Sample records for collapse supernova simulations

  1. Featured Image: The Simulated Collapse of a Core

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    This stunning snapshot (click for a closer look!) is from a simulation of a core-collapse supernova. Despite having been studied for many decades, the mechanism driving the explosions of core-collapse supernovae is still an area of active research. Extremely complex simulations such as this one represent best efforts to include as many realistic physical processes as is currently computationally feasible. In this study led by Luke Roberts (a NASA Einstein Postdoctoral Fellow at Caltech at the time), a core-collapse supernova is modeled long-term in fully 3D simulations that include the effects of general relativity, radiation hydrodynamics, and even neutrino physics. The authors use these simulations to examine the evolution of a supernova after its core bounce. To read more about the teams findings (and see more awesome images from their simulations), check out the paper below!CitationLuke F. Roberts et al 2016 ApJ 831 98. doi:10.3847/0004-637X/831/1/98

  2. Two-dimensional Core-collapse Supernova Explosions Aided by General Relativity with Multidimensional Neutrino Transport

    NASA Astrophysics Data System (ADS)

    O’Connor, Evan P.; Couch, Sean M.

    2018-02-01

    We present results from simulations of core-collapse supernovae in FLASH using a newly implemented multidimensional neutrino transport scheme and a newly implemented general relativistic (GR) treatment of gravity. We use a two-moment method with an analytic closure (so-called M1 transport) for the neutrino transport. This transport is multienergy, multispecies, velocity dependent, and truly multidimensional, i.e., we do not assume the commonly used “ray-by-ray” approximation. Our GR gravity is implemented in our Newtonian hydrodynamics simulations via an effective relativistic potential that closely reproduces the GR structure of neutron stars and has been shown to match GR simulations of core collapse quite well. In axisymmetry, we simulate core-collapse supernovae with four different progenitor models in both Newtonian and GR gravity. We find that the more compact proto–neutron star structure realized in simulations with GR gravity gives higher neutrino luminosities and higher neutrino energies. These differences in turn give higher neutrino heating rates (upward of ∼20%–30% over the corresponding Newtonian gravity simulations) that increase the efficacy of the neutrino mechanism. Three of the four models successfully explode in the simulations assuming GREP gravity. In our Newtonian gravity simulations, two of the four models explode, but at times much later than observed in our GR gravity simulations. Our results, in both Newtonian and GR gravity, compare well with several other studies in the literature. These results conclusively show that the approximation of Newtonian gravity for simulating the core-collapse supernova central engine is not acceptable. We also simulate four additional models in GR gravity to highlight the growing disparity between parameterized 1D models of core-collapse supernovae and the current generation of 2D models.

  3. Multidimensional simulations of core-collapse supernovae with CHIMERA

    NASA Astrophysics Data System (ADS)

    Lentz, Eric J.; Bruenn, S. W.; Yakunin, K.; Endeve, E.; Blondin, J. M.; Harris, J. A.; Hix, W. R.; Marronetti, P.; Messer, O. B.; Mezzacappa, A.

    2014-01-01

    Core-collapse supernovae are driven by a multidimensional neutrino radiation hydrodynamic (RHD) engine, and full simulation requires at least axisymmetric (2D) and ultimately symmetry-free 3D RHD simulation. We present recent and ongoing work with our multidimensional RHD supernova code CHIMERA to understand the nature of the core-collapse explosion mechanism and its consequences. Recently completed simulations of 12-25 solar mass progenitors(Woosley & Heger 2007) in well resolved (0.7 degrees in latitude) 2D simulations exhibit robust explosions meeting the observationally expected explosion energy. We examine the role of hydrodynamic instabilities (standing accretion shock instability, neutrino driven convection, etc.) on the explosion dynamics and the development of the explosion energy. Ongoing 3D and 2D simulations examine the role that simulation resolution and the removal of the imposed axisymmetry have in the triggering and development of an explosion from stellar core collapse. Companion posters will explore the gravitational wave signals (Yakunin et al.) and nucleosynthesis (Harris et al.) of our simulations.

  4. The Interplay of Opacities and Rotation in Promoting the Explosion of Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Vartanyan, David; Burrows, Adam; Radice, David

    2018-01-01

    For over five decades, the mechanism of explosion in core-collapse supernovae has been a central unsolved problem in astrophysics, challenging both our computational capabilities and our understanding of relevant physics. Current simulations often produce explosions, but they are at times underenergetic. The neutrino mechanism, wherein a fraction of emitted neutrinos is absorbed in the mantle of the star to reignite the stalled shock, remains the dominant model for reviving explosions in massive stars undergoing core collapse. We present here a diverse suite of 2D axisymmetric simulations produced by FORNAX, a highly parallelizable multidimensional supernova simulation code. We explore the effects of various corrections, including the many-body correction, to neutrino-matter opacities and the possible role of rotation in promoting explosion amongst various core-collapse progenitors.

  5. Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction

    NASA Astrophysics Data System (ADS)

    Zapartas, E.; de Mink, S. E.; Izzard, R. G.; Yoon, S.-C.; Badenes, C.; Götberg, Y.; de Koter, A.; Neijssel, C. J.; Renzo, M.; Schootemeijer, A.; Shrotriya, T. S.

    2017-05-01

    Most massive stars, the progenitors of core-collapse supernovae, are in close binary systems and may interact with their companion through mass transfer or merging. We undertake a population synthesis study to compute the delay-time distribution of core-collapse supernovae, that is, the supernova rate versus time following a starburst, taking into account binary interactions. We test the systematic robustness of our results by running various simulations to account for the uncertainties in our standard assumptions. We find that a significant fraction, %, of core-collapse supernovae are "late", that is, they occur 50-200 Myr after birth, when all massive single stars have already exploded. These late events originate predominantly from binary systems with at least one, or, in most cases, with both stars initially being of intermediate mass (4-8 M⊙). The main evolutionary channels that contribute often involve either the merging of the initially more massive primary star with its companion or the engulfment of the remaining core of the primary by the expanding secondary that has accreted mass at an earlier evolutionary stage. Also, the total number of core-collapse supernovae increases by % because of binarity for the same initial stellar mass. The high rate implies that we should have already observed such late core-collapse supernovae, but have not recognized them as such. We argue that φ Persei is a likely progenitor and that eccentric neutron star - white dwarf systems are likely descendants. Late events can help explain the discrepancy in the delay-time distributions derived from supernova remnants in the Magellanic Clouds and extragalactic type Ia events, lowering the contribution of prompt Ia events. We discuss ways to test these predictions and speculate on the implications for supernova feedback in simulations of galaxy evolution.

