Science.gov

Sample records for collagens transforming growth

  1. Retinoic acid modulates rat Ito cell proliferation, collagen, and transforming growth factor beta production.

    PubMed Central

    Davis, B H; Kramer, R T; Davidson, N O

    1990-01-01

    Recent studies suggest that vitamin A plays an inhibitory role with respect to "activation" of the hepatic Ito cell, a likely effector of hepatic fibrogenesis. Ito cell "activation" during fibrogenesis is characterized by a decrease in intracellular vitamin A and an increase in cellular proliferation and collagen production. To explore the hypothesis that retinoids have the capacity to diminish Ito cell activation, cultured Ito cells were exposed to retinoic acid and its effects assessed on three key features: cell proliferation, collagen protein production and mRNA abundance, and transforming growth factor beta protein production. Retinoic acid was 100-1,000X more potent than retinol with respect to inhibition of Ito cell proliferation. Interstitial collagen and transforming growth factor beta production were also reduced by 10(-6) M retinoic acid. The relative abundance of type I collagen mRNA however, was not significantly altered. By contrast, retinoic acid administration to rats caused a marked reduction in the abundance of type I collagen mRNA in both total hepatic and purified Ito cell RNA. The relative abundance of rat hepatic fibronectin or apolipoprotein E mRNA was not significantly altered. These studies demonstrate that retinoic acid can differentially modulate several key features of hepatic fibrogenesis in vitro and in vivo. Images PMID:2254460

  2. Transforming growth factor alpha induces collagen degradation and cell migration in differentiating human epidermal raft cultures.

    PubMed Central

    Turksen, K; Choi, Y; Fuchs, E

    1991-01-01

    When cultured on plastic and treated with transforming growth factor alpha (TGF alpha), human keratinocytes exhibit an increase in proliferation at the colony periphery, apparently as a consequence of enhanced cell migration (Barrandon and Green, 1987). To investigate the effects of TGF alpha on a differentiating stratified squamous epithelium and to begin to examine the molecular basis mediating this influence, we cultured human epidermal cells on a gelled lattice of collagen and fibroblasts, floating on the air-liquid interface. Under these conditions, raft cultures differentiate and exhibit morphological and biochemical features of human skin in vivo (Asselineau et al., 1986; Kopan et al., 1987). When 3-wk-old raft cultures were treated with TGF alpha, basal cells showed a marked increase in cell proliferation. At elevated concentrations of TGF alpha, the organization of cells within the artificial tissue changed and islands of basal cells entered the collagen matrix. Biochemical analysis of the response revealed that type I collagenase and gelatinase were induced by keratinocytes within 12 h after TGF alpha treatment. In contrast, invasion of basal cells into the collagen matrix was not significant until 48-72 h post-treatment, suggesting that collagenase and gelatinase production may be a prerequisite to this phenomenon. These results have important implications for the possible role of TGF alpha in squamous cell carcinoma and tumor invasion. Images PMID:1663788

  3. Novel chitosan/collagen scaffold containing transforming growth factor-{beta}1 DNA for periodontal tissue engineering

    SciTech Connect

    Zhang Yufeng; Cheng Xiangrong . E-mail: Xiangrongcheng@hotmail.com; Wang Jiawei; Wang Yining; Shi Bin; Huang Cui; Yang Xuechao; Liu Tongjun

    2006-05-26

    The current rapid progression in tissue engineering and local gene delivery system has enhanced our applications to periodontal tissue engineering. In this study, porous chitosan/collagen scaffolds were prepared through a freeze-drying process, and loaded with plasmid and adenoviral vector encoding human transforming growth factor-{beta}1 (TGF-{beta}1). These scaffolds were evaluated in vitro by analysis of microscopic structure, porosity, and cytocompatibility. Human periodontal ligament cells (HPLCs) were seeded in this scaffold, and gene transfection could be traced by green fluorescent protein (GFP). The expression of type I and type III collagen was detected with RT-PCR, and then these scaffolds were implanted subcutaneously into athymic mice. Results indicated that the pore diameter of the gene-combined scaffolds was lower than that of pure chitosan/collagen scaffold. The scaffold containing Ad-TGF-{beta}1 exhibited the highest proliferation rate, and the expression of type I and type III collagen up-regulated in Ad-TGF-{beta}1 scaffold. After implanted in vivo, EGFP-transfected HPLCs not only proliferated but also recruited surrounding tissue to grow in the scaffold. This study demonstrated the potential of chitosan/collagen scaffold combined Ad-TGF-{beta}1 as a good substrate candidate in periodontal tissue engineering.

  4. Surface proteome analysis identifies platelet derived growth factor receptor-alpha as a critical mediator of transforming growth factor-beta-induced collagen secretion.

    PubMed

    Heinzelmann, Katharina; Noskovičová, Nina; Merl-Pham, Juliane; Preissler, Gerhard; Winter, Hauke; Lindner, Michael; Hatz, Rudolf; Hauck, Stefanie M; Behr, Jürgen; Eickelberg, Oliver

    2016-05-01

    Fibroblasts are extracellular matrix-producing cells in the lung. Fibroblast activation by transforming growth factor-beta leads to myofibroblast-differentiation and increased extracellular matrix deposition, a hallmark of pulmonary fibrosis. While fibroblast function with respect to migration, invasion, and extracellular matrix deposition has been well-explored, little is known about the surface proteome of lung fibroblasts in general and its specific response to fibrogenic growth factors, in particular transforming growth factor-beta. We thus performed a cell-surface proteome analysis of primary human lung fibroblasts in presence/absence of transforming growth factor-beta, followed by characterization of our findings using FACS analysis, Western blot, and siRNA-mediated knockdown experiments. We identified 213 surface proteins significantly regulated by transforming growth factor-beta, platelet derived growth factor receptor-alpha being one of the top down-regulated proteins. Transforming growth factor beta-induced downregulation of platelet derived growth factor receptor-alpha induced upregulation of platelet derived growth factor receptor-beta expression and phosphorylation of Akt, a downstream target of platelet derived growth factor signaling. Importantly, collagen type V expression and secretion was strongly increased after forced knockdown of platelet derived growth factor receptor-alpha, an effect that was potentiated by transforming growth factor-beta. We therefore show previously underappreciated cross-talk of transforming growth factor-beta and platelet derived growth factor signaling in human lung fibroblasts, resulting in increased extracellular matrix deposition in a platelet derived growth factor receptor-alpha dependent manner. These findings are of particular importance for the treatment of lung fibrosis patients with high pulmonary transforming growth factor-beta activity.

  5. Astragaloside IV controls collagen reduction in photoaging skin by improving transforming growth factor-β/Smad signaling suppression and inhibiting matrix metalloproteinase-1.

    PubMed

    Chen, Bin; Li, Ran; Yan, Ning; Chen, Gang; Qian, Wen; Jiang, Hui-Li; Ji, Chao; Bi, Zhi-Gang

    2015-05-01

    Exposure to ultraviolet (UV) light reduces levels of type I collagen in the dermis and results in human skin damage and premature skin aging (photoaging). This leads to a wrinkled appearance through the inhibition of transforming growth factor‑β (TGF‑β)/Smad signaling. UV irradiation increases type I collagen degradation through upregulating matrix metalloproteinase (MMP) expression. Astragaloside IV (AST) is one of the major active components extracted from Astragalus membranaceus. However, its multiple anti‑photoaging effects remain to be elucidated. In the present study, the effects of AST against collagen reduction in UV‑induced skin aging in human skin fibroblasts were investigated. The expression of type I procollagen (COL1), MMP‑1, TGF‑βRⅡ and Smad7 were determined using reverse transcription‑polymerase chain reaction, western blotting and ELISA, respectively. UV irradiation inhibits type I collagen production by suppressing the TGF‑β/Smad signaling pathway and increasing COL1 degradation by inducing MMP‑1 expression. Transforming growth factor‑β type II protein and COL1 mRNA decreased but MMP‑1 and Smad7 levels increased in the photoaging model group, which was reversed by topical application of AST. AST prevents collagen reduction from UV irradiation in photoaging skin by improving TGF‑β/Smad signaling suppression and inhibiting MMP‑1, thus AST may be a potential agent against skin photoaging.

  6. Simvastatin inhibits transforming growth factor-β1-induced expression of type I collagen, CTGF, and α-SMA in keloid fibroblasts.

    PubMed

    Mun, Je-Ho; Kim, Young-Mi; Kim, Byung-Soo; Kim, Jae-Ho; Kim, Moon-Bum; Ko, Hyun-Chang

    2014-01-01

    Simvastatin, a 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitor, is used to reduce cholesterol levels. Accumulating evidence has revealed the immunomodulatory and anti-inflammatory effects of simvastatin that prevent cardiovascular diseases. In addition, the beneficial effects of statins on fibrosis of various organs have been reported. However, the functional effect of statins on dermal fibrosis of keloids has not yet been explored. The objective of this study was to determine whether simvastatin could affect dermal fibrosis associated with keloids. We examined the effect of simvastatin on transforming growth factor (TGF)-β1-induced production of type I collagen, connective tissue growth factor (CTGF or CCN2), and α-smooth muscle actin (α-SMA). Keloid fibroblasts were cultured and exposed to different concentrations of simvastatin in the presence of TGF-β1, and the effects of simvastatin on TGF-β1-induced collagen and CTGF production in keloid fibroblasts were determined. The type I collagen, CTGF, and α-SMA expression levels and the Smad2 and Smad3 phosphorylation levels were assessed by Western blotting. The effect of simvastatin on cell viability was evaluated by assessing the colorimetric conversion of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide. Simvastatin suppressed TGF-β1-induced type I collagen, CTGF, and α-SMA production in a concentration-dependent manner. The TGF-β1-induced Smad2 and Smad3 phosphorylation levels were abrogated by simvastatin pretreatment. The inhibition of type I collagen, CTGF, and α-SMA expression by simvastatin was reversed by geranylgeranyl pyrophosphate, suggesting that the simvastatin-induced cellular responses were due to inhibition of small GTPase Rho involvement. A RhoA activation assay showed that preincubation with simvastatin significantly blocked TGF-β1-induced RhoA activation. The Rho-associated coiled kinase inhibitor Y27632 abrogated TGF-β1-induced production of type I collagen

  7. RACK1 binds to Smad3 to modulate transforming growth factor-beta1-stimulated alpha2(I) collagen transcription in renal tubular epithelial cells.

    PubMed

    Okano, Kazuhiro; Schnaper, H William; Bomsztyk, Karol; Hayashida, Tomoko

    2006-09-08

    Although it is clear that transforming growth factor-beta1 (TGF-beta1) is critical for renal fibrogenesis, the complexity of the involved mechanisms is increasingly apparent. TGF-beta1 stimulates phosphorylation of Smad2/3 and activates other signaling molecules as well. The molecular link between these other kinases and Smads is not known. We sought new binding partners for Smad3 in renal cells and identified receptor for activated protein kinase C 1 (RACK1) as a novel binding partner of Smad3. The linker region of Smad3 and the tryptophan-aspartic acid repeat 6 and 7 of RACK1 are sufficient for the association. RACK1 also interacts with Smad3 in the human kidney epithelial cell line, HKC. Silencing RACK1 increases transcriptional activity of TGF-beta1-responsive promoter sequences of the Smad binding element (SBE), p3TP-Lux, and alpha2(I) collagen. Conversely, overexpressed RACK1 negatively modulates alpha2(I) collagen transcriptional activity in TGF-beta1-stimulated cells. RACK1 did not affect phosphorylation of Smad3 at the C terminus or in the linker region. However, RACK1 reduced direct binding of Smad3 to the SBE motif. Mutating a RACK1 tyrosine at residue 246, but not at 228, decreased the inhibitory effect of RACK1 on both alpha2(I) collagen promoter activity and Smad binding to SBE induced by TGF-beta1. These results suggest that RACK1 modulates transcription of alpha2(I) collagen by TGF-beta1 through interference with Smad3 binding to the gene promoter.

  8. S-adenosylmethionine blocks collagen I production by preventing transforming growth factor-beta induction of the COL1A2 promoter.

    PubMed

    Nieto, Natalia; Cederbaum, Arthur I

    2005-09-02

    To study the anti-fibrogenic mechanisms of S-adenosylmethionine (AdoMet), transgenic mice harboring the -17 kb to +54 bp of the collagen alpha2 (I) promoter (COL1A2) cloned upstream from the beta-gal reporter gene were injected with carbon tetrachloride (CCl4) to induce fibrosis and coadministered either AdoMet or saline. Control groups received AdoMet or mineral oil. AdoMet lowered the pathology in CCl4-treated mice as shown by transaminase levels, hematoxylin and eosin, Masson's trichrome staining, and collagen I expression. beta-Galactosidase activity indicated activation of the COL1A2 promoter in stellate cells from CCl4-treated mice and repression of such activation by AdoMet. Lipid peroxidation, transforming growth factor-beta (TGFbeta) expression, and decreases in glutathione levels were prevented by AdoMet. Incubation of primary stellate cells with AdoMet down-regulated basal and TGFbeta-induced collagen I and alpha-smooth muscle actin proteins. AdoMet metabolites down-regulated collagen I protein and mRNA levels. AdoMet repressed basal and TGFbeta-induced reporter activity in stellate cells transfected with COL1A2 promoter deletion constructs. AdoMet blocked TGFbeta induction of the -378 bp region of the COL1A2 promoter and prevented the phosphorylation of extracellular signal-regulated kinase 1/2 and the binding of Sp1 to the TGFbeta-responsive element. These observations unveil a novel mechanism by which AdoMet could ameliorate liver fibrosis.

  9. Transforming growth factor beta (TGF beta) causes a persistent increase in steady-state amounts of type I and type III collagen and fibronectin mRNAs in normal human dermal fibroblasts.

    PubMed Central

    Varga, J; Rosenbloom, J; Jimenez, S A

    1987-01-01

    It has been previously shown that transforming growth factor beta (TGF beta) is capable of stimulating fibroblast collagen and fibronectin biosynthesis. The purpose of this study was to examine the mechanisms involved in TGF beta stimulation of fibroblast biosynthetic activity. Our results indicate that TGF beta causes a marked enhancement of the production of types I and III collagens and fibronectin by cultured normal human dermal fibroblasts. The rate of collagen production by fibroblasts exposed to TGF beta was 2-3-fold greater than that of control cells. These effects were associated with a 2-3-fold increase in the steady-state amounts of types I and III collagen mRNAs and a 5-8-fold increase in the amounts of fibronectin mRNAs as determined by dot-blot hybridization with specific cloned cDNA probes. In addition, the increased production of collagen and fibronectin and the increased amounts of their corresponding mRNAs remained elevated for at least 72 h after removal of TGF beta. These findings suggest that TGF beta may play a major role in the normal regulation of extracellular matrix production in vivo and may contribute to the development of pathological states of fibrosis. Images Fig. 1. Fig. 4. PMID:3501287

  10. Icariin attenuates high glucose-induced type IV collagen and fibronectin accumulation in glomerular mesangial cells by inhibiting transforming growth factor-β production and signalling through G protein-coupled oestrogen receptor 1.

    PubMed

    Li, Yi-Chen; Ding, Xuan-Sheng; Li, Hui-Mei; Zhang, Cheng

    2013-09-01

    Icariin has been shown to attenuate diabetic nephropathy in rats by decreasing transforming growth factor-β (TGF-β) and type IV collagen expression, but its mode of action in glomerular mesangial cells is uncertain. The present study aimed to investigate the effect of icariin on excess mesangial type IV collagen and fibronectin accumulation induced by high glucose, and to determine the mechanism underlying its protective effects. Under high-glucose conditions, icariin diminished type IV collagen and fibronectin accumulation, as well as TGF-β production in human and rat mesangial cells. Mesangial cells treated with icariin after TGF-β1 exposure expressed less type IV collagen and fibronectin than those without icariin treatment, suggesting inhibition by icariin of TGF-β1 downstream pathways. On TGF-β1 stimulation, icariin inhibited TGF-β canonical Smad signalling and extracellular signal-regulated kinase (ERK)1/2 signalling by decreasing Smad2/3 and ERK1/2 phosphorylation in a dose-dependent manner. U0126, which blocked the ERK1/2 pathway, exerted an additive effect on the icariin suppression of type IV collagen and fibronectin expression, enhancing the beneficial effects of icariin. The G protein-coupled oestrogen receptor 1 (GPER) antagonist, G-15, abolished the icariin-induced inhibition of type IV collagen, and fibronectin overproduction and TGF-β signalling. Treatment of cells with fulvestrant, a downregulator of the oestrogen receptor, enhanced the action of icariin. In conclusion, icariin decreased type IV collagen and fibronectin accumulation induced by high glucose in mesangial cells by inhibiting TGF-β production, as well as Smad and ERK signalling in a GPER-dependent manner.

  11. Protein kinase signalling pathways involved in the up-regulation of the rat alpha1(I) collagen gene by transforming growth factor beta1 and bone morphogenetic protein 2 in osteoblastic cells.

    PubMed Central

    Palcy, S; Goltzman, D

    1999-01-01

    Transforming growth factor beta (TGFbeta) family members are known for their important role in bone physiology. TGFbeta(1) and, to a smaller extent, bone morphogenetic protein 2 (BMP-2) have been reported to regulate the gene expression of different osteoblast markers in vitro. However, little is known about the molecular mechanisms involved in these actions. Here we report that BMP-2, like TGFbeta(1), up-regulated alpha1(I) collagen mRNA expression in ROS 17/2.8 osteoblastic cells. This was mediated through an increase in the transcriptional rate of the gene rather than through the stabilization of alpha1(I) collagen mRNA, and required new protein synthesis. In addition, TGFbeta(1)- and BMP-2-induced increases in alpha1(I) collagen mRNA levels were both dependent on protein kinase C and protein tyrosine kinase activities. Furthermore, the mitogen-activated protein kinase (MAPK) [MAPK/extracellular signal-regulated protein kinase kinase 1/extracellular signal-regulated protein kinase (MEK-1/ERK)] pathway participated in the up-regulation of alpha1(I) collagen gene expression by TGFbeta(1) and BMP-2. In response to either TGFbeta(1) or BMP-2, the stimulation of alpha1(I) collagen mRNA levels was paralleled by an early increase in extracellular signal-regulated kinase protein activity. Moreover, the effects of both TGFbeta(1) and BMP-2 on alpha1(I) collagen gene expression were markedly decreased in transfected ROS 17/2.8 cells expressing a dominant-negative MEK-1. Our findings therefore show that TGFbeta(1) and BMP-2, which signal through discrete cell-surface receptors, are able to trigger analogous, if not identical, protein-phosphorylation-transducing cascades leading to comparable actions on the transcription of the alpha1(I) collagen gene in osteoblastic cells. PMID:10493907

  12. Role of Flightless-I (Drosophila) homolog in the transcription activation of type I collagen gene mediated by transforming growth factor beta

    SciTech Connect

    Lim, Mi-Sun; Jeong, Kwang Won

    2014-11-21

    Highlights: • FLII activates TGFβ-mediated expression of COL1A2 gene. • TGFβ induces the association of FLII with SMAD3 and BRG1 in A549 cells. • FLII is required for the recruitment of SWI/SNF complex and chromatin accessibility to COL1A2 promoter. - Abstract: Flightless-I (Drosophila) homolog (FLII) is a nuclear receptor coactivator that is known to interact with other transcriptional regulators such as the SWI/SNF complex, an ATP-dependent chromatin-remodeling complex, at the promoter or enhancer region of estrogen receptor (ER)-α target genes. However, little is known about the role of FLII during transcription initiation in the transforming growth factor beta (TGFβ)/SMAD-dependent signaling pathway. Here, we demonstrate that FLII functions as a coactivator in the expression of type I collagen gene induced by TGFβ in A549 cells. FLII activates the reporter gene driven by COL1A2 promoter in a dose-dependent manner. Co-expression of GRIP1, CARM1, or p300 did not show any synergistic activation of transcription. Furthermore, the level of COL1A2 expression correlated with the endogenous level of FLII mRNA level. Depletion of FLII resulted in a reduction of TGFβ-induced expression of COL1A2 gene. In contrast, over-expression of FLII caused an increase in the endogenous expression of COL1A2. We also showed that FLII is associated with Brahma-related gene 1 (BRG1) as well as SMAD in A549 cells. Notably, the recruitment of BRG1 to the COL1A2 promoter region was decreased in FLII-depleted A549 cells, suggesting that FLII is required for TGFβ-induced chromatin remodeling, which is carried out by the SWI/SNF complex. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments revealed that depletion of FLII caused a reduction in chromatin accessibility at the COL1A2 promoter. These results suggest that FLII plays a critical role in TGFβ/SMAD-mediated transcription of the COL1A2 gene

  13. cAMP inhibits transforming growth factor-beta-stimulated collagen synthesis via inhibition of extracellular signal-regulated kinase 1/2 and Smad signaling in cardiac fibroblasts.

    PubMed

    Liu, Xiaoqiu; Sun, Shu Qiang; Hassid, Aviv; Ostrom, Rennolds S

    2006-12-01

    Cardiac fibroblasts produce and degrade extracellular matrix and are critical in regulating cardiac remodeling and hypertrophy. Cytokines such as transforming growth factor-beta (TGF-beta) play a fundamental role in the development of tissue fibrosis by stimulating matrix deposition and other profibrotic responses, but less is known about pathways that might inhibit fibrosis. Increased cAMP formation inhibits myofibroblast differentiation and collagen production by cardiac fibroblasts, but the mechanism of this inhibition is not known. We sought to characterize the signaling pathways by which cAMP-elevating agents alter collagen expression and myofibroblast differentiation. Treatment with 10 microM forskolin or isoproterenol increased cAMP production and cAMP response element binding protein (CREB) phosphorylation in cardiac fibroblasts and inhibited serum- or TGF-beta-stimulated collagen synthesis by 37% or more. These same cAMP-elevating agents blunted TGF-beta-stimulated expression of collagen I, collagen III, and alpha-smooth muscle actin. Forskolin or isoproterenol treatment blocked the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) induced by TGF-beta despite the fact that these cAMP-elevating agents stimulated ERK1/2 activation on their own. cAMP-elevating agents also attenuated the activation of c-Jun NH(2)-terminal kinase and reduced binding of the transcriptional coactivator CREB-binding protein 1 to transcriptional complexes containing Smad2, Smad3, and Smad4. Pharmacological inhibition of ERK completely blocked TGF-beta-stimulated collagen gene expression, but expression of an active mutant of MEK was additive with TGF-beta treatment. Thus, cAMP-elevating agents inhibit the profibrotic effects of TGF-beta in cardiac fibroblasts largely through inhibiting ERK1/2 phosphorylation but also by reducing Smad-mediated recruitment of transcriptional coactivators.

  14. Transforming growth factor-β1 induces type II collagen and aggrecan expression via activation of extracellular signal-regulated kinase 1/2 and Smad2/3 signaling pathways.

    PubMed

    Zhu, Yanhui; Tao, Hairong; Jin, Chen; Liu, Yonzhang; Lu, Xiongwei; Hu, Xiaopeng; Wang, Xiang

    2015-10-01

    Transforming growth factor (TGF)‑β regulates the anabolic metabolism of articular cartilage and prevents cartilage degradation. TGF‑β1 influences cellular proliferation, differentiation and the extracellular matrix through activation of the extracellular signal‑regulated kinase (ERK)1/2 and Smad2/3 signaling pathways. However, it has remained to be fully elucidated precisely how the ERK1/2 and Smad2/3 signaling pathways mediate anabolic processes of articular cartilage. The present study investigated how ERK1/2 and Smad2/3 signaling mediate TGF‑β1‑stimulated type II collagen and aggrecan expression in rat chondrocytes. The results confirmed that TGF‑β1 stimulates type II collagen and aggrecan expression in rat chondrocytes, and furthermore, that the ERK1/2 and Smad2/3 signaling pathways were activated by TGF‑β1. Conversely, the TGF‑β receptor I (ALK5) kinase inhibitor SB525334 significantly impaired TGF‑β1‑induced type II collagen and aggrecan expression, coinciding with a reduction of ERK1/2 and Smad3 phosphorylation. In addition, TGF‑β1‑induced type II collagen and aggrecan expression were significantly suppressed by ERK1/2 inhibitor PD98059. Similarly, TGF‑β1‑stimulated type II collagen and aggrecan expression were decreased in the presence of a Smad3 phosphorylation inhibitor SIS3. Therefore, the present study demonstrated that the ERK1/2 and Smad2/3 signaling pathways regulate type II collagen and aggrecan expression in rat chondrocytes.

  15. Elevated expression of type VII collagen in the skin of patients with systemic sclerosis. Regulation by transforming growth factor-beta.

    PubMed Central

    Rudnicka, L; Varga, J; Christiano, A M; Iozzo, R V; Jimenez, S A; Uitto, J

    1994-01-01

    A hallmark of systemic sclerosis (SSc) is the development of tissue fibrosis. Excessive production of several connective tissue components normally present in the dermis, including type I, III, V, and VI collagens as well as fibronectin and proteoglycans, is a consistent finding in the skin of SSc patients. Type VII collagen is a major constituent of anchoring fibrils, present in the skin at the dermal-epidermal basement membrane zone. TGF-beta has been shown to upregulate the expression of the type VII collagen gene. In this study, we assessed the expression of type VII collagen and TGF-beta in the skin of patients with SSc. Indirect immunofluorescence showed an abundance of type VII collagen in the patients' skin, including the dermis. Ultrastructural analysis of SSc skin revealed an abundance of fibrillar material, possibly representing type VII collagen. The increased expression of type VII collagen epitopes was accompanied by the elevated expression of immunodetectable TGF-beta 1 and TGF-beta 2. Dermal fibroblasts cultured from the affected individuals showed a statistically significant (P < 0.02) increase in the expression of type VII collagen at the mRNA level, as detected by reverse transcription-PCR with a mutated cDNA as an internal standard, and increased deposition of the protein as assessed by indirect immunofluorescence. Thus, type VII collagen is abundantly present in SSc patients' dermis, a location not characteristic of its normal distribution, and its aberrant expression may relate to the presence of TGF-beta in the same topographic distribution. The presence of type VII collagen in the dermis may contribute to the tightly bound and indurated appearance of the affected skin in SSc patients. Images PMID:7512991

  16. Transformation of amorphous calcium carbonate to rod-like single crystal calcite via "copying" collagen template.

    PubMed

    Xue, Zhonghui; Hu, Binbin; Dai, Shuxi; Du, Zuliang

    2015-10-01

    Collagen Langmuir films were prepared by spreading the solution of collagen over deionized water, CaCl2 solution and Ca(HCO3)2 solution. Resultant collagen Langmuir monolayers were then compressed to a lateral pressure of 10 mN/m and held there for different duration, allowing the crystallization of CaCO3. The effect of crystallization time on the phase composition and microstructure of CaCO3 was investigated. It was found that amorphous calcium carbonate (ACC) was obtained at a crystallization time of 6 h. The amorphous CaCO3 was transformed to rod-like single crystal calcite crystals at an extended crystallization time of 12 h and 24 h, via "copying" the symmetry and dimensionalities of collagen fibers. Resultant calcite crystallites were well oriented along the longitudinal axis of collagen fibers. The ordered surface structure of collagen fibers and electrostatic interactions played key roles in tuning the oriented nucleation and growth of the calcite crystallites. The mineralized collagen possessing both desired mechanical properties of collagen fiber and good biocompatibility of calcium carbonate may be assembled into an ideal biomaterial for bone implants.

  17. Altered expression of small proteoglycans, collagen, and transforming growth factor-beta 1 in developing bleomycin-induced pulmonary fibrosis in rats.

    PubMed Central

    Westergren-Thorsson, G; Hernnäs, J; Särnstrand, B; Oldberg, A; Heinegård, D; Malmström, A

    1993-01-01

    The development of bleomycin-induced pulmonary fibrosis in rats was studied over a period of 21 d after an intratracheal instillation of bleomycin. The expression of three small proteoglycans (biglycan, decorin, and fibromodulin), collagen III and TGF-beta 1 was studied by RNA-transfer blot analysis. The proteoglycans were also studied by SDS-polyacrylamide gel electrophoresis and Western blots. TGF-beta 1 mRNA increased threefold already on day 3 and remained elevated until day 10. After the increase of TGF-beta 1 mRNA the messages for biglycan and collagen III steadily increased to reach a maximum 10 d after bleomycin instillation. The mRNA for biglycan increased maximally fourfold and that of collagen III 2.5-fold. Decorin mRNA, in contrast to biglycan decreased and reached 20% of control on day 10. The message for fibromodulin remained constant throughout the study period. The amounts of biglycan and decorin in the tissue changed in accordance with the mRNA levels. The results corroborate and extend previous in vitro studies concerning the effect of TGF-beta 1 on the metabolism of small proteoglycans and show that these macromolecules are regulated differently also in vivo. The marked alterations of biglycan and decorin during the development of fibrosis suggests that these proteoglycans have a regulating role in this process. Images PMID:7688761

  18. Involvement of H- and N-Ras isoforms in transforming growth factor-{beta}1-induced proliferation and in collagen and fibronectin synthesis

    SciTech Connect

    Martinez-Salgado, Carlos . E-mail: carloms@usal.es; Fuentes-Calvo, Isabel; Garcia-Cenador, Begona; Santos, Eugenio; Lopez-Novoa, Jose M.

    2006-07-01

    Transforming growth factor {beta}1 (TGF-{beta}1) has a relevant role in the origin and maintenance of glomerulosclerosis and tubule-interstitial fibrosis. TGF-{beta} and Ras signaling pathways are closely related: TGF-{beta}1 overcomes Ras mitogenic effects and Ras counteracts TGF-{beta} signaling. Tubule-interstitial fibrosis is associated to increases in Ras, Erk, and Akt activation in a renal fibrosis model. We study the role of N- and H-Ras isoforms, and the involvement of the Ras effectors Erk and Akt, in TGF-{beta}1-mediated extracellular matrix (ECM) synthesis and proliferation, using embrionary fibroblasts from double knockout (KO) mice for H- and N-Ras (H-ras {sup -/-}/N-ras {sup -/-}) isoforms and from heterozygote mice (H-ras {sup +/-}/N-ras {sup +/-}). ECM synthesis is increased in basal conditions in H-ras {sup -/-}/N-ras {sup -/-} fibroblasts, this increase being higher after stimulation with TGF-{beta}1. TGF-{beta}1-induced fibroblast proliferation is smaller in H-ras {sup -/-}/N-ras {sup -/-} than in H-ras {sup +/-}/N-ras {sup +/-} fibroblasts. Erk activation is decreased in H-ras {sup -/-}/N-ras {sup -/-} fibroblasts; inhibition of Erk activation reduces fibroblast proliferation. Akt activation is higher in double KO fibroblasts than in heterozygotes; inhibition of Akt activation also inhibits ECM synthesis. We suggest that H- and N-Ras isoforms downregulate ECM synthesis, and mediate proliferation, in part through MEK/Erk activation. PI3K-Akt pathway activation may be involved in the increase in ECM synthesis observed in the absence of H- and N-Ras.

  19. Superoxide radicals increase transforming growth factor-{beta}1 and collagen release from human lung fibroblasts via cellular influx through chloride channels

    SciTech Connect

    Qi Shufan Hartog, Gertjan J.M. den; Bast, Aalt

    2009-05-15

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of fibrosis. However, it remains unclear which ROS is the major cause. We hypothesize that superoxide elicits specific toxicity to human lung fibroblasts and plays an important role in the development of pulmonary fibrosis. In this study, superoxide generated from xanthine and xanthine oxidase activated lung fibroblasts by increasing the release of TGF-{beta}1 and collagen. This was associated with increased levels of intracellular superoxide. SOD and tempol, by scavenging respectively extracellular and intracellular superoxide, prevented the activation of fibroblasts induced by exposure to exogenous superoxide, whereas catalase did not. Moreover, hydrogen peroxide did not activate fibroblasts. Apparently, superoxide rather than hydrogen peroxide is involved in the regulation of TGF-{beta}1 and collagen release in lung fibroblasts. The chloride channel blocker, DIDS, inhibited the increase of intracellular superoxide levels induced by exogenous superoxide and consequently prevented the activation of fibroblasts. This suggests that the cellular influx of superoxide through chloride channels is essential for superoxide-induced activation of fibroblasts. ERK1/2 and p38 MAPKs are involved in the intracellular pathway leading to superoxide-induced fibroblasts activation. Superoxide possesses until now undiscovered specific pro-fibrotic properties in human lung fibroblasts. This takes place via the cellular influx of superoxide through chloride channels rather than via the formation of hydrogen peroxide.

  20. The Effector Protein BPE005 from Brucella abortus Induces Collagen Deposition and Matrix Metalloproteinase 9 Downmodulation via Transforming Growth Factor β1 in Hepatic Stellate Cells

    PubMed Central

    Arriola Benitez, Paula Constanza; Rey Serantes, Diego; Herrmann, Claudia Karina; Pesce Viglietti, Ayelén Ivana; Vanzulli, Silvia; Giambartolomei, Guillermo Hernán; Comerci, Diego José

    2015-01-01

    The liver is frequently affected in patients with active brucellosis. In the present study, we identified a virulence factor involved in the modulation of hepatic stellate cell function and consequent fibrosis during Brucella abortus infection. This study assessed the role of BPE005 protein from B. abortus in the fibrotic phenotype induced on hepatic stellate cells during B. abortus infection in vitro and in vivo. We demonstrated that the fibrotic phenotype induced by B. abortus on hepatic stellate (LX-2) cells was dependent on BPE005, a protein associated with the type IV secretion system (T4SS) VirB from B. abortus. Our results indicated that B. abortus inhibits matrix metalloproteinase 9 (MMP-9) secretion through the activity of the BPE005-secreted protein and induces concomitant collagen deposition by LX-2 cells. BPE005 is a small protein containing a cyclic nucleotide monophosphate binding domain (cNMP) that modulates the LX-2 cell phenotype through a mechanism that is dependent on the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway. Altogether, these results indicate that B. abortus tilts LX-2 cells to a profibrogenic phenotype employing a functional T4SS and the secreted BPE005 protein through a mechanism that involves the cAMP and PKA signaling pathway. PMID:26667834

  1. The Effector Protein BPE005 from Brucella abortus Induces Collagen Deposition and Matrix Metalloproteinase 9 Downmodulation via Transforming Growth Factor β1 in Hepatic Stellate Cells.

    PubMed

    Arriola Benitez, Paula Constanza; Rey Serantes, Diego; Herrmann, Claudia Karina; Pesce Viglietti, Ayelén Ivana; Vanzulli, Silvia; Giambartolomei, Guillermo Hernán; Comerci, Diego José; Delpino, María Victoria

    2015-12-14

    The liver is frequently affected in patients with active brucellosis. In the present study, we identified a virulence factor involved in the modulation of hepatic stellate cell function and consequent fibrosis during Brucella abortus infection. This study assessed the role of BPE005 protein from B. abortus in the fibrotic phenotype induced on hepatic stellate cells during B. abortus infection in vitro and in vivo. We demonstrated that the fibrotic phenotype induced by B. abortus on hepatic stellate (LX-2) cells was dependent on BPE005, a protein associated with the type IV secretion system (T4SS) VirB from B. abortus. Our results indicated that B. abortus inhibits matrix metalloproteinase 9 (MMP-9) secretion through the activity of the BPE005-secreted protein and induces concomitant collagen deposition by LX-2 cells. BPE005 is a small protein containing a cyclic nucleotide monophosphate binding domain (cNMP) that modulates the LX-2 cell phenotype through a mechanism that is dependent on the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway. Altogether, these results indicate that B. abortus tilts LX-2 cells to a profibrogenic phenotype employing a functional T4SS and the secreted BPE005 protein through a mechanism that involves the cAMP and PKA signaling pathway.

  2. Differential in vitro phenotype pattern, transforming growth factor-beta(1) activity and mRNA expression of transforming growth factor-beta(1) in Apert osteoblasts.

    PubMed

    Locci, P; Baroni, T; Pezzetti, F; Lilli, C; Marinucci, L; Martinese, D; Becchetti, E; Calvitti, M; Carinci, F

    1999-09-01

    The phenotype of Apert osteoblasts differs from that of normal osteoblasts in the accumulation of macromolecules in the extracellular matrix. Apert osteoblasts increase type I collagen, fibronectin and glycosaminoglycans secretion compared with normal osteoblasts. Because the extracellular matrix macromolecule accumulation is greatly modulated by transforming growth factor-beta(1), we examined the ability of normal and Apert osteoblasts to secrete transforming growth factor-beta(1) by CCL-64 assay and to produce transforming growth factor-beta(1 )by analysis of the mRNA expression of transforming growth factor-beta(1). Northern blot analysis revealed an increased amount of transforming growth factor-beta(1) mRNA expression in Apert osteoblasts compared with normal ones. Moreover, the level of the active transforming growth factor-beta(1) isoform was higher in Apert than in normal media. In pathologic cells, the increase in transforming growth factor-beta(1) gene expression was associated with a parallel increase in the factor secreted into the medium. The level of transforming growth factor-beta(1) was decreased by the addition of basic fibroblast growth factor. Transforming growth factor-beta(1) is controlled temporally and spatially during skeletal tissue development and produces complex stimulatory and inhibitory changes in osteoblast functions. We hypothesise that in vitro differences between normal and Apert osteoblasts may be correlated to different transforming growth factor-beta(1) cascade patterns, probably due to an altered balance between transforming growth factor-beta(1) and basic fibroblast growth factor.

  3. Fourier transform infrared spectroscopic imaging of cardiac tissue to detect collagen deposition after myocardial infarction

    NASA Astrophysics Data System (ADS)

    Cheheltani, Rabee; Rosano, Jenna M.; Wang, Bin; Sabri, Abdel Karim; Pleshko, Nancy; Kiani, Mohammad F.

    2012-05-01

    Myocardial infarction often leads to an increase in deposition of fibrillar collagen. Detection and characterization of this cardiac fibrosis is of great interest to investigators and clinicians. Motivated by the significant limitations of conventional staining techniques to visualize collagen deposition in cardiac tissue sections, we have developed a Fourier transform infrared imaging spectroscopy (FT-IRIS) methodology for collagen assessment. The infrared absorbance band centered at 1338 cm-1, which arises from collagen amino acid side chain vibrations, was used to map collagen deposition across heart tissue sections of a rat model of myocardial infarction, and was compared to conventional staining techniques. Comparison of the size of the collagen scar in heart tissue sections as measured with this methodology and that of trichrome staining showed a strong correlation (R=0.93). A Pearson correlation model between local intensity values in FT-IRIS and immuno-histochemical staining of collagen type I also showed a strong correlation (R=0.86). We demonstrate that FT-IRIS methodology can be utilized to visualize cardiac collagen deposition. In addition, given that vibrational spectroscopic data on proteins reflect molecular features, it also has the potential to provide additional information about the molecular structure of cardiac extracellular matrix proteins and their alterations.

  4. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues.

    PubMed

    Hanifi, Arash; McCarthy, Helen; Roberts, Sally; Pleshko, Nancy

    2013-01-01

    Hyaline cartilage and mechanically inferior fibrocartilage consisting of mixed collagen types are frequently found together in repairing articular cartilage. The present study seeks to develop methodology to identify collagen type and other tissue components using Fourier transform infrared (FTIR) spectral evaluation of matrix composition in combination with multivariate analyses. FTIR spectra of the primary molecular components of repair cartilage, types I and II collagen, and aggrecan, were used to develop multivariate spectral models for discrimination of the matrix components of the tissues of interest. Infrared imaging data were collected from bovine bone, tendon, normal cartilage, meniscus and human repair cartilage tissues, and composition predicted using partial least squares analyses. Histology and immunohistochemistry results were used as standards for validation. Infrared fiber optic probe spectral data were also obtained from meniscus (a tissue with mixed collagen types) to evaluate the potential of this method for identification of collagen type in a minimally-invasive clinical application. Concentration profiles of the tissue components obtained from multivariate analysis were in excellent agreement with histology and immunohistochemistry results. Bone and tendon showed a uniform distribution of predominantly type I collagen through the tissue. Normal cartilage showed a distribution of type II collagen and proteoglycan similar to the known composition, while in repair cartilage, the spectral distribution of both types I and II collagen were similar to that observed via immunohistochemistry. Using the probe, the outer and inner regions of the meniscus were shown to be primarily composed of type I and II collagen, respectively, in accordance with immunohistochemistry data. In summary, multivariate analysis of infrared spectra can indeed be used to differentiate collagen type I and type II, even in the presence of proteoglycan, in connective tissues

  5. A novel collagen/platelet-rich plasma (COL/PRP) scaffold: preparation and growth factor release analysis.

    PubMed

    Zhang, Xiujie; Wang, Jingwei; Ren, Mingguang; Li, Lifeng; Wang, Qingwen; Hou, Xiaohua

    2016-06-01

    Platelet-rich plasma (PRP) has been widely used in clinical practice for more than 20 years because it causes the release of many growth factors. However, the burst release pattern and short release period of PRP have become obstacles to its application. An optimal controllable release system is an urgent need for researchers. This study investigated whether collagen/PRP (COL/PRP) scaffolds can serve as a vehicle for the controllable release of growth factors. We fabricated a novel scaffold that integrates PRP activated by thrombin or collagen into type I collagen. The mechanical properties, cytotoxicity, and transforming growth factor β1 (TGF-β1), platelet derived growth factor (PDGF), fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) content were evaluated. Our results demonstrate that the COL/PRP scaffolds were not cytotoxic to L-929 fibroblasts. The PDGF and FGF content in the thrombin group was at a higher level and lasted for a long period of time. Collagen and thrombin played the same role in the release of TGF-β1 and VEGF. These data suggest that the novel COL/PRP scaffolds provide a carrier for the controllable release of growth factors and may be used in tissue- regenerative therapies.

  6. Acceleration of bone formation during fracture healing by injectable collagen powder and human basic fibroblast growth factor containing a collagen-binding domain from Clostridium histolyticum collagenase.

    PubMed

    Saito, Wataru; Uchida, Kentaro; Ueno, Masaki; Matsushita, Osamu; Inoue, Gen; Nishi, Nozomu; Ogura, Takayuki; Hattori, Shunji; Fujimaki, Hisako; Tanaka, Keisuke; Takaso, Masashi

    2014-09-01

    Growth factor delivered with implantable biomaterials has been used to both accelerate and ensure healing of open fractures in human patients. However, a major limitation of implantable biomaterials is the requirement for open surgical placement. Here, we developed an injectable collagen material-based bone formation system consisting of injectable collagen powder with fibril morphology and collagen triple helix conformation, and basic fibroblast growth factor (bFGF) fused to the collagen-binding domain (CBD) of Clostridium histolyticum collagenase. The affinity of the CBD towards collagen was confirmed by the results of collagen-binding assays. Moreover, the combination of the collagen binding-bFGF fusion protein (CB-bFGF) with injectable collagen powder induced bone formation at protein concentrations lower than those required for bFGF alone in mice fracture models. Taken together, these properties suggest that the CB-bFGF/collagen powder composite is a promising injectable material for bone repair in the clinical setting.

  7. Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds

    SciTech Connect

    Chen, Chih-Hao; Kuo, Shyh Ming; Liu, Guei-Sheung; Chen, Wan-Nan U.; Chuang, Chin-Wen; Liu, Li-Feng

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Neuron cancer stem cells (NCSCs) behave high multiply of growth on collagen scaffold. Black-Right-Pointing-Pointer Enhancement of NCSCs neurite outgrowth on porous collagen scaffold. Black-Right-Pointing-Pointer 3-D collagen culture of NCSCs shows an advance differentiation than 2-D culture. -- Abstract: Collagen is one component of the extracellular matrix that has been widely used for constructive remodeling to facilitate cell growth and differentiation. The 3-D distribution and growth of cells within the porous scaffold suggest a clinical significance for nerve tissue engineering. In the current study, we investigated proliferation and differentiation of neuron cancer stem cells (NCSCs) on a 3-D porous collagen scaffold that mimics the natural extracellular matrix. We first generated green fluorescence protein (GFP) expressing NCSCs using a lentiviral system to instantly monitor the transitions of morphological changes during growth on the 3-D scaffold. We found that proliferation of GFP-NCSCs increased, and a single cell mass rapidly grew with unrestricted expansion between days 3 and 9 in culture. Moreover, immunostaining with neuronal nuclei (NeuN) revealed that NCSCs grown on the 3-D collagen scaffold significantly enhanced neurite outgrowth. Our findings confirmed that the 80 {mu}m porous collagen scaffold could enhance attachment, viability and differentiation of the cancer neural stem cells. This result could provide a new application for nerve tissue engineering and nerve regeneration.

  8. Angiogenic Type I Collagen Extracellular Matrix Integrated with Recombinant Bacteriophages Displaying Vascular Endothelial Growth Factors.

    PubMed

    Yoon, Junghyo; Korkmaz Zirpel, Nuriye; Park, Hyun-Ji; Han, Sewoon; Hwang, Kyung Hoon; Shin, Jisoo; Cho, Seung-Woo; Nam, Chang-Hoon; Chung, Seok

    2016-01-21

    Here, a growth-factor-integrated natural extracellular matrix of type I collagen is presented that induces angiogenesis. The developed matrix adapts type I collagen nanofibers integrated with synthetic colloidal particles of recombinant bacteriophages that display vascular endothelial growth factor (VEGF). The integration is achieved during or after gelation of the type I collagen and the matrix enables spatial delivery of VEGF into a desired region. Endothelial cells that contact the VEGF are found to invade into the matrix to form tube-like structures both in vitro and in vivo, proving the angiogenic potential of the matrix.

  9. [Transforming growth factor of beta-type].

    PubMed

    Stoĭka, R S

    1988-01-01

    Recent data about the structure and properties of the beta-type transforming growth factor as well as evidence about its influence on different target cells are presented. The regulatory action of the factor is shown to depend mainly on the type of tested cells, conditions of their culturing and the presence of other bioregulators of cell proliferation in the medium. The prospects of the beta-type transforming growth factor use in practice are considered.

  10. α3 Chains of type V collagen regulate breast tumour growth via glypican-1

    PubMed Central

    Huang, Guorui; Ge, Gaoxiang; Izzi, Valerio; Greenspan, Daniel S.

    2017-01-01

    Pericellular α3(V) collagen can affect the functioning of cells, such as adipocytes and pancreatic β cells. Here we show that α3(V) chains are an abundant product of normal mammary gland basal cells, and that α3(V) ablation in a mouse mammary tumour model inhibits mammary tumour progression by reducing the proliferative potential of tumour cells. These effects are shown to be primarily cell autonomous, from loss of α3(V) chains normally produced by tumour cells, in which they affect growth by enhancing the ability of cell surface proteoglycan glypican-1 to act as a co-receptor for FGF2. Thus, a mechanism is presented for microenvironmental influence on tumour growth. α3(V) chains are produced in both basal-like and luminal human breast tumours, and its expression levels are tightly coupled with those of glypican-1 across breast cancer types. Evidence indicates α3(V) chains as potential targets for inhibiting tumour growth and as markers of oncogenic transformation. PMID:28102194

  11. Fourier transform Infrared spectroscopic characterization of mineralizing type I collagen enzymatic trivalent cross-links.

    PubMed

    Paschalis, E P; Gamsjaeger, S; Tatakis, D N; Hassler, N; Robins, S P; Klaushofer, K

    2015-01-01

    The most abundant protein of bone's organic matrix is collagen. One of its most important properties is its cross-linking pattern, which is responsible for the fibrillar matrices' mechanical properties such as tensile strength and viscoelasticity. We have previously described a spectroscopic method based on the resolution of the Amide I and II Fourier transform Infrared (FTIR) bands to their underlying constituent peaks, which allows the determination of divalent and pyridinoline (PYD) collagen cross-links in mineralized thin bone tissue sections with a spatial resolution of ~6.3 μm. In the present study, we used FTIR analysis of a series of biochemically characterized collagen peptides, as well as skin, dentin, and predentin, to examine the potential reasons underlying discrepancies between two different analytical methodologies specifically related to spectral processing. The results identified a novel distinct FTIR underlying peak at ~1,680 cm(-1), correlated with deoxypyridinoline (DPD) content. Furthermore, the two different methods of spectral resolution result in widely different results, while only the method employing well-established spectroscopic routines for spectral resolution provided biologically relevant results, confirming our earlier studies relating the area of the underlying 1,660 cm(-1) with PYD content. The results of the present study describe a new peak that may be used to determine DPD content, confirm our earlier report relating spectroscopic parameters to PYD content, and highlight the importance of the selected spectral resolution methodology.

  12. Stimulation of DNA and Collagen Synthesis by Autologous Growth Factor in Cultured Fetal Rat Calvaria

    NASA Astrophysics Data System (ADS)

    Canalis, Ernesto; Peck, William A.; Raisz, Lawrence G.

    1980-11-01

    Conditioned medium derived from organ or cell cultures prepared from 19- to 21-day fetal rat calvaria stimulated the incorporation of [3H]proline into collagen and of [3H]thymidine into DNA in organ cultures of the same tissue. Addition of cortisol enhanced the effect on collagen but not on DNA synthesis. These effects appeared to be due to a nondialyzable and heat-stable growth factor.

  13. Growth of Normal Mouse Vaginal Epithelial Cells in and on Collagen Gels

    NASA Astrophysics Data System (ADS)

    Iguchi, Taisen; Uchima, Francis-Dean A.; Ostrander, Patricia L.; Bern, Howard A.

    1983-06-01

    Sustained growth in primary culture of vaginal epithelial cells from ovariectomized adult BALB/cCrg1 mice embedded within or seeded on collagen gel matrix was achieved in a serum-free medium composed of Ham's F-12 medium/Dulbecco's modified Eagle's medium, 1:1 (vol/vol), supplemented with insulin, bovine serum albumin fraction V, epidermal growth factor, cholera toxin, and transferrin. Three-dimensional growth of vaginal epithelial cells occurred inside the collagen gel matrix. Cell numbers increased 4- to 8-fold in collagen gel and about 4-fold on collagen gel after 9-10 days in culture. The effect of 17β -estradiol (0.00018-180 nM in gel or 0.018-180 nM on gel) and diethylstilbestrol (DES; 0.0186-186 nM in gel) on the growth of vaginal epithelial cells was examined. The addition of estrogen did not enhance the growth of vaginal epithelial cells during this time period either in the complete medium or in a suboptimal medium. Cultures on floating collagen gels in the serum-free medium are composed of 1-3 cell layers with superficial cornification. Estrogen does not appear to be a direct mitogen for vaginal epithelial cells, at least in this system.

  14. Endothelial Cell Growth and Differentiation on Collagen-Immobilized Polycaprolactone Nanowire Surfaces.

    PubMed

    Leszczak, Victoria; Baskett, Dominique A; Popat, Ketul C

    2015-06-01

    The success of cardiovascular implants is associated with the development of an endothelium on material surface, critical to the prevention of intimal hyperplasia, calcification and thrombosis. A thorough understanding of the interaction between vascular endothelial cells and the biomaterial involved is essential in order to have a successful application which promotes healing and regeneration through integration with native tissue. In this study, we have developed collagen immobilized nanostructured surfaces with controlled arrays of high aspect ratio nanowires for the growth and maintenance of human microvascular endothelial cells (HMVECs). The nanowire surfaces were fabricated from polycaprolactone using a novel nanotemplating technique, and were immobilized with collagen utilizing an aminolysis method. The collagen immobilized nanowire surfaces were characterized using contact angle measurements, scanning electron microscopy and X-ray photoelectron spectroscopy. Human microvascular endothelial cells were used to evaluate the efficacy of the collagen immobilized nanowire surfaces to promote cell adhesion, proliferation, viability and differentiation. The results presented here indicate significantly higher cellular adhesion, proliferation and viability on nanowire and collagen immobilized surfaces as compared to the control surface. Further, HMVECs have a more elongated body and low shape factor on nanostructured surfaces. The differentiation potential of collagen immobilized nanowire surfaces was also evaluated by immunostaining and western blotting for key endothelial cell markers that are expressed when human microvascular endothelial cells are differentiated. Results indicate that expression of VE-cadherin is increased on collagen immobilized surfaces while the expression of von Willebrand factor is statistically similar on all surfaces.

  15. The NC1 domain of type XIX collagen inhibits in vivo melanoma growth.

    PubMed

    Ramont, Laurent; Brassart-Pasco, Sylvie; Thevenard, Jessica; Deshorgue, Aurélie; Venteo, Lydie; Laronze, Jean Yves; Pluot, Michel; Monboisse, Jean-Claude; Maquart, François-Xavier

    2007-02-01

    Type XIX collagen is a minor collagen that localizes to basement membrane zones, together with types IV, XV, and XVIII collagens. Because several NC1 COOH-terminal domains of other chains from basement membrane collagens were reported to exhibit antitumor activity, we decided to study the effects of the NC1(XIX) collagen domain on tumor progression using an experimental in vivo model of mouse melanoma. We observed a 70% reduction in tumor volume in NC1(XIX)-treated mice compared with the corresponding controls. Histologic examination of the tumors showed a strong decrease in tumor vascularization in treated mice. In vitro, NC1(XIX) inhibited the migrating capacity of tumor cells and their capacity to invade Matrigel. It also inhibited the capacity of human microvascular endothelial cells to form pseudotubes in Matrigel. This effect was accompanied by a strong inhibition of membrane type-1 matrix metalloproteinase (matrix metalloproteinase-14) and vascular endothelial growth factor expression. Collectively, our data indicate that the NC1 domain of type XIX collagen exerts antitumor activity. This effect is mediated by a strong inhibition of the invasive capacities of tumor cells and antiangiogenic effects. NC1(XIX) should now be considered as a new member of the basement membrane collagen-derived matrikine family with antitumor and antiangiogenic activity.

  16. Cancer cells. 3: Growth factors and transformation

    SciTech Connect

    Feramisco, J.; Ozanne, B.; Stiles, C.

    1985-01-01

    This book contains over 50 papers. Some of the titles are: Structure of Human Epidermal Growth Factor and Expression of Normal and Variant mRNAs in Epdermoid Carcinoma Cells; Tyrosine Kinase Activity Associated with the v-erb-B Gene Product; Cloning and Characterization of Human Epidermal Growth Factor-Receptor Gene Sequences in A431 Carcinoma Cells; Anti-oncogenes and the Suppression of Tumor Formation; and Normal Human sis/PDGF-2 Gene Expression Induces Cellular Transformation.

  17. [The treatment of slowly healing wounds with collagen and growth factors].

    PubMed

    Baĭchev, G; Penkova, R; Deliĭski, T

    1995-01-01

    Experience had with the local application of collagen and autologous growth factors, isolated from platelets, in 35 patients presenting chronic, slowly healing wounds, treated with conventional methods, is discussed. In 24 cases of the series reviewed the wounds undergo epithelization within six weeks, and in the remainder (11)-within 10 weeks. As shown by the results, the healing process is quicker in wounds of patients treated with growth factors in combination with collagen, as compared to the control group--p(t) > 0.05.

  18. Perlecan antagonizes collagen IV and ADAMTS9/GON-1 in restricting the growth of presynaptic boutons.

    PubMed

    Qin, Jianzhen; Liang, Jingjing; Ding, Mei

    2014-07-30

    In the mature nervous system, a significant fraction of synapses are structurally stable over a long time scale. However, the mechanisms that restrict synaptic growth within a confined region are poorly understood. Here, we identified that in the C. elegans neuromuscular junction, collagens Type IV and XVIII, and the secreted metalloprotease ADAMTS/GON-1 are critical for growth restriction of presynaptic boutons. Without these components, ectopic boutons progressively invade into the nonsynaptic region. Perlecan/UNC-52 promotes the growth of ectopic boutons and functions antagonistically to collagen Type IV and GON-1 but not to collagen XVIII. The growth constraint of presynaptic boutons correlates with the integrity of the extracellular matrix basal lamina or basement membrane (BM), which surrounds chemical synapses. Fragmented BM appears in the region where ectopic boutons emerge. Further removal of UNC-52 improves the BM integrity and the tight association between BM and presynaptic boutons. Together, our results unravel the complex role of the BM in restricting the growth of presynaptic boutons and reveal the antagonistic function of perlecan on Type IV collagen and ADAMTS protein.

  19. Linear Ordered Collagen Scaffolds Loaded with Collagen-Binding Basic Fibroblast Growth Factor Facilitate Recovery of Sciatic Nerve Injury in Rats

    PubMed Central

    Ma, Fukai; Xiao, Zhifeng; Chen, Bing; Hou, Xianglin

    2014-01-01

    Natural biological functional scaffolds, consisting of biological materials filled with promoting elements, provide a promising strategy for the regeneration of peripheral nerve defects. Collagen conduits have been used widely due to their excellent biological properties. Linear ordered collagen scaffold (LOCS) fibers are good lumen fillers that can guide nerve regeneration in an ordered direction. In addition, basic fibroblast growth factor (bFGF) is important in the recovery of nerve injury. However, the traditional method for delivering bFGF to the lesion site has no long-term effect because of its short half-life and rapid diffusion. Therefore, we fused a specific collagen-binding domain (CBD) peptide to the N-terminal of native basic fibroblast growth factor (NAT-bFGF) to retain bFGF on the collagen scaffolds. In this study, a natural biological functional scaffold was constructed using collagen tubes filled with collagen-binding bFGF (CBD-bFGF)-loaded LOCS to promote regeneration in a 5-mm rat sciatic nerve transection model. Functional evaluation, histological investigation, and morphometric analysis indicated that the natural biological functional scaffold retained more bFGF at the injury site, guided axon growth, and promoted nerve regeneration as well as functional restoration. PMID:24188561

  20. Fourier transform infrared spectroscopy to quantify collagen and elastin in an in vitro model of extracellular matrix degradation in aorta.

    PubMed

    Cheheltani, Rabee; McGoverin, Cushla M; Rao, Jayashree; Vorp, David A; Kiani, Mohammad F; Pleshko, Nancy

    2014-06-21

    Extracellular matrix (ECM) is a key component and regulator of many biological tissues including aorta. Several aortic pathologies are associated with significant changes in the composition of the matrix, especially in the content, quality and type of aortic structural proteins, collagen and elastin. The purpose of this study was to develop an infrared spectroscopic methodology that is comparable to biochemical assays to quantify collagen and elastin in aorta. Enzymatically degraded porcine aorta samples were used as a model of ECM degradation in abdominal aortic aneurysm (AAA). After enzymatic treatment, Fourier transform infrared (FTIR) spectra of the aortic tissue were acquired by an infrared fiber optic probe (IFOP) and FTIR imaging spectroscopy (FT-IRIS). Collagen and elastin content were quantified biochemically and partial least squares (PLS) models were developed to predict collagen and elastin content in aorta based on FTIR spectra. PLS models developed from FT-IRIS spectra were able to predict elastin and collagen content of the samples with strong correlations (RMSE of validation = 8.4% and 11.1% of the range respectively), and IFOP spectra were successfully used to predict elastin content (RMSE = 11.3% of the range). The PLS regression coefficients from the FT-IRIS models were used to map collagen and elastin in tissue sections of degraded porcine aortic tissue as well as a human AAA biopsy tissue, creating a similar map of each component compared to histology. These results support further application of FTIR spectroscopic techniques for evaluation of AAA tissues.

  1. Fourier Transform Infrared Spectroscopy to Quantify Collagen and Elastin in an In Vitro Model of Extracellular Matrix Degradation in Aorta

    PubMed Central

    Cheheltani, Rabee; McGoverin, Cushla M.; Rao, Jayashree; Vorp, David A.; Kiani, Mohammad F.; Pleshko, N.

    2014-01-01

    Extracellular matrix (ECM) is a key component and regulator of many biological tissues including aorta. Several aortic pathologies are associated with significant changes in the composition of the matrix, especially in the content, quality and type of aortic structural proteins, collagen and elastin. The purpose of this study was to develop an infrared spectroscopic methodology that is comparable to biochemical assays to quantify collagen and elastin in aorta. Enzymatically degraded porcine aorta samples were used as a model of ECM degradation in abdominal aortic aneurysm (AAA). After enzymatic treatment, Fourier transform infrared (FTIR) spectra of the aortic tissue were acquired by an infrared fiber optic probe (IFOP) and FTIR imaging spectroscopy (FT-IRIS). Collagen and elastin content were quantified biochemically and partial least squares (PLS) models were developed to predict collagen and elastin content in aorta based on FTIR spectra. PLS models developed from FT-IRIS spectra were able to predict elastin and collagen content of the samples with strong correlations (RMSE of validation = 8.4% and 11.1% of the range respectively), and IFOP spectra were successfully used to predict elastin content (RMSE = 11.3% of the range). The PLS regression coefficients from the FT-IRIS models were used to map collagen and elastin in tissue sections of degraded porcine aortic tissue as well as a human AAA biopsy tissue, creating a similar map of each component compared to histology. These results support further application of FTIR spectroscopic techniques for evaluation of AAA tissues. PMID:24761431

  2. Modeling the coupled mechanics, transport, and growth processes in collagen tissues.

    SciTech Connect

    Holdych, David J.; Nguyen, Thao D.; Klein, Patrick A.; in't Veld, Pieter J.; Stevens, Mark Jackson

    2006-11-01

    The purpose of this project is to develop tools to model and simulate the processes of self-assembly and growth in biological systems from the molecular to the continuum length scales. The model biological system chosen for the study is the tendon fiber which is composed mainly of Type I collagen fibrils. The macroscopic processes of self-assembly and growth at the fiber scale arise from microscopic processes at the fibrillar and molecular length scales. At these nano-scopic length scales, we employed molecular modeling and simulation method to characterize the mechanical behavior and stability of the collagen triple helix and the collagen fibril. To obtain the physical parameters governing mass transport in the tendon fiber we performed direct numerical simulations of fluid flow and solute transport through an idealized fibrillar microstructure. At the continuum scale, we developed a mixture theory approach for modeling the coupled processes of mechanical deformation, transport, and species inter-conversion involved in growth. In the mixture theory approach, the microstructure of the tissue is represented by the species concentration and transport and material parameters, obtained from fibril and molecular scale calculations, while the mechanical deformation, transport, and growth processes are governed by balance laws and constitutive relations developed within a thermodynamically consistent framework.

  3. Markers of collagen metabolism and insulin-like growth factor binding protein-1 in term infants

    PubMed Central

    Hytinantti, T; Rutanen, E; Turpeinen, M; Sorva, R; Andersson, S

    2000-01-01

    AIM—To study the relation between fetal growth and markers of collagen metabolism and insulin-like growth factor binding protein-1 (IGFBP-1) in term infants.
METHODS—Cord vein plasma was obtained from 67 term infants of gestational age 37.1-41.7 weeks (39 appropriate for gestational age (AGA), 11 large for gestational age (LGA; relative birth weight ⩾ 2.0 SD), and 17 small for gestational age (SGA; relative birth weight ⩽ −2.0 SD)) for analysis of markers of metabolism of collagen type I (PICP and ICTP) and III (PIIINP) and of IGFBP-1.
RESULTS—Negative correlations existed between gestational age and PICP (r = −0.294, p = 0.0158), ICTP (r = −0.338, p = 0.0052), and PIIINP (r = −0.432, p = 0.0003). These correlations were also found in SGA infants (all p < 0.05). IGFBP-1 showed negative correlations with birth weight and relative birth weight (r = −0.644, p = 0.0001, and r = −0.693, p = 0.0001 respectively) but not with gestational age (p>0.05).
CONCLUSIONS—In the term fetus, collagen metabolism is primarily dependent on maturity and not on intrauterine growth status, whereas IGFBP-1 reflects intrauterine growth independently of maturity.

 PMID:10873165

  4. Collagen XVIII/endostatin is associated with the epithelial-mesenchymal transformation in the atrioventricular valves during cardiac development.

    PubMed

    Carvalhaes, Lorenza S; Gervásio, Othon L; Guatimosim, Cristina; Heljasvaara, Ritva; Sormunen, Raija; Pihlajaniemi, Taina; Kitten, Gregory T

    2006-01-01

    Type XVIII collagen is a multidomain protein that contains cleavable C-terminal NC1 and endostatin fragments, which have been shown to either induce or inhibit cell migration. Endostatin is being intensely studied because of its anti-angiogenic activity. Three variants of type XVIII collagen have been reported to be distributed in epithelial and endothelial basement membranes in a tissue-specific manner. The single gene encoding collagen XVIII is on chromosome 21 within the region associated with the congenital heart disease phenotype observed in Down's syndrome. In this study, we investigated the expression pattern of collagen XVIII in embryonic mouse hearts during formation of the atrioventricular (AV) valves. We found that collagen XVIII is localized not only in various basement membranes but is also highly expressed throughout the connective tissue core of the endocardial cushions and forming AV valve leaflets. It was closely associated with the epithelial-mesenchymal transformation of endothelial cells into mesenchymal cushion tissue cells and was localized around these cells as they migrated into the cardiac jelly to form the initial connective tissue elements of the valve leaflets. However, after embryonic day 17.5 collagen XVIII expression decreased rapidly in the connective tissue and thereafter remained detectable only in the basement membranes of the endothelial layer covering the leaflets. The staining pattern observed within the AV endocardial cushions suggests that collagen XVIII may have a role in cardiac valve morphogenesis. These results may help us to better understand normal heart development and the aberrant mechanisms that cause cardiac malformations in Down's syndrome.

  5. Use of natural neural scaffolds consisting of engineered vascular endothelial growth factor immobilized on ordered collagen fibers filled in a collagen tube for peripheral nerve regeneration in rats.

    PubMed

    Ma, Fukai; Xiao, Zhifeng; Meng, Danqing; Hou, Xianglin; Zhu, Jianhong; Dai, Jianwu; Xu, Ruxiang

    2014-10-15

    The search for effective strategies for peripheral nerve regeneration has attracted much attention in recent years. In this study, ordered collagen fibers were used as intraluminal fibers after nerve injury in rats. Vascular endothelial growth factor (VEGF) plays an important role in nerve regeneration, but its very fast initial burst of activity within a short time has largely limited its clinical use. For the stable binding of VEGF to ordered collagen fibers, we fused a collagen-binding domain (CBD) to VEGF through recombinant DNA technology. Then, we filled the ordered collagen fibers-CBD-VEGF targeting delivery system in a collagen tube to construct natural neural scaffolds, which were then used to bridge transected nerve stumps in a rat sciatic nerve transection model. After transplantation, the natural neural scaffolds showed minimal foreign body reactions and good integration into the host tissue. Oriented collagen fibers in the collagen tube could guide regenerating axons in an oriented manner to the distal, degenerating nerve segment, maximizing the chance of target reinnervation. Functional and histological analyses indicated that the recovery of nerve function in the natural neural scaffolds-treated group was superior to the other grafted groups. The guiding of oriented axonal regeneration and effective delivery systems surmounting the otherwise rapid and short-lived diffusion of growth factors in body fluids are two important strategies in promoting peripheral nerve regeneration. The natural neural scaffolds described take advantage of these two aspects and may produce synergistic effects. These properties qualified the artificial nerve conduits as a putative candidate system for the fabrication of peripheral nerve reconstruction devices.

  6. Multiscale modelling of solid tumour growth: the effect of collagen micromechanics

    PubMed Central

    Wijeratne, Peter A.; Vavourakis, Vasileios; Hipwell, John H.; Voutouri, Chrysovalantis; Papageorgis, Panagiotis; Stylianopoulos, Triantafyllos; Evans, Andrew; Hawkes, David J.

    2015-01-01

    Here we introduce a model of solid tumour growth coupled with a multiscale biomechanical description of the tumour microenvironment, which facilitates the explicit simulation of fibre-fibre and tumour-fibre interactions. We hypothesise that such a model, which provides a purely mechanical description of tumour-host interactions, can be used to explain experimental observations of the effect of collagen micromechanics on solid tumour growth. The model was specified to mouse tumour data and numerical simulations were performed. The multiscale model produced lower stresses than an equivalent continuum-like approach, due to a more realistic remodelling of the collagen microstructure. Furthermore, solid tumour growth was found to cause a passive mechanical realignment of fibres at the tumour boundary from a random to a circumferential orientation. This is in accordance with experimental observations, thus demonstrating that such a response can be explained as purely mechanical. Finally, peritumoural fibre network anisotropy was found to produce anisotropic tumour morphology. The dependency of tumour morphology on the peritumoural microstructure was reduced by adding a load-bearing non-collagenous component to the fibre network constitutive equation. PMID:26564173

  7. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells

    NASA Technical Reports Server (NTRS)

    Wang, H. B.; Dembo, M.; Wang, Y. L.

    2000-01-01

    One of the hallmarks of oncogenic transformation is anchorage-independent growth (27). Here we demonstrate that responses to substrate rigidity play a major role in distinguishing the growth behavior of normal cells from that of transformed cells. We cultured normal or H-ras-transformed NIH 3T3 cells on flexible collagen-coated polyacrylamide substrates with similar chemical properties but different rigidity. Compared with cells cultured on stiff substrates, nontransformed cells on flexible substrates showed a decrease in the rate of DNA synthesis and an increase in the rate of apoptosis. These responses on flexible substrates are coupled to decreases in cell spreading area and traction forces. In contrast, transformed cells maintained their growth and apoptotic characteristics regardless of substrate flexibility. The responses in cell spreading area and traction forces to substrate flexibility were similarly diminished. Our results suggest that normal cells are capable of probing substrate rigidity and that proper mechanical feedback is required for regulating cell shape, cell growth, and survival. The loss of this response can explain the unregulated growth of transformed cells.

  8. Changes in cell, matrix compartment, and fibrillar collagen volumes between growth-plate zones.

    PubMed

    Noonan, K J; Hunziker, E B; Nessler, J; Buckwalter, J A

    1998-07-01

    To define the contributions of changes in cell, matrix compartment, and fibrillar collagen volumes to longitudinal bone growth, we measured the differences in cell, pericellular/territorial matrix and interterritorial matrix volumes, and fibrillar collagen concentrations between the upper proliferative and lower hypertrophic zones of the proximal tibial physes of six miniature pigs. The mean numerical density of cells decreased from 110,000 cells/mm3 in the upper proliferative zone to 59,900 cells/mm3 in the lower hypertrophic zone. The mean cell volume increased nearly 5-fold (from 1,174 to 5,530 microm3), and the total matrix volume per cell increased 46% (from 8,040 to 11,760 microm3/cell) between the upper proliferative and lower hypertrophic zones. Both the pericellular/territorial matrix volume per cell and the interterritorial matrix volume per cell increased between the upper proliferative and lower hypertrophic zones; the pericellular/territorial matrix volume per cell increased 61% (from 4,580 to 7,390 microm3/cell), whereas the interterritorial matrix volume per cell increased 26% (from 3,460 to 4,370 microm3/cell). The total increase in mean cell volume of 4,356 microm3 exceeded the total increase in mean matrix volume per cell of 3,720 microm3; the total mean pericellular/territorial matrix volume per cell increased more than the total mean interterritorial matrix volume per cell (2,810 compared with 910 microm3/cell). Fibrillar collagen concentration was greater in the interterritorial matrix than in the pericellular/territorial matrix in both zones and increased in both matrix compartments between the upper proliferative and lower hypertrophic zones. The amount of fibrillar collagen per cell also increased in both matrix compartments between the upper proliferative and lower hypertrophic zones (from 1,720 to 3,100 microm3/cell in the pericellular/territorial matrix and from 1,490 to 2,230 microm3/cell in the interterritorial matrix; thus, the total

  9. Collagen Hydrogel Scaffold and Fibroblast Growth Factor-2 Accelerate Periodontal Healing of Class II Furcation Defects in Dog

    PubMed Central

    Momose, Takehito; Miyaji, Hirofumi; Kato, Akihito; Ogawa, Kosuke; Yoshida, Takashi; Nishida, Erika; Murakami, Syusuke; Kosen, Yuta; Sugaya, Tsutomu; Kawanami, Masamitsu

    2016-01-01

    Objective: Collagen hydrogel scaffold exhibits bio-safe properties and facilitates periodontal wound healing. However, regenerated tissue volume is insufficient. Fibroblast growth factor-2 (FGF2) up-regulates cell behaviors and subsequent wound healing. We evaluated whether periodontal wound healing is promoted by application of collagen hydrogel scaffold in combination with FGF2 in furcation defects in beagle dogs. Methods: Collagen hydrogel was fabricated from bovine type I collagen with an ascorbate-copper ion cross-linking system. Collagen hydrogel was mingled with FGF2 and injected into sponge-form collagen. Subsequently, FGF2 (50 µg)/collagen hydrogel scaffold and collagen hydrogel scaffold alone were implanted into class II furcation defects in dogs. In addition, no implantation was performed as a control. Histometric parameters were assessed at 10 days and 4 weeks after surgery. Result: FGF2 application to scaffold promoted considerable cell and tissue ingrowth containing numerous cells and blood vessel-like structure at day 10. At 4 weeks, reconstruction of alveolar bone was stimulated by implantation of scaffold loaded with FGF2. Furthermore, periodontal attachment, consisting of cementum-like tissue, periodontal ligament-like tissue and Sharpey’s fibers, was also repaired, indicating that FGF2-loaded scaffold guided self-assembly and then re-established the function of periodontal organs. Aberrant healing, such as ankylosis and root resorption, was not observed. Conclusion: FGF2-loaded collagen hydrogel scaffold possessed excellent biocompatibility and strongly promoted periodontal tissue engineering, including periodontal attachment re-organization. PMID:27583044

  10. Phase transformation and growth of hygroscopic aerosols

    SciTech Connect

    Tang, I.N.

    1995-09-01

    Ambient aerosols frequently contain large portions of hygroscopic inorganic salts such as chlorides, nitrates, and sulfates in either pure or mixed forms. Such inorganic salt aerosols exhibit the properties of deliquescence and efflorescence in air. The phase transformation from a solid particle to a saline droplet usually occurs spontaneously when the relative humidity of the atmosphere reaches a level specific to the chemical composition of the aerosol particle. Conversely, when the relative humidity decreases and becomes low enough, the saline droplet will evaporate and suddenly crystallize, expelling all its water content. The phase transformation and growth of aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climate changes. In this chapter, an exposition of the underlying thermodynamic principles is given, and recent advances in experimental methods utilizing single-particle levitation are discussed. In addition, pertinent and available thermodynamic data, which are needed for predicting the deliquescence properties of single and multi-component aerosols, are compiled. This chapter is useful to research scientists who are either interested in pursuing further studies of aerosol thermodynamics, or required to model the dynamic behavior of hygroscopic aerosols in a humid environment.

  11. Refinement of collagen-mineral interaction: a possible role for osteocalcin in apatite crystal nucleation, growth and development.

    PubMed

    Chen, Ling; Jacquet, Robin; Lowder, Elizabeth; Landis, William J

    2015-02-01

    Mineralization of vertebrate tissues such as bone, dentin, cementum, and calcifying tendon involves type I collagen, which has been proposed as a template for calcium and phosphate ion binding and subsequent nucleation of apatite crystals. Type I collagen thereby has been suggested to be responsible for the deposition of apatite mineral without the need for non-collagenous proteins or other extracellular matrix molecules. Based on studies in vitro, non-collagenous proteins, including osteocalcin and bone sialoprotein, are thought to mediate vertebrate mineralization associated with type I collagen. These proteins, as possibly related to mineral deposition, have not been definitively localized in vivo. The present study has reexamined their localization in the leg tendons of avian turkeys, a representative model of vertebrate mineralization. Immunocytochemistry of osteocalcin demonstrates its presence at the surface of, outside and within type I collagen while that of bone sialoprotein appears to be localized at the surface of or outside type I collagen. The association between osteocalcin and type I collagen structure is revealed optimally when calcium ions are added to the antibody solution in the methodology. In this manner, osteocalcin is found specifically located along the a4-1, b1, c2 and d bands defining in part the hole and overlap zones within type I collagen. From these data, while type I collagen itself may be considered a stereochemical guide for intrafibrillar mineral nucleation and subsequent deposition, osteocalcin bound to type I collagen may also possibly mediate nucleation, growth and development of platelet-shaped apatite crystals. Bone sialoprotein and osteocalcin as well, each immunolocalized at the surface of or outside type I collagen, may affect mineral deposition in these portions of the avian tendon.

  12. Expression of Runx2 and type X collagen in vertebral growth plate of patients with adolescent idiopathic scoliosis.

    PubMed

    Wang, Shoufeng; Qiu, Yong; Ma, Zhaolong; Xia, Caiwei; Zhu, Feng; Zhu, Zezhang

    2010-06-01

    The different expression of type X collagen and Runx2 between the convex and concave side of vertebral growth plate in scoliosis may help to improve our understanding of the role that growth plate tissue play in the development or progression of idiopathic scoliosis. In this investigation, there were significant differences of the total expression of type X collagen, Runx2 protein, and Runx2 mRNA between convex side and concave side growth plates of the apex vertebrae (p < 0.05). The total expression of type X collagen in the concave side growth plates of the lower end vertebrae was higher than that in the same side growth plates of apex (p < 0.05). The total expression of Runx2 in the concave side growth plates in the upper and lower end vertebrae were higher than that in the concave side growth plates of apex (p < 0.05). The expression of type X collagen, Runx2, and Runx2 mRNA, the cell density of type X collagen and Runx2 positive chondrocytes, and histological changes between convex side and concave side of the vertebral growth plate indicated that the vertebral growth plate was affected by mechanical forces, which was a secondary change and could contribute to progression of adolescent idiopathic scoliosis.

  13. ROCK signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth.

    PubMed

    Rath, Nicola; Morton, Jennifer P; Julian, Linda; Helbig, Lena; Kadir, Shereen; McGhee, Ewan J; Anderson, Kurt I; Kalna, Gabriela; Mullin, Margaret; Pinho, Andreia V; Rooman, Ilse; Samuel, Michael S; Olson, Michael F

    2017-02-01

    Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer death; identifying PDAC enablers may reveal potential therapeutic targets. Expression of the actomyosin regulatory ROCK1 and ROCK2 kinases increased with tumor progression in human and mouse pancreatic tumors, while elevated ROCK1/ROCK2 expression in human patients, or conditional ROCK2 activation in a Kras(G12D)/p53(R172H) mouse PDAC model, was associated with reduced survival. Conditional ROCK1 or ROCK2 activation promoted invasive growth of mouse PDAC cells into three-dimensional collagen matrices by increasing matrix remodeling activities. RNA sequencing revealed a coordinated program of ROCK-induced genes that facilitate extracellular matrix remodeling, with greatest fold-changes for matrix metalloproteinases (MMPs) Mmp10 and Mmp13 MMP inhibition not only decreased collagen degradation and invasion, but also reduced proliferation in three-dimensional contexts. Treatment of Kras(G12D)/p53(R172H) PDAC mice with a ROCK inhibitor prolonged survival, which was associated with increased tumor-associated collagen. These findings reveal an ancillary role for increased ROCK signaling in pancreatic cancer progression to promote extracellular matrix remodeling that facilitates proliferation and invasive tumor growth.

  14. Collagen-binding vascular endothelial growth factor attenuates CCl4-induced liver fibrosis in mice

    PubMed Central

    Wu, Kangkang; Huang, Rui; Wu, Hongyan; Liu, Yong; Yang, Chenchen; Cao, Shufeng; Hou, Xianglin; Chen, Bing; Dai, Jianwu; Wu, Chao

    2016-01-01

    Vascular endothelial growth factor (VEGF) serves an important role in promoting angiogenesis and tissue regeneration. However, the lack of an effective delivery system that can target this growth factor to the injured site reduces its therapeutic efficacy. Therefore, in the current study, collagen-binding VEGF was constructed by fusing a collagen-binding domain (CBD) to the N-terminal of native VEGF. The CBD-VEGF can specifically bind to collagen which is the major component of the extracellular matrix in fibrotic liver. The anti-fibrotic effects of this novel material were investigated by the carbon tetrachloride (CCl4)-induced liver fibrotic mouse model. Mice were injected with CCl4 intraperitoneally to induce liver fibrosis. CBD-VEGF was injected directly into the liver tissue of mice. The liver tissues were stained with hematoxylin and eosin for general observation or with Masson's trichrome staining for detection of collagen deposition. The hepatic stellate cell activation, blood vessel formation and hepatocyte proliferation were measured by immunohistochemical staining for α-smooth muscle actin, CD31 and Ki67 in the liver tissue. The fluorescent TUNEL assay was performed to evaluate the hepatocyte apoptosis. The present study identified that the CBD-VEGF injection could significantly promote vascularization of the liver tissue of fibrotic mice and attenuate liver fibrosis. Furthermore, hepatocyte apoptosis and hepatic stellate cell activation were attenuated by CBD-VEGF treatment. CBD-VEGF treatment could additionally promote hepatocyte regeneration in the liver tissue of fibrotic mice. Thus, it was suggested that CBD-VEGF may be used as a novel therapeutic intervention for liver fibrosis. PMID:27748931

  15. Proton pump inhibitor induced collagen expression in colonocytes is associated with collagenous colitis

    PubMed Central

    Mori, Shiori; Kadochi, Yui; Luo, Yi; Fujiwara-Tani, Rina; Nishiguchi, Yukiko; Kishi, Shingo; Fujii, Kiyomu; Ohmori, Hitoshi; Kuniyasu, Hiroki

    2017-01-01

    AIM To elucidate the role of proton pump inhibitors (PPIs) in collagenous disease, direct effect of PPI on colonocytes was examined. METHODS Collagenous colitis is a common cause of non-bloody, watery diarrhea. Recently, there has been increasing focus on the use of proton PPIs as a risk factor for developing collagenous colitis. Mouse CT26 colonic cells were treated with PPI and/or PPI-induced alkaline media. Expression of fibrosis-associated genes was examined by RT-PCR. In human materials, collagen expression was examined by immunohistochemistry. RESULTS CT26 cells expressed a Na+-H+ exchanger gene (solute carrier family 9, member A2). Treatment with PPI and/or PPI-induced alkaline media caused growth inhibition and oxidative stress in CT26 cells. The treatment increased expression of fibrosis inducing factors, transforming growth factor β and fibroblast growth factor 2. The treatment also decreased expression of a negative regulator of collagen production, replication factor C1, resulting in increased expression of collagen types III and IV in association with lipid peroxide. In biopsy specimens from patients with collagenous colitis, type III and IV collagen were increased. Increase of type III collagen was more pronounced in PPI-associated collagenous colitis than in non-PPI-associated disease. CONCLUSION From these findings, the reaction of colonocytes to PPI might participate in pathogenesis of collagenous colitis. PMID:28321159

  16. Transforming growth factor beta-induced (TGFBI) is an anti-adhesive protein regulating the invasive growth of melanoma cells.

