conserved over time. This work describes an interesting approach to study cell migration that could be reproduced to study the effect of trophic factors. PMID:27833916
Xu, Anjian; Li, Yanmeng; Zhao, Wenshan; Hou, Fei; Li, Xiaojin; Sun, Lan; Chen, Wei; Yang, Aiting; Wu, Shanna; Zhang, Bei; Yao, Jingyi; Wang, Huan; Huang, Jian
2018-02-01
Hepatic fibrosis is characterized by the activation of hepatic stellate cells (HSCs). Migration of the activated HSCs to the site of injury is one of the key characteristics during the wound healing process. We have previously demonstrated that 14 kDa phosphohistidine phosphatase (PHP14) is involved in migration and lamellipodia formation of HSCs. However, the role of PHP14 in liver fibrosis remains unknown. In this study, we first assessed PHP14 expression and distribution in liver fibrotic tissues using western blot, immunohistochemistry, and double immunofluorescence staining. Next, we investigated the role of PHP14 in liver fibrosis and, more specifically, the migration of HSCs by Transwell assay and 3D collagen matrices assay. Finally, we explored the possible molecular mechanisms of the effects of PHP14 on these processes. Our results show that the PHP14 expression is up-regulated in fibrotic liver and mainly in HSCs. Importantly, TGF-β1 can induce PHP14 expression in HSCs accompanied with the activation of HSCs. Consistent with the previous study, PHP14 promotes HSCs migration, especially, promotes 3D floating collagen matrices contraction but inhibits stressed-released matrices contraction. Mechanistically, the PI3Kγ/AKT/Rac1 pathway is involved in migration regulated by PHP14. Moreover, PHP14 specifically mediates the TGF-β1 signaling to PI3Kγ/AKT pathway and regulates HSC migration, and thus participates in liver fibrosis. Our study identified the role of PHP14 in liver fibrosis, particularly HSC migration, and suggested a novel mediator of transducting TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway. PHP14 is up-regulated in fibrotic liver and activated hepatic stellate cells. The expression of PHP14 is induced by TGF-β1. The migration of hepatic stellate cells is regulated by PHP14. PHP14 is a mediator of TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway in hepatic stellate cells.
Freezing-induced deformation of biomaterials in cryomedicine
NASA Astrophysics Data System (ADS)
Ozcelikkale, Altug
Cryomedicine utilizes low temperature treatments of biological proteins, cells and tissues for cryopreservation, materials processing and cryotherapy. Lack of proper understanding of cryodamage that occurs during these applications remains to be the primary bottleneck for development of successful tissue cryopreservation and cryosurgery procedures. An engineering approach based on a view of biological systems as functional biomaterials can help identify, predict and control the primary cryodamage mechanisms by developing an understanding of underlying freezing-induced biophysical processes. In particular, freezing constitutes the main structural/mechanical origin of cryodamage and results in significant deformation of biomaterials at multiple length scales. Understanding of these freezing-induced deformation processes and their effects on post-thaw biomaterial functionality is currently lacking but will be critical to engineer improved cryomedicine procedures. This dissertation addresses this problem by presenting three separate but related studies of freezing-induced deformation at multiple length scales including nanometer-scale protein fibrils, single cells and whole tissues. A combination of rigorous experimentation and computational modeling is used to characterize post-thaw biomaterial structure and properties, predict biomaterial behavior and assess its post-thaw biological functionality. Firstly, freezing-induced damage on hierarchical extracellular matrix structure of collagen is investigated at molecular, fibril and matrix levels. Results indicate to a specific kind of fibril damage due to freezing-induced expansion of intrafibrillar fluid. This is followed by a study of freezing-induced cell and tissue deformation coupled to osmotically driven cellular water transport. Computational and semi empirical modeling of these processes indicate that intracellular deformation of the cell during freezing is heterogeneous and can interfere with cellular water transport, thereby leading to previously unconsidered mechanisms of cell freezing response. In addition, cellular water transport is identified as the critical limiting factor on the amount of freezing-induced tissue deformation, particularly in native tissues with high cell densities. Finally, effects of cryopreservation on post-thaw biological functionality of collagen engineered tissue constructs is investigated where cell-matrix interactions during fibroblast migration are considered as the functional response. Simultaneous cell migration and extracellular matrix deformation are characterized. Results show diminished cell-matrix coupling by freeze/thaw accompanied by a subtle decrease in cell migration. A connection between these results and freezing-induced collagen fibril damage is also suggested. Overall, this dissertation provides new fundamental knowledge on cryodamage mechanisms and a collection of novel multi-purpose engineering tools that will open the way for rational design of cryomedicine technologies.
Rac regulates vascular endothelial growth factor stimulated motility.
Soga, N; Connolly, J O; Chellaiah, M; Kawamura, J; Hruska, K A
2001-01-01
During angiogenesis endothelial cells migrate towards a chemotactic stimulus. Understanding the mechanism of endothelial cell migration is critical to the therapeutic manipulation of angiogenesis and ultimately cancer prevention. Vascular endothelial growth factor (VEGF) is a potent chemotactic stimulus of endothelial cells during angiogenesis. The endothelial cell signal transduction pathway of VEGF represents a potential target for cancer therapy, but the mechanisms of post-receptor signal transduction including the roles of rho family GTPases in regulating the cytoskeletal effects of VEGF in endothelial cells are not understood. Here we analyze the mechanisms of cell migration in the mouse brain endothelial cell line (bEND3). Stable transfectants containing a tetracycline repressible expression vector were used to induce expression of Rac mutants. Endothelial cell haptotaxis was stimulated by constitutively active V12Rac on collagen and vitronectin coated supports, and chemotaxis was further stimulated by VEGF. Osteopontin coated supports were the most stimulatory to bEND3 haptotaxis, but VEGF was not effective in further increasing migration on osteopontin coated supports. Haptotaxis on support coated with collagen, vitronectin, and to a lesser degree osteopontin was inhibited by N17 Rac. N17 Rac expression blocked stimulation of endothelial cell chemotaxis by VEGF. As part of the chemotactic stimulation, VEGF caused a loss of actin organization at areas of cell-cell contact and increased stress fiber expression in endothelial cells which were directed towards pores in the transwell membrane. N17 Rac prevented the stimulation of cell-cell contact disruption and the stress fiber stimulation by VEGF. These data demonstrate two pathways of regulating endothelial cell motility, one in which Rac is activated by matrix/integrin stimulation and is a crucial modulator of endothelial cell haptotaxis. The other pathway, in the presence of osteopontin, is Rac independent. VEGF stimulated chemotaxis, is critically dependent on Rac activation. Osteopontin was a potent matrix activator of motility, and perhaps one explanation for the absence of a VEGF plus osteopontin effect is that osteopontin stimulated motility was inhibitory to the Rac pathway.
BMP-2 Induces Versican and Hyaluronan That Contribute to Post-EMT AV Cushion Cell Migration
Inai, Kei; Burnside, Jessica L.; Hoffman, Stanley; Toole, Bryan P.; Sugi, Yukiko
2013-01-01
Distal outgrowth and maturation of mesenchymalized endocardial cushions are critical morphogenetic events during post-EMT atrioventricular (AV) valvuloseptal morphogenesis. We explored the role of BMP-2 in the regulation of valvulogenic extracellular matrix (ECM) components, versican and hyaluronan (HA), and cell migration during post-EMT AV cushion distal outgrowth/expansion. We observed intense staining of versican and HA in AV cushion mesenchyme from the early cushion expansion stage, Hamburger and Hamilton (HH) stage-17 to the cushion maturation stage, HH stage-29 in the chick. Based on this expression pattern we examined the role of BMP-2 in regulating versican and HA using 3D AV cushion mesenchymal cell (CMC) aggregate cultures on hydrated collagen gels. BMP-2 induced versican expression and HA deposition as well as mRNA expression of versican and Has2 by CMCs in a dose dependent manner. Noggin, an antagonist of BMP, abolished BMP-2-induced versican and HA as well as mRNA expression of versican and Has2. We further examined whether BMP-2-promoted cell migration was associated with expression of versican and HA. BMP-2- promoted cell migration was significantly impaired by treatments with versican siRNA and HA oligomer. In conclusion, we provide evidence that BMP-2 induces expression of versican and HA by AV CMCs and that these ECM components contribute to BMP-2-induced CMC migration, indicating critical roles for BMP-2 in distal outgrowth/expansion of mesenchymalized AV cushions. PMID:24147033
Clinical Usage of an Extracellular, Collagen-rich Matrix: A Case Series.
AbouIssa, Abdelfatah; Mari, Walid; Simman, Richard
2015-11-01
OASIS Ultra (Smith and Nephew, St. Petersburg, FL) is an extracellular, collagen-rich matrix derived from submucosa of porcine intestine. It is composed of collagen type I, glycosaminoglycan, and proteoglycans. This extracellular matrix (ECM) differs from the single layer in thickness and offers ease of handling and application. It also stimulates cell migration and structural support, provides moisture environment, decreases inflammation, and induces cell proliferation and cellular attachments. In this case series, the authors present their experience with this product in various clinical scenarios. The authors used the product in a variety of wounds with different etiologies to test the clinical outcome of the ECM. This was an observational case series with prospective review of 6 different patients with different types of wounds who received treatment with the ECM during their treatment. The product was applied on the following types of wounds: chronic venous ulcer, nonhealing Achilles tendon vasculitic wound, Marjolin's ulcer, posttraumatic wound, stage IV sacral-coccygeal pressure wound, and complicated transmetatarsal amputation of gangrenous left forefoot diabetic wound. All of these wounds healed within the expected time periods and without complications. In general, healing was achieved in 4-16 weeks using 1-12 applications of the ECM. Wounds with different etiologies were successfully treated with an extracellular, collagen-rich matrix. By replacing the lost ECM to guide cellular growth and migration, this product did ultimately hasten the healing process.
Roberts, Steven A; Waziri, Allen E; Agrawal, Nitin
2016-03-01
Cell migration through three-dimensional (3D) tissue spaces is integral to many biological and pathological processes, including metastasis. Circulating tumor cells (CTCs) are phenotypically heterogeneous, and in vitro analysis of their extravasation behavior is often impeded by the inability to establish complex tissue-like extracellular matrix (ECM) environments and chemotactic gradients within microfluidic devices. We have developed a novel microfluidic strategy to manipulate surface properties of enclosed microchannels and create 3D ECM structures for real-time observation of individual migrating cells. The wettability of selective interconnected channels is controlled by a plasma pulse, enabling the incorporation of ECM exclusively within the transmigration regions. We applied this approach to collectively analyze CTC-endothelial adhesion, trans-endothelial migration, and subsequent motility of breast cancer cells (MDA-MB-231) through a 3D ECM under artificial gradients of SDF-1α. We observed migration velocities ranging from 5.12 to 12.8 μm/h, which closely correspond to single-cell migration in collagen blocks, but are significantly faster than the migration of cell aggregates. The compartmentalized microchannels separated by the porous ECM makes this in vitro assay versatile and suitable for a variety of applications such as inflammation studies, drug screening, and coculture interactions.
Watching stem cells at work with a flexible multiphoton tomograph
NASA Astrophysics Data System (ADS)
Uchugonova, Aisada; Hoffmann, Robert; Weinigel, Martin; König, Karsten
2012-03-01
There is a high demand for non-invasive imaging techniques that allow observation of stem cells in their native environment without significant input on cell metabolism, reproduction, and behavior. Easy accessible hair follicle pluripotent stem cells in the bulge area and dermal papilla are potential sources for stem cell based therapy. It has been shown that these cells are able to generate hair, non-follicle skin cells, nerves, vessels, smooth muscles etc. and may participate in wound healing processes. We report on the finding of nestin-GFP expressing stem cells in their native niche in the bulge of the hair follicle of living mice by using high-resolution in-vivo multiphoton tomography. The 3D imaging with submicron resolution was based on two-photon induced fluorescence and second harmonic generation (SHG) of collagen. Migrating stem cells from the bulge to their microenvironment have been detected inside the skin during optical deep tissue sectioning.
Birthare, Karamveer; Shojaee, Mozhgan; Jones, Carlos Gross; Brenner, James R; Bashur, Chris A
2016-04-21
Modulating the host response, including the accumulation of oxidized lipid species, is important for improving tissue engineered vascular graft (TEVG) viability. Accumulation of oxidized lipids promotes smooth muscle cell (SMC) hyper-proliferation and inhibits endothelial cell migration, which can lead to several of the current challenges for small-diameter TEVGs. Generating biomaterials that reduce lipid oxidation is important for graft survival and this assessment can provide a reliable correlation to clinical situations. In this study, we determined the collagen to poly(ε-caprolactone) (PCL) ratio required to limit the production of pro-inflammatory species, while maintaining the required mechanical strength for the graft. Electrospun conduits were prepared from 0%, 10%, and 25% blends of collagen/PCL (w/w) and implanted in the rat peritoneal cavity for four weeks. The results showed that adding collagen to the PCL conduits reduced the accumulation of oxidized lipid species within the implanted conduits. In addition, the ratio of collagen had a significant impact on the recruited cell phenotype and construct mechanics. All conduits exhibited greater than 44% yield strain and sufficient tensile strength post-implantation. In conclusion, these results demonstrate that incorporating collagen into synthetic electrospun scaffolds, both 10% and 25% blend conditions, appears to limit the pro-inflammatory characteristics after in vivo implantation.
NASA Astrophysics Data System (ADS)
Burke, Kathleen A.; Dawes, Ryan P.; Cheema, Mehar K.; Perry, Seth; Brown, Edward
2014-02-01
Second Harmonic Generation (SHG) of collagen signals allows for the analysis of collagen structural changes throughout metastatic progression. The directionality of coherent SHG signals, measured through the ratio of the forward-propagating to backward propagating signal (F/B ratio), is affected by fibril diameter, spacing, and order versus disorder of fibril packing within a fiber. As tumors interact with their microenvironment and metastasize, it causes changes in these parameters, and concurrent changes in the F/B ratio. Specifically, the F/B ratio of breast tumors that are highly metastatic to the lymph nodes is significantly higher than those in tumors with restricted lymph node involvement. We utilized in vitro analysis of tumor cell motility through collagen gels of different microstructures, and hence different F/B ratios, to explore the relationship between collagen microstructures and metastatic capabilities of the tumor. By manipulating environmental factors of fibrillogenesis and biochemical factors of fiber composition we created methods of varying the average F/B ratio of the gel, with significant changes in fiber structure occurring as a result of alterations in incubation temperature and increasing type III collagen presence. A migration assay was performed using simultaneous SHG and fluorescent imaging to measure average penetration depth of human tumor cells into the gels of significantly different F/B ratios, with preliminary data demonstrating that cells penetrate deeper into gels of higher F/B ratio caused by lower type III collagen concentration. Determining the role of collagen structure in tumor cell motility will aid in the future prediction metastatic capabilities of a primary tumor.
Hang, Ta-Chun; Tedford, Nathan C.; Reddy, Raven J.; Rimchala, Tharathorn; Wells, Alan; White, Forest M.; Kamm, Roger D.; Lauffenburger, Douglas A.
2013-01-01
The process of angiogenesis is under complex regulation in adult organisms, particularly as it often occurs in an inflammatory post-wound environment. As such, there are many impacting factors that will regulate the generation of new blood vessels which include not only pro-angiogenic growth factors such as vascular endothelial growth factor, but also angiostatic factors. During initial postwound hemostasis, a large initial bolus of platelet factor 4 is released into localized areas of damage before progression of wound healing toward tissue homeostasis. Because of its early presence and high concentration, the angiostatic chemokine platelet factor 4, which can induce endothelial anoikis, can strongly affect angiogenesis. In our work, we explored signaling crosstalk interactions between vascular endothelial growth factor and platelet factor 4 using phosphotyrosine-enriched mass spectrometry methods on human dermal microvascular endothelial cells cultured under conditions facilitating migratory sprouting into collagen gel matrices. We developed new methods to enable mass spectrometry-based phosphorylation analysis of primary cells cultured on collagen gels, and quantified signaling pathways over the first 48 h of treatment with vascular endothelial growth factor in the presence or absence of platelet factor 4. By observing early and late signaling dynamics in tandem with correlation network modeling, we found that platelet factor 4 has significant crosstalk with vascular endothelial growth factor by modulating cell migration and polarization pathways, centered around P38α MAPK, Src family kinases Fyn and Lyn, along with FAK. Interestingly, we found EphA2 correlational topology to strongly involve key migration-related signaling nodes after introduction of platelet factor 4, indicating an influence of the angiostatic factor on this ambiguous but generally angiogenic signal in this complex environment. PMID:24023389
Villa-Verde, D M; Calado, T C; Ocampo, J S; Silva-Monteiro, E; Savino, W
1999-05-01
Thymocyte differentiation is the process by which bone marrow-derived precursors enter the thymus, proliferate, rearrange the genes and express the corresponding T cell receptors, and undergo positive and/or negative selection, ultimately yielding mature T cells that will represent the so-called T cell repertoire. This process occurs in the context of cell migration, whose cellular and molecular basis is still poorly understood. Kinetic studies favor the idea that these cells leave the organ in an ordered pattern, as if they were moving on a conveyor belt. We have recently proposed that extracellular matrix glycoproteins, such as fibronectin, laminin and type IV collagen, among others, produced by non-lymphoid cells both in the cortex and in the medulla, would constitute a macromolecular arrangement allowing differentiating thymocytes to migrate. Here we discuss the participation of both molecules with adhesive and de-adhesive properties in the intrathymic T cell migration. Functional experiments demonstrated that galectin-3, a soluble beta-galactoside-binding lectin secreted by thymic microenvironmental cells, is a likely candidate for de-adhesion proteins by decreasing thymocyte interaction with the thymic microenvironment.
Elliott, Hunter; Fischer, Robert A.; Myers, Kenneth A.; Desai, Ravi A.; Gao, Lin; Chen, Christopher S.; Adelstein, Robert; Waterman, Clare M.; Danuser, Gaudenz
2014-01-01
In many cases cell function is intimately linked to cell shape control. We utilized endothelial cell branching morphogenesis as a model to understand the role of myosin-II in shape control of invasive cells migrating in 3D collagen gels. We applied principles of differential geometry and mathematical morphology to 3D image sets to parameterize cell branch structure and local cell surface curvature. We find that Rho/ROCK-stimulated myosin-II contractility minimizes cell-scale branching by recognizing and minimizing local cell surface curvature. Utilizing micro-fabrication to constrain cell shape identifies a positive feedback mechanism in which low curvature stabilizes myosin-II cortical association, where it acts to maintain minimal curvature. The feedback between myosin-II regulation by and control of curvature drives cycles of localized cortical myosin-II assembly and disassembly. These cycles in turn mediate alternating phases of directionally biased branch initiation and retraction to guide 3D cell migration. PMID:25621949
Ramos, Grasieli de Oliveira; Bernardi, Lisiane; Lauxen, Isabel; Sant’Ana Filho, Manoel; Horwitz, Alan Rick; Lamers, Marcelo Lazzaron
2016-01-01
Cell migration is regulated by adhesion to the extracellular matrix (ECM) through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC). We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad) or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad), plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization. PMID:26978651
Activated ERK1/2 increases CD44 in glomerular parietal epithelial cells leading to matrix expansion
Roeder, Sebastian S.; Barnes, Taylor J.; Lee, Jonathan S.; Kato, India; Eng, Diana G.; Kaverina, Natalya V.; Sunseri, Maria W.; Daniel, Christoph; Amann, Kerstin; Pippin, Jeffrey W.; Shankland, Stuart J.
2017-01-01
The glycoprotein CD44 is barely detected in normal mouse and human glomeruli, but is increased in glomerular parietal epithelial cells following podocyte injury in focal segmental glomerulosclerosis (FSGS). To determine the biological role and regulation of CD44 in these cells, we employed an in vivo and in vitro approach. Experimental FSGS was induced in CD44 knockout and wildtype mice with a cytotoxic podocyte antibody. Albuminuria, focal and global glomerulosclerosis (periodic acid-Schiff stain) and collagen IV staining were lower in CD44 knockout compared with wild type mice with FSGS. Parietal epithelial cells had lower migration from Bowman’s capsule to the glomerular tuft in CD44 knockout mice with disease compared with wild type mice. In cultured murine parietal epithelial cells, overexpressing CD44 with a retroviral vector encoding CD44 was accompanied by significantly increased collagen IV expression and parietal epithelial cells migration. Because our results showed de novo co-staining for activated ERK1/2 (pERK) in parietal epithelial cells in experimental FSGS, and also in biopsies from patients with FSGS, two in vitro strategies were employed to prove that pERK regulated CD44 levels. First, mouse parietal epithelial cells were infected with a retroviral vector for the upstream kinase MEK-DD to increase pERK, which was accompanied by increased CD44 levels. Second, in CD44 overexpressing parietal epithelial cells, decreasing pERK with U0126 was accompanied by reduced CD44. Finally, parietal epithelial cell migration was higher in cells with increased and reduced in cells with decreased pERK. Thus, pERK is a regulator of CD44 expression and increased CD44 expression leads to a pro-sclerotic and migratory parietal epithelial cells phenotype. PMID:27998643
NASA Astrophysics Data System (ADS)
Jing, Xin; Mi, Hao-Yang; Peng, Xiang-Fang; Turng, Lih-Sheng
2016-03-01
Surface properties of tissue engineering scaffolds such as topography, hydrophilicity, and functional groups play a vital role in cell adhesion, migration, proliferation, and apoptosis. First, poly(ɛ-caprolactone) (PCL) shish-kebab scaffolds (PCL-SK), which feature a three-dimensional structure comprised of electrospun PCL nanofibers covered by periodic, self-induced PCL crystal lamellae on the surface, was created to mimic the nanotopography of native collagen fibrils in the extracellular matrix (ECM). Second, matrigel was covalently immobilized on the surface of alkaline hydrolyzed PCL-SK scaffolds to enhance their hydrophilicity. This combined approach not only mimics the nanotopography of native collagen fibrils, but also simulates the surface features of collagen fibrils for cell growth. To investigate the viability of such scaffolds, HEF1 fibroblast cell assays were conducted and the results revealed that the nanotopography of the PCL-SK scaffolds facilitated cell adhesion and proliferation. The matrigel functionalization on PCL-SK scaffolds further enhanced cellular response, which suggested elevated biocompatibility and greater potential for skin tissue engineering applications.
Li, Xuguang; Dai, Yuankun; Shen, Tao; Gao, Changyou
2017-06-01
Cell migration in scaffolds plays a crucial role in tissue regeneration, which can better mimic cell behaviors in vivo . In this study, a novel model has been proposed on controlling 3D cell migration in porous collagen-chitosan scaffolds with various pore structures under the stimulation of inflammatory cells to mimic the angiogenesis process. Endothelial cells (ECs) cultured atop the scaffolds in the Transwell molds which were placed into a well of a 24-well culture plate were promoted to migrate into the scaffolds by chemoattractants such as vascular endothelial growth factor (VEGF) and tumor necrosis factor-alpha (TNF-α) secreted by the pro-inflammatory macrophages incubated in the well culture plate. The phenotype of macrophages was mediated by 50 ng/ml interferon-gamma (IFN-γ) and different concentrations of lipopolysaccharide (LPS, 150-300 ng/ml). The cell migration depth had a positive correlation with LPS concentration, and thereby the TNF-α concentration. The ECs migrated easier to a deeper zone of the scaffolds prepared at - 10ºC (187 μm in pore diameter) than that at - 20ºC (108 μm in pore diameter) as well. The method provides a useful strategy to study the 3D cell migration, and is helpful to reveal the vascularization process during wound healing in the long run.
Li, Xuguang; Dai, Yuankun; Shen, Tao
2017-01-01
Abstract Cell migration in scaffolds plays a crucial role in tissue regeneration, which can better mimic cell behaviors in vivo. In this study, a novel model has been proposed on controlling 3D cell migration in porous collagen-chitosan scaffolds with various pore structures under the stimulation of inflammatory cells to mimic the angiogenesis process. Endothelial cells (ECs) cultured atop the scaffolds in the Transwell molds which were placed into a well of a 24-well culture plate were promoted to migrate into the scaffolds by chemoattractants such as vascular endothelial growth factor (VEGF) and tumor necrosis factor-alpha (TNF-α) secreted by the pro-inflammatory macrophages incubated in the well culture plate. The phenotype of macrophages was mediated by 50 ng/ml interferon-gamma (IFN-γ) and different concentrations of lipopolysaccharide (LPS, 150–300 ng/ml). The cell migration depth had a positive correlation with LPS concentration, and thereby the TNF-α concentration. The ECs migrated easier to a deeper zone of the scaffolds prepared at − 10ºC (187 μm in pore diameter) than that at − 20ºC (108 μm in pore diameter) as well. The method provides a useful strategy to study the 3D cell migration, and is helpful to reveal the vascularization process during wound healing in the long run. PMID:28596912
Interstitial flow influences direction of tumor cell migration through competing mechanisms
Polacheck, William J.; Charest, Joseph L.; Kamm, Roger D.
2011-01-01
Interstitial flow is the convective transport of fluid through tissue extracellular matrix. This creeping fluid flow has been shown to affect the morphology and migration of cells such as fibroblasts, cancer cells, endothelial cells, and mesenchymal stem cells. A microfluidic cell culture system was designed to apply stable pressure gradients and fluid flow and allow direct visualization of transient responses of cells seeded in a 3D collagen type I scaffold. We used this system to examine the effects of interstitial flow on cancer cell morphology and migration and to extend previous studies showing that interstitial flow increases the metastatic potential of MDA-MB-435S melanoma cells [Shields J, et al. (2007) Cancer Cell 11:526–538]. Using a breast carcinoma line (MDA-MB-231) we also observed cell migration along streamlines in the presence of flow; however, we further demonstrated that the strength of the flow as well as the cell density determined directional bias of migration along the streamline. In particular, we found that cells either at high seeding density or with the CCR-7 receptor inhibited migration against, rather than with the flow. We provide further evidence that CCR7-dependent autologous chemotaxis is the mechanism that leads to migration with the flow, but also demonstrate a competing CCR7-independent mechanism that causes migration against the flow. Data from experiments investigating the effects of cell concentration, interstitial flow rate, receptor activity, and focal adhesion kinase phosphorylation support our hypothesis that the competing stimulus is integrin mediated. This mechanism may play an important role in development of metastatic disease. PMID:21690404
Clarke, Cassie J.; Berg, Tracy J.; Birch, Joanna; Ennis, Darren; Mitchell, Louise; Cloix, Catherine; Campbell, Andrew; Sumpton, David; Nixon, Colin; Campbell, Kirsteen; Bridgeman, Victoria L.; Vermeulen, Peter B.; Foo, Shane; Kostaras, Eleftherios; Jones, J. Louise; Haywood, Linda; Pulleine, Ellie; Yin, Huabing; Strathdee, Douglas; Sansom, Owen; Blyth, Karen; McNeish, Iain; Zanivan, Sara; Reynolds, Andrew R.; Norman, Jim C.
2016-01-01
Summary Expression of the initiator methionine tRNA (tRNAiMet) is deregulated in cancer. Despite this fact, it is not currently known how tRNAiMet expression levels influence tumor progression. We have found that tRNAiMet expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAiMet in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAiMet contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAiMet gene (2+tRNAiMet mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAiMet mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAiMet mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAiMet significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAiMet-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAiMet-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAiMet mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAiMet levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis. PMID:26948875
Clarke, Cassie J; Berg, Tracy J; Birch, Joanna; Ennis, Darren; Mitchell, Louise; Cloix, Catherine; Campbell, Andrew; Sumpton, David; Nixon, Colin; Campbell, Kirsteen; Bridgeman, Victoria L; Vermeulen, Peter B; Foo, Shane; Kostaras, Eleftherios; Jones, J Louise; Haywood, Linda; Pulleine, Ellie; Yin, Huabing; Strathdee, Douglas; Sansom, Owen; Blyth, Karen; McNeish, Iain; Zanivan, Sara; Reynolds, Andrew R; Norman, Jim C
2016-03-21
Expression of the initiator methionine tRNA (tRNAi(Met)) is deregulated in cancer. Despite this fact, it is not currently known how tRNAi(Met) expression levels influence tumor progression. We have found that tRNAi(Met) expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAi(Met) in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAi(Met) contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAi(Met) gene (2+tRNAi(Met) mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAi(Met) mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAi(Met) mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAi(Met) significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAi(Met)-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAi(Met)-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAi(Met) mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAi(Met) levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ju, Dawei; Sun, Dazhi; Xiu, Lijuan; Meng, Xianze; Zhang, Cian; Wei, Pinkang
2012-03-01
Interleukin-8 is known as an important chemokine involved in tumor angiogenesis and progression. Overexpression of interleukin-8 has been detected in a variety of human tumors, including gastric cancer, and is negatively correlated with prognosis. The aim of our study is to determine the effects of interleukin-8 on proliferation, adhesion, migration and invasion abilities and correlated molecular mechanisms in gastric cancer. We made recombinant interleukin-8 ranged from 0 ng/ml to 100 ng/ml interferes in human gastric cancer SCG-7901 cells in vitro. The results shown that interleukin-8 did not change cell proliferation, but promoted cell adhesion to endothelial cell and extracellular matrix components (collagen, laminin and fibronectin) as detected by Cell Counting Kit-8. And it induced migration and invasion ability based on scratch and transwell-chamber assays. Also, interleukin-8 regulated the protein and mRNA expression of matrix metalloproteinase-9, intercellular adhesion molecule-1 and E-cad and there was obviously a dose-dependent relationship, but the protein or mRNA expression of matrix metalloproteinase-2 was not obviously changed under the tested conditions. Our findings indicate that interleukin-8 is associated with adhesion, migration and invasion in gastric cancer and the regulation of matrix metalloproteinase-9, intercellular adhesion molecule-1 and E-cad expression is one of the potential molecule mechanisms. The studies imply interleukin-8 may be an alternative treatment strategy against gastric cancer.
Wound healing property of isolated compounds from Boesenbergia kingii rhizomes.
Sudsai, Teeratad; Wattanapiromsakul, Chatchai; Tewtrakul, Supinya
2016-05-26
Boesenbergia kingii have been traditionally used in the treatment of inflammatory bowel disease, ulcerative colitis, aphthous ulcer, stomach discomfort, dysentery and abscess. Previously, we reported the B. kingii extract exert potential wound healing properties. Therefore the search of responsible constituents for wound healing property from these rhizomes is still relevant. This study was aimed to investigate for wound healing property of compounds from this plant in order to support its traditional uses. Wound healing activities were tested using in vitro assays including cell proliferation and migration assays, collagen production and H2O2-induced oxidative stress in mouse fibroblast L929 cells. The DPPH assay was also used to determine antioxidant activity. Fourteen compounds from the chloroform fraction possessed potent anti-oxidant and wound healing activities. Compound 11 exhibited the most potent anti-DPPH effect (IC50=21.0µM) and also active against 0.5mMH2O2-induced oxidative stress by increasing cell survival ability up to 60.3% at 10µM. In addition, compounds 3, 8 and 14 at 10µM significantly enhanced L929 viability with 119.2%, 122.7% and 113.7%, respectively. Compounds 2, 7, 8 and 14 markedly enhanced L929 migration on day 2 up to 60-76% at 10µM, whereas 7 and 14 strongly stimulated collagen production at 75.0 and 96.7µg/ml compared to the control group (57.5µg/ml), respectively. B. kingii is responsible for wound healing property via antioxidative effect, stimulation of fibroblast proliferation and migration as well as enhancement of collagen production. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Lou, Junzhe; Stowers, Ryan; Nam, Sungmin; Xia, Yan; Chaudhuri, Ovijit
2018-02-01
The physical and architectural cues of the extracellular matrix (ECM) play a critical role in regulating important cellular functions such as spreading, migration, proliferation, and differentiation. Natural ECM is a complex viscoelastic scaffold composed of various distinct components that are often organized into a fibrillar microstructure. Hydrogels are frequently used as synthetic ECMs for 3D cell culture, but are typically elastic, due to covalent crosslinking, and non-fibrillar. Recent work has revealed the importance of stress relaxation in viscoelastic hydrogels in regulating biological processes such as spreading and differentiation, but these studies all utilize synthetic ECM hydrogels that are non-fibrillar. Key mechanotransduction events, such as focal adhesion formation, have only been observed in fibrillar networks in 3D culture to date. Here we present an interpenetrating network (IPN) hydrogel system based on HA crosslinked with dynamic covalent bonds and collagen I that captures the viscoelasticity and fibrillarity of ECM in tissues. The IPN hydrogels exhibit two distinct processes in stress relaxation, one from collagen and the other from HA crosslinking dynamics. Stress relaxation in the IPN hydrogels can be tuned by modulating HA crosslinker affinity, molecular weight of the HA, or HA concentration. Faster relaxation in the IPN hydrogels promotes cell spreading, fiber remodeling, and focal adhesion (FA) formation - behaviors often inhibited in other hydrogel-based materials in 3D culture. This study presents a new, broadly adaptable materials platform for mimicking key ECM features of viscoelasticity and fibrillarity in hydrogels for 3D cell culture and sheds light on how these mechanical and structural cues regulate cell behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
Allograft integration in a rabbit transgenic model for anterior cruciate ligament reconstruction.
Bachy, M; Sherifi, I; Zadegan, F; Petite, H; Vialle, R; Hannouche, D
2016-04-01
Tissue engineering strategies include both cell-based and cell homing therapies. Ligamentous tissues are highly specialized and constitute vital components of the musculoskeletal system. Their damage causes significant morbidity and loss in function. The aim of this study is to analyze tendinous graft integration, cell repopulation and ligamentization by using GFP+/- allografts in GFP+/- transgenic New Zealand white (NZW) rabbits. Graft implantation was designed to closely mimic anterior cruciate ligament (ACL) repair surgery. Allografts were implanted in 8 NZW rabbits and assessed at 5 days, 3 weeks and 6 weeks through: (1) arthroCT imaging, (2) morphological analysis of the transplanted allograft, (3) histological analysis, (4) collagen type I immunochemistry, and (5) GFP cell tracking. Collagen remodeling was appreciated at 3 and 6 weeks. Graft repopulation with host cells, chondrocyte-like cells at the tendon-bone interface and graft corticalization in the bone tunnels were noticed at 3 weeks. By contrast we noticed a central necrosis aspect in the allografts intra-articularly at 6 weeks with a cell migration towards the graft edge near the synovium. Our study has served to gain a better understanding of tendinous allograft bone integration, ligamentization and allograft repopulation. We believe that both cell-based therapies and cell homing therapies are beneficial in ligament tissue engineering. Future studies may elucidate whether cell repopulation occurs with pre-differentiated or progenitor cells. We believe that both cell-based therapies and cell homing therapies are beneficial in ligament tissue engineering. Level V (animal study). Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Chabot, Andréanne; Hertig, Vanessa; Boscher, Elena; Nguyen, Quang Trinh; Boivin, Benoît; Chebli, Jasmine; Bissonnette, Lyse; Villeneuve, Louis; Brochiero, Emmanuelle; Dupuis, Jocelyn; Calderone, Angelino
2016-07-01
Endothelial and epithelial cell transition to a mesenchymal phenotype was identified as cellular paradigms implicated in the appearance of fibroblasts and development of reactive fibrosis in interstitial lung disease. The intermediate filament protein nestin was highly expressed in fibrotic tissue, detected in fibroblasts and participated in proliferation and migration. The present study tested the hypothesis that the transition of endothelial and epithelial cells to a mesenchymal phenotype was delineated by nestin expression. Three weeks following hypobaric hypoxia, adult male Sprague-Dawley rats characterized by alveolar and perivascular lung fibrosis were associated with increased nestin protein and mRNA levels and marked appearance of nestin/collagen type I((+))-fibroblasts. In the perivascular region of hypobaric hypoxic rats, displaced CD31((+))-endothelial cells were detected, exhibited a mesenchymal phenotype and co-expressed nestin. Likewise, epithelial cells in the lungs of hypobaric hypoxic rats transitioned to a mesenchymal phenotype distinguished by the co-expression of E-cadherin and collagen. Following the removal of FBS from primary passage rat alveolar epithelial cells, TGF-β1 was detected in the media and a subpopulation acquired a mesenchymal phenotype characterized by E-cadherin downregulation and concomitant induction of collagen and nestin. Bone morphogenic protein-7 treatment of alveolar epithelial cells prevented E-cadherin downregulation, suppressed collagen induction but partially inhibited nestin expression. These data support the premise that the transition of endothelial and epithelial cells to a mesenchymal cell may have contributed in part to the appearance nestin/collagen type I((+))-fibroblasts and the reactive fibrotic response in the lungs of hypobaric hypoxic rats. © 2015 Wiley Periodicals, Inc.
Delaine-Smith, Robin M; Green, Nicola H; Matcher, Stephen J; MacNeil, Sheila; Reilly, Gwendolen C
2014-01-01
The biological and mechanical function of connective tissues is largely determined by controlled cellular alignment and therefore it seems appropriate that tissue-engineered constructs should be architecturally similar to the in vivo tissue targeted for repair or replacement. Collagen organisation dictates the tensile properties of most tissues and so monitoring the deposition of cell-secreted collagen as the construct develops is essential for understanding tissue formation. In this study, electrospun fibres with a random or high degree of orientation, mimicking two types of tissue architecture found in the body, were used to culture human fibroblasts for controlling cell alignment. The minimally-invasive technique of second harmonic generation was used with the aim of monitoring and profiling the deposition and organisation of collagen at different construct depths over time while construct mechanical properties were also determined over the culture period. It was seen that scaffold fibre organisation affected cell migration and orientation up to 21 days which in turn had an effect on collagen organisation. Collagen in random fibrous constructs was deposited in alternating configurations at different depths however a high degree of organisation was observed throughout aligned fibrous constructs orientated in the scaffold fibre direction. Three-dimensional second harmonic generation images showed that deposited collagen was more uniformly distributed in random constructs but aligned constructs were more organised and had higher intensities. The tensile properties of all constructs increased with increasing collagen deposition and were ultimately dictated by collagen organisation. This study highlights the importance of scaffold architecture for controlling the development of well-organised tissue engineered constructs and the usefulness of second harmonic generation imaging for monitoring collagen maturation in a minimally invasive manner.
Ray, Arja; Lee, Oscar; Win, Zaw; Edwards, Rachel M.; Alford, Patrick W.; Kim, Deok-Ho; Provenzano, Paolo P.
2017-01-01
Directed migration by contact guidance is a poorly understood yet vital phenomenon, particularly for carcinoma cell invasion on aligned collagen fibres. We demonstrate that for single cells, aligned architectures providing contact guidance cues induce constrained focal adhesion maturation and associated F-actin alignment, consequently orchestrating anisotropic traction stresses that drive cell orientation and directional migration. Consistent with this understanding, relaxing spatial constraints to adhesion maturation either through reduction in substrate alignment density or reduction in adhesion size diminishes the contact guidance response. While such interactions allow single mesenchymal-like cells to spontaneously ‘sense' and follow topographic alignment, intercellular interactions within epithelial clusters temper anisotropic cell–substratum forces, resulting in substantially lower directional response. Overall, these results point to the control of contact guidance by a balance of cell–substratum and cell–cell interactions, modulated by cell phenotype-specific cytoskeletal arrangements. Thus, our findings elucidate how phenotypically diverse cells perceive ECM alignment at the molecular level. PMID:28401884
Nam, Seo Hee; Kim, Doyeun; Lee, Mi-Sook; Lee, Doohyung; Kwak, Tae Kyoung; Kang, Minkyung; Ryu, Jihye; Kim, Hye-Jin; Song, Haeng Eun; Choi, Jungeun; Lee, Gyu-Ho; Kim, Sang-Yeob; Park, Song Hwa; Kim, Dae Gyu; Kwon, Nam Hoon; Kim, Tai Young; Thiery, Jean Paul; Kim, Sunghoon; Lee, Jung Weon
2015-01-01
The adhesion properties of cells are involved in tumor metastasis. Although KRS at the plasma membrane is shown important for cancer metastasis, additionally to canonical roles of cytosolic KRS in protein translation, how KRS and its downstream effectors promote the metastatic migration remains unexplored. Disseminative behaviors (an earlier metastatic process) of colon cancer cell spheroids embedded in 3D collagen gels were studied with regards to cell adhesion properties, and relevance in KRS−/+ knocked-down animal and clinical colon cancer tissues. Time-lapse imaging revealed KRS-dependent cell dissemination from the spheroids, whereas KRS-suppressed spheroids remained static due to the absence of outbound movements supported by cell-extracellular matrix (ECM) adhesion. While keeping E-cadherin at the outward disseminative cells, KRS caused integrin-involved intracellular signaling for ERK/c-Jun, paxillin, and cell-ECM adhesion-mediated signaling to modulate traction force for crawling movement. KRS-suppressed spheroids became disseminative following ERK or paxillin re-expression. The KRS-dependent intracellular signaling activities correlated with the invasiveness in clinical colon tumor tissues and in KRS−/+ knocked-down mice tissues. Collectively, these observations indicate that KRS at the plasma membrane plays new roles in metastatic migration as a signaling inducer, and causes intracellular signaling for cancer dissemination, involving cell-cell and cell-ECM adhesion, during KRS-mediated metastasis. PMID:26091349
Collagen type IV at the fetal-maternal interface.
Oefner, C M; Sharkey, A; Gardner, L; Critchley, H; Oyen, M; Moffett, A
2015-01-01
Extracellular matrix proteins play a crucial role in influencing the invasion of trophoblast cells. However the role of collagens and collagen type IV (col-IV) in particular at the implantation site is not clear. Immunohistochemistry was used to determine the distribution of collagen types I, III, IV and VI in endometrium and decidua during the menstrual cycle and the first trimester of pregnancy. Expression of col-IV alpha chains during the reproductive cycle was determined by qPCR and protein localisation by immunohistochemistry. The structure of col-IV in placenta was examined using transmission electron microscopy. Finally, the expression of col-IV alpha chain NC1 domains and collagen receptors was localised by immunohistochemistry. Col-IV alpha chains were selectively up-regulated during the menstrual cycle and decidualisation. Primary extravillous trophoblast cells express collagen receptors and secrete col-IV in vitro and in vivo, resulting in the increased levels found in decidua basalis compared to decidua parietalis. A novel expression pattern of col-IV in the mesenchyme of placental villi, as a three-dimensional network, was found. NC1 domains of col-IV alpha chains are known to regulate tumour cell migration and the selective expression of these domains in decidua basalis compared to decidua parietalis was determined. Col-IV is expressed as novel forms in the placenta. These findings suggest that col-IV not only represents a structural protein providing tissue integrity but also influences the invasive behaviour of trophoblast cells at the implantation site. Copyright © 2014 Elsevier Ltd. All rights reserved.
Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo
Highlights: Black-Right-Pointing-Pointer We identify a function of the YIGSR peptide to enhance collagen synthesis in Hs27. Black-Right-Pointing-Pointer YIGSR peptide enhanced collagen type 1 synthesis both of gene and protein levels. Black-Right-Pointing-Pointer There were no changes in cell proliferation and MMP-1 level in YIGSR treatment. Black-Right-Pointing-Pointer The YIGSR effect on collagen synthesis mediated activation of FAK, pyk2 and ERK. Black-Right-Pointing-Pointer The YIGSR-induced FAK and ERK activation was modulated by FAK and MEK inhibitors. -- Abstract: The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin,more » respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the {beta}1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67 kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate peptide for the treatment of skin aging and wrinkles.« less
Chen, Yi-Hao; Liang, Chang-Min; Chen, Ching-Long; Chen, Jiann-Torng; Chang, Yun-Hsiang; Lu, Da-Wen; Chien, Ke-Hung; Tai, Ming-Cheng
2013-11-01
To investigate the effect of silibinin in myofibroblast transdifferentiation and in animal trabeculectomy models. The effect of silibinin on the expression of α-smooth muscle actin (α-SMA) and vimentin in response to transforming growth factor-β1 (TGF-β1) was determined in human tenon fibroblasts (HTFs). Cell migration and collagen contraction arrays were used to demonstrate the functionality of silibinin-modulated HTFs. ELISA analysis was used to determine the effect of silibinin on the release of type 1 collagen and connective tissue growth factor (CTGF). The effect of silibinin on the activation of the TGF-β receptor-related pathway was evaluated by Western blotting. A rabbit model of trabeculectomy was established to assess the effect of silibinin in vivo. TGF-β1 elevated the expression of α-SMA and vimentin in HTFs; this elevation was inhibited by silibinin. TGF-β1 increased cell migration and collagen contraction of HTFs, which were also suppressed by silibinin. The production of both CTGF and type 1 collagen in TGF-β1-treated HTFs was inhibited by silibinin. The effects of silibinin on TGF-β1-stimulated HTFs were mediated via the down-regulation of TGF-β receptor-related SMAD signalling pathways. In the rabbit model of trabeculectomy, silibinin increased the period of decreasing intraocular pressure after trabeculectomy and reduced the production of collagen and α-SMA at the site of blebs in vivo. Silibinin inhibited the TGF-β receptor-related signalling pathway in TGF-β-treated HTFs and several of the downstream events associated with myofibroblast transdifferentiation. Silibinin also improved the outcome of trabeculectomies by reducing the fibrotic response in the bleb tissue in vivo. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Peroxidase enzymes regulate collagen extracellular matrix biosynthesis.
DeNichilo, Mark O; Panagopoulos, Vasilios; Rayner, Timothy E; Borowicz, Romana A; Greenwood, John E; Evdokiou, Andreas
2015-05-01
Myeloperoxidase and eosinophil peroxidase are heme-containing enzymes often physically associated with fibrotic tissue and cancer in various organs, without any direct involvement in promoting fibroblast recruitment and extracellular matrix (ECM) biosynthesis at these sites. We report herein novel findings that show peroxidase enzymes possess a well-conserved profibrogenic capacity to stimulate the migration of fibroblastic cells and promote their ability to secrete collagenous proteins to generate a functional ECM both in vitro and in vivo. Mechanistic studies conducted using cultured fibroblasts show that these cells are capable of rapidly binding and internalizing both myeloperoxidase and eosinophil peroxidase. Peroxidase enzymes stimulate collagen biosynthesis at a post-translational level in a prolyl 4-hydroxylase-dependent manner that does not require ascorbic acid. This response was blocked by the irreversible myeloperoxidase inhibitor 4-amino-benzoic acid hydrazide, indicating peroxidase catalytic activity is essential for collagen biosynthesis. These results suggest that peroxidase enzymes, such as myeloperoxidase and eosinophil peroxidase, may play a fundamental role in regulating the recruitment of fibroblast and the biosynthesis of collagen ECM at sites of normal tissue repair and fibrosis, with enormous implications for many disease states where infiltrating inflammatory cells deposit peroxidases. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Quade, Mandy; Knaack, Sven; Akkineni, Ashwini Rahul; Gabrielyan, Anastasia; Lode, Anja; Rösen-Wolff, Angela; Gelinsky, Michael
2017-08-01
Tissue engineering, the application of stem and progenitor cells in combination with an engineered extracellular matrix, is a promising strategy for bone regeneration. However, its success is limited by the lack of vascularization after implantation. The concept of in situ tissue engineering envisages the recruitment of cells necessary for tissue regeneration from the host environment foregoing ex vivo cell seeding of the scaffold. In this study, we developed a novel scaffold system for enhanced cell attraction, which is based on biomimetic mineralized collagen scaffolds equipped with a central biopolymer depot loaded with chemotactic agents. In humid milieu, as after implantation, the signaling factors are expected to slowly diffuse out of the central depot forming a gradient that stimulates directed cell migration toward the scaffold center. Heparin, hyaluronic acid, and alginate have been shown to be capable of depot formation. By using vascular endothelial growth factor (VEGF) as model factor, it was demonstrated that the release kinetics can be adjusted by varying the depot composition. While alginate and hyaluronic acid are able to reduce the initial burst and prolong the release of VEGF, the addition of heparin led to a much stronger retention that resulted in an almost linear release over 28 days. The biological activity of released VEGF was proven for all variants using an endothelial cell proliferation assay. Furthermore, migration experiments with endothelial cells revealed a relationship between the degree of VEGF retention and migration distance: cells invaded deepest in scaffolds containing a heparin-based depot indicating that the formation of a steep gradient is crucial for cell attraction. In conclusion, this novel in situ tissue engineering approach, specifically designed to recruit and accommodate endogenous cells upon implantation, appeared highly promising to stimulate cell invasion, which in turn would promote vascularization and finally new bone formation.
Garrido, T; Riese, H H; Aracil, M; Pérez-Aranda, A
1995-04-01
We have developed a modified chemotaxis chamber assay in which bovine aortic endothelial (BAE) cells degrade Matrigel basement membrane and migrate and form capillary-like structures on type I collagen. This capillary formation occurs in the presence of conditioned media from highly metastatic tumour cell lines, such as B16F10 murine melanoma or MDA-MD-231 human breast adenocarcinoma, but not in the presence of conditioned medium (CM) from the less invasive B16F0 cell line. Replacement of tumour cell CM by 10 ng ml-1 basic fibroblast growth factor (bFGF) also results in capillary-like structure formation by BAE cells. An anti-bFGF antibody blocks this effect, showing that bFGF is one of the factors responsible for the angiogenic response induced by B16F10 CM in our assay. Addition of an anti-laminin antibody reduces significantly the formation of capillary-like structures, probably by blocking the attachment of BAE cells to laminin present in Matrigel. The anti-angiogenic compound suramin inhibits in a dose-dependent manner (complete inhibition with 100 microM suramin) the migration and differentiation of BAE cells on type I collagen in response to B16F10 CM. This assay represents a new model system to study tumour-induced angiogenesis in vitro.
Boron and Poloxamer (F68 and F127) Containing Hydrogel Formulation for Burn Wound Healing.
Demirci, Selami; Doğan, Ayşegül; Karakuş, Emre; Halıcı, Zekai; Topçu, Atila; Demirci, Elif; Sahin, Fikrettin
2015-11-01
Burn injuries, the most common and destructive forms of wounds, are generally accompanied with life-threatening infections, inflammation, reduced angiogenesis, inadequate extracellular matrix production, and lack of growth factor stimulation. In the current study, a new antimicrobial carbopol-based hydrogel formulated with boron and pluronic block copolymers was evaluated for its healing activity using in vitro cell culture techniques and an experimental burn model. Cell viability, gene expression, and wound healing assays showed that gel formulation increased wound healing potential. In vitro tube-like structure formation and histopathological examinations revealed that gel not only increased wound closure by fibroblastic cell activity, but also induced vascularization process. Moreover, gel formulation exerted remarkable antimicrobial effects against bacteria, yeast, and fungi. Migration, angiogenesis, and contraction-related protein expressions including collagen, α-smooth muscle actin, transforming growth factor-β1, vimentin, and vascular endothelial growth factor were considerably enhanced in gel-treated groups. Macrophage-specific antigen showed an oscillating expression at the burn wounds, indicating the role of initial macrophage migration to the wound site and reduced inflammation phase. This is the first study indicating that boron containing hydrogel is able to heal burn wounds effectively. The formulation promoted burn wound healing via complex mechanisms including stimulation of cell migration, growth factor expression, inflammatory response, and vascularization.
Shin, HyeRim; Kim, Dayoung; Helfman, David M
2017-11-10
Metastasis dissemination is the result of various processes including cell migration and cell aggregation. These processes involve alterations in the expression and organization of cytoskeletal and adhesion proteins in tumor cells. Alterations in actin filaments and their binding partners are known to be key players in metastasis. Downregulation of specific tropomyosin (Tpm) isoforms is a common characteristic of transformed cells. In this study, we examined the role of Tpm2.1 in non-transformed MCF10A breast epithelial cells in cell migration and cell aggregation, because this isoform is downregulated in primary and metastatic breast cancer as well as various breast cancer cell lines. Downregulation of Tpm2.1 using siRNA or shRNA resulted in retardation of collective cell migration but increase in single cell migration and invasion. Loss of Tpm2.1 is associated with enhanced actomyosin contractility and increased expression of E-cadherin and β-catenin. Furthermore, inhibition of Rho-associated kinase (ROCK) recovered collective cell migration in Tpm2.1-silenced cells. We also found that Tpm2.1-silenced cells formed more compacted spheroids and exhibited faster cell motility when spheroids were re-plated on 2D surfaces coated with fibronectin and collagen. When Tpm2.1 was downregulated, we observed a decrease in the level of AXL receptor tyrosine kinase, which may explain the increased levels of E-cadherin and β-catenin. These studies demonstrate that Tpm2.1 functions as an important regulator of cell migration and cell aggregation in breast epithelial cells. These findings suggest that downregulation of Tpm2.1 may play a critical role during tumor progression by facilitating the metastatic potential of tumor cells.
Contact guidance is cell cycle-dependent.
Pourfarhangi, Kamyar Esmaeili; De La Hoz, Edgar Cardenas; Cohen, Andrew R; Gligorijevic, Bojana
2018-09-01
Cancer cell migration is essential for metastasis, during which cancer cells move through the tumor and reach the blood vessels. In vivo , cancer cells are exposed to contact guidance and chemotactic cues. Depending on the strength of such cues, cells will migrate in a random or directed manner. While similar cues may also stimulate cell proliferation, it is not clear whether cell cycle progression affects migration of cancer cells and whether this effect is different in random versus directed migration. In this study, we tested the effect of cell cycle progression on contact guided migration in 2D and 3D environments, in the breast carcinoma cell line, FUCCI-MDA-MB-231. The results were quantified from live cell microscopy images using the open source lineage editing and validation image analysis tools (LEVER). In 2D, cells were placed inside 10 μ m-wide microchannels to stimulate contact guidance, with or without an additional chemotactic gradient of the soluble epidermal growth factor. In 3D, contact guidance was modeled by aligned collagen fibers. In both 2D and 3D, contact guidance was cell cycle-dependent, while the addition of the chemo-attractant gradient in 2D increased cell velocity and persistence in directionally migrating cells, regardless of their cell cycle phases. In both 2D and 3D contact guidance, cells in the G1 phase of the cell cycle outperformed cells in the S/G2 phase in terms of migration persistence and instantaneous velocity. These data suggest that in the presence of contact guidance cues in vivo , breast carcinoma cells in the G1 phase of the cell cycle may be more efficient in reaching the neighboring vasculature.
Xu, Renguo; Liu, Zhen; Hou, Jiande; Huang, Tao; Yang, Ming
2018-01-01
Osthole is a natural product that has multiple bioactive functions and has been reported to exert potent immunosuppressive effects. However, the therapeutic effect of osthole on arthritis has not been explored. In the present study, a collagen-induced arthritis rat model, IL-1β-stimulated SW982 cells, and RA-like fibroblast-like synoviocytes (FLS) were employed to investigate the effect and possible mechanism of osthole on arthritis in vivo and in vitro. 20 and 40 mg/kg osthole significantly alleviated collagen-induced arthritic symptoms based on histopathology and clinical arthritis scores, and improved erosion using HE staining. 20 and 40 mg/kg osthole decreased the level of IL-1β, TNF-α and IL-6 in rats and ameliorated oxidative stress in serum evaluated using ELISA kits. In addition, treatment with 50 and 100 μM osthole for 48 h inhibited 10 ng/ml IL-1β-stimulated proliferation and migration of SW982, and significantly inhibited the expression of matrix metalloproteinases, such as MMP-1, MMP-3 and MMP-13, as detected by western blot. 50 and 100 μM osthole also blocked the generation of IL-6 and TNF-α in IL-1β-stimulated SW982 cells. The NF-κB and MAPK pathways were also inhibited by osthole in IL-1β-treated SW982 cells. These results collectively demonstrated that osthole improves collagen-induced arthritis in a rat model and IL-1β-treated SW982 cells through inhibiting inflammation and cellular stress in vivo and in vitro, and osthole might be a promising therapeutic agent for RA.
Gentile, Daniela; Lazzerini, Pietro E.; Gamberucci, Alessandra; Natale, Mariarita; Selvi, Enrico; Vanni, Francesca; Alì, Alessandra; Taddeucci, Paolo; Del-Ry, Silvia; Cabiati, Manuela; Della-Latta, Veronica; Abraham, David J.; Morales, Maria A.; Fulceri, Rosella; Laghi-Pasini, Franco; Capecchi, Pier L.
2017-01-01
Objectives: Systemic sclerosis (SSc) is a connective tissue disorder presenting fibrosis of the skin and internal organs, for which no effective treatments are currently available. Increasing evidence indicates that the P2X7 receptor (P2X7R), a nucleotide-gated ionotropic channel primarily involved in the inflammatory response, may also have a key role in the development of tissue fibrosis in different body districts. This study was aimed at investigating P2X7R expression and function in promoting a fibrogenic phenotype in dermal fibroblasts from SSc patients, also analyzing putative underlying mechanistic pathways. Methods: Fibroblasts were isolated by skin biopsy from 9 SSc patients and 8 healthy controls. P2X7R expression, and function (cytosolic free Ca2+ fluxes, α-smooth muscle actin [α-SMA] expression, cell migration, and collagen release) were studied. Moreover, the role of cytokine (interleukin-1β, interleukin-6) and connective tissue growth factor (CTGF) production, and extracellular signal-regulated kinases (ERK) activation in mediating P2X7R-dependent pro-fibrotic effects in SSc fibroblasts was evaluated. Results: P2X7R expression and Ca2+ permeability induced by the selective P2X7R agonist 2′-3′-O-(4-benzoylbenzoyl)ATP (BzATP) were markedly higher in SSc than control fibroblasts. Moreover, increased αSMA expression, cell migration, CTGF, and collagen release were observed in lipopolysaccharides-primed SSc fibroblasts after BzATP stimulation. While P2X7-induced cytokine changes did not affect collagen production, it was completely abrogated by inhibition of the ERK pathway. Conclusion: In SSc fibroblasts, P2X7R is overexpressed and its stimulation induces Ca2+-signaling activation and a fibrogenic phenotype characterized by increased migration and collagen production. These data point to the P2X7R as a potential, novel therapeutic target for controlling exaggerated collagen deposition and tissue fibrosis in patients with SSc. PMID:28955239
Sprague, Leslee; Muccioli, Maria; Pate, Michelle; Singh, Manindra; Xiong, Chengkai; Ostermann, Alexander; Niese, Brandon; Li, Yihan; Li, Yandi; Courreges, Maria Cecilia; Benencia, Fabian
2014-04-15
Dendritic cells (DCs) are immune cells found in the peripheral tissues where they sample the organism for infections or malignancies. There they take up antigens and migrate towards immunological organs to contact and activate T lymphocytes that specifically recognize the antigen presented by these antigen presenting cells. In the steady state there are several types of resident DCs present in various different organs. For example, in the mouse, splenic DC populations characterized by the co-expression of CD11c and CD8 surface markers are specialized in cross-presentation to CD8 T cells, while CD11c/SIRP-1α DCs seem to be dedicated to activating CD4 T cells. On the other hand, DCs have also been associated with the development of various diseases such as cancer, atherosclerosis, or inflammatory conditions. In such disease, DCs can participate by inducing angiogenesis or immunosuppression (tumors), promoting autoimmune responses, or exacerbating inflammation (atherosclerosis). This change in DC biology can be prompted by signals in the microenvironment. We have previously shown that the interaction of DCs with various extracellular matrix components modifies the immune properties and angiogenic potential of these cells. Building on those studies, herewith we analyzed the angiogenic profile of murine myeloid DCs upon interaction with 2D and 3D type-I collagen environments. As determined by PCR array technology and quantitative PCR analysis we observed that interaction with these collagen environments induced the expression of particular angiogenic molecules. In addition, DCs cultured on collagen environments specifically upregulated the expression of CXCL-1 and -2 chemokines. We were also able to establish DC cultures on type-IV collagen environments, a collagen type expressed in pathological conditions such as atherosclerosis. When we examined DC populations in atherosclerotic veins of Apolipoprotein E deficient mice we observed that they expressed adhesion molecules capable of interacting with collagen. Finally, to further investigate the interaction of DCs with collagen in other pathological conditions, we determined that both murine ovarian and breast cancer cells express several collagen molecules that can contribute to shape their particular tumor microenvironment. Consistently, tumor-associated DCs were shown to express adhesion molecules capable of interacting with collagen molecules as determined by flow cytometry analysis. Of particular relevance, tumor-associated DCs expressed high levels of CD305/LAIR-1, an immunosuppressive receptor. This suggests that signaling through this molecule upon interaction with collagen produced by tumor cells might help define the poorly immunogenic status of these cells in the tumor microenvironment. Overall, these studies demonstrate that through interaction with collagen proteins, DCs can be capable of modifying the microenvironments of inflammatory disease such as cancer or atherosclerosis. Copyright © 2014. Published by Elsevier Inc.
Molina-Molina, M; Machahua-Huamani, C; Vicens-Zygmunt, V; Llatjós, R; Escobar, I; Sala-Llinas, E; Luburich-Hernaiz, P; Dorca, J; Montes-Worboys, A
2018-04-27
Pirfenidone, a pleiotropic anti-fibrotic treatment, has been shown to slow down disease progression of idiopathic pulmonary fibrosis (IPF), a fatal and devastating lung disease. Rapamycin, an inhibitor of fibroblast proliferation could be a potential anti-fibrotic drug to improve the effects of pirfenidone. Primary lung fibroblasts from IPF patients and human alveolar epithelial cells (A549) were treated in vitro with pirfenidone and rapamycin in the presence or absence of transforming growth factor β1 (TGF-β). Extracellular matrix protein and gene expression of markers involved in lung fibrosis (tenascin-c, fibronectin, collagen I [COL1A1], collagen III [COL3A1] and α-smooth muscle actin [α-SMA]) were analyzed. A cell migration assay in pirfenidone, rapamycin and TGF-β-containing media was performed. Gene and protein expression of tenascin-c and fibronectin of fibrotic fibroblasts were reduced by pirfenidone or rapamycin treatment. Pirfenidone-rapamycin treatment did not revert the epithelial to mesenchymal transition pathway activated by TGF-β. However, the drug combination significantly abrogated fibroblast to myofibroblast transition. The inhibitory effect of pirfenidone on fibroblast migration in the scratch-wound assay was potentiated by rapamycin combination. These findings indicate that the combination of pirfenidone and rapamycin widen the inhibition range of fibrogenic markers and prevents fibroblast migration. These results would open a new line of research for an anti-fibrotic combination therapeutic approach.
Luzina, Irina G; Lockatell, Virginia; Hyun, Sang W; Kopach, Pavel; Kang, Phillip H; Noor, Zahid; Liu, Anguo; Lillehoj, Erik P; Lee, Chunsik; Miranda-Ribera, Alba; Todd, Nevins W; Goldblum, Simeon E; Atamas, Sergei P
2016-05-15
Idiopathic pulmonary fibrosis (IPF) poses challenges to understanding its underlying cellular and molecular mechanisms and the development of better therapies. Previous studies suggest a pathophysiological role for neuraminidase 1 (NEU1), an enzyme that removes terminal sialic acid from glycoproteins. We observed increased NEU1 expression in epithelial and endothelial cells, as well as fibroblasts, in the lungs of patients with IPF compared with healthy control lungs. Recombinant adenovirus-mediated gene delivery of NEU1 to cultured primary human cells elicited profound changes in cellular phenotypes. Small airway epithelial cell migration was impaired in wounding assays, whereas, in pulmonary microvascular endothelial cells, NEU1 overexpression strongly impacted global gene expression, increased T cell adhesion to endothelial monolayers, and disrupted endothelial capillary-like tube formation. NEU1 overexpression in fibroblasts provoked increased levels of collagen types I and III, substantial changes in global gene expression, and accelerated degradation of matrix metalloproteinase-14. Intratracheal instillation of NEU1 encoding, but not control adenovirus, induced lymphocyte accumulation in bronchoalveolar lavage samples and lung tissues and elevations of pulmonary transforming growth factor-β and collagen. The lymphocytes were predominantly T cells, with CD8(+) cells exceeding CD4(+) cells by nearly twofold. These combined data indicate that elevated NEU1 expression alters functional activities of distinct lung cell types in vitro and recapitulates lymphocytic infiltration and collagen accumulation in vivo, consistent with mechanisms implicated in lung fibrosis.
[Porous matrix and primary-cell culture: a shared concept for skin and cornea tissue engineering].
Auxenfans, C; Builles, N; Andre, V; Lequeux, C; Fievet, A; Rose, S; Braye, F-M; Fradette, J; Janin-Manificat, H; Nataf, S; Burillon, C; Damour, O
2009-06-01
Skin and cornea both feature an epithelium firmly anchored to its underlying connective compartment: dermis for skin and stroma for cornea. A breakthrough in tissue engineering occurred in 1975 when skin stem cells were successfully amplified in culture by Rheinwald and Green. Since 1981, they are used in the clinical arena as cultured epidermal autografts for the treatment of patients with extensive burns. A similar technique has been later adapted to the amplification of limbal-epithelial cells. The basal layer of the limbal epithelium is located in a transitional zone between the cornea and the conjunctiva and contains the stem cell population of the corneal epithelium called limbal-stem cells (LSC). These cells maintain the proper renewal of the corneal epithelium by generating transit-amplifying cells that migrate from the basal layer of the limbus towards the basal layer of the cornea. Tissue-engineering protocols enable the reconstruction of three-dimensional (3D) complex tissues comprising both an epithelium and its underlying connective tissue. Our in vitro reconstruction model is based on the combined use of cells and of a natural collagen-based biodegradable polymer to produce the connective-tissue compartment. This porous substrate acts as a scaffold for fibroblasts, thereby, producing a living dermal/stromal equivalent, which once epithelialized results into a reconstructed skin/hemicornea. This paper presents the reconstruction of surface epithelia for the treatment of pathological conditions of skin and cornea and the development of 3D tissue-engineered substitutes based on a collagen-GAG-chitosan matrix for the regeneration of skin and cornea.
Horbert, Victoria; Xin, Long; Foehr, Peter; Brinkmann, Olaf; Bungartz, Matthias; Burgkart, Rainer H; Graeve, T; Kinne, Raimund W
2018-02-01
Objective Limitations of matrix-assisted autologous chondrocyte implantation to regenerate functional hyaline cartilage demand a better understanding of the underlying cellular/molecular processes. Thus, the regenerative capacity of a clinically approved hydrogel collagen type I implant was tested in a standardized bovine cartilage punch model. Methods Cartilage rings (outer diameter 6 mm; inner defect diameter 2 mm) were prepared from the bovine trochlear groove. Collagen implants (± bovine chondrocytes) were placed inside the cartilage rings and cultured up to 12 weeks. Cartilage-implant constructs were analyzed by histology (hematoxylin/eosin; safranin O), immunohistology (aggrecan, collagens 1 and 2), and for protein content, RNA expression, and implant push-out force. Results Cartilage-implant constructs revealed vital morphology, preserved matrix integrity throughout culture, progressive, but slight proteoglycan loss from the "host" cartilage or its surface and decreasing proteoglycan release into the culture supernatant. In contrast, collagen 2 and 1 content of cartilage and cartilage-implant interface was approximately constant over time. Cell-free and cell-loaded implants showed (1) cell migration onto/into the implant, (2) progressive deposition of aggrecan and constant levels of collagens 1 and 2, (3) progressively increased mRNA levels for aggrecan and collagen 2, and (4) significantly augmented push-out forces over time. Cell-loaded implants displayed a significantly earlier and more long-lasting deposition of aggrecan, as well as tendentially higher push-out forces. Conclusion Preserved tissue integrity and progressively increasing cartilage differentiation and push-out forces for up to 12 weeks of cultivation suggest initial cartilage regeneration and lateral bonding of the implant in this in vitro model for cartilage replacement materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, Xin, E-mail: jingxinscut@gmail.com; Mi, Hao-Yang; Wisconsin Institutes for Discovery, University of Wisconsin-Madison, 53715
Surface properties of tissue engineering scaffolds such as topography, hydrophilicity, and functional groups play a vital role in cell adhesion, migration, proliferation, and apoptosis. First, poly(ε-caprolactone) (PCL) shish-kebab scaffolds (PCL-SK), which feature a three-dimensional structure comprised of electrospun PCL nanofibers covered by periodic, self-induced PCL crystal lamellae on the surface, was created to mimic the nanotopography of native collagen fibrils in the extracellular matrix (ECM). Second, matrigel was covalently immobilized on the surface of alkaline hydrolyzed PCL-SK scaffolds to enhance their hydrophilicity. This combined approach not only mimics the nanotopography of native collagen fibrils, but also simulates the surface featuresmore » of collagen fibrils for cell growth. To investigate the viability of such scaffolds, HEF1 fibroblast cell assays were conducted and the results revealed that the nanotopography of the PCL-SK scaffolds facilitated cell adhesion and proliferation. The matrigel functionalization on PCL-SK scaffolds further enhanced cellular response, which suggested elevated biocompatibility and greater potential for skin tissue engineering applications.« less
Kim, Yoon-Jin; Yoo, Sae Mi; Park, Hwan Hee; Lim, Hye Jin; Kim, Yu-Lee; Lee, Seunghee; Seo, Kwang-Won; Kang, Kyung-Sun
2017-11-18
Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) play an important role in cutaneous wound healing, and recent studies suggested that MSC-derived exosomes activate several signaling pathways, which are conducive in wound healing and cell growth. In this study, we investigated the roles of exosomes that are derived from USC-CM (USC-CM Exos) in cutaneous collagen synthesis and permeation. We found that USC-CM has various growth factors associated with skin rejuvenation. Our in vitro results showed that USC-CM Exos integrate in Human Dermal Fibroblasts (HDFs) and consequently promote cell migration and collagen synthesis of HDFs. Moreover, we evaluated skin permeation of USC-CM Exos by using human skin tissues. Results showed that Exo-Green labeled USC-CM Exos approached the outermost layer of the epidermis after 3 h and gradually approached the epidermis after 18 h. Moreover, increased expressions of Collagen I and Elastin were found after 3 days of treatment on human skin. The results showed that USC-CM Exos is absorbed into human skin, it promotes Collagen I and Elastin synthesis in the skin, which are essential to skin rejuvenation and shows the potential of USC-CM integration with the cosmetics or therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.