  6. Multi-dimensional Core-Collapse Supernova Simulations with Neutrino Transport

    NASA Astrophysics Data System (ADS)

    Pan, Kuo-Chuan; Liebendörfer, Matthias; Hempel, Matthias; Thielemann, Friedrich-Karl

    We present multi-dimensional core-collapse supernova simulations using the Isotropic Diffusion Source Approximation (IDSA) for the neutrino transport and a modified potential for general relativity in two different supernova codes: FLASH and ELEPHANT. Due to the complexity of the core-collapse supernova explosion mechanism, simulations require not only high-performance computers and the exploitation of GPUs, but also sophisticated approximations to capture the essential microphysics. We demonstrate that the IDSA is an elegant and efficient neutrino radiation transfer scheme, which is portable to multiple hydrodynamics codes and fast enough to investigate long-term evolutions in two and three dimensions. Simulations with a 40 solar mass progenitor are presented in both FLASH (1D and 2D) and ELEPHANT (3D) as an extreme test condition. It is found that the black hole formation time is delayed in multiple dimensions and we argue that the strong standing accretion shock instability before black hole formation will lead to strong gravitational waves.

  7. Understanding Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Hix, W. R.; Lentz, E. J.; Baird, M.; Messer, O. E. B.; Mezzacappa, A.; Lee, C.-T.; Bruenn, S. W.; Blondin, J. M.; Marronetti, P.

    2010-03-01

    Our understanding of core-collapse supernovae continues to improve as better microphysics is included in increasingly realistic neutrino-radiationhydrodynamic simulations. Recent multi-dimensional models with spectral neutrino transport, which slowly develop successful explosions for a range of progenitors between 12 and 25 solar mass, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progresses on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  8. Towards asteroseismology of core-collapse supernovae with gravitational-wave observations - I. Cowling approximation

    NASA Astrophysics Data System (ADS)

    Torres-Forné, Alejandro; Cerdá-Durán, Pablo; Passamonti, Andrea; Font, José A.

    2018-03-01

    Gravitational waves from core-collapse supernovae are produced by the excitation of different oscillation modes in the protoneutron star (PNS) and its surroundings, including the shock. In this work we study the relationship between the post-bounce oscillation spectrum of the PNS-shock system and the characteristic frequencies observed in gravitational-wave signals from core-collapse simulations. This is a fundamental first step in order to develop a procedure to infer astrophysical parameters of the PNS formed in core-collapse supernovae. Our method combines information from the oscillation spectrum of the PNS, obtained through linear perturbation analysis in general relativity of a background physical system, with information from the gravitational-wave spectrum of the corresponding non-linear, core-collapse simulation. Using results from the simulation of the collapse of a 35 M⊙ pre-supernova progenitor we show that both types of spectra are indeed related and we are able to identify the modes of oscillation of the PNS, namely g-modes, p-modes, hybrid modes, and standing accretion shock instability (SASI) modes, obtaining a remarkably close correspondence with the time-frequency distribution of the gravitational-wave modes. The analysis presented in this paper provides a proof of concept that asteroseismology is indeed possible in the core-collapse scenario, and it may serve as a basis for future work on PNS parameter inference based on gravitational-wave observations.

  9. Multidimensional neutrino-transport simulations of the core-collapse supernova central engine

    NASA Astrophysics Data System (ADS)

    O'Connor, Evan; Couch, Sean

    2017-01-01

    Core-collapse supernovae (CCSNe) mark the explosive death of a massive star. The explosion itself is triggered by the collapse of the iron core that forms near the end of a massive star's life. The core collapses to nuclear densities where the stiff nuclear equation of state halts the collapse and leads to the formation of the supernova shock. In many cases, this shock will eventually propagate throughout the entire star and produces a bright optical display. However, the path from shock formation to explosion has proven difficult to recreate in simulations. Soon after the shock forms, its outward propagation is stagnated and must be revived in order for the CCSNe to be successful. The leading theory for the mechanism that reenergizes the shock is the deposition of energy by neutrinos. In 1D simulations this mechanism fails. However, there is growing evidence that in 2D and 3D, hydrodynamic instabilities can assist the neutrino heating in reviving the shock. In this talk, I will present new multi-D neutrino-radiation-hydrodynamic simulations of CCSNe performed with the FLASH hydrodynamics package. I will discuss the efficacy of neutrino heating in our simulations and show the impact of the multi-D hydrodynamic instabilities.

  10. Modeling Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Mezzacappa, Anthony

    2017-01-01

    Core collapse supernovae, or the death throes of massive stars, are general relativistic, neutrino-magneto-hydrodynamic events. The core collapse supernova mechanism is still not in hand, though key components have been illuminated, and the potential for multiple mechanisms for different progenitors exists. Core collapse supernovae are the single most important source of elements in the Universe, and serve other critical roles in galactic chemical and thermal evolution, the birth of neutron stars, pulsars, and stellar mass black holes, the production of a subclass of gamma-ray bursts, and as potential cosmic laboratories for fundamental nuclear and particle physics. Given this, the so called ``supernova problem'' is one of the most important unsolved problems in astrophysics. It has been fifty years since the first numerical simulations of core collapse supernovae were performed. Progress in the past decade, and especially within the past five years, has been exponential, yet much work remains. Spherically symmetric simulations over nearly four decades laid the foundation for this progress. Two-dimensional modeling that assumes axial symmetry is maturing. And three-dimensional modeling, while in its infancy, has begun in earnest. I will present some of the recent work from the ``Oak Ridge'' group, and will discuss this work in the context of the broader work by other researchers in the field. I will then point to future requirements and challenges. Connections with other experimental, observational, and theoretical efforts will be discussed, as well.

  11. Gravitational waves and core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Moiseenko, S. G.

    2017-11-01

    A mechanism of formation of gravitational waves in the Universe is considered for a nonspherical collapse of matter. Nonspherical collapse results are presented for a uniform spheroid of dust and a finite-entropy spheroid. Numerical simulation results on core-collapse supernova explosions are presented for the neutrino and magneto-rotational models. These results are used to estimate the dimensionless amplitude of the gravitational wave with a frequency ν ~ 1300 Hz, radiated during the collapse of the rotating core of a pre-supernova with a mass of 1.2 M⊙ (calculated by the authors in 2D). This estimate agrees well with many other calculations (presented in this paper) that have been done in 2D and 3D settings and which rely on more exact and sophisticated calculations of the gravitational wave amplitude. The formation of the large-scale structure of the Universe in the Zel’dovich pancake model involves the emission of very long-wavelength gravitational waves. The average amplitude of these waves is calculated from the simulation, in the uniform spheroid approximation, of the nonspherical collapse of noncollisional dust matter, which imitates dark matter. It is noted that a gravitational wave radiated during a core-collapse supernova explosion in our Galaxy has a sufficient amplitude to be detected by existing gravitational wave telescopes.