    PubMed

    Nummela, Pirjo; Lammi, Johanna; Soikkeli, Johanna; Saksela, Olli; Laakkonen, Pirjo; Hölttä, Erkki

    2012-04-01

    Melanoma is a malignancy characterized by high invasive/metastatic potential, with no efficient therapy after metastasis. Understanding the molecular mechanisms underlying the invasive/metastatic tendency is therefore important. Our genome-wide gene expression analyses revealed that human melanoma cell lines WM793 and especially WM239 (vertical growth phase and metastatic cells, respectively) overexpress the extracellular matrix (ECM) protein transforming growth factor β induced (TGFBI). In adhesion assays, recombinant TGFBI was strongly anti-adhesive for both melanoma cells and skin fibroblasts. TGFBI further impaired the adhesion of melanoma cells to the adhesive ECM proteins fibronectin, collagen-I, and laminin, known to interact with it. Unexpectedly, WM239 cells migrated/invaded more effectively in three-dimensional collagen-I and Matrigel cultures after knockdown of TGFBI by shRNA expression. However, in the physiological subcutaneous microenvironment in nude mice, after TGFBI knockdown, these cells showed markedly impaired tumor growth and invasive capability; the initially formed small tumors later underwent myxoid degeneration and completely regressed. By contrast, the expanding control tumors showed intense TGFBI staining at the tumor edges, co-localizing with the fibrillar fibronectin/tenascin-C/periostin structures that characteristically surround melanoma cells at invasion fronts. Furthermore, TGFBI was found in similar fibrillar structures in clinical human melanoma metastases as well, co-localizing with fibronectin. These data imply an important role for TGFBI in the ECM deposition and invasive growth of melanoma cells, rendering TGFBI a potential target for therapeutic interventions.

  17. Transforming growth factor beta regulates thyroid growth. Role in the pathogenesis of nontoxic goiter.

    PubMed Central

    Grubeck-Loebenstein, B; Buchan, G; Sadeghi, R; Kissonerghis, M; Londei, M; Turner, M; Pirich, K; Roka, R; Niederle, B; Kassal, H

    1989-01-01

    The production and growth regulatory activity of transforming growth factor beta were studied in human thyroid tissue. As estimated by its mRNA expression in fresh tissue samples, transforming growth factor beta was produced in normal and in diseased thyroid glands. Transforming growth factor beta mRNA was mainly produced by thyroid follicular cells and in lesser quantities by thyroid infiltrating mononuclear cells. The concentrations of transforming growth factor beta mRNA were lower in iodine-deficient nontoxic goiter than in Graves' disease and normal thyroid tissue. Transforming growth factor beta protein secretion by cultured thyroid follicular cells was also low in nontoxic goiter, but could be increased by addition of sodium iodide (10 microM) to the culture medium. Recombinant transforming growth factor beta did not affect basal tritiated thymidine incorporation in cultured thyroid follicular cells, but inhibited, at a concentration of 10 ng/ml, the growth stimulatory influence of insulin-like growth factor I, epidermal growth factor, transforming growth factor alpha, TSH, and partly that of normal human serum on cultured thyroid follicular cells. This inhibition was greater in Graves' disease than in nontoxic goiter. These results suggest that transforming growth factor beta may act as an autocrine growth inhibitor on thyroid follicular cells. Decreased transforming growth factor beta production and decreased responsiveness to transforming growth factor beta may be cofactors in the pathogenesis of iodine-deficient nontoxic goiter. Images PMID:2921318

  18. Transforming growth factor beta1 and aldosterone

    PubMed Central

    Matsuki, Kota; Hathaway, Catherine K.; Chang, Albert S.; Smithies, Oliver; Kakoki, Masao

    2016-01-01

    Purpose of review It is well established that blocking renin-angiotensin II-aldosterone system (RAAS) is effective for the treatment of cardiovascular and renal complications in hypertension and diabetes mellitus. Although the induction of transforming growth factor beta1 (TGFbeta1) by components of RAAS mediates the hypertrophic and fibrogenic changes in cardiovascular-renal complications, it is still controversial as to whether TGFbeta1 can be a target to prevent such complications. Here we review recent findings on the role of TGFbeta1 in fluid homeostasis, focusing on the relationship with aldosterone. Recent findings TGFbeta1 suppresses adrenal production of aldosterone and renal tubular sodium reabsorption. We have generated mice with TGFbeta1 mRNA expression graded in five steps from 10% to 300% normal, and found that blood pressure and plasma volume are negatively regulated by TGFbeta1. Notably, the 10 % hypomorph exhibits primary aldosteronism and sodium and water retention due to markedly impaired urinary excretion of water and electrolytes. Summary These results identify TGFbeta signaling as an important counterregulatory system against aldosterone. Understanding the molecular mechanisms for the suppressive effects of TGFbeta1 on adrenocortical and renal function may further our understanding of primary aldosteronism as well as assist in the development of novel therapeutic strategies for hypertension. PMID:25587902

  19. The growth of the muscular and collagenous parts of the rat heart in various forms of cardiomegaly

    PubMed Central

    Bartošová, D.; Chvapil, M.; Korecký, B.; Poupa, O.; Rakušan, K.; Turek, Z.; Vízek, M.

    1969-01-01

    1. Cardiomegaly has been produced in rats by sideropenic anaemia, by isoprenaline or thyroxine or by the application of both drugs, by artificial increase in resistance to blood flow and by long-term adaptation to hypoxia and physical stress. The ratio of the growth of muscle to the growth of collagen in the heart has been studied. 2. All possible variations in the ratio occurred depending on the type of stimulus used for inducing cardiomegaly and on the dynamics of the development of cardiomegaly. In cardiomegaly induced by sideropenia and by thyroxine the growth of muscle was not accompanied by the growth of collagen. Exposure to hypoxia or isoprenaline administration increased only the growth of collagen in the hypertrophic heart. In all other forms of cardiomegaly muscle and collagen formation were stimulated to the same extent. 3. It is concluded that when certain organs hypertrophy during adult life several factors may determine the relative rapidity of growth of the muscular or parenchymal and the collagenous stromal components of the tissue. PMID:4236906

  20. Influence of medial collagen organization and axial in situ stretch on saccular cerebral aneurysm growth.

    PubMed

    Eriksson, Thomas; Kroon, Martin; Holzapfel, Gerhard A

    2009-10-01

    A model for saccular cerebral aneurysm growth, proposed by Kroon and Holzapfel (2007, "A Model for Saccular Cerebral Aneurysm Growth in a Human Middle Cerebral Artery," J. Theor. Biol., 247, pp. 775-787; 2008, "Modeling of Saccular Aneurysm Growth in a Human Middle Cerebral Artery," ASME J. Biomech. Eng., 130, p. 051012), is further investigated. A human middle cerebral artery is modeled as a two-layer cylinder where the layers correspond to the media and the adventitia. The immediate loss of media in the location of the aneurysm is taken to be responsible for the initiation of the aneurysm growth. The aneurysm is regarded as a development of the adventitia, which is composed of several distinct layers of collagen fibers perfectly aligned in specified directions. The collagen fibers are the only load-bearing constituent in the aneurysm wall; their production and degradation depend on the stretch of the wall and are responsible for the aneurysm growth. The anisotropy of the surrounding media was modeled using the strain-energy function proposed by Holzapfel et al. (2000, "A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models," J. Elast., 61, pp. 1-48), which is valid for an elastic material with two families of fibers. It was shown that the inclusion of fibers in the media reduced the maximum principal Cauchy stress and the maximum shear stress in the aneurysm wall. The thickness increase in the aneurysm wall due to material growth was also decreased. Varying the fiber angle in the media from a circumferential direction to a deviation of 10 deg from the circumferential direction did, however, only show a little effect. Altering the axial in situ stretch of the artery had a much larger effect in terms of the steady-state shape of the aneurysm and the resulting stresses in the aneurysm wall. The peak values of the maximum principal stress and the thickness increase both became significantly higher for larger axial

  1. Transforming growth factor-β and Smads.

    PubMed

    Lan, Hui Yao; Chung, Arthur C K

    2011-01-01

    Diabetic nephropathy (DN) is a major diabetic complication. Transforming growth factor-β(TGF-β) is a key mediator in the development of diabetic complications. It is well known that TGF-β exerts its biological effects by activating downstream mediators, called Smad2and Smad3, which is negatively regulated by an inhibitory Smad7. Recent studies also demonstrated that under disease conditions Smads act as signal integrators and interact with other signaling pathways such as the MAPK and NF-κB pathways. In addition, Smad2and Smad3 can reciprocally regulate target genes of TGF-β signaling. Novel research into microRNA has revealed the complexity of TGF-β signaling during DN. It has been found that TGF-β and elevated glucose concentration can positively regulate miR-192 and miR-377, but negatively regulate miR-29a in a diabetic milieu. These microRNAs are found to contribute to DN. Although targeting TGF-β may exert adverse effects on immune system, therapeutic approach against TGF-β signaling during DN still draws much attention. Blocking TGF-β signaling by neutralizing antibody, anti-sense oligonucleotides, and soluble receptors have been tested, but effects are limited. Gene transfer of Smad7 into diseased kidneys demonstrates a prominent inhibition on renal fibrosis and amelioration of renal impairment. Alteration of TGF-β-regulated microRNA expression in diseased kidneys may provide an alternative therapeutic approach against DN. In conclusion, TGF-β/Smad signaling plays a critical role in DN. A better understanding of the role of TGF-β/Smad signaling in the development of DN should provide an effective therapeutic strategy to combat DN.

  2. Heparinized collagen scaffolds with and without growth factors for the repair of diaphragmatic hernia

    PubMed Central

    Brouwer, Katrien M; Wijnen, René M; Reijnen, Daphne; Hafmans, Theo G; Daamen, Willeke F; van Kuppevelt, Toin H

    2013-01-01

    A regenerative medicine approach to restore the morphology and function of the diaphragm in congenital diaphragmatic hernia is especially challenging because of the position and flat nature of this organ, allowing cell ingrowth primarily from the perimeter. Use of porous collagen scaffolds for the closure of surgically created diaphragmatic defects in rats has been shown feasible, but better ingrowth of cells, specifically blood vessels and muscle cells, is warranted. To stimulate this process, heparin, a glycosaminoglycan involved in growth factor binding, was covalently bound to porous collagenous scaffolds (14%), with or without vascular endothelial growth factor (VEGF; 0.4 µg/mg scaffold), hepatocyte growth factor (HGF; 0.5 µg/mg scaffold) or a combination of VEGF + HGF (0.2 + 0.5 µg/mg scaffold). All components were located primarily at the outside of scaffolds. Scaffolds were implanted in the diaphragm of rats and evaluated after 2 and 12 weeks. No herniations or eventrations were observed, and in several cases, growth factor-substituted scaffolds showed macroscopically visible blood vessels at the lung site. The addition of heparin led to an accelerated ingrowth of blood vessels at 2 weeks. In all scaffold types, giant cells and immune cells were present primarily at the liver side of the scaffold, and immune cells and individual macrophages at the lung side; these cell types decreased in number from week 2 to week 12. The addition of growth factors did not influence cellular response to the scaffolds, indicating that further optimization with respect to dosage and release profile is needed. PMID:23867845

  3. Parathyroid hormone blocks the stimulatory effect of insulin-like growth factor-I on collagen synthesis in cultured 21-day fetal rat calvariae

    SciTech Connect

    Kream, B.E.; Petersen, D.N.; Raisz, L.G. )

    1990-01-01

    We examined the interaction of parathyroid hormone (PTH) and recombinant human insulin-like growth factor I (IGF-I) on collagen synthesis in 21-day fetal rat calvariae as assessed by measuring the incorporation of ({sup 3}H)proline into collagenase-digestible protein. After 96 hours of culture, 10 nM PTH antagonized the stimulation of collagen synthesis and partially blocked the increase in dry weight produced by 10 nM IGF-I. The effect of PTH to block IGF-I stimulated collagen synthesis was observed in the central bone of calvariae and was mimicked by forskolin and phorbol 12-myristate 13-acetate, but not by 1,25-dihydroxyvitamin D3, transforming growth factor-alpha or dexamethasone. Our data are consistent with the concept that the direct effect of PTH is to inhibit basal CDP labeling and fully oppose IGF-I stimulated CDP labeling. The finding that this effect of PTH is mimicked by forskolin and PMA suggests that this block in IGF-I stimulation of CDP labeling involves both cAMP and protein kinase C mediated pathways.

  4. A Histologically Distinctive Interstitial Pneumonia Induced by Overexpression of the Interleukin 6, Transforming Growth Factor β1, or Platelet-Derived Growth Factor B Gene

    NASA Astrophysics Data System (ADS)

    Yoshida, Mitsuhiro; Sakuma, Junko; Hayashi, Seiji; Abe, Kin'ya; Saito, Izumu; Harada, Shizuko; Sakatani, Mitsunoir; Yamamoto, Satoru; Matsumoto, Norinao; Kaneda, Yasufumi; Kishmoto, Tadamitsu

    1995-10-01

    Interstitial pneumonia is characterized by alveolitis with resulting fibrosis of the interstitium. To determine the relevance of humoral factors in the pathogenesis of interstitial pneumonia, we introduced expression vectors into Wistar rats via the trachea to locally overexpress humoral factors in the lungs. Human interleukin (IL) 6 and IL-6 receptor genes induced lymphocytic alveolitis without marked fibroblast proliferation. In contrast, overexpression of human transforming growth factor β1 or human platelet-derived growth factor B gene induced only mild or apparent cellular infiltration in the alveoli, respectively. However, both factors induced significant proliferation of fibroblasts and deposition of collagen fibrils. These histopathologic changes induced by the transforming growth factor β1 and platelet-derived growth factor B gene are partly akin to those changes seen in lung tissues from patients with pulmonary fibrosis and markedly contrast with the changes induced by overexpression of the IL-6 and IL-6 receptor genes that mimics lymphocytic interstitial pneumonia.

  5. Activated Hepatic Stellate Cells Are Dependent on Self-collagen, Cleaved by Membrane Type 1 Matrix Metalloproteinase for Their Growth

    PubMed Central

    Birukawa, Naoko Kubo; Murase, Kazuyuki; Sato, Yasushi; Kosaka, Akemi; Yoneda, Akihiro; Nishita, Hiroki; Fujita, Ryosuke; Nishimura, Miyuki; Ninomiya, Takafumi; Kajiwara, Keiko; Miyazaki, Miyono; Nakashima, Yusuke; Ota, Sigenori; Murakami, Yuya; Tanaka, Yasunobu; Minomi, Kenjiro; Tamura, Yasuaki; Niitsu, Yoshiro

    2014-01-01

    Stellate cells are distributed throughout organs, where, upon chronic damage, they become activated and proliferate to secrete collagen, which results in organ fibrosis. An intriguing property of hepatic stellate cells (HSCs) is that they undergo apoptosis when collagen is resolved by stopping tissue damage or by treatment, even though the mechanisms are unknown. Here we disclose the fact that HSCs, normal diploid cells, acquired dependence on collagen for their growth during the transition from quiescent to active states. The intramolecular RGD motifs of collagen were exposed by cleavage with their own membrane type 1 matrix metalloproteinase (MT1-MMP). The following evidence supports this conclusion. When rat activated HSCs (aHSCs) were transduced with siRNA against the collagen-specific chaperone gp46 to inhibit collagen secretion, the cells underwent autophagy followed by apoptosis. Concomitantly, the growth of aHSCs was suppressed, whereas that of quiescent HSCs was not. These in vitro results are compatible with the in vivo observation that apoptosis of aHSCs was induced in cirrhotic livers of rats treated with siRNAgp46. siRNA against MT1-MMP and addition of tissue inhibitor of metalloproteinase 2 (TIMP-2), which mainly inhibits MT1-MMP, also significantly suppressed the growth of aHSCs in vitro. The RGD inhibitors echistatin and GRGDS peptide and siRNA against the RGD receptor αVβ1 resulted in the inhibition of aHSCs growth. Transduction of siRNAs against gp46, αVβ1, and MT1-MMP to aHSCs inhibited the survival signal of PI3K/AKT/IκB. These results could provide novel antifibrosis strategies. PMID:24867951

  6. Activated hepatic stellate cells are dependent on self-collagen, cleaved by membrane type 1 matrix metalloproteinase for their growth.

    PubMed

    Birukawa, Naoko Kubo; Murase, Kazuyuki; Sato, Yasushi; Kosaka, Akemi; Yoneda, Akihiro; Nishita, Hiroki; Fujita, Ryosuke; Nishimura, Miyuki; Ninomiya, Takafumi; Kajiwara, Keiko; Miyazaki, Miyono; Nakashima, Yusuke; Ota, Sigenori; Murakami, Yuya; Tanaka, Yasunobu; Minomi, Kenjiro; Tamura, Yasuaki; Niitsu, Yoshiro

    2014-07-18

    Stellate cells are distributed throughout organs, where, upon chronic damage, they become activated and proliferate to secrete collagen, which results in organ fibrosis. An intriguing property of hepatic stellate cells (HSCs) is that they undergo apoptosis when collagen is resolved by stopping tissue damage or by treatment, even though the mechanisms are unknown. Here we disclose the fact that HSCs, normal diploid cells, acquired dependence on collagen for their growth during the transition from quiescent to active states. The intramolecular RGD motifs of collagen were exposed by cleavage with their own membrane type 1 matrix metalloproteinase (MT1-MMP). The following evidence supports this conclusion. When rat activated HSCs (aHSCs) were transduced with siRNA against the collagen-specific chaperone gp46 to inhibit collagen secretion, the cells underwent autophagy followed by apoptosis. Concomitantly, the growth of aHSCs was suppressed, whereas that of quiescent HSCs was not. These in vitro results are compatible with the in vivo observation that apoptosis of aHSCs was induced in cirrhotic livers of rats treated with siRNAgp46. siRNA against MT1-MMP and addition of tissue inhibitor of metalloproteinase 2 (TIMP-2), which mainly inhibits MT1-MMP, also significantly suppressed the growth of aHSCs in vitro. The RGD inhibitors echistatin and GRGDS peptide and siRNA against the RGD receptor αVβ1 resulted in the inhibition of aHSCs growth. Transduction of siRNAs against gp46, αVβ1, and MT1-MMP to aHSCs inhibited the survival signal of PI3K/AKT/IκB. These results could provide novel antifibrosis strategies.

  7. Transforming growth factor Beta 1 stimulates profibrotic activities of luteal fibroblasts in cows.

    PubMed

    Maroni, Dulce; Davis, John S

    2012-11-01

    Luteolysis is characterized by angioregression, luteal cell apoptosis, and remodeling of the extracellular matrix characterized by deposition of collagen 1. Transforming growth factor beta 1 (TGFB1) is a potent mediator of wound healing and fibrotic processes through stimulation of the synthesis of extracellular matrix components. We hypothesized that TGFB1 stimulates profibrotic activities of luteal fibroblasts. We examined the actions of TGFB1 on luteal fibroblast proliferation, extracellular matrix production, floating gel contraction, and chemotaxis. Fibroblasts were isolated from the bovine corpus luteum. Western blot analysis showed that luteal fibroblasts expressed collagen 1 and prolyl 4-hydroxylase but did not express markers of endothelial or steroidogenic cells. Treatment of fibroblasts with TGFB1 stimulated the phosphorylation of SMAD2 and SMAD3. [(3)H]thymidine incorporation studies showed that TGFB1 caused concentration-dependent reductions in DNA synthesis in luteal fibroblasts and significantly (P < 0.05) reduced the proliferative effect of FGF2 and fetal calf serum. However, TGFB1 did not reduce the viability of luteal fibroblasts. Treatment of luteal fibroblasts with TGFB1 induced the expression of laminin, collagen 1, and matrix metalloproteinase 1 as determined by Western blot analysis and gelatin zymography of conditioned medium. TGFB1 increased the chemotaxis of luteal fibroblasts toward fibronectin in a transwell system. Furthermore, TGFB1 increased the fibroblast-mediated contraction of floating bovine collagen 1 gels. These results suggest that TGFB1 contributes to the structural regression of the corpus luteum by stimulating luteal fibroblasts to remodel and contract the extracellular matrix.

  8. H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen

    SciTech Connect

    Collier, I.E.; Wilhelm, S.M.; Eisen, A.Z.; Marmer, B.L.; Grant, G.A.; Seltzer, J.L.; Kronberger, A.; He, C.; Bauer, E.A.; Goldberg, G.I.

    1988-05-15

    H-ras transformed human bronchial epithelial cells (TBE-1) secrete a single major extracellular matrix metalloprotease which is not found in the normal parental cells. The enzyme is secreted in a latent form which can be activated to catalyze the cleavage of the basement membrane macromolecule type IV collagen. The substrates in their order of preference are: gelatin, type IV collagen, type V collagen, fibronectin, and type VII collagen; but the enzyme does not cleave the interstitial collagens or laminin. This protease is identical to gelatinase isolated from normal human skin explants, normal human skin fibroblasts, and SV40-transformed human lung fibroblasts. Based on this ability to initiate the degradation of type IV collagen in a pepsin-resistant portion of the molecule, it will be referred to as type IV collagenase. This enzyme is most likely the human analog of type IV collagenase detected in several rodent tumors. Type IV collagenase consists of three domains. Type IV collagenase represents the third member of a newly recognized gene family coding for secreted extracellular matrix metalloproteases, which includes interstitial fibroblast collagenase and stromelysin.

  9. Epithelium-dependent extracellular matrix synthesis in transforming growth factor-beta 1-growth-inhibited mouse mammary gland.

    PubMed

    Silberstein, G B; Strickland, P; Coleman, S; Daniel, C W

    1990-06-01

    Exogenous transforming growth factor beta (TGF-beta 1) was shown in earlier studies to reversibly inhibit mouse mammary ductal growth. Using small plastic implants to treat regions of developing mammary glands in situ, we now report that TGF-beta 1 growth inhibition is associated with an ectopic accumulation of type I collagen messenger RNA and protein, as well as the glycosaminoglycan, chondroitin sulfate. Both macromolecules are normal components of the ductal extracellular matrix, which, under the influence of exogenous TGF-beta 1, became unusually concentrated immediately adjacent to the epithelial cells at the tip of the ductal growth points, the end buds. Stimulation of extracellular matrix was confined to aggregations of connective tissue cells around affected end buds and was not present around the TGF-beta 1 implants themselves, indicating that the matrix effect was epithelium dependent. Ectopic matrix synthesis was specific for TGF-beta 1 insofar as it was absent at ducts treated with other growth inhibitors, or at ducts undergoing normal involution in response to endogenous regulatory processes. These findings are consistent with the matrix-stimulating properties of TGF-beta 1 reported for other systems, but differ in their strict dependence upon epithelium. A possible role for endogenous TGF-beta 1 in modulating a mammary epithelium-stroma interaction is suggested.

  10. Type I collagen aging impairs discoidin domain receptor 2-mediated tumor cell growth suppression.

    PubMed

    Saby, Charles; Buache, Emilie; Brassart-Pasco, Sylvie; El Btaouri, Hassan; Courageot, Marie-Pierre; Van Gulick, Laurence; Garnotel, Roselyne; Jeannesson, Pierre; Morjani, Hamid

    2016-05-03

    Tumor cells are confronted to a type I collagen rich environment which regulates cell proliferation and invasion. Biological aging has been associated with structural changes of type I collagen. Here, we address the effect of collagen aging on cell proliferation in a three-dimensional context (3D).We provide evidence for an inhibitory effect of adult collagen, but not of the old one, on proliferation of human fibrosarcoma HT-1080 cells. This effect involves both the activation of the tyrosine kinase Discoidin Domain Receptor 2 (DDR2) and the tyrosine phosphatase SHP-2. DDR2 and SHP-2 were less activated in old collagen. DDR2 inhibition decreased SHP-2 phosphorylation in adult collagen and increased cell proliferation to a level similar to that observed in old collagen.In the presence of old collagen, a high level of JAK2 and ERK1/2 phosphorylation was observed while expression of the cell cycle negative regulator p21CIP1 was decreased. Inhibition of DDR2 kinase function also led to an increase in ERK1/2 phosphorylation and a decrease in p21CIP1 expression. Similar signaling profile was observed when DDR2 was inhibited in adult collagen. Altogether, these data suggest that biological collagen aging could increase tumor cell proliferation by reducingthe activation of the key matrix sensor DDR2.

  11. Curcumin Inhibits Transforming Growth Factor β Induced Differentiation of Mouse Lung Fibroblasts to Myofibroblasts

    PubMed Central

    Liu, Daishun; Gong, Ling; Zhu, Honglan; Pu, Shenglan; Wu, Yang; Zhang, Wei; Huang, Guichuan

    2016-01-01

    Transforming growth factor β (TGF-β) induced differentiation of lung fibroblasts to myofibroblasts is a key event in the pathogenesis of pulmonary fibrosis. This study aimed to evaluate the effect of curcumin on TGF-β induced differentiation of lung fibroblasts to myofibroblasts and explore the underlying mechanism. Mouse lung fibroblasts were cultured and treated with TGF-β2 and curcumin or rosiglitazone. Cell vitality was examined by MTT assay. The secretion of collagen-1 was assessed by ELISA. α smooth muscle actin (α-SMA) was visualized by immunofluorescence technique. The expression of peroxisome proliferator activated receptor γ (PPAR-γ) and platelet derived growth factor R β (PDGFR-β) was detected by PCR and Western blot analysis. We found that curcumin and rosiglitazone inhibited the proliferation and TGF-β induced differentiation of mouse lung fibroblasts. In addition, curcumin and rosiglitazone inhibited collagen-1 secretion and α-SMA expression in mouse lung fibroblasts. Furthermore, curcumin and rosiglitazone upregulated PPAR-γ and downregulated PDGFR-β expression in mouse lung fibroblasts. In conclusion, our study reveals novel mechanism by which curcumin inhibits TGF-β2 driven differentiation of lung fibroblasts to myofibroblasts. Curcumin could potentially be used for effective treatment of pulmonary fibrosis. PMID:27877129

  12. Construction of multifunctional proteins for tissue engineering: epidermal growth factor with collagen binding and cell adhesive activities.

    PubMed

    Hannachi Imen, Elloumi; Nakamura, Makiko; Mie, Masayasu; Kobatake, Eiry

    2009-01-01

    The development of different techniques based on natural and polymeric scaffolds are useful for the design of different biomimetic materials. These approaches, however, require supplementary steps for the chemical or physical modification of the biomaterial. To avoid such steps, in the present study, we constructed a new multifunctional protein that can be easily immobilized onto hydrophobic surfaces, and at the same time helps enhance specific cell adhesion and proliferation onto collagen substrates. A collagen binding domain was fused to a previously constructed protein, which had an epidermal growth factor fused to a hydrophobic peptide that allows for cell adhesion. The new fusion protein, designated fnCBD-ERE-EGF is produced in Escherichia coli, and its abilities to bind to collagen and promote cell proliferation were investigated. fnCBD-ERE-EGF was shown to keep both collagen binding and cell growth-promoting activities comparable to those of the corresponding unfused proteins. The results obtained in this study also suggest the use of a fnCBD-ERE-EGF as an alternative for the design of multifunctional ECM-bound growth factor based materials.

  13. Phase transformation and growth of hygroscopic aerosols

    SciTech Connect

    Tang, I.N.

    1999-11-01

    Ambient aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climatic changes as well. Both natural and anthropogenic sources contribute to the formation of ambient aerosols, which are composed mostly of sulfates, nitrates, and chlorides in either pure or mixed forms. These inorganic salt aerosols are hygroscopic by nature and exhibit the properties of deliquescence and efflorescence in humid air. For pure inorganic salt particles with diameter larger than 0.1 micron, the phase transformation from a solid particle to a saline droplet occurs only when the relative humidity in the surrounding atmosphere reaches a certain critical level corresponding to the water activity of the saturated solution. The droplet size or mass in equilibrium with relative humidity can be calculated in a straightforward manner from thermodynamic considerations. For aqueous droplets 0.1 micron or smaller, the surface curvature effect on vapor pressure becomes important and the Kelvin equation must be used.

  14. The effect of vascular endothelial growth factor on aggrecan and type II collagen expression in rat articular chondrocytes.

    PubMed

    Chen, Xuan-Yin; Hao, Ya-Rong; Wang, Zhe; Zhou, Jian-Lin; Jia, Qi-Xue; Qiu, Bo

    2012-11-01

    The expression of vascular endothelial growth factor (VEGF) directly correlates with the Mankin score and the degree of cartilage destruction. The biological activity of VEGF on articular cartilage remains unknown, so this study was performed to investigate the effect of VEGF on aggrecan and type II collagen expression in vitro. We carried out this study at the Center Laboratory of Renmin Hospital at Wuhan University. Rat articular chondrocytes were cultured in a monolayer. Then, the experiment was divided into 4 groups: group A (control group), without any disposal; group B, treated with 10 ng/ml VEGF; group C, treated with 10 ng/ml IL-1β; and group D, treated with 10 ng/ml VEGF + 10 ng/ml IL-1β. After 48 h, messenger RNA (mRNA) expression of aggrecan and type II collagen was evaluated by real-time polymerase chain reaction (real-Time PCR), and protein expression of aggrecan and type II collagen was detected by Western blotting. VEGF was found to significantly inhibit the expression of aggrecan and type II collagen at the gene and protein levels. These findings suggest that VEGF may result in degeneration of articular cartilage by inhibiting the synthesis and expression of aggrecan and type II collagen.

  15. Feasibility study of the natural derived chitosan dialdehyde for chemical modification of collagen.

    PubMed

    Liu, Xinhua; Dan, Nianhua; Dan, Weihua; Gong, Juxia

    2016-01-01

    The aim of this study is to evaluate the chemical crosslinking effects of the natural derived chitosan dialdehyde (OCS) on collagen. Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and circular dichroism (CD) measurements suggest that introducing OCS might not destroy the natural triple helix conformation of collagen but enhance the thermal-stability of collagen. Meanwhile, a denser fibrous network of cross-linked collagen is observed by atomic force microscopy. Further, scanning electron microscopy (SEM) and aggregation kinetics analysis confirm that the fibrillation process of collagen advances successfully and OCS could lengthen the completion time of collagen fibrillogenesis but raise the reconstitution rate of collagen fibrils or microfibrils. Besides, the cytocompatibility analysis implies that when the dosage of OCS is less than 15%, introducing OCS into collagen might be favorable for the cell's adhesion, growth and proliferation. Taken as a whole, the present study demonstrates that OCS might be an ideal crosslinker for the chemical fixation of collagen.

  16. Collagen IV and CXC chemokine derived anti-angiogenic peptides suppress glioma xenograft growth

    PubMed Central

    Rosca, Elena V.; Lal, Bachchu; Koskimaki, Jacob E.; Popel, Aleksander S.; Laterra, John

    2012-01-01

    Peptides are receiving increased attention as therapeutic agents, due to their high binding specificity and versatility to be modified as targeting or carrier molecules. Particularly, peptides with anti-angiogenic activity are of high interest due to their applicability to a wide range of cancers. In this study we investigate the biological activity of two novel antiangiogenic peptides in pre-clinical glioma models. One peptide SP2000 is derived from collagen IV and the other peptide SP3019 belongs to the CXC family. We previously characterized the capacity of SP2000 and SP3019 to inhibit multiple biological endpoints linked to angiogenesis in human endothelial cells in several assays. Here we report additional studies using endothelial cells and focus on the activity of these peptides against human glioma cell growth, migration and adhesion in vitro and growth as tumor xenografts in vivo. We found that SP2000 completely inhibits migration of the glioma cells at 50 μM and SP3019 produced 50% inhibition at 100 μM. Their relative anti-adhesion activities were similar with SP2000 and SP3019 generating 50% adhesion inhibition at 4.9 ± 0.82 μM and 21.3 ± 5.92 μM respectively. In vivo glioma growth inhibition was 63 % for SP2000 and 76% for SP3019 after 2 weeks of administration at daily doses of 10mg/kg and 20 mg/kg, respectively. The direct activity of these peptides against glioma cells in conjunction with their anti-angiogenic activities warrants their further development as either stand-alone agents or in combination with standard cytotoxic or emerging targeted therapies in malignant brain tumors. PMID:22495619

  17. Comparative Study of Morphometric and Fourier Transform Infrared Spectroscopy Analyses of the Collagen Fibers in the Repair Process of Cutaneous Lesions

    PubMed Central

    Nogueira, Veruska Cronemberger; Raniero, Leandro; Costa, Guilherme Bueno; de Freitas Coelho, Nayana Pinheiro Machado; Miranda, Fernando Cronemberger; Arisawa, Emília Ângela Loschiavo

    2016-01-01

    Objective: Compare the efficacy of light-emitting diode (LED) and therapeutic ultrasound (TUS), combined with a semipermeable dressing (D), at forming collagen in skin lesions by morphometry and Fourier transform infrared spectroscopy (FT-IR). Materials and Methods: Surgical skin wounds (2.5 cm) were created on 84 male Wistar rats divided into four groups (n=21): Group I (Control), Group II (LED), Group III (LED+D), and Group IV (US+D). On days 7, 14, and 21, the tissue samples were removed and divided into two pieces, one was used for histological examination (collagen) and the other for FT-IR. Results: The histomorphometric analysis showed no significant differences among groups for collagen deposition at 7 days. However, at 14 days, more deposition of collagen was noted in the groups LED (p<0.05) and LED+D (p<0.001) than in the control. At 21 days, the groups LED, LED+D, and US+D presented significantly greater deposition of collagen when compared with the control. The FT-IR spectra, at 14 days, LED+D had greater amounts of type I collagen, a better organization of fibers, and greater difference of mean separation between the groups, not observed at 7 and 21 days. Innovation: The histomorphometric and FT-IR analyses suggest that the association of semipermeable dressing to LED therapy and to TUS modulates biological events, increasing fibroblast/collagen response and accelerating dermal maturation. Conclusion: The histomorphometric and FT-IR analyses showed that LED therapy is more efficacious than TUS, when combined with a semipermeable dressing, and induced the collagen production in skin lesions. PMID:26862463

  18. Fourier Transform Infrared Spectroscopic Imaging-Derived Collagen Content and Maturity Correlates with Stress in the Aortic Wall of Abdominal Aortic Aneurysm Patients.

    PubMed

    Cheheltani, Rabee; Pichamuthu, Joseph E; Rao, Jayashree; Weinbaum, Justin S; Kiani, Mohammad F; Vorp, David A; Pleshko, Nancy

    2017-03-01

    Abdominal aortic aneurysm (AAA) is a degenerative disease of the aorta characterized by severe disruption of the structural integrity of the aortic wall and its major molecular constituents. From the early stages of disease, elastin in the aorta becomes highly degraded and is replaced by collagen. Questions persist as to the contribution of collagen content, quality and maturity to the potential for rupture. Here, using our recently developed Fourier transform infrared imaging spectroscopy (FT-IRIS) method, we quantified collagen content and maturity in the wall of AAA tissues in pairs of specimens with different wall stresses. CT scans of AAAs from 12 patients were used to create finite element models to estimate stress in different regions of tissue. Each patient underwent elective repair of the AAA, and two segments of the AAA tissues from anatomic regions more proximal or distal with different wall stresses were evaluated by histology and FT-IRIS after excision. For each patient, collagen content was generally greater in the tissue location with lower wall stress, which corresponded to the more distal anatomic regions. The wall stress/collagen ratio was greater in the higher stress region compared to the lower stress region (1.01 ± 1.09 vs. 0.55 ± 0.084, p = 0.02). The higher stress region also corresponded to the location with reduced intraluminal thrombus thickness. Further, collagen maturity tended to decrease with increased collagen content (p = 0.068, R = 0.38). Together, these results suggest that an increase in less mature collagen content in AAA patients does not effectively compensate for the loss of elastin in the aortic wall, and results in a reduced capability to endure wall stresses.

  19. Cells transformed by murine herpesvirus 68 (MHV-68) release compounds with transforming and transformed phenotype suppressing activity resembling growth factors.

    PubMed

    Šupolíková, M; Staňová, A Vojs; Kúdelová, M; Marák, J; Zelník, V; Golais, F

    2015-12-01

    In this study, we investigated the medium of three cell lines transformed with murine herpesvirus 68 (MHV-68) in vitro and in vivo, 68/HDF, 68/NIH3T3, and S11E, for the presence of compounds resembling growth factors of some herpesviruses which have displayed transforming and transformed phenotype suppressing activity in normal and tumor cells. When any of spent medium was added to cell culture we observed the onset of transformed phenotype in baby hamster kidney cells (BHK-21) cells and transformed phenotype suppressing activity in tumor human epithelial cells (HeLa). In media tested, we have identified the presence of putative growth factor related to MHV-68 (MHGF-68). Its bivalent properties have been blocked entirely by antisera against MHV-68 and two monoclonal antibodies against glycoprotein B (gB) of MHV-68 suggesting viral origin of MHGF-68. The results of initial efforts to separate MHGF-68 on FPLC Sephadex G15 column in the absence of salts revealed the loss of its transforming activity but transformed phenotype suppressing activity retained. On the other hand, the use of methanol-water mobile phase on RP-HPLC C18 column allowed separation of MHGF-68 to two compounds. Both separated fractions, had only the transforming activity to normal cells. Further experiments exploring the nature and the structure of hitherto unknown MHGF-68 are now in the progress to characterize its molecular and biological properties.

  20. Role of transforming growth factor-beta (TGF) beta in the physiopathology of rheumatoid arthritis.

    PubMed

    Gonzalo-Gil, Elena; Galindo-Izquierdo, María

    2014-01-01

    Transforming growth factor-beta (TGF-β) is a cytokine with pleiotropic functions in hematopoiesis, angiogenesis, cell proliferation, differentiation, migration and apoptosis. Although its role in rheumatoid arthritis is not well defined, TGF-β activation leads to functional immunomodulatory effects according to environmental conditions. The function of TGF-β in the development of arthritis in murine models has been extensively studied with controversial results. Recent findings point to a non-relevant role for TGF-β in a mice model of collagen-induced arthritis. The study of TGF-β on T-cell responses has shown controversial results as an inhibitor or promoter of the inflammatory response. This paper presents a review of the role of TGF-β in animal models of arthritis.

  1. Transforming growth factor Beta-releasing scaffolds for cartilage tissue engineering.

    PubMed

    Madry, Henning; Rey-Rico, Ana; Venkatesan, Jagadeesh K; Johnstone, Brian; Cucchiarini, Magali

    2014-04-01

    The maintenance of a critical threshold concentration of transforming growth factor beta (TGF-β) for a given period of time is crucial for the onset and maintenance of chondrogenesis. Thus, the development of scaffolds that provide temporal and/or spatial control of TGF-β bioavailability has appeal as a mechanism to induce the chondrogenesis of stem cells in vitro and in vivo for articular cartilage repair. In the past decade, many types of scaffolds have been designed to advance this goal: hydrogels based on polysaccharides, hyaluronic acid, and alginate; protein-based hydrogels such as fibrin, gelatin, and collagens; biopolymeric gels and synthetic polymers; and solid and hybrid composite (hydrogel/solid) scaffolds. In this study, we review the progress in developing strategies to deliver TGF-β from scaffolds with the aim of enhancing chondrogenesis. In the future, such scaffolds could prove critical for tissue engineering cartilage, both in vitro and in vivo.

  2. Blockade of Ets-1 attenuates epidermal growth factor-dependent collagen loss in human carotid plaque smooth muscle cells.

    PubMed

    Rao, Velidi H; Rai, Vikrant; Stoupa, Samantha; Agrawal, Devendra K

    2015-09-15

    Although degradation of extracellular matrix by matrix metalloproteinases (MMPs) is thought to be involved in symptomatic (S) carotid plaques in atherosclerosis, the mechanisms of MMP expression are poorly understood. Here, we demonstrate that collagen loss in vascular smooth vessel cells (VSMCs) isolated from S plaques was induced by epidermal growth factor (EGF) through the activation of p38-MAPK and JNK-MAPK pathways. Inhibitors of p38-MAPK and JNK-MAPK signaling pathways downregulated the expression of MMP-1 and MMP-9. In addition, we examined whether v-ets erythroblastosis virus E26 oncogene homologue 1 (Ets-1), an important regulator of different genes, is involved in destabilizing S plaques in patients with carotid stenosis. We demonstrate that EGF induces Ets-1 expression and decreases interstitial and basement membrane collagen in vascular smooth muscle cells (VSMCs) from patients with carotid stenosis. Increased expression of MMP-1 and -9 and decreased collagen mRNA transcripts were also found in Ets-1-overexpressed VSMCs. Transfection with both dominant-negative form of Ets-1 and small interfering RNA blocked EGF-induced MMP-1 and -9 expressions and increased the mRNA transcripts for collagen I (α1) and collagen III (α1) in S compared with asymptomatic (AS) carotid plaques. Inhibitors of p38-MAPK (SB202190) and JNK-MAPK (SP600125) signaling pathways decreased the expression of Ets-1, MMP-1, and MMP-9 and increased collagen type I and III expression in EGF-treated VSMCs. This study provides a mechanistic insight into the role of Ets-1 in the plaque destabilization in patients with carotid stenosis involving p38-MAPK and JNK signaling pathways.

  3. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite.

    PubMed

    Wang, Yan; Azaïs, Thierry; Robin, Marc; Vallée, Anne; Catania, Chelsea; Legriel, Patrick; Pehau-Arnaudet, Gérard; Babonneau, Florence; Giraud-Guille, Marie-Madeleine; Nassif, Nadine

    2012-07-01

    The involvement of collagen in bone biomineralization is commonly admitted, yet its role remains unclear. Here we show that type I collagen in vitro can initiate and orientate the growth of carbonated apatite mineral in the absence of any other vertebrate extracellular matrix molecules of calcifying tissues. We also show that the collagen matrix influences the structural characteristics on the atomic scale, and controls the size and the three-dimensional distribution of apatite at larger length scales. These results call into question recent consensus in the literature on the need for Ca-rich non-collagenous proteins for collagen mineralization to occur in vivo. Our model is based on a collagen/apatite self-assembly process that combines the ability to mimic the in vivo extracellular fluid with three major features inherent to living bone tissue, that is, high fibrillar density, monodispersed fibrils and long-range hierarchical organization.

  4. The role of transforming growth factor β1 in fractional laser resurfacing with a carbon dioxide laser.

    PubMed

    Jiang, Xia; Ge, Hongmei; Zhou, Chuanqing; Chai, Xinyu; Deng, Hui

    2014-03-01

    The aim of this study was to investigate the role of transforming growth factor β1 in mechanisms of cutaneous remodeling induced by fractional carbon dioxide laser treatment. The dorsal skin of Kunming mice was exposed to a single-pass fractional CO2 laser treatment. Biopsies were taken at 1 h and at 1, 3, 7, 14, 21, 28, and 56 days after treatment. Transforming growth factor (TGF) β1 expression in skin samples was evaluated by ELISA, dermal thickness by hematoxylin-eosin staining, collagen and elastic fibers by Ponceau S and Victoria blue double staining, and types I and III collagens by ELISA. The level of TGF β1 in the laser-treated areas of skin was significantly increased compared with that in the control areas on days 1 (p < 0.05), 3 (p < 0.01), and 7 (p < 0.05) and then decreased by day 14 after treatment, at which time it had returned to the baseline level. Dermal thickness and the amount of type I collagen of the skin of the laser-treated areas had increased significantly (p < 0.05) compared with that in control areas on days 28 and 56. Fibroblast proliferation showed a positive correlation with TGF β1 expression during the early stages (r = 0.789, p < 0.01), and there was a negative correlation between the level of TGF β1 and type I collagen in the late stages, after laser treatment (r = -0.546, p < 0.05). TGF β1 appears to be an important factor in fractional laser resurfacing.

  5. Early alterations in extracellular matrix and transforming growth factor [beta] gene expression in mouse lung indicative of late radiation fibrosis

    SciTech Connect

    Finkelstein, J.N.; Johnston, C.J.; Baggs, R.; Rubin, P. )

    1994-02-01

    Fibrosis, characterized by the accumulation of collagen, is a late result of thoracic irradiation. The expression of late radiation injury can be found immediately after irradiation by measuring messenger RNA (mRNA) abundance. To determine if extracellular matrix mRNA and transforming growth factor beta abundance was affected acutely after irradiation, the authors measured mRNA levels of collagen I (CI), collagen III (CIII), collagen IV (CIV), fibronectin (FN), and transforming growth factor [beta] (TGF[beta][sub 1,2 3]) in mouse lungs on day 1 and day 14 after graded doses of radiation. C57BL/6 female mice were irradiated with a single dose to the thorax of 5 or 12.5 Gy. Total lung RNA was prepared and immobilized by Northern and slot blotting and hybridized with radiolabelled cDNA probes for CI, CIII, CIV, FN, TGF[beta][sub 1,2 3] and a control probe encoding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Autoradiographic data were quantified by video densitometry and results normalized to GAPDH. Changes in the expression of CI, CIII, CIV, FN and TGF[beta][sub 1,2 3] were observed as early as 1 day after exposure. Through 14 days, changes in mRNA up to 5-fold were seen for any one dose. Dose related changes as high as 10-fold were also evident. The CI:CIII ratio increased gradually for the 5 Gy dose at 14 days postirradiation while the CI:CII ratio for the 12.5 Gy dose decreased by approximately 4-fold as compared to the control. These studies suggest that alterations in expression of extracellular matrix and TGF[beta] mRNA occur very early after radiation injury even at low doses and may play a role in the development of chronic fibrosis. 37 refs., 6 figs.

  6. Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-{beta} responsiveness

    SciTech Connect

    Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua; Warner-Blankenship, Matthew; Lyons, Karen M.

    2008-03-10

    Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-{beta} (TGF-{beta}) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-{beta}, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-{beta}. To explore this notion, we characterized TGF-{beta}-induced activation of fibroblasts from CCN2-null (CCN2{sup -/-}) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-{beta} signal transduction and regulation of collagen gene expression were examined in CCN2{sup -/-} MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2{sup -/-} MEFs was markedly reduced compared to wild type MEFs, TGF-{beta}-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2{sup -/-} MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-{beta}-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts.

  7. Transforming Growth Factor-B Receptors in Human Breast Cancer.

    DTIC Science & Technology

    1998-05-01

    receptor. Nature 370:341-347,1994 60. Wang T, Donahoe P, Zervos AS: Specific interaction of type I receptors of the TGFß family with the immunophilin...Res 56: 44^48,1996 82. Kadin ME. Cavaille-Coll MW, Gertz R. Massague J, Chei- fetz S. George D: Loss of receptors for transforming growth factor ß

  8. Transforming growth factor β signaling in uterine development and function.

    PubMed

    Li, Qinglei

    2014-01-01

    Transforming growth factor β (TGFβ) superfamily is evolutionarily conserved and plays fundamental roles in cell growth and differentiation. Mounting evidence supports its important role in female reproduction and development. TGFBs1-3 are founding members of this growth factor family, however, the in vivo function of TGFβ signaling in the uterus remains poorly defined. By drawing on mouse and human studies as a main source, this review focuses on the recent progress on understanding TGFβ signaling in the uterus. The review also considers the involvement of dysregulated TGFβ signaling in pathological conditions that cause pregnancy loss and fertility problems in women.

  9. In vitro Sirius Red collagen assay measures the pattern shift from soluble to deposited collagen.

    PubMed

    Chen, Chun; Yang, Shanmin; Zhang, Mei; Zhang, Zhenhuan; Zhang, Bingrong; Han, Deping; Ma, Jun; Wang, Xiaohui; Hong, Jingshen; Guo, Yansong; Okunieff, Paul; Zhang, Lurong

    2013-01-01

    In this study, we compared two in vitro collagen production assays ([(3)H]-proline incorporation and Sirius Red) for their ability to determine the pattern shift from soluble to deposited collagen. The effect of the antifibrotic agent, triptolide (TPL), on collagen production was also studied. The results showed that: (1) 48 h after NIH 3T3 (murine embryo fibroblast) and HFL-1(human fetal lung fibroblast) were exposed to transforming growth factor-beta 1 (TGF-β), there was an increase in soluble collagen in the culture medium; (2) on day 4, soluble collagen declined, whereas deposited collagen increased; (3) Sirius Red was easier to use than [(3)H]-proline incorporation and more consistently reflected the collagen pattern shift from soluble to deposited; (4) the in vitro Sirius Red assay took less time than the in vivo assay to determine the effect of TPL. Our results suggest that: (a) the newly synthesized soluble collagen can sensitively evaluate an agent's capacity for collagen production and (b) Sirius Red is more useful than [(3)H]-proline because it is easier to use, more convenient, less time consuming, and does not require radioactive material.

  10. Collagen degradation in rat skin but not in intestine during rapid growth: effect on collagen types I and III from skin.

    PubMed Central

    Klein, L; ChandraRajan, J

    1977-01-01

    Metabolic degradation of prelabeled collagen in whole body skin and whole intestine was compared to that of types I and III collagens from skin in young, rapidly growing rats. Pregnant rats were given [3H]proline during the last week of gestation; and after birth, littermates were compared. Between the second and sixth weeks of age, there was a 43% loss of radioactivity from dermal collagen but no significant loss of radioactivity from intestinal collagen. Pepsin treatment solubilized 90% of the dermal collagen but only 12% of intestinal collagen. Skin from 2- and 6-week-old rats yielded the same proportions of type I and type III collagens (type I, 82%; type III, 18%). The relative losses of total radioactivity from types I and III were similar to each other (50 and 44%, respectively) and to the loss from whole skin. Because types I and III collagens are known to be present in both skin and intestine, the marked degradation of both collagen types in skin but not in the intestine may be related to the amount and kind of intermolecular crosslinks present. PMID:266184

  11. Identification and Evaluation of Cryoprotective Peptides from Chicken Collagen: Ice-Growth Inhibition Activity Compared to That of Type I Antifreeze Proteins in Sucrose Model Systems.

    PubMed

    Du, Lihui; Betti, Mirko

    2016-06-29

    The ability of chicken collagen peptides to inhibit the growth of ice crystals was evaluated and compared to that of fish antifreeze proteins (AFPs). This ice inhibition activity was assessed using a polarized microscope by measuring ice crystal dimensions in a sucrose model system with and without collagen peptides after seven thermal cycles. The system was stabilized at -25 °C and cycled between -16 and -12 °C. Five candidate peptides with ice inhibition activity were identified using liquid chromatography and tandem mass spectrometry and were then synthesized. Their ice inhibition capacity was compared to that of type I AFPs in a 23% sucrose model system. Specific collagen peptides with certain amino acid sequences reduced the extent of ice growth by approximately 70% at a relatively low concentration (1 mg/mL). These results suggest that specific collagen peptides may act in a noncolligative manner, inhibiting ice crystal growth like type I AFPs, but less efficiently.

  12. Intermedin 1-53 Inhibits Myocardial Fibrosis in Rats by Down-Regulating Transforming Growth Factor-β

    PubMed Central

    Fang, Jian; Luan, Jiangwei; Zhu, Gaohong; Qi, Chang; Yang, Zhiyong; Zhao, Sheng; Li, Bin; Zhang, Xinzhong; Guo, Naipeng; Li, Xiaodong; Wang, Dandan

    2017-01-01

    Background Myocardial fibrosis is the result of persistent anoxia and ischemic myocardial fibers caused by coronary atherosclerotic stenosis, which lead to heart failure, threatening the patient’s life. This study aimed to explore the regulatory role of intermedin 1-53 (IMD1-53) in cardiac fibrosis using neonatal rat cardiac fibroblasts and a myocardial infarction (MI) rat model both in vitro and in vivo. Material/Methods The Western blot method was used to detect the protein expression of collagen I and collagen III in myocardial fibroblasts. The SYBR Green I real-time quantitative polymerase chain reaction (PCR) assay was used to detect the mRNA expression of collagen type I and III, IMD1-53 calcitonin receptor-like receptor (CRLR), transforming growth factor-β (TGF-β), and matrix metalloproteinase-2 (MMP-2). Masson staining was used to detect the area changes of myocardial fibrosis in MI rats. Results Results in vivo showed that IMD1-53 reduced the scar area on the heart of MI rats and inhibited the expression of collagen type I and III both in mRNA and protein. Results of an in vitro study showed that IMD1-53 inhibited the transformation of cardiomyocytes into myofibroblasts caused by angiotensin II (Ang II). The further mechanism study showed that IMD1-53 inhibited the expression of TGF-β and the phosphorylation of smad3, which further up-regulated the expression of MMP-2. Conclusions IMD1-53 is an effective anti-fibrosis hormone that inhibits cardiac fibrosis formation after MI by down-regulating the expression of TGF-β and the phosphorylation of smad3, blocking fibrous signal pathways, and up-regulating the expression of MMP-2, thereby demonstrating its role in regression of myocardial fibrosis. PMID:28065931

  13. Effect of transforming growth factor-beta1 on decorin expression and muscle morphology during chicken embryonic and posthatch growth and development.

    PubMed

    Li, X; Velleman, S G

    2009-02-01

    During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation, as well as a regulator of extracellular matrix (ECM) production. Decorin, a member of the small leucine-rich ECM proteoglycans, binds to TGF-beta1 and modulates TGF-beta1-dependent cell growth stimulation or inhibition. The expression of decorin can be regulated by TGF-beta1 during muscle proliferation and differentiation. How TGF-beta1 affects decorin and muscle growth, however, has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on decorin expression and intracellular connective tissue development during skeletal muscle growth. Exogenous TGF-beta1 significantly decreased the number of myofibers in a given area at both 1 d and 6 wk posthatch. The TGF-beta1-treated muscle had a significant decrease in decorin mRNA expression at embryonic day (ED) 10, whereas protein amounts decreased at 17 ED and 1 d posthatch compared to the control muscle. Decorin was localized in both the endomysium and perimysium in the control pectoralis major muscle. Transforming growth factor-beta1 reduced decorin in both the endomysium and perimysium from 17 ED to 6 wk posthatch. Compared to the control muscle, the perimysium space in the pectoralis major muscle was dramatically decreased by TGF-beta1 during embryonic development through posthatch growth. Because decorin regulates collagen fibrillogenesis, a major component of the ECM, the reduction of decorin by TGF-beta1 treatment may cause the irregular formation of collagen fibrils, leading to the decrease in endomysium and perimysium space. The results from the current study suggest that the effect of TGF-beta1 on decorin expression and localization was likely associated with altered development of the perimysium and the regulation of muscle fiber development.

  14. Special phase transformation and crystal growth pathways observed in nanoparticles†

    PubMed Central

    Gilbert, Benjamin; Zhang, Hengzhong; Huang, Feng; Finnegan, Michael P; Waychunas, Glenn A; Banfield, Jillian F

    2003-01-01

    Phase transformation and crystal growth in nanoparticles may happen via mechanisms distinct from those in bulk materials. We combine experimental studies of as-synthesized and hydrothermally coarsened titania (TiO2) and zinc sulfide (ZnS) with thermodynamic analysis, kinetic modeling and molecular dynamics (MD) simulations. The samples were characterized by transmission electron microscopy, X-ray diffraction, synchrotron X-ray absorption and scattering, and UV-vis spectroscopy. At low temperatures, phase transformation in titania nanoparticles occurs predominantly via interface nucleation at particle–particle contacts. Coarsening and crystal growth of titania nanoparticles can be described using the Smoluchowski equation. Oriented attachment-based crystal growth was common in both hydrothermal solutions and under dry conditions. MD simulations predict large structural perturbations within very fine particles, and are consistent with experimental results showing that ligand binding and change in aggregation state can cause phase transformation without particle coarsening. Such phenomena affect surface reactivity, thus may have important roles in geochemical cycling.

  15. Interaction of collagen with chlorosulphonated paraffin tanning agents: Fourier transform infrared spectroscopic analysis and molecular dynamics simulations.

    PubMed

    Monti, Susanna; Bramanti, Emilia; Della Porta, Valentina; Onor, Massimo; D'Ulivo, Alessandro; Barone, Vincenzo

    2013-09-21

    The binding of chlorosulphonated paraffins to collagen triple helices is studied by means of classical molecular dynamics simulations and experimental spectroscopic techniques in order to disclose the principal characteristics of their interaction during the leather fattening process. Indeed, collagen is the main target to develop new leather modifying agents with specific characteristics, and an accurate design of the collagen binders, supported by predictive computational strategies, could be a successful tool to obtain new effective eco-compatible compounds able to impart to the leather the required functionalities and distinctive mechanical properties. Possible effects caused by the tanning agents on the collagen matrix have been identified from both experimental and theoretical points of view. Computational data in agreement with experiment have revealed that chlorosulphonated paraffins can interact favorably with the collagen residues having amine groups in their side chains (Arg, Lys, Asn and Gln) and reduce the tendency of the solvated collagen matrix to swell. However, the interference of chlorosulphonated paraffins with the unfolding process, which is operated mainly by the action of water, can be due both to covalent cross-linking of the collagen chains and intermolecular hydrogen bonding interactions involving also the hydroxyl groups of Hyp, Ser and Thr residues.

  16. Collagen-induced binding to human platelets of platelet-derived growth factor leading to inhibition of P43 and P20 phosphorylation

    SciTech Connect

    Bryckaert, M.C.; Rendu, F.; Tobelem, G.; Wasteson, A.

    1989-03-15

    Platelet-derived growth factor (PDGF) is known to inhibit collagen-induced platelet aggregation. Collagen-induced binding of /sup 125/I-PDGF to human washed platelets was therefore investigated. It was found to be time-dependent, reaching a plateau at 20 degrees C after 30 min, collagen concentration-dependent, specifically inhibited by unlabeled PDGF, and saturable. Scatchard plot analysis showed a single class of sites with 3000 +/- 450 molecules bound/cell and an apparent KD of 1.2 +/- 0.2 10(-8) M. The effects of PDGF on collagen-induced phosphoinositide breakdown and protein phosphorylation were also investigated. At 50 ng/ml PDGF, a concentration which completely inhibited collagen-induced aggregation, the breakdown of (/sup 32/P)phosphatidylinositol 4,5-biphosphate (PIP2) and (/sup 32/P)phosphatidylinositol 4-phosphate (PIP) was observed, but the subsequent replenishment of (/sup 32/P)PIP2 was inhibited. The same PDGF concentration totally inhibited collagen-induced phosphatidic acid formation. PDGF also completely prevented phosphorylation of P43 and P20, as a result of protein kinase C activation consecutive to phosphoinositide metabolism. These results suggest that a specific PDGF receptor can be induced by collagen, and PDGF can effect the early events of collagen-induced platelet activation by inhibiting PIP2 resynthesis and P43 and P20 phosphorylation. It is concluded that PDGF might be involved in a negative feed-back control of platelet activation.

  17. Collagen and Stretch Modulate Autocrine Secretion of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Proteins from Differentiated Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.

    1995-01-01

    Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.

  18. Modification of mature non-reducible collagen cross-link concentrations in bovine m. gluteus medius and semitendinosus with steer age at slaughter, breed cross and growth promotants.

    PubMed

    Roy, B C; Sedgewick, G; Aalhus, J L; Basarab, J A; Bruce, H L

    2015-12-01

    Increased meat toughness with animal age has been attributed to mature trivalent collagen cross-link formation. Intramuscular trivalent collagen cross-link content may be decreased by reducing animal age at slaughter and/or inducing muscle re-modeling with growth promotants. This hypothesis was tested in m. gluteus medius (GM) and m. semitendinosus (ST) from 112 beef steers finished at either 12 to 13 (rapid growth) or 18 to 20 (slow growth) months of age. Hereford-Aberdeen Angus (HAA) or Charolais-Red Angus (CRA) steers were randomly assigned to receive implants (IMP), ractopamine (RAC), both IMP and RAC, or none (control). RAC decreased pyridinoline (mol/mol collagen) and IMP increased Ehrlich chromogen (EC) (mol/mol collagen) in the GM. In the ST, RAC increased EC (mol/mol collagen) but decreased EC (nmol/g raw muscle) in slow growing CRA steers. Also, IMP increased ST pyridinoline (nmol/g raw muscle) of slow-growing HAA steers. Results indicated alteration of perimysium collagen cross-links content in muscle in response to growth promotants.

  19. The diabetic rat as an impaired wound healing model: stimulatory effects of transforming growth factor-beta and basic fibroblast growth factor.

    PubMed

    Broadley, K N; Aquino, A M; Hicks, B; Ditesheim, J A; McGee, G S; Demetriou, A A; Woodward, S C; Davidson, J M

    Two models of wound repair compared the effect of defined, recombinant growth factors on the rate of wound repair in both normal and streptozotocin-induced diabetic rats: subcutaneous implantation of polyvinyl alcohol sponges and incisional wounding. Transverse incisional wounds were made on the dorsal surface of rats and closed with steel sutures. Three days postwounding the rats received a single injection of either transforming growth factor-beta or vehicle alone directly into the wound site. Animals were sacrificed 7, 14, and 21 days postwounding, and fresh and formalin-fixed wound tensile strength were measured. Diabetic rats had expected defects in wound repair, including decreased granulation tissue and reduced amounts of collagen, protein, and DNA. Fresh tensile strength of the diabetic incisions was 53% of normal on Day 7 (p < or = .01) and 29% of normal on Day 21. Fixed tensile strength was 41% of normal on Day 7 (p < or = .01) and fell to 78% of normal by Day 21 (p < or = .01), suggesting that collagen concentrations of diabetic wounds increased towards normal but did not undergo maturation. TGF beta produced a moderate increase in tensile strength of fresh and fixed wounds of diabetic rats, but not to the levels of wounds in untreated normal rats. Sponges fill with granulation tissue, their reproducible rate of organization being measured by histological and biochemical methods. A single injection into sponges 3 days postimplantation of basic fibroblast growth factor, transforming growth factor-beta, or vehicle only, was evaluated at 7 and 9 days postimplantation. In the sponge model, bFGF and TGF beta were each able to induce significant increases in the accumulation of granulation tissue in both diabetic and normal rats. TGF beta increased the collagen content of sponges by 136% in sponges from diabetic animals (p < or = .001), thereby raising the collagen content to that of normal control wounds, while stimulating a 49% (p < or = .02) increase in

  20. The effect of fibrinogen, collagen type I, and fibronectin on mesenchymal stem cell growth and differentiation into osteoblasts.

    PubMed

    Linsley, Chase; Wu, Benjamin; Tawil, Bill

    2013-06-01

    We have shown that human mesenchymal stem cells (hMSCs) have the potential to differentiate into bone when seeded within three-dimensional (3-D) fibrin constructs. Proteins endogenous to the fibrin construct and those secreted by cells in the 3-D constructs provide cues that can promote differentiation of hMSCs along with mechanical support for cell growth and migration. In this study, we decided to take a step back and examine the effect different extracellular matrix (ECM) proteins--fibrinogen, fibronectin, and collagen type I--had on hMSC osteogenic differentiation on two-dimensional (2-D) monolayer cultures. Briefly, 24-well tissue culture plates pre-coated with either fibrinogen (10 mg/mL), fibronectin (10 μg/mL), or collagen type I (1 mg/mL) were seeded with 25,000 cells/well and cultured in normal growth medium or in osteogenic induction medium. At days 1, 7, 14, 21, and 30, cultures were assessed for cell growth using alamarBlue(®) and osteogenic indicators using alkaline phosphatase and Von Kossa staining. The results show that collagen type I stained positive for calcium deposition the greatest by day 30 in both osteogenic medium and standard culture medium. However, fibrinogen had the greatest staining in osteogenic medium at day 21 and fibronectin was the only substrate to promote calcium deposition in standard culture medium at day 21. These results suggest that the osteogenic differentiation of hMSCs is influenced by both culturing conditions and substrate and that together they have a synergistic effect. By knowing the effect ECM proteins in 3-D fibrin construct have on promoting osteogenic differentiation of hMSCs, the fabrication of complex, biomimetic models designed to manipulate hMSC differentiation toward an osteoblastic lineage will be improved.

  1. Sequential analysis of myofibroblast differentiation and transforming growth factor-β1/Smad pathway activation in murine pulmonary fibrosis.

    PubMed

    Usuki, Jiro; Matsuda, Kuniko; Azuma, Arata; Kudoh, Shoji; Gemma, Akihiko

    2012-01-01

    Myofibroblasts play a critical role in tissue fibrosis. However, the intracellular signaling pathways in myofibroblast differentiation are poorly understood. Here, we studied the relationship between transforming growth factor-β (TGF-β)/Smad pathway activation and myofibroblast differentiation in both in vivo and in vitro experiments. In murine bleomycin-induced pulmonary fibrosis, nuclear localization of phosphorylated Smad2/3 (p-Smad2/3) was observed in pulmonary fibrotic lesions 7 days after bleomycin injection, whereas α-smooth muscle actin (ASMA)-positive myofibroblasts appeared in the lesions at 14 days, when the cytoplasmic localization of p-Smad2/3 was observed. We also compared the effects of TGF-β1 on myofibroblast differentiation and on type I collagen expression in a murine lung fibroblast cell line (MLg2908). TGF-β1 induced rapid expression of p-Smad2/3 in nuclei, after which ASMA organization in the cytoplasm of fibroblasts was observed. However, TGF-β1 produced no effect on the quantity of ASMA, either in mRNA levels or protein levels, even after the phosphorylation of Smad2/3. In contrast, TGF-β1 upregulated the expression of type I collagen mRNA. These findings suggest that in pulmonary fibrosis the molecular mechanism of myofibroblast differentiation is complex and that the difference between ASMA expression and type I collagen expression is mediated by the TGF-β/Smad pathway.

  2. Extracellular matrix sub-types and mechanical stretch impact human cardiac fibroblast responses to transforming growth factor beta.

    PubMed

    Watson, Chris J; Phelan, Dermot; Collier, Patrick; Horgan, Stephen; Glezeva, Nadia; Cooke, Gordon; Xu, Maojia; Ledwidge, Mark; McDonald, Kenneth; Baugh, John A

    2014-06-01

    Understanding the impact of extracellular matrix sub-types and mechanical stretch on cardiac fibroblast activity is required to help unravel the pathophysiology of myocardial fibrotic diseases. Therefore, the purpose of this study was to investigate pro-fibrotic responses of primary human cardiac fibroblast cells exposed to different extracellular matrix components, including collagen sub-types I, III, IV, VI and laminin. The impact of mechanical cyclical stretch and treatment with transforming growth factor beta 1 (TGFβ1) on collagen 1, collagen 3 and alpha smooth muscle actin mRNA expression on different matrices was assessed using quantitative real-time PCR. Our results revealed that all of the matrices studied not only affected the expression of pro-fibrotic genes in primary human cardiac fibroblast cells at rest but also affected their response to TGFβ1. In addition, differential cellular responses to mechanical cyclical stretch were observed depending on the type of matrix the cells were adhered to. These findings may give insight into the impact of selective pathological deposition of extracellular matrix proteins within different disease states and how these could impact the fibrotic environment.

  3. Acemannan stimulates gingival fibroblast proliferation; expressions of keratinocyte growth factor-1, vascular endothelial growth factor, and type I collagen; and wound healing.

    PubMed

    Jettanacheawchankit, Suwimon; Sasithanasate, Siriruk; Sangvanich, Polkit; Banlunara, Wijit; Thunyakitpisal, Pasutha

    2009-04-01

    Aloe vera has long been used as a traditional medicine for inducing wound healing. Gingival fibroblasts (GFs) play an important role in oral wound healing. In this study, we investigated the effects of acemannan, a polysaccharide extracted from Aloe vera gel, on GF proliferation; keratinocyte growth factor-1 (KGF-1), vascular endothelial growth factor (VEGF), and type I collagen production; and oral wound healing in rats. [(3)H]-Thymidine incorporation assay and ELISA were used. Punch biopsy wounds were created at the hard palate of male Sprague Dawley rats. All treatments (normal saline; 0.1% triamcinolone acetonide; plain 1% Carbopol; and Carbopol containing 0.5%, 1%, and 2% acemannan (w/w)) were applied daily. Wounded areas and histological features were observed at day 7 after treatment. From our studies, acemannan at concentrations of 2, 4, 8, and 16 mg/ml significantly induced cell proliferation (P<0.05). Acemannan concentrations between 2 - 16 mg/ml significantly stimulated KGF-1, VEGF, and type I collagen expressions (P<0.05). Wound healing of animals receiving Carbopol containing 0.5% acemannan (w/w) was significantly better than that of the other groups (P<0.05). These findings suggest that acemannan plays a significant role in the oral wound healing process via the induction of fibroblast proliferation and stimulation of KGF-1, VEGF, and type I collagen expressions.

  4. Promotion of embryonic chick limb cartilage differentiation by transforming growth factor-beta.

    PubMed

    Kulyk, W M; Rodgers, B J; Greer, K; Kosher, R A

    1989-10-01

    This study represents a first step in investigating the possible involvement of transforming growth factor-beta (TGF-beta) in the regulation of embryonic chick limb cartilage differentiation. TGF-beta 1 and 2 (1-10 ng/ml) elicit a striking increase in the accumulation of Alcian blue, pH 1-positive cartilage matrix, and a corresponding twofold to threefold increase in the accumulation of 35S-sulfate- or 3H-glucosamine-labeled sulfated glycosaminoglycans (GAG) by high density micromass cultures prepared from the cells of whole stage 23/24 limb buds or the homogeneous population of chondrogenic precursor cells comprising the distal subridge mesenchyme of stage 25 wing buds. Moreover, TGF-beta causes a striking (threefold to sixfold) increase in the steady-state cytoplasmic levels of mRNAs for cartilage-characteristic type II collagen and the core protein of cartilage-specific proteoglycan. Only a brief (2 hr) exposure to TGF-beta at the initiation of culture is sufficient to stimulate chondrogenesis, indicating that the growth factor is acting at an early step in the process. Furthermore, TGF-beta promotes the formation of cartilage matrix and cartilage-specific gene expression in low density subconfluent spot cultures of limb mesenchymal cells, which are situations in which little, or no chondrogenic differentiation normally occurs. These results provide strong incentive for considering and further investigating the role of TGF-beta in the control of limb cartilage differentiation.

  5. Nanowire growth by an electron beam induced massive phase transformation

    SciTech Connect

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stable growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.

  6. Nanowire growth by an electron beam induced massive phase transformation

    DOE PAGES

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stablemore » growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.« less

  7. Nitric oxide synthase inhibitors attenuate transforming-growth-factor-beta 1-stimulated capillary organization in vitro.

    PubMed Central

    Papapetropoulos, A.; Desai, K. M.; Rudic, R. D.; Mayer, B.; Zhang, R.; Ruiz-Torres, M. P.; García-Cardeña, G.; Madri, J. A.; Sessa, W. C.

    1997-01-01

    Angiogenesis is a complex process involving endothelial cell (EC) proliferation, migration, differentiation, and organization into patent capillary networks. Nitric oxide (NO), an EC mediator, has been reported to be antigenic as well as proangiogenic in different models of in vivo angiogenesis. Our aim was to investigate the role of NO in capillary organization using rat microvascular ECs (RFCs) grown in three-dimensional (3D) collagen gels. RFCs placed in 3D cultures exhibited extensive tube formation in the presence of transforming growth factor-beta 1. Addition of the NO synthase (NOS) inhibitors L-nitro-arginine methylester (L-NAME, 1 mmol/L) or L-monomethyl-nitro-l-arginine (1 mmol/L) inhibited tube formation and the accumulation of nitrite in the media by approximately 50%. Incubation of the 3D cultures with excess L-arginine reversed the inhibitory effect of L-NAME on tube formation. In contrast to the results obtained in 3D cultures, inhibition of NO synthesis by L-NAME did not influence RFC proliferation in two-dimensional (2D) cultures or antagonize the ability of transforming growth factor-beta 1 to suppress EC proliferation in 2D cultures. Reverse transcriptase-polymerase chain reaction revealed the constitutive expression of all three NOS isoforms, neuronal, inducible, and endothelial NOSs, in 2D and 3D cultures. Moreover, Western blot analysis demonstrated the presence of immunoreactive protein for all NOS isoforms in 3D cultures of RFCs. In addition, in the face of NOS blockade, co-treatment with the NO donor sodium nitroprusside or the stable analog of cGMP, 8-bromo-cGMP, restored capillary tube formation. Thus, the autocrine production of NO and the activation of soluble guanylate cyclase are necessary events in the process of differentiation and in vitro capillary tube organization of RFCs. Images Figure 2 Figure 4 Figure 5 PMID:9137106

  8. Human transforming growth factor. beta. -. cap alpha. /sub 2/-macroglobulin complex is a latent form of transforming growth factor. beta

    SciTech Connect

    Huang, S.S.; O'Grady, P.; Huang, J.S.

    1987-05-01

    Human platelet-derived transforming growth factor ..beta.. (TGF..beta..) has been shown to be present as a high molecular weight latent form in human serum. Appearance of transforming growth factor activity, along with the change from high molecular weight form to low molecular weight form, was observed following treatment of the latent form of TGF..beta.. with acid or urea, suggesting that the latent form of TGF..beta.. is a complex of TGF..beta.. and a high molecular weight binding protein. Human ..cap alpha../sub 2/-M has been found to be a plasma binding protein for platelet-derived growth factor (PDGF) in serum or plasma. TGF..beta.. and PDGF share similar properties. They, therefore, investigated the interaction between /sup 125/I-TGF..beta.. and ..cap alpha../sub 2/M. /sup 125/I-TGF..beta.. and purified human ..cap alpha../sub 2/M formed a complex as demonstrated by polyacrylamide gel electrophoresis. Most of the /sup 125/I-TGF..beta..-..cap alpha../sub 2/M complex could be dissociated by acid or urea treatment. These results suggest that ..cap alpha../sub 2/M is a binding protein for TGF..beta.. and that TGF..beta..-..cap alpha../sub 2/M complex may be the latent form of TGF..beta.. in serum.

  9. Transforming growth factor (TGF)-. alpha. in human milk

    SciTech Connect

    Okada, Masaki; Wakai, Kae; Shizume, Kazuo ); Iwashita, Mitsutoshi ); Ohmura, Eiji; Kamiya, Yoshinobu; Murakami, Hitomi; Onoda, Noritaka; Tsushima, Toshio

    1991-01-01

    Transforming growth factor (TGF)-{alpha} and epidermal growth factor (EGF) were measured in human milk by means of homologous radioimmunoassay. As previously reported, EGF concentration in the colostrum was approximately 200 ng/ml and decreased to 50 ng/ml by day 7 postpartum. The value of immunoreactive (IR)-TGF-{alpha} was 2.2-7.2 ng/ml, much lower than that of EGF. In contrast to EGF, the concentration of IR-TGF-{alpha} was fairly stable during the 7 postpartum days. There was no relationship between the concentrations of IR-TGF-{alpha} and IR-EGF, suggesting that the regulatory mechanism in the release of the two growth factors is different. On gel-chromatography using a Sephadex G-50 column, IR-EGF appeared in the fraction corresponding to that of authentic human EGF, while 70%-80% of the IR-TGF-{alpha} was eluted as a species with a molecular weight greater than that of authentic human TGF-{alpha}. Although the physiological role of TGF-{alpha} in milk is not known, it is possible that it is involved in the development of the mammary gland and/or the growth of newborn infants.

  10. Colloidal Gold--Collagen Protein Core--Shell Nanoconjugate: One-Step Biomimetic Synthesis, Layer-by-Layer Assembled Film, and Controlled Cell Growth.

    PubMed

    Xing, Ruirui; Jiao, Tifeng; Yan, Linyin; Ma, Guanghui; Liu, Lei; Dai, Luru; Li, Junbai; Möhwald, Helmuth; Yan, Xuehai

    2015-11-11

    The biogenic synthesis of biomolecule-gold nanoconjugates is of key importance for a broad range of biomedical applications. In this work, a one-step, green, and condition-gentle strategy is presented to synthesize stable colloidal gold-collagen core-shell nanoconjugates in an aqueous solution at room temperature, without use of any reducing agents and stabilizing agents. It is discovered that electrostatic binding between gold ions and collagen proteins and concomitant in situ reduction by hydroxyproline residues are critically responsible for the formation of the core-shell nanoconjugates. The film formed by layer-by-layer assembly of such colloidal gold-collagen nanoconjugates can notably improve the mechanical properties and promote cell adhesion, growth, and differentiation. Thus, the colloidal gold-collagen nanoconjugates synthesized by such a straightforward and clean manner, analogous to a biomineralization pathway, provide new alternatives for developing biologically based hybrid biomaterials toward a range of therapeutic and diagnostic applications.

  11. The effect of epigallocatechin-3-gallate, a constituent of green tea, on transforming growth factor-beta1-stimulated wound contraction.

    PubMed

    Klass, Benjamin R; Branford, Olivier A; Grobbelaar, Adriaan O; Rolfe, Kerstin J

    2010-01-01

    Dermal fibrosis, or scarring, following surgical incisions, traumatic wounds and burns presents a major clinical burden. Transforming growth factor (TGF)-beta1 is a major factor known to stimulate fibroblast proliferation, collagen production, and the differentiation of fibroblast to myofibroblast promoting wound contraction. Furthermore, excessive or prolonged TGF-beta1 has been shown to be associated with scarring. Green tea contains high amounts of polyphenols with the major polyphenolic compound being epigallocatechin-3-gallate (EGCG). EGCG has been shown to be anti-inflammatory, anti-oxidant, and may improve wound healing and scarring, though its precise effect on TGF-beta1 remains unclear. This study aimed at determining the effect of EGCG on TGF-beta1 collagen contraction, gene expression and the differentiation of fibroblast to myofibroblast. EGCG appears to affect the role that TGF-beta1 plays in fibroblast populated collagen gel contraction and this seems to be through both myofibroblast differentiation and connective tissue growth factor gene expression and reduces the expression of collagen type I gene regulation.

  12. Incisional wound healing in transforming growth factor-beta1 null mice.

    PubMed

    Koch, R M; Roche, N S; Parks, W T; Ashcroft, G S; Letterio, J J; Roberts, A B

    2000-01-01

    Expression of endogenous transforming growth factor-beta1 is reduced in many animal models of impaired wound healing, and addition of exogenous transforming growth factor-beta has been shown to improve healing. To test the hypothesis that endogenous transforming growth factor-beta1 is essential for normal wound repair, we have studied wound healing in mice in which the transforming growth factor-beta1 gene has been deleted by homologous recombination. No perceptible differences were observed in wounds made in 3-10-day-old neonatal transforming growth factor-beta1 null mice compared to wild-type littermates. To preclude interference from maternally transferred transforming growth factor-beta1, cutaneous wounds were also made on the backs of 30-day-old transforming growth factor-beta1 null and littermate control mice treated with rapamycin, which extends their lifetime and suppresses the inflammatory response characteristic of the transforming growth factor-beta1 null mice. Again, no impairment in healing was seen in transforming growth factor-beta1 null mice. Instead these wounds showed an overall reduction in the amount of granulation tissue and an increased rate of epithelialization compared to littermate controls. Our data suggest that release of transforming growth factor-beta1 from degranulating platelets or secretion by infiltrating macrophages and fibroblasts is not critical to initiation or progression of tissue repair and that endogenous transforming growth factor-beta1 may actually function to increase inflammation and retard wound closure.

  13. Arginine increases insulin-like growth factor-I production and collagen synthesis in osteoblast-like cells.

    PubMed

    Chevalley, T; Rizzoli, R; Manen, D; Caverzasio, J; Bonjour, J P

    1998-08-01

    Protein-energy malnutrition, which is common in elderly patients with osteoporotic hip fractures, is associated with reduced plasma levels of insulin-like growth factor-I (IGF-I). IGF-I is an important regulator of bone metabolism, particularly of osteoblastic bone formation both in vivo and in vitro. Pharmacological doses of arginine (Arg) increase growth hormone (GH) and IGF-I serum levels. Whether amino acids, particularly Arg, can directly modulate the production of IGF-I by osteoblasts is not known. We investigated the effects of increasing concentrations of Arg on IGF-I expression and production, alpha1(I) collagen expression and collagen synthesis, and cell proliferation and cell differentiation, as assessed by alkaline phosphatase (ALP) activity and osteocalcin (OC) release, in confluent mouse osteoblast-like MC3T3-E1 cells. The addition of Arg (7.5-7500 micromol/L, equivalent to 0.1- to 100-fold human plasma concentration) for 48 h increased IGF-I production (adjusted for cell number) in a concentration-dependent manner with a maximum of 2.3 +/- 0.3-fold at 7500 micromol/L Arg [x +/- standard error of the mean (SEM), n = 3 experiments, p < 0.01]. Arg (7.5-7500 micromol/L) increased the percentage of de novo collagen synthesis in a concentration-dependent manner (2.1 +/- 0.4-fold with 7500 micromol/L Arg, p < 0.001) and ALP activity with a maximal stimulation of 144% +/- 13% plateauing at 750 micromol/l Arg (p = 0.002). The steady state level of IGF-I messenger ribonucleic acid (mRNA) and alpha1(I) collagen mRNA (both normalized to cyclophilin mRNA) of cells incubated with Arg at high (100-fold) or low (0.1-fold) human plasma concentrations, was 1.4 +/- 0.2, 1.2 +/- 0.2, and 1.1 +/- 0.2 after 24 h for the 7.5, 1.8, and 0.9 kb IGF-I mRNA transcripts, respectively (n = 3 experiments) and 1.5 +/- 0.2 and 3.1 +/- 0.7 after 24 and 48 h, respectively, for the combined analysis of the 5.6 and 4.7 kb alpha1(I) collagen mRNA transcripts (n = 3 experiments). A

  14. Epidermal growth factor improves the migration and contractility of aged fibroblasts cultured on 3D collagen matrices.

    PubMed

    Kim, Daehwan; Kim, So Young; Mun, Seog Kyun; Rhee, Sangmyung; Kim, Beom Joon

    2015-04-01

    Epidermal growth factor (EGF) plays a critical role in fibroblasts by stimulating the production of collagen and supports cell renewal through the interaction between keratinocytes and fibroblasts. It is well known that the contractile activity of fibroblasts is required for the remodeling of the extracellular matrix (ECM), which contributes to skin elasticity. However, the role of EGF in the contraction of aged fibroblasts under 3-dimensional (3D) culture conditions is not yet fully understood. In the present study, we demonstrated that young fibroblasts spread and proliferated more rapidly than aged fibroblasts under 2-dimensional (2D) culture conditions. Cell migration assay using a nested collagen matrix revealed that the migration of young fibroblasts was also greater than that of aged fibroblasts under 3D culture conditions. However, the addition of recombinant human EGF (rhEGF) resulted in the enhanced migration of aged fibroblasts; the migration rate was similar to that of the young fibroblasts. The aged fibroblasts showed decreased cluster formation compared with the young fibroblasts on the collagen matrix, which was improved by the addition of rhEGF. Furthermore, cell contraction assay revealed that the basal contractility of the aged fibroblasts was lower than that of the young fibroblasts; however, following treatment with rhEGF, the contractility was restored to levels similar or even higher to those of the young fibroblasts. Taken together, our results suggest that rhEGF is a potential renewal agent that acts to improve the migration and contraction of aged fibroblasts more efficiently than young fibroblasts under 3D culture conditions; thus, EGF may have valuable regenerative effects on aged skin.