Hu, Li; Wang, Juan; Zhou, Xin; Xiong, Zehuan; Zhao, Jiajia; Yu, Ran; Huang, Fang; Zhang, Handong; Chen, Lili
2016-09-12
Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell migration, proliferation and collagen synthesis in a dose-dependent manner, with increased genes expression of N-cadherin, cyclin-1, PCNA and collagen I, III. In vivo tracing experiments demonstrated that ASCs-Exos can be recruited to soft tissue wound area in a mouse skin incision model and significantly accelerated cutaneous wound healing. Histological analysis showed increased collagen I and III production by systemic administration of exosomes in the early stage of wound healing, while in the late stage, exosomes might inhibit collagen expression to reduce scar formation. Collectively, our findings indicate that ASCs-Exos can facilitate cutaneous wound healing via optimizing the characteristics of fibroblasts. Our results provide a new perspective and therapeutic strategy for the use of ASCs-Exos in soft tissue repair.
Vardar, E; Larsson, H M; Allazetta, S; Engelhardt, E M; Pinnagoda, K; Vythilingam, G; Hubbell, J A; Lutolf, M P; Frey, P
2018-02-01
Endoscopic injection of bulking agents has been widely used to treat urinary incontinence, often due to urethral sphincter complex insufficiency. The aim of the study was to develop a novel injectable bioactive collagen-fibrin bulking agent restoring long-term continence by functional muscle tissue regeneration. Fibrin micro-beads were engineered using a droplet microfluidic system. They had an average diameter of 140 μm and recombinant fibrin-binding insulin-like growth factor-1 (α 2 PI 1-8 -MMP-IGF-1) was covalently conjugated to the beads. A plasmin fibrin degradation assay showed that 72.5% of the initial amount of α 2 PI 1-8 -MMP-IGF-1 loaded into the micro-beads was retained within the fibrin micro-beads. In vitro, the growth factor modified fibrin micro-beads enhanced cell attachment and the migration of human urinary tract smooth muscle cells, however, no change of the cellular metabolic activity was seen. These bioactive micro-beads were mixed with genipin-crosslinked homogenized collagen, acting as a carrier. The collagen concentration, the degree of crosslinking, and the mechanical behavior of this bioactive collagen-fibrin injectable were comparable to reference samples. This novel injectable showed no burst release of the growth factor, had a positive effect on cell behavior and may therefore induce smooth muscle regeneration in vivo, necessary for the functional treatment of stress and other urinary incontinences. Urinary incontinence is involuntary urine leakage, resulting from a deficient function of the sphincter muscle complex. Yet there is no functional cure for this devastating condition using current treatment options. Applied physical and surgical therapies have limited success. In this study, a novel bioactive injectable bulking agent, triggering new muscle regeneration at the injection site, has been evaluated. This injectable consists of cross-linked collagen and fibrin micro-beads, functionalized with bound insulin-like growth factor-1 (α 2 PI 1-8 -MMP-IGF-1). These bioactive fibrin micro-beads induced human smooth muscle cell migration in vitro. Thus, this injectable bulking agent is apt to be a good candidate for regeneration of urethral sphincter muscle, ensuring a long-lasting treatment for urinary incontinence. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
circHECTD1 promotes the silica-induced pulmonary endothelial-mesenchymal transition via HECTD1.
Fang, Shencun; Guo, Huifang; Cheng, Yusi; Zhou, Zewei; Zhang, Wei; Han, Bing; Luo, Wei; Wang, Jing; Xie, Weiping; Chao, Jie
2018-03-14
Excessive proliferation and migration of fibroblasts contribute to pulmonary fibrosis in silicosis, and both epithelial cells and endothelial cells participate in the accumulation of fibroblasts via the epithelial-mesenchymal transition (EMT) and the endothelial-mesenchymal transition (EndMT), respectively. A mouse endothelial cell line (MML1) was exposed to silicon dioxide (SiO 2 , 50 μg/cm 2 ), and immunofluorescence and western blot analyses were performed to evaluate levels of specific endothelial and mesenchymal markers and to elucidate the mechanisms by which SiO 2 induces the EndMT. Functional changes were evaluated by analyzing cell migration and proliferation. The mRNA and circular RNA (circRNA) levels were measured using qPCR and fluorescent in situ hybridization (FISH). Lung tissue samples from both Tie2-GFP mice exposed to SiO 2 and silicosis patients were applied to confirm the observations from in vitro experiments. Based on the results from the current study, SiO 2 increased the expression of mesenchymal markers (type I collagen (COL1A1), type III collagen (COL3A1) and alpha smooth muscle actin (α-SMA/Acta2)) and decreased the expression of endothelial markers (vascular endothelial cadherin (VE-Cad/Cdh 5) and platelet endothelial cell adhesion molecule-1 (PECAM1)), indicating the occurrence of the EndMT in response to SiO 2 exposure both in vivo and in vitro. SiO 2 concomitantly increased circHECTD1 expression, which, in turn, inhibited HECTD1 protein expression. SiO 2 -induced increases in cell proliferation, migration, and changes in marker levels were restored by either a small interfering RNA (siRNA) targeting circHECTD1 or overexpression of HECTD1 via the CRISPR/Cas9 system, confirming the involvement of the circHECTD1/HECTD1 pathway in the EndMT. Moreover, tissue samples from SiO 2 -exposed mice and silicosis patients confirmed the EndMT and change in HECTD1 expression. Our findings reveal a potentially new function for the circHECTD1/HECTD1 pathway and suggest a possible mechanism of fibrosis in patients with pulmonary silicosis.
Decorin inhibits cell migration through a process requiring its glycosaminoglycan side chain.
Merle, B; Durussel, L; Delmas, P D; Clézardin, P
1999-12-01
Several studies overwhelmingly support the notion that decorin (DCN) is involved in matrix assembly, and in the control of cell adhesion and proliferation. However, nothing is known about the role of DCN during cell migration. Cell migration is a tightly regulated process which requires both adhesion (at the leading edge of the cell) and de-adhesion (at the trailing edge of the cell) from the substratum. We have determined in this study the effect of DCN on MG-63 osteosarcoma cell migration and have analyzed whether its effect is mediated by the protein core and/or the glycosaminoglycan side chain. DCN impeded the migration-promoting effect of matrix molecules (fibronectin, collagen type I) known to interact with the proteoglycan. Conversely, DCN did not counteract the migration-promoting effect of fibrinogen lacking proteoglycan affinity. DCN bearing dermatan-sulfate chains (i.e., skin and cartilage DCN) was about 20-fold more effective in inhibiting cell migration than DCN bearing chondroitin-sulfate chains (i.e., bone DCN). In addition, chondroitinase AC-treatment of cartilage DCN (which specifically removes chondroitin-sulfate chains) did not attenuate the inhibitory effect of this proteoglycan, while cartilage DCN deprived of both chondroitin- and dermatan-sulfate chains failed to alter cell migration promoted by either fibronectin or its heparin- and cell-binding domains. These data assert that the dermatan-sulfate chains of DCN are responsible for a negative influence on cell migration. However, isolated glycosaminoglycans failed to alter cell migration promoted by fibronectin, indicating that strongly negatively charged glycosaminoglycans alone cannot account for the impaired cell motility seen with DCN. Overall, these results show that the inhibitory action of DCN is dependent of substratum binding, is differentially mediated by its glycosaminoglycan side chains (chondroitin-sulfate vs. dermatan-sulfate chains), and is independent of a steric hindrance effect exerted by its glycosaminoglycan side chains. Copyright 1999 Wiley-Liss, Inc.
Roy, P; Petroll, W M; Cavanagh, H D; Chuong, C J; Jester, J V
1997-04-10
An in vitro force measurement assay has been developed to quantify the forces exerted by single corneal fibroblasts during the early interaction with a collagen matrix. Corneal fibroblasts were sparsely seeded on top of collagen matrices whose stiffness was predetermined by micromanipulation with calibrated fine glass microneedles. The forces exerted by individual cells were calculated from time-lapse videomicroscopic recordings of the 2-D elastic distortion of the matrix. In additional experiments, the degree of permanent reorganization of the collagen matrices was assessed by lysing the cells with 1% Triton X-100 solution at the end of a 2-hour incubation and recording the subsequent relaxation. The data suggest that a cell can exert comparable centripetal force during either extension of a cell process or partial retraction of an extended pseudopodia. The rates of force associated with pseudopodial extension and partial retraction were 0.180 +/- 0.091 (x 10(-8)) N/min (n = 8 experiments) and 0.213 +/- 0.063 (x 10(-8)) N/min (n = 8 experiments), respectively. Rupture of pseudopodial adhesion associated with cell locomotion causes a release of force on the matrix and a complete recoil of the pseudopodia concerned; a simultaneous release of force on the matrix was also observed at the opposite end of the cell. Lysis of cells resulted in 84 +/- 18% relaxation of the matrix, suggesting that little permanent remodeling of matrix is produced by the actions of isolated migrating cells.
Diverse matrix metalloproteinase functions regulate cancer amoeboid migration
Orgaz, Jose L.; Pandya, Pahini; Viros, Amaya; Albrengues, Jean; Nestle, Frank O.; Ridley, Anne J.; Gaggioli, Cedric; Marais, Richard; Karagiannis, Sophia N.; Sanz-Moreno, Victoria
2014-01-01
Rounded-amoeboid cancer cells use actomyosin contractility driven by Rho-ROCK and JAK-STAT3 to migrate efficiently. It has been suggested that rounded-amoeboid cancer cells do not require matrix metalloproteinases (MMPs) to invade. Here we compare MMP levels in rounded-amoeboid and elongated-mesenchymal melanoma cells. Surprisingly, we find that rounded-amoeboid melanoma cells secrete higher levels of several MMPs, including collagenase MMP-13 and gelatinase MMP-9. As a result, rounded-amoeboid melanoma cells degrade collagen I more efficiently than elongated-mesenchymal cells. Furthermore, using a non-catalytic mechanism, MMP-9 promotes rounded-amoeboid 3D migration through regulation of actomyosin contractility via CD44 receptor. MMP-9 is upregulated in a panel of rounded-amoeboid compared with elongated-mesenchymal melanoma cell lines and its levels are controlled by ROCK-JAK-STAT3 signalling. MMP-9 expression increases during melanoma progression and it is particularly prominent in the invasive fronts of lesions, correlating with cell roundness. Therefore, rounded-amoeboid cells use both catalytic and non-catalytic activities of MMPs for invasion. PMID:24963846
Immobilization of Growth Factors to Collagen Surfaces Using Pulsed Visible Light.
Fernandes-Cunha, Gabriella M; Lee, Hyun Jong; Kumar, Alisha; Kreymerman, Alexander; Heilshorn, Sarah; Myung, David
2017-10-09
In the treatment of traumatic injuries, burns, and ulcers of the eye, inadequate epithelial tissue healing remains a major challenge. Wound healing is a complex process involving the temporal and spatial interplay between cells and their extracellular milieu. It can be impaired by a variety of causes including infection, poor circulation, loss of critical cells, and/or proteins, and a deficiency in normal neural signaling (e.g., neurotrophic ulcers). Ocular anatomy is particularly vulnerable to lasting morbidity from delayed healing, whether it be scarring or perforation of the cornea, destruction of the conjunctival mucous membrane, or cicatricial changes to the eyelids and surrounding skin. Therefore, there is a major clinical need for new modalities for controlling and accelerating wound healing, particularly in the eye. Collagen matrices have long been explored as scaffolds to support cell growth as both two-dimensional coatings and substrates, as well as three-dimensional matrices. Meanwhile, the immobilization of growth factors to various substrates has also been extensively studied as a way to promote enhanced cellular adhesion and proliferation. Herein we present a new strategy for photochemically immobilizing growth factors to collagen using riboflavin as a photosensitizer and exposure to visible light (∼458 nm). Epidermal growth factor (EGF) was successfully bound to collagen-coated surfaces as well as directly to endogenous collagen from porcine corneas. The initial concentration of riboflavin and EGF as well as the blue light exposure time were keys to the successful binding of growth factors to these surfaces. The photocrosslinking reaction increased EGF residence time on collagen surfaces over 7 days. EGF activity was maintained after the photocrosslinking reaction with a short duration of pulsed blue light exposure. Bound EGF accelerated in vitro corneal epithelial cell proliferation and migration and maintained normal cell phenotype. Additionally, the treated surfaces were cytocompatible, and the photocrosslinking reaction was proven to be safe, preserving nearly 100% cell viability. These results suggest that this general approach is safe and versatile may be used for targeting and immobilizing bioactive factors onto collagen matrices in a variety of applications, including in the presence of live, seeded cells or in vivo onto endogenous extracellular matrix collagen.
Species specificity in cell-substrate interactions in medusae.
Schmid, V; Bally, A
1988-10-01
A new system is described for the study of ECM-tissue interactions, using the ECM (called mesogloea) of various cnidarians and isolated striated muscle and endodermal tissue of jellyfish. The mesogloea consists mainly of water and collagen. It is present in all cnidarians and can be isolated without enzyme treatment. It can be used as a substrate to which cells and tissues adhere and on which they spread and migrate. Tissues of striated muscle and endoderm adhere and spread not only on mesogloea from regions they normally cover, but also from other regions of the animal. However, adhesion and spreading are highly species-specific. Species-specific adhesion is found throughout the whole mass of mesogloea even at regions where cells do not occur naturally. The cell adhesion factor can be extracted from the mesogloea so that the mesogloea no longer shows any cell adhesion properties. The extract consists mainly of a cysteine-containing collagen.
Zhang, Qing; Dong, Hua; Li, Yuli; Zhu, Ye; Zeng, Lei; Gao, Huichang; Yuan, Bo; Chen, Xiaofeng; Mao, Chuanbin
2015-10-21
Surface topography can affect cell adhesion, morphology, polarity, cytoskeleton organization, and osteogenesis. However, little is known about the effect of topography on the fracture healing in repairing nonunion and large bone defects. Microgrooved topography on the surface of bone implants may promote cell migration into the fracture gap to accelerate fracture healing. To prove this hypothesis, we used an in vitro fracture (wound) healing assay on the microgrooved polycaprolactone substrates to study the effect of microgroove widths and depths on the osteoblast-like cell (MG-63) migration and the subsequent healing. We found that the microgrooved substrates promoted MG-63 cells to migrate collectively into the wound gap, which serves as a fracture model, along the grooves and ridges as compared with the flat substrates. Moreover, the groove widths did not show obvious influence on the wound healing whereas the smaller groove depths tended to favor the collective cell migration and thus subsequent healing. The microgrooved substrates accelerated the wound healing by facilitating the collective cell migration into the wound gaps but not by promoting the cell proliferation. Furthermore, microgrooves were also found to promote the migration of human mesenchymal stem cells (hMSCs) to heal the fracture model. Though osteogenic differentiation of hMSCs was not improved on the microgrooved substrate, collagen I and minerals deposited by hMSCs were organized in a way similar to those in the extracellular matrix of natural bone. These findings suggest the necessity in using microgrooved implants in enhancing fracture healing in bone repair.
Antifibrotic properties of epigallocatechin-3-gallate in endometriosis.
Matsuzaki, Sachiko; Darcha, Claude
2014-08-01
Is epigallocatechin-3-gallate (EGCG) treatment effective in the treatment of fibrosis in endometriosis? EGCG appears to have antifibrotic properties in endometriosis. Histologically, endometriosis is characterized by dense fibrous tissue surrounding the endometrial glands and stroma. However, only a few studies to date have evaluated candidate new therapies for endometriosis-associated fibrosis. For this laboratory study, samples from 55 patients (45 with and 10 without endometriosis) of reproductive age with normal menstrual cycles were analyzed. A total of 40 nude mice received single injection proliferative endometrial fragments from a total of 10 samples. The in vitro effects of EGCG and N-acetyl-l-cysteine on fibrotic markers (alpha-smooth muscle actin, type I collagen, connective tissue growth factor and fibronectin) with and without transforming growth factor (TGF)-β1 stimulation, as well as on cell proliferation, migration and invasion and collagen gel contraction of endometrial and endometriotic stromal cells were evaluated by real-time PCR, immunocytochemistry, cell proliferation assays, in vitro migration and invasion assays and/or collagen gel contraction assays. The in vitro effects of EGCG on mitogen-activated protein kinase (MAPK) and Smad signaling pathways in endometrial and endometriotic stromal cells were evaluated by western blotting. Additionally, the effects of EGCG treatment on endometriotic implants were evaluated in a xenograft model of endometriosis in immunodeficient nude mice. Treatment with EGCG significantly inhibited cell proliferation, migration and invasion of endometrial and endometriotic stromal cells from patients with endometriosis. In addition, EGCG treatment significantly decreased the TGF-β1-dependent increase in the mRNA expression of fibrotic markers in both endometriotic and endometrial stromal cells. Both endometriotic and endometrial stromal cell-mediated contraction of collagen gels were significantly attenuated at 8, 12 and 24 h after treatment with EGCG. Epigallocatechin-3-gallate also significantly inhibited TGF-β1-stimulated activation of MAPK and Smad signaling pathways in endometrial and endometriotic stromal cells. Animal experiments showed that EGCG prevented the progression of fibrosis in endometriosis. The attractiveness of epigallocatechin-3-gallate as a drug candidate has been diminished by its relatively low bioavailability. However, numerous alterations to the EGCG molecule have been patented, either to improve the integrity of the native compound or to generate a more stable yet similarly efficacious molecule. Therefore, EGCG and its derivatives, analogs and prodrugs could potentially be developed into agents for the future treatment and/or prevention of endometriosis. Epigallocatechin-3-gallate is a potential drug candidate for the treatment and/or prevention of endometriosis. This study was supported in part by Karl Storz Endoscopy & GmbH (Tuttlingen, Germany). No competing interests are declared. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mokdad-Bzeouich, Imen; Kovacic, Hervé; Ghedira, Kamel; Chebil, Latifa; Ghoul, Mohamed; Chekir-Ghedira, Leila; Luis, José
2016-03-01
Cancer metastasis is the major cause of cancer-related death. Chemoprevention is defined as the use of natural or synthetic substances to prevent cancer formation or cancer progress. In the present study, we investigate the antitumor activity of esculin and its oligomer fractions in U87 glioblastoma cells. We showed that esculin and its oligomers reduced U87 cell growth in a dose dependent manner. They also inhibited cell adhesion to collagen IV and vitronectin by interfering with the function of their respective receptors α2β1 and αvβ5 integrins. Furthermore, the tested samples were able to reduce migration of U87 cells towards another extracellular matrix fibronectin. Moreover, esculin and its oligomer fractions inhibited in vitro angiogenesis of endothelial cells (HMEC-1). In summary, our data provide the first evidence that esculin and its oligomer fractions are able to reduce adhesion, migration of glioblastoma cells and in vitro angiogenesis. Esculin and its oligomers may thus exert multi-target functions against cancer cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tsung-Pao; Pan, Yun-Ru; Fu, Chien-Yu
2010-10-15
UDP-glucose dehydrogenase (UGDH) catalyzes oxidation of UDP-glucose to yield UDP-glucuronic acid, a precursor of hyaluronic acid (HA) and other glycosaminoglycans (GAGs) in extracellular matrix. Although association of extracellular matrix with cell proliferation and migration has been well documented, the importance of UGDH in these behaviors is not clear. Using UGDH-specific small interference RNA to treat HCT-8 colorectal carcinoma cells, a decrease in both mRNA and protein levels of UGDH, as well as the cellular UDP-glucuronic acid and GAG production was observed. Treatment of HCT-8 cells with either UGDH-specific siRNA or HA synthesis inhibitor 4-methylumbelliferone effectively delayed cell aggregation into multicellularmore » spheroids and impaired cell motility in both three-dimensional collagen gel and transwell migration assays. The reduction in cell aggregation and migration rates could be restored by addition of exogenous HA. These results indicate that UGDH can regulate cell motility through the production of GAG. The enzyme may be a potential target for therapeutic intervention of colorectal cancers.« less
Kakudo, Natsuko; Kushida, Satoshi; Suzuki, Kenji; Ogura, Tsunetaka; Notodihardjo, Priscilla Valentin; Hara, Tomoya; Kusumoto, Kenji
2012-12-01
Human adipose-derived stem cells (ASCs) are adult pluripotent stem cells, and their usefulness in plastic surgery has garnered attention in recent years. Although, there have been expectations that ASCs might function in wound repair and regeneration, no studies to date have examined the role of ASCs in the mechanism that promotes wound-healing. Transforming growth factor-beta1 (TGF-β1) is a strong candidate cytokine for the triggering of mesenchymal stem cell migration, construction of extracellular matrices, and differentiation of ASCs into myofibroblasts. Cell proliferation, motility, and differentiation, as well as extracellular matrix production, play an important role in wound-healing. We have evaluated the capacity of ASCs to proliferate and their potential to differentiate into phenotypic myofibroblasts, as well as their cell motility and collagen gel contraction ability, when cultured with TGF-β1. Cell motility was analyzed using a wound-healing assay. ASCs that differentiated into myofibroblasts expressed the gene for alpha-smooth muscle actin, and its protein expression was detected immunohistochemically. The extracellular matrix expression in ASCs was evaluated using real-time RT-PCR. Based on the results, we conclude that human ASCs have the potential for cell motility, extracellular matrix gene expression, gel contraction, and differentiation into myofibroblasts and, therefore, may play an important role in the wound-healing process.
Rouillard, Andrew D; Holmes, Jeffrey W
2012-01-01
Effective management of healing and remodelling after myocardial infarction is an important problem in modern cardiology practice. We have recently shown that the level of infarct anisotropy is a critical determinant of heart function following a large anterior infarction, which suggests that therapeutic gains may be realized by controlling infarct anisotropy. However, factors regulating infarct anisotropy are not well understood. Mechanical, structural and chemical guidance cues have all been shown to regulate alignment of fibroblasts and collagen in vitro, and prior studies have proposed that each of these cues could regulate anisotropy of infarct scar tissue, but understanding of fibroblast behaviour in the complex environment of a healing infarct is lacking. We developed an agent-based model of infarct healing that accounted for the combined influence of these cues on fibroblast alignment, collagen deposition and collagen remodelling. We pooled published experimental data from several sources in order to determine parameter values, then used the model to test the importance of each cue for predicting collagen alignment measurements from a set of recent cryoinfarction experiments. We found that although chemokine gradients and pre-existing matrix structures had important effects on collagen organization, a response of fibroblasts to mechanical cues was critical for correctly predicting collagen alignment in infarct scar. Many proposed therapies for myocardial infarction, such as injection of cells or polymers, alter the mechanics of the infarct region. Our modelling results suggest that such therapies could change the anisotropy of the healing infarct, which could have important functional consequences. This model is therefore a potentially important tool for predicting how such interventions change healing outcomes. PMID:22495588
MARKIEWICZ, MAGARET; NAKERAKANTI, SASHIDHAR S.; KAPANADZE, BAGRAT; GHATNEKAR, ANGELA; TROJANOWSKA, MARIA
2010-01-01
Objective The primary objective of this study was to examine the potential interaction between sphingosine-1-phosphate (S1P), a pleiotropic lipid mediator, and CTGF/CCN2 a secreted multimodular protein, in the process of endothelial cell migration. The second objective was to determine whether C- and N-terminal domains of CTGF/CCN2 have specific function in cell migration. Materials and Methods Migration of human dermal microvascular endothelial cells (HDMECs) was examined in monolayer wound healing “scratch” assay, while capillary-like tube formation was examined in 3 dimensional collagen co-culture assays. Results We observed that S1P stimulates HDMECs migration concomitant with upregulation of CTGF/CCN2 expression. Furthermore, the blockade of endogenous CTGF/CCN2 via siRNA abrogated S1P induced HDMECs migration and capillary-like tube formation. Full length CTGF induced cell migration and capillary-like tube formation with potency similar to that of S1P, while C-terminal domain of CTGF was slightly less effective. However; N-terminal domain had only a residual activity in inducing capillary-like tube formation. Conclusions This study revealed that CTGF/CCN2 is required for the S1P induced endothelial cell migration, which suggests that CTGF/CCN2 may be an important mediator of S1P induced physiological and pathological angiogenesis. Moreover, this study shows that the pro-migratory activity of CTGF/CCN2 is located in the C-terminal domain. PMID:21166920
Clustering of brain tumor cells: a first step for understanding tumor recurrence
NASA Astrophysics Data System (ADS)
Khain, Evgeniy; Nowicki, M. O.; Chiocca, E. A.; Lawler, S. E.; Schneider-Mizell, C. M.; Sander, L. M.
2012-02-01
Glioblastoma tumors are highly invasive; therefore the overall prognosis of patients remains poor, despite major improvements in treatment techniques. Cancer cells detach from the inner tumor core and actively migrate away [1]; eventually these invasive cells might form clusters, which can develop to recurrent tumors. In vitro experiments in collagen gel [1] followed the clustering dynamics of different glioma cell lines. Based on the experimental data, we formulated a stochastic model for cell dynamics, which identified two mechanisms of clustering. First, there is a critical value of the strength of adhesion; above the threshold, large clusters grow from a homogeneous suspension of cells; below it, the system remains homogeneous, similarly to the ordinary phase separation. Second, when cells form a cluster, there is evidence that their proliferation rate increases. We confirmed the theoretical predictions in a separate cell migration experiment on a substrate and found that both mechanisms are crucial for cluster formation and growth [2]. In addition to their medical importance, these phenomena present exciting examples of pattern formation and collective cell behavior in intrinsically non-equilibrium systems [3]. [4pt] [1] A. M. Stein et al, Biophys. J., 92, 356 (2007). [0pt] [2] E. Khain et al, EPL 88, 28006 (2009). [0pt] [3] E. Khain et al, Phys. Rev. E. 83, 031920 (2011).
Kreuz, Peter Cornelius; Krüger, Jan Philipp; Metzlaff, Sebastian; Freymann, Undine; Endres, Michaela; Pruss, Axel; Petersen, Wolf; Kaps, Christian
2015-10-01
To evaluate the chondrogenic potential of platelet concentrates on human subchondral mesenchymal progenitor cells (MPCs) as assessed by histomorphometric analysis of proteoglycans and type II collagen. Furthermore, the migratory and proliferative effect of platelet concentrates were assessed. Platelet-rich plasma (PRP) was prepared using preparation kits (Autologous Conditioned Plasma [ACP] Kit [Arthrex, Naples, FL]; Regen ACR-C Kit [Regen Lab, Le Mont-Sur-Lausanne, Switzerland]; and Dr.PRP Kit [Rmedica, Seoul, Republic of Korea]) by apheresis (PRP-A) and by centrifugation (PRP-C). In contrast to clinical application, freeze-and-thaw cycles were subsequently performed to activate platelets and to prevent medium coagulation by residual fibrinogen in vitro. MPCs were harvested from the cortico-spongious bone of femoral heads. Chondrogenic differentiation of MPCs was induced in high-density pellet cultures and evaluated by histochemical staining of typical cartilage matrix components. Migration of MPCs was assessed using a chemotaxis assay, and proliferation activity was measured by DNA content. MPCs cultured in the presence of 5% ACP, Regen, or Dr.PRP formed fibrous tissue, whereas MPCs stimulated with 5% PRP-A or PRP-C developed compact and dense cartilaginous tissue rich in type II collagen and proteoglycans. All platelet concentrates significantly (ACP, P = .00041; Regen, P = .00029; Dr.PRP, P = .00051; PRP-A, P < .0001; and PRP-C, P < .0001) stimulated migration of MPCs. All platelet concentrates but one (Dr.PRP, P = .63) showed a proliferative effect on MPCs, as shown by significant increases (ACP, P = .027; Regen, P = .0029; PRP-A, P = .00021; and PRP-C, P = .00069) in DNA content. Platelet concentrates obtained by different preparation methods exhibit different potentials to stimulate chondrogenic differentiation, migration, and proliferation of MPCs. Platelet concentrates obtained by commercially available preparation kits failed to induce chondrogenic differentiation of MPCs, whereas highly standardized PRP preparations did induce such differentiation. These findings suggest differing outcomes with PRP treatment in stem cell-based cartilage repair. Our findings may help to explain the variability of results in studies examining the use of PRP clinically. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Klymenko, Yuliya; Kim, Oleg; Loughran, Elizabeth; Yang, Jing; Lombard, Rachel; Alber, Mark; Stack, M. Sharon
2017-01-01
During epithelial ovarian cancer (EOC) progression, intraperitoneally disseminating tumor cells and multi-cellular aggregates (MCAs) present in ascites fluid adhere to the peritoneum and induce retraction of the peritoneal mesothelial monolayer prior to invasion of the collagen-rich sub-mesothelial matrix and proliferation into macro-metastases. Clinical studies have shown heterogeneity among EOC metastatic units with respect to cadherin expression profiles and invasive behavior, however the impact of distinct cadherin profiles on peritoneal anchoring of metastatic lesions remains poorly understood. In the current study, we demonstrate that metastasis-associated behaviors of ovarian cancer cells and MCAs are influenced by cellular cadherin composition. Our results show that mesenchymal N-cadherin expressing (Ncad+) cells and MCAs invade much more efficiently than E-cadherin expressing (Ecad+) cells. Ncad+ MCAs exhibit rapid lateral dispersal prior to penetration of three-dimensional collagen matrices. When seeded as individual cells, lateral migration and cell-cell junction formation precede matrix invasion. Neutralizing the Ncad extracellular domain with the monoclonal antibody GC-4 suppresses lateral dispersal and cell penetration of collagen gels. In contrast, use of a broad spectrum matrix metalloproteinase (MMP) inhibitor (GM6001) to block endogenous membrane type 1 matrix metalloproteinase (MT1-MMP) activity does not fully inhibit cell invasion. Using intact tissue explants, Ncad+ MCAs were also shown to efficiently rupture peritoneal mesothelial cells, exposing the sub-mesothelial collagen matrix. Acquisition of Ncad by E-cadherin expressing cells (Ecad+) increased mesothelial clearance activity, but was not sufficient to induce matrix invasion. Furthermore, co-culture of Ncad+ with Ecad+ cells did not promote a “leader-follower” mode of collective cell invasion, demonstrating that matrix remodeling and creation of invasive micro-tracks are not sufficient for cell penetration of collagen matrices in the absence of Ncad. Collectively, our data emphasize the role of Ncad in intraperitoneal seeding of EOC and provide the rationale for future studies targeting Ncad+ in pre-clinical models of EOC metastasis. PMID:28628116
Klymenko, Y; Kim, O; Loughran, E; Yang, J; Lombard, R; Alber, M; Stack, M S
2017-10-19
During epithelial ovarian cancer (EOC) progression, intraperitoneally disseminating tumor cells and multicellular aggregates (MCAs) present in ascites fluid adhere to the peritoneum and induce retraction of the peritoneal mesothelial monolayer prior to invasion of the collagen-rich submesothelial matrix and proliferation into macro-metastases. Clinical studies have shown heterogeneity among EOC metastatic units with respect to cadherin expression profiles and invasive behavior; however, the impact of distinct cadherin profiles on peritoneal anchoring of metastatic lesions remains poorly understood. In the current study, we demonstrate that metastasis-associated behaviors of ovarian cancer cells and MCAs are influenced by cellular cadherin composition. Our results show that mesenchymal N-cadherin-expressing (Ncad+) cells and MCAs invade much more efficiently than E-cadherin-expressing (Ecad+) cells. Ncad+ MCAs exhibit rapid lateral dispersal prior to penetration of three-dimensional collagen matrices. When seeded as individual cells, lateral migration and cell-cell junction formation precede matrix invasion. Neutralizing the Ncad extracellular domain with the monoclonal antibody GC-4 suppresses lateral dispersal and cell penetration of collagen gels. In contrast, use of a broad-spectrum matrix metalloproteinase (MMP) inhibitor (GM6001) to block endogenous membrane type 1 matrix metalloproteinase (MT1-MMP) activity does not fully inhibit cell invasion. Using intact tissue explants, Ncad+ MCAs were also shown to efficiently rupture peritoneal mesothelial cells, exposing the submesothelial collagen matrix. Acquisition of Ncad by Ecad+ cells increased mesothelial clearance activity but was not sufficient to induce matrix invasion. Furthermore, co-culture of Ncad+ with Ecad+ cells did not promote a 'leader-follower' mode of collective cell invasion, demonstrating that matrix remodeling and creation of invasive micro-tracks are not sufficient for cell penetration of collagen matrices in the absence of Ncad. Collectively, our data emphasize the role of Ncad in intraperitoneal seeding of EOC and provide the rationale for future studies targeting Ncad in preclinical models of EOC metastasis.
Barbolina, Maria V; Adley, Brian P; Kelly, David L; Shepard, Jaclyn; Fought, Angela J; Scholtens, Denise; Penzes, Peter; Shea, Lonnie D; Stack, M Sharon
2009-08-15
Epithelial ovarian carcinoma (EOC) is a leading cause of death from gynecologic malignancies, due mainly to the prevalence of undetected metastatic disease. The process of cell invasion during intraperitoneal anchoring of metastatic lesions requires concerted regulation of many processes, including modulation of adhesion to the extracellular matrix and localized invasion. Exploratory cDNA microarray analysis of early response genes (altered after 4 hr of 3D collagen culture) coupled with confirmatory real-time reverse-transcriptase polymerase chain reaction, multiple 3D cell culture matrices, Western blot, immunostaining, adhesion, migration and invasion assays were used to identify modulators of adhesion pertinent to EOC progression and metastasis. cDNA microarray analysis indicated a dramatic downregulation of connective tissue growth factor (CTGF) in EOC cells placed in invasion- mimicking conditions (3D Type I collagen). Examination of human EOC specimens revealed that CTGF expression was absent in 46% of the tested samples (n = 41), but was present in 100% of normal ovarian epithelium samples (n = 7). Reduced CTGF expression occurs in many types of cells and may be a general phenomenon displayed by cells encountering a 3D environment. CTGF levels were inversely correlated with invasion such that downregulation of CTGF increased, while its upregulation reduced collagen invasion. Cells adhered preferentially to a surface comprised of both collagen I and CTGF relative to either component alone using alpha6beta1 and alpha3beta1 integrins. Together these data suggest that downregulation of CTGF in EOC cells may be important for cell invasion through modulation of cell-matrix adhesion.
Barbolina, Maria V.; Adley, Brian P.; Kelly, David L.; Shepard, Jaclyn; Fought, Angela J.; Scholtens, Denise; Penzes, Peter; Shea, Lonnie D.; Sharon Stack, M
2010-01-01
Epithelial ovarian carcinoma (EOC) is a leading cause of death from gynecologic malignancy, due mainly to the prevalence of undetected metastatic disease. The process of cell invasion during intra-peritoneal anchoring of metastatic lesions requires concerted regulation of many processes, including modulation of adhesion to the extracellular matrix and localized invasion. Exploratory cDNA microarray analysis of early response genes (altered after 4 hours of 3-dimensional collagen culture) coupled with confirmatory real-time RT-PCR, multiple three-dimensional cell culture matrices, Western blot, immunostaining, adhesion, migration, and invasion assays were used to identify modulators of adhesion pertinent to EOC progression and metastasis. cDNA microarray analysis indicated a dramatic downregulation of connective tissue growth factor (CTGF) in EOC cells placed in invasion-mimicking conditions (3-dimensional type I collagen). Examination of human EOC specimens revealed that CTGF expression was absent in 46% of the tested samples (n=41), but was present in 100% of normal ovarian epithelium samples (n=7). Reduced CTGF expression occurs in many types of cells and may be a general phenomenon displayed by cells encountering a 3D environment. CTGF levels were inversely correlated with invasion such that downregulation of CTGF increased, while its upregulation reduced, collagen invasion. Cells adhered preferentially to a surface comprised of both collagen I and CTGF relative to either component alone using α6β1 and α3β1 integrins. Together these data suggest that downregulation of CTGF in EOC cells may be important for cell invasion through modulation of cell-matrix adhesion. PMID:19382180
Bermueller, Christian; Elsaesser, Alexander F.; Sewing, Judith; Baur, Nina; von Bomhard, Achim; Scheithauer, Marc; Notbohm, Holger; Rotter, Nicole
2013-01-01
Autologous grafts are frequently needed for nasal septum reconstruction. Because they are only available in limited amounts, there is a need for new cartilage replacement strategies. Tissue engineering based on the use of autologous chondrocytes and resorbable matrices might be a suitable option. So far, an optimal material for nasal septum reconstruction has not been identified. The aim of our study was to provide the first evaluation of marine collagen for use in nasal cartilage repair. First, we studied the suitability of marine collagen as a cartilage replacement matrix in the context of in vitro three dimensional cultures by analyzing cell migration, cytotoxicity, and extracellular matrix formation using human and rat nasal septal chondrocytes. Second, we worked toward developing a suitable orthotopic animal model for nasal septum repair, while simultaneously evaluating the biocompatibility of marine collagen. Seeded and unseeded scaffolds were transplanted into nasal septum defects in an orthotopic rat model for 1, 4, and 12 weeks. Explanted scaffolds were histologically and immunohistochemically evaluated. Scaffolds did not induce any cytotoxic reactions in vitro. Chondrocytes were able to adhere to marine collagen and produce cartilaginous matrix proteins, such as collagen type II. Treating septal cartilage defects in vivo with seeded and unseeded scaffolds led to a significant reduction in the number of nasal septum perforations compared to no replacement. In summary, we demonstrated that marine collagen matrices provide excellent properties for cartilage tissue engineering. Marine collagen scaffolds are able to prevent septal perforations in an autologous, orthotopic rat model. This newly described experimental surgical procedure is a suitable way to evaluate new scaffold materials for their applicability in the context of nasal cartilage repair. PMID:23621795
Hepatocyte Growth Factor Gene-Modified Mesenchymal Stem Cells Augment Sinonasal Wound Healing
Li, Jing; Li, Yong; Yang, Chen; Lin, Hai; Duan, Hong-Gang
2015-01-01
This study was designed to investigate the effects of hepatocyte growth factor (HGF) transgenic mesenchymal stem cells (HGF-MSCs) on wound healing in the sinonasal mucosa and nasal epithelial cells (NECs). We also sought to determine whether HGF-MSCs and MSCs can migrate into the injured mucosa and differentiate into ciliated cells. Human HGF-overexpressing umbilical cord MSCs (hHGF-UCMSCs) were established, and upregulation of hHGF expression was confirmed by real-time PCR (RT-PCR) and enzyme-linked immunosorbant assay (ELISA). To investigate the paracrine effect of human MSCs (hMSCs) on nasal epithelial repair, hMSC- and HGF-MSC-conditioned media (CM) were used in NEC proliferation assays and in an in vitro scratch-wound repair model. The in vivo sinonasal wound-healing model was established, and all enrolled rabbits were randomly assigned to four groups: the GFP-MSC group, the HGF-MSC group, the Ad-HGF group, and the surgery control group. The average decreased diameter was recorded, and the medial wall of the maxillary sinus was removed for histological analysis and scanning electron microscopy. Collagen deposition in the wound tissue was detected via Masson trichrome (M&T) staining. The distribution of MSCs and HGF-MSCs was observed by immunofluorescence. MSCs improved nasal wound healing both in vivo and in vitro. HGF overexpression in MSCs augmented the curative effects. Reduced collagen deposition and transforming growth factor beta1 (TGF-β1) expression were detected in the HGF-MSC group compared with the MSC-, Ad-HGF-, and phosphate-buffered saline-treated groups based on M&T staining and ELISA. The enhanced therapeutic effects of HGF-MSCs were accompanied by decreased level of the fibrogenic cytokine TGF-β1. In addition, both HGF-MSCs and MSCs can migrate to the injured mucosa and epithelial layer. PMID:25835956
Hepatocyte Growth Factor Gene-Modified Mesenchymal Stem Cells Augment Sinonasal Wound Healing.
Li, Jing; Zheng, Chun-Quan; Li, Yong; Yang, Chen; Lin, Hai; Duan, Hong-Gang
2015-08-01
This study was designed to investigate the effects of hepatocyte growth factor (HGF) transgenic mesenchymal stem cells (HGF-MSCs) on wound healing in the sinonasal mucosa and nasal epithelial cells (NECs). We also sought to determine whether HGF-MSCs and MSCs can migrate into the injured mucosa and differentiate into ciliated cells. Human HGF-overexpressing umbilical cord MSCs (hHGF-UCMSCs) were established, and upregulation of hHGF expression was confirmed by real-time PCR (RT-PCR) and enzyme-linked immunosorbant assay (ELISA). To investigate the paracrine effect of human MSCs (hMSCs) on nasal epithelial repair, hMSC- and HGF-MSC-conditioned media (CM) were used in NEC proliferation assays and in an in vitro scratch-wound repair model. The in vivo sinonasal wound-healing model was established, and all enrolled rabbits were randomly assigned to four groups: the GFP-MSC group, the HGF-MSC group, the Ad-HGF group, and the surgery control group. The average decreased diameter was recorded, and the medial wall of the maxillary sinus was removed for histological analysis and scanning electron microscopy. Collagen deposition in the wound tissue was detected via Masson trichrome (M&T) staining. The distribution of MSCs and HGF-MSCs was observed by immunofluorescence. MSCs improved nasal wound healing both in vivo and in vitro. HGF overexpression in MSCs augmented the curative effects. Reduced collagen deposition and transforming growth factor beta1 (TGF-β1) expression were detected in the HGF-MSC group compared with the MSC-, Ad-HGF-, and phosphate-buffered saline-treated groups based on M&T staining and ELISA. The enhanced therapeutic effects of HGF-MSCs were accompanied by decreased level of the fibrogenic cytokine TGF-β1. In addition, both HGF-MSCs and MSCs can migrate to the injured mucosa and epithelial layer.
Role of LRP-1 in cancer cell migration in 3-dimensional collagen matrix.
Appert-Collin, Aline; Bennasroune, Amar; Jeannesson, Pierre; Terryn, Christine; Fuhrmann, Guy; Morjani, Hamid; Dedieu, Stéphane
2017-07-04
The low-density lipoprotein receptor-related protein-1 (LRP-1) is a member of Low Density Lipoprotein Receptor (LDLR) family, which is ubiquitously expressed and which is described as a multifunctional endocytic receptor which mediates the clearance of various extracellular matrix molecules including serine proteinases, proteinase-inhibitor complexes, and matricellular proteins. Several studies showed that high LRP-1 expression promotes breast cancer cell invasiveness, and LRP-1 invalidation leads to cell motility abrogation in both tumor and non-tumor cells. Furthermore, our group has reported that LRP-1 silencing prevents the invasion of a follicular thyroid carcinoma despite increased pericellular proteolytic activities from MMP2 and uPA using a 2D-cell culture model. As the use of 3D culture systems is becoming more and more popular due to their promise as enhanced models of tissue physiology, the aim of the present work is to characterize for the first time how the 3D collagen type I matrix may impact the ability of LRP-1 to regulate the migratory properties of thyroid carcinoma using as a model FTC-133 cells. Our results show that inhibition of LRP-1 activity or expression leads to morphological changes affecting cell-matrix interactions, reorganizations of the actin-cytoskeleton especially by inhibiting FAK activation and increasing RhoA activity and MLC-2 phosphorylation, thus preventing cell migration. Taken together, our results suggest that LRP-1 silencing leads to a decrease of cell migratory capacity in a 3D configuration.
In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor.
Boissonnas, Alexandre; Fetler, Luc; Zeelenberg, Ingrid S; Hugues, Stéphanie; Amigorena, Sebastian
2007-02-19
Although the immune system evolved to fight infections, it may also attack and destroy solid tumors. In most cases, tumor rejection is initiated by CD8(+) cytotoxic T lymphocytes (CTLs), which infiltrate solid tumors, recognize tumor antigens, and kill tumor cells. We use a combination of two-photon intravital microscopy and immunofluorescence on ordered sequential sections to analyze the infiltration and destruction of solid tumors by CTLs. We show that in the periphery of a thymoma growing subcutaneously, activated CTLs migrate with high instantaneous velocities. The CTLs arrest in close contact to tumor cells expressing their cognate antigen. In regions where most tumor cells are dead, CTLs resume migration, sometimes following collagen fibers or blood vessels. CTLs migrating along blood vessels preferentially adopt an elongated morphology. CTLs also infiltrate tumors in depth, but only when the tumor cells express the cognate CTL antigen. In tumors that do not express the cognate antigen, CTL infiltration is restricted to peripheral regions, and lymphocytes neither stop moving nor kill tumor cells. Antigen expression by tumor cells therefore determines both CTL motility within the tumor and profound tumor infiltration.
Lu, Chao; Meng, Danqing; Cao, Jiani; Xiao, Zhifeng; Cui, Yi; Fan, Jingya; Cui, Xiaolong; Chen, Bing; Yao, Yao; Zhang, Zhen; Ma, Jinling; Pan, Juli; Dai, Jianwu
2015-05-01
The preclinical studies using animal models play a very important role in the evaluation of facial nerve regeneration. Good models need to recapitulate the distance and time for axons to regenerate in humans. Compared with the most used rodent animals, the structure of facial nerve in mini-pigs shares more similarities with humans in microanatomy. To evaluate the feasibility of repairing facial nerve defects by collagen scaffolds combined with ciliary neurotrophic factor (CNTF), 10-mm-long gaps were made in the buccal branch of mini-pigs' facial nerve. Three months after surgery, electrophysiological assessment and histological examination were performed to evaluate facial nerve regeneration. Immunohistochemistry and transmission electron microscope observation showed that collagen scaffolds with collagen binding (CBD)-CNTF could promote better axon regeneration, Schwann cell migration, and remyelination at the site of implant device than using scaffolds alone. Electrophysiological assessment also showed higher recovery rate in the CNTF group. In summary, combination of collagen scaffolds and CBD-CNTF showed promising effects on facial nerve regeneration in mini-pig models. © 2014 Wiley Periodicals, Inc.
An, Bo; Abbonante, Vittorio; Xu, Huifang; Gavriilidou, Despoina; Yoshizumi, Ayumi; Bihan, Dominique; Farndale, Richard W.; Kaplan, David L.; Balduini, Alessandra; Leitinger, Birgit; Brodsky, Barbara
2016-01-01
A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities. PMID:26702058
The Effect of Secretory Factors of Adipose-Derived Stem Cells on Human Keratinocytes
Moon, Kyoung Mi; Park, Ye-Hyoung; Lee, Jae Seol; Chae, Yong-Byung; Kim, Moon-Moo; Kim, Dong-Soo; Kim, Byung-Woo; Nam, Soo-Wan; Lee, Jong-Hwan
2012-01-01
The beneficial effects of adipose-derived stem cell conditioned medium (ADSC-CM) on skin regeneration have been reported. Although the mechanism of how ADSC-CM promotes skin regeneration is unclear, ADSC-CM contained various growth factors and it is an excellent raw material for skin treatment. ADSC-CM produced in a hypoxia condition of ADSC—in other words, Advanced Adipose-Derived Stem cell Protein Extract (AAPE)—has great merits for skin regeneration. In this study, human primary keratinocytes (HKs), which play fundamental roles in skin tissue, was used to examine how AAPE affects HK. HK proliferation was significantly higher in the experimental group (1.22 μg/mL) than in the control group. DNA gene chip demonstrated that AAPE in keratinocytes (p < 0.05) notably affected expression of 290 identified transcripts, which were associated with cell proliferation, cycle and migration. More keratinocyte wound healing and migration was shown in the experimental group (1.22 μg/mL). AAPE treatment significantly stimulated stress fiber formation, which was linked to the RhoA-ROCK pathway. We identified 48 protein spots in 2-D gel analysis and selected proteins were divided into 64% collagen components and 30% non-collagen components as shown by the MALDI-TOF analysis. Antibody array results contained growth factor/cytokine such as HGF, FGF-1, G-CSF, GM-CSF, IL-6, VEGF, and TGF-β3 differing from that shown by 2-D analysis. Conclusion: AAPE activates HK proliferation and migration. These results highlight the potential of the topical application of AAPE in the treatment of skin regeneration. PMID:22312315
Yang, Zhizhou; Sun, Zhaorui; Liu, Hongmei; Ren, Yi; Shao, Danbing; Zhang, Wei; Lin, Jinfeng; Wolfram, Joy; Wang, Feng; Nie, Shinan
2015-07-01
It is well established that paraquat (PQ) poisoning can cause severe lung injury during the early stages of exposure, finally leading to irreversible pulmonary fibrosis. Connective tissue growth factor (CTGF) is an essential growth factor that is involved in tissue repair and pulmonary fibrogenesis. In the present study, the role of CTGF was examined in a rat model of pulmonary fibrosis induced by PQ poisoning. Histological examination revealed interstitial edema and extensive cellular thickening of interalveolar septa at the early stages of poisoning. At 2 weeks after PQ administration, lung tissue sections exhibited a marked thickening of the alveolar walls with an accumulation of interstitial cells with a fibroblastic appearance. Masson's trichrome staining revealed a patchy distribution of collagen deposition, indicating pulmonary fibrogenesis. Western blot analysis and immunohistochemical staining of tissue samples demonstrated that CTGF expression was significantly upregulated in the PQ-treated group. Similarly, PQ treatment of MRC-5 human lung fibroblast cells caused an increase in CTGF in a dose-dependent manner. Furthermore, the addition of CTGF to MRC-5 cells triggered cellular proliferation and migration. In addition, CTGF induced the differentiation of fibroblasts to myofibroblasts, as was evident from increased expression of α-smooth muscle actin (α-SMA) and collagen. These findings demonstrate that PQ causes increased CTGF expression, which triggers proliferation, migration and differentiation of lung fibroblasts. Therefore, CTGF may be important in PQ-induced pulmonary fibrogenesis, rendering this growth factor a potential pharmacological target for reducing lung injury.
Kumar, Vinay; Ali, Mohammad Javed; Ramachandran, Charanya
2015-09-01
To determine the effect of mitomycin-C (MMC) on the contraction and migration of human nasal mucosal fibroblasts (HNMFs) in vitro in order to identify the least concentration of MMC required to prevent cicatrix development following dacryocystorhinostomy (DCR). Primary cultures of HNMFs were established from nasal mucosal tissues of patients undergoing DCR. Myofibroblast transformation of HNMFs was induced using transforming growth factor-β (TGF-β1) and confirmed by immunostaining for α-smooth muscle actin (α-SMA). Collagen gel contraction assay was employed to study contraction in the presence or absence of TGF-β1 (5 and 10 ng/mL) and MMC (0.2 and 0.4 mg/mL). Scratch wound assay was employed to determine the influence of MMC treatment on cell migration. Quantification of gel contraction and wound closure was done using Image J software. α-SMA expression increased with TGF-β1 treatment in a time- and dose-dependent manner indicating myofibroblast transformation of HNMFs. MMC inhibited TGF-β1- induced collagen gel contraction in a dose-dependent manner (0.4 mg/mL>0.2 mg/mL). Further, there was a decrease in the migration of MMC-treated HNMFs, resulting in delayed wound closure that corroborated with the loss of actin stress fibres. MMC successfully inhibited TGF-β1-induced myofibroblast transformation, collagen gel contraction and significantly reduced the migration of HNMFs to cover the wound even at a low concentration of 0.2 mg/mL. This study provides evidence that low concentration and short duration of MMC treatment is efficient in reducing increased contraction and migration of HMNFs in response to injury. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity
Zhang, Qian; Dove, Christopher G.; Hor, Jyh Liang; Murdock, Heardley M.; Strauss-Albee, Dara M.; Garcia, Jordan A.; Mandl, Judith N.; Grodick, Rachael A.; Jing, Huie; Chandler-Brown, Devon B.; Lenardo, Timothy E.; Crawford, Greg; Matthews, Helen F.; Freeman, Alexandra F.; Cornall, Richard J.; Germain, Ronald N.
2014-01-01
DOCK8 mutations result in an inherited combined immunodeficiency characterized by increased susceptibility to skin and other infections. We show that when DOCK8-deficient T and NK cells migrate through confined spaces, they develop cell shape and nuclear deformation abnormalities that do not impair chemotaxis but contribute to a distinct form of catastrophic cell death we term cytothripsis. Such defects arise during lymphocyte migration in collagen-dense tissues when DOCK8, through CDC42 and p21-activated kinase (PAK), is unavailable to coordinate cytoskeletal structures. Cytothripsis of DOCK8-deficient cells prevents the generation of long-lived skin-resident memory CD8 T cells, which in turn impairs control of herpesvirus skin infections. Our results establish that DOCK8-regulated shape integrity of lymphocytes prevents cytothripsis and promotes antiviral immunity in the skin. PMID:25422492
Different wound healing properties of dermis, adipose, and gingiva mesenchymal stromal cells.
Boink, Mireille A; van den Broek, Lenie J; Roffel, Sanne; Nazmi, Kamran; Bolscher, Jan G M; Gefen, Amit; Veerman, Enno C I; Gibbs, Susan
2016-01-01
Oral wounds heal faster and with better scar quality than skin wounds. Deep skin wounds where adipose tissue is exposed, have a greater risk of forming hypertrophic scars. Differences in wound healing and final scar quality might be related to differences in mesenchymal stromal cells (MSC) and their ability to respond to intrinsic (autocrine) and extrinsic signals, such as human salivary histatin, epidermal growth factor, and transforming growth factor beta1. Dermis-, adipose-, and gingiva-derived MSC were compared for their regenerative potential with regards to proliferation, migration, and matrix contraction. Proliferation was assessed by cell counting and migration using a scratch wound assay. Matrix contraction and alpha smooth muscle actin was assessed in MSC populated collagen gels, and also in skin and gingival full thickness tissue engineered equivalents (reconstructed epithelium on MSC populated matrix). Compared to skin-derived MSC, gingiva MSC showed greater proliferation and migration capacity, and less matrix contraction in full thickness tissue equivalents, which may partly explain the superior oral wound healing. Epidermal keratinocytes were required for enhanced adipose MSC matrix contraction and alpha smooth muscle actin expression, and may therefore contribute to adverse scarring in deep cutaneous wounds. Histatin enhanced migration without influencing proliferation or matrix contraction in all three MSC, indicating that salivary peptides may have a beneficial effect on wound closure in general. Transforming growth factor beta1 enhanced contraction and alpha smooth muscle actin expression in all three MSC types when incorporated into collagen gels. Understanding the mechanisms responsible for the superior oral wound healing will aid us to develop advanced strategies for optimal skin regeneration, wound healing and scar formation. © 2015 by the Wound Healing Society.
Quantification of three-dimensional cell-mediated collagen remodeling using graph theory.
Bilgin, Cemal Cagatay; Lund, Amanda W; Can, Ali; Plopper, George E; Yener, Bülent
2010-09-30
Cell cooperation is a critical event during tissue development. We present the first precise metrics to quantify the interaction between mesenchymal stem cells (MSCs) and extra cellular matrix (ECM). In particular, we describe cooperative collagen alignment process with respect to the spatio-temporal organization and function of mesenchymal stem cells in three dimensions. We defined two precise metrics: Collagen Alignment Index and Cell Dissatisfaction Level, for quantitatively tracking type I collagen and fibrillogenesis remodeling by mesenchymal stem cells over time. Computation of these metrics was based on graph theory and vector calculus. The cells and their three dimensional type I collagen microenvironment were modeled by three dimensional cell-graphs and collagen fiber organization was calculated from gradient vectors. With the enhancement of mesenchymal stem cell differentiation, acceleration through different phases was quantitatively demonstrated. The phases were clustered in a statistically significant manner based on collagen organization, with late phases of remodeling by untreated cells clustering strongly with early phases of remodeling by differentiating cells. The experiments were repeated three times to conclude that the metrics could successfully identify critical phases of collagen remodeling that were dependent upon cooperativity within the cell population. Definition of early metrics that are able to predict long-term functionality by linking engineered tissue structure to function is an important step toward optimizing biomaterials for the purposes of regenerative medicine.
Xiao, Jisheng; Zhu, Yunxiao; Huddleston, Samantha; Li, Peng; Xiao, Baixue; Farha, Omar K; Ameer, Guillermo A
2018-02-27
The successful treatment of chronic nonhealing wounds requires strategies that promote angiogenesis, collagen deposition, and re-epithelialization of the wound. Copper ions have been reported to stimulate angiogenesis; however, several applications of copper salts or oxides to the wound bed are required, leading to variable outcomes and raising toxicity concerns. We hypothesized that copper-based metal-organic framework nanoparticles (Cu-MOF NPs), referred to as HKUST-1, which are rapidly degraded in protein solutions, can be modified to slowly release Cu 2+ , resulting in reduced toxicity and improved wound healing rates. Folic acid was added during HKUST-1 synthesis to generate folic-acid-modified HKUST-1 (F-HKUST-1). The effect of folic acid incorporation on NP stability, size, hydrophobicity, surface area, and copper ion release profile was measured. In addition, cytotoxicity and in vitro cell migration processes due to F-HKUST-1 and HKUST-1 were evaluated. Wound closure rates were assessed using the splinted excisional dermal wound model in diabetic mice. The incorporation of folic acid into HKUST-1 enabled the slow release of copper ions, which reduced cytotoxicity and enhanced cell migration in vitro. In vivo, F-HKUST-1 induced angiogenesis, promoted collagen deposition and re-epithelialization, and increased wound closure rates. These results demonstrate that folic acid incorporation into HKUST-1 NPs is a simple, safe, and promising approach to control Cu 2+ release, thus enabling the direct application of Cu-MOF NPs to wounds.
Biophysical force regulation in 3D tumor cell invasion
NASA Astrophysics Data System (ADS)
Wu, Mingming
When embedded within 3D extracellular matrices (ECM), animal cells constantly probe and adapt to the ECM locally (at cell length scale) and exert forces and communicate with other cells globally (up to 10 times of cell length). It is now well accepted that mechanical crosstalk between animal cells and their microenvironment critically regulate cell function such as migration, proliferation and differentiation. Disruption of the cell-ECM crosstalk is implicated in a number of pathologic processes including tumor progression and fibrosis. Central to the problem of cell-ECM crosstalk is the physical force that cells generate. By measuring single cell generated force within 3D collagen matrices, we revealed a mechanical crosstalk mechanism between the tumor cells and the ECM. Cells generate sufficient force to stiffen collagen fiber network, and stiffer matrix, in return promotes larger cell force generation. Our work highlights the importance of fibrous nonlinear elasticity in regulating tumor cell-ECM interaction, and results may have implications in the rapid tissue stiffening commonly found in tumor progression and fibrosis. This work is partially supported by NIH Grants R21RR025801 and R21GM103388.
Markiewicz, Margaret; Nakerakanti, Sashidhar S; Kapanadze, Bagrat; Ghatnekar, Angela; Trojanowska, Maria
2011-01-01
The primary objective of this study was to examine the potential interaction between S1P, a pleiotropic lipid mediator, and CTGF/CCN2, a secreted multimodular protein, in the process of endothelial cell migration. The secondary objective was to determine whether C- and N-terminal domains of CTGF/CCN2 have a specific function in cell migration. Migration of HDMECs was examined in monolayer wound healing "scratch" assay, whereas capillary-like tube formation was examined in three-dimensional collagen co-culture assays. We observed that S1P stimulates migration of HDMECs concomitant with upregulation of CTGF/CCN2 expression. Furthermore, the blockade of endogenous CTGF/CCN2 via siRNA abrogated S1P-induced HDMEC migration and capillary-like tube formation. Full-length CTGF induced cell migration and capillary-like tube formation with a potency similar to that of S1P, while C-terminal domain of CTGF was slightly less effective. However, N-terminal domain had only a residual activity in inducing capillary-like tube formation. This study revealed that CTGF/CCN2 is required for the S1P-induced endothelial cell migration, which suggests that CTGF/CCN2 may be an important mediator of S1P-induced physiological and pathological angiogenesis. Moreover, this study shows that the pro-migratory activity of CTGF/CCN2 is located in the C-terminal domain. © 2010 John Wiley & Sons Ltd.
Poplawski, Piotr; Rybicka, Beata; Boguslawska, Joanna; Rodzik, Katarzyna; Visser, Theo J; Nauman, Alicja; Piekielko-Witkowska, Agnieszka
2017-02-15
Type 1 iodothyronine deiodinase (DIO1) regulates peripheral metabolism of thyroid hormones that control cellular proliferation, differentiation and metabolism. The significance of DIO1 in cancer is unknown. In this study we hypothesized that diminished expression of DIO1, observed in renal cancer, contributes to the carcinogenic process in the kidney. Here, we demonstrate that ectopic expression of DIO1 in renal cancer cells changes the expression of genes controlling cell cycle, including cyclin E1 and E2F5, and results in inhibition of proliferation. The expression of genes encoding collagens (COL1A1, COL4A2, COL5A1), integrins (ITGA4, ITGA5, ITGB3) and transforming growth factor-β-induced (TGFBI) is significantly altered in renal cancer cells with induced expression of DIO1. Finally, we show that overexpression of DIO1 inhibits migration of renal cancer cells. In conclusion, we demonstrate for the first time that loss of DIO1 contributes to renal carcinogenesis and that its induced expression protects cells against cancerous proliferation and migration. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Raab, Matthew; Swift, Joe; P. Dingal, P.C. Dave; Shah, Palak; Shin, Jae-Won
2012-01-01
On rigid surfaces, the cytoskeleton of migrating cells is polarized, but tissue matrix is normally soft. We show that nonmuscle MIIB (myosin-IIB) is unpolarized in cells on soft matrix in 2D and also within soft 3D collagen, with rearward polarization of MIIB emerging only as cells migrate from soft to stiff matrix. Durotaxis is the tendency of cells to crawl from soft to stiff matrix, and durotaxis of primary mesenchymal stem cells (MSCs) proved more sensitive to MIIB than to the more abundant and persistently unpolarized nonmuscle MIIA (myosin-IIA). However, MIIA has a key upstream role: in cells on soft matrix, MIIA appeared diffuse and mobile, whereas on stiff matrix, MIIA was strongly assembled in oriented stress fibers that MIIB then polarized. The difference was caused in part by elevated phospho-S1943–MIIA in MSCs on soft matrix, with site-specific mutants revealing the importance of phosphomoderated assembly of MIIA. Polarization is thus shown to be a highly regulated compass for mechanosensitive migration. PMID:23128239
Podoplanin increases migration and angiogenesis in malignant glioma
Grau, Stefan J; Trillsch, Fabian; Tonn, Joerg-Christian; Goldbrunner, Roland H; Noessner, Elfriede; Nelson, Peter J; von Luettichau, Irene
2015-01-01
Expression of podoplanin in glial brain tumors is grade dependent. While serving as a marker for tumor progression and modulating invasion in various neoplasms, little is known about podoplanin function in gliomas. Therefore we stably transfected two human glioma cell lines (U373MG and U87MG) with expression plasmids encoding podoplanin. The efficacy of transfection was confirmed by FACS analysis, PCR and immunocytochemistry. Cells were then sorted for highly podoplanin expressing cells (U373Phigh/U87Phigh). Transfection did not influence the production of pro-angiogenic factors including VEGF, VEGF-C and D. Also, expression of VEGF receptors (VEGFR) remained unchanged except for U87Phigh, where a VEGFR3 expression was induced. U373Phigh showed significantly reduced proliferation as compared to mock transfected group. By contrast, podoplanin significantly increased migration and invasion into collagen matrix. Furthermore, conditioned media from Phigh glioma cells strongly induced tube formation on matrigel. In conclusion, podoplanin increased migration of tumor cells and enhanced tube formation activity in endothelial cells independent from VEGF. Thus, podoplanin expression may be an important step in tumor progression. PMID:26339454
Liu, Guangjie; Li, Xuan; Li, Yan; Tang, Xin; Xu, Jie; Li, Ran; Hao, Peng; Sun, Yongchang
2013-01-01
Pulmonary arterial hypertension (PAH) is a severe and progressive disease, a key feature of which is pulmonary vascular remodeling. Growth factors, cytokines, and lipid mediators are involved in this remodeling process. Recent reports suggest that the peroxisome proliferator-activated receptors (PPARs) play important roles in the regulation of cell growth and differentiation as well as tissue wounding and repair. In this study, we examined the role of PPAR δ in the regulation of proliferation, migration, collagen synthesis, and chemokine production in human pulmonary arterial smooth muscle cells (HPASMCs). The data showed that PPAR δ was the most abundant isoform in HPASMCs. PPAR δ was upregulated in HPASMCs treated with PDGF, which is the major mediator in pulmonary vascular remodeling. Activation of PPAR δ by GW501516, a specific PPAR δ ligand, significantly inhibited PDGF-induced proliferation in HPASMCs. The inhibitory effect of GW501516 on HPASMCs was associated with decreased expression of cyclin D1, cyclin D3, CDK2, and CDK4 as well as increased expression of the cell cycle inhibitory genes G0S2 and P27(kip1). Pretreatment of HPASMCs with GW501516 significantly inhibited PDGF-induced cell migration and collagen synthesis. GW501516 also significantly attenuated TNF-mediated expression of MCP-1. These results suggest that PPAR δ may be a potential therapeutic target against the progression of vascular remodeling in PAH.
Liu, Guangjie; Li, Xuan; Li, Yan; Tang, Xin; Xu, Jie; Li, Ran; Hao, Peng; Sun, Yongchang
2013-01-01
Pulmonary arterial hypertension (PAH) is a severe and progressive disease, a key feature of which is pulmonary vascular remodeling. Growth factors, cytokines, and lipid mediators are involved in this remodeling process. Recent reports suggest that the peroxisome proliferator-activated receptors (PPARs) play important roles in the regulation of cell growth and differentiation as well as tissue wounding and repair. In this study, we examined the role of PPARδ in the regulation of proliferation, migration, collagen synthesis, and chemokine production in human pulmonary arterial smooth muscle cells (HPASMCs). The data showed that PPARδ was the most abundant isoform in HPASMCs. PPARδ was upregulated in HPASMCs treated with PDGF, which is the major mediator in pulmonary vascular remodeling. Activation of PPARδ by GW501516, a specific PPARδ ligand, significantly inhibited PDGF-induced proliferation in HPASMCs. The inhibitory effect of GW501516 on HPASMCs was associated with decreased expression of cyclin D1, cyclin D3, CDK2, and CDK4 as well as increased expression of the cell cycle inhibitory genes G0S2 and P27kip1. Pretreatment of HPASMCs with GW501516 significantly inhibited PDGF-induced cell migration and collagen synthesis. GW501516 also significantly attenuated TNF-mediated expression of MCP-1. These results suggest that PPARδ may be a potential therapeutic target against the progression of vascular remodeling in PAH. PMID:23607100
Castelo-Branco, Morgana T L; Soares, Igor D P; Lopes, Daiana V; Buongusto, Fernanda; Martinusso, Cesonia A; do Rosario, Alyson; Souza, Sergio A L; Gutfilen, Bianca; Fonseca, Lea Mirian B; Elia, Celeste; Madi, Kalil; Schanaider, Alberto; Rossi, Maria Isabel D; Souza, Heitor S P
2012-01-01
Mesenchymal stromal cells (MSCs) were shown to have immunomodulatory activity and have been applied for treating immune-mediated disorders. We compared the homing and therapeutic action of cryopreserved subcutaneous adipose tissue (AT-MSCs) and bone marrow-derived mesenchymal stromal cells (BM-MSCs) in rats with trinitrobenzene sulfonic acid (TNBS)-induced colitis. After colonoscopic detection of inflammation AT-MSCs or BM-MSCs were injected intraperitoneally. Colonoscopic and histologic scores were obtained. Density of collagen fibres and apoptotic rates were evaluated. Cytokine levels were measured in supernatants of colon explants. For cell migration studies MSCs and skin fibroblasts were labelled with Tc-99m or CM-DiI and injected intraperitonealy or intravenously. Intraperitoneal injection of AT-MSCs or BM-MSCs reduced the endoscopic and histopathologic severity of colitis, the collagen deposition, and the epithelial apoptosis. Levels of TNF-α and interleukin-1β decreased, while VEGF and TGF-β did not change following cell-therapy. Scintigraphy showed that MSCs migrated towards the inflamed colon and the uptake increased from 0.5 to 24 h. Tc-99m-MSCs injected intravenously distributed into various organs, but not the colon. Cm-DiI-positive MSCs were detected throughout the colon wall 72 h after inoculation, predominantly in the submucosa and muscular layer of inflamed areas. Intraperitoneally injected cryopreserved MSCs home to and engraft into the inflamed colon and ameliorate TNBS-colitis.