  12. The Impact of the Nuclear Equation of State in Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Baird, M. L.; Lentz, E. J.; Hix, W. R.; Mezzacappa, A.; Messer, O. E. B.; Liebendoerfer, M.; TeraScale Supernova Initiative Collaboration

    2005-12-01

    One of the key ingredients to the core collapse supernova mechanism is the physics of matter at or near nuclear density. Included in simulations as part of the Equation of State (EOS), nuclear repulsion experienced at high densities are responsible for the bounce shock, which initially causes the outer envelope of the supernova to expand, as well as determining the structure of the newly formed proto-neutron star. Recent years have seen renewed interest in this fundamental piece of supernova physics, resulting in several promising candidate EOS parameterizations. We will present the impact of these variations in the nuclear EOS using spherically symmetric, Newtonian and General Relativistic neutrino transport simulations of stellar core collapse and bounce. This work is supported in part by SciDAC grants to the TeraScale Supernovae Initiative from the DOE Office of Science High Energy, Nuclear, and Advanced Scientific Computing Research Programs. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for U.S. Department of Energy under contract DEAC05-00OR22725

  13. The Impact of Progenitor Mass Loss on the Dynamical and Spectral Evolution of Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Patnaude, Daniel J.; Lee, Shiu-Hang; Slane, Patrick O.; Badenes, Carles; Nagataki, Shigehiro; Ellison, Donald C.; Milisavljevic, Dan

    2017-11-01

    There is now substantial evidence that the progenitors of some core-collapse supernovae undergo enhanced or extreme mass loss prior to explosion. The imprint of this mass loss is observed in the spectra and dynamics of the expanding blast wave on timescales of days to years after core collapse, and the effects on the spectral and dynamical evolution may linger long after the supernova has evolved into the remnant stage. In this paper, we present, for the first time, largely self-consistent end-to-end simulations for the evolution of a massive star from the pre-main sequence, up to and through core collapse, and into the remnant phase. We present three models and compare and contrast how the progenitor mass-loss history impacts the dynamics and spectral evolution of the supernovae and supernova remnants. We study a model that only includes steady mass loss, a model with enhanced mass loss over a period of ˜5000 yr prior to core collapse, and a model with extreme mass loss over a period of ˜500 yr prior to core collapse. The models are not meant to address any particular supernova or supernova remnant, but rather to highlight the important role that the progenitor evolution plays in the observable qualities of supernovae and supernova remnants. Through comparisons of these three different progenitor evolution scenarios, we find that the mass loss in late stages (during and after core carbon burning) can have a profound impact on the dynamics and spectral evolution of the supernova remnant centuries after core collapse.

  14. FAILURE OF A NEUTRINO-DRIVEN EXPLOSION AFTER CORE-COLLAPSE MAY LEAD TO A THERMONUCLEAR SUPERNOVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushnir, Doron; Katz, Boaz, E-mail: kushnir@ias.edu

    We demonstrate that ∼10 s after the core-collapse of a massive star, a thermonuclear explosion of the outer shells is possible for some (tuned) initial density and composition profiles, assuming that the neutrinos failed to explode the star. The explosion may lead to a successful supernova, as first suggested by Burbidge et al. We perform a series of one-dimensional (1D) calculations of collapsing massive stars with simplified initial density profiles (similar to the results of stellar evolution calculations) and various compositions (not similar to 1D stellar evolution calculations). We assume that the neutrinos escaped with a negligible effect on themore » outer layers, which inevitably collapse. As the shells collapse, they compress and heat up adiabatically, enhancing the rate of thermonuclear burning. In some cases, where significant shells of mixed helium and oxygen are present with pre-collapsed burning times of ≲100 s (≈10 times the free-fall time), a thermonuclear detonation wave is ignited, which unbinds the outer layers of the star, leading to a supernova. The energy released is small, ≲10{sup 50} erg, and negligible amounts of synthesized material (including {sup 56}Ni) are ejected, implying that these 1D simulations are unlikely to represent typical core-collapse supernovae. However, they do serve as a proof of concept that the core-collapse-induced thermonuclear explosions are possible, and more realistic two-dimensional and three-dimensional simulations are within current computational capabilities.« less

  15. Critical Resolution and Physical Dependenices of Supernovae: Stars in Heat and Under Pressure

    NASA Astrophysics Data System (ADS)

    Vartanyan, David; Burrows, Adam Seth

    2017-01-01

    For over five decades, the mechanism of explosion in core-collapse supernova continues to remain one of the last untoppled bastions in astrophysics, presenting both a technical and physical problem.Motivated by advances in computation and nuclear physics and the resilience of the core-collapse problem, collaborators Adam Burrows (Princeton), Joshua Dolence (LANL), and Aaron Skinner (LNL) have developed FORNAX - a highly parallelizable multidimensional supernova simulation code featuring an explicit hydrodynamic and radiation-transfer solver.We present the results (Vartanyan et. al 2016, Burrows et. al 2016, both in preparation) of a sequence of two-dimensional axisymmetric simulations of core-collapse supernovae using FORNAX, probing both progenitor mass dependence and the effect of physical inputs in explosiveness in our study on the revival of the stalled shock via the neutrino heating mechanism. We also performed a resolution study, testing spatial and energy group resolutions as well as compilation flags. We illustrate that, when the protoneutron star bounded by a stalled shock is close to the critical explosion condition (Burrows & Goshy 1993), small changes of order 10% in neutrino energies and luminosities can result in explosion, and that these effects couple nonlinearly.We show that many-body medium effects due to neutrino-nucleon scattering as well as inelastic neutrino-nucleon and neutrino-electron scattering are strongly favorable to earlier and more vigorous explosions by depositing energy in the gain region. Additionally, we probe the effects of a ray-by-ray+ transport solver (which does not include transverse velocity terms) employed by many groups and confirm that it artificially accelerates explosion (see also Skinner et. al 2016).In the coming year, we are gearing up for the first set of 3D simulations yet performed in the context of core-collapse supernovae employing 20 energy groups, and one of the most complete nuclear physics modules in the field with the ambitious goal of simulating supernova remants like Cas A. The current environment for core-collapse supernova provides for invigorating optimism that a robust explosion mechanism is within reach on graduate student lifetimes.

  16. Multi-dimensional simulations of core-collapse supernova explosions with CHIMERA

    NASA Astrophysics Data System (ADS)

    Messer, O. E. B.; Harris, J. A.; Hix, W. R.; Lentz, E. J.; Bruenn, S. W.; Mezzacappa, A.

    2018-04-01

    Unraveling the core-collapse supernova (CCSN) mechanism is a problem that remains essentially unsolved despite more than four decades of effort. Spherically symmetric models with otherwise high physical fidelity generally fail to produce explosions, and it is widely accepted that CCSNe are inherently multi-dimensional. Progress in realistic modeling has occurred recently through the availability of petascale platforms and the increasing sophistication of supernova codes. We will discuss our most recent work on understanding neutrino-driven CCSN explosions employing multi-dimensional neutrino-radiation hydrodynamics simulations with the Chimera code. We discuss the inputs and resulting outputs from these simulations, the role of neutrino radiation transport, and the importance of multi-dimensional fluid flows in shaping the explosions. We also highlight the production of 48Ca in long-running Chimera simulations.

  17. Progress of the equation of state table for supernova simulations and its influence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumiyoshi, Kohsuke

    2012-11-12

    We describe recent progress of the EOS tables for numerical simulations of core-collapse supernovae and related astrophysical phenomena. Based on the Shen EOS table, which has been widely used in supernova simulations, there is systematic progress by extending the degrees of freedom such as hyperons and quarks. These extended EOS tables have been used, for example, to study the neutrino bursts from the gravitational collapse of massive stars leading to the black hole formation. Observations of such neutrinos from galactic events in future will provide us with the information on the EOS. Recently, studies of the supernova EOS with themore » multi-composition of nuclei under the nuclear statistical equilibrium have been made beyond the single nucleus approximation as used in the Shen EOS. It has been found that light elements including deuterons are abundant in wide regions of the supernova cores. We discuss that neutrino-deuteron reactions may have a possible influence on the explosion mechanism through modifications of neutrino heating rates.« less

  18. The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments

    DOE PAGES

    Foglizzo, Thierry; Kazeroni, Rémi; Guilet, Jérôme; ...