  15. Modulation of heat shock protein 90 affects TGF-β-induced collagen synthesis in human dermal fibroblast cells.

    PubMed

    Lee, Sae Bin; Lim, A-Ram; Rah, Dong Kyun; Kim, Kyung Soo; Min, Hyun Jin

    2016-12-01

    Heat shock protein 90 is a chaperone molecule that aids in proper folding of target proteins. Recently, heat shock protein 90 was found to play a role in would healing through regulation of fibroblast functions. The aim of the present study was to investigate the role of heat shock protein 90 in collagen synthesis in human dermal fibroblasts. The effects of transforming growth factor-β, 17-N-allylamino-17-demethoxygeldanamycin, and transfection of heat shock protein 90 were evaluated by real-time PCR, western blot, and immunofluorescence assays. The Smad 2/3 and Akt pathways were evaluated to identify the signaling pathways involved in collagen synthesis. Heat shock protein 90 and collagen levels were compared in keloid and control tissues by immunohistochemical analysis. The expression of collagen was significantly increased after treatment with transforming growth factor-β, while 17-N-allylamino-17-demethoxygeldanamycin inhibited transforming growth factor-β-induced collagen synthesis. Overexpression of heat shock protein 90 itself with or without transforming growth factor-β increased collagen synthesis. These effects were dependent on Smad 2/3 pathway signaling. Finally, expression of heat shock protein 90 was increased in keloid tissue compared with control tissues. Taken together, these results demonstrate that modulation of heat shock protein 90 influences transforming growth factor-β-induced collagen synthesis via regulation of Smad 2/3 phosphorylation.

  16. Recombinant growth factor mixtures induce cell cycle progression and the upregulation of type I collagen in human skin fibroblasts, resulting in the acceleration of wound healing processes.

    PubMed

    Lee, Do Hyun; Choi, Kyung-Ha; Cho, Jae-We; Kim, So Young; Kwon, Tae Rin; Choi, Sun Young; Choi, Yoo Mi; Lee, Jay; Yoon, Ho Sang; Kim, Beom Joon

    2014-05-01

    Application of growth factor mixtures has been used for wound healing and anti-wrinkles agents. The aim of this study was to evaluate the effect of recombinant growth factor mixtures (RGFM) on the expression of cell cycle regulatory proteins, type I collagen, and wound healing processes of acute animal wound models. The results showed that RGFM induced increased rates of cell proliferation and cell migration of human skin fibroblasts (HSF). In addition, expression of cyclin D1, cyclin E, cyclin-dependent kinase (Cdk)4, and Cdk2 proteins was markedly increased with a growth factor mixtures treatment in fibroblasts. Expression of type I collagen was also increased in growth factor mixtures-treated HSF. Moreover, growth factor mixtures-induced the upregulation of type I collagen was associated with the activation of Smad2/3. In the animal model, RGFM-treated mice showed accelerated wound closure, with the closure rate increasing as early as on day 7, as well as re-epithelization and reduced inflammatory cell infiltration than phosphate-buffered saline (PBS)-treated mice. In conclusion, the results indicated that RGFM has the potential to accelerate wound healing through the upregulation of type I collagen, which is partly mediated by activation of Smad2/3-dependent signaling pathway as well as cell cycle progression in HSF. The topical application of growth factor mixtures to acute and chronic skin wound may accelerate the epithelization process through these molecular mechanisms.

  17. Effect of transforming growth factor beta on synthesis of glycosaminoglycans by human lung fibroblasts

    SciTech Connect

    Dubaybo, B.A.; Thet, L.A. )

    1990-09-01

    The processes of lung growth, injury, and repair are characterized by alterations in fibroblast synthesis and interstitial distribution of extracellular matrix components. Transforming growth factor beta (TGF-beta), which is postulated to play a role in modulating lung repair, alters the distribution of several matrix components such as collagen and fibronectin. We studied the effect of TGF-beta on the synthesis and distribution of the various glycosaminoglycans (GAGs) and whether these effects may explain its role in lung repair. Human diploid lung fibroblasts (IMR-90) were exposed to various concentrations of TGF-beta (0-5 nM) for variable periods of time (0-18 h). Newly synthesized GAGs were labeled with either (3H)glucosamine or (35S)sulfate. Individual GAGs were separated by size exclusion chromatography after serial enzymatic and chemical digestions and quantitated using scintillation counting. There was a dose-dependent increase in total GAG synthesis with maximal levels detected after 6 h of exposure. This increase was noted in all individual GAG types measured and was observed in both the cell associated GAGs (cell-matrix fraction) as well as the GAGs released into the medium (medium fraction). In the cell-matrix fraction, TGF-beta increased the proportion of heparan sulfate that was membrane bound as well as the proportion of dermatan sulfate in the intracellular compartment. In the medium fraction, TGF-beta increased the proportion of hyaluronic acid, chondroitin sulfate and dermatan sulfate released. We conclude that the role of TGF-beta in lung growth and repair may be related to increased synthesis of GAGs by human lung fibroblasts as well as alterations in the distribution of individual GAGs.

  18. Transforming growth factor-beta stimulates the expression of fibronectin by human keratinocytes.

    PubMed

    Wikner, N E; Persichitte, K A; Baskin, J B; Nielsen, L D; Clark, R A

    1988-09-01

    Transforming growth factor beta (TGF-beta) is a 25-kD protein which has regulatory activity over a variety of cell types. It is distinct from epidermal growth factor (EGF) and EGF analogs, and exerts its action via a distinct receptor. Its effect on proliferation or differentiation can be positive or negative depending on the cell type and the presence of other growth factors. It also modulates the expression of cellular products. TGF-beta causes fibroblasts to increase their production of the extracellular matrix components, fibronectin and collagen. Human keratinocytes (HK) are known to have TGF-beta receptors. We wished to study the effect of TGF-beta on the production of extracellular matrix proteins by human keratinocytes in culture. Human keratinocytes were grown in serum-free defined medium (MCDB-153) to about 70% confluence. Following a 16-h incubation in medium lacking EGF and TGF-beta, cells were incubated for 12 h in medium containing varying concentrations of EGF and TGF-beta. Cells were then labeled with 35S-methionine for 10 h in the same conditions. Labeled proteins from the medium were analyzed by SDS-PAGE and autoradiography. TGF-beta at 10 ng/ml induced a sixfold increase in the secretion of fibronectin, as well as an unidentified 50-kD protein. Thrombospondin production was also increased, but not over a generalized twofold increase in the production of all other proteins. EGF, at 10 ng/ml, caused a smaller additive effect. TGF-beta may be an important stimulator of extracellular matrix production by human keratinocytes.

  19. Growth hormone-releasing peptide-biotin conjugate stimulates myocytes differentiation through insulin-like growth factor-1 and collagen type I

    PubMed Central

    Lim, Chae Jin; Jeon, Jung Eun; Jeong, Se Kyoo; Yoon, Seok Jeong; Kwon, Seon Deok; Lim, Jina; Park, Keedon; Kim, Dae Yong; Ahn, Jeong Keun; Kim, Bong-Woo

    2015-01-01

    Based on the potential beneficial effects of growth hormone releasing peptide (GHRP)-6 on muscle functions, a newly synthesized GHRP-6-biotin conjugate was tested on cultured myoblast cells. Increased expression of myogenic marker proteins was observed in GHRP-6-biotin conjugate-treated cells. Additionally, increased expression levels of insulin-like growth factor-1 and collagen type I were observed. Furthermore, GHRP-6-biotin conjugate-treated cells showed increased metabolic activity, as indicated by increased concentrations of energy metabolites, such as ATP and lactate, and increased enzymatic activity of lactate dehydrogenase and creatine kinase. Finally, binding protein analysis suggested few candidate proteins, including desmin, actin, and zinc finger protein 691 as potential targets for GHRP6-biotin conjugate action. These results suggest that the newly synthesized GHRP-6-biotin conjugate has myogenic stimulating activity through, at least in part, by stimulating collagen type I synthesis and several key proteins. Practical applications of the GHRP-6-biotin conjugate could include improving muscle condition. [BMB Reports 2015; 48(9): 501-506] PMID:25644636

  20. Growth hormone-releasing peptide-biotin conjugate stimulates myocytes differentiation through insulin-like growth factor-1 and collagen type I.

    PubMed

    Lim, Chae Jin; Jeon, Jung Eun; Jeong, Se Kyoo; Yoon, Seok Jeong; Kwon, Seon Deok; Lim, Jina; Park, Keedon; Kim, Dae Yong; Ahn, Jeong Keun; Kim, Bong-Woo

    2015-09-01

    Based on the potential beneficial effects of growth hormone releasing peptide (GHRP)-6 on muscle functions, a newly synthesized GHRP-6-biotin conjugate was tested on cultured myoblast cells. Increased expression of myogenic marker proteins was observed in GHRP-6-biotin conjugate-treated cells. Additionally, increased expression levels of insulin-like growth factor-1 and collagen type I were observed. Furthermore, GHRP-6-biotin conjugate-treated cells showed increased metabolic activity, as indicated by increased concentrations of energy metabolites, such as ATP and lactate, and increased enzymatic activity of lactate dehydrogenase and creatine kinase. Finally, binding protein analysis suggested few candidate proteins, including desmin, actin, and zinc finger protein 691 as potential targets for GHRP6-biotin conjugate action. These results suggest that the newly synthesized GHRP-6-biotin conjugate has myogenic stimulating activity through, at least in part, by stimulating collagen type I synthesis and several key proteins. Practical applications of the GHRP-6-biotin conjugate could include improving muscle condition.

  1. The latent transforming growth factor beta binding protein (LTBP) family.

    PubMed Central

    Oklü, R; Hesketh, R

    2000-01-01

    The transforming growth factor beta (TGFbeta) cytokines are a multi-functional family that exert a wide variety of effects on both normal and transformed mammalian cells. The secretion and activation of TGFbetas is regulated by their association with latency-associated proteins and latent TGFbeta binding proteins (LTBPs). Over the past few years, three members of the LTBP family have been identified, in addition to the protoype LTBP1 first sequenced in 1990. Three of the LTBP family are expressed in a variety of isoforms as a consequence of alternative splicing. This review summarizes the differences between the isoforms in terms of the effects on domain structure and hence possible function. The close identity between LTBPs and members of the fibrillin family, mutations in which have been linked directly to Marfan's syndrome, suggests that anomalous expression of LTBPs may be associated with disease. Recent data indicating that differential expression of LTBP1 isoforms occurs during the development of coronary heart disease is considered, together with evidence that modulation of LTBP function, and hence of TGFbeta activity, is associated with a variety of cancers. PMID:11104663

  2. Role of growth factors in the growth of normal and transformed cells

    SciTech Connect

    Lokeshwar, V.B.

    1989-01-01

    Growth factors play an important role in the growth of normal cells. However, their untimely and/or excess production leads to neoplastic transformation. The role of growth factors in the growth of normal cells was studied by investigating the mechanism of transmodulation of the cell surface EGF receptor number by protamine. Protamine increased the EGF stimulated mitogenic response in Swiss mouse 3T3 cells and A431 cells by increasing the number of functionally active EGF receptors. Protamine also increased EGF receptor number in plasma membranes and solubilized membranes. This was evidenced by an increase in both {sup 125}I-EGF-EGF-receptor complex and EGF stimulated phosphorylation of the EGF receptor. The solubilized EGF receptor was retained on a protamine-agarose gel indicating that protamine might increase EGF receptor number by directly activating cryptic EGF receptors in the plasma membranes. The role of growth factors in neoplastic transformation was studied by investigating the role of the oncogene v-sis in the growth of Simian sarcoma virus (SSV) transformed cells. The product of the oncogene v-sis is 94% homologous to the B chain of PDGF. This study found that (i) v-sis gene product is synthesized as a 32 kDa unglycosylated monomer which is glycosylated, dimerized and proteolytically processed into p36, p72, p68, p58, p44 and p27 mol. wt. species respectively. (ii) p36, p72, p68 and p58 are very likely formed in the endoplasmic reticulum and/or Golgi complex. A fraction of newly synthesized p72, p68 and p58 is degraded intracellularly at a fast rate. (iii) p44 is a secretory product which remains tightly associated with the cell surface. p44 is recaptured by the cells through interaction with cell surface PDGF receptors and degraded into p27. (iv) During long term cultures p44 is extracellularly cleaved into a 27 kDa product.

  3. In vitro growth of human urinary tract smooth muscle cells on laminin and collagen type I-coated membranes under static and dynamic conditions.

    PubMed

    Hubschmid, Ulrich; Leong-Morgenthaler, Phaik-Mooi; Basset-Dardare, Aurelia; Ruault, Sylvie; Frey, Peter

    2005-01-01

    This study investigates in vitro growth of human urinary tract smooth muscle cells under static conditions and mechanical stimulation. The cells were cultured on collagen type I- and laminin-coated silicon membranes. Using a Flexcell device for mechanical stimulation, a cyclic strain of 0-20% was applied in a strain-stress-time model (stretch, 104 min relaxation, 15 s), imitating physiological bladder filling and voiding. Cell proliferation and alpha-actin, calponin, and caldesmon phenotype marker expression were analyzed. Nonstretched cells showed significant better growth on laminin during the first 8 days, thereafter becoming comparable to cells grown on collagen type I. Cyclic strain significantly reduced cell growth on both surfaces; however, better growth was observed on laminin. Neither the type of surface nor mechanical stimulation influenced the expression pattern of phenotype markers; alpha-actin was predominantly expressed. Coating with the extracellular matrix protein laminin improved in vitro growth of human urinary tract smooth muscle cells.

  4. Inhibition of Nb2 T-lymphoma cell growth by transforming growth factor-beta.

    PubMed Central

    Rayhel, E J; Prentice, D A; Tabor, P S; Flurkey, W H; Geib, R W; Laherty, R F; Schnitzer, S B; Chen, R; Hughes, J P

    1988-01-01

    Transforming growth factor-beta (TGF-beta) inhibits proliferation of Nb2 cells, a rat T lymphoma, in response to lactogens and interleukin-2. Prostaglandins may play an important role in the pathway through which TGF-beta exerts its inhibitory actions, because prostaglandin E2 also inhibits proliferation of Nb2 cells, and indomethacin, an inhibitor of prostaglandin synthesis, reverses the inhibitory effects of TGF-beta on Nb2 cell proliferation. PMID:3262338

  5. Transforming Growth Factor Beta, Bioenergetics and Mitochondria in Renal Disease

    PubMed Central

    Gabriella, Casalena; Ilse, Daehn; Erwin, Bottinger

    2012-01-01

    The transforming growth factor beta (TGF-β ) family is comprised of over 30 family members that are structurally related secreted dimeric cytokines, including TGF-β, activins, and bone morphogenetic proteins (BMPs)/growth and differentiation factors (GDFs). TGF-β are pluripotent regulators of cell proliferation, differentiation, apoptosis, migration, and adhesion of many different cell types. TGF-β pathways are highly evolutionarily conserved and control embryogenesis, tissue repair, and tissue homeostasis in invertebrates and vertebrates. Aberrations in TGF-β activity and signaling underlie a broad spectrum of developmental disorders and major pathologies in humans, including cancer, fibrosis and autoimmune diseases. Recent observations indicate an emerging role for TGF-β in regulation of mitochondrial bioenergetics and oxidative stress responses characteristic of chronic degenerative diseases and ageing. Conversely, energy and metabolic sensory pathways cross-regulate mediators of TGF-β signaling. Here we review TGF-β and regulation of bioenergetic and mitochondrial functions, including energy and oxidant metabolism and apoptotic cell death, as well as their emerging relevance in renal biology and disease. PMID:22835461

  6. Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation

    NASA Technical Reports Server (NTRS)

    Ehrhart, E. J.; Segarini, P.; Tsang, M. L.; Carroll, A. G.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    The biological activity of transforming growth factor beta1 (TGF-beta) is controlled by its secretion as a latent complex in which it is noncovalently associated with latency-associated peptide (LAP). Activation is the extracellular process in which TGF-beta is released from LAP, and is considered to be a primary regulatory control. We recently reported rapid and persistent changes in TGF-beta immunoreactivity in conjunction with extracellular matrix remodeling in gamma-irradiated mouse mammary gland. Our hypothesis is that these specific changes in immunoreactivity are indicative of latent TGF-beta activation. In the present study, we determined the radiation dose response and tested whether a functional relationship exists between radiation-induced TGF-beta and collagen type III remodeling. After radiation exposures as low as 0.1 Gy, we detected increased TGF-beta immunoreactivity in the mammary epithelium concomitant with decreased LAP immunostaining, which are events consistent with activation. Quantitative image analysis demonstrated a significant (P=0.0005) response at 0.1 Gy without an apparent threshold and a linear dose response to 5 Gy. However, in the adipose stroma, loss of LAP demonstrated a qualitative threshold at 0.5 Gy. Loss of LAP paralleled induction of collagen III immunoreactivity in this tissue compartment. We tested whether TGF-beta mediates collagen III expression by treating animals with TGF-beta panspecific monoclonal antibody, 1D11.16, administered i.p. shortly before irradiation. Radiation-induced collagen III staining in the adipose stroma was blocked in an antibody dose-dependent manner, which persisted through 7 days postirradiation. RNase protection assay revealed that radiation-induced elevation of total gland collagen III mRNA was also blocked by neutralizing antibody treatment. These data provide functional confirmation of the hypothesis that radiation exposure leads to latent TGF-beta activation, support our interpretation of the

  7. Transforming growth factor beta 1, a cytokine with regenerative functions

    PubMed Central

    Sulaiman, Wale; Nguyen, Doan H.

    2016-01-01

    We review the biology and role of transforming growth factor beta 1 (TGF-β1) in peripheral nerve injury and regeneration, as it relates to injuries to large nerve trunks (i.e., sciatic nerve, brachial plexus), which often leads to suboptimal functional recovery. Experimental studies have suggested that the reason for the lack of functional recovery resides in the lack of sufficient mature axons reaching their targets, which is a result of the loss of the growth-supportive environment provided by the Schwann cells in the distal stump of injured nerves. Using an established chronic nerve injury and delayed repair animal model that accurately mimics chronic nerve injuries in humans, we summarize our key findings as well as others to better understand the pathophysiology of poor functional recovery. We demonstrated that 6 month TGF-β1 treatment for chronic nerve injury significantly improved Schwann cell capacity to support axonal regeneration. When combined with forskolin, the effect was additive, as evidenced by a near doubling of regenerated axons proximal to the repair site. We showed that in vivo application of TGF-β1 and forskolin directly onto chronically injured nerves reactivated chronically denervated Schwann cells, induced their proliferation, and upregulated the expression of regeneration-associated proteins. The effect of TGF-β1 and forskolin on old nerve injuries is quite impressive and the treatment regiment appears to mediate a growth-supportive milieu in the injured peripheral nerves. In summary, TGF-β1 and forskolin treatment reactivates chronically denervated Schwann cells and could potentially be used to extend and prolong the regenerative responses to promote axonal regeneration. PMID:27904475

  8. Transforming growth factor-beta induces endothelin-1 expression through activation of the Smad signaling pathway.

    PubMed

    Rodríguez-Pascual, Fernando; Reimunde, Francisco Manuel; Redondo-Horcajo, Mariano; Lamas, Santiago

    2004-11-01

    Expression of the endothelin-1 gene is subject to complex regulation by different factors, among which transforming growth factor-beta is one of the most important. We have analyzed the mechanism by which transforming growth factor-beta increases endothelin-1 expression in vascular endothelial cells. Transcriptional activation of the endothelin-1 promoter accounted for the transforming growth factor-beta-induced increase in endothelin-1 mRNA levels. Two DNA elements within the promoter are responsible for this effect: a Smad binding element and a proximal activator protein-1 site. Mutation of both elements abolished transforming growth factor-beta responsiveness. Overexpression of the Smad3 isoform strongly potentiates transforming growth factor-beta- induced endothelin-1 promoter activity in a phosphorylation-dependent manner. These results demonstrate that transforming growth factor-beta induces endothelin-1 expression by a functional cooperation between Smads and activator protein-1 through activation of the Smad signaling pathway.

  9. Development of anti-adhesive spongy sheet composed of hyaluronic acid and collagen containing epidermal growth factor.

    PubMed

    Kuroyanagi, Misato; Yamamoto, Akiko; Shimizu, Nahoko; Toi, Ayako; Inomata, Tomonori; Takeda, Akira; Kuroyanagi, Yoshimitsu

    2014-01-01

    Anti-adhesive products need to be designed while considering the concept of wound healing. Two main events must proceed simultaneously: facilitating wound healing in surgically excised tissue, as well as preventing injured tissue from adhering to the surrounding tissue. The present study aimed to develop an anti-adhesive spongy sheet composed of hyaluronic acid and collagen (Col) containing epidermal growth factor, and to investigate the potential of this spongy sheet using an in vitro wound surface model (placing a spongy sheet on a fibroblast-incorporating Col gel sheet) and an in vitro inter-tissue model (placing a spongy sheet between two fibroblast-incorporating Col gel sheets). These in vitro experiments demonstrated that this spongy sheet effectively stimulates fibroblasts to release an increased amount of vascular endothelial growth factor and hepatocyte growth factor, which are essential for wound healing to proceed succesfully. In addition, anti-adhesive performance of this spongy sheet was evaluated in animal experiments using Sprague Dawley rats. Under anesthesia, a 1 cm × 2 cm segment of peritoneum was superficially excised from walls, and the cecum was then abraded by scraping with a scalpel blade over a 1 cm × 2 cm area. A piece of spongy sheet was placed on the peritoneal defect. Both defects were placed in contact, and the incision was closed by suturing. Peritoneal condition was evaluated after one week. This spongy sheet was capable of facilitating the wound healing of surgically excised tissue and preventing surgically excised tissue from adhering to surrounding tissues.

  10. Quantitation and morphological characterization of rapid axon and dendritic growth from single cerebral hemispheric neurons in hydrated collagen lattice culture.

    PubMed

    Coates, P W

    1986-02-01

    Quantitative and qualitative data are reported for single cerebral hemispheric neurons in a 3-dimensional hydrated collagen lattice (HCL) culture system. Individual neurons not in contact with other cells or cell processes, including synapses, rapidly displayed two morphologically distinct classes of processes that could be traced from origin to termination: long thin processes interpreted as being axons, and shorter tapering and sometimes branched processes interpreted as being dendrites. Axons and dendrites of single neurons that had at least one process longer than the cell body were measured on each of 3 days after plating using an image analysis system coupled to a phase-contrast microscope and a microcomputer. Mean lengths of axons and dendrites alone or combined as total new growth per neuron, increased 3- to 5-fold and were as high as 745, 694 and 1226 microns respectively after 3 days in HCL, although some individual axons measured over 1500 microns. Other indices of neuron growth and differentiation increased 1- to 5-fold including the number of primary processes, branch points, segments and growth cones. Phase-contrast microscopy, staining with Nissl and silver, and scanning and transmission electron microscopy demonstrated many single multipolar and other neurons with axons, dendrites and well-differentiated properties. The data show that individual central nervous system neurons have an inherent capacity to quickly express characteristic differentiated features and also to grow rapidly in HCL.

  11. Cementogenesis and the induction of periodontal tissue regeneration by the osteogenic proteins of the transforming growth factor-beta superfamily.

    PubMed

    Ripamonti, U; Petit, J-C; Teare, J

    2009-04-01

    The antiquity and severity of periodontal diseases are demonstrated by the hard evidence of alveolar bone loss in gnathic remains of the Pliocene/Pleistocene deposits of the Bloubank Valley at Sterkfontein, Swartkrans and Kromdrai in South Africa. Extant Homo has characterized and cloned a superfamily of proteins which include the bone morphogenetic proteins that regulate tooth morphogenesis at different stages of development as temporally and spatially connected events. The induction of cementogenesis, periodontal ligament and alveolar bone regeneration are regulated by the co-ordinated expression of bone morphogenetic proteins. Naturally derived and recombinant human bone morphogenetic proteins induce periodontal tissue regeneration in mammals. Morphological analyses on undecalcified sections cut at 3-6 mum on a series of mandibular molar Class II and III furcation defects induced in the non-human primate Papio ursinus show the induction of cementogenesis. Sharpey's fibers nucleate as a series of composite collagen bundles within the cementoid matrix in close relation to embedded cementocytes. Osteogenic protein-1 and bone morphogenetic protein-2 possess a structure-activity profile, as shown by the morphology of tissue regeneration, preferentially cementogenic and osteogenic, respectively. In Papio ursinus, transforming growth factor-beta(3) also induces cementogenesis, with Sharpey's fibers inserting into newly formed alveolar bone. Capillary sprouting and invasion determine the sequential insertion and alignment of individual collagenic bundles. The addition of responding stem cells prepared by finely mincing fragments of autogenous rectus abdominis muscle significantly enhances the induction of periodontal tissue regeneration when combined with transforming growth factor-beta(3) implanted in Class II and III furcation defects of Papio ursinus.

  12. The Initiator Methionine tRNA Drives Secretion of Type II Collagen from Stromal Fibroblasts to Promote Tumor Growth and Angiogenesis.

    PubMed

    Clarke, Cassie J; Berg, Tracy J; Birch, Joanna; Ennis, Darren; Mitchell, Louise; Cloix, Catherine; Campbell, Andrew; Sumpton, David; Nixon, Colin; Campbell, Kirsteen; Bridgeman, Victoria L; Vermeulen, Peter B; Foo, Shane; Kostaras, Eleftherios; Jones, J Louise; Haywood, Linda; Pulleine, Ellie; Yin, Huabing; Strathdee, Douglas; Sansom, Owen; Blyth, Karen; McNeish, Iain; Zanivan, Sara; Reynolds, Andrew R; Norman, Jim C

    2016-03-21

    Expression of the initiator methionine tRNA (tRNAi(Met)) is deregulated in cancer. Despite this fact, it is not currently known how tRNAi(Met) expression levels influence tumor progression. We have found that tRNAi(Met) expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAi(Met) in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAi(Met) contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAi(Met) gene (2+tRNAi(Met) mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAi(Met) mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAi(Met) mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAi(Met) significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAi(Met)-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAi(Met)-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAi(Met) mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAi(Met) levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis.

  13. Hydrogen sulfide suppresses transforming growth factor-β1-induced differentiation of human cardiac fibroblasts into myofibroblasts.

    PubMed

    Zhang, YouEn; Wang, JiaNing; Li, Hua; Yuan, LiangJun; Wang, Lei; Wu, Bing; Ge, JunBo

    2015-11-01

    In heart disease, transforming growth factor-β1 (TGF-β1) converts fibroblasts into myofibroblasts, which synthesize and secrete fibrillar type I and III collagens. The purpose of the present study was to investigate how hydrogen sulfide (H2S) suppresses TGF-β1-induced differentiation of human cardiac fibroblasts to myofibroblasts. Human cardiac fibroblasts were serum-starved in fibroblast medium for 16 h before exposure to TGF-β1 (10 ng mL(-1)) for 24 h with or without sodium hydrosulfide (NaHS, 100 µmol L(-1), 30 min pretreatment) treatment. NaHS, an exogenous H2S donor, potently inhibited the proliferation and migration of TGF-β1-induced human cardiac fibroblasts and regulated their cell cycle progression. Furthermore, NaHS treatment led to suppression of fibroblast differentiation into myofibroblasts, and reduced the levels of collagen, TGF-β1, and activated Smad3 in TGF-β1-induced human cardiac fibroblasts in vitro. We therefore conclude that H2S suppresses TGF-β1-stimulated conversion of fibroblasts to myofibroblasts by inhibiting the TGF-β1/Smad3 signaling pathway, as well as by inhibiting the proliferation, migration, and cell cycle progression of human cardiac myofibroblasts. These effects of H2S may play significant roles in cardiac remodeling associated with heart failure.

  14. Prostaglandin F(2alpha) receptor signaling facilitates bleomycin-induced pulmonary fibrosis independently of transforming growth factor-beta.

    PubMed

    Oga, Toru; Matsuoka, Toshiyuki; Yao, Chengcan; Nonomura, Kimiko; Kitaoka, Shiho; Sakata, Daiji; Kita, Yoshihiro; Tanizawa, Kiminobu; Taguchi, Yoshio; Chin, Kazuo; Mishima, Michiaki; Shimizu, Takao; Narumiya, Shuh

    2009-12-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by fibroblast proliferation and excess deposition of collagen and other extracellular matrix (ECM) proteins, which lead to distorted lung architecture and function. Given that anti-inflammatory or immunosuppressive therapy currently used for IPF does not improve disease progression therapies targeted to blocking the mechanisms of fibrogenesis are needed. Although transforming growth factor-beta (TGF-beta) functions are crucial in fibrosis, antagonizing this pathway in bleomycin-induced pulmonary fibrosis, an animal model of IPF, does not prevent fibrosis completely, indicating an additional pathway also has a key role in fibrogenesis. Given that the loss of cytosolic phospholipase A(2) (cPLA(2)) suppresses bleomycin-induced pulmonary fibrosis, we examined the roles of prostaglandins using mice lacking each prostoaglandin receptor. Here we show that loss of prostaglandin F (PGF) receptor (FP) selectively attenuates pulmonary fibrosis while maintaining similar levels of alveolar inflammation and TGF-beta stimulation as compared to wild-type (WT) mice, and that FP deficiency and inhibition of TGF-beta signaling additively decrease fibrosis. Furthermore, PGF(2alpha) is abundant in bronchoalveolar lavage fluid (BALF) of subjects with IPF and stimulates proliferation and collagen production of lung fibroblasts via FP, independently of TGF-beta. These findings show that PGF(2alpha)-FP signaling facilitates pulmonary fibrosis independently of TGF-beta and suggests this signaling pathway as a therapeutic target for IPF.

  15. Doxazosin Treatment Attenuates Carbon Tetrachloride-Induced Liver Fibrosis in Hamsters through a Decrease in Transforming Growth Factor β Secretion

    PubMed Central

    Muñoz-Ortega, Martin Humberto; Llamas-Ramírez, Raúl Wiliberto; Romero-Delgadillo, Norma Isabel; Elías-Flores, Tania Guadalupe; de Jesus Tavares-Rodríguez, Edgar; del Rosario Campos-Esparza, María; Cervantes-García, Daniel; Muñoz-Fernández, Luis; Gerardo-Rodríguez, Martin; Ventura-Juárez, Javier

    2016-01-01

    Background/Aims The development of therapeutic strategies for the treatment of cirrhosis has become an important focus for basic and clinical researchers. Adrenergic receptor antagonists have been evaluated as antifibrotic drugs in rodent models of carbon tetrachloride (CCl4)-induced cirrhosis. The aim of the present study was to evaluate the effects of carvedilol and doxazosin on fibrosis/cirrhosis in a hamster animal model. Methods Cirrhotic-induced hamsters were treated by daily administration of carvedilol and doxazosin for 6 weeks. Hepatic function and histological evaluation were conducted by measuring biochemical markers, including total bilirubin, aspartate aminotransferase, alanine aminotransferase and albumin, and liver tissue slices. Additionally, transforming growth factor β (TGF-β) immunohistochemistry was analyzed. Results Biochemical markers revealed that hepatic function was restored after treatment with doxazosin and carvedilol. Histological evaluation showed a decrease in collagen type I deposits and TGF-β-secreting cells. Conclusions Taken together, these results suggest that the decrease in collagen type I following treatment with doxazosin or carvedilol is achieved by decreasing the profibrotic activities of TGF-β via the blockage of α1- and β-adrenergic receptor. Consequently, a diminution of fibrotic tissue in the CCl4-induced model of cirrhosis is achieved. PMID:26573293

  16. Baicalin ameliorates renal fibrosis via inhibition of transforming growth factor β1 production and downstream signal transduction.

    PubMed

    Zheng, Long; Zhang, Chao; Li, Long; Hu, Chao; Hu, Mushuang; Sidikejiang, Niyazi; Wang, Xuanchuan; Lin, Miao; Rong, Ruiming

    2017-04-01

    Previous studies have demonstrated the potential antifibrotic effects of baicalin in vitro, via examination of 21 compounds isolated from plants. However, its biological activity and underlying mechanisms of action in vivo remain to be elucidated. The present study aimed to evaluate the effect of baicalin on renal fibrosis in vivo, and the potential signaling pathways involved. A unilateral ureteral obstruction (UUO)‑induced renal fibrosis model was established using Sprague‑Dawley rats. Baicalin was administrated intraperitoneally every 2 days for 10 days. The degree of renal damage and fibrosis was investigated by histological assessment, and detection of fibronectin and collagen I mRNA expression levels. Epithelial‑mesenchymal transition (EMT) markers, transforming growth factor-β1 (TGF-β1) levels and downstream phosphorylation of mothers against decapentaplegic 2/3 (Smad2/3) were examined in vivo and in an NRK‑52E rat renal tubular cell line in vitro. Baicalin was demonstrated to markedly ameliorate renal fibrosis and suppress EMT, as evidenced by reduced interstitial collagen accumulation, decreased fibronectin and collagen I mRNA expression levels, upregulation of N‑ and E‑cadherin expression levels, and downregulation of α‑smooth muscle actin and vimentin expression. Furthermore, baicalin decreased TGF‑β1 expression levels in serum and kidney tissue following UUO, and suppressed Smad2/3 phosphorylation in rat kidney tissue. In vitro studies identified that baicalin may inhibit the phosphorylation of Smad2/3 under the same TGF‑β1 concentration. In conclusion, baicalin may protect against renal fibrosis, potentially via inhibition of TGF‑β1 production and its downstream signal transduction.

  17. Evidence for modulation of pericryptal sheath myofibroblasts in rat descending colon by Transforming Growth Factor β and Angiotensin II.

    PubMed Central

    Thiagarajah, Jay R; Griffiths, Nina M; Pedley, Kevin C; Naftalin, Richard J

    2002-01-01

    Background Absorption of water and Na+ in descending colonic crypts is dependent on the barrier function of the surrounding myofibroblastic pericryptal sheath. Here the effects of high and low Na+ diets and exposure to whole body ionising radiation on the growth and activation of the descending colonic pericryptal myofibroblasts are evaluated. In addition the effect of a post-irradiation treatment with the angiotensin converting enzyme inhibitor Captopril was investigated. Methods The levels of Angiotensin II type 1 receptor (AT1), ACE, collagen type IV, transforming growth factor-β type 1 receptor (TGF-βR1), OB cadherin and α-smooth muscle actin in both descending colon and caecum were evaluated, using immunocytochemistry and confocal microscopy, in rats fed on high and low Na+ diets (LS). These parameters were also determined during 3 months post-irradiation with 8Gy from a 60Co source in the presence and absence of the angiotensin converting enzyme inhibitor, Captopril. Results Increases in AT1 receptor (135.6% ± 18.3, P < 0.001); ACE (70.1% ± 13.1, P < 0.001); collagen type IV (49.6% ± 15.3, P < 0.001); TGF-β1 receptors (291.0% ± 26.5, P < 0.001); OB-cadherin (26.3% ± 13.8, P < 0.05) and α-smooth muscle actin (82.5% ± 12.4, P < 0.001) were observed in the pericryptal myofibroblasts of the descending colon after LS diet. There are also increases in AT1 receptor and TGF-β1 receptor, smooth muscle actin and collagen type IV after irradiation. Captopril reduced all these effects of irradiation on the pericryptal sheath and also decreased the amount of collagen and smooth muscle actin in control rats (P < 0.001). Conclusions These results demonstrate an activation of descending colonic myofibroblasts to trophic stimuli, or irradiation, which can be attenuated by Captopril, indicative of local trophic control by angiotensin II and TGF-β release. PMID:11872151

  18. LOXL4 knockdown enhances tumor growth and lung metastasis through collagen-dependent extracellular matrix changes in triple-negative breast cancer.

    PubMed

    Choi, Sul Ki; Kim, Hoe Suk; Jin, Tiefeng; Moon, Woo Kyung

    2017-01-02

    Lysyl oxidase (LOX) family genes catalyze collagen cross-link formation. To determine the effects of lysyl oxidase-like 4 (LOXL4) expression on breast tumor formation and metastasis, we evaluated primary tumor growth and lung metastasis in mice injected with LOXL4-knockdown MDA-MB-231 triple-negative human breast cancer cells. In addition, we analyzed overall survival in breast cancer patients based on LOXL4 expression using a public online database. In the mouse xenograft model, LOXL4 knockdown increased primary tumor growth and lung colonization as well as collagen I and IV, lysine hydroxylase 1 and 2, and prolyl 4-hydroxylase subunit alpha 1 and 2 levels. Second harmonic generation imaging revealed that LOXL4 knockdown resulted in the thickening of collagen bundles within tumors. In addition, weak LOXL4 expression was associated with poor overall survival in breast cancer patients from the BreastMark dataset, and this association was strongest in triple-negative breast cancer patients. These results demonstrate that weak LOXL4 expression leads to remodeling of the extracellular matrix through induction of collagen synthesis, deposition, and structural changes. These alterations in turn promote tumor growth and metastasis and are associated with poor clinical outcomes in triple-negative breast cancer.

  19. Turnover Rates of Hepatic Collagen and Circulating Collagen-Associated Proteins in Humans with Chronic Liver Disease

    PubMed Central

    Li, Kelvin; Gatmaitan, Michelle; Luo, Flora; Cattin, Jerome; Nakamura, Corelle; Holmes, William E.; Angel, Thomas E.; Peters, Marion G.; Turner, Scott M.; Hellerstein, Marc K.

    2015-01-01

    Accumulation and degradation of scar tissue in fibrotic liver disease occur slowly, typically over many years. Direct measurement of fibrogenesis, the rate of scar tissue deposition, may provide valuable therapeutic and prognostic information. We describe here results from a pilot study utilizing in vivo metabolic labeling to measure the turnover rate of hepatic collagen and collagen-associated proteins in plasma for the first time in human subjects. Eight subjects with chronic liver disease were labeled with daily oral doses of 2H2O for up to 8 weeks prior to diagnostic liver biopsy and plasma collection. Tandem mass spectrometry was used to measure the abundance and fractional synthesis rate (FSR) of proteins in liver and blood. Relative protein abundance and FSR data in liver revealed marked differences among subjects. FSRs of hepatic type I and III collagen ranged from 0.2–0.6% per day (half-lives of 4 months to a year) and correlated significantly with worsening histologic fibrosis. Analysis of plasma protein turnover revealed two collagen-associated proteins, lumican and transforming growth factor beta-induced-protein (TGFBI), exhibiting FSRs that correlated significantly with FSRs of hepatic collagen. In summary, this is the first direct measurement of liver collagen turnover in vivo in humans and suggests a high rate of collagen remodeling in advanced fibrosis. In addition, the FSRs of collagen-associated proteins in plasma are measurable and may provide a novel strategy for monitoring hepatic fibrogenesis rates. PMID:25909381

  20. Transforming growth factor-{beta}-inducible phosphorylation of Smad3.

    PubMed

    Wang, Guannan; Matsuura, Isao; He, Dongming; Liu, Fang

    2009-04-10

    Smad proteins transduce the transforming growth factor-beta (TGF-beta) signal at the cell surface into gene regulation in the nucleus. Upon TGF-beta treatment, the highly homologous Smad2 and Smad3 are phosphorylated by the TGF-beta receptor at the SSXS motif in the C-terminal tail. Here we show that in addition to the C-tail, three (S/T)-P sites in the Smad3 linker region, Ser(208), Ser(204), and Thr(179) are phosphorylated in response to TGF-beta. The linker phosphorylation peaks at 1 h after TGF-beta treatment, behind the peak of the C-tail phosphorylation. We provide evidence suggesting that the C-tail phosphorylation by the TGF-beta receptor is necessary for the TGF-beta-induced linker phosphorylation. Although the TGF-beta receptor is necessary for the linker phosphorylation, the receptor itself does not phosphorylate these sites. We further show that ERK is not responsible for TGF-beta-dependent phosphorylation of these three sites. We show that GSK3 accounts for TGF-beta-inducible Ser(204) phosphorylation. Flavopiridol, a pan-CDK inhibitor, abolishes TGF-beta-induced phosphorylation of Thr(179) and Ser(208), suggesting that the CDK family is responsible for phosphorylation of Thr(179) and Ser(208) in response to TGF-beta. Mutation of the linker phosphorylation sites to nonphosphorylatable residues increases the ability of Smad3 to activate a TGF-beta/Smad-target gene as well as the growth-inhibitory function of Smad3. Thus, these observations suggest that TGF-beta-induced phosphorylation of Smad3 linker sites inhibits its antiproliferative activity.

  1. Engineered collagen hydrogels for the sustained release of biomolecules and imaging agents: promoting the growth of human gingival cells.

    PubMed

    Choi, Jonghoon; Park, Hoyoung; Kim, Taeho; Jeong, Yoon; Oh, Myoung Hwan; Hyeon, Taeghwan; Gilad, Assaf A; Lee, Kwan Hyi

    2014-01-01

    We present here the in vitro release profiles of either fluorescently labeled biomolecules or computed tomography contrast nanoagents from engineered collagen hydrogels under physiological conditions. The collagen constructs were designed as potential biocompatible inserts into wounded human gingiva. The collagen hydrogels were fabricated under a variety of conditions in order to optimize the release profile of biomolecules and nanoparticles for the desired duration and amount. The collagen constructs containing biomolecules/nanoconstructs were incubated under physiological conditions (ie, 37°C and 5% CO2) for 24 hours, and the release profile was tuned from 20% to 70% of initially loaded materials by varying the gelation conditions of the collagen constructs. The amounts of released biomolecules and nanoparticles were quantified respectively by measuring the intensity of fluorescence and X-ray scattering. The collagen hydrogel we fabricated may serve as an efficient platform for the controlled release of biomolecules and imaging agents in human gingiva to facilitate the regeneration of oral tissues.

  2. Transforming Growth Factor-β and the Hallmarks of Cancer

    PubMed Central

    Tian, Maozhen; Neil, Jason R.; Schiemann, William P.

    2010-01-01

    Tumorigenesis is in many respects a process of dysregulated cellular evolution that drives malignant cells to acquire six phenotypic hallmarks of cancer, including their ability to proliferate and replicate autonomously, to resist cytostatic and apoptotic signals, and to induce tissue invasion, metastasis, and angiogenesis. Transforming growth factor-β (TGF-β) is a potent pleiotropic cytokine that functions as a formidable barrier to the development of cancer hallmarks in normal cells and tissues. Paradoxically, tumorigenesis counteracts the tumor suppressing activities of TGF-β, thus enabling TGF-β to stimulate cancer invasion and metastasis. Fundamental gaps exist in our knowledge of how malignant cells overcome the cytostatic actions of TGF-β, and of how TGF-β stimulates the acquisition of cancer hallmarks by developing and progressing human cancers. Here we review the molecular and cellular mechanisms that underlie the ability of TGF-β to mediate tumor suppression in normal cells, and conversely, to facilitate cancer progression and disease dissemination in malignant cells. PMID:20940046

  3. Transforming growth factor-β and the hallmarks of cancer.

    PubMed

    Tian, Maozhen; Neil, Jason R; Schiemann, William P

    2011-06-01

    Tumorigenesis is in many respects a process of dysregulated cellular evolution that drives malignant cells to acquire six phenotypic hallmarks of cancer, including their ability to proliferate and replicate autonomously, to resist cytostatic and apoptotic signals, and to induce tissue invasion, metastasis, and angiogenesis. Transforming growth factor-β (TGF-β) is a potent pleiotropic cytokine that functions as a formidable barrier to the development of cancer hallmarks in normal cells and tissues. Paradoxically, tumorigenesis counteracts the tumor suppressing activities of TGF-β, thus enabling TGF-β to stimulate cancer invasion and metastasis. Fundamental gaps exist in our knowledge of how malignant cells overcome the cytostatic actions of TGF-β, and of how TGF-β stimulates the acquisition of cancer hallmarks by developing and progressing human cancers. Here we review the molecular and cellular mechanisms that underlie the ability of TGF-β to mediate tumor suppression in normal cells, and conversely, to facilitate cancer progression and disease dissemination in malignant cells.

  4. Transforming growth factor-beta and wound healing.

    PubMed

    Faler, Byron J; Macsata, Robyn A; Plummer, Dahlia; Mishra, Lopa; Sidawy, Anton N

    2006-03-01

    Acute and chronic wounds are a source of significant morbidity for patients, and they demand a growing portion of health-care time and finances to be devoted to their care. Transforming growth factor-beta (TGF-beta) has surfaced from abundant research as a key signal in orchestrating wound repair. In beginning this review, we discuss the inflammatory, proliferative, and maturational phases of wound healing. We then focus on TGF-beta by first discussing the pathway from its production to the target cell where Smad proteins execute an intracellular signaling cascade. To review TGF-beta's role in wound healing, we discuss the actions of it individually on keratinocytes, fibroblasts, endothelial cells, and monocytes, which are the major cell types involved in wound repair. From illustrating these cellular actions of TGF-beta, we summarize its multipotent role in the process of wound repair. As a clinical correlation, we also review research dedicated to the involvement of TGF-beta in venous stasis ulcers.

  5. Modifying muscular dystrophy through transforming growth factor-β.

    PubMed

    Ceco, Ermelinda; McNally, Elizabeth M

    2013-09-01

    Muscular dystrophy arises from ongoing muscle degeneration and insufficient regeneration. This imbalance leads to loss of muscle, with replacement by scar or fibrotic tissue, resulting in muscle weakness and, eventually, loss of muscle function. Human muscular dystrophy is characterized by a wide range of disease severity, even when the same genetic mutation is present. This variability implies that other factors, both genetic and environmental, modify the disease outcome. There has been an ongoing effort to define the genetic and molecular bases that influence muscular dystrophy onset and progression. Modifier genes for muscle disease have been identified through both candidate gene approaches and genome-wide surveys. Multiple lines of experimental evidence have now converged on the transforming growth factor-β (TGF-β) pathway as a modifier for muscular dystrophy. TGF-β signaling is upregulated in dystrophic muscle as a result of a destabilized plasma membrane and/or an altered extracellular matrix. Given the important biological role of the TGF-β pathway, and its role beyond muscle homeostasis, we review modifier genes that alter the TGF-β pathway and approaches to modulate TGF-β activity to ameliorate muscle disease.

  6. Differential effects of transforming growth factor-beta on the synthesis of extracellular matrix proteins by normal fetal rat calvarial bone cell populations

    PubMed Central

    1988-01-01

    To determine the effects of transforming growth factor-beta (TGF-beta) on the different cell types that exist in bone, cell populations (I- IV), progressively enriched in osteoblastic cells relative to fibroblastic cells, were prepared from fetal rat calvaria using timed collagenase digestions. TGF-beta did not induce anchorage-independent growth of these cells, nor was anchorage-dependent growth stimulated in most populations studied, despite a two- to threefold increase in the synthesis of cellular proteins. In all populations the synthesis of secreted proteins increased 2-3.5-fold. In particular, collagen, fibronectin, and plasminogen activator inhibitor synthesis was stimulated. However, different degrees of stimulation of individual proteins were observed both within and between cell populations. A marked preferential stimulation of plasminogen activator inhibitor was observed in each population, together with a slight preferential stimulation of collagen; the effect on collagen expression being directed primarily at type I collagen. In contrast, the synthesis of SPARC (secreted protein acidic rich in cysteine/osteonectin was stimulated approximately two-fold by TGF-beta, but only in fibroblastic populations. Collectively, these results demonstrate that TGF-beta stimulates matrix production by bone cells and, through differential effects on individual matrix components, may also influence the nature of the matrix formed by different bone cell populations. In the presence of TGF-beta, osteoblastic cells lost their polygonal morphology and alkaline phosphatase activity was decreased, reflecting a suppression of osteoblastic features. The differential effects of TGF- beta on bone cell populations are likely to be important in bone remodeling and fracture repair. PMID:3162238

  7. Transforming growth factor alpha and epidermal growth factor levels in normal human gastrointestinal mucosa.

    PubMed Central

    Cartlidge, S. A.; Elder, J. B.

    1989-01-01

    Acid soluble proteins from 23 samples of normal human gastrointestinal mucosa derived from four normal adult organ donors were extracted and subjected to specific radiommunoassays for transforming growth factor alpha (TGF alpha) and urogastrone epidermal growth factor (URO-EGF). All tissues were found to contain immunoreactive TGF alpha and levels ranged from 57 to 4,776 pg-1 wet weight of tissue. Although levels varied between tissue donors, the distribution of TGF alpha throughout the gastrointestinal tract appeared similar in all cases. URO-EGF levels were much lower (0-216 pg g-1 wet weight). TGF alpha levels in extracts of gastrointestinal mucosa from a 7-year-old female donor were higher and the observed distribution was markedly different from adult levels. URO-EGF was not detected in mucosal or submucosal tissue extracts from this patient. Further studies in juveniles are indicated. PMID:2803941

  8. Regulation of Transforming Growth Factor-β1–driven Lung Fibrosis by Galectin-3

    PubMed Central

    MacKinnon, Alison C.; Gibbons, Michael A.; Farnworth, Sarah L.; Leffler, Hakon; Nilsson, Ulf J.; Delaine, Tamara; Simpson, A. John; Forbes, Stuart J.; Hirani, Nik; Gauldie, Jack

    2012-01-01

    Rationale: Idiopathic pulmonary fibrosis (IPF) is a chronic dysregulated response to alveolar epithelial injury with differentiation of epithelial cells and fibroblasts into matrix-secreting myofibroblasts resulting in lung scaring. The prognosis is poor and there are no effective therapies or reliable biomarkers. Galectin-3 is a β-galactoside binding lectin that is highly expressed in fibrotic tissue of diverse etiologies. Objectives: To examine the role of galectin-3 in pulmonary fibrosis. Methods: We used genetic deletion and pharmacologic inhibition in well-characterized murine models of lung fibrosis. Further mechanistic studies were performed in vitro and on samples from patients with IPF. Measurements and Main Results: Transforming growth factor (TGF)-β and bleomycin-induced lung fibrosis was dramatically reduced in mice deficient in galectin-3, manifest by reduced TGF-β1–induced EMT and myofibroblast activation and collagen production. Galectin-3 reduced phosphorylation and nuclear translocation of β-catenin but had no effect on Smad2/3 phosphorylation. A novel inhibitor of galectin-3, TD139, blocked TGF-β–induced β-catenin activation in vitro and in vivo and attenuated the late-stage progression of lung fibrosis after bleomycin. There was increased expression of galectin-3 in the bronchoalveolar lavage fluid and serum from patients with stable IPF compared with nonspecific interstitial pneumonitis and controls, which rose sharply during an acute exacerbation suggesting that galectin-3 may be a marker of active fibrosis in IPF and that strategies that block galectin-3 may be effective in treating acute fibrotic exacerbations of IPF. Conclusions: This study identifies galectin-3 as an important regulator of lung fibrosis and provides a proof of principle for galectin-3 inhibition as a potential novel therapeutic strategy for IPF. PMID:22095546

  9. Modulation of transforming growth factor beta receptor levels on microvascular endothelial cells during in vitro angiogenesis.

    PubMed Central

    Sankar, S; Mahooti-Brooks, N; Bensen, L; McCarthy, T L; Centrella, M; Madri, J A

    1996-01-01

    Microvascular endothelial cells (RFCs) cultured in two-dimensional (2D) cultures proliferate rapidly and exhibit an undifferentiated phenotype. Addition of transforming growth factor beta1 (TGFbeta1) increases fibronectin expression and inhibits proliferation. RFCs cultured in three-dimensional (3D) type I collagen gels proliferate slowly and are refractory to the anti-proliferative effects of TGF beta1. TGF beta1 promotes tube formation in 3D cultures. TGF beta1 increases fibronectin expression and urokinase plasminogen activator (uPA) activity and plasminogen activator inhibitor-1 (PAI-1) levels in 3D cultures. Since the TGF beta type I and II receptors have been reported to regulate different activities induced by TGF beta1, we compared the TGF beta receptor profiles on cells in 2D and 3D cultures. RFCs in 3D cultures exhibited a significant loss of cell surface type II receptor compared with cells in 2D cultures. The inhibitory effect of TGF beta1 on proliferation is suppressed in transfected 2D cultures expressing a truncated form of the type II receptor, while its stimulatory effect on fibronectin production is reduced in both 2D and 3D transfected cultures expressing a truncated form of the type I receptor. These data suggest that the type II receptor mediates the antiproliferative effect of TGF beta1 while the type I receptor mediates the matrix response of RFCs to TGF beta1 and demonstrate that changes in the matrix environment can modulate the surface expression of TGF beta receptors, altering the responsiveness of RFCs to TGF beta1. PMID:8617876

  10. Enriched Astaxanthin Extract from Haematococcus pluvialis Augments Growth Factor Secretions to Increase Cell Proliferation and Induces MMP1 Degradation to Enhance Collagen Production in Human Dermal Fibroblasts.

    PubMed

    Chou, Hsin-Yu; Lee, Chelsea; Pan, Jian-Liang; Wen, Zhi-Hong; Huang, Shu-Hung; Lan, Chi-Wei John; Liu, Wang-Ta; Hour, Tzyh-Chyuan; Hseu, You-Cheng; Hwang, Byeong Hee; Cheng, Kuo-Chen; Wang, Hui-Min David

    2016-06-16

    Among many antioxidants that are used for the repairing of oxidative stress induced skin damages, we identified the enriched astaxanthin extract (EAE) from Haematococcus pluvialis as a viable ingredient. EAE was extracted from the red microalgae through supercritical fluid carbon dioxide extraction. To compare the effectiveness, EAE wastreated on human dermal fibroblasts with other components, phorbol 12-myristate 13-acetate (PMA), and doxycycline. With sirius red staining and quantitative real-time polymerase chain reaction (qRT-PCR), we found that PMA decreased the collagen concentration and production while overall the addition of doxycycline and EAE increased the collagen concentration in a trial experiments. EAE increased collagen contents through inhibited MMP1 and MMP3 mRNA expression and induced TIMP1, the antagonists of MMPs protein, gene expression. As for when tested for various proteins through western blotting, it was seen that the addition of EAE increased the expression of certain proteins that promote cell proliferation. Testing those previous solutions using growth factor assay, it was noticeable that EAE had a positive impact on cell proliferation and vascular endothelial growth factor (VEGF) than doxycycline, indicating that it was a better alternative treatment for collagen production. To sum up, the data confirmed the possible applications as medical cosmetology agentsand food supplements.

  11. Enriched Astaxanthin Extract from Haematococcus pluvialis Augments Growth Factor Secretions to Increase Cell Proliferation and Induces MMP1 Degradation to Enhance Collagen Production in Human Dermal Fibroblasts

    PubMed Central

    Chou, Hsin-Yu; Lee, Chelsea; Pan, Jian-Liang; Wen, Zhi-Hong; Huang, Shu-Hung; Lan, Chi-Wei John; Liu, Wang-Ta; Hour, Tzyh-Chyuan; Hseu, You-Cheng; Hwang, Byeong Hee; Cheng, Kuo-Chen; Wang, Hui-Min David

    2016-01-01

    Among many antioxidants that are used for the repairing of oxidative stress induced skin damages, we identified the enriched astaxanthin extract (EAE) from Haematococcus pluvialis as a viable ingredient. EAE was extracted from the red microalgae through supercritical fluid carbon dioxide extraction. To compare the effectiveness, EAE wastreated on human dermal fibroblasts with other components, phorbol 12-myristate 13-acetate (PMA), and doxycycline. With sirius red staining and quantitative real-time polymerase chain reaction (qRT-PCR), we found that PMA decreased the collagen concentration and production while overall the addition of doxycycline and EAE increased the collagen concentration in a trial experiments. EAE increased collagen contents through inhibited MMP1 and MMP3 mRNA expression and induced TIMP1, the antagonists of MMPs protein, gene expression. As for when tested for various proteins through western blotting, it was seen that the addition of EAE increased the expression of certain proteins that promote cell proliferation. Testing those previous solutions using growth factor assay, it was noticeable that EAE had a positive impact on cell proliferation and vascular endothelial growth factor (VEGF) than doxycycline, indicating that it was a better alternative treatment for collagen production. To sum up, the data confirmed the possible applications as medical cosmetology agentsand food supplements. PMID:27322248

  12. In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achieving the sustained release of basic fibroblast growth factor.

    PubMed

    Li, Weichang; Lan, Yong; Guo, Rui; Zhang, Yi; Xue, Wei; Zhang, Yuanming

    2015-01-01

    Tissue-engineered dermis is thought to be the best treatment for skin defects; however, slow vascularization of these biomaterial scaffolds limits their clinical application. Exogenous administration of angiogenic growth factors is highly desirable for tissue regeneration. In this study, biodegradable gelatin microspheres (GMs) containing basic fibroblast growth factor (bFGF) were fabricated and incorporated into a porous collagen/cellulose nanocrystals (CNCs) scaffold, as a platform for long-term release and consequent angiogenic boosting. The physicochemical properties of these scaffolds were examined and the in vitro release pattern of bFGF from scaffolds was measured by ELISA. Collagen/CNCs scaffolds with and without bFGF-GMs were incubated with human umbilical vein endothelial cells for 1 week, results showed that the scaffolds with bFGF-GMs significantly augmented cell proliferation. Then, four different groups of scaffolds were implanted subcutaneously into Sprague-Dawley rats to study angiogenesis in vivo via macroscopic observation, and hematoxylin and eosin and immunohistochemical staining. The results suggested that the collagen/CNCs/bFGF-GMs scaffolds had a significantly higher number of newly formed and mature blood vessels, and the fastest degradation rate. This study demonstrated that collagen/CNCs/bFGF-GMs scaffolds have great potential in skin tissue engineering.

  13. Electrospun PHBV/collagen composite nanofibrous scaffolds for tissue engineering.

    PubMed

    Meng, Wan; Kim, Se-Yong; Yuan, Jiang; Kim, Jung Chul; Kwon, Oh Hyeong; Kawazoe, Naoki; Chen, Guoping; Ito, Yoshihiro; Kang, Inn-Kyu

    2007-01-01

    Electrospinning has recently emerged as a leading technique for the formation of nanofibrous structures made of synthetic and natural extracellular matrix components. In this study, nanofibrous scaffolds were obtained by electrospinning a combination of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and type-I collagen in 1,1,1,3,3,3-hexafluoro-2-isopropanol (HIFP). The resulting fibers ranged from 300 to 600 nm in diameter. Their surfaces were characterized by attenuated total reflection Fourier transform infrared spectroscopy, electron spectroscopy for chemical analysis and atomic force microscopy. The PHBV and collagen components of the PHBV/collagen nanofibrous scaffold were biodegraded by PHB depolymerase and a type-I collagenase aqueous solution, respectively. The cell culture experiments indicated that the PHBV/collagen nanofibrous scaffold accelerated the adhesion and growth of NIH3T3 cells more effectively than the PHBV nanofibrous scaffold, thus making the former a good scaffold for tissue engineering.

  14. Effect of transforming growth factor-β1 on human intrahepatic cholangiocarcinoma cell growth

    PubMed Central

    Shimizu, Tetsuya; Yokomuro, Shigeki; Mizuguchi, Yoshiaki; Kawahigashi, Yutaka; Arima, Yasuo; Taniai, Nobuhiko; Mamada, Yasuhiro; Yoshida, Hiroshi; Akimaru, Koho; Tajiri, Takashi

    2006-01-01

    AIM: To elucidate the biological effects of transforming growth factor-β1 (TGF-β1) on intrahepatic cholan-giocarcinoma (ICC). METHODS: We investigated the effects of TGF-β1 on human ICC cell lines (HuCCT1, MEC, and HuH-28) by monitoring the influence of TGF-β1 on tumor growth and interleukin-6 (IL-6) expression in ICC cells. RESULTS: All three human ICC cell lines produced TGF-β1 and demonstrated accelerated growth in the presence of TGF-β1 with no apoptotic effect. Studies on HuCCT1 revealed a TGF-β1-induced stimulation of the expression of TGF-β1, as well as a decrease in TGF-β1 mRNA expression induced by neutralizing anti-TGF-β1 antibody. These results indicate that TGF-β1 stimulates the production and function of TGF-β1 in an autocrine fashion. Further, IL-6 secretion was observed in all three cell lines and exhibited an inhibitory response to neutralizing anti-TGF-β1 antibody. Experiments using HuCCT1 revealed a TGF-β1-induced acceleration of IL-6 protein expression and mRNA levels. These findings demonstrate a functional interaction between TGF-β1 and IL-6. All three cell lines proliferated in the presence of IL-6. In contrast, TGF-β1 induced no growth effect in HuCCT1 in the presence of small interfering RNA against a specific cell surface receptor of IL-6 and signal transducer and activator of transcription-3. CONCLUSION: ICC cells produce TGF-β1 and confer a TGF-β1-induced growth effect in an autocrine fashion. TGF-β1 activates IL-6 production, and the functional interaction between TGF-β1 and IL-6 contributes to ICC cell growth by TGF-β1. PMID:17072955

  15. Alterations in biosynthetic accumulation of collagen types I and III during growth and morphogenesis of embryonic mouse salivary glands

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Spooner, B. S.

    1992-01-01

    We examined the biosynthetic patterns of interstitial collagens in mouse embryonic submandibular and sublingual glands cultured in vitro. Rudiments explanted on day 13 of gestation and cultured for 24, 48, and 72 h all synthesized collagen types I, III, and V. However, while the total incorporation of label into collagenous proteins did not change over the three-day culture period, the rate of accumulation of newly synthesized types I and III did change. At 24 h, the ratio of newly synthesized collagen types I:III was approximately 2, whereas at 72 h, the ratio was approximately 5. These data suggest that collagen types I and III may be important in initiation of branching in this organ, but that type I may become dominant in the later stages of development and in maintenance of the adult organ.

  16. Incorporation of Chitosan Microspheres into Collagen-Chitosan Scaffolds for the Controlled Release of Nerve Growth Factor

    PubMed Central

    Xiao, Wei; Qi, Fengyu; Huang, Jinghui; Luo, Zhuojing

    2014-01-01

    Background Artifical nerve scaffold can be used as a promising alternative to autologous nerve grafts to enhance the repair of peripheral nerve defects. However, current nerve scaffolds lack efficient microstructure and neurotrophic support. Methods Microsphere–Scaffold composite was developed by incorporating chitosan microspheres loaded with nerve growth factor (NGF–CMSs) into collagen-chitosan scaffolds (CCH) with longitudinally oriented microchannels (NGF–CMSs/CCH). The morphological characterizations, in vitro release kinetics study, neurite outgrowth assay, and bioactivity assay were evaluated. After that, a 15-mm-long sciatic nerve gap in rats was bridged by the NGF–CMSs/CCH, CCH physically absorbed NGF (NGF/CCH), CCH or nerve autograft. 16 weeks after implantation, electrophysiology, fluoro-gold retrograde tracing, and nerve morphometry were performed. Results The NGF–CMSs were evenly distributed throughout the longitudinally oriented microchannels of the scaffold. The NGF–CMSs/CCH was capable of sustained release of bioactive NGF within 28 days as compared with others in vitro. In vivo animal study demonstrated that the outcomes of NGF–CMSs/CCH were better than those of NGF/CCH or CCH. Conclusion Our findings suggest that incorporation of NGF–CMSs into the CCH may be a promising tool in the repair of peripheral nerve defects. PMID:24983464

  17. Autocrine growth inhibition by transforming growth factor β-1 (TGFβ-1) in human neuroendocrine tumour cells

    PubMed Central

    Wimmel, A; Wiedenmann, B; Rosewicz, S

    2003-01-01

    Background and aim: The role of transforming growth factor β-1 (TGFβ-1) in neuroendocrine tumour biology is currently unknown. We therefore examined the expression and biological significance of TGFβ signalling components in neuroendocrine tumours (NETs) of the gastroenteropancreatic (GEP) tract. Methods: Expression of TGFβ-1 and its receptors, Smads and Smad regulated proteins, was examined in surgically resected NET specimens and human NET cell lines by immunohistochemistry, reverse transcriptase-polymerase chain reaction, immunoblotting, and ELISA. Activation of TGFβ-1 dependent promoters was tested by transactivation assays. Growth regulation was evaluated by cell numbers, soft agar assays, and cell cycle analysis using flow cytometry. The role of endogenous TGFβ was assessed by a TGFβ neutralising antibody and stable transfection of a dominant negative TGFβR II receptor construct. Results: Coexpression of TGFβ-1 and its receptors TGFβR I and TGFβR II was detected in 67% of human NETs and in all three NET cell lines examined. NET cell lines expressed the TGFβ signal transducers Smad 2, 3, and 4. In two of the three cell lines, TGFβ-1 treatment resulted in transactivation of a TGFβ responsive reporter construct as well as inhibition of c-myc and induction of p21(WAF1) expression. TGFβ-1 inhibited anchorage dependent and independent growth in a time and dose dependent manner in TGFβ-1 responsive cell lines. TGFβ-1 mediated growth inhibition was due to G1 arrest without evidence of induction of apoptosis. Functional inactivation of endogenous TGFβ revealed the existence of an autocrine antiproliferative loop in NET cells. Conclusions: Neuroendocrine tumour cells of the gastroenteropancreatic tract are subject to paracrine and autocrine growth inhibition by TGFβ-1, which may account in part for the low proliferative index of this tumour entity. PMID:12912863

  18. Disturbed synthesis of type II collagen interferes with rate of bone formation and growth and increases bone resorption in transgenic mice.

    PubMed

    Nieminen, Jyrki; Sahlman, Janne; Hirvonen, Teemu; Lapveteläinen, Tuomo; Miettinen, Markku; Arnala, Ilkka; Malluche, Hartmut H; Helminen, Heikki J

    2008-03-01

    Transgenic mice carrying an internally deleted human type II collagen gene (COL2A1) were used to study bone growth and development. This mutation has previously been shown to disturb the development of collagen fibrils in articular cartilage, causing chondrodysplasia and osteoarthritis. Type II collagen expression in bones was investigated with immunohistochemistry. The development and mineralization of the skeleton and anthropometric measurements on bones were evaluated using X-rays and dynamic histomorphometry. Type II collagen was expressed in the cartilage of developing bones. The bones of transgenic mice were smaller compared with the controls. The bone mass remained almost unchanged in transgenic mice after 1 month of age, leading to differences of 47% in trabecular bone volume (P = 0.012) and 40% in trabecular thickness (P < 0.01) at the age of 3 months compared with controls. At the age of 3 months the eroded surface per bone volume was 31% greater in transgenic mice compared with controls (P < 0.05). Trabecular thickness correlated positively with body weight (R = 0.71, P < 0.001). Interestingly, body weight correlated with bone volume in control mice (R = 0.27, P < 0.01), but no correlation was observed in transgenic mice. The disturbed synthesis of cartilage-specific type II collagen in growing transgenic mice retarded bone development, increased bone resorption, and altered tissue properties. This led to a negative net bone balance and small bone size. The results support the idea that an altered synthesis of cartilage-specific molecule(s) can disturb postnatal bone development and growth.

  19. MT1-MMP promotes cell growth and ERK activation through c-Src and paxillin in three-dimensional collagen matrix

    SciTech Connect

    Takino, Takahisa; Tsuge, Hisashi; Ozawa, Terumasa; Sato, Hiroshi

    2010-06-11

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21{sup WAF1} and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin {alpha}{sub v}{beta}{sub 3} were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.

  20. Stretching human mesenchymal stromal cells on stiffness-customized collagen type I generates a smooth muscle marker profile without growth factor addition

    NASA Astrophysics Data System (ADS)

    Rothdiener, Miriam; Hegemann, Miriam; Uynuk-Ool, Tatiana; Walters, Brandan; Papugy, Piruntha; Nguyen, Phong; Claus, Valentin; Seeger, Tanja; Stoeckle, Ulrich; Boehme, Karen A.; Aicher, Wilhelm K.; Stegemann, Jan P.; Hart, Melanie L.; Kurz, Bodo; Klein, Gerd; Rolauffs, Bernd

    2016-10-01

    Using matrix elasticity and cyclic stretch have been investigated for inducing mesenchymal stromal cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage but not in combination. We hypothesized that combining lineage-specific stiffness with cyclic stretch would result in a significantly increased expression of SMC markers, compared to non-stretched controls. First, we generated dense collagen type I sheets by mechanically compressing collagen hydrogels. Atomic force microscopy revealed a nanoscale stiffness range known to support myogenic differentiation. Further characterization revealed viscoelasticity and stable biomechanical properties under cyclic stretch with >99% viable adherent human MSC. MSCs on collagen sheets demonstrated a significantly increased mRNA but not protein expression of SMC markers, compared to on culture flasks. However, cyclic stretch of MSCs on collagen sheets significantly increased both mRNA and protein expression of α-smooth muscle actin, transgelin, and calponin versus plastic and non-stretched sheets. Thus, lineage-specific stiffness and cyclic stretch can be applied together for inducing MSC differentiation towards SMCs without the addition of recombinant growth factors or other soluble factors. This represents a novel stimulation method for modulating the phenotype of MSCs towards SMCs that could easily be incorporated into currently available methodologies to obtain a more targeted control of MSC phenotype.

  1. Stretching human mesenchymal stromal cells on stiffness-customized collagen type I generates a smooth muscle marker profile without growth factor addition

    PubMed Central

    Rothdiener, Miriam; Hegemann, Miriam; Uynuk-Ool, Tatiana; Walters, Brandan; Papugy, Piruntha; Nguyen, Phong; Claus, Valentin; Seeger, Tanja; Stoeckle, Ulrich; Boehme, Karen A.; Aicher, Wilhelm K.; Stegemann, Jan P.; Hart, Melanie L.; Kurz, Bodo; Klein, Gerd; Rolauffs, Bernd

    2016-01-01

    Using matrix elasticity and cyclic stretch have been investigated for inducing mesenchymal stromal cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage but not in combination. We hypothesized that combining lineage-specific stiffness with cyclic stretch would result in a significantly increased expression of SMC markers, compared to non-stretched controls. First, we generated dense collagen type I sheets by mechanically compressing collagen hydrogels. Atomic force microscopy revealed a nanoscale stiffness range known to support myogenic differentiation. Further characterization revealed viscoelasticity and stable biomechanical properties under cyclic stretch with >99% viable adherent human MSC. MSCs on collagen sheets demonstrated a significantly increased mRNA but not protein expression of SMC markers, compared to on culture flasks. However, cyclic stretch of MSCs on collagen sheets significantly increased both mRNA and protein expression of α-smooth muscle actin, transgelin, and calponin versus plastic and non-stretched sheets. Thus, lineage-specific stiffness and cyclic stretch can be applied together for inducing MSC differentiation towards SMCs without the addition of recombinant growth factors or other soluble factors. This represents a novel stimulation method for modulating the phenotype of MSCs towards SMCs that could easily be incorporated into currently available methodologies to obtain a more targeted control of MSC phenotype. PMID:27775041

  2. Transforming growth factor alpha and epidermal growth factor levels in bladder cancer and their relationship to epidermal growth factor receptor.

    PubMed Central

    Mellon, J. K.; Cook, S.; Chambers, P.; Neal, D. E.

    1996-01-01

    We have examined levels of epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha) in neoplastic and non-neoplastic bladder tissue using a standard radioimmunoassay technique. Tumour samples had much higher TGF-alpha levels compared with EGF and TGF-alpha levels in malignant tissue were significantly higher than in benign bladder samples. There was, in addition, a difference in mean EGF levels from 'normal' bladder samples from non-tumour bearing areas of bladder in patients with bladder cancer compared with 'normal' bladder tissue obtained at the time of organ retrieval surgery. Levels of EGF and TGF-alpha did not correlate with levels of EGF receptor (EGFR) as determined by a radioligand binding method but levels of TGF-alpha > 10 ng gm-1 of tumour tissue did correlate with EGFR positivity defined using immunohistochemistry. These data suggest that TGF-alpha is the likely ligand for EGFR in bladder tumours. PMID:8605103

  3. Resveratrol inhibits transforming growth factor-β2-induced epithelial-to-mesenchymal transition in human retinal pigment epithelial cells by suppressing the Smad pathway

    PubMed Central

    Chen, Ching-Long; Chen, Yi-Hao; Tai, Ming-Cheng; Liang, Chang-Min; Lu, Da-Wen; Chen, Jiann-Torng

    2017-01-01

    Proliferative vitreoretinopathy (PVR) is the main cause of failure following retinal detachment surgery. Transforming growth factor (TGF)-β2-induced epithelial-to-mesenchymal transition (EMT) plays an important role in the development of PVR, and EMT inhibition decreases collagen gel contraction and fibrotic membrane formation, resulting in prevention of PVR. Resveratrol is naturally found in red wine and has inhibitory effects on EMT. Resveratrol is widely used in cardioprotection, neuroprotection, chemotherapy, and antiaging therapy. The purpose of this study was to investigate the effects of resveratrol on TGF-β2-induced EMT in ARPE-19 cells in vitro. We found that resveratrol suppressed the decrease of zona occludens-1 (ZO-1) and caused an increase of alpha-smooth muscle actin expression in TGF-β2-treated ARPE-19 cells, assessed using Western blots; moreover, it also suppressed the decrease in ZO-1 and the increase of vimentin expression, observed using immunocytochemistry. Resveratrol attenuated TGF-β2-induced wound closure and cell migration in ARPE-19 cells in a scratch wound test and modified Boyden chamber assay, respectively. We also found that resveratrol reduced collagen gel contraction – assessed by collagen matrix contraction assay – and suppressed the phosphorylation of Smad2 and Smad3 in TGF-β2-treated ARPE-19 cells. These results suggest that resveratrol mediates anti-EMT effects, which could be used in the prevention of PVR. PMID:28138219

  4. TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF)

    EPA Science Inventory

    TITLE:
    TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...

  5. Transforming growth factor-β (TGF-β) pathway abnormalities in tenascin-X deficiency associated with CAH-X syndrome.

    PubMed

    Morissette, Rachel; Merke, Deborah P; McDonnell, Nazli B

    2014-02-01

    Patients with congenital adrenal hyperplasia (CAH) with tenascin-X deficiency (CAH-X syndrome) have both endocrine imbalances and characteristic Ehlers Danlos syndrome phenotypes. Unlike other subtypes, tenascin-X-related Ehlers Danlos syndrome is caused by an extracellular matrix protein deficiency rather than a defect in fibrillar collagen or a collagen-modifying enzyme, and the understanding of the disease mechanisms is limited. We hypothesized that transforming growth factor-β pathway dysregulation may, in part, be responsible for connective tissue phenotypes observed in CAH-X, due to this pathway's known role in connective tissue disorders. Fibroblasts and direct tissue from human skin biopsies from CAH-X probands and age- and sex-matched controls were screened for transforming growth factor-β biomarkers known to be dysregulated in other hereditary disorders of connective tissue. In CAH-X fibroblast lines and dermal tissue, pSmad1/5/8 was significantly upregulated compared to controls, suggesting involvement of the bone morphogenetic protein pathway. Additionally, CAH-X samples compared to controls exhibited significant increases in fibroblast-secreted TGF-β3, a cytokine important in secondary palatal development, and in plasma TGF-β2, a cytokine involved in cardiac function and development, as well as palatogenesis. Finally, MMP-13, a matrix metalloproteinase important in secondary palate formation and tissue remodeling, had significantly increased mRNA and protein expression in CAH-X fibroblasts and direct tissue. Collectively, these results demonstrate that patients with CAH-X syndrome exhibit increased expression of several transforming growth factor-β biomarkers and provide a novel link between this signaling pathway and the connective tissue dysplasia phenotypes associated with tenascin-X deficiency.

  6. Normal Human Lung Epithelial Cells Inhibit Transforming Growth Factor-β Induced Myofibroblast Differentiation via Prostaglandin E2

    PubMed Central

    Epa, Amali P.; Thatcher, Thomas H.; Pollock, Stephen J.; Wahl, Lindsay A.; Lyda, Elizabeth; Kottmann, R. M.; Phipps, Richard P.; Sime, Patricia J.

    2015-01-01

    Introduction Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease with very few effective treatments. The key effector cells in fibrosis are believed to be fibroblasts, which differentiate to a contractile myofibroblast phenotype with enhanced capacity to proliferate and produce extracellular matrix. The role of the lung epithelium in fibrosis is unclear. While there is evidence that the epithelium is disrupted in IPF, it is not known whether this is a cause or a result of the fibroblast pathology. We hypothesized that healthy epithelial cells are required to maintain normal lung homeostasis and can inhibit the activation and differentiation of lung fibroblasts to the myofibroblast phenotype. To investigate this hypothesis, we employed a novel co-culture model with primary human lung epithelial cells and fibroblasts to investigate whether epithelial cells inhibit myofibroblast differentiation. Measurements and Main Results In the presence of transforming growth factor (TGF)-β, fibroblasts co-cultured with epithelial cells expressed significantly less α-smooth muscle actin and collagen and showed marked reduction in cell migration, collagen gel contraction, and cell proliferation compared to fibroblasts grown without epithelial cells. Epithelial cells from non-matching tissue origins were capable of inhibiting TGF-β induced myofibroblast differentiation in lung, keloid and Graves’ orbital fibroblasts. TGF-β promoted production of prostaglandin (PG) E2 in lung epithelial cells, and a PGE2 neutralizing antibody blocked the protective effect of epithelial cell co-culture. Conclusions We provide the first direct experimental evidence that lung epithelial cells inhibit TGF-β induced myofibroblast differentiation and pro-fibrotic phenotypes in fibroblasts. This effect is not restricted by tissue origin, and is mediated, at least in part, by PGE2. Our data support the hypothesis that the epithelium plays a crucial role in maintaining lung homeostasis

  7. Attenuated Transforming Growth Factor Beta Signaling as a Therapeutic for Prostate Cancer Progression

    DTIC Science & Technology

    2008-04-01

    upregulates VEGF expression only. Circulation 1994;90:649-52. 4. Igarashi A, Okochi H , Bradham DM, Grotendorst GR. Regulation of connective tissue growth...2005;65:8887-95. 10. Uhl M, Aulwurm S, Wischhusen J, et al. SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth...cancer. Endocr Relat Cancer 2005;12:805-22. 18. Kawada M, Inoue H , Masuda T, Ikeda D. Insulin-like growth factor I secreted from prostate stromal

  8. Role of polypeptide growth factors in phenotypic transformation of normal rat kidney cells

    SciTech Connect

    van Zoelen, E.J.J.; van Oostwaard, T.M.J.; de Laat, S.W.

    1988-01-05

    A serum-free assay has been established for studying the role of polypeptide growth factors in inducing loss of density-dependent inhibition of growth of normal rat kidney (NRK) cells. The process has been characterized by measuring the time course of (/sup 3/H)thymidine incorporation into confluent, quiescent NRK cultures stimulated by defined polypeptide growth factors, in combination with cell counting studies, increases in DNA content, and cell cycle analysis by means of a fluorescence-activated cell sorter. It is shown that none of the growth factors tested is able to induce loss of density-dependent inhibition of growth by itself, but strong synergism was observed when combinations of growth factors were tested. None of the above factors was found to be essential, however, since any combination of three of the above four growth factors strongly induced the process. Strong parallels were observed between the growth factor requirements for inducing loss of density-dependent inhibition of growth under serum-free conditions and the requirements for induction of anchorage-independent proliferation under growth factor-defined assay conditions. This indicates that most likely the same cellular processes underlie these two aspects of phenotypic transformation, although data indicate that anchorage-independent proliferation may be a more restricted property of phenotypic transformation than loss of density dependence of proliferation. It is concluded that phenotypic transformation of NRK cells does not require specific polypeptide growth factors, but reflects the ability of these cells to respond to multiple growth factors.

  9. The involvement of collagen triple helix repeat containing 1 in muscular dystrophies.

    PubMed

    Spector, Itai; Zilberstein, Yael; Lavy, Adi; Genin, Olga; Barzilai-Tutsch, Hila; Bodanovsky, Ana; Halevy, Orna; Pines, Mark

    2013-03-01

    Fibrosis is the main complication of muscular dystrophies. We identified collagen triple helix repeat containing 1 (Cthrc1) in skeletal and cardiac muscles of mice, representing Duchenne and congenital muscle dystrophies (DMD and CMD, respectively), and dysferlinopathy. In all of the mice, Cthrc1 was associated with high collagen type I levels; no Cthrc1 or collagen was observed in muscles of control mice. High levels of Cthrc1 were also observed in biopsy specimens from patients with DMD, in whom they were reversibly correlated with that of β-dystroglycan, whereas collagen type I levels were elevated in all patients with DMD. At the muscle sites where collagen and Cthrc1 were adjacent, collagen fibers appeared smaller, suggesting involvement of Cthrc1 in collagen turnover. Halofuginone, an inhibitor of Smad3 phosphorylation downstream of the transforming growth factor-β signaling, reduced Cthrc1 levels in skeletal and cardiac muscles of mice, representing DMD, CMD, and dysferlinopathy. The myofibroblasts infiltrating the dystrophic muscles of the murine models of DMD, CMD, and dysferlinopathy were the source of Cthrc1. Transforming growth factor-β did not affect Cthrc1 levels in the mdx fibroblasts but decreased them in the control fibroblasts, in association with increased migration of mdx fibroblasts and dystrophic muscle invasion by myofibroblasts. To our knowledge, this is the first demonstration of Cthrc1 as a marker of the severity of the disease progression in the dystrophic muscles, and as a possible target for therapy.