Shin, Jae-Min; Kang, Ju-Hyung; Lee, Seoung-Ae; Park, Il-Ho; Lee, Heung-Man
2017-03-01
Doxycycline has antibacterial and anti-inflammatory effects, and it also suppresses collagen biosynthesis. This study aimed to confirm the effects and mechanism of doxycycline on transforming growth factor (TGF) beta 1 induced epithelial-mesenchymal transition and cell migration in A549 and primary nasal epithelial cells. A 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay and phalloidin-fluorescein isothiocyanate staining were used to evaluate cytotoxicity and cellular morphologic changes. Western blot and immunofluorescence staining were used to determine the expression levels of E-cadherin, vimentin, alpha-smooth muscle actin, fibronectin, phosphorylated Smad2/3, and mitogen-activated protein kinases. Scratch and transwell migration assays were used to assess cellular migration ability. Doxycycline (0-10 μg/mL) had no significant cytotoxic effects in A549 and primary nasal epithelial cells. Increased expression of mesenchymal markers, including vimentin, alpha-smooth muscle actin, and fibronectin in TGF beta 1 induced A549 cells were downregulated by doxycycline treatment. In contrast, E-cadherin expression was upregulated in TGF beta 1 induced A549 cells. An in vitro cell migration assay showed that doxycycline also inhibited the ability of TGF beta 1 induced migration. Doxycycline treatment suppressed the activation of Smad2/3 and p38, whereas its inhibitory effects were similar to each element-specific inhibitor in A549 and primary nasal epithelial cells. Doxycycline inhibited TGF beta 1 induced epithelial-to-mesenchymal transition and migration by targeting Smad2/3 and p38 signal pathways in respiratory epithelial cells.
The paratenon contributes to scleraxis-expressing cells during patellar tendon healing.
Dyment, Nathaniel A; Liu, Chia-Feng; Kazemi, Namdar; Aschbacher-Smith, Lindsey E; Kenter, Keith; Breidenbach, Andrew P; Shearn, Jason T; Wylie, Christopher; Rowe, David W; Butler, David L
2013-01-01
The origin of cells that contribute to tendon healing, specifically extrinsic epitenon/paratenon cells vs. internal tendon fibroblasts, is still debated. The purpose of this study is to determine the location and phenotype of cells that contribute to healing of a central patellar tendon defect injury in the mouse. Normal adult patellar tendon consists of scleraxis-expressing (Scx) tendon fibroblasts situated among aligned collagen fibrils. The tendon body is surrounded by paratenon, which consists of a thin layer of cells that do not express Scx and collagen fibers oriented circumferentially around the tendon. At 3 days following injury, the paratenon thickens as cells within the paratenon proliferate and begin producing tenascin-C and fibromodulin. These cells migrate toward the defect site and express scleraxis and smooth muscle actin alpha by day 7. The thickened paratenon tissue eventually bridges the tendon defect by day 14. Similarly, cells within the periphery of the adjacent tendon struts express these markers and become disorganized. Cells within the defect region show increased expression of fibrillar collagens (Col1a1 and Col3a1) but decreased expression of tenogenic transcription factors (scleraxis and mohawk homeobox) and collagen assembly genes (fibromodulin and decorin). By contrast, early growth response 1 and 2 are upregulated in these tissues along with tenascin-C. These results suggest that paratenon cells, which normally do not express Scx, respond to injury by turning on Scx and assembling matrix to bridge the defect. Future studies are needed to determine the signaling pathways that drive these cells and whether they are capable of producing a functional tendon matrix. Understanding this process may guide tissue engineering strategies in the future by stimulating these cells to improve tendon repair.
Mitchell, Camilla B; Stehn, Justine R; O'Neill, Geraldine M
2018-05-12
The migration and invasion of cells through tissues in the body is facilitated by a dynamic actin cytoskeleton. The actin-associating protein, tropomyosin Tpm3.1 has emerged to play important roles in cell migration and invasion. To date, investigations have focused on single cell migration and invasion where Tpm3.1 expression is inversely associated with Rac GTPase-mediated cell invasion. While single cell and collective cell invasion have many features in common, collective invasion is additionally impacted by cell-cell adhesion, and the role of Tpm3.1 in collective invasion has not been established. In the present study we have modelled multicellular invasion using neuroblastoma spheroids embedded in 3D collagen and analysed the function of Tpm3.1 using recently established compounds that target the Tpm3.1 C-terminus. The major findings from our study reveal that combined Rac inhibition and Tpm3.1 targeting result in greater inhibition of multicellular invasion than either treatment alone. Together, the data suggest that Tpm3.1 disruption sensitizes neuroblastoma cells to Rac inhibition of multicellular invasion. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Frank, U; Rinkevich, B
1999-01-01
Mechanically and enzymatically dissociated cells from five anthozoan species were laid on seven substrates in vitro. Cells were taken from two sea anemones (Aiptasia sp. and Anemonia sulcata), a scleractinian coral (Stylophora pistillata) and two alcyonacean corals (Heteroxenia fuscescence and Nephthea sp). Substrates tested: glass (coverslips), plastic (uncoated tissue culture plates), type IV collagen, gelatin, fibronectin, mesoglea pieces from the scyphozoan jellyfish Rhopilema nomadica and acetic acid extract of jellyfish mesoglea. Except for the mesoglea pieces, cells did not respond to any one of the other substrates, retaining their rounded shape. Following contact with mesoglea pieces, cells attached and spread. Subsequently they migrated into the mesogleal matrix at a rate of 5-10 microm/h during the first 2-5 h. No difference was found between the behavior of cells from the five different cnidarian species. Copyright 1999 Academic Press.
Mazzocca, Antonio; Carloni, Vinicio; Sciammetta, Silvia; Cordella, Claudia; Pantaleo, Pietro; Caldini, Anna; Gentilini, Paolo; Pinzani, Massimo
2002-09-01
Migration of activated hepatic stellate cells (HSC) is a key event in the progression of liver fibrosis. Little is known about transmembrane proteins involved in HSC motility. Tetraspanins (TM4SF) have been implicated in cell development, differentiation, motility and tumor cell invasion. We evaluated the expression and function of four TM4SF, namely CD9, CD81, CD63 and CD151, and their involvement in HSC migration, adhesion, and proliferation. All TM4SF investigated were highly expressed at the human HSC surface with different patterns of intracellular distribution. Monoclonal antibodies directed against the four TM4SF inhibited HSC migration induced by extracellular matrix proteins in both wound healing and haptotaxis assays. This inhibition was independent of the ECM substrates employed (collagen type I or IV, laminin), and was comparable to that obtained by incubating the cells with an anti-beta1 blocking mAb. Importantly, cell adhesion was unaffected by the incubation with the same antibodies. Co-immunoprecipitation studies revealed different patterns of association between the four TM4SF studied and beta1 integrin. Finally, anti-TM4SF antibodies did not affect HSC growth. These findings provide the first characterization of tetraspanins expression and of their role in HSC migration, a key event in liver tissue wound healing and fibrogenesis.
Baicalin Down-Regulates IL-1β-Stimulated Extracellular Matrix Production in Nasal Fibroblasts
Shin, Jae-Min; Kang, Ju-Hyung; Lee, Seoung-Ae; Park, Il-Ho; Lee, Heung-Man
2016-01-01
Purpose Baicalin, a Chinese herbal medicine, has anti-fibrotic and anti-inflammatory effects. The aims of present study were to investigate the effects of baicalin on the myofibroblast differentiation, extracellular matrix production, migration, and collagen contraction of interleukin (IL)-1β-stimulated nasal fibroblasts and to determine the molecular mechanism of baicalin in nasal fibroblasts. Methods Nasal fibroblasts were isolated from the inferior turbinate of patients. Baicalin was used to treat IL-1β-stimulated nasal fibroblasts. To evaluate cytotoxicity, a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay was used. The expression levels of α-smooth muscle actin (SMA), fibronectin, phospho-mitogen-activated protein kinase (p-MAPK), p-Akt, p-p50, p-p65, and p-IκBα were measured by western blotting, reverse transcription-polymerase chain reaction (RT—PCR),or immunofluorescence staining. Fibroblast migration was analyzed with scratch assays and transwell migration assays. Total collagen was evaluated with the Sircol collagen assay. Contractile activity was measured with a collagen gel contraction assay. Results Baicalin (0–50 μM) had no significant cytotoxic effects in nasal fibroblasts. The expression of α–SMA and fibronectin were significantly down-regulated in baicalin-treated nasal fibroblasts. Migration, collagen production, and contraction of IL-1β-stimulated nasal fibroblasts were significantly inhibited by baicalin treatment. Baicalin also significantly down-regulated p-MAPK, p-Akt, p-p50, p-p65, and p-IκBα in IL-1β-stimulated nasal fibroblasts. Conclusions We showed that baicalin down-regulated myofibroblast differentiation, extracellular matrix production, migration, and collagen contraction via the MAPK and Akt/ NF-κB pathways in IL-1β-stimulated nasal fibroblasts. PMID:28002421
Sathyamoorthy, Tarangini; Tezera, Liku B; Walker, Naomi F; Brilha, Sara; Saraiva, Luisa; Mauri, Francesco A; Wilkinson, Robert J; Friedland, Jon S; Elkington, Paul T
2015-08-01
Tuberculosis (TB) remains a global pandemic and drug resistance is rising. Multicellular granuloma formation is the pathological hallmark of Mycobacterium tuberculosis infection. The membrane type 1 matrix metalloproteinase (MT1-MMP or MMP-14) is a collagenase that is key in leukocyte migration and collagen destruction. In patients with TB, induced sputum MT1-MMP mRNA levels were increased 5.1-fold compared with matched controls and correlated positively with extent of lung infiltration on chest radiographs (r = 0.483; p < 0.05). M. tuberculosis infection of primary human monocytes increased MT1-MMP surface expression 31.7-fold and gene expression 24.5-fold. M. tuberculosis-infected monocytes degraded collagen matrix in an MT1-MMP-dependent manner, and MT1-MMP neutralization decreased collagen degradation by 73%. In human TB granulomas, MT1-MMP immunoreactivity was observed in macrophages throughout the granuloma. Monocyte-monocyte networks caused a 17.5-fold increase in MT1-MMP surface expression dependent on p38 MAPK and G protein-coupled receptor-dependent signaling. Monocytes migrating toward agarose beads impregnated with conditioned media from M. tuberculosis-infected monocytes expressed MT1-MMP. Neutralization of MT1-MMP activity decreased this M. tuberculosis network-dependent monocyte migration by 44%. Taken together, we demonstrate that MT1-MMP is central to two key elements of TB pathogenesis, causing collagen degradation and regulating monocyte migration. Copyright © 2015 The Authors.
Newly identified interfibrillar collagen crosslinking suppresses cell proliferation and remodelling.
Marelli, Benedetto; Le Nihouannen, Damien; Hacking, S Adam; Tran, Simon; Li, Jingjing; Murshed, Monzur; Doillon, Charles J; Ghezzi, Chiara E; Zhang, Yu Ling; Nazhat, Showan N; Barralet, Jake E
2015-06-01
Copper is becoming recognised as a key cation in a variety of biological processes. Copper chelation has been studied as a potential anti-angiogenic strategy for arresting tumour growth. Conversely the delivery of copper ions and complexes in vivo can elicit a pro-angiogenic effect. Previously we unexpectedly found that copper-stimulated intraperitoneal angiogenesis was accompanied by collagen deposition. Here, in hard tissue, not only was healing accelerated by copper, but again enhanced deposition of collagen was detected at 2 weeks. Experiments with reconstituted collagen showed that addition of copper ions post-fibrillogenesis rendered plastically-compressed gels resistant to collagenases, enhanced their mechanical properties and increased the denaturation temperature of the protein. Unexpectedly, this apparently interfibrillar crosslinking was not affected by addition of glucose or ascorbic acid, which are required for crosslinking by advanced glycation end products (AGEs). Fibroblasts cultured on copper-crosslinked gels did not proliferate, whereas those cultured with an equivalent quantity of copper on either tissue culture plastic or collagen showed no effect compared with controls. Although non-proliferative, fibroblasts grown on copper-cross-linked collagen could migrate, remained metabolically active for at least 14 days and displayed a 6-fold increase in Mmps 1 and 3 mRNA expression compared with copper-free controls. The ability of copper ions to crosslink collagen fibrils during densification and independently of AGEs or Fenton type reactions is previously unreported. The effect on MMP susceptibility of collagen and the dramatic change in cell behaviour on this crosslinked ECM may contribute to shedding some light on unexplained phenomena as the apparent benefit of copper complexation in fibrotic disorders or the enhanced collagen deposition in response to localised copper delivery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bovine Respiratory Syncytial Virus and Histophilus somni Interaction at the Alveolar Barrier
Agnes, J. T.; Zekarias, B.; Shao, M.; Anderson, M. L.; Gershwin, L. J.
2013-01-01
Our previous studies showed that Histophilus somni and bovine respiratory syncytial virus (BRSV) act synergistically in vivo to cause more severe bovine respiratory disease than either agent alone causes. Since H. somni surface and secreted immunoglobulin binding protein A (IbpA) causes retraction of bovine alveolar type 2 (BAT2) cells and invasion between BAT2 cells in vitro, we investigated mechanisms of BRSV-plus-H. somni infection at the alveolar barrier. BRSV treatment of BAT2 cells prior to treatment with IbpA-rich H. somni concentrated culture supernatant (CCS) resulted in increased BAT2 cell rounding and retraction compared to those with either treatment alone. This mimicked the increased alveolar cell thickening in calves experimentally infected with BRSV followed by H. somni compared to that in calves infected with BRSV or H. somni alone. BRSV-plus-H. somni CCS treatment of BAT2 cells also enhanced paracellular migration. The effect of matrix metalloproteinases (MMPs) was investigated as well because microarray analysis revealed that treatment with BRSV plus H. somni synergistically upregulated BAT2 cell expression of mmp1 and mmp3 compared to that in cells treated with either agent alone. Enzyme-linked immunosorbent assay (ELISA) confirmed that MMP1 and MMP3 protein levels were similarly upregulated. In collagen I and collagen IV (targets for MMP1 and MMP3, respectively) substrate zymography, digestion was increased with supernatants from dually treated BAT2 cells compared with those from singly treated cells. Enhanced breakdown of collagen IV in the basal lamina and of fibrillar collagen I in the adjacent interstitium in the dual infection may facilitate dissemination of H. somni infection. PMID:23649093
Bovine respiratory syncytial virus and Histophilus somni interaction at the alveolar barrier.
Agnes, J T; Zekarias, B; Shao, M; Anderson, M L; Gershwin, L J; Corbeil, L B
2013-07-01
Our previous studies showed that Histophilus somni and bovine respiratory syncytial virus (BRSV) act synergistically in vivo to cause more severe bovine respiratory disease than either agent alone causes. Since H. somni surface and secreted immunoglobulin binding protein A (IbpA) causes retraction of bovine alveolar type 2 (BAT2) cells and invasion between BAT2 cells in vitro, we investigated mechanisms of BRSV-plus-H. somni infection at the alveolar barrier. BRSV treatment of BAT2 cells prior to treatment with IbpA-rich H. somni concentrated culture supernatant (CCS) resulted in increased BAT2 cell rounding and retraction compared to those with either treatment alone. This mimicked the increased alveolar cell thickening in calves experimentally infected with BRSV followed by H. somni compared to that in calves infected with BRSV or H. somni alone. BRSV-plus-H. somni CCS treatment of BAT2 cells also enhanced paracellular migration. The effect of matrix metalloproteinases (MMPs) was investigated as well because microarray analysis revealed that treatment with BRSV plus H. somni synergistically upregulated BAT2 cell expression of mmp1 and mmp3 compared to that in cells treated with either agent alone. Enzyme-linked immunosorbent assay (ELISA) confirmed that MMP1 and MMP3 protein levels were similarly upregulated. In collagen I and collagen IV (targets for MMP1 and MMP3, respectively) substrate zymography, digestion was increased with supernatants from dually treated BAT2 cells compared with those from singly treated cells. Enhanced breakdown of collagen IV in the basal lamina and of fibrillar collagen I in the adjacent interstitium in the dual infection may facilitate dissemination of H. somni infection.
Nam, Seo Hee; Cheong, Jin-Gyu; Jeong, Doyoung; Lee, Seo-Jin; Pan, Cheol-Ho; Jung, Jae Woo; Kim, Hye-Jin; Ryu, Jihye; Kim, Ji Eon; Kim, Somi; Cho, Chang Yun; Kang, Min-Kyung; Lee, Kyung-Min; Lee, Jung Weon
2017-01-01
Transmembrane 4 L six family member 5 (TM4SF5) is highly expressed in hepatocellular carcinoma tissues and enhances migration in two-dimensional environments. Here, we investigated how TM4SF5 is involved in diverse pro-metastatic phenotypes in in vivo-like three-dimensional (3D) extracellular matrix gels. TM4SF5-positive cells aggressively formed invasive foci in 3D Matrigel, depending on TM4SF5-mediated signaling activity, cytoskeletal organization, and matrix metallopeptidase (MMP) 2-mediated extracellular remodeling, whereas TM4SF5-null cells did not. The TM4SF5-null cells did, however, form invasive foci in 3D Matrigel following inhibition of Rho-associated protein kinase or addition of collagen I, suggesting that collagen I compensated for TM4SF5 expression. Similarly, TM4SF5-positive cells expressing vascular endothelial-cadherin formed network-like vasculogenic mimicry in 3D Matrigel and collagen I mixture gels, whereas TM4SF5-negative cells in the mixture gels displayed the network structures only upon further treatment with epidermal growth factor. The foci formation also required MMP2-mediated remodeling of the extracellular matrix. Co-cultures exhibited TM4SF5-positive or cancer-associated fibroblasts at the outward edges of TM4SF5-null cell clusters. Compared with TM4SF5-null cells, TM4SF5-positive cells in 3D collagen gels showed a more invasive outgrowth with dramatic invadopodia. These observations suggest that TM4SF5 plays roles in the promotion of diverse metastatic properties with fewer environmental requirements than TM4SF5-negative cells. PMID:29137358
Shin, Jae-Min; Park, Joo-Hoo; Kang, Byungjin; Lee, Seoung-Ae; Park, Il-Ho; Lee, Heung-Man
2016-11-01
It is well known that doxycycline has antibacterial and anti-inflammatory effects. In this study, we aimed to investigate the effects of doxycycline on the transforming growth factor (TGF) beta 1-induced matrix metalloproteinase (MMP) 2 expression, migration, and collagen contraction, and to determine its molecular mechanism on nasal polyp-derived fibroblasts (NPDF). NPDFs were isolated from the nasal polyps of six patients. Doxycycline was used to pretreat TGF-beta-1-induced NPDFs and ex vivo organ cultures of nasal polyps. Cytotoxicity was evaluated by using a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay. Smad2/3 is one of the major transcription factors of TGF-beta signaling. The expression levels of MMP2 and Smad2/3 were measured by using Western blotting, reverse transcription-polymerase chain reaction, and immunofluorescence staining. The enzymic activity of MMP2 was analyzed by using gelatin zymography. Fibroblast migration was evaluated by using transwell migration assays. Contractile activity was measured by a collagen gel contraction assay. The expression level of MMP2 in nasal polyp tissues increased in comparison with inferior turbinate tissues. TGF-beta-1-induced NPDFs were not affected by doxycycline (0-40 μg/mL). The expression levels of MMP2 and activation of Smad2/3 in TGF-beta-1-induced NPDFs and in organ cultures of nasal polyps were significantly downregulated with doxycycline pretreatment. Doxycycline also reduced TGF-beta-1-induced fibroblast migration and collagen contraction in NPDFs. Doxycycline inhibited TGF-beta-1-induced MMP2 expression, migration, and collagen contraction via the Smad2/3 signal pathways in NPDFs.
Kim, Min Ho; Wu, Wen Hao; Choi, Jee Hyun; Kim, Ji Hyun; Hong, Seok-Ho; Jun, Jin Hyun; Ko, Yong; Lee, Jong Hun
Previous studies have reported that the conditioned medium (CM) of bone marrow-mesenchymal stem cells (BM-MSCs) stimulate the migration and proliferation of cell types involved in the wound healing process. However, these studies only show MSC-CM effects that were obtained using a two-dimensional (2D) culture. Recently, a three-dimensional (3D) culture has been considered to be a more physiologically appropriate system than the 2D culture. In addition, it has been shown that the procurement of BM-MSC is invasive, and other sources of MSC are thus being explored. Recently, perivascular cells (PVCs) have been considered as an alternative source of cells for dermal wound healing. Therefore, in this study, a PVC-conditioned medium (CM) was collected from a 3D culture (PVC-CM-3D) using highly porous polystyrene-based membranes and compared with PVC-CM from a 2D culture (PVC-CM-2D) to investigate the effects on the migration and proliferation of human keratinocytes and fibroblasts. Moreover, the PVC-CM components from the 2D and 3D cultures were identified using 2D gel electrophoresis. The migrations of the keratinocytes cells and fibroblasts were significantly higher with PVC-CM-3D than with the 2D culture; similarly, the proliferation of keratinocytes was also highly stimulated by PVC-CM-3D. Proteomic analyses of the PVC-CM revealed that type I collagen was highly expressed in the 3D-culture system. Microtubule-actin cross-linked factor 1 (KIAA0465), nebulin-related anchoring protein, and thioredoxin were specifically expressed only in PVC-CM-3D. In addition, more EVs could be isolated from the PVC-CM-3D, and EVs were found to stimulate keratinocyte migration. Taken together, 3D-culture using a polystyrene scaffold is demonstrated to be a better system for providing better physiological conditions; therefore, PVC-CM-3D could be a promising option for skin-wound healing.
Reversible transition towards a fibroblastic phenotype in a rat carcinoma cell line.
Boyer, B; Tucker, G C; Vallés, A M; Gavrilovic, J; Thiery, J P
1989-01-01
Two distinct mechanisms by which bladder carcinoma cells of the NBT-II cell line dissociate and migrate away from an in vitro reconstituted epithelial sheet were examined as regards intercellular adhesion and cell locomotion. Scattering of NBT-II bladder carcinoma cell line was promoted by 2 distinct culture protocols: (i) deposition of some components of the extracellular matrix onto the culture substratum (glass or plastic) induced cell dispersion of the epithelial sheet of carcinoma cells, and (ii) addition of Ultroser G, a serum substitute, to the culture medium induced scattering and acquisition of motility of NBT-II cells. Under both culture conditions, NBT-II cells dissociated, lost their epithelial morphology, acquired fibroblastic shape and migrated actively. We show that, among different extracellular matrix proteins, only collagens were able to promote the transition towards fibroblastic phenotype (referred as epithelium-to-mesenchyme transition or EMT). Furthermore, the native 3-dimensional helical structure of collagens was required for their function. During induction of EMT of NBT-II cells with Ultroser G, the junctions between epithelial cells were split, polarized epithelial cell organization was lost, and the resulting individual cells became motile and assumed a spindle-like fibroblastoid appearance. Using immunofluorescence microscopy techniques, we demonstrate that this change is accompanied by redistribution of desmosomal plaque proteins (desmoplakins, desmoglein, plakoglobin) and by reorganization of the cytokeratin and the actin-fodrin filament systems. Intermediate-sized filaments of the vimentin type were formed de novo in the fibroblastoid cell form. The observed transition towards fibroblastic phenotype (epithelium-to-mesenchyme transition or EMT) was fully reversed by removing the inducing factors from the culture medium, as shown by the disappearance of vimentin filaments and the reappearance of desmosomes in the newly formed epithelial cells.
Shieh, Hester F; Graham, Christopher D; Brazzo, Joseph A; Zurakowski, David; Fauza, Dario O
2017-06-01
We sought to examine amniotic fluid mesenchymal stem cell (afMSC) viability within two FDA-approved collagen-based scaffolds, as a prerequisite to clinical translation of afMSC-based engineered diaphragmatic repair. Human afMSCs were seeded in a human-derived collagen hydrogel and in a bovine-derived collagen sheet at 3 matching densities. Cell viability was analyzed at 1, 3, and 5days using an ATP-based 3D bioluminescence assay. Statistical comparisons were by ANOVA (P<0.05). There was a highly significant 3-way interaction between scaffold type, seeding density, and time in 3D culture as determinants of cell viability, clearly favoring the human hydrogel (P<0.001). In both scaffolds, cell viability was highest at the highest seeding density of 150,000 cells/mL. Time in 3D culture impacted cell viability at the optimal seeding density in the human hydrogel, with the highest levels on days 1 (P<0.001) and 5 (P=0.05) with no significant effect in the bovine sheet (P=0.39-0.96). Among clinically-approved cell delivery vehicles, mesenchymal stem cell viability is significantly enhanced in a collagen hydrogel when compared with a collagen sheet. Cell viability can be further optimized by seeding density and time in 3D culture. These data further support the regulatory viability of clinical trials of engineered diaphragmatic repair. N/A (animal and laboratory study). Copyright © 2017 Elsevier Inc. All rights reserved.
Cecen, Berivan; Kozaci, Didem; Yuksel, Mithat; Erdemli, Diler; Bagriyanik, Alper; Havitcioglu, Hasan
2015-03-18
In this study, osteoblast-like MG-63 cells were cultured on 3 different scaffold types composed of (a) collagen + poly-L-lactic acid (PLLA), (b) collagen + hydroxyapatite (HA; 30ºC) or (c) collagen + hydroxyapatite (HA; 37ºC) and produced with different porosities. Biomechanical properties of the scaffolds were characterized by tensile strength measurements. Properties of the cell-seeded scaffolds were evaluated with scanning electron microscopy (SEM). Cell adhesion and proliferation capacities were evaluated. Alkaline phosphatase (ALP) levels in media were measured. Transmission electron microscopy (TEM) and histological analyses were used to assess morphological characteristics. Our results showed that collagen-based PLLA and HA scaffolds have good cell biocompatibility. MTT test showed that the scaffolds exhibited no cytotoxicity. According to the force and displacement data, collagen + HA at 37ºC showed the highest mechanical strength and displacement. The results suggest that collagen-based PLLA and HA scaffolds might improve osteoblastic growth in vitro and have biomaterial integration potential in possible therapeutic approaches for future clinical studies.
Dai, Bingyan; Pan, Qunwen; Li, Zhanghua; Zhao, Mingyan; Liao, Xiaorong; Wu, Keng; Ma, Xiaotang
2016-01-01
Multilayer composite membrane of biomaterials can increase the function of adipose stem cells or osteoprogenitor cells. Recent evidence indicates endothelial progenitor cells (EPCs) and EPCs released microvesicles (MVs) play important roles in angiogenesis and vascular repair. Here, we investigated the effects of biomaterial multilayer membranes of hyaluronic acid (HA) or chondroitin sulfate (CS) and Collagen I (Col I) on the functions and MVs release of EPCs. Layer-by-layer (LBL) technology was applied to construct the multilayer composite membranes. Four types of the membranes constructed by adsorbing either HA or CS and Col I alternatively with different top layers were studied. The results showed that all four types of multilayer composite membranes could promote EPCs proliferation and migration and inhibit cell senility, apoptosis, and the expression of activated caspase-3. Interestingly, these biomaterials increased the release and the miR-126 level of EPCs-MVs. Moreover, the CS-Col I membrane with CS on the top layer showed the most effects on promoting EPCs proliferation, EPCs-MV release, and miR-126 level in EPCs-MVs. In conclusion, HA/CS and Collagen I composed multilayer composite membranes can promote EPCs functions and release of miR-126 riched EPCs-MVs, which provides a novel strategy for tissue repair treatment.
HMGB1 Promotes Intraoral Palatal Wound Healing through RAGE-Dependent Mechanisms.
Tancharoen, Salunya; Gando, Satoshi; Binita, Shrestha; Nagasato, Tomoka; Kikuchi, Kiyoshi; Nawa, Yuko; Dararat, Pornpen; Yamamoto, Mika; Narkpinit, Somphong; Maruyama, Ikuro
2016-11-23
High mobility group box 1 (HMGB1) is tightly connected to the process of tissue organization upon tissue injury. Here we show that HMGB1 controls epithelium and connective tissue regeneration both in vivo and in vitro during palatal wound healing. Heterozygous HMGB1 ( Hmgb1 +/- ) mice and Wild-type (WT) mice were subjected to palatal injury. Maxillary tissues were stained with Mallory Azan or immunostained with anti-HMGB1, anti-proliferating cell nuclear antigen (PCNA), anti-nuclear factor-κB (NF-κB) p50 and anti-vascular endothelial growth factor (VEGF) antibodies. Palatal gingival explants were cultured with recombinant HMGB1 (rHMGB1) co-treated with siRNA targeting receptor for advanced glycation end products (RAGEs) for cell migration and PCNA expression analysis. Measurement of the wound area showed differences between Hmgb1 +/- and WT mice on Day 3 after wounding. Mallory Azan staining showed densely packed of collagen fibers in WT mice, whereas in Hmgb1 +/- mice weave-like pattern of low density collagen bundles were present. At three and seven days post-surgery, PCNA, NF-κB p50 and VEGF positive keratinocytes of WT mice were greater than that of Hmgb1 +/- mice. Knockdown of RAGE prevents the effect of rHMGB1-induced cell migration and PCNA expression in gingival cell cultures. The data suggest that HMGB1/RAGE axis has crucial roles in palatal wound healing.
Sun, Xiujie; Gupta, Kshama; Wu, Bogang; Zhang, Deyi; Yuan, Bin; Zhang, Xiaowen; Chiang, Huai-Chin; Zhang, Chi; Curiel, Tyler J; Bendeck, Michelle P; Hursting, Stephen; Hu, Yanfen; Li, Rong
2018-02-23
Discoidin domain receptor 1 (DDR1) is a collagen receptor that mediates cell communication with the extracellular matrix (ECM). Aberrant expression and activity of DDR1 in tumor cells are known to promote tumor growth. Although elevated DDR1 levels in the stroma of breast tumors are associated with poor patient outcome, a causal role for tumor-extrinsic DDR1 in cancer promotion remains unclear. Here we report that murine mammary tumor cells transplanted to syngeneic recipient mice in which Ddr1 has been knocked out (KO) grow less robustly than in WT mice. We also found that the tumor-associated stroma in Ddr1- KO mice exhibits reduced collagen deposition compared with the WT controls, supporting a role for stromal DDR1 in ECM remodeling of the tumor microenvironment. Furthermore, the stromal-vascular fraction (SVF) of Ddr1 knockout adipose tissue, which contains committed adipose stem/progenitor cells and preadipocytes, was impaired in its ability to stimulate tumor cell migration and invasion. Cytokine array-based screening identified interleukin 6 (IL-6) as a cytokine secreted by the SVF in a DDR1-dependent manner. SVF-produced IL-6 is important for SVF-stimulated tumor cell invasion in vitro , and, using antibody-based neutralization, we show that tumor promotion by IL-6 in vivo requires DDR1. In conclusion, our work demonstrates a previously unrecognized function of DDR1 in promoting tumor growth. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor
Boissonnas, Alexandre; Fetler, Luc; Zeelenberg, Ingrid S.; Hugues, Stéphanie; Amigorena, Sebastian
2007-01-01
Although the immune system evolved to fight infections, it may also attack and destroy solid tumors. In most cases, tumor rejection is initiated by CD8+ cytotoxic T lymphocytes (CTLs), which infiltrate solid tumors, recognize tumor antigens, and kill tumor cells. We use a combination of two-photon intravital microscopy and immunofluorescence on ordered sequential sections to analyze the infiltration and destruction of solid tumors by CTLs. We show that in the periphery of a thymoma growing subcutaneously, activated CTLs migrate with high instantaneous velocities. The CTLs arrest in close contact to tumor cells expressing their cognate antigen. In regions where most tumor cells are dead, CTLs resume migration, sometimes following collagen fibers or blood vessels. CTLs migrating along blood vessels preferentially adopt an elongated morphology. CTLs also infiltrate tumors in depth, but only when the tumor cells express the cognate CTL antigen. In tumors that do not express the cognate antigen, CTL infiltration is restricted to peripheral regions, and lymphocytes neither stop moving nor kill tumor cells. Antigen expression by tumor cells therefore determines both CTL motility within the tumor and profound tumor infiltration. PMID:17261634
Raghunathan, VijayKrishna; McKee, Clayton; Cheung, Wai; Naik, Rachel; Nealey, Paul F.; Russell, Paul
2013-01-01
The basement membrane (BM) of the corneal epithelium presents biophysical cues in the form of topography and compliance that can impact the phenotype and behaviors of cells and their nuclei through modulation of cytoskeletal dynamics. In addition, it is also well known that the intrinsic biochemical attributes of BMs can modulate cell behaviors. In this study, the influence of the combination of exogenous coating of extracellular matrix proteins (ECM) (fibronectin-collagen [FNC]) with substratum topography was investigated on cytoskeletal architecture as well as alignment and migration of immortalized corneal epithelial cells. In the absence of FNC coating, a significantly greater percentage of cells aligned parallel with the long axis of the underlying anisotropically ordered topographic features; however, their ability to migrate was impaired. Additionally, changes in the surface area, elongation, and orientation of cytoskeletal elements were differentially influenced by the presence or absence of FNC. These results suggest that the effects of topographic cues on cells are modulated by the presence of surface-associated ECM proteins. These findings have relevance to experiments using cell cultureware with biomimetic biophysical attributes as well as the integration of biophysical cues in tissue-engineering strategies and the development of improved prosthetics. PMID:23488816
YANG, ZHIZHOU; SUN, ZHAORUI; LIU, HONGMEI; REN, YI; SHAO, DANBING; ZHANG, WEI; LIN, JINFENG; WOLFRAM, JOY; WANG, FENG; NIE, SHINAN
2015-01-01
It is well established that paraquat (PQ) poisoning can cause severe lung injury during the early stages of exposure, finally leading to irreversible pulmonary fibrosis. Connective tissue growth factor (CTGF) is an essential growth factor that is involved in tissue repair and pulmonary fibrogenesis. In the present study, the role of CTGF was examined in a rat model of pulmonary fibrosis induced by PQ poisoning. Histological examination revealed interstitial edema and extensive cellular thickening of interalveolar septa at the early stages of poisoning. At 2 weeks after PQ administration, lung tissue sections exhibited a marked thickening of the alveolar walls with an accumulation of interstitial cells with a fibroblastic appearance. Masson’s trichrome staining revealed a patchy distribution of collagen deposition, indicating pulmonary fibrogenesis. Western blot analysis and immunohistochemical staining of tissue samples demonstrated that CTGF expression was significantly upregulated in the PQ-treated group. Similarly, PQ treatment of MRC-5 human lung fibroblast cells caused an increase in CTGF in a dose-dependent manner. Furthermore, the addition of CTGF to MRC-5 cells triggered cellular proliferation and migration. In addition, CTGF induced the differentiation of fibroblasts to myofibroblasts, as was evident from increased expression of α-smooth muscle actin (α-SMA) and collagen. These findings demonstrate that PQ causes increased CTGF expression, which triggers proliferation, migration and differentiation of lung fibroblasts. Therefore, CTGF may be important in PQ-induced pulmonary fibrogenesis, rendering this growth factor a potential pharmacological target for reducing lung injury. PMID:25815693
Leung, E; Xue, A; Wang, Y; Rougerie, P; Sharma, V P; Eddy, R; Cox, D; Condeelis, J
2017-01-01
During metastasis to distant sites, tumor cells migrate to blood vessels. In vivo, breast tumor cells utilize a specialized mode of migration known as streaming, where a linear assembly of tumor cells migrate directionally towards blood vessels on fibronectin-collagen I-containing extracellular matrix (ECM) fibers in response to chemotactic signals. We have successfully reconstructed tumor cell streaming in vitro by co-plating tumors cells, macrophages and endothelial cells on 2.5 μm thick ECM-coated micro-patterned substrates. We found that tumor cells and macrophages, when plated together on the micro-patterned substrates, do not demonstrate sustained directional migration in only one direction (sustained directionality) but show random bi-directional walking. Sustained directionality of tumor cells as seen in vivo was established in vitro when beads coated with human umbilical vein endothelial cells were placed at one end of the micro-patterned ‘ECM fibers' within the assay. We demonstrated that these endothelial cells supply the hepatocyte growth factor (HGF) required for the chemotactic gradient responsible for sustained directionality. Using this in vitro reconstituted streaming system, we found that directional streaming is dependent on, and most effectively blocked, by inhibiting the HGF/C-Met signaling pathway between endothelial cells and tumor cells. Key observations made with the in vitro reconstituted system implicating C-Met signaling were confirmed in vivo in mammary tumors using the in vivo invasion assay and intravital multiphoton imaging of tumor cell streaming. These results establish HGF/C-Met as a central organizing signal in blood vessel-directed tumor cell migration in vivo and highlight a promising role for C-Met inhibitors in blocking tumor cell streaming and metastasis in vivo, and for use in human trials. PMID:27893712
Chen, Xionglin; Zhang, Min; Chen, Shixuan; Wang, Xueer; Tian, Zhihui; Chen, Yinghua; Xu, Pengcheng; Zhang, Lei
2017-01-01
Skin wound healing is a complicated process that involves a variety of cells and cytokines. Fibroblasts play an important role in this process and participate in transformation into myofibroblasts, the synthesis of extracellular matrix (ECM) and fibers, and the secretion of a variety of growth factors. This study assessed the effects of peptide Ser-Ile-Lys-Val-Ala-Val (SIKVAV)--modified chitosan hydrogels on skin wound healing. We investigated the capability of peptide SIKVAV to promote cell proliferation and migration, the synthesis of collagen, and the secretion of a variety of growth factors using fibroblasts in vitro. We also treated skin wounds established in mice using peptide SIKVAV-modified chitosan hydrogels. Hematoxylin and eosin staining showed that peptide-modified chitosan hydrogels enhanced the reepithelialization of wounds compared with negative and positive controls. Masson’s trichrome staining demonstrated that more collagen fibers were deposited in the wounds treated with peptide-modified chitosan hydrogels compared with the negative and positive controls. Immunohistochemistry revealed that the peptide-modified chitosan hydrogels promoted angiogenesis in the skin wound. Taken together, these results suggest that peptide SIKVAV-modified chitosan hydrogels may be useful in wound dressing and the treatment of skin wounds. PMID:28901187
Visualisation of newly synthesised collagen in vitro and in vivo
Oostendorp, Corien; Uijtdewilligen, Peter J.E.; Versteeg, Elly M.; Hafmans, Theo G.; van den Bogaard, Ellen H.; de Jonge, Paul K.J.D.; Pirayesh, Ali; Von den Hoff, Johannes W.; Reichmann, Ernst; Daamen, Willeke F.; van Kuppevelt, Toin H.
2016-01-01
Identifying collagen produced de novo by cells in a background of purified collagenous biomaterials poses a major problem in for example the evaluation of tissue-engineered constructs and cell biological studies to tumor dissemination. We have developed a universal strategy to detect and localize newly deposited collagen based on its inherent association with dermatan sulfate. The method is applicable irrespective of host species and collagen source. PMID:26738984
Gunda, Venugopal; Boosani, Chandra Shekhar; Verma, Raj Kumar; Guda, Chittibabu; Akul Sudhakar, Yakkanti
2012-01-01
The anti-angiogenic, carboxy terminal non-collagenous domain (NC1) derived from human Collagen type IV alpha 6 chain, [α6(IV)NC1] or hexastatin, was earlier obtained using different recombinant methods of expression in bacterial systems. However, the effect of L-arginine mediated renaturation in enhancing the relative yields of this protein from bacterial inclusion bodies has not been evaluated. In the present study, direct stirring and on-column renaturation methods using L-arginine and different size exclusion chromatography matrices were applied for enhancing the solubility in purifying the recombinant α6(IV)NC1 from bacterial inclusion bodies. This methodology enabled purification of higher quantities of soluble protein from inclusion bodies, which inhibited endothelial cell proliferation, migration and tube formation. Thus, the scope for L-arginine mediated renaturation in obtaining higher yields of soluble, biologically active NC1 domain from bacterial inclusion bodies was evaluated. PMID:22512648
Gunda, Venugopal; Boosani, Chandra Shekhar; Verma, Raj Kumar; Guda, Chittibabu; Sudhakar, Yakkanti Akul
2012-10-01
The anti-angiogenic, carboxy terminal non-collagenous domain (NC1) derived from human Collagen type IV alpha 6 chain, [α6(IV)NC1] or hexastatin, was earlier obtained using different recombinant methods of expression in bacterial systems. However, the effect of L-arginine mediated renaturation in enhancing the relative yields of this protein from bacterial inclusion bodies has not been evaluated. In the present study, direct stirring and on-column renaturation methods using L-arginine and different size exclusion chromatography matrices were applied for enhancing the solubility in purifying the recombinant α6(IV)NC1 from bacterial inclusion bodies. This methodology enabled purification of higher quantities of soluble protein from inclusion bodies, which inhibited endothelial cell proliferation, migration and tube formation. Thus, the scope for L-arginine mediated renaturation in obtaining higher yields of soluble, biologically active NC1 domain from bacterial inclusion bodies was evaluated.
Sorkio, Anni; Koch, Lothar; Koivusalo, Laura; Deiwick, Andrea; Miettinen, Susanna; Chichkov, Boris; Skottman, Heli
2018-07-01
There is a high demand for developing methods to produce more native-like 3D corneal structures. In the present study, we produced 3D cornea-mimicking tissues using human stem cells and laser-assisted bioprinting (LaBP). Human embryonic stem cell derived limbal epithelial stem cells (hESC-LESC) were used as a cell source for printing epithelium-mimicking structures, whereas human adipose tissue derived stem cells (hASCs) were used for constructing layered stroma-mimicking structures. The development and optimization of functional bioinks was a crucial step towards successful bioprinting of 3D corneal structures. Recombinant human laminin and human sourced collagen I served as the bases for the functional bioinks. We used two previously established LaBP setups based on laser induced forward transfer, with different laser wavelengths and appropriate absorption layers. We bioprinted three types of corneal structures: stratified corneal epithelium using hESC-LESCs, lamellar corneal stroma using alternating acellular layers of bioink and layers with hASCs, and finally structures with both a stromal and epithelial part. The printed constructs were evaluated for their microstructure, cell viability and proliferation, and key protein expression (Ki67, p63α, p40, CK3, CK15, collagen type I, VWF). The 3D printed stromal constructs were also implanted into porcine corneal organ cultures. Both cell types maintained good viability after printing. Laser-printed hESC-LESCs showed epithelial cell morphology, expression of Ki67 proliferation marker and co-expression of corneal progenitor markers p63α and p40. Importantly, the printed hESC-LESCs formed a stratified epithelium with apical expression of CK3 and basal expression of the progenitor markers. The structure of the 3D bioprinted stroma demonstrated that the hASCs had organized horizontally as in the native corneal stroma and showed positive labeling for collagen I. After 7 days in porcine organ cultures, the 3D bioprinted stromal structures attached to the host tissue with signs of hASCs migration from the printed structure. This is the first study to demonstrate the feasibility of 3D LaBP for corneal applications using human stem cells and successful fabrication of layered 3D bioprinted tissues mimicking the structure of the native corneal tissue. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Layton, Elivia; McNamar, Rachel; Hasanjee, Aamr M.; McNair, Cayman; Stevens, Brianna; Vaughan, Melville; Zhou, Feifan; Chen, Wei R.
2017-02-01
Non-invasive laser immunotherapy (NLIT) is a viable alternative to traditional cancer treatment because it combines the photothermal and immunological effects of non-invasive laser irradiation and single-walled carbon nanotubes (SWNT) with an immunoadjuvant, glycated chitosan (GC). This combination forms SWNT-GC, a photosensitive immunoadjuvant, which creates a tumor-specific immunity that targets both the primary tumor and any metastasis. It is known that NLIT induces anti-tumor as well as anti-metastatic immune responses, but its immunological mechanism is not clear. The objective of this study is to clarify the role of SWNT-GC in cancer cell migration. Panc02 (non-metastatic) and Panc02-H7 (metastatic) pancreatic cancer cells were used in two-dimensional elastomer plug assays to observe the restriction of cell migration induced by SWNT, GC, and SWNT-GC individually. To replicate a three-dimensional in vivo study, a similar assay was repeated using embedded collagen lattices. Both the 2D and the 3D studies confirmed previous results indicating that GC inhibits cancer cell motility. The 2D and 3D studies also showed that SWNT-GC inhibited the migration of cancer cells, but a discrepancy was observed regarding the effect of SWNT alone. The 2D model concluded that SWNT inhibited migration while the 3D model determined that SWNT promoted migration. The results of this study will guide future work to determine the mechanism behind NLIT, including how metastases are eradicated and how the tumor specific immunity is created.
Bleomycin induced epithelial–mesenchymal transition (EMT) in pleural mesothelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Li-Jun; Ye, Hong; Key Laboratory of Pulmonary Diseases, Ministry of Health of China, Wuhan, Hubei
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease characterized by the development of subpleural foci of myofibroblasts that contribute to the exuberant fibrosis. Recent studies revealed that pleural mesothelial cells (PMCs) undergo epithelial–mesenchymal transition (EMT) and play a pivotal role in IPF. In animal model, bleomycin induces pulmonary fibrosis exhibiting subpleural fibrosis similar to what is seen in human IPF. It is not known yet whether bleomycin induces EMT in PMCs. In the present study, PMCs were cultured and treated with bleomycin. The protein levels of collagen-I, mesenchymal phenotypic markers (vimentin and α-smooth muscle actin), and epithelial phenotypicmore » markers (cytokeratin-8 and E-cadherin) were measured by Western blot. PMC migration was evaluated using wound-healing assay of culture PMCs in vitro, and in vivo by monitoring the localization of PMC marker, calretinin, in the lung sections of bleomycin-induced lung fibrosis. The results showed that bleomycin induced increases in collagen-I synthesis in PMC. Bleomycin induced significant increases in mesenchymal phenotypic markers and decreases in epithelial phenotypic markers in PMC, and promoted PMC migration in vitro and in vivo. Moreover, TGF-β1-Smad2/3 signaling pathway involved in the EMT of PMC was demonstrated. Taken together, our results indicate that bleomycin induces characteristic changes of EMT in PMC and the latter contributes to subpleural fibrosis. - Highlights: • Bleomycin induces collagen-I synthesis in pleural mesothelial cells (PMCs). • Bleomycin induces increases in vimentin and α-SMA protein in PMCs. • Bleomycin induces decreases in cytokeratin-8 and E-cadherin protein in PMCs • TGF-β1-Smad2/3 signaling pathway is involved in the PMC EMT induced by bleomycin.« less
The Study of Leukocyte Functions in a Rotating Wall Vessel
NASA Technical Reports Server (NTRS)
Trial, JoAnn
1998-01-01
The objective of this study was to investigate the behavior of leukocytes under free-fall conditions in a rotating wall vessel. In such a vessel, the tendency of a cell to fall in response to gravity is opposed by the rotation of the vessel and the culture medium within, keeping the cells in suspension without fluid shear. Previous reports indicated that such functions as lymphocyte migration through collagen matrix or monocyte cytokine secretion are altered under these conditions, and these changes correlate with similar functional defects of cultured cells seen during spaceflight.
Osteoblasts extracellular matrix induces vessel like structures through glycosylated collagen I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmieri, D.; Valli, M.; Viglio, S.
2010-03-10
Extracellular matrix (ECM) plays a fundamental role in angiogenesis affecting endothelial cells proliferation, migration and differentiation. Vessels-like network formation in vitro is a reliable test to study the inductive effects of ECM on angiogenesis. Here we utilized matrix deposed by osteoblasts as substrate where the molecular and structural complexity of the endogenous ECM is preserved, to test if it induces vessel-like network formation by endothelial cells in vitro. ECM is more similar to the physiological substrate in vivo than other substrates previously utilized for these studies in vitro. Osteogenic ECM, prepared in vitro from mature osteoblasts at the phase ofmore » maximal deposition and glycosylation of collagen I, induces EAhy926, HUVEC, and HDMEC endothelial cells to form vessels-like structures and promotes the activation of metalloproteinase-2 (MMP-2); the functionality of the p-38/MAPK signaling pathway is required. Osteogenic ECM also induces a transient increase of CXCL12 and a decrease of the receptor CXCR4. The induction of vessel-like networks is dependent from proper glycosylation of collagens and does not occur on osteogenic ECMs if deglycosylated by -galactosidase or on less glycosylated ECMs derived from preosteoblasts and normal fibroblasts, while is sustained on ECM from osteogenesis imperfecta fibroblasts only when their mutation is associated with over-glycosylation of collagen type I. These data support that post-translational glycosylation has a role in the induction in endothelial cells in vitro of molecules conductive to self-organization in vessels-like structures.« less
Hoganson, David M; Owens, Gwen E; Meppelink, Amanda M; Bassett, Erik K; Bowley, Chris M; Hinkel, Cameron J; Finkelstein, Eric B; Goldman, Scott M; Vacanti, Joseph P
2016-07-01
Extracellular matrix (ECM) materials from animal and human sources have become important materials for soft tissue repair. Microparticles of ECM materials have increased surface area and exposed binding sites compared to sheet materials. Decellularized porcine peritoneum was mechanically dissociated into 200 µm microparticles, seeded with fibroblasts and cultured in a low gravity rotating bioreactor. The cells avidly attached and maintained excellent viability on the microparticles. When the seeded microparticles were placed in a collagen gel, the cells quickly migrated off the microparticles and through the gel. Cells from seeded microparticles migrated to and across an in vitro anastomosis model, increasing the tensile strength of the model. Cell seeded microparticles of ECM material have potential for paracrine and cellular delivery therapies when delivered in a gel carrier. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1728-1735, 2016. © 2016 Wiley Periodicals, Inc.
Vrana, Nihal E.; Dupret-Bories, Agnes; Chaubaroux, Christophe; Rieger, Elisabeth; Debry, Christian; Vautier, Dominique; Metz-Boutigue, Marie-Helene; Lavalle, Philippe
2013-01-01
Metallic implants, especially titanium implants, are widely used in clinical applications. Tissue in-growth and integration to these implants in the tissues are important parameters for successful clinical outcomes. In order to improve tissue integration, porous metallic implants have being developed. Open porosity of metallic foams is very advantageous, since the pore areas can be functionalized without compromising the mechanical properties of the whole structure. Here we describe such modifications using porous titanium implants based on titanium microbeads. By using inherent physical properties such as hydrophobicity of titanium, it is possible to obtain hydrophobic pore gradients within microbead based metallic implants and at the same time to have a basement membrane mimic based on hydrophilic, natural polymers. 3D pore gradients are formed by synthetic polymers such as Poly-L-lactic acid (PLLA) by freeze-extraction method. 2D nanofibrillar surfaces are formed by using collagen/alginate followed by a crosslinking step with a natural crosslinker (genipin). This nanofibrillar film was built up by layer by layer (LbL) deposition method of the two oppositely charged molecules, collagen and alginate. Finally, an implant where different areas can accommodate different cell types, as this is necessary for many multicellular tissues, can be obtained. By, this way cellular movement in different directions by different cell types can be controlled. Such a system is described for the specific case of trachea regeneration, but it can be modified for other target organs. Analysis of cell migration and the possible methods for creating different pore gradients are elaborated. The next step in the analysis of such implants is their characterization after implantation. However, histological analysis of metallic implants is a long and cumbersome process, thus for monitoring host reaction to metallic implants in vivo an alternative method based on monitoring CGA and different blood proteins is also described. These methods can be used for developing in vitro custom-made migration and colonization tests and also be used for analysis of functionalized metallic implants in vivo without histology. PMID:23851618
Vrana, Nihal E; Dupret-Bories, Agnes; Chaubaroux, Christophe; Rieger, Elisabeth; Debry, Christian; Vautier, Dominique; Metz-Boutigue, Marie-Helene; Lavalle, Philippe
2013-07-01
Metallic implants, especially titanium implants, are widely used in clinical applications. Tissue in-growth and integration to these implants in the tissues are important parameters for successful clinical outcomes. In order to improve tissue integration, porous metallic implants have being developed. Open porosity of metallic foams is very advantageous, since the pore areas can be functionalized without compromising the mechanical properties of the whole structure. Here we describe such modifications using porous titanium implants based on titanium microbeads. By using inherent physical properties such as hydrophobicity of titanium, it is possible to obtain hydrophobic pore gradients within microbead based metallic implants and at the same time to have a basement membrane mimic based on hydrophilic, natural polymers. 3D pore gradients are formed by synthetic polymers such as Poly-L-lactic acid (PLLA) by freeze-extraction method. 2D nanofibrillar surfaces are formed by using collagen/alginate followed by a crosslinking step with a natural crosslinker (genipin). This nanofibrillar film was built up by layer by layer (LbL) deposition method of the two oppositely charged molecules, collagen and alginate. Finally, an implant where different areas can accommodate different cell types, as this is necessary for many multicellular tissues, can be obtained. By, this way cellular movement in different directions by different cell types can be controlled. Such a system is described for the specific case of trachea regeneration, but it can be modified for other target organs. Analysis of cell migration and the possible methods for creating different pore gradients are elaborated. The next step in the analysis of such implants is their characterization after implantation. However, histological analysis of metallic implants is a long and cumbersome process, thus for monitoring host reaction to metallic implants in vivo an alternative method based on monitoring CGA and different blood proteins is also described. These methods can be used for developing in vitro custom-made migration and colonization tests and also be used for analysis of functionalized metallic implants in vivo without histology.
Breidenbach, Andrew P; Dyment, Nathaniel A; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T; Rowe, David W; Kadler, Karl E; Butler, David L
2015-02-01
The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair.
Dyment, Nathaniel A.; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T.; Rowe, David W.; Kadler, Karl E.; Butler, David L.
2015-01-01
The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair. PMID:25266738
Han, Sanghoon; Bui, Ngoc Thuy; Ho, Manh Tin; Kim, Young Mee; Cho, Moonjae; Shin, Dong Bok
2016-01-01
Purpose One of the features in cancer development is the migration of cancer cells to form metastatic lesions. CYR61 protein promotes migration and the epithelial-mesenchymal transition in several cancer cell types. Evidence suggests that CYR61 and dexamethasone are relevant to colorectal cancer. However, relationships between them and colorectal cancer are still unclear. Understanding the molecular mechanism of colorectal cancer progression related with CYR61 and dexamethasone, which is widely used for combination chemotherapy, is necessary for improved therapy. Materials and Methods We used colorectal cancer cells, HCT116, co-treated with transforming growth factor β1 (TGF-β1) and dexamethasone to examine the inhibitory migration effect of dexamethasone by migratory assay. Alternatively, both migratory pathways, expression of AKT and ERK, and the target factor CYR61 was also tested by co-treatment with TGF-β1 and dexamethasone. Results We report that dexamethasone significantly inhibited TGF-β1–induced cell migration, without affecting cell proliferation. Importantly, we observed that TGF-β1 promoted the epithelial-mesenchymal transition process and that dexamethasone co-treatment abolished this effect. ERK and AKT signaling pathways were found to mediate TGF-β1–induced migration, which was inhibited by dexamethasone. In addition, TGF-β1 treatment induced CYR61 expression whereas dexamethasone reduced it. These observations were compatible with the modulation of migration observed following treatment of HCT116 cells with human recombinant CYR61 and anti-CYR61 antibody. Our results also indicated that TGF-β1 enhanced collagen I and reduced matrix metalloproteinase 1 expression, which was reversed by dexamethasone treatment. Conclusion These findings suggested that dexamethasone inhibits AKT and ERK phosphorylation, leading to decreased CYR61 expression, which in turn blocks TGF-β1–induced migration. PMID:26693911
The Dimer Interface of the Membrane Type 1 Matrix Metalloproteinase Hemopexin Domain
Tochowicz, Anna; Goettig, Peter; Evans, Richard; Visse, Robert; Shitomi, Yasuyuki; Palmisano, Ralf; Ito, Noriko; Richter, Klaus; Maskos, Klaus; Franke, Daniel; Svergun, Dmitri; Nagase, Hideaki; Bode, Wolfram; Itoh, Yoshifumi
2011-01-01
Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion. PMID:21193411
Tochowicz, Anna; Goettig, Peter; Evans, Richard; Visse, Robert; Shitomi, Yasuyuki; Palmisano, Ralf; Ito, Noriko; Richter, Klaus; Maskos, Klaus; Franke, Daniel; Svergun, Dmitri; Nagase, Hideaki; Bode, Wolfram; Itoh, Yoshifumi
2011-03-04
Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion.
Petropolis, Debora B; Rodrigues, Juliany C F; Viana, Nathan B; Pontes, Bruno; Pereira, Camila F A; Silva-Filho, Fernando C
2014-01-01
Leishmania amazonensis is the causative agent of American cutaneous leishmaniasis, an important neglected tropical disease. Once Leishmania amazonensis is inoculated into the human host, promastigotes are exposed to the extracellular matrix (ECM) of the dermis. However, little is known about the interaction between the ECM and Leishmania promastigotes. In this study we established L. amazonensis promastigote culture in a three-dimensional (3D) environment mainly composed of Collagen I (COL I). This 3D culture recreates in vitro some aspects of the human host infection site, enabling the study of the interaction mechanisms of L. amazonensis with the host ECM. Promastigotes exhibited "freeze and run" migration in the 3D COL I matrix, which is completely different from the conventional in vitro swimming mode of migration. Moreover, L. amazonensis promastigotes were able to invade, migrate inside, and remodel the 3D COL I matrix. Promastigote trans-matrix invasion and the freeze and run migration mode were also observed when macrophages were present in the matrix. At least two classes of proteases, metallo- and cysteine proteases, are involved in the 3D COL I matrix degradation caused by Leishmania. Treatment with a mixture of protease inhibitors significantly reduced promastigote invasion and migration through this matrix. Together our results demonstrate that L. amazonensis promastigotes release proteases and actively remodel their 3D environment, facilitating their migration. This raises the possibility that promastigotes actively interact with their 3D environment during the search for their cellular "home"-macrophages. Supporting this hypothesis, promastigotes migrated faster than macrophages in a novel 3D co-culture model.
Rodrigues, Juliany C.F.; Viana, Nathan B.; Pontes, Bruno; Pereira, Camila F.A.; Silva-Filho, Fernando C.
2014-01-01
Leishmania amazonensis is the causative agent of American cutaneous leishmaniasis, an important neglected tropical disease. Once Leishmania amazonensis is inoculated into the human host, promastigotes are exposed to the extracellular matrix (ECM) of the dermis. However, little is known about the interaction between the ECM and Leishmania promastigotes. In this study we established L. amazonensis promastigote culture in a three-dimensional (3D) environment mainly composed of Collagen I (COL I). This 3D culture recreates in vitro some aspects of the human host infection site, enabling the study of the interaction mechanisms of L. amazonensis with the host ECM. Promastigotes exhibited “freeze and run” migration in the 3D COL I matrix, which is completely different from the conventional in vitro swimming mode of migration. Moreover, L. amazonensis promastigotes were able to invade, migrate inside, and remodel the 3D COL I matrix. Promastigote trans-matrix invasion and the freeze and run migration mode were also observed when macrophages were present in the matrix. At least two classes of proteases, metallo- and cysteine proteases, are involved in the 3D COL I matrix degradation caused by Leishmania. Treatment with a mixture of protease inhibitors significantly reduced promastigote invasion and migration through this matrix. Together our results demonstrate that L. amazonensis promastigotes release proteases and actively remodel their 3D environment, facilitating their migration. This raises the possibility that promastigotes actively interact with their 3D environment during the search for their cellular “home”—macrophages. Supporting this hypothesis, promastigotes migrated faster than macrophages in a novel 3D co-culture model. PMID:24765565
Ruscheinsky, Monika; De la Motte, Carol; Mahendroo, Mala
2008-01-01
The uterine cervix undergoes changes during pregnancy and labor that transform it from a closed, rigid, collagen dense structure to one that is distensible, has a disorganized collagen matrix, and dilates sufficiently to allow birth. To protect the reproductive tract from exposure to the external environment, the cervix must be rapidly altered to a closed, undistensible structure after birth. Preparturition remodeling is characterized by increased synthesis of hyaluronan, decreased expression of collagen assembly genes and increased distribution of inflammatory cells into the cervical matrix. Postpartum remodeling is characterized by decreased hyaluronan (HA) content, increased expression of genes involved in assembly of mature collagen and inflammation. The focus of this study is to advance our understanding of functions HA plays in this dynamic process through characterization of HA size, structure and binding proteins in the mouse cervix. Changes in size and structure of HA before and after birth were observed as well as cell specific expression of HA binding proteins. CD44 expression is localized to the pericellular matrix surrounding the basal epithelia and on immune cells while inter α trypsin inhibitor (IαI) and versican are localized to the stromal matrix. Co-localization of HA and IαI is most pronounced after birth. Upregulation of the versican degrading protease, ADAMTS1 occurs in the cervix prior to birth. These studies suggest that HA has multiple, cell specific functions in the cervix that may include modulation of tissue structure and integrity, epithelial cell migration and differentiation, and inflammatory responses. PMID:18353623
Schwarz, Silke; Elsaesser, Alexander F; Koerber, Ludwig; Goldberg-Bockhorn, Eva; Seitz, Andreas M; Bermueller, Christian; Dürselen, Lutz; Ignatius, Anita; Breiter, Roman; Rotter, Nicole
2015-12-01
One key point in the development of new bioimplant matrices for the reconstruction and replacement of cartilage defects is to provide an adequate microenvironment to ensure chondrocyte migration and de novo synthesis of cartilage-specific extracellular matrix (ECM). A recently developed decellularization and sterilization process maintains the three-dimensional (3D) collagen structure of native septal cartilage while increasing matrix porosity, which is considered to be crucial for cartilage tissue engineering. Human primary nasal septal chondrocytes were amplified in monolayer culture and 3D-cultured on processed porcine nasal septal cartilage scaffolds. The influence of chondrogenic growth factors on neosynthesis of ECM proteins was examined at the protein and gene expression levels. Seeding experiments demonstrated that processed xenogenic cartilage matrices provide excellent environmental properties for human nasal septal chondrocytes with respect to cell adhesion, migration into the matrix and neosynthesis of cartilage-specific ECM proteins, such as collagen type II and aggrecan. Matrix biomechanical stability indicated that the constructs retrieve full stability and function during 3D culture for up to 42 days, proportional to collagen type II and GAG production. Thus, processed xenogenic cartilage offers a suitable environment for human nasal chondrocytes and has promising potential for cartilage tissue engineering in the head and neck region. Copyright © 2012 John Wiley & Sons, Ltd.
Bonnefoy, Francis; Daoui, Anna; Valmary-Degano, Séverine; Toussirot, Eric; Saas, Philippe; Perruche, Sylvain
2016-08-11
Apoptotic cell-based therapies have been proposed to treat chronic inflammatory diseases. The aim of this study was to investigate the effect of intravenous (i.v.) apoptotic cell infusion in ongoing collagen-induced arthritis (CIA) and the interaction of this therapy with other treatments used in rheumatoid arthritis (RA), including methotrexate (MTX) or anti-TNF therapy. The effects of i.v. apoptotic cell infusion were evaluated in a CIA mouse model in DBA/1 mice immunized with bovine type II collagen. The number and functions of antigen-presenting cells (APC), regulatory CD4(+) T cells (Treg), and circulating anti-collagen auto-antibodies were analyzed in CIA mice. Treatment of arthritic mice with i.v. apoptotic cell infusion significantly reduced the arthritis clinical score. This therapeutic approach modified T cell responses against the collagen auto-antigen with selective induction of collagen-specific Treg. In addition, we observed that APC from apoptotic-cell-treated animals were resistant to toll-like receptor ligand activation and favored ex vivo Treg induction, indicating APC reprogramming. Apoptotic cell injection-induced arthritis modulation was dependent on transforming growth factor (TGF)-β, as neutralizing anti-TGF-β antibody prevented the effects of apoptotic cells. Methotrexate did not interfere, while anti-TNF therapy was synergic with apoptotic-cell-based therapy. Overall, our data demonstrate that apoptotic-cell-based therapy is efficient in treating ongoing CIA, compatible with current RA treatments, and needs to be evaluated in humans in the treatment of RA.
Goodyear, Richard J; Lu, Xiaowei; Deans, Michael R; Richardson, Guy P
2017-11-01
The tectorial membrane is an extracellular structure of the cochlea. It develops on the surface of the auditory epithelium and contains collagen fibrils embedded in a tectorin-based matrix. The collagen fibrils are oriented radially with an apically directed slant - a feature considered crucial for hearing. To determine how this pattern is generated, collagen-fibril formation was examined in mice lacking a tectorin-based matrix, epithelial cilia or the planar cell polarity genes Vangl2 and Ptk7 In wild-type mice, collagen-fibril bundles appear within a tectorin-based matrix at E15.5 and, as fibril number rapidly increases, become co-aligned and correctly oriented. Epithelial width measurements and data from Kif3a cKO mice suggest, respectively, that radial stretch and cilia play little, if any, role in determining normal collagen-fibril orientation; however, evidence from tectorin-knockout mice indicates that confinement is important. PRICKLE2 distribution reveals the planar cell polarity axis in the underlying epithelium is organised along the length of the cochlea and, in mice in which this polarity is disrupted, the apically directed collagen offset is no longer observed. These results highlight the importance of the tectorin-based matrix and epithelial signals for precise collagen organisation in the tectorial membrane. © 2017. Published by The Company of Biologists Ltd.
The CC chemokine eotaxin/CCL11 has a selective profibrogenic effect on human lung fibroblasts.
Puxeddu, Ilaria; Bader, Reem; Piliponsky, Adrian Martin; Reich, Reuven; Levi-Schaffer, Francesca; Berkman, Neville
2006-01-01
Eotaxin/CCL11 plays an important role in asthma. It acts through the chemokine receptor CCR3 expressed on hematopoietic and nonhematopoietic cells in the lung. To determine whether eotaxin/CCL11 modulates lung and bronchial fibroblast properties and thereby might contribute to airway remodeling. CCR3 expression was characterized on a lung fibroblast line (MRC-5; flow cytometry, fluorescent microscopy, RT-PCR, and Northern blotting), on primary bronchial fibroblasts (flow cytometry), and on fibroblasts in human lung tissue (confocal laser microscopy). The effects of eotaxin/CCL11 on lung fibroblast migration (Boyden chamber), proliferation (tritiated thymidine incorporation), alpha-smooth muscle actin expression (ELISA), 3-dimensional collagen gel contraction (floating gel), pro-alpha1(I) collagen mRNA (Northern blotting), total collagen synthesis (tritiated proline incorporation), matrix metalloproteinase activity (gelatin zymography), and TGF-beta(1) release (ELISA) were evaluated. The contribution of eotaxin/CCL11/CCR3 binding on lung fibroblasts was also investigated by neutralizing experiments. CCR3 is constitutively expressed in cultured lung and primary bronchial fibroblasts and colocalizes with specific surface markers for human fibroblasts in lung tissue. Eotaxin/CCL11 selectively modulates fibroblast activities by increasing their proliferation, matrix metalloproteinase 2 activity, and collagen synthesis but not their differentiation into myofibroblasts, contractility in collagen gel, or TGF-beta(1) release. Eotaxin/CCL11 enhances migration of lung fibroblasts in response to nonspecific chemoattractants, and this effect is completely inhibited by anti-CCR3-neutralizing antibodies. These data demonstrate that eotaxin/CCL11 has a direct and selective profibrogenic effect on lung and bronchial fibroblasts, providing a novel mechanism whereby eotaxin/CCL11 can participate in airway remodeling in asthma.
Quantification of mast cells in different stages of periodontal disease.
Marjanović, Dragan; Andjelković, Zlatibor; Brkić, Zlata; Videnović, Goran; Šehalić, Meliha; Matvjenko, Vladimir; Leštarević, Snežana; Djordjević, Nadica
2016-05-01
Mast cells are mononuclear cells originating from bone marrow. They produce various biologically active substances, which allow them to actively participate in immune and inflammatory processes associated with periodontal disease. The study focused on distribution and density of mast cells in healthy gingiva as well as in different stages of periodontal disease. The material used for this purpose was gingival biopsies taken from 96 patients classified into 4 groups: healthy gingiva, gingivitis, initial and severe periodontal disease. Toluidine blue staining according to Spicer was utilized for identifying mast cells. Basing on our study, the density of mast cells in the gingival tissue increases with the progression of the infection, which means they are more numerous in gingivitis compared to healthy gingiva, as well as in periodontal disease compared to gingivitis. Increase in the number of mast cells in the infected gingiva can be correlated with an increased influx of inflammatory cells from blood circulation into the gingival stroma, as well as with the collagen lysis, since these cells produce substances with collagenolytic potential. Based on the distribution of mast cells, it could be concluded that in the evolution of periodontal disease there are significant dynamic alterations in migration and localization of these cells.