    2015-01-01

    The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the center of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernovamore » remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as SASI and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. Lastly, we analyse the potential of this complementary research tool for supernova theory. We also review its potential for public outreach in science museums.« less

  19. The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foglizzo, Thierry; Kazeroni, Rémi; Guilet, Jérôme

    The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the center of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernovamore » remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as SASI and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. Lastly, we analyse the potential of this complementary research tool for supernova theory. We also review its potential for public outreach in science museums.« less

  20. The development of neutrino-driven convection in core-collapse supernovae: 2D vs 3D

    NASA Astrophysics Data System (ADS)

    Kazeroni, R.; Krueger, B. K.; Guilet, J.; Foglizzo, T.

    2017-12-01

    A toy model is used to study the non-linear conditions for the development of neutrino-driven convection in the post-shock region of core-collapse supernovae. Our numerical simulations show that a buoyant non-linear perturbation is able to trigger self-sustained convection only in cases where convection is not linearly stabilized by advection. Several arguments proposed to interpret the impact of the dimensionality on global core-collapse supernova simulations are discussed in the light of our model. The influence of the numerical resolution is also addressed. In 3D a strong mixing to small scales induces an increase of the neutrino heating efficiency in a runaway process. This phenomenon is absent in 2D and this may indicate that the tridimensional nature of the hydrodynamics could foster explosions.

  1. Influence of Non-spherical Initial Stellar Structure on the Core-Collapse Supernova Mechanism

    NASA Astrophysics Data System (ADS)

    Couch, Sean M.

    I review the state of investigation into the impact that nonspherical stellar progenitor structure has on the core-collapse supernova mechanism. Although modeling stellar evolution relies on 1D spherically symmetric calculations, massive stars are not truly spherical. In the stellar evolution codes, this fact is accounted for by "fixes" such as mixing length theory and attendant modifications. Of particular relevance to the supernova mechanism, the Si- and O-burning shells surrounding the iron core at the point of collapse can be violently convective, with convective speeds of hundreds of km s-1. It has recently been shown by a number of groups that the presence of nonspherical perturbations in the layers surrounding the collapsing iron core can have a favorable impact on the likelihood for shock revival and explosion via the neutrino heating mechanism. This is due in large part to the strengthening of turbulence behind the stalled shock due to the presence of finite amplitude seed perturbations to speed the growth of convection which drives the post-shock turbulence. Efforts are now underway to simulate the final minutes of stellar evolution to core-collapse in 3D with the aim to generate realistic multidimensional initial conditions for use in simulations of the supernova mechanism.

  2. (Extreme) Core-collapse Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Mösta, Philipp

    2017-01-01

    In this talk I will present recent progress on modeling core-collapse supernovae with massively parallel simulations on the largest supercomputers available. I will discuss the unique challenges in both input physics and computational modeling that come with a problem involving all four fundamental forces and relativistic effects and will highlight recent breakthroughs overcoming these challenges in full 3D simulations. I will pay particular attention to how these simulations can be used to reveal the engines driving some of the most extreme explosions and conclude by discussing what remains to be done in simulation work to maximize what we can learn from current and future time-domain astronomy transient surveys.

  3. Turbulence in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Radice, David; Abdikamalov, Ernazar; Ott, Christian D.; Mösta, Philipp; Couch, Sean M.; Roberts, Luke F.

    2018-05-01

    Multidimensional simulations show that non-radial, turbulent, fluid motion is a fundamental component of the core-collapse supernova explosion mechanism. Neutrino-driven convection, the standing accretion shock instability, and relic-perturbations from advanced nuclear burning stages can all impact the outcome of core collapse in a qualitative and quantitative way. Here, we review the current understanding of these phenomena and their role in the explosion of massive stars. We also discuss the role of protoneutron star convection and of magnetic fields in the context of the delayed neutrino mechanism.

  4. Multi-dimensional simulations of core-collapse supernova explosions with CHIMERA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messer, Bronson; Harris, James Austin; Hix, William Raphael

    Unraveling the core-collapse supernova (CCSN) mechanism is a problem that remains essentially unsolved despite more than four decades of effort. Spherically symmetric models with otherwise high physical fidelity generally fail to produce explosions, and it is widely accepted that CCSNe are inherently multi-dimensional. Progress in realistic modeling has occurred recently through the availability of petascale platforms and the increasing sophistication of supernova codes. We will discuss our most recent work on understanding neutrino-driven CCSN explosions employing multi-dimensional neutrino-radiation hydrodynamics simulations with the Chimera code. We discuss the inputs and resulting outputs from these simulations, the role of neutrino radiation transport,more » and the importance of multi-dimensional fluid flows in shaping the explosions. We also highlight the production of 48Ca in long-running Chimera simulations.« less

  5. Core-Collapse Supernovae Explored by Multi-D Boltzmann Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Sumiyoshi, Kohsuke; Nagakura, Hiroki; Iwakami, Wakana; Furusawa, Shun; Matsufuru, Hideo; Imakura, Akira; Yamada, Shoichi

    We report the latest results of numerical simulations of core-collapse supernovae by solving multi-D neutrino-radiation hydrodynamics with Boltzmann equations. One of the longstanding issues of the explosion mechanism of supernovae has been uncertainty in the approximations of the neutrino transfer in multi-D such as the diffusion approximation and ray-by-ray method. The neutrino transfer is essential, together with 2D/3D hydrodynamical instabilities, to evaluate the neutrino heating behind the shock wave for successful explosions and to predict the neutrino burst signals. We tackled this difficult problem by utilizing our solver of the 6D Boltzmann equation for neutrinos in 3D space and 3D neutrino momentum space coupled with multi-D hydrodynamics adding special and general relativistic extensions. We have performed a set of 2D core-collapse simulations from 11M ⊙ and 15M ⊙ stars on K-computer in Japan by following long-term evolution over 400 ms after bounce to reveal the outcome from the full Boltzmann hydrodynamic simulations with a sophisticated equation of state with multi-nuclear species and updated rates for electron captures on nuclei.

  6. NEW EQUATIONS OF STATE IN SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hempel, M.; Liebendoerfer, M.; Fischer, T.