  10. Transforming growth factor (TGF)-β signalling is increased in rheumatoid synovium but TGF-β blockade does not modify experimental arthritis

    PubMed Central

    Gonzalo-Gil, E; Criado, G; Santiago, B; Dotor, J; Pablos, J L; Galindo, M

    2013-01-01

    The aim of this study was to analyse the distribution of regulatory and inhibitory mothers against decapentaplegic homologue (Smad) proteins as markers of active transforming growth factor (TGF)-β signalling in rheumatoid arthritis (RA) synovial tissue and to investigate the effect of TGF-β blockade in the development and progression of collagen-induced arthritis. The expression of Smad proteins in synovial tissues from RA, osteoarthritic and healthy controls was analysed by immunohistochemistry. Arthritis was induced in DBA/1 mice by immunization with chicken type-II collagen (CII). TGF-β was blocked in vivo with the specific peptide p17 starting at the time of immunization or on the day of arthritis onset. T cell population frequencies and specific responses to CII were analysed. The expression of cytokines and transcription factors was quantified in spleen and joint samples. Statistical differences between groups were compared using the Mann–Whitney U-test or one-way analysis of variance (anova) using the Kruskal–Wallis test. p-Smad-2/3 and inhibitory Smad-7 expression were detected in RA and control tissues. In RA, most lymphoid infiltrating cells showed nuclear p-Smad-2/3 without Smad-7 expression. Treatment with TGF-β antagonist did not affect clinical severity, joint inflammation and cartilage damage in collagen-induced arthritis. Frequency of T cell subsets, mRNA levels of cytokines and transcription factors, specific proliferation to CII, serum interleukin (IL)-6 and anti-CII antibodies were comparable in p17 and phosphate-buffered saline (PBS)-treated groups. The pattern of Smad proteins expression demonstrates active TGF-β signalling in RA synovium. However, specific TGF-β blockade does not have a significant effect in the mice model of collagen-induced arthritis. PMID:23869798

  11. Bioengineered collagens

    PubMed Central

    Ramshaw, John AM; Werkmeister, Jerome A; Dumsday, Geoff J

    2014-01-01

    Mammalian collagen has been widely used as a biomedical material. Nevertheless, there are still concerns about the variability between preparations, particularly with the possibility that the products may transmit animal-based diseases. Many groups have examined the possible application of bioengineered mammalian collagens. However, translating laboratory studies into large-scale manufacturing has often proved difficult, although certain yeast and plant systems seem effective. Production of full-length mammalian collagens, with the required secondary modification to give proline hydroxylation, has proved difficult in E. coli. However, recently, a new group of collagens, which have the characteristic triple helical structure of collagen, has been identified in bacteria. These proteins are stable without the need for hydroxyproline and are able to be produced and purified from E. coli in high yield. Initial studies indicate that they would be suitable for biomedical applications. PMID:24717980

  12. Chondrocytes Directly Transform into Bone Cells in Mandibular Condyle Growth

    PubMed Central

    Jing, Y.; Zhou, X.; Han, X.; Jing, J.; von der Mark, K.; Wang, J.; de Crombrugghe, B.; Hinton, R.J.; Feng, J.Q.

    2015-01-01

    For decades, it has been widely accepted that hypertrophic chondrocytes undergo apoptosis prior to endochondral bone formation. However, very recent studies in long bone suggest that chondrocytes can directly transform into bone cells. Our initial in vivo characterization of condylar hypertrophic chondrocytes revealed modest numbers of apoptotic cells but high levels of antiapoptotic Bcl-2 expression, some dividing cells, and clear alkaline phosphatase activity (early bone marker). Ex vivo culture of newborn condylar cartilage on a chick chorioallantoic membrane showed that after 5 d the cells on the periphery of the explants had begun to express Col1 (bone marker). The cartilage-specific cell lineage–tracing approach in triple mice containing Rosa 26tdTomato (tracing marker), 2.3 Col1GFP (bone cell marker), and aggrecan CreERT2 (onetime tamoxifen induced) or Col10-Cre (activated from E14.5 throughout adult stage) demonstrated the direct transformation of chondrocytes into bone cells in vivo. This transformation was initiated at the inferior portion of the condylar cartilage, in contrast to the initial ossification site in long bone, which is in the center. Quantitative data from the Col10-Cre compound mice showed that hypertrophic chondrocytes contributed to ~80% of bone cells in subchondral bone, ~70% in a somewhat more inferior region, and ~40% in the most inferior part of the condylar neck (n = 4, P < 0.01 for differences among regions). This multipronged approach clearly demonstrates that a majority of chondrocytes in the fibrocartilaginous condylar cartilage, similar to hyaline cartilage in long bones, directly transform into bone cells during endochondral bone formation. Moreover, ossification is initiated from the inferior portion of mandibular condylar cartilage with expansion in one direction. PMID:26341973

  13. Transforming growth factor-beta improves healing of radiation-impaired wounds

    SciTech Connect

    Bernstein, E.F.; Harisiadis, L.; Salomon, G.; Norton, J.; Sollberg, S.; Uitto, J.; Glatstein, E.; Glass, J.; Talbot, T.; Russo, A. )

    1991-09-01

    Exogenously applied TGF-{beta} 1 has been shown to increase wound strength in incisional wounds early in the healing process. An impaired wound healing model was first established in guinea pigs by isolating flaps of skin and irradiating the flaps to 15 Gray in one fraction using a 4-MeV linear accelerator. Incisions made 2 d after irradiation were excised 7 d later, and showed decreased linear wound bursting strength (WBS) as compared to non-irradiated control wounds on the contralateral side of each animal (p = 0.001). The effect of TGF-{beta}on healing of radiation-impaired wounds was studied using this model. Skin on both left and right sides of guinea pigs was irradiated as above. A linear incision was made in each side. Collagen with either 1, 5, or 20 micrograms of TGF-{beta} was applied to one side prior to closure with staples, whereas the contralateral side received saline in collagen. Wounds given either 1 or 5 micrograms of TGF-{beta} were found to be stronger than controls at 7 d (p less than 0.05), whereas those receiving the higher 20-micrograms dose were weaker than controls (p less than 0.05). Thus, TGF-{beta} in lower doses improved healing at 7 d but very large amounts of the growth factor actually impaired healing. In situ hybridization done on wound samples showed increased type I collagen gene expression by fibroblasts in wounds treated with 1 micrograms TGF-{beta} over control wounds. These results indicate that TGF-{beta} improved wound healing as demonstrated by increased WBS. This improvement is accompanied by an up-regulation of collagen gene expression by resident fibroblasts.

  14. Nanomechanics of collagen microfibrils

    PubMed Central

    Vesentini, Simone; Redaelli, Alberto; Gautieri, Alfonso

    2013-01-01

    Summary Collagen constitutes one third of the human proteome, providing mechanical stability, elasticity and strength to organisms and is thus the prime construction material in biology. Collagen is also the dominating material in the extracellular matrix where its stiffness controls cell differentiation, growth and pathology. We use atomistic-based hierarchical multiscale modeling to describe this complex biological material from the bottom up. This includes the use and development of large-scale computational modeling tools to investigate several aspects related to collagen-based tissues, including source of visco-elasticity and deformation mechanisms at the nanoscale level. The key innovation of this research is that until now, collagen materials have primarily been described at macroscopic scales, without explicitly understanding the mechanical contributions at the molecular and fibrillar levels. The major impact of this research will be the development of fundamental models of collagenous tissues, important to the design of new scaffolding biomaterials for regenerative medicine as well as for the understanding of collagen-related diseases. PMID:23885342

  15. Exposure to transforming growth factor-β1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell lines.

    PubMed

    Kono, Kiyomi; Maeda, Hidefumi; Fujii, Shinsuke; Tomokiyo, Atsushi; Yamamoto, Naohide; Wada, Naohisa; Monnouchi, Satoshi; Teramatsu, Yoko; Hamano, Sayuri; Koori, Katsuaki; Akamine, Akifumi

    2013-05-01

    Basic fibroblast growth factor (bFGF) is a cytokine that promotes the regeneration of the periodontium, the specialized tissues supporting the teeth. bFGF, does not, however, induce the synthesis of smooth muscle actin alpha 2 (ACTA2), type I collagen (COL1), or COL3, which are principal molecules in periodontal ligament (PDL) tissue, a component of the periodontium. We have suggested the feasibility of using transforming growth factor-β1 (TGFβ1) to induce fibroblastic differentiation of PDL stem/progenitor cells (PDLSCs). Here, we investigated the effect of the subsequent application of TGFβ1 after bFGF (bFGF/TGFβ1) on the differentiation of PDLSCs into fibroblastic cells. We first confirmed the expression of bFGF and TGFβ1 in rat PDL tissue and primary human PDL cells. Receptors for both bFGF and TGFβ1 were expressed in the human PDLSC lines 1-11 and 1-17. Exposure to bFGF for 2 days promoted vascular endothelial growth factor gene and protein expression in both cell lines and down-regulated the expression of ACTA2, COL1, and COL3 mRNA in both cell lines and the gene fibrillin 1 (FBN1) in cell line 1-11 alone. Furthermore, bFGF stimulated cell proliferation of these cell lines and significantly increased the number of cells in phase G2/M in the cell lines. Exposure to TGFβ1 for 2 days induced gene expression of ACTA2 and COL1 in both cell lines and FBN1 in cell line 1-11 alone. BFGF/TGFβ1 treatment significantly up-regulated ACTA2, COL1, and FBN1 expression as compared with the group treated with bFGF alone or the untreated control. This method might thus be useful for accelerating the generation and regeneration of functional periodontium.

  16. Control of transforming growth factor-beta activity: latency vs. activation.

    PubMed

    Harpel, J G; Metz, C N; Kojima, S; Rifkin, D B

    1992-01-01

    Transforming growth factor-beta is a pluripotent regulator of cell growth and differentiation. The growth factor is expressed as a latent complex that must be converted to an active form before interacting with its ubiquitous high affinity receptors. This conversion involves the release of the mature growth factor through disruption of the non-covalent interactions with its pro-peptide or latency associated peptide. The mechanisms for this release in vivo have not been fully characterized but appear to be cell specific and might involve processes such as acidification or proteolysis. Although several factors including transcriptional regulation, receptor modulation and scavenging of the active growth factor have been implicated, the critical step controlling the biological effects of transforming growth factor-beta may be the activation of the latent molecule.

  17. Acceleration of bone formation during fracture healing by poly(pro-hyp-gly)10 and basic fibroblast growth factor containing polycystic kidney disease and collagen-binding domains from Clostridium histolyticum collagenase.

    PubMed

    Sekiguchi, Hiroyuki; Uchida, Kentaro; Inoue, Gen; Matsushita, Osamu; Saito, Wataru; Aikawa, Jun; Tanaka, Keisuke; Fujimaki, Hisako; Miyagi, Masayuki; Takaso, Masashi

    2016-06-01

    Growth factor delivered in combination with animal-derived collagen materials has been used to accelerate bone fracture healing in human patients. However, the introduction of bovine proteins into humans carries the risk of zoonotic and immunologic complications. Here, we developed a collagen-like polypeptide-based bone formation system consisting of poly(Pro-Hyp-Gly)10 , which mimics the triple helical conformation of collagen, and basic fibroblast growth factor (bFGF) fused to the polycystic kidney disease (PKD) domain and collagen-binding domain (CBD) of Clostridium histolyticum collagenase. Circular dichroism spectral analysis showed that when pepsin-soluble bovine type I collagen was treated at 50°C, a positive signal corresponding to the collagen triple helix at 220 nm was not detected. In contrast, poly(Pro-Hyp-Gly)10 retained the 220-nm positive peak, even when treated at 80°C. The combination of the collagen binding-bFGF fusion protein (bFGF-PKD-CBD) with poly(Pro-Hyp-Gly)10 induced greater bone formation compared to bFGF alone in mice bone fracture models. Taken together, these properties suggest that the bFGF-PKD-CBD/poly(Pro-Hyp-Gly)10 composite is a promising material for bone repair in the clinical setting. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1372-1378, 2016.

  18. Synergistic effect of vitamin D and low concentration of transforming growth factor beta 1, a potential role in dermal wound healing.

    PubMed

    Ding, Jie; Kwan, Peter; Ma, Zengshuan; Iwashina, Takashi; Wang, Jianfei; Shankowsky, Heather A; Tredget, Edward E

    2016-09-01

    Dermal wound healing, in which transforming growth factor beta 1 (TGFβ1) plays an important role, is a complex process. Previous studies suggest that vitamin D has a potential regulatory role in TGFβ1 induced activation in bone formation, and there is cross-talk between their signaling pathways, but research on their effects in other types of wound healing is limited. The authors therefore wanted to explore the role of vitamin D and its interaction with low concentration of TGFβ1 in dermal fibroblast-mediated wound healing through an in vitro study. Human dermal fibroblasts were treated with vitamin D, TGFβ1, both, or vehicle, and then the wound healing functions of dermal fibroblasts were measured. To further explore possible mechanisms explaining the synergistic effect of vitamin D and TGFβ1, targeted gene silencing of the vitamin D receptor was performed. Compared to either factor alone, treatment of fibroblasts with both vitamin D and low concentration of TGFβ1 increased gene expression of TGFβ1, connective tissue growth factor, and fibronectin 1, and enhanced fibroblast migration, myofibroblast formation, and collagen production. Vitamin D receptor gene silencing blocked this synergistic effect of vitamin D and TGFβ1 on both collagen production and myofibroblast differentiation. Thus a synergistic effect of vitamin D and low TGFβ1 concentration was found in dermal fibroblast-mediated wound healing in vitro. This study suggests that supplementation of vitamin D may be an important step to improve wound healing and regeneration in patients with a vitamin D deficiency.

  19. Transforming growth factor-β (TGF-β) expression is increased in the subsynovial connective tissues of patients with idiopathic carpal tunnel syndrome.

    PubMed

    Chikenji, Takako; Gingery, Anne; Zhao, Chunfeng; Passe, Sandra M; Ozasa, Yasuhiro; Larson, Dirk; An, Kai-Nan; Amadio, Peter C

    2014-01-01

    Non-inflammatory fibrosis of the subsynovial connective tissue (SSCT) is a hallmark of carpal tunnel syndrome (CTS). The etiology of this finding and its relationship to the development of CTS remain poorly understood. Recent studies have found that transforming growth factor-β (TGF-β) plays a central role in fibrosis. The purpose of this study was to investigate the expression of TGF-β and connective tissue growth factor (CTGF), a downstream mediator of TGF-β, in the pathogenesis of CTS. We compared SSCT specimens from 26 idiopathic CTS patients with specimens from 10 human cadaver controls with no previous diagnosis of CTS. Immunohistochemistry was performed to determine levels TGF-β1, CTGF, collagen 1(Col1) and collagen 3 (Col3) expression. TGF-β1 (p < 0.01), CTGF (p < 0.01), and Col3 (p < 0.01) were increased in SSCT of CTS patients compared with control tissue. In addition, a strong positive correlation was found between TGF-β1 and CTGF, (R(2) = 0.80, p < 0.01) and a moderate positive correlation between Col3 and TGF-β1 (R(2) = 0.49, p < 0.01). These finding suggest that there is an increased expression of TGF-β and CTGF, a TGF-β regulated protein, and that this TGF-β activation may be responsible for SSCT fibrosis in CTS patients.

  20. Biocompatibility of collagen membranes crosslinked with glutaraldehyde or diphenylphosphoryl azide: an in vitro study.

    PubMed

    Marinucci, Lorella; Lilli, Cinzia; Guerra, Mario; Belcastro, Salvatore; Becchetti, Ennio; Stabellini, Giordano; Calvi, Edoardo M; Locci, Paola

    2003-11-01

    Crosslinking of collagen biomaterials increases their resistance to degradation in vivo. Glutaraldehyde (GA) is normally used to crosslink collagen biomaterial, but is often cytotoxic. Diphenylphosphoryl azide (DPPA) has recently been proposed as reagent, but little is known about its effects on cell behavior. In this study, we determined which collagen membrane was the most biocompatible: Paroguide which is crosslinked with DPPA and contains chondroitin sulfate; Opocrin which is crosslinked with DPPA; Biomed Extend which is crosslinked with GA; and Bio-Gide which is left untreated. Cell proliferation and extracellular matrix macromolecule deposition were evaluated in human fibroblasts cultured on the membranes. The GA-crosslinked Biomed Extend membrane and the not-crosslinked Bio-Gide membrane reduced cell growth and collagen secretion compared with DPPA-crosslinked biomembranes. When Paroguide and Opocrin were compared, better results were obtained with Paroguide. The greatest amount of transforming growth factor beta1, a growth factor involved in extracellular matrix macromolecule accumulation and in tissue regeneration, was produced by cells cultured on Paroguide, with Opocrin second. Our data suggest that the DPPA method is more biocompatible than the GA for crosslinking collagen biomaterials and that membranes made of collagen plus chondroitin sulfate are better than membranes made of pure collagen.

  1. Regeneration of anterior cruciate ligament by biodegradable scaffold combined with local controlled release of basic fibroblast growth factor and collagen wrapping.

    PubMed

    Kimura, Yuta; Hokugo, Akishige; Takamoto, Tomoaki; Tabata, Yasuhiko; Kurosawa, Hisashi

    2008-03-01

    The objective of this study was to increase the therapeutic efficacy of anterior cruciate ligament (ACL) surgery using an artificial ligament material developed through a combination of tissue engineering technologies. A poly-L-lactic acid (PLLA) scaffold of plain-woven braid was incorporated with a gelatin hydrogel for controlled release of basic fibroblast growth factor (bFGF) and wrapped with a collagen membrane to allow space for ligament regeneration. For the ACL reconstruction surgery, the PLLA braid scaffold combined with the gelatin hydrogel incorporating bFGF and the collagen wrapping was applied to a tunnel prepared in the femur and tibia of rabbits. The hydrogel was placed in the bone, whereas the portion of the braid inside the joint cavity was wrapped with the membrane. As controls, the PLLA scaffold was applied with the hydrogel or the membrane, or without either material. Bone regeneration in the tunnel and ACL tissue regeneration in the joint cavity were histologically evaluated, and the mechanical strength and collagen content of the regenerated ACL were assessed. When the PLLA scaffold was integrated with both the hydrogel and the membrane, bone and ACL tissues were regenerated in the corresponding sites, in marked contrast to the control groups. Combination of bFGF-controlled release resulted in enhanced mechanical strength of the regenerated ACL tissue. In the joint cavity, it is possible that the local bFGF release inside the membrane enhanced the cell migration and collagen production, and that the surrounding PLLA scaffold results in the biological regeneration of ligament-like tissue. Additionally, significant bone regeneration around the scaffold was observed in the bone tunnel. It is therefore possible that the local controlled release of bFGF near the PLLA braid induced both osseointegration and intrascaffold cell migration in the bone tunnel and joint cavity, respectively, resulting in an overall increase in the mechanical strength of

  2. Beta-sheet secondary structure of the trimeric globular domain of C1q of complement and collagen types VIII and X by Fourier-transform infrared spectroscopy and averaged structure predictions.

    PubMed Central

    Smith, K F; Haris, P I; Chapman, D; Reid, K B; Perkins, S J

    1994-01-01

    C1q plays a key role in the recognition of immune complexes, thereby initiating the classical pathway of complement activation. Although the triple-helix conformation of its N-terminal segment is well established, the secondary structure of the trimeric globular C-terminal domain is as yet unknown. The secondary structures of human C1q and C1q stalks and pepsin-extracted human collagen types I, III and IV (with no significant non-collagen-like structure) were studied by Fourier-transform i.r. spectroscopy in 2H2O buffers. After second-derivative calculation to resolve the fine structure of the broad amide I band, the Fourier-transform i.r. spectrum of C1q showed two major bands, one at 1637 cm-1, which is a characteristic frequency for beta-sheets, and one at 1661 cm-1. Both major bands were also detected for Clq in H2O buffers. Only the second major band was observed at 1655 cm-1 in pepsin-digested C1q which contains primarily the N-terminal triple-helix region. The Fourier-transform i.r. spectra of collagen in 2H2O also showed a major band at 1659 cm-1 (and minor bands at 1632 cm-1 and 1682 cm-1). It is concluded that the C1q globular heads contain primarily beta-sheet structure. The C-terminal domains of C1q show approximately 25% sequence identity with the non-collagen-like C-terminal regions of the short-chain collagen types VIII and X. To complement the Fourier-transform-i.r. spectroscopic data, averaged Robson and Chou-Fasman structure predictions on 15 similar sequences for the globular domains of C1q and collagen types VIII and X were performed. These showed a clear pattern of ten beta-strands interspersed by beta-turns and /or loops. Residues thought to be important for C1q-immune complex interactions with IgG and IgM were predicted to be at a surface-exposed loop. Sequence insertions and deletions, glycosylation sites, the free cysteine residue and RGD recognition sequences were also predicted to be at surface-exposed positions. Images Figure 4 PMID

  3. Matrix metalloproteinase-8 regulates transforming growth factor-β1 levels in mouse tongue wounds and fibroblasts in vitro.

    PubMed

    Aström, Pirjo; Pirilä, Emma; Lithovius, Riitta; Heikkola, Heidi; Korpi, Jarkko T; Hernández, Marcela; Sorsa, Timo; Salo, Tuula

    2014-10-15

    Matrix metalloproteinase-8 (MMP-8)-deficient mice (Mmp8-/-) exhibit delayed dermal wound healing, but also partly contradicting results have been reported. Using the Mmp8-/- mice we investigated the role of MMP-8 in acute wound healing of the mobile tongue, and analyzed the function of tongue fibroblasts in vitro. Interestingly, in the early phase the tongue wounds of Mmp8-/- mice healed faster than those of wild type (wt) mice resulting in significant difference in wound widths (P=0.001, 6-24h). The Mmp8-/- wounds showed no change in myeloperoxidase positive myeloid cell count, but the level of transforming growth factor (TGF)-β1 was significantly increased (P=0.007) compared to the wt tongues. Fibroblasts cultured from wt tongues expressed MMP-8 and TGF-β1. However, higher TGF-β1 levels were detected in Mmp8-/- fibroblasts, and MMP-8 treatment decreased phosphorylated Smad-2 levels and α-smooth muscle actin expression in these fibroblasts suggesting reduced TGF-β1 signaling. Consistently, a degradation of recombinant TGF-β1 by MMP-8 decreased its ability to activate the signaling cascade in fibroblasts. Moreover, collagen gels with Mmp8-/- fibroblasts reduced more in size. We conclude that MMP-8 regulates tongue wound contraction rate and TGF-β1 levels. In vitro analyses suggest that MMP-8 may also play a role in regulating TGF-β1 signaling of stromal fibroblasts.

  4. The role of transforming growth factor-beta, insulin-like growth factor I, and basic fibroblast growth factor in distraction osteogenesis of the mandible.

    PubMed

    Farhadieh, R D; Dickinson, R; Yu, Y; Gianoutsos, M P; Walsh, W R

    1999-01-01

    Distraction osteogenesis is a viable method for regenerating large amounts of bone. In contrast to fracture healing, the mode of bone formation in distraction osteogenesis is primarily intramembranous ossification. The basic biology of the process is still not well understood. The growth factor cascade is likely to play an important role in distraction. This study examines the growth factor cascade in a lengthened ovine mandible model. Twenty-four animals were divided into four groups with varying rates of distraction (1, 2, 3, and 4 mm/day). A unilateral distractor at the angle of the mandible was used. The mandibles were lengthened to 24 mm and fixed for a period of 5 weeks, after which the animals were killed. The sections were probed for transforming growth factor-beta, basic fibroblast growth factor, and insulin-like growth factor I. The growth factors studied were present in all four groups. Transforming growth factor-beta, basic fibroblast growth factor, and insulin-like growth factor I were present in both the bony matrix of the sections and the cytoplasm of the cells, osteoblasts, and a small number of mesenchymal cells. The sections obtained from groups distracted at faster rates showed stronger presence of the growth factors examined by more intense staining. In fracture healing, the localization of transforming growth factor-beta in stage I of healing corresponded with the precise region of intramembranous ossification in stage II. Diffuse presence of transforming growth factor-beta throughout the lengthened region corresponded with the process of intramembranous ossification observed in distraction. In fracture healing, insulin-like growth factor I and basic fibroblast growth factor have been shown to promote proliferation and differentiation of osteoblasts from precursor cells. The intense presence of insulin-like growth factor I and basic fibroblast growth factor in the distracted region may account for osteoblast proliferation and formation from

  5. Collagen in organ development

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Spooner, B. S.

    1992-01-01

    It is important to know whether microgravity will adversely affect developmental processes. Collagens are macromolecular structural components of the extracellular matrix (ECM) which may be altered by perturbations in gravity. Interstitial collagens have been shown to be necessary for normal growth and morphogenesis in some embryonic organs, and in the mouse salivary gland, the biosynthetic pattern of these molecules changes during development. Determination of the effects of microgravity on epithelial organ development must be preceded by crucial ground-based studies. These will define control of normal synthesis, secretion, and deposition of ECM macromolecules and the relationship of these processes to morphogenesis.

  6. Connexin-43 expression in oral-derived human osteoblasts after transforming growth factor-beta and prostaglandin E2 exposure.

    PubMed

    Adamo, C T; Mailhot, J M; Smith, A K; Borke, J L

    2001-01-01

    Dental implant placement stimulates a response in the supporting tissue; the response involves bone remodeling and release of wound-healing factors, including cytokines. Important factors such as transforming growth factor-beta (TGF-beta), which promotes matrix synthesis, and prostaglandin E2 (PGE2), a mediator of inflammation, have the potential to alter the communication between bone cells and interfere with implant site healing. Cells responsible for the formation of bone are interconnected to form a multicellular network. Cell-to-cell communication in this network occurs in part via gap junctions. In bone cells, the predominant gap junction protein is connexin-43. TGF-beta is a growth modulator produced by osteoblasts and released from the matrix in response to resorption and may influence the progression of periodontal disease. TGF-beta also promotes the synthesis of extracellular matrix proteins such as collagen, fibronectin, and adhesion molecules. PGE2 is a mediator of inflammation produced in response to periodontal pathogens. PGE2 levels in the gingival sulcular fluid have been correlated with attachment loss and bone resorption. The relationship between these factors and connexin-43 is unclear. Oral-derived (alveolar) bone was used because the phenotype of bone can differ between species and between different sites in the body. For our studies, explants of human osteoblasts were cultured on eight well plates and characterized by their expression of osteocalcin, osteonectin, alkaline phosphatase, type 1 collagen, and connexin-43. Cells were grown to near confluence on 12 well plates in 20% fetal bovine serum (FBS) Dulbecco modified Eagle medium (DMEM) and then cultured for 24 hours in 0.5% FBS DMEM before exposure to either 1, 5, or 10 ng/mL of TGF-beta in serum-free DMEM for 12 or 24 hours or to 20, 80, or 300 ng/mL of PGE2 in serum-free DMEM for 12 or 24 hours. After incubation, cells were removed from plates by scraping and assayed for connexin-43

  7. Estimation of the use of fibrin and collagen membranes as carriers for platelet-derived growth factor-BB (PDGF-BB) in the presence of amoxicillin.

    PubMed

    Michalska, Marta; Kozakiewicz, Marcin; Bodek, Andrzej; Bodek, Kazimiera Henryka

    2015-04-01

    The effect of homogeneous fibrin (Fb), collagen (Coll) and composite fibrin-heparin (Fb-Hp), fibrin-collagen (Fb-Coll) membranes on in vitro release of platelet-derived growth factor (PDGF-BB) was evaluated in the presence or absence of amoxicillin using of the ELISA immunoassay test. Amoxicillin concentration was determined spectrophotometrically at 272 nm. The process of the PDGF-BB growth factor and amoxicillin release from the studied membranes was of a two-phase nature in the majority of the systems analysed. The PDGF-BB was released in the highest amount from the Coll membrane (M7) without the presence of amoxicillin--546.2 ± 7.47 pg, t0.5 = 0.88 h and 202.5 ± 6.83 pg, t0.5 = 26.65 h during the first phase and second phase, respectively. The lowest PDGF-BB release was observed from composite M4 (Fb-Hp) membrane--5.88 ± 0.81 pg, t0.5 = 1.69 h; and 110.2 ± 6.48 pg, t0.5 = 855.6 h during first and second phase respectively. An optimal release of amoxicillin was observed in the case of the composite M6 (Fb-Coll) membrane--only in the second phase: 64.2 ± 7.8 μg, t0.5 = 83.5 h. The lowest and delayed amoxicillin release was achieved for M4 membrane (approx. 17.1 ± 1.12 μg, t0.5 = 46.5 h). The results of the PDGF-BB release and amoxicillin from membranes indicated a correlation between the level of release and composition of the film. Our results suggested that fibrin and collagen membranes may be beneficial to enhance periodontal bone regeneration.

  8. Transforming growth factor-beta1 to the bone.

    PubMed

    Janssens, Katrien; ten Dijke, Peter; Janssens, Sophie; Van Hul, Wim

    2005-10-01

    TGF-beta1 is a ubiquitous growth factor that is implicated in the control of proliferation, migration, differentiation, and survival of many different cell types. It influences such diverse processes as embryogenesis, angiogenesis, inflammation, and wound healing. In skeletal tissue, TGF-beta1 plays a major role in development and maintenance, affecting both cartilage and bone metabolism, the latter being the subject of this review. Because it affects both cells of the osteoblast and osteoclast lineage, TGF-beta1 is one of the most important factors in the bone environment, helping to retain the balance between the dynamic processes of bone resorption and bone formation. Many seemingly contradictory reports have been published on the exact functioning of TGF-beta1 in the bone milieu. This review provides an overall picture of the bone-specific actions of TGF-beta1 and reconciles experimental discrepancies that have been reported for this multifunctional cytokine.

  9. Effect of a novel botanical agent Drynol Cibotin on human osteoblast cells and implications for osteoporosis: promotion of cell growth, calcium uptake and collagen production.

    PubMed

    Wegiel, Barbara; Persson, Jenny L

    2010-06-01

    Osteoporosis is a widespread problem afflicting millions of people. Drynol Cibotinis is a newly developed proprietary botanical combination of eight botanicals including Angelica sinensis, Glycine max, Wild yam, Ligustrum lucidum, Astragalus membranaceus, Cuscuta chinensis, Psoraleae corylifoliae, and Drynaria fortune. Each of the botanicals has been used in traditional Chinese medicine to treat osteoporosis. The effect of Drynol Cibotinis, with the specific combination of these anti-osteoporosis botanicals for promoting bone growth, was examined in this study. The effects of Drynol Cibotin on cell growth, apoptosis, cell spreading, calcium uptake and production of bone matrix proteins Collagen I and Laminin B2 on human osteoblast cells were assessed by BrdU incorporation, TUNEL assay, cell staining, intracellular Ca2+ measurement and Western blot analysis. The results showed that Drynol Cibotin significantly increased cell proliferation and inhibited apoptosis in osteoblasts (P < 0.01). In addition, Drynol Cibotin was found to promote cell spreading and greatly increase calcium uptake both instantaneously and in the long term (P < 0.01). Furthermore, Drynol Cibotin significantly increased production of two key extracellular matrix proteins in bone cells: Collagen I and Laminin B2. These results indicate that Drynol Cibotin alone or in combination with amino acids and vitamins may have prophylactic potentials in osteoporosis.

  10. Quantitative estimates of vascularity in a collagen-based cell scaffold containing basic fibroblast growth factor by non-invasive near-infrared spectroscopy for regenerative medicine

    NASA Astrophysics Data System (ADS)

    Kushibiki, Toshihiro; Awazu, Kunio

    2008-04-01

    Successful tissue regeneration required both cells with high proliferative and differentiation potential and an environment permissive for regeneration. These conditions can be achieved by providing cell scaffolds and growth factors that induce angiogenesis and cell proliferation. Angiogenenis within cell scaffolds is typically determined by histological examination with immunohistochemical markers for endothelium. Unfortunately, this approach requires removal of tissue and the scaffold. In this study, we examined the hemoglobin content of implanted collagen-based cell scaffolds containing basic fibroblast growth factor (bFGF) in vivo by non-invasive near infrared spectroscopy (NIRS). We also compared the hemoglobin levels measured by NIRS to the hemoglobin content measured with a conventional biological assay. Non-invasive NIRS recordings were performed with a custom-built near-infrared spectrometer using light guide-coupled reflectance measurements. NIRS recordings revealed that absorbance increased after implantation of collagen scaffolds containing bFGF. This result correlated (R2=0.93) with our subsequent conventional hemoglobin assay. The NIRS technique provides a non-invasive method for measuring the degree of vascularization in cell scaffolds. This technique may be advantageous for monitoring angiogenesis within different cell scaffolds, a prerequisite for effective tissue regeneration.

  11. Purification, crystallization and preliminary X-ray diffraction of wild-type and mutant recombinant human transforming growth factor β-induced protein (TGFBIp)

    PubMed Central

    Runager, Kasper; García-Castellanos, Raquel; Valnickova, Zuzana; Kristensen, Torsten; Nielsen, Niels Chr.; Klintworth, Gordon K.; Gomis-Rüth, F. Xavier; Enghild, Jan J.

    2009-01-01

    Transforming growth factor β-induced protein (TGFBIp) has been linked to several corneal dystrophies as certain point mutations in the protein may give rise to a progressive accumulation of insoluble protein material in the human cornea. Little is known about the biological functions of this extracellular protein, which is expressed in various tissues throughout the human body. However, it has been found to interact with a number of extracellular matrix macromolecules such as collagens and proteoglycans. Structural information about TGFBIp might prove to be a valuable tool in the elucidation of its function and its role in corneal dystrophies caused by mutations in the TGFBI gene. A simple method for the purification of wild-type and mutant forms of recombinant human TGFBIp from human cells under native conditions is presented here. Moreover, the crystallization and preliminary X-ray analysis of TGFBIp are reported. PMID:19255489

  12. The growth and transformation of American ego psychology.

    PubMed

    Wallerstein, Robert S

    2002-01-01

    The roots of ego psychology trace back to Sigmund Freud's The Ego and the Id (1923) and "Inhibitions, Symptoms and Anxiety" (1926), works followed by two additional fundaments, Anna Freud's The Ego and the Mechanisms of Defense (1936) and Heinz Hartmann's Ego Psychology and the Problem of Adaptation (1939). It was brought to full flowering in post-World War II America by Hartmann and his many collaborators, and for over two decades it maintained a monolithic hegemony over American psychoanalysis. Within this framework the conceptions of the psychoanalytic psychotherapies evolved as specific modifications of psychoanalytic technique directed to the clinical needs of the spectrum of patients not amenable to psychoanalysis proper. This American consensus on the ego psychology paradigm and its array of technical implementations fragmented several decades ago, with the rise in America of Kohut's self psychology, geared to the narcissistic disorders, and with the importation from Britain of neo-Kleinian and object-relational perspectives, all coinciding with the rapid growth of the varieties of relational psychoanalysis, with its shift in focus to the two-person, interactive, and co-constructed transference-countertransference matrix. Implications of this intermingled theoretical pluralism (as contrasted with the unity of the once dominant ego psychology paradigm) for the evolution of the American ego psychology are spelled out.

  13. Heparin-binding epidermal growth factor-like growth factor, a v-Jun target gene, induces oncogenic transformation

    PubMed Central

    Fu, Shu-ling; Bottoli, Ivan; Goller, Martin; Vogt, Peter K.

    1999-01-01

    Jun is a transcription factor belonging to the activator protein 1 family. A mutated version of Jun (v-Jun) transduced by the avian retrovirus ASV17 induces oncogenic transformation in avian cell cultures and sarcomas in young galliform birds. The oncogenicity of Jun probably results from transcriptional deregulation of v-Jun-responsive target genes. Here we describe the identification and characterization of a growth-related v-Jun target, a homolog of heparin-binding epidermal growth factor-like growth factor (HB-EGF). HB-EGF is strongly expressed in chicken embryo fibroblasts (CEF) transformed by v-Jun. HB-EGF expression is not detectable or is marginal in nontransformed CEF. Using a hormone-inducible Jun-estrogen receptor chimera, we found that HB-EGF expression is correlated with v-Jun activity. In this system, induction of v-Jun is followed within 1 hr by elevated levels of HB-EGF. In CEF infected with various Jun mutants, HB-EGF expression is correlated with the oncogenic potency of the mutant. Constitutive expression of HB-EGF conveys to CEF the ability to grow in soft agar and to form multilayered foci of transformed cells on a solid substrate. These observations suggest that HB-EGF is an effector of Jun-induced oncogenic transformation. PMID:10318950

  14. Transforming growth factor-β evokes Ca2+ waves and enhances gene expression in human pulmonary fibroblasts.

    PubMed

    Mukherjee, Subhendu; Kolb, Martin R J; Duan, Fuqin; Janssen, Luke J

    2012-06-01

    Fibroblasts maintain the structural framework of animal tissue by synthesizing extracellular matrix molecules. Chronic lung diseases are characterized in part by changes in fibroblast numbers, properties, and more. Fibroblasts respond to a variety of growth factors, cytokines, and proinflammatory mediators. However, the signaling mechanisms behind these responses have not been fully explored. We sought to determine the role of Ca(2+) waves in transforming growth factor-β (TGF-β)-mediated gene expression in human pulmonary fibroblasts. Primary human pulmonary fibroblasts were cultured and treated with TGF-β and different blockers under various conditions. Cells were then loaded with the Ca(2+) indicator dye Oregon green, and Ca(2+) waves were monitored by confocal [Ca(2+)](i) fluorimetry. Real-time PCR was used to probe gene expression. TGF-β (1 nM) evoked recurring Ca(2+) waves. A 30-minute pretreatment of SD 208, a TGF-β receptor-1 kinase inhibitor, prevented Ca(2+) waves from being evoked by TGF-β. The removal of external Ca(2+) completely occluded TGF-β-evoked Ca(2+) waves. Cyclopiazonic acid, an inhibitor of the internal Ca(2+) pump, evoked a relatively slowly developing rise in Ca(2+) waves compared with the rapid changes evoked by TGF-β, but the baseline fluorescence was increased. Ryanodine (10(-5) M) also blocked TGF-β-mediated Ca(2+) wave activity. Real-time PCR showed that TGF-β rapidly and dramatically increased the gene expression of collagen A1 and fibronectin. This increase was blocked by ryanodine treatment and cyclopiazonic acid. We conclude that, in human pulmonary fibroblasts, TGF-β acts on ryanodine-sensitive channels, leading to Ca(2+) wave activity, which in turn amplifies extracellular matrix gene expression.

  15. Effect of sulodexide on plasma transforming growth factor-beta1 in healthy volunteers.

    PubMed

    Borawski, Jacek; Dubowski, Miroslaw; Pawlak, Krystyna; Mysliwiec, Michal

    2010-02-01

    It is unknown whether the glycosaminoglycan drug sulodexide interferes with transforming growth factor-beta1--a member of heparin-binding family and a potent regulator of human biology and diseases. Hence, a 2-week pilot study was performed in 11 healthy men. Sulodexide was initially administered intravenously in a single dose, then--orally for 12 days and--again intravenously on study completion. Initial injection had no effect on activated form of the growth factor measured in plasma after 10 and 120 min; no change was also observed after 120 min from drug ingestion on day 7. On final intravenous administration, the growth factor levels increased by almost 60% after 10 min and remained elevated; the 120-min levels directly correlated with sulodexide dosage. Baseline cytokine levels decreased during the 2-week trial by more than 50%. In conclusion, transforming growth factor-beta1 release and likely downregulation of its expression may constitute novel pharmacological effects of sulodexide.

  16. The Four-Herb Chinese Medicine ANBP Enhances Wound Healing and Inhibits Scar Formation via Bidirectional Regulation of Transformation Growth Factor Pathway

    PubMed Central

    Hao, Hao-Jie; Han, Qing-Wang; Chen, Li; Dong, Liang; Liu, Jie-Jie; Li, Xiang; Zhang, Ya-Jing; Ma, Ying-Zhi; Han, Wei-Dong; Fu, Xiao-Bing

    2014-01-01

    The four-herb Chinese medicine ANBP is a pulverized mixture of four herbs including Agrimonia Eupatoria (A), Nelumbo Nucifera Gaertn (N), Boswellia Carteri (B) and Pollen Typhae Angustifoliae (P). The combination of the four herbs was first described in Chinese canonical medicine about 2000 years ago for treatment of various trauma disorders, such as hemostasis, antiinflammatory, analgesia, and wound healing, etc. However, the precise mechanisms of ANBP are still unclear. In our study, using rabbit ear hypertrophic scar models of full-thickness skin defect, we showed that local ANBP treatment not only significantly enhanced wound healing by relieving inflammation, increasing formation of granulation tissue and accelerating re-epithelialization, but also reduced scar formation by decreasing collagen production, protuberant height and volume of scars, and increasing collagen maturity. We demonstrated that these effects of ANBP are associated with transforming growth factor (TGF)-β1-mediated signalling pathways through Smad-dependent pathways. ANBP treatment significantly increased expression of TGF-β1 and Smad2/3 mRNA at the early stage of wound healing, and led to markedly decrease expression of TGF-β1 and Smad2/3 compared with the control group after 14 days post-wounding. Taken together, our results defined a bidirectional regulation role of ANBP for TGF-β1/Smad pathway in promoting wound healing and alleviating scar formation, which may be an effective therapy for human wounds at the earliest stage. PMID:25489732

  17. The four-herb Chinese medicine ANBP enhances wound healing and inhibits scar formation via bidirectional regulation of transformation growth factor pathway.

    PubMed

    Hou, Qian; He, Wen-Jun; Hao, Hao-Jie; Han, Qing-Wang; Chen, Li; Dong, Liang; Liu, Jie-Jie; Li, Xiang; Zhang, Ya-Jing; Ma, Ying-Zhi; Han, Wei-Dong; Fu, Xiao-Bing

    2014-01-01

    The four-herb Chinese medicine ANBP is a pulverized mixture of four herbs including Agrimonia Eupatoria (A), Nelumbo Nucifera Gaertn (N), Boswellia Carteri (B) and Pollen Typhae Angustifoliae (P). The combination of the four herbs was first described in Chinese canonical medicine about 2000 years ago for treatment of various trauma disorders, such as hemostasis, antiinflammatory, analgesia, and wound healing, etc. However, the precise mechanisms of ANBP are still unclear. In our study, using rabbit ear hypertrophic scar models of full-thickness skin defect, we showed that local ANBP treatment not only significantly enhanced wound healing by relieving inflammation, increasing formation of granulation tissue and accelerating re-epithelialization, but also reduced scar formation by decreasing collagen production, protuberant height and volume of scars, and increasing collagen maturity. We demonstrated that these effects of ANBP are associated with transforming growth factor (TGF)-β1-mediated signalling pathways through Smad-dependent pathways. ANBP treatment significantly increased expression of TGF-β1 and Smad2/3 mRNA at the early stage of wound healing, and led to markedly decrease expression of TGF-β1 and Smad2/3 compared with the control group after 14 days post-wounding. Taken together, our results defined a bidirectional regulation role of ANBP for TGF-β1/Smad pathway in promoting wound healing and alleviating scar formation, which may be an effective therapy for human wounds at the earliest stage.

  18. Visualization of sulfur-containing components associated with proliferating chondrocytes from rat epiphyseal growth plate cartilage: Possible proteoglycan and collagen co-migration

    SciTech Connect

    Landis, W.J.; Hodgens, K.J. )

    1990-02-01

    Electron microscopy of epiphyseal growth plate cartilage from normal 4-5-week-old rats has revealed extensive fibrillar aggregates and globules in the pericellular spaces of proliferating chondrocytes. These cells contained small globules and diffusely coiled, fine filaments located within large, membrane-invested vacuoles. All such structures were observed after a variety of different tissue fixation regimes, including glutaraldehyde, osmium tetroxide, and potassium pyroantimonate. The fibrillar aggregates and globules were often overlapping and intermeshed and extended to 0.5 micron in length from their point of origin at cell membranes. Vacuoles were usually found at the periphery of cells, and some, by membrane fusion with the cell envelope, appeared contiguous with extracellular spaces wherein their contents could be discharged. Fine filaments and globules were occasionally observed in the Golgi complex and cisternae of endoplasmic reticulum of the chondrocytes. Further characterization of the cellular and pericellular components by electron microscopic radioautography, electron probe microanalysis, and electron spectroscopic imaging indicated the presence of sulfur, a result suggesting these aggregates, filaments, and globules in part represent proteoglycans in various stages of synthesis, secretion, and assembly. Additional radioautography utilizing 3H-proline implied that filament bundles are also composed of collagen, a result posing the possibility that this protein and the putative proteoglycans may co-migrate both intracellularly and within pericellular matrices. In extracellular matrices adjacent to cell lacunae, the fibrillar aggregates appeared in close association with typical collagen type II fibrils, an observation providing evidence for proteoglycan-collagen network formation in this region of the rat epiphysis.

  19. Gelatin-methacrylamide gel loaded with microspheres to deliver GDNF in bilayer collagen conduit promoting sciatic nerve growth.

    PubMed

    Zhuang, Hai; Bu, Shoushan; Hua, Lei; Darabi, Mohammad A; Cao, Xiaojian; Xing, Malcolm

    2016-01-01

    In this study, we fabricated glial cell-line derived neurotrophic factor (GDNF)-loaded microspheres, then seeded the microspheres in gelatin-methacrylamide hydrogel, which was finally integrated with the commercial bilayer collagen membrane (Bio-Gide(®)). The novel composite of nerve conduit was employed to bridge a 10 mm long sciatic nerve defect in a rat. GDNF-loaded gelatin microspheres had a smooth surface with an average diameter of 3.9±1.8 μm. Scanning electron microscopy showed that microspheres were uniformly distributed in both the GelMA gel and the layered structure. Using enzyme-linked immunosorbent assay, in vitro release studies (pH 7.4) of GDNF from microspheres exhibited an initial burst release during the first 3 days (18.0%±1.3%), and then, a prolonged-release profile extended to 32 days. However, in an acidic condition (pH 2.5), the initial release percentage of GDNF was up to 91.2%±0.9% within 4 hours and the cumulative release percentage of GDNF was 99.2%±0.2% at 48 hours. Then the composite conduct was implanted in a 10 mm critical defect gap of sciatic nerve in a rat. We found that the nerve was regenerated in both conduit and autograft (AG) groups. A combination of electrophysiological assessment and histomorphometry analysis of regenerated nerves showed that axonal regeneration and functional recovery in collagen tube filled with GDNF-loaded microspheres (GM + CT) group were similar to AG group (P>0.05). Most myelinated nerves were matured and arranged densely with a uniform structure of myelin in a neat pattern along the long axis in the AG and GM + CT groups, however, regenerated nerve was absent in the BLANK group, left the 10 mm gap empty after resection, and the nerve fiber exhibited a disordered arrangement in the collagen tube group. These results indicated that the hybrid system of bilayer collagen conduit and GDNF-loaded gelatin microspheres combined with gelatin-methacrylamide hydrogels could serve as a new biodegradable

  20. Gelatin-methacrylamide gel loaded with microspheres to deliver GDNF in bilayer collagen conduit promoting sciatic nerve growth

    PubMed Central

    Zhuang, Hai; Bu, Shoushan; Hua, Lei; Darabi, Mohammad A; Cao, Xiaojian; Xing, Malcolm

    2016-01-01

    In this study, we fabricated glial cell-line derived neurotrophic factor (GDNF)-loaded microspheres, then seeded the microspheres in gelatin-methacrylamide hydrogel, which was finally integrated with the commercial bilayer collagen membrane (Bio-Gide®). The novel composite of nerve conduit was employed to bridge a 10 mm long sciatic nerve defect in a rat. GDNF-loaded gelatin microspheres had a smooth surface with an average diameter of 3.9±1.8 μm. Scanning electron microscopy showed that microspheres were uniformly distributed in both the GelMA gel and the layered structure. Using enzyme-linked immunosorbent assay, in vitro release studies (pH 7.4) of GDNF from microspheres exhibited an initial burst release during the first 3 days (18.0%±1.3%), and then, a prolonged-release profile extended to 32 days. However, in an acidic condition (pH 2.5), the initial release percentage of GDNF was up to 91.2%±0.9% within 4 hours and the cumulative release percentage of GDNF was 99.2%±0.2% at 48 hours. Then the composite conduct was implanted in a 10 mm critical defect gap of sciatic nerve in a rat. We found that the nerve was regenerated in both conduit and autograft (AG) groups. A combination of electrophysiological assessment and histomorphometry analysis of regenerated nerves showed that axonal regeneration and functional recovery in collagen tube filled with GDNF-loaded microspheres (GM + CT) group were similar to AG group (P>0.05). Most myelinated nerves were matured and arranged densely with a uniform structure of myelin in a neat pattern along the long axis in the AG and GM + CT groups, however, regenerated nerve was absent in the BLANK group, left the 10 mm gap empty after resection, and the nerve fiber exhibited a disordered arrangement in the collagen tube group. These results indicated that the hybrid system of bilayer collagen conduit and GDNF-loaded gelatin microspheres combined with gelatin-methacrylamide hydrogels could serve as a new biodegradable

  1. Reverse Austenite Transformation and Grain Growth in a Low-Carbon Steel

    NASA Astrophysics Data System (ADS)

    Garcin, Thomas; Ueda, Keiji; Militzer, Matthias

    2017-02-01

    The mechanisms controlling the reverse austenite transformation and the subsequent grain growth are examined in a low-carbon steel during slow continuous heating. The ex-situ metallographic analysis of quenched samples is complemented by in-situ dilatometry of the phase transformation and real-time laser ultrasonic measurements of the austenite grain size. Although the initial state of the microstructure (bainite or martensite) has only limited impact on the austenite transformation temperature, it has significant influence on the mean austenite grain size and the rate of grain growth. The coarsening of austenite islands during reverse transformation occurring from the martensitic microstructure is responsible for a large austenite grain structure at the completion of the austenite formation. On the other hand, a much finer austenite grain size is obtained when the austenite transforms from the bainite microstructure. Upon further heating, the rate of austenite grain growth is limited by the presence of nanometric precipitates present in the bainite microstructure leading to a significantly finer austenite grain size. These results give important guidance for the design of thermomechanical-controlled processing of heavy-gage steel plates.

  2. Immune Cells, if Rendered Insensitive to Transforming Growth Factorbeta, Can Cure Prostate Cancer

    DTIC Science & Technology

    2007-02-01

    insensitive bone marrow transplants have met with the same fate by developing autoimmune syndrome , although these animals were able to eliminate challenged......Rendered Insensitive to Transforming Growth Factor-beta, Can 5a. CONTRACT NUMBER Cure Prostate Cancer 5b. GRANT NUMBER W81XWH-04-1-0166 5c. PROGRAM

  3. Collagenous colitis.

    PubMed Central

    Kingham, J G; Levison, D A; Morson, B C; Dawson, A M

    1986-01-01

    Clinical and pathological aspects of six patients with collagenous colitis are presented. These patients have been observed for between four and 15 years and the evolution of the condition is documented in three (cases 1, 3 and 5). Management and possible pathogenetic mechanisms of this enigmatic condition are discussed. Images Fig. 1 Fig. 2 PMID:3699567

  4. Collagenous gastritis.

    PubMed

    Jin, Xiaoyi; Koike, Tomoyuki; Chiba, Takashi; Kondo, Yutaka; Ara, Nobuyuki; Uno, Kaname; Asano, Naoki; Iijima, Katsunori; Imatani, Akira; Watanabe, Mika; Shirane, Akio; Shimosegawa, Tooru

    2013-09-01

    In the present paper, we report a case of rare collagenous gastritis. The patient was a 25-year-old man who had experienced nausea, abdominal distention and epigastralgia since 2005. Esophagogastroduodenoscopy (EGD) carried out at initial examination by the patient's local doctor revealed an extensively discolored depression from the upper gastric body to the lower gastric body, mainly including the greater curvature, accompanied by residual mucosa with multiple islands and nodularity with a cobblestone appearance. Initial biopsies sampled from the nodules and accompanying atrophic mucosa were diagnosed as chronic gastritis. In August, 2011, the patient was referred to Tohoku University Hospital for observation and treatment. EGD at our hospital showed the same findings as those by the patient's local doctor. Pathological findings included a membranous collagen band in the superficial layer area of the gastric mucosa, which led to a diagnosis of collagenous gastritis. Collagenous gastritis is an extremely rare disease, but it is important to recognize its characteristic endoscopic findings to make a diagnosis.

  5. Photobiomodulation therapy on collagen type I and III, vascular endothelial growth factor, and metalloproteinase in experimentally induced tendinopathy in aged rats.

    PubMed

    Marques, Anna Cristina de Farias; Albertini, Regiane; Serra, Andrey Jorge; da Silva, Evela Aparecida Pereira; de Oliveira, Vanessa Lima Cavalcante; Silva, Luciana Miatto; Leal-Junior, Ernesto Cesar Pinto; de Carvalho, Paulo de Tarso Camillo

    2016-12-01

    This study investigates the effect of photobiomodulation therapy (PBMT) on collagen type I and III, matrix metalloproteinase (MMP), and vascular endothelial growth factor (VEGF) in experimentally induced tendinopathy in female aged rats. Tendinopathy was induced by the Achilles tendoncollagenase peritendinous. Forty-two Wistar rats (Norvegicus albinus) were used; groups consisted of 36 aged animals (18 months old; mean body weight, 517.7 ± 27.54 g) and 6 adult animals (12 weeks old; mean body weight, 266± 19.30 g). The animals were divided into three groups: control, aged tendinopathy, and aged tendinopathy PBMT; the aged groups were subdivided based on time to euthanasia: 7, 14, and 21 days. PBMT involved a gallium-arsenide-aluminum laser (Theralaser, DMC®) with active medium operating at wavelength 830 ± 10 nm, 50 mW power, 0.028 cm(2) laser beam, 107 J/cm(2) energy density, 1.8 W/cm(2) power density, and an energy of 3 J per point. The laser was applied by direct contact with the left Achilles tendon during 60 s per point at a frequency of three times per week, until the euthanasia date (7, 14, and 21 days). VEGF, MMP-3, and MMP-9 were analyzed by immunohistochemistry, and collagen type I and III by Sirius red. PBMT increased the deposition of collagen type I and III in a gradual manner, with significant differences relative to the group aged tendonitis (p < 0.001), and in relation to VEGF (p < 0.001); decreased expression of MMP-3 and 9 were observed in group aged tendinopathy (p < 0.001). PBMT, therefore, increased the production of collagen type I and III, downregulated the expression of MMP-3 and MMP-9, and upregulated that of VEGF, with age and age-induced hormonal deficiency.

  6. Fibulin-2 is Essential for Angiotensin II-Induced Myocardial Fibrosis Mediated by Transforming Growth Factor (TGF)-β

    PubMed Central

    Khan, Shaukat A.; Dong, Hailong; Joyce, Jennifer; Sasaki, Takako; Chu, Mon-Li; Tsuda, Takeshi

    2016-01-01

    Fibrosis is an ominous pathological process in failing myocardium, but its pathogenesis is poorly understood. We recently reported that loss of an extracellular matrix (ECM) protein, fibulin-2, protected against ventricular dysfunction after myocardial infarction (MI) in association with absence of activation of transforming growth factor (TGF)-β signaling and suppressed up-regulation of ECM protein expression during myocardial remodeling. Here, we investigated a role of fibulin-2 in the development of myocardial hypertrophy and fibrosis induced by continuous pressor-dosage of Ang II infusion. Both wild type (WT) and fibulin-2 null (Fbln2KO) mice developed comparable hypertension and myocardial hypertrophy by Ang II infusion. However, myocardial fibrosis with significant up-regulation of collagen type I and III mRNA was only seen in WT but not in Fbln2KO mice.Transforming growth factor (TGF)-β1 mRNA and its downstream signal, Smad2, were significantly up-regulated in WT by Ang II, whereas there were no Ang II-induced changes in Flbn2KO, suggesting fibulin-2 is necessary for Ang II-induced TGF-β signaling that induces myocardial fibrosis. To test whether fibulin-2 is sufficient for Ang II-induced TGF-β up-regulation, isolated Flbn2KO cardiac fibroblasts were treated with Ang II after transfecting with fibulin-2 expression vector or pretreating with recombinant fibulin-2 protein. Ang II-induced TGF-β signaling in Fbln2KO cells was partially rescued by exogenous fibulin-2, suggesting that fibulin-2 is required and probably sufficient for Ang II-induced TGF-β activation. Smad2 phosphorylation was induced just by adding recombinant fibulin-2 to KO cells, suggesting that extracellular interaction between fibulin-2 and latent TGF-β triggered initial TGF-β activation. Our study indicates that Ang II cannot induce TGF-β activation without fibulin-2 and that fibulin-2 plays an essential role in Ang II-induced TGF-β signaling and subsequent myocardial fibrosis

  7. Atomic mechanisms of diffusional nucleation and growth and comparisons with their counterparts in shear transformations

    NASA Astrophysics Data System (ADS)

    Aaronson, Hubert I.

    1993-02-01

    An integrated overview is presented of a viewpoint on the present understanding of nucleation and growth mechanisms in both diffusional and shear (martensitic) transformations. Special emphasis is placed on the roles played by the anisotropy of interphase boundary structure and energy and also upon elastic shear strain energy in both types of transformation. Even though diffusional nucleation is based on random statistical fluctuations, use of the time reversal principle shows that interfacial energy anisotropy leads to accurately reproducible orientation relationships and hence to partially or fully coherent boundaries, even when nucleation at a grain boundary requires an irrational orientation relationship to obtain. Since the fully coherent boundary areas separating most linear misfit compensating defects are wholly immobile during diffusional growth because of the improbability of moving substitutional atoms even temporarily into interstitial sites under conditions normally encountered, partially and fully coherent interphase boundaries should be immovable without the intervention of growth ledges. These ledges, however, must be heavily kinked and usually irregular in both spacing and path if they, too, are not to be similarly trapped. On the other hand, the large shear strain energy usually associated with martensite requires that its formation be initiated through a process which avoids the activation barrier associated with nucleation, perhaps by the Olson-Cohen matrix dislocation rearrangement mechanism. During growth, certain ledges on martensite plates serve as transformation dislocations and perform the crystal structure change (Bain strain). However, the terraces between these ledges in martensite (unlike those present during diffusional growth) are also mobile during non-fcc/hcp transformations; glissile dislocations on these terraces perform the lattice invariant deformation. Growth ledges operative during both diffusional and shear growth probably

  8. CD43 promotes cells transformation by preventing merlin-mediated contact inhibition of growth.

    PubMed

    Camacho-Concha, Nohemi; Olivos-Ortiz, Amiel; Nuñez-Rivera, Alfredo; Pedroza-Saavedra, Adolfo; Gutierrez-Xicotencatl, Lourdes; Rosenstein, Yvonne; Pedraza-Alva, Gustavo

    2013-01-01

    In normal tissues, strict control of tissue size is achieved by regulating cell numbers. The mechanism that controls total cell number is known as contact inhibition of growth and it depends on the NF2/Merlin pathway. Negative regulation of this pathway by deleterious mutations or by oncogenes results in cell transformation and tumor progression. Here we provide evidence that the CD43 sialomucin cooperates with oncogenic signals to promote cell transformation by abrogating the contact inhibition of growth through a molecular mechanism that involves AKT-dependent Merlin phosphorylation and degradation. Accordingly, inhibition of endogenous CD43 expression by RNA interference in lung, cervix and colon human cancer cells impaired tumor growth in vivo. These data underscore a previously unidentified role for CD43 in non-hematopoietic tumor progression.

  9. CD43 Promotes Cells Transformation by Preventing Merlin-Mediated Contact Inhibition of Growth

    PubMed Central

    Camacho-Concha, Nohemi; Olivos-Ortiz, Amiel; Nuñez-Rivera, Alfredo; Pedroza-Saavedra, Adolfo; Gutierrez-Xicotencatl, Lourdes; Rosenstein, Yvonne; Pedraza-Alva, Gustavo

    2013-01-01

    In normal tissues, strict control of tissue size is achieved by regulating cell numbers. The mechanism that controls total cell number is known as contact inhibition of growth and it depends on the NF2/Merlin pathway. Negative regulation of this pathway by deleterious mutations or by oncogenes results in cell transformation and tumor progression. Here we provide evidence that the CD43 sialomucin cooperates with oncogenic signals to promote cell transformation by abrogating the contact inhibition of growth through a molecular mechanism that involves AKT-dependent Merlin phosphorylation and degradation. Accordingly, inhibition of endogenous CD43 expression by RNA interference in lung, cervix and colon human cancer cells impaired tumor growth in vivo. These data underscore a previously unidentified role for CD43 in non-hematopoietic tumor progression. PMID:24260485

  10. Electrostatic effects in collagen fibrillization

    NASA Astrophysics Data System (ADS)

    Morozova, Svetlana; Muthukumar, Murugappan

    2014-03-01

    Using light scattering and AFM techniques, we have measured the kinetics of fibrillization of collagen (pertinent to the vitreous of human eye) as a function of pH and ionic strength. At higher and lower pH, collagen triple-peptides remain stable in solution without fibrillization. At neutral pH, the fibrillization occurs and its growth kinetics is slowed upon either an increase in ionic strength or a decrease in temperature. We present a model, based on polymer crystallization theory, to describe the observed electrostatic nature of collagen assembly.

  11. Solution growth of spherulitic rod and platelet calcium phosphate assemblies through polymer-assisted mesoscopic transformations.

    PubMed

    Kosma, Vassiliki A; Beltsios, Konstantinos G

    2013-05-01

    Solution growth of apatite its precursors in the presence of urea commercial gelatin is found to lead, under appropriate conditions, to a rich spectrum of morphologies, among them high aspect ratio needles in uniform sturdy spherulitic assemblies resulting from a herein documented morphological 'Chrysalis Transformation'; the latter transformation involves the growth of parallel arrays of high aspect ratio needles within micron-scale tablets the formation of a radial needle arrangement upon disruption of tablet wrapping. A different level of gelatin leads to the formation of sturdy platelet-based spherulites through another morphological transformation. We also probe the role of four simple synthetic water-soluble polymers; we find that three of them (poly(vinyl alcohol), polyvinylpyrrolidone and polyacrylamide)) also affect substantially the assembly habits of apatite; the effect is similar to that of gelatin but the attained control is less perfect/complete. The case of poly(vinyl alcohol) provides, through variation of the degree of hydrolysis, insights as regards the chain architecture features that might favor morphological transformations. Morphological transformations of particle assemblies documented herein constitute novel ways of generating dense quasi-isotropic reinforcements with high aspect ratio ceramic particles; it becomes possible to tailor calcium phosphate phases at the structural level of crystal assembly.

  12. TRANSFORMATION

    SciTech Connect

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  13. Transforming growth factor-beta1 inhibits tissue engineering cartilage absorption via inducing the generation of regulatory T cells.

    PubMed

    Li, Chichi; Bi, Wei; Gong, Yiming; Ding, Xiaojun; Guo, Xuehua; Sun, Jian; Cui, Lei; Yu, Youcheng

    2016-02-01

    The objective of the present study was to explore the mechanisms of transforming growth factor (TGF)-β1 inhibiting the absorption of tissue engineering cartilage. We transfected TGF-β1 gene into bone marrow mesenchymal stem cells (BMMSCs) and co-cultured with interferon (IFN)-γ and tumour necrosis factor (TNF)-α and CD4(+) CD25(-) T lymphocytes. We then characterized the morphological changes, apoptosis and characterization of chondrogenic-committed cells from TGF-β1(+) BMMSCs and explored their mechanisms. Results showed that BMMSCs apoptosis and tissue engineering cartilage absorption in the group with added IFN-γ and TNF-α were greater than in the control group. In contrast, there was little BMMSC apoptosis and absorption by tissue engineering cartilage in the group with added CD4(+) CD25(-) T lymphocytes; Foxp3(+) T cells and CD25(+) CD39(+) T cells were found. In contrast, no type II collagen or Foxp3(+) T cells or CD25(+) CD39(+) T cells was found in the TGF-β1(-) BMMSC group. The data suggest that IFN-γ and TNF-α induced BMMSCs apoptosis and absorption of tissue engineering cartilage, but the newborn regulatory T (Treg) cells inhibited the function of IFN-γ and TNF-α and protected BMMSCs and tissue engineering cartilage. TGF-β1not only played a cartilage inductive role, but also inhibited the absorption of tissue engineering cartilage. The pathway proposed in our study may simulate the actual reaction procedure after implantation of BMMSCs and tissue engineering cartilage in vivo.

  14. Inhibition airway remodeling and transforming growth factor-β1/Smad signaling pathway by astragalus extract in asthmatic mice

    PubMed Central

    QU, ZHENG-HAI; YANG, ZHAO-CHUAN; CHEN, LEI; LV, ZHI-DONG; YI, MING-JI; RAN, NI

    2012-01-01

    Airway remodeling is characterized by airway wall thickening, subepithelial fibrosis, increased smooth muscle mass, angiogenesis and increased mucous glands, which can lead to a chronic and obstinate asthma with pulmonary function depression. In the present study, we investigated whether the astragalus extract inhibits airway remodeling in a mouse asthma model and observed the effects of astragalus extract on the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway in ovalbumin-sensitized mice. Mice were sensitized and challenged by ovalbumin to establish a model of asthma. Treatments included the astragalus extract and budesonide. Lung tissues were obtained for hematoxylin and eosin staining and Periodic acid-Schiff staining after the final ovalbumin challenge. Levels of TGF-β1 were assessed by immunohistology and ELISA, levels of TGF-β1 mRNA were measured by RT-PCR, and levels of P-Smad2/3 and T-Smad2/3 were assessed by western blotting. Astragalus extract and budesonide reduced allergen-induced increases in the thickness of bronchial airway and mucous gland hypertrophy, goblet cell hyperplasia and collagen deposition. Levels of lung TGF-β1, TGF-β1 mRNA and P-Smad2/3 were significantly reduced in mice treated with astragalus extract and budesonide. Astragalus extract improved asthma airway remodeling by inhibiting the expression of the TGF-β1/Smad signaling pathway, and may be a potential drug for the treatment of patients with a severe asthma airway. PMID:22200784

  15. Fibroblast Growth Factor (FGF-2) and Its Receptors FGFR-2 and FGFR-3 May Be Putative Biomarkers of Malignant Transformation of Potentially Malignant Oral Lesions into Oral Squamous Cell Carcinoma

    PubMed Central

    Nayak, Seema; Goel, Madhu Mati; Makker, Annu; Bhatia, Vikram; Chandra, Saumya; Kumar, Sandeep; Agarwal, S. P.

    2015-01-01

    There are several factors like angiogenesis, lymphangiogenesis, genetic alterations, mutational factors that are involved in malignant transformation of potentially malignant oral lesions (PMOLs) to oral squamous cell carcinoma (OSCC). Fibroblast growth factor-2 (FGF-2) is one of the prototypes of the large family of growth factors that bind heparin. FGF-2 induces angiogenesis and its receptors may play a role in synthesis of collagen. FGFs are involved in transmission of signals between the epithelium and connective tissue, and influence growth and differentiation of a wide variety of tissue including epithelia. The present study was undertaken to analyze expression of FGF-2 and its receptors FGFR-2 and FGFR-3 in 72 PMOLs, 108 OSCC and 52 healthy controls, and their role in risk assessment for malignant transformation of Leukoplakia (LKP) and Oral submucous fibrosis (OSMF) to OSCC. Immunohistochemistry was performed using antibodies against FGF-2, FGFR-2 and FGFR-3. IHC results were validated by Real Time PCR. Expression of FGF-2, FGFR-2 and FGFR-3 was upregulated from PMOLs to OSCC. While 90% (9/10) of PMOLs which showed malignant transformation (transformed) expressed FGF-2, only 24.19% cases (15/62) of PMOLs which were not transformed (untransformed) to OSCC expressed FGF-2. Similarly, FGFR-2 expression was seen in 16/62 (25.81%) of untransformed PMOLs and 8/10 (80%) cases of transformed PMOLs. FGFR-3 expression was observed in 23/62 (37.10%) cases of untransformed PMOLs and 6/10 (60%) cases of transformed PMOLs. A significant association of FGF-2 and FGFR-2 expression with malignant transformation from PMOLs to OSCC was observed both at phenotypic and molecular level. The results suggest that FGF-2 and FGFR-2 may be useful as biomarkers of malignant transformation in patients with OSMF and LKP. PMID:26465941

  16. Fibroblast Growth Factor (FGF-2) and Its Receptors FGFR-2 and FGFR-3 May Be Putative Biomarkers of Malignant Transformation of Potentially Malignant Oral Lesions into Oral Squamous Cell Carcinoma.

    PubMed

    Nayak, Seema; Goel, Madhu Mati; Makker, Annu; Bhatia, Vikram; Chandra, Saumya; Kumar, Sandeep; Agarwal, S P

    2015-01-01

    There are several factors like angiogenesis, lymphangiogenesis, genetic alterations, mutational factors that are involved in malignant transformation of potentially malignant oral lesions (PMOLs) to oral squamous cell carcinoma (OSCC). Fibroblast growth factor-2 (FGF-2) is one of the prototypes of the large family of growth factors that bind heparin. FGF-2 induces angiogenesis and its receptors may play a role in synthesis of collagen. FGFs are involved in transmission of signals between the epithelium and connective tissue, and influence growth and differentiation of a wide variety of tissue including epithelia. The present study was undertaken to analyze expression of FGF-2 and its receptors FGFR-2 and FGFR-3 in 72 PMOLs, 108 OSCC and 52 healthy controls, and their role in risk assessment for malignant transformation of Leukoplakia (LKP) and Oral submucous fibrosis (OSMF) to OSCC. Immunohistochemistry was performed using antibodies against FGF-2, FGFR-2 and FGFR-3. IHC results were validated by Real Time PCR. Expression of FGF-2, FGFR-2 and FGFR-3 was upregulated from PMOLs to OSCC. While 90% (9/10) of PMOLs which showed malignant transformation (transformed) expressed FGF-2, only 24.19% cases (15/62) of PMOLs which were not transformed (untransformed) to OSCC expressed FGF-2. Similarly, FGFR-2 expression was seen in 16/62 (25.81%) of untransformed PMOLs and 8/10 (80%) cases of transformed PMOLs. FGFR-3 expression was observed in 23/62 (37.10%) cases of untransformed PMOLs and 6/10 (60%) cases of transformed PMOLs. A significant association of FGF-2 and FGFR-2 expression with malignant transformation from PMOLs to OSCC was observed both at phenotypic and molecular level. The results suggest that FGF-2 and FGFR-2 may be useful as biomarkers of malignant transformation in patients with OSMF and LKP.

  17. Transformation of the mechanism of triple-helix peptide folding in the absence of a C-terminal nucleation domain and its implications for mutations in collagen disorders.

    PubMed

    Buevich, Alexei V; Silva, Teresita; Brodsky, Barbara; Baum, Jean

    2004-11-05

    Folding abnormalities of the triple helix have been demonstrated in collagen diseases such as osteogenesis imperfecta in which the mutation leads to the substitution of a single Gly in the (Gly-X-Y)n sequence pattern by a larger residue. Model peptides can be used to clarify the details of normal collagen folding and the consequences of the interruption of that folding by a Gly substitution. NMR and CD studies show that placement of a (GPO)4 nucleation domain at the N terminus rather than the C terminus of a native collagen sequence allows the formation of a stable triple helix but alters the folding mechanism. Although C- to N-terminal directional folding occurs when the nucleation domain is at the C terminus, there is no preferential folding direction when the nucleation domain is at the N terminus. The lack of zipper-like directional folding does not interfere with triple-helix formation, and when a Gly residue is replaced by Ser to model an osteogenesis imperfecta mutation, the peptide with the N-terminal (GPO)4 domain can still form a good triple helix N-terminal to the mutation site. These peptide studies raise the possibility that mutant collagen could fold in a C to N direction in a zipper-like manner up to the mutation site and that completion of the triple helix N-terminal to the mutation would involve an alternative mechanism.

  18. Interleukin-13 modulates collagen homeostasis in human skin and keloid fibroblasts.

    PubMed

    Oriente, A; Fedarko, N S; Pacocha, S E; Huang, S K; Lichtenstein, L M; Essayan, D M

    2000-03-01

    Interleukin (IL)-13 has been implicated in the pathogenesis of various diseases characterized by fibrosis. We describe the effects of IL-13 on collagen homeostasis from normal (NF) and keloid (KF) fibroblasts and compare these effects with those of IL-4 and transforming growth factor (TGF)-beta(1). Total collagen generation was up-regulated in NF after 48 h of stimulation by IL-13; in KF, IL-13 stimulated a more rapid collagen response. The kinetics and magnitude of collagen generation induced by IL-13 were equivalent to those induced by similar concentrations of IL-4 and TGF-beta(1). Collagen type I production paralleled total collagen generation from both NF and KF; however, IL-4-induced collagen type I and total collagen production from KF was more transient than that induced by either IL-13 or TGF-beta(1). Procollagen 1alpha1 gene expression was induced in KF by stimulation with IL-13 for 24 h. Moreover, IL-13 was unique among these three cytokines in its ability to induce gene expression for procollagen 3alpha1. Finally, IL-13 inhibited IL-1beta-induced matrix metalloproteinase (MMP)-1 and MMP-3 production and enhanced tissue inhibitor of metalloproteinase (TIMP)-1 generation from NF; although similar effects were observed with IL-4, TGF-beta(1) transiently enhanced MMP-1 and MMP-3 generation without effecting TIMP-1. In KF, IL-13 and IL-4 inhibited MMP-3, whereas TGF-beta(1) enhanced MMP-3; TIMP-1 was unaffected by any of the three cytokines. These data demonstrate both the profibrotic effects of IL-13 on collagen homeostasis and the potential differential regulation of collagen homeostasis in fibroblast subtypes by IL-13.

  19. Handling Arabidopsis plants: growth, preservation of seeds, transformation, and genetic crosses.

    PubMed

    Rivero, Luz; Scholl, Randy; Holomuzki, Nicholas; Crist, Deborah; Grotewold, Erich; Brkljacic, Jelena

    2014-01-01

    Growing healthy plants is essential for the advancement of Arabidopsis thaliana (Arabidopsis) research. Over the last 20 years, the Arabidopsis Biological Resource Center (ABRC) has collected and developed a series of best-practice protocols, some of which are presented in this chapter. Arabidopsis can be grown in a variety of locations, growth media, and environmental conditions. Most laboratory accessions and their mutant or transgenic derivatives flower after 4-5 weeks and set seeds after 7-8 weeks, under standard growth conditions (soil, long day, 23 ºC). Some mutant genotypes, natural accessions, and Arabidopsis relatives require strict control of growth conditions best provided by growth rooms, chambers, or incubators. Other lines can be grown in less-controlled greenhouse settings. Although the majority of lines can be grown in soil, certain experimental purposes require utilization of sterile solid or liquid growth media. These include the selection of primary transformants, identification of homozygous lethal individuals in a segregating population, or bulking of a large amount of plant material. The importance of controlling, observing, and recording growth conditions is emphasized and appropriate equipment required to perform monitoring of these conditions is listed. Proper conditions for seed harvesting and preservation, as well as seed quality control, are also described. Plant transformation and genetic crosses, two of the methods that revolutionized Arabidopsis genetics, are introduced as well.

  20. Spatiotemporal Regulation of Chondrogenic Differentiation with Controlled Delivery of Transforming Growth Factor-β1 from Gelatin Microspheres in Mesenchymal Stem Cell Aggregates

    PubMed Central

    Solorio, Loran D.; Dhami, Chirag D.; Dang, Phuong N.; Vieregge, Eran L.

    2012-01-01

    The precise spatial and temporal presentation of growth factors is critical for cartilage development, during which tightly controlled patterns of signals direct cell behavior and differentiation. Recently, chondrogenic culture of human mesenchymal stem cells (hMSCs) has been improved through the addition of polymer microspheres capable of releasing growth factors directly to cells within cellular aggregates, eliminating the need for culture in transforming growth factor-β1 (TGF-β1)-containing medium. However, the influence of specific patterns of spatiotemporal growth factor presentation on chondrogenesis within microsphere-incorporated cell systems is unclear. In this study, we examined the effects of altering the chondrogenic microenvironment within hMSC aggregates through varying microsphere amount, growth factor concentration per microsphere, and polymer degradation time. Cartilage formation was evaluated in terms of DNA, glycosaminoglycan, and type II collagen in hMSCs from three donors. Chondrogenesis equivalent to or greater than that of aggregates cultured in medium containing TGF-β1 was achieved in some conditions, with varied differentiation based on the specific conditions of microsphere incorporation. A more spatially distributed delivery of TGF-β1 from a larger mass of fast-degrading microspheres improved differentiation by comparison with delivery from a smaller mass of microspheres with a higher TGF-β1 concentration per microsphere, although the total amount of growth factor per aggregate was the same. Results also indicated that the rate and degree of chondrogenesis varied on a donor-to-donor basis. Overall, this study elucidates the effects of varied conditions of TGF-β1-loaded microsphere incorporation on hMSC chondrogenesis, demonstrating that both spatiotemporal growth factor presentation and donor variability influence chondrogenic differentiation within microsphere-incorporated cellular constructs. PMID:23197869

  1. Onset and progression of pathological lesions in transforming growth factor-beta 1-deficient mice.

    PubMed Central

    Boivin, G. P.; O'Toole, B. A.; Orsmby, I. E.; Diebold, R. J.; Eis, M. J.; Doetschman, T.; Kier, A. B.

    1995-01-01

    Null-mutant (knockout) mice were obtained through disruption of the sixth exon of the endogenous transforming growth factor-beta 1 allele in murine embryonic stem cells via homologous recombination. Mice lacking transforming growth factor-beta 1 (mutants) were born grossly indistinguishable from wild-type littermates. With time, mutant mice exhibited a wasting phenotype that manifested itself in severe weight loss and dishevelled appearance (between 15 and 36 days of age). Examination of these moribund mice histologically revealed that transforming growth factor-beta 1-deficient mice exhibit a moderate to severe, multifocal, organ-dependent, mixed inflammatory cell response adversely affecting the heart, stomach, diaphragm, liver, lung, salivary gland, and pancreas. Because of the known multifunctional nature of transforming growth factor-beta 1 on the control of growth and differentiation of many different cell types, it is important to determine the degree to which the inflammatory response interacts with or masks other deficiencies that are present. To this end, we examined the extent and nature of the inflammatory lesions in different ages of neonatal knockout mice (5, 7, 10, and 14 days of age) and older moribund mice (> 15 days of age) and compared them with the histology seen in wild-type normal animals. Mild inflammatory infiltrates were first observed in 5-day mutant mice in the heart, by day 7 in the lung, salivary gland, and pancreas, and by day 14 inflammatory lesions were found in almost all organs examined. Moderate to severe inflammation was not present until the mice were 10 to 14 days old. In the older animals, there was a slight increase in the severity of the inflammatory lesions as the mice aged. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7856734

  2. T-cell growth transformation by herpesvirus saimiri is independent of STAT3 activation.

    PubMed

    Heck, Elke; Lengenfelder, Doris; Schmidt, Monika; Müller-Fleckenstein, Ingrid; Fleckenstein, Bernhard; Biesinger, Brigitte; Ensser, Armin

    2005-05-01

    Herpesvirus saimiri (saimirine herpesvirus 2) (HVS), a T-lymphotropic tumor virus, induces lymphoproliferative disease in several species of New World primates. In addition, strains of HVS subgroup C are able to transform T cells of Old World primates, including humans, to permanently growing T-cell lines. In concert with the Stp oncoprotein, the tyrosine kinase-interacting protein (Tip) of HVS C488 is required for T-cell transformation in vitro and lymphoma induction in vivo. Tip was previously shown to interact with the protein tyrosine kinase Lck. Constitutive activation of signal transducers and activators of transcription (STATs) has been associated with oncogenesis and has also been detected in HVS-transformed T-cell lines. Furthermore, Tip contains a putative consensus YXPQ binding motif for the SH2 (src homology 2) domains of STAT1 and STAT3. Tip tyrosine phosphorylation at this site was required for binding of STATs and induction of STAT-dependent transcription. Here we sought to address the relevance of STAT activation for transformation of human T cells by introducing a tyrosine-to-phenylalanine mutation in the YXPQ motif of Tip of HVS C488. Unexpectedly, the recombinant virus was still able to transform human T lymphocytes, but it had lost its capability to activate STAT3 as well as STAT1. This demonstrates that growth transformation by HVS is independent of STAT3 activation.

  3. Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction

    NASA Technical Reports Server (NTRS)

    Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.

    1991-01-01

    Solubilized interstitial collagens will form a fibrillar, gel-like lattice when brought to physiologic conditions. In the presence of human dermal fibroblasts the collagen lattice will contract. The rate of contraction can be determined by computer-assisted planemetry. The mechanisms involved in contraction are as yet unknown. Using this system it was found that the rate of contraction was markedly decreased when collagen lacking telopeptides was substituted for native collagen. Histidinohydroxylysinonorleucine (HHL) is a major stable trifunctional collagen cross-link in mature skin that involves a carboxyl terminal, telopeptide site 16c, the sixteenth amino acid residue from the carboxy terminal of the telopeptide region of alpha 1 (I) in type I collagen. Little, if any, HHL was present in native, purified, reconstituted, soluble collagen fibrils from 1% acetic acid-extracted 2-year-old bovine skin. In contrast, HHL cross-links were present (0.22 moles of cross-link per mole of collagen) in lattices of the same collagen contracted by fibroblasts. However, rat tail tendon does not contain HHL cross-links, and collagen lattices made of rat tail tendon collagen are capable of contraction. This suggests that telopeptide sites, and not mature HHL cross-links per se, are essential for fibroblasts to contract collagen lattices. Beta-aminopropionitrile fumarate (BAPN), a potent lathyrogen that perturbs collagen cross-linking by inhibition of lysyl oxidase, also inhibited the rate of lattice cell contraction in lattices composed of native collagen. However, the concentrations of BAPN that were necessary to inhibit the contraction of collagen lattices also inhibited fibroblast growth suggestive of cellular toxicity. In accordance with other studies, we found no inhibition of the rate of lattice contraction when fibronectin-depleted serum was used. Electron microscopy of contracted gels revealed typical collagen fibers with a characteristic axial periodicity. The data

  4. TRANSFORMER

    DOEpatents

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  5. Tumstatin, the NC1 domain of {alpha}3 chain of type IV collagen, is an endogenous inhibitor of pathological angiogenesis and suppresses tumor growth

    SciTech Connect

    Hamano, Yuki; Kalluri, Raghu . E-mail: rkalluri@bidmc.harvard.edu

    2005-07-29

    Angiogenesis, the formation of new blood vessels, is required for physiological development of vertebrates and repair of damaged tissue, but in the pathological setting contributes to progression of cancer. During tumor growth, angiogenesis is supported by up-regulation of angiogenic stimulators (pro-angiogenic) and down-regulation of angiogenic inhibitors (anti-angiogenic). The switch to the angiogenic phenotype (angiogenic switch) allows the tumors to grow and facilitate metastasis. The bioactive NC1 domain of type IV collagen {alpha}3 chain, called tumstatin, imparts anti-tumor activity by inducing apoptosis of proliferating endothelial cells. Tumstatin binds to {alpha}V{beta}3 integrin via a mechanism independent of the RGD-sequence recognition and inhibits cap-dependent protein synthesis in the proliferating endothelial cells. The physiological level of tumstatin is controlled by matrix metalloproteinase-9, which most effectively cleaves it from the basement membrane and its physiological concentration in the circulation keeps pathological angiogenesis and tumor growth in check. These findings suggest that tumstatin functions as an endogenous inhibitor of pathological angiogenesis and functions as a novel suppressor of proliferating endothelial cells and growth of tumors.