Development of siRNA Technology to Prevent Scar Formation in Tendon Repair
2013-12-01
Anti-sense RNA technologies: Under normal conditions cells produce small interfering (si) RNAs that inhibit protein synthesis and stimulate...stimulation of fibroblast proliferation and migration, collagen and fibronectin synthesis , and altered tissue remodeling through regulation of MMPs...expression by an antisense oligonucleotide protects mice from fulminant hepatitis. Nat Biotechnol 2000;18:862-7. 7. Guha M, Xu ZG, Tung D, Lanting L
Tevis, Kristie M; Cecchi, Ryan J; Colson, Yolonda L; Grinstaff, Mark W
2017-03-01
Tumor associated macrophages (TAMs) are critical stromal components intimately involved with the progression, invasion, and metastasis of cancer cells. To address the need for an in vitro system that mimics the clinical observations of TAM localizations and subsequent functional performance, a cancer cell/macrophage spheroid model is described. The central component of the model is a triple negative breast cancer spheroid embedded in a three-dimensional collagen gel. Macrophages are incorporated in two different ways. The first is a heterospheroid, a spheroid containing both tumor cells and macrophages. The heterospheroid mimics the population of TAMs infiltrated into the tumor mass, thus being exposed to hypoxia and metabolic gradients. In the second model, macrophages are diffusely seeded in the collagen surrounding the spheroid, thus modeling TAMs in the cancer stroma. The inclusion of macrophages as a heterospheroid changes the metabolic profile, indicative of synergistic growth. In contrast, macrophages diffusely seeded in the collagen bear the same profile regardless of the presence of a tumor cell spheroid. The macrophages in the heterospheroid secrete EGF, a cytokine critical to tumor/macrophage co-migration, and an EGF inhibitor decreases the metabolic activity of the heterospheroid, which is not observed in the other systems. The increased secretion of IL-10 indicates that the heterospheroid macrophages follow an M2/TAM differentiation pathway. Lastly, the heterospheroid exhibits resistance to paclitaxel. In summary, the collagen embedded heterospheroid model promotes TAM-like characteristics, and will be of utility in cancer biology and drug discovery. Two in vitro collagen-embedded multicellular spheroid models are described that mimic the clinical observations of macrophage localization within a tumor. Incorporation of macrophages within a breast cancer spheroid emphasizes cell-cell interactions with subsequent differentiation toward a tumor-promoting TAM phenotype. In contrast, macrophages seeded around the tumor spheroid display decreased interaction with cancer cells and no indication of a TAM phenotype. Finally, the presence of macrophages in the heterospheroid increases resistance to paclitaxel. This study demonstrates that cell-cell interactions and 3D collagen matrix direct macrophage activity, and, thus, highlights the important role the local environment itself plays in macrophage behavior. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Kolambkar, Yash M.; Bajin, Mehmet; Wojtowicz, Abigail; Hutmacher, Dietmar W.; García, Andrés J.
2014-01-01
Electrospun nanofiber meshes have emerged as a new generation of scaffold membranes possessing a number of features suitable for tissue regeneration. One of these features is the flexibility to modify their structure and composition to orchestrate specific cellular responses. In this study, we investigated the effects of nanofiber orientation and surface functionalization on human mesenchymal stem cell (hMSC) migration and osteogenic differentiation. We used an in vitro model to examine hMSC migration into a cell-free zone on nanofiber meshes and mitomycin C treatment to assess the contribution of proliferation to the observed migration. Poly (ɛ-caprolactone) meshes with oriented topography were created by electrospinning aligned nanofibers on a rotating mandrel, while randomly oriented controls were collected on a stationary collector. Both aligned and random meshes were coated with a triple-helical, type I collagen-mimetic peptide, containing the glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) motif. Our results indicate that nanofiber GFOGER peptide functionalization and orientation modulate cellular behavior, individually, and in combination. GFOGER significantly enhanced the migration, proliferation, and osteogenic differentiation of hMSCs on nanofiber meshes. Aligned nanofiber meshes displayed increased cell migration along the direction of fiber orientation compared to random meshes; however, fiber alignment did not influence osteogenic differentiation. Compared to each other, GFOGER coating resulted in a higher proliferation-driven cell migration, whereas fiber orientation appeared to generate a larger direct migratory effect. This study demonstrates that peptide surface modification and topographical cues associated with fiber alignment can be used to direct cellular behavior on nanofiber mesh scaffolds, which may be exploited for tissue regeneration. PMID:24020454
Zanotti, Simona; Mora, Marina
2018-01-01
An in vitro model of muscle fibrosis, based on the use of primary human fibroblasts isolated from muscle biopsies of patients affected by Duchenne muscular dystrophies (DMD) and cultivated in monolayer and 3D conditions, is used to test the potential antifibrotic activity of pirfenidone (PFD). This in vitro model may be usefully also to evaluate the toxicity and efficacy of other candidate molecules for the treatment of fibrosis. The drug toxicity is evaluated using a colorimetric assay based on the conversion of tetrazolium salt (MTT) to insoluble formazan, while the effect of the drug on cell proliferation is measured with the bromodeoxyuridine incorporation assay. The efficacy of the drug is evaluated in fibroblast monolayers by quantitating synthesis and deposition of intracellular collagen with a spectrophotometric picrosirius red-based assay, and by quantitating cell migration using a "scratch" assay. The efficacy of PFD as antifibrotic drug is also evaluated in a 3D fibroblast model by measuring diameters and number of nodules.
Michelotti, Gregory A; Tucker, Anikia; Swiderska-Syn, Marzena; Machado, Mariana Verdelho; Choi, Steve S; Kruger, Leandi; Soderblom, Erik; Thompson, J Will; Mayer-Salman, Meredith; Himburg, Heather A; Moylan, Cynthia A; Guy, Cynthia D; Garman, Katherine S; Premont, Richard T; Chute, John P; Diehl, Anna Mae
2016-01-01
Objective The ductular reaction (DR) involves mobilisation of reactive-appearing duct-like cells (RDC) along canals of Hering, and myofibroblastic (MF) differentiation of hepatic stellate cells (HSC) in the space of Disse. Perivascular cells in stem cell niches produce pleiotrophin (PTN) to inactivate the PTN receptor, protein tyrosine phosphatase receptor zeta-1 (PTPRZ1), thereby augmenting phosphoprotein-dependent signalling. We hypothesised that the DR is regulated by PTN/PTPRZ1 signalling. Design PTN-GFP, PTN-knockout (KO), PTPRZ1-KO, and wild type (WT) mice were examined before and after bile duct ligation (BDL) for PTN, PTPRZ1 and the DR. RDC and HSC from WT, PTN-KO, and PTPRZ1-KO mice were also treated with PTN to determine effects on downstream signaling phosphoproteins, gene expression, growth, and migration. Liver biopsies from patients with DRs were also interrogated. Results Although quiescent HSC and RDC lines expressed PTN and PTPRZ1 mRNAs, neither PTN nor PTPRZ1 protein was demonstrated in healthy liver. BDL induced PTN in MF-HSC and increased PTPRZ1 in MF-HSC and RDC. In WT mice, BDL triggered a DR characterised by periportal accumulation of collagen, RDC and MF-HSC. All aspects of this DR were increased in PTN-KO mice and suppressed in PTPRZ1-KO mice. In vitro studies revealed PTN-dependent accumulation of phosphoproteins that control cell-cell adhesion and migration, with resultant inhibition of cell migration. PTPRZ1-positive cells were prominent in the DRs of patients with ductal plate defects and adult cholestatic diseases. Conclusions PTN, and its receptor, PTPRZ1, regulate the DR to liver injury by controlling the migration of resident cells in adult liver progenitor niches. PMID:25596181
Davidenko, Natalia; Bax, Daniel V; Schuster, Carlos F; Farndale, Richard W; Hamaia, Samir W; Best, Serena M; Cameron, Ruth E
2016-01-01
Short wavelength (λ = 254 nm) UV irradiation was evaluated over a range of intensities (0.06 to 0.96 J/cm(2)) as a means of cross-linking collagen- and gelatin-based scaffolds, to tailor their material characteristics whilst retaining biological functionality. Zero-link carbodiimide treatments are commonly applied to collagen-based materials, forming cross-links from carboxylate anions (for example the acidic E of GFOGER) that are an essential part of integrin binding sites on collagen. Cross-linking these amino acids therefore disrupts the bioactivity of collagen. In contrast, UV irradiation forms bonds from less important aromatic tyrosine and phenylalanine residues. We therefore hypothesised that UV cross-linking would not compromise collagen cell reactivity. Here, highly porous (~99 %) isotropic, collagen-based scaffolds were produced via ice-templating. A series of scaffolds (pore diameters ranging from 130-260 μm) with ascending stability in water was made from gelatin, two different sources of collagen I, or blends of these materials. Glucose, known to aid UV crosslinking of collagen, was added to some lower-stability formulations. These scaffolds were exposed to different doses of UV irradiation, and the scaffold morphology, dissolution stability in water, resistance to compression and cell reactivity was assessed. Stabilisation in aqueous media varied with both the nature of the collagen-based material employed and the UV intensity. Scaffolds made from the most stable materials showed the greatest stability after irradiation, although the levels of cross-linking in all cases were relatively low. Scaffolds made from pure collagen from the two different sources showed different optimum levels of irradiation, suggesting altered balance between stabilisation from cross-linking and destabilisation from denaturation. The introduction of glucose into the scaffold enhanced the efficacy of UV cross-linking. Finally, as hypothesized, cell attachment, spreading and proliferation on collagen materials were unaffected by UV cross-linking. UV irradiation may therefore be used to provide relatively low level cross-linking of collagen without loss of biological functionality.
Genís, Laura; Gonzalo, Pilar; Tutor, Antonio S.; Gálvez, Beatriz G.; Martínez-Ruiz, Antonio; Zaragoza, Carlos; Lamas, Santiago; Tryggvason, Karl; Apte, Suneel S.
2007-01-01
Nitric oxide (NO) is essential for vascular homeostasis and is also a critical modulator of angiogenesis; however, the molecular mechanisms of NO action during angiogenesis remain elusive. We have investigated the potential relationship between NO and membrane type 1–matrix metalloproteinase (MT1-MMP) during endothelial migration and capillary tube formation. Endothelial NO synthase (eNOS) colocalizes with MT1-MMP at motility-associated structures in migratory human endothelial cells (ECs); moreover, NO is produced at these structures and is released into the medium during EC migration. We have therefore addressed 2 questions: (1) the putative regulation of MT1-MMP by NO in migratory ECs; and (2) the requirement for MT1-MMP in NO-induced EC migration and tube formation. NO upregulates MT1-MMP membrane clustering on migratory human ECs, and this is accompanied by increased degradation of type I collagen substrate. MT1-MMP membrane expression and localization are impaired in lung ECs from eNOS-deficient mice, and these cells also show impaired migration and tube formation in vitro. Inhibition of MT1-MMP with a neutralizing antibody impairs NOinduced tube formation by human ECs, and NO-induced endothelial migration and tube formation are impaired in lung ECs from mice deficient in MT1-MMP. MT1-MMP thus appears to be a key molecular effector of NO during the EC migration and angiogenic processes, and is a potential therapeutic target for NO-associated vascular disorders. PMID:17606763
Kato, Kiyoko; Takao, Tomoka; Kuboyama, Ayumi; Tanaka, Yoshihiro; Ohgami, Tatsuhiro; Yamaguchi, Shinichiro; Adachi, Sawako; Yoneda, Tomoko; Ueoka, Yousuke; Kato, Keiji; Hayashi, Shinichi; Asanoma, Kazuo; Wake, Norio
2010-01-01
Cancer stem-like cell subpopulations, referred to as “side-population” (SP) cells, have been identified in several tumors based on their ability to efflux the fluorescent dye Hoechst 33342. Although SP cells have been identified in the normal human endometrium and endometrial cancer, little is known about their characteristics. In this study, we isolated and characterized the SP cells in human endometrial cancer cells and in rat endometrial cells expressing oncogenic human K-Ras protein. These SP cells showed i) reduction in the expression levels of differentiation markers; ii) long-term proliferative capacity of the cell cultures; iii) self-renewal capacity in vitro; iv) enhancement of migration, lamellipodia, and, uropodia formation; and v) enhanced tumorigenicity. In nude mice, SP cells formed large, invasive tumors, which were composed of both tumor cells and stromal-like cells with enriched extracellular matrix. The expression levels of vimentin, α-smooth muscle actin, and collagen III were enhanced in SP tumors compared with the levels in non-SP tumors. In addition, analysis of microdissected samples and fluorescence in situ hybridization of Hec1-SP-tumors showed that the stromal-like cells with enriched extracellular matrix contained human DNA, confirming that the stromal-like cells were derived from the inoculated cells. Moreober, in a Matrigel assay, SP cells differentiated into α-smooth muscle actin-expressing cells. These findings demonstrate that SP cells have cancer stem-like cell features, including the potential to differentiate into the mesenchymal cell lineage. PMID:20008133
Cieslik, Katarzyna A; Trial, JoAnn; Crawford, Jeffrey R; Taffet, George E; Entman, Mark L
2014-05-01
Aging has been associated with adverse fibrosis. Here we formulate a new hypothesis and present new evidence that unresponsiveness of mesenchymal stem cells (MSC) and fibroblasts to transforming growth factor beta (TGF-β), due to reduced expression of TGF-β receptor I (TβRI), provides a foundation for cardiac fibrosis in the aging heart via two mechanisms. 1) TGF-β promotes expression of Nanog, a transcription factor that retains MSC in a primitive state. In MSC derived from the aging heart, Nanog expression is reduced and therefore MSC gradually differentiate and the number of mesenchymal fibroblasts expressing collagen increases. 2) As TGF-β signaling pathway components negatively regulate transcription of monocyte chemoattractant protein-1 (MCP-1), a reduced expression of TβRI prevents aging mesenchymal cells from shutting down their own MCP-1 expression. Elevated MCP-1 levels that originated from MSC attract transendothelial migration of mononuclear leukocytes from blood to the tissue. MCP-1 expressed by mesenchymal fibroblasts promotes further migration of monocytes and T lymphocytes away from the endothelial barrier and supports the monocyte transition into macrophages and finally into myeloid fibroblasts. Both myeloid and mesenchymal fibroblasts contribute to fibrosis in the aging heart via collagen synthesis. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium ". © 2013. Published by Elsevier Ltd. All rights reserved.
Yang, Yoolhee; Kim, Hee Jung; Woo, Kyong-Je; Cho, Daeho; Bang, Sa Ik
2017-01-01
Dysregulation of collagen production contributes to various pathological processes, including tissue fibrosis as well as impaired wound healing. Lipo-prostaglandin E1 (Lipo-PGE1), a lipid microsphere-incorporated prostaglandin E1, is used as a vasodilator for the treatment of peripheral vascular diseases. Lipo-PGE1 was recently shown to enhance human dermal fibroblast (HDF) migration and in vivo wound healing. No published study has characterized the role of Lipo-PGE1 in collagen regulation in HDFs. Here, we investigated the cellular signaling mechanism by which Lipo-PGE1 regulates collagen in HDFs. Collagen production was evaluated by the Sircol collagen assay, Western blot analysis of type I collagen and real time PCR. Unexpectedly, Lipo-PGE1 decreased mRNA expression of collagen 1A1, 1A2, and 3A1. Lipo-PGE1 markedly inhibited type I collagen and total soluble collagen production. In addition, Lipo-PGE1 inhibited transforming growth factor-β-induced collagen expression via Smad2 phosphorylation. To further investigate whether extracellular signal-regulated kinase (ERK)/Ets-1 signaling, a crucial pathway in collagen regulation, is involved in Lipo-PGE1-inhibited collagen production, cells were pretreated with an ERK-specific inhibitor, PD98059, prior to the addition of Lipo-PGE1. Lipo-PGE1-inhibited collagen mRNA expression and total soluble collagen production were recovered by pretreatment with PD98059. Moreover, Lipo-PGE1 directly induced the phosphorylation of ERK. Furthermore, silencing of Ets-1 recovered Lipo-PGE1-inhibited collagen production and PD98059 blocked Lipo-PGE1-enhanced Ets-1 expression. The present study reveals an important role for Lipo-PGE1 as a negative regulator of collagen gene expression and production via ERK/Ets-1 signaling. These results suggest that Lipo-PGE1 could potentially be a therapeutic target in diseases with deregulated collagen turnover.
Davidenko, Natalia; Hamaia, Samir; Bax, Daniel V; Malcor, Jean-Daniel; Schuster, Carlos F; Gullberg, Donald; Farndale, Richard W; Best, Serena M; Cameron, Ruth E
2018-01-01
Accurate evaluation of the biological performance of biomaterials requires the correct assessment of their native-like cell ligation properties. However, cell attachment studies often overlook the details of the substrate-cell binding mechanisms, be they integrin-mediated or non-specific, and ignore the class- and species-specificities of the cell adhesion receptor involved. In this work we have used different collagen (Col) substrates (fibrillar collagens I, II and III and network-forming Col IV), containing different affinity cell-recognition motifs, to establish the influence of the receptor identity and species-specificity on collagen-cell interactive properties. Receptor expression was varied by using cells of different origin, or transfecting collagen-binding integrins into integrin-null cells. These include mouse C2C12 myoblasts transfected with human α1, α2, α10 or α11; human fibrosarcoma HT1080 cells which constitutively express only human α2β1, and rat glioma Rugli cells, with only rat α1β1. Using these lines, the nature of integrin binding sites was studied in order to delineate the bioactivity of different collagen substrates. Integrin ligation was studied on collagen coatings alongside synthetic (GFOGER/GLOGEN) and Toolkit (Col II-28/Col III-7) triple-helical peptides to evaluate (1) their affinity towards different integrins and (2) to confirm the activity of the inserted integrin in the transfected cells. Thin films of dermal and tendon Col I were used to evaluate the influence of the carbodiimide (EDC)-based treatment on the cellular response on Col of different origin. The results showed that the binding properties of transfected C2C12 cells to collagens depend on the identity of inserted integrin. Similar ligation characteristics were observed using α1+ and α10+ cells, but these were distinct from the similar binding features of α2+ and α11+ cells. Recombinant human and rat-α1 I domain binding to collagens and peptides correlated with the cell adhesion results, showing receptor class- and species-specificities. The understanding of the physiologically relevant cell anchorage characteristics of bio-constructs may assist in the selection of (1) the optimum collagen source for cellular supports and (2) the correct cellular model for their biological assessment. This, in turn, may allow reliable prediction of the biological performance of bio-scaffolds in vivo for specific TE applications. Integrins play a vital role in cellular responses to environmental cues during early-stage cell-substrate interaction. We describe physiologically relevant cell anchorage to collagen substrates that present different affinity cell-recognition motifs, to provide experimental tools to assist in understanding integrin binding. Using different cell types and recombinant integrin α1-I-domains, we found that cellular response was highly dependent on collagen type, origin and EDC-crosslinking status, as well as on the integrin class and species of origin. This comprehensive study establishes selectivity amongst the four collagen-binding integrins and species-specific properties that together may influence choice of cell type and receptor in different experimental settings. This work offers key guidance in selecting of the correct cellular model for the biological testing of collagen-based biomaterials. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Mathematical Modeling of Cancer Invasion: The Role of Membrane-Bound Matrix Metalloproteinases
Deakin, Niall E.; Chaplain, Mark A. J.
2013-01-01
One of the hallmarks of cancer growth and metastatic spread is the process of local invasion of the surrounding tissue. Cancer cells achieve protease-dependent invasion by the secretion of enzymes involved in proteolysis. These overly expressed proteolytic enzymes then proceed to degrade the host tissue allowing the cancer cells to disseminate throughout the microenvironment by active migration and interaction with components of the extracellular matrix (ECM) such as collagen. In this paper we develop a mathematical model of cancer invasion which consider the role of matrix metalloproteinases (MMPs). Specifically our model will focus on two distinct types of MMP, i.e., soluble, diffusible MMPs (e.g., MMP-2) and membrane-bound MMPs (e.g., MT1-MMP), and the roles each of these plays in cancer invasion. The implications of MMP-2 activation by MMP-14 and the tissue inhibitor of metalloproteinases-2 are considered alongside the effect the architecture of the matrix may have when applied to a model of cancer invasion. Elements of the ECM architecture investigated include pore size of the matrix, since in some highly dense collagen structures such as breast tissue, the cancer cells are unable to physically fit through a porous region, and the crosslinking of collagen fibers. In this scenario, cancer cells rely on membrane-bound MMPs to forge a path through which degradation by other MMPs and movement of cancer cells becomes possible. PMID:23565505
Lough, Denver M; Wetter, Nathan; Madsen, Christopher; Reichensperger, Joel; Cosenza, Nicole; Cox, Lisa; Harrison, Carrie; Neumeister, Michael W
2016-02-01
Recent literature has shown that full-thickness wounds, devoid of the stem cell niche, can subsequently be reconstructed with functional skin elements following migration of the LGR6 epithelial stem cell into the wound bed. In this study, the authors use a variety of LGR6 epithelial stem cell-seeded scaffolds to determine therapeutic utility and regenerative potential in the immediate reconstruction of full-thickness wounds. Isolated LGR6 epithelial stem cells were seeded onto a spectrum of acellular matrices and monitored in both in vitro and in vivo settings to determine their relative capacity to regenerate tissues and heal wounds. Wound beds containing LGR6 stem cell-seeded scaffolds showed significantly augmented rates of healing, epithelialization, and hair growth compared with controls. Gene and proteomic expression studies indicate that LGR6 stem cell-seeded constructs up-regulate WNT, epidermal growth factor, and angiogenesis pathways. Finally, the addition of stromal vascular fraction to LGR6 stem cell-seeded constructs induces polarized tissue formation, nascent hair growth, and angiogenesis within wounds. LGR6 stem cells are able to undergo proliferation, differentiation, and migration following seeding onto a variety of collagen-based scaffolding. In addition, deployment of these constructs induces epithelialization, hair growth, and angiogenesis within wound beds. The addition of stromal vascular fraction to LGR6 stem cell-containing scaffolds initiated an early form of tissue polarization, providing for the first time a clinically applicable stem cell-based construct that is capable of the repair of full-thickness wounds and hair regeneration. Therapeutic, V.
HMGB1 Promotes Intraoral Palatal Wound Healing through RAGE-Dependent Mechanisms
Tancharoen, Salunya; Gando, Satoshi; Binita, Shrestha; Nagasato, Tomoka; Kikuchi, Kiyoshi; Nawa, Yuko; Dararat, Pornpen; Yamamoto, Mika; Narkpinit, Somphong; Maruyama, Ikuro
2016-01-01
High mobility group box 1 (HMGB1) is tightly connected to the process of tissue organization upon tissue injury. Here we show that HMGB1 controls epithelium and connective tissue regeneration both in vivo and in vitro during palatal wound healing. Heterozygous HMGB1 (Hmgb1+/−) mice and Wild-type (WT) mice were subjected to palatal injury. Maxillary tissues were stained with Mallory Azan or immunostained with anti-HMGB1, anti-proliferating cell nuclear antigen (PCNA), anti-nuclear factor-κB (NF-κB) p50 and anti-vascular endothelial growth factor (VEGF) antibodies. Palatal gingival explants were cultured with recombinant HMGB1 (rHMGB1) co-treated with siRNA targeting receptor for advanced glycation end products (RAGEs) for cell migration and PCNA expression analysis. Measurement of the wound area showed differences between Hmgb1+/− and WT mice on Day 3 after wounding. Mallory Azan staining showed densely packed of collagen fibers in WT mice, whereas in Hmgb1+/− mice weave-like pattern of low density collagen bundles were present. At three and seven days post-surgery, PCNA, NF-κB p50 and VEGF positive keratinocytes of WT mice were greater than that of Hmgb1+/− mice. Knockdown of RAGE prevents the effect of rHMGB1-induced cell migration and PCNA expression in gingival cell cultures. The data suggest that HMGB1/RAGE axis has crucial roles in palatal wound healing. PMID:27886093
Choi, Kyungsun; Lee, Kihwang; Ryu, Seung-Wook; Im, Minju; Kook, Koung Hoon
2012-01-01
Purpose Transforming growth factor-β (TGF-β) plays a key role in transforming retinal pigment epithelial (RPE) cells into mesenchymal fibroblastic cells, which are implicated in proliferative vitreoretinopathy. Herein, we tested the effect of pirfenidone, a novel antifibrotic agent, on TGF-β1-mediated fibrogenesis in the human RPE cell line ARPE-19. Methods The effect of pirfenidone on the TGF-β1-induced phenotype in ARPE-19 cells was measured with immunocytochemistry as the change in F-actin. Fibronectin and collagen production was measured with enzyme-linked immunosorbent assay, and cell migration activity was investigated using a scratch assay. Immunoblot analyses of cofilin, sma and mad protein (smad) 2/3, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and extracellular signal-related kinase expression were conducted to elucidate the cell signaling networks that contribute to the antifibrotic effect of pirfenidone. Results Treatment with TGF-β1 induced typical phenotypic changes such as formation of stress fiber running parallel to the long axis of cells and enhanced migration and production of extracellular matrix components such as collagen type I and fibronectin. This fibroblast-like phenotype induced by TGF-β1 was significantly inhibited by pretreatment with pirfenidone in a dose-dependent manner. We also elucidated the TGF-β signaling pathways as the target of the inhibitory effect of pirfenidone. Pirfenidone inhibited TGF-β signaling by preventing nuclear accumulation of active Smad2/3 complexes rather than phosphorylation of Smad2/3. Conclusions These results collectively provide a rational background for future evaluation of pirfenidone as a potential antifibrotic agent for treating proliferative vitreoretinopathy and other fibrotic retinal disorders. PMID:22550395
Decreased metastatic phenotype in cells resistant to Aminolevulinic acid-Photodynamic therapy
Casas, Adriana; Di Venosa, Gabriela; Vanzulli, Silvia; Perotti, Christian; Mamome, Leandro; Rodriguez, Lorena; Simian, Marina; Juarranz, Angeles; Pontiggia, Osvaldo; Hasan, Tayyaba; Batlle, Alcira
2008-01-01
Photodynamic therapy (PDT) is a novel cancer treatment utilising a photosensitiser, visible light and oxygen. PDT often leaves a significant number of surviving tumour cells. In a previous work, we isolated and studied two PDT resistant clones derived from the mammary adenocarcinoma LM3 line (Int. J. Oncol. 29 (2006) 397–405). The isolated Clon 4 and Clon 8 exhibited a more fibroblastic, dendritic pattern and were larger than the parentals. In the present work we studied the metastatic potential of the two clones in comparison with LM3. We found that 100 % of LM3 invaded Matrigel, whereas only 19 ± 6 % and 24 ± 7 % of Clon 4 and Clon 8 cells invaded. In addition, 100% of LM3 cells migrated towards a chemotactic stimulus whereas 38 ± 8 % and 73 ± 10 % of Clones 4 and 8 respectively were able to migrate. In vivo, 100% of the LM3 injected mice developed spontaneous lung metastasis, whereas none of the Clon 8 did, and only one of the mice injected with Clon 4 did. No differences were found in the proteolytic enzyme profiles among the cells. Anchorage-dependent adhesion was also impaired in vivo in the resistant clones, evidenced by the lower tumour take, latency time and growth rates, although both clones showed in vitro higher binding to collagen I without overexpression of β1 integrin. This is the first work where the metastatic potential of cells surviving to PDT has been studied. PDT strongly affects the invasive phenotype of these cells, probably related to a higher binding to collagen. These findings may be crucial for the outcome of ALA-PDT of metastatic tumours, although further studies are needed to extrapolate the results to the clinic employing another photosensitisers and cell types. PMID:18662847
Park, Sang A; Choe, Young Ho; Park, Eunji; Hyun, Young-Min
2018-05-22
Neutrophils are highly motile innate immune cells; they actively migrate in response to inflammatory signals. Using two-photon intravital microscopy, we discovered that neutrophils form stable clusters upon phototoxicity at a certain threshold. Without significant damage to the collagen structure of mouse dermis, neutrophils aggregated together with nearby neutrophils. Surprisingly, this in situ neutrophil clustering resulted in rigorous changes of migratory direction. The density of residing neutrophils was also a critical factor affecting clustering. Additionally, we found that the triggering point of neutrophil aggregation was correlated with the structure of the extracellular matrix in the ear dermis, where autofluorescence was strongly observed. This swarming behavior of neutrophils may reflect an unknown communication mechanism of neutrophils during migration under sterile injury.
Huang, Tonglie; Zhang, Kuo; Sun, Lijuan; Xue, Xiaochang; Zhang, Cun; Shu, Zhen; Mu, Nan; Gu, Jintao; Zhang, Wangqian; Wang, Yukun; Zhang, Yingqi; Zhang, Wei
2015-01-01
Chemical burns take up a high proportion of burns admissions and can penetrate deep into tissues. Various reagents have been applied in the treatment of skin chemical burns; however, no optimal reagent for skin chemical burns currently exists. The present study investigated the effect of topical body protective compound (BPC)-157 treatment on skin wound healing, using an alkali burn rat model. Topical treatment with BPC-157 was shown to accelerate wound closure following an alkali burn. Histological examination of skin sections with hematoxylin–eosin and Masson staining showed better granulation tissue formation, reepithelialization, dermal remodeling, and a higher extent of collagen deposition when compared to the model control group on the 18th day postwounding. BPC-157 could promote vascular endothelial growth factor expression in wounded skin tissues. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and cell cycle analysis demonstrated that BPC-157 enhanced the proliferation of human umbilical vein endothelial cells (HUVECs). Transwell assay and wound healing assay showed that BPC-157 significantly promoted migration of HUVECs. We also observed that BPC-157 upregulated the expression of VEGF-a and accelerated vascular tube formation in vitro. Moreover, further studies suggested that BPC-157 regulated the phosphorylation level of extracellular signal-regulated kinases 1 and 2 (ERK1/2) as well as its downstream targets, including c-Fos, c-Jun, and Egr-1, which are key molecules involved in cell growth, migration, and angiogenesis. Altogether, our results indicated that BPC-157 treatment may accelerate wound healing in a model of alkali burn-induced skin injury. The therapeutic mechanism may be associated with accelerated granulation tissue formation, reepithelialization, dermal remodeling, and collagen deposition through ERK1/2 signaling pathway. PMID:25995620
Huang, Tonglie; Zhang, Kuo; Sun, Lijuan; Xue, Xiaochang; Zhang, Cun; Shu, Zhen; Mu, Nan; Gu, Jintao; Zhang, Wangqian; Wang, Yukun; Zhang, Yingqi; Zhang, Wei
2015-01-01
Chemical burns take up a high proportion of burns admissions and can penetrate deep into tissues. Various reagents have been applied in the treatment of skin chemical burns; however, no optimal reagent for skin chemical burns currently exists. The present study investigated the effect of topical body protective compound (BPC)-157 treatment on skin wound healing, using an alkali burn rat model. Topical treatment with BPC-157 was shown to accelerate wound closure following an alkali burn. Histological examination of skin sections with hematoxylin-eosin and Masson staining showed better granulation tissue formation, reepithelialization, dermal remodeling, and a higher extent of collagen deposition when compared to the model control group on the 18th day postwounding. BPC-157 could promote vascular endothelial growth factor expression in wounded skin tissues. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and cell cycle analysis demonstrated that BPC-157 enhanced the proliferation of human umbilical vein endothelial cells (HUVECs). Transwell assay and wound healing assay showed that BPC-157 significantly promoted migration of HUVECs. We also observed that BPC-157 upregulated the expression of VEGF-a and accelerated vascular tube formation in vitro. Moreover, further studies suggested that BPC-157 regulated the phosphorylation level of extracellular signal-regulated kinases 1 and 2 (ERK1/2) as well as its downstream targets, including c-Fos, c-Jun, and Egr-1, which are key molecules involved in cell growth, migration, and angiogenesis. Altogether, our results indicated that BPC-157 treatment may accelerate wound healing in a model of alkali burn-induced skin injury. The therapeutic mechanism may be associated with accelerated granulation tissue formation, reepithelialization, dermal remodeling, and collagen deposition through ERK1/2 signaling pathway.
S100A8/A9 regulates MMP-2 expression and invasion and migration by carcinoma cells
Silva, Emmanuel J.; Argyris, Prokopios P.; Zou, Xianqiong; Ross, Karen F.; Herzberg, Mark C.
2014-01-01
Intracellular calprotectin (S100A8/A9) functions in the control of the cell cycle checkpoint at G2/M. Dysregulation of S100A8/A9 appears to cause loss of the checkpoint, which frequently characterizes head and neck squamous cell carcinoma (HNSCC). In the present study, we analyzed carcinoma cells for other S100A8/A9-directed changes in malignant phenotype. Using a S100A8/A9-negative human carcinoma cell line (KB), transfection to express S100A8 and S100A9 caused selective down-regulation of MMP-2 and inhibited in vitro invasion and migration. Conversely, silencing of endogenous S100A8 and S100A9 expression in TR146 cells, a well-differentiated HNSCC cell line, increased MMP-2 activity and in vitro invasion and migration. When MMP-2 expression was silenced, cells appeared to assume a less malignant phenotype. To more closely model the architecture of cell growth in vivo, cells were grown in a 3D collagen substrate, which was compared to 2D. Growth on 3D substrates caused greater MMP-2 expression. Whereas hypermethylation of CpG islands occurs frequently in HNSCC, S100A8/A9-dependent regulation of MMP-2 could not be explained by modification of the upstream promoters of MMP2 or TIMP2. Collectively, these results suggest that intracellular S100A8/A9 contributes to the cancer cell phenotype by modulating MMP-2 expression and activity to regulate cell migration and mobility. PMID:25236491
Anitua, E; Pino, A; Orive, G
2016-11-02
The use of plasma rich in growth factors (PRGF) has gained importance in many medical fields due to its regenerative potential. The aim of this study is to evaluate the effects of PRGF on primary skin fibroblasts assessing cell proliferation, migration and secretion of growth factors. The age of the patients from who PRGF was prepared was also studied to determine whether it influenced the outcomes. Human dermal fibroblasts were isolated from three healthy volunteers. Using PRGF-Endoret technology, PRGF was prepared from two groups of different ages (18-35 years and 50+ years). The effects of increasing concentration of PRGF (5%, 10% and 20%) on cell proliferation and migration was evaluated. Biosynthetic behaviour of cells was also analysed measuring vascular endothelial growth factor (VEGF), transforming growth factor b1 (TGFb1) and pro-collagen type I secreted levels with or without PRGF treatment. Mean platelet enrichment reached 2.4X and 2X in 18-35 and 50+ groups respectively. A dose-dependent response was observed in proliferation assays achieving the highest levels with 20% PRGF. Migration was also promoted in cells but not in a dose-dependent manner. Cell proliferation and migration outcomes obtained with PRGF (from both groups) were significantly higher compared to non-stimulated groups (p<0.05), with no statistical significances were observed between the different age groups. Production of VEGF, TGFb and procollagen type I was significantly increased by cells treated with PRGF, however, with the exception of VEGF, no statistical significances were observed between the different age groups. Results from this study concluded that PRGF is safe and effective in stimulating skin regeneration by enhancing proliferation, migration and expression of pivotal bioactive molecules involved in wound healing and haemostasis.
Lu, Kang; Li, Hai-Yin; Yang, Kuang; Wu, Jun-Long; Cai, Xiao-Wei; Zhou, Yue; Li, Chang-Qing
2017-05-10
The stem cell-based therapies for intervertebral disc degeneration have been widely studied. However, the mechanisms of mesenchymal stem cells interacting with intervertebral disc cells, such as nucleus pulposus cells (NPCs), remain unknown. Exosomes as a vital paracrine mechanism in cell-cell communication have been highly focused on. The purpose of this study was to detect the role of exosomes derived from bone marrow mesenchymal stem cells (BM-MSCs) and NPCs in their interaction with corresponding cells. The exosomes secreted by BM-MSCs and NPCs were purified by differential centrifugation and identified by transmission electron microscope and immunoblot analysis of exosomal marker proteins. Fluorescence confocal microscopy was used to examine the uptake of exosomes by recipient cells. The effects of NPC exosomes on the migration and differentiation of BM-MSCs were determined by transwell migration assays and quantitative RT-PCR analysis of NPC phenotypic genes. Western blot analysis was performed to examine proteins such as aggrecan, sox-9, collagen II and hif-1α in the induced BM-MSCs. Proliferation and the gene expression profile of NPCs induced by BM-MSC exosomes were measured by Cell Counting Kit-8 and qRT-PCR analysis, respectively. Both the NPCs and BM-MSCs secreted exosomes, and these exosomes underwent uptake by the corresponding cells. NPC-derived exosomes promoted BM-MSC migration and induced BM-MSC differentiation to a nucleus pulposus-like phenotype. BM-MSC-derived exosomes promoted NPC proliferation and healthier extracellular matrix production in the degenerate NPCs. Our study indicates that the exosomes act as an important vehicle in information exchange between BM-MSCs and NPCs. Given a variety of functions and multiple advantages, exosomes alone or loaded with specific genes and drugs would be an appropriate option in a cell-free therapy strategy for intervertebral disc degeneration.
Human aortic endothelial cell morphology influenced by topography of porous silicon substrates.
Formentín, Pilar; Catalán, Úrsula; Fernández-Castillejo, Sara; Alba, Maria; Baranowska, Malgorzata; Solà, Rosa; Pallarès, Josep; Marsal, Lluís F
2015-10-01
Porous silicon has received much attention because of its optical properties and for its usefulness in cell-based biosensing, drug delivery, and tissue engineering applications. Surface properties of the biomaterial are associated with cell adhesion and with proliferation, migration, and differentiation. The present article analyzes the behavior of human aortic endothelial cells in macro- and nanoporous collagen-modified porous silicon samples. On both substrates, cells are well adhered and numerous. Confocal microscopy and scanning electron microscopy were employed to study the effects of porosity on the morphology of the cells. On macroporous silicon, filopodia is not observed but the cell spreads on the surface, increasing the lamellipodia surface which penetrates the macropore. On nanoporous silicon, multiple filopodia were found to branch out from the cell body. These results demonstrate that the pore size plays a key role in controlling the morphology and growth rate of human aortic endothelial cells, and that these forms of silicon can be used to control cell development in tissue engineering as well as in basic cell biology research. © The Author(s) 2015.
de Jonge, Nicky; Baaijens, Frank P T; Bouten, Carlijn V C
2013-10-28
Collagen content and organization in developing collagenous tissues can be influenced by local tissue strains and tissue constraint. Tissue engineers aim to use these principles to create tissues with predefined collagen architectures. A full understanding of the exact underlying processes of collagen remodeling to control the final tissue architecture, however, is lacking. In particular, little is known about the (re)orientation of collagen fibers in response to changes in tissue mechanical loading conditions. We developed an in vitro model system, consisting of biaxially-constrained myofibroblast-seeded fibrin constructs, to further elucidate collagen (re)orientation in response to i) reverting biaxial to uniaxial static loading conditions and ii) cyclic uniaxial loading of the biaxially-constrained constructs before and after a change in loading direction, with use of the Flexcell FX4000T loading device. Time-lapse confocal imaging is used to visualize collagen (re)orientation in a nondestructive manner. Cell and collagen organization in the constructs can be visualized in real-time, and an internal reference system allows us to relocate cells and collagen structures for time-lapse analysis. Various aspects of the model system can be adjusted, like cell source or use of healthy and diseased cells. Additives can be used to further elucidate mechanisms underlying collagen remodeling, by for example adding MMPs or blocking integrins. Shape and size of the construct can be easily adapted to specific needs, resulting in a highly tunable model system to study cell and collagen (re)organization.
Use of Zymography in Trypanosomiasis Studies.
Monte, Jéssyka Fernanda Santiago; Moreno, Cláudia Jassica Gonçalves; Monteiro, Joana Patrícia Molato Figueiredo Lopes; de Oliveira Rocha, Hugo Alexandre; Ribeiro, Aline Rimoldi; Silva, Marcelo Sousa
2017-01-01
Zymography assay is a semiquantitative technique, very sensitive, and commonly used to determine metalloproteinase levels in different types of biological samples, including tissues, cells, and extracts of protein. Samples containing metalloproteinases are loaded onto a polyacrylamide gel containing sodium dodecyl sulphate (SDS) and a specific substrate (gelatin, casein, collagen, etc.). Then proteins are allowed to migrate under an electric current and the distance of migration is inversely correlated with the molecular weight. After migration, the gel is placed in a renaturing buffer to allow proteins to regain their tertiary structure, necessary for enzymatic activity (metalloproteinase activity). In the context of infections caused by trypanosomatids (Leishmania spp., Trypanosoma cruzi, and Trypanosoma brucei), the characterization of metalloproteinase by zymography can contribute to the comprehension of the pathogenesis mechanisms and host-parasite interaction.
Carbon Nanotubes Preserve Normal Phenotypes Under Cancer-Promoting Conditions
NASA Astrophysics Data System (ADS)
Wailes, Elizabeth; Levi-Polyachenko, Nicole
2015-03-01
Tumor-associated fibroblasts and cancer cells have long been known to create a feedback loop that further stimulates the cancer. While this has been explored from a molecular biology standpoint, little is known about the physical relationship of the cell types even though both sets of cells are known to be mechanosensitive. Indeed, for both fibroblasts and cancer, mechanical signals can make the difference between a normal or pathological cell. To evaluate this relationship and test if it can be manipulated to favor normal cells, atomic force microscopy (AFM) and confocal microscopy was performed on fibroblast and breast cancer cell co-cultures with a collagen gel matrix to simulate the extracellular matrix. Pathological behavior was encouraged through the addition of transforming growth factor beta (TGF- β) . In a separate group, this behavior was discouraged through the doping of the collagen gel with multi-walled carbon nanotubes (MWNT). Significant differences were observed both in the elastic moduli of each cell type and the cancer cells' propensity to migrate through the gel as a model for metastasis. These results shed new light on how cancer progresses and promote the further investigation of nano-mechanical solutions to cancer.
Wang, Feng-qiang; Ariztia, Edgardo V; Boyd, Leslie R; Horton, Faith R; Smicun, Yoel; Hetherington, Jessica A; Smith, Phillip J; Fishman, David A
2010-04-01
Lysophosphatidic acid (LPA) has potent growth-regulatory effect in many cell types and has been linked to the in vivo tumor growth and metastasis in several malignancies. The goal of this study was to assess the regulation of (EC) microenvironment by LPA through the examination of its effect on cell proliferation, migration, invasion, uPA activity, and matrix metalloproteinase (MMP) secretion/activation. All experiments were performed in vitro using an EC cell line, HEC-1A. Cell proliferation was determined using the Promega MTS proliferation assay following 48 h of exposures to different concentrations of LPA (0.1, 1.0 and 10.0 microM). Cell invasion was assessed using a modified Boyden chamber assay with collagen I coated on the membrane. HEC-1A motility was examined by Boyden chamber migration assay as well as the scratch wound closure assay on type I collagen. MMP secretion/activation in HEC-1A conditioned medium was detected by gelatin zymography. MMP-7 mRNA expression was determined using real-time PCR. uPA activity was measured using a coupled colorimetric assay. LPA, at the concentrations of 0.1 and 1.0 microM, significantly induced the proliferation of HEC-1A cells (p<0.01). At 10 microM, LPA- induced HEC-1A proliferation to a less extent and showed no significant effect on HEC-1A invasion and migration (p>0.05). Gelatin zymogram showed that HEC-1A cells secreted high levels of MMP-7, while MMP-2 and MMP-9 are barely detectable. In addition, LPA significantly enhanced uPA activity in HEC-1A conditioned medium in a concentration-dependent manner. LPA is a potent modulator of cellular proliferation and invasion for EC cells. It also has the capacity to stimulate the secretion/activity of uPA and MMP-7. Those results suggest that LPA is a bioactive modulator of EC microenvironment and may have a distinct regulation mechanism as observed in epithelial ovarian cancer. Copyright 2009. Published by Elsevier Inc.
Wang, Yuli; Gunasekara, Dulan B; Reed, Mark I; DiSalvo, Matthew; Bultman, Scott J; Sims, Christopher E; Magness, Scott T; Allbritton, Nancy L
2017-06-01
The human small intestinal epithelium possesses a distinct crypt-villus architecture and tissue polarity in which proliferative cells reside inside crypts while differentiated cells are localized to the villi. Indirect evidence has shown that the processes of differentiation and migration are driven in part by biochemical gradients of factors that specify the polarity of these cellular compartments; however, direct evidence for gradient-driven patterning of this in vivo architecture has been hampered by limitations of the in vitro systems available. Enteroid cultures are a powerful in vitro system; nevertheless, these spheroidal structures fail to replicate the architecture and lineage compartmentalization found in vivo, and are not easily subjected to gradients of growth factors. In the current work, we report the development of a micropatterned collagen scaffold with suitable extracellular matrix and stiffness to generate an in vitro self-renewing human small intestinal epithelium that replicates key features of the in vivo small intestine: a crypt-villus architecture with appropriate cell-lineage compartmentalization and an open and accessible luminal surface. Chemical gradients applied to the crypt-villus axis promoted the creation of a stem/progenitor-cell zone and supported cell migration along the crypt-villus axis. This new approach combining microengineered scaffolds, biophysical cues and chemical gradients to control the intestinal epithelium ex vivo can serve as a physiologically relevant mimic of the human small intestinal epithelium, and is broadly applicable to model other tissues that rely on gradients for physiological function. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xu, Yangyang; Zhang, Lin; Wei, Yuzhen; Zhang, Xin; Xu, Ran; Han, Mingzhi; Huang, Bing; Chen, Anjing; Li, Wenjie; Zhang, Qing; Li, Gang; Wang, Jian; Zhao, Peng; Li, Xingang
2017-01-01
Poor prognosis of glioblastoma multiforme is strongly associated with the ability of tumor cells to invade the brain parenchyma, which is believed to be the major factor responsible for glioblastoma recurrence. Therefore, identifying the molecular mechanisms driving invasion may lead to the development of improved therapies for glioblastoma patients. Here, we investigated the role of procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (PLOD2), an enzyme catalyzing collagen cross-linking, in the biology of glioblastoma invasion. PLOD2 mRNA was significantly overexpressed in glioblastoma compared to low-grade tumors based on the Oncomine datasets and REMBRANDT database for human gliomas. Kaplan-Meier estimates based on the TCGA dataset demonstrated that high PLOD2 expression was associated with poor prognosis. In vitro, hypoxia upregulated PLOD2 protein in U87 and U251 human glioma cell lines. siRNA knockdown of endogenous HIF-1α or treatment of cells with the HIF-1α inhibitor PX-478 largely abolished the hypoxia-mediated PLOD2 upregulation. Knockdown of PLOD2 in glioma cell lines led to decreases in migration and invasion under normoxia and hypoxia. In addition, levels of phosphorylated FAK (Tyr 397), an important kinase mediating cell adhesion, were reduced in U87-shPLOD2 and U251-shPLOD2 cells, particularly under hypoxic conditions. Finally, orthotopic U251-shPLOD2 xenografts were circumscribed rather than locally invasive. In conclusion, the results indicated that PLOD2 was a gene of clinical relevance with implications in glioblastoma invasion and treatment strategies. PMID:28423580
Antifibrotic effect of pirfenidone on human pterygium fibroblasts.
Lee, Kihwang; Young Lee, Sun; Park, So Yean; Yang, Hongseok
2014-07-01
The effects of pirfenidone were investigated on cultured human pterygium fibroblasts (HPFs). HPFs were obtained from pterygium surgery and subjected to primary culture. After treatment with 0.5, 1.0 or 1.5 mg/mL pirfenidone, MTT and cell migration assays were performed, and procollagen secretion and TGF-β expression were measured by Western blotting and immunofluorescence analysis. Pirfenidone had a significant inhibitory effect on HPF proliferation, migration and collagen synthesis. There were no differences between the cells treated with 0.5, 1.0 and 1.5 mg/mL pirfenidone and the controls in the MTT assay. After 48 h of treatment with 1.0 or 1.5 mg/mL pirfenidone, TGF-β expression was significantly decreased. These findings demonstrate that pirfenidone inhibits the proliferation, migration and procollagen secretion of HPFs at nontoxic concentrations by decreasing TGF-β expression. Thus, pirfenidone may be considered as a safe adjuvant for pterygium surgery to prevent recurrence.
Zhou, Tian; Wang, Nanping; Xue, Yang; Ding, Tingting; Liu, Xin; Mo, Xiumei; Sun, Jiao
2015-02-11
In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides, and its denaturation temperature was 44.99 °C. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4+/CD8+ lymphocytes, and the level of IgG or IgM in Sprague-Dawley rat. The contact angle, tensile strength, and weight loss temperature of collagen nanofibers were 21.2°, 6.72±0.44 MPa, and 300 °C, respectively. The nanofibers could promote the viabilities of human keratinocytes (HaCaTs) and human dermal fibroblasts (HDFs), inducing epidermal differentiation through the gene expression of involucrin, filaggrin, and type I transglutaminase of HaCaTs, and they could also accelerate migration of HaCaTs with the expression of matrix metalloproteinase-9 and transforming growth factor-β1 (TGF-β1). Besides, the nanofibers could upregulate the protien level of Col-I in HDFs both via a direct effect and TGF-β1 secreted from HaCaTs, thus facilitating the formation of collagen fibers. Furthermore, the collagen nanofibers stimulated the skin regeneration rapidly and effectively in vivo. These biological effects could be explained as the contributions from the biomimic extracellular cell matrix structure, hydrophilicity, and the multiple amino acids of the collagen nanofibers.
NASA Astrophysics Data System (ADS)
Geum, Dongil T.; Kim, Beum Jun; Chang, Audrey E.; Hall, Matthew S.; Wu, Mingming
2016-01-01
The receptor of epidermal growth factor (EGFR) critically regulates tumor cell invasion and is a potent therapeutic target for treatment of many types of cancers, including carcinomas and glioblastomas. It is known that EGF regulates cell motility when tumor cells are embedded within a 3D biomatrix. However, roles of EGF in modulating tumor cell motility phenotype are largely unknown. In this article, we report that EGF promotes a mesenchymal over an amoeboid motility phenotype using a malignant breast tumor cell line, MDA-MB-231, embedded within a 3D collagen matrix. Amoeboid cells are rounded in shape, while mesenchymal cells are elongated, and their migrations are governed by a distinctly different set of biomolecules. Using single cell tracking analysis, we also show that EGF promotes cell dissemination through a significant increase in cell persistence along with a moderate increase of speed. The increase of persistence is correlated with the increase of the percentage of the mesenchymal cells within the population. Our work reveals a novel role of microenvironmental cue, EGF, in modulating heterogeneity and plasticity of tumor cell motility phenotype. In addition, it suggests a potential visual cue for diagnosing invasive states of breast cancer cells. This work can be easily extended beyond breast cancer cells.
[Extracellular matrix--regulation of cancer invasion and metastasis].
Watanabe, Hideto
2010-11-01
Cancer cell invasion comprises steps in the destruction of the basement membrane and migration of cells into the connective tissue. These cells further migrate into lymph ducts and small vessels to reach metastasis. The extracellular matrix (ECM) provides a microenvironment for cells, and its destruction is associated with cancer cell invasion. Among matrix metalloproteinases (MMPs), both MMP-2 and 9 digest type IV collagen, a major component of the basement membrane, and MMP-14/MT1-MMP, a membrane-type MMP, activates MMP-2. Thus, these MMPs play a central role in cancer cell invasion. MMPs also cleave latent forms of growth factors and signaling molecules, releasing and activating them, which influence neo-vascularization and cancer apoptosis. Like proteins, carbohydrates are known to be involved in cancer invasion. Hyaluronan is known to both stimulate and inhibit cancer invasion, depending on its molecular size. Heparanase, which digests heparan sulfate, is known to facilitate cancer invasion and metastasis. In summary, ECM provides a microenvironment that regulates cell behavior and its structure altered by MMPs affects cancer cell invasion.
Avilés-Reyes, Alejandro; Miller, James H.; Simpson-Haidaris, Patricia J.; Hagen, Fred K.
2014-01-01
Expression of the surface protein Cnm has been directly implicated in the ability of certain strains of Streptococcus mutans to bind to collagen and to invade human coronary artery endothelial cells (HCAEC) and in the killing of Galleria mellonella. Sequencing analysis of Cnm+ strains revealed that cnm is located between the core genes SMU.2067 and SMU.2069. Reverse transcription-PCR (RT-PCR) analysis showed that cnm is cotranscribed with SMU.2067, encoding a putative glycosyltransferase referred to here as PgfS (protein glycosyltransferase of streptococci). Notably, Cnm contains a threonine-rich domain predicted to undergo O-linked glycosylation. The previously shown abnormal migration pattern of Cnm, the presence of the threonine-rich domain, and the molecular linkage of cnm with pgfS lead us to hypothesize that PgfS modifies Cnm. A ΔpgfS strain showed defects in several traits associated with Cnm expression, including collagen binding, HCAEC invasion, and killing of G. mellonella. Western blot analysis revealed that Cnm from the ΔpgfS mutant migrated at a lower molecular weight than that from the parent strain. In addition, Cnm produced by ΔpgfS was highly susceptible to proteinase K degradation, in contrast to the high-molecular-weight Cnm version found in the parent strain. Lectin-binding analyses confirmed the glycosylated nature of Cnm and strongly suggested the presence of N-acetylglucosamine residues attached to Cnm. Based on these findings, the phenotypes observed in ΔpgfS are most likely associated with defects in Cnm glycosylation that affects protein function, stability, or both. In conclusion, this study demonstrates that Cnm is a glycoprotein and that posttranslational modification mediated by PgfS contributes to the virulence-associated phenotypes linked to Cnm. PMID:24837294
Baicalein inhibits the migration and invasive properties of human hepatoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Yung-Wei; Institute of Medicine, Chung Shan Medical University, Taiwan; Lin, Tseng-Hsi
Flavonoids have been demonstrated to exert health benefits in humans. We investigated whether the flavonoid baicalein would inhibit the adhesion, migration, invasion, and growth of human hepatoma cell lines, and we also investigated its mechanism of action. The separate effects of baicalein and baicalin on the viability of HA22T/VGH and SK-Hep1 cells were investigated for 24 h. To evaluate their invasive properties, cells were incubated on matrigel-coated transwell membranes in the presence or absence of baicalein. We examined the effect of baicalein on the adhesion of cells, on the activation of matrix metalloproteinases (MMPs), protein kinase C (PKC), and p38more » mitogen-activated protein kinase (MAPK), and on tumor growth in vivo. We observed that baicalein suppresses hepatoma cell growth by 55%, baicalein-treated cells showed lower levels of migration than untreated cells, and cell invasion was significantly reduced to 28%. Incubation of hepatoma cells with baicalein also significantly inhibited cell adhesion to matrigel, collagen I, and gelatin-coated substrate. Baicalein also decreased the gelatinolytic activities of the matrix metalloproteinases MMP-2, MMP-9, and uPA, decreased p50 and p65 nuclear translocation, and decreased phosphorylated I-kappa-B (IKB)-{beta}. In addition, baicalein reduced the phosphorylation levels of PKC{alpha} and p38 proteins, which regulate invasion in poorly differentiated hepatoma cells. Finally, when SK-Hep1 cells were grown as xenografts in nude mice, intraperitoneal (i.p.) injection of baicalein induced a significant dose-dependent decrease in tumor growth. These results demonstrate the anticancer properties of baicalein, which include the inhibition of adhesion, invasion, migration, and proliferation of human hepatoma cells in vivo. - Highlight: > Baicalein inhibits several essential steps in the onset of metastasis.« less
Wang, Baichuan; Sun, Caixia; Shao, Zengwu; Yang, Shuhua; Che, Biao; Wu, Qiang; Liu, Jianxiang
2014-01-01
Designer self-assembling peptide nanofiber hydrogel scaffolds have been considered as promising biomaterials for tissue engineering because of their excellent biocompatibility and biofunctionality. Our previous studies have shown that a novel designer functionalized self-assembling peptide nanofiber hydrogel scaffold (RLN/RADA16, LN-NS) containing N-terminal peptide sequence of link protein (link N) can promote nucleus pulposus cells (NPCs) adhesion and three-dimensional (3D) migration and stimulate biosynthesis of type II collagen and aggrecan by NPCs in vitro. The present study has extended these investigations to determine the effects of this functionalized LN-NS on bone marrow stem cells (BMSCs), a potential cell source for NP regeneration. Although the functionalized LN-NS cannot promote BMSCs proliferation, it significantly promotes BMSCs adhesion compared with that of the pure RADA16 hydrogel scaffold. Moreover, the functionalized LN-NS remarkably stimulates biosynthesis and deposition of type II collagen and aggrecan. These data demonstrate that the functionalized peptide nanofiber hydrogel scaffold containing link N peptide as a potential matrix substrate will be very useful in the NP tissue regeneration. PMID:25243141
Lee, Rebecca; Perry, Beth; Heywood, Jonathan; Reese, Charles; Bonner, Michael; Hatfield, Corey M.; Silver, Richard M.; Visconti, Richard P.; Hoffman, Stanley; Tourkina, Elena
2014-01-01
In fibrotic diseases caveolin-1 underexpression in fibroblasts results in collagen overexpression and in monocytes leads to hypermigration. These profibrotic behaviors are blocked by the caveolin-1 scaffolding domain peptide (CSD) which compensates for caveolin-1 deficiency. Monocytes and fibroblasts are related in that monocytes are the progenitors of fibrocytes (CD45+/Collagen I+ cells) that, in turn, are the progenitors of many fibroblasts in fibrotic tissues. In an additional anti-fibrotic activity, CSD blocks monocyte differentiation into fibrocytes. We studied a mouse fibrosis model (Pump Model) involving systemic bleomycin delivery that closely models scleroderma (SSc) in several ways, the most important of which for this study is that fibrosis is observed in the lungs, skin, and internal organs. We show here that dermal thickness is increased 2-fold in the Pump Model and that this effect is almost completely blocked by CSD (p < 0.001). Concomitantly, the subcutaneous fat layer becomes >80% thinner. This effect is also blocked by CSD (p < 0.001). Even in mice receiving vehicle instead of bleomycin, CSD increases the thickness of the fat layer. To study the mechanisms of action of bleomycin and CSD, we examined the accumulation of the chemokine receptor CCR5 and its ligands MIP1α and MIP1β in fibrotic tissue and their roles in monocyte migration. Fibrocytes and other leukocytes expressing CCR5 and its ligands were present at high levels in the fibrotic dermis of SSc patients and Pump Model mice while CSD blocked their accumulation in mouse dermis. Migration toward CCR5 ligands of SSc monocytes and Pump Model bone marrow cells was 3-fold greater than cells from control subjects. This enhanced migration was almost completely blocked by CSD. These results suggest that low monocyte caveolin-1 promotes fibrosis by enhancing the recruitment of fibrocytes and their progenitors into affected tissue. PMID:24966836
González-Miguel, Javier; Morchón, Rodrigo; Carretón, Elena; Montoya-Alonso, José Alberto; Simón, Fernando
2015-04-01
Proliferative endarteritis is one of the key pathological mechanisms of cardiopulmonary dirofilariosis, a cosmopolitan parasitosis caused by Dirofilaria immitis affecting dogs and cats around the world. It has been shown that the excretory/secretory antigens from D. immitis adult worms (DiES) bind plasminogen (PLG) and activate fibrinolysis, which can lead to a survival mechanism for the parasite in its intravascular environment. However, overproduction of plasmin (final product of the route) has been related to pathological processes similar to those described in proliferative endarteritis. The aim of this study is to relate the appearance of this pathological condition with the activation of the PLG/plasmin system of the host by DiES. Cell proliferation through the crystal violet technique, cell migration by wound healing assay and degradation of the extracellular matrix by measuring collagen degradation and levels of matrix metalloproteinases were studied in an "in vitro" model using canine vascular endothelial and smooth muscle cells. These cells were treated with a mixture of DiES + PLG. Untreated cells, cells only stimulated with DiES or with PLG, or with a mixture of DiES + PLG + εACA (an inhibitor of the PLG-plasmin conversion) were employed as controls. In addition, the effect of DiES on the expression of the fibrinolytic activators tPA and uPA, the inhibitor PAI-1 and the PLG receptor Annexin A2 was analyzed in both types of cultures by western blot. Plasmin generated by DiES + PLG binding produced a significant increase in the cell proliferation and migration of the endothelial and smooth muscle cells, as well as an increase in the destruction of the extracellular matrix based on a further degradation of Type I Collagen and an increased level of matrix metalloproteinase-2. DiES also induce an increase in the expression of tPA and uPA in endothelial cells in culture, as well as a decrease in the expression of PAI-1 in both types of cells. Our study reports an interrelationship between plasmin caused by fibrinolysis activation by metabolic products of D. immitis and the appearance of pathological events similar to those described in the emergence of proliferative endarteritis in the cardiopulmonary dirofilariosis.
S100A8/A9 regulates MMP-2 expression and invasion and migration by carcinoma cells.
Silva, Emmanuel J; Argyris, Prokopios P; Zou, Xianqiong; Ross, Karen F; Herzberg, Mark C
2014-10-01
Intracellular calprotectin (S100A8/A9) functions in the control of the cell cycle checkpoint at G2/M. Dysregulation of S100A8/A9 appears to cause loss of the checkpoint, which frequently characterizes head and neck squamous cell carcinoma (HNSCC). In the present study, we analyzed carcinoma cells for other S100A8/A9-directed changes in malignant phenotype. Using a S100A8/A9-negative human carcinoma cell line (KB), transfection to express S100A8 and S100A9 caused selective down-regulation of MMP-2 and inhibited in vitro invasion and migration. Conversely, silencing of endogenous S100A8 and S100A9 expression in TR146 cells, a well-differentiated HNSCC cell line, increased MMP-2 activity and in vitro invasion and migration. When MMP-2 expression was silenced, cells appeared to assume a less malignant phenotype. To more closely model the architecture of cell growth in vivo, cells were grown in a 3D collagen substrate, which was compared to 2D. Growth on 3D substrates caused greater MMP-2 expression. Whereas hypermethylation of CpG islands occurs frequently in HNSCC, S100A8/A9-dependent regulation of MMP-2 could not be explained by modification of the upstream promoters of MMP2 or TIMP2. Collectively, these results suggest that intracellular S100A8/A9 contributes to the cancer cell phenotype by modulating MMP-2 expression and activity to regulate cell migration and mobility. Published by Elsevier Ltd.
Vielreicher, Martin; Kralisch, Dana; Völkl, Simon; Sternal, Fabian; Arkudas, Andreas; Friedrich, Oliver
2018-06-20
Biomimetic scaffolds are of great interest to tissue engineering (TE) and tissue repair as they support important cell functions. Scaffold coating with soluble collagen-I has been used to achieve better tissue integration in orthopaedy, however, as collagen persistence was only temporary such efforts were limited. Adequate coverage with cell-derived ECM collagen-I would promise great success, in particular for TE of mechanically challenged tissues. Here, we have used label-free, non-invasive multiphoton microscopy (MPM) to characterise bacterial nanocellulose (BNC) - a promising biomaterial for bone TE - and their potency to stimulate collagen-I formation by mesenchymal stem cells (MSCs). BNC fleeces were investigated by Second Harmonic Generation (SHG) imaging and by their characteristic autofluorescence (AF) pattern, here described for the first time. Seeded MSCs adhered fast, tight and very stable, grew to multilayers and formed characteristic, wide-spread and long-lasting collagen-I. MSCs used micron-sized lacunae and cracks on the BNC surface as cell niches. Detailed analysis using a collagen-I specific binding protein revealed a highly ordered collagen network structure at the cell-material interface. In addition, we have evidence that BNC is able to stimulate MSCs towards osteogenic differentiation. These findings offer new options for the development of engineered tissue constructs based on BNC.
Zhou, Tian; Sui, Baiyan; Mo, Xiumei; Sun, Jiao
2017-01-01
The development of skin wound dressings with excellent properties has always been an important challenge in the field of biomedicine. In this study, biomimetic electrospun fish collagen/bioactive glass (Col/BG) nanofibers were prepared. Their structure, tensile strength, antibacterial activity and biological effects on human keratinocytes, human dermal fibroblasts and human vascular endothelial cells were investigated. Furthermore, the Sprague Dawley rat skin defect model was used to validate their effect on wound healing. The results showed that compared with pure fish collagen nanofibers, the tensile strength of the Col/BG nanofibers increased to 21.87±0.21 Mpa, with a certain degree of antibacterial activity against Staphylococcus aureus. It was also found that the Col/BG nanofibers promoted the adhesion, proliferation and migration of human keratinocytes. Col/BG nanofibers induced the secretion of type one collagen and vascular endothelial growth factor by human dermal fibroblasts, which further stimulated the proliferation of human vascular endothelial cells. Animal experimentation indicated that the Col/BG nanofibers could accelerate rat skin wound healing. This study developed a type of multifunctional and biomimetic fish Col/BG nanofibers, which had the ability to induce skin regeneration with adequate tensile strength and antibacterial activity. The Col/BG nanofibers are also easily available and inexpensive, providing the possibility for using as a functional skin wound dressing. PMID:28496325
Zhou, Tian; Sui, Baiyan; Mo, Xiumei; Sun, Jiao
2017-01-01
The development of skin wound dressings with excellent properties has always been an important challenge in the field of biomedicine. In this study, biomimetic electrospun fish collagen/bioactive glass (Col/BG) nanofibers were prepared. Their structure, tensile strength, antibacterial activity and biological effects on human keratinocytes, human dermal fibroblasts and human vascular endothelial cells were investigated. Furthermore, the Sprague Dawley rat skin defect model was used to validate their effect on wound healing. The results showed that compared with pure fish collagen nanofibers, the tensile strength of the Col/BG nanofibers increased to 21.87±0.21 Mpa, with a certain degree of antibacterial activity against Staphylococcus aureus . It was also found that the Col/BG nanofibers promoted the adhesion, proliferation and migration of human keratinocytes. Col/BG nanofibers induced the secretion of type one collagen and vascular endothelial growth factor by human dermal fibroblasts, which further stimulated the proliferation of human vascular endothelial cells. Animal experimentation indicated that the Col/BG nanofibers could accelerate rat skin wound healing. This study developed a type of multifunctional and biomimetic fish Col/BG nanofibers, which had the ability to induce skin regeneration with adequate tensile strength and antibacterial activity. The Col/BG nanofibers are also easily available and inexpensive, providing the possibility for using as a functional skin wound dressing.
Malcor, Jean-Daniel; Bax, Daniel; Hamaia, Samir W.; Davidenko, Natalia; Best, Serena M.; Cameron, Ruth E.; Farndale, Richard W.; Bihan, Dominique
2016-01-01
Collagen is frequently advocated as a scaffold for use in regenerative medicine. Increasing the mechanical stability of a collagen scaffold is widely achieved by cross-linking using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). However, this treatment consumes the carboxylate-containing amino acid sidechains that are crucial for recognition by the cell-surface integrins, abolishing cell adhesion. Here, we restore cell reactivity to a cross-linked type I collagen film by covalently linking synthetic triple-helical peptides (THPs), mimicking the structure of collagen. These THPs are ligands containing an active cell-recognition motif, GFOGER, a high-affinity binding site for the collagen-binding integrins. We end-stapled peptide strands containing GFOGER by coupling a short diglutamate-containing peptide to their N-terminus, improving the thermal stability of the resulting THP. A photoreactive Diazirine group was grafted onto the end-stapled THP to allow covalent linkage to the collagen film upon UV activation. Such GFOGER-derivatized collagen films showed restored affinity for the ligand-binding I domain of integrin α2β1, and increased integrin-dependent cell attachment and spreading of HT1080 and Rugli cell lines, expressing integrins α2β1 and α1β1, respectively. The method we describe has wide application, beyond collagen films or scaffolds, since the photoreactive diazirine will react with many organic carbon skeletons. PMID:26854392
Fibronectin induces macrophage migration through a SFK-FAK/CSF-1R pathway.