    2012-03-20

    We discuss three new equations of state (EOS) in core-collapse supernova simulations. The new EOS are based on the nuclear statistical equilibrium model of Hempel and Schaffner-Bielich (HS), which includes excluded volume effects and relativistic mean-field (RMF) interactions. We consider the RMF parameterizations TM1, TMA, and FSUgold. These EOS are implemented into our spherically symmetric core-collapse supernova model, which is based on general relativistic radiation hydrodynamics and three-flavor Boltzmann neutrino transport. The results obtained for the new EOS are compared with the widely used EOS of H. Shen et al. and Lattimer and Swesty. The systematic comparison shows that themore » model description of inhomogeneous nuclear matter is as important as the parameterization of the nuclear interactions for the supernova dynamics and the neutrino signal. Furthermore, several new aspects of nuclear physics are investigated: the HS EOS contains distributions of nuclei, including nuclear shell effects. The appearance of light nuclei, e.g., deuterium and tritium, is also explored, which can become as abundant as alphas and free protons. In addition, we investigate the black hole formation in failed core-collapse supernovae, which is mainly determined by the high-density EOS. We find that temperature effects lead to a systematically faster collapse for the non-relativistic LS EOS in comparison with the RMF EOS. We deduce a new correlation for the time until black hole formation, which allows the determination of the maximum mass of proto-neutron stars, if the neutrino signal from such a failed supernova would be measured in the future. This would give a constraint for the nuclear EOS at finite entropy, complementary to observations of cold neutron stars.« less

  7. Diagnostics of the Supernova Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryer, Chris L.; Ellinger, Carola; Young, Patrick A.

    The standard engine behind core-collapse supernovae is continuously evolving with increasingly detailed models. At this time, most simulations focus on an engine invoking turbulence above the proto-neutron star, sometimes termed the “convection-enhanced” engine. Finally, we review this engine and why it has become the standard for normal supernovae, focusing on a wide set of observations that provide insight into the supernova engine.

  8. Diagnostics of the Supernova Engine

    DOE PAGES

    Fryer, Chris L.; Ellinger, Carola; Young, Patrick A.; ...

    2017-10-17

    The standard engine behind core-collapse supernovae is continuously evolving with increasingly detailed models. At this time, most simulations focus on an engine invoking turbulence above the proto-neutron star, sometimes termed the “convection-enhanced” engine. Finally, we review this engine and why it has become the standard for normal supernovae, focusing on a wide set of observations that provide insight into the supernova engine.

  9. The Status of Multi-Dimensional Core-Collapse Supernova Models

    NASA Astrophysics Data System (ADS)

    Müller, B.

    2016-09-01

    Models of neutrino-driven core-collapse supernova explosions have matured considerably in recent years. Explosions of low-mass progenitors can routinely be simulated in 1D, 2D, and 3D. Nucleosynthesis calculations indicate that these supernovae could be contributors of some lighter neutron-rich elements beyond iron. The explosion mechanism of more massive stars remains under investigation, although first 3D models of neutrino-driven explosions employing multi-group neutrino transport have become available. Together with earlier 2D models and more simplified 3D simulations, these have elucidated the interplay between neutrino heating and hydrodynamic instabilities in the post-shock region that is essential for shock revival. However, some physical ingredients may still need to be added/improved before simulations can robustly explain supernova explosions over a wide range of progenitors. Solutions recently suggested in the literature include uncertainties in the neutrino rates, rotation, and seed perturbations from convective shell burning. We review the implications of 3D simulations of shell burning in supernova progenitors for the `perturbations-aided neutrino-driven mechanism,' whose efficacy is illustrated by the first successful multi-group neutrino hydrodynamics simulation of an 18 solar mass progenitor with 3D initial conditions. We conclude with speculations about the impact of 3D effects on the structure of massive stars through convective boundary mixing.

  10. Analysis of Gravitational Signals from Core-Collapse Supernovae (CCSNe) using MatLab

    NASA Astrophysics Data System (ADS)

    Frere, Noah; Mezzacappa, Anthony; Yakunin, Konstantin

    2017-01-01

    When a massive star runs out of fuel, it collapses under its own weight and rebounds in a powerful supernova explosion, sending, among other things, ripples through space-time, known as gravitational waves (GWs). GWs can be detected by earth-based observatories, such as the Laser Interferometer Gravitational-Wave Observatory (LIGO). Observers must compare the data from GW detectors with theoretical waveforms in order to confirm that the detection of a GW signal from a particular source has occurred. GW predictions for core collapse supernovae (CCSNe) rely on computer simulations. The UTK/ORNL astrophysics group has performed such simulations. Here, I analyze the resulting waveforms, using Matlab, to generate their Fourier transforms, short-time Fourier transforms, energy spectra, evolution of frequencies, and frequency maxima. One product will be a Matlab interface for analyzing and comparing GW predictions based on data from future simulations. This interface will make it easier to analyze waveforms and to share the results with the GW astrophysics community. Funding provided by Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200, USA.

  11. Essential Ingredients in Core-collapse Supernovae

    DOE PAGES

    Hix, William Raphael; Lentz, E. J.; Endeve, Eirik; ...

    2014-03-27

    Marking the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae bring together physics at a wide range in spatial scales, from kilometer-sized hydrodynamic motions (eventually growing to gigameter scale) down to femtometer scale nuclear reactions. Carrying 10more » $$^{44}$$ joules of kinetic energy and a rich-mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up ourselves and our solar system. We will discuss our emerging understanding of the convectively unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino-radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Recent multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.« less

  12. The Multi-dimensional Character of Core-collapse Supernovae

    DOE PAGES

    Hix, W. R.; Lentz, E. J.; Bruenn, S. W.; ...

    2016-03-01

    Core-collapse supernovae, the culmination of massive stellar evolution, are spectacular astronomical events and the principle actors in the story of our elemental origins. Our understanding of these events, while still incomplete, centers around a neutrino-driven central engine that is highly hydrodynamically unstable. Increasingly sophisticated simulations reveal a shock that stalls for hundreds of milliseconds before reviving. Though brought back to life by neutrino heating, the development of the supernova explosion is inextricably linked to multi-dimensional fluid flows. In this paper, the outcomes of three-dimensional simulations that include sophisticated nuclear physics and spectral neutrino transport are juxtaposed to learn about themore » nature of the three-dimensional fluid flow that shapes the explosion. Comparison is also made between the results of simulations in spherical symmetry from several groups, to give ourselves confidence in the understanding derived from this juxtaposition.« less

  13. Supernovae neutrino pasta interaction

    NASA Astrophysics Data System (ADS)

    Lin, Zidu; Horowitz, Charles; Caplan, Matthew; Berry, Donald; Roberts, Luke

    2017-01-01

    In core-collapse supernovae, the neutron rich matter is believed to have complex structures, such as spherical, slablike, and rodlike shapes. They are collectively called ``nuclear pasta''. Supernovae neutrinos may scatter coherently on the ``nuclear pasta'' since the wavelength of the supernovae neutrinos are comparable to the nuclear pasta scale. Consequently, the neutrino pasta scattering is important to understand the neutrino opacity in the supernovae. In this work we simulated the ``nuclear pasta'' at different temperatures and densities using our semi-classical molecular dynamics and calculated the corresponding static structure factor that describes ν-pasta scattering. We found the neutrino opacities are greatly modified when the ``pasta'' exist and may have influence on the supernovae neutrino flux and average energy. Our neutrino-pasta scattering effect can finally be involved in the current supernovae simulations and we present preliminary proto neutron star cooling simulations including our pasta opacities.

  14. Aspherical Supernovae and Oblique Shock Breakout

    NASA Astrophysics Data System (ADS)

    Afsariardchi, Niloufar; Matzner, Christopher D.