  6. An ex vivo model using human osteoarthritic cartilage demonstrates the release of bioactive insulin-like growth factor-1 from a collagen-glycosaminoglycan scaffold.

    PubMed

    Wardale, J; Mullen, L; Howard, D; Ghose, S; Rushton, N

    2015-07-01

    Biomimetic scaffolds hold great promise for therapeutic repair of cartilage, but although most scaffolds are tested with cells in vitro, there are very few ex vivo models (EVMs) where adult cartilage and scaffolds are co-cultured to optimize their interaction prior to in vivo studies. This study describes a simple, non-compressive method that is applicable to mammalian or human cartilage and provides a reasonable throughput of samples. Rings of full-depth articular cartilage slices were derived from human donors undergoing knee replacement for osteoarthritis and a 3 mm core of a collagen/glycosaminoglycan biomimetic scaffold (Tigenix, UK) inserted to create the EVM. Adult osteoarthritis chondrocytes were seeded into the scaffold and cultures maintained for up to 30 days. Ex vivo models were stable throughout experiments, and cells remained viable. Chondrocytes seeded into the EVM attached throughout the scaffold and in contact with the cartilage explants. Cell migration and deposition of extracellular matrix proteins in the scaffold was enhanced by growth factors particularly if the scaffold was preloaded with growth factors. This study demonstrates that the EVM represents a suitable model that has potential for testing a range of therapeutic parameters such as numbers/types of cell, growth factors or therapeutic drugs before progressing to costly pre-clinical trials.

  7. Newly developed rat brain pericyte cell line, TR-PCT1, responds to transforming growth factor-beta1 and beta-glycerophosphate.

    PubMed

    Asashima, Tomoko; Iizasa, Hisashi; Terasaki, Tetsuya; Hosoya, Ken-ichi; Tetsuka, Kazuhiro; Ueda, Masatsugu; Obinata, Masuo; Nakashima, Emi

    2002-03-01

    Brain pericytes form an incomplete envelope around endothelial cells and within the microvascular basement membrane of capillaries and postcapillary venules. Recently, it has been reported that brain pericytes exhibit pluripotency, regulation of endothelial cell activity, and macrophage activity. However, many molecular and cellular aspects of brain pericytes remain unclear. In this study, we have tried to establish a conditionally immortalized brain pericyte cell line (TR-PCT) derived from the brain capillary of a transgenic rat harboring a temperature-sensitive simian virus 40 T antigen gene. One of the clones was named TR-PCT1, and we established 6 clones of pericyte-like cells from a 16 week-old tsA58 transgenic rat. For comparison, primary pericytes from a Wistar rat were also studied. The expression of platelet-derived growth factor receptor beta, angiopoietin-1, osteopontin, and intercellular adhesion molecule-1 in TR-PCT1 was determined by reverse transcription-polymerase chain reaction. Transforming growth factor-beta1 enhanced a-smooth muscle actin expression in TR-PCT1, but this expression was reduced by subsequent treatment with basic fibroblast growth factor. When TR-PCT1 was seeded on type I collagen plates and treated with beta-glycerophosphate, nodules developed in the cells and these nodules reacted positively to von Kossa stain used as a marker of calcification. We believe that TR-PCT1 will help us gain a better understanding of the physiological and/or pathophysiological role of pericytes.

  8. Early growth response 3 (Egr-3) is induced by transforming growth factor-β and regulates fibrogenic responses.

    PubMed

    Fang, Feng; Shangguan, Anna J; Kelly, Kathleen; Wei, Jun; Gruner, Katherine; Ye, Boping; Wang, Wenxia; Bhattacharyya, Swati; Hinchcliff, Monique E; Tourtellotte, Warren G; Varga, John

    2013-10-01

    Members of the early growth response (Egr) gene family of transcription factors have nonredundant biological functions. Although Egr-3 is implicated primarily in neuromuscular development and immunity, its regulation and role in tissue repair and fibrosis has not been studied. We now show that in normal skin fibroblasts, Egr-3 was potently induced by transforming growth factor-β via canonical Smad3. Moreover, transient Egr-3 overexpression was sufficient to stimulate fibrotic gene expression, whereas deletion of Egr-3 resulted in substantially attenuated transforming growth factor-β responses. Genome-wide expression profiling in fibroblasts showed that genes associated with tissue remodeling and wound healing were prominently up-regulated by Egr-3. Notably, <5% of fibroblast genes regulated by Egr-1 or Egr-2 were found to be coregulated by Egr-3, revealing substantial functional divergence among these Egr family members. In a mouse model of scleroderma, development of dermal fibrosis was accompanied by accumulation of Egr-3-positive myofibroblasts in the lesional tissue. Moreover, skin biopsy samples from patients with scleroderma showed elevated Egr-3 levels in the dermis, and Egr-3 mRNA levels correlated with the extent of skin involvement. These results provide the first evidence that Egr-3, a functionally distinct member of the Egr family with potent effects on inflammation and immunity, is up-regulated in scleroderma and is necessary and sufficient for profibrotic responses, suggesting important and distinct roles in the pathogenesis of fibrosis.

  9. Hypoxia-inducible factor-1 (HIF-1) but not HIF-2 is essential for hypoxic induction of collagen prolyl 4-hydroxylases in primary newborn mouse epiphyseal growth plate chondrocytes.

    PubMed

    Aro, Ellinoora; Khatri, Richa; Gerard-O'Riley, Rita; Mangiavini, Laura; Myllyharju, Johanna; Schipani, Ernestina

    2012-10-26

    Hypoxia-inducible factors (HIFs) are the master regulators of hypoxia-responsive genes. They play a critical role in the survival, development, and differentiation of chondrocytes in the avascular hypoxic fetal growth plate, which is rich in extracellular matrix (ECM) and in its main component, collagens. Several genes involved in the synthesis, maintenance, and degradation of ECM are regulated by HIFs. Collagen prolyl 4-hydroxylases (C-P4Hs) are key enzymes in collagen synthesis because the resulting 4-hydroxyprolines are necessary for the stability of all collagen molecules. The vertebrate C-P4Hs are α(2)β(2) tetramers with three isoforms of the catalytic α subunit, yielding C-P4Hs of types I-III. C-P4H-I is the main form in most cells, but C-P4H-II is the major form in chondrocytes. We postulated here that post-translational modification of collagens, particularly 4-hydroxylation of proline residues, could be one of the modalities by which HIF regulates the adaptive responses of chondrocytes in fetal growth plates. To address this hypothesis, we used primary epiphyseal growth plate chondrocytes isolated from newborn mice with conditionally inactivated genes for HIF-1α, HIF-2α, or the von Hippel-Lindau protein. The data obtained showed that C-P4H α(I) and α(II) mRNA levels were increased in hypoxic chondrocytes in a manner dependent on HIF-1 but not on HIF-2. Furthermore, the increases in the C-P4H mRNA levels were associated with both increased amounts of the C-P4H tetramers and augmented C-P4H activity in hypoxia. The hypoxia inducibility of the C-P4H isoenzymes is thus likely to ensure sufficient C-P4H activity for collagen synthesis occurring in chondrocytes in a hypoxic environment.

  10. Growth factor expression in degenerated intervertebral disc tissue. An immunohistochemical analysis of transforming growth factor beta, fibroblast growth factor and platelet-derived growth factor.

    PubMed

    Tolonen, Jukka; Grönblad, Mats; Vanharanta, Heikki; Virri, Johanna; Guyer, Richard D; Rytömaa, Tapio; Karaharju, Erkki O

    2006-05-01

    Degenerated intervertebral disc has lost its normal architecture, and there are changes both in the nuclear and annular parts of the disc. Changes in cell shape, especially in the annulus fibrosus, have been reported. During degeneration the cells become more rounded, chondrocyte-like, whereas in the normal condition annular cells are more spindle shaped. These chondrocyte-like cells, often forming clusters, affect extracellular matrix turnover. In previous studies transforming growth factor beta (TGFbeta) -1 and -2, basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) have been highlighted in herniated intervertebral disc tissue. In the present study the same growth factors are analysed immunohistochemically in degenerated intervertebral disc tissue. Disc material was obtained from 16 discs operated for painful degenerative disc disease. Discs were classified according to the Dallas Discogram Description. Different disc regions were analysed in parallel. As normal control disc tissue material from eight organ donors was used. Polyclonal antibodies against different growth factors and TGFbeta receptor type II were used, and the immunoreaction was detected by the avidin biotin complex method. All studied degenerated discs showed immunoreactivity for TGFbeta receptor type II and bFGF. Fifteen of 16 discs were immunopositive for TGFbeta-1 and -2, respectively, and none showed immunoreaction for PDGF. Immunopositivity was located in blood vessels and in disc cells. In the nucleus pulposus the immunoreaction was located almost exclusively in chondrocyte-like disc cells, whereas in the annular region this reaction was either in chondrocyte-like disc cells, often forming clusters, or in fibroblast-like disc cells. Chondrocyte-like disc cells were especially prevalent in the posterior disrupted area. In the anterior area of the annulus fibrosus the distribution was more even between these two cell types. bFGF was expressed in the anterior annulus

  11. [THE ROLE OF TRANSFORMING GROWTH FACTOR-B IN IMMUNOPATHOGENESIS OF DISEASES OF CONNECTIVE TISSUE].

    PubMed

    Rudoi, A S; Moskalev, A V; Sboitchakov, V B

    2016-02-01

    The recent studies of molecular physiology of fibrillin and pathophysiology of inherent disorders of structure and function of connective tissue such as dissection and aneurysm of aorta, myxomatously altered cusps and prolapses of mitral valve, syndrome of hyper-mobility of joints, demonstrated that important role in development of these malformations play alterations of transfer of signals by growth factors and matrix cellular interaction. These conditions under manifesting Marfan's syndrome can be a consequence of anomalies of fibrillin-1 which deficiency unbrakes process of activation of transforming growth factor-β (TGFβ). The involvement of TGFβ in pathogenesis of Marfan's syndrome permits consider antagonists of angiotensin-transforming enzymes as potential pharmaceuticals in therapy of this disease. The article presents analysis of publications' data related to this problem.

  12. Emerging Roles of Transforming Growth Factor β Signaling in Diabetic Retinopathy.

    PubMed

    Wheeler, Sarah E; Lee, Nam Y

    2017-03-01

    Diabetic retinopathy (DR) is a serious complication of diabetes mellitus affecting about one third of diabetic adults. Despite its prevalence, treatment options are limited and often implemented only in the later stages of the disease. To date, the pathogenesis of DR has been extensively characterized in the context of elevated glucose, insulin, and VEGF signaling, although a growing number of other growth factors and molecules, including transforming growth factor β (TGF-β) are being recognized as important contributors and/or therapeutic targets. Here, we review the complex roles of TGF-β signaling in DR pathogenesis and progression. J. Cell. Physiol. 232: 486-489, 2017. © 2016 Wiley Periodicals, Inc.

  13. Insights into the Transforming Growth Factor-β Signaling Pathway in Cutaneous Melanoma

    PubMed Central

    Perrot, Carole Yolande; Javelaud, Delphine

    2013-01-01

    Transforming growth factor-β (TGF-β) is a pleiotropic growth factor with broad tissue distribution that plays critical roles during embryonic development, normal tissue homeostasis, and cancer. While its cytostatic activity on normal epithelial cells initially defined TGF-β signaling as a tumor suppressor pathway, there is ample evidence indicating that TGF-β is a potent pro-tumorigenic agent, acting via autocrine and paracrine mechanisms to promote peri-tumoral angiogenesis, together with tumor cell migration, immune escape, and dissemination to metastatic sites. This review summarizes the current knowledge on the implication of TGF-β signaling in melanoma. PMID:23717002

  14. Mediation of wound-related Rous sarcoma virus tumorigenesis by TFG (transforming growth factor)-. beta

    SciTech Connect

    Sieweke, M.H.; Bissell, M.J. ); Thompson, N.L.; Sporn, M.B. )

    1990-06-29

    In Rous sarcoma virus (RSV)-infected chickens, wounding leads to tumor formation with nearly 100% frequency in tissues that would otherwise remain tumor-free. Identifying molecular mediators of this phenomenon should yield important clues to the mechanisms involved in RSV tumorigenesis. Immunohistochemical staining showed that TGF-{beta} is present locally shortly after wounding, but not in unwounded controls. In addition, subcutaneous administration of recombinant transforming growth factor {beta}1 (TGF-{beta}1) could substitute completely for wounding in tumor induction. A treatment protocol of four doses of 800 nanograms of TGF-{beta} resulted in v-src-expressing tumors with 100% frequency; four doses of only 10 nanograms still led to tumor formation in 80% of the animals. This effect was specific, as other growth factors with suggested roles in would healing did not elicit the same response. Epidermal growth factor (EGF) or TGF-{alpha} had no effect, and platelet-derived growth factor (PDGF) or insulin-like growth factor-1 (IGF-1) yielded only occasional tumors after longer latency. TGF-{beta} release during the would-healing response may thus be a critical event that creates a conducive environment for RSV tumorigenesis and may act as a cofactor for transformation in this system. 31 refs., 3 figs., 2 tabs.

  15. [Effects of nitrogen regulators on fertilizer nitrogen transformation in meadow cinnamon soil and on pakchoi growth].

    PubMed

    Sun, Zhi-Mei; Zhang, Kuo; Liu, Jian-Tao; Si, Huan-Sen; Wang, Yan-Qun

    2012-09-01

    Soil incubation test and pot experiment were conducted to investigate the effects of dicyandiamide (DCD) and its combination with nano-carbon on the transformation of fertilizers (urea and ammonium bicarbonate) nitrogen (N) in meadow cinnamon soil, a typical soil type in North China Plain, and on the growth of pakchoi (Brassica chinensis). In the first two weeks after applying urea and ammonium bicarbonate, the soil NH4+-N and NO3(-)-N contents varied greatly, but little variation was observed since then. The effects of the applied fertilizer N on the pakchoi growth and its N use efficiency differed significantly at early growth stages, but had little difference at harvesting stage. The DCD inhibited the transformation of the fertilizer N (especially ammonium bicarbonate N) into nitrate markedly, and this effect increased with increasing DCD dose. Under the conditions of our experiment, the optimal application rate of DCD was 1.0-1.5% of applied fertilize N, which could increase the pakchoi yield significantly, improve the leaf color, decrease the plant nitrate contents, and increase the fertilizer N use efficiency. The combination of DCD and nano-carbon exerted a synergistic effect on inhibiting soil ammonium oxidation, and also, promoted the pakchoi growth and N utilization at early growth stages significantly and decreased the plant nitrate level at harvesting stage.

  16. Type I Collagen and Collagen Mimetics as Angiogenesis Promoting Superpolymers

    SciTech Connect

    Twardowski, T.; Fertala, A.; Orgel, J.P.R.O.; San Antonio, J.D.

    2008-07-18

    Angiogenesis, the development of blood vessels from the pre-existing vasculature, is a key component of embryogenesis and tissue regeneration. Angiogenesis also drives pathologies such as tumor growth and metastasis, and hemangioma development in newborns. On the other hand, promotion of angiogenesis is needed in tissues with vascular insufficiencies, and in bioengineering, to endow tissue substitutes with appropriate microvasculatures. Therefore, much research has focused on defining mechanisms of angiogenesis, and identifying pro- and anti-angiogenic molecules. Type I collagen, the most abundant protein in humans, potently stimulates angiogenesis in vitro and in vivo. Crucial to its angiogenic activity appears to be ligation and possibly clustering of endothelial cell (EC) surface {alpha}1{beta}1/{alpha}2{beta}1 integrin receptors by the GFPGER502-507 sequence of the collagen fibril. However, additional aspects of collagen structure and function that may modulate its angiogenic properties are discussed. Moreover, type I collagen and fibrin, another angiogenic polymer, share several structural features. These observations suggest strategies for creating 'angiogenic superpolymers', including: modifying type I collagen to influence its biological half-life, immunogenicity, and integrin binding capacity; genetically engineering fibrillar collagens to include additional integrin binding sites or angiogenic determinants, and remove unnecessary or deleterious sequences without compromising fibril integrity; and exploring the suitability of poly(ortho ester), PEG-lysine copolymer, tubulin, and cholesteric cuticle as collagen mimetics, and suggesting means of modifying them to display ideal angiogenic properties. The collagenous and collagen mimetic angiogenic superpolymers described here may someday prove useful for many applications in tissue engineering and human medicine.

  17. Extended Squire's transformation and its consequences for transient growth in a confined shear flow

    NASA Astrophysics Data System (ADS)

    John Soundar Jerome, J.; Chomaz, Jean-Marc

    2014-04-01

    The classical Squire transformation is extended to the entire eigenfunction structure of both Orr-Sommerfeld and Squire modes. For arbitrary Reynolds numbers Re, this transformation allows the solution of the initial-value problem for an arbitrary three-dimensional (3D) disturbance via a two-dimensional (2D) initial-value problem at a smaller Reynolds number Re2D. Its implications for the transient growth of arbitrary 3D disturbances is studied. Using the Squire transformation, the general solution of the initial-value problem is shown to predict large-Reynolds-number scaling for the optimal gain at all optimization times t with t/Re finite or large. This result is an extension of the well-known scaling laws first obtained by Gustavsson (J. Fluid Mech., vol. 224, 1991, pp. 241-260) and Reddy & Henningson (J. Fluid Mech., vol. 252, 1993, pp. 209-238) for arbitrary \\alpha Re, where \\alpha is the streamwise wavenumber. The Squire transformation is also extended to the adjoint problem and, hence, the adjoint Orr-Sommerfeld and Squire modes. It is, thus, demonstrated that the long-time optimal growth of 3D perturbations as given by the exponential growth (or decay) of the leading eigenmode times an extra gain representing its receptivity, may be decomposed as a product of the gains arising from purely 2D mechanisms and an analytical contribution representing 3D growth mechanisms equal to 1+(\\beta Re/Re2D)2G, where \\beta is the spanwise wavenumber and G is a known expression. For example, when the leading eigenmode is an Orr-Sommerfeld mode, it is given by the product of respective gains from the 2D Orr mechanism and an analytical expression representing the 3D lift-up mechanism. Whereas if the leading eigenmode is a Squire mode, the extra gain is shown to be solely due to the 3D lift-up mechanism.

  18. In vitro study of vancomycin release and osteoblast-like cell growth on structured calcium phosphate-collagen.

    PubMed

    Pon-On, Weeraphat; Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip; Tang, I-Ming

    2013-04-01

    A drug delivery vehicle consisting of spherical calcium phosphate-collagen particles covered by flower-like (SFCaPCol) blossoms composed of nanorod building blocks and their cellular response is studied. The spherical structure was achieved by a combination of sonication and freeze-drying. The SFCaPCol blossoms have a high surface area of approximately 280 m(2) g(-1). The blossom-like formation having a high surface area allows a drug loading efficiency of 77.82%. The release profile for one drug, vancomycin (VCM), shows long term sustained release in simulated body fluid (SBF), in a phosphate buffer saline (PBS, pH 7.4) solution and in culture media over 2 weeks with a cumulative release ~53%, 75% and 50%, respectively, over the first 7 days. The biocompatibility of the VCM-loaded SFCaPCol scaffold was determined by in vitro cell adhesion and proliferation tests of rat osteoblast-like UMR-106 cells. MTT tests indicated that UMR-106 cells were viable after exposure to the VCM loaded SFCaPCol, meaning that the scaffold (the flower-like blossoms) did not impair the cell's viability. The density of cells on the substrate was seen to increase with increasing cultured time.

  19. Activation of hageman factor by collagen

    PubMed Central

    Wilner, G. D.; Nossel, H. L.; LeRoy, E. C.

    1968-01-01

    Purified acid-soluble and insoluble human collagen accelerated the clotting of plateletpoor plasma in silicone-treated tubes. The clot-promoting effect did not appear to be due to thromboplastic activity since the collagen preparations did not activate factor X in the presence of factor VII and calcium. Instead, collagen appeared to accelerate clotting by activating Hageman factor (factor XII) on the basis of the following findings: collagen increased the clot-promoting activity of partially purified Hageman factor but exerted no further effect in the presence of kaolin, a known activator of Hageman factor; clot-promoting eluates were obtained from collagen exposed to normal, hemophilic, or PTC-deficient plasma but not from collagen exposed to Hageman or PTA-deficient plasma. The collagen molecule itself appeared to be required for the clot-promoting activity since digestion with collagenase or thermal denaturation at pH 2.5 (about 35°C) resulted in very marked reduction in clot-promoting activity. Since thermal denaturation is associated with transformation of collagen structure from triple helical to random coil form, it is suggested that the native form of collagen is essential for the ability to activate Hageman factor. Blockage of the free amino groups by treatment with nitrous acid or dinitrofluorobenzene only slightly reduced the clot-promoting activity of collagen. In contrast, since addition of cationic proteins to collagen markedly reduced pro-coagulant activity it is suggested that negatively charged sites on the collagen molecule are critical for Hageman factor activation. This suggestion is supported by the finding that pepsin treatment of collagen, which removes the predominantly negatively charged telopeptides, results in significant decrease in coagulant activity. Esterification of collagen, which neutralizes 80-90% of the free carboxyl groups, reduced coagulant activity by over 90% and it is suggested that the free carboxyl groups of glutamic and

  20. Effects of transforming growth factor beta-1 on growth-regulatory genes in tumour-derived human oral keratinocytes.

    PubMed Central

    Paterson, I. C.; Patel, V.; Sandy, J. R.; Prime, S. S.; Yeudall, W. A.

    1995-01-01

    This study examined the effect of transforming growth factor beta-1 (TGF-beta 1) on c-myc, RB1, junB and p53 expression together with pRb phosphorylation, in carcinoma-derived and normal human oral keratinocytes with a range of inhibitory responses to this ligand. Amplification of c-myc was observed in eight of eight tumour-derived cell lines and resulted in corresponding mRNA expression. The down-regulation of c-myc expression by TGF-beta 1 predominantly reflected growth inhibition by TGF-beta 1, but in two of eight tumour-derived cell lines which were partially responsive to TGF-beta 1 c-myc expression was unaltered by this ligand. While RB1 mRNA levels were unaltered by TGF-beta 1, the ligand caused the accumulation of the underphosphorylated form of the Rb protein in all cells irrespective of TGF-beta 1-induced growth arrest. junB expression was up-regulated by TGF-beta 1 in cells with a range of growth inhibitory responses. All cells contained mutant p53. TGF-beta 1 did not affect p53 mRNA expression in both tumour-derived and normal keratinocytes and there was no alteration in p53 protein levels in keratinocytes expressing stable p53 protein following TGF-beta 1 treatment. The data indicate that TGF-beta-induced growth control can exist independently of the presence of mutant p53 and the control of Rb phosphorylation and c-myc down-regulation. It may be that TGF-beta growth inhibition occurs via multiple mechanisms and that the loss of one pathway during tumour progression does not necessarily result in the abrogation of TGF-beta-induced growth control. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7547241

  1. Clinical uses of collagen shields.

    PubMed

    Poland, D E; Kaufman, H E

    1988-09-01

    Collagen shields immersed in tobramycin solution for one minute were applied to one eye each of 60 patients who had had cataract extraction, penetrating keratoplasty, or epikeratophakia or who had nonsurgical epithelial healing problems. The shields were well tolerated; one patient had the shield removed and one patient lost the shield in the early postoperative period. The surgical patients showed more rapid healing of epithelial defects after surgery with the use of the collagen shield. Patients with acute nonsurgical epithelial problems, such as contact lens abrasions and recurrent erosion, responded to the use of the collagen shield with improved healing. Patients with chronic epithelial defects responded poorly, presumably because underlying abnormalities in Bowman's layer prevented epithelial growth in the area of the defect. No infections were noted in any of the patients. The collagen shields appear to promote enhanced healing in patients with postsurgical and acute epithelial defects and to provide adequate antibiotic prophylaxis against infection in these vulnerable eyes.

  2. The efficacy of a novel collagen-gelatin scaffold with basic fibroblast growth factor for the treatment of vocal fold scar.

    PubMed

    Hiwatashi, Nao; Hirano, Shigeru; Mizuta, Masanobu; Kobayashi, Toshiki; Kawai, Yoshitaka; Kanemaru, Shin-Ichi; Nakamura, Tatsuo; Ito, Juichi; Kawai, Katsuya; Suzuki, Shigehiko

    2015-06-29

    Vocal fold scar remains a therapeutic challenge. Basic fibroblast growth factor (bFGF) was reported to have regenerative effects for vocal fold scar, although it has the disadvantage of rapid absorption in vivo. A collagen-gelatin sponge (CGS) can compensate for the disadvantage by providing a sustained release system. The current study evaluated the efficacy of CGS combined with bFGF on vocal fold scar, using rat fibroblasts for an in vitro model and a canine in vivo model. We prepared fibroblasts from scarred vocal folds (sVFs) in rats and showed that bFGF accelerated cell proliferation and suppressed expression levels of cleaved caspase 3 and α-smooth muscle actin. Has 1, Has 3, Fgf2, Hgf and Vegfa mRNA levels were significantly upregulated, while Col1a1 and Col3a1 were dose-dependently downregulated, with a maximum effect at 100 ng/ml bFGF. In an in vivo assay, 6 weeks after lamina propria stripping, beagles were divided into three groups: CGS alone (CGS group); CGS with bFGF (7 µg/cm(2) ; CGS + bFGF group); or a sham-treated group. Vibratory examination revealed that the glottal gap was significantly reduced in the bFGF group and the two implanted groups, whereas the CGS + bFGF group showed higher mucosal wave amplitude. Histological examination revealed significantly restored hyaluronic acid and elastin redistribution in the CGS + bFGF group and reductions in dense collagen deposition. These results provide evidence that CGS and bFGF combination therapy may have therapeutic potential and could be a promising tool for treating vocal fold scar. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Phase transformation process and step growth mechanism of hydroxyapatite whiskers under constant impulsion system

    NASA Astrophysics Data System (ADS)

    Chen, Changlian; Li, Jianqiu; Huang, Zhiliang; Cheng, Xiaokun; Yu, Jun; Wang, Han; Chi, Ru-an; Hu, Yuehua

    2011-07-01

    Hydroxyapatite (HAP) whiskers were synthesized using urea as the precipitator by a phase transformation method, and their phase transformation process and growth mechanism were investigated. The results showed that with the decomposition of urea and the corresponding increase of pH value of the reaction system, dicalcium phosphate anhydrous (DCPA) and octacalcium phosphate (OCP) were precipitated at pH of 3.3-4.3; then Ca 2+ and HPO42- ions began to be released from DCPA at pH values greater than 4.5. Finally HAP whiskers heterogeneously nucleated and grew up into short column crystals along the surface of the OCP flakes. In the absence of the ionic resources, DCPA gradually dissolved and the OCP flakes transformed into HAP continuously and the short columnar HAP whiskers grew up. The aspect ratio of the HAP whiskers with length of 20-100 μm and diameter of 1-2 μm was about 25. The HRTEM and AFM images showed that HAP whiskers grew along the c-axis direction, the (1 0 0) steps were clearly observed at their heads and the straight step lines instead of helical Frank ones were present on the side face of the (1 0 0) steps. The calculation on the basis of the surface energy of the HAP crystal showed that the growth rate of the (0 0 1) plane was the fastest, the growth rate at the homogeneous twist sites was the second and that at heterogeneous twist sites could be the slowest, which were the main factors finally leading to the preferential growth of HAP whiskers along the c-axis direction as well as the formation of the growth steps.

  4. Epithelial-mesenchymal interactions and lung branching morphogenesis. Role of polyamines and transforming growth factor beta1.

    PubMed

    Stabellini, G; Locci, P; Calvitti, M; Evangelisti, R; Marinucci, L; Bodo, M; Caruso, A; Canaider, S; Carinci, P

    2001-01-01

    Lung branching morphogenesis is a result of epithelial-mesenchymal interactions, which are in turn dependent on extracellular matrix composition and cytokine regulation. Polyamines have recently been demonstrated as able to modify chick embryo skin differentiation. In this work we have examined the effects of putrescine and spermidine during chick embryo lung morphogenesis in organotypic cultures by morphological, histochemical and biochemical examination. To verify the role of polyamines, we used specific inhibitors, such as bis-cyclohexylammonium sulphate and alfa-difluoromethylornithine, and transforming growth factor beta1, an ornithine decarboxylase and polyamine stimulator. Our data show that lung morphogenesis is significantly altered following the induced mesenchymal glycosaminoglycan changes. The increase of mesenchymal glycosaminoglycans is correlated with a stimulation of lung development in the presence of polyamines, and with its inhibition when transforming growth factor beta1 is added to the culture medium. The morphometric data show a uniform increase of both the mesenchyme and epithelial branching with spermidine and putrescine stimulus, whereas the mesenchymal substance alone is significantly increased in apical-median lung sections with transforming growth factor beta1 and transforming growth factor beta1 + spermidine lung cultures. Transforming growth factor beta1 and transforming growth factor beta1 + spermidine confirm the blocking of epithelial branching formations and fibroblast activation, and show that polyamines are unable to prevent the blocking of epithelial cells due to the inhibitory effect of transforming growth factor beta1.

  5. Impact of epidermal growth factor receptor and transforming growth factor-α on hepatitis C virus-induced hepatocarcinogenesis.

    PubMed

    Badawy, Afkar Abdel-Ghany; El-Hindawi, Ali; Hammam, Olfat; Moussa, Mona; Gabal, Samia; Said, Noha

    2015-10-01

    Epidermal growth factor receptor system plays a central hepato-protective and pro-regenerative role in liver. Transforming growth factor-α (TGF-α) is an important autocrine growth regulator of hepatocytes that plays a role in development of hepatocellular carcinoma (HCC) among patients with chronic hepatitis C (CHC). This study was done on 40 core liver biopsies from patients with CHC, 20 liver specimens from HCC cases on top of CHC as well as five normal controls. All were immunohistochemically stained with epidermal growth factor receptor (EGFR) and TGF-α antibodies. Some selected HCC cases were submitted for FISH technique to detect EGFR gene alteration. By immunohistochemistry EGFR and TGF-α were overexpressed in HCC and cirrhotic cases compared to CHC cases without cirrhosis. Also, their expression was stronger in CHC cases with higher grades of activity and stages of fibrosis compared to lower ones. FISH positive results for EGFR were detected in 33.3% of the examined HCC cases. EGFR and TGF-α can be used as predictive markers for activity, fibrosis, and carcinogenesis in CHC patients. Overexpression of EGFR in HCC patients can be promising in selecting those who can get benefit from anti-EGFR target therapy.

  6. Collagen scaffolds loaded with collagen-binding NGF-beta accelerate ulcer healing.

    PubMed

    Sun, Wenjie; Lin, Hang; Chen, Bing; Zhao, Wenxue; Zhao, Yannan; Xiao, Zhifeng; Dai, Jianwu

    2010-03-01

    Studies have shown that exogenous nerve growth factor (NGF) accelerates ulcer healing, but the inefficient growth factor delivery system limits its clinical application. In this report, we found that the native human NGF-beta fused with a collagen-binding domain (CBD) could form a collagen-based NGF targeting delivery system, and the CBD-fused NGF-beta could bind to collagen membranes efficiently. Using the rabbit dermal ischemic ulcer model, we have found that this targeting delivery system maintains a higher concentration and stronger bioactivity of NGF-beta on the collagen membranes by promoting peripheral nerve growth. Furthermore, it enhances the rate of ulcer healing through accelerating the re-epithelialization of dermal ulcer wounds and the formation of capillary lumens within the newly formed tissue area. Thus, collagen membranes loaded with collagen-targeting human NGF-beta accelerate ulcer healing efficiently.

  7. Transcriptional pathways associated with the slow growth phenotype of transformed Anaplasma marginale

    PubMed Central

    2013-01-01

    Background The ability to genetically manipulate bacteria has been fundamentally important for both basic biological discovery and translational research to develop new vaccines and antibiotics. Experimental alteration of the genetic content of prokaryotic pathogens has revealed both expected functional relationships and unexpected phenotypic consequences. Slow growth phenotypes have been reported for multiple transformed bacterial species, including extracellular and intracellular pathogens. Understanding the genes and pathways responsible for the slow growth phenotype provides the opportunity to develop attenuated vaccines as well as bacteriostatic antibiotics. Transformed Anaplasma marginale, a rickettsial pathogen, exhibits slow growth in vitro and in vivo as compared to the parent wild type strain, providing the opportunity to identify the underlying genes and pathways associated with this phenotype. Results Whole genome transcriptional profiling allowed for identification of specific genes and pathways altered in transformed A. marginale. Genes found immediately upstream and downstream of the insertion site, including a four gene operon encoding key outer membrane proteins, were not differentially transcribed between wild type and transformed A. marginale. This lack of significant difference in transcription of flanking genes and the large size of the insert relative to the genome were consistent with a trans rather than a cis effect. Transcriptional profiling across the complete genome identified the most differentially transcribed genes, including an iron transporter, an RNA cleaving enzyme and several genes involved in translation. In order to confirm the trend seen in translation-related genes, K-means clustering and Gene Set Enrichment Analysis (GSEA) were applied. These algorithms allowed evaluation of the behavior of genes as groups that share transcriptional status or biological function. Clustering and GSEA confirmed the initial observations and

  8. Engineered Cartilage via Self-Assembled hMSC Sheets with Incorporated Biodegradable Gelatin Microspheres Releasing Transforming Growth Factor-β1

    PubMed Central

    Solorio, Loran D.; Vieregge, Eran L.; Dhami, Chirag D.; Dang, Phuong N.; Alsberg, Eben

    2011-01-01

    Self-assembling cell sheets have shown great potential for use in cartilage tissue engineering applications, as they provide an advantageous environment for the chondrogenic induction of human mesenchymal stem cells (hMSCs). We have engineered a system of self-assembled, microsphere-incorporated hMSC sheets capable of forming cartilage in the presence of exogenous transforming growth factor β1 (TGF-β1) or with TGF-β1 released from incorporated microspheres. Gelatin microspheres with two different degrees of crosslinking were used to enable different cell-mediated microsphere degradation rates. Biochemical assays, histological and immunohistochemical analyses, and biomechanical testing were performed to determine biochemical composition, structure, and equilibrium modulus in unconfined compression after 3 weeks of culture. The inclusion of microspheres with or without loaded TGF-β1 significantly increased sheet thickness and compressive equilibrium modulus, and enabled more uniform matrix deposition by comparison to control sheets without microspheres. Sheets incorporated with fast-degrading microspheres containing TGF-β1 produced significantly more GAG and GAG per DNA than all other groups tested and stained more intensely for type II collagen. These findings demonstrate improved cartilage formation in microsphere-incorporated cell sheets, and describe a tailorable system for the chondrogenic induction of hMSCs without necessitating culture in growth factor-containing medium. PMID:22100386

  9. Axonal regeneration and remyelination evaluation of chitosan/gelatin-based nerve guide combined with transforming growth factor-β1 and Schwann cells.

    PubMed

    Nie, Xin; Deng, Manjing; Yang, Maojin; Liu, Luchuan; Zhang, Yongjie; Wen, Xiujie

    2014-01-01

    Despite efforts in peripheral nerve injury and regeneration, it is difficult to achieve a functional recovery following extended peripheral nerve lesions. Even if artificial nerve conduit, cell components and growth factors can enhance nerve regeneration, integration in peripheral nerve repair and regeneration remains yet to be explored. For this study, we used chitosan/gelatin nerve graft constructed with collagenous matrices as a vehicle for Schwann cells and transforming growth factor-β1 to bridge a 10-mm gap of the sciatic nerve and explored the feasibility of improving regeneration and reinnervation in rats. The nerve regeneration was assessed with functional recovery, electrophysiological test, retrograde labeling, and immunohistochemistry analysis during the post-operative period of 16 weeks. The results showed that the internal sides of the conduits were compact enough to prevent the connective tissues from ingrowth. Nerve conduction velocity, average regenerated myelin area, and myelinated axon count were similar to those treated with autograft (p > 0.05) but significantly higher than those bridged with chitosan/gelatin nerve graft alone (p < 0.05). Evidences from retrograde labeling and immunohistochemistry analysis are further provided in support of improving axonal regeneration and remyelination. A designed graft incorporating all of the tissue-engineering strategies for peripheral nerve regeneration may provide great progress in tissue engineering for nerve repair.

  10. 2D protrusion but not motility predicts growth factor-induced cancer cell migration in 3D collagen.

    PubMed

    Meyer, Aaron S; Hughes-Alford, Shannon K; Kay, Jennifer E; Castillo, Amalchi; Wells, Alan; Gertler, Frank B; Lauffenburger, Douglas A

    2012-06-11

    Growth factor-induced migration is a critical step in the dissemination and metastasis of solid tumors. Although differences in properties characterizing cell migration on two-dimensional (2D) substrata versus within three-dimensional (3D) matrices have been noted for particular growth factor stimuli, the 2D approach remains in more common use as an efficient surrogate, especially for high-throughput experiments. We therefore were motivated to investigate which migration properties measured in various 2D assays might be reflective of 3D migratory behavioral responses. We used human triple-negative breast cancer lines stimulated by a panel of receptor tyrosine kinase ligands relevant to mammary carcinoma progression. Whereas 2D migration properties did not correlate well with 3D behavior across multiple growth factors, we found that increased membrane protrusion elicited by growth factor stimulation did relate robustly to enhanced 3D migration properties of the MDA-MB-231 and MDA-MB-157 lines. Interestingly, we observed this to be a more reliable relationship than cognate receptor expression or activation levels across these and two additional mammary tumor lines.

  11. Interleukin 17 induces cartilage collagen breakdown: novel synergistic effects in combination with proinflammatory cytokines

    PubMed Central

    Koshy, P; Henderson, N; Logan, C; Life, P; Cawston, T; Rowan, A

    2002-01-01

    Objective: To investigate whether interleukin 17 (IL17), derived specifically from T cells, can promote type II collagen release from cartilage. The ability of IL17 to synergise with other proinflammatory mediators to induce collagen release from cartilage, and what effect anti-inflammatory agents had on this process, was also assessed. Methods: IL17 alone, or in combination with IL1, IL6, oncostatin M (OSM), or tumour necrosis factor α (TNFα), was added to bovine nasal cartilage explant cultures. Proteoglycan and collagen release were determined. Collagenolytic activity was determined by bioassay. Chondroprotective effects of IL4, IL13, transforming growth factor ß1 (TGFß1) and insulin-like growth factor-1 (IGF1) were assessed by inclusion in the explant cultures. Results: IL17 alone stimulated a dose dependent release of proteoglycan and type II collagen from bovine nasal cartilage explants. Suboptimal doses of IL17 synergised potently with TNFα, IL1, OSM, and IL6 to promote collagen degradation. This collagen release was completely inhibited by tissue inhibitor of metalloproteinase-1 and BB-94 (a synthetic metalloproteinase inhibitor), and was significantly reduced by IL4, IL13, TGFß1, and IGF1. In IL17 treated chondrocytes, mRNA expression for matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 was detected. Moreover, a synergistic induction of these MMPs was seen when IL17 was combined with other proinflammatory cytokines. Conclusions: IL17 can, alone and synergistically in combination with other proinflammatory cytokines, promote chondrocyte mediated MMP dependent type II collagen release from cartilage. Because levels of all these proinflammatory cytokines are raised in rheumatoid synovial fluids, this study suggests that IL17 may act as a potent upstream mediator of cartilage collagen breakdown in inflammatory joint diseases. PMID:12117676

  12. In vitro colonization of the muscle extracellular matrix components by Escherichia coli O157:H7: the influence of growth medium, temperature and pH on initial adhesion and induction of biofilm formation by collagens I and III.

    PubMed

    Chagnot, Caroline; Agus, Allison; Renier, Sandra; Peyrin, Frédéric; Talon, Régine; Astruc, Thierry; Desvaux, Mickaël

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 are responsible for repeated food-poisoning cases often caused by contaminated burgers. EHEC infection is predominantly a pediatric illness, which can lead to life-threatening diseases. Ruminants are the main natural reservoir for EHEC and food contamination almost always originates from faecal contamination. In beef meat products, primary bacterial contamination occurs at the dehiding stage of slaughtering. The extracellular matrix (ECM) is the most exposed part of the skeletal muscles in beef carcasses. Investigating the adhesion to the main muscle fibrous ECM proteins, insoluble fibronectin, collagen I, III and IV, laminin-α2 and elastin, results demonstrated that the preceding growth conditions had a great influence on subsequent bacterial attachment. In the tested experimental conditions, maximal adhesion to fibril-forming collagens I or III occurred at 25°C and pH 7. Once initially adhered, exposure to lower temperatures, as applied to meat during cutting and storage, or acidification, as in the course of post-mortem physiological modifications of muscle, had no effect on detachment, except at pHu. In addition, dense biofilm formation occurred on immobilized collagen I or III and was induced in growth medium supplemented with collagen I in solution. From this first comprehensive investigation of EHEC adhesion to ECM proteins with respect to muscle biology and meat processing, new research directions for the development of innovative practices to minimize the risk of meat contamination are further discussed.

  13. Advanced-glycation-end-product-cholesterol-aggregated-protein accelerates the proliferation of mesangial cells mediated by transforming-growth-factor-beta 1 receptors and the ERK-MAPK pathway.

    PubMed

    Hirasawa, Yasushi; Sakai, Takayuki; Ito, Masanori; Yoshimura, Hiromitsu; Feng, Yibin; Nagamatsu, Tadashi

    2011-12-15

    Hyperglycemia and hyperlipidemia are considered critical to the development of diabetic nephropathy. The aim of this study is to clarify the effect of cholesterol on advanced-glycation-end-products and the mechanisms behind the advanced-glycation-end-product-cholesterol-aggregated bovine serum albumin (BSA)-induced proliferation of mesangial cells. Mesangial cells were treated with advanced-glycation-end-product-cholesterol-aggregated-BSA, and RNA and protein were isolated. Cholesterol caused a 1.5-fold increase in fluorescent intensity and 2-fold increase in advanced-glycation-end-products in vitro. Pyridoxamine, aminoguanidine, and N-acetyl-l-cycteine suppressed the production of advanced-glycation-end-product-cholesterol-aggregated-BSA. Advanced-glycation-end-product-cholesterol-BSA was analyzed by matrix-assisted-laser-desorption/ionization-time of flight mass spectrometry, and peaks were found to shift toward a higher mass. Advanced-glycation-end-product-cholesterol-aggregated-BSA induced overexpression of the mRNA of transforming growth factor-beta1, collagen type 1, collagen type 4 and receptor for advanced-glycation-end-products, and the proliferation of mesangial cells. The injection of advanced-glycation-end-product-cholesterol-aggregated-BSA caused glomerular changes and albuminuria in non-diabetic mice. A transforming-growth-factor-beta receptor 1 kinase inhibitor or Mitogen-activated-Protein-Kinase/Extracellular-Signal-regulated-Kinase kinase (ERK) inhibitor (U-0126) suppressed the proliferation of mesangial cells induced by advanced-glycation-end-product-cholesterol-aggregated-BSA dose-dependently. U-0126 inhibited the phosphorylation of ERK1/2 in advanced-glycation-end-product-cholesterol-aggregated-BSA treated mesangial cells. These findings suggested that cholesterol promotes the formation of advanced-glycation-end-products-protein and that advanced-glycation-end-product-cholesterol-aggregated protein stimulates mesangial cells to proliferate via

  14. Expression of transforming growth factor-beta 1 in normal and dyschondroplastic articular growth cartilage of the young horse.

    PubMed

    Henson, F M; Schofield, P N; Jeffcott, L B

    1997-11-01

    This study describes the distribution pattern of transforming growth factor-beta 1 (TGF-beta 1) mRNA and protein in normal pre- and post natal growth cartilage and alterations present in lesions of dyschondroplasia (osteochondrosis). TGF-beta 1 expression and immunoreactivity have been investigated by in situ hybridisation and immunolocalisation in the articular/epiphyseal growth cartilage of the lateral trochlear ridge of the distal femur. Cartilage was obtained from 19 normal Thoroughbred horses (5 prenatal and 14 post natal horses) and 15 post natal horses with dyschondroplasia (DCP). TGF-beta 1 mRNA expression and immunoreactivity were detected in the proliferative and upper hypertrophic zones in both pre- and post natal normal articular/epiphyseal cartilage. However, mRNA itself was only detected in the mid- and lower hypertrophic zones. Immunoreactivity was identified intracellularly with some nuclear staining observed. In focal lesions of DCP mRNA expression and immunoreactivity were reduced compared to normal cartilage, but strong mRNA expression was observed in the chondrocyte clusters immediately surrounding a lesion of DCP. The results described in this study demonstrate alterations in TGF-beta 1 dyschondroplastic lesions and indicate that it could be involved in the pathogenesis of this condition in the horse.

  15. Control of human glioma cell growth, migration and invasion in vitro by transforming growth factor beta 1.

    PubMed Central

    Merzak, A.; McCrea, S.; Koocheckpour, S.; Pilkington, G. J.

    1994-01-01

    Factors involved in the control of the biological properties of gliomas, the major form of brain tumour in man, are poorly documented. We investigated the role of transforming growth factor beta 1 (TGF-beta 1) in the control of proliferation of human glioma cell lines as well as normal human fetal brain cells. The data presented show that TGF-beta 1 exerts a growth-inhibitory action on both human fetal brain cells and three cell lines derived from human glioma of different grades of malignancy. In addition, this growth-inhibitory effect is dose dependent and serum independent. Since TGF-beta 1 is known to be involved in the control of cell migration during ontogenesis and oncogenesis, we investigated the role of this factor in the motile and invasive behaviour that characterises human gliomas in vivo. TGF-beta 1 was found to elicit a strong stimulation of migration and invasiveness of glioma cells in vitro. In combination with recent data showing an inverse correlation between TGF-beta 1 expression in human gliomas and survival, these findings may suggest that TGF-beta 1 plays an important role in the malignant progression of gliomas in man. A study of the molecular mechanisms involved in the antiproliferative action and the invasion-promoting action of TGF-beta 1 may help to identify new targets in therapy for brain tumours. A combined antiproliferative and anti-invasive therapy could be envisaged. Images Figure 3 PMID:8054266

  16. Increased expression of transforming growth factor α precursors in acute experimental colitis in rats

    PubMed Central

    Hoffmann, P; Zeeh, J; Lakshmanan, J; Wu, V; Procaccino, F; Reinshagen, M; McRoberts, J; Eysselein, V

    1997-01-01

    Background and aim—Epidermal growth factor (EGF) and transforming growth factor α (TGF-α), members of the EGF family of growth factors, protect rat gastric and colonic mucosa against injury. Having shown previously that exogenously applied EGF protects rat colonic mucosa against injury, the aim of the present study was to evaluate the endogenously expressed ligand mediating the protective effect of EGF/TGF-α in vivo. 
Methods—In an experimental model of trinitrobenzene sulphonic acid (TNBS)/ ethanol induced colitis in rats EGF and TGF-α expression was evaluated using a ribonuclease protection assay, northern blot analysis, western blot analysis, and immunohistochemistry. 
Results—TGF-α mRNA increased 3-4 times at 4-8 hours after induction of colitis and returned to control levels within 24 hours. TGF-α immunoreactive protein with a molecular size of about 28kDa representing TGF-α precursors increased markedly after induction of colitis with a peak at 8-12 hours. No fully processed 5.6 kDa TGF-α protein was detected in normal or inflamed colon tissue. Only a weak signal for EGF mRNA expression was detected in the rat colon and no EGF protein was observed by immunohistochemistry or western blot analysis. 
Conclusions—TGF-α precursors are the main ligands for the EGF receptor in acute colitis. It is hypothesised that TGF-α precursors convey the biological activity of endogenous TGF-α peptides during mucosal defence and repair. 

 Keywords: transforming growth factor alpha (TGF-α); epidermal growth factor (EGF); precursor molecules; colitis; rat PMID:9301498

  17. The evidence for the role of transforming growth factor-beta in the formation of abnormal scarring.

    PubMed

    Chalmers, Richard L

    2011-06-01

    The complex biological and physiological mechanisms that result in poor quality scarring are still not fully understood. This review looks at current evidence of the role of transforming growth factor-beta (TGFβ) in this pathological process.

  18. Efficient synthesis of human type alpha transforming growth factor: its physical and biological characterization.

    PubMed Central

    Tam, J P; Sheikh, M A; Solomon, D S; Ossowski, L

    1986-01-01

    Human transforming growth factor type alpha (TGF-alpha) was synthesized by a stepwise solid-phase method with an overall yield of 26%. Synthetic TGF-alpha, consisting of 50 amino acid residues deduced from a cDNA precursor sequence, was purified in a single HPLC step. The homogeneity and primary structure were confirmed by several criteria including Edman degradation and mass spectrometry. Synthetic TGF-alpha was as active as murine epidermal growth factor in binding to the epidermal growth factor receptor and in stimulation of anchorage-dependent and of anchorage-independent growth of normal indicator cells in culture. Synthetic TGF-alpha stimulated plasminogen activator production in A 431 and HeLa cells; the stimulation was similar to that induced by epidermal growth factor. Furthermore, synthetic human TGF-alpha showed similar immunoreactivity when compared with rat TGF-alpha. Thus, the 50-amino acid TGF-alpha is likely to be the bioactive principle produced and secreted by tumor cell lines. PMID:3490662

  19. Expression of transforming growth factor-β2in vitreous body and adjacent tissues during prenatal development of human eye.

    PubMed

    Sukhikh, G T; Panova, I G; Smirnova, Yu A; Milyushina, L A; Firsova, N V; Markitantova, Yu V; Poltavtseva, R A; Zinov'eva, R D

    2010-12-01

    Expression of transforming growth factor-β2 was detected by PCR in the vitreous body, lens, retina, and ciliary-iris complex of human eye at early stages of fetal development. Immunochemical assay of the corresponding protein in eye tissues revealed a correlation between the localization of transforming growth factor-β2 and the development of intraocular hyaloid vascular network, its regression, formation of the vitreous body, and development of definite retinal vessels.

  20. Transforming growth factor β as regulator of cancer stemness and metastasis

    PubMed Central

    Bellomo, Claudia; Caja, Laia; Moustakas, Aristidis

    2016-01-01

    Key elements of cancer progression towards metastasis are the biological actions of cancer stem cells and stromal cells in the tumour microenvironment. Cross-communication between tumour and stromal cells is mediated by secreted cytokines, one of which, the transforming growth factor β (TGFβ), regulates essentially every cell within the malignant tissue. In this article, we focus on the actions of TGFβ on cancer stem cells, cancer-associated fibroblasts and immune cells that assist the overall process of metastatic dissemination. We aim at illustrating intricate connections made by various cells in the tumour tissue and which depend on the action of TGFβ. PMID:27537386

  1. Phase transformations during the growth of paracetamol crystals from the vapor phase

    NASA Astrophysics Data System (ADS)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.

    2014-07-01

    Phase transformations during the growth of paracetamol crystals from the vapor phase are studied by differential scanning calorimetry. It is found that the vapor-crystal phase transition is actually a superposition of two phase transitions: a first-order phase transition with variable density and a second-order phase transition with variable ordering. The latter, being a diffuse phase transition, results in the formation of a new, "pretransition," phase irreversibly spent in the course of the transition, which ends in the appearance of orthorhombic crystals. X-ray diffraction data and micrograph are presented.

  2. Regulation of Transforming Growth Factor–Beta in Diabetic Nephropathy: Implications for Treatment

    PubMed Central

    Zhu, Yanqing; Kataoka Usui, Hitomi; Sharma, Kumar

    2007-01-01

    The recognition of the drivers of matrix accumulation as a therapeutic target for diabetic nephropathy is accepted by the Nephrology and pharmaceutical community. Interventions focused around Transforming Growth Factor–beta (TGF–β) will likely be an important area of clinical investigation in the near future. Understanding the various pathways involved in stimulating TGF–β in the diabetic kidney is of paramount importance in devising strategies to combat the development and progression of diabetic nephropathy. In this review we highlight the major pathways involved in stimulating TGF–β production by elevated glucose and discuss the therapeutic implications. PMID:17418684

  3. Transforming growth factor-β in breast cancer: too much, too late

    PubMed Central

    Barcellos-Hoff, Mary Helen; Akhurst, Rosemary J

    2009-01-01

    The contribution of transforming growth factor (TGF)β to breast cancer has been studied from a myriad perspectives since seminal studies more than two decades ago. Although the action of TGFβ as a canonical tumor suppressor in breast is without a doubt, there is compelling evidence that TGFβ is frequently subverted in a malignant plexus that drives breast cancer. New knowledge that TGFβ regulates the DNA damage response, which underlies cancer therapy, reveals another facet of TGFβ biology that impedes cancer control. Too much TGFβ, too late in cancer progression is the fundamental motivation for pharmaceutical inhibition. PMID:19291273

  4. Water-soluble undenatured type II collagen ameliorates collagen-induced arthritis in mice.

    PubMed

    Yoshinari, Orie; Shiojima, Yoshiaki; Moriyama, Hiroyoshi; Shinozaki, Junichi; Nakane, Takahisa; Masuda, Kazuo; Bagchi, Manashi

    2013-11-01

    Earlier studies have reported the efficacy of type II collagen (C II) in treating rheumatoid arthritis (RA). However, a few studies have investigated the ability of the antigenic collagen to induce oral tolerance, which is defined as active nonresponse to an orally administered antigen. We hypothesized that water-soluble undenatured C II had a similar effect as C II in RA. The present study was designed to examine the oral administration of a novel, water-soluble, undenatured C II (commercially known as NEXT-II) on collagen-induced arthritis (CIA) in mice. In addition, the underlying mechanism of NEXT-II was also identified. After a booster dose (collagen-Freund's complete adjuvant), mice were assigned to control CIA group, or NEXT-II treatment group, to which saline and NEXT-II were administered, respectively. The arthritis index in the NEXT-II group was significantly lower compared with the CIA group. Serum IL-6 levels in the NEXT-II group were significantly lower compared with the CIA group, while serum IL-2 level was higher. Furthermore, oral administration of NEXT-II enhanced the proportion of CD4+CD25+T (Treg) cells, and gene expressions of stimulated dendritic cells induced markers for regulatory T cells such as forkhead box p3 (Foxp3), transforming growth factor (TGF)-β1, and CD25. These results demonstrated that orally administered water-soluble undenatured C II (NEXT-II) is highly efficacious in the suppression of CIA by inducing CD4+CD25+ Treg cells.

  5. Angiotensin II regulates collagen metabolism through modulating tissue inhibitor of metalloproteinase-1 in diabetic skin tissues.

    PubMed

    Ren, Meng; Hao, Shaoyun; Yang, Chuan; Zhu, Ping; Chen, Lihong; Lin, Diaozhu; Li, Na; Yan, Li

    2013-09-01

    We investigated the effect of angiotensin II (Ang II) on matrix metalloproteinase-1 (MMP-1)/tissue inhibitor of metalloproteinase-1 (TIMP-1) balance in regulating collagen metabolism of diabetic skin. Skin tissues from diabetic model were collected, and the primary cultured fibroblasts were treated with Ang II receptor inhibitors before Ang II treatment. The collagen type I (Coll I) and collagen type III (Coll III) were measured by histochemistry. The expressions of transforming growth factor-β (TGF-β), MMP-1, TIMP-1 and propeptides of types I and III procollagens in skin tissues and fibroblasts were quantified using polymerase chain reaction (PCR), Western blot or enzyme-linked immunosorbent assay (ELISA). Collagen dysfunction was documented by changed collagen I/III ratio in streptozotocin (STZ)-injected mice compared with controls. This was accompanied by increased expression of TGF-β, TIMP-1 and propeptides of types I and III procollagens in diabetic skin tissues. In primary cultured fibroblasts, Ang II prompted collagen synthesis accompanied by increases in the expressions of TGF-β, TIMP-1 and types I and III procollagens, and these increases were inhibited by losartan, an Ang II type 1 (AT1) receptor blocker, but not affected by PD123319, an Ang II type 2 (AT2) receptor antagonist. These findings present evidence that Ang-II-mediated changes in the productions of MMP-1 and TIMP-1 occur via AT1 receptors and a TGF-β-dependent mechanism.

  6. Epidermal growth factor promotes a mesenchymal over an amoeboid motility of MDA-MB-231 cells embedded within a 3D collagen matrix

    NASA Astrophysics Data System (ADS)

    Geum, Dongil T.; Kim, Beum Jun; Chang, Audrey E.; Hall, Matthew S.; Wu, Mingming

    2016-01-01

    The receptor of epidermal growth factor (EGFR) critically regulates tumor cell invasion and is a potent therapeutic target for treatment of many types of cancers, including carcinomas and glioblastomas. It is known that EGF regulates cell motility when tumor cells are embedded within a 3D biomatrix. However, roles of EGF in modulating tumor cell motility phenotype are largely unknown. In this article, we report that EGF promotes a mesenchymal over an amoeboid motility phenotype using a malignant breast tumor cell line, MDA-MB-231, embedded within a 3D collagen matrix. Amoeboid cells are rounded in shape, while mesenchymal cells are elongated, and their migrations are governed by a distinctly different set of biomolecules. Using single cell tracking analysis, we also show that EGF promotes cell dissemination through a significant increase in cell persistence along with a moderate increase of speed. The increase of persistence is correlated with the increase of the percentage of the mesenchymal cells within the population. Our work reveals a novel role of microenvironmental cue, EGF, in modulating heterogeneity and plasticity of tumor cell motility phenotype. In addition, it suggests a potential visual cue for diagnosing invasive states of breast cancer cells. This work can be easily extended beyond breast cancer cells.

  7. Harnessing High Density Lipoproteins to Block Transforming Growth Factor Beta and to Inhibit the Growth of Liver Tumor Metastases

    PubMed Central

    Medina-Echeverz, José; Fioravanti, Jessica; Díaz-Valdés, Nancy; Frank, Kathrin; Aranda, Fernando; Gomar, Celia; Ardaiz, Nuria; Dotor, Javier; Umansky, Viktor; Prieto, Jesús; Berraondo, Pedro

    2014-01-01

    Transforming growth factor β (TGF-β) is a powerful promoter of cancer progression and a key target for antitumor therapy. As cancer cells exhibit active cholesterol metabolism, high density lipoproteins (HDLs) appear as an attractive delivery system for anticancer TGFβ-inhibitory molecules. We constructed a plasmid encoding a potent TGF-β-blocking peptide (P144) linked to apolipoprotein A-I (ApoA-I) through a flexible linker (pApoLinkerP144). The ApoLinkerP144 sequence was then incorporated into a hepatotropic adeno-associated vector (AAVApoLinkerP144). The aim was to induce hepatocytes to produce HDLs containing a modified ApoA-I capable of blocking TGF-β. We observed that transduction of the murine liver with pApoLinkerP144 led to the appearance of a fraction of circulating HDL containing the fusion protein. These HDLs were able to attenuate TGF-β signaling in the liver and to enhance IL-12 -mediated IFN-γ production. Treatment of liver metastasis of MC38 colorectal cancer with AAVApoLinkerP144 resulted in a significant reduction of tumor growth and enhanced expression of IFN-γ and GM-CSF in cancerous tissue. ApoLinkerP144 also delayed MC38 liver metastasis in Rag2−/−IL2rγ−/− immunodeficient mice. This effect was associated with downregulation of TGF-β target genes essential for metastatic niche conditioning. Finally, in a subset of ret transgenic mice, a model of aggressive spontaneous metastatic melanoma, AAVApoLinkerP144 delayed tumor growth in association with increased CD8+ T cell numbers in regional lymph nodes. In conclusion, modification of HDLs to transport TGF-β-blocking molecules is a novel and promising approach to inhibit the growth of liver metastases by immunological and non-immunological mechanisms. PMID:24797128

  8. Redundancy and Molecular Evolution: The Rapid Induction of Bone Formation by the Mammalian Transforming Growth Factor-β3 Isoform.

    PubMed

    Ripamonti, Ugo; Duarte, Raquel; Parak, Ruqayya; Dickens, Caroline; Dix-Peek, Therese; Klar, Roland M

    2016-01-01

    The soluble osteogenic molecular signals of the transforming growth factor-β (TGF-β) supergene family are the molecular bases of the induction of bone formation and postnatal bone tissue morphogenesis with translation into clinical contexts. The mammalian TGF-β3 isoform, a pleiotropic member of the family, controls a vast array of biological processes including the induction of bone formation. Recombinant hTGF-β3 induces substantial bone formation when implanted with either collagenous bone matrices or coral-derived macroporous bioreactors in the rectus abdominis muscle of the non-human primate Papio ursinus. In marked contrast, the three mammalian TGF-βs do not initiate the induction of bone formation in rodents and lagomorphs. The induction of bone by hTGF-β3/preloaded bioreactors is orchestrated by inducing fibrin-fibronectin rings that structurally organize tissue patterning and morphogenesis within the macroporous spaces. Induced advancing extracellular matrix rings provide the structural anchorage for hyper chromatic cells, interpreted as differentiating osteoblasts re-programmed by hTGF-β3 from invading myoblastic and/or pericytic differentiated cells. Runx2 and Osteocalcin expression are significantly up-regulated correlating to multiple invading cells differentiating into the osteoblastic phenotype. Bioreactors pre-loaded with recombinant human Noggin (hNoggin), a BMPs antagonist, show down-regulation of BMP-2 and other profiled osteogenic proteins' genes resulting in minimal bone formation. Coral-derived macroporous constructs preloaded with binary applications of hTGF-β3 and hNoggin also show down-regulation of BMP-2 with the induction of limited bone formation. The induction of bone formation by hTGF-β3 is via the BMPs pathway and it is thus blocked by hNoggin. Our systematic studies in P. ursinus with translational hTGF-β3 in large cranio-mandibulo-facial defects in humans are now requesting the re-evaluation of "Bone: formation by

  9. Redundancy and Molecular Evolution: The Rapid Induction of Bone Formation by the Mammalian Transforming Growth Factor-β3 Isoform

    PubMed Central

    Ripamonti, Ugo; Duarte, Raquel; Parak, Ruqayya; Dickens, Caroline; Dix-Peek, Therese; Klar, Roland M.

    2016-01-01

    The soluble osteogenic molecular signals of the transforming growth factor-β (TGF-β) supergene family are the molecular bases of the induction of bone formation and postnatal bone tissue morphogenesis with translation into clinical contexts. The mammalian TGF-β3 isoform, a pleiotropic member of the family, controls a vast array of biological processes including the induction of bone formation. Recombinant hTGF-β3 induces substantial bone formation when implanted with either collagenous bone matrices or coral-derived macroporous bioreactors in the rectus abdominis muscle of the non-human primate Papio ursinus. In marked contrast, the three mammalian TGF-βs do not initiate the induction of bone formation in rodents and lagomorphs. The induction of bone by hTGF-β3/preloaded bioreactors is orchestrated by inducing fibrin-fibronectin rings that structurally organize tissue patterning and morphogenesis within the macroporous spaces. Induced advancing extracellular matrix rings provide the structural anchorage for hyper chromatic cells, interpreted as differentiating osteoblasts re-programmed by hTGF-β3 from invading myoblastic and/or pericytic differentiated cells. Runx2 and Osteocalcin expression are significantly up-regulated correlating to multiple invading cells differentiating into the osteoblastic phenotype. Bioreactors pre-loaded with recombinant human Noggin (hNoggin), a BMPs antagonist, show down-regulation of BMP-2 and other profiled osteogenic proteins' genes resulting in minimal bone formation. Coral-derived macroporous constructs preloaded with binary applications of hTGF-β3 and hNoggin also show down-regulation of BMP-2 with the induction of limited bone formation. The induction of bone formation by hTGF-β3 is via the BMPs pathway and it is thus blocked by hNoggin. Our systematic studies in P. ursinus with translational hTGF-β3 in large cranio-mandibulo-facial defects in humans are now requesting the re-evaluation of “Bone: formation by

  10. Immunocytochemical study of transforming growth factor expression in benign and malignant gliomas.

    PubMed Central

    Samuels, V.; Barrett, J. M.; Bockman, S.; Pantazis, C. G.; Allen, M. B.

    1989-01-01

    Immunocytochemical studies using polyclonal antibodies to epidermal growth factor (EGF) and transforming growth factor (TGF) alpha and beta were performed on 20 cases of human gliomas. EGF immunoreactive material was detected in both benign and malignant glial tumors. In addition, EGF immunoreactive material was detected in normal brain. TGF-beta was detected in both benign and malignant tumors, but was not detected in normal brain. In contrast, TGF-alpha was highly conserved in its expression, occurring predominantly in malignant compared with benign or normal brain tissue (P less than 0.0001). In malignant gliomas, glioblastomas contained 76% TGF-alpha reactivity (immunoreactive product), and anaplastic types contained 85% reactivity. Benign gliomas contained only 13% TGF-alpha reactivity. These findings support the role of TGF-alpha as an oncoprotein marker in brain neoplasms. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:2705509

  11. Roles for Transforming Growth Factor Beta Superfamily Proteins in Early Folliculogenesis

    PubMed Central

    Trombly, Daniel J.; Woodruff, Teresa K.; Mayo, Kelly E.

    2010-01-01

    Primordial follicle formation and the subsequent transition of follicles to the primary and secondary stages encompass the early events during folliculogenesis in mammals. These processes establish the ovarian follicle pool and prime follicles for entry into subsequent growth phases during the reproductive cycle. Perturbations during follicle formation can affect the size of the primordial follicle pool significantly, and alterations in follicle transition can cause follicles to arrest at immature stages or result in premature depletion of the follicle reserve. Determining the molecular events that regulate primordial follicle formation and early follicle growth may lead to the development of new fertility treatments. Over the last decade, many of the growth factors and signaling proteins that mediate the early stages of folliculogenesis have been identified using mouse genetic models, in vivo injection studies, and ex vivo organ culture approaches. These studies reveal important roles for the transforming growth factor β (TGF-β) superfamily of proteins in the ovary. This article reviews these roles for TGF-β family proteins and focuses in particular on work from our laboratories on the functions of activin in early folliculogenesis. PMID:19197801

  12. Cripto Binds Transforming Growth Factor β (TGF-β) and Inhibits TGF-β Signaling▿

    PubMed Central

    Gray, Peter C.; Shani, Gidi; Aung, Kevin; Kelber, Jonathan; Vale, Wylie

    2006-01-01

    Cripto is a developmental oncoprotein and a member of the epidermal growth factor-Cripto, FRL-1, Cryptic family of extracellular signaling molecules. In addition to having essential functions during embryogenesis, Cripto is highly expressed in tumors and promotes tumorigenesis. During development, Cripto acts as an obligate coreceptor for transforming growth factor β (TGF-β) ligands, including nodals, growth and differentiation factor 1 (GDF1), and GDF3. As an oncogene, Cripto is thought to promote tumor growth via mechanisms including activation of mitogenic signaling pathways and antagonism of activin signaling. Here, we provide evidence supporting a novel mechanism in which Cripto inhibits the tumor suppressor function of TGF-β. Cripto bound TGF-β and reduced the association of TGF-β with its type I receptor, TβRI. Consistent with its ability to block receptor assembly, Cripto suppressed TGF-β signaling in multiple cell types and diminished the cytostatic effects of TGF-β in mammary epithelial cells. Furthermore, targeted disruption of Cripto expression by use of small inhibitory RNA enhanced TGF-β signaling, indicating that endogenous Cripto plays a role in restraining TGF-β responses. PMID:17030617

  13. Strong magnetic field-assisted growth of carbon nanofibers and its microstructural transformation mechanism

    NASA Astrophysics Data System (ADS)

    Luo, Chengzhi; Fu, Qiang; Pan, Chunxu

    2015-03-01

    It is well-known that electric and magnetic fields can control the growth direction, morphology and microstructure of one-dimensional carbon nanomaterials (1-DCNMs), which plays a key role for its potential applications in micro-nano-electrics and devices. In this paper, we introduce a novel process for controlling growth of carbon nanofibers (CNFs) with assistance of a strong magnetic field (up to 0.5 T in the center) in a chemical vapor deposition (CVD) system. The results reveal that: 1) The CNFs get bundled when grown in the presence of a strong magnetic field and slightly get aligned parallel to the direction of the magnetic field; 2) The CNFs diameter become narrowed and homogenized with increase of the magnetic field; 3) With the increase of the magnetic field, the microstructure of CNFs is gradually changed, i.e., the strong magnetic field makes the disordered ``solid-cored'' CNFs transform into a kind of bamboo-liked carbon nanotubes; 4) We propose a mechanism that the reason for these variations and transformation is due to diamagnetic property of carbon atoms, so that it has direction selectivity in the precipitation process.

  14. Strong magnetic field-assisted growth of carbon nanofibers and its microstructural transformation mechanism

    PubMed Central

    Luo, Chengzhi; Fu, Qiang; Pan, Chunxu

    2015-01-01

    It is well-known that electric and magnetic fields can control the growth direction, morphology and microstructure of one-dimensional carbon nanomaterials (1-DCNMs), which plays a key role for its potential applications in micro-nano-electrics and devices. In this paper, we introduce a novel process for controlling growth of carbon nanofibers (CNFs) with assistance of a strong magnetic field (up to 0.5 T in the center) in a chemical vapor deposition (CVD) system. The results reveal that: 1) The CNFs get bundled when grown in the presence of a strong magnetic field and slightly get aligned parallel to the direction of the magnetic field; 2) The CNFs diameter become narrowed and homogenized with increase of the magnetic field; 3) With the increase of the magnetic field, the microstructure of CNFs is gradually changed, i.e., the strong magnetic field makes the disordered “solid-cored” CNFs transform into a kind of bamboo-liked carbon nanotubes; 4) We propose a mechanism that the reason for these variations and transformation is due to diamagnetic property of carbon atoms, so that it has direction selectivity in the precipitation process. PMID:25761381

  15. Genetic Analysis of Connective Tissue Growth Factor as an Effector of Transforming Growth Factor β Signaling and Cardiac Remodeling

    PubMed Central

    Accornero, Federica; van Berlo, Jop H.; Correll, Robert N.; Elrod, John W.; Sargent, Michelle A.; York, Allen; Rabinowitz, Joseph E.; Leask, Andrew

    2015-01-01

    The matricellular secreted protein connective tissue growth factor (CTGF) is upregulated in response to cardiac injury or with transforming growth factor β (TGF-β) stimulation, where it has been suggested to function as a fibrotic effector. Here we generated transgenic mice with inducible heart-specific CTGF overexpression, mice with heart-specific expression of an activated TGF-β mutant protein, mice with heart-specific deletion of Ctgf, and mice in which Ctgf was also deleted from fibroblasts in the heart. Remarkably, neither gain nor loss of CTGF in the heart affected cardiac pathology and propensity toward early lethality due to TGF-β overactivation in the heart. Also, neither heart-specific Ctgf deletion nor CTGF overexpression altered cardiac remodeling and function with aging or after multiple acute stress stimuli. Cardiac fibrosis was also unchanged by modulation of CTGF levels in the heart with aging, pressure overload, agonist infusion, or TGF-β overexpression. However, CTGF mildly altered the overall cardiac response to TGF-β when pressure overload stimulation was applied. CTGF has been proposed to function as a critical TGF-β effector in underlying tissue remodeling and fibrosis throughout the body, although our results suggest that CTGF is of minimal importance and is an unlikely therapeutic vantage point for the heart. PMID:25870108

  16. Constitutive Smad linker phosphorylation in melanoma: a mechanism of resistance to transforming growth factor-β-mediated growth inhibition.

    PubMed

    Cohen-Solal, Karine A; Merrigan, Kim T; Chan, Joseph L-K; Goydos, James S; Chen, Wenjin; Foran, David J; Liu, Fang; Lasfar, Ahmed; Reiss, Michael

    2011-06-01

    Melanoma cells are resistant to transforming growth factor-β (TGFβ)-induced cell-cycle arrest. In this study, we investigated a mechanism of resistance involving a regulatory domain, called linker region, in Smad2 and Smad3, main downstream effectors of TGFβ. Melanoma cells in culture and tumor samples exhibited constitutive Smad2 and Smad3 linker phosphorylation. Treatment of melanoma cells with the MEK1/2 inhibitor, U0126, or the two pan-CDK and GSK3 inhibitors, Flavopiridol and R547, resulted in decreased linker phosphorylation of Smad2 and Smad3. Overexpression of the linker phosphorylation-resistant Smad3 EPSM mutant in melanoma cells resulted in an increase in expression of p15(INK4B) and p21(WAF1) , as compared with cells transfected with wild-type (WT) Smad3. In addition, the cell numbers of EPSM Smad3-expressing melanoma cells were significantly reduced compared with WT Smad3-expressing cells. These results suggest that the linker phosphorylation of Smad3 contributes to the resistance of melanoma cells to TGFβ-mediated growth inhibition.

  17. Growth Hormone Induces Transforming Growth Factor-Beta-Induced Protein in Podocytes: Implications for Podocyte Depletion and Proteinuria.

    PubMed

    Chitra, P Swathi; Swathi, T; Sahay, Rakesh; Reddy, G Bhanuprakash; Menon, Ram K; Kumar, P Anil

    2015-09-01

    The glomerular podocytes form a major size selective barrier for the filtration of serum proteins and reduced podocyte number is a critical event in the pathogenesis of proteinuria during diabetic nephropathy (DN). An elevated level of growth hormone (GH) is implicated as a causative factor in the development of nephropathy in patients with type 1 diabetes mellitus. We have previously shown that podocytes express GH receptor and are a target for GH action. To elucidate the molecular basis for the effects of GH on podocyte depletion, we conducted PCR-array analyses for extracellular matrix and adhesion molecules in podocytes. Our studies reveal that GH increases expression of a gene that encodes transforming growth factor-beta-induced protein (TGFBIp) expression. Similarly, microarray data retrieved from the Nephromine database revealed elevation of TGFBIp in patients with DN. Treatment with GH results in increased secretion of extracellular TGFBIp by podocytes. Both GH and TGFBIp induced apoptosis and epithelial mesenchymal transition (EMT) of podocytes. Exposure of podocytes to GH and TGFBIp resulted in increased migration of cells and altered podocyte permeability to albumin across podocyte monolayer. Administration of GH to rats induced EMT and apoptosis in the glomerular fraction of the kidney. Therefore, we conclude that the GH-dependent increase in TGFBIp in the podocyte is one of the mechanisms responsible for podocyte depletion in DN.

  18. Endogenous sulfur dioxide alleviates collagen remodeling via inhibiting TGF-β/Smad pathway in vascular smooth muscle cells.

    PubMed

    Huang, Yaqian; Shen, Zhizhou; Chen, Qinghua; Huang, Pan; Zhang, Heng; Du, Shuxu; Geng, Bin; Zhang, Chunyu; Li, Kun; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-14

    The study was designed to investigate the role of endogenous sulfur dioxide (SO2) in collagen remodeling and its mechanisms in vascular smooth muscle cells (VSMCs). Overexpression of endogenous SO2 synthase aspartate aminotransferase (AAT) 1 or 2 increased SO2 levels and inhibited collagen I and III expressions induced by transforming growth factor (TGF)-β1 in VSMCs. In contrast, AAT1 or AAT2 knockdown induced a severe collagen deposition in TGF-β1-treated VSMCs. Furthermore, AAT1 or AAT2 overexpression suppressed procollagen I and III mRNA, upregulated matrix metalloproteinase (MMP)-13 expression, downregulated tissue inhibitors of MMP-1 level, and vice versa. Mechanistically, AAT1 or AAT2 overexpression inhibited phosphorylation of type I TGF-β receptor (TβRI) and Smad2/3 in TGF-β1-stimulated VSMCs. Whereas SB431542, an inhibitor of TGF-β1/Smad signaling pathway, attenuated excessive collagen deposition induced by AAT knockdown. Most importantly, ectopically expressing AAT or exogenous addition of 100 μM SO2 blocked AAT deficiency-aggravated collagen accumulation in TGF-β1-stimulatd VSMCs, while no inhibition was observed at 100 μM ethyl pyruvate. These findings indicated that endogenous SO2 alleviated collagen remodeling by controlling TGF-β1/TβRI/Smad2/3-mediated modulation of collagen synthesis and degradation.

  19. Parabens enable suspension growth of MCF-10A immortalized, non-transformed human breast epithelial cells.

    PubMed

    Khanna, Sugandha; Darbre, Philippa D

    2013-05-01

    Parabens (alkyl esters of p-hydroxybenzoic acid) are used extensively as preservatives in consumer products, and intact esters have been measured in several human tissues. Concerns of a potential link between parabens and breast cancer have been raised, but mechanistic studies have centred on their oestrogenic activity and little attention has been paid to any carcinogenic properties. In the present study, we report that parabens can induce anchorage-independent growth of MCF-10A immortalized but non-transformed human breast epithelial cells, a property closely related to transformation and a predictor of tumour growth in vivo. In semi-solid methocel suspension culture, MCF-10A cells produced very few colonies and only of a small size but the addition of 5 × 10(-4) M methylparaben, 10(-5) M n-propylparaben or 10(-5) M n-butylparaben resulted in a greater number of colonies per dish (P < 0.05 in each case) and an increased average colony size (P < 0.001 in each case). Dose-responses showed that concentrations as low as 10(-6) M methylparaben, 10(-7) M n-propylparaben and 10(-7) M n-butylparaben could increase colony numbers (P = 0.016, P = 0.010, P = 0.008, respectively): comparison with a recent measurement of paraben concentrations in human breast tissue samples from 40 mastectomies (Barr et al., 2012) showed that 22/40 of the patients had at least one of the parabens at the site of the primary tumour at or above these concentrations. To our knowledge, this is the first study to report that parabens can induce a transformed phenotype in human breast epithelial cells in vitro, and further investigation is now justified into a potential link between parabens and breast carcinogenesis.

  20. Fibroblast growth factor-2 promotes in vitro mitral valve interstitial cell repair through transforming growth factor-β/Smad signaling.

    PubMed

    Han, Li; Gotlieb, Avrum I

    2011-01-01

    Transforming growth factor (TGF)-β and fibroblast growth factor (FGF)-2 both promote repair in valve interstitial cell (VIC) injury models; however, the relationship between TGF-β and FGF-2 in wound repair are not well understood. VIC confluent monolayers were wounded by mechanical injury and incubated separately or in combination with FGF-2, neutralizing antibody to FGF-2, neutralizing antibody to TGF-β, and betaglycan antibody for 24 hours after wounding. Phosphorylated Smad2/3 (pSmad2/3) was localized at the wound edge (WE) and at the monolayer away from the WE. Down-regulation of pSmad2/3 protein expression via small-interfering RNA transfection was performed. The extent of wound closure was monitored for up to 96 hours. FGF-2 incubation resulted in a significant increase in nuclear pSmad2/3 staining at the WE. Neutralizing antibody to TGF-β alone or with FGF-2 present resulted in a similar significant decrease in pSmad2/3. Neutralizing antibody to FGF-2 alone or with FGF-2 present showed a similar significant decrease in pSmad2/3; however, significantly more staining was observed than treatment with neutralizing antibody to TGF-β. Incubation with betaglycan antibody inhibited FGF-2-mediated pSmad2/3 signaling. Wound closure corresponded with pSmad2/3 staining at the WE. Down-regulation of pSmad2/3 via small-interfering RNA transfection significantly reduced the extent to which FGF-2 promoted wound closure. Fibroblast growth factor-2 promotes in vitro VIC wound repair, at least in part, through the TGF-β/Smad2/3 signaling pathway.

  1. Hammerhead Ribozyme-Mediated Knockdown of mRNA for Fibrotic Growth Factors: Transforming Growth Factor-Beta 1 and Connective Tissue Growth Factor

    PubMed Central

    Robinson, Paulette M.; Blalock, Timothy D.; Yuan, Rong; Lewin, Alfred S.; Schultz, Gregory S.

    2013-01-01

    Excessive scarring (fibrosis) is a major cause of pathologies in multiple tissues, including lung, liver, kidney, heart, cornea, and skin. The transforming growth factor- β (TGF- β) system has been shown to play a key role in regulating the formation of scar tissue throughout the body. Furthermore, connective tissue growth factor (CTGF) has been shown to mediate most of the fibrotic actions of TGF- β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. Currently, no approved drugs selectively and specifically regulate scar formation. Thus, there is a need for a drug that selectively targets the TGF- β cascade at the molecular level and has minimal off-target side effects. This chapter focuses on the design of hammerhead ribozymes, measurement of kinetic activity, and assessment of knockdown mRNAs of TGF- β and CTGF in cell cultures. PMID:22131029

  2. Transforming growth factor-beta as a differentiating factor for cultured smooth muscle cells.

    PubMed

    Gawaziuk, J P; X; Sheikh, F; Cheng, Z-Q; Cattini, P A; Stephens, N L

    2007-10-01

    The aim of the present study was to determine whether the development of supercontractile smooth muscle cells, contributing to the nonspecific hyperreactivity of airways in asthmatic patients, is due to transforming growth factor (TGF)-beta. In cultured smooth muscle cells starved by removal of 10% foetal bovine serum for 7 days, growth arrest was seen; 30% became elongated and demonstrated super contractility. Study of conditioned medium suggested that the differentiating factor was TGF-beta. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was carried out on conditioned medium from the arrested cells. Two protein bands were identified as matrix metalloproteinase (MMP)-2 and TGF-beta1. To determine second messenger signalling by SMAD2, Western blotting and confocal microscopy were employed. Conditioned medium from arrested cultures showed the presence of MMP-2 and TGF-beta1, as revealed by SDS-PAGE; 68- and 25-kDa bands were seen. Differentiation was confirmed by upregulation of marker proteins, smooth muscle type myosin heavy chain and myosin light chain kinase. Confirmation was obtained by downregulating these proteins with decorin treatment, which reduces the levels of active TGF-beta and an adenoviral dominant-negative vector coding for a mutated type II TGF-beta-receptor. Activation of second messenger signalling was demonstrated immunocytochemically by the presence of phosphorylated SMAD2 and SMAD4. Transforming growth factor-beta is likely to be the differentiating factor responsible for the development of these supercontractile smooth muscle cells. The development of such cells in vivo after cessation of an asthmatic attack could contribute to the nonspecific hyperreactivity of airways seen in patients.