Digiacomo, Graziana; Tusa, Ignazia; Bacci, Marina; Cipolleschi, Maria Grazia; Dello Sbarba, Persio; Rovida, Elisabetta
2017-07-04
Integrins, following binding to proteins of the extracellular matrix (ECM) including collagen, laminin and fibronectin (FN), are able to transduce molecular signals inside the cells and to regulate several biological functions such as migration, proliferation and differentiation. Besides activation of adaptor molecules and kinases, integrins transactivate Receptor Tyrosine Kinases (RTK). In particular, adhesion to the ECM may promote RTK activation in the absence of growth factors. The Colony-Stimulating Factor-1 Receptor (CSF-1R) is a RTK that supports the survival, proliferation, and motility of monocytes/macrophages, which are essential components of innate immunity and cancer development. Macrophage interaction with FN is recognized as an important aspect of host defense and wound repair. The aim of the present study was to investigate on a possible cross-talk between FN-elicited signals and CSF-1R in macrophages. FN induced migration in BAC1.2F5 and J774 murine macrophage cell lines and in human primary macrophages. Adhesion to FN determined phosphorylation of the Focal Adhesion Kinase (FAK) and Src Family Kinases (SFK) and activation of the SFK/FAK complex, as witnessed by paxillin phosphorylation. SFK activity was necessary for FAK activation and macrophage migration. Moreover, FN-induced migration was dependent on FAK in either murine macrophage cell lines or human primary macrophages. FN also induced FAK-dependent/ligand-independent CSF-1R phosphorylation, as well as the interaction between CSF-1R and β1. CSF-1R activity was necessary for FN-induced macrophage migration. Indeed, genetic or pharmacological inhibition of CSF-1R prevented FN-induced macrophage migration. Our results identified a new SFK-FAK/CSF-1R signaling pathway that mediates FN-induced migration of macrophages.
Kaufmann, Roland; Hascher, Alexander; Mussbach, Franziska; Henklein, Petra; Katenkamp, Kathrin; Westermann, Martin; Settmacher, Utz
2012-12-01
In this study, we demonstrate functional expression of the proteinase-activated receptor 2 (PAR(2)), a member of a G-protein receptor subfamily in primary cholangiocarcinoma (PCCA) cell cultures. Treatment of PCCA cells with the serine proteinase trypsin and the PAR(2)-selective activating peptide, furoyl-LIGRLO-NH(2), increased migration across a collagen membrane barrier. This effect was inhibited by a PAR(2)-selective pepducin antagonist peptide (P2pal-18S) and it was also blocked with the Met receptor tyrosine kinase (Met) inhibitors SU 11274 and PHA 665752, the MAPKinase inhibitors PD 98059 and SL 327, and the Stat3 inhibitor Stattic. The involvement of Met, p42/p44 MAPKinases and Stat3 in PAR(2)-mediated PCCA cell signaling was further supported by the findings that trypsin and the PAR(2)-selective agonist peptide, 2-furoyl-LIGRLO-NH(2), stimulated activating phosphorylation of these signaling molecules in cholangiocarcinoma cells. With our results, we provide a novel signal transduction module in cholangiocarcinoma cell migration involving PAR(2)-driven activation of Met, p42/p44 MAPKinases and Stat3.
Novel materials to enhance corneal epithelial cell migration on keratoprosthesis.
Karkhaneh, Akbar; Mirzadeh, Hamid; Ghaffariyeh, Alireza; Ebrahimi, Abdolali; Honarpisheh, Nazafarin; Hosseinzadeh, Masud; Heidari, Mohammad Hossein
2011-03-01
To introduce a new modification for silicone optical core Keratoprosthesis. Using mixtures of 2-hydroxyethyl methacrylate and acrylic acid polydimethylsiloxane (PDMS) films were modified with two-step oxygen plasma treatment, and then type I collagen was immobilised onto this modified surfaces. Both the biocompatibility of the modified films and cell behaviour on the surface of these films were investigated by in vitro tests, and formation of epithelial cell layer was evaluated by implantation of the modified films in the corneas of 10 rabbits. In vitro studies indicated that the number of attached and proliferated cells onto modified PDMS in comparison with the unmodified PDMS significantly increased. Histological studies showed that corneal epithelial cells migrated on the anterior surface of the modified films after 1week. The corneal epithelial cell formed an incomplete monolayer cellular sheet after 10days. A complete epithelialisation on the modified surface was formed after 21days. The epithelial layer persisted on the anterior surface of implant after 1-month and 3-month follow-up. This method may have potential use in silicone optical core Keratoprosthesis.
Zhou, Lina; Shi, Mengchen; Zhao, Lu; Lin, Zhipeng; Tang, Zeli; Sun, Hengchang; Chen, Tingjin; Lv, Zhiyue; Xu, Jin; Huang, Yan; Yu, Xinbing
2017-06-17
Liver fibrosis is an excessive wound-healing reaction that requires the participation of inflammatory cells and hepatic stellate cells (HSCs). The pathogenesis of liver fibrosis caused by viruses and alcohol has been well characterized, but the molecular mechanisms underlying liver fibrosis induced by the liver fluke Clonorchis sinensis are poorly understood. Lysophospholipase A (LysoPLA), which deacylates lysophospholipids, plays a critical role in mediating the virulence and pathogenesis of parasites and fungi; however, the roles of C. sinensis lysophospholipase A (CsLysoPLA) in C. sinensis-induced liver fibrosis remain unknown. A mouse macrophage cell line (RAW264.7) was cultured and treated with CsLysoPLA. IL-25 and members of its associated signaling pathway were detected by performing quantitative real-time PCR, Western blotting and immunofluorescent staining. A human hepatic stellate cell line (LX-2) was cultured and exposed to IL-25. LX-2 cell activation markers were examined via quantitative real-time PCR, Western blotting and immunofluorescent staining. Migration was analyzed in transwell plates. Treating RAW264.7 cells with CsLysoPLA significantly induced IL-25 expression. Elevated PKA, B-Raf, and ERK1/2 mRNA levels and phosphorylated B-Raf and ERK1/2 were detected in CsLysoPLA-stimulated RAW264.7 cells. The PKA inhibitor H-89 weakened B-Raf and ERK1/2 phosphorylation whereas the AKT activator SC79 attenuated ERK1/2 phosphorylation in RAW264.7 cells. Both H-89 and SC79 inhibited CsLysoPLA-induced IL-25 upregulation. In addition, stimulation of LX-2 cells with IL-25 upregulated the expression of mesenchymal cell markers, including α-smooth muscle actin (α-SMA) and collagen type I (Collagen-I), and promoted cell migration. CsLysoPLA activates HSCs by upregulating IL-25 in macrophages through the PKA-dependent B-Raf/ERK1/2 pathway and potentially promotes hepatic fibrosis during C. sinensis infection.
High aspect ratio silicon nanowires control fibroblast adhesion and cytoskeleton organization
NASA Astrophysics Data System (ADS)
Andolfi, Laura; Murello, Anna; Cassese, Damiano; Ban, Jelena; Dal Zilio, Simone; Lazzarino, Marco
2017-04-01
Cell-cell and cell-matrix interactions are essential to the survival and proliferation of most cells, and are responsible for triggering a wide range of biochemical pathways. More recently, the biomechanical role of those interactions was highlighted, showing, for instance, that adhesion forces are essential for cytoskeleton organization. Silicon nanowires (Si NWs) with their small size, high aspect ratio and anisotropic mechanical response represent a useful model to investigate the forces involved in the adhesion processes and their role in cellular development. In this work we explored and quantified, by single cell force spectroscopy (SCFS), the interaction of mouse embryonic fibroblasts with a flexible forest of Si NWs. We observed that the cell adhesion forces are comparable to those found on collagen and bare glass coverslip, analogously the membrane tether extraction forces are similar to that on collagen but stronger than that on bare flat glass. Cell survival did not depend significantly on the substrate, although a reduced proliferation after 36 h was observed. On the contrary both cell morphology and cytoskeleton organization revealed striking differences. The cell morphology on Si-NW was characterized by a large number of filopodia and a significant decrease of the cell mobility. The cytoskeleton organization was characterized by the absence of actin fibers, which were instead dominant on collagen and flat glass support. Such findings suggest that the mechanical properties of disordered Si NWs, and in particular their strong asymmetry, play a major role in the adhesion, morphology and cytoskeleton organization processes. Indeed, while adhesion measurements by SCFS provide out-of-plane forces values consistent with those measured on conventional substrates, weaker in-plane forces hinder proper cytoskeleton organization and migration processes.
High aspect ratio silicon nanowires control fibroblast adhesion and cytoskeleton organization.
Andolfi, Laura; Murello, Anna; Cassese, Damiano; Ban, Jelena; Dal Zilio, Simone; Lazzarino, Marco
2017-04-18
Cell-cell and cell-matrix interactions are essential to the survival and proliferation of most cells, and are responsible for triggering a wide range of biochemical pathways. More recently, the biomechanical role of those interactions was highlighted, showing, for instance, that adhesion forces are essential for cytoskeleton organization. Silicon nanowires (Si NWs) with their small size, high aspect ratio and anisotropic mechanical response represent a useful model to investigate the forces involved in the adhesion processes and their role in cellular development. In this work we explored and quantified, by single cell force spectroscopy (SCFS), the interaction of mouse embryonic fibroblasts with a flexible forest of Si NWs. We observed that the cell adhesion forces are comparable to those found on collagen and bare glass coverslip, analogously the membrane tether extraction forces are similar to that on collagen but stronger than that on bare flat glass. Cell survival did not depend significantly on the substrate, although a reduced proliferation after 36 h was observed. On the contrary both cell morphology and cytoskeleton organization revealed striking differences. The cell morphology on Si-NW was characterized by a large number of filopodia and a significant decrease of the cell mobility. The cytoskeleton organization was characterized by the absence of actin fibers, which were instead dominant on collagen and flat glass support. Such findings suggest that the mechanical properties of disordered Si NWs, and in particular their strong asymmetry, play a major role in the adhesion, morphology and cytoskeleton organization processes. Indeed, while adhesion measurements by SCFS provide out-of-plane forces values consistent with those measured on conventional substrates, weaker in-plane forces hinder proper cytoskeleton organization and migration processes.
Krebs, Kristi; Ruusmann, Anu; Simonlatser, Grethel; Velling, Teet
2015-12-01
FLNa is a ubiquitous cytoskeletal protein that links transmembrane receptors, including integrins, to F-actin and functions as a signalling intermediate. We investigated FLNa's role in the function of integrin-type collagen receptors, EGF-EGFR signalling and regulation of PKB/Akt and ERK1/2. Using FLNa-deficient M2 human melanoma cells, and same cells expressing EGFP-FLNa (M2F) or its Ig-like repeats 1-8+24, 8-15+24 and 16-24, we found that in M2F and M2 8-15+24 cells, EGF induced the increased phosphorylation of PKB/Akt and ERK1/2. In M2F cells EGF induced the localisation of these kinases to cell nucleus and lamellipodia, respectively, and the ERK1/2 phosphorylation-dependent co-immunoprecipitation of FLNa with ERK1/2. Only M2F and M2 8-15+24 cells adhered to and spread on type I collagen whereas on fibronectin all cells behaved similarly. α1β1 and α2β1 were the integrin-type collagen receptors expressed on these cells with primarily α1β1 localising to focal contacts and affecting cell adhesion and migration in a manner dependent on FLNa or its Ig-like repeats 8-15. Our results suggest a role for FLNa repeats 8-15 in the α1-subunit-dependent regulation of integrin α1β1 function, EGF-EGFR signalling to PKB/Akt and ERK1/2, identify ERK1/2 in EGF-induced FLNa-associated protein complexes, and show that the function of different integrins is subjected to differential regulation by FLNa. Copyright © 2015. Published by Elsevier GmbH.
Kubo, Miyoko; Clark, Richard A F; Katz, Anne B; Taichman, Lorne B; Jin, Zaishun; Zhao, Ying; Moriguchi, Takahiko
2007-04-01
alphavbeta3 is a multiligand integrin receptor that interacts with fibrinogen (FG), fibrin (FB), fibronectin (FN), vitronectin (VN), and denatured collagen. We previously reported that cultured normal human keratinocytes, like in vivo keratinocytes, do not express alphavbeta3 on the cell surface, and do not adhere to and migrate on FG and FB. Furthermore, we reported that human keratinocytes transduced with beta3 integrin subunit cDNA by a retrovirus-mediated transduction method express alphavbeta3 on the cell surface and adhere to FG, FB, FN, and VN significantly compared with beta-galactosidase (beta-gal) cDNA-transduced keratinocytes (control). In this study, we determined whether these beta3 integrin subunit cDNA-transduced keratinocytes or normal human keratinocytes adhere to denatured collagen (gelatin) using a 1 h cell adhesion assay. beta3 cDNA-transduced keratinocytes adhered to gelatin, whereas no significant adhesion was observed with the control cells (beta-gal cDNA-transduced keratinocytes and normal human keratinocytes). The adhesion to gelatin was inhibited by LM609, a monoclonal antibody to alphavbeta3, and RGD peptides but not by normal mouse IgG1 nor RGE peptides. Thus, transduction of beta3 integrin subunit cDNA confers on human keratinocytes the ability to adhere to denatured collagen (gelatin) as well as to FG, FB, VN, and FN. Otherwise, normal human keratinocytes do not adhere to gelatin. These data support the idea that beta3 cDNA-transduced human keratinocytes can be a good material for cultured epithelium to achieve better take rate with acute or chronic wounds, in which FG, FB, and denatured collagen are abundantly present.
Zhang, Lei; Xu, Pengcheng; Wang, Xueer; Zhang, Min; Yan, Yuan; Chen, Yinghua; Zhang, Lu; Zhang, Lin
2017-06-01
Adipose-derived stem cells (ADSCs) are multipotent stromal cells that can differentiate into a variety of cell types, including skin cells, and they can provide an abundant source of cells for skin tissue engineering and skin wound healing. The purpose of this study is to explore the therapeutic effects of activin B in combination with ADSCs and the possible signaling mechanism. In this study, we found that activin B was able to promote ADSC migration by inducing actin stress fiber formation in vitro. In vivo, activin B in combination with ADSCs was capable of enhancing α-SMA expression and wound closure. This combined treatment also promoted fibroblast and keratinocyte proliferation and accelerated re-epithelialization and collagen deposition. Moreover, activin B in combination with ADSCs boosted angiogenesis in the wound area. Further study of the mechanism revealed that activation of JNK and ERK signaling, but not p38 signaling, were required for activin B-induced ADSC actin stress fiber formation and cell migration. These results showed that activin B was able to activate JNK and ERK signaling pathways to induce actin stress fiber formation and ADSC migration to promote wound healing. These results suggest that combined treatment with activin B and ADSCs is a promising therapeutic strategy for the management of serious skin wounds. Copyright © 2017. Published by Elsevier Ltd.
Wedel, Steffen; Hudak, Lukasz; Seibel, Jens-Michael; Makarević, Jasmina; Juengel, Eva; Tsaur, Igor; Wiesner, Christoph; Haferkamp, Axel; Blaheta, Roman A
2011-06-01
The concept of molecular tumor targeting might provide new hope in the treatment of advanced prostate cancer. We evaluated metastasis blocking properties of the histone deacetylase (HDAC) inhibitor valproic acid (VPA) and the mammalian target of rapamycin (mTOR) inhibitor RAD001 on prostate cancer cell lines. RAD001 or VPA were applied to PC-3 or LNCaP cells, either separately or in combination. Adhesion to vascular endothelium or to immobilized collagen, fibronectin or laminin was quantified. Migration and invasion were explored by a modified Boyden chamber assay. Integrin α and β subtypes were analyzed by flow cytometry, western blotting and RT-PCR. Effects of drug treatment on integrin related signaling, Akt and p70S6kinase activation, histone H3 and H4 acetylation were also determined. Separate application of RAD001 or VPA distinctly reduced tumor cell adhesion, migration and invasion, accompanied by elevated Akt activation and p70S6kinase de-activation. Integrin subtype expression was altered significantly by both compounds (VPA > RAD001). When both drugs were used in concert additive effects were observed on the migratory and invasive behavior but not on tumor-endothelium and tumor-matrix interaction. Separate mTOR or HDAC inhibition slows processes related to tumor metastasis. The RAD001-VPA combination showed advantage over VPA monotreatment with particular respect to migration and invasion. Ongoing studies are required to assess the relevance of VPA monotherapy versus VPA-RAD001 combination on tumor cell motility.
Chu, Jing; Shi, Panpan; Yan, Wenxia; Fu, Jinping; Yang, Zhi; He, Chengmin; Deng, Xiaoyuan; Liu, Hanping
2018-05-24
Nanoscale delivery based on polyethylene glycol (PEG)ylated graphene oxide (GO-PEG) merits attention for biomedical applications owing to its functional surface modification, superior solubility/biocompatibility and controllable drug release capability. However, impaired skin regeneration in applications of these fascinating nanomaterials in diabetes is still limited, and critical issues need to be addressed regarding insufficient collagen hyperplasia and inadequate blood supply. Therefore, a high-performance tissue engineering scaffold with biocompatible and biodegradable properties is essential for diabetic wound healing. Natural and artificial acellular dermal matrix (ADM) scaffolds with spatially organized collagen fibers can provide a suitable architecture and environment for cell attachment and proliferation. Here, a novel collagen-nanomaterial-drug hybrid scaffold was constructed from GO-PEG-mediated quercetin (GO-PEG/Que)-modified ADM (ADM-GO-PEG/Que). The resulting unique and versatile hybrid scaffold exhibited multiple advantages, including the following: a biocompatible, cell-adhesive surface for accelerating mesenchymal stem cell (MSC) attachment and proliferation; superior stability and adjustability of the conduction potential of quercetin for inducing the differentiation of MSCs into adipocytes and osteoblasts; and a biodegradable nanofiber interface for promoting collagen deposition and angiogenesis in diabetic wound repair. This study provides new prospects for the design of innovative GO-PEG-based collagen hybrid scaffolds for application in efficient therapeutic drug delivery, stem cell-based therapies, tissue engineering and regenerative medicine.
Incudomalleal joint formation: the roles of apoptosis, migration and downregulation
Amin, Susan; Matalova, Eva; Simpson, Carol; Yoshida, Hiroki; Tucker, Abigail S
2007-01-01
Background The middle ear of mammals is composed of three endochondrial ossicles, the stapes, incus and malleus. Joints link the malleus to the incus and the incus to the stapes. In the mouse the first arch derived malleus and incus are formed from a single Sox9 and Type II collagen expressing condensation that later subdivides to give rise to two separate ossicles. In contrast the stapes forms from a separate condensation derived from the second branchial arch. Fusion of the malleus and incus is observed in a number of human syndromes and results in conductive hearing loss. Understanding how this joint forms during normal development is thus an important step in furthering our understanding of such defects. Results We show that the developing incudomalleal joint is characterised by a lack of proliferation and discrete areas of apoptosis. Apoptosis has been suggested to aid in the removal of pre-cartilaginous cells from the joint region, allowing for the physical separation of the cartilaginous elements, however, we show that joint initiation is unaffected by blocking apoptosis. There is also no evidence of cell migration out of the presumptive joint region, as observed by labelling of joint and ossicle cells in culture. Using Type II collagen lacZ reporter mice, however, it is evident that cells in the presumptive joint region remain in place and downregulate cartilage markers. Conclusion The malleus and incus first appear as a single united condensation expressing early cartilage markers. The incudomalleal joint region forms by cells in the presumptive joint region switching off cartilage markers and turning on joint markers. Failure in this process may result in fusion of this joint, as observed in human syndromes such as Branchio-Oto-Renal Syndrome or Treacher Collins Syndrome. PMID:18053235
Cattaruzza, Sabrina; Nicolosi, Pier Andrea; Braghetta, Paola; Pazzaglia, Laura; Benassi, Maria Serena; Picci, Piero; Lacrima, Katia; Zanocco, Daniela; Rizzo, Erika; Stallcup, William B; Colombatti, Alfonso; Perris, Roberto
2013-06-01
In soft-tissue sarcoma patients, enhanced expression of NG2/CSPG4 proteoglycan in pre-surgical primary tumours predicts post-surgical metastasis formation and thereby stratifies patients into disease-free survivors and patients destined to succumb to the disease. Both primary and secondary sarcoma lesions also up-regulate collagen type VI, a putative extracellular matrix ligand of NG2, and this matrix alteration potentiates the prognostic impact of NG2. Enhanced constitutive levels of the proteoglycan in isolated sarcoma cells closely correlate with a superior engraftment capability and local growth in xenogenic settings. This apparent NG2-associated malignancy was also corroborated by the diverse tumorigenic behaviour in vitro and in vivo of immunoselected NG2-expressing and NG2-deficient cell subsets, by RNAi-mediated knock down of endogenous NG2, and by ectopic transduction of full-length or deletion constructs of NG2. Cells with modified expression of NG2 diverged in their interaction with purified Col VI, matrices supplemented with Col VI, and cell-free matrices isolated from wild-type and Col VI null fibroblasts. The combined use of dominant-negative NG2 mutant cells and purified domain fragments of the collagen allowed us to pinpoint the reciprocal binding sites within the two molecules and to assert the importance of this molecular interaction in the control of sarcoma cell adhesion and motility. The NG2-mediated binding to Col VI triggered activation of convergent cell survival- and cell adhesion/migration-promoting signal transduction pathways, implicating PI-3K as a common denominator. Thus, the findings point to an NG2-Col VI interplay as putatively involved in the regulation of the cancer cell-host microenvironment interactions sustaining sarcoma progression.
Michelotti, Gregory A; Tucker, Anikia; Swiderska-Syn, Marzena; Machado, Mariana Verdelho; Choi, Steve S; Kruger, Leandi; Soderblom, Erik; Thompson, J Will; Mayer-Salman, Meredith; Himburg, Heather A; Moylan, Cynthia A; Guy, Cynthia D; Garman, Katherine S; Premont, Richard T; Chute, John P; Diehl, Anna Mae
2016-04-01
The ductular reaction (DR) involves mobilisation of reactive-appearing duct-like cells (RDC) along canals of Hering, and myofibroblastic (MF) differentiation of hepatic stellate cells (HSC) in the space of Disse. Perivascular cells in stem cell niches produce pleiotrophin (PTN) to inactivate the PTN receptor, protein tyrosine phosphatase receptor zeta-1 (PTPRZ1), thereby augmenting phosphoprotein-dependent signalling. We hypothesised that the DR is regulated by PTN/PTPRZ1 signalling. PTN-GFP, PTN-knockout (KO), PTPRZ1-KO, and wild type (WT) mice were examined before and after bile duct ligation (BDL) for PTN, PTPRZ1 and the DR. RDC and HSC from WT, PTN-KO, and PTPRZ1-KO mice were also treated with PTN to determine effects on downstream signaling phosphoproteins, gene expression, growth, and migration. Liver biopsies from patients with DRs were also interrogated. Although quiescent HSC and RDC lines expressed PTN and PTPRZ1 mRNAs, neither PTN nor PTPRZ1 protein was demonstrated in healthy liver. BDL induced PTN in MF-HSC and increased PTPRZ1 in MF-HSC and RDC. In WT mice, BDL triggered a DR characterised by periportal accumulation of collagen, RDC and MF-HSC. All aspects of this DR were increased in PTN-KO mice and suppressed in PTPRZ1-KO mice. In vitro studies revealed PTN-dependent accumulation of phosphoproteins that control cell-cell adhesion and migration, with resultant inhibition of cell migration. PTPRZ1-positive cells were prominent in the DRs of patients with ductal plate defects and adult cholestatic diseases. PTN, and its receptor, PTPRZ1, regulate the DR to liver injury by controlling the migration of resident cells in adult liver progenitor niches. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
3D composites based on the blends of chitosan and collagen with the addition of hyaluronic acid.
Sionkowska, Alina; Kaczmarek, Beata; Lewandowska, Katarzyna; Grabska, Sylwia; Pokrywczyńska, Marta; Kloskowski, Tomasz; Drewa, Tomasz
2016-08-01
3D porous composites based on blends of chitosan, collagen and hyaluronic acid were obtained through the lyophilization process. Mechanical properties, swelling behavior and thermal stability of the blends were studied. Moreover, SEM images were taken and the structure of the blends was studied. Biological properties of the materials obtained were investigated by analyzing of proliferation rate of fibroblast cells incubated with biomaterial extract using MTT assay (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide). The results showed that the properties of 3D composites based on the blends of chitosan and collagen were altered after the addition 1%, 2% and 5% of hyaluronic acid. Mechanical properties and thermal stability of chitosan/collagen blends were improved in the presence of hyaluronic acid in the composite. New 3D materials based on the blends of chitosan, collagen and hyaluronic acid were non-toxic and did not significantly affect cell morphology. Copyright © 2016 Elsevier B.V. All rights reserved.
Mason, Brooke N; Starchenko, Alina; Williams, Rebecca M; Bonassar, Lawrence J; Reinhart-King, Cynthia A
2013-01-01
Numerous studies have described the effects of matrix stiffening on cell behavior using two-dimensional synthetic surfaces; however, less is known about the effects of matrix stiffening on cells embedded in three-dimensional in vivo-like matrices. A primary limitation in investigating the effects of matrix stiffness in three dimensions is the lack of materials that can be tuned to control stiffness independently of matrix density. Here, we use collagen-based scaffolds where the mechanical properties are tuned using non-enzymatic glycation of the collagen in solution, prior to polymerization. Collagen solutions glycated prior to polymerization result in collagen gels with a threefold increase in compressive modulus without significant changes to the collagen architecture. Using these scaffolds, we show that endothelial cell spreading increases with matrix stiffness, as does the number and length of angiogenic sprouts and the overall spheroid outgrowth. Differences in sprout length are maintained even when the receptor for advanced glycation end products is inhibited. Our results demonstrate the ability to de-couple matrix stiffness from matrix density and structure in collagen gels, and that increased matrix stiffness results in increased sprouting and outgrowth. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Douglas, Timothy; Heinemann, Sascha; Hempel, Ute; Mietrach, Carolin; Knieb, Christiane; Bierbaum, Susanne; Scharnweber, Dieter; Worch, Hartmut
2008-04-01
Collagen has been used as a coating material for titanium-based implants for bone contact and as a component of scaffolds for bone tissue engineering. In general collagen type I has been used, however very little attention has been focussed on collagen type II. Collagen-based coatings and scaffolds have been enhanced by the incorporation of the glycosaminoglycan chondroitin sulphate (CS), however the proteglycan biglycan, which is found in bone and contains glycosaminoglycan chains consisting of CS, has not been used as a biomaterial component. The study had the following aims: firstly, five different collagen II preparations were compared with regard to their ability to bind CS and biglycan and the changes in fibril morphology thereby induced. Secondly, the effects of biglycan on the adhesion of primary rat osteoblasts (rO) as well as the proliferation of rO, primary human osteoblasts (hO) and the osteoblast-like cell line 7F2 were studied by culturing the cells on surfaces coated with collagen II fibrils containing biglycan. Fibrils of the collagen II preparation which bound the most biglycan were used to coat titanium surfaces. Bare titanium, titanium coated with collagen II fibrils and titanium coated with collagen II fibrils containing biglycan were compared. It was found that different collagen II preparations showed different affinities for CS and biglycan. In four of the five preparations tested, biglycan reduced fibril diameter, however the ability of a preparation to bind more biglycan did not appear to lead to a greater reduction in fibril diameter. Fibrils containing biglycan promoted the formation of focal adhesions by rO and significantly enhanced the proliferation of hO but not of rO or 7F2 cells. These results should encourage further investigation of biglycan as a component of collagen-based scaffolds and/or coatings.
Hyaluronan Hybrid Cooperative Complexes as a Novel Frontier for Cellular Bioprocesses Re-Activation
Stellavato, Antonietta; Corsuto, Luisana; D’Agostino, Antonella; La Gatta, Annalisa; Diana, Paola; Bernini, Patrizia; De Rosa, Mario
2016-01-01
Hyaluronic Acid (HA)-based dermal formulations have rapidly gained a large consensus in aesthetic medicine and dermatology. HA, highly expressed in the Extracellular Matrix (ECM), acts as an activator of biological cascades, stimulating cell migration and proliferation, and operating as a regulator of the skin immune surveillance, through specific interactions with its receptors. HA may be used in topical formulations, as dermal inducer, for wound healing. Moreover, intradermal HA formulations (injectable HA) provide an attractive tool to counteract skin aging (e.g., facial wrinkles, dryness, and loss of elasticity) and restore normal dermal functions, through simple and minimally invasive procedures. Biological activity of a commercially available hyaluronic acid, Profhilo®, based on NAHYCO™ technology, was compared to H-HA or L-HA alone. The formation of hybrid cooperative complexes was confirmed by the sudden drop in η0 values in the rheological measurements. Besides, hybrid cooperative complexes proved stable to hyaluronidase (BTH) digestion. Using in vitro assays, based on keratinocytes, fibroblasts cells and on the Phenion® Full Thickness Skin Model 3D, hybrid cooperative complexes were compared to H-HA, widely used in biorevitalization procedures, and to L-HA, recently proposed as the most active fraction modulating the inflammatory response. Quantitative real-time PCR analyses were accomplished for the transcript quantification of collagens and elastin. Finally immunofluorescence staining permitted to evaluate the complete biosynthesis of all the molecules investigated. An increase in the expression levels of type I and type III collagen in fibroblasts and type IV and VII collagen in keratinocytes were found with the hybrid cooperative complexes, compared to untreated cells (CTR) and to the H-HA and L-HA treatments. The increase in elastin expression found in both cellular model and in the Phenion® Full Thickness Skin Model 3D also at longer time (up to 7 days), supports the clinically observed improvement of skin elasticity. The biomarkers analyzed suggest an increase of tissue remodeling in the presence of Profhilo®, probably due to the long lasting release and the concurrent action of the two HA components. PMID:27723763
PLOD2 regulated by transcription factor FOXA1 promotes metastasis in NSCLC
Du, Hongzhi; Chen, Yulong; Hou, Xiaoying; Huang, Yue; Wei, Xiaohui; Yu, Xiaowen; Feng, Shuyun; Wu, Yao; Zhan, Meixiao; Shi, Xin; Lin, Sensen; Lu, Ligong; Yuan, Shengtao; Sun, Li
2017-01-01
In multiple types of tumors, fibrotic collagen is regarded as the 'highway' for cancer cell migration, which is mainly modified by lysyl hydroxylase 2 (PLOD2). The previous findings have demonstrated that the expression of PLOD2 was regulated by multiple factors, including HIF-1α, TGF-β and microRNA-26a/b. Although PLOD2 was confirmed to be related to poor prognosis in lung adenocarcinoma, the regulatory mechanism and function of PLOD2 in human lung adenocarcinoma is poorly understood. On the other hand, upregulation or hyperactivation of epidermal growth factor receptor is considered as a prognostic marker in many cancers, especially in non-small-cell lung cancer (NSCLC). In this study, we found that PLOD2 was elevated in NSCLC specimens and positively links to NSCLC poor prognosis. Gain- and loss-of-function studies and orthotopic implantation metastasis model pinpointed that PLOD2 promotes NSCLC metastasis directly by enhancing migration and indirectly by inducing collagen reorganization. In addition, we revealed that PLOD2 was regulated by PI3K/AKT-FOXA1 axis. The transcription factor FOXA1 directly bound to the PLOD2 promoter, and turned on PLOD2 transcription. In summary, our findings revealed a regulatory mechanism of NSCLC metastasis through EGFR-PI3K/AKT-FOXA1-PLOD2 pathway, and provided PLOD2 as a therapeutic target for NSCLC treatment. PMID:29072684
Zhang, Zhidong; Liang, Kai; Zou, Gangqiang; Chen, Xiaosan; Shi, Shuaitao; Wang, Guoquan; Zhang, Kewei; Li, Kun; Zhai, Shuiting
2018-06-29
The aim of the present study was to identify abdominal aortic aneurysms (AAA)-associated miR-155 contributing to AAA pathology by regulating macrophage-mediated inflammation. Angiotensin II (AngII)-infused apolipoprotein E-deficient (ApoE-/-) mice and THP-1 cells model of miR-155 overexpression and deficiency were used in the experiments. The expression of miR-155 was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cytokines were evaluated using enzyme-linked immunoabsorbent assay (ELISA). Western blotting was used to measure the levels of MMP-2, MMP-9, iNOS, and monocyte chemoattractant protein (MCP)-1 proteins. Immunostaining and transwell were used to determine CD68, elastic collagen, proliferation, and migration of vascular smooth muscle cells (VSMCs). The results showed that miR-155 and cytokines were up-regulated in AAA patients or ApoE-/- mice. Overexpression of miR-155 enhanced MMP-2, MMP-9, iNOS, and MCP-1 levels, and stimulated the proliferation and migration of VSMCs. Meanwhile, inhibition of miR-155 had the opposite effect. In addition, histology demonstrated accumulation of CD68 and elastic collagen-positive areas significantly decreased in miR-155 antagomir injection group. In conclusion, the results of the present study suggest that inhibiting miR-155 is crucial to prevent the development of AAA by regulating macrophage inflammation. © 2018 The Author(s).
Heck, T A M; Wilson, W; Foolen, J; Cilingir, A C; Ito, K; van Donkelaar, C C
2015-03-18
Soft biological tissues adapt their collagen network to the mechanical environment. Collagen remodeling and cell traction are both involved in this process. The present study presents a collagen adaptation model which includes strain-dependent collagen degradation and contact-guided cell traction. Cell traction is determined by the prevailing collagen structure and is assumed to strive for tensional homeostasis. In addition, collagen is assumed to mechanically fail if it is over-strained. Care is taken to use principally measurable and physiologically meaningful relationships. This model is implemented in a fibril-reinforced biphasic finite element model for soft hydrated tissues. The versatility and limitations of the model are demonstrated by corroborating the predicted transient and equilibrium collagen adaptation under distinct mechanical constraints against experimental observations from the literature. These experiments include overloading of pericardium explants until failure, static uniaxial and biaxial loading of cell-seeded gels in vitro and shortening of periosteum explants. In addition, remodeling under hypothetical conditions is explored to demonstrate how collagen might adapt to small differences in constraints. Typical aspects of all essentially different experimental conditions are captured quantitatively or qualitatively. Differences between predictions and experiments as well as new insights that emerge from the present simulations are discussed. This model is anticipated to evolve into a mechanistic description of collagen adaptation, which may assist in developing load-regimes for functional tissue engineered constructs, or may be employed to improve our understanding of the mechanisms behind physiological and pathological collagen remodeling. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lacey, Helen; Haigh, Teresa; Westwood, Melissa; Aplin, John D
2002-04-24
Trophoblast migration into maternal decidua is essential for normal pregnancy. It occurs in a defined time window, is spatially highly restricted, and is aberrant in some pathological pregnancies, but the control mechanisms are as yet ill-defined. At the periphery of the placenta, chorionic villi make contact with decidua to form specialised anchoring sites that feed interstitially migrating cytotrophoblast into the placental bed. Explants of first trimester mesenchymal villi on collagen type I developed cytotrophoblast outgrowths from the villous tips. However, in medium changed daily, cells did not progress to a migratory phenotype, remaining instead as a contiguous multi-layered sheet. This suggested the need for another migration stimulus. To test the possibility that this might arise from mesenchymal cells, serum-free conditioned medium from first trimester placental fibroblasts was added to explant cultures. Cytotrophoblasts were stimulated to migrate in streams across the gel. Affinity depletion of Insulin-like growth factor from fibroblast medium reduced streaming activity, while the addition of exogenous IGF-I (10 ng/ml) to serum-free medium produced a streaming phenotype. IGF receptor type 1 (IGFR1) was present on cells in the columns, and streaming could be inhibited by antibody to this receptor. IGF-II and activin, known stimulators of cytotrophoblast migration, were also active in this model. These data suggest a paracrine interaction between villous mesenchyme and the cytotrophoblast in anchoring sites that stimulates trophoblast infiltration of decidua. Such a signal would be self-limiting since it diminishes with distance from the placenta. This is a novel mechanism in placental development.
Evaluation of dermal wound healing activity of synthetic peptide SVVYGLR.
Uchinaka, Ayako; Kawaguchi, Naomasa; Ban, Tsuyoshi; Hamada, Yoshinosuke; Mori, Seiji; Maeno, Yoshitaka; Sawa, Yoshiki; Nagata, Kohzo; Yamamoto, Hirofumi
2017-09-23
SVVYGLR peptide (SV peptide) is a 7-amino-acid sequence with angiogenic properties that is derived from osteopontin in the extracellular matrix and promotes differentiation of fibroblasts to myofibroblast-like cells and the production of collagen type Ⅲ by cardiac fibroblasts. However, the effects of SV peptide on dermal cells and tissue are unknown. In this study, we evaluated the effects of this peptide in a rat model of dermal wound healing. The synthetic SV peptide was added to dermal fibroblasts or keratinocytes, and their cellular motility was evaluated. In an in vivo wound healing exeriment, male rats aged 8 weeks were randomly assigned to the SV peptide treatment, non-treated control, or phosphate-buffered saline (PBS) groups. Wound healing was assessed by its repair rate and histological features. Scratch assay and cell migration assays using the Chemotaxicell method showed that SV peptide significantly promoted the cell migration in both fibroblasts and keratinocytes. In contrast the proliferation potency of these cells was not affected by SV peptide. In the rat model, wound healing progressed faster in the SV peptide-treated group than in the control and PBS groups. The histopathological analyses showed that the SV peptide treatment stimulated the migration of fibroblasts to the wound area and increased the number of myofibroblasts. Immunohistochemical staining showed a marked increase of von Willebland factor-positive neomicrovessels in the SV peptide-treated group. In conclusion, SV peptide has a beneficial function to promote wound healing by stimulating granulation via stimulating angiogenesis, cell migration, and the myofibroblastic differentiation of fibroblasts. Copyright © 2017 Elsevier Inc. All rights reserved.
Gilchrist, Christopher L.; Ruch, David S.; Little, Dianne; Guilak, Farshid
2014-01-01
Tissue and biomaterial microenvironments provide architectural cues that direct important cell behaviors including cell shape, alignment, migration, and resulting tissue formation. These architectural features may be presented to cells across multiple length scales, from nanometers to millimeters in size. In this study, we examined how architectural cues at two distinctly different length scales, “micro-scale” cues on the order of ~1–2 μm, and “meso-scale” cues several orders of magnitude larger (>100 μm), interact to direct aligned neo-tissue formation. Utilizing a micro-photopatterning (μPP) model system to precisely arrange cell-adhesive patterns, we examined the effects of substrate architecture at these length scales on human mesenchymal stem cell (hMSC) organization, gene expression, and fibrillar collagen deposition. Both micro- and meso-scale architectures directed cell alignment and resulting tissue organization, and when combined, meso cues could enhance or compete against micro-scale cues. As meso boundary aspect ratios were increased, meso-scale cues overrode micro-scale cues and controlled tissue alignment, with a characteristic critical width (~500 μm) similar to boundary dimensions that exist in vivo in highly aligned tissues. Meso-scale cues acted via both lateral confinement (in a cell-density-dependent manner) and by permitting end-to-end cell arrangements that yielded greater fibrillar collagen deposition. Despite large differences in fibrillar collagen content and organization between μPP architectural conditions, these changes did not correspond with changes in gene expression of key matrix or tendon-related genes. These findings highlight the complex interplay between geometric cues at multiple length scales and may have implications for tissue engineering strategies, where scaffold designs that incorporate cues at multiple length scales could improve neo-tissue organization and resulting functional outcomes. PMID:25263687
[Three-dimensional parallel collagen scaffold promotes tendon extracellular matrix formation].
Zheng, Zefeng; Shen, Weiliang; Le, Huihui; Dai, Xuesong; Ouyang, Hongwei; Chen, Weishan
2016-03-01
To investigate the effects of three-dimensional parallel collagen scaffold on the cell shape, arrangement and extracellular matrix formation of tendon stem cells. Parallel collagen scaffold was fabricated by unidirectional freezing technique, while random collagen scaffold was fabricated by freeze-drying technique. The effects of two scaffolds on cell shape and extracellular matrix formation were investigated in vitro by seeding tendon stem/progenitor cells and in vivo by ectopic implantation. Parallel and random collagen scaffolds were produced successfully. Parallel collagen scaffold was more akin to tendon than random collagen scaffold. Tendon stem/progenitor cells were spindle-shaped and unified orientated in parallel collagen scaffold, while cells on random collagen scaffold had disorder orientation. Two weeks after ectopic implantation, cells had nearly the same orientation with the collagen substance. In parallel collagen scaffold, cells had parallel arrangement, and more spindly cells were observed. By contrast, cells in random collagen scaffold were disorder. Parallel collagen scaffold can induce cells to be in spindly and parallel arrangement, and promote parallel extracellular matrix formation; while random collagen scaffold can induce cells in random arrangement. The results indicate that parallel collagen scaffold is an ideal structure to promote tendon repairing.
Sameni, Mansoureh; Anbalagan, Arulselvi; Olive, Mary B.; Moin, Kamiar; Mattingly, Raymond R.; Sloane, Bonnie F.
2012-01-01
We have developed 3D coculture models, which we term MAME (mammary architecture and microenvironment engineering), and used them for live-cell imaging in real-time of cell:cell interactions. Our overall goal was to develop models that recapitulate the architecture of preinvasive breast lesions to study their progression to an invasive phenotype. Specifically, we developed models to analyze interactions among pre-malignant breast epithelial cell variants and other cell types of the tumor microenvironment that have been implicated in enhancing or reducing the progression of preinvasive breast epithelial cells to invasive ductal carcinomas. Other cell types studied to date are myoepithelial cells, fibroblasts, macrophages and blood and lymphatic microvascular endothelial cells. In addition to the MAME models, which are designed to recapitulate the cellular interactions within the breast during cancer progression, we have developed comparable models for the progression of prostate cancers. Here we illustrate the procedures for establishing the 3D cocultures along with the use of live-cell imaging and a functional proteolysis assay to follow the transition of cocultures of breast ductal carcinoma in situ (DCIS) cells and fibroblasts to an invasive phenotype over time, in this case over twenty-three days in culture. The MAME cocultures consist of multiple layers. Fibroblasts are embedded in the bottom layer of type I collagen. On that is placed a layer of reconstituted basement membrane (rBM) on which DCIS cells are seeded. A final top layer of 2% rBM is included and replenished with every change of media. To image proteolysis associated with the progression to an invasive phenotype, we use dye-quenched (DQ) fluorescent matrix proteins (DQ-collagen I mixed with the layer of collagen I and DQ-collagen IV mixed with the middle layer of rBM) and observe live cultures using confocal microscopy. Optical sections are captured, processed and reconstructed in 3D with Volocity visualization software. Over the course of 23 days in MAME cocultures, the DCIS cells proliferate and coalesce into large invasive structures. Fibroblasts migrate and become incorporated into these invasive structures. Fluorescent proteolytic fragments of the collagens are found in association with the surface of DCIS structures, intracellularly, and also dispersed throughout the surrounding matrix. Drugs that target proteolytic, chemokine/cytokine and kinase pathways or modifications in the cellular composition of the cocultures can reduce the invasiveness, suggesting that MAME models can be used as preclinical screens for novel therapeutic approaches. PMID:22371028
Sameni, Mansoureh; Anbalagan, Arulselvi; Olive, Mary B; Moin, Kamiar; Mattingly, Raymond R; Sloane, Bonnie F
2012-02-17
We have developed 3D coculture models, which we term MAME (mammary architecture and microenvironment engineering), and used them for live-cell imaging in real-time of cell:cell interactions. Our overall goal was to develop models that recapitulate the architecture of preinvasive breast lesions to study their progression to an invasive phenotype. Specifically, we developed models to analyze interactions among pre-malignant breast epithelial cell variants and other cell types of the tumor microenvironment that have been implicated in enhancing or reducing the progression of preinvasive breast epithelial cells to invasive ductal carcinomas. Other cell types studied to date are myoepithelial cells, fibroblasts, macrophages and blood and lymphatic microvascular endothelial cells. In addition to the MAME models, which are designed to recapitulate the cellular interactions within the breast during cancer progression, we have developed comparable models for the progression of prostate cancers. Here we illustrate the procedures for establishing the 3D cocultures along with the use of live-cell imaging and a functional proteolysis assay to follow the transition of cocultures of breast ductal carcinoma in situ (DCIS) cells and fibroblasts to an invasive phenotype over time, in this case over twenty-three days in culture. The MAME cocultures consist of multiple layers. Fibroblasts are embedded in the bottom layer of type I collagen. On that is placed a layer of reconstituted basement membrane (rBM) on which DCIS cells are seeded. A final top layer of 2% rBM is included and replenished with every change of media. To image proteolysis associated with the progression to an invasive phenotype, we use dye-quenched (DQ) fluorescent matrix proteins (DQ-collagen I mixed with the layer of collagen I and DQ-collagen IV mixed with the middle layer of rBM) and observe live cultures using confocal microscopy. Optical sections are captured, processed and reconstructed in 3D with Volocity visualization software. Over the course of 23 days in MAME cocultures, the DCIS cells proliferate and coalesce into large invasive structures. Fibroblasts migrate and become incorporated into these invasive structures. Fluorescent proteolytic fragments of the collagens are found in association with the surface of DCIS structures, intracellularly, and also dispersed throughout the surrounding matrix. Drugs that target proteolytic, chemokine/cytokine and kinase pathways or modifications in the cellular composition of the cocultures can reduce the invasiveness, suggesting that MAME models can be used as preclinical screens for novel therapeutic approaches.
Banks, T A; Luckman, P S B; Frith, J E; Cooper-White, J J
2015-06-01
The intrinsic piezoelectric nature of collagenous-rich tissues, such as bone and cartilage, can result in the production of small, endogenous electric fields (EFs) during applied mechanical stresses. In vivo, these EFs may influence cell migration, a vital component of wound healing. As a result, the application of small external EFs to bone fractures and cutaneous wounds is actively practiced clinically. Due to the significant regenerative potential of stem cells in bone and cartilage healing, and their potential role in the observed improved healing in vivo post applied EFs, using a novel medium throughput device, we investigated the impacts of physiological and aphysiological EFs on human bone marrow-derived mesenchymal stem cells (hBM-MSCs) for up to 15 hours. The applied EFs had significant impacts on hBM-MSC morphology and migration; cells displayed varying degrees of conversion to a highly elongated phenotype dependent on the EF strength, consistent perpendicular alignment to the EF vector, and definitive cathodal migration in response to EF strengths ≥0.5 V cm(-1), with the fastest migration speeds observed at between 1.7 and 3 V cm(-1). We observed variability in hBM-MSC donor-to-donor responses and overall tolerances to applied EFs. This study thus confirms hBM-MSCs are responsive to applied EFs, and their rate of migration towards the cathode is controllable depending on the EF strength, providing new insight into the physiology of hBM-MSCs and possibly a significant opportunity for the utilisation of EFs in directed scaffold colonisation in vitro for tissue engineering applications or in vivo post implantation.
Fernández-Hernando, Carlos; József, Levente; Jenkins, Deborah; Lorenzo, Annarita Di; Sessa, William C.
2009-01-01
Objective Deletion of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease. VSMC are an important component of atherosclerotic plaques, responsible for promoting plaque stability in advanced lesions. Fibrous caps of unstable plaques contain less collagen and ECM components and fewer VSMCs than caps from stable lesions. Here, we investigated the role of Akt1 in VSMC proliferation, migration and oxidative stress-induce apoptosis. In addition, we also characterized the atherosclerotic plaque morphology and cardiac function in an atherosclerosis-prone mouse model deficient in Akt1. Methods and Results Absence of Akt1 reduces VSMC proliferation and migration. Mechanistically, the proliferation and migratory phenotype found in Akt1 null VSMCs was linked to reduced Rac-1 activity and MMP-2 secretion. Serum starvation and stress-induced apoptosis was enhanced in Akt1 null VSMCs as determined by flow cytometry using Annexin V/PI staining. Immunohistochemical analysis of atherosclerotic plaques from Akt1−/−ApoE−/− mice showed a dramatic increase in plaque vulnerability characteristics such as enlarged necrotic core and reduced fibrous cap and collagen content. Finally, we show evidences of myocardial infarcts and cardiac dysfunction in Akt1−/−ApoE−/− mice analyzed by immunohistochemistry and echocardiography respectively. Conclusion Akt1 is essential for VSMC proliferation, migration and protection against oxidative stress-induce apoptosis. Absence of Akt1 induces features of plaque vulnerability and cardiac dysfunction in a mouse model of atherosclerosis. PMID:19762778
Kanemitsu, Michiko; Tsupykov, Oleg; Potter, Gaël; Boitard, Michael; Salmon, Patrick; Zgraggen, Eloisa; Gascon, Eduardo; Skibo, Galina; Dayer, Alexandre G; Kiss, Jozsef Z
2017-11-01
Stimulation of endogenous neurogenesis and recruitment of neural progenitors from the subventricular zone (SVZ) neurogenic site may represent a useful strategy to improve regeneration in the ischemic cortex. Here, we tested whether transgenic overexpression of extracellular matrix metalloproteinase inducer (EMMPRIN), the regulator of matrix metalloproteinases (MMPs) expression, in endogenous neural progenitor cells (NPCs) in the subventricular zone (SVZ) could increase migration towards ischemic injury. For this purpose, we applied a lentivector-mediated gene transfer system. We found that EMMPRIN-transduced progenitors exhibited enhanced MMP-2 activity in vitro and showed improved motility in 3D collagen gel as well as in cortical slices. Using a rat model of neonatal ischemia, we showed that EMMPRIN overexpressing SVZ cells invade the injured cortical tissue more efficiently than controls. Our results suggest that EMMPRIN overexpression could be suitable approach to improve capacities of endogenous or transplanted progenitors to invade the injured cortex. Copyright © 2017 Elsevier Inc. All rights reserved.
Gingival wound healing: an essential response disturbed by aging?
Smith, P C; Cáceres, M; Martínez, C; Oyarzún, A; Martínez, J
2015-03-01
Gingival wound healing comprises a series of sequential responses that allow the closure of breaches in the masticatory mucosa. This process is of critical importance to prevent the invasion of microbes or other agents into tissues, avoiding the establishment of a chronic infection. Wound healing may also play an important role during cell and tissue reaction to long-term injury, as it may occur during inflammatory responses and cancer. Recent experimental data have shown that gingival wound healing is severely affected by the aging process. These defects may alter distinct phases of the wound-healing process, including epithelial migration, granulation tissue formation, and tissue remodeling. The cellular and molecular defects that may explain these deficiencies include several biological responses such as an increased inflammatory response, altered integrin signaling, reduced growth factor activity, decreased cell proliferation, diminished angiogenesis, reduced collagen synthesis, augmented collagen remodeling, and deterioration of the proliferative and differentiation potential of stem cells. In this review, we explore the cellular and molecular basis of these defects and their possible clinical implications. © International & American Associations for Dental Research 2014.
Wagner, Alena-Svenja; Glenske, Kristina; Henß, Anja; Kruppke, Benjamin; Rößler, Sina; Hanke, Thomas; Moritz, Andreas; Rohnke, Marcus; Kressin, Monika; Arnhold, Stefan; Schnettler, Reinhard; Wenisch, Sabine
2017-07-04
Herein, we aim to elucidate osteogenic effects of two silica-based xerogels with different degrees of bioactivity on human bone-derived mesenchymal stromal cells by means of scanning electron microscopy, quantitative PCR enhanced osteogenic effects and the formation of an extracellular matrix which could be ascribed to the sample with lower bioactivity. Given the high levels of bioactivity, the cells revealed remarkable sensitivity to extremely low calcium levels of the media. Therefore, additional experiments were performed to elucidate cell behavior under calcium deficient conditions. The results refer to capacity of the bone-derived stromal cells to overcome calcium deficiency even though proliferation, migration and osteogenic differentiation capabilities were diminished. One reason for the differences of the cellular response (on tissue culture plates versus xerogels) to calcium deficiency seems to be the positive effect of silica. The silica could be detected intracellularly as shown by time of flight-secondary ion mass spectrometry after cultivation of primary cells for 21 days on the surfaces of the xerogels. Thus, the present findings refer to different osteogenic differentiation potentials of the xerogels according to the different degrees of bioactivity, and to the role of silica as a stimulator of osteogenesis. Finally, the observed pattern of connexin-based hemichannel gating supports the assumption that connexin 43 is a key factor for calcium-mediated osteogenesis in bone-derived mesenchymal stromal cells.
Wall shear stress promotes intimal hyperplasia through the paracrine H2O2-mediated NOX-AKT-SVV axis.
Zhang, Haolong; Yang, Zhipeng; Wang, Jing; Wang, Xuehu; Zhao, Yu; Zhu, Fangyu
2018-05-27
Oscillatory wall shear stress (WSS)-linked oxidative stress promotes intimal hyperplasia (IH) development, but the underlying mechanisms are not completely understood. We used an in vivo rabbit carotid arterial stenosis model representing different levels of WSS and found that WSS was increased at 1 month with 50% stenosis and was accompanied by VSMCs proliferation and interstitial collagen accumulation. Increased WSS promoted the expression of NOX, AKT, and survivin (SVV) and the proliferation/migration of VSMCs and reduced apoptosis. Our in vitro study suggested that H 2 O 2 promoted proliferation and migration while suppressing apoptosis in cultured human umbilical vascular endothelial cells. We demonstrated that the elevation of WSS promotes VSMC proliferation and migration through the H 2 O 2 -mediated NOX-AKT-SVV axis, thereby accelerating IH development. Copyright © 2017. Published by Elsevier Inc.
Margulis, Alexander; Zhang, Weitian; Alt-Holland, Addy; Pawagi, Sujata; Prabhu, Padmaja; Cao, Jian; Zucker, Stanley; Pfeiffer, Laurence; Garfield, Jacqueline; Fusenig, Norbert E; Garlick, Jonathan A
2006-02-15
The relationship between loss of intercellular adhesion and the biologic properties of human squamous cell carcinoma is not well understood. We investigated how abrogation of E-cadherin-mediated adhesion influenced the behavior and phenotype of squamous cell carcinoma in 3D human tissues. Cell-cell adhesion was disrupted in early-stage epithelial tumor cells (HaCaT-II-4) through expression of a dominant-negative form of E-cadherin (H-2Kd-Ecad). Three-dimensional human tissue constructs harboring either H-2Kd-Ecad-expressing or control II-4 cells (pBabe, H-2Kd-EcadDeltaC25) were cultured at an air-liquid interface for 8 days and transplanted to nude mice; tumor phenotype was analyzed 2 days and 2 and 4 weeks later. H-2Kd-Ecad-expressing tumors demonstrated a switch to a high-grade aggressive tumor phenotype characterized by poorly differentiated tumor cells that infiltrated throughout the stroma. This high-grade carcinoma revealed elevated cell proliferation in a random pattern, loss of keratin 1 and diffuse deposition of laminin 5 gamma2 chain. When II-4 cell variants were seeded into type I collagen gels as an in vitro assay for cell migration, we found that only E-cadherin-deficient cells detached, migrated as single cells and expressed N-cadherin. Function-blocking studies demonstrated that this migration was matrix metalloproteinase-dependent, as GM-6001 and TIMP-2, but not TIMP-1, could block migration. Gene expression profiles revealed that E-cadherin-deficient II-4 cells demonstrated increased expression of proteases and cell-cell and cell-matrix proteins. These findings showed that loss of E-cadherin-mediated adhesion plays a causal role in the transition from low- to high-grade squamous cell carcinomas and that the absence of E-cadherin is an important prognostic marker in the progression of this disease.
2015-01-01
Durotaxis, biased cell movement up a stiffness gradient on culture substrates, is one of the useful taxis behaviors for manipulating cell migration on engineered biomaterial surfaces. In this study, long-term durotaxis was investigated on gelatinous substrates containing a soft band of 20, 50, and 150 μm in width fabricated using photolithographic elasticity patterning; sharp elasticity boundaries with a gradient strength of 300 kPa/50 μm were achieved. Time-dependent migratory behaviors of 3T3 fibroblast cells were observed during a time period of 3 days. During the first day, most of the cells were strongly repelled by the soft band independent of bandwidth, exhibiting the typical durotaxis behavior. However, the repellency by the soft band diminished, and more cells crossed the soft band or exhibited other mixed migratory behaviors during the course of the observation. It was found that durotaxis strength is weakened on the substrate with the narrowest soft band and that adherent affinity-induced entrapment becomes apparent on the widest soft band with time. Factors, such as changes in surface topography, elasticity, and/or chemistry, likely contributing to the apparent diminishing durotaxis during the extended culture were examined. Immunofluorescence analysis indicated preferential collagen deposition onto the soft band, which is derived from secretion by fibroblast cells, resulting in the increasing contribution of haptotaxis toward the soft band over time. The deposited collagen did not affect surface topography or surface elasticity but did change surface chemistry, especially on the soft band. The observed time-dependent durotaxis behaviors are the result of the mixed mechanical and chemical cues. In the studies and applications of cell migratory behavior under a controlled stimulus, it is important to thoroughly examine other (hidden) compounding stimuli in order to be able to accurately interpret data and to design suitable biomaterials to manipulate cell migration. PMID:24851722
Beaumont, Julia; Geber, Jonny; Powers, Natasha; Wilson, Andrew; Lee-Thorp, Julia; Montgomery, Janet
2013-01-01
Historical evidence documents mass migration from Ireland to London during the period of the Great Irish Famine of 1845-52. The rural Irish were reliant on a restricted diet based on potatoes but maize, a C(4) plant, was imported from the United States of America in 1846-47 to mitigate against Famine. In London, Irish migrants joined a population with a more varied diet. To investigate and characterize their diet, carbon and nitrogen isotope ratios were obtained from bone collagen of 119 and hair keratin of six individuals from Lukin Street cemetery, Tower Hamlets (1843-54), and bone collagen of 20 individuals from the cemetery at Kilkenny Union Workhouse in Ireland (1847-51). A comparison of the results with other contemporaneous English populations suggests that Londoners may have elevated δ(15) N compared with their contemporaries in other cities. In comparison, the Irish group have lower δ(15) N. Hair analysis combined with bone collagen allows the reconstruction of perimortem dietary changes. Three children aged 5-15 years from Kilkenny have bone collagen δ(13) C values that indicate consumption of maize (C(4)). As maize was only imported into Ireland in quantity from late 1846 and 1847, these results demonstrate relatively rapid bone collagen turnover in children and highlight the importance of age-related bone turnover rates, and the impact the age of the individual can have on studies of short-term dietary change or recent migration. Stable light isotope data in this study are consistent with the epigraphic and documentary evidence for the presence of migrants within the London cemetery. Copyright © 2012 Wiley Periodicals, Inc.
Wang, Limin; Stegemann, Jan P.
2010-01-01
Chitosan and collagen type I are naturally-derived materials used as cell carriers because of their ability to mimic the extracellular environment and direct cell function. In this study beta-glycerophosphate (beta-GP), an osteogenic medium supplement and a weak base, was used to simultaneously initiate gelation of pure chitosan, pure collagen, and chitosan-collagen composite materials at physiological pH and temperature. Adult human bone marrow-derived stem cells (hBMSC) encapsulated in such hydrogels at chitosan/collagen ratios of 100/0, 65/35, 25/75, and 0/100 wt% exhibited high viability at day 1 after encapsulation, but DNA content dropped by about half over 12 days in pure chitosan materials while it increased two-fold in materials containing collagen. Collagen-containing materials compacted more strongly and were significantly stiffer than pure chitosan gels. In monolayer culture, exposure of hBMSC to beta-GP resulted in decreased cell metabolic activity that varied with concentration and exposure time, but washing effectively removed excess beta-GP from hydrogels. The presence of chitosan in materials resulted in higher expression of osterix and bone sialoprotein genes in medium with and without osteogenic supplements. Chitosan also increased alkaline phosphatase activity and calcium deposition in osteogenic medium. Chitosan-collagen composite materials have potential as matrices for cell encapsulation and delivery, or as in situ gel-forming materials for tissue repair. PMID:20170955
Wang, Limin; Stegemann, Jan P
2010-05-01
Chitosan and collagen type I are naturally derived materials used as cell carriers because of their ability to mimic the extracellular environment and direct cell function. In this study beta-glycerophosphate (beta-GP), an osteogenic medium supplement and a weak base, was used to simultaneously initiate gelation of pure chitosan, pure collagen, and chitosan-collagen composite materials at physiological pH and temperature. Adult human bone marrow-derived stem cells (hBMSC) encapsulated in such hydrogels at chitosan/collagen ratios of 100/0, 65/35, 25/75, and 0/100 wt% exhibited high viability at day 1 after encapsulation, but DNA content dropped by about half over 12 days in pure chitosan materials while it increased twofold in materials containing collagen. Collagen-containing materials compacted more strongly and were significantly stiffer than pure chitosan gels. In monolayer culture, exposure of hBMSC to beta-GP resulted in decreased cell metabolic activity that varied with concentration and exposure time, but washing effectively removed excess beta-GP from hydrogels. The presence of chitosan in materials resulted in higher expression of osterix and bone sialoprotein genes in medium with and without osteogenic supplements. Chitosan also increased alkaline phosphatase activity and calcium deposition in osteogenic medium. Chitosan-collagen composite materials have potential as matrices for cell encapsulation and delivery, or as in situ gel-forming materials for tissue repair. Copyright 2010 Elsevier Ltd. All rights reserved.
Accelerated Bone Repair After Plasma Laser Corticotomies
Leucht, Philipp; Lam, Kentson; Kim, Jae-Beom; Mackanos, Mark A.; Simanovskii, Dmitrii M.; Longaker, Michael T.; Contag, Christopher H.; Schwettman, H Alan; Helms, Jill A.
2007-01-01
Objective: To reveal, on a cellular and molecular level, how skeletal regeneration of a corticotomy is enhanced when using laser-plasma mediated ablation compared with conventional mechanical tissue removal. Summary Background Data: Osteotomies are well-known for their most detrimental side effect: thermal damage. This thermal and mechanical trauma to adjacent bone tissue can result in the untoward consequences of cell death and eventually in a delay in healing. Methods: Murine tibial corticotomies were performed using a conventional saw and a Ti:Sapphire plasma-generated laser that removes tissue with minimal thermal damage. Our analyses began 24 hours after injury and proceeded to postsurgical day 6. We investigated aspects of wound repair ranging from vascularization, inflammation, cell proliferation, differentiation, and bone remodeling. Results: Histology of mouse corticotomy sites uncovered a significant difference in the onset of bone healing; whereas laser corticotomies showed abundant bone matrix deposition at postsurgical day 6, saw corticotomies only exhibited undifferentiated tissue. Our analyses uncovered that cutting bone with a saw caused denaturation of the collagen matrix due to thermal effects. This denatured collagen represented an unfavorable scaffold for subsequent osteoblast attachment, which in turn impeded deposition of a new bony matrix. The matrix degradation induced a prolonged inflammatory reaction at the cut edge to create a surface favorable for osteochondroprogenitor cell attachment. Laser corticotomies were absent of collagen denaturation, therefore osteochondroprogenitor cell attachment was enabled shortly after surgery. Conclusion: In summary, these data demonstrate that corticotomies performed with Ti:Sapphire lasers are associated with a reduced initial inflammatory response at the injury site leading to accelerated osteochondroprogenitor cell migration, attachment, differentiation, and eventually matrix deposition. PMID:17592303
Platelet concentration in platelet-rich plasma affects tenocyte behavior in vitro.
Giusti, Ilaria; D'Ascenzo, Sandra; Mancò, Annalisa; Di Stefano, Gabriella; Di Francesco, Marianna; Rughetti, Anna; Dal Mas, Antonella; Properzi, Gianfranco; Calvisi, Vittorio; Dolo, Vincenza
2014-01-01
Since tendon injuries and tendinopathy are a growing problem, sometimes requiring surgery, new strategies that improve conservative therapies are needed. Platelet-rich plasma (PRP) seems to be a good candidate by virtue of its high content of growth factors, most of which are involved in tendon healing. This study aimed to evaluate if different concentrations of platelets in PRP have different effects on the biological features of normal human tenocytes that are usually required during tendon healing. The different platelet concentrations tested (up to 5 × 10(6) plt/µL) stimulated differently tenocytes behavior; intermediate concentrations (0.5 × 10(6), 1 × 10(6) plt/µL) strongly induced all tested processes (proliferation, migration, collagen, and MMPs production) if compared to untreated cells; on the contrary, the highest concentration had inhibitory effects on proliferation and strongly reduced migration abilities and overall collagen production but, at the same time, induced increasing MMP production, which could be counterproductive because excessive proteolysis could impair tendon mechanical stability. Thus, these in vitro data strongly suggest the need for a compromise between extremely high and low platelet concentrations to obtain an optimal global effect when inducing in vivo tendon healing.
Platelet Concentration in Platelet-Rich Plasma Affects Tenocyte Behavior In Vitro
Rughetti, Anna; Dal Mas, Antonella; Properzi, Gianfranco; Calvisi, Vittorio
2014-01-01
Since tendon injuries and tendinopathy are a growing problem, sometimes requiring surgery, new strategies that improve conservative therapies are needed. Platelet-rich plasma (PRP) seems to be a good candidate by virtue of its high content of growth factors, most of which are involved in tendon healing. This study aimed to evaluate if different concentrations of platelets in PRP have different effects on the biological features of normal human tenocytes that are usually required during tendon healing. The different platelet concentrations tested (up to 5 × 106 plt/µL) stimulated differently tenocytes behavior; intermediate concentrations (0.5 × 106, 1 × 106 plt/µL) strongly induced all tested processes (proliferation, migration, collagen, and MMPs production) if compared to untreated cells; on the contrary, the highest concentration had inhibitory effects on proliferation and strongly reduced migration abilities and overall collagen production but, at the same time, induced increasing MMP production, which could be counterproductive because excessive proteolysis could impair tendon mechanical stability. Thus, these in vitro data strongly suggest the need for a compromise between extremely high and low platelet concentrations to obtain an optimal global effect when inducing in vivo tendon healing. PMID:25147809
Estradiol inhibits hepatic stellate cell area and collagen synthesis in the chicken liver.
Nishimura, Shotaro; Teshima, Akifumi; Kawabata, Fuminori; Tabata, Shoji
2017-11-01
Hepatic stellate cells (HSCs) are the main collagen-producing cells in the liver. The HSC area and amount of collagen fibers are different between male and female chickens. This study was performed to confirm the effect of estradiol on collagen synthesis in the growing chicken liver. Blood estradiol levels in chicks were compared at 4 and 8 weeks of age, and the collagen fibril network in liver tissue was observed at 8 weeks by scanning electron microscopy. Intraperitoneal administrations of estradiol and tamoxifen to male and female chicks, respectively, were performed daily from 5 to 8 weeks of age. The areas of HSCs and collagen contents were measured in the liver tissue. The blood estradiol level was higher in females than in males, and the collagen fibril network was denser in males than in females at 8 weeks of age. Estradiol administration in males induced decreases in the HSC area and collagen content of the liver. Conversely, tamoxifen administration in females induced an increase in the HSC area but did not facilitate collagen synthesis. Based on these results, estradiol inhibits the area and collagen synthesis of HSCs in the growing chicken liver under normal physiological conditions. © 2017 Japanese Society of Animal Science.
Florida, Shelby E; VanDusen, Keith W; Mahalingam, Vasudevan D; Schlientz, Aleesa J; Wojtys, Edward M; Wellik, Deneen M; Larkin, Lisa M
2016-11-01
Anterior cruciate ligament (ACL) ruptures rank among the most prevalent and costly sports-related injuries. Current tendon grafts used for ACL reconstruction are limited by suboptimal biomechanical properties. We have addressed these issues by engineering multiphasic bone-ligament-bone (BLB) constructs that develop structural and mechanical properties similar to native ACL. The purpose of this study was to examine the acute remodeling process that occurs as the BLB grafts advance toward the adult ligament phenotype in vivo. Thus, we implanted BLB constructs fabricated from male cells into female host sheep and allowed 3, 7, 14, or 28 days (n = 4 at each time point) for recovery. To address whether or not graft-derived cells were even necessary, a subset of BLB constructs (n = 3) were acellularized, implanted, and allowed 28 days for recovery. At each recovery time point, the following histological analyses were performed: picrosirius red staining to assess collagen alignment and immunohistochemistry to assess both graft development and host immune response. Polymerase chain reaction (PCR) analysis, performed on every explanted BLB, was used to detect the presence of graft-derived male cells remaining in the constructs and/or migration into surrounding host tissue. The analysis of the PCR and histology samples revealed a rapid migration of host-derived macrophages and neutrophils into the graft at 3 days, followed by increased collagen density and alignment, vascularization, innervation, and near complete repopulation of the graft with host cells within 28 days. This study provides a greater understanding of the processes of ligament regeneration in our BLB constructs as they remodel toward the adult ligament phenotype.
A preliminary study on the potential of manuka honey and platelet-rich plasma in wound healing.
Sell, Scott A; Wolfe, Patricia S; Spence, Andrew J; Rodriguez, Isaac A; McCool, Jennifer M; Petrella, Rebecca L; Garg, Koyal; Ericksen, Jeffery J; Bowlin, Gary L
2012-01-01
Aim. The purpose of this study was to determine the in vitro response of cells critical to the wound healing process in culture media supplemented with a lyophilized preparation rich in growth factors (PRGF) and Manuka honey. Materials and Methods. This study utilized cell culture media supplemented with PRGF, as well as whole Manuka honey and the medical-grade Medihoney (MH), a Manuka honey product. The response of human fibroblasts (hDF), macrophages, and endothelial cells (hPMEC) was evaluated, with respect to cell proliferation, chemotaxis, collagen matrix production, and angiogenic potential, when subjected to culture with media containing PRGF, MH, Manuka honey, and a combination of PRGF and MH. Results. All three cell types demonstrated increases in cellular activity in the presence of PRGF, with further increases in activity seen in the presence of PRGF+MH. hDFs proved to be the most positively responsive cells, as they experienced enhanced proliferation, collagen matrix production, and migration into an in vitro wound healing model with the PRGF+MH-supplemented media. Conclusion. This preliminary in vitro study is the first to evaluate the combination of PRGF and Manuka honey, two products with the potential to increase regeneration individually, as a combined product to enhance dermal regeneration.