    2017-02-01

    In an aspherical supernova explosion, shock emergence is not simultaneous and non-radial flows develop near the stellar surface. Oblique shock breakouts tend to be easily developed in compact progenitors like stripped-envelop core collapse supernovae. According to Matzner et al. (2013), non-spherical explosions develop non-radial flows that alters the observable emission and radiation of a supernova explosion. These flows can limit ejecta speed, change the distribution of matter and heat of the ejecta, suppress the breakout flash, and most importantly engender collisions outside the star. We construct a global numerical FLASH hydrodynamic simulation in a two dimensional spherical coordinate, focusing on the non-relativistic, adiabatic limit in a polytropic envelope to see how these fundamental differences affect the early light curve of core-collapse SNe.

  15. Convection- and SASI-driven flows in parametrized models of core-collapse supernova explosions

    DOE PAGES

    Endeve, E.; Cardall, C. Y.; Budiardja, R. D.; ...

    2016-01-21

    We present initial results from three-dimensional simulations of parametrized core-collapse supernova (CCSN) explosions obtained with our astrophysical simulation code General Astrophysical Simulation System (GenASIS). We are interested in nonlinear flows resulting from neutrino-driven convection and the standing accretion shock instability (SASI) in the CCSN environment prior to and during the explosion. By varying parameters in our model that control neutrino heating and shock dissociation, our simulations result in convection-dominated and SASI-dominated evolution. We describe this initial set of simulation results in some detail. To characterize the turbulent flows in the simulations, we compute and compare velocity power spectra from convection-dominatedmore » and SASI-dominated (both non-exploding and exploding) models. When compared to SASI-dominated models, convection-dominated models exhibit significantly more power on small spatial scales.« less

  16. Neutrino-pair emission from nuclear de-excitation in core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Langanke, K.; Martínez-Pinedo, G.

    2013-12-01

    We study the impact of neutrino-pair production from the de-excitation of highly excited heavy nuclei on core-collapse supernova simulations, following the evolution up to several 100 ms after core bounce. Our study is based on the agile-boltztransupernova code, which features general relativistic radiation hydrodynamics and accurate three-flavor Boltzmann neutrino transport in spherical symmetry. In our simulations the nuclear de-excitation process is described in two different ways. At first we follow the approach proposed by Fuller and Meyer [Astrophys. J.AJLEEY0004-637X10.1086/170317 376, 701 (1991)], which is based on strength functions derived in the framework of the nuclear Fermi-gas model of noninteracting nucleons. Second, we parametrize the allowed and forbidden strength distributions in accordance with measurements for selected nuclear ground states. We determine the de-excitation strength by applying the Brink hypothesis and detailed balance. For both approaches, we find that nuclear de-excitation has no effect on the supernova dynamics. However, we find that nuclear de-excitation is the leading source for the production of electron antineutrinos as well as heavy-lepton-flavor (anti)neutrinos during the collapse phase. At sufficiently high densities, the associated neutrino spectra are influenced by interactions with the surrounding matter, making proper simulations of neutrino transport important for the determination of the neutrino-energy loss rate. We find that, even including nuclear de-excitations, the energy loss during the collapse phase is overwhelmingly dominated by electron neutrinos produced by electron capture.

  17. Circular Polarizations of Gravitational Waves from Core-Collapse Supernovae: A Clear Indication of Rapid Rotation.

    PubMed

    Hayama, Kazuhiro; Kuroda, Takami; Nakamura, Ko; Yamada, Shoichi

    2016-04-15

    We propose to employ the circular polarization of gravitational waves emitted by core-collapse supernovae as an unequivocal indication of rapid rotation deep in their cores just prior to collapse. It has been demonstrated by three dimensional simulations that nonaxisymmetric accretion flows may develop spontaneously via hydrodynamical instabilities in the postbounce cores. It is not surprising, then, that the gravitational waves emitted by such fluid motions are circularly polarized. We show, in this Letter, that a network of the second generation detectors of gravitational waves worldwide may be able to detect such polarizations up to the opposite side of the Galaxy as long as the rotation period of the core is shorter than a few seconds prior to collapse.

  18. Nucleosynthesis in Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Stevenson, Taylor Shannon; Viktoria Ohstrom, Eva; Harris, James Austin; Hix, William R.

    2018-01-01

    The nucleosynthesis which occurs in core-collapse supernovae (CCSN) is one of the most important sources of elements in the universe. Elements from Oxygen through Iron come predominantly from supernovae, and contributions of heavier elements are also possible through processes like the weak r-process, the gamma process and the light element primary process. The composition of the ejecta depends on the mechanism of the explosion, thus simulations of high physical fidelity are needed to explore what elements and isotopes CCSN can contribute to Galactic Chemical Evolution. We will analyze the nucleosynthesis results from self-consistent CCSN simulations performed with CHIMERA, a multi-dimensional neutrino radiation-hydrodynamics code. Much of our understanding of CCSN nucleosynthesis comes from parameterized models, but unlike CHIMERA these fail to address essential physics, including turbulent flow/instability and neutrino-matter interaction. We will present nucleosynthesis predictions for the explosion of a 9.6 solar mass first generation star, relying both on results of the 160 species nuclear reaction network used in CHIMERA within this model and on post-processing with a more extensive network. The lowest mass iron core-collapse supernovae, like this model, are distinct from their more massive brethren, with their explosion mechanism and nucleosynthesis being more like electron capture supernovae resulting from Oxygen-Neon white dwarves. We will highlight the differences between the nucleosynthesis in this model and more massive supernovae. The inline 160 species network is a feature unique to CHIMERA, making this the most sophisticated model to date for a star of this type. We will discuss the need and mechanism to extrapolate the post-processing to times post-simulation and analyze the uncertainties this introduces for supernova nucleosynthesis. We will also compare the results from the inline 160 species network to the post-processing results to study further uncertainties introduced by post-processing. This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, and the National Science Foundation Nuclear Theory Program (PHY-1516197).

  19. TWO-DIMENSIONAL CORE-COLLAPSE SUPERNOVA SIMULATIONS WITH THE ISOTROPIC DIFFUSION SOURCE APPROXIMATION FOR NEUTRINO TRANSPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Kuo-Chuan; Liebendörfer, Matthias; Hempel, Matthias

    2016-01-20

    The neutrino mechanism of core-collapse supernova is investigated via non-relativistic, two-dimensional (2D), neutrino radiation–hydrodynamic simulations. For the transport of electron flavor neutrinos, we use the interaction rates defined by Bruenn and the isotropic diffusion source approximation (IDSA) scheme, which decomposes the transported particles into trapped-particle and streaming-particle components. Heavy neutrinos are described by a leakage scheme. Unlike the “ray-by-ray” approach in some other multidimensional supernova models, we use cylindrical coordinates and solve the trapped-particle component in multiple dimensions, improving the proto-neutron star resolution and the neutrino transport in angular and temporal directions. We provide an IDSA verification by performing one-dimensionalmore » (1D) and 2D simulations with 15 and 20 M{sub ⊙} progenitors from Woosley et al. and discuss the difference between our IDSA results and those existing in the literature. Additionally, we perform Newtonian 1D and 2D simulations from prebounce core collapse to several hundred milliseconds postbounce with 11, 15, 21, and 27 M{sub ⊙} progenitors from Woosley et al. with the HS(DD2) equation of state. General-relativistic effects are neglected. We obtain robust explosions with diagnostic energies E{sub dia} ≳ 0.1–0.5 B (1 B ≡ 10{sup 51} erg) for all considered 2D models within approximately 100–300 ms after bounce and find that explosions are mostly dominated by the neutrino-driven convection, although standing accretion shock instabilities are observed as well. We also find that the level of electron deleptonization during collapse dramatically affects the postbounce evolution, e.g., the neglect of neutrino–electron scattering during collapse will lead to a stronger explosion.« less