  3. Recombinant expression of hydroxylated human collagen in Escherichia coli.

    PubMed

    Rutschmann, Christoph; Baumann, Stephan; Cabalzar, Jürg; Luther, Kelvin B; Hennet, Thierry

    2014-05-01

    Collagen is the most abundant protein in the human body and thereby a structural protein of considerable biotechnological interest. The complex maturation process of collagen, including essential post-translational modifications such as prolyl and lysyl hydroxylation, has precluded large-scale production of recombinant collagen featuring the biophysical properties of endogenous collagen. The characterization of new prolyl and lysyl hydroxylase genes encoded by the giant virus mimivirus reveals a method for production of hydroxylated collagen. The coexpression of a human collagen type III construct together with mimivirus prolyl and lysyl hydroxylases in Escherichia coli yielded up to 90 mg of hydroxylated collagen per liter culture. The respective levels of prolyl and lysyl hydroxylation reaching 25 % and 26 % were similar to the hydroxylation levels of native human collagen type III. The distribution of hydroxyproline and hydroxylysine along recombinant collagen was also similar to that of native collagen as determined by mass spectrometric analysis of tryptic peptides. The triple helix signature of recombinant hydroxylated collagen was confirmed by circular dichroism, which also showed that hydroxylation increased the thermal stability of the recombinant collagen construct. Recombinant hydroxylated collagen produced in E. coli supported the growth of human umbilical endothelial cells, underlining the biocompatibility of the recombinant protein as extracellular matrix. The high yield of recombinant protein expression and the extensive level of prolyl and lysyl hydroxylation achieved indicate that recombinant hydroxylated collagen can be produced at large scale for biomaterials engineering in the context of biomedical applications.

  4. Transforming growth factor-beta, transforming growth factor-beta receptor II, and p27Kip1 expression in nontumorous and neoplastic human pituitaries.

    PubMed Central

    Jin, L.; Qian, X.; Kulig, E.; Sanno, N.; Scheithauer, B. W.; Kovacs, K.; Young, W. F.; Lloyd, R. V.

    1997-01-01

    Transforming growth factor (TGF)-beta has been implicated in the regulation of normal and neoplastic anterior pituitary cell function. TGF-beta regulates the expression of various proteins, including p27Kip1 (p27), a cell cycle inhibitory protein. We examined TGF-beta, TGF-beta type II receptor (TGF-beta-RII), and p27 expression in normal pituitaries, pituitary adenomas, and carcinomas to analyze the possible roles of these proteins in pituitary tumorigenesis. Normal pituitary, pituitary adenomas, and pituitary carcinomas all expressed TGF-beta and TGF-beta-RII immunoreactivity. Reverse transcription polymerase chain reaction analysis showed TGF-beta 1, -beta 2, and -beta 3 isoforms and TGF-beta-RII in normal pituitaries and pituitary adenomas. Pituitary adenomas cells cultured for 7 days in defined media showed a biphasic response to TGF-beta with significant inhibition of follicle-stimulating hormone secretion at higher concentrations (10(-9) mol/L) and stimulation of follicle-stimulating hormone secretion at lower concentrations (10(-13) mol/L) of TGF-beta 1 in gonadotroph adenomas. Immunohistochemical analysis for p27 protein expression showed the highest levels in nontumorous pituitaries with decreased immunoreactivity in adenomas and carcinomas. When nontumorous pituitaries and various adenomas were analyzed for p27 and specific hormone production, growth hormone, luteinizing hormone, and thyroid-stimulating hormone cells and tumors had the highest percentages of cells expressing p27, whereas adrenocorticotrophic hormone cells and tumors had the lowest percentages. Immunoblotting analysis showed that adrenocorticotrophic hormone adenomas also had the lowest levels of p27 protein. Semiquantitative reverse transcription polymerase chain reaction and Northern hybridization analysis did not show significant differences in p27 mRNA expression in the various types of adenomas or in nontumorous pituitaries. In situ hybridization for p27 mRNA showed similar

  5. De-ubiquitinating enzyme, USP11, promotes transforming growth factor β-1 signaling through stabilization of transforming growth factor β receptor II

    PubMed Central

    Jacko, A M; Nan, L; Li, S; Tan, J; Zhao, J; Kass, D J; Zhao, Y

    2016-01-01

    The transforming growth factor β-1 (TGFβ-1) signaling pathway plays a central role in the pathogenesis of pulmonary fibrosis. Two TGFβ-1 receptors, TβRI and TβRII, mediate this pathway. TβRI protein stability, as mediated by the ubiquitin/de-ubiquitination system, has been well studied; however, the molecular regulation of TβRII still remains unclear. Here we reveal that a de-ubiquitinating enzyme, USP11, promotes TGFβ-1 signaling through de-ubiquitination and stabilization of TβRII. We elucidate the role that mitoxantrone (MTX), an USP11 inhibitor, has in the attenuation of TGFβ-1 signaling. Inhibition or downregulation of USP11 results in increases in TβRII ubiquitination and reduction of TβRII stability. Subsequently, TGFβ-1 signaling is greatly attenuated, as shown by the decreases in phosphorylation of SMAD2/3 levels as well as that of fibronectin (FN) and smooth muscle actin (SMA). Overexpression of USP11 reduces TβRII ubiquitination and increases TβRII stabilization, thereby elevating phosphorylation of SMAD2/3 and the ultimate expression of FN and SMA. Further, elevated expression of USP11 and TβRII were detected in lung tissues from bleomycin-challenged mice and IPF patients. Therefore, USP11 may contribute to the pathogenesis of pulmonary fibrosis by stabilization of TβRII and promotion of TGFβ-1 signaling. This study provides mechanistic evidence for development of USP11 inhibitors as potential antifibrotic drugs for pulmonary fibrosis. PMID:27853171

  6. Pin1 promotes transforming growth factor-beta-induced migration and invasion.

    PubMed

    Matsuura, Isao; Chiang, Keng-Nan; Lai, Chen-Yu; He, Dongming; Wang, Guannan; Ramkumar, Romila; Uchida, Takafumi; Ryo, Akihide; Lu, Kunping; Liu, Fang

    2010-01-15

    Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological activities. It induces potent growth-inhibitory responses in normal cells but promotes migration and invasion of cancer cells. Smads mediate the TGF-beta responses. TGF-beta binding to the cell surface receptors leads to the phosphorylation of Smad2/3 in their C terminus as well as in the proline-rich linker region. The serine/threonine phosphorylation sites in the linker region are followed by the proline residue. Pin1, a peptidyl-prolyl cis/trans isomerase, recognizes phosphorylated serine/threonine-proline motifs. Here we show that Smad2/3 interacts with Pin1 in a TGF-beta-dependent manner. We further show that the phosphorylated threonine 179-proline motif in the Smad3 linker region is the major binding site for Pin1. Although epidermal growth factor also induces phosphorylation of threonine 179 and other residues in the Smad3 linker region the same as TGF-beta, Pin1 is unable to bind to the epidermal growth factor-stimulated Smad3. Further analysis suggests that phosphorylation of Smad3 in the C terminus is necessary for the interaction with Pin1. Depletion of Pin1 by small hairpin RNA does not significantly affect TGF-beta-induced growth-inhibitory responses and a number of TGF-beta/Smad target genes analyzed. In contrast, knockdown of Pin1 in human PC3 prostate cancer cells strongly inhibited TGF-beta-mediated migration and invasion. Accordingly, TGF-beta induction of N-cadherin, which plays an important role in migration and invasion, is markedly reduced when Pin1 is depleted in PC3 cells. Because Pin1 is overexpressed in many cancers, our findings highlight the importance of Pin1 in TGF-beta-induced migration and invasion of cancer cells.

  7. Valproic acid overcomes transforming growth factor-β-mediated sorafenib resistance in hepatocellular carcinoma

    PubMed Central

    Matsuda, Yasunobu; Wakai, Toshifumi; Kubota, Masayuki; Osawa, Mami; Hirose, Yuki; Sakata, Jun; Kobayashi, Takashi; Fujimaki, Shun; Takamura, Masaaki; Yamagiwa, Satoshi; Aoyagi, Yutaka

    2014-01-01

    Sorafenib is a multi-kinase inhibitor approved for hepatocellular carcinoma, but rarely causes tumor regression in patients with chronic liver diseases. To investigate whether growth factor-mediated signaling is involved in sorafenib resistance, HepG2 and PLC/PRF/5 hepatoma cells were exposed to epidermal growth factor (EGF), hepatocyte growth factor (HGF) or transforming growth factor-β (TGF-β) prior to treatment with sorafenib. Furthermore, to identify an effective combination treatment with sorafenib, growth factor-sensitized cells were treated with sorafenib alone or in combination with celecoxib, lovastatin or valproic acid (VPA). Trypan blue staining and Annexin V assays showed that the cytotoxic effect of sorafenib was inhibited by 15-54% in cells sensitized to TGF-β (P<0.05). Western blotting analysis showed that TGF-β significantly activated extracellular signal-regulated kinase (ERK)-mediated AKT signaling, and sorafenib failed to suppress both ERK and AKT in TGF-β-sensitized cells. The decreased anti-tumor effect of sorafenib was rescued by chemical inhibition of ERK and AKT. When TGF-β-sensitized cells were treated with sorafenib plus VPA, the levels of phosphorylated ERK and AKT were considerably suppressed and the numbers of dead cells were increased by 3.7-5.7-fold compared with those exposed to sorafenib alone (P<0.05). Moreover, low dose sorafenib-induced cell migration was effectively suppressed by combination treatment with sorafenib and VPA. Collectively, TGF-β/ERK/AKT signaling might play a critical role in sorafenib resistance in hepatoma cells, and combination treatment with VPA may be effective against this drug resistance. PMID:24817927

  8. A Case of Transforming Growth Factor-β-Induced Gene-Related Oculorenal Syndrome: Granular Corneal Dystrophy Type II with a Unique Nephropathy

    PubMed Central

    Iwafuchi, Yoichi; Morioka, Tetsuo; Oyama, Yuko; Nozu, Kandai; Iijima, Kazumoto; Narita, Ichiei

    2016-01-01

    Many types of inherited renal diseases have ocular features that occasionally support a diagnosis. The following study describes an unusual example of a 40-year-old woman with granular corneal dystrophy type II complicated by renal involvement. These two conditions may coincidentally coexist; however, there are some reports that demonstrate an association between renal involvement and granular corneal dystrophy type II. Granular corneal dystrophy type II is caused by a mutation in the transforming growth factor-β-induced (TGFBI) gene. The patient was referred to us because of the presence of mild proteinuria without hematuria that was subsequently suggested to be granular corneal dystrophy type II. A kidney biopsy revealed various glomerular and tubular basement membrane changes and widening of the subendothelial space of the glomerular basement membrane by electron microscopy. However, next-generation sequencing revealed that she had no mutation in a gene that is known to be associated with monogenic kidney diseases. Conversely, real-time polymerase chain reaction, using a simple buccal swab, revealed TGFBI heteromutation (R124H). The TGFBI protein plays an important role in cell-collagen signaling interactions, including extracellular matrix proteins which compose the renal basement membrane. This mutation can present not only as corneal dystrophy but also as renal disease. TGFBI-related oculorenal syndrome may have been unrecognized. It is difficult to diagnose this condition without renal electron microscopic studies. To the best of our knowledge, this is the first detailed report of nephropathy associated with a TGFBI mutation. PMID:27781206

  9. Cellular distribution of transforming growth factor-beta 1 and procollagen types I, III, and IV transcripts in carbon tetrachloride-induced rat liver fibrosis.

    PubMed Central

    Nakatsukasa, H; Nagy, P; Evarts, R P; Hsia, C C; Marsden, E; Thorgeirsson, S S

    1990-01-01

    The cellular distribution and temporal expression of transcripts from transforming growth factor-beta 1 (TGF-beta 1) and procollagen alpha 1(I), alpha 1(III), and alpha 1(IV) genes were studied in carbon tetrachloride (CCl4)-induced rat liver fibrosis by using in situ hybridization technique. During the fibrotic process, TGF-beta 1 and procollagen genes were similarly and predominantly expressed in Desmin-positive perisinusoidal cells (e.g., fat-storing cells and myofibroblasts) and fibroblasts and their expression continued to be higher than those observed in control rats. These transcripts were also observed in inflammatory cells mainly granulocytes and macrophage-like cells at the early stages of liver fibrosis. The production of extracellular matrix along small blood vessels and fibrous septa coincided with the expression of these genes. Expression of TGF-beta 1 and procollagen genes were not detected in hepatocytes throughout the experiment. No significant differences in cellular distribution or time course of gene expression among procollagen alpha 1(I), alpha 1(III), and alpha 1(IV) were observed. Desmin-positive perisinusoidal cells and fibroblasts appeared to play the principal role in synthesis of collagens in CCl4-induced hepatic fibrosis. The simultaneous expression of TGF-beta 1 and procollagen genes in mesenchymal cells, including Desmin-positive perisinusoidal cells, during hepatic fibrosis suggests the possibility that TGF-beta 1 may have an important role in the production of fibrosis. Images PMID:1693377

  10. Transforming growth factor-β1 and TGF-β2 act synergistically in the fibrotic pathway in oral submucous fibrosis: An immunohistochemical observation

    PubMed Central

    Kamath, Venkatesh Viswanath; Krishnamurthy, Shruti; Satelur, Krishnanand P.; Rajkumar, Komali

    2015-01-01

    Background and objectives: Oral Submucous Fibrosis (OSF) is a potentially malignant oral disorder which leads to fibrosis of the oral mucosa and has a high rate of malignant transformation. The consumption of various forms of areca nut is causatively linked to the condition. The constituents of areca nut activate several pro-fibrotic cytokines, chiefly transforming growth factor-β1, β2, which leads to an increased deposition and decreased degradation of extracellular matrix and collagen. TGF-β1, β2 probably represent the major pathway in the deposition of collagen fibres in this condition. The present study aims to identify and correlate the expressions of TGF-β1 and TGF-β2 immunohistochemically on paraffin sections of various stages of OSF. A comparison was also made between normal oral mucosa and scar tissue and OSF to judge the mode, extent and type of expression of TGF β1, β2. Methods: The expression of TGF-β1 antibody (8A11, NovusBio, USA) and TGF-β2 antibody (TB21, NovusBio, USA) was detected immunohistochemically on paraffin sections of 58 and 70 cases of OSF respectively, 10 cases of normal oral mucosal tissue and 4 cases of scar tissue. A mapping of the positivity of the two cytokines was done using JenOptik camera and ProReg image analysis software. The results were statistically analysed using one way ANOVA and students “t” test. Results: Expression of TGF-β1 and TGF-β2 was more in OSF as compared with normal oral mucosa, scar/keloid tissue showing highest values. Positivity for both the markers was seen in epithelium, around the blood vessels, in areas of inflammatory infiltrate, fibroblasts and in muscles. TGF-β1 expression was higher and more intense than that of TGF-β2 in all the cases. TGF-β2 was restricted in its expression to submucosal area with minimal involvement of the epithelium and the deeper muscle tissue. Conclusion: TGF-β1 is the most prominent cytokine in the fibrotic pathway and TGF-β2 plays a contributory role

  11. Early stage reversed crystal growth of zeolite A and its phase transformation to sodalite.

    PubMed

    Greer, Heather; Wheatley, Paul S; Ashbrook, Sharon E; Morris, Russell E; Zhou, Wuzong

    2009-12-16

    Microstructural analysis of the early stage crystal growth of zeolite A in hydrothermal synthetic conditions revealed a revised crystal growth route from surface to core in the presence of the biopolymer chitosan. The mechanism of this extraordinary crystal growth route is discussed. In the first stage, the precursor and biopolymer aggregated into amorphous spherical particles. Crystallization occurred on the surface of these spheres, forming the typical cubic morphology associated with zeolite A with a very thin crystalline cubic shell and an amorphous core. With a surface-to-core extension of crystallization, sodalite nanoplates were crystallized within the amorphous cores of these zeolite A cubes, most likely due to an increase of pressure. These sodalite nanoplates increased in size, breaking the cubic shells of zeolite A in the process, leading to the phase transformation from zeolite A to sodalite via an Ostwald ripening process. Characterization of specimens was performed using scanning electron microscopy and transmission electron microscopy, supported by other techniques including X-ray diffraction, solid-state NMR, and N(2) adsorption/desorption.

  12. Reversal of diabetes in mice with a bioengineered islet implant incorporating a type I collagen hydrogel and sustained release of vascular endothelial growth factor.

    PubMed

    Vernon, Robert B; Preisinger, Anton; Gooden, Michel D; D'Amico, Leonard A; Yue, Betty B; Bollyky, Paul L; Kuhr, Christian S; Hefty, Thomas R; Nepom, Gerald T; Gebe, John A

    2012-01-01

    We have developed a bioengineered implant (BI) to evaluate strategies to promote graft survival and function in models of islet transplantation in mice. The BI, sized for implantation within a fold of intestinal mesentery, consists of a disk-shaped, polyvinyl alcohol sponge infused with a type I collagen hydrogel that contains dispersed donor islets. To promote islet vascularization, the BI incorporates a spherical alginate hydrogel for sustained release of vascular endothelial growth factor (VEGF). BIs that contained 450-500 islets from syngeneic (C57Bl/6) donors and 20 ng of VEGF reversed streptozotocin (STZ)-induced diabetes in 100% of mice (8/8), whereas BIs that contained an equivalent number of islets, but which lacked VEGF, reversed STZ-induced diabetes in only 62.5% of mice (5/8). Between these "+VEGF" and "-VEGF" groups, the time to achieve normoglycemia (8-18 days after implantation) did not differ statistically; however, transitory, postoperative hypoglycemia was markedly reduced in the +VEGF group relative to the -VEGF group. Notably, none of the mice that achieved normoglycemia in these two groups required exogenous insulin therapy once the BIs began to fully regulate levels of blood glucose. Moreover, the transplanted mice responded to glucose challenge in a near-normal manner, as compared to the responses of healthy, nondiabetic (control) mice that had not received STZ. In future studies, the BIs described here will serve as platforms to evaluate the capability of immunomodulatory compounds, delivered locally within the BI, to prevent or reverse diabetes in the setting of autoimmune (type 1) diabetes.

  13. Reversal of Diabetes in Mice With a Bioengineered Islet Implant Incorporating a Type I Collagen Hydrogel and Sustained Release of Vascular Endothelial Growth Factor

    PubMed Central

    Vernon, Robert B.; Preisinger, Anton; Gooden, Michel D.; D’Amico, Leonard A.; Yue, Betty B.; Bollyky, Paul L.; Kuhr, Christian S.; Hefty, Thomas R.; Nepom, Gerald T.; Gebe, John A.

    2013-01-01

    We have developed a bioengineered implant (BI) to evaluate strategies to promote graft survival and function in models of islet transplantation in mice. The BI, sized for implantation within a fold of intestinal mesentery, consists of a disk-shaped, polyvinyl alcohol sponge infused with a type I collagen hydrogel that contains dispersed donor islets. To promote islet vascularization, the BI incorporates a spherical alginate hydrogel for sustained release of vascular endothelial growth factor (VEGF). BIs that contained 450–500 islets from syngeneic (C57Bl/6) donors and 20 ng of VEGF reversed streptozotocin (STZ)-induced diabetes in 100% of mice (8/8), whereas BIs that contained an equivalent number of islets, but which lacked VEGF, reversed STZ-induced diabetes in only 62.5% of mice (5/8). Between these “+VEGF” and “−VEGF” groups, the time to achieve normoglycemia (8–18 days after implantation) did not differ statistically; however, transitory, postoperative hypoglycemia was markedly reduced in the +VEGF group relative to the −VEGF group. Notably, none of the mice that achieved normoglycemia in these two groups required exogenous insulin therapy once the BIs began to fully regulate levels of blood glucose. Moreover, the transplanted mice responded to glucose challenge in a near-normal manner, as compared to the responses of healthy, nondiabetic (control) mice that had not received STZ. In future studies, the BIs described here will serve as platforms to evaluate the capability of immunomodulatory compounds, delivered locally within the BI, to prevent or reverse diabetes in the setting of autoimmune (type 1) diabetes. PMID:23231959

  14. Parathyroid hormone linked to a collagen binding domain promotes hair growth in a mouse model of chemotherapy-induced alopecia in a dose-dependent manner.

    PubMed

    Katikaneni, Ranjitha; Ponnapakkam, Tulasi; Seymour, Andrew; Sakon, Joshua; Gensure, Robert

    2014-08-01

    Chemotherapy-induced alopecia is a major source of psychological stress in patients undergoing cancer chemotherapy, and it can influence treatment decisions. Although there is currently no therapy for alopecia, a fusion protein of parathyroid hormone and collagen binding domain (PTH-CBD) has shown promise in animal models. The aim of this study was to determine whether there are dose-dependent effects of PTH-CBD on chemotherapy-induced alopecia in a mouse model. C57BL/6J mice were waxed to synchronize hair follicles; treated on day 7 with vehicle or PTH-CBD (100, 320, and 1000 mcg/kg subcutaneous injection); and treated on day 9 with vehicle or cyclophosphamide (150 mg/kg intraperitoneally). Mice were photographed every 3-4 days and killed on day 63 for histological analysis. Photographs were quantified by gray scale analysis to assess hair content. Mice not receiving chemotherapy showed regrowth of hair 2 weeks after waxing and normal histology after 2 months. Mice receiving chemotherapy alone showed marked hair loss after chemotherapy, which was sustained for 10 days and was followed by rapid regrowth of a normal coat. Histological analysis revealed rapid cycling dystrophic anagen/catagen follicles. Animals receiving chemotherapy and PTH-CBD showed decreased hair loss and more rapid regrowth of hair than that seen with chemotherapy alone (increased hair growth by gray scale analysis, P<0.05), and the effects were dose dependent. Histologically, hair follicles in animals receiving the highest dose of PTH-CBD were in a quiescent phase, similar to that in mice that did not receive chemotherapy. Single-dose subcutaneous administration of PTH-CBD showed dose-dependent effects in minimizing hair loss and speeding up recovery from chemotherapy-induced alopecia.

  15. Neoepitopes reveal the features of type II collagen cleavage and the identity of a collagenase involved in the transformation of the epiphyses anlagen in development.

    PubMed

    Lee, Eunice R; Lamplugh, Lisa; Kluczyk, Beata; Leblond, Charles P; Mort, John S

    2009-06-01

    In long bone development, the evolution of the cartilaginous anlagen into a secondary ossification center is initiated by the formation of canals. The excavation to create the canals is achieved through lysis of the two major cartilage components, aggrecan, and the type II collagen (COL2) fibril. The present study examines the lysis of the fibril. Because it is known that matrix metalloproteinases (MMPs) cleave COL2 in vitro at the Gly(775)-Leu(776) bond, it has been reasoned that, if such cleavage is detected in relation to the canals, it can be concluded that a collagenase is involved. Furthermore, because MMPs undergo change in domain structure with activation resulting in propeptide domain loss then, if such a loss is revealed in relation to the cleavage of COL2, this MMP is likely involved. The collective findings reveal that COL2 is attacked at the afore-described susceptible peptide bond at the surface of cartilage canals and, that MMP-13 cleaves it. Developmental Dynamics 238:1547-1563, 2009. (c) 2009 Wiley-Liss, Inc.

  16. Differential effects of transforming growth factor type beta on the growth and function of adrenocortical cells in vitro.

    PubMed Central

    Hotta, M; Baird, A

    1986-01-01

    Transforming growth factor type beta (TGF-beta) suppresses basal as well as corticotropin (ACTH)-stimulated steroid formation by bovine adrenocortical cells in culture. The effect is dose dependent and is not accompanied by any change in adrenocortical cell growth. The minimum effective dose of TGF-beta is 4 X 10(-13) M (10 pg/ml), and maximal inhibition is observed at a concentration of 4 X 10(-11) M (1 ng/ml). A 16- to 20-hr incubation with TGF-beta is required to decrease steroidogenesis, and 12-18 hr are required before cells treated with TGF-beta recover complete responsiveness to corticotropin. Increases in cAMP mediated by corticotropin, forskolin, and isobutylmethylxanthine are not modified by the addition of TGF-beta; thus adenylate cyclase activity is unaffected by TGF-beta. Although TGF-beta inhibits the formation of all of the delta 4-steroids measured (including cortisol, corticosterone, aldosterone, and androstenedione), its effect can be completely reversed by the addition of 25-hydroxycholesterol, pregnenolone, or progesterone to the cells. In contrast, the addition of low density lipoprotein has no effect suggesting that TGF-beta targets the conversion of cholesterol precursors to cholesterol. The results demonstrate a highly potent effect of TGF-beta on the differentiated function of the adrenocortical cell. The inhibition of steroidogenesis can be dissociated from any effect on cell proliferation, and it occurs distal to the formation of cAMP but proximal to the formation of cholesterol. The results suggest that in the adrenal, TGF-beta or TGF-beta-like proteins may be playing an important role in modifying the differentiated state of the adrenocortical cell. PMID:3020557

  17. Pleiotropic effects of transforming growth factor-β in hematopoietic stem-cell transplantation.

    PubMed

    Coomes, Stephanie M; Moore, Bethany B

    2010-12-15

    Transforming growth factor (TGF)-β is a pleiotropic cytokine with beneficial and detrimental effects posthematopoietic stem-cell transplantation. TGF-β is increased in specific sites postengraftment and can suppress immune responses and maintain peripheral tolerance. Thus, TGF-β may promote allograft acceptance. However, TGF-β is also the central pathogenic cytokine in fibrotic disease and likely promotes pneumonitis. Although TGF-β can enhance leukocyte recruitment and IgA production, it inhibits both innate and adaptive immune cell function and antiviral host defense posthematopoietic stem-cell transplantation. This review will focus on the current understanding of TGF-β biology and the numerous ways it can impact outcomes posttransplant.

  18. Connective Tissue Disorders and Cardiovascular Complications: The indomitable role of Transforming Growth Factor-beta signaling

    PubMed Central

    Wheeler, Jason B.; Ikonomidis, John S.; Jones, Jeffrey A.

    2015-01-01

    Marfan Syndrome (MFS) and Loeys-Dietz Syndrome (LDS) represent heritable connective tissue disorders that cosegregate with a similar pattern of cardiovascular defects (thoracic aortic aneurysm, mitral valve prolapse/regurgitation, and aortic dilatation with regurgitation). This pattern of cardiovascular defects appears to be expressed along a spectrum of severity in many heritable connective tissue disorders and raises suspicion of a relationship between the normal development of connective tissues and the cardiovascular system. Given the evidence of increased transforming growth factor-beta (TGF-β) signaling in MFS and LDS, this signaling pathway may represent the common link in this relationship. To further explore this hypothetical link, this chapter will review the TGF-β signaling pathway, heritable connective tissue syndromes related to TGF-β receptor (TGFBR) mutations, and discuss the pathogenic contribution of TGF-β to these syndromes with a primary focus on the cardiovascular system. PMID:24443024

  19. Transforming growth factor-beta1 mediates cellular response to DNA damage in situ

    NASA Technical Reports Server (NTRS)

    Ewan, Kenneth B.; Henshall-Powell, Rhonda L.; Ravani, Shraddha A.; Pajares, Maria Jose; Arteaga, Carlos; Warters, Ray; Akhurst, Rosemary J.; Barcellos-Hoff, Mary Helen

    2002-01-01

    Transforming growth factor (TGF)-beta1 is rapidly activated after ionizing radiation, but its specific role in cellular responses to DNA damage is not known. Here we use Tgfbeta1 knockout mice to show that radiation-induced apoptotic response is TGF-beta1 dependent in the mammary epithelium, and that both apoptosis and inhibition of proliferation in response to DNA damage decrease as a function of TGF-beta1 gene dose in embryonic epithelial tissues. Because apoptosis in these tissues has been shown previously to be p53 dependent, we then examined p53 protein activation. TGF-beta1 depletion, by either gene knockout or by using TGF-beta neutralizing antibodies, resulted in decreased p53 Ser-18 phosphorylation in irradiated mammary gland. These data indicate that TGF-beta1 is essential for rapid p53-mediated cellular responses that mediate cell fate decisions in situ.

  20. Effect of transforming growth factor-alpha on inositol phospholipid metabolism in human epidermoid carcinoma cells

    SciTech Connect

    Kato, M.; Takenawa, T.; Twardzik, D.R.

    1988-08-01

    Transforming growth factor-alpha (TGF-alpha) stimulates (in a dose-dependent manner) the incorporation of (/sup 32/P)Pi into phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2), and phosphatidic acid (PA) in the human epidermoid carcinoma cell line (A431). The effect of TGF-alpha on the incorporation was found to be similar to that of EGF. On the other hand, a striking difference in the activation of diacylglycerol (DG) kinase activity was seen between TGF-alpha and EGF. At least 100 times more TGF-alpha was required to achieve maximal stimulation of DG kinase activity relative to EGF. These results suggest that the activation of DG kinase by TGF-alpha may involve a mechanism independent from or subsequent to activation of the EGF receptor.

  1. MicroRNAs, transforming growth factor beta-1, and tissue fibrosis.

    PubMed

    Bowen, Timothy; Jenkins, Robert H; Fraser, Donald J

    2013-01-01

    MicroRNAs are short noncoding RNA regulators that repress synthesis of their targets post-transcriptionally. On average, each microRNA is estimated to regulate several hundred protein-coding genes, and about 60% of proteins are thought to be regulated by microRNAs in total. A subset of these genes, including the key profibrotic cytokine transforming growth factor beta-1 (TGF-β1), exhibits particularly strong levels of post-transcriptional control of protein synthesis, involving microRNAs and other mechanisms. Changes in microRNA expression pattern are linked to profound effects on cell phenotype, and microRNAs have an emerging role in diverse physiological and pathological processes. In this review, we provide an overview of microRNA biology with a focus on their emerging role in diseases typified by organ fibrosis.

  2. Transforming growth factor-β1 in the cerebrospinal fluid of patients with distinct neurodegenerative diseases.

    PubMed

    Masuda, Tomoyuki; Itoh, Junko; Koide, Takuya; Tomidokoro, Yasushi; Takei, Yosuke; Ishii, Kazuhiro; Tamaoka, Akira

    2017-01-01

    A chronic inflammatory condition may underlie neurodegenerative disorders, including Parkinson's disease (PD) and Alzheimer's disease (AD). For example, both PD and AD patients show an increase in transforming growth factor-β1 (TGF-β1) levels in their cerebrospinal fluid (CSF). TGF-β1 is a cytokine that inhibits inflammation. In the present study, using an enzyme-linked immunosorbent assay, we tested the hypothesis that the level of TGF-β1 in the CSF of patients with amyotrophic lateral sclerosis (ALS), spinocerebellar degeneration (SCD), or multiple system atrophy-cerebellar subtype (MSA-C) would be elevated compared with that of normal controls. We found that TGF-β1 levels in the CSF were not significantly different between these patients and normal controls. Our data suggest that the level of TGF-β1 in the CSF is an unreliable biomarker of ALS, SCD, and MSA-C.

  3. The pleiotropic roles of transforming growth factor beta inhomeostasis and carcinogenesis of endocrine organs.

    SciTech Connect

    Fleisch, Markus C.; Maxwell, Christopher A.; Barcellos-Hoff,Mary-Helen

    2006-01-13

    Transforming growth factor beta (TGF-beta) is a ubiquitous cytokine that plays a critical role in numerous pathways regulating cellular and tissue homeostasis. TGF-beta is regulated by hormones and is a primary mediator of hormone response in uterus, prostate and mammary gland. This review will address the role of TGF-beta in regulating hormone dependent proliferation and morphogenesis. The subversion of TGF-beta regulation during the processes of carcinogenesis, with particular emphasis on its effects on genetic stability and epithelial to mesenchymal transition (EMT), will also be examined. An understanding of the multiple and complex mechanisms of TGF-beta regulation of epithelial function, and the ultimate loss of TGF-beta function during carcinogenesis, will be critical in the design of novel therapeutic interventions for endocrine-related cancers.

  4. Transforming growth factor-β: an important mediator in Helicobacter pylori-associated pathogenesis

    PubMed Central

    Li, Nianshuang; Xie, Chuan; Lu, Nong-Hua

    2015-01-01

    Helicobacter pylori (H.pylori) is a Gram-negative, microaerophilic, helical bacillus that specifically colonizes the gastric mucosa. The interaction of virulence factors, host genetic factors, and environmental factors contributes to the pathogenesis of H. pylori-associated conditions, such as atrophic gastritis and intestinal metaplasia. Infection with H. pylori has recently been recognized as the strongest risk factor for gastric cancer. As a pleiotropic cytokine, transforming growth factor (TGF)-β regulates various biological processes, including cell cycle, proliferation, apoptosis, and metastasis. Recent studies have shed new light on the involvement of TGF-β signaling in the pathogenesis of H. pylori infection. This review focuses on the potential etiological roles of TGF-β in H. pylori-mediated gastric pathogenesis. PMID:26583078

  5. The Role of Transforming Growth Factor β1 in the Regulation of Blood Pressure

    PubMed Central

    Matsuki, Kota; Hathaway, Catherine K.; Lawrence, Marlon G.; Smithies, Oliver; Kakoki, Masao

    2016-01-01

    Although human association studies suggest a link between polymorphisms in the gene encoding transforming growth factor (TGF) β1 and differing blood pressure levels, a causative mechanism for this correlation remains elusive. Recently we have generated a series of mice with graded expression of TGFβ1, ranging from approximately 10% to 300% compared to normal. We have found that blood pressure and plasma volume are negatively regulated by TGFβ1. Of note, the 10% hypomorph exhibits primary aldosteronism and markedly impaired urinary excretion of water and electrolytes. We here review previous literature highlighting the importance of TGFβ signaling as a natriuretic system, which we postulate is a causative mechanism explaining how polymorphisms in TGFβ1 could influence blood pressure levels. PMID:25801626

  6. Effect of Cellulose Acetate Beads on the Release of Transforming Growth Factor-β.

    PubMed

    Nishise, Shoichi; Abe, Yasuhiko; Nomura, Eiki; Sato, Takeshi; Sasaki, Yu; Iwano, Daisuke; Yagi, Makoto; Sakuta, Kazuhiro; Shibuya, Rika; Mizumoto, Naoko; Kanno, Nana; Ueno, Yoshiyuki

    2015-08-01

    Transforming growth factor-β (TGF-β) is released by activated platelets and induces the differentiation of T-helper 17 from naïve T cells. Contact between blood and cellulose acetate (CA) beads induces cytokine release, although their inflammatory effects on TGF-β release are unclear. We aimed to clarify the effect of CA beads on the release of TGF-β in vitro. We incubated peripheral blood with and without CA beads and measured platelets and TGF-β. Compared with blood samples incubated without beads, the platelet count and amount of TGF-β significantly decreased in blood samples incubated with CA beads. In conclusion, CA beads inhibited the release of TGF-β from adsorbed platelets. The biological effects of this reduction of TGF-β release during platelet adsorption to CA beads need further clarification.

  7. Phosphorylation of the human-transforming-growth-factor-beta-binding protein endoglin.

    PubMed Central

    Lastres, P; Martín-Perez, J; Langa, C; Bernabéu, C

    1994-01-01

    Endoglin is an homodimeric membrane antigen with capacity to bind transforming growth factor-beta (TGF-beta). Phosphorylation of human endoglin was demonstrated in endothelial cells as well as in mouse fibroblast transfectants expressing two isoforms, L-endoglin or S-endoglin, with distinct cytoplasmic domains. The extent of L-endoglin phosphorylation was found to be 8-fold higher than that of S-endoglin, and phosphopeptide analyses revealed at least three different phosphorylation sites for L-endoglin, whereas S-endoglin produces only one phosphopeptide. The immunoprecipitated L-endoglin was found to be phosphorylated mainly on serine, and, to a minor extent, on threonine, residues. Treatment of the cells with TGF-beta 1 or the protein kinase C inhibitor H-7 resulted in a reduction of the levels of endoglin phosphorylation. Images Figure 1 Figure 2 PMID:8053900

  8. Inhibition of spermidine synthase gene expression by transforming growth factor-beta 1 in hepatoma cells.

    PubMed Central

    Nishikawa, Y; Kar, S; Wiest, L; Pegg, A E; Carr, B I

    1997-01-01

    We screened genes responsive to transforming growth factor-beta (TGF-beta 1) protein in a human hepatoma cell line (Hep3B) using a PCR-mediated differential display technique, in order to investigate the mechanisms involved in TGF-beta-induced growth suppression. We found a gene that was down-regulated by TGF-beta 1 to be completely identical in an approx. 620 bp segment to the gene for the enzyme spermidine synthase, which mediates the conversion of putrescine into spermidine. Both spermidine synthase mRNA expression and its enzyme activity were decreased after TGF-beta 1 treatment of Hep3B cells. The inhibition of spermidine synthase gene expression by TGF-beta 1 protein was also observed in other hepatoma cell lines. The expression of genes for other biosynthetic enzymes in polyamine metabolism (ornithine decarboxylase and S-adenosylmethionine decarboxylase) was also inhibited to the same extent as for spermidine synthase, while the gene expression of spermidine/spermine N1-acetyltransferase, a catabolic enzyme, was relatively resistant to TGF-beta 1. Spermine levels in Hep3B cells were decreased by TGF-beta 1 treatment, although the levels of spermidine and putrescine were unchanged, probably due to compensation by remaining spermidine/spermine N1-acetyltransferase activity. Exogenously added spermidine or spermine, but not putrescine, partially antagonized the growth-inhibitor effects of TGF-beta 1 on Hep3B cells. Our data suggest that down-regulation of gene expression of the enzymes involved in polyamine metabolism, including spermidine synthase, may be associated with the mechanism of TGF-beta-induced growth suppression. PMID:9020892

  9. Dissolution and transformation of cerium oxide nanoparticles in plant growth media

    NASA Astrophysics Data System (ADS)

    Schwabe, Franziska; Schulin, Rainer; Rupper, Patrick; Rotzetter, Aline; Stark, Wendelin; Nowack, Bernd

    2014-10-01

    From environmental modeling of engineered nanomaterial (ENM) release, it is clear that ENMs will enter soils, where they interact with soil compounds as well as plant roots. We analyzed three different size groups of cerium dioxide nanoparticles (CeO2-NPs) in respect to chemical changes in the most common plant growth medium, Hoagland solution. We created a simple environmental model using liquid dispersions of 9-, 23-, and 64-nm-uncoated CeO2-NPs. We found that CeO2-NPs release dissolved Ce when the pH of the medium is below 4.6 and in the presence of strong chelating agents even at pH of 8. In addition, we found that in reaction with Fe2+-ions, equimolar amounts of Ce were released from NPs. We could elucidate the involvement of the CeO2-NPs surface redox cycle between Ce3+ and Ce4+ to explain particle transformation. The chemical transformation of CeO2-NPs was summarized in four probable reactions: dissolution, surface reduction, complexation, and precipitation on the NP surface. The results show that CeO2-NPs are clearly not insoluble as often stated but can release significant amounts of Ce depending on the composition of the surrounding medium.

  10. Regulation of proliferation of embryonic heart mesenchyme: Role of transforming growth factor-beta 1 and the interstitial matrix

    SciTech Connect

    Choy, M.; Armstrong, M.T.; Armstrong, P.B. )

    1990-10-01

    Proliferation of atrioventricular cushion mesenchyme of the embryonic avian heart maintained in three-dimensional aggregate culture is stimulated by interaction with the interstitial matrix. Chicken serum or transforming growth factor-beta 1, which stimulates proliferation, induces matrix deposition in regions of the aggregate showing high labeling indices with tritiated thymidine. Dispersed heart mesenchyme interstitial matrix introduced into serum-free culture is incorporated into the aggregate and stimulates cellular proliferation similar to serum or transforming growth factor-beta 1. Proliferation is reversibly inhibited by the peptide Gly-Arg-Gly-Asp-Ser-Pro. It is suggested that transforming growth factor-beta 1 stimulates the production of interstitial matrix and that a sufficient stimulus for proliferation in this system is the presence of the matrix, which acts as the adhesive support for cellular anchorage.

  11. v-src transformation of rat embryo fibroblasts. Inefficient conversion to anchorage-independent growth involves heterogeneity of primary cultures

    PubMed Central

    1994-01-01

    To clarify whether a single oncogene can transform primary cells in culture, we compared the transforming effect of a recombinant retrovirus (ZSV) containing the v-src gene in rat embryo fibroblasts (REFs) to that in the rat cell line 3Y1. In the focus assay, REFs exhibited resistance to transformation as only six foci were observed in the primary cultures as opposed to 98 in 3Y1 cells. After G418 selection, efficiency of transformation was again somewhat lower with REFs compared to that with 3Y1 cells, but the number of G418-resistant REF colonies was much greater than the number of foci in REF cultures. Furthermore, while 98% of G418-resistant colonies of ZSV-infected REFs were morphologically transformed, only 25% were converted to anchorage- independent growth, as opposed to 100% conversion seen in ZSV-infected 3Y1 cells. The poor susceptibility of REFs to anchorage-independent transformation did not involve differences in expression and subcellular distribution of p60v-src, or its kinase activity in vitro and in vivo. It rather reflected a property of the primary cultures, as cloning of REFs before ZSV infection demonstrated that only 2 out of 6 REF clones tested were permissive for anchorage-independent growth. The nonpermissive phenotype was dominant over the permissive one in somatic hybrid cells, and associated with organized actin filament bundles and a lower growth rate, both before and after ZSV infection. These results indicate that the poor susceptibility of REFs to anchorage-independent transformation by p60v-src reflects the heterogeneity of the primary cultures. REFs can be morphologically transformed by p60v-src with high efficiency but only a small fraction is convertible to anchorage- independent growth. REF resistance seems to involve the presence of a suppressor factor which may emerge from REF differentiation during embryonic development. PMID:8034746

  12. Hybrid Gel Composed of Native Heart Matrix and Collagen Induces Cardiac Differentiation of Human Embryonic Stem Cells without Supplemental Growth Factors

    PubMed Central

    Duan, Yi; Liu, Zen; O'Neill, John; Wan, Leo Q.; Freytes, Donald O.; Vunjak-Novakovic, Gordana

    2011-01-01

    Our goal was to assess the ability of native heart extracellular matrix (ECM) to direct cardiac differentiation of human embryonic stem cells (hESCs) in vitro. In order to probe the effects of cardiac matrix on hESC differentiation, a series of hydrogels was prepared from decellularized ECM from porcine hearts by mixing ECM and collagen type I at varying ratios. Maturation of cardiac function in embryoid bodies formed from hESCs was documented in terms of spontaneous contractile behavior and the mRNA and protein expression of cardiac markers. Hydrogel with high ECM content (75% ECM, 25% collagen, no supplemental soluble factors) increased the fraction of cells expressing cardiac marker troponin T, when compared with either hydrogel with low ECM content (25% ECM, 75% collagen, no supplemental soluble factors) or collagen hydrogel (100% collagen, with supplemental soluble factors). Furthermore, cardiac maturation was promoted in high-ECM content hydrogels, as evidenced by the striation patterns of cardiac troponin I and by upregulation of Cx43 gene. Consistently, high-ECM content hydrogels improved the contractile function of cardiac cells, as evidenced by increased numbers of contracting cells and increased contraction amplitudes. The ability of native ECM hydrogel to induce cardiac differentiation of hESCs without the addition of soluble factors makes it an attractive biomaterial system for basic studies of cardiac development and potentially for the delivery of therapeutic cells into the heart. PMID:21744185

  13. Transforming growth factor-{beta}2 enhances differentiation of cardiac myocytes from embryonic stem cells

    SciTech Connect

    Kumar, Dinender . E-mail: Dinender.Kumar@uvm.edu; Sun, Baiming

    2005-06-24

    Stem cell therapy holds great promise for the treatment of injured myocardium, but is challenged by a limited supply of appropriate cells. Three different isoforms of transforming growth factor-{beta} (TGF-{beta}) -{beta}1, -{beta}2, and -{beta}3 exhibit distinct regulatory effects on cell growth, differentiation, and migration during embryonic development. We compared the effects of these three different isoforms on cardiomyocyte differentiation from embryonic stem (ES) cells. In contrast to TGF-{beta}1, or -{beta}3, treatment of mouse ES cells with TGF-{beta}2 isoform significantly increased embryoid body (EB) proliferation as well as the extent of the EB outgrowth that beat rhythmically. At 17 days, 49% of the EBs treated with TGF-{beta}2 exhibited spontaneous beating compared with 15% in controls. Cardiac myocyte specific protein markers sarcomeric myosin and {alpha}-actin were demonstrated in beating EBs and cells isolated from EBs. In conclusion, TGF-{beta}2 but not TGF-{beta}1, or -{beta}3 promotes cardiac myocyte differentiation from ES cells.

  14. Demonstration of single crystal growth via solid-solid transformation of a glass.

    PubMed

    Savytskii, Dmytro; Knorr, Brian; Dierolf, Volkmar; Jain, Himanshu

    2016-03-18

    Many advanced technologies have relied on the availability of single crystals of appropriate material such as silicon for microelectronics or superalloys for turbine blades. Similarly, many promising materials could unleash their full potential if they were available in a single crystal form. However, the current methods are unsuitable for growing single crystals of these oftentimes incongruently melting, unstable or metastable materials. Here we demonstrate a strategy to overcome this hurdle by avoiding the gaseous or liquid phase, and directly converting glass into a single crystal. Specifically, Sb2S3 single crystals are grown in Sb-S-I glasses as an example of this approach. In this first unambiguous demonstration of an all-solid-state glass → crystal transformation, extraneous nucleation is avoided relative to crystal growth via spatially localized laser heating and inclusion of a suitable glass former in the composition. The ability to fabricate patterned single-crystal architecture on a glass surface is demonstrated, providing a new class of micro-structured substrate for low cost epitaxial growth, active planar devices, etc.

  15. Demonstration of single crystal growth via solid-solid transformation of a glass

    PubMed Central

    Savytskii, Dmytro; Knorr, Brian; Dierolf, Volkmar; Jain, Himanshu

    2016-01-01

    Many advanced technologies have relied on the availability of single crystals of appropriate material such as silicon for microelectronics or superalloys for turbine blades. Similarly, many promising materials could unleash their full potential if they were available in a single crystal form. However, the current methods are unsuitable for growing single crystals of these oftentimes incongruently melting, unstable or metastable materials. Here we demonstrate a strategy to overcome this hurdle by avoiding the gaseous or liquid phase, and directly converting glass into a single crystal. Specifically, Sb2S3 single crystals are grown in Sb-S-I glasses as an example of this approach. In this first unambiguous demonstration of an all-solid-state glass → crystal transformation, extraneous nucleation is avoided relative to crystal growth via spatially localized laser heating and inclusion of a suitable glass former in the composition. The ability to fabricate patterned single-crystal architecture on a glass surface is demonstrated, providing a new class of micro-structured substrate for low cost epitaxial growth, active planar devices, etc. PMID:26988919

  16. Mutational activation of BRAF confers sensitivity to transforming growth factor beta inhibitors in human cancer cells

    PubMed Central

    Spender, Lindsay C.; Ferguson, G. John; Liu, Sijia; Cui, Chao; Girotti, Maria Romina; Sibbet, Gary; Higgs, Ellen B.; Shuttleworth, Morven K.; Hamilton, Tom; Lorigan, Paul; Weller, Michael; Vincent, David F.; Sansom, Owen J.; Frame, Margaret; Dijke, Peter ten; Marais, Richard; Inman, Gareth J.

    2016-01-01

    Recent data implicate elevated transforming growth factor-β (TGFβ) signalling in BRAF inhibitor drug-resistance mechanisms, but the potential for targeting TGFβ signalling in cases of advanced melanoma has not been investigated. We show that mutant BRAFV600E confers an intrinsic dependence on TGFβ/TGFβ receptor 1 (TGFBR1) signalling for clonogenicity of murine melanocytes. Pharmacological inhibition of the TGFBR1 blocked the clonogenicity of human mutant BRAF melanoma cells through SMAD4-independent inhibition of mitosis, and also inhibited metastasis in xenografted zebrafish. When investigating the therapeutic potential of combining inhibitors of mutant BRAF and TGFBR1, we noted that unexpectedly, low-dose PLX-4720 (a vemurafenib analogue) promoted proliferation of drug-naïve melanoma cells. Pharmacological or pharmacogenetic inhibition of TGFBR1 blocked growth promotion and phosphorylation of SRC, which is frequently associated with vemurafenib-resistance mechanisms. Importantly, vemurafenib-resistant patient derived cells retained sensitivity to TGFBR1 inhibition, suggesting that TGFBR1 could be targeted therapeutically to combat the development of vemurafenib drug-resistance. PMID:27835901

  17. Demonstration of single crystal growth via solid-solid transformation of a glass

    NASA Astrophysics Data System (ADS)

    Savytskii, Dmytro; Knorr, Brian; Dierolf, Volkmar; Jain, Himanshu

    2016-03-01

    Many advanced technologies have relied on the availability of single crystals of appropriate material such as silicon for microelectronics or superalloys for turbine blades. Similarly, many promising materials could unleash their full potential if they were available in a single crystal form. However, the current methods are unsuitable for growing single crystals of these oftentimes incongruently melting, unstable or metastable materials. Here we demonstrate a strategy to overcome this hurdle by avoiding the gaseous or liquid phase, and directly converting glass into a single crystal. Specifically, Sb2S3 single crystals are grown in Sb-S-I glasses as an example of this approach. In this first unambiguous demonstration of an all-solid-state glass → crystal transformation, extraneous nucleation is avoided relative to crystal growth via spatially localized laser heating and inclusion of a suitable glass former in the composition. The ability to fabricate patterned single-crystal architecture on a glass surface is demonstrated, providing a new class of micro-structured substrate for low cost epitaxial growth, active planar devices, etc.

  18. Demonstration of single crystal growth via solid-solid transformation of a glass

    DOE PAGES

    Savytskii, Dmytro; Knorr, Brian; Dierolf, Volkmar; ...

    2016-03-18

    Many advanced technologies have relied on the availability of single crystals of appropriate material such as silicon for microelectronics or superalloys for turbine blades. Similarly, many promising materials could unleash their full potential if they were available in a single crystal form. However, the current methods are unsuitable for growing single crystals of these oftentimes incongruently melting, unstable or metastable materials. Here we demonstrate a strategy to overcome this hurdle by avoiding the gaseous or liquid phase, and directly converting glass into a single crystal. Specifically, Sb2S3 single crystals are grown in Sb-S-I glasses as an example of this approach.more » In this first unambiguous demonstration of an all-solid-state glass → crystal transformation, extraneous nucleation is avoided relative to crystal growth via spatially localized laser heating and inclusion of a suitable glass former in the composition. Lastly, the ability to fabricate patterned single-crystal architecture on a glass surface is demonstrated, providing a new class of micro-structured substrate for low cost epitaxial growth, active planar devices, etc.« less

  19. Demonstration of single crystal growth via solid-solid transformation of a glass

    SciTech Connect

    Savytskii, Dmytro; Knorr, Brian; Dierolf, Volkmar; Jain, Himanshu

    2016-03-18

    Many advanced technologies have relied on the availability of single crystals of appropriate material such as silicon for microelectronics or superalloys for turbine blades. Similarly, many promising materials could unleash their full potential if they were available in a single crystal form. However, the current methods are unsuitable for growing single crystals of these oftentimes incongruently melting, unstable or metastable materials. Here we demonstrate a strategy to overcome this hurdle by avoiding the gaseous or liquid phase, and directly converting glass into a single crystal. Specifically, Sb2S3 single crystals are grown in Sb-S-I glasses as an example of this approach. In this first unambiguous demonstration of an all-solid-state glass → crystal transformation, extraneous nucleation is avoided relative to crystal growth via spatially localized laser heating and inclusion of a suitable glass former in the composition. Lastly, the ability to fabricate patterned single-crystal architecture on a glass surface is demonstrated, providing a new class of micro-structured substrate for low cost epitaxial growth, active planar devices, etc.

  20. Characterization of latent transforming growth factor-beta 2 from monkey kidney cells.

    PubMed

    Lioubin, M N; Madisen, L; Roth, R A; Purchio, A F

    1991-05-01

    Serum-free medium conditioned by BSC-40 cells was analyzed for the presence of transforming growth factor-beta 2 (TGF beta 2)-related proteins. Western blot analysis was performed using site-specific antipeptide antibodies directed against the pro- and mature regions of the TGF beta 2 precursor. When conditioned medium was analyzed by polyacrylamide gel electrophoresis under reducing conditions, proteins with mol wt of 53 kDa (containing both mature and proregion sequences), 34-38 kDa (containing proregion sequences only), and 12 kDa (containing mature sequences) were detected. Under nonreducing conditions, complexes of 60- to 80-kDa, 160- to 200-kDa, as well as 24-kDa mature dimers were seen. Cleavage of mature TGF beta 2 from its precursor was inhibited by monensin and chloroquin, but not by ammonium chloride or methylamine. Two peaks of bioactivity were detected after fractionation on a TSK column corresponding to mol wt of 130 and 400 kDa. These peaks contained TGF beta 2 and pro-TGF beta 2 proteins. Partial purification of the 130-kDa complex followed by N-glyconase digestion indicated that the pro-TGF beta 2 proteins were glycosylated. These data demonstrate that BSC-40 cells secrete mature TGF beta 2 complexed with proregion-containing proteins and suggest that this association may contribute to the latency phenomena observed with respect to this growth regulator.

  1. Collagen-mediated hemostasis.

    PubMed

    Manon-Jensen, T; Kjeld, N G; Karsdal, M A

    2016-03-01

    Collagens mediate essential hemostasis by maintaining the integrity and stability of the vascular wall. Imbalanced turnover of collagens by uncontrolled formation and/or degradation may result in pathologic conditions such as fibrosis. Thickening of the vessel wall because of accumulation of collagens may lead to arterial occlusion or thrombosis. Thinning of the wall because of collagen degradation or deficiency may lead to rupture of the vessel wall or aneurysm. Preventing excessive hemorrhage or thrombosis relies on collagen-mediated actions. Von Willebrand factor, integrins and glycoprotein VI, as well as clotting factors, can bind collagen to restore normal hemostasis after trauma. This review outlines the essential roles of collagens in mediating hemostasis, with a focus on collagens types I, III, IV, VI, XV, and XVIII.

  2. Biomedical applications of collagens.

    PubMed

    Ramshaw, John A M

    2016-05-01

    Collagen-based biomedical materials have developed into important, clinically effective materials used in a range of devices that have gained wide acceptance. These devices come with collagen in various formats, including those based on stabilized natural tissues, those that are based on extracted and purified collagens, and designed composite, biosynthetic materials. Further knowledge on the structure and function of collagens has led to on-going developments and improvements. Among these developments has been the production of recombinant collagen materials that are well defined and are disease free. Most recently, a group of bacterial, non-animal collagens has emerged that may provide an excellent, novel source of collagen for use in biomaterials and other applications. These newer collagens are discussed in detail. They can be modified to direct their function, and they can be fabricated into various formats, including films and sponges, while solutions can also be adapted for use in surface coating technologies.

  3. Theory of Crystal Growth, Kinetics of Dissolution and Transformation of Calcium Phosphates.

    NASA Astrophysics Data System (ADS)

    Zhang, Jingwu

    The kink density along a (01) step on the (001) face of a Kossel crystal is derived from a kinetic steady state approach by considering the elementary events at the step. When the kink formation energy, epsilon , is very high compared with the thermal energy kT, the kink density, rho, is found to be a function of the saturation ratio, S. For S > 1, rho = 2a-1S^ {1over 2}exp(-epsilon /kT) while for S < 1, rho = 2a^{-1}exp( -epsilon/kT)/(2-S)^ {1over 2}. This finding may provide a theoretical background for interpreting the observed growth kinetics of many sparingly soluble salts in aqueous solutions. The above approach is extended to analyze the configuration of a surface step of an AB crystal with NaCl type of lattice. It is found that the growth rate of an electrolyte crystal cannot be defined solely by the thermodynamic driving forces even when integration is the rate determining step. The rate also depends on the lattice ion activity ratio and relative frequencies of integration of A and B ions into kink sites on a step. At a given driving force, a maximum growth rate can be attained at a certain ratio of lattice ion activities. The dual constant composition (DCC) method is developed which enables the kinetics of phase transformation to be studied at constant driving forces. The applicability of this novel approach is verified in the investigation of dicalcium phosphate dihydrate (DCPD) to octacalcium phosphate (OCP) transformation. In these studies, the concentrations of total calcium and phosphate are maintained constant to within 2% with the pH held to within +/-0.003 during the reaction. The dissolution kinetics of DCPD and OCP has been investigated using CC method at 37^circ C over a wide range of experimental conditions. Both processes can be generally described by a combined volume and surface diffusion mechanism with varying degrees of volume resistance at different pH's and solution hydrodynamics. The decrease in the dissolution rate with the extent of

  4. Neurons promote macrophage proliferation by producing transforming growth factor-beta2.

    PubMed

    Dobbertin, A; Schmid, P; Gelman, M; Glowinski, J; Mallat, M

    1997-07-15

    The infiltration of bone marrow-derived macrophages into the CNS contributes to growth and reactions of microglia during development or after brain injury. The proliferation of microglial cells is stimulated by colony-stimulating factor 1 (CSF-1), an astrocyte-produced growth factor that acts on mononuclear phagocytes. In the present study, we have shown, using an in vitro model system, that rodent neurons obtained from the developing cerebral cortex produce a soluble factor that strongly enhances the proliferation of macrophages cultured in the presence of CSF-1. Both macrophages isolated from the developing brain and those from the adult bone marrow were stimulated. Kinetic analyses of [3H]thymidine incorporation into macrophages indicated that their response to the neuron-derived factor involved a shortening of the cycle of proliferating cells. The effect of neurons on macrophages was blocked in the presence of antibodies neutralizing transforming growth factor-beta2 (TGF-beta2), whereas recombinant TGF-beta2 stimulated macrophage proliferation in the presence of CSF-1. Neuronal secretion of TGF-beta2 was confirmed by reverse transcription-PCR detection of TGF-beta2 transcripts and immunodetection of the protein within neurons and in their culture medium. In situ hybridization and immunohistochemical experiments showed neuronal expression of TGF-beta2 in sections of cerebral cortex obtained from 6-d-old rats, an age at which extensive developmental recruitment of macrophages occurs in this cerebral region. Altogether, our results provide direct evidence that neurons have the capacity to promote brain macrophage proliferation and demonstrate the role of TGF-beta2 in this neuronal function.

  5. Inhibition of transforming growth factor β signaling promotes epiblast formation in mouse embryos.

    PubMed

    Ghimire, Sabitri; Heindryckx, Björn; Van der Jeught, Margot; Neupane, Jitesh; O'Leary, Thomas; Lierman, Sylvie; De Vos, Winnok H; Chuva de Sousa Lopes, Susana; Deroo, Tom; De Sutter, Petra

    2015-02-15

    Early lineage segregation in preimplantation embryos and maintenance of pluripotency in embryonic stem cells (ESCs) are both regulated by specific signaling pathways. Small molecules have been shown to modulate these signaling pathways. We examined the influence of several small molecules and growth factors on second-lineage segregation of the inner cell mass toward hypoblast and epiblast lineage during mouse embryonic preimplantation development. We found that the second-lineage segregation is influenced by activation or inhibition of the transforming growth factor (TGF)β pathway. Inhibition of the TGFβ pathway from the two-cell, four-cell, and morula stages onward up to the blastocyst stage significantly increased the epiblast cell proliferation. The epiblast formed in the embryos in which TGFβ signaling was inhibited was fully functional as demonstrated by the potential of these epiblast cells to give rise to pluripotent ESCs. Conversely, activating the TGFβ pathway reduced epiblast formation. Inhibition of the glycogen synthase kinase (GSK)3 pathway and activation of bone morphogenetic protein 4 signaling reduced the formation of both epiblast and hypoblast cells. Activation of the protein kinase A pathway and of the Janus kinase/signal transducer and activator of transcription 3 pathway did not influence the second-lineage segregation in mouse embryos. The simultaneous inhibition of three pathways--TGFβ, GSK3β, and the fibroblast growth factor (FGF)/extracellular signal-regulated kinases (Erk)--significantly enhanced the proliferation of epiblast cells than that caused by inhibition of either TGFβ pathway alone or by combined inhibition of the GSK3β and FGF/Erk pathways only.

  6. Transforming growth factor-beta: its role in ovarian follicle development.

    PubMed

    Rosairo, Davina; Kuyznierewicz, Ileana; Findlay, Jock; Drummond, Ann

    2008-12-01

    Ovarian follicular growth and differentiation in response to transforming growth factor-beta (TGFB) was investigated using postnatal and immature ovarian models. TGFB ligand and receptor mRNAs were present in the rat ovary 4-12 days after birth and at day 25. In order to assess the impact of TGFB1 on follicle growth and transition from the primordial through to the primary and preantral stages of development, we established organ cultures with 4-day-old rat ovaries. After 10 days in culture with FSH, TGFB1, or a combination of the two, ovarian follicle numbers were counted and an assessment of atresia was undertaken using TUNEL. Preantral follicle numbers declined significantly when treated with the combination of FSH and TGFB1, consistent with our morphological appraisal suggesting an increase in atretic primary and preantral follicles. To investigate the mechanisms behind the actions of TGFB1, we isolated granulosa cells and treated them with FSH and TGFB1. Markers of proliferative, steroidogenic, and apoptotic capacity were measured by real-time PCR. Cyclin D2 mRNA expression by granulosa cells was significantly increased in response to the combination of FSH and TGFB. The expression of forkhead homolog in rhabdomyosarcoma (Foxo1) mRNA by granulosa cells was significantly reduced in the presence of both FSH and TGFB1, individually and in combination regimes. By contrast, the expression of steroidogenic enzymes/proteins was largely unaffected by TGFB1. These data suggest an inhibitory role for TGFB1 (in the presence of FSH) in follicle development and progression.

  7. AP-1 overexpression impairs corticosteroid inhibition of collagen production by fibroblasts isolated from asthmatic subjects.

    PubMed

    Jacques, Eric; Semlali, Abdelhabib; Boulet, Louis Philippe; Chakir, Jamila

    2010-08-01

    Asthma is characterized by airway remodeling associated with an increase in the deposition of ECM proteins such as type I collagen. These components are mainly produced by fibroblasts. Inhaled corticosteroids are considered the cornerstone of asthma therapy. Despite substantial evidence as to the anti-inflammatory action of corticosteroids, their effect on controlling ECM protein deposition in the airways is not completely understood. This study determined the effect of dexamethasone (Dex) on collagen production by bronchial fibroblasts derived from asthmatic and healthy subjects. Expression of procollagen mRNA in fibroblasts from asthmatics and normal controls was determined by quantitative PCR. Regulation of the procollagen-alpha(1)I promoter was evaluated by transient transfections. Transforming growth factor-beta (TGF-beta) protein expression was determined by ELISA. Protein expression of glucocorticoid receptor (GR) and interaction with activator protein-1 (AP-1), a collagen regulatory transcription factor, was assessed by Western blots, coimmunoprecipitations, and EMSA. AP-1 overexpression was performed by transient transfection using c-Fos/c-Jun expression plasmids. Dex significantly downregulated procollagen production and promoter activity in normal fibroblasts but had no effect on asthmatic fibroblasts. AP-1 and GR interaction increased after Dex stimulation in asthmatic fibroblasts. AP-1 overexpression in control fibroblasts abrogated collagen gene response to Dex. These results show that Dex failed to reduce collagen production in fibroblasts from asthmatic subjects. This impaired response may be related to AP-1 overexpression in these cells.

  8. K-Ras promotes growth transformation and invasion of immortalized human pancreatic cells by Raf and phosphatidylinositol 3-kinase signaling.

    PubMed

    Campbell, Paul M; Groehler, Angela L; Lee, Kwang M; Ouellette, Michel M; Khazak, Vladimir; Der, Channing J

    2007-03-01

    Mutational activation of the K-Ras oncogene is well established as a key genetic step in the development and growth of pancreatic adenocarcinomas. However, the mechanism by which aberrant Ras signaling promotes uncontrolled pancreatic tumor cell growth remains to be fully elucidated. The recent use of primary human cells to study Ras-mediated oncogenesis provides important model cell systems to dissect this mechanism. We have used a model of telomerase-immortalized human pancreatic duct-derived cells (E6/E7/st) to study mechanisms of Ras growth transformation. First, we found that human papillomavirus E6 and E7 oncogenes, which block the function of the p53 and Rb tumor suppressors, respectively, and SV40 small t antigen were required to allow mutant K-Ras(12D) growth transformation. Second, K-Ras(12D) caused growth transformation in vitro, including enhanced growth rate and loss of density dependency for growth, anchorage independence, and invasion through reconstituted basement membrane proteins, and tumorigenic transformation in vivo. Third, we determined that the Raf, phosphatidylinositol 3-kinase (PI3K), and Ral guanine nucleotide exchange factor effector pathways were activated, although extracellular signal-regulated kinase (ERK) activity was not up-regulated persistently. Finally, pharmacologic inhibition of Raf/mitogen-activated protein kinase/ERK and PI3K signaling impaired K-Ras-induced anchorage-independent growth and invasion. In summary, our studies established, characterized, and validated E6/E7/st cells for the study of Ras-induced oncogenesis.

  9. Functional mapping of quantitative trait loci underlying growth trajectories using a transform-both-sides logistic model.

    PubMed

    Wu, Rongling; Ma, Chang-Xing; Lin, Min; Wang, Zuoheng; Casella, George

    2004-09-01

    The incorporation of developmental control mechanisms of growth has proven to be a powerful tool in mapping quantitative trait loci (QTL) underlying growth trajectories. A theoretical framework for implementing a QTL mapping strategy with growth laws has been established. This framework can be generalized to an arbitrary number of time points, where growth is measured, and becomes computationally more tractable, when the assumption of variance stationarity is made. In practice, however, this assumption is likely to be violated for age-specific growth traits due to a scale effect. In this article, we present a new statistical model for mapping growth QTL, which also addresses the problem of variance stationarity, by using a transform-both-sides (TBS) model advocated by Carroll and Ruppert (1984, Journal of the American Statistical Association 79, 321-328). The TBS-based model for mapping growth QTL cannot only maintain the original biological properties of a growth model, but also can increase the accuracy and precision of parameter estimation and the power to detect a QTL responsible for growth differentiation. Using the TBS-based model, we successfully map a QTL governing growth trajectories to a linkage group in an example of forest trees. The statistical and biological properties of the estimates of this growth QTL position and effect are investigated using Monte Carlo simulation studies. The implications of our model for understanding the genetic architecture of growth are discussed.

  10. Alveolar bone regeneration using poly-(lactic acid-co-glycolic acid-co-ε-caprolactone) porous membrane with collagen sponge containing basic fibroblast growth factor: an experimental study in the dog.

    PubMed

    Matsumoto, Goichi; Hoshino, Jyunichi; Kinoshita, Yasuhiko; Sugita, Yoshihiko; Kubo, Katsutoshi; Maeda, Hatsuhiko; Ikada, Yoshito; Kinoshita, Yukihiko

    2012-11-01

    The aim of this study was to evaluate the effects of combining porous poly-lactic acid-co-glycolic acid-co-ε-caprolactone (PLGC) as a barrier membrane and collagen sponge containing basic fibroblast growth factor (bFGF) to promote bone regeneration in the canine mandible. In six beagle dogs, two lateral bone defects per side were created in the mandible. The lateral bone defects on the left side were treated with a PLGC membrane plus a collagen sponge containing bFGF. In half of these, the collagen sponge contained 50 µg of bFGF. In the other half, it contained 250 µg of bFGF. As a control, we treated the right-side bone defects in each animal with the same PLGC membrane but with a collagen sponge containing phosphate buffered saline. Computed tomography (CT) images were recorded at 3 and 6 months post-op to evaluate regeneration of the bone defects. After a healing period of 6 months, whole mandibles were removed for micro-CT and histological analyses. The post-op CT images showed that more bone had formed at all experimental sites than at control sites. At 3 months post-op, the volume of bone at defect sites covered with PLGC membrane plus 250 µg of bFGF was significantly greater than it was at defect sites covered with PLGC membrane plus 50 µg of bFGF. At 6 months post-op, however, this difference was smaller and not statistically significant. Micro-CT measurement showed that the volume of new bone regenerated at bone-defect sites, covered with PLGC membrane plus bFGF, was significantly greater than that of control sites. However, the presence or absence of bFGF in the collagen sponge did not significantly affect the bone density of new bone. These results suggest that the macroporous bioresorbable PLGC membrane plus collagen sponge containing bFGF effectively facilitates healing in GBR procedures.

  11. Metal-triggered collagen peptide disk formation.

    PubMed

    Przybyla, David E; Chmielewski, Jean

    2010-06-16

    A collagen peptide was designed for metal-triggered, hierarchical assembly through a radial growth mechanism. To achieve radial assembly, H-(byp)(2) containing Pro-Hyp-Gly repeating sequences and two staggered bipyridine ligands within the peptide was synthesized. Triple helix formation resulted in the placement of six bipyridine ligands along the triple helix, and the addition of metal ions resulted in the formation of nanometer-sized collagen peptide disks. These structures were found to disassemble upon the addition of EDTA, demonstrating that radial assembly of collagen peptide triple helices could be realized with the addition of metal ions.

  12. Adopting the principles of collagen biomineralization for intrafibrillar infiltration of yttria-stabilized zirconia into three-dimensional collagen scaffolds

    PubMed Central

    Zhou, Bin; Niu, Li-na; Shi, Wei; Zhang, Wei; Arola, Dwayne D.; Breschi, Lorenzo; Mao, Jing; Pashley, David H.

    2014-01-01

    In this paper, we report a process for generating collagen-yttria-stabilized amorphous zirconia hybrid scaffolds by introducing acetylacetone-inhibited zirconia precursor nanodroplets into a poly(allylamine)-coated collagen matrix. This polyelectrolyte coating triggers intrafibrillar condensation of the precursors into amorphous zirconia, which is subsequently transformed into tetragonal yttria-stabilized zirconia after calcination. Our findings represent a new paradigm in the synthesis of non-naturally occurring collagen-based hybrid scaffolds under alcoholic mineralizing conditions. PMID:25477773

  13. Increased susceptibility to atrial fibrillation secondary to atrial fibrosis in transgenic goats expressing transforming growth factor - B1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in people with significant morbidity and mortality. There is a strong association between atrial fibrosis and AF. Transforming growth factor B1 (TGF-B1) is an essential mediator of atrial fibrosis in animal models and human pat...

  14. Vertebral Artery Aneurysm Mimicking as Left Subclavian Artery Aneurysm in a Patient with Transforming Growth Factor Beta Receptor II Mutation.

    PubMed

    Afifi, Rana O; Dhillon, Baltej Singh; Sandhu, Harleen K; Charlton-Ouw, Kristofer M; Estrera, Anthony L; Azizzadeh, Ali

    2015-10-01

    We report successful endovascular repair of a left vertebral artery aneurysm in a patient with transforming growth factor beta receptor II mutation. The patient was initially diagnosed with a left subclavian artery aneurysm on computed tomography angiography. The patient consented to publication of this report.

  15. Hepatocyte growth factor counteracts transforming growth factor-beta1, through attenuation of connective tissue growth factor induction, and prevents renal fibrogenesis in 5/6 nephrectomized mice.

    PubMed

    Inoue, Tsutomu; Okada, Hirokazu; Kobayashi, Tatsuya; Watanabe, Yusuke; Kanno, Yoshihiko; Kopp, Jeffrey B; Nishida, Takashi; Takigawa, Masaharu; Ueno, Munehisa; Nakamura, Toshikazu; Suzuki, Hiromichi

    2003-02-01

    We investigated the mechanism of the anti-fibrotic effects of hepatocyte growth factor (HGF) in the kidney, with respect to its effect on connective tissue growth factor (CTGF), a down-stream, profibrotic mediator of transforming growth factor-beta1 (TGF-beta1). In wild-type (WT) mice with 5/6 nephrectomy (Nx), HGF and TGF-beta1 mRNAs increased transiently in the remnant kidney by week 1 after the Nx, returned to baseline levels, and increased again at weeks 4 to 12. In contrast, CTGF and alpha1(I) procollagen (COLI) mRNAs increased in parallel with HGF and TGF-beta1 during the early stage, but did not re-increase during the late stage. In the case of TGF-beta1 transgenic (TG) mice with 5/6 Nx, excess TGF-beta1 derived from the transgene enhanced CTGF expression significantly in the remnant kidney, accordingly accelerating renal fibrogenesis. Administration of dHGF (5.0 mg/kg/day) to TG mice with 5/6 Nx for 4 weeks from weeks 2 to 6 suppressed CTGF expression in the remnant kidney, attenuating renal fibrosis and improving the survival rate. In an experiment in vitro, renal tubulointerstitial fibroblasts (TFB) were co-cultured with proximal tubular epithelial cells (PTEC). Pretreatment with HGF reduced significantly CTGF induction in PTEC by TGF-beta1, consequently suppressing COLI synthesis in TFB. In conclusion, HGF can block, at least partially, renal fibrogenesis promoted by TGF-beta1 in the remnant kidney, via attenuation of CTGF induction.

  16. MMP1, MMP9, and COX2 Expressions in Promonocytes Are Induced by Breast Cancer Cells and Correlate with Collagen Degradation, Transformation-Like Morphological Changes in MCF-10A Acini, and Tumor Aggressiveness

    PubMed Central

    Chimal-Ramírez, G. K.; Espinoza-Sánchez, N. A.; Utrera-Barillas, D.; Benítez-Bribiesca, L.; Velázquez, J. R.; Arriaga-Pizano, L. A.; Monroy-García, A.; Reyes-Maldonado, E.; Domínguez-López, M. L.; Piña-Sánchez, Patricia; Fuentes-Pananá, E. M.

    2013-01-01

    Tumor-associated immune cells often lack immune effector activities, and instead they present protumoral functions. To understand how tumors promote this immunological switch, invasive and noninvasive breast cancer cell (BRC) lines were cocultured with a promonocytic cell line in a Matrigel-based 3D system. We hypothesized that if communication exists between tumor and immune cells, coculturing would result in augmented expression of genes associated with tumor malignancy. Upregulation of proteases MMP1 and MMP9 and inflammatory COX2 genes was found likely in response to soluble factors. Interestingly, changes were more apparent in promonocytes and correlated with the aggressiveness of the BRC line. Increased gene expression was confirmed by collagen degradation assays and immunocytochemistry of prostaglandin 2, a product of COX2 activity. Untransformed MCF-10A cells were then used as a sensor of soluble factors with transformation-like capabilities, finding that acini formed in the presence of supernatants of the highly aggressive BRC/promonocyte cocultures often exhibited total loss of the normal architecture. These data support that tumor cells can modify immune cell gene expression and tumor aggressiveness may importantly reside in this capacity. Modeling interactions in the tumor stroma will allow the identification of genes useful as cancer prognostic markers and therapy targets. PMID:23762835

  17. Differential Regulation of Human Thymosin Beta 15 Isoforms by Transforming Growth Factor Beta 1

    PubMed Central

    Banyard, Jacqueline; Barrows, Courtney; Zetter, Bruce R.

    2009-01-01

    We recently identified an additional isoform of human thymosin beta 15 (also known as NB-thymosin beta, gene name TMSB15A) transcribed from an independent gene, and designated TMSB15B. The purpose of this study was to investigate whether these isoforms were differentially expressed and functional. Our data show that the TMSB15A and TMSB15B isoforms have distinct expression patterns in different tumor cell lines and tissues. TMSB15A was expressed at higher levels in HCT116, DU145, LNCaP and LNCaP-LN3 cancer cells. In MCF-7, SKOV-3, HT1080 and PC-3MLN4 cells, TMSB15A and TMSB15B showed approximately equivalent levels of expression, while TMSB15B was the predominant isoform expressed in PC-3, MDA-MB-231, NCI-H322 and Caco-2 cancer cells. In normal human prostate and prostate cancer tissues, TMSB15A was the predominant isoform expressed. In contrast, normal colon and colon cancer tissue expressed predominantly TMSB15B. The two gene isoforms are also subject to different transcriptional regulation. Treatment of MCF-7 breast cancer cells with transforming growth factor beta 1 repressed TMSB15A expression but had no effect on TMSB15B. siRNA specific to the TMSB15B isoform suppressed cell migration of prostate cancer cells to epidermal growth factor, suggesting a functional role for this second isoform. In summary, our data reveal different expression patterns and regulation of a new thymosin beta 15 gene paralog. This may have important consequences in both tumor and neuronal cell motility. PMID:19296525

  18. Correlation of fibrosis and transforming growth factor-beta type 2 levels in the eye.

    PubMed

    Connor, T B; Roberts, A B; Sporn, M B; Danielpour, D; Dart, L L; Michels, R G; de Bustros, S; Enger, C; Kato, H; Lansing, M

    1989-05-01

    Approximately 1 out of every 10 eyes undergoing surgery for retinal detachment develops excessive intraocular fibrosis that can lead to traction retinal detachment and ultimate blindness. This disease process has been termed proliferative vitreoretinopathy (PVR). The ability to monitor and grade this fibrotic response accurately within the eye as well as the ability to aspirate vitreous cavity fluid bathing the fibrotic tissue makes this an ideal setting in which to investigate the development of fibrosis. Although laboratory studies have recently shown that transforming growth factor-beta (TGF-beta) can enhance fibrosis, little clinical evidence is yet available correlating the level of this or other growth factors with the degree of fibrosis in a clinical setting. We have found that vitreous aspirates from eyes with intraocular fibrosis associated with PVR have more than three times the amount of TGF-beta (1,200 +/- 300 pM [SEM]) found in eyes with uncomplicated retinal detachments without intraocular fibrosis (360 +/- 91 pM [SEM]). Using an in vitro assay, 84-100% of the TGF-beta activity could be blocked with specific antibodies against TGF-beta 2, whereas only 10-21% could be blocked by specific antibodies against TGF-beta 1. TGF-beta 1 was used in an animal model of traction retinal detachment. Since beta 1 and beta 2 have essentially identical biologic effects and only human beta 1 was available in quantities required, beta 1 was chosen for these in vivo studies. The injection of TGF-beta1 plus fibronectin (FN) but not TGF-beta1 alone into the vitreous cavity of rabbits resulted in the increased formation of intraocular fibrosis and traction retinal detachments as compared to control eyes. In previous studies, intravitreal FN levels were also found to be elevated in eyes with intraocular fibrosis.

  19. Potassium inhibits dietary salt-induced transforming growth factor-beta production.

    PubMed

    Ying, Wei-Zhong; Aaron, Kristal; Wang, Pei-Xuan; Sanders, Paul W

    2009-11-01

    Human and animal studies demonstrate an untoward effect of excess dietary NaCl (salt) intake on cardiovascular function and life span. The endothelium in particular augments the production of transforming growth factor (TGF)-beta, a fibrogenic growth factor, in response to excess dietary salt intake. This study explored the initiating mechanism that regulates salt-induced endothelial cell production of TGF-beta. Male Sprague-Dawley rats were given diets containing different amounts of NaCl and potassium for 4 days. A bioassay for TGF-beta demonstrated increased (35.2%) amounts of active TGF-beta in the medium of aortic ring segments from rats on the high-salt diet compared with rats maintained on a 0.3% NaCl diet. Inhibition of the large-conductance, calcium-activated potassium channel inhibited dietary salt-induced vascular production of TGF-beta but did not affect production of TGF-beta by ring segments from rats on the low-salt diet. Immunohistochemical and Western analyses demonstrated the alpha subunit of the calcium-activated potassium channel in endothelial cells. Increasing medium [K+] inhibited production of dietary salt-induced vascular production levels of total and active TGF-beta but did not alter TGF-beta production by aortic rings from rats on the 0.3% NaCl diet. Increasing dietary potassium content decreased urinary active TGF-beta in animals receiving the high-salt diet but did not change urinary active TGF-beta in animals receiving the low-salt diet. The findings demonstrated an interesting interaction between the dietary intake of potassium and excess NaCl and further showed the fundamental role of the endothelial calcium-activated potassium channel in the vascular response to excess salt intake.

  20. Impairment of Transforming Growth Factor β Signaling in Caveolin-1-deficient Hepatocytes

    PubMed Central

    Mayoral, Rafael; Valverde, Ángela M.; Llorente Izquierdo, Cristina; González-Rodríguez, Águeda; Boscá, Lisardo; Martín-Sanz, Paloma

    2010-01-01

    Caveolin-1 (Cav-1) is the main structural protein of caveolae and plays an important role in various cellular processes such as vesicular transport, cholesterol homeostasis, and signal transduction pathways. The expression and functional role of Cav-1 have been reported in liver and in hepatocyte cell lines, in human cirrhotic liver, and in hepatocellular carcinomas. Previous studies demonstrated that Cav-1 was dispensable for liver regeneration, because Cav-1−/− animals survived and fully regenerated liver function and size after partial hepatectomy. In this study, we have investigated the mechanisms by which the lack of Cav-1 accelerates liver regeneration after partial hepatectomy. The data show that transforming growth factor β (TGF-β) signaling is impaired in regenerating liver of Cav-1−/− mice and in hepatocytes derived from these animals. TGF-β receptors I and II do not colocalize in the same membrane fraction in the hepatocytes derived from Cav-1−/− mice, as Smad2/3 signaling decreased in the absence of Cav-1 at the time that the transcriptional corepressor SnoN accumulates. Accordingly, the expression of TGF-β target genes, such as plasminogen activator inhibitor-1, is decreased due to the presence of the high levels of SnoN. Moreover, hepatocyte growth factor inhibited TGF-β signaling in the absence of Cav-1 by increasing SnoN expression. Taken together, these data might help to unravel why Cav-1-deficient mice exhibit an accelerated liver regeneration after partial hepatectomy and add new insights on the molecular mechanisms controlling the initial commitment to hepatocyte proliferation. PMID:19966340

  1. Transforming growth factor beta abrogates the effects of hematopoietins on eosinophils and induces their apoptosis

    PubMed Central

    1994-01-01

    Hematopoietins, interleukin (IL)-3, IL-5, and granulocyte/macrophage colony-stimulating factor (GM-CSF) have previously been shown to prolong eosinophil survival and abrogate apoptosis. The objective of this study was to investigate the effect of transforming growth factor beta (TGF-beta) on eosinophil survival and apoptosis. Eosinophils from peripheral blood of mildly eosinophilic donors were isolated to > 97% purity using discontinuous Percoll density gradient. Eosinophils were cultured with hematopoietins with or without TGF-beta for 4 d and their viability was assessed. We confirmed previous observations that hematopoietins prolonged eosinophil survival and inhibited apoptosis. TGF-beta at concentrations > or = 10(-12) M abrogated the survival- prolonging effects of hematopoietins in a dose-dependent manner and induced apoptosis as determined by DNA fragmentation in agarose gels. The effect of TGF-beta was blocked by an anti-TGF-beta antibody. The anti-TGF-beta antibody also prolonged eosinophil survival on its own. The culture of eosinophils with IL-3 and GM-CSF stimulated the synthesis of GM-CSF and IL-5, respectively, suggesting an autocrine mechanism of growth factor production. TGF-beta inhibited the synthesis of GM-CSF and IL-5 by eosinophils. TGF-beta did not have any effect on the expression of GM-CSF receptors on eosinophils. We also studied the effect of TGF-beta on eosinophil function and found that TGF-beta inhibited the release of eosinophil peroxidase. Thus, TGF-beta seems to inhibit eosinophil survival and function. The inhibition of endogenous synthesis of hematopoietins may be one mechanism by which TGF-beta blocks eosinophil survival and induces apoptosis. PMID:8113672

  2. Intracellular processing of transforming growth factor-beta in mesangial cells.

    PubMed

    Ceol, M; Vianello, D; Baggio, B; Meani, A; Schleicher, E; Anglani, F; Gambaro, G

    1998-03-01

    Transforming growth factor beta 1 (TGF-beta 1) is a multifunctional regulator of cell-growth, differentiation and extracellular matrix formation in several physiological conditions. It plays a crucial role in the process of glomerulosclerosis. Mature TGF-beta 1 is secreted as a latent form associated with the latency associated peptide (LAP), and its activation occurs through the LAP cleavage. The intracellular localization and the mechanisms of activation of TGF-beta 1 protein have not been elucidated in the mesangial cell. In the present report we examined the intracellular processing from TGF-beta 1 precursor to the latent-TGF-beta 1 in cultured mesangial cells by immunocytochemistry, using three rabbit polyclonal antibodies directed against different epitopes of human TGF-beta 1. The anti-LAP-TGF-beta 1 precursor Ab stained mesangial cells in the perinuclear region and in the cytoplasm in the area corresponding to the rough endoplasmic reticulum; the anti-COOH-terminal fragment of TGF-beta 1 Ab reacted in the same area, in vesicular structures located in the cytoplasm and furthermore, in the mesangial cell clusters, so-called hillocks, with an extracellular pattern; the anti-NH2-terminal fragment of TGF-beta 1 Ab stained only large exocytotic vesicles at the periphery of the cytoplasma. Our investigations suggest a conformational rearrangement of pro-TGF-beta 1 molecule occurring between the rough endoplasmic reticulum and the TGF-beta 1 secretion and support the idea that in mesangial cells the activation of TGF-beta 1 occurs during the secretion process. In conclusion, the processing of TGF-beta 1 in mesangial cells seems to be similar to that one observed in other mesenchymal cells.