A Preliminary Study on the Potential of Manuka Honey and Platelet-Rich Plasma in Wound Healing
Sell, Scott A.; Wolfe, Patricia S.; Spence, Andrew J.; Rodriguez, Isaac A.; McCool, Jennifer M.; Petrella, Rebecca L.; Garg, Koyal; Ericksen, Jeffery J.; Bowlin, Gary L.
2012-01-01
Aim. The purpose of this study was to determine the in vitro response of cells critical to the wound healing process in culture media supplemented with a lyophilized preparation rich in growth factors (PRGF) and Manuka honey. Materials and Methods. This study utilized cell culture media supplemented with PRGF, as well as whole Manuka honey and the medical-grade Medihoney (MH), a Manuka honey product. The response of human fibroblasts (hDF), macrophages, and endothelial cells (hPMEC) was evaluated, with respect to cell proliferation, chemotaxis, collagen matrix production, and angiogenic potential, when subjected to culture with media containing PRGF, MH, Manuka honey, and a combination of PRGF and MH. Results. All three cell types demonstrated increases in cellular activity in the presence of PRGF, with further increases in activity seen in the presence of PRGF+MH. hDFs proved to be the most positively responsive cells, as they experienced enhanced proliferation, collagen matrix production, and migration into an in vitro wound healing model with the PRGF+MH-supplemented media. Conclusion. This preliminary in vitro study is the first to evaluate the combination of PRGF and Manuka honey, two products with the potential to increase regeneration individually, as a combined product to enhance dermal regeneration. PMID:23304152
Vitamin K2 improves proliferation and migration of bovine skeletal muscle cells in vitro.
Rønning, Sissel Beate; Pedersen, Mona Elisabeth; Berg, Ragnhild Stenberg; Kirkhus, Bente; Rødbotten, Rune
2018-01-01
Skeletal muscle function is highly dependent on the ability to regenerate, however, during ageing or disease, the proliferative capacity is reduced, leading to loss of muscle function. We have previously demonstrated the presence of vitamin K2 in bovine skeletal muscles, but whether vitamin K has a role in muscle regulation and function is unknown. In this study, we used primary bovine skeletal muscle cells, cultured in monolayers in vitro, to assess a potential effect of vitamin K2 (MK-4) during myogenesis of muscle cells. Cell viability experiments demonstrate that the amount of ATP produced by the cells was unchanged when MK-4 was added, indicating viable cells. Cytotoxicity analysis show that MK-4 reduced the lactate dehydrogenase (LDH) released into the media, suggesting that MK-4 was beneficial to the muscle cells. Cell migration, proliferation and differentiation was characterised after MK-4 incubation using wound scratch analysis, immunocytochemistry and real-time PCR analysis. Adding MK-4 to the cells led to an increased muscle proliferation, increased gene expression of the myogenic transcription factor myod as well as increased cell migration. In addition, we observed a reduction in the fusion index and relative gene expression of muscle differentiation markers, with fewer complex myotubes formed in MK-4 stimulated cells compared to control cells, indicating that the MK-4 plays a significant role during the early phases of muscle proliferation. Likewise, we see the same pattern for the relative gene expression of collagen 1A, showing increased gene expression in proliferating cells, and reduced expression in differentiating cells. Our results also suggest that MK-4 incubation affect low density lipoprotein receptor-related protein 1 (LRP1) and the low-density lipoprotein receptor (LDLR) with a peak in gene expression after 45 min of MK-4 incubation. Altogether, our experiments show that MK-4 has a positive effect on muscle cell migration and proliferation, which are two important steps during early myogenesis.
Khorramirouz, Reza; Sabetkish, Shabnam; Akbarzadeh, Aram; Muhammadnejad, Ahad; Heidari, Reza; Kajbafzadeh, Abdol-Mohammad
2014-09-01
To determine the best method for decellularisation of aortic valve conduits (AVCs) that efficiently removes the cells while preserving the extracellular matrix (ECM) by examining the valvular and conduit sections separately. Sheep AVCs were decellularised by using three different protocols: detergent-based (1% SDS+1% SDC), detergent and enzyme-based (Triton+EDTA+RNase and DNase), and enzyme-based (Trypsin+RNase and DNase) methods. The efficacy of the decellularisation methods to completely remove the cells while preserving the ECM was evaluated by histological evaluation, scanning electron microscopy (SEM), hydroxyproline analysis, tensile test, and DAPI staining. The detergent-based method completely removed the cells and left the ECM and collagen content in the valve and conduit sections relatively well preserved. The detergent and enzyme-based protocol did not completely remove the cells, but left the collagen content in both sections well preserved. ECM deterioration was observed in the aortic valves (AVs), but the ultrastructure of the conduits was well preserved, with no media distortion. The enzyme-based protocol removed the cells relatively well; however, mild structural distortion and poor collagen content was observed in the AVs. Incomplete cell removal (better than that observed with the detergent and enzyme-based protocol), poor collagen preservation, and mild structural distortion were observed in conduits treated with the enzyme-based method. The results suggested that the detergent-based methods are the most effective protocols for cell removal and ECM preservation of AVCs. The AVCs treated with this detergent-based method may be excellent scaffolds for recellularisation. Copyright © 2014 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
NASA Astrophysics Data System (ADS)
Mignon, Charles; Uzunbajakava, Natallia E.; Raafs, Bianca; Moolenaar, Mitchel; Botchkareva, Natalia V.; Tobin, Desmond J.
2016-03-01
Distinct lineages of human dermal fibroblasts play complementary roles in skin rejuvenation and wound healing, which makes them a target of phototherapy. However, knowledge about differential responses of specific cell lineages to different light parameters and moreover the actual molecular targets remain to be unravelled. The goal of this study was to investigate the impact of a range of parameters of light on the metabolic activity, collagen production, and cell migration of distinct lineages of human dermal fibroblasts. A rational approach was used to identify parameters with high therapeutic potential. Fibroblasts exhibited both inhibitory and cytotoxic change when exposed to a high dose of blue and cyan light in tissue culture medium containing photo-reactive species, but were stimulated by high dose red and near infrared light. Cytotoxic effects were eliminated by refreshing the medium after light exposure by removing potential ROS formed by extracellular photo-reactive species. Importantly, distinct lineages of fibroblasts demonstrated opposite responses to low dose blue light treatment when refreshing the medium after exposure. Low dose blue light treatment also significantly increased collagen production by papillary fibroblasts; high dose significantly retarded closure of the scratch wound without signs of cytotoxicity, and this is likely to have involved effects on both cell migration and proliferation. We recommend careful selection of fibroblast subpopulations and their culture conditions, a systematic approach in choosing and translating treatment parameters, and pursuit of fundamental research on identification of photoreceptors and triggered molecular pathways, while seeking effective parameters to address different stages of skin rejuvenation and wound healing.
Cell-free collagen-based scaffolds used for making blood vessels in cardiovascular surgery.
Akhmedov, Sh D; Afanas'ev, S A; Egorova, M V; Andreev, S L; Ivanov, A V; Rogovskaia, Yu V; Usov, V Yu; Shvedov, A N; Steinhoff, G
2012-01-01
The present article deals with the technology of obtaining decellularized cell-free collagen-based scaffolds from arterial vessels and surgical assessment of the possibility of experimentally implanting them into the blood system of laboratory animals for experimental purposes. The study was performed on arterial vessels (n=60) and fragments of the human internal thoracic artery (n=20). Described herein is a method of obtaining a connective-tissue matrix of a blood vessel by means of vessel's perfusion for 2-3 hours with detergent solutions. Cell-free collagen-based conduits were implanted to a total of ten dogs. After the operation, the blood flow remained functional. The anastomoses established turned out to be leak-proof and the acellular vessels were able to withstand the haemodynamic load of the arterial blood flow.
Panagopoulos, Vasilios; Leach, Damien A; Zinonos, Irene; Ponomarev, Vladimir; Licari, Giovanni; Liapis, Vasilios; Ingman, Wendy V; Anderson, Peter; DeNichilo, Mark O; Evdokiou, Andreas
2017-04-01
Myeloperoxidase (MPO) and eosinophil peroxidase (EPO) are heme-containing enzymes, well known for their antimicrobial activity, are released in high quantities by infiltrating immune cells in breast cancer. However, the functional importance of their presence within the tumour microenvironment is unclear. We have recently described a new role for peroxidases as key regulators of fibroblast and endothelial cell functionality. In the present study, we investigate for the first time, the ability of peroxidases to promote breast cancer development and progression. Using the 4T1 syngeneic murine orthotopic breast cancer model, we examined whether increased levels of peroxidases in developing mammary tumours influences primary tumour growth and metastasis. We showed that MPO and EPO stimulation increased mammary tumour growth and enhanced lung metastases, effects that were associated with reduced tumour necrosis, increased collagen deposition and neo-vascularisation within the primary tumour. In vitro, peroxidase treatment, robustly stimulated human mammary fibroblast migration and collagen type I and type VI secretion. Mechanistically, peroxidases induced the transcription of pro-tumorigenic and metastatic MMP1, MMP3 and COX-2 genes. Taken together, these findings identify peroxidases as key contributors to cancer progression by augmenting pro-tumorigenic collagen production and angiogenesis. Importantly, this identifies inflammatory peroxidases as therapeutic targets in breast cancer therapy.
Duarte Campos, Daniela Filipa; Blaeser, Andreas; Buellesbach, Kate; Sen, Kshama Shree; Xun, Weiwei; Tillmann, Walter; Fischer, Horst
2016-06-01
3D-manufactured hydrogels with precise contours and biological adhesion motifs are interesting candidates in the regenerative medicine field for the culture and differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs). 3D-bioprinting is a powerful technique to approach one step closer the native organization of cells. This study investigates the effect of the incorporation of collagen type I in 3D-bioprinted polysaccharide-based hydrogels to the modulation of cell morphology, osteogenic remodeling potential, and mineralization. By combining thermo-responsive agarose hydrogels with collagen type I, the mechanical stiffness and printing contours of printed constructs can be improved compared to pure collagen hydrogels which are typically used as standard materials for MSC osteogenic differentiation. The results presented here show that MSC not only survive the 3D-bioprinting process but also maintain the mesenchymal phenotype, as proved by live/dead staining and immunocytochemistry (vimentin positive, CD34 negative). Increased solids concentrations of collagen in the hydrogel blend induce changes in cell morphology, namely, by enhancing cell spreading, that ultimately contribute to enhanced and directed MSC osteogenic differentiation. 3D-bioprinted agarose-collagen hydrogels with high-collagen ratio are therefore feasible for MSC osteogenic differentiation, contrarily to low-collagen blends, as proved by two-photon microscopy, Alizarin Red staining, and real-time polymerase chain reaction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Dual-Mode Bioreactor System for Tissue Engineered Vascular Models.
Bono, N; Meghezi, S; Soncini, M; Piola, M; Mantovani, D; Fiore, Gianfranco Beniamino
2017-06-01
In the past decades, vascular tissue engineering has made great strides towards bringing engineered vascular tissues to the clinics and, in parallel, obtaining in-lab tools for basic research. Herein, we propose the design of a novel dual-mode bioreactor, useful for the fabrication (construct mode) and in vitro stimulation (culture mode) of collagen-based tubular constructs. Collagen-based gels laden with smooth muscle cells (SMCs) were molded directly within the bioreactor culture chamber. Based on a systematic characterization of the bioreactor culture mode, constructs were subjected to 10% cyclic strain at 0.5 Hz for 5 days. The effects of cyclic stimulation on matrix re-arrangement and biomechanical/viscoelastic properties were examined and compared vs. statically cultured constructs. A thorough comparison of cell response in terms of cell localization and expression of contractile phenotypic markers was carried out as well. We found that cyclic stimulation promoted cell-driven collagen matrix bi-axial compaction, enhancing the mechanical strength of strained samples with respect to static controls. Moreover, cyclic strain positively affected SMC behavior: cells maintained their contractile phenotype and spread uniformly throughout the whole wall thickness. Conversely, static culture induced a noticeable polarization of cell distribution to the outer rim of the constructs and a sharp reduction in total cell density. Overall, coupling the use of a novel dual-mode bioreactor with engineered collagen-gel-based tubular constructs demonstrated to be an interesting technology to investigate the modulation of cell and tissue behavior under controlled mechanically conditioned in vitro maturation.
Sweeney, Shawn M.; Orgel, Joseph P.; Fertala, Andrzej; McAuliffe, Jon D.; Turner, Kevin R.; Di Lullo, Gloria A.; Chen, Steven; Antipova, Olga; Perumal, Shiamalee; Ala-Kokko, Leena; Forlino, Antonella; Cabral, Wayne A.; Barnes, Aileen M.; Marini, Joan C.; Antonio, James D. San
2008-01-01
Type I collagen, the predominant protein of vertebrates, polymerizes with type III and V collagens and non-collagenous molecules into large cable-like fibrils, yet how the fibril interacts with cells and other binding partners remains poorly understood. To help reveal insights into the collagen structure-function relationship, a data base was assembled including hundreds of type I collagen ligand binding sites and mutations on a two-dimensional model of the fibril. Visual examination of the distribution of functional sites, and statistical analysis of mutation distributions on the fibril suggest it is organized into two domains. The “cell interaction domain” is proposed to regulate dynamic aspects of collagen biology, including integrin-mediated cell interactions and fibril remodeling. The “matrix interaction domain” may assume a structural role, mediating collagen cross-linking, proteoglycan interactions, and tissue mineralization. Molecular modeling was used to superimpose the positions of functional sites and mutations from the two-dimensional fibril map onto a three-dimensional x-ray diffraction structure of the collagen microfibril in situ, indicating the existence of domains in the native fibril. Sequence searches revealed that major fibril domain elements are conserved in type I collagens through evolution and in the type II/XI collagen fibril predominant in cartilage. Moreover, the fibril domain model provides potential insights into the genotype-phenotype relationship for several classes of human connective tissue diseases, mechanisms of integrin clustering by fibrils, the polarity of fibril assembly, heterotypic fibril function, and connective tissue pathology in diabetes and aging. PMID:18487200
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweeney, Shawn M.; Orgel, Joseph P.; Fertala, Andrzej
Type I collagen, the predominant protein of vertebrates, polymerizes with type III and V collagens and non-collagenous molecules into large cable-like fibrils, yet how the fibril interacts with cells and other binding partners remains poorly understood. To help reveal insights into the collagen structure-function relationship, a data base was assembled including hundreds of type I collagen ligand binding sites and mutations on a two-dimensional model of the fibril. Visual examination of the distribution of functional sites, and statistical analysis of mutation distributions on the fibril suggest it is organized into two domains. The 'cell interaction domain' is proposed to regulatemore » dynamic aspects of collagen biology, including integrin-mediated cell interactions and fibril remodeling. The 'matrix interaction domain' may assume a structural role, mediating collagen cross-linking, proteoglycan interactions, and tissue mineralization. Molecular modeling was used to superimpose the positions of functional sites and mutations from the two-dimensional fibril map onto a three-dimensional x-ray diffraction structure of the collagen microfibril in situ, indicating the existence of domains in the native fibril. Sequence searches revealed that major fibril domain elements are conserved in type I collagens through evolution and in the type II/XI collagen fibril predominant in cartilage. Moreover, the fibril domain model provides potential insights into the genotype-phenotype relationship for several classes of human connective tissue diseases, mechanisms of integrin clustering by fibrils, the polarity of fibril assembly, heterotypic fibril function, and connective tissue pathology in diabetes and aging.« less
NASA Astrophysics Data System (ADS)
Merkle, Valerie Marie
Cardiovascular disease is the leading cause of death in the United States with approximately 49% of the cardiovascular related deaths attributed to coronary heart disease (CHD). CHD is the accumulation of plaque resulting in the narrowing of the vessel lumen and a decrease in blood flow to the downstream heart muscle. In order to restore blood flow, arterial by-pass procedures can be undertaken. However, the patient's own arteries/veins may not be suitable for use as a vessel replacement, and synthetic grafts lack the compliancy and durability needed for these small diameter locations (< 5 mm). Therefore, the goal of this research is to develop a nanofibrous material that can be used in vascular applications such as this. In this study, we fabricate coaxial electrospun nanofibers with gelatin in the shell and polyvinyl alcohol (PVA) in the core using 1 Gelatin: 1 PVA and 3 Gelatin: 1 PVA mass ratios. Gelatin, derived from collagen, is highly bioactive while PVA, a synthetic polymer, has appealing mechanical properties. Therefore, by combining these materials in a core-shell structure, we hypothesize that the resulting nanofibers will have enhanced mechanical properties, cellular growth and migration, as well as minimal platelet deposition and activation compared to scaffolds composed solely of gelatin or PVA. First, the coaxial scaffolds exhibited an enhanced Young's modulus and ultimate strength compared to scaffolds composed of PVA or gelatin alone. Endothelial cells had high proliferation and migration on the coaxial electrospun scaffolds with higher migration seen on the stiffer, coaxial scaffolds. The smooth muscle cells had less proliferation and lower migration rates on the coaxial scaffolds than the endothelial cells. Using a modified prothrombinase assay, the coaxial scaffolds had minimal platelet activation. Lastly, when pre-seeding the coaxial scaffolds with endothelial cells or smooth muscle cells, the platelet deposition decreased in comparison to platelet deposition with no cell pre-seeding. Overall, the 1 Gel: 1 PVA coaxial scaffolds promoted endothelial cell growth and migration, minimized smooth muscle cell growth and migration, and had minimal platelet activation. Therefore, the 1 Gel: 1 PVA coaxial nanofibers are an intriguing material for use in vascular applications.
Susilo, Monica E; Bell, Brett J; Roeder, Blayne A; Voytik-Harbin, Sherry L; Kokini, Klod; Nauman, Eric A
2013-03-01
Mechanical signals are important factors in determining cell fate. Therefore, insights as to how mechanical signals are transferred between the cell and its surrounding three-dimensional collagen fibril network will provide a basis for designing the optimum extracellular matrix (ECM) microenvironment for tissue regeneration. Previously we described a cellular solid model to predict fibril microstructure-mechanical relationships of reconstituted collagen matrices due to unidirectional loads (Acta Biomater 2010;6:1471-86). The model consisted of representative volume elements made up of an interconnected network of flexible struts. The present study extends this work by adapting the model to account for microstructural anisotropy of the collagen fibrils and a biaxial loading environment. The model was calibrated based on uniaxial tensile data and used to predict the equibiaxial tensile stress-stretch relationship. Modifications to the model significantly improved its predictive capacity for equibiaxial loading data. With a comparable fibril length (model 5.9-8μm, measured 7.5μm) and appropriate fibril anisotropy the anisotropic model provides a better representation of the collagen fibril microstructure. Such models are important tools for tissue engineering because they facilitate prediction of microstructure-mechanical relationships for collagen matrices over a wide range of microstructures and provide a framework for predicting cell-ECM interactions. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Cell movement is guided by the rigidity of the substrate
NASA Technical Reports Server (NTRS)
Lo, C. M.; Wang, H. B.; Dembo, M.; Wang, Y. L.
2000-01-01
Directional cell locomotion is critical in many physiological processes, including morphogenesis, the immune response, and wound healing. It is well known that in these processes cell movements can be guided by gradients of various chemical signals. In this study, we demonstrate that cell movement can also be guided by purely physical interactions at the cell-substrate interface. We cultured National Institutes of Health 3T3 fibroblasts on flexible polyacrylamide sheets coated with type I collagen. A transition in rigidity was introduced in the central region of the sheet by a discontinuity in the concentration of the bis-acrylamide cross-linker. Cells approaching the transition region from the soft side could easily migrate across the boundary, with a concurrent increase in spreading area and traction forces. In contrast, cells migrating from the stiff side turned around or retracted as they reached the boundary. We call this apparent preference for a stiff substrate "durotaxis." In addition to substrate rigidity, we discovered that cell movement could also be guided by manipulating the flexible substrate to produce mechanical strains in the front or rear of a polarized cell. We conclude that changes in tissue rigidity and strain could play an important controlling role in a number of normal and pathological processes involving cell locomotion.
Schneevoigt, J; Fabian, C; Leovsky, C; Seeger, J; Bahramsoltani, M
2017-02-01
The extracellular matrix (ECM) of hyaline cartilage is perfectly suited to transmit articular pressure load to the subchondral bone. Pressure is transferred by a high amount of aggrecan-based proteoglycans and collagen type II fibres in particular. After any injury, the hyaline cartilage is replaced by fibrocartilage, which is low in proteoglycans and contains collagen type I predominantly. Until now, long-term results of therapeutic procedures including cell-based therapies like autologous chondrocyte transplantation (ACT) lead to a replacement tissue meeting the composition of fibrocartilage. Therefore, it is of particular interest to discover how and to what extent isolation and in vitro cultivation of chondrocytes affect the cells and their expression of ECM components. Hyaline cartilage-derived chondrocytes were cultivated in vitro and observed microscopically over a time period of 35 days. The expression of collagen type I, collagen type II and aggrecan was analysed using RT-qPCR and Western blot at several days of cultivation. Chondrocytes presented a longitudinal shape for the entire cultivation period. While expression of collagen type I prevailed within the first days, only prolonged cultivation led to an increase in collagen type II and aggrecan expression. The results indicate that chondrocyte isolation and in vitro cultivation lead to a dedifferentiation at least to the stage of chondroprogenitor cells. © 2016 Blackwell Verlag GmbH.
Zhao, Xue-Ke; Cheng, Yiju; Liang Cheng, Ming; Yu, Lei; Mu, Mao; Li, Hong; Liu, Yang; Zhang, Baofang; Yao, Yumei; Guo, Hui; Wang, Rong; Zhang, Quan
2016-01-01
Lung fibrosis is a major medical problem for the aging population worldwide. Fibroblast migration plays an important role in fibrosis. Focal Adhesion Kinase (FAK) senses the extracellular stimuli and initiates signaling cascades that promote cell migration. This study first examined the dose and time responses of FAK activation in human lung fibroblasts treated with platelet derived growth factor BB (PDGF-BB). The data indicate that FAK is directly recruited by integrin β1 and the subsequent FAK activation is required for fibroblast migration on fibronectin. In addition, the study has identified that α5β1 and α4β1 are the major integrins for FAK-mediated fibroblast migration on fibronect. In contrast, integrins αvβ3, αvβ6, and αvβ8 play a minor but distinct role in fibroblast migration on fibronectin. FAK inhibitor significantly reduces PDGF-BB stimulated fibroblast migration. Importantly, FAK inhibitor protects bleomycin-induced lung fibrosis in mice. FAK inhibitor blocks FAK activation and significantly reduces signaling cascade of fibroblast migration in bleomycin-challenged mice. Furthermore, FAK inhibitor decreases lung fibrotic score, collagen accumulation, fibronectin production, and myofibroblast differentiation in in bleomycin-challenged mice. These data demonstrate that FAK mediates fibroblast migration mainly via integrin β1. Furthermore, the findings suggest that targeting FAK signaling is an effective therapeutic strategy against fibrosis. PMID:26763945
Ghezzi, Chiara E; Marelli, Benedetto; Donelli, Ilaria; Alessandrino, Antonio; Freddi, Giuliano; Nazhat, Showan N
2017-07-01
Type I collagen is a major structural and functional protein in connective tissues. However, collagen gels exhibit unstable geometrical properties, arising from extensive cell-mediated contraction. In an effort to stabilize collagen-based hydrogels, plastic compression was used to hybridize dense collagen (DC) with electrospun silk fibroin (SF) mats, generating multilayered DC-SF-DC constructs. Seeded mesenchymal stem cell (MSC)-mediated DC-SF-DC contraction, as well as growth and differentiation under chondrogenic and osteogenic supplements, were compared to those seeded in DC and on SF alone. The incorporation of SF within DC prevented extensive cell-mediated collagen gel contraction. The effect of the multilayered hybrid on MSC remodelling capacity was also evident at the transcription level, where the expression of matrix metalloproteinases and their inhibitor (MMP1, MMP2, MMP3, MMP13 and Timp1) by MSCs within DC-SF-DC were comparable to those on SF and significantly downregulated in comparison to DC, except for Timp1. Chondrogenic supplements stimulated extracellular matrix production within the construct, stabilizing its multilayered structure and promoting MSC chondrogenic differentiation, as indicated by the upregulation of the genes Col2a1 and Agg and the production of collagen type II. In osteogenic medium there was an upregulation in ALP and OP along with the presence of an apatitic phase, indicating MSC osteoblastic differentiation and matrix mineralization. In sum, these results have implications on the modulation of three-dimensional collagen-based gel structural stability and on the stimulation and maintenance of the MSC committed phenotype inherent to the in vitro formation of chondral tissue and bone, as well as on potential multilayered complex tissues. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Autologous Adipose-Derived Tissue Matrix Part I: Biologic Characteristics.
Schendel, Stephen A
2017-10-01
Autologous collagen is an ideal soft tissue filler and may serve as a matrix for stem cell implantation and growth. Procurement of autologous collagen has been limited, though, secondary to a sufficient source. Liposuction is a widely performed and could be a source of autologous collagen. The amount of collagen and its composition in liposuctioned fat remains unknown. The purpose of this research was to characterize an adipose-derived tissue-based product created using ultrasonic cavitation and cryo-grinding. This study evaluated the cellular and protein composition of the final product. Fat was obtained from individuals undergoing routine liposuction and was processed by a 2 step process to obtain only the connective tissue. The tissue was then evaluated by scanning electronic microscope, Western blot analysis, and flow cytometry. Liposuctioned fat was obtained from 10 individuals with an average of 298 mL per subject. After processing an average of 1 mL of collagen matrix was obtained from each 100 mL of fat. Significant viable cell markers were present in descending order for adipocytes > CD90+ > CD105+ > CD45+ > CD19+ > CD144+ > CD34+. Western blot analysis showed collagen type II, III, IV, and other proteins. Scanning electronic microscope study showed a regular pattern of cross-linked, helical collagen. Additionally, vital staing demonstrated that the cells were still viable after processing. Collagen and cells can be easily obtained from liposuctioned fat by ultrasonic separation without alteration of the overall cellular composition of the tissue. Implantation results in new collagen and cellular growth. Collagen matrix with viable cells for autologous use can be obtained from liposuctioned fat and may provide long term results. 5. © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com
Mechanical properties of complex biological systems using AFM-based force spectroscopy
NASA Astrophysics Data System (ADS)
Graham, John Stephen
An atomic force microscope (AFM) was designed and built to study the mechanical properties of small collagen fibrils and the plasma membrane of living cells. Collagen is a major component of bone, skin and connective tissues, and is abundant in the extracellular matrix (ECM). Because of its abundance, an understanding of how disease affects collagen mechanics is crucial in disease prevention efforts. Two levels of type I collagen structure were investigated, subfibrils (on the order of 1 mum in length) and longer fibrils. Comparisons were made between measurements of wild-type (wt) collagen and collagen from the mouse model of osteogenesis imperfecta (OI). Significant differences between OI and wt collagen were observed, primarily that intermolecular bonds in OI collagen fibrils are weaker than in wt, or not ruptured, as in the case of OI subfibrils. As cells interact with collagen in the ECM, the mechanical properties of the plasma membrane are also of great interest. Membrane tethers were extracted from living cells under varied conditions in order to assess the contributions of membrane-associated macromolecules such as the actin cytoskeleton and the glycocalyx, and intracellular signaling. Tether extraction force was found to be sensitive to all of these altered conditions, suggesting that tether extraction may be used to monitor various cellular processes.
Cornea surgery with nanojoule femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Koenig, Karsten; Wang, Bagui; Riemann, Iris; Kobow, Jens
2005-04-01
We report on a novel optical method for (i) flap-generation in LASIK procedures as well as (ii) for flap-free intrastromal refractive surgery based on nanojoule femtosecond laser pulses. The near infrared 200 fs pulses for multiphoton ablation have been provided by ultracompact turn-key MHz laser resonators. LASIK flaps and intracorneal cavities have been realized with high precision within living New Zealand rabbits using the system FemtoCutO (JenLab GmbH, Jena, Germany) at 800 nm laser wavelength. Using low-energy sub-2 nJ laser pulses, collateral damage due to photodisruptive and self-focusing effects was avoided. The laser ablation system consists of fast galvoscanners, focusing optics of high numerical aperture as well as a sensitive imaging system and provides also the possibility of 3D multiphoton imaging of fluorescent cellular organelles and SHG signals from collagen. Multiphoton tomography of the cornea was used to determine the exact intratissue beam position and to visualize intraocular post-laser effects. The wound healing process has been investigated up to 90 days after instrastromal laser ablation by histological analysis. Regeneration of damaged collagen structures and the migration of inflammation cells have been detected.
Tanaka, Yuji; Hase, Eiji; Fukushima, Shuichiro; Ogura, Yuki; Yamashita, Toyonobu; Hirao, Tetsuji; Araki, Tsutomu; Yasui, Takeshi
2014-01-01
Polarization-resolved second-harmonic-generation (PR-SHG) microscopy is a powerful tool for investigating collagen fiber orientation quantitatively with low invasiveness. However, the waiting time for the mechanical polarization rotation makes it too sensitive to motion artifacts and hence has hampered its use in various applications in vivo. In the work described in this article, we constructed a motion-artifact-robust, PR-SHG microscope based on rapid polarization switching at every pixel with an electro-optic Pockells cell (PC) in synchronization with step-wise raster scanning of the focus spot and alternate data acquisition of a vertical-polarization-resolved SHG signal and a horizontal-polarization-resolved one. The constructed PC-based PR-SHG microscope enabled us to visualize orientation mapping of dermal collagen fiber in human facial skin in vivo without the influence of motion artifacts. Furthermore, it implied the location and/or age dependence of the collagen fiber orientation in human facial skin. The robustness to motion artifacts in the collagen orientation measurement will expand the application scope of SHG microscopy in dermatology and collagen-related fields. PMID:24761292
Ross, Edward A; Batich, Christopher D; Clapp, William L; Sallustio, Judith E; Lee, Nadeen C
2003-02-01
Silicone peritoneal dialysis catheters do not develop tissue ingrowth, lack a mechanical barrier to periluminal bacterial migration and need cuffs for anchorage. We hypothesized that a bioactive glass coating composed of silicon, calcium, sodium and phosphorous oxides would cause a beneficial tissue reaction causing catheter adhesion, and tested this in a rat model. A hexane solvent-based method of coating silicone tubes with Bioglass powder was used, which maintained flexibility, and then the ultrastructure was confirmed with scanning electron microscopy (EM). Segments 2.5 cm were implanted subcutaneously in 8 Sprague-Dawley rats, with uncoated tubes as a contralateral control, and histology was done at 2, 4 and 6 weeks, including special stains and EM. The uncoated segments grossly had no adherence to surrounding tissue, and were physically separate from a thin fibrous capsule of approximately 50 micro width. Trichrome stains demonstrated the capsule was rich in collagen. There was minimal adjacent tissue reaction. In contrast, the coated tubes were palpably fixed to the soft tissues, and sections demonstrated an adjacent prominent layer of macrophages and multinucleated giant cells. Small numbers of lymphocytes were noted. This cellular reaction increased over the 6-week implant duration, and was also associated with neovascularization of the tissue adjacent to the segments (33 vessels in coated vs. 20 in controls per x 200 field, P < 0.0001). Many refractile silicone particles and prominent multinucleated giant cells were present, with small numbers of lymphocytes and macrophages. Stains showed scattered discontinuous calcific deposits. These findings are consistent with reports that the Bioglass(R) silicon oxide leads to the formation of a layer of hydroxyapatite, which binds to collagen and induces a tissue cellular reaction. In summary, bioactive glass coatings can improve the tissue retention of silicone tubing by promoting adhesion by collagen and cell proliferation, and are promising for future studies of peritoneal dialysis catheters.
Mina, Sara G; Huang, Peter; Murray, Bruce T; Mahler, Gretchen J
2017-07-01
Tumor development is influenced by stromal cells in aspects including invasion, growth, angiogenesis, and metastasis. Activated fibroblasts are one group of stromal cells involved in cancer metastasis, and one source of activated fibroblasts is endothelial to mesenchymal transformation (EndMT). EndMT begins when the endothelial cells delaminate from the cell monolayer, lose cell-cell contacts, lose endothelial markers such as vascular endothelial-cadherin (VE-cadherin), gain mesenchymal markers like alpha-smooth muscle actin (α-SMA), and acquire mesenchymal cell-like properties. A three-dimensional (3D) culture microfluidic device was developed for investigating the role of steady low shear stress (1 dyne/cm 2 ) and altered extracellular matrix (ECM) composition and stiffness on EndMT. Shear stresses resulting from fluid flow within tumor tissue are relevant to both cancer metastasis and treatment effectiveness. Low and oscillatory shear stress rates have been shown to enhance the invasion of metastatic cancer cells through specific changes in actin and tubulin remodeling. The 3D ECM within the device was composed of type I collagen and glycosaminoglycans (GAGs), hyaluronic acid and chondroitin sulfate. An increase in collagen and GAGs has been observed in the solid tumor microenvironment and has been correlated with poor prognosis in many different cancer types. In this study, it was found that ECM composition and low shear stress upregulated EndMT, including upregulation of mesenchymal-like markers (α-SMA and Snail) and downregulated endothelial marker protein and gene expression (VE-cadherin). Furthermore, this novel model was utilized to investigate the role of EndMT in breast cancer cell proliferation and migration. Cancer cell spheroids were embedded within the 3D ECM of the microfluidic device. The results using this device show for the first time that the breast cancer spheroid size is dependent on shear stress and that the cancer cell migration rate, distance, and proliferation are induced by EndMT-derived activated fibroblasts. This model can be used to explore new therapeutics in a tumor microenvironment.
Fitzgerald, Kathleen A; Guo, Jianfeng; Tierney, Erica G; Curtin, Caroline M; Malhotra, Meenakshi; Darcy, Raphael; O'Brien, Fergal J; O'Driscoll, Caitriona M
2015-10-01
Prostate cancer bone metastases are a leading cause of cancer-related death in men with current treatments offering only marginally improved rates of survival. Advances in the understanding of the genetic basis of prostate cancer provide the opportunity to develop gene-based medicines capable of treating metastatic disease. The aim of this work was to establish a 3D cell culture model of prostate cancer bone metastasis using collagen-based scaffolds, to characterise this model, and to assess the potential of the model to evaluate delivery of gene therapeutics designed to target bone metastases. Two prostate cancer cell lines (PC3 and LNCaP) were cultured in 2D standard culture and compared to 3D cell growth on three different collagen-based scaffolds (collagen and composites of collagen containing either glycosaminoglycan or nanohydroxyapatite). The 3D model was characterised for cell proliferation, viability and for matrix metalloproteinase (MMP) enzyme and Prostate Specific Antigen (PSA) secretion. Chemosensitivity to docetaxel treatment was assessed in 2D in comparison to 3D. Nanoparticles (NPs) containing siRNA formulated using a modified cyclodextrin were delivered to the cells on the scaffolds and gene silencing was quantified. Both prostate cancer cell lines actively infiltrated and proliferated on the scaffolds. Cell culture in 3D resulted in reduced levels of MMP1 and MMP9 secretion in PC3 cells. In contrast, LNCaP cells grown in 3D secreted elevated levels of PSA, particularly on the scaffold composed of collagen and glycosaminoglycans. Both cell lines grown in 3D displayed increased resistance to docetaxel treatment. The cyclodextrin.siRNA nanoparticles achieved cellular uptake and knocked down the endogenous GAPDH gene in the 3D model. In conclusion, development of a novel 3D cell culture model of prostate cancer bone metastasis has been initiated resulting, for the first time, in the successful delivery of gene therapeutics in a 3D in vitro model. Further enhancement of this model will help elucidate the pathogenesis of prostate cancer and also accelerate the design of effective therapies which can penetrate into the bone microenvironment for prostate cancer therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Control of crosslinking for tailoring collagen-based scaffolds stability and mechanics
Davidenko, N.; Schuster, C.F.; Bax, D.V.; Raynal, N.; Farndale, R.W.; Best, S.M.; Cameron, R.E.
2015-01-01
We provide evidence to show that the standard reactant concentrations used in tissue engineering to cross-link collagen-based scaffolds are up to 100 times higher than required for mechanical integrity in service, and stability against degradation in an aqueous environment. We demonstrate this with a detailed and systematic study by comparing scaffolds made from (a) collagen from two different suppliers, (b) gelatin (a partially denatured collagen) and (c) 50% collagen–50% gelatin mixtures. The materials were processed, using lyophilisation, to produce homogeneous, highly porous scaffolds with isotropic architectures and pore diameters ranging from 130 to 260 μm. Scaffolds were cross-linked using a carbodiimide treatment, to establish the effect of the variations in crosslinking conditions (down to very low concentrations) on the morphology, swelling, degradation and mechanical properties of the scaffolds. Carbodiimide concentration of 11.5 mg/ml was defined as the standard (100%) and was progressively diluted down to 0.1%. It was found that 10-fold reduction in the carbodiimide content led to the significant increase (almost 4-fold) in the amount of free amine groups (primarily on collagen lysine residues) without compromising mechanics and stability in water of all resultant scaffolds. The importance of this finding is that, by reducing cross-linking, the corresponding cell-reactive carboxylate anions (collagen glutamate or aspartate residues) that are essential for integrin-mediated binding remain intact. Indeed, a 10-fold reduction in carbodiimide crosslinking resulted in near native-like cell attachment to collagen scaffolds. We have demonstrated that controlling the degree of cross-linking, and hence retaining native scaffold chemistry, offers a major step forward in the biological performance of collagen- and gelatin-based tissue engineering scaffolds. Statement of Significance This work developed collagen and gelatine-based scaffolds with structural, material and biological properties suitable for use in myocardial tissue regeneration. The novelty and significance of this research consist in elucidating the effect of the composition, origin of collagen and crosslinking concentration on the scaffold physical and cell-binding characteristics. We demonstrate that the standard carbodiimide concentrations used to crosslink collagenous scaffolds are up to 100 times higher than required for mechanical integrity in service, and stability against dissolution. The importance of this finding is that, by reducing crosslinking, the corresponding cell-reactive carboxylate anions (essential for integrin-mediated binding) remain intact and the native scaffold chemistry is retained. This offers a major step forward in the biological performance of tissue engineered scaffolds. PMID:26213371
Bioglass Activated Skin Tissue Engineering Constructs for Wound Healing.
Yu, Hongfei; Peng, Jinliang; Xu, Yuhong; Chang, Jiang; Li, Haiyan
2016-01-13
Wound healing is a complicated process, and fibroblast is a major cell type that participates in the process. Recent studies have shown that bioglass (BG) can stimulate fibroblasts to secrete a multitude of growth factors that are critical for wound healing. Therefore, we hypothesize that BG can stimulate fibroblasts to have a higher bioactivity by secreting more bioactive growth factors and proteins as compared to untreated fibroblasts, and we aim to construct a bioactive skin tissue engineering graft for wound healing by using BG activated fibroblast sheet. Thus, the effects of BG on fibroblast behaviors were studied, and the bioactive skin tissue engineering grafts containing BG activated fibroblasts were applied to repair the full skin lesions on nude mouse. Results showed that BG stimulated fibroblasts to express some critical growth factors and important proteins including vascular endothelial growth factor, basic fibroblast growth factor, epidermal growth factor, collagen I, and fibronectin. In vivo results revealed that fibroblasts in the bioactive skin tissue engineering grafts migrated into wound bed, and the migration ability of fibroblasts was stimulated by BG. In addition, the bioactive BG activated fibroblast skin tissue engineering grafts could largely increase the blood vessel formation, enhance the production of collagen I, and stimulate the differentiation of fibroblasts into myofibroblasts in the wound site, which would finally accelerate wound healing. This study demonstrates that the BG activated skin tissue engineering grafts contain more critical growth factors and extracellular matrix proteins that are beneficial for wound healing as compared to untreated fibroblast cell sheets.
Schussler, O; Coirault, C; Louis-Tisserand, M; Al-Chare, W; Oliviero, P; Menard, C; Michelot, R; Bochet, P; Salomon, D R; Chachques, J C; Carpentier, A; Lecarpentier, Y
2009-03-01
Cardiac tissue engineering might be useful in treatment of diseased myocardium or cardiac malformations. The creation of functional, biocompatible contractile tissues, however, remains challenging. We hypothesized that coupling of arginine-glycine-aspartic acid-serine (RGD+) adhesion peptides would improve cardiomyocyte viability and differentiation and contractile performance of collagen-cell scaffolds. Clinically approved collagen scaffolds were functionalized with RGD+ cells and seeded with cardiomyocytes. Contractile performance, cardiomyocyte viability and differentiation were analyzed at days 1 and 8 and/or after culture for 1 month. The method used for the RGD+ cell-collagen scaffold coupling enabled the following features: high coupling yields and complete washout of excess reagent and by-products with no need for chromatography; spectroscopic quantification of RGD+ coupling; a spacer arm of 36 A, a length reported as optimal for RGD+-peptide presentation and favorable for integrin-receptor clustering and subsequent activation. Isotonic and isometric mechanical parameters, either spontaneous or electrostimulated, exhibited good performance in RGD+ constructs. Cell number and viability was increased in RGD+ scaffolds, and we saw good organization of cell contractile apparatus with occurrence of cross-striation. We report a novel method of engineering a highly effective collagen-cell scaffold based on RGD+ peptides cross-linked to a clinically approved collagen matrix. The main advantages were cell contractile performance, cardiomyocyte viability and differentiation.
Lam, P-L; Kok, S H-L; Bian, Z-X; Lam, K-H; Tang, J C-O; Lee, K K-H; Gambari, R; Chui, C-H
2014-05-01
Gelatin/Collagen-based matrix and reservoir nanoparticles require crosslinkers to stabilize the formed nanosuspensions, considering that physical instability is the main challenge of nanoparticulate systems. The use of crosslinkers improves the physical integrity of nanoformulations under the-host environment. Aldehyde-based fixatives, such as formaldehyde and glutaraldehyde, have been widely applied to the crosslinking process of polymeric nanoparticles. However, their potential toxicity towards human beings has been demonstrated in many previous studies. In order to tackle this problem, D-glucose was used during nanoparticle formation to stabilize the gelatin/collagen-based matrix wall and reservoir wall for the deliveries of Calendula officinalis powder and oil, respectively. In addition, therapeutic selectivity between malignant and normal cells could be observed. The C. officinalis powder loaded nanoparticles significantly strengthened the anti-cancer effect towards human breast adenocarcinoma MCF7 cells and human hepatoma SKHep1 cells when compared with the free powder. On the contrary, the nanoparticles did not show significant cytotoxicity towards normal esophageal epithelial NE3 cells and human skin keratinocyte HaCaT cells. On the basis of these evidences, D-glucose modified gelatin/collagen matrix nanoparticles containing C. officinalis powder might be proposed as a safer alternative vehicle for anti-cancer treatments. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taru Sharma, G., E-mail: gts553@gmail.com; Dubey, Pawan K.; Verma, Om Prakash
Graphical abstract: EBs formation, characterization and expression of germinal layers marker genes of in vivo developed teratoma using four different types of extracellular matrices. Highlights: Black-Right-Pointing-Pointer Collagen-IV matrix is found cytocompatible for EBs formation and differentiation. Black-Right-Pointing-Pointer Established 3D microenvironment for ES cells development and differentiation into three germ layers. Black-Right-Pointing-Pointer Collagen-IV may be useful as promising candidate for ES cells based therapeutic applications. -- Abstract: Embryoid bodies (EBs) are used as in vitro model to study early extraembryonic tissue formation and differentiation. In this study, a novel method using three dimensional extracellular matrices for in vitro generation of EBsmore » from buffalo embryonic stem (ES) cells and its differentiation potential by teratoma formation was successfully established. In vitro derived inner cell masses (ICMs) of hatched buffalo blastocyst were cultured on buffalo fetal fibroblast feeder layer for primary cell colony formation. For generation of EBs, pluripotent ES cells were seeded onto four different types of extracellular matrices viz; collagen-IV, laminin, fibronectin and matrigel using undifferentiating ES cell culture medium. After 5 days of culture, ESCs gradually grew into aggregates and formed simple EBs having circular structures. Twenty-six days later, they formed cystic EBs over collagen matrix with higher EBs formation and greater proliferation rate as compared to other extracellular matrices. Studies involving histological observations, fluorescence microscopy and RT-PCR analysis of the in vivo developed teratoma revealed that presence of all the three germ layer derivatives viz. ectoderm (NCAM), mesoderm (Flk-1) and endoderm (AFP). In conclusion, the method described here demonstrates a simple and cost-effective way of generating EBs from buffalo ES cells. Collagen-IV matrix was found cytocompatible as it supported buffalo EBs formation, their subsequent differentiation could prove to be useful as promising candidate for ES cells based therapeutic applications.« less
Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong-Ju; He, Wen-Qi; Chen, Ling
Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however,more » were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirfel, Jutta; Pantelis, Dimitrios; Kabba, Mustapha
Four and one half LIM domain protein FHL2 participates in many cellular processes involved in tissue repair such as regulation of gene expression, cytoarchitecture, cell adhesion, migration and signal transduction. The repair process after wounding is initiated by the release of peptides and bioactive lipids. These molecules induce synthesis and deposition of a provisional extracellular matrix. We showed previously that sphingosine-1-phosphate (S1P) triggers a signal transduction cascade mediating nuclear translocation of FHL2 in response to activation of the RhoA GTPase. Our present study shows that FHL2 is an important signal transducer influencing the outcome of intestinal anastomotic healing. Early woundmore » healing is accompanied by reconstitution and remodelling of the extracellular matrix and collagen is primarily responsible for wound strength. Our results show that impaired intestinal wound healing in Fhl2-deficient mice is due to disturbed collagen III metabolism. Impaired collagen III synthesis reduced the mechanical stability of the anastomoses and led to lower bursting pressure in Fhl2-deficient mice after surgery. Our data confirm that FHL2 is an important factor regulating collagen expression in the early phase of wound healing, and thereby is critically involved in the physiologic process of anastomosis healing after bowel surgery and thus may represent a new therapeutic target.« less
Saladino, Silvia; Salamone, Monica; Ghersi, Giulio
2017-09-01
Tumor angiogenesis is a multiphasic process, having the extracellular matrix remodeling as critical step. Different classes of proteolytic enzymes in matrix digestion/remodeling are involved. The role of lytic enzymes and their activation mode have not been completely elucidated. Herein, the crosstalk between endothelia and tumor cells, by realization of bi- and three-dimensional endothelial and breast cancer cells co-cultures, were studied in vitro. Particularly, the effects of two tumor conditioned media (TCM) were assessed about endothelial proliferation, migration, and invasiveness. An increase in expression of pro-MMP9 was detected when endothelial cells were cultured in the presence of both TCM; such as an up-regulation of MMP1 and MMP14 and a down-regulation of MMP7. Moreover the increased MMP2 gene expression from one of them and the stimulation MMP3 synthesis from the other one were observed; an increases of β3-integrin, VEGFA, and DPP4 molecules were detected when endothelia cells are cultured with both TCM. The selection/characterization of elements present in conditioned media from breast cancer cells differently affect endothelial cells, make them potential effectors useful in breast cancer treatment. © 2017 International Federation for Cell Biology.
Taiani, J T; Buie, H R; Campbell, G M; Manske, S L; Krawetz, R J; Rancourt, D E; Boyd, S K; Matyas, J R
2014-07-01
In the current study, we used an estrogen-deficient mouse model of osteoporosis to test the efficacy of a cell-generated bone tissue construct for bone augmentation of an impaired healing fracture. A reduction in new bone formation at the defect site was observed in ovariectomized fractures compared to the control group using repeated measures in vivo micro-computed tomography (μCT) imaging over 4 weeks. A significant increase in the bone mineral density (BMD), trabecular bone volume ratio, and trabecular number, thickness and connectivity were associated with fracture repair in the control group, whereas the fractured bones of the ovariectomized mice exhibited a loss in all of these parameters (p<0.001). In a separate group, ovariectomized fractures were treated with murine embryonic stem (ES) cell-derived osteoblasts loaded in a three-dimensional collagen I gel and recovery of the bone at the defect site was observed. A significant increase in the trabecular bone volume ratio (p<0.001) and trabecular number (p<0.01) was observed by 4 weeks in the fractures treated with cell-loaded collagen matrix compared to those treated with collagen I alone. The stem cell-derived osteoblasts were identified at the fracture site at 4 weeks post-implantation through in situ hybridization histochemistry. Although this cell tracking method was effective, the formation of an ectopic cellular nodule adjacent to the knee joints of two mice suggested that alternative in vivo cell tracking methods should be employed in order to definitively assess migration of the implanted cells. To our knowledge, this study is the first of its kind to examine the efficacy of stem cell therapy for fracture repair in an osteoporosis-related fracture model in vivo. The findings presented provide novel insight into the use of stem cell therapies for bone injuries. Copyright © 2014 Elsevier Inc. All rights reserved.
Effects of mechanical repetitive load on bone quality around implants in rat maxillae
Uto, Yusuke; Nakano, Takayoshi; Ishimoto, Takuya; Inaba, Nao; Uchida, Yusuke; Sawase, Takashi
2017-01-01
Greater understanding and acceptance of the new concept “bone quality”, which was proposed by the National Institutes of Health and is based on bone cells and collagen fibers, are required. The novel protein Semaphorin3A (Sema3A) is associated with osteoprotection by regulating bone cells. The aims of this study were to investigate the effects of mechanical loads on Sema3A production and bone quality based on bone cells and collagen fibers around implants in rat maxillae. Grade IV-titanium threaded implants were placed at 4 weeks post-extraction in maxillary first molars. Implants received mechanical loads (10 N, 3 Hz for 1800 cycles, 2 days/week) for 5 weeks from 3 weeks post-implant placement to minimize the effects of wound healing processes by implant placement. Bone structures, bone mineral density (BMD), Sema3A production and bone quality based on bone cells and collagen fibers were analyzed using microcomputed tomography, histomorphometry, immunohistomorphometry, polarized light microscopy and birefringence measurement system inside of the first and second thread (designated as thread A and B, respectively), as mechanical stresses are concentrated and differently distributed on the first two threads from the implant neck. Mechanical load significantly increased BMD, but not bone volume around implants. Inside thread B, but not thread A, mechanical load significantly accelerated Sema3A production with increased number of osteoblasts and osteocytes, and enhanced production of both type I and III collagen. Moreover, mechanical load also significantly induced preferential alignment of collagen fibers in the lower flank of thread B. These data demonstrate that mechanical load has different effects on Sema3A production and bone quality based on bone cells and collagen fibers between the inside threads of A and B. Mechanical load-induced Sema3A production may be differentially regulated by the type of bone structure or distinct stress distribution, resulting in control of bone quality around implants in jaw bones. PMID:29244883
Effects of mechanical repetitive load on bone quality around implants in rat maxillae.
Uto, Yusuke; Kuroshima, Shinichiro; Nakano, Takayoshi; Ishimoto, Takuya; Inaba, Nao; Uchida, Yusuke; Sawase, Takashi
2017-01-01
Greater understanding and acceptance of the new concept "bone quality", which was proposed by the National Institutes of Health and is based on bone cells and collagen fibers, are required. The novel protein Semaphorin3A (Sema3A) is associated with osteoprotection by regulating bone cells. The aims of this study were to investigate the effects of mechanical loads on Sema3A production and bone quality based on bone cells and collagen fibers around implants in rat maxillae. Grade IV-titanium threaded implants were placed at 4 weeks post-extraction in maxillary first molars. Implants received mechanical loads (10 N, 3 Hz for 1800 cycles, 2 days/week) for 5 weeks from 3 weeks post-implant placement to minimize the effects of wound healing processes by implant placement. Bone structures, bone mineral density (BMD), Sema3A production and bone quality based on bone cells and collagen fibers were analyzed using microcomputed tomography, histomorphometry, immunohistomorphometry, polarized light microscopy and birefringence measurement system inside of the first and second thread (designated as thread A and B, respectively), as mechanical stresses are concentrated and differently distributed on the first two threads from the implant neck. Mechanical load significantly increased BMD, but not bone volume around implants. Inside thread B, but not thread A, mechanical load significantly accelerated Sema3A production with increased number of osteoblasts and osteocytes, and enhanced production of both type I and III collagen. Moreover, mechanical load also significantly induced preferential alignment of collagen fibers in the lower flank of thread B. These data demonstrate that mechanical load has different effects on Sema3A production and bone quality based on bone cells and collagen fibers between the inside threads of A and B. Mechanical load-induced Sema3A production may be differentially regulated by the type of bone structure or distinct stress distribution, resulting in control of bone quality around implants in jaw bones.
Dinescu, Sorina; Galateanu, Bianca; Albu, Madalina; Cimpean, Anisoara; Dinischiotu, Anca; Costache, Marieta
2013-01-01
Current clinical strategies for adipose tissue engineering (ATE), including autologous fat implants or the use of synthetic surrogates, not only are failing in the long term, but also can’t face the latest requirements regarding the aesthetic restoration of the resulted imperfections. In this context, modern strategies in current ATE applications are based on the implantation of 3D cell-scaffold bioconstructs, designed for prospective achievement of in situ functional de novo tissue. Thus, in this paper, we reported for the first time the evaluation of a spongious 60% collagen and 40% sericin scaffold preseeded with human adipose-derived stem cells (hADSCs) in terms of biocompatibility and adipogenic potential in vitro. We showed that the addition of the sticky protein sericin in the composition of a classical collagen sponge enhanced the adhesion and also the proliferation rate of the seeded cells, thus improving the biocompatibility of the novel scaffold. In addition, sericin stimulated PPARγ2 overexpression, triggering a subsequent upregulated expression profile of FAS, aP2 and perilipin adipogenic markers. These features, together with the already known sericin stimulatory potential on cellular collagen production, promote collagen-sericin biomatrix as a good candidate for soft tissue reconstruction and wound healing applications. PMID:23325052
Impaired wound healing in mice deficient in a matricellular protein SPARC (osteonectin, BM-40)
Basu, Amitabha; Kligman, Lorraine H; Samulewicz, Stefan J; Howe, Chin C
2001-01-01
Background SPARC is a matricellular protein involved in cell-matrix interactions. From expression patterns at the wound site and in vitro studies, SPARC has been implicated in the control of wound healing. Here we examined the function of SPARC in cutaneous wound healing using SPARC-null mice and dermal fibroblasts derived from them. Results In large (25 mm) wounds, SPARC-null mice showed a significant delay in healing as compared to wild-type mice (31 days versus 24 days). Granulation tissue formation and extracellular matrix protein production were delayed in small 6 mm SPARC-null wounds initially but were resolved by day 6. In in vitro wound-healing assays, while wild-type primary dermal fibroblasts showed essentially complete wound closure at 11 hours, wound closure of SPARC-null cells was incomplete even at 31 hours. Addition of purified SPARC restored the normal time course of wound closure. Treatment of SPARC-null cells with mitomycin C to analyze cell migration without cell proliferation showed that wound repair remained incomplete after 31 hours. Cell proliferation as measured by 3H-thymidine incorporation and collagen gel contraction by SPARC-null cells were not compromised. Conclusions A significant delay in healing large excisional wounds and setback in granulation tissue formation and extracellular matrix protein production in small wounds establish that SPARC is required for granulation tissue formation during normal repair of skin wounds in mice. A defect in wound closure in vitro indicates that SPARC regulates cell migration. We conclude that SPARC plays a role in wound repair by promoting fibroblast migration and thus granulation tissue formation. PMID:11532190
Sharma, Ved P.; Beaty, Brian T.; Patsialou, Antonia; Liu, Huiping; Clarke, Michael; Cox, Dianne; Condeelis, John S.; Eddy, Robert J.
2014-01-01
In mammary tumors, intravital imaging techniques have uncovered an essential role for macrophages during tumor cell invasion and metastasis mediated by an epidermal growth factor (EGF)/colony stimulating factor-1 (CSF-1) paracrine loop. It was previously demonstrated that mammary tumors in mice derived from rat carcinoma cells (MTLn3) exhibited high velocity migration on extracellular matrix (ECM) fibers. These cells form paracrine loop-dependent linear assemblies of alternating host macrophages and tumor cells known as “streams.” Here, we confirm by intravital imaging that similar streams form in close association with ECM fibers in a highly metastatic patient-derived orthotopic mammary tumor (TN1). To understand the in vivo cell motility behaviors observed in streams, an in vitro model of fibrillar tumor ECM utilizing adhesive 1D micropatterned substrates was developed. MTLn3 cells on 1D fibronectin or type I collagen substrates migrated with higher velocity than on 2D substrates and displayed enhanced lamellipodial protrusion and increased motility upon local interaction and pairing with bone marrow-derived macrophages (BMMs). Inhibitors of EGF or CSF-1 signaling disrupted this interaction and reduced tumor cell velocity and protrusion, validating the requirement for an intact paracrine loop. Both TN1 and MTLn3 cells in the presence of BMMs were capable of co-assembling into linear arrays of alternating tumor cells and BMMs that resembled streams in vivo, suggesting the stream assembly is cell autonomous and can be reconstituted on 1D substrates. Our results validate the use of 1D micropatterned substrates as a simple and defined approach to study fibrillar ECM-dependent cell pairing, migration and relay chemotaxis as a complementary tool to intravital imaging. PMID:24634804
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulknor, Renea A.; Olekson, Melissa A.; Nativ, Nir I.
During wound healing, fibroblasts deposit extracellular matrix that guides angiogenesis and supports the migration and proliferation of cells that eventually form the scar. They also promote wound closure via differentiation into α-smooth muscle actin (SMA)-expressing myofibroblasts, which cause wound contraction. Low oxygen tension typical of chronic nonhealing wounds inhibits fibroblast collagen production and differentiation. It has been suggested that hypoxic mesenchymal stromal cells (MSCs) secrete factors that promote wound healing in animal models; however, it is unclear whether these factors are equally effective on the target cells in a hypoxic wound environment. Here we investigated the impact of MSC-derived solublemore » factors on the function of fibroblasts cultured in hypoxic fibroblast-populated collagen lattices (FPCLs). Hypoxia alone significantly decreased FPCL contraction and α-SMA expression. MSC-conditioned medium restored hypoxic FPCL contraction and α-SMA expression to levels similar to normoxic FPCLs. (SB431542), an inhibitor of transforming growth factor-β{sub 1} (TGF-β{sub 1})-mediated signaling, blocked most of the MSC effect on FPCL contraction, while exogenous TGF-β{sub 1} at levels similar to that secreted by MSCs reproduced the MSC effect. These results suggest that TGF-β{sub 1} is a major paracrine signal secreted by MSCs that can restore fibroblast functions relevant to the wound healing process and that are impaired in hypoxia. - Highlights: • Fibroblasts were cultured in collagen lattices (FPCLs) as model contracting wounds. • Hypoxia decreased FPCL contraction and fibroblast α-smooth muscle actin expression. • Mesenchymal stromal cells (MSCs) restored function of hypoxic fibroblasts. • MSCs regulate fibroblast function mainly via secreted transforming growth factor-β{sub 1}.« less
Lu, Yongbo; Kamel-El Sayed, Suzan A; Wang, Kun; Tiede-Lewis, LeAnn M; Grillo, Michael A; Veno, Patricia A; Dusevich, Vladimir; Phillips, Charlotte L; Bonewald, Lynda F; Dallas, Sarah L
2018-06-01
Type I collagen is the most abundant extracellular matrix protein in bone and other connective tissues and plays key roles in normal and pathological bone formation as well as in connective tissue disorders and fibrosis. Although much is known about the collagen biosynthetic pathway and its regulatory steps, the mechanisms by which it is assembled extracellularly are less clear. We have generated GFPtpz and mCherry-tagged collagen fusion constructs for live imaging of type I collagen assembly by replacing the α2(I)-procollagen N-terminal propeptide with GFPtpz or mCherry. These novel imaging probes were stably transfected into MLO-A5 osteoblast-like cells and fibronectin-null mouse embryonic fibroblasts (FN-null-MEFs) and used for imaging type I collagen assembly dynamics and its dependence on fibronectin. Both fusion proteins co-precipitated with α1(I)-collagen and remained intracellular without ascorbate but were assembled into α1(I) collagen-containing extracellular fibrils in the presence of ascorbate. Immunogold-EM confirmed their ultrastuctural localization in banded collagen fibrils. Live cell imaging in stably transfected MLO-A5 cells revealed the highly dynamic nature of collagen assembly and showed that during assembly the fibril networks are continually stretched and contracted due to the underlying cell motion. We also observed that cell-generated forces can physically reshape the collagen fibrils. Using co-cultures of mCherry- and GFPtpz-collagen expressing cells, we show that multiple cells contribute collagen to form collagen fiber bundles. Immuno-EM further showed that individual collagen fibrils can receive contributions of collagen from more than one cell. Live cell imaging in FN-null-MEFs expressing GFPtpz-collagen showed that collagen assembly was both dependent upon and dynamically integrated with fibronectin assembly. These GFP-collagen fusion constructs provide a powerful tool for imaging collagen in living cells and have revealed novel and fundamental insights into the dynamic mechanisms for the extracellular assembly of collagen. © 2018 American Society for Bone and Mineral Research. © 2018 American Society for Bone and Mineral Research.
Inhibitory effect of dietary capsaicin on liver fibrosis in mice.
Bitencourt, Shanna; Stradiot, Leslie; Verhulst, Stefaan; Thoen, Lien; Mannaerts, Inge; van Grunsven, Leo A
2015-06-01
Virtually all chronic liver injuries result in the activation of hepatic stellate cells (HSCs). In their activated state, these cells are the main collagen-producing cells implicated in liver fibrosis. Capsaicin (CPS), the active compound of chili peppers, can modulate the activation and migration of HSCs in vitro. Here, we evaluated the potential protective and prophylactic effects of CPS related to cholestatic and hepatotoxic-induced liver fibrosis and its possible underlying mechanism of action. Male Balb/c mice received dietary CPS after 3 days of bile duct ligation (BDL) or before and during carbon tetrachloride (CCl4 ) injections. Mice receiving dietary CPS after BDL had a significant improvement of liver fibrosis accompanied by a decrease in collagen deposition and downregulation of activation markers in isolated HSCs. In the CCl4 model, dietary CPS inhibited the upregulation of profibrogenic markers. However, CPS could not attenuate the CCl4 -induced fibrosis when it was already established. Furthermore, in vitro CPS treatment inhibited the autophagic process during HSC activation. Dietary CPS has potential benefits in the therapy of cholestatic liver fibrosis and in the prophylaxis of hepatotoxic-induced liver injury. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High resolution three-dimensional reconstruction of fibrotic skeletal muscle extracellular matrix.
Gillies, Allison R; Chapman, Mark A; Bushong, Eric A; Deerinck, Thomas J; Ellisman, Mark H; Lieber, Richard L
2017-02-15
Fibrosis occurs secondary to many skeletal muscle diseases and injuries, and can alter muscle function. It is unknown how collagen, the most abundant extracellular structural protein, alters its organization during fibrosis. Quantitative and qualitative high-magnification electron microscopy shows that collagen is organized into perimysial cables which increase in number in a model of fibrosis, and cables have unique interactions with collagen-producing cells. Fibrotic muscles are stiffer and have a higher concentration of collagen-producing cells. These results improve our understanding of the organization of fibrotic skeletal muscle extracellular matrix and identify novel structures that might be targeted by antifibrotic therapy. Skeletal muscle extracellular matrix (ECM) structure and organization are not well understood, yet the ECM plays an important role in normal tissue homeostasis and disease processes. Fibrosis is common to many muscle diseases and is typically quantified based on an increase in ECM collagen. Through the use of multiple imaging modalities and quantitative stereology, we describe the structure and composition of wild-type and fibrotic ECM, we show that collagen in the ECM is organized into large bundles of fibrils, or collagen cables, and the number of these cables (but not their size) increases in desmin knockout muscle (a fibrosis model). The increase in cable number is accompanied by increased muscle stiffness and an increase in the number of collagen producing cells. Unique interactions between ECM cells and collagen cables were also observed and reconstructed by serial block face scanning electron microscopy. These results demonstrate that the muscle ECM is more highly organized than previously reported. Therapeutic strategies for skeletal muscle fibrosis should consider the organization of the ECM to target the structures and cells contributing to fibrotic muscle function. © 2016 Rehabilitation Institute of Chicago. The Journal of Physiology © 2016 The Physiological Society.
Characterization of Intracellular Streaming and Traction Forces in Migrating Physarum Plasmodia
NASA Astrophysics Data System (ADS)
Zhang, Shun; Del Alamo, Juan C.; Guy, Robert D.; Lasheras, Juan C.
2012-11-01
Physarum plasmodium is a model organism for cell migration that exhibits fast intracellular streaming. Motile amoeboid physarum plasmodia were obtained from dish cultures of Physarum Polycephalum, a slime mold that inhabits shady cool moist areas in the wild, such as decaying vegetable material. The migrating amoebae were obtained by cutting successively smaller pieces from the growing tips of the cultured parent mold, and their size ranged 0.2 to 0.5 mm. Single amoebae were seeded and let adhere on flexible polyacrilamide gels that were functionalized with collagen, contained 0.2-micron fluorescent beads, and were embedded in an aqueous medium. Soon after adhering to the gel, the amoeabe began crawling at about 1mm/hr. Joint time-lapse sequences of intracellular streaming and gel deformation were acquired respectively in the bright and fluorescent fields of a confocal microscope at 20X magnification. These images were analyzed using particle-tracking algorithms, and the traction stresses applied by the amoebae on the surface were computed by solving the elastostatic equation for the gel using the measured bead displacements as boundary conditions. These measurements provide, for the first time, a joint characterization of intracellular mass transport and the forces driving this transport in motile amoeboid cells.
Tao, Yiqing; Zhou, Xiaopeng; Liu, Dongyu; Li, Hao; Liang, Chengzhen; Li, Fangcai; Chen, Qixin
2016-01-01
During degeneration process, the catabolism of collagen type II and anabolism of collagen type I in nucleus pulposus (NP) may influence the bioactivity of transplanted cells. Human adipose-derived mesenchymal stem cells (hADMSCs) were cultured as a micromass or in a series of gradual proportion hydrogels of a mix of collagen types I and II. Cell proliferation and cytotoxicity were detected using CCK-8 and LDH assays respectively. The expression of differentiation-related genes and proteins, including SOX9, aggrecan, collagen type I, and collagen type II, was examined using RT-qPCR and Western blotting. Novel phenotypic genes were also detected by RT-qPCR and western blotting. Alcian blue and dimethylmethylene blue assays were used to investigate sulfate proteoglycan expression, and PI3K/AKT, MAPK/ERK, and Smad signaling pathways were examined by Western blotting. The results showed collagen hydrogels have good biocompatibility, and cell proliferation increased after collagen type II treatment. Expressions of SOX9, aggrecan, and collagen type II were increased in a collagen type II dependent manner. Sulfate proteoglycan synthesis increased in proportion to collagen type II concentration. Only hADMSCs highly expressed NP cell marker KRT19 in collagen type II culture. Additionally, phosphorylated Smad3, which is associated with phosphorylated ERK, was increased after collagen type II-stimulation. The concentration and type of collagen affect hADMSC differentiation into NP cells. Collagen type II significantly ameliorates hADMSC differentiation into NP cells and promotes extracellular matrix synthesis. Therefore, anabolism of collagen type I and catabolism of type II may attenuate the differentiation and biosynthesis of transplanted stem cells. © 2016 International Union of Biochemistry and Molecular Biology.