  20. The 3D Death of a Massive Star

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    What happens at the very end of a massive star's life, just before its core's collapse? A group led by Sean Couch (California Institute of Technology and Michigan State University) claim to have carried out the first three-dimensional simulations of these final few minutes — revealing new clues about the factors that can lead a massive star to explode in a catastrophic supernova at the end of its life. A Giant Collapses In dying massive stars, in-falling matter bounces off the of collapsed core, creating a shock wave. If the shock wave loses too much energy as it expands into the star, it can stall out — but further energy input can revive it and result in a successful explosion of the star as a core-collapse supernova. In simulations of this process, however, theorists have trouble getting the stars to consistently explode: the shocks often stall out and fail to revive. Couch and his group suggest that one reason might be that these simulations usually start at core collapse assuming spherical symmetry of the progenitor star. Adding Turbulence Couch and his collaborators suspect that the key is in the final minutes just before the star collapses. Models that assume a spherically-symmetric star can't include the effects of convection as the final shell of silicon is burned around the core — and those effects might have a significant impact! To test this hypothesis, the group ran fully 3D simulations of the final three minutes of the life of a 15 solar-mass star, ending with core collapse, bounce, and shock-revival. The outcome was striking: the 3D modeling introduced powerful turbulent convection (with speeds of several hundred km/s!) in the last few minutes of silicon-shell burning. As a result, the initial structure and motions in the star just before core collapse were very different from those in core-collapse simulations that use spherically-symmetric initial conditions. The turbulence was then further amplified during collapse and formation of the shock, generating pressure that aided the shock expansion — which should ultimately help the star explode! The group cautions that their simulations are still very idealized, but these results clearly indicate that the 3D structure of massive stellar cores has an important impact on the core-collapse supernova mechanism. Citation Sean M. Couch et al. 2015 ApJ 808 L21 doi:10.1088/2041-8205/808/1/L21

  1. Crucial Physical Dependencies of the Core-Collapse Supernova Mechanism

    NASA Astrophysics Data System (ADS)

    Burrows, A.; Vartanyan, D.; Dolence, J. C.; Skinner, M. A.; Radice, D.

    2018-02-01

    We explore with self-consistent 2D F ornax simulations the dependence of the outcome of collapse on many-body corrections to neutrino-nucleon cross sections, the nucleon-nucleon bremsstrahlung rate, electron capture on heavy nuclei, pre-collapse seed perturbations, and inelastic neutrino-electron and neutrino-nucleon scattering. Importantly, proximity to criticality amplifies the role of even small changes in the neutrino-matter couplings, and such changes can together add to produce outsized effects. When close to the critical condition the cumulative result of a few small effects (including seeds) that individually have only modest consequence can convert an anemic into a robust explosion, or even a dud into a blast. Such sensitivity is not seen in one dimension and may explain the apparent heterogeneity in the outcomes of detailed simulations performed internationally. A natural conclusion is that the different groups collectively are closer to a realistic understanding of the mechanism of core-collapse supernovae than might have seemed apparent.

  2. CORE-COLLAPSE SUPERNOVA EQUATIONS OF STATE BASED ON NEUTRON STAR OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, A. W.; Hempel, M.; Fischer, T.

    2013-09-01

    Many of the currently available equations of state for core-collapse supernova simulations give large neutron star radii and do not provide large enough neutron star masses, both of which are inconsistent with some recent neutron star observations. In addition, one of the critical uncertainties in the nucleon-nucleon interaction, the nuclear symmetry energy, is not fully explored by the currently available equations of state. In this article, we construct two new equations of state which match recent neutron star observations and provide more flexibility in studying the dependence on nuclear matter properties. The equations of state are also provided in tabularmore » form, covering a wide range in density, temperature, and asymmetry, suitable for astrophysical simulations. These new equations of state are implemented into our spherically symmetric core-collapse supernova model, which is based on general relativistic radiation hydrodynamics with three-flavor Boltzmann neutrino transport. The results are compared with commonly used equations of state in supernova simulations of 11.2 and 40 M{sub Sun} progenitors. We consider only equations of state which are fitted to nuclear binding energies and other experimental and observational constraints. We find that central densities at bounce are weakly correlated with L and that there is a moderate influence of the symmetry energy on the evolution of the electron fraction. The new models also obey the previously observed correlation between the time to black hole formation and the maximum mass of an s = 4 neutron star.« less

  3. Topics in Core-Collapse Supernova Theory: The Formation of Black Holes and the Transport of Neutrinos

    NASA Astrophysics Data System (ADS)

    O'Connor, Evan Patrick

    Core-Collapse Supernovae are one of the most complex astrophysical systems in the universe. They deeply entwine aspects of physics and astrophysics that are rarely side by side in nature. To accurately model core-collapse supernovae one must self-consistently combine general relativity, nuclear physics, neutrino physics, and magneto-hydrodynamics in a symmetry-free computational environment. This is a challenging task, as each one of these aspects on its own is an area of great study. We take an open approach in an effort to encourage collaboration in the core-collapse supernovae community. In this thesis, we develop a new open-source general-relativistic spherically-symmetric Eulerian hydrodynamics code for studying stellar collapse, protoneutron star formation, and evolution until black hole formation. GR1D includes support for finite temperature equations of state and an efficient and qualitatively accurate treatment of neutrino leakage. GR1D implements spherically-symmetric rotation, allowing for the study of slowly rotating stellar collapse. GR1D is available at http://www.stellarcollapse.org. We use GR1D to perform an extensive study of black hole formation in failing core-collapse supernovae. Over 100 presupernova models from various sources are used in over 700 total simulations. We systematically explore the dependence of black hole formation on the input physics: initial zero-age main sequence (ZAMS) mass and metallicity, nuclear equation of state, rotation, and stellar mass loss rates. Assuming the core-collapse supernova mechanism fails and a black hole forms, we find that the outcome, for a given equation of state, can be estimated, to first order, by a single parameter, the compactness of the stellar core at bounce. By comparing the protoneutron star structure at the onset of gravitational instability with solutions of the Tolman-Oppenheimer-Volkof equations, we find that thermal pressure support in the outer protoneutron star core is responsible for raising the maximum protoneutron star mass by up to 25% above the cold neutron star value. By artificially increasing neutrino heating, we find the critical neutrino heating efficiency required for exploding a given progenitor structure and connect these findings with ZAMS conditions. This establishes, albeit approximately, for the first time based on actual collapse simulations, the mapping between ZAMS parameters and the outcome of core collapse. We also use GR1D to study proposed progenitors of long-duration gamma-ray bursts. We find that many of the proposed progenitors have core structures similar to garden-variety core-collapse supernovae. These are not expected to form black holes, a key ingredient of the collapsar model of long-duration gamma-ray bursts. The small fraction of proposed progenitors that are compact enough to form black holes have fast rotating iron cores, making them prone to a magneto-rotational explosion and the formation of a protomagnetar rather than a black hole. Finally, we present preliminary work on a fully general-relativistic neutrino transport code and neutrino-interaction library. Following along with the trends explored in our black hole formation study, we look at the dependence of the neutrino observables on the bounce compactness. We find clear relationships that will allow us to extract details of the core structure from the next galactic supernova. Following the open approach of GR1D, the neutrino transport code will be made open-source upon completion. The open-source neutrino-interaction library, NuLib, is already available at http://www.nulib.org.