  3. Transforming growth factor-beta during carcinogenesis: the shift from epithelial to mesenchymal signaling.

    PubMed

    Matsuzaki, Koichi; Okazaki, Kazuichi

    2006-04-01

    Transforming growth factor-beta (TGF-beta) activates not only TGF-beta type I receptor (TbetaRI) but also c-Jun N-terminal kinase (JNK), changing unphosphorylated Smad3 to its phosphoisoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker phosphorylated Smad3 (pSmad3L). While the TbetaRI/pSmad3C pathway inhibits growth of normal epithelial cells, JNK/pSmad3L-mediated signaling is involved in invasion by activated mesenchymal cells. During sporadic human colorectal carcinogenesis, TGF-beta signaling confers a selective advantage on tumor cells by shifting from the TbetaRI/pSmad3C pathway characteristic of mature epithelial cells to the JNK/pSmad3L pathway, which is more characteristic of the state of flux shown by the activated mesenchymal cells. JNK acts as a regulator of TGF-beta signaling by increasing the basal level of pSmad3L available for action in the nuclei of the invasive adenocarcinoma, in the meantime shutting down TGF-beta-dependent nuclear activity of pSmad3C. Loss of epithelial homeostasis and acquisition of a migratory, mesenchymal phenotype are essential for tumor invasion. From the viewpoint of TGF-beta signaling, a key therapeutic aim in cancer would be restoration of the lost tumor suppressor function observed in normal colorectal epithelial cells at the expense of effects promoting aggressive behavior of the adenocarcinoma. Specific inhibitors of the JNK/pSmad3L pathway might prove useful in this respect. In the case of molecularly targeted therapy for human cancer, pSmad3L and pSmad3C could be assessed as biomarkers to evaluate the likely benefit from specific inhibition of the JNK/pSmad3L pathway.

  4. Potassium Inhibits Dietary Salt-Induced Transforming Growth Factor-β Production

    PubMed Central

    Ying, Wei-Zhong; Aaron, Kristal; Wang, Pei-Xuan; Sanders, Paul W.

    2009-01-01

    Human and animal studies demonstrate an untoward effect of excess dietary NaCl (salt) intake on cardiovascular function and life span. The endothelium in particular augments the production of transforming growth factor (TGF)-β, a fibrogenic growth factor, in response to excess dietary salt intake. This study explored the initiating mechanism that regulates salt-induced endothelial cell production of TGF-β. Male Sprague-Dawley rats were given diets containing different amounts of NaCl and potassium for 4 days. A bioassay for TGF-β demonstrated increased (35.2%) amounts of active TGF-β in the medium of aortic ring segments from rats on the high-salt diet compared with rats maintained on a 0.3% NaCl diet. Inhibition of the large-conductance, calcium-activated potassium channel inhibited dietary salt-induced vascular production of TGF-β but did not affect production of TGF-β by ring segments from rats on the low-salt diet. Immunohistochemical and Western analyses demonstrated the α subunit of the calcium-activated potassium channel in endothelial cells. Increasing medium [K+] inhibited production of dietary salt-induced vascular production levels of total and active TGF-β but did not alter TGF-β production by aortic rings from rats on the 0.3% NaCl diet. Increasing dietary potassium content decreased urinary active TGF-β in animals receiving the high-salt diet but did not change urinary active TGF-β in animals receiving the low-salt diet. The findings demonstrated an interesting interaction between the dietary intake of potassium and excess NaCl and further showed the fundamental role of the endothelial calcium-activated potassium channel in the vascular response to excess salt intake. PMID:19738156

  5. Role of α1 and α2 chains of type IV collagen in early fibrotic lesions of idiopathic interstitial pneumonias and migration of lung fibroblasts.

    PubMed

    Urushiyama, Hirokazu; Terasaki, Yasuhiro; Nagasaka, Shinya; Terasaki, Mika; Kunugi, Shinobu; Nagase, Takahide; Fukuda, Yuh; Shimizu, Akira

    2015-08-01

    Early fibrotic lesions are thought to be the initial findings of fibrogenesis in idiopathic interstitial pneumonias, but little is known about their properties. Type IV collagen comprises six gene products, α1-α6, and although it is known as a major basement membrane component, its abnormal deposition is seen in fibrotic lesions of certain organs. We studied the expression of type I and III collagen and all α chains of type IV collagen in lung specimens from patients with usual interstitial pneumonia (UIP) or organizing pneumonia (OP) via immunohistochemistry. With cultured lung fibroblasts, we analyzed the expression and function of all α chains of type IV collagen via immunohistochemistry, western blotting, real-time quantitative PCR, and a Boyden chamber migration assay after the knockdown of α1 and α2 chains. Although we observed type I and III collagens in early fibrotic lesions of both UIP and OP, we found type IV collagen, especially α1 and α2 chains, in early fibrotic lesions of UIP but not OP. Fibroblasts enhanced the expression of α1 and α2 chains of type IV collagen after transforming growth factor-β1 stimulation. Small interfering RNA against α1 and α2 chains increased fibroblast migration, with upregulated phosphorylation of focal adhesion kinase (FAK), and adding medium containing fibroblast-produced α1 and α2 chains reduced the increased levels of fibroblast migration and phosphorylation of FAK. Fibroblasts in OP were positive for phosphorylated FAK but fibroblasts in UIP were not. These results suggest that fibroblasts in UIP with type IV collagen deposition, especially α1 and α2 chains, have less ability to migrate from early fibrotic lesions than fibroblasts in OP without type IV collagen deposition. Thus, type IV collagen deposition in early fibrotic lesions of UIP may be implicated in refractory pathophysiology including migration of lesion fibroblasts via a FAK pathway.

  6. Spatial signalling mediated by the transforming growth factor-β signalling pathway during tooth formation

    PubMed Central

    He, Xin-Yu; Sun, Ke; Xu, Ruo-Shi; Tan, Jia-Li; Pi, Cai-Xia; Wan, Mian; Peng, Yi-Ran; Ye, Ling; Zheng, Li-Wei; Zhou, Xue-Dong

    2016-01-01

    Tooth development relies on sequential and reciprocal interactions between the epithelial and mesenchymal tissues, and it is continuously regulated by a variety of conserved and specific temporal-spatial signalling pathways. It is well known that suspensions of tooth germ cells can form tooth-like structures after losing the positional information provided by the epithelial and mesenchymal tissues. However, the particular stage in which the tooth germ cells start to form tooth-like structures after losing their positional information remains unclear. In this study, we investigated the reassociation of tooth germ cells suspension from different morphological stages during tooth development and the phosphorylation of Smad2/3 in this process. Four tooth morphological stages were designed in this study. The results showed that tooth germ cells formed odontogenic tissue at embryonic day (E) 14.5, which is referred to as the cap stage, and they formed tooth-like structures at E16.5, which is referred to as the early bell stage, and E18.5, which is referred to as the late bell stage. Moreover, the transforming growth factor-β signalling pathway might play a role in this process. PMID:27982023

  7. Integration of sexual trauma in a religious narrative: Transformation, resolution and growth among contemplative nuns

    PubMed Central

    Littlewood, Roland; Leavey, Gerard

    2013-01-01

    The psychological consequences of sexual abuse are generally serious and enduring, particularly when the perpetrator is known and trusted by the survivor. This paper explores the experiences of five contemplative nuns who were sexually abused by priests and the spiritual journeys that followed. In the context of an ethnographic study of contemplative practice, participant observation and in-depth interviews were used to examine the ways that the nuns sought to make sense of their experiences through a long process of solitary introspection. The pursuit of meaning was shaped by religious beliefs relating to forgiveness, sacrifice, and salvation. Thus, trauma was transformed into a symbolic religious narrative that shaped their sense of identity. They were able to restructure core beliefs and to manage their current relationships with priests more securely. They described regaining their spiritual well-being in ways that suggest a form of posttraumatic spiritual growth. We conclude by discussing the findings in the light of the existing literature on the interaction of trauma and spirituality. PMID:23296289

  8. Ion beam-induced amorphous-to-tetragonal phase transformation and grain growth of nanocrystalline zirconia.

    PubMed

    Lian, Jie; Zhang, Jiaming; Namavar, Fereydoon; Zhang, Yanwen; Lu, Fengyuan; Haider, Hani; Garvin, Kevin; Weber, W J; Ewing, Rodney C

    2009-06-17

    Nanocrystalline zirconia has recently attracted extensive research interest due to its unique mechanical, thermal and electrical properties as compared with bulk zirconia counterparts, and it is of particular importance for controlling the phase stability of different polymorphs (amorphous, cubic, tetragonal and monoclinic phases) in different size regimes. In this work, we performed ion beam bombardments on bilayers (amorphous and cubic) of nano-zirconia using 1 MeV Kr2+ irradiation. Transmission electron microscopy (TEM) analysis reveals that amorphous zirconia transforms to a tetragonal structure under irradiation at room temperature, suggesting that the tetragonal phase is more energetically favorable under these conditions. The final grain size of the tetragonal zirconia can be controlled by irradiation conditions. A slower kinetics in the grain growth from cubic nanocrystalline zirconia was found as compared with that for the tetragonal grains recrystallized from the amorphous layer. The radiation-induced nanograins of tetragonal ZrO2 are stable at ambient conditions and maintain their physical integrity over a long period of time after irradiation. These results demonstrated that ion beam methods provide the means to control the phase stability and structure of zirconia polymorphs.

  9. Immunocytochemical localization of latent transforming growth factor-beta1 activation by stimulated macrophages

    NASA Technical Reports Server (NTRS)

    Chong, H.; Vodovotz, Y.; Cox, G. W.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1999-01-01

    Transforming growth factor-beta1 (TGF-beta) is secreted in a latent form consisting of mature TGF-beta noncovalently associated with its amino-terminal propeptide, which is called latency associated peptide (LAP). Biological activity depends upon the release of TGF-beta from the latent complex following extracellular activation, which appears to be the key regulatory mechanism controlling TGF-beta action. We have identified two events associated with latent TGF-beta (LTGF-beta) activation in vivo: increased immunoreactivity of certain antibodies that specifically detect TGF-beta concomitant with decreased immunoreactivity of antibodies to LAP. Macrophages stimulated in vitro with interferon-gamma and lipopolysaccharide reportedly activate LTGF-beta via cell membrane-bound protease activity. We show through dual immunostaining of paraformaldehyde-fixed macrophages that such physiological TGF-beta activation is accompanied by a loss of LAP immunoreactivity with concomitant revelation of TGF-beta epitopes. The induction of TGF-beta immunoreactivity colocalized with immunoreactive betaglycan/RIII in activated macrophages, suggesting that LTGF-beta activation occurs on the cell surface. Confocal microscopy of metabolically active macrophages incubated with antibodies to TGF-beta and betaglycan/RIII prior to fixation supported the localization of activation to the cell surface. The ability to specifically detect and localize LTGF-beta activation provides an important tool for studies of its regulation.

  10. Seeded growth of metal-doped plasmonic oxide heterodimer nanocrystals and their chemical transformation.

    PubMed

    Ye, Xingchen; Reifsnyder Hickey, Danielle; Fei, Jiayang; Diroll, Benjamin T; Paik, Taejong; Chen, Jun; Murray, Christopher B

    2014-04-02

    We have developed a generalized seeded-growth methodology for the synthesis of monodisperse metal-doped plasmonic oxide heterodimer nanocrystals (NCs) with a near-unity morphological yield. Using indium-doped cadmium oxide (ICO) as an example, we show that a wide variety of preformed metal NCs (Au, Pt, Pd, FePt, etc.) can serve as the seeds for the tailored synthesis of metal-ICO heterodimers with exquisite size, shape, and composition control, facilitated by the delayed nucleation mechanism of the CdO phase. The metal-ICO heterodimers exhibit broadly tunable near-infrared localized surface plasmon resonances, and dual plasmonic bands are observed for Au-ICO heterodimers. We further demonstrate that the oxide domain of the Au-ICO heterodimers can be selectively and controllably transformed into a series of partially and completely hollow cadmium chalcogenide nanoarchitectures with unprecedented structural complexity, leaving the metal domain intact. Our work not only represents an exciting addition to the rapidly expanding library of chemical reactions that produce colloidal hybrid NCs, but it also provides a general route for the bottom-up chemical design of multicomponent metal-oxide-semiconductor NCs in a rational and sequential manner.

  11. Detecting transforming growth factor-β release from liver cells using an aptasensor integrated with microfluidics.

    PubMed

    Matharu, Zimple; Patel, Dipali; Gao, Yandong; Haque, Amranul; Zhou, Qing; Revzin, Alexander

    2014-09-02

    We developed a cell-culture/biosensor platform consisting of aptamer-modified Au electrodes integrated with reconfigurable microfluidics for monitoring of transforming growth factor-beta 1 (TGF-β1), an important inflammatory and pro-fibrotic cytokine. Aptamers were thiolated, labeled with redox reporters, and self-assembled on gold surfaces. The biosensor was determined to be specific for TGF-β1 with an experimental detection limit of 1 ng/mL and linear range extending to 250 ng/mL. Upon determining figures of merit, aptasensor was miniaturized and integrated with human hepatic stellate cells inside microfluidic devices. Reconfigurable microfluidics were developed to ensure that seeding of "sticky" stromal cells did not foul the electrode and compromise sensor performance. This microsystem with integrated aptasensors was used to monitor TGF-β1 release from activated stellate cells over the course of 20 h. The electrochemical response went down upon infusing anti-TGF-β1 antibodies into the microfluidic devices containing activated stellate cells. To further validate aptasensor responses, stellate cells were stained for markers of activation (e.g., alpha smooth muscle actin) and were also tested for presence of TGF-β1 using enzyme linked immunosorbent assay (ELISA). Given the importance of TGF-β1 as a fibrogenic signal, a microsystem with integrated biosensors for local and continuous detection of TGF-β1 may prove to be an important tool to study fibrosis of the liver and other organs.

  12. Transforming Growth Factors β Coordinate Cartilage and Tendon Differentiation in the Developing Limb Mesenchyme*

    PubMed Central

    Lorda-Diez, Carlos I.; Montero, Juan A.; Martinez-Cue, Carmen; Garcia-Porrero, Juan A.; Hurle, Juan M.

    2009-01-01

    Transforming growth factor β (TGFβ) signaling has an increasing interest in regenerative medicine as a potential tool to repair cartilages, however the chondrogenic effect of this pathway in developing systems is controversial. Here we have analyzed the function of TGFβ signaling in the differentiation of the developing limb mesoderm in vivo and in high density micromass cultures. In these systems highest signaling activity corresponded with cells at stages preceding overt chondrocyte differentiation. Interestingly treatments with TGFβs shifted the differentiation outcome of the cultures from chondrogenesis to fibrogenesis. This phenotypic reprogramming involved down-regulation of Sox9 and Aggrecan and up-regulation of Scleraxis, and Tenomodulin through the Smad pathway. We further show that TGFβ signaling up-regulates Sox9 in the in vivo experimental model system in which TGFβ treatments induce ectopic chondrogenesis. Looking for clues explaining the dual role of TGFβ signaling, we found that TGFβs appear to be direct inducers of the chondrogenic gene Sox9, but the existence of transcriptional repressors of TGFβ signaling modulates this role. We identified TGF-interacting factor Tgif1 and SKI-like oncogene SnoN as potential candidates for this inhibitory function. Tgif1 gene regulation by TGFβ signaling correlated with the differential chondrogenic and fibrogenic effects of this pathway, and its expression pattern in the limb marks the developing tendons. In functional experiments we found that Tgif1 reproduces the profibrogenic effect of TGFβ treatments. PMID:19717568

  13. Transforming growth factor β1 inhibition protects from noise-induced hearing loss

    PubMed Central

    Murillo-Cuesta, Silvia; Rodríguez-de la Rosa, Lourdes; Contreras, Julio; Celaya, Adelaida M.; Camarero, Guadalupe; Rivera, Teresa; Varela-Nieto, Isabel

    2015-01-01

    Excessive exposure to noise damages the principal cochlear structures leading to hearing impairment. Inflammatory and immune responses are central mechanisms in cochlear defensive response to noise but, if unregulated, they contribute to inner ear damage and hearing loss. Transforming growth factor β (TGF-β) is a key regulator of both responses and high levels of this factor have been associated with cochlear injury in hearing loss animal models. To evaluate the potential of targeting TGF-β as a therapeutic strategy for preventing or ameliorating noise-induced hearing loss (NIHL), we studied the auditory function, cochlear morphology, gene expression and oxidative stress markers in mice exposed to noise and treated with TGF-β1 peptidic inhibitors P17 and P144, just before or immediately after noise insult. Our results indicate that systemic administration of both peptides significantly improved both the evolution of hearing thresholds and the degenerative changes induced by noise-exposure in lateral wall structures. Moreover, treatments ameliorated the inflammatory state and redox balance. These therapeutic effects were dose-dependent and more effective if the TGF-β1 inhibitors were administered prior to inducing the injury. In conclusion, inhibition of TGF-β1 actions with antagonistic peptides represents a new, promising therapeutic strategy for the prevention and repair of noise-induced cochlear damage. PMID:25852546

  14. Molecular and functional characterization of goldfish (Carassius auratus L.) transforming growth factor beta.

    PubMed

    Haddad, George; Hanington, Patrick C; Wilson, Elaine C; Grayfer, Leon; Belosevic, Miodrag

    2008-01-01

    Transforming growth factor beta (TGF-beta) is a pleiotropic cytokine with important roles in the regulation of cell proliferation, differentiation, survival, migration, activation and de-activation. It is one of the first cytokines released during an immune response and plays a strong immunomodulatory role in the activation and subsequent de-activation of macrophages and other immune cells. TGF-beta is a highly conserved molecule, and members of the TGF superfamily can be found in organisms as evolutionarily distant as arthropods. In this manuscript, we described the identification of a goldfish TGF-beta molecule, which was highly expressed in the skin, kidney and spleen of the goldfish and its expression was up-regulated in macrophages treated with LPS or recombinant goldfish TNF-alpha. Goldfish TGF-beta shared a high amino acid identity with, and was phylogenetically related to, TGF-beta1 of other teleost fish, birds, amphibians and mammals. Recombinant goldfish TGF-beta (rTGF-beta) induced the proliferation of a goldfish fibroblast cell line (CCL71) in a dose-dependent manner. In addition, rTGF-beta down-regulated the nitric oxide response of TNF-alpha-activated macrophages. This is the first report of teleost TGF-beta function in an ectothermic vertebrate.

  15. Recruitment and development of the follicle; the roles of the transforming growth factor-beta superfamily.

    PubMed

    Findlay, J K; Drummond, A E; Dyson, M L; Baillie, A J; Robertson, D M; Ethier, J-F

    2002-05-31

    Peripheral endocrine hormones and local paracrine and autocrine factors contribute, in a coordinated fashion, to the processes of recruitment, development or atresia, selection and ovulation of follicles. Among the local ovarian factors, there is growing evidence from genetic and experimental data that many members of the transforming growth factor (TGFbeta) superfamily have a biological role to play in folliculogenesis. These members include activin, inhibin, TGFbeta, BMP, GDF9 and perhaps MIS. In this review, we discuss the potential roles of the TGFbeta superfamily members, in particular activin, during folliculogenesis. Since the actions of these factors are determined by ligand availability, receptor expression and modulation of their signal transduction pathways, we also collate information on the expression of their signalling components in the follicle. We conclude that the TGFbeta superfamily signalling pathways, in particular activin's pathway, reside in the ovary. Furthermore, follistatin and beta-glycan-components of the accessory binding protein system that modifies activin action-are also present in follicles. In the post-natal rat ovary, the changes in receptor/Smad expression coincide with granulosa cell proliferation and antrum formation. We hypothesise that these pathway components are expressed in a temporal and cell-specific manner to meet the changing demands of cells during follicular development. The analysis of the components of the signal transduction pathways of the TGFbeta family members in populations of defined follicles and the identification of activated pathways in individually stimulated follicles should help clarify the roles of the TGFbeta members in folliculogenesis.

  16. Overexpressed homeobox B9 regulates oncogenic activities by transforming growth factor-β1 in gliomas

    SciTech Connect

    Fang, Liping; Xu, Yinghui; Zou, Lijuan

    2014-03-28

    Highlights: • HOXB9 is overexpressed in gliomas. • HOXB9 over expression had shorter survival time than down expression in gliomas. • HOXB9 stimulated the proliferation, migration and sphere formation of glioma cells. • Activation of TGF-β1 contributed to HOXB9-induced oncogenic activities. - Abstract: Glioma is the leading cause of deaths related to tumors in the central nervous system. The mechanisms of gliomagenesis remain elusive to date. Homeobox B9 (HOXB9) has a crucial function in the regulation of gene expression and cell survival, but its functions in glioma formation and development have yet to be elucidated. This study showed that HOXB9 expression in glioma tissues was significantly higher than that in nontumor tissues. Higher HOXB9 expression was also significantly associated with advanced clinical stage in glioma patients. HOXB9 overexpression stimulated the proliferation, migration, and sphere formation of glioma cells, whereas HOXB9 knockdown elicited an opposite effect. HOXB9 overexpression also increased the tumorigenicity of glioma cells in vivo. Moreover, the activation of transforming growth factor-β1 contributed to HOXB9-induced oncogenic activities. HOXB9 could be used as a predictable biomarker to be detected in different pathological and histological subtypes in glioma for diagnosis or prognosis.

  17. Adaptive and innate transforming growth factor beta signaling impact herpes simplex virus 1 latency and reactivation.

    PubMed

    Allen, Sariah J; Mott, Kevin R; Wechsler, Steven L; Flavell, Richard A; Town, Terrence; Ghiasi, Homayon

    2011-11-01

    Innate and adaptive immunity play important protective roles by combating herpes simplex virus 1 (HSV-1) infection. Transforming growth factor β (TGF-β) is a key negative cytokine regulator of both innate and adaptive immune responses. Yet, it is unknown whether TGF-β signaling in either immune compartment impacts HSV-1 replication and latency. We undertook genetic approaches to address these issues by infecting two different dominant negative TGF-β receptor type II transgenic mouse lines. These mice have specific TGF-β signaling blockades in either T cells or innate cells. Mice were ocularly infected with HSV-1 to evaluate the effects of restricted innate or adaptive TGF-β signaling during acute and latent infections. Limiting innate cell but not T cell TGF-β signaling reduced virus replication in the eyes of infected mice. On the other hand, blocking TGF-β signaling in either innate cells or T cells resulted in decreased latency in the trigeminal ganglia of infected mice. Furthermore, inhibiting TGF-β signaling in T cells reduced cell lysis and leukocyte infiltration in corneas and trigeminal ganglia during primary HSV-1 infection of mice. These findings strongly suggest that TGF-β signaling, which generally functions to dampen immune responses, results in increased HSV-1 latency.

  18. Metformin is a novel suppressor for transforming growth factor (TGF)-β1

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Zhang, Jianshu; Xu, Zhonghe; Feng, Yenan; Zhang, Mingliang; Liu, Jianli; Chen, Ruifei; Shen, Jing; Wu, Jimin; Lu, Zhizhen; Fang, Xiaohong; Li, Jingyuan; Zhang, Youyi

    2016-06-01

    Metformin is a widely used first-line antidiabetic drug that has been shown to protect against a variety of specific diseases in addition to diabetes, including cardiovascular disorders, polycystic ovary syndrome, and cancer. However, the precise mechanisms underlying the diverse therapeutic effects of metformin remain elusive. Here, we report that transforming growth factor-β1 (TGF-β1), which is involved in the pathogenesis of numerous diseases, is a novel target of metformin. Using a surface plasmon resonance-based assay, we identified the direct binding of metformin to TGF-β1 and found that metformin inhibits [125I]-TGF-β1 binding to its receptor. Furthermore, based on molecular docking and molecular dynamics simulations, metformin was predicted to interact with TGF-β1 at its receptor-binding domain. Single-molecule force spectroscopy revealed that metformin reduces the binding probability but not the binding force of TGF-β1 to its type II receptor. Consequently, metformin suppresses type II TGF-β1 receptor dimerization upon exposure to TGF-β1, which is essential for downstream signal transduction. Thus, our results indicate that metformin is a novel TGF-β suppressor with therapeutic potential for numerous diseases in which TGF-β1 hyperfunction is indicated.

  19. Transforming growth factor-β2 is sequestered in preterm human milk by chondroitin sulfate proteoglycans.

    PubMed

    Namachivayam, Kopperuncholan; Coffing, Hayley P; Sankaranarayanan, Nehru Viji; Jin, Yingzi; MohanKumar, Krishnan; Frost, Brandy L; Blanco, Cynthia L; Patel, Aloka L; Meier, Paula P; Garzon, Steven A; Desai, Umesh R; Maheshwari, Akhil

    2015-08-01

    Human milk contains biologically important amounts of transforming growth factor-β2 isoform (TGF-β2), which is presumed to protect against inflammatory gut mucosal injury in the neonate. In preclinical models, enterally administered TGF-β2 can protect against experimental necrotizing enterocolitis, an inflammatory bowel necrosis of premature infants. In this study, we investigated whether TGF-β bioactivity in human preterm milk could be enhanced for therapeutic purposes by adding recombinant TGF-β2 (rTGF-β2) to milk prior to feeding. Milk-borne TGF-β bioactivity was measured by established luciferase reporter assays. Molecular interactions of TGF-β2 were investigated by nondenaturing gel electrophoresis and immunoblots, computational molecular modeling, and affinity capillary electrophoresis. Addition of rTGF-β2 (20-40 nM) to human preterm milk samples failed to increase TGF-β bioactivity in milk. Milk-borne TGF-β2 was bound to chondroitin sulfate (CS) containing proteoglycan(s) such as biglycan, which are expressed in high concentrations in milk. Chondroitinase treatment of milk increased the bioactivity of both endogenous and rTGF-β2, and consequently, enhanced the ability of preterm milk to suppress LPS-induced NF-κB activation in macrophages. These findings provide a mechanism for the normally low bioavailability of milk-borne TGF-β2 and identify chondroitinase digestion of milk as a potential therapeutic strategy to enhance the anti-inflammatory effects of preterm milk.

  20. Transforming Growth Factor β Drives Hemogenic Endothelium Programming and the Transition to Hematopoietic Stem Cells.

    PubMed

    Monteiro, Rui; Pinheiro, Philip; Joseph, Nicola; Peterkin, Tessa; Koth, Jana; Repapi, Emmanouela; Bonkhofer, Florian; Kirmizitas, Arif; Patient, Roger

    2016-08-22

    Hematopoietic stem cells (HSCs) are self-renewing multipotent stem cells that generate mature blood lineages throughout life. They, together with hematopoietic progenitor cells (collectively known as HSPCs), emerge from hemogenic endothelium in the floor of the embryonic dorsal aorta by an endothelial-to-hematopoietic transition (EHT). Here we demonstrate that transforming growth factor β (TGFβ) is required for HSPC specification and that it regulates the expression of the Notch ligand Jagged1a in endothelial cells prior to EHT, in a striking parallel with the epithelial-to-mesenchymal transition (EMT). The requirement for TGFβ is two fold and sequential: autocrine via Tgfβ1a and Tgfβ1b produced in the endothelial cells themselves, followed by a paracrine input of Tgfβ3 from the notochord, suggesting that the former programs the hemogenic endothelium and the latter drives EHT. Our findings have important implications for the generation of HSPCs from pluripotent cells in vitro.

  1. Gene polymorphism in transforming growth factor-beta codon 10 is associated with susceptibility to Giardiasis.

    PubMed

    Taherkhani, H; Hajilooi, M; Fallah, M; Khyabanchi, O; Haidari, M

    2009-12-01

    Secretory immunoglobulin A (S-IgA) antibodies have a central role in anti-Giardial defence. It has been demonstrated that transforming growth factor-beta1 (TGF-beta1) stimulates B lymphocytes to produce and secrete S-IgA. We sought to determine the association between TGF-beta1 polymorphism (T+869C) with susceptibility to Giardiasis. The TGF-beta1 genotypes and levels of salivary (S-IgA) were analysed in individuals with Giardiasis (97 symptomatic and 57 asymptomatic) and controls (n = 92). Individuals with symptomatic Giardiasis had the lowest levels of S-IgA compared to individuals in asymptomatic Giardiasis and control groups (97%, 73% and 43%, <1 g L(-1), respectively, P = 0.002). The frequency of allele C and CC genotypes of TGF-beta1 polymorphism was significantly higher among symptomatic patients than asymptomatic and control groups. Logistic regression analysis demonstrated that the individuals homozygous for allele C of TGF-beta1 had a significantly higher risk for symptomatic Giardiasis with odds ratio of 2.76 (95% CI: 3.88, 1.71, P = 0.007). Among the participants with TT genotype per cent of individuals with S-IgA level of more than 1 g L(-1) was almost twice the percentage in CC genotype individuals (14% versus 7% respectively P = 0.01). Our data suggest that CC genotype of TGF-beta1 polymorphism at codon 10 is associated with occurrence of Giardiasis.

  2. Aberrant Transforming Growth Factor-β Activation Recruits Mesenchymal Stem Cells During Prostatic Hyperplasia.

    PubMed

    Wang, Long; Xie, Liang; Tintani, Francis; Xie, Hui; Li, Changjun; Cui, Zhuang; Wan, Mei; Zu, Xiongbing; Qi, Lin; Cao, Xu

    2017-02-01

    Benign prostatic hyperplasia (BPH) is the overgrowth of prostate tissues with high prevalence in older men. BPH pathogenesis is not completely understood, but it is believed to be a result of de novo overgrowth of prostatic stroma. In this study, we show that aberrant activation of transforming growth factor-β (TGF-β) mobilizes mesenchymal/stromal stem cells (MSCs) in circulating blood, which are recruited for the prostatic stromal hyperplasia. Elevated levels of active TGF-β were observed in both a phenylephrine-induced prostatic hyperplasia mouse model and human BPH tissues. Nestin lineage tracing revealed that 39.6% ± 6.3% of fibroblasts and 73.3% ± 4.2% smooth muscle cells were derived from nestin(+) cells in Nestin-Cre, Rosa26-YFP(flox/+) mice. Nestin(+) MSCs were increased in the prostatic hyperplasia mice. Our parabiosis experiment demonstrate that nestin(+) MSCs were mobilized and recruited to the prostatic stroma of wild-type mice and gave rise to the fibroblasts. Moreover, injection of a TGF-β neutralizing antibody (1D11) inhibits mobilization of MSCs, their recruitment to the prostatic stroma and hyperplasia. Importantly, knockout of TβRII in nestin(+) cell lineage ameliorated stromal hyperplasia. Thus, elevated levels of TGF-β-induced mobilization and recruitment of MSCs to the reactive stroma resulting in overgrowth of prostate tissues in BPH and, thus, inhibition of TGF-β activity could be a potential therapy for BPH. Stem Cells Translational Medicine 2017;6:394-404.

  3. Structure-function analysis of synthetic and recombinant derivatives of transforming growth factor alpha.

    PubMed Central

    Defeo-Jones, D; Tai, J Y; Wegrzyn, R J; Vuocolo, G A; Baker, A E; Payne, L S; Garsky, V M; Oliff, A; Riemen, M W

    1988-01-01

    Transforming growth factor alpha (TGF-alpha) is a 50-amino-acid peptide that stimulates cell proliferation via binding to cell surface receptors. To identify the structural features of TGF-alpha that govern receptor-ligand interactions, we prepared synthetic peptide fragments and recombinant mutant proteins of TGF-alpha. These TGF-alpha derivatives were tested in receptor binding and mitogenesis assays. Synthetic peptides representing the N terminus, the C terminus, or the individual disulfide constrained rings of TGF-alpha did not exhibit receptor-binding or mitogenic activity. Replacement of the cysteines with alanines at positions 8 and 21, 16 and 32, and 34 and 43 or at positions 8 and 21 and 34 and 43 yielded inactive mutant proteins. However, mutant proteins containing substitutions or deletions in the N-terminal region retained significant biologic activity. Conservative amino acid changes at residue 29 or 38 or both and a nonconservative amino acid change at residue 12 had little effect on binding or mitogenesis. However, nonconservative amino acid changes at residues 15, 38, and 47 produced dramatic decreases in receptor binding (23- to 71-fold) and mitogenic activity (38- to 125-fold). These studies indicate that at least three distinct regions of TGF-alpha contribute to biologic activity. PMID:2850475

  4. Transforming growth factor β-activated kinase 1 transcriptionally suppresses hepatitis B virus replication

    PubMed Central

    Pang, Jinke; Zhang, Geng; Lin, Yong; Xie, Zhanglian; Liu, Hongyan; Tang, Libo; Lu, Mengji; Yan, Ran; Guo, Haitao; Sun, Jian; Hou, Jinlin; Zhang, Xiaoyong

    2017-01-01

    Hepatitis B Virus (HBV) replication in hepatocytes is restricted by the host innate immune system and related intracellular signaling pathways. Transforming growth factor β-activated kinase 1 (TAK1) is a key mediator of toll-like receptors and pro-inflammatory cytokine signaling pathways. Here, we report that silencing or inhibition of endogenous TAK1 in hepatoma cell lines leads to an upregulation of HBV replication, transcription, and antigen expression. In contrast, overexpression of TAK1 significantly suppresses HBV replication, while an enzymatically inactive form of TAK1 exerts no effect. By screening TAK1-associated signaling pathways with inhibitors and siRNAs, we found that the MAPK-JNK pathway was involved in TAK1-mediated HBV suppression. Moreover, TAK1 knockdown or JNK pathway inhibition induced the expression of farnesoid X receptor α, a transcription factor that upregulates HBV transcription. Finally, ectopic expression of TAK1 in a HBV hydrodynamic injection mouse model resulted in lower levels of HBV DNA and antigens in both liver and serum. In conclusion, our data suggest that TAK1 inhibits HBV primarily at viral transcription level through activation of MAPK-JNK pathway, thus TAK1 represents an intrinsic host restriction factor for HBV replication in hepatocytes. PMID:28045080

  5. Transforming growth factor-β1 in carcinogenesis, progression, and therapy in cervical cancer.

    PubMed

    Zhu, Haiyan; Luo, Hui; Shen, Zhaojun; Hu, Xiaoli; Sun, Luzhe; Zhu, Xueqiong

    2016-06-01

    Transforming growth factor β1 (TGF-β1) is a multifunctional cytokine that plays important roles in cervical tumor formation, invasion, progression, and metastasis. TGF-β1 functions as a tumor inhibitor in precancerous lesions and early stage cancers of cervix whereas as a tumor promoter in later stage. This switch from a tumor inhibitor to a tumor promoter might be due to various alterations in TGF-β signaling pathway, such as mutations or loss of expression of TGF-β receptors and SMAD proteins. Additionally, the oncoproteins of human papillomaviruses have been shown to stimulate TGF-β1 expression, which in turn suppresses host immune surveillance. Thus, in addition to driving tumor cell migration and metastasis, TGF-β1 is believed to play a key role in promoting human papillomavirus infection by weakening host immune defense. In this article, we will discuss the role of TGF-β1 in the expression, carcinogenesis, progression, and therapy in cervical cancers. A better understanding of this cytokine in cervical carcinogenesis is essential for critical evaluation of this cytokine as a potential prognostic marker and therapeutic target.

  6. Hepatic stem cells and transforming growth factor β in hepatocellular carcinoma

    PubMed Central

    Majumdar, Avijit; Curley, Steven A.; Wu, Xifeng; Brown, Powel; Hwang, Jessica P.; Shetty, Kirti; Yao, Zhi-Xing; He, Aiwu Ruth; Li, Shulin; Katz, Lior; Farci, Patrizia; Mishra, Lopa

    2013-01-01

    Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers worldwide. It arises from modulation of multiple genes by mutations, epigenetic regulation, noncoding RNAs and translational modifications of encoded proteins. Although >40% of HCCs are clonal and thought to arise from cancer stem cells (CSCs), the precise identification and mechanisms of CSC formation remain poorly understood. A functional role of transforming growth factor (TGF)-β signalling in liver and intestinal stem cell niches has been demonstrated through mouse genetics. These studies demonstrate that loss of TGF-β signalling yields a phenotype similar to a human CSC disorder, Beckwith–Wiedemann syndrome. Insights into this powerful pathway will be vital for developing new therapeutics in cancer. Current clinical approaches are aimed at establishing novel cancer drugs that target activated pathways when the TGF-β tumour suppressor pathway is lost, and TGF-β itself could potentially be targeted in metastases. Studies delineating key functional pathways in HCC and CSC formation could be important in preventing this disease and could lead to simple treatment strategies; for example, use of vitamin D might be effective when the TGF-β pathway is lost or when wnt signalling is activated. PMID:22710573

  7. Regulation of the transforming growth factor β pathway by reversible ubiquitylation

    PubMed Central

    Al-Salihi, Mazin A.; Herhaus, Lina; Sapkota, Gopal P.

    2012-01-01

    The transforming growth factor β (TGFβ) signalling pathway plays a central role during embryonic development and in adult tissue homeostasis. It regulates gene transcription through a signalling cascade from cell surface receptors to intracellular SMAD transcription factors and their nuclear cofactors. The extent, duration and potency of signalling in response to TGFβ cytokines are intricately regulated by complex biochemical processes. The corruption of these regulatory processes results in aberrant TGFβ signalling and leads to numerous human diseases, including cancer. Reversible ubiquitylation of pathway components is a key regulatory process that plays a critical role in ensuring a balanced response to TGFβ signals. Many studies have investigated the mechanisms by which various E3 ubiquitin ligases regulate the turnover and activity of TGFβ pathway components by ubiquitylation. Moreover, recent studies have shed new light into their regulation by deubiquitylating enzymes. In this report, we provide an overview of current understanding of the regulation of TGFβ signalling by E3 ubiquitin ligases and deubiquitylases. PMID:22724073

  8. SV40 transformation of Swiss 3T3 cells can cause a stable reduction in the calcium requirement for growth

    PubMed Central

    1984-01-01

    A well-characterized SV40-transformed Swiss 3T3 line, SV101, and its revertants were tested for the ability to grow in reduced Ca++ (0.01 mM). Transformants and revertants did not differ from the parent 3T3 line in their Ca++ requirements. All three classes of cells grew less well in low Ca++ than in regular Ca++ (2.0 mM). SV40 transformants were then selected for the ability to grow in reduced Ca++. This new class of transformants was found to grow in 1% serum, grow in soft agarose, have a reorganized actin cytoskeleton, and express viral T antigens, as well as grow well in low Ca++. One of the selected clones was found to be T antigen-negative, yet was transformed in the serum, anchorage, actin, and Ca++ assays. It is possible that this clone was a spontaneous transformant. However, Southern blot analysis revealed the presence of integrated SV40 DNA. In addition, this analysis revealed the absence of an intact early region fragment, which codes for the viral T antigens. One explanation of this result may be that the mechanism of viral transformation for growth in low Ca++ involves viral- host DNA interactions that may not require a fully functional T antigen. In this case SV40 integration may be acting as a nonspecific cellular mutagen. PMID:6094595

  9. Mechanical strain- and high glucose-induced alterations in mesangial cell collagen metabolism: role of TGF-beta.

    PubMed

    Riser, B L; Cortes, P; Yee, J; Sharba, A K; Asano, K; Rodriguez-Barbero, A; Narins, R G

    1998-05-01

    Cultured mesangial cells (MC) exposed to cyclic mechanical strain or high glucose levels increase their secretion of transforming growth factor-beta1 (TGF-beta1) and collagen, suggesting possible mechanisms for the development of diabetic renal sclerosis resulting from intraglomerular hypertension and/or hyperglycemia. This study examines whether glucose interacts with mechanical strain to influence collagen metabolism and whether this change is mediated by TGF-beta. Accordingly, rat MC were grown on flexible-bottom plates in 8 or 35 mM glucose media, subjected to 2 to 5 d of cyclic stretching, and assayed for TGF-beta1 mRNA, TGF-beta1 secretion, and the incorporation of 14C-proline into free or protein-associated hydroxyproline to assess the dynamics of collagen metabolism. Stretching or high glucose exposure increased TGF-beta1 secretion twofold and TGF-beta1 mRNA levels by 30 and 45%, respectively. However, the combination of these stimuli increased secretion greater than fivefold without further elevating mRNA. In 8 mM glucose medium, stretching significantly increased MC collagen synthesis and breakdown, but did not alter accumulation, whereas those stretched in 35 mM glucose markedly increased collagen accumulation. TGF-beta neutralization significantly reduced baseline collagen synthesis, breakdown, and accumulation in low glucose, but had no significant effect on the changes induced by stretch. In contrast, the same treatment of MC in high glucose medium greatly reduced stretch-induced synthesis and breakdown of collagen and totally abolished the increase in collagen accumulation. These results indicate that TGF-beta plays a positive regulatory role in MC collagen synthesis, breakdown, and accumulation. However, in low glucose there is no stretch-induced collagen accumulation, and the effect of TGF-beta is limited to basal collagen turnover. In high glucose media, TGF-beta is a critical mediator of stretch-induced collagen synthesis and catabolism, and

  10. The Mineral–Collagen Interface in Bone

    PubMed Central

    2015-01-01

    The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone’s remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material’s performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions. PMID:25824581

  11. Astragaloside IV suppresses transforming growth factor-β1 induced fibrosis of cultured mouse renal fibroblasts via inhibition of the MAPK and NF-κB signaling pathways

    SciTech Connect

    Che, Xiajing; Wang, Qin; Xie, Yuanyuan; Xu, Weijia; Shao, Xinghua; Mou, Shan Ni, Zhaohui

    2015-09-04

    Renal fibrosis, a progressive process characterized by the accumulation of extracellular matrix (ECM) leading to organ dysfunction, is a characteristic of chronic kidney diseases. Among fibrogenic factors known to regulate the renal fibrotic process, transforming growth factor-β (TGF-β) plays a central role. In the present study, we examined the effect of Astragaloside IV (AS-IV), a component of the traditional Chinese medicinal plant Astragalus membranaceus, on the processes associated with renal fibrosis in cultured mouse renal fibroblasts treated with TGF-β1. RT-PCR, western blotting, immunofluorescence staining and collagen assays showed that AS-IV suppressed TGF-β1 induced fibroblast proliferation, transdifferentiation, and ECM production in a dose-dependent manner. Examination of the underlying mechanisms showed that the effect of AS-IV on the inhibition of fibroblast differentiation and ECM formation were mediated by its modulation of the activity of the MAPK and NF-κB signaling pathways. Taken together, our results indicate that AS-IV alleviates renal interstitial fibrosis via a mechanism involving the MAPK and NF-κB signaling pathways and demonstrate the therapeutic potential of AS-IV for the treatment of chronic kidney diseases. - Highlights: • AS-IV suppressed TGF-β1 induced renal fibroblast proliferation. • AS-IV suppressed TGF-β1 induced renal fibroblast transdifferentiation. • AS-IV suppressed TGF-β1 induced ECM production. • AS-IV alleviates renal fibrosis via the MAPK and NF-κB signaling pathways.

  12. Three-dimensional culture conditions differentially affect astrocyte modulation of brain endothelial barrier function in response to transforming growth factor β1.

    PubMed

    Hawkins, Brian T; Grego, Sonia; Sellgren, Katelyn L

    2015-05-22

    Blood-brain barrier (BBB) function is regulated by dynamic interactions among cell types within the neurovascular unit, including astrocytes and endothelial cells. Co-culture models of the BBB typically involve astrocytes seeded on two-dimensional (2D) surfaces, which recent studies indicate cause astrocytes to express a phenotype similar to that of reactive astrocytes in situ. We hypothesized that the culture conditions of astrocytes would differentially affect their ability to modulate BBB function in vitro. Brain endothelial cells were grown alone or in co-culture with astrocytes. Astrocytes were grown either as conventional (2D) monolayers, or in a collagen-based gel which allows them to grow in a three-dimensional (3D) construct. Astrocytes were viable in 3D conditions, and displayed a marked reduction in their expression of glial fibrillary acidic protein (GFAP), suggesting reduced activation. Stimulation of astrocytes with transforming growth factor (TGF)β1 decreased transendothelial electrical resistance (TEER) and reduced expression of claudin-5 in co-cultures, whereas treatment of endothelial cells in the absence of astrocytes was without effect. The effect of TGFβ1 on TEER was significantly more pronounced in endothelial cells cultured with 3D astrocytes compared to 2D astrocytes. These results demonstrate that astrocyte culture conditions differentially affect their ability to modulate brain endothelial barrier function, and suggest a direct relationship between reactive gliosis and BBB permeability. Moreover, these studies demonstrate the potential importance of physiologically relevant culture conditions to in vitro modeling of disease processes that affect the neurovascular unit.

  13. Influence of osteogenic protein-1 (OP-1;BMP-7) and transforming growth factor-beta 1 on bone formation in vitro.

    PubMed

    Cheifetz, S; Li, I W; McCulloch, C A; Sampath, K; Sodek, J

    1996-01-01

    The bone morphogenetic proteins (BMPs) and transforming growth factor-beta s (TGF-beta s), are a group of structurally related proteins which have been shown to stimulate bone formation in vivo. Since these proteins are concentrated in the organic matrix of bone and would be released during bone resorption, they are likely to have a profound effect on the remodeling bone and may provide a link between bone resorption and bone formation. We are using primary cultures of fetal rat calvarial cells (FRCC) to study the independent and combined effects of OP-1/BMP-7 and TGF-beta 1 on bone cells at different stages of differentiation in order to identify responding cell populations and target genes. We have confirmed prior reports that OP-1 stimulates, while TGF-beta 1 inhibits, osteogenic differentiation in this system. The increase in both number and size of the mineralized nodules induced by OP-1 was accompanied by increased expression of alkaline phosphatase and type I collagen with an induction of bone sialoprotein (BSP) suggesting that OP-1 stimulates both differentiation and clonal expansion of osteoblastic cells. Interestingly, TGF-beta 1 abrogated OP-1 induced nodule formation. Despite these opposing effects on osteogenic differentiation, TGF-beta 1 (Wrana et al, 1991) and OP-1 both stimulated a rapid induction of osteopontin (OPN) mRNA in confluent FRCC cultures enriched in pre-osteoblastic cells. In contrast, when OP-1 was added to nodule-forming cultures which are enriched in osteoblastic cells, there was only a weak induction of OPN. Moreover, while the expression of one marker for mature osteoblasts (BSP) was refractory to OP-1, another (osteocalcin) was markedly stimulated. Thus OP-1 has selective effects on bone matrix protein expression that are dependent on the differentiated state of the cells.

  14. Puerarin inhibits cardiac fibrosis via monocyte chemoattractant protein (MCP)-1 and the transforming growth factor-β1 (TGF-β1) pathway in myocardial infarction mice

    PubMed Central

    Tao, Zhiwen; Ge, Yingbin; Zhou, Ningtian; Wang, Yunle; Cheng, Weili; Yang, Zhijian

    2016-01-01

    Transforming growth factor-β1 (TGF-β1) and inflammation play important roles in the cardiac fibrosis development associated with myocardial infarction (MI). Puerarin is wildly used for treatment of diabetes, cardiovascular disease and cerebrovascular disease in China, and recently some studies have shown its anti-cardiac fibrotic effect on myocardial hypertrophy. The purpose of our study was to determine whether puerarin has an anti-cardiac fibrotic effect after MI and find the potential mechanism. A mouse model of MI was established by standard LAD coronary artery ligation, and cardiac fibrosis was confirmed by Masson’s staining and the expression of collagen I, III and α-SMA. The expression level of F4/80 (macrophage/monocyte marker in mouse), monocyte chemoattractant protein (MCP)-1 and TGF-β1 in cardiac tissue treated with or without puerarin was evaluated by immunohistochemistry analysis, enzyme-linked immunosorbent assay (ELISA) and quantitative polymerase chain reaction (qPCR). The downstream protein phospho-Smad (small mother against decapentaplegic) 2/3 was evaluated by westernblot. The results displayed that puerarin could inhibit the recruitment and activation of monocytes/macrophages, decrease the expression of TGF-β1 in the cardiac tissues, and consequently significantly attenuated cardiac fibrosis after MI. Our results also displayed a strong positive correlation between MCP-1 and TGF-β1 expression in MI. Thus, this study revealed the mechanism by which prevented cardiac fibrosis after MI through a decrease in MCP-1 expression and an inhibition TGF-β1 pathway, and indicated puerarin could be a potential agent in attenuating MI-induced cardiac fibrosis. PMID:27830026

  15. An update on transforming growth factor-β (TGF-β): sources, types, functions and clinical applicability for cartilage/bone healing.

    PubMed

    Patil, A S; Sable, R B; Kothari, R M

    2011-12-01

    Transforming growth factor-β (TGF-β) has been reviewed for its sources, types of isoforms, biochemical effects on cartilage formation/repair, and its possible clinical applications. Purification of three isoforms (TGF-β-1, β-2 and β-3) and their biochemical characterization revealed mainly their homo-dimer nature, with heterodimers in traces, each monomer comprised of 112 amino acids and MW. of 12 500 Da. While histo-chemical staining by a variety of dyes has revealed precise localization of TGF-β in tissues, immune-blot technique has thrown light on their expression as a function of age (neonatal vs. adult), as also on its quantum in an active and latent state. X-ray crystallographic studies and nuclear magnetic resonance (NMR) analysis have unraveled mysteries of their three-dimensional structures, essential for understanding their functions. Their similarities have led to interchangeability in assays, while differences have led to their specialized clinical applicability. For this purpose, their latent (inactive) form is changed to an active form through enzymatic processes of phosphorylation/glycosylation/transamination/proteolytic degradation. Their functions encompass differentiation and de-differentiation of chondrocytes, synthesis of collagen and proteoglycans (PGs) and thereby maintain homeostasis of cartilage in several degenerative diseases and repair through cell cycle signaling and physiological control. While several factors affecting their performance are already identified, their interplay and chronology of sequences of functions is yet to be understood. For its success in clinical applications, challenges in judicious dealing with the factors and their interplay need to be understood.

  16. Response of Fibroblasts to Transforming Growth Factor-β1 on Two-Dimensional and in Three-Dimensional Hyaluronan Hydrogels

    PubMed Central

    Chen, Xia

    2012-01-01

    Transforming growth factor-β1 (TGF-β1), an important cytokine with multiple functions, is secreted during wound healing. Previous studies have utilized two-dimensional (2D) cell culture to elucidate the functions of TGF-β1; however, 2D culture does not represent the complex three-dimensional (3D) in vivo environment. Using a synthetic hyaluronan (HA) extracellular matrix (ECM) hydrogel, we investigated the effect of TGF-β1 on fibroblasts cultured in three conditions—on tissue culture polystyrene (TCP), on HA (2D), and in HA (3D). After TGF-β1 treatment (0.1 to 20 ng/mL), morphological features and ECM regulation were analyzed by immunocytochemistry, Western blot, quantitative polymerase chain reaction, and zymogram assays. On TCP, cells showed the typical spindle shape with strong alpha smooth muscle actin (α-SMA) staining of cytoplasmic myofilaments along the cell axes after TGF-β1 treatment; on HA (2D), spindle-shape cells showed little α-SMA staining; in HA (3D), cells were smaller and rounded with less α-SMA deposition. The α-SMA gene and protein expression on TCP were significantly upregulated by TGF-β1, but TGF-β1 did not induce α-SMA expression in the presence of HA (both 2D and 3D). 3D HA culture significantly downregulated collagen I, III, and fibronectin expression, increased matrix metalloproteinase 1 and 2 (MMP1/MMP2) activity, upregulated MMP1 mRNA and downregulated TIMP3 mRNA expression. This study suggested that exogenous HA, particularly in 3D culture, appears to suppress ECM production, enhances ECM degradation and remodeling, and inhibits myofibroblast differentiation without decreasing TGF-β receptor expression. PMID:22734649

  17. Prospects and limitations of improving skeletal growth in a mouse model of spondyloepiphyseal dysplasia caused by R992C (p.R1192C) substitution in collagen II

    PubMed Central

    Hou, Cheryl; Kostas, James; Steplewski, Andrzej; Fertala, Andrzej

    2017-01-01

    Skeletal dysplasias form a group of skeletal disorders caused by mutations in macromolecules of cartilage and bone. The severity of skeletal dysplasias ranges from precocious arthropathy to perinatal lethality. Although the pathomechanisms of these disorders are generally well defined, the feasibility of repairing established aberrant skeletal tissues that developed in the presence of mutant molecules is currently unknown. Here, we employed a validated mouse model of spondyloepiphyseal dysplasia (SED) that enables temporal control of the production of the R992C (p.R1192C) collagen II mutant that causes this disease. Although in our earlier studies we determined that blocking the expression of this mutant at the early prenatal stages prevents a SED phenotype, the utility of blocking the R992C collagen II at the postnatal stages is not known. Here, by switching off the expression of R992C collagen II at various postnatal stages of skeletal development, we determined that significant improvements of cartilage and bone morphology were achieved only when blocking the production of the mutant molecules was initiated in newborn mice. Our study indicates that future therapies of skeletal dysplasias may require defining a specific time window when interventions should be applied to be successful. PMID:28182776

  18. Effects of transforming growth factor-beta on long-term human cord blood monocyte cultures

    SciTech Connect

    Orcel, P.; Bielakoff, J.; De Vernejoul, M.C. )

    1990-02-01

    Transforming growth factor-beta (TGF-beta) modulates growth and differentiation in many cell types and is abundant in bone matrix. We recently showed that human cord blood monocytes cultured in the presence of 1,25(OH)2D3 acquire some features of osteoclast precursors. Since TGF-beta has been shown to influence bone resorption in organ culture, we have studied the effect of TGF-beta (1-1,000 pg/ml) on cord blood monocyte cultures. These cells were cultured on plastic substrate during 3 weeks in the presence of 20% horse serum and 10(-9) M 1,25(OH)2D3. TGF-beta, from a concentration of 10 pg/ml in the culture medium, decreased in a dose dependent manner the formation of multinucleated cells. At a concentration of TGF-beta of 1 ng/ml, the multinucleated cells were reduced to 2.1% +/- 0.3%, compared to 19.3% +/- 1.5% in control cultures. TGF-beta inhibited in a dose-dependent manner the proliferation of cord blood monocytes as assessed by 3H-thymidine incorporation at 7 and 14 days of culture. The fusion index was also decreased by 3 weeks of treatment with TGF-beta. Indomethacin did not reverse the inhibitory effects of TGF-beta. The expression of the osteoclastic phenotype was assessed using two different antibodies: 23C6, a monoclonal antibody directed against the vitronectin receptor, which is highly expressed by osteoclasts but not by adult monocytes, and an antibody to HLA-DR, which is not present on osteoclast. TGF-beta decreased the expression of HLA-DR and increased in a dose-dependent manner the proportion of 23C6-labeled cells; these results suggest that TGF-beta could modulate a differentiation effect to the osteoclastic phenotype. However, when cord blood monocytes were cultured on devitalized rat calvariae prelabeled with 45Ca, TGF-beta did not induce any 45Ca release from bone cultured with monocytes.

  19. Role of transforming growth factor beta 1 on hepatic regeneration and apoptosis in liver diseases.

    PubMed Central

    Takiya, S; Tagaya, T; Takahashi, K; Kawashima, H; Kamiya, M; Fukuzawa, Y; Kobayashi, S; Fukatsu, A; Katoh, K; Kakumu, S

    1995-01-01

    AIMS--To investigate the effects of transforming growth factor beta 1 (TGF-beta 1) on regeneration and induction of apoptosis of liver cell and bile duct in various liver diseases. METHODS--Formalin fixed paraffin wax sections of 18 liver tissue samples were obtained by needle biopsy, surgery, or necropsy; these included six liver cirrhosis, three obstructive jaundice; five fulminant hepatitis, one subacute hepatitis, and three normal liver. Expression of TGF-beta 1, apoptosis related Le(y) antigen, Fas antigen, a receptor for tumour necrosis factor, and biotin nick end labelling with terminal deoxynucleotidyl transferase mediated dUTP (TUNEL) for locating DNA fragmentation, was investigated histochemically. RESULTS--TGF-beta 1 was expressed in areas of atypical bile duct proliferation, where bile duct continuously proliferated from liver cells. In occlusive jaundice and fulminant hepatitis, TUNEL was positive in nuclei and cytoplasm of metaplastic cells which formed incomplete bile ducts, and these cells appeared to extend from TGF-beta 1 expressing liver cells. Fas antigen was found only on the cell membrane of proliferated bile duct in fulminant hepatitis, which differed from TGF-beta 1 and TUNEL positive areas. Le(y) antigen was expressed in liver cell and bile duct at the areas with atypical bile duct proliferation, but its coexpression with TUNEL was rare. CONCLUSIONS--TGF-beta 1 plays a role in the arrest of liver cell regeneration and atypical bile duct proliferation, and in areas of rapidly progressing atypical bile duct proliferation, such as in fulminant hepatitis or bile retention. Apoptosis appears to be induced by TGF-beta 1. This phenomenon may account for the inadequate hepatic regeneration that occurs with liver disease. Images PMID:8567993

  20. Transforming growth factor-ß1 genotype and susceptibility to chronic obstructive pulmonary disease

    PubMed Central

    Wu, L; Chau, J; Young, R; Pokorny, V; Mills, G; Hopkins, R; McLean, L; Black, P

    2004-01-01

    Background: Only a few long term smokers develop symptomatic chronic obstructive pulmonary disease (COPD) and this may be due, at least in part, to genetic susceptibility to the disease. Transforming growth factor ß1 (TGF-ß1) has a number of actions that make it a candidate for a role in the pathogenesis of COPD. We have investigated a single nucleotide polymorphism at exon 1 nucleotide position 29 (T→C) of the TGF-ß1 gene that produces a substitution at codon 10 (Leu→Pro). Methods: The frequency of this polymorphism was determined in 165 subjects with COPD, 140 healthy blood donors, and 76 smokers with normal lung function (resistant smokers) using the polymerase chain reaction and restriction enzyme fragment length polymorphism. Results: The distribution of genotypes was Leu-Leu (41.8%), Leu-Pro (50.3%), and Pro-Pro (7.9%) for subjects with COPD, which was significantly different from the control subjects (blood donors: Leu-Leu (29.3%), Leu-Pro (52.1%) and Pro-Pro (18.6%), p = 0.006; resistant smokers: Leu-Leu (28.9%), Leu-Pro (51.3%) and Pro-Pro (19.7%), p = 0.02). The Pro10 allele was less common in subjects with COPD (33%) than in blood donors (45%; OR = 0.62, 95% CI 0.45 to 0.86, p = 0.005) and resistant smokers (45%; OR = 0.59, 95% CI 0.40 to 0.88, p = 0.01). Conclusions: The proline allele at codon 10 of the TGF-ß1 gene occurs more commonly in control subjects than in individuals with COPD. This allele is associated with increased production of TGF-ß1 which raises the possibility that TGF-ß1 has a protective role in COPD. PMID:14760152

  1. Transforming growth factor-β signaling in hypertensive remodeling of porcine aorta

    PubMed Central

    Popovic, Natasa; Bridenbaugh, Eric A.; Neiger, Jessemy D.; Hu, Jin-Jia; Vannucci, Marina; Mo, Qianxing; Trzeciakowski, Jerome; Miller, Matthew W.; Fossum, Theresa W.; Humphrey, Jay D.

    2009-01-01

    A porcine aortic coarctation model was used to examine regulation of gene expression in early hypertensive vascular remodeling. Aortic segments were collected proximal (high pressure) and distal (low pressure) to the coarctation after 2 wk of sustained hypertension (mean arterial pressure > 150 mmHg). Porcine 10K oligoarrays used for gene expression profiling of the two regions of aorta revealed downregulation of cytoskeletal and upregulation of extracellular region genes relative to the whole genome. A genomic database search for transforming growth factor-β (TGF-β) control elements showed that 19% of the genes that changed expression due to hypertension contained putative TGF-β control elements. Real-time RT-PCR and microarray analysis showed no change in expression of TGF-β1, TGF-β2, TGF-β3, or bone morphogenetic proteins-2 and -4, yet immunohistochemical staining for phosphorylated SMAD2, an indicator of TGF-β signaling, and for phosphorylated SMAD1/5/8, an indicator of signaling through the bone morphogenetic proteins, showed the highest percentage of positively stained cells in the proximal aortic segments of occluded animals. For TGF-β signaling, this increase was significantly different than for sham-operated controls. Western blot analysis showed no difference in total TGF-β1 protein levels with respect to treatment or aortic segment. Immunohistochemistry showed that the protein levels of latency-associated peptide was decreased in proximal segments of occluded animals. Collectively, these results suggest that activation of TGF-β, but not altered expression, may be a major mechanism regulating early hypertensive vascular remodeling. PMID:19717726

  2. Gene Expression Changes during the Development of Acute Lung Injury Role of Transforming Growth Factor β

    PubMed Central

    Wesselkamper, Scott C.; Case, Lisa M.; Henning, Lisa N.; Borchers, Michael T.; Tichelaar, Jay W.; Mason, John M.; Dragin, Nadine; Medvedovic, Mario; Sartor, Maureen A.; Tomlinson, Craig R.; Leikauf, George D.

    2005-01-01

    Rationale: Acute lung injury can occur from multiple causes, resulting in high mortality. The pathophysiology of nickel-induced acute lung injury in mice is remarkably complex, and the molecular mechanisms are uncertain. Objectives: To integrate molecular pathways and investigate the role of transforming growth factor β (TGF-β) in acute lung injury in mice. Methods: cDNA microarray analyses were used to identify lung gene expression changes after nickel exposure. MAPPFinder analysis of the microarray data was used to determine significantly altered molecular pathways. TGF-β1 protein in bronchoalveolar lavage fluid, as well as the effect of inhibition of TGF-β, was assessed in nickel-exposed mice. The effect of TGF-β on surfactant-associated protein B (Sftpb) promoter activity was measured in mouse lung epithelial cells. Measurements and Main Results: Genes that decreased the most after nickel exposure play important roles in lung fluid absorption or surfactant and phospholipid synthesis, and genes that increased the most were involved in TGF-β signaling. MAPPFinder analysis further established TGF-β signaling to be significantly altered. TGF-β–inducible genes involved in the regulation of extracellular matrix function and fibrinolysis were significantly increased after nickel exposure, and TGF-β1 protein was also increased in the lavage fluid. Pharmacologic inhibition of TGF-β attenuated nickel-induced protein in bronchoalveolar lavage. In addition, treatment with TGF-β1 dose-dependently repressed Sftpb promoter activity in vitro, and a novel TGF-β–responsive region in the Sftpb promoter was identified. Conclusions: These data suggest that TGF-β acts as a central mediator of acute lung injury through the alteration of several different molecular pathways. PMID:16100012

  3. Genetic variation in Transforming Growth Factor beta 1 and mammographic density in Singapore Chinese women

    PubMed Central

    Lee, Eunjung; Van den Berg, David; Hsu, Chris; Ursin, Giske; Koh, Woon-Puay; Yuan, Jian-Min; Stram, Daniel O.; Yu, Mimi C.; Wu, Anna H.

    2013-01-01

    Transforming growth factor-beta (TGF-β) plays a critical role in normal mammary development and morphogenesis. Decreased TGF-β signaling has been associated with increased mammographic density. Percent mammographic density (PMD) adjusted for age and body mass index (BMI) is a strong risk factor and predictor of breast cancer risk. PMD is highly heritable, but few genetic determinants have been identified. We investigated the association between genetic variation in TGFB1 and PMD using a cross-sectional study of 2,038 women who were members of the population-based Singapore Chinese Health Study cohort. We assessed PMD using a computer-assisted method. We used linear regression to examine the association between 9 tagging SNPs of TGFB1 and PMD and their interaction with parity, adjusting for age, BMI, and dialect group. We calculated ‘P-values adjusted for correlated tests’ (PACT) to account for multiple testing. The strongest association was observed for rs2241716. Adjusted PMD was higher by 1.5% per minor allele (PACT =0.04). When stratifying by parity, this association was limited to nulliparous women. For nulliparous women, adjusted PMD was higher by 8.6% per minor allele (PACT=0.003; P for interaction with parity=0.002). Three additional TGFB1 tagging SNPs, which were in linkage disequilibrium with rs2241716, were statistically significantly associated with adjusted PMD (PACT<0.05) for nulliparous women. However, none of these three SNPs showed statistically significant association after adjusting for rs2241716. Our data support that TGFB1 genetic variation may be an important genetic determinant of mammographic density measure that predicts breast cancer risk, particularly in nulliparous women. PMID:23333936

  4. Immunohistochemical detection of active transforming growth factor-beta in situ using engineered tissue

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Ehrhart, E. J.; Kalia, M.; Jirtle, R.; Flanders, K.; Tsang, M. L.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    The biological activity of transforming growth factor-beta 1 (TGF-beta) is governed by dissociation from its latent complex. Immunohistochemical discrimination of active and latent TGF-beta could provide insight into TGF-beta activation in physiological and pathological processes. However, evaluation of immunoreactivity specificity in situ has been hindered by the lack of tissue in which TGF-beta status is known. To provide in situ analysis of antibodies to differentiate between these functional forms, we used xenografts of human tumor cells modified by transfection to overexpress latent TGF-beta or constitutively active TGF-beta. This comparison revealed that, whereas most antibodies did not differentiate between TGF-beta activation status, the immunoreactivity of some antibodies was activation dependent. Two widely used peptide antibodies to the amino-terminus of TGF-beta, LC(1-30) and CC(1-30) showed marked preferential immunoreactivity with active TGF-beta versus latent TGF-beta in cryosections. However, in formalin-fixed, paraffin-embedded tissue, discrimination of active TGF-beta by CC(1-30) was lost and immunoreactivity was distinctly extracellular, as previously reported for this antibody. Similar processing-dependent extracellular localization was found with a neutralizing antibody raised to recombinant TGF-beta. Antigen retrieval recovered cell-associated immunoreactivity of both antibodies. Two antibodies to peptides 78-109 showed mild to moderate preferential immunoreactivity with active TGF-beta only in paraffin sections. LC(1-30) was the only antibody tested that discriminated active from latent TGF-beta in both frozen and paraffin-embedded tissue. Thus, in situ discrimination of active versus latent TGF-beta depends on both the antibody and tissue preparation. We propose that tissues engineered to express a specific form of a given protein provide a physiological setting in which to evaluate antibody reactivity with specific functional forms of a

  5. Transforming growth factor-beta receptor-3 is associated with pulmonary emphysema.

    PubMed

    Hersh, Craig P; Hansel, Nadia N; Barnes, Kathleen C; Lomas, David A; Pillai, Sreekumar G; Coxson, Harvey O; Mathias, Rasika A; Rafaels, Nicholas M; Wise, Robert A; Connett, John E; Klanderman, Barbara J; Jacobson, Francine L; Gill, Ritu; Litonjua, Augusto A; Sparrow, David; Reilly, John J; Silverman, Edwin K

    2009-09-01

    Chronic obstructive pulmonary disease (COPD) is a heterogeneous syndrome, including emphysema and airway disease. Phenotypes defined on the basis of chest computed tomography (CT) may decrease disease heterogeneity and aid in the identification of candidate genes for COPD subtypes. To identify these genes, we performed genome-wide linkage analysis in extended pedigrees from the Boston Early-Onset COPD Study, stratified by emphysema status (defined by chest CT scans) of the probands, followed by genetic association analysis of positional candidate genes. A region on chromosome 1p showed strong evidence of linkage to lung function traits in families of emphysema-predominant probands in the stratified analysis (LOD score = 2.99 in families of emphysema-predominant probands versus 1.98 in all families). Association analysis in 949 individuals from 127 early-onset COPD pedigrees revealed association for COPD-related traits with an intronic single-nucleotide polymorphism (SNP) in transforming growth factor-beta receptor-3 (TGFBR3) (P = 0.005). This SNP was significantly associated with COPD affection status comparing 389 cases from the National Emphysema Treatment Trial to 472 control smokers (P = 0.04), and with FEV(1) (P = 0.004) and CT emphysema (P = 0.05) in 3,117 subjects from the International COPD Genetics Network. Gene-level replication of association with lung function was seen in 427 patients with COPD from the Lung Health Study. In conclusion, stratified linkage analysis followed by association testing identified TGFBR3 (betaglycan) as a potential susceptibility gene for COPD. Published human microarray and murine linkage studies have also demonstrated the importance of TGFBR3 in emphysema and lung function, and our group and others have previously found association of COPD-related traits with TGFB1, a ligand for TGFBR3.

  6. Characterization of the rat transforming growth factor alpha gene and identification of promoter sequences.

    PubMed Central

    Blasband, A J; Rogers, K T; Chen, X R; Azizkhan, J C; Lee, D C

    1990-01-01

    We have determined the complete nucleotide sequence of rat transforming growth factor alpha (TGF alpha) mRNA and characterized the six exons that encode this transcript. These six exons span approximately 85 kilobases of genomic DNA, with exons 1 to 3 separated by particularly large introns. What had previously been thought to represent a species-specific difference in the size of the TGF alpha precursor (proTGF alpha) is now shown to be due to microheterogeneity in the splicing of exons 2 and 3. This results from a tandem duplication of the acceptor CAG and gives rise to two alternate forms (159 and 160 amino acids) of the integral membrane precursor. Exon 6, which encodes the 3' untranslated region of TGF alpha mRNA, also encodes, on the opposite strand, a small (approximately 200-nucleotide) transcript whose sequence predicts an open reading frame of 51 amino acids. Expression of this latter transcript does not appear to be coregulated with that of TGF alpha mRNA. Primer extension and S1 nuclease analyses of authentic TGF alpha transcripts revealed two major and multiple minor 5' ends which span more than 200 base pairs of DNA in a G + C-rich region that lacks canonical CCAAT or TATA sequences. The 5' ends of six independently derived cDNAs localized to five different sites in this same region. Restriction fragments that overlap these transcription start sites and extend approximately 300 base pairs in the 5' direction faithfully promote transcription in vitro with HeLa cell nuclear extracts. In addition, they direct the expression of the bacterial chloramphenicol acetyltransferase gene in transient-transfection assays. Images PMID:2325647

  7. RhoA Modulates Smad Signaling during Transforming Growth Factor-β-induced Smooth Muscle Differentiation*

    PubMed Central

    Chen, Shiyou; Crawford, Michelle; Day, Regina M.; Briones, Victorino R.; Leader, Jennifer E.; Jose, Pedro A.; Lechleider, Robert J.

    2007-01-01

    We recently reported that transforming growth factor (TGF)-β induced the neural crest stem cell line Monc-1 to differentiate into a spindle-like contractile smooth muscle cell (SMC) phenotype and that Smad signaling played an important role in this phenomenon. In addition to Smad signaling, other pathways such as mitogen-activated protein kinase (MAPK), phosphoinositol-3 kinase, and RhoA have also been shown to mediate TGF-β actions. The objectives of this study were to examine whether these signaling pathways contribute to TGF-β-induced SMC development and to test whether Smad signaling cross-talks with other pathway(s) during SMC differentiation induced by TGF-β. We demonstrate here that RhoA signaling is critical to TGF-β-induced SMC differentiation. RhoA kinase (ROCK) inhibitor Y27632 significantly blocks the expression of multiple SMC markers such as smooth muscle α-actin, SM22α, and calponin in TGF-β-treated Monc-1 cells. In addition, Y27632 reversed the cell morphology and abolished the contractility of TGF-β-treated cells. RhoA signaling was activated as early as 5 min following TGF-β addition. Dominant negative RhoA blocked nuclear translocation of Smad2 and Smad3 because of the inhibition of phosphorylation of both Smads and inhibited Smad-dependent SBE promoter activity, whereas constitutively active RhoA significantly enhanced SBE promoter activity. Consistent with these results, C3 exotoxin, an inhibitor of RhoA activation, significantly attenuated SBE promoter activity and inhibited Smad nuclear translocation. Taken together, these data point to a new role for RhoA as a modulator of Smad activation while regulating TGF-β-induced SMC differentiation. PMID:16317010

  8. Urinary transforming growth factor beta1 in children and adolescents with congenital solitary kidney.

    PubMed

    Wasilewska, Anna; Zoch-Zwierz, Walentyna; Taranta-Janusz, Katarzyna

    2009-04-01

    The aim of the study was to assess urinary transforming growth factor beta1 (TGF beta1) level in children and adolescents with congenital solitary kidney (CSK), depending on estimated glomerular filtration rate (eGFR) and compensatory overgrowth of the kidney. The study group (I) consisted of 65 children and young adults, 0.5-22 years of age (median 10.0 years) with CSK and no other urinary defects. The control group (C) contained 44 healthy children and adolescents, 0.25-21 years old (median 10.3 years). We used an enzyme-linked immunosorbent assay (ELISA) to determine the urinary level of TGF beta1, the Jaffe method to assess creatinine concentration, and the Schwartz formula to estimate GFR. Kidney length was measured while the patient was in a supine position, and overgrowth (O%) was calculated with reference to the charts. Urinary TGF beta1 level in CSK patients was more than twice as high as that in controls (P < 0.05). Also, eGFR in patients with CSK exceeded the values in the control group (P < 0.01). Compensatory overgrowth of the solitary kidney was found (median 19.44%). Urinary TGF beta1 concentration was positively correlated with eGFR (r = 0.247, P < 0.05), uric acid concentration (r = 0.333, P < 0.01), and percentage of overgrowth (r = 0.338, P < 0.01) and body mass index (BMI) centile (r = 0.274, P < 0.05). We concluded that, although proteinuria and progressive renal insufficiency is not observed in patients with CSK during childhood, the renal haemodynamic changes are present and may be a risk factor for impairment of renal function and hypertension in future life.

  9. Transforming growth factor beta 1: an autocrine regulator of adrenocortical steroidogenesis.

    PubMed

    Feige, J J; Cochet, C; Savona, C; Shi, D L; Keramidas, M; Defaye, G; Chambaz, E M

    1991-01-01

    Transforming growth factor beta 1 (TGF beta 1) is a member of a large family of structurally related regulatory polypeptides which comprises both functionally similar (TGF beta 1, TGF beta 2, TGF beta 3, TGF beta 4 and TGF beta 5) and functionally distinct proteins. In the past few years, TGF beta 1 has emerged as a multifunctional protein. One of its remarkable properties is its capacity to negatively modulate the differentiated, steroidogenic adrenocortical functions. We present here a review of the results from our recent work related to the effects of TGF beta 1 on bovine adrenocortical cell (zona fasciculata-reticularis) functions. We identified the steroid 17 alpha-hydroxylase (P-450 17 alpha) biosynthetic enzyme and the angiotensin II receptor as major targets whose expression are negatively regulated by TGF beta 1 in these cells. We characterized TGF beta 1 receptors at the surface of adrenocortical cells (mainly type I and type III receptors) and observed that their number is increased under ACTH treatment. Furthermore, we could detect the presence of immunoreactive TGF beta 1 in the bovine adrenal cortex whereas it was undetectable in the adrenal medulla and in the capsule. We also observed that adrenocortical cells secrete TGF beta 1 under a latent form together with large amounts of alpha 2-macroglobulin, a protease inhibitor known to be implied in the latency of TGF beta in serum. Taken together, these observations led us to a working hypothesis, proposing TGF beta 1 as an autocrine and/or paracrine regulator of adrenocortical steroidogenic functions. This concept points out the physiological activation of the latent TGF beta 1 complex as the important limiting step controlling its action in the adrenal cortex.

  10. Transforming growth factor-beta 1 in rheumatoid synovial membrane and cartilage/pannus junction.

    PubMed

    Chu, C Q; Field, M; Abney, E; Zheng, R Q; Allard, S; Feldmann, M; Maini, R N

    1991-12-01

    Transforming growth factor (TGF)-beta has been shown to promote tissue repair and have immunosuppressive actions, and has been proposed to have a role in rheumatoid arthritis (RA). Using immunohistochemical techniques with rabbit F(ab')2 antibodies raised against recombinant human TGF-beta 1, we have detected TGF-beta 1 in the synovial tissue and cartilage/pannus junction (CPJ) from 18/18 patients with RA. TGF-beta 1 was found predominantly in the thickened synovial lining layer in RA, but also detected in a perivascular pattern in the synovial interstitium as well as in occasional cells in the lymphoid aggregates. At the CPJ it was found both in cells at the distinct junction as well as in the transitional region of the diffuse fibroblastic zone. The cells staining for TGF-beta 1 were identified by double immunofluorescence staining as being from the monocyte/macrophage series as well as the type B synovial lining cells. TGF-beta 1 was also detected in the synovial membrane sections from 4/4 patients with systemic lupus erythematosus/mixed connective tissue disease and 5/8 patients with osteoarthritis, in a similar distribution to that seen in RA, and in the lining layer of 1/7 normal synovial membranes. These results add to histological evidence confirming that TGF-beta 1 is present in RA synovial cells and those from other arthritides. The distributions of TGF-beta 1 in RA synovial membrane reflects its known actions, as it can be detected at the CPJ, where it could induce repair, and close to activated cells upon which it may exert an immunosuppressive action.

  11. Redox-mediated activation of latent transforming growth factor-beta 1

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Dix, T. A.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    Transforming growth factor beta 1 (TGF beta) is a multifunctional cytokine that orchestrates response to injury via ubiquitous cell surface receptors. The biological activity of TGF beta is restrained by its secretion as a latent complex (LTGF beta) such that activation determines the extent of TGF beta activity during physiological and pathological events. TGF beta action has been implicated in a variety of reactive oxygen-mediated tissue processes, particularly inflammation, and in pathologies such as reperfusion injury, rheumatoid arthritis, and atherosclerosis. It was recently shown to be rapidly activated after in vivo radiation exposure, which also generates reactive oxygen species (ROS). In the present studies, the potential for redox-mediated LTGF beta activation was investigated using a cell-free system in which ROS were generated in solution by ionizing radiation or metal ion-catalyzed ascorbate reaction. Irradiation (100 Gray) of recombinant human LTGF beta in solution induced 26% activation compared with that elicited by standard thermal activation. Metal-catalyzed ascorbate oxidation elicited extremely efficient recombinant LTGF beta activation that matched or exceeded thermal activation. The efficiency of ascorbate activation depended on ascorbate concentrations and the presence of transition metal ions. We postulate that oxidation of specific amino acids in the latency-conferring peptide leads to a conformation change in the latent complex that allows release of TGF beta. Oxidative activation offers a novel route for the involvement of TGF beta in tissue processes in which ROS are implicated and endows LTGF beta with the ability to act as a sensor of oxidative stress and, by releasing TGF beta, to function as a signal for orchestrating the response of multiple cell types. LTGF beta redox sensitivity is presumably directed toward recovery of homeostasis; however, oxidation may also be a mechanism of LTGF beta activation that can be deleterious during

  12. Hydrogen Sulfide Inhibits Transforming Growth Factor-β1-Induced EMT via Wnt/Catenin Pathway.

    PubMed

    Guo, Lin; Peng, Wen; Tao, Jie; Lan, Zhen; Hei, Hongya; Tian, Lulu; Pan, Wanma; Wang, Li; Zhang, Xuemei

    2016-01-01

    Hydrogen sulfide (H2S) has anti-fibrotic potential in lung, kidney and other organs. The exogenous H2S is released from sodium hydrosulfide (NaHS) and can influence the renal fibrosis by blocking the differentiation of quiescent renal fibroblasts to myofibroblasts. But whether H2S affects renal epithelial-to-mesenchymal transition (EMT) and the underlying mechanisms remain unknown. Our study is aimed at investigating the in vitro effects of H2S on transforming growth factor-β1 (TGF-β1)-induced EMT in renal tubular epithelial cells (HK-2 cells) and the associated mechanisms. The induced EMT is assessed by Western blotting analysis on the expressions of α-SMA, E-cadherin and fibronectin. HK-2 cells were treated with NaHS before incubating with TGF-β1 to investigate its effect on EMT and the related molecular mechanism. Results demonstrated that NaHS decreased the expression of α-SMA and fibronectin, and increased the expression of E-cadherin. NaHS reduced the expression of TGF-β receptor type I (TβR I) and TGF-β receptor type II (TβR II). In addition, NaHS attenuated TGF-β1-induced increase of β-catenin expression and ERK phosphorylation. Moreover, it inhibited the TGF-β1-induced nuclear translocation of ββ-catenin. These effects of NaHS on fibronectin, E-cadherin and TβR I were abolished by the ERK inhibitor U0126 or β-catenin inhibitor XAV939, or β-catenin siRNA interference. We get the conclusion that NaHS attenuated TGF-β1-induced EMT in HK-2 cells through both ERK-dependent and β-catenin-dependent pathways.