Saeidi, Nima; Guo, Xiaoqing; Hutcheon, Audrey E K; Sander, Edward A; Bale, Shyam Sundar; Melotti, Suzanna A; Zieske, James D; Trinkaus-Randall, Vickery; Ruberti, Jeffrey W
2012-10-01
Many tissue engineering applications require the remodeling of a degradable scaffold either in vitro or in situ. Although inefficient remodeling or failure to fully remodel the temporary matrix can result in a poor clinical outcome, very few investigations have examined in detail, the interaction of regenerative cells with temporary scaffoldings. In a recent series of investigations, randomly oriented collagen gels were directly implanted into human corneal pockets and followed for 24 months. The resulting remodeling response exhibited a high degree of variability which likely reflects differing regenerative/synthetic capacity across patients. Given this variability, we hypothesize that a disorganized, degradable provisional scaffold could be disruptive to a uniform, organized reconstruction of stromal matrix. In this investigation, two established corneal stroma tissue engineering culture systems (collagen scaffold-based and scaffold-free) were compared to determine if the presence of the disorganized collagen gel influenced matrix production and organizational control exerted by primary human corneal fibroblast cells (PHCFCs). PHCFCs were cultured on thin disorganized reconstituted collagen substrate (RCS--five donors: average age 34.4) or on a bare polycarbonate membrane (five donors: average age 32.4 controls). The organization and morphology of the two culture systems were compared over the long-term at 4, 8, and 11/12 weeks. Construct thickness and extracellular matrix organization/alignment was tracked optically with bright field and differential interference contrast (DIC) microscopy. The details of cell/matrix morphology and cell/matrix interaction were examined with standard transmission, cuprolinic blue and quick-freeze/deep-etch electron microscopy. Both the scaffold-free and the collagen-based scaffold cultures produced organized arrays of collagen fibrils. However, at all time points, the amount of organized cell-derived matrix in the scaffold-based constructs was significantly lower than that produced by scaffold-free constructs (controls). We also observed significant variability in the remodeling of RCS scaffold by PHCFCs. PHCFCs which penetrated the RCS scaffold did exert robust local control over secreted collagen but did not appear to globally reorganize the scaffold effectively in the time period of the study. Consistent with our hypothesis, the results demonstrate that the presence of the scaffold appears to interfere with the global organization of the cell-derived matrix. The production of highly organized local matrix by fibroblasts which penetrated the scaffold suggests that there is a mechanism which operates close to the cell membrane capable of controlling fibril organization. Nonetheless, the local control of the collagen alignment produced by cells within the scaffold was not continuous and did not result in overall global organization of the construct. Using a disorganized scaffold as a guide to produce highly organized tissue has the potential to delay the production of useful matrix or prevent uniform remodeling. The results of this study may shed light on the recent attempts to use disorganized collagenous matrix as a temporary corneal replacement in vivo which led to a variable remodeling response. Copyright © 2012 Wiley Periodicals, Inc.
Saeidi, Nima; Guo, Xiaoqing; Hutcheon, Audrey E. K.; Sander, Edward A.; Bale, Shyam Sundar; Melotti, Suzanna A.; Zieske, James D.; Trinkaus-Randall, Vickery; Ruberti, Jeffrey W.
2013-01-01
Many tissue engineering applications require the remodeling of a degradable scaffold either in vitro or in situ. Although inefficient remodeling or failure to fully remodel the temporary matrix can result in a poor clinical outcome, very few investigations have examined in detail, the interaction of regenerative cells with temporary scaffoldings. In a recent series of investigations, randomly oriented collagen gels were directly implanted into human corneal pockets and followed for 24 months. The resulting remodeling response exhibited a high degree of variability which likely reflects differing regenerative/synthetic capacity across patients. Given this variability, we hypothesize that a disorganized, degradable provisional scaffold could be disruptive to a uniform, organized reconstruction of stromal matrix. In this investigation, two established corneal stroma tissue engineering culture systems (collagen scaffold-based and scaffold-free) were compared to determine if the presence of the disorganized collagen gel influenced matrix production and organizational control exerted by primary human corneal fibroblast cells (PHCFCs). PHCFCs were cultured on thin disorganized reconstituted collagen substrate (RCS - 5 donors: average age 34.4) or on a bare polycarbonate membrane (5 donors: average age 32.4-controls). The organization and morphology of the two culture systems were compared over the long-term at 4, 8 and 11/12 weeks. Construct thickness and extracellular matrix organization/alignment was tracked optically with bright field and differential interference contrast (DIC) microscopy. The details of cell/matrix morphology and cell/matrix interaction were examined with standard transmission, cuprolinic blue and quick-freeze/deep-etch electron microscopy. Both the scaffold-free and the collagen-based scaffold cultures produced organized arrays of collagen fibrils. However, at all time points, the amount of organized cell-derived matrix in the scaffold-based constructs was significantly lower than that produced by scaffold-free constructs (controls). We also observed significant variability in the remodeling of RCS scaffold by PHCFCs. PHCFCs which penetrated the RCS scaffold did exert robust local control over secreted collagen but did not appear to globally reorganize the scaffold effectively in the time period of the study. Consistent with our hypothesis, the results demonstrate that the presence of the scaffold appears to interfere with the global organization of the cell-derived matrix. The production of highly-organized local matrix by fibroblasts which penetrated the scaffold suggests that there is a mechanism which operates close to the cell membrane capable of control fibril organization. Nonetheless, the local control of the collagen alignment produced by cells within the scaffold was not continuous and did not result in overall global organization of the construct. Using a disorganized scaffold as a guide to produce highly-organized tissue has the potential to delay the production of useful matrix or prevent uniform remodeling. The results of this study may shed light on the recent attempts to use disorganized collagenous matrix as a temporary corneal replacement in vivo which led to a variable remodeling response. PMID:22528405
Development of a Three-Dimensional Bone-Like Construct in a Soft Self-Assembling Peptide Matrix
Marí-Buyé, Núria; Luque, Tomás; Navajas, Daniel
2013-01-01
This work describes the development of a three-dimensional (3D) model of osteogenesis using mouse preosteoblastic MC3T3-E1 cells and a soft synthetic matrix made out of self-assembling peptide nanofibers. By adjusting the matrix stiffness to very low values (around 120 Pa), cells were found to migrate within the matrix, interact forming a cell–cell network, and create a contracted and stiffer structure. Interestingly, during this process, cells spontaneously upregulate the expression of bone-related proteins such as collagen type I, bone sialoprotein, and osteocalcin, indicating that the 3D environment enhances their osteogenic potential. However, unlike MC3T3-E1 cultures in 2D, the addition of dexamethasone is required to acquire a final mature phenotype characterized by features such as matrix mineralization. Moreover, a slight increase in the hydrogel stiffness (threefold) or the addition of a cell contractility inhibitor (Rho kinase inhibitor) abrogates cell elongation, migration, and 3D culture contraction. However, this mechanical inhibition does not seem to noticeably affect the osteogenic process, at least at early culture times. This 3D bone model intends to emphasize cell–cell interactions, which have a critical role during tissue formation, by using a compliant unrestricted synthetic matrix. PMID:23157379
Shin, Jae-Min; Park, Joo-Hoo; Park, Il-Ho; Lee, Heung-Man
2015-01-01
Pirfenidone has been shown to have antifibrotic and anti-inflammatory effects in the lungs. The purpose of this study was to evaluate the inhibitory effects of pirfenidone on transforming growth factor (TGF)-β1-induced myofibroblast differentiation and extracellular matrix accumulation. We also determined the molecular mechanisms of pirfenidone in nasal polyp-derived fibroblasts (NPDF). NPDFs were isolated from nasal polyps from eight patients who had chronic rhinosinusitis with nasal polyp. Pirfenidone was used to treat TGF-β1-induced NPDFs. Cytotoxicity was evaluated by using a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay. Fibroblast migration was evaluated with scratch assays. Expression levels of α-smooth muscle actin (SMA), fibronectin, and phosphorylated Smad2/3 were determined by Western blot and/or reverse transcription-polymerase chain reaction and immunofluorescent staining. Total collagen production was analyzed with the Sircol collagen assay and contractile activity was measured by a collagen gel contraction assay. Pirfenidone (0-2 mg/mL) has no significant cytotoxic effects in TGF-β1-induced NPDFs. Migration of NPDFs was significantly inhibited by pirfenidone treatment. The expression levels of α-SMA and fibronectin were significantly reduced in pirfenidone-treated NPDFs. Collagen contraction and production were also significantly decreased by pirfenidone treatment. Finally, pirfenidone significantly inhibited phosphorylation of the Smad2/3 pathway in TGF-β1-induced NPDFs. Pirfenidone has an inhibitory effect on TGF-β1-induced migration, myofibroblast differentiation (α-SMA), extracellular matrix accumulation, and collagen contraction by blocking the phosphorylation of Smad2/3 pathways in NPDFs. Thus, pirfenidone may inhibit TGF-β1-induced extracellular matrix by regulating Smad2/3.
XanoMatrix surfaces as scaffolds for mesenchymal stem cell culture and growth
Bhardwaj, Garima; Webster, Thomas J
2016-01-01
Stem cells are being widely investigated for a wide variety of applications in tissue engineering due to their ability to differentiate into a number of cells such as neurons, osteoblasts, and fibroblasts. This ability of stem cells to differentiate into different types of cells is greatly based on mechanical and chemical cues received from their three-dimensional environments. All organs are formed by a number of cells linked together via an extracellular matrix (ECM). The ECM is a complex network of proteins and carbohydrates, which occupies intercellular spaces and regulates cellular activity by controlling cell adhesion, migration, proliferation, and differentiation. The ECM is composed of two main types of macromolecules, namely, polysaccharide glycosaminoglycans, which are covalently attached to proteins in the form of proteoglycans and fibrous proteins belonging to two functional groups, structural (collagen and elastin) and adhesive (fibronectin, laminin, vitronectin, etc). Tissue engineering is a multidisciplinary field that aims to develop biomimetic scaffolds that emulate properties of the ECM to help repair or regenerate diseased or damaged tissue. This study introduces one of these matrices, XanoMatrix, as an optimal scaffold for tissue engineering applications, in particular, for stem cell research, based on its composition, nanofibrous structure, and porosity. Results of this study suggest that XanoMatrix scaffolds are promising for stem cell tissue engineering applications and as improved cell culture inserts for studying stem cell functions (compared to traditional Corning and Falcon cell culture plates) and, thus, should be further studied. PMID:27354795
Collagen as potential cell scaffolds for tissue engineering.
Annuar, N; Spier, R E
2004-05-01
Selections of collagen available commercially were tested for their biocompatibility as scaffold to promote cell growth in vitro via simple collagen fast test and cultivation of mammalian cells on the selected type of collagen. It was found that collagen type C9791 promotes the highest degree of aggregation as well as cells growth. This preliminary study also indicated potential use of collagen as scaffold in engineered tissue.
A modified collagen gel enhances healing outcome in a preclinical swine model of excisional wounds.
Elgharably, Haytham; Roy, Sashwati; Khanna, Savita; Abas, Motaz; Dasghatak, Piya; Das, Amitava; Mohammed, Kareem; Sen, Chandan K
2013-01-01
Collagen-based dressings are of great interest in wound care. However, evidence supporting their mechanism of action is scanty. This work provides first results from a preclinical swine model of excisional wounds, elucidating the mechanism of action of a modified collagen gel (MCG) dressing. Following wounding, wound-edge tissue was collected at specific time intervals (3, 7, 14, and 21 days postwounding). On day 7, histological analysis showed significant increase in the length of rete ridges, suggesting improved biomechanical properties of the healing wound tissue. Rapid and transient mounting of inflammation is necessary for efficient healing. MCG significantly accelerated neutrophil and macrophage recruitment to the wound site on day 3 and day 7 with successful resolution of inflammation on day 21. MCG induced monocyte chemotactic protein-1 expression in neutrophil-like human promyelocytic leukemia-60 cells in vitro. In vivo, MCG-treated wound tissue displayed elevated vascular endothelial growth factor expression. Consistently, MCG-treated wounds displayed significantly higher abundance of endothelial cells with increased blood flow to the wound area indicating improved vascularization. This observation was explained by the finding that MCG enhanced proliferation of wound-site endothelial cells. In MCG-treated wound tissue, Masson's trichrome and picrosirius red staining showed higher abundance of collagen and increased collagen type I:III ratio. This work presents first evidence from a preclinical setting explaining how a collagen-based dressing may improve wound closure by targeting multiple key mechanisms. The current findings warrant additional studies to determine whether the responses to the MCG are different from other collagen-based products used in clinical setting. © 2013 by the Wound Healing Society.
A Modified Collagen Gel Enhances Healing Outcome in a Pre-Clinical Swine Model of Excisional Wounds
Elgharably, Haytham; Roy, Sashwati; Khanna, Savita; Abas, Motaz; DasGhatak, Piya; Das, Amitava; Mohammed, Kareem; Sen, Chandan K.
2013-01-01
Collagen-based dressings are of great interest in wound care. However, evidence supporting their mechanism of action in a wound setting in vivo is scanty. This work providesfirst results from a pre-clinical swine model of excisional wounds elucidating the mechanism of action of a modified collagen gel (MCG) dressing. Following wounding, wound-edge tissue was collected at specific time intervals (3, 7, 14, and 21 days post-wounding). On day 7, histological analysis showed significant increase in the length of rete ridges suggesting improved biomechanical properties of the healing wound tissue. Rapid and transient mounting of inflammation is necessary for efficient healing. MCG significantly accelerated neutrophil and macrophages recruitment to the wound site on day 3 and day 7 with successful resolution of inflammation on day 21. MCG induced MCP-1 expression in neutrophil-like HL-60 cells in vitro. In vivo, MCG treated wound tissue displayed elevated VEGF expression. Consistently, MCG-treated wounds displayed significantly higher abundance of endothelial cells with increased blood flow to the wound area indicating improved vascularization. This observation was explained by the finding that MCG enhanced proliferation of wound-site endothelial cells. In MCG-treated wound tissue, Masson’s Trichrome and Picrosirius red staining showed higher abundance of collagen and increased collagen type I:III ratio. This work presents first evidence from a pre-clinical experimental setting explaining how a collagen-based dressing may improve wound closure by targeting multiple key mechanisms as compared to standard of care i.e., Tegadem treated wounds. The current findings warrant additional studies to determine whether the responses to the MCG are different from other modified or unmodified collagen based products used in clinical setting. PMID:23607796
Parmar, Paresh A.; St-Pierre, Jean-Philippe; Chow, Lesley W.; Puetzer, Jennifer L.; Stoichevska, Violet; Peng, Yong Y.; Werkmeister, Jerome A.; Ramshaw, John A. M.; Stevens, Molly M.
2017-01-01
Collagen I foams are used in the clinic as scaffolds to promote articular cartilage repair as they provide a bioactive environment for cells with chondrogenic potential. However, collagen I as a base material does not allow for precise control over bioactivity. Alternatively, recombinant bacterial collagens can be used as “blank slate” collagen molecules to offer a versatile platform for incorporation of selected bioactive sequences and fabrication into 3D scaffolds. Here, we show the potential of Streptococcal collagen-like 2 (Scl2) protein foams modified with peptides designed to specifically and noncovalently bind hyaluronic acid and chondroitin sulfate to improve chondrogenesis of human mesenchymal stem cells (hMSCs) compared to collagen I foams. Specific compositions of functionalized Scl2 foams lead to improved chondrogenesis compared to both nonfunctionalized Scl2 and collagen I foams, as indicated by gene expression, extracellular matrix accumulation, and compression moduli. hMSCs cultured in functionalized Scl2 foams exhibit decreased collagens I and X gene and protein expression, suggesting an advantage over collagen I foams in promoting a chondrocytic phenotype. These highly modular foams can be further modified to improve specific aspects chondrogenesis. As such, these scaffolds also have the potential to be tailored for other regenerative medicine applications. PMID:27219220
Wynn, Michelle L.; Kulesa, Paul M.; Schnell, Santiago
2012-01-01
Follow-the-leader chain migration is a striking cell migratory behaviour observed during vertebrate development, adult neurogenesis and cancer metastasis. Although cell–cell contact and extracellular matrix (ECM) cues have been proposed to promote this phenomenon, mechanisms that underlie chain migration persistence remain unclear. Here, we developed a quantitative agent-based modelling framework to test mechanistic hypotheses of chain migration persistence. We defined chain migration and its persistence based on evidence from the highly migratory neural crest model system, where cells within a chain extend and retract filopodia in short-lived cell contacts and move together as a collective. In our agent-based simulations, we began with a set of agents arranged as a chain and systematically probed the influence of model parameters to identify factors critical to the maintenance of the chain migration pattern. We discovered that chain migration persistence requires a high degree of directional bias in both lead and follower cells towards the target. Chain migration persistence was also promoted when lead cells maintained cell contact with followers, but not vice-versa. Finally, providing a path of least resistance in the ECM was not sufficient alone to drive chain persistence. Our results indicate that chain migration persistence depends on the interplay of directional cell movement and biased cell–cell contact. PMID:22219399
Tracking fusion of human mesenchymal stem cells after transplantation to the heart.
Freeman, Brian T; Kouris, Nicholas A; Ogle, Brenda M
2015-06-01
Evidence suggests that transplanted mesenchymal stem cells (MSCs) can aid recovery of damaged myocardium caused by myocardial infarction. One possible mechanism for MSC-mediated recovery is reprogramming after cell fusion between transplanted MSCs and recipient cardiac cells. We used a Cre/LoxP-based luciferase reporter system coupled to biophotonic imaging to detect fusion of transplanted human pluripotent stem cell-derived MSCs to cells of organs of living mice. Human MSCs, with transient expression of a viral fusogen, were delivered to the murine heart via a collagen patch. At 2 days and 1 week later, living mice were probed for bioluminescence indicative of cell fusion. Cell fusion was detected at the site of delivery (heart) and in distal tissues (i.e., stomach, small intestine, liver). Fusion was confirmed at the cellular scale via fluorescence in situ hybridization for human-specific and mouse-specific centromeres. Human cells in organs distal to the heart were typically located near the vasculature, suggesting MSCs and perhaps MSC fusion products have the ability to migrate via the circulatory system to distal organs and engraft with local cells. The present study reveals previously unknown migratory patterns of delivered human MSCs and associated fusion products in the healthy murine heart. The study also sets the stage for follow-on studies to determine the functional effects of cell fusion in a model of myocardial damage or disease. Mesenchymal stem cells (MSCs) are transplanted to the heart, cartilage, and other tissues to recover lost function or at least limit overactive immune responses. Analysis of tissues after MSC transplantation shows evidence of fusion between MSCs and the cells of the recipient. To date, the biologic implications of cell fusion remain unclear. A newly developed in vivo tracking system was used to identify MSC fusion products in living mice. The migratory patterns of fusion products were determined both in the target organ (i.e., the heart) and in distal organs. This study shows, for the first time, evidence of fusion products at sites distal from the target organ and data to suggest that migration occurs via the vasculature. These results will inform and improve future, MSC-based therapeutics. ©AlphaMed Press.
Ullah, Mujib; Sittinger, Michael; Ringe, Jochen
2013-01-01
Extracellular matrix (ECM) is the non-cellular component of tissues, which not only provides biological shelter but also takes part in the cellular decisions for diverse functions. Every tissue has an ECM with unique composition and topology that governs the process of determination, differentiation, proliferation, migration and regeneration of cells. Little is known about the structural organization of matrix especially of MSC-derived adipogenic ECM. Here, we particularly focus on the composition and architecture of the fat ECM to understand the cellular behavior on functional bases. Thus, mesenchymal stem cells (MSC) were adipogenically differentiated, then, were transferred to adipogenic propagation medium, whereas they started the release of lipid droplets leaving bare network of ECM. Microarray analysis was performed, to indentify the molecular machinery of matrix. Adipogenesis was verified by Oil Red O staining of lipid droplets and by qPCR of adipogenic marker genes PPARG and FABP4. Antibody staining demonstrated the presence of collagen type I, II and IV filaments, while alkaline phosphatase activity verified the ossified nature of these filaments. In the adipogenic matrix, the hexagonal structures were abundant followed by octagonal structures, whereas they interwoven in a crisscross manner. Regarding molecular machinery of adipogenic ECM, the bioinformatics analysis revealed the upregulated expression of COL4A1, ITGA7, ITGA7, SDC2, ICAM3, ADAMTS9, TIMP4, GPC1, GPC4 and downregulated expression of COL14A1, ADAMTS5, TIMP2, TIMP3, BGN, LAMA3, ITGA2, ITGA4, ITGB1, ITGB8, CLDN11. Moreover, genes associated with integrins, glycoproteins, laminins, fibronectins, cadherins, selectins and linked signaling pathways were found. Knowledge of the interactive-language between cells and matrix could be beneficial for the artificial designing of biomaterials and bioscaffolds. © 2013.
Millard, Ronald W.; Yu, Xi-Yong; Luther, Kristin; Xu, Meifeng; Zhao, Ting C.; Yang, Huang-Tian; Qi, Zhihua; LaSance, Kathleen; Ashraf, Muhammad; Wang, Yigang
2013-01-01
Objective The purpose of this study was to assess the effect of collagen composition on engraftment of progenitor cells within infarcted myocardium. Background We previously reported that intramyocardial penetration of stem/progenitor cells in epicardial patches was enhanced when collagen was reduced in hearts overexpressing adenylyl cyclase-6 (AC6). In this study we hypothesized an alternative strategy wherein overexpression of microRNA-29b (miR-29b), inhibiting mRNAs that encode cardiac fibroblast proteins involved in fibrosis, would similarly facilitate progenitor cell migration into infarcted rat myocardium. Methods In vitro: A tri-cell patch (Tri-P) consisting of cardiac sodium-calcium exchanger-1 (NCX1) positive iPSC (iPSCNCX1+), endothelial cells (EC), and mouse embryonic fibroblasts (MEF) was created, co-cultured, and seeded on isolated peritoneum. The expression of fibrosis-related genes was analyzed in cardiac fibroblasts (CFb) by qPCR and Western blot. In vivo: Nude rat hearts were administered mimic miRNA-29b (miR-29b), miRNA-29b inhibitor (Anti-29b), or negative mimic (Ctrl) before creation of an ischemically induced regional myocardial infarction (MI). The Tri-P was placed over the infarcted region 7 days later. Angiomyogenesis was analyzed by micro-CT imaging and immunofluorescent staining. Echocardiography was performed weekly. Results The number of green fluorescent protein positive (GFP+) cells, capillary density, and heart function were significantly increased in hearts overexpressing miR-29b as compared with Ctrl and Anti-29b groups. Conversely, down-regulation of miR-29b with anti-29b in vitro and in vivo induced interstitial fibrosis and cardiac remodeling. Conclusion Overexpression of miR-29b significantly reduced scar formation after MI and facilitated iPSCNCX1+ penetration from the cell patch into the infarcted area, resulting in restoration of heart function after MI. PMID:23990893
Engulfment of ceramic particles by fibroblasts does not alter cell behavior.
Faye, Pierre-Antoine; Roualdes, Olivier; Rossignol, Fabrice; Hartmann, Daniel Jean; Desmoulière, Alexis
2017-02-17
Despite many studies, the impact of ceramic particles on cell behavior remains unclear. The aim of the present study was to investigate the effects of nano-sized ceramic particles on fibroblastic cells. Fibroblasts (dermal fibroblasts freshly isolated from skin samples and WI26 fibroblastic cells) were cultured in a monolayer in the presence of alumina or cerium-zirconia particles (≈50 nm diameter) at two concentrations (100 or 500 μg ml -1 ). Fluorescent alumina particles were also used. The following properties were analyzed: cell morphology, cytoplasmic ceramic incorporation (using confocal and transmission electron microscopy) and migration (using a silicon insert). Sedimentation field-flow fractionation (SdFFF) was also used to evaluate the rate of incorporation of ceramic particles into the cells. Finally, after treatment with various concentrations of ceramic particles, fibroblasts were also included in a collagen type I lattice constituting a dermal equivalent (DE), and the collagen lattice retraction and cell proliferation were evaluated. In monolayer conditions, the presence of both alumina and cerium-zirconia ceramic particles did not cause any deleterious effects on cultured cells (dermal fibroblast and WI26 cells) and cell fate was not affected in any way by the presence of ceramic particles in the cytoplasm. Confocal (using fluorescent alumina particles) and electron microscopy (using both alumina and cerium-zirconia particles) showed that ceramic particles were internalized in the WI26 cells. Using fluorescent membrane labeling and fluorescent alumina particles, a membrane was observed around the particle-containing vesicles present in the cytoplasm. Electron microscopy on WI26 cells showed the presence of a classical bilayer membrane around the ceramic particles. Interestingly, SdFFF confirmed that some dermal fibroblasts contained many alumina ceramic particles while others contained very few; in WI26 cells, the uptake of alumina ceramic was more homogeneous. In DE, collagen lattice retraction and cell proliferation were unchanged when WI26 fibroblastic cells contained alumina or cerium-zirconia ceramic particles. Our data suggest that ceramic particles are internalized in the cells by endocytosis. The presence of ceramic particles in the cytoplasm has no affect on cell behavior, confirming the excellent biocompatibility of this material and anticipating a minimal harmful effect of potential wear debris.
[Subantral augmentation with porous titanium in experiment and clinic].
Sirak, S V; Shchetinin, E V; Sletov, A A
2016-01-01
The article discusses the use of porous titanium for subantral augmentation. Experimental study was conducted on 12 yearling rams. Subantral augmentation using porous titanium was performed in 33 patients. In the control group consisting of 14 patients calcium phosphates and bone collagen based agents ("Bio-Оss" and "Collost") were used. In the main and control groups 46 and 32 implant were placed, respectively. Pilot histological and clinical studies proved that the granules of porous titanium are biocompatible with bone tissue, provide the optimal surface microrelief, thus creating good conditions for adhesion, expansion and migration of osteoforming cells, have negligible kinetics of resorption, are porous to ensure effective neovascularization of de novo formed bone tissue. Porous titanium is an effective alternative material for subantral bone augmentation for dental implantation and reconstructive operations on the maxillary sinus.
Bioprinted Amniotic Fluid-Derived Stem Cells Accelerate Healing of Large Skin Wounds
Skardal, Aleksander; Mack, David; Kapetanovic, Edi; Atala, Anthony; Jackson, John D.; Yoo, James
2012-01-01
Stem cells obtained from amniotic fluid show high proliferative capacity in culture and multilineage differentiation potential. Because of the lack of significant immunogenicity and the ability of the amniotic fluid-derived stem (AFS) cells to modulate the inflammatory response, we investigated whether they could augment wound healing in a mouse model of skin regeneration. We used bioprinting technology to treat full-thickness skin wounds in nu/nu mice. AFS cells and bone marrow-derived mesenchymal stem cells (MSCs) were resuspended in fibrin-collagen gel and “printed” over the wound site. At days 0, 7, and 14, AFS cell- and MSC-driven wound closure and re-epithelialization were significantly greater than closure and re-epithelialization in wounds treated by fibrin-collagen gel only. Histological examination showed increased microvessel density and capillary diameters in the AFS cell-treated wounds compared with the MSC-treated wounds, whereas the skin treated only with gel showed the lowest amount of microvessels. However, tracking of fluorescently labeled AFS cells and MSCs revealed that the cells remained transiently and did not permanently integrate in the tissue. These observations suggest that the increased wound closure rates and angiogenesis may be due to delivery of secreted trophic factors, rather than direct cell-cell interactions. Accordingly, we performed proteomic analysis, which showed that AFS cells secreted a number of growth factors at concentrations higher than those of MSCs. In parallel, we showed that AFS cell-conditioned media induced endothelial cell migration in vitro. Taken together, our results indicate that bioprinting AFS cells could be an effective treatment for large-scale wounds and burns. PMID:23197691
2011-01-01
Background Increased hemostatic activity is common in many cancer types and often causes additional complications and even death. Circumstantial evidence suggests that tissue factor pathway inhibitor-1 (TFPI) plays a role in cancer development. We recently reported that downregulation of TFPI inhibited apoptosis in a breast cancer cell line. In this study, we investigated the effects of TFPI on self-sustained growth and motility of these cells, and of another invasive breast cancer cell type (MDA-MB-231). Methods Stable cell lines with TFPI (both α and β) and only TFPIβ downregulated were created using RNA interference technology. We investigated the ability of the transduced cells to grow, when seeded at low densities, and to form colonies, along with metastatic characteristics such as adhesion, migration and invasion. Results Downregulation of TFPI was associated with increased self-sustained cell growth. An increase in cell attachment and spreading was observed to collagen type I, together with elevated levels of integrin α2. Downregulation of TFPI also stimulated migration and invasion of cells, and elevated MMP activity was involved in the increased invasion observed. Surprisingly, equivalent results were observed when TFPIβ was downregulated, revealing a novel function of this isoform in cancer metastasis. Conclusions Our results suggest an anti-metastatic effect of TFPI and may provide a novel therapeutic approach in cancer. PMID:21849050
A new fish scale-derived scaffold for corneal regeneration.
Lin, Chien Chen; Ritch, Robert; Lin, Shang Ming; Ni, Mei-Hui; Chang, Yu-Chung; Lu, Yi Lung; Lai, Hong Ji; Lin, Feng-Huei
2010-02-26
The purpose of this study is to develop a novel scaffold, derived from fish scales, as an alternative functional material with sufficient mechanical strength for corneal regenerative applications. Fish scales, which are usually considered as marine wastes, were acellularized, decalcified and fabricated into collagen scaffolds. The microstructure of the acellularized scaffold was imaged by scanning electron microscopy (SEM). The acellularization and decalcification treatments did not affect the naturally 3-dimentional, highly centrally-oriented micropatterned structure of the material. To assess the cytocompatibility of the scaffold with corneal cells, rabbit corneal cells were cultured on the scaffold and examined under SEM and confocal microscopy at different time periods. Rapid cell proliferation and migration on the scaffold were observed under SEM and confocal microscopy. The highly centrally-oriented micropatterned structure of the scaffold was beneficial for efficient nutrient and oxygen supply to the cells cultured in the three-dimensional matrices, and therefore it is useful for high-density cell seeding and spreading. Collectively, we demonstrate the superior cellular conductivity of the newly developed material. We provide evidences for the feasibility of the scaffold as a template for corneal cells growth and migration, and thus the fish scale-derived scaffold can be developed as a promising material for tissue-engineering of cornea.
Stout, David A.; Bar-Kochba, Eyal; Estrada, Jonathan B.; Toyjanova, Jennet; Kesari, Haneesh; Reichner, Jonathan S.; Franck, Christian
2016-01-01
Mechanobiology relates cellular processes to mechanical signals, such as determining the effect of variations in matrix stiffness with cell tractions. Cell traction recorded via traction force microscopy (TFM) commonly takes place on materials such as polyacrylamide- and polyethylene glycol-based gels. Such experiments remain limited in physiological relevance because cells natively migrate within complex tissue microenvironments that are spatially heterogeneous and hierarchical. Yet, TFM requires determination of the matrix constitutive law (stress–strain relationship), which is not always readily available. In addition, the currently achievable displacement resolution limits the accuracy of TFM for relatively small cells. To overcome these limitations, and increase the physiological relevance of in vitro experimental design, we present a new approach and a set of associated biomechanical signatures that are based purely on measurements of the matrix's displacements without requiring any knowledge of its constitutive laws. We show that our mean deformation metrics (MDM) approach can provide significant biophysical information without the need to explicitly determine cell tractions. In the process of demonstrating the use of our MDM approach, we succeeded in expanding the capability of our displacement measurement technique such that it can now measure the 3D deformations around relatively small cells (∼10 micrometers), such as neutrophils. Furthermore, we also report previously unseen deformation patterns generated by motile neutrophils in 3D collagen gels. PMID:26929377
Arjunan, Krishna Priya; Friedman, Gary; Fridman, Alexander; Clyne, Alisa Morss
2012-01-07
Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm(-2) had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm(-2) plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization.
Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species
Arjunan, Krishna Priya; Friedman, Gary; Fridman, Alexander; Clyne, Alisa Morss
2012-01-01
Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm–2 had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm–2 plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization. PMID:21653568
Micro-Nanostructures of Cellulose-Collagen for Critical Sized Bone Defect Healing.
Aravamudhan, Aja; Ramos, Daisy M; Nip, Jonathan; Kalajzic, Ivo; Kumbar, Sangamesh G
2018-02-01
Bone tissue engineering strategies utilize biodegradable polymeric matrices alone or in combination with cells and factors to provide mechanical support to bone, while promoting cell proliferation, differentiation, and tissue ingrowth. The performance of mechanically competent, micro-nanostructured polymeric matrices, in combination with bone marrow stromal cells (BMSCs), is evaluated in a critical sized bone defect. Cellulose acetate (CA) is used to fabricate a porous microstructured matrix. Type I collagen is then allowed to self-assemble on these microstructures to create a natural polymer-based, micro-nanostructured matrix (CAc). Poly (lactic-co-glycolic acid) matrices with identical microstructures serve as controls. Significantly higher number of implanted host cells are distributed in the natural polymer based micro-nanostructures with greater bone density and more uniform cell distribution. Additionally, a twofold increase in collagen content is observed with natural polymer based scaffolds. This study establishes the benefits of natural polymer derived micro-nanostructures in combination with donor derived BMSCs to repair and regenerate critical sized bone defects. Natural polymer based materials with mechanically competent micro-nanostructures may serve as an alternative material platform for bone regeneration. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fibrin-based tissue engineering: comparison of different methods of autologous fibrinogen isolation.
Dietrich, Maren; Heselhaus, Johanna; Wozniak, Justyna; Weinandy, Stefan; Mela, Petra; Tschoeke, Beate; Schmitz-Rode, Thomas; Jockenhoevel, Stefan
2013-03-01
This study is focussed on the optimal method of autologous fibrinogen isolation with regard to the yield and the use as a scaffold material. This is particularly relevant for pediatric patients with strictly limited volumes of blood. The following isolation methods were evaluated: cryoprecipitation, ethanol (EtOH) precipitation, ammonium sulfate [(NH(4))(2)SO(4))] precipitation, ammonium sulfate precipitation combined with cryoprecipitation, and polyethylene glycol precipitation combined with cryoprecipitation. Fibrinogen yields were quantified spectrophotometrically and by electrophoretic analyses. To test the influence of the different isolation methods on the microstructure of the fibrin gels, scanning electron microscopy (SEM) was used and the mechanical strength of the cell-free and cell-seeded fibrin gels was tested by burst strength measurements. Cytotoxicity assays were performed to analyze the effect of various fibrinogen isolation methods on proliferation, apoptosis, and necrosis. Tissue development and cell migration were analyzed in all samples using immunohistochemical techniques. The synthesis of collagen as an extracellular matrix component by human umbilical cord artery smooth muscle cells in fibrin gels was measured using hydroxyproline assay. Compared to cryoprecipitation, all other considered methods were superior in quantitative analyses, with maximum fibrinogen yields of ∼80% of total plasma fibrinogen concentration using ethanol precipitation. SEM imaging demonstrated minor differences in the gel microstructure. Ethanol-precipitated fibrin gels exhibited the best mechanical properties. None of the isolation methods had a cytotoxic effect on the cells. Collagen production was similar in all gels except those from ammonium sulfate precipitation. Histological analysis showed good cell compatibility for ethanol-precipitated gels. The results of the present study demonstrated that ethanol precipitation is a simple and effective method for isolation of fibrinogen and a suitable alternative to cryoprecipitation. This technique allows minimization of the necessary blood volume for fibrinogen isolation, particularly important for pediatric applications, and also has no negative influence on microstructure, mechanical properties, cell proliferation, or tissue development.
Nanofiber Nerve Guide for Peripheral Nerve Repair and Regeneration
2014-01-01
observing cell migration using live - cell imaging microscopy, and analyzing cell migration with our MATLAB-based programs. Our studies...are then pipetted into the chamber and their path of migration is observed using a live - cell imaging microscope (Fig. 6d). Utilizing this migration
Watanabe-Nakayama, Takahiro; Itami, Masahiro; Kodera, Noriyuki; Ando, Toshio; Konno, Hiroki
2016-01-01
Bacterial collagenases involved in donor infection are widely applied in many fields due to their high activity and specificity; however, little is known regarding the mechanisms by which bacterial collagenases degrade insoluble collagen in host tissues. Using high-speed atomic force microscopy, we simultaneously visualized the hierarchical structure of collagen fibrils and the movement of a representative bacterial collagenase, Clostridium histolyticum type I collagenase (ColG), to determine the relationship between collagen structure and collagenase movement. Notably, ColG moved ~14.5 nm toward the collagen N terminus in ~3.8 s in a manner dependent on a catalytic zinc ion. While ColG was engaged, collagen molecules were not only degraded but also occasionally rearranged to thicken neighboring collagen fibrils. Importantly, we found a similarity of relationship between the enzyme-substrate interface structure and enzyme migration in collagen-collagenase and DNA-nuclease systems, which share a helical substrate structure, suggesting a common strategy in enzyme evolution. PMID:27373458
Janardhanan, Rajiv; Kilari, Sreenivasulu; Leof, Edward B; Misra, Sanjay
2015-01-01
It is hypothesized that venous stenosis formation associated with hemodialysis vascular-access failure is caused by hypoxia-mediated fibroblast-to-myofibroblast differentiation accompanied by proliferation and migration, and that diabetic patients have worse clinical outcomes. The aim of this study was to determine the functional and gene expression outcomes of matrix metalloproteinase-2 (Mmp-2) silencing in fibroblasts cultured under hyperglycemia and euglycemia with hypoxic and normoxic stimuli. AKR-2B fibroblasts were stably transduced using lentivirus-mediated shRNA-Mmp-2 or scrambled controls and subjected to hypoxia or normoxia under hyperglycemic or euglycemic conditions for 24 and 72 h. Gene expression of vascular endothelial growth factor-A (Vegf-A), Vegfr-1, Mmp-2, Mmp-9 and tissue inhibitors of matrix metalloproteinases (Timps) were determined by RT-PCR. Collagen I and IV secretion and cellular proliferation and migration were determined. Under hyperglycemic conditions, there is a significant reduction in the average gene expression of Vegf-A and Mmp-9, with an increase in Timp-1 at 24 h of hypoxia (p < 0.05) in Mmp-2-silenced fibroblasts when compared to controls. In addition, there is a decrease in collagen I and IV secretion and cellular migration. The euglycemic cells were able to reverse these findings. These findings demonstrate the rationale for using anti-Mmp-2 therapy in dialysis patients with hemodialysis vascular access in helping to reduce stenosis formation. © 2016 The Author(s) Published by S. Karger AG, Basel.
Wang, Lei; Alcon, Andre; Yuan, Hongwei; Ho, Jeffrey; Li, Qi-Jing; Martins-Green, M
2011-07-01
Prostate cancer is the second leading cause of cancer-related deaths among US males. Pomegranate juice (PJ), a natural product, was shown in a clinical trial to inhibit progression of this disease. However, the underlying mechanisms involved in the anti-progression effects of PJ on prostate cancer remain unclear. Here we show that, in addition to causing cell death of hormone-refractory prostate cancer cells, PJ also increases cell adhesion and decreases cell migration of the cells that do not die. We hypothesized that PJ does so by stimulating the expression and/or activation of molecules that alter the cytoskeleton and the adhesion machinery of prostate cancer cells, resulting in enhanced cell adhesion and reduced cell migration. We took an integrative approach to these studies by using Affimetrix gene arrays to study gene expression, microRNA arrays to study the non-coding RNAs, molecules known to be disregulated in cancer cells, and Luminex Multiplex array assays to study the level of secreted pro-inflammatory cytokines/chemokines. PJ up-regulates genes involved in cell adhesion such as E-cadherin, intercellular adhesion molecule 1 (ICAM-1) and down-regulates genes involved in cell migration such as hyaluranan-mediated motility receptor (HMMR) and type I collagen. In addition, anti-invasive microRNAs such as miR-335, miR-205, miR-200, and miR-126, were up-regulated, whereas pro-invasive microRNA such as miR-21 and miR-373, were down-regulated. Moreover, PJ significantly reduced the level of secreted pro-inflammatory cytokines/chemokines such as IL-6, IL-12p40, IL-1β and RANTES, thereby having the potential to decrease inflammation and its impact on cancer progression. PJ also inhibits the ability of the chemokine SDF1α to chemoattract these cancer cells. SDF1α and its receptor CXCR4 are important in metastasis of cancer cells to the bone. Discovery of the mechanisms by which this enhanced adhesion and reduced migration are accomplished can lead to sophisticated and effective prevention of metastasis in prostate and potentially other cancers. This journal is © The Royal Society of Chemistry 2011
Kyriakides, Themis R.; Zhu, Yu-Hong; Smith, Lynne T.; Bain, Steven D.; Yang, Zhantao; Lin, Ming T.; Danielson, Keith G.; Iozzo, Renato V.; LaMarca, Mary; McKinney, Cindy E.; Ginns, Edward I.; Bornstein, Paul
1998-01-01
Thrombospondin (TSP) 2, and its close relative TSP1, are extracellular proteins whose functions are complex, poorly understood, and controversial. In an attempt to determine the function of TSP2, we disrupted the Thbs2 gene by homologous recombination in embryonic stem cells, and generated TSP2-null mice by blastocyst injection and appropriate breeding of mutant animals. Thbs2−/− mice were produced with the expected Mendelian frequency, appeared overtly normal, and were fertile. However, on closer examination, these mice displayed a wide variety of abnormalities. Collagen fiber patterns in skin were disordered, and abnormally large fibrils with irregular contours were observed by electron microscopy in both skin and tendon. As a functional correlate of these findings, the skin was fragile and had reduced tensile strength, and the tail was unusually flexible. Mutant skin fibroblasts were defective in attachment to a substratum. An increase in total density and in cortical thickness of long bones was documented by histology and quantitative computer tomography. Mutant mice also manifested an abnormal bleeding time, and histologic surveys of mouse tissues, stained with an antibody to von Willebrand factor, showed a significant increase in blood vessels. The basis for the unusual phenotype of the TSP2-null mouse could derive from the structural role that TSP2 might play in collagen fibrillogenesis in skin and tendon. However, it seems likely that some of the diverse manifestations of this genetic disorder result from the ability of TSP2 to modulate the cell surface properties of mesenchymal cells, and thus, to affect cell functions such as adhesion and migration. PMID:9442117
Charles, Saby; Hassan, Rammal; Kevin, Magnien; Emilie, Buache; Sylvie, Brassart-Pasco; Laurence, Van-Gulick; Pierre, Jeannesson; Erik, Maquoi; Hamid, Morjani
2018-05-07
Type I collagen and DDR1 axis has been described to decrease cell proliferation and to initiate apoptosis in non-invasive breast carcinoma in three-dimensional cell culture matrices. Moreover, MT1-MMP down-regulates these effects. Here, we address the effect of type I collagen aging and MT1-MMP expression on cell proliferation suppression and induced-apoptosis in non-invasive MCF-7 and ZR-75-1 breast carcinoma. We provide evidence for a decrease in cell growth and an increase in apoptosis in the presence of adult collagen when compared to old collagen. This effect involves a differential activation of DDR1, as evidenced by a higher DDR1 phosphorylation level in adult collagen. In adult collagen, inhibition of DDR1 expression and kinase function induced an increase in cell growth to a level similar to that observed in old collagen. The impact of aging on the sensitivity of collagen to MT1-MMP has been reported recently. We used the MT1-MMP expression strategy to verify whether, by degrading adult type I collagen, it could lead to the same phenotype observed in old collagen 3D matrix. MT1-MMP overexpression abrogated the proliferation suppression and induced-apoptosis effects only in the presence of adult collagen. This suggests that differential collagen degradation by MT1-MMP induced a structural disorganization of adult collagen and inhibits DDR1 activation. This could in turn impair DDR1-induced cell growth suppression and apoptosis. Taken together, our data suggest that modifications of collagen structural organization, due to aging, contribute to the loss of the growth suppression and induced apoptosis effect of collagen in luminal breast carcinoma. MT1-MMP-dependent degradation and aging of collagen have no additive effects on these processes.
Xiao, Xia; Lei, Kin Fong; Huang, Chia-Hao
2015-01-01
Cell migration is a cellular response and results in various biological processes such as cancer metastasis, that is, the primary cause of death for cancer patients. Quantitative investigation of the correlation between cell migration and extracellular stimulation is essential for developing effective therapeutic strategies for controlling invasive cancer cells. The conventional method to determine cell migration rate based on comparison of successive images may not be an objective approach. In this work, a microfluidic chip embedded with measurement electrodes has been developed to quantitatively monitor the cell migration activity based on the impedimetric measurement technique. A no-damage wound was constructed by microfluidic phenomenon and cell migration activity under the stimulation of cytokine and an anti-cancer drug, i.e., interleukin-6 and doxorubicin, were, respectively, investigated. Impedance measurement was concurrently performed during the cell migration process. The impedance change was directly correlated to the cell migration activity; therefore, the migration rate could be calculated. In addition, a good match was found between impedance measurement and conventional imaging analysis. But the impedimetric measurement technique provides an objective and quantitative measurement. Based on our technique, cell migration rates were calculated to be 8.5, 19.1, and 34.9 μm/h under the stimulation of cytokine at concentrations of 0 (control), 5, and 10 ng/ml. This technique has high potential to be developed into a powerful analytical platform for cancer research. PMID:26180566
Wound healing potential of adipose tissue stem cell extract
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, You Kyung; Ban, Jae-Jun; Lee, Mijung
Adipose tissue stem cells (ATSCs) are considered as a promising source in the field of cell therapy and regenerative medicine. In addition to direct cell replacement using stem cells, intercellular molecule exchange by stem cell secretory factors showed beneficial effects by reducing tissue damage and augmentation of endogenous repair. Delayed cutaneous wound healing is implicated in many conditions such as diabetes, aging, stress and alcohol consumption. However, the effects of cell-free extract of ATSCs (ATSC-Ex) containing secretome on wound healing process have not been investigated. In this study, ATSC-Ex was topically applied on the cutaneous wound and healing speed wasmore » examined. As a result, wound closure was much faster in the cell-free extract treated wound than control wound at 4, 6, 8 days after application of ATSC-Ex. Dermal fibroblast proliferation, migration and extracellular matrix (ECM) production are critical aspects of wound healing, and the effects of ATSC-Ex on human dermal fibroblast (HDF) was examined. ATSC-Ex augmented HDF proliferation in a dose-dependent manner and migration ability was enhanced by extract treatment. Representative ECM proteins, collagen type I and matrix metalloproteinase-1, are significantly up-regulated by treatment of ATSC-Ex. Our results suggest that the ATSC-Ex have improving effect of wound healing and can be the potential therapeutic candidate for cutaneous wound healing. - Highlights: • Topical application of ATSC-Ex results in faster wound closure than normal wound in vivo. • ATSC-Ex enhances dermal fibroblast proliferation, migration and extracellular matrix production. • This study suggests that ATSC-Ex is an effective source to augment wound healing.« less
Sivasubramanian, Srinivasan; Chandrasekar, Gayathri; Svensson Akusjärvi, Sara; Thangam, Ramar; Sathuvan, Malairaj; Kumar, R B S; Hussein, Hawraa; Vincent, Savariar; Madhan, Balaraman; Gunasekaran, Palani; Kitambi, Satish S
2017-01-01
The potential of multifunctional wound heal biomaterial relies on the optimal content of therapeutic constituents as well as the desirable physical, chemical, and biological properties to accelerate the healing process. Formulating biomaterials such as amnion or collagen based scaffolds with natural products offer an affordable strategy to develop dressing material with high efficiency in healing wounds. Using image based phenotyping and quantification, we screened natural product derived bioactive compounds for modulators of types I and III collagen production from human foreskin derived fibroblast cells. The identified hit was then formulated with amnion to develop a biomaterial, and its biophysical properties, in vitro and in vivo effects were characterized. In addition, we performed functional profiling analyses by PCR array to understand the effect of individual components of these materials on various genes such as inflammatory mediators including chemokines and cytokines, growth factors, fibroblast stimulating markers for collagen secretion, matrix metalloproteinases, etc., associated with wound healing. FACS based cell cycle analyses were carried out to evaluate the potential of biomaterials for induction of proliferation of fibroblasts. Western blot analyses was done to examine the effect of biomaterial on collagen synthesis by cells and compared to cells grown in the presence of growth factors. This work demonstrated an uncomplicated way of identifying components that synergistically promote healing. Besides, we demonstrated that modulating local wound environment using biomaterials with bioactive compounds could enhance healing. This study finds that the developed biomaterials offer immense scope for healing wounds by means of their skin regenerative features such as anti-inflammatory, fibroblast stimulation for collagen secretion as well as inhibition of enzymes and markers impeding the healing, hydrodynamic properties complemented with other features including non-toxicity, biocompatibility, and safety.
Sivasubramanian, Srinivasan; Chandrasekar, Gayathri; Svensson Akusjärvi, Sara; Thangam, Ramar; Sathuvan, Malairaj; Kumar, R. B. S.; Hussein, Hawraa; Vincent, Savariar; Madhan, Balaraman; Gunasekaran, Palani; Kitambi, Satish S.
2017-01-01
The potential of multifunctional wound heal biomaterial relies on the optimal content of therapeutic constituents as well as the desirable physical, chemical, and biological properties to accelerate the healing process. Formulating biomaterials such as amnion or collagen based scaffolds with natural products offer an affordable strategy to develop dressing material with high efficiency in healing wounds. Using image based phenotyping and quantification, we screened natural product derived bioactive compounds for modulators of types I and III collagen production from human foreskin derived fibroblast cells. The identified hit was then formulated with amnion to develop a biomaterial, and its biophysical properties, in vitro and in vivo effects were characterized. In addition, we performed functional profiling analyses by PCR array to understand the effect of individual components of these materials on various genes such as inflammatory mediators including chemokines and cytokines, growth factors, fibroblast stimulating markers for collagen secretion, matrix metalloproteinases, etc., associated with wound healing. FACS based cell cycle analyses were carried out to evaluate the potential of biomaterials for induction of proliferation of fibroblasts. Western blot analyses was done to examine the effect of biomaterial on collagen synthesis by cells and compared to cells grown in the presence of growth factors. This work demonstrated an uncomplicated way of identifying components that synergistically promote healing. Besides, we demonstrated that modulating local wound environment using biomaterials with bioactive compounds could enhance healing. This study finds that the developed biomaterials offer immense scope for healing wounds by means of their skin regenerative features such as anti-inflammatory, fibroblast stimulation for collagen secretion as well as inhibition of enzymes and markers impeding the healing, hydrodynamic properties complemented with other features including non-toxicity, biocompatibility, and safety. PMID:28769790
Wahedi, Hussain Mustatab; Jeong, Minsun; Chae, Jae Kyoung; Do, Seon Gil; Yoon, Hyeokjun; Kim, Sun Yeou
2017-05-15
Cutaneous wound healing is a complex process involving various regulatory factors at the molecular level. Aloe vera is widely used for cell rejuvenation, wound healing, and skin moisturizing. This study aimed to investigate the effects of aloesin from Aloe vera on cutaneous wound healing and mechanisms involved therein. This study consisted of both in vitro and in vivo experiments involving skin cell lines and mouse model to demonstrate the wound healing effects of aloesin by taking into account several parameters ranging from cultured cell migration to wound healing in mice. The activities of Smad signaling molecules (Smad2 and Smad3), MAPKs (ERK and JNK), and migration-related proteins (Cdc42, Rac1, and α-Pak) were assessed after aloesin treatment in cultured cells (1, 5 and 10µM) and mouse skin (0.1% and 0.5%). We also monitored macrophage recruitment, secretion of cytokines and growth factors, tissue development, and angiogenesis after aloesin treatment using IHC analysis and ELISAs. Aloesin increased cell migration via phosphorylation of Cdc42 and Rac1. Aloesin positively regulated the release of cytokines and growth factors (IL-1β, IL-6, TGF-β1 and TNF-α) from macrophages (RAW264.7) and enhanced angiogenesis in endothelial cells (HUVECs). Aloesin treatment accelerated wound closure rates in hairless mice by inducing angiogenesis, collagen deposition and granulation tissue formation. More importantly, aloesin treatment resulted in the activation of Smad and MAPK signaling proteins that are key players in cell migration, angiogenesis and tissue development. Aloesin ameliorates each phase of the wound healing process including inflammation, proliferation and remodeling through MAPK/Rho and Smad signaling pathways. These findings indicate that aloesin has the therapeutic potential for treating cutaneous wounds. Copyright © 2017 Elsevier GmbH. All rights reserved.
Wang, Chenggui; Wang, Qingqing; Gao, Wendong; Zhang, Zengjie; Lou, Yiting; Jin, Haiming; Chen, Xiaofeng; Lei, Bo; Xu, Huazi; Mao, Cong
2018-03-15
Wound therapy with a rapid healing performance remains a critical clinical challenge. Cellular delivery is considered to be a promising approach to improve the efficiency of healing, yet problems such as compromised cell viability and functionality arise due to the inefficient delivery. Here, we report the efficient delivery of endothelial progenitor cells (EPCs) with a bioactive nanofibrous scaffold (composed of collagen and polycaprolactone and bioactive glass nanoparticles, CPB) for enhancing wound healing. Under the stimulation of CPB nanofibrous system, the viability and angiogenic ability of EPCs were significantly enhanced through the activation of Hif-1α/VEGF/SDF-1α signaling. In vivo, CPB/EPC constructs significantly enhanced the formation of high-density blood vessels by greatly upregulating the expressions of Hif-1α, VEGF, and SDF-1α. Moreover, owing to the increased local delivery of cells and fast neovascularization within the wound site, cell proliferative activity, granulation tissue formation, and collagen synthesis and deposition were greatly promoted by CPB/EPC constructs resulting in rapid re-epithelialization and regeneration of skin appendages. As a result, the synergistic enhancement of wound healing was observed from CPB/EPC constructs, which suggests the highly efficient delivery of EPCs. CPB/EPC constructs may become highly competitive cell-based therapeutic products for efficient impaired wound healing application. This study may also provide a novel strategy to develop bioactive cell therapy constructs for angiogenesis-related regenerative medicine. This paper reported a highly efficient local delivery of EPCs using bioactive glass-based CPB nanofibrous scaffold for enhancing angiogenesis and wound regeneration. In vitro study showed that CPB can promote the proliferation, migration, and tube formation of EPCs through upregulation of the Hif-1α/VEGF/SDF-1α signaling pathway, indicating that the bioactivity and angiogenic ability of EPCs can be highly maintained and promoted by the CPB scaffold. Moreover, CPB/EPC constructs effectively stimulated the regeneration of diabetic wounds with satisfactory vascularization and better healing outcomes in a full-thickness wound model, suggesting that the highly efficient delivery of EPCs to wound site facilitates angiogenesis and further leads to wound healing. The high angiogenic capacity and excellent healing ability make CPB/EPC constructs highly competitive in cell-based therapeutic products for efficient wound repair application. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Brandão, Rafael Augusto Castro Santiago; Costa, Bruno Silva; Dellaretti, Marcos Antonio; de Carvalho, Gervásio Teles C; Faria, Marcello Penholate; de Sousa, Atos Alves
2013-01-01
The use of dural grafts is very useful when primary dural closure cannot be achieved. Our primary objective was to study the incidence of postoperative cerebrospinal fluid leak, including fistula and pseudomeningocele, and postoperative infection by comparing autologous material and a new collagen graft. A prospective nonrandomized study with a new collagen-based product derived from porcine cells (Peridry) was performed. It was used for dural replacement in 50 patients who underwent a variety of neurosurgical procedures requiring the use of a dural graft. These results were compared with a control group of 50 patients who were treated with autologous duraplasty material. The follow-up period was 3 months. Postoperative overall cerebrospinal fluid fistula occurred in 6% of both groups. No patient in the collagen group developed any sort of infection. One patient in the control developed osteomyelitis in the bone flap. The new collagen-based product derived from porcine cells (Peridry), compared with an autologous tissue, is safe, effective, easy to use, as well as time saving in cranial neurosurgery. Copyright © 2013 Elsevier Inc. All rights reserved.
[Cultivated keratinocytes on micro-carriers: in vitro studies of a new carrier system].
Hecht, J; Hoefter, E A; Hecht, J; Haraida, S; Nerlich, A; Hartinger, A; Mühlbauer, W; Dimoudis, N
1997-03-01
Epidermal grafts from confluently cultivated keratinocytes have been used since the early eighties for the treatment of severe burns, where the shortage of donor sites for split-thickness skin grafts did not allow for adequate wound coverage. The difficult handling of these grafts as well as the advanced differentiation of their epithelial cells into a multilayer sheet poses a problem for their clinical application. The aim of the study was to characterize cultivated keratinocytes, as well as to observe their migration and proliferation from the MC onto a surface. Keratinocytes were isolated from human foreskin and cultivated in serum-free and serum-containing medium according to a modified method by Rheinwald and Green. Collagen-coated Dextran beads were used as MC. The MC were colonized with keratinocytes using the Spinner culture technique. After seeding the colonized MC into culture flasks, their migration and proliferation was monitored regularly through immunohistochemical studies and measurement of the metabolic cell activity. Immunohistological staining proved that the cells isolated from human foreskin represent keratinocytes of the basal type. Keratinocytes, cultivated with serum-containing and serum free medium, both adhered to the surface of the MC, then migrated onto the surface of the flasks and proliferated to form a multilayer of epithelial cells. In the long-term, a flexible epithelial graft consisting of poorly differentiated keratinocytes should be available, which is simple to produce and easy to handle. This would be an alternative method for treating wounds, where the conventional multilayer epithelial graft (ET) is insufficient.
Losartan Attenuates Scar Formation in Filtering Bleb After Trabeculectomy.
Shi, Huimin; Wang, Huiying; Fu, Shuhao; Xu, Kang; Zhang, Xiaoyan; Xiao, Yiqin; Ye, Wen
2017-03-01
To examine the effects of losartan on scar formation after trabeculectomy and on fibrotic changes of human Tenon's fibroblasts (HTFs). Trabeculectomy was performed on New Zealand rabbits. They were randomized to receive one of the following treatments: 0.9% normal saline, mitomycin-C, or one of the three doses of losartan. Bleb morphology, IOP, and histopathology examination were performed. Primary cultured HTFs were treated with losartan or vehicle, with or without angiotensin II (Ang II). Cell proliferation was assessed by Cell Counting Kit-8 assay, and cell migration was detected by scratch wound and transwell assay. Transdifferentiation was evaluated through the expression of α-smooth muscle actin (α-SMA) by immunofluorescence, real-time PCR, and Western blot. The expression of fibronectin (FN) was evaluated by real-time PCR and Western blot. An amount of 5 mg/mL of losartan subconjunctival injection significantly decreased IOP postoperatively and attenuated wound healing of the filtering bleb in the rabbit model. Immunostaining results showed less myofibroblast and collagen deposition around the bleb area in the losartan-treated eyes. Losartan (10-5 M) in vitro significantly attenuated Ang II's stimulatory effects on proliferation and migration of HTFs. Expressions of α-SMA and FN in these cells were also decreased by losartan pretreatment. Losartan attenuates scar formation of filtering bleb after trabeculectomy likely via decreasing proliferation, migration, transdifferentiation, and extracellular matrix deposition of Tenon's fibroblasts. These results indicate that losartan may be an effective therapeutic agent in preventing bleb scar formation and in improving surgical outcome after trabeculectomy.
NASA Astrophysics Data System (ADS)
Staunton, Jack R.; Doss, Bryant L.; Lindsay, Stuart; Ros, Robert
2016-01-01
Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion.
Biocompatible Collagen Paramagnetic Scaffold for Controlled Drug Release.
Bettini, Simona; Bonfrate, Valentina; Syrgiannis, Zois; Sannino, Alessandro; Salvatore, Luca; Madaghiele, Marta; Valli, Ludovico; Giancane, Gabriele
2015-09-14
A porous collagen-based hydrogel scaffold was prepared in the presence of iron oxide nanoparticles (NPs) and was characterized by means of infrared spectroscopy and scanning electron microscopy. The hybrid scaffold was then loaded with fluorescein sodium salt as a model compound. The release of the hydrosoluble species was triggered and accurately controlled by the application of an external magnetic field, as monitored by fluorescence spectroscopy. The biocompatibility of the proposed matrix was also tested by the MTT assay performed on 3T3 cells. Cell viability was only slightly reduced when the cells were incubated in the presence of the collagen-NP hydrogel, compared to controls. The economicity of the chemical protocol used to obtain the paramagnetic scaffolds as well as their biocompatibility and the safety of the external trigger needed to induce the drug release suggest the proposed collagen paramagnetic matrices for a number of applications including tissue engeneering and drug delivery.
Bouros, Evangelos; Filidou, Eirini; Arvanitidis, Konstantinos; Mikroulis, Dimitrios; Steiropoulos, Paschalis; Bamias, George; Bouros, Demosthenes; Kolios, George
2017-10-01
Idiopathic pulmonary fibrosis (IPF) is characterized by infiltration of inflammatory cells, excessive collagen production and accumulation of myofibroblasts. We explored the possible role of subepithelial lung myofibroblasts (SELMs) in the development of fibrosis in IPF. SELMs, isolated from surgical specimens of healthy lung tissue, were cultured with pro-inflammatory factors or bronchoalveolar lavage fluid (BALF) from patients with IPF or idiopathic non-specific interstitial pneumonia (iNSIP) and their fibrotic activity was assessed. Stimulation of SELMs with pro-inflammatory factors induced a significant increase of Tissue Factor (TF) and Tumor necrosis factor-Like cytokine 1 A (TL1A) expression and collagen production in culture supernatants. Stimulation with BALF from IPF patients with mild to moderate, but not severe disease, and from iNSIP patients induced a significant increase of TF expression. BALF from all IPF patients induced a significant increase of TL1A expression and collagen production, while BALF from iNSIP patients induced a significant increase of TL1A, but not of collagen production. Interestingly, TGF-β1 and BALF from all IPF, but not iNSIP patients, induced a significant increase in SELMs migration. In conclusion, BALF from IPF patients induces fibrotic activity in lung myofibroblasts, similar to mediators associated with lung fibrosis, indicating a key role of SELMs in IPF. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kikuchi, Keiji; Takahashi, Kazuhide
2008-11-01
Invadopodia, small protrusions formed at ventral membranes of several types of invasive cancer cells upon contact with the extracellular matrix (ECM), are implicated in cell invasion; however, the relationship between invadopodia formation and cell invasion through the ECM is still unknown. To correlate the formation of membrane protrusions and cell invasion, a three-dimensional (3-D) gel culture system with native collagen type-I matrix overlaid with a thin basement membrane equivalent (Matrigel) was made. Human breast cancer cell line MDA-MB-231 formed long protrusions in addition to small protrusions reminiscent of invadopodia and migrated into the collagen layer. Comparative analyses with other cancer cell lines indicate that cellular ability to form long protrusions, but not small protrusions or invadopodia, correlates with cellular invasiveness in the 3-D culture. Some of the long protrusions in MDA-MB-231 cells appeared to extend from the adherence membrane, implying that they are derived from small protrusions. The formation of long protrusions and invasion, as well as the formation of invadopodia, required WAVE2 in MDA-MB-231 cells. Accumulation of tubulin was observed in long protrusions but not in invadopodia. Correspondingly, a microtubule-stabilizing agent, paclitaxel, suppressed the formation of long protrusions and invasion, but not the formation of invadopodia, in MDA-MB-231 cells. These results suggest that long protrusions formed in a WAVE2- and microtubule-dependent manner may identify the cells at the later stage of invasion, possibly after the formation of invadopodia in the 3-D cultures.
Wound healing potential of adipose tissue stem cell extract.
Na, You Kyung; Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho
2017-03-25
Adipose tissue stem cells (ATSCs) are considered as a promising source in the field of cell therapy and regenerative medicine. In addition to direct cell replacement using stem cells, intercellular molecule exchange by stem cell secretory factors showed beneficial effects by reducing tissue damage and augmentation of endogenous repair. Delayed cutaneous wound healing is implicated in many conditions such as diabetes, aging, stress and alcohol consumption. However, the effects of cell-free extract of ATSCs (ATSC-Ex) containing secretome on wound healing process have not been investigated. In this study, ATSC-Ex was topically applied on the cutaneous wound and healing speed was examined. As a result, wound closure was much faster in the cell-free extract treated wound than control wound at 4, 6, 8 days after application of ATSC-Ex. Dermal fibroblast proliferation, migration and extracellular matrix (ECM) production are critical aspects of wound healing, and the effects of ATSC-Ex on human dermal fibroblast (HDF) was examined. ATSC-Ex augmented HDF proliferation in a dose-dependent manner and migration ability was enhanced by extract treatment. Representative ECM proteins, collagen type I and matrix metalloproteinase-1, are significantly up-regulated by treatment of ATSC-Ex. Our results suggest that the ATSC-Ex have improving effect of wound healing and can be the potential therapeutic candidate for cutaneous wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.
Schenke-Layland, Katja; Rofail, Fady; Heydarkhan, Sanaz; Gluck, Jessica M.; Ingle, Nilesh P.; Angelis, Ekaterini; Choi, Chang-Hwan; MacLellan, W Robb; Beygui, Ramin E; Shemin, Richard J; Heydarkhan-Hagvall, Sepideh
2009-01-01
Synthetic polymers or naturally-derived extracellular matrix (ECM) proteins have been used to create tissue engineering scaffolds; however, the need for surface modification in order to achieve polymer biocompatibility and the lack of biomechanical strength of constructs built using proteins alone remain major limitations. To overcome these obstacles, we developed novel hybrid constructs composed of both strong biosynthetic materials and natural human ECM proteins. Taking advantage of the ability of cells to produce their own ECM, human foreskin fibroblasts were grown on silicon-based nanostructures exhibiting various surface topographies that significantly enhanced ECM protein production. After 4 weeks, cell-derived sheets were harvested and histology, immunochemistry, biochemistry and multiphoton imaging revealed the presence of collagens, tropoelastin, fibronectin and glycosaminoglycans. Following decellularization, purified sheet-derived ECM proteins were mixed with poly(ε-caprolactone) to create fibrous scaffolds using electrospinning. These hybrid scaffolds exhibited excellent biomechanical properties with fiber and pore sizes that allowed attachment and migration of adipose tissue-derived stem cells. Our study represents an innovative approach to generate strong, non-cytotoxic scaffolds that could have broad applications in tissue regeneration strategies. PMID:19524289
Kim, Yong Bok; Lee, Hyeongjin; Kim, Geun Hyung
2016-11-30
Recently, a three-dimensional (3D) bioprinting process for obtaining a cell-laden structure has been widely applied because of its ability to fabricate biomimetic complex structures embedded with and without cells. To successfully obtain a cell-laden porous block, the cell-delivering vehicle, bioink, is one of the significant factors. Until now, various biocompatible hydrogels (synthetic and natural biopolymers) have been utilized in the cell-printing process, but a bioink satisfying both biocompatibility and print-ability requirements to achieve a porous structure with reasonable mechanical strength has not been issued. Here, we propose a printing strategy with optimal conditions including a safe cross-linking procedure for obtaining a 3D porous cell block composed of a biocompatible collagen-bioink and genipin, a cross-linking agent. To obtain the optimal processing conditions, we modified the 3D printing machine and selected an optimal cross-linking condition (∼1 mM and 1 h) of genipin solution. To show the feasibility of the process, 3D pore-interconnected cell-laden constructs were manufactured using osteoblast-like cells (MG63) and human adipose stem cells (hASCs). Under these processing conditions, a macroscale 3D collagen-based cell block of 21 × 21 × 12 mm 3 and over 95% cell viability was obtained. In vitro biological testing of the cell-laden 3D porous structure showed that the embedded cells were sufficiently viable, and their proliferation was significantly higher; the cells also exhibited increased osteogenic activities compared to the conventional alginate-based bioink (control). The results indicated the fabrication process using the collagen-bioink would be an innovative platform to design highly biocompatible and mechanically stable cell blocks.
Moisenovich, M. M.; Arkhipova, A. Yu.; Orlova, A. A.; Drutskaya, M. S; Volkova, S. V.; Zacharov, S. E.; Agapov, I. I.; Kirpichnikov, M. P.
2014-01-01
Three-dimensional (3D) silk fibroin scaffolds were modified with one of the major bone tissue derivatives (nano-hydroxyapatite) and/or a collagen derivative (gelatin). Adhesion and proliferation of mouse embryonic fibroblasts (MEF) within the scaffold were increased after modification with either nano-hydroxyapatite or gelatin. However, a significant increase in MEF adhesion and proliferation was observed when both additives were introduced into the scaffold. Such modified composite scaffolds provide a new and better platform to study wound healing, bone and other tissue regeneration, as well as artificial organ bioengineering. This system can further be applied to establish experimental models to study cell-substrate interactions, cell migration and other complex processes, which may be difficult to address using the conventional two-dimensional culture systems. PMID:24772332
Filamin A regulates the organization and remodeling of the pericellular collagen matrix.
Mezawa, Masaru; Pinto, Vanessa I; Kazembe, Mwayi P; Lee, Wilson S; McCulloch, Christopher A
2016-10-01
Extracellular matrix remodeling by cell adhesion-related processes is critical for proliferation and tissue homeostasis, but how adhesions and the cytoskeleton interact to organize the pericellular matrix (PCM) is not understood. We examined the role of the actin-binding protein, filamin A (FLNa), in pericellular collagen remodeling. Compared with wild-type (WT), mice with fibroblast-specific deletion of FLNa exhibited higher density but reduced organization of collagen fibers after increased loading of the periodontal ligament for 2 wk. In cultured fibroblasts, FLNa knockdown (KD) did not affect collagen mRNA, but after 24 h of culture, FLNa WT cells exhibited ∼2-fold higher cell-surface collagen KD cells and 13-fold higher levels of activated β1 integrins. In FLNa WT cells, there was 3-fold more colocalization of talin with pericellular cleaved collagen than in FLNa KD cells. MMP-9 mRNA and protein expression were >2-fold higher in FLNa KD cells than in WT cells. Cathepsin B, which is necessary for intracellular collagen digestion, was >3-fold higher in FLNa WT cells than in KD cells. FLNa WT cells exhibited 2-fold more collagen phagocytosis than KD cells, which involved the FLNa actin-binding domain. Evidently, FLNa regulates PCM remodeling through its effects on degradation pathways that affect the abundance and organization of collagen.-Mezawa, M., Pinto, V. I., Kazembe, M. P., Lee, W. S., McCulloch, C. A. Filamin A regulates the organization and remodeling of the pericellular collagen matrix. © FASEB.
Dancing Styles of Collective Cell Migration: Image-Based Computational Analysis of JRAB/MICAL-L2.
Sakane, Ayuko; Yoshizawa, Shin; Yokota, Hideo; Sasaki, Takuya
2018-01-01
Collective cell migration is observed during morphogenesis, angiogenesis, and wound healing, and this type of cell migration also contributes to efficient metastasis in some kinds of cancers. Because collectively migrating cells are much better organized than a random assemblage of individual cells, there seems to be a kind of order in migrating clusters. Extensive research has identified a large number of molecules involved in collective cell migration, and these factors have been analyzed using dramatic advances in imaging technology. To date, however, it remains unclear how myriad cells are integrated as a single unit. Recently, we observed unbalanced collective cell migrations that can be likened to either precision dancing or awa-odori , Japanese traditional dancing similar to the style at Rio Carnival, caused by the impairment of the conformational change of JRAB/MICAL-L2. This review begins with a brief history of image-based computational analyses on cell migration, explains why quantitative analysis of the stylization of collective cell behavior is difficult, and finally introduces our recent work on JRAB/MICAL-L2 as a successful example of the multidisciplinary approach combining cell biology, live imaging, and computational biology. In combination, these methods have enabled quantitative evaluations of the "dancing style" of collective cell migration.
Evaluation of nanostructural, mechanical, and biological properties of collagen-nanotube composites.
Tan, Wei; Twomey, John; Guo, Dongjie; Madhavan, Krishna; Li, Min
2010-06-01
Collagen I is an essential structural and mechanical building block of various tissues, and it is often used as tissue-engineering scaffolds. However, collagen-based constructs reconstituted in vitro often lacks robust fiber structure, mechanical stability, and molecule binding capability. To enhance these performances, the present study developed 3-D collagen-nanotube composite constructs with two types of functionalized carbon nanotubes, carboxylated nanotubes and covalently functionalized nanotubes (CFNTs). The influences of nanotube functionalization and loading concentration on the collagen fiber structure, mechanical property, biocompatibility, and molecule binding were examined. Results revealed that surface modification and loading concentration of nanotubes determined the interactions between nanotubes and collagen fibrils, thus altering the structure and property of nanotube-collagen composites. Scanning electron microscopy and confocal microscopy revealed that the incorporation of CFNT in collagen-based constructs was an effective means of restructuring collagen fibrils because CFNT strongly bound to collagen molecules inducing the formation of larger fibril bundles. However, increased nanotube loading concentration caused the formation of denser fibril network and larger aggregates. Static stress-strain tests under compression showed that the addition of nanotube into collagen-based constructs did not significantly increase static compressive moduli. Creep/recovery testing under compression revealed that CFNT-collagen constructs showed improved mechanical stability under continuous loading. Testing with endothelial cells showed that biocompatibility was highly dependent on nanotube loading concentration. At a low loading level, CFNT-collagen showed higher endothelial coverage than the other tested constructs or materials. Additionally, CFNT-collagen showed capability of binding to other biomolecules to enhance the construct functionality. In conclusion, functionalized nanotube-collagen composites, particularly CFNT-collagen composites, could be promising materials, which provide structural support showing bundled fibril structure, biocompatibility, multifunctionality, and mechanical stability, but rigorous control over chemical modification, loading concentration, and nanotube dispersion are needed.
Hyaluronan in aged collagen matrix increases prostate epithelial cell proliferation
Damodarasamy, Mamatha; Vernon, Robert B.; Chan, Christina K.; Plymate, Stephen R.; Wight, Thomas N.
2015-01-01
The extracellular matrix (ECM) of the prostate, which is comprised primarily of collagen, becomes increasingly disorganized with age, a property that may influence the development of hyperplasia and cancer. Collageous ECM extracted from the tails of aged mice exhibits many characteristics of collagen in aged tissues, including the prostate. When polymerized into a 3-dimensional (3D) gel, these collagen extracts can serve as models for the study of specific cell-ECM interactions. In the present study, we examined the behaviors of human prostatic epithelial cell lines representing normal prostate epithelial cells (PEC), benign prostatic hyperplasia (BPH-1), and adenocarcinoma (LNCaP) cultured in contact with 3D gels made from collagen extracts of young and aged mice. We found that proliferation of PEC, BPH-1, and LNCaP cells were all increased by culture on aged collagen gels relative to young collagen gels. In examining age-associated differences in the composition of the collagen extracts, we found that aged and young collagen had a similar amount of several collagen-associated ECM components, but aged collagen had a much greater content of the glycosaminoglycan hyaluronan (HA) than young collagen. The addition of HA (of similar size and concentration to that found in aged collagen extracts) to cells placed in young collagen elicited significantly increased proliferation in BPH-1 cells, but not in PEC or LNCaP cells, relative to controls not exposed to HA. Of note, histochemical analyses of human prostatic tissues showed significantly higher expression of HA in BPH and prostate cancer stroma relative to stroma of normal prostate. Collectively, these results suggest that changes in ECM involving increased levels of HA contribute to the growth of prostatic epithelium with aging. PMID:25124870
Type I collagen aging impairs discoidin domain receptor 2-mediated tumor cell growth suppression
Saby, Charles; Buache, Emilie; Brassart-Pasco, Sylvie; El Btaouri, Hassan; Courageot, Marie-Pierre; Van Gulick, Laurence; Garnotel, Roselyne; Jeannesson, Pierre; Morjani, Hamid
2016-01-01
Tumor cells are confronted to a type I collagen rich environment which regulates cell proliferation and invasion. Biological aging has been associated with structural changes of type I collagen. Here, we address the effect of collagen aging on cell proliferation in a three-dimensional context (3D). We provide evidence for an inhibitory effect of adult collagen, but not of the old one, on proliferation of human fibrosarcoma HT-1080 cells. This effect involves both the activation of the tyrosine kinase Discoidin Domain Receptor 2 (DDR2) and the tyrosine phosphatase SHP-2. DDR2 and SHP-2 were less activated in old collagen. DDR2 inhibition decreased SHP-2 phosphorylation in adult collagen and increased cell proliferation to a level similar to that observed in old collagen. In the presence of old collagen, a high level of JAK2 and ERK1/2 phosphorylation was observed while expression of the cell cycle negative regulator p21CIP1 was decreased. Inhibition of DDR2 kinase function also led to an increase in ERK1/2 phosphorylation and a decrease in p21CIP1 expression. Similar signaling profile was observed when DDR2 was inhibited in adult collagen. Altogether, these data suggest that biological collagen aging could increase tumor cell proliferation by reducingthe activation of the key matrix sensor DDR2. PMID:27121132
p27(kip1) Knockout enhances collateralization in response to hindlimb ischemia.
Ankri-Eliahoo, Galit; Weitz, Kevin; Cox, Timothy C; Tang, Gale L
2016-05-01
The natural response to arterial occlusive disease is enlargement of collaterals; however, the molecular factors that control collateralization are not well understood. The gene p27(Kip1) (p27) affects human response to arterial injury. Previous studies have shown that overexpression of p27 inhibits vascular endothelial and vascular smooth muscle cell (VSMC) proliferation and angiogenesis. To test the hypothesis that knockout of p27 would improve collateralization in reaction to ischemia, we performed in vivo and in vitro experiments using p27 knockout (p27(-/-)) and wild-type (wt) mice. Hindlimb ischemia was induced by left femoral artery ligation in p27(-/-) and wt (C57BL/6) female mice. The mice underwent weekly laser Doppler perfusion imaging of the footpads until sacrifice on postoperative day 28 followed by microcomputed tomography scanning of both hindlimbs. VSMCs were isolated from p27(-/-) and wt mice and used in migration and gel contraction assays in the absence and presence of the nonspecific matrix metalloproteinase (MMP) inhibitor BB94. MMP-2 and MMP-9 messenger RNA (mRNA) expression was measured by quantitative reverse transcription-polymerase chain reaction in p27(-/-) and wt VSMCs. p27(-/-) mice reperfused more effectively than wt mice by laser Doppler starting from day 7 (ischemic/nonischemic ratio, 0.33 ± 0.02 vs 0.25 ± 0.02; P < .05) and continuing through day 28 (0.45 ± 0.04 vs 0.31 ± 0.04; P < .05). The gracilis collateral diameter was similar for the nonischemic hindlimbs of the p27(-/-) and wt mice, and this collateral pathway increased similarly after ischemia as assessed by microcomputed tomography. However, the p27(-/-) mice significantly enlarged a novel collateral pathway that bridged directly between the femoral artery proximal to the ligation site and the saphenous or popliteal artery distal to the ligation site more than wt mice (158 ± 18.3 vs 82 ± 22 μm; P < .001). p27(-/-) VSMCs migrated more (79% ± 5% vs 56% ± 6%; P < .05) and caused more gel contraction (18% ± 5% of the initial area vs 43% ± 4%; P < .05) than wt cells. Migration and collagen contraction were abolished in p27(-/-) and wt cells by MMP inhibition. p27(-/-) cells expressed significantly more MMP-2 mRNA than wt cells did. Knockout of p27 enhances arterial collateralization in response to hindlimb ischemia through enlargement of a new collateral pathway. In vitro, knockout of p27 increases collagen gel contraction in addition to stimulating VSMC migration. We speculate that p27 may affect collateralization through its role in regulating MMP-2 expression. Published by Elsevier Inc.
Ehrlich, H Paul; Moyer, Kurtis E
2013-01-01
The fibroblast-populated collagen lattice (FPCL) was intended to act as the dermal component for "skin-equivalent" or artificial skin developed for skin grafting burn patients. The "skin-equivalent" was clinically unsuccessful as a skin graft, but today it is successfully used as a dressing for the management of chronic wounds. The FPCL has, however, become an instrument for investigating cell-connective tissue interactions within a three-dimensional matrix. Through the capacity of cell compaction of collagen fibrils, the FPCL undergoes a reduction in volume referred to as lattice contraction. Lattice contraction proceeds by cell-generated forces that reduce the water mass between collagen fibers, generating a closer relationship between collagen fibers. The compaction of collagen fibers is responsible for the reduction in the FPCL volume. Cell-generated forces through the linkage of collagen fibers with fibroblast's cytoskeletal actin-rich microfilament structures are responsible for the completion of the collagen matrix compaction. The type of culture dish used to cast FPCL as well as the cell number will dictate the mechanism for compacting collagen matrices. Fibroblasts, at moderate density, cast as an FPCL within a petri dish and released from the surface of the dish soon after casting compact collagen fibers through cell tractional forces. Fibroblasts at moderate density cast as an FPCL within a tissue culture dish and not released for 4 days upon release show rapid lattice contraction through a mechanism of cell contraction forces. Fibroblasts at high density cast in an FPCL within a petri dish, released from the surface of the dish soon after casting, compact a collagen lattice very rapidly through forces related to cell elongation. The advantage of the FPCL contraction model is the study of cells in the three-dimensional environment, which is similar to the environment from which these cells were isolated. In this chapter methods are described for manufacturing collagen lattices, which assess the three forces involved in compacting and/or organizing collagen fibrils into thicker collagen fibers. The clinical relevance of the FPCL contraction model is related to advancing our understanding of wound contraction and scar contracture.
NASA Astrophysics Data System (ADS)
Bordeaux-Rego, P.; Baratti, M. O.; Duarte, A. S. S.; Ribeiro, T. B.; Andreoli-Risso, M. F.; Vidal, B.; Miranda, J. B.; Adur, J.; de Thomaz, A. A.; Pelegati, V. B.; Costa, F. F.; Carvalho, H. F.; Cesar, C. L.; Luzo, A.; Olalla Saad, S. T.
2012-03-01
Articular cartilage injury remains one of the major concerns in orthopedic surgery. Mesenchymal stem cell (MSC) transplantation has been introduced to avoid some of the side effects and complications of current techniques.. With the aim to evaluate chondrogenic differentiation of mesenchymal stem cells, we used Second Harmonic Generation (SHG) microscopy to analyze the aggregation and orientation of collagen fibrils in the hyaline cartilage of rabbit knees. The experiment was performed using implants with type II collagen hydrogel (a biomaterial that mimics the microenvironment of the cartilage), one implant containing MSC and one other without MSC (control). After 10 weeks, the rabbit knees were dissected and fibril collagen distribution and spatial organization in the extracellular matrix of the lesions were verified by SHG. The result showed significant differences, whereas in histological sections of the cartilaginous lesions with MSC the collagen fibers are organized and regular; in the control sections the collagen fibers are more irregular, with absence of cells. A macroscopic analysis of the lesions confirmed this difference, showing a greater percentage of lesions filling in knees treated with MSC than in the knees used as controls. This study demonstrates that SHG microscopy will be an excellent tool to help in the evaluation of the effectiveness of MSC-based cell therapy for cartilage repair.
Recombinant mouse periostin ameliorates coronal sutures fusion in Twist1+/- mice.
Bai, Shanshan; Li, Dong; Xu, Liang; Duan, Huichuan; Yuan, Jie; Wei, Min
2018-04-17
Saethre-Chotzen syndrome is an autosomal dominantly inherited disorder caused by mutations in the twist family basic helix-loop-helix transcription factor 1 (TWIST1) gene. Surgical procedures are frequently required to reduce morphological and functional defects in patients with Saethre-Chotzen syndrome. Therefore, the development of noninvasive procedures to treat Saethre-Chotzen syndrome is critical. We identified that periostin, which is an extracellular matrix protein that plays an important role in both bone and connective tissues, is downregulated in craniosynostosis patients. We aimed to verify the effects of different concentrations (0, 50, 100, and 200 μg/l) of recombinant mouse periostin in Twist1 +/- mice (a mouse model of Saethre-Chotzen syndrome) coronal suture cells in vitro and in vivo. Cell proliferation, migration, and osteogenic differentiation were observed and detected. Twist1 +/- mice were also injected with recombinant mouse periostin to verify the treatment effects. Cell Counting Kit-8 results showed that recombinant mouse periostin inhibited the proliferation of suture-derived cells in a time- and concentration-dependent manner. Cell migration was also suppressed when treated with recombinant mouse periostin. Real-time quantitative PCR and Western blotting results suggested that messenger ribonucleic acid and protein expression of alkaline phosphatase, bone sialoprotein, collagen type I, and osteocalcin were all downregulated after treatment with recombinant mouse periostin. However, the expression of Wnt-3a, Wnt-1, and β-catenin were upregulated. The in vivo results demonstrated that periostin-treated Twist1 +/- mice showed patent coronal sutures in comparison with non-treated Twist1 +/- mice which have coronal craniosynostosis. Our results suggest that recombinant mouse periostin can inhibit coronal suture cell proliferation and migration and suppress osteogenic differentiation of suture-derived cells via Wnt canonical signaling, as well as ameliorate coronal suture fusion in Twist1 +/- mice.
Dysregulation of Lysyl Oxidase Expression in Lesions and Endometrium of Women With Endometriosis
Ruiz, Lynnette A.; Báez-Vega, Perla M.; Ruiz, Abigail; Peterse, Daniëlle P.; Monteiro, Janice B.; Bracero, Nabal; Beauchamp, Pedro; Fazleabas, Asgerally T.; Flores, Idhaliz
2015-01-01
Lysyl oxidases (LOXs) are enzymes involved in collagen deposition, extracellular membrane remodeling, and invasive/metastatic potential. Previous studies reveal an association of LOXs and endometriosis. We aimed to identify the mechanisms activated by upregulation of lysyl oxidases (LOX) in endometriotic cells and tissues. We hypothesized that LOX plays a role in endometriosis by promoting invasiveness and epithelial to mesenchymal transition (EMT). Methods: The LOX protein expression levels were measured by immunohistochemistry in lesions and endometrium on a tissue microarray (TMA) and in endometrial biopsies from patients and controls during the window of implantation (WOI). Estradiol regulation of LOX expression was determined by quantitative polymerase chain reaction (qPCR). Proliferation, invasion, and migration assays were performed in epithelial (endometrial epithelial cell), endometrial (human endometrial stromal cell), and endometriotic cell lines (ECL and 12Z). Pathway-focused multiplex qPCR was used to determine transcriptome changes due to LOX overexpression. Results: LOX protein was differentially expressed in ovarian versus peritoneal lesions. During WOI, LOX levels were higher in luminal epithelium of patients with endometriosis-associated infertility compared to controls. Invasive epithelial cell lines expressed higher levels of LOX than noninvasive ones. Transfection of LOX into noninvasive epithelial cells increased their migration in an LOX inhibitor-sensitive manner. Overexpression of LOX did not fully induce EMT but the expression of genes related to fibrosis and extracellular matrix remodeling were dysregulated. Conclusions: This study documents that expression of LOX is differentially regulated in endometriotic lesions and endometrium. A role for LOX in mediating proliferation, migration, and invasion of endometrial and endometriotic cells was observed, which may be implicated in the establishment and progression of endometriotic lesions. PMID:25963914
SU-E-J-107: Supervised Learning Model of Aligned Collagen for Human Breast Carcinoma Prognosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bredfeldt, J; Liu, Y; Conklin, M
Purpose: Our goal is to develop and apply a set of optical and computational tools to enable large-scale investigations of the interaction between collagen and tumor cells. Methods: We have built a novel imaging system for automating the capture of whole-slide second harmonic generation (SHG) images of collagen in registry with bright field (BF) images of hematoxylin and eosin stained tissue. To analyze our images, we have integrated a suite of supervised learning tools that semi-automatically model and score collagen interactions with tumor cells via a variety of metrics, a method we call Electronic Tumor Associated Collagen Signatures (eTACS). Thismore » group of tools first segments regions of epithelial cells and collagen fibers from BF and SHG images respectively. We then associate fibers with groups of epithelial cells and finally compute features based on the angle of interaction and density of the collagen surrounding the epithelial cell clusters. These features are then processed with a support vector machine to separate cancer patients into high and low risk groups. Results: We validated our model by showing that eTACS produces classifications that have statistically significant correlation with manual classifications. In addition, our system generated classification scores that accurately predicted breast cancer patient survival in a cohort of 196 patients. Feature rank analysis revealed that TACS positive fibers are more well aligned with each other, generally lower density, and terminate within or near groups of epithelial cells. Conclusion: We are working to apply our model to predict survival in larger cohorts of breast cancer patients with a diversity of breast cancer types, predict response to treatments such as COX2 inhibitors, and to study collagen architecture changes in other cancer types. In the future, our system may be used to provide metastatic potential information to cancer patients to augment existing clinical assays.« less
Peng, Xueyan; Moore, Meagan; Mathur, Aditi; Zhou, Yang; Sun, Huanxing; Gan, Ye; Herazo-Maya, Jose D.; Kaminski, Naftali; Hu, Xinyuan; Pan, Hongyi; Ryu, Changwan; Osafo-Addo, Awo; Homer, Robert J.; Feghali-Bostwick, Carol; Fares, Wassim H.; Gulati, Mridu; Hu, Buqu; Lee, Chun-Geun; Elias, Jack A.; Herzog, Erica L.
2016-01-01
Pulmonary fibrosis is a progressive and often fatal condition that is believed to be partially orchestrated by macrophages. Mechanisms that control migration of these cells into and within the lung remain undefined. We evaluated the contributions of the semaphorin receptor, plexin C1 (PLXNC1), and the exocytic calcium sensor, synaptotagmin 7 (Syt7), in these processes. We evaluated the role of PLXNC1 in macrophage migration by using Boyden chambers and scratch tests, characterized its contribution to experimentally induced lung fibrosis in mice, and defined the mechanism for our observations. Our findings reveal that relative to control participants, patients with idiopathic pulmonary fibrosis demonstrate excessive monocyte migration and underexpression of PLXNC1 in the lungs and circulation, a finding that is recapitulated in the setting of scleroderma-related interstitial lung disease. Relative to wild type, PLXNC1−/− mouse macrophages are excessively migratory, and PLXNC1−/− mice show exacerbated collagen accumulation in response to either inhaled bleomycin or inducible lung targeted TGF-β1 overexpression. These findings are ameliorated by replacement of PLXNC1 on bone marrow–derived cells or by genetic deletion of Syt7. These data demonstrate the previously unrecognized observation that PLXNC1 deficiency permits Syt7-mediated macrophage migration and enhances mammalian lung fibrosis.—Peng, X., Moore, M., Mathur, A., Zhou, Y., Sun, H., Gan, Y., Herazo-Maya, J. D., Kaminski, N., Hu, X., Pan, H., Ryu, C., Osafo-Addo, A., Homer, R. J., Feghali-Bostwick, C., Fares, W. H., Gulati, M., Hu, B., Lee, C.-G., Elias, J. A., Herzog, E. L. Plexin C1 deficiency permits synaptotagmin 7–mediated macrophage migration and enhances mammalian lung fibrosis. PMID:27609773
Gulubova, M V
1996-07-01
Extrahepatic cholestasis causes excessive extracellular matrix formation perisinusoidally. Ito cells, transitional and endothelial cells are considered to be a source of extracellular matrix proteins in experimental cholestasis. The localization of collagens type III and type IV in human liver in extrahepatic cholestasis was investigated immunohistochemically in the present study. Immersion fixation was used after modification to be applied to surgical biopsies with commercially available kits. Sinusoidal changes were observed that indicated excessive collagen and matrix formation. Light microscopically, increased immunostaining with the two collagen antibodies was found perisinusoidally and portally. Ultrastructurally, collagen type III positive fibres were found beneath basement membranes of vessels, in collagen bundles and as a fibrillar network in the space of Disse. Collagen type IV immunostaining was located in portal tracts and near hepatocyte microvilli. Intracellular staining with collagen type IV was detected in the rough endoplasmic reticulum of some transitional cells. Immunostaining was located around transitional cells, Ito cells or endothelial cells mainly. Our study indicates that Ito cells, transitional and endothelial cells are the main source of collagens type III and IV in the space of Disse in extrahepatic cholestasis in humans.
Desai, Anu; Kisaalita, William S; Keith, Charles; Wu, Z-Z
2006-02-15
Cell-based three-dimensional systems are desirable in the field of high throughput screening assays due to their potential similarity to in vivo environment. We have used SH-SY5Y human neuroblastoma cells cultured in 3-D collagen hydrogel, confocal microscopy and immunofluorescence staining, to assess the merit of the system as a functional, cell-based biosensor. Our results show differences between 2-D and 3-D resting membrane potential development profile upon differentiation. There was no statistically significant difference in SH-SY5Y proliferation rate between 2-D monolayer and 3-D collagen culture formats. A large percentage of cells (2-D, 91.30% and 3-D, 84.93%) did not develop resting membrane potential value equal to or lower than -40 mV; instead cells exhibited a heterogeneous resting membrane potential distribution. In response to high K(+) (50 mM) depolarization, 3-D cells were less responsive in terms of increase in intracellular Ca(2+), in comparison to 2-D cells, supporting the hypothesis that 2-D cell calcium dynamics may be exaggerated. L-Type Ca(2+) expression levels based on staining results was inconsistent with Bay K 8644 channel activation results, strongly suggesting that either the majority of the channels were non-functional or could not be activated by Bay K 8644. In general, the results in this study confirm the depolarization-induced differences in intracellular calcium release when cultured using a 2-D versus a 3-D matrix.
Liu, B; Harrell, R; Lamb, D J; Dresden, M H; Spira, M
1989-10-15
Human fibroblasts and A431 human epidermoid carcinoma cells were cultured on gamma-irradiated human amnion collagen as well as on plastic dishes and non-irradiated collagen coated dishes. The morphology, attachment, growth and short-term cytotoxicity of these culture conditions have been determined. Both irradiated and non-irradiated amnion collagen enhanced the attachment and proliferation of fibroblasts as compared to the plastic dishes. No differences in these properties were observed for A431 cells cultured on irradiated collagen when compared with culture on non-irradiated collagen substrates. Cytotoxicity assays showed that irradiated and non-irradiated collagens were not cytotoxic for either fibroblasts or A431 cells. The results demonstrated that amnion collagen irradiated at doses of 0.25-2.0 Mrads is optimal for cell growth.
Cell Migration in 1D and 2D Nanofiber Microenvironments.
Estabridis, Horacio M; Jana, Aniket; Nain, Amrinder; Odde, David J
2018-03-01
Understanding how cells migrate in fibrous environments is important in wound healing, immune function, and cancer progression. A key question is how fiber orientation and network geometry influence cell movement. Here we describe a quantitative, modeling-based approach toward identifying the mechanisms by which cells migrate in fibrous geometries having well controlled orientation. Specifically, U251 glioblastoma cells were seeded onto non-electrospinning Spinneret based tunable engineering parameters fiber substrates that consist of networks of suspended 400 nm diameter nanofibers. Cells were classified based on the local fiber geometry and cell migration dynamics observed by light microscopy. Cells were found in three distinct geometries: adhering two a single fiber, adhering to two parallel fibers, and adhering to a network of orthogonal fibers. Cells adhering to a single fiber or two parallel fibers can only move in one dimension along the fiber axis, whereas cells on a network of orthogonal fibers can move in two dimensions. We found that cells move faster and more persistently in 1D geometries than in 2D, with cell migration being faster on parallel fibers than on single fibers. To explain these behaviors mechanistically, we simulated cell migration in the three different geometries using a motor-clutch based model for cell traction forces. Using nearly identical parameter sets for each of the three cases, we found that the simulated cells naturally replicated the reduced migration in 2D relative to 1D geometries. In addition, the modestly faster 1D migration on parallel fibers relative to single fibers was captured using a correspondingly modest increase in the number of clutches to reflect increased surface area of adhesion on parallel fibers. Overall, the integrated modeling and experimental analysis shows that cell migration in response to varying fibrous geometries can be explained by a simple mechanical readout of geometry via a motor-clutch mechanism.
Nashchekina, Yu A; Yudintceva, N M; Nikonov, P O; Ivanova, E A; Smagina, L V; Voronkina, I V
2017-05-01
Collagen I gels with protein concentrations of 1, 2, and 3.5 mg/ml were prepared and embedded in a porous polylactide scaffold to reduce their contraction. Concentration of the gel did not affect its degradation. Collagen gels promoted the formation of cell networks. The cells in the collagen gel with a concentration of 1 mg/ml embedded in polylactide scaffold had elongated spindle-like shape, in contrast to flattened cells in collagen gel of the same concentration not embedded in the scaffold. Stabilization of the collagen gel in the polylactide scaffold promoted active synthesis of laminin and fibronectin by cells as soon as on day 5 of culturing in comparison with that in free collagen substrate.
Liberio, Michelle S.; Sadowski, Martin C.; Soekmadji, Carolina; Davis, Rohan A.; Nelson, Colleen C.
2014-01-01
Weak cell-surface adhesion of cell lines to tissue culture surfaces is a common problem and presents technical limitations to the design of experiments. To overcome this problem, various surface coating protocols have been developed. However, a comparative and precise real-time measurement of their impact on cell behavior has not been conducted. The prostate cancer cell line LNCaP, derived from a patient lymph node metastasis, is a commonly used model system in prostate cancer research. However, the cells’ characteristically weak attachment to the surface of tissue culture vessels and cover slips has impeded their manipulation and analysis and use in high throughput screening. To improve the adherence of LNCaP cells to the culture surface, we compared different coating reagents (poly-l-lysine, poly-l-ornithine, collagen type IV, fibronectin, and laminin) and culturing conditions and analyzed their impact on cell proliferation, adhesion, morphology, mobility and gene expression using real-time technologies. The results showed that fibronectin, poly-l-lysine and poly-l-ornithine improved LNCaP cells adherence and provoked cell morphology alterations, such as increase of nuclear and cellular area. These coating reagents also induced a higher expression of F-actin and reduced cell mobility. In contrast, laminin and collagen type IV did not improve adherence but promoted cell aggregation and affected cell morphology. Cells cultured in the presence of laminin displayed higher mobility than control cells. All the coating conditions significantly affected cell viability; however, they did not affect the expression of androgen receptor-regulated genes. Our comparative findings provide important insight for the selection of the ideal coating reagent and culture conditions for the cancer cell lines with respect to their effect on proliferation rate, attachment, morphology, migration, transcriptional response and cellular cytoskeleton arrangement. PMID:25375165
Inomata, Minoru; Kamio, Koichiro; Azuma, Arata; Matsuda, Kuniko; Kokuho, Nariaki; Miura, Yukiko; Hayashi, Hiroki; Nei, Takahito; Fujita, Kazue; Saito, Yoshinobu; Gemma, Akihiko
2014-02-08
Bone marrow-derived fibrocytes reportedly play important roles in the pathogenesis of idiopathic pulmonary fibrosis. Pirfenidone is an anti-fibrotic agent; however, its effects on fibrocytes have not been investigated. The aim of this study was to investigate whether pirfenidone inhibits fibrocyte pool size in the lungs of bleomycin-treated mice. Bleomycin (100 mg/kg) was infused with osmotic pumps into C57BL/6 mice, and pirfenidone (300 mg/kg/day) was orally administered daily for 2 wk. The lungs were removed, and single-cell suspensions were subjected to fluorescence-activated cell sorter (FACS) analysis to detect fibrocytes, which were defined as CD45 and collagen-I double-positive cells. Immunohistochemistry was performed on the lung specimens to quantify fibrocytes. Chemokines in the lung digests were measured with enzyme-linked immunosorbent assay. The effect of pirfenidone on alveolar macrophages was evaluated with bronchoalveolar lavage (BAL). In a therapeutic setting, pirfenidone administration was initiated 10 days after bleomycin treatment. For chemotaxis assay, lung fibrocytes were isolated with immunomagnetic selection (CD45-positive mesenchymal cells) after culture and allowed to migrate toward chemokines in the presence or absence of pirfenidone. Moreover, the effect of pirfenidone on the expression of chemokine receptors on fibrocytes was evaluated. Pirfenidone significantly ameliorated bleomycin-induced pulmonary fibrosis as assessed with quantitative histology and collagen measurement. Fibrocyte pool size in bleomycin-treated mice lungs was attenuated from 26.5% to 13.7% by pirfenidone on FACS analysis. This outcome was also observed in a therapeutic setting. Immunohistochemistry revealed that fibrocytes were significantly decreased by pirfenidone administration compared with those in bleomycin-treated mice (P = 0.0097). Increased chemokine (CC motif) ligand-2 (CCL2) and CCL12 production in bleomycin-treated mouse lungs was significantly attenuated by pirfenidone (P = 0.0003 and P < 0.0001, respectively). Pirfenidone also attenuated macrophage counts stimulated by bleomycin in BAL fluid. Fibrocyte migration toward CCL2 and chemokine (CC motif) receptor-2 expression on fibrocytes was significantly inhibited by pirfenidone in vitro. Pirfenidone attenuated the fibrocyte pool size in bleomycin-treated mouse lungs via attenuation of CCL2 and CCL12 production in vivo, and fibrocyte migration was inhibited by pirfenidone in vitro. Fibrocyte inhibition is considered a mechanism of anti-fibrotic action of pirfenidone.
2014-01-01
Background Bone marrow-derived fibrocytes reportedly play important roles in the pathogenesis of idiopathic pulmonary fibrosis. Pirfenidone is an anti-fibrotic agent; however, its effects on fibrocytes have not been investigated. The aim of this study was to investigate whether pirfenidone inhibits fibrocyte pool size in the lungs of bleomycin-treated mice. Methods Bleomycin (100 mg/kg) was infused with osmotic pumps into C57BL/6 mice, and pirfenidone (300 mg/kg/day) was orally administered daily for 2 wk. The lungs were removed, and single-cell suspensions were subjected to fluorescence-activated cell sorter (FACS) analysis to detect fibrocytes, which were defined as CD45 and collagen-I double-positive cells. Immunohistochemistry was performed on the lung specimens to quantify fibrocytes. Chemokines in the lung digests were measured with enzyme-linked immunosorbent assay. The effect of pirfenidone on alveolar macrophages was evaluated with bronchoalveolar lavage (BAL). In a therapeutic setting, pirfenidone administration was initiated 10 days after bleomycin treatment. For chemotaxis assay, lung fibrocytes were isolated with immunomagnetic selection (CD45-positive mesenchymal cells) after culture and allowed to migrate toward chemokines in the presence or absence of pirfenidone. Moreover, the effect of pirfenidone on the expression of chemokine receptors on fibrocytes was evaluated. Results Pirfenidone significantly ameliorated bleomycin-induced pulmonary fibrosis as assessed with quantitative histology and collagen measurement. Fibrocyte pool size in bleomycin-treated mice lungs was attenuated from 26.5% to 13.7% by pirfenidone on FACS analysis. This outcome was also observed in a therapeutic setting. Immunohistochemistry revealed that fibrocytes were significantly decreased by pirfenidone administration compared with those in bleomycin-treated mice (P = 0.0097). Increased chemokine (CC motif) ligand-2 (CCL2) and CCL12 production in bleomycin-treated mouse lungs was significantly attenuated by pirfenidone (P = 0.0003 and P < 0.0001, respectively). Pirfenidone also attenuated macrophage counts stimulated by bleomycin in BAL fluid. Fibrocyte migration toward CCL2 and chemokine (CC motif) receptor-2 expression on fibrocytes was significantly inhibited by pirfenidone in vitro. Conclusions Pirfenidone attenuated the fibrocyte pool size in bleomycin-treated mouse lungs via attenuation of CCL2 and CCL12 production in vivo, and fibrocyte migration was inhibited by pirfenidone in vitro. Fibrocyte inhibition is considered a mechanism of anti-fibrotic action of pirfenidone. PMID:24507087
Proanthocyanidin: a natural crosslinking reagent for stabilizing collagen matrices.
Han, Bo; Jaurequi, Jason; Tang, Bao Wei; Nimni, Marcel E
2003-04-01
While attempting to find a suitable crosslinking reagent for biopolymers, a naturally occurring proanthocyanidin (PA) obtained from grape seeds was selected to fix biological tissues. The cytotoxicity and crosslinking rate, reflected by the in vitro and in vivo degradation of fixed matrices has been studied. The shrinkage temperature of the fixed bovine pericardium increased from 66 to 86 degrees C. A cytotoxicity assay using fibroblast cultures revealed that PA is approximately 120 times less toxic than glutaraldehyde (GA), a currently used tissue stabilizer. In vitro degradation studies showed that fixed tissue was resistant to digestion by bacterial collagenase. Crosslinks between PA and tissues can be stabilized by decreasing the dielectric constant of the solution during storage. After subcutaneous implantation for periods ranging between 3 and 6 weeks, we found no apparent degradation of the GA- or PA-fixed tissues, whereas fresh tissue controls rapidly disintegrated. Beyond 6 weeks PA crosslinks began to degrade. More fibroblasts migrated and proliferated inside the PA-fixed implants compared with GA counterparts. Tissues crosslinked with PA manifested an enhanced collagen expression and deposition and did not calcify after implantation. GA, on the other hand, even after thorough rinsing continued to be cytotoxic, inhibited collagen synthesis and encouraged dystrophic calcification. Collagen matrices crosslinked with PA are expected to be of value in the design of matrices that will encourage cell ingrowth and proliferation, which are temporary in nature, and that are intended to regenerate or replace missing tissues, which can delay the biogradation of collagen. As such they should be of significant value in the emerging field of tissue engineering. Copyright 2003 Wiley Periodicals, Inc.
Tuzlakoglu, Kadriye; Santos, Marina I; Neves, Nuno; Reis, Rui L
2011-02-01
Mimicking the structural organization and biologic function of natural extracellular matrix has been one of the main goals of tissue engineering. Nevertheless, the majority of scaffolding materials for bone regeneration highlights biochemical functionality in detriment of mechanical properties. In this work we present a rather innovative construct that combines in the same structure electrospun type I collagen nanofibers with starch-based microfibers. These combined structures were obtained by a two-step methodology and structurally consist in a type I collagen nano-network incorporated on a macro starch-based support. The morphology of the developed structures was assessed by several microscopy techniques and the collagenous nature of the nano-network was confirmed by immunohistochemistry. In addition, and especially regarding the requirements of large bone defects, we also successfully introduced the concept of layer by layer, as a way to produce thicker structures. In an attempt to recreate bone microenvironment, the design and biochemical composition of the combined structures also envisioned bone-forming cells and endothelial cells (ECs). The inclusion of a type I collagen nano-network induced a stretched morphology and improved the metabolic activity of osteoblasts. Regarding ECs, the presence of type I collagen on the combined structures provided adhesive support and obviated the need of precoating with fibronectin. It was also importantly observed that ECs on the nano-network organized into circular structures, a three-dimensional arrangement distinct from that observed for osteoblasts and resembling the microcappillary-like organizations formed during angiogenesis. By providing simultaneously physical and chemical cues for cells, the herein-proposed combined structures hold a great potential in bone regeneration as a man-made equivalent of extracellular matrix.
Lee, Hee Doo; Kim, Yeon Hyang; Kim, Doo-Sik
2014-04-01
Integrin trafficking, including internalization, recycling, and lysosomal degradation, is crucial for the regulation of cellular functions. Exosomes, nano-sized extracellular vesicles, are believed to play important roles in intercellular communications. This study demonstrates that exosomes released from human macrophages negatively regulate endothelial cell migration through control of integrin trafficking. Macrophage-derived exosomes promote internalization of integrin β1 in primary HUVECs. The internalized integrin β1 persistently accumulates in the perinuclear region and is not recycled back to the plasma membrane. Experimental results indicate that macrophage-derived exosomes stimulate trafficking of internalized integrin β1 to lysosomal compartments with a corresponding decrease in the integrin destined for recycling endosomes, resulting in proteolytic degradation of the integrin. Moreover, ubiquitination of HUVEC integrin β1 is enhanced by the exosomes, and exosome-mediated integrin degradation is blocked by bafilomycin A, a lysosomal degradation inhibitor. Macrophage-derived exosomes were also shown to effectively suppress collagen-induced activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway and HUVEC migration, which are both dependent on integrin β1. These observations provide new insight into the functional significance of exosomes in the regulation of integrin trafficking. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inhibition of angiogenesis in vitro by Arg-Gly-Asp-containing synthetic peptide.
Nicosia, R. F.; Bonanno, E.
1991-01-01
This study was designed to evaluate the effect of the synthetic peptide Gly-Arg-Gly-Asp-Ser (GRGDS) on angiogenesis in serum-free collagen gel culture of rat aorta. The GRGDS peptide contains the amino acid sequence Arg-Gly-Asp (RGD), which has been implicated as a recognition site in interactions between extracellular matrix (ECM) molecules and cell membrane receptors. RGD-containing synthetic peptides are known to inhibit attachment of endothelial cells to substrates, but their effect on angiogenesis has not been fully characterized. Aortic explants embedded in collagen gel in the absence of GRGDS generated branching microvessels through a process of endothelial migration and proliferation. Addition of GRGDS to the culture medium caused a marked inhibition of angiogenesis. In contrast, GRGES, a control peptide lacking the RGD sequence, failed to inhibit angiogenesis. The inhibitory effect of GRGDS was nontoxic and reversible. The angiogenic activity of aortic explants previously inhibited with GRGDS could be restored by incubating the cultures in GRGDS-free medium. These findings suggest that angiogenesis is an anchorage-dependent process that can be inhibited by interfering with the attachment of endothelial cells to the ECM. It also indicates that synthetic peptides can be used as probes to study the mechanisms by which the ECM regulates angiogenesis. Images Figure 1 PMID:1707235
COL1A1 promotes metastasis in colorectal cancer by regulating the WNT/PCP pathway
Zhang, Zheying; Wang, Yongxia; Zhang, Jinghang; Zhong, Jiateng; Yang, Rui
2018-01-01
Colorectal cancer (CRC) is the third leading cause of cancer-associated mortality, and is a major health problem. Collagen type I α 1 (COL1A1) is a major component of collagen type I. Recently, it was reported to be overexpressed in a variety of tumor tissues and cells. However, the function of COL1A1 in CRC remains unclear. Herein, the present study demonstrated that COL1A1 was upregulated in CRC tissues and the paired lymph node tissues. Transwell assays showed that COL1A1 promoted CRC cell migration in vitro. Moreover, it was revealed that COL1A1 levels were correlated with those of WNT/planar cell polarity (PCP) signaling pathway genes; inhibition of COL1A1 decreased the expression levels of Ras-related C3 botulinum toxin substrate 1-GTP, phosphorylated-c-Jun N-terminal kinase, and RhoA-GTP, all of which are key genes in the WNT/PCP signaling pathway. These results may indicate the mechanisms underlying the oncogenic role of COL1A1 in CRC. In summary, the present data indicated that COL1A1 may serve as an oncoprotein, and that it may be used as a potential therapeutic target in CRC. PMID:29393423
Li, Bing-Hang; He, Fang-Ping; Yang, Xin; Chen, Yuan-Wen; Fan, Jian-Gao
2017-02-01
The rapidly increasing prevalence of nonalcoholic fatty liver disease (NAFLD) has become one of the major public health threats in China and worldwide. However, during the development of NAFLD, the key mechanism underlying the progression of related fibrosis remains unclear, which greatly impedes the development of optimal NAFLD therapy. In the current study, we were endeavored to characterize a proinflammatory cytokine, CCL5, as a major contributor for fibrosis in NAFLD. The results showed that CCL5 was highly expressed in fatty liver and NASH patients. In NAFLD rats induced by 8-week-HFD, CCL5 and its receptor, CCR5, were significantly up-regulated and liver fibrosis exclusively occurred in this group. In addition, we showed that hepatocytes are the major source contributing to this CCL5 elevation. Interestingly, a CCL5 inhibitor Met-CCL5, significantly decreased liver fibrosis but not hepatic steatosis. Using a cell model of hepatic steatosis, we found that the conditioned medium of lipid-overloaded hepatocytes (Fa2N-4 cells) which produced excessive CCL5 stimulated the profibrotic activities of hepatic stellate cells (LX-2) as manifested by increased migration rate, proliferation and collagen production of LX-2 cells. CCL5 knockdown in Fa2N-4 cells, Met-CCL5 or CCR5 antibody treatment on LX-2 cells all significantly inhibited the conditioned medium of FFA-treated Fa2N-4 cells to exert stimulatory effects on LX-2 cells. Consistently, the conditioned medium of Fa2N-4 cells with CCL5 over-expression significantly enhanced migration rate, cell proliferation and collagen production of LX-2 cells. All these results support that CCL5 produced by steatotic hepatocytes plays an essential role in fibrotic signaling machinery of NAFLD. In addition, we were able to identify C/EBP-β as the up-stream regulator of CCL5 gene transcription in hepatocytes treated with free fatty acid (FFA). Our data strongly supported that CCL5 plays a pivotal regulatory role in hepatic fibrosis during NAFLD, which constitutes a novel and exciting observation that may call for potential future development of specific CCL5-targeted NAFLD therapy. Copyright © 2016 Elsevier Inc. All rights reserved.
Renal myofibroblasts contract collagen I matrix lattices in vitro.
Kelynack, K J; Hewitson, T D; Pedagogos, E; Nicholls, K M; Becker, G J
1999-01-01
Myofibroblasts, cells with both fibroblastic and smooth muscle cell features, have been implicated in renal scarring. In addition to synthetic properties, contractile features and integrin expression may allow myofibroblasts to rearrange and contract interstitial collagenous proteins. Myofibroblasts from normal rat kidneys were grown in cell-populated collagen lattices to measure cell generated contraction. Following detachment of cell populated collagen lattices, myofibroblasts progressively contracted collagen lattices, reducing lattice diameter by 42% at 24 h. Alignment of myofibroblasts, rearrangement of fibrils and beta(1) integrin expression were observed within lattices. We postulate that interstitial myofibroblasts contribute to renal scarring through manipulation of collagenous proteins. Copyright 1999 S. Karger AG, Basel
Villa, Max M; Wang, Liping; Rowe, David W; Wei, Mei
2014-01-01
Cell-based tissue engineering can be used to replace missing or damaged bone, but the optimal methods for delivering therapeutic cells to a bony defect have not yet been established. Using transgenic reporter cells as a donor source, two different collagen-hydroxyapatite (HA) scaffolds, and a critical-size calvarial defect model, we investigated the effect of a cell-attachment period prior to implantation, with or without an extracellular matrix-based seeding suspension, on cell engraftment and osteogenesis. When quantitatively compared, the in-house scaffold implanted immediately had a higher mean radiopacity than in-house scaffolds incubated overnight. Both scaffold types implanted immediately had significantly higher area fractions of donor cells, while the in-house collagen-HA scaffolds implanted immediately had higher area fractions of the mineralization label compared with groups incubated overnight. When the cell loading was compared in vitro for each delivery method using the in-house scaffold, immediate loading led to higher numbers of delivered cells. Immediate loading may be preferable in order to ensure robust bone formation in vivo. The use of a secondary ECM carrier improved the distribution of donor cells only when a pre-attachment period was applied. These results have improved our understanding of cell delivery to bony defects in the context of in vivo outcomes.
Keratocyte behavior in three-dimensional photopolymerizable poly(ethylene glycol) hydrogels
Thibault, Richard; Ambrose, Winnette McIntosh; Schein, Oliver D.; Chakravarti, Shukti; Elisseeff, Jennifer
2015-01-01
The goal of this study was to evaluate three-dimensional (3-D) poly(ethylene glycol) (PEG) hydrogels as a culture system for studying corneal keratocytes. Bovine keratocytes were subcultured in DMEM/F-12 containing 10% fetal bovine serum (FBS) through passage 5. Primary keratocytes (P0) and corneal fibroblasts from passages 1 (P1) and 3 (P3) were photoencapsulated at various cell concentrations in PEG hydrogels via brief exposure to light. Additional hydrogels contained adhesive YRGDS and nonadhesive YRDGS peptides. Hydrogel constructs were cultured in DMEM/F-12 with 10% FBS for 2 and 4 weeks. Cell viability was assessed by DNA quantification and vital staining. Biglycan, type I collagen, type III collagen, keratocan and lumican expression were determined by reverse transcriptase–polymerase chain reaction. Deposition of type I collagen, type III collagen and keratan sulfate (KS)-containing matrix components was visualized using confocal microscopy. Keratocytes in a monolayer lost their stellate morphology and keratocan expression, displayed elongated cell bodies, and up-regulated biglycan, type I collagen and type III collagen characteristic of corneal fibroblasts. Encapsulated keratocytes remained viable for 4 weeks with spherical morphologies. Hydrogels supported production of KS, type I collagen and type III collagen matrix components. PEG-based hydrogels can support keratocyte viability and matrix production. 3-D hydrogel culture can stabilize but not restore the keratocyte phenotype. This novel application of PEG hydrogels has potential use in the study of corneal keratocytes in a 3-D environment. PMID:18567550
Inelastic behaviour of collagen networks in cell-matrix interactions and mechanosensation.
Mohammadi, Hamid; Arora, Pamma D; Simmons, Craig A; Janmey, Paul A; McCulloch, Christopher A
2015-01-06
The mechanical properties of extracellular matrix proteins strongly influence cell-induced tension in the matrix, which in turn influences cell function. Despite progress on the impact of elastic behaviour of matrix proteins on cell-matrix interactions, little is known about the influence of inelastic behaviour, especially at the large and slow deformations that characterize cell-induced matrix remodelling. We found that collagen matrices exhibit deformation rate-dependent behaviour, which leads to a transition from pronounced elastic behaviour at fast deformations to substantially inelastic behaviour at slow deformations (1 μm min(-1), similar to cell-mediated deformation). With slow deformations, the inelastic behaviour of floating gels was sensitive to collagen concentration, whereas attached gels exhibited similar inelastic behaviour independent of collagen concentration. The presence of an underlying rigid support had a similar effect on cell-matrix interactions: cell-induced deformation and remodelling were similar on 1 or 3 mg ml(-1) attached collagen gels while deformations were two- to fourfold smaller in floating gels of high compared with low collagen concentration. In cross-linked collagen matrices, which did not exhibit inelastic behaviour, cells did not respond to the presence of the underlying rigid foundation. These data indicate that at the slow rates of collagen compaction generated by fibroblasts, the inelastic responses of collagen gels, which are influenced by collagen concentration and the presence of an underlying rigid foundation, are important determinants of cell-matrix interactions and mechanosensation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Stem cell-based tissue-engineering for treatment of meniscal tears in the avascular zone.
Zellner, Johannes; Hierl, Katja; Mueller, Michael; Pfeifer, Christian; Berner, Arne; Dienstknecht, Thomas; Krutsch, Werner; Geis, Sebastian; Gehmert, Sebastian; Kujat, Richard; Dendorfer, Sebastian; Prantl, Lukas; Nerlich, Michael; Angele, Peter
2013-10-01
Meniscal tears in the avascular zone have a poor self-healing potential, however partial meniscectomy predisposes the knee for early osteoarthritis. Tissue engineering with mesenchymal stem cells and a hyaluronan collagen based scaffold is a promising approach to repair meniscal tears in the avascular zone. 4 mm longitudinal meniscal tears in the avascular zone of lateral menisci of New Zealand White Rabbits were performed. The defect was left empty, sutured with a 5-0 suture or filled with a hyaluronan/collagen composite matrix without cells, with platelet rich plasma or with autologous mesenchymal stem cells. Matrices with stem cells were in part precultured in chondrogenic medium for 14 days prior to the implantation. Menisci were harvested at 6 and 12 weeks. The developed repair tissue was analyzed macroscopically, histologically and biomechanically. Untreated defects, defects treated with suture alone, with cell-free or with platelet rich plasma seeded implants showed a muted fibrous healing response. The implantation of stem cell-matrix constructs initiated fibrocartilage-like repair tissue, with better integration and biomechanical properties in the precultured stem cell-matrix group. A hyaluronan-collagen based composite scaffold seeded with mesenchymal stem cells is more effective in the repair avascular meniscal tear with stable meniscus-like tissue and to restore the native meniscus. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.
Yin, Lianhong; Qi, Yan; Xu, Youwei; Xu, Lina; Han, Xu; Tao, Xufeng; Song, Shasha; Peng, Jinyong
2017-01-01
Hepatic stellate cells (HSCs) migration, an important bioprocess, contributes to the development of liver fibrosis. Our previous studies have found the potent activity of dioscin against liver fibrosis by inhibiting HSCs proliferation, triggering the senescence and inducing apoptosis of activated HSCs, but the molecular mechanisms associated with cell migration were not clarified. In this work, iTRAQ (isobaric tags for relative and absolution quantitation)-based quantitative proteomics study was carried out, and a total of 1566 differentially expressed proteins with fold change ≥2.0 and p < 0.05 were identified in HSC-T6 cells treated by dioscin (5.0 μg/mL). Based on Gene Ontology classification, String and KEGG pathway assays, the effects of dioscin to inhibit cell migration via regulating SDC-4 were carried out. The results of wound-healing, cell migration and western blotting assays indicated that dioscin significantly inhibit HSC-T6 cell migration through SDC-4-dependent signal pathway by affecting the expression levels of Fn, PKCα, Src, FAK, and ERK1/2. Specific SDC-4 knockdown by shRNA also blocked HSC-T6 cell migration, and dioscin slightly enhanced the inhibiting effect. Taken together, the present work showed that SDC-4 played a crucial role on HSC-T6 cell adhesion and migration of dioscin against liver fibrosis, which may be one potent therapeutic target for fibrotic diseases.
Menezes, Maira Maria; Nobre, Leonardo Thiago Duarte Barreto; Rossi, Gustavo Rodrigues; Almeida-Lima, Jailma; Melo-Silveira, Raniere Fagundes; Franco, Celia Regina Cavichiolo; Trindade, Edvaldo Silva; Nader, Helena Bonciani; Rocha, Hugo Alexandre Oliveira
2018-05-01
A low-molecular-weight (LMW) heterofucan (designated fucan B) was obtained from the brown seaweed, Spatoglossum schröederi, and its activity as an inhibitor of capillary-like tube formation by endothelial cells (ECs) was analyzed. Chemical, infrared and electrophoretic analyses confirmed the identity of fucan B. In contrast to other LMW fucans, fucan B (0.012-0.1 mg/mL) inhibited ECs capillary-like tube formation in a concentration-dependent manner. In addition, fucan B (0.01-0.05 mg/mL) did not affect ECs proliferation. Fucan B also inhibited ECs migration on a fibronectin-coated surface, but not on laminin- or collagen-coated surfaces. Biotinylated fucan B was used as a probe to identify its localization. Confocal microscopy experiments revealed that biotinylated fucan did not bind to the cell surface, but rather only to fibronectin. Our findings suggest that fucan B inhibits ECs capillary-like tube formation and migration by binding directly to fibronectin and blocking fibronectin sites recognized by cell surface ligands. However, further studies are needed to evaluate the in vivo effects of fucan B. Copyright © 2018 Elsevier B.V. All rights reserved.
Reithmeier, Anja; Panizza, Elena; Krumpel, Michael; Orre, Lukas M; Branca, Rui M M; Lehtiö, Janne; Ek-Rylander, Barbro; Andersson, Göran
2017-09-15
Tartrate-resistant acid phosphatase (TRAP/ACP5), a metalloenzyme that is characteristic for its expression in activated osteoclasts and in macrophages, has recently gained considerable focus as a driver of metastasis and was associated with clinically relevant parameters of cancer progression and cancer aggressiveness. MDA-MB-231 breast cancer cells with different TRAP expression levels (overexpression and knockdown) were generated and characterized for protein expression and activity levels. Functional cell experiments, such as proliferation, migration and invasion assays were performed as well as global phosphoproteomic and proteomic analysis was conducted to connect molecular perturbations to the phenotypic changes. We identified an association between metastasis-related properties of TRAP-overexpressing MDA-MB-231 breast cancer cells and a TRAP-dependent regulation of Transforming growth factor (TGFβ) pathway proteins and Cluster of differentiation 44 (CD44). Overexpression of TRAP increased anchorage-independent and anchorage-dependent cell growth and proliferation, induced a more elongated cellular morphology and promoted cell migration and invasion. Migration was increased in the presence of the extracellular matrix (ECM) proteins osteopontin and fibronectin and the basement membrane proteins collagen IV and laminin I. TRAP-induced properties were reverted upon shRNA-mediated knockdown of TRAP or treatment with the small molecule TRAP inhibitor 5-PNA. Global phosphoproteomics and proteomics analyses identified possible substrates of TRAP phosphatase activity or signaling intermediates and outlined a TRAP-dependent regulation of proteins involved in cell adhesion and ECM organization. Upregulation of TGFβ isoform 2 (TGFβ2), TGFβ receptor type 1 (TβR1) and Mothers against decapentaplegic homolog 2 (SMAD2), as well as increased intracellular phosphorylation of CD44 were identified upon TRAP perturbation. Functional antibody-mediated blocking and chemical inhibition demonstrated that TRAP-dependent migration and proliferation is regulated via TGFβ2/TβR, whereas proliferation beyond basal levels is regulated through CD44. Altogether, TRAP promotes metastasis-related cell properties in MDA-MB-231 breast cancer cells via TGFβ2/TβR and CD44, thereby identifying a potential signaling mechanism associated to TRAP action in breast cancer cells.
Cell migration in microengineered tumor environments.
Um, Eujin; Oh, Jung Min; Granick, Steve; Cho, Yoon-Kyoung
2017-12-05
Recent advances in microengineered cell migration platforms are discussed critically with a focus on how cell migration is influenced by engineered tumor microenvironments, the medical relevance being to understand how tumor microenvironments may promote or suppress the progression of cancer. We first introduce key findings in cancer cell migration under the influence of the physical environment, which is systematically controlled by microengineering technology, followed by multi-cues of physico-chemical factors, which represent the complexity of the tumor environment. Recognizing that cancer cells constantly communicate not only with each other but also with tumor-associated cells such as vascular, fibroblast, and immune cells, and also with non-cellular components, it follows that cell motility in tumor microenvironments, especially metastasis via the invasion of cancer cells into the extracellular matrix and other tissues, is closely related to the malignancy of cancer-related mortality. Medical relevance of forefront research realized in microfabricated devices, such as single cell sorting based on the analysis of cell migration behavior, may assist personalized theragnostics based on the cell migration phenotype. Furthermore, we urge development of theory and numerical understanding of single or collective cell migration in microengineered platforms to gain new insights in cancer metastasis and in therapeutic strategies.
Faulknor, Renea A; Olekson, Melissa A; Nativ, Nir I; Ghodbane, Mehdi; Gray, Andrea J; Berthiaume, François
2015-02-27
During wound healing, fibroblasts deposit extracellular matrix that guides angiogenesis and supports the migration and proliferation of cells that eventually form the scar. They also promote wound closure via differentiation into α-smooth muscle actin (SMA)-expressing myofibroblasts, which cause wound contraction. Low oxygen tension typical of chronic nonhealing wounds inhibits fibroblast collagen production and differentiation. It has been suggested that hypoxic mesenchymal stromal cells (MSCs) secrete factors that promote wound healing in animal models; however, it is unclear whether these factors are equally effective on the target cells in a hypoxic wound environment. Here we investigated the impact of MSC-derived soluble factors on the function of fibroblasts cultured in hypoxic fibroblast-populated collagen lattices (FPCLs). Hypoxia alone significantly decreased FPCL contraction and α-SMA expression. MSC-conditioned medium restored hypoxic FPCL contraction and α-SMA expression to levels similar to normoxic FPCLs. SB431542, an inhibitor of transforming growth factor-β1 (TGF-β1)-mediated signaling, blocked most of the MSC effect on FPCL contraction, while exogenous TGF-β1 at levels similar to that secreted by MSCs reproduced the MSC effect. These results suggest that TGF-β1 is a major paracrine signal secreted by MSCs that can restore fibroblast functions relevant to the wound healing process and that are impaired in hypoxia. Copyright © 2015. Published by Elsevier Inc.
High resolution three‐dimensional reconstruction of fibrotic skeletal muscle extracellular matrix
Gillies, Allison R.; Chapman, Mark A.; Bushong, Eric A.; Deerinck, Thomas J.; Ellisman, Mark H.
2016-01-01
Key points Fibrosis occurs secondary to many skeletal muscle diseases and injuries, and can alter muscle function.It is unknown how collagen, the most abundant extracellular structural protein, alters its organization during fibrosis.Quantitative and qualitative high‐magnification electron microscopy shows that collagen is organized into perimysial cables which increase in number in a model of fibrosis, and cables have unique interactions with collagen‐producing cells.Fibrotic muscles are stiffer and have a higher concentration of collagen‐producing cells.These results improve our understanding of the organization of fibrotic skeletal muscle extracellular matrix and identify novel structures that might be targeted by antifibrotic therapy. Abstract Skeletal muscle extracellular matrix (ECM) structure and organization are not well understood, yet the ECM plays an important role in normal tissue homeostasis and disease processes. Fibrosis is common to many muscle diseases and is typically quantified based on an increase in ECM collagen. Through the use of multiple imaging modalities and quantitative stereology, we describe the structure and composition of wild‐type and fibrotic ECM, we show that collagen in the ECM is organized into large bundles of fibrils, or collagen cables, and the number of these cables (but not their size) increases in desmin knockout muscle (a fibrosis model). The increase in cable number is accompanied by increased muscle stiffness and an increase in the number of collagen producing cells. Unique interactions between ECM cells and collagen cables were also observed and reconstructed by serial block face scanning electron microscopy. These results demonstrate that the muscle ECM is more highly organized than previously reported. Therapeutic strategies for skeletal muscle fibrosis should consider the organization of the ECM to target the structures and cells contributing to fibrotic muscle function. PMID:27859324
The influence of specific binding of collagen-silk chimeras to silk biomaterials on hMSC behavior
An, Bo; DesRochers, Teresa M.; Qin, Guokui; Xia, Xiaoxia; Thiagarajan, Geetha; Brodsky, Barbara; Kaplan, David
2012-01-01
Collagen-like proteins in the bacteria Streptococcus pyogenes adopt a triple-helix structure with a thermal stability similar to that of animal collagens, can be expressed in high yield in E. coli and can be easily modified through molecular biology techniques. However, potential applications for such recombinant collagens are limited by their lack of higher order structure to achieve the physical properties needed for most biomaterials. To overcome this problem, the S. pyrogenes collagen domain was fused to a repetitive Bombyx mori silk consensus sequence, as a strategy to direct specific non-covalent binding onto solid silk materials whose superior stability, mechanical and material properties have been previously established. This approach resulted in the successful binding of these new collagen-silk chimeric proteins to silk films and porous scaffolds, and the binding affinity could be controlled by varying the number of repeats in the silk sequence. To explore the potential of collagen-silk chimera for regulating biological activity, integrin (Int) and fibronectin (Fn) binding sequences from mammalian collagens were introduced into the bacterial collagen domain. The attachment of bioactive collagen-silk chimeras to solid silk biomaterials promoted hMSC spreading and proliferation substantially in comparison to the controls. The ability to combine the biomaterial features of silk with the biological activities of collagen allowed more rapid cell interactions with silk-based biomaterials, improved regulation of stem cell growth and differentiation, as well as the formation of artificial extracellular matrices useful for tissue engineering applications. PMID:23088839
Collagen gel protects L929 cells from TNFα-induced death by activating NF-κB.
Wang, Hong-Ju; Li, Meng-Qi; Liu, Wei-Wei; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi
2017-09-01
Type I collagen is one of the most abundant components of extracellular matrix. We previously illustrated that murine fibrosarcoma L929 cells grew well on type I collagen gel and escaped from TNFα-induced cell death. In this study, we investigated the mechanism underlying the protective effect of collagen gel. We used western blot, confocal microscopy, MTT assay and flow cytometry by introducing fluorescence staining to determine the expression levels of nuclear factor kappa B (NF-κB), inhibitory ratio and autophagy. L929 cells on collagen gel showed higher expression of NF-κB in the nucleus. Inhibition of NF-κB with pyrrolidine dithiocarbamate hydrochloride (PDTC) or knockdown by NF-κB-siRNA canceled the protective effect of collagen gel on L929 cells from TNFα-induced death, suggesting for the role of NF-κB in the protection from cell death. We found a new aspect of the effect of PDTC on L929 cells cultured on collagen gel. PDTC alone without TNFα induced apoptosis in the L929 cells cultured on collagen gel but not the cells on plastic dish. The apoptosis induction of the L929 cells cultured on collagen gel with PDTC was repressed by inhibiting autophagy with chloroquine, an autophagy inhibitor, suggesting that autophagy contributes to the death induced by the treatment with PDTC. Possible underlying mechanism of this finding is discussed. NF-κB played an important role in protecting the L929 cells cultured on collagen gel from TNFα-induced death.
Collagen based polyurethanes—A review of recent advances and perspective.
Zuber, Mohammad; Zia, Fatima; Zia, Khalid Mahmood; Tabasum, Shazia; Salman, Mahwish; Sultan, Neelam
2015-09-01
Collagen is mostly found in fibrous tissues such as tendons, ligaments and skin. Collagen makes up approximately 30% of the proteins within the body. These are tough and strong structures found all over the body: in bones, tendons and ligaments. Collagen being the most abundant protein provides tensile strength via cell matrix interactions to tissue architecture. Biomimetic materials of collagen origin gained wide spread acceptance in clinical applications. Vitamin C deficiency causes scurvy a serious and painful disease in which defective collagen prevents the formation of strong connective tissue, gums deteriorate and bleed, with loss of teeth; skin discolors, and wounds do not heal. Effective collagens prevent the manifestation of such disorders. Polyurethanes on the other hand are frequently used for various applications as they offered in wide-ranging of compositions, properties and complex structures. Collagen/PU bio-composites have potential array for biomedical applications. Considering versatile properties of the elongated fibrils and wide industrial and biomedical applications including biocompatibility of polyurethane, this review shed a light on collagen based polyurethane materials with their potential applications especially focusing the bio-medical field. Copyright © 2015 Elsevier B.V. All rights reserved.
O'Loughlin, Aonghus; Kulkarni, Mangesh; Vaughan, Erin E; Creane, Michael; Liew, Aaron; Dockery, Peter; Pandit, Abhay; O'Brien, Timothy
2013-01-01
Diabetic foot ulceration is the leading cause of amputation in people with diabetes mellitus. Peripheral vascular disease is present in the majority of patients with diabetic foot ulcers. Despite standard treatments there exists a high amputation rate. Circulating angiogenic cells previously known as early endothelial progenitor cells are derived from peripheral blood and support angiogenesis and vasculogenesis, providing a potential topical treatment for non-healing diabetic foot ulcers. A scaffold fabricated from Type 1 collagen facilitates topical cell delivery to a diabetic wound. Osteopontin is a matricellular protein involved in wound healing and increases the angiogenic potential of circulating angiogenic cells. A collagen scaffold seeded with circulating angiogenic cells was developed. Subsequently the effect of autologous circulating angiogenic cells that were seeded in a collagen scaffold and topically delivered to a hyperglycemic cutaneous wound was assessed. The alloxan-induced diabetic rabbit ear ulcer model was used to determine healing in response to the following treatments: collagen seeded with autologous circulating angiogenic cells exposed to osteopontin, collagen seeded with autologous circulating angiogenic cells, collagen alone and untreated wound. Stereology was used to assess angiogenesis in wounds. The cells exposed to osteopontin and seeded on collagen increased percentage wound closure as compared to other groups. Increased angiogenesis was observed with the treatment of collagen and collagen seeded with circulating angiogenic cells. These results demonstrate that topical treatment of full thickness cutaneous ulcers with autologous circulating angiogenic cells increases wound healing. Cells exposed to the matricellular protein osteopontin result in superior wound healing. The wound healing benefit is associated with a more efficient vascular network. This topical therapy provides a potential novel therapy for the treatment of non-healing diabetic foot ulcers in humans.
Ali, Saniya; Saik, Jennifer E.; Gould, Dan J.; Dickinson, Mary E.
2013-01-01
Abstract Attachment, spreading, and organization of endothelial cells into tubule networks are mediated by interactions between cells in the extracellular microenvironment. Laminins are key extracellular matrix components and regulators of cell adhesion, migration, and proliferation. In this study, laminin-derived peptides were conjugated to poly(ethylene glycol) (PEG) monoacrylate and covalently incorporated into degradable PEG diacrylate (PEGDA) hydrogels to investigate the influence of these peptides on endothelial cellular adhesion and function in organizing into tubule networks. Degradable PEGDA hydrogels were synthesized by incorporating a matrix metalloproteinase (MMP)–sensitive peptide, GGGPQGIWGQGK (abbreviated PQ), into the polymer backbone. The secretion of MMP-2 and MMP-9 by endothelial cells promotes polymer degradation and consequently cell migration. We demonstrate the formation of extensive networks of tubule-like structures by encapsulated human umbilical vein endothelial cells in hydrogels with immobilized synthetic peptides. The resulting structures were stabilized by pericyte precursor cells (10T1/2s) in vitro. During tubule formation and stabilization, extracellular matrix proteins such as collagen IV and laminin were deposited. Tubules formed in the matrix of metalloproteinase sensitive hydrogels were visualized from 7 days to 4 weeks in response to different combination of peptides. Moreover, hydrogels functionalized with laminin peptides and transplanted in a mouse cornea supported the ingrowth and attachment of endothelial cells to the hydrogel during angiogenesis. Results of this study illustrate the use of laminin-derived peptides as potential candidates for modification of biomaterials to support angiogenesis. PMID:23914330
Chen, Huan-Huan; Zhou, Hui-Jun; Fang, Xin
2003-09-01
Artemisinin derivatives artesunate (ART) and dihydroartemisinin are remarkable anti-malarial drugs with low toxicity to humans. In the present investigation, we find they also inhibited tumor cell growth and suppressed angiogenesis in vitro. The anti-cancer activity was demonstrated by inhibition (IC(50)) of four human cancer cell lines: cervical cancer Hela, uterus chorion cancer JAR, embryo transversal cancer RD and ovarian cancer HO-8910 cell lines growth by the MTT assay. IC(50) values ranged from 15.4 to 49.7 microM or from 8.5 to 32.9 microM after treatment with ART or dihydroartemisinin for 48 h, indicating that dihydroartemisinin was more effective than ART in inhibiting cancer cell lines. The anti-angiogenic activities were tested on in vitro models of angiogenesis, namely, proliferation, migration and tube formation of human umbilical vein endothelial (HUVE) cells. We investigated the inhibitory effects of ART and dihydroartemisinin on HUVE cells proliferation by cell counting, migration into the scratch wounded area in HUVE cell monolayers and microvessel tube-like formation on collagen gel. The results showed ART and dihydroartemisinin significantly inhibited angiogenisis in a dose-dependent form in range of 12.5-50 microM and 2.5-50 microM, respectively. They indicated that dihydroartemisinin was more effective than ART in inhibiting angiogenesis either. These results and the known low toxicity are clues that ART and dihydroartemisinin may be promising novel candidates for cancer chemotherapy.