  4. Towards ab initio extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Ritter, Jeremy S.; Safranek-Shrader, Chalence; Milosavljević, Miloš; Bromm, Volker

    2016-12-01

    Extremely metal-poor stars have been the focus of much recent attention owing to the expectation that their chemical abundances can shed light on the metal and dust yields of the earliest supernovae. We present our most realistic simulation to date of the astrophysical pathway to the first metal-enriched stars. We simulate the radiative and supernova hydrodynamic feedback of a 60 M⊙ Population III star starting from cosmological initial conditions realizing Gaussian density fluctuations. We follow the gravitational hydrodynamics of the supernova remnant at high spatial resolution through its freely expanding, adiabatic, and radiative phases, until gas, now metal-enriched, has resumed runaway gravitational collapse. Our findings are surprising: while the Population III progenitor exploded with a low energy of 1051 erg and injected an ample metal mass of 6 M⊙, the first cloud to collapse after the supernova explosion is a dense surviving primordial cloud on which the supernova blast wave deposited metals only superficially, in a thin, unresolved layer. The first metal-enriched stars can form at a very low metallicity, of only 2-5 × 10-4 Z⊙, and can inherit the parent cloud's highly elliptical, radially extended orbit in the dark matter gravitational potential.

  5. Search for core-collapse supernovae using the MiniBooNE neutrino detector

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Djurcic, Z.; Finley, D. A.; Fisher, M.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R. G.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.; MiniBooNE Collaboration

    2010-02-01

    We present a search for core-collapse supernovae in the Milky Way galaxy, using the MiniBooNE neutrino detector. No evidence is found for core-collapse supernovae occurring in our Galaxy in the period from December 14, 2004 to July 31, 2008, corresponding to 98% live time for collection. We set a limit on the core-collapse supernova rate out to a distance of 13.4 kpc to be less than 0.69 supernovae per year at 90% C.L.

  6. Cosmic Explosions in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Höflich, Peter; Kumar, Pawan; Wheeler, J. Craig

    2011-08-01

    Introduction: 3-D Explosions: a meditation on rotation (and magnetic fields) J. C. Wheeler; Part I. Supernovae: Observations Today: 1. Supernova explosions: lessons from spectropolarimetry L. Wang; 2. Spectropolarimetric observations of Supernovae A. Filippenko and D. C. Leonard; 3. Observed and physical properties of type II plateau supernovae M. Hamuy; 4. SN1997B and the different types of Type Ic Supernovae A. Clocchiatti, B. Leibundgut, J. Spyromilio, S. Benetti, E. Cappelaro, M. Turatto and M. Phillips; 5. Near-infrared spectroscopy of stripped-envelope Supernovae C. L. Gerardy, R. A. Fesen, G. H. Marion, P. Hoeflich and J. C. Wheeler; 6. Morphology of Supernovae remnants R. Fesen; 7. The evolution of Supernova remnants in the winds of massive stars V. Dwarkadas; 8. Types for the galactic Supernovae B. E. Schaefer; Part II. Theory of Thermonuclear Supernovae: 9. Semi-steady burning evolutionary sequences for CAL 83 and CAL 87: supersoft X-ray binaries are Supernovae Ia progenitors S. Starrfield, F. X. Timmes, W. R. Hix, E. M. Sion, W. M. Sparks and S. Dwyer; 10. Type Ia Supernovae progenitors: effects of the spin-up of the white dwarfs S.-C. Yoon and N. Langer; 11. Terrestrial combustion: feedback to the stars E. S. Oran; 12. Non-spherical delayed detonations E. Livne; 13. Numerical simulations of Type Ia Supernovae: deflagrations and detonations V. N. Gamezo, A. M. Khokhlov and E. S. Oran; 14. Type Ia Supernovae: spectroscopic surprises D. Branch; 15. Aspherity effects in Supernovae P. Hoeflich, C. Gerardy and R. Quimby; 16. Broad light curve SneIa: asphericity or something else? A. Howell and P. Nugent; 17. Synthetic spectrum methods for 3-D SN models R. Thomas; 18. A hole in Ia' spectroscopic and polarimetric signatures of SN Ia asymmetry due to a companion star D. Kasen; 19. Hunting for the signatures of 3-D explosions with 1-D synthetic spectra E. Lentz, E. Baron and P. H. Hauschildt; 20. On the variation of the peak luminosity of Type Ia J. W. Truran, E. X. Timmes and E. F. Brown; Part III. Theory of Core Collapse Supernovae: 21. Rotation of core collapse progenitors: single and binary stars N. Langer; 22. Large scale convection and the convective Supernova mechanism S. Colgate and M. E. Herant; 23. Topics in core-collapse Supernova A. Burrows, C. D. Ott and C. Meakin; 24. MHD Supernova jets: the missing link D. Meier and M. Nakamura; 25. Effects of super strong magnetic fields in core collapse Supernovae I. S. Akiyama; 26. Non radial instability of stalled accretion shocks advective-acoustic cycle T. Foglizzo and P. Galletti; 27. Asymmetry effects in Hypernovae K. Maeda, K. Nomoto, J. Deng and P.A. Mazzali; 28. Turbulent MHD jet collimation and thermal driving P. T. Williams; Part IV. Magnetars, N-Stars, Pulsars: 29. Supernova remnants and pulsar wind nebulae R. Chevalier; 30. X-Ray signatures of Supernovae D. Swartz; 31. Asymmetric Supernovae and Neutron Star Kicks D. Lai and D. Q. Lamb; 32. Triggers of magnetar outbursts R. Duncan; 33. Turbulent MHD Jet Collimation and Thermal Driving P. Williams; 34. The interplay between nuclear electron capture and fluid dynamics in core collapse Supernovae W. R. Hix, O. E. B. Messer and A. Mezzacappa; Part V. Gamma-Ray Bursts: 35. GRB 021004 and Gamma-ray burst distances B. E. Schaefer; 36. Gamma-ray bursts as a laboratory for the study of Type Ic Supernovae D. Q. Lamb, T. Q. Donaghy and C. Graziani; 37. The diversity of cosmic explosions: Gamma-ray bursts and Type Ib/c Supernovae E