  13. Transforming growth factor-β in normal nociceptive processing and pathological pain models.

    PubMed

    Lantero, Aquilino; Tramullas, Mónica; Díaz, Alvaro; Hurlé, María A

    2012-02-01

    The transforming growth factor-β (TGF-β) superfamily is a multifunctional, contextually acting family of cytokines that participate in the regulation of development, disease and tissue repair in the nervous system. The TGF-β family is composed of several members, including TGF-βs, bone morphogenetic proteins (BMPs) and activins. In this review, we discuss recent findings that suggest TGF-β function as important pleiotropic modulators of nociceptive processing both physiologically and under pathological painful conditions. The strategy of increasing TGF-β signaling by deleting "BMP and activin membrane-bound inhibitor" (BAMBI), a TGF-β pseudoreceptor, has demonstrated the inhibitory role of TGF-β signaling pathways in normal nociception and in inflammatory and neuropathic pain models. In particular, strong evidence suggests that TGF-β1 is a relevant mediator of nociception and has protective effects against the development of chronic neuropathic pain by inhibiting the neuroimmune responses of neurons and glia and promoting the expression of endogenous opioids within the spinal cord. In the peripheral nervous system, activins and BMPs function as target-derived differentiation factors that determine and maintain the phenotypic identity and circuit assembly of peptidergic nociceptors. In this context, activin is involved in the complex events of neuroinflammation that modulate the expression of pain during wound healing. These findings have provided new insights into the physiopathology of nociception. Moreover, specific members of the TGF-β family and their signaling effectors and modulator molecules may be promising molecular targets for novel therapeutic agents for pain management.

  14. Cellular localization of transforming growth factor-beta expression in bleomycin-induced pulmonary fibrosis.

    PubMed Central

    Zhang, K.; Flanders, K. C.; Phan, S. H.

    1995-01-01

    Bleomycin-induced pulmonary fibrosis is associated with increased lung transforming growth factor-beta (TGF-beta) gene expression, but cellular localization of the source of this expression has not been unequivocally established. In this study, lung fibrosis was induced in rats by endotracheal bleomycin injection on day 0 and, on selected days afterwards, lungs were harvested for in situ hybridization, immunohistochemical and histochemical analyses for TGF-beta 1 mRNA and protein expression, and cell identification. The results show that control lungs express essentially no detectable TGF-beta 1 mRNA or protein in the parenchyma. Before day 3 after bleomycin treatment, scattered bronchiolar epithelial cells, mononuclear cells, and eosinophils expressed elevated levels of TGF-beta 1. Between days 3 and 14, there was a major increase in the number of eosinophils, myofibroblasts, and fibroblasts strongly expressing TGF-beta 1 mRNA and protein. TGF-beta 1-producing cells were predominantly localized within areas of injury and active fibrosis. After day 14, the intensity and number of TGF-beta 1-expressing cells significantly declined and were predominantly found in fibroblasts in fibrotic areas. The expression of TGF-beta 1 protein was generally coincident with that for mRNA with the exception of bronchiolar epithelial cells in which strong protein expression was unaccompanied by a commensurate increase in mRNA. The study demonstrates that myofibroblasts, fibroblasts, and eosinophils represent the major sources of increased lung TGF-beta 1 expression in this model of pulmonary fibrosis. Images Figure 2 Figure 3 Figure 4 PMID:7543734

  15. Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus.

    PubMed

    Pierreux, C E; Nicolás, F J; Hill, C S

    2000-12-01

    Smad4 plays a pivotal role in all transforming growth factor beta (TGF-beta) signaling pathways. Here we describe six widely expressed alternatively spliced variants of human Smad4 with deletions of different exons in the linker, the region of Smad4 that separates the two well-conserved MH1 and MH2 domains. All these Smad4 variants form complexes with activated Smad2 and Smad3 and are incorporated into DNA-binding complexes with the transcription factor Fast-1, regardless of the amount of linker they contain. However, sequences encoded by exons 5 to 7 in the linker are essential for transcriptional activation. Most importantly, our observation that different Smad4 isoforms have different subcellular localizations has led us to the identification of a functional CRM1-dependent nuclear export signal in the Smad4 linker and a constitutively active nuclear localization signal in the N-terminal MH1 domain. In the absence of TGF-beta signaling, we conclude that Smad4 is rapidly and continuously shuttling between the nucleus and the cytoplasm, the distribution of Smad4 between the nucleus and the cytoplasm being dictated by the relative strengths of the nuclear import and export signals. We demonstrate that inhibition of CRM1-mediated nuclear export by treatment of cells with leptomycin B results in endogenous Smad4 accumulating very rapidly in the nucleus. Endogenous Smad2 and Smad3 are completely unaffected by leptomycin B treatment, indicating that the nucleocytoplasmic shuttling is specific for Smad4. We propose that, upon TGF-beta signaling, complex formation between Smad4 and activated Smad2 or -3 leads to nuclear accumulation of Smad4 through inhibition of its nuclear export. We demonstrate that after prolonged TGF-beta signaling Smad2 becomes dephosphorylated and Smad2 and Smad4 accumulate back in the cytoplasm.

  16. Orofacial clefts, parental cigarette smoking, and transforming growth factor-alpha gene variants

    SciTech Connect

    Shaw, G.M.; Wasserman, C.R.; O`Malley, C.D.

    1996-03-01

    Results of studies determine whether women who smoke during early pregnancy are at increased risk of delivering infants with orofacial clefts have been mixed, and recently a gene-environment interaction between maternal smoking, transforming growth factor-alpha (TGFa), and clefting has been reported. Using a large population-based case-control study, we investigated whether parental periconceptional cigarette smoking was associated with an increased risk for having offspring with orofacial clefts. We also investigated the influence of genetic variation of the TGFa locus on the relation between smoking and clefting. Parental smoking information was obtained from telephone interviews with mothers of 731 (84.7% of eligible) orofacial cleft case infants and with mothers of 734 (78.2%) nonmalformed control infants. DNA was obtained from newborn screening blood spots and genotyped for the allelic variants of TGFa. We found that risks associated with maternal smoking were most elevated for isolated cleft lip with or without cleft palate, (odds ratio 2.1 [95% confidence interval 1.3-3.6]) and for isolated cleft palate (odds ratio 2.2 [1.1-4.5]) when mothers smoked {ge} 20 cigarrettes/d. These risks for white infants ranged from 3-fold to 11-fold across phenotypic groups. Paternal smoking was not associated with clefting among the offspring of nonsmoking mothers, and passive smoke exposures were associated with at most slightly increased risks. This study offers evidence that the risk for orofacial clefting in infants may be influenced by maternal smoke exposures alone as well as in combination (gene-environment interaction) with the presence of the uncommon TGFa allele. 56 refs., 5 tabs.

  17. Resistance of human squamous carcinoma cells to transforming growth factor beta 1 is a recessive trait.

    PubMed Central

    Reiss, M; Muñoz-Antonia, T; Cowan, J M; Wilkins, P C; Zhou, Z L; Vellucci, V F

    1993-01-01

    Because most human squamous carcinoma cell lines of the aerodigestive and genital tracts are refractory to the antiproliferative action of transforming growth factor beta 1 (TGF beta 1) in vitro, we have begun to identify the causes for resistance of squamous carcinoma cell lines to TGF beta 1 by using somatic cell genetics. Two stable hybrid cell lines (FaDu-HKc.1 and FaDu-HKc.2) were obtained by fusing a TGF beta 1-resistant human squamous carcinoma cell line, FaDu-HygR, with a human papilloma virus 16-immortalized, TGF beta 1-sensitive, human foreskin keratinocyte cell line, HKc-neoR. Whereas TGF beta 1 did not inhibit DNA synthesis in parental FaDu-HygR cells, it reduced DNA synthetic activity of HKc-neoR, FaDu-HKc.1, and FaDu-HKc.2 cells by 75-85% (IC50, 2-5 pM). Although squamous carcinoma cells express lower than normal levels of TGF beta 1 type II receptors on their cell surface, TGF beta 1 type II receptor mRNA was detected in all four cell lines. Recessive genes involved in TGF beta 1 signaling may be localized to the distal portion of chromosome 18q, as this was the sole chromosomal region of homozygous deletion in parental FaDu-HygR cells. Furthermore, our previous observation that mutant p53 decreases sensitivity of keratinocytes to TGF beta 1 was supported by the finding that the level of the mutant p53 protein expressed by the hybrid cell lines was greatly reduced. In summary, TGF beta 1 resistance of FaDu cells appears to be recessive and is presumably due to the loss of one or more post-receptor elements of the signaling pathway. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 Fig. 6 PMID:8327510

  18. Transforming growth factor beta (TGF-β) and inflammation in cancer

    PubMed Central

    Bierie, Brian; Moses, Harold L.

    2009-01-01

    The transforming growth factor beta (TGF-β) has been studied with regard to the regulation of cell behavior for over three decades. A large body of research has been devoted to the regulation of epithelial cell and derivative carcinoma cell populations in vitro and in vivo. TGF-β has been shown to inhibit epithelial cell cycle progression and promote apoptosis that together significantly contribute to the tumor suppressive role for TGF-β during carcinoma initiation and progression. However, TGF-β is also able to promote an epithelial to mesenchymal transition that has been associated with increased tumor cell motility, invasion and metastasis. However, it has now been shown that loss of carcinoma cell responsiveness to TGF-β stimulation can also promote metastasis. Interestingly, the enhanced metastasis in the absence of a carcinoma cell response to TGF-β stimulation has been shown to involve increased chemokine production resulting in recruitment of pro-metastatic myeloid derived suppressor cell (MDSC) populations to the tumor microenvironment at the leading invasive edge. When present, MDSCs enhance angiogenesis, promote immune tolerance and provide matrix degrading enzymes that promote tumor progression and metastasis. Further, the recruitment of MDSC populations in this context likely enhances the classic role for TGF-β in immune suppression since the MDSCs are an abundant source of TGF-β production. Importantly, it is now clear that carcinoma-immune cell cross-talk initiated by TGF-β signaling within the carcinoma cell is a significant determinant worth consideration when designing therapeutic strategies to manage tumor progression and metastasis. PMID:20018551

  19. The role of transforming growth factor alpha in rat craniofacial development and chondrogenesis.

    PubMed

    Huang, L; Solursh, M; Sandra, A

    1996-08-01

    To explore the possible role of transforming growth factor alpha (TGF-alpha) in craniofacial development, its expression in the craniofacial region of rat embryos from embryonic day (d) 9 to d 20 was examined by in situ hybridisation and immunostaining. The TGF-alpha transcripts were first detected in the neural fold of embryonic d 9 and 10 embryos. In the craniofacial region, the TGF-alpha transcripts were not detected until embryonic d 16 in mesenchyme surrounding the olfactory bulb, within the olfactory bulb, the nasal capsule, vomeronasal organ, and vibrissal follicle. In addition, TGF-alpha message was detected in mesenchyme in the vicinity of Meckel's cartilage, and in the dental epithelium and lamina. This expression pattern of TGF-alpha transcripts persisted until embryonic d 17 but disappeared by d 18. The presence of TGF-alpha protein largely coincided with TGF-alpha message although, unlike the message, it persisted throughout later embryogenesis in the craniofacial region. The possible function of TGF-alpha in chondrogenesis was explored by employing the micromass culture technique. Cartilage nodule formation in mesenchymal cells cultured from rat mandibles in the presence of TGF-alpha was significantly inhibited. This inhibitory effect of TGF-alpha on chondrogenesis was reversed by addition of antibody against the EGF receptor, which crossreacts with the TGF-alpha receptor. The inhibitory effect of TGF-alpha on chondrogenesis in vitro was further confirmed by micromass culture using mesenchymal cells from rat embryonic limb bud. Taken together, these results demonstrate the involvement of TGF-alpha in chondrogenesis during embryonic development, possibly by way of a specific inhibition of cartilage formation from mesenchymal precursor cells.

  20. The role of transforming growth factor alpha in rat craniofacial development and chondrogenesis.

    PubMed Central

    Huang, L; Solursh, M; Sandra, A

    1996-01-01

    To explore the possible role of transforming growth factor alpha (TGF-alpha) in craniofacial development, its expression in the craniofacial region of rat embryos from embryonic day (d) 9 to d 20 was examined by in situ hybridisation and immunostaining. The TGF-alpha transcripts were first detected in the neural fold of embryonic d 9 and 10 embryos. In the craniofacial region, the TGF-alpha transcripts were not detected until embryonic d 16 in mesenchyme surrounding the olfactory bulb, within the olfactory bulb, the nasal capsule, vomeronasal organ, and vibrissal follicle. In addition, TGF-alpha message was detected in mesenchyme in the vicinity of Meckel's cartilage, and in the dental epithelium and lamina. This expression pattern of TGF-alpha transcripts persisted until embryonic d 17 but disappeared by d 18. The presence of TGF-alpha protein largely coincided with TGF-alpha message although, unlike the message, it persisted throughout later embryogenesis in the craniofacial region. The possible function of TGF-alpha in chondrogenesis was explored by employing the micromass culture technique. Cartilage nodule formation in mesenchymal cells cultured from rat mandibles in the presence of TGF-alpha was significantly inhibited. This inhibitory effect of TGF-alpha on chondrogenesis was reversed by addition of antibody against the EGF receptor, which crossreacts with the TGF-alpha receptor. The inhibitory effect of TGF-alpha on chondrogenesis in vitro was further confirmed by micromass culture using mesenchymal cells from rat embryonic limb bud. Taken together, these results demonstrate the involvement of TGF-alpha in chondrogenesis during embryonic development, possibly by way of a specific inhibition of cartilage formation from mesenchymal precursor cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 9 PMID:8771398

  1. Transforming Growth Factor-β Signaling Pathway in Patients with Kawasaki Disease

    PubMed Central

    Shimizu, Chisato; Jain, Sonia; Lin, Kevin O.; Molkara, Delaram; Frazer, Jeffrey R.; Sun, Shelly; Baker, Annette L.; Newburger, Jane W.; Rowley, Anne H.; Shulman, Stanford T.; Davila, Sonia; Hibberd, Martin L.; Burgner, David; Breunis, Willemijn B.; Kuijpers, Taco W.; Wright, Victoria J.; Levin, Michael; Eleftherohorinou, Hariklia; Coin, Lachlan; Popper, Stephen J.; Relman, David A.; Fury, Wen; Lin, Calvin; Mellis, Scott; Tremoulet, Adriana H.; Burns, Jane C.

    2011-01-01

    Background Transforming growth factor (TGF)-β is a multifunctional peptide that is important in T-cell activation and cardiovascular remodeling, both of which are important features of Kawasaki disease (KD). We postulated that variation in TGF-β signaling might be important in KD susceptibility and disease outcome. Methods and Results We investigated genetic variation in 15 genes belonging to the TGF-β pathway in a total 771 KD subjects of mainly European descendent from the US, UK, Australia and the Netherlands. We analyzed transcript abundance patterns using microarray and RT-PCR for these same genes and measured TGF-β2 protein levels in plasma. Genetic variants in TGFB2, TGFBR2 and SMAD3 and their haplotypes were consistently and reproducibly associated with KD susceptibility, coronary artery aneurysm formation, aortic root dilatation, and intravenous immunoglobulin treatment response in different cohorts. A SMAD3 haplotype associated with KD susceptibility replicated in two independent cohorts and an intronic SNP in a separate haplotype block was also strongly associated (A/G, rs4776338) (p=0.000022, OR 1.50, 95% CI 1.25-1.81). Pathway analysis using all 15 genes further confirmed the importance of the TGF-β pathway in KD pathogenesis. Whole blood transcript abundance for these genes and TGF-β2 plasma protein levels changed dynamically over the course of the illness. Conclusions These studies suggest that genetic variation in the TGF-β pathway influences KD susceptibility, disease outcome, and response to therapy and that aortic root and coronary artery Z scores can be used for phenotype/genotype analyses. Analysis of transcript abundance and protein levels further support the importance of this pathway in KD pathogenesis. PMID:21127203

  2. Transforming growth factor-beta receptor requirements for the induction of the endothelin-1 gene.

    PubMed

    Castañares, Cristina; Redondo-Horcajo, Mariano; Magan-Marchal, Noemi; Lamas, Santiago; Rodriguez-Pascual, Fernando

    2006-06-01

    Expression of the endothelin (ET)-1 gene is subject to complex regulation by numerous factors, among which the cytokine transforming growth factor-beta (TGF-beta) is one of the most important. TGF-beta action is based on the activation of the Smad signaling pathway. Smad proteins activate transcription of the gene by cooperation with activator protein-1 (AP-1) at specific sites on the ET-1 promoter. Smad signaling pathway is initiated by binding of the cytokine to a heteromeric complex of type I and type II receptors. Signal is then propagated to the nucleus by specific members of the Smad family. Most cell types contain a type I receptor known as ALK5. However, endothelial cells are unique because they coexpress an additional type I receptor named ALK1. These forms do not constitute redundant receptors with the same function, but they actually activate different Smad-mediated expression programs that lead to specific endothelial phenotypes. TGF-beta/ALK5/Smad3 pathway is associated to a mature endothelium because it leads to inhibition of cell migration/proliferation. Conversely, TGF-beta/ALK1/Smad5 activates both processes and is more related to the angiogenic state. We have analyzed the TGF-beta receptor subtype requirements for the activation of the ET-1 gene. For that purpose, we have overexpressed type I receptor and Smad isoforms in endothelial cells and analyzed the effect on ET-1 expression. Our experiments indicate that TGF-beta induces ET-1 expression preferentially through the activation of the ALK5/Smad3 pathway and, therefore, the expression of the vaso-constrictor may be associated to a quiescent and mature endothelial phenotype.

  3. Transforming Growth Factor β1 (TGF-β1) in the Sera of Postmenopausal Osteoporotic Females

    PubMed Central

    Faraji, Aazam; Abtahi, Shabnam; Ghaderi, Abbas; Samsami Dehaghani, Alamtaj

    2016-01-01

    Background Postmenopausal osteoporosis is a major cause of morbidity in postmenopausal females. Transforming growth factor β1 (TGF-β1) and interleukin 18 (IL-18) play complex roles in normal bone metabolism, and in pathophysiology of postmenopausal osteoporosis. Objectives The aim of this study was to design an analytic cross sectional study in order to further clarify the role of TGF-β1 and IL-18 in osteoporosis of postmenopausal females. Methods A cross sectional study including 65 postmenopausal osteoporotic females as cases and 69 postmenopausal females of similar age without osteoporosis as controls was conducted. Dual energy X-ray absorptiometry (DXA) was used to determine bone mass density (BMD) of participants and T-scoring was applied to establish whether the patient has osteoporosis or not. Serum TGF-β1 and IL-18 levels were measured by quantitative sandwich Enzyme linked immunosorbent assay (ELISA). Results Serum TGF-β1 levels were significantly higher in osteoporotic postmenopausal females than non-osteoporotic individuals (23.8 vs. 15.8 ng/mL; P = 0.009). There was no difference between IL-18 levels in the sera of osteoporotic and non-osteoporotic postmenopausal females in this study. There was a positive correlation between body mass index (BMI) and serum level of TGF-β1 (P = 0.04). Conclusions Our study demonstrated that TGF-β1 serum levels is higher in osteoporotic postmenopausal females than non-osteoporotic ones, and probably aberrant increase in TGF-β1 in postmenopausal females can result in uncoupled bone resorption and formation, which leads to osteoporosis. PMID:28123435

  4. Anti-transforming growth factor-beta monoclonal antibodies prevent lung injury in hemorrhaged mice.

    PubMed

    Shenkar, R; Coulson, W F; Abraham, E

    1994-09-01

    Acute lung injury, characterized as the adult respiratory distress syndrome (ARDS), is a common clinical occurrence following blood loss and injury. We previously found increased levels of transforming growth factor (TGF)-beta 1 mRNA in murine intraparenchymal mononuclear cells and in alveolar macrophages within 1 h after hemorrhage. Because TGF-beta has potent proinflammatory and immunoregulatory properties, we investigated the effect of blocking TGF-beta with mAb on hemorrhage-induced pathology, cytokine mRNA levels in lungs, as well as survival from pneumonia. Mice treated with anti-TGF-beta mAb showed normal pulmonary histology 3 days after hemorrhage and resuscitation in contrast to the mononuclear and neutrophil infiltrates, intraalveolar hemorrhage, and interstitial edema found in hemorrhaged mice either treated with control antibody or not treated with any antibody. Decreased mRNA levels for IL-1 beta, TNF-alpha, IL-6, IL-10, and IFN-gamma as compared with untreated, hemorrhaged controls were present in intraparenchymal pulmonary mononuclear cells following therapy with anti-TGF-beta. In contrast, therapy with anti-TGF-beta increased mRNA levels for IL-1 beta and TNF-alpha in alveolar macrophages and for TGF-beta in peripheral blood mononuclear cells collected 3 days after hemorrhage. Administration of anti-TGF-beta to hemorrhaged mice did not correct the enhanced susceptibility to Pseudomonas aeruginosa pneumonia that exists after hemorrhage. These results suggest that TGF-beta has an important role in hemorrhage-induced acute lung injury, but does not contribute to the post-hemorrhage depression in pulmonary antibacterial response.

  5. Enigmatic insight into collagen

    PubMed Central

    Deshmukh, Shrutal Narendra; Dive, Alka M; Moharil, Rohit; Munde, Prashant

    2016-01-01

    Collagen is a unique, triple helical molecule which forms the major part of extracellular matrix. It is the most abundant protein in the human body, representing 30% of its dry weight. It is the fibrous structural protein that makes up the white fibers (collagen fibers) of skin, tendons, bones, cartilage and all other connective tissues. Collagens are not only essential for the mechanical resistance and resilience of multicellular organisms, but are also signaling molecules defining cellular shape and behavior. The human body has at least 16 types of collagen, but the most prominent types are I, II and III. Collagens are produced by several cell types and are distinguishable by their molecular compositions, morphologic characteristics, distribution, functions and pathogenesis. This is the major fibrous glycoprotein present in the extracellular matrix and in connective tissue and helps in maintaining the structural integrity of these tissues. It has a triple helical structure. Various studies have proved that mutations that modify folding of the triple helix result in identifiable genetic disorders. Collagen diseases share certain similarities with autoimmune diseases, because autoantibodies specific to each collagen disease are produced. Therefore, this review highlights the role of collagen in normal health and also the disorders associated with structural and functional defects in collagen. PMID:27601823

  6. Collagen and gelatin.

    PubMed

    Liu, Dasong; Nikoo, Mehdi; Boran, Gökhan; Zhou, Peng; Regenstein, Joe M

    2015-01-01

    Collagen and gelatin have been widely used in the food, pharmaceutical, and cosmetic industries due to their excellent biocompatibility, easy biodegradability, and weak antigenicity. Fish collagen and gelatin are of renewed interest, owing to the safety and religious concerns of their mammalian counterparts. The structure of collagen has been studied using various modern technologies, and interpretation of the raw data should be done with caution. The structure of collagen may vary with sources and seasons, which may affect its applications and optimal extraction conditions. Numerous studies have investigated the bioactivities and biological effects of collagen, gelatin, and their hydrolysis peptides, using both in vitro and in vivo assay models. In addition to their established nutritional value as a protein source, collagen and collagen-derived products may exert various potential biological activities on cells in the extracellular matrix through the corresponding food-derived peptides after ingestion, and this might justify their applications in dietary supplements and pharmaceutical preparations. Moreover, an increasing number of novel applications have been found for collagen and gelatin. Therefore, this review covers the current understanding of the structure, bioactivities, and biological effects of collagen, gelatin, and gelatin hydrolysates as well as their most recent applications.

  7. Lovastatin, a cholesterol biosynthesis inhibitor, inhibits the growth of human H-ras oncogene transformed cells in nude mice.

    PubMed

    Sebti, S M; Tkalcevic, G T; Jani, J P

    1991-05-01

    Post-translational modification of oncogenic p21ras proteins with farnesyl, a lipid intermediate in cholesterol biosynthesis, is required for p21ras membrane association and for the ability of p21ras to transform cultured cells. We have tested the ability of lovastatin, a specific inhibitor of cholesterol biosynthesis, to inhibit the growth of ras oncogene-transformed cells in vivo. Balb/c mouse 3T3 cells, transfected with H-ras oncogene from human EJ bladder carcinoma, were highly tumorigenic in nude mice. Immunoprecipitation studies with transformed EJ cells showed that lovastatin (1-100 microM) inhibited p21ras membrane association in a concentration-dependent manner and that a 10 microM concentration reduced the amount of p21ras bound to the membrane by 50%. Lovastatin also inhibited EJ cell growth in a concentration range that closely paralleled that required for inhibition of p21ras membrane association. Treatment of nude mice bearing subcutaneous (s.c.) EJ tumors with lovastatin (50 mg/kg) significantly inhibited the abilities of these tumors to grow as early as four days and, by day 12, the lovastatin treated group of animals had tumors with an average size that was 3-fold smaller than those in the saline treated group. Western blotting studies showed that lovastatin (50 mg/kg) was also able to inhibit p21ras membrane association in EJ tumors implanted s.c. in nude mice. These results demonstrate that lovastatin, an inhibitor of cholesterol biosynthesis, inhibited in vivo tumor growth of H-ras oncogene transformed cells. The results also suggest that inhibition of p21ras membrane association, an essential step in ras oncogene neoplastic transformation, is one mechanism by which lovastatin may express its antitumor activity.

  8. 14-3-3 sigma and 14-3-3 zeta plays an opposite role in cell growth inhibition mediated by transforming growth factor-beta 1.

    PubMed

    Hong, Hye-Young; Jeon, Woo-Kwang; Bae, Eun-Jin; Kim, Shin-Tae; Lee, Ho-Jae; Kim, Seong-Jin; Kim, Byung-Chul

    2010-03-01

    The expression of 14-3-3 proteins is dysregulated in various types of cancer. This study was undertaken to investigate the effects of 14-3-3 zeta and 14-3-3 sigma on cell growth inhibition mediated by transforming growth factor-beta 1 (TGF-beta1). Mouse mammary epithelial cells (Eph4) that are transformed with oncogenic c-H-Ras (EpRas) and no longer sensitive to TGF-beta1-mediated growth inhibition displayed increased expression of 14-3-3 zeta and decreased expression of 14-3-3 sigma compared with parental Eph4 cells. Using small interfering RNA-mediated knockdown and overexpression of 14-3-3 sigma or 14-3-3 zeta, we showed that 14-3-3 sigma is required for TGF-beta1-mediated growth inhibition whereas 14-3-3 zeta negatively modulates this growth inhibitory response. Notably, overexpression of 14-3-3 zeta increased the level of Smad3 protein that is phosphorylated at linker regions and cannot mediate the TGF-beta1 growth inhibitory response. Consistent with this finding, mutation of the 14-3-3 zeta phosphorylation sites in Smad3 markedly reduced the 14-3-3 zeta-mediated inhibition of TGF-beta1-induced p15 promoter-reporter activity and cell cycle arrest, suggesting that these residues are critical targets of 14-3-3 zeta in the suppression of TGF-beta1-mediated growth. Taken together, our findings indicate that dysregulation of 14-3-3 sigma or 14-3-3 zeta contributes to TGF-beta1 resistance in cancer cells.

  9. Visualization of collagen regeneration in mouse dorsal skin using second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Luo, T.; Chen, J. X.; Zhuo, S. M.; Lu, K. C.; Jiang, X. S.; Liu, Q. G.

    2009-03-01

    The purpose of this study is to highlight a clearer understanding of the process of collagen regeneration during wound healing. By means of second harmonic generation (SHG) microscopy, the changes of collagen arrangement at the wound margin were analyzed at 0, 3, 5, 7, 11 and 13 days post injury. The degree of collagen disorders associated with the healing process was quantitatively obtained using the aspect ratio of polar plot image of collagen azimuthal angles and the healing status of collagen could be estimated by arithmetical mean deviation ( Ra) of the collagen SHG images. Our results suggest that SHG microscopy has potential advances in the collagen studies during wound healing and the arrangement of collagen fibers gradually transformed from disorder to order so as to contract the wound. It is capable of promoting clinical application of the noninvasive imaging tool and the analysis methods of collagen disorder as an effective scar management for prevention and treatment about aberrant healing.

  10. Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications.

    PubMed

    McDougall, Steven; Dallon, John; Sherratt, Jonathan; Maini, Philip

    2006-06-15

    The extent to which collagen alignment occurs during dermal wound healing determines the severity of scar tissue formation. We have modelled this using a multiscale approach, in which extracellular materials, for example collagen and fibrin, are modelled as continua, while fibroblasts are considered as discrete units. Within this model framework, we have explored the effects that different parameters have on the alignment process, and we have used the model to investigate how manipulation of transforming growth factor-beta levels can reduce scar tissue formation. We briefly review this body of work, then extend the modelling framework to investigate the role played by leucocyte signalling in wound repair. To this end, fibroblast migration and collagen deposition within both the wound region and healthy peripheral tissue are considered. Trajectories of individual fibroblasts are determined as they migrate towards the wound region under the combined influence of collagen/fibrin alignment and gradients in a paracrine chemoattractant produced by leucocytes. The effects of a number of different physiological and cellular parameters upon the collagen alignment and repair integrity are assessed. These parameters include fibroblast concentration, cellular speed, fibroblast sensitivity to chemoattractant concentration and chemoattractant diffusion coefficient. Our results show that chemoattractant gradients lead to increased collagen alignment at the interface between the wound and the healthy tissue. Results show that there is a trade-off between wound integrity and the degree of scarring. The former is found to be optimized under conditions of a large chemoattractant diffusion coefficient, while the latter can be minimized when repair takes place in the presence of a competitive inhibitor to chemoattractants.

  11. Transforming growth factor beta1 regulates melanocyte proliferation and differentiation in mouse neural crest cells via stem cell factor/KIT signaling.

    PubMed

    Kawakami, Tamihiro; Soma, Yoshinao; Kawa, Yoko; Ito, Masaru; Yamasaki, Emiko; Watabe, Hidenori; Hosaka, Eri; Yajima, Kenji; Ohsumi, Kayoko; Mizoguchi, Masako

    2002-03-01

    Stem cell factor is essential to the migration and differentiation of melanocytes during embryogenesis based on the observation that mutations in either the stem cell factor gene, or its ligand, KIT, result in defects in coat pigmentation in mice. Stem cell factor is also required for the survival of melanocyte precursors while they are migrating towards the skin. Transforming growth factor beta1 has been implicated in the regulation of both cellular proliferation and differentiation. NCC-melb4, an immortal cloned cell line, was cloned from a mouse neural crest cell. NCC-melb4 cells provide a model to study the specific stage of differentiation and proliferation of melanocytes. They also express KIT as a melanoblast marker. Using the NCC-melb4 cell line, we investigated the effect of transforming growth factor beta1 on the differentiation and proliferation of immature melanocyte precursors. Immunohistochemically, NCC-melb4 cells showed transforming growth factor beta1 expression. The anti-transforming growth factor beta1 antibody inhibited the cell growth, and downregulated the KIT protein and mRNA expression. To investigate further the activation of autocrine transforming growth factor beta1, NCC-melb4 cells were incubated in nonexogenous transforming growth factor beta1 culture medium. KIT protein decreased with anti-transforming growth factor beta1 antibody concentration in a concentration-dependent manner. We concluded that in NCC-melb4 cells, transforming growth factor beta1 promotes melanocyte precursor proliferation in autocrine and/or paracrine regulation. We further investigated the influence of transforming growth factor beta1 in vitro using a neural crest cell primary culture system from wild-type mice. Anti-transforming growth factor beta1 antibody decreased the number of KIT positive neural crest cell. In addition, the anti-transforming growth factor beta1 antibody supplied within the wild-type neural crest explants abolished the growth of the neural

  12. Enhancing cell migration in shape-memory alginate-collagen composite scaffolds: In vitro and ex vivo assessment for intervertebral disc repair.

    PubMed

    Guillaume, Olivier; Naqvi, Syeda Masooma; Lennon, Kerri; Buckley, Conor Timothy

    2015-04-01

    Lower lumbar disc disorders pose a significant problem in an aging society with substantial socioeconomic consequences. Both inner tissue (nucleus pulposus) and outer tissue (annulus fibrosus) of the intervertebral disc are affected by such debilitating disorders and can lead to disc herniation and lower back pain. In this study, we developed an alginate-collagen composite porous scaffold with shape-memory properties to fill defects occurring in annulus fibrosus tissue of degenerated intervertebral discs, which has the potential to be administered using minimal invasive surgery. In the first part of this work, we assessed how collagen incorporation on preformed alginate scaffolds influences the physical properties of the final composite scaffold. We also evaluated the ability of annulus fibrosus cells to attach, migrate, and proliferate on the composite alginate-collagen scaffolds compared to control scaffolds (alginate only). In vitro experiments, performed in intervertebral disc-like microenvironmental conditions (low glucose and low oxygen concentrations), revealed that for alginate only scaffolds, annulus fibrosus cells agglomerated in clusters with limited infiltration and migration capacity. In comparison, for alginate-collagen scaffolds, annulus fibrosus cells readily attached and colonized constructs, while preserving their typical fibroblastic-like cell morphology with spreading behavior and intense cytoskeleton expression. In a second part of this study, we investigated the effects of alginate-collagen scaffold when seeded with bone marrow derived mesenchymal stem cells. In vitro, we observed that alginate-collagen porous scaffolds supported cell proliferation and extracellular matrix deposition (collagen type I), with secretion amplified by the local release of transforming growth factor-β3. In addition, when cultured in ex vivo organ defect model, alginate-collagen scaffolds maintained viability of transplanted mesenchymal stem cells for up to 5

  13. Hydrogen sulfide alleviates myocardial collagen remodeling in association with inhibition of TGF-β/Smad signaling pathway in spontaneously hypertensive rats.

    PubMed

    Sun, Lili; Jin, Hongfang; Sun, Lujing; Chen, Siyao; Huang, Yaqian; Liu, Jia; Li, Zhenzhen; Zhao, Manman; Sun, Yan; Tang, Chaoshu; Zhao, Bin; Du, Junbao

    2015-01-20

    The study was designed to explore the role and possible mechanisms of hydrogen sulfide (H2S) in the regulation of myocardial collagen remodeling in spontaneously hypertensive rats (SHRs). We treated nine-week-old male SHRs and age- and sex-matched Wistar-Kyoto rats (WKYs) with NaHS (90 μmol/kg(-1)·day(-1)) for 9 wks. At 18 wks, plasma H2S, tail arterial pressure, morphology of the heart, myocardial ultrastructure and collagen volume fraction (CVF), myocardial expressions of collagen I and III protein and procollagen I and III mRNA, transforming growth factor-β1 (TGF-β1), TGF-β type I receptor (TβR-I), type II receptor (TβR-II), p-Smad2 and 3, matrix metalloproteinase (MMP)-13 and tissue inhibitors of MMP (TIMP)-1 proteins were determined. TGF-β1-stimulated cultured cardiac fibroblasts (CFs) were used to further study the mechanisms. The results showed that compared with WKYs, SHRs showed a reduced plasma H2S, elevated tail artery pressure and increased myocardial collagen, TGF-β1, TβR-II, p-Smad2 and p-Smad3 expressions. However, NaHS markedly decreased tail artery pressure and inhibited myocardial collagen, TGF-β1, TβR-II, p-Smad2 and p-Smad3 protein expressions, but H2S had no effect on the expressions of MMP-13 and TIMP-1. Hydralazine reduced blood pressure but had no effect on myocardial collagen, MMP-13 and TIMP-1 expressions and TGF-β1/Smad signaling pathway. H2S prevented activation of the TGF-β1/Smad signaling pathway and abnormal collagen synthesis in CFs. In conclusion, the results suggested that H2S could prevent myocardial collagen remodeling in SHR. The mechanism might be associated with inhibition of collagen synthesis via TGF-β1/Smad signaling pathway.

  14. Pyropia yezoensis peptide promotes collagen synthesis by activating the TGF-β/Smad signaling pathway in the human dermal fibroblast cell line Hs27

    PubMed Central

    Kim, Cho-Rong; Kim, Young-Min; Lee, Min-Kyeong; Kim, In-Hye; Choi, Youn-Hee; Nam, Taek-Jeong

    2017-01-01

    Pyropia yezoensis (P. yezoensis) is a marine algae that exhibits antioxidant, anti-inflammatory, antitumor and anti-aging activities. In this study, we investigated the effects of the P. yezoensis peptide, PYP1-5, on collagen synthesis in the human dermal fibroblast cell line Hs27. Skin aging is related to reduced collagen production and the activities of multiple enzymes, including matrix metalloproteinases (MMPs), which degrade collagen structure in the dermis, and tissue inhibitor of tissue inhibitor of metalloproteinases (TIMPs), which inhibit the action of MMPs. While collagen synthesis is associated with a number of signaling pathways, we examined the increased collagen synthesis via the upregulation of the transforming growth factor-β (TGF-β)/Smad signaling pathway. Using MTS assay, we found that PYP1-5 did not affect cell viability. Moreover, we confirmed that PYP1-5 increased type 1 collagen expression using enzyme-linked immunosorbent assay (ELISA), western blot analysis and quantitative PCR. In addition, we identified changes in various enzymes, as well as the mechanisms behind the PYP1-5-induced collagen synthesis. PYP1-5 decreased the MMP-1 protein and mRNA levels, and increased the TIMP-1 and TIMP-2 protein and mRNA levels. In addition, PYP1-5 activated the TGF-β/Smad signaling pathway, which increased TGF-β1, p-Smad2 and p-Smad3 expression, while inhibiting Smad7, an inhibitor of the TGF-β/Smad pathway. Furthermore, PYP1-5 upregulated transcription factor specificity protein 1 (Sp1) expression, which is reportedly involved in type 1 collagen expression. These findings indicate that PYP1-5 activates the TGF-β/Smad signaling pathway, which subsequently induces collagen synthesis in Hs27 cells. PMID:27878236

  15. Collagen type IV stimulates an increase in intracellular Ca2+ in pancreatic acinar cells via activation of phospholipase C.

    PubMed Central

    Somogyi, L; Lasić, Z; Vukicević, S; Banfić, H

    1994-01-01

    Intracellular Ca2+ responses to extracellular matrix molecules were studied in suspensions of pancreatic acinar cells loaded with Fura-2. Collagen type I, laminin, fibrinogen and fibronectin were unable to raise cytosolic free Ca2+ concentration ([Ca2+]i), whereas collagen type IV, at concentrations from 5 to 50 micrograms/ml, significantly increased it. The effect of collagen type IV was not due to possible contamination with type-I transforming growth factor beta or plasminogen, as neither of these agents was able to increase [Ca2+]i. Using highly specific mass assays, concentrations of inositol lipids, 1,2-diacylglycerol (DAG) and Ins(1,4,5) P3 were measured in pancreatic acinar cells stimulated with collagen type IV. A decrease in the concentrations of PtdIns(4,5) P2 and PtdIns4 P with a concomitant increase in the concentrations of DAG and InsP3 mass were observed, showing that collagen type IV increases [Ca2+]i by activation of phospholipase C. The observed [Ca2+]i signals had two components, the first resulting from Ca2+ release from the intracellular stores, and the second resulting from Ca2+ flux from the extracellular medium through the verapamil-insensitive channels. A tyrosine kinase inhibitor (tyrphostine) was able to block inositol lipid signalling caused by collagen type IV, which together with the insensitivity of this pathway to cholera toxin and pertussis toxin or to preactivation of protein kinase C, the longer duration of the increase in [Ca2+]i and a longer lag period needed for observation of increases in DAG and InsP3 concentration with collagen type IV than with carbachol (50 mM) suggest that activation of phospholipase C by collagen type IV is caused by tyrosine kinase activation. Inositol lipid signalling and increases in [Ca2+]i were also observed with Arg-Gly-Asp (RGD)-containing peptide but not with Arg-Asp-Gly (RDG)-containing peptide. Collagen type IV and RGD-containing peptide, but not carbachol, competed in increasing [Ca2+]i and

  16. Albumin acts like transforming growth factor β1 in microbubble-based drug delivery.

    PubMed

    Chuang, Yueh-Hsun; Wang, Yu-Hsin; Chang, Tien-Kuei; Lin, Ching-Jung; Li, Pai-Chi

    2014-04-01

    Unlike lipid-shelled microbubbles (MBs), albumin-shelled microbubbles (MBs) have not been reported to be actively targeted to cells without the assistance of antibodies. Recent studies indicate that the albumin molecule is similar to transforming growth factor β (TGF-β) both structurally and functionally. The TGF-β superfamily is important during early tumor outgrowth, with an elevated TGF-β being tumor suppressive; at later stages, this switches to malignant conversion and progression, including breast cancer. TGF-β receptors I and II play crucial roles in both the binding and endocytosis of albumin. However, until now, no specific albumin receptor has been found. On the basis of the above-mentioned information, we hypothesized that non-antibody-conjugated albumin-shelled MBs can be used to deliver drugs to breast cancer cells. We also studied the possible roles of TGF-β1 and radiation force in the behavior of cells and albumin-shelled MBs. The results indicate that albumin-shelled MBs loaded with paclitaxel (PTX) induce breast cancer cell apoptosis without the specific targeting produced by an antibody. Applying either an acoustic radiation force or cavitation alone to cells with PTX-loaded albumin MBs increased the apoptosis rate to 23.2% and 26.3% (p < 0.05), respectively. We also found that albumin-shelled MBs can enter MDA-MB-231 breast cancer cells and remain there for at least 24 h, even in the presence of PTX loading. Confocal micrographs revealed that 70.5% of the breast cancer cells took up albumin-shelled MBs spontaneously after 1 d of incubation. Applying an acoustic radiation force further increased the percentage to 91.9% in our experiments. However, this process could be blocked by TGF-β1, even with subsequent exposure to the radiation force. From these results, we conclude that TGF-β1 receptors are involved in the endocytotic process by which albumin-shelled MBs enter breast cancer cells. The acoustic radiation force increases the contact

  17. Activation of transforming growth factor-beta1 and early atherosclerosis in systemic lupus erythematosus.

    PubMed

    Jackson, Michelle; Ahmad, Yasmeen; Bruce, Ian N; Coupes, Beatrice; Brenchley, Paul E C

    2006-01-01

    The efficiency of activating latent transforming growth factor (TGF)-beta1 in systemic lupus erythematosus (SLE) may control the balance between inflammation and fibrosis, modulating the disease phenotype. To test this hypothesis we studied the ability to activate TGF-beta1 in SLE patients and control individuals within the context of inflammatory disease activity, cumulative organ damage and early atherosclerosis. An Activation Index (AI) for TGF-beta1 was determined for 32 patients with SLE and 33 age-matched and sex-matched control individuals by quantifying the increase in active TGF-beta1 under controlled standard conditions. Apoptosis in peripheral blood mononuclear cells was determined by fluorescence-activated cell sorting. Carotid artery intima-media thickness was measured using standard Doppler ultrasound. These measures were compared between patients and control individuals. In an analysis conducted in patients, we assessed the associations of these measures with SLE phenotype, including early atherosclerosis. Both intima-media thickness and TGF-beta1 AI for SLE patients were within the normal range. There was a significant inverse association between TGF-beta1 AI and levels of apoptosis in peripheral blood mononuclear cells after 24 hours in culture for both SLE patients and control individuals. Only in SLE patients was there a significant negative correlation between TGF-beta1 AI and low-density lipoprotein cholesterol (r = -0.404; P = 0.022) and between TGF-beta1 AI and carotid artery intima-media thickness (r = -0.587; P = 0.0004). A low AI was associated with irreversible damage (SLICC [Systemic Lupus International Collaborating Clinics] Damage Index > or = 1) and was inversely correlated with disease duration. Intima-media thickness was significantly linked to total cholesterol (r = 0.371; P = 0.037). To conclude, in SLE low normal TGF-beta1 activation was linked with increased lymphocyte apoptosis, irreversible organ damage, disease duration

  18. Add-on angiotensin II receptor blockade lowers urinary transforming growth factor-beta levels.

    PubMed

    Agarwal, Rajiv; Siva, Senthuran; Dunn, Stephen R; Sharma, Kumar

    2002-03-01

    Progression of renal failure, despite renoprotection with angiotensin-converting enzyme (ACE) inhibitors in patients with proteinuric nephropathies, may be caused by persistent renal production of transforming growth factor-beta1 (TGF-beta1) through the angiotensin II subtype 1 (AT1) receptors. We tested the hypothesis that AT1-receptor blocker therapy added to a background of chronic maximal ACE inhibitor therapy will result in a reduction in urinary TGF-beta1 levels in such patients. Sixteen patients completed a two-period, crossover, randomized, controlled trial, details of which have been previously reported. All patients were administered lisinopril, 40 mg/d, with either losartan, 50 mg/d, or placebo. Blood pressure (BP) was measured using a 24-hour ambulatory BP monitor. Overnight specimens of urine were analyzed for urine TGF-beta1, protein, and creatinine concentrations. Mean age of the study population was 53 +/- 9 (SD) years; body mass index, 38 +/- 5.7 kg/m2; seated BP, 156 +/- 18/88 +/- 12 mm Hg; and urine protein excretion, 3.6 +/- 0.71 g/g of creatinine. Twelve patients had diabetic nephropathy, and the remainder had chronic glomerulonephritis. At baseline, urinary TGF-beta1 levels were significantly increased in the study population compared with healthy controls (13.2 +/- 1.2 versus 1.7 +/- 1.1 ng/g creatinine; P < 0.001). There was a strong correlation between baseline urine protein excretion and urinary TGF-beta1 level (r2 = 0.53; P = 0.001), as well as systolic BP and urinary TGF-beta1 level (r2 = 0.57; P < 0.001). After 4 weeks of add-on losartan therapy, there was a 38% (95% confidence interval [CI], 16% to 55%) decline in urinary TGF-beta1 levels (13.3 [95% CI, 11.4 to 15.5] to 8.2 pg/mg creatinine [95% CI, 6.2 to 10.7]). The reduction in urinary TGF-beta1 levels occurred independent of changes in mean urinary protein excretion or BP. Thus, proteinuric patients with renal failure, despite maximal ACE inhibition, had increased urinary levels of

  19. Transcriptional Regulation of Human Transforming Growth Factor-α in Astrocytes.

    PubMed

    Karki, Pratap; Johnson, James; Son, Deok-Soo; Aschner, Michael; Lee, Eunsook

    2017-03-01

    Transforming growth factor-alpha (TGF-α) is known to play multifunctional roles in the central nervous system (CNS), including the provision of neurotropic properties that protect neurons against various neurotoxic insults. Previously, we reported that TGF-α mediates estrogen-induced enhancement of glutamate transporter GLT-1 function in astrocytes. However, the regulatory mechanism of TGF-α at the transcriptional level remains to be established. Our findings revealed that the human TGF-α promoter contains consensus sites for several transcription factors, such as NF-κB and yin yang 1 (YY1). NF-κB served as a positive regulator of TGF-α promoter activity, corroborated by observations that overexpression of NF-κB p65 increased, while mutation in the NF-κB binding sites in the TGF-α promoter reduced the promoter activity in rat primary astrocytes. Pharmacological inhibition of NF-κB with pyrrolidine dithiocarbamate (PDTC; 50 μM) or quinazoline (QNZ; 10 μM) also abolished TGF-α promoter activity, and NF-κB directly bound to its consensus site in the TGF-α promoter as evidenced by electrophoretic mobility shift assay (EMSA). Dexamethasone (DX) increased TGF-α promoter activity by activation of NF-κB. Treatment of astrocytes with 100 nM of DX for 24 h activated its glucocorticoid receptor and signaling proteins, including MAPK, PI3K/Akt, and PKA, via non-genomic pathways, to enhance TGF-α promoter activity and expression. YY1 served as a critical negative regulator of the TGF-α promoter as overexpression of YY1 decreased, while mutation of YY1 binding site in the promoter increased TGF-α promoter activity. Treatment for 3 h with 250 μM of manganese (Mn), an environmental neurotoxin, decreased astrocytic TGF-α expression by activation of YY1. Taken together, our results suggest that NF-κB is a critical positive regulator, whereas YY1 is a negative regulator of the TGF-α promoter. These findings identify potential molecular targets for

  20. Low dose radiation interactions with the transformation growth factor (TFG)-beta pathway

    NASA Astrophysics Data System (ADS)

    Maslowski, Amy Jesse

    A major limiting factor for long-term, deep-space missions is the radiation dose to astronauts. Because the dose to the astronauts is a mixed field of low- and high-LET radiation, there is a need to understand the effects of both radiation types on whole tissue; however, there are limited published data on the effects of high-LET (linear-energy-transfer) radiation on tissue. Thus, we designed a perfusion chamber system for rat trachea in order to mimic in vivo respiratory tissue. We successfully maintained the perfused tracheal tissue ex vivo in a healthy and viable condition for up to three days. In addition, this project studied the effects of high-LET Fe particles on the overall transformation growth factor (TGF)-beta response after TGF-beta inactivation and compared the results to the TGF-beta response post x-ray irradiation. It was found that a TGF-beta response could be measured in the perfused tracheal tissue, for x-ray and Fe particle irradiations, despite the high autofluorescent background intrinsic to tissue. However, after comparing the TGF-beta response of x-ray irradiation to High-Z-High-energy (HZE) irradiation, there was not a significant difference in radiation types. The TGF-beta response in x-ray and HZE irradiated perfusion chambers was also measured over time post irradiation. It was found that for 6 hour and 8 hour post irradiation, the TGF-beta response was higher for lower doses of radiation than for higher doses. This is in contrast to the 0 hour fixation which found the TGF-beta response to increase with increased dose. The inverse relationship found for 6 hour and 8 hour fixation times may indicate a threshold response for TGF-beta response; i.e., for low doses, a threshold of dose must be reached for an immediate TGF-beta response, otherwise the tissue responds more slowly to the irradiation damage. This result was unexpected and will require further investigation to determine if the threshold can be determined for the 250 kVp x-rays and

  1. Vascular remodeling in primary pulmonary hypertension. Potential role for transforming growth factor-beta.

    PubMed Central

    Botney, M. D.; Bahadori, L.; Gold, L. I.

    1994-01-01

    Active exogenous transforming growth factor-beta s (TGF-beta s) are potent modulators of extracellular matrix synthesis in cell culture and stimulate matrix synthesis in wounds and other remodeling tissues. The role of endogenous TGF-beta s in remodeling tissues is less well defined. Vascular remodeling in the pulmonary arteries of patients with primary pulmonary hypertension is characterized, in part, by abnormal deposition of immunohistochemically detectable procollagen, thereby identifying actively remodeling vessels. We used this marker of active matrix synthesis to begin defining the in vivo role of TGF-beta in the complex milieu of actively remodeling tissues. Immunohistochemistry using isoform-specific anti-TGF-beta antibodies was performed to determine whether TGF-beta was present in actively remodeling hypertensive pulmonary arteries 20 to 500 microns in diameter. Intense, cell-associated TGF-beta 3 immunoreactivity was observed in the media and neointima of these hypertensive muscular arteries. Immunostaining was present, but less intense, in normal arteries of comparable size. TGF-beta 2 immunoreactivity was observed in normal vessels and was increased slightly in hypertensive vessels, in a pattern resembling TGF-beta 3 immunoreactivity. No staining was associated with the adventitia. TGF-beta 1 immunostaining was either faint or absent in both normal and hypertensive vessels. Comparison of procollagen and TGF-beta localization demonstrated that TGF-beta 2 and TGF-beta 3 colocalized at all sites of procollagen synthesis. However, TGF-beta was observed in vessels, or vascular compartments, where there was no procollagen synthesis. Procollagen immunoreactivity was not present in normal vessels that showed immunoreactivity for TGF-beta 2 and TGF-beta 3. These observations suggest: a) the stimulation of procollagen synthesis by TGF-beta in vivo is more complex than suggested by in vitro studies and b) a potential role for TGF-beta 2 or TGF-beta 3, but not

  2. Platelet-derived growth factor-dependent cellular transformation requires either phospholipase Cgamma or phosphatidylinositol 3 kinase.

    PubMed

    DeMali, K A; Whiteford, C C; Ulug, E T; Kazlauskas, A

    1997-04-04

    Although it has been well established that constitutive activation of receptor tyrosine kinases leads to cellular transformation, the signal relay pathways involved have not been systematically investigated. In this study we used a panel of platelet-derived growth factor (PDGF) beta receptor mutants (beta-PDGFR), which selectively activate various signal relay enzymes to define which signaling pathways are required for PDGF-dependent growth of cells in soft agar. The host cell line for these studies was Ph cells, a 3T3-like cell that expresses normal levels of the beta-PDGFR but no PDGF-alpha receptor (alpha-PDGFR). Hence, this cell system can be used to study signaling of mutant alphaPDGFRs or alpha/beta chimeras. We constructed chimeric receptors containing the alphaPDGFR extracellular domain and the betaPDGFR cytoplasmic domain harboring various phosphorylation site mutations. The mutants were expressed in Ph cells, and their ability to drive PDGF-dependent cellular transformation (growth in soft agar) was assayed. Cells infected with an empty expression vector failed to grow in soft agar, whereas introduction of the chimera with a wild-type beta-PDGFR cytoplasmic domain gave rise to a large number of colonies. In contrast, the N2F5 chimera, in which the binding sites for phospholipase Cgamma (PLC-gamma), RasGTPase-activating protein, phosphatidylinositol 3 kinase (PI3K), and SHP-2 were eliminated, failed to trigger proliferation. Restoring the binding sites for RasGTPase-activating protein or SHP-2 did not rescue the PDGF-dependent response. In contrast, receptors capable of associating with either PLC-gamma or PI3K relayed a growth signal that was comparable to wild-type receptors in the soft agar growth assay. These findings indicate that the PDGF receptor activates multiple signaling pathways that lead to cellular transformation, and that either PI3K or PLC-gamma are key initiators of such signal relay cascades.

  3. Collagen Structural Hierarchy and Susceptibility to Degradation by Ultraviolet Radiation.

    PubMed

    Rabotyagova, Olena S; Cebe, Peggy; Kaplan, David L

    2008-12-01

    Collagen type I is the most abundant extracellular matrix protein in the human body, providing the basis for tissue structure and directing cellular functions. Collagen has complex structural hierarchy, organized at different length scales, including the characteristic triple helical feature. In the present study, the relationship between collagen structure (native vs. denatured) and sensitivity to UV radiation was assessed, with a focus on changes in primary structure, changes in conformation, microstructure and material properties. A brief review of free radical reactions involved in collagen degradation is also provided as a mechanistic basis for the changes observed in the study. Structural and functional changes in the collagens were related to the initial conformation (native vs. denatured) and the energy of irradiation. These changes were tracked using SDS-PAGE to assess molecular weight, Fourier transform infrared (FTIR) spectroscopy to study changes in the secondary structure, and atomic force microscopy (AFM) to characterize changes in mechanical properties. The results correlate differences in sensitivity to irradiation with initial collagen structural state: collagen in native conformation vs. heat-treated (denatured) collagen. Changes in collagen were found at all levels of the hierarchical structural organization. In general, the native collagen triple helix is most sensitive to UV-254nm radiation. The triple helix delays single chain degradation. The loss of the triple helix in collagen is accompanied by hydrogen abstraction through free radical mechanisms. The results received suggest that the effects of electromagnetic radiation on biologically relevant extracellular matrices (collagen in the present study) are important to assess in the context of the state of collagen structure. The results have implications in tissue remodeling, wound repair and disease progression.

  4. Collagen Structural Hierarchy and Susceptibility to Degradation by Ultraviolet Radiation

    PubMed Central

    Rabotyagova, Olena S.; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    Collagen type I is the most abundant extracellular matrix protein in the human body, providing the basis for tissue structure and directing cellular functions. Collagen has complex structural hierarchy, organized at different length scales, including the characteristic triple helical feature. In the present study, the relationship between collagen structure (native vs. denatured) and sensitivity to UV radiation was assessed, with a focus on changes in primary structure, changes in conformation, microstructure and material properties. A brief review of free radical reactions involved in collagen degradation is also provided as a mechanistic basis for the changes observed in the study. Structural and functional changes in the collagens were related to the initial conformation (native vs. denatured) and the energy of irradiation. These changes were tracked using SDS-PAGE to assess molecular weight, Fourier transform infrared (FTIR) spectroscopy to study changes in the secondary structure, and atomic force microscopy (AFM) to characterize changes in mechanical properties. The results correlate differences in sensitivity to irradiation with initial collagen structural state: collagen in native conformation vs. heat-treated (denatured) collagen. Changes in collagen were found at all levels of the hierarchical structural organization. In general, the native collagen triple helix is most sensitive to UV-254nm radiation. The triple helix delays single chain degradation. The loss of the triple helix in collagen is accompanied by hydrogen abstraction through free radical mechanisms. The results received suggest that the effects of electromagnetic radiation on biologically relevant extracellular matrices (collagen in the present study) are important to assess in the context of the state of collagen structure. The results have implications in tissue remodeling, wound repair and disease progression. PMID:22199459

  5. Effects of transforming growth factor-beta on growth and differentiation of the continuous rat thyroid follicular cell line, FRTL-5

    SciTech Connect

    Morris, J.C. III; Ranganathan, G.; Hay, I.D.; Nelson, R.E.; Jiang, N.S.

    1988-09-01

    Transforming growth factor-beta (TGF beta) has been shown to influence the growth and differentiation of many widely varied cell types in vitro, including some that are endocrinologically active. We have investigated the previously unknown effects of this unique growth factor in the differentiated rat thyroid follicular cell line FRTL-5. The cells demonstrated specific, high affinity binding of TGF beta, and as with other epithelial cells, the growth of these thyroid follicular cells was potently inhibited by addition of TGF beta to the culture medium. TGF beta caused a significant reduction in TSH-sensitive adenylate cyclase activity in the cells. The addition of (Bu)2cAMP along with the growth factor to cultures partially reversed the characteristic morphological changes seen with TGF beta, but did not reverse the growth inhibition. To further investigate the possible mechanisms of the effects of TGF beta on the cells, we measured the influence of the growth factor on (125I)TSH binding. TGF beta did not compete for specific TSH-binding sites; however, exposure of the cells to TGF beta for 12 or more h resulted in a dose-dependent down-regulation of TSH receptors that was fully reversible. While cellular proliferation was potently inhibited by TGF beta, differentiated function, as manifest by iodine-trapping ability, was stimulated by the growth factor. This stimulation of iodine uptake was independent of, and additive to, the stimulatory effects of TSH. Finally, FRTL-5 cells in serum-free medium and in response to TSH were shown to secrete TGF beta-like activity that competed for (125I)TGF beta in a RRA. These studies suggest that TGF beta may represent an autocrine mechanism of controlling the growth response to TSH in thyroid follicular cells, while allowing the continuance of differentiated function.

  6. A 16-amino acid peptide from human alpha2-macroglobulin binds transforming growth factor-beta and platelet-derived growth factor-BB.

    PubMed Central

    Webb, D. J.; Roadcap, D. W.; Dhakephalkar, A.; Gonias, S. L.

    2000-01-01

    Alpha2-macroglobulin (alpha2M) is a major carrier of transforming growth factor-beta (TGF-beta) in vitro and in vivo. By screening glutathione S-transferase (GST) fusion proteins with overlapping sequences, we localized the TGFbeta-binding site to aa 700-738 of the mature human alpha2M subunit. In separate experiments, we screened overlapping synthetic peptides corresponding to aa 696-777 of alpha2M and identified a single 16-mer (718-733) that binds TGF-beta1. Platelet-derived growth factor-BB (PDGF-BB) bound to the same peptide, even though TGF-beta and PDGF-BB share almost no sequence identity. The sequence of the growth factor-binding peptide, WDLVVVNSAGVAEVGV, included a high proportion of hydrophobic amino acids. The analogous peptide from murinoglobulin, a human alpha2M homologue that does not bind growth factors, contained only three nonconservative amino acid substitutions; however, the MUG peptide failed to bind TGF-beta1 and PDGF-BB. These results demonstrate that a distinct and highly-restricted site in alpha2M, positioned near the C-terminal flank of the bait region, mediates growth factor binding. At least part of the growth factor-binding site is encoded by exon 18 of the alpha2M gene, which is notable for a 5' splice site polymorphism that has been implicated in Alzheimer's Disease. PMID:11106172

  7. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    SciTech Connect

    Li, Xiaoou; Liu, Lian; Shen, Yongchun; Wang, Tao; Chen, Lei; Xu, Dan; Wen, Fuqiang

    2014-11-28

    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship between miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis.

  8. Topical Application of Cleome viscosa Increases the Expression of Basic Fibroblast Growth Factor and Type III Collagen in Rat Cutaneous Wound

    PubMed Central

    Upadhyay, Aadesh; Chattopadhyay, Pronobesh; Mazumder, Papiya M.; Veer, Vijay

    2014-01-01

    Cleome viscosa L. (Cleomaceae) is an important traditional medicine of the Indian-Ayurvedic and Chinese-medicine system documented for rheumatic arthritis, hypertension, malaria, neurasthenia, and wound healing. The plant is also known as Asian spider flower and is distributed throughout the greater part of India. The present study explored the wound healing property of C. viscosa methanol extract (CvME) and its related mechanism using Wistar rat cutaneous excision wound model. Wound contraction rate, hydroxyproline quantification, and histopathological examination of wound granulation tissue were performed. The healing potential was comparatively assessed with a reference gentamicin sulfate hydrogel (0.01% w/w). Western blot for COL3A1, bFGF, and Smad-2, Smad-3, Smad-4, and Smad-7 was performed with 7-day postoperative granulation tissue. Results revealed that the topical application of CvME (2.5% w/w) significantly accelerated the wound contraction rate (95.14%, 24 postoperative days), increased the hydroxyproline content (3.947 mg/100 mg tissue), and improved histopathology of wound tissue as compared to control groups. Western blot analysis revealed that CvME significantly upregulated the expression of COL3A1 and bFGF and increased the Smad-mediated collagen production in granulation tissue. These findings suggest that C. viscosa promoted the wound repair process by attenuating the Smad-mediated collagen production in wound granulation tissue. PMID:24864253

  9. The effect of hyaluronic acid on biofunctionality of gelatin-collagen intestine tissue engineering scaffolds.

    PubMed

    Shabafrooz, Vahid; Mozafari, Masoud; Köhler, Gerwald A; Assefa, Senait; Vashaee, Daryoosh; Tayebi, Lobat

    2014-09-01

    The creation of engineered intestinal tissue has recently stimulated new endeavors with the ultimate goal of intestinal replacement for massive resections of bowel. In this context, we investigated the effect of hyaluronic acid (HA) on the physicochemical characteristics of gelatin-collagen scaffolds and its cytocompatibilty to the human intestinal epithelial Caco-2 cell line in vitro. Gelatin/collagen hybrid scaffolds with different concentrations of HA were prepared by solvent casting and freeze-drying techniques and subsequent chemical crosslinking by genipin. The morphologies of the scaffolds were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. In vitro tests were carried out in phosphate-buffered saline (PBS) solution to study the swelling ratio and the biostability of the scaffolds. It was found that the porous structure of the scaffolds could be tailored by further addition of HA. Moreover, both the swelling ratio and the degradation rate of the scaffold increased by addition of HA. A resazurin-based cell viability assay was employed to determine the viability and estimate the number of scaffold-adherent Caco-2 cells. The assay indicated that the scaffolds were all cytocompatible. We concluded that addition of less than 15% HA to scaffolds with a composition of 9:1 gelatin:collagen results only in incremental improvement in the structural characteristics and cytocompatibility of the gelatin-collagen scaffolds. However, the scaffolds with 25% HA exhibited remarkable enhancement in physicochemical characteristics of the scaffolds including cell viability, growth, and attachment as well as their physical structure.

  10. Characterisation of freeze-dried type II collagen and chondroitin sulfate scaffolds.

    PubMed

    Tamaddon, M; Walton, R S; Brand, D D; Czernuszka, J T

    2013-05-01

    Collagen type-II is the dominant type of collagen in articular cartilage and chondroitin sulfate is one of the main components of cartilage extracellular matrix. Afibrillar and fibrillar type-II atelocollagen scaffolds with and without chondroitin sulfate were prepared using casting and freeze-drying methods. The scaffolds were characterised to highlight the effects of fibrillogenesis and chondroitin sulfate addition on viscosity, pore structure, porosity and mechanical properties. Microstructure analysis showed that fibrillogenesis increased the circularity of pores significantly in collagen-only scaffolds, whereas with it, no significant change was observed in chondroitin sulfate-containing scaffolds. Addition of chondroitin sulfate to afibrillar scaffolds increased the circularity of the pores and the proportion of pores between 50 and 300 μm suitable for chondrocytes growth. Fourier transform infrared spectroscopy explained the bonding between chondroitin sulfate and afibrillar collagen- confirmed with rheology results- which increased the compressive modulus 10-fold to 0.28 kPa. No bonding was observed in other scaffolds and consequently no significant changes in compressive modulus were detected.

  11. Cloning the promoter for transforming growth factor-beta type III receptor. Basal and conditional expression in fetal rat osteoblasts

    NASA Technical Reports Server (NTRS)

    Ji, C.; Chen, Y.; McCarthy, T. L.; Centrella, M.

    1999-01-01

    Transforming growth factor-beta binds to three high affinity cell surface molecules that directly or indirectly regulate its biological effects. The type III receptor (TRIII) is a proteoglycan that lacks significant intracellular signaling or enzymatic motifs but may facilitate transforming growth factor-beta binding to other receptors, stabilize multimeric receptor complexes, or segregate growth factor from activating receptors. Because various agents or events that regulate osteoblast function rapidly modulate TRIII expression, we cloned the 5' region of the rat TRIII gene to assess possible control elements. DNA fragments from this region directed high reporter gene expression in osteoblasts. Sequencing showed no consensus TATA or CCAAT boxes, whereas several nuclear factors binding sequences within the 3' region of the promoter co-mapped with multiple transcription initiation sites, DNase I footprints, gel mobility shift analysis, or loss of activity by deletion or mutation. An upstream enhancer was evident 5' proximal to nucleotide -979, and a silencer region occurred between nucleotides -2014 and -2194. Glucocorticoid sensitivity mapped between nucleotides -687 and -253, whereas bone morphogenetic protein 2 sensitivity co-mapped within the silencer region. Thus, the TRIII promoter contains cooperative basal elements and dispersed growth factor- and hormone-sensitive regulatory regions that can control TRIII expression by osteoblasts.

  12. The discoidin domain receptor DDR2 is a receptor for type X collagen.

    PubMed

    Leitinger, Birgit; Kwan, Alvin P L

    2006-08-01

    During endochondral ossification, collagen X is deposited in the hypertrophic zone of the growth plate. Our previous results have shown that collagen X is capable of interacting directly with chondrocytes, primarily via integrin alpha2beta1. In this study, we determined whether collagen X could also interact with the non-integrin collagen receptors, discoidin domain receptors (DDRs), DDR1 or DDR2. The widely expressed DDRs are receptor tyrosine kinases that are activated by a number of different collagen types. Collagen X was found to be a much better ligand for DDR2 than for DDR1. Collagen X bound to the DDR2 extracellular domain with high affinity and stimulated DDR2 autophosphorylation, the first step in transmembrane signalling. Expression of DDR2 in the epiphyseal plate was confirmed by RT-PCR and immunohistochemistry. The spatial expression of DDR2 in the hypertrophic zone of the growth plate is consistent with a physiological interaction of DDR2 with collagen X. Surprisingly, the discoidin domain of DDR2, which fully contains the binding sites for the fibrillar collagens I and II, was not sufficient for collagen X binding. The nature of the DDR2 binding site(s) within collagen X was further analysed. In addition to a collagenous domain, collagen X contains a C-terminal NC1 domain. DDR2 was found to recognise the triple-helical region of collagen X as well as the NC1 domain. Binding to the collagenous region was dependent on the triple-helical conformation. DDR2 autophosphorylation was induced by the collagen X triple-helical region but not the NC1 domain, indicating that the triple-helical region of collagen X contains a specific DDR2 binding site that is capable of receptor activation. Our study is the first to describe a non-fibrillar collagen ligand for DDR2 and will form the basis for further studies into the biological function of collagen X during endochondral ossification.

  13. Drop in transforming growth factor-alpha and osteoprotegerin level in gingival crevicular fluid from patients with gingivitis.

    PubMed

    Otogoto, Junichi; Mogi, Makio

    2009-01-01

    Inflammatory mediators, especially cytokine, play a central role in the pathogenesis of gingivitis. The aim of this study was to identify and quantify the various growth factors, and cytokines in the gingival crevicular fluid (GCF) of patients with gingivitis, as compared with those of control subjects. The levels of cytokine in the samples were determined by their respective ELISAs. The transforming growth factor (TGF)-alpha and osteoprotegerin (OPG) level were significantly lower in patients with gingivitis than in the controls (p < 0.05). Also, there was a positive correlation between TGF-alpha and OPG levels (r = 0.761). These results suggest that the decrease in growth factor TGF-alpha is associated with the pathophysiology and/or the progress of gingivitis.

  14. Transforming growth factor type beta specifically stimulates synthesis of proteoglycan in human adult arterial smooth muscle cells.

    PubMed Central

    Chen, J K; Hoshi, H; McKeehan, W L

    1987-01-01

    Myo-intimal proteoglycan metabolism is thought to be important in blood vessel homeostasis, blood clotting, atherogenesis, and atherosclerosis. Human platelet-derived transforming growth factor type beta (TGF-beta) specifically stimulated synthesis of at least two types of chondroitin sulfate proteoglycans in nonproliferating human adult arterial smooth muscle cells in culture. Stimulation of smooth muscle cell proteoglycan synthesis by smooth muscle cell growth promoters (epidermal growth factor, platelet-derived growth factor, and heparin-binding growth factors) was less than 20% of that elicited by TGF-beta. TGF-beta neither significantly stimulated proliferation of quiescent smooth muscle cells nor inhibited proliferating cells. The extent of TGF-beta stimulation of smooth muscle cell proteoglycan synthesis was similar in both nonproliferating and growth-stimulated cells. TGF-beta, which is a reversible inhibitor of endothelial cell proliferation, had no comparable effect on endothelial cell proteoglycan synthesis. These results are consistent with the hypothesis that TGF-beta is a cell-type-specific regulator of proteoglycan synthesis in human blood vessels and may contribute to the myo-intimal accumulation of proteoglycan in atherosclerotic lesions. Images PMID:3474655

  15. Effects of ethanol on transforming growth factor Β1-dependent and -independent mechanisms of neural stem cell apoptosis.

    PubMed

    Hicks, Steven D; Miller, Michael W

    2011-06-01

    Stem cell vitality is critical for the growth of the developing brain. Growth factors can define the survival of neural stem cells (NSCs) and ethanol can affect growth factor-mediated activities. The present study tested two hypotheses: (a) ethanol causes the apoptotic death of NSCs and (b) this effect is influenced by the ambient growth factor. Monolayer cultures of non-immortalized NS-5 cells were exposed to fibroblast growth factor (FGF) 2 or transforming growth factor (TGF) β1 in the absence or presence of ethanol for 48 h. Ethanol killed NSCs as measured by increases in the numbers of ethidium bromide+ and annexin V+ cells and decreases in the number of calcein AM+ (viable) cells. These toxic effects were promoted by TGFβ1. A quantitative polymerase chain reaction array of apoptosis-related mRNAs revealed an ethanol-induced increase (≥2-fold change; p<0.05) in transcripts involved in Fas ligand (FasL) and tumor necrosis factor (TNF) signaling. These effects, particularly the FasL pathway, were potentiated by TGFβ1. Immunocytochemical analyses of NS-5 cells showed that transcriptional alterations translated into consistent up-regulation of protein expression. Experiments with the neocortical proliferative zones harvested from fetal mice exposed to ethanol showed that ethanol activated similar molecular systems in vivo. Thus, ethanol induces NSC death through two distinct molecular mechanisms, one is initiated by TGFβ1 (FasL) and another (through TNF) which is TGFβ1-independent.

  16. Mutant p53 can induce tumorigenic conversion of human bronchial epithelial cells and reduce their responsiveness to a negative growth factor, transforming growth factor beta 1.

    PubMed Central

    Gerwin, B I; Spillare, E; Forrester, K; Lehman, T A; Kispert, J; Welsh, J A; Pfeifer, A M; Lechner, J F; Baker, S J; Vogelstein, B

    1992-01-01

    Loss of normal functions and gain of oncogenic functions when the p53 tumor suppressor gene is mutated are considered critical events in the development of the majority of human cancers. Human bronchial epithelial cells (BEAS-2B) provide an in vitro model system to study growth, differentiation, and neoplastic transformation of progenitor cells of lung carcinoma. When wild-type (WT) or mutant (MT; codon 143Val-Ala) human p53 cDNA was transfected into nontumorigenic BEAS-2B cells, we observed that (i) transfected WT p53 suppresses and MT p53 enhances the colony-forming efficiency of these cells, (ii) MT p53 increases resistance to transforming growth factor beta 1, and (iii) clones of MT p53 transfected BEAS-2B cells are tumorigenic when inoculated into athymic nude mice. These results are consistent with the hypothesis that certain mutations in p53 may function in multistage lung carcinogenesis by reducing the responsiveness of bronchial epithelial cells to negative growth factors. Images PMID:1557382

  17. Factors affecting morphogenesis of rabbit gallbladder epithelial cells cultured in collagen gels.

    PubMed

    Mori, M; Miyazaki, K

    2000-05-01

    Although peptide growth factors play an important role in the morphogenesis of gallbladder, little is known about how they effect the morphogenesis of gallbladder epithelial cells. Rabbit gallbladder epithelial cells (RGEC) were isolated and cultured in monolayer or collagen gels. Epidermal growth factor (EGF), hepatocyte growth factor (HGF), epimorphin, transforming growth factor-beta 1 (TGF-beta 1), and fibroblast-conditioned medium (FCM) were added to the cultured cells to clarify the effects of these peptides and FCM on morphogenesis of RGEC. RGEC suspended in collagen gels form spherical cysts with morphologic polarity. EGF, HGF, epimorphin, and FCM promoted cyst maturation by accelerating the proliferation and aggregation of clear, polarized vesicles. In contrast, TGF-beta 1 markedly inhibited DNA synthesis in both monolayer and collagen gel cultures and promoted formation of branching structures in collagen gels. Furthermore, in the presence of EGF, TGF-beta 1 induced a drastic change in morphogenesis, with the formation of branching networks that showed cell-cell contact only at sites where branches touched. RGEC-forming multicellular cysts did not express vimentin but expressed significant amounts of cytokeratin and regained junctional complexes. In contrast, TGF-beta 1-treated cells strongly expressed vimentin along with branching structures and showed decreases in cytokeratin expression and junctional complexes. Thus, TGF-beta 1 induces a mesenchyme-like cell shape accompanied by cytoskeletal molecular changes, with loss of both epithelial polarization and junctional complexes. These results suggest that the morphogenetic program of RGEC is likely to be determined by the interaction of these peptides and the timing of their presence.

  18. Keratocytes are induced to produce collagen type II: A new strategy for in vivo corneal matrix regeneration.

    PubMed

    Greene, Carol Ann; Green, Colin R; Dickinson, Michelle E; Johnson, Virginia; Sherwin, Trevor

    2016-09-10

    The stroma, the middle layer of the cornea, is a connective tissue making up most of the corneal thickness. The stromal extracellular matrix (ECM) consists of highly organised lamellae which are made up of tightly packed fibrils primarily composed of collagens type I and V. This layer is interspersed with keratocytes, mesenchymal cells of neural crest origin. We have previously shown that adult corneal keratocytes exhibit phenotypic plasticity and can be induced into a neuronal phenotype. In the current study we evaluated the potential of keratocytes to produce collagen type II via phenotypic reprogramming with exogenous chondrogenic factors. The cornea presents a challenge to tissue engineers owing to its high level of organisation and the phenotypic instability of keratocytes. Traditional approaches based on a scar model do not support the engineering of functional stromal tissue. Type II collagen is not found in the adult cornea but is reported to be expressed during corneal development, raising the possibility of using such an approach to regenerate the corneal ECM. Keratocytes in culture and within intact normal and diseased tissue were induced to produce collagen type II upon treatment with transforming growth factor Beta3 (TGFβ3) and dexamethasone. In vivo treatment of rat corneas also resulted in collagen type II deposition and a threefold increase in corneal hardness and elasticity. Furthermore, the treatment of corneas and subsequent deposition of collagen type II did not cause opacity, fibrosis or scarring. The induction of keratocytes with specific exogenous factors and resulting deposition of type II collagen in the stroma can potentially be controlled by withdrawal of the factors. This might be a promising new approach for in vivo corneal regeneration strategies aimed at increasing corneal integrity in diseases associated with weakened ectatic corneal tissue such as keratoconus.

  19. Radial expansion rates and tumor growth kinetics predict malignant transformation in contrast-enhancing low-grade diffuse astrocytoma

    PubMed Central

    Hathout, Leith; Pope, Whitney B; Lai, Albert; Nghiemphu, Phioanh L; Cloughesy, Timothy F; Ellingson, Benjamin M

    2015-01-01

    Summary Background Contrast-enhancing low-grade diffuse astrocytomas are an understudied, aggressive subtype at increased risk because of few radiographic indications of malignant transformation. In the current study, we tested whether tumor growth kinetics could identify tumors that undergo malignant transformation to higher grades. Methods Thirty patients with untreated diffuse astrocytomas (WHO II) that underwent tumor progression were enrolled. Contrast-enhancing and T2 hyperintense tumor regions were segmented and the radius of tumor at two time points leading to progression was estimated. Radial expansion rates were used to estimate proliferation and invasion rates using a biomathematical model. Results Radial expansion rates for both contrast-enhancing (p = 0.0040) and T2 hyperintense regions (p = 0.0016) were significantly higher in WHO II–IV tumors compared with nontransformers. Similarly, model estimates showed a significantly higher proliferation (p = 0.0324) and invasion rate (p = 0.0050) in WHO II–IV tumors compared with nontransformers. Conclusion Tumor growth kinetics can identify contrast-enhancing diffuse astrocytomas undergoing malignant transformation. PMID:26095141

  20. Secreted proteins induced by epidermal growth factor and transforming growth factor beta in EL2 rat fibroblasts. Role in the mitogenic response.

    PubMed

    Di Francesco, P; Favalli, C; Liboi, E

    1988-05-01

    Most growth active hormones and peptides are mitogenic only in the presence of other growth factors [e.g., Platelet Derived Growth Factor (PDGF) and Epidermal Growth Factor (EGF) in "competence-progression" fibroblast model]. We have previously described that EGF alone is able to induce the signals which appear necessary for the mitogenic stimulation of EL2 rat embryo fibroblast line. Recently, we have demonstrated that Transforming Growth Factor beta (TGF beta) slightly stimulates the mitogenic response in EL2 cells. Here, we show that in EGF-treated EL2 cells the induction of at least four inducible-secreted proteins (ISPs, range from 29,000 to 68,000 Mr) is accompanied by a marked increase in DNA synthesis. In contrast, TGF beta or different concentrations of EGF induce a slow increase of the ISPs proportional to slow induction in DNA synthesis. Our results suggest that the mitogenic response in EL2 cell line may be connected with the qualitative and quantitative induction of these secreted proteins.

  1. Autocrine Transforming Growth Factor-β Growth Pathway in Murine Osteosarcoma Cell Lines Associated with Inability to Affect Phosphorylation of Retinoblastoma Protein

    PubMed Central

    Letterio, John J.; Yeung, Choh L.; Pegtel, Michiel; Helman, Lee J.

    2000-01-01

    Purpose. Production of active transforming growth factor-β (TGF-β ) by human osteosarcoma may contribute to malignant progression through mechanisms that include induction of angiogenesis, immune suppression and autocrine growth stimulation of tumor cell growth.To study events associated with induction of cell proliferation by TGF-β , we have evaluated the TGF-β pathway in two murine osteosarcoma cell lines, K7 and K12. Results. Northern and immunohistochemical analyses show that each cell line expressesTGF-β1 and TGF-β3 mRNA and protein. Both cell lines secrete activeTGF-β 1 and display a 30–50% reduction in growth when cultured in the presence of a TGF-β blocking antibody. Expression of TGF-β receptors TβRI, TβRII and TβRIII is demonstrated by affinity labeling with 125 -TGF-β 1, and the intermediates, Smads 2, 3 and 4, are uniformly expressed. Smads 2 and 3 are phosphorylated in response toTGF-β , while pRb phosphorylation in each osteosarcoma cell line is not affected by either exogenousTGF-β or TGF-β antibody. Conclusions. The data implicate events downstream of Smad activation, including impaired regulation of pRb, in the lack of a growth inhibitory response toTGF-β , and indicate that this murine model of osteosarcoma is valid for investigating the roles of autocrineTGF-β in vivo. PMID:18521287

  2. Aqueous Date Flesh or Pits Extract Attenuates Liver Fibrosis via Suppression of Hepatic Stellate Cell Activation and Reduction of Inflammatory Cytokines, Transforming Growth Factor-β1 and Angiogenic Markers in Carbon Tetrachloride-Intoxicated Rats

    PubMed Central

    Al-Rasheed, Nouf M.; Attia, Hala A.; Mohamad, Raeesa A.; Al-Rasheed, Nawal M.; Al-Amin, Maha A.; AL-Onazi, Asma

    2015-01-01

    Previous data indicated the protective effect of date fruit extract on oxidative damage in rat liver. However, the hepatoprotective effects via other mechanisms have not been investigated. This study was performed to evaluate the antifibrotic effect of date flesh extract (DFE) or date pits extract (DPE) via inactivation of hepatic stellate cells (HSCs), reducing the levels of inflammatory, fibrotic and angiogenic markers. Coffee was used as reference hepatoprotective agent. Liver fibrosis was induced by injection of CCl4 (0.4 mL/kg) three times weekly for 8 weeks. DFE, DPE (6 mL/kg), coffee (300 mg/kg), and combination of coffee + DFE and coffee + DPE were given to CCl4-intoxicated rats daily for 8 weeks. DFE, DPE, and their combination with coffee attenuated the elevated levels of inflammatory cytokines including tumor necrosis factor-α, interleukin-6, and interleukin-1β. The increased levels of transforming growth factor-β1 and collagen deposition in injured liver were alleviated by both extracts. CCl4-induced expression of α-smooth muscle actin was suppressed indicating HSCs inactivation. Increased angiogenesis was ameliorated as revealed by reduced levels and expression of vascular endothelial growth factor and CD31. We concluded that DFE or DPE could protect liver via different mechanisms. The combination of coffee with DFE or DPE may enhance its antifibrotic effects. PMID:25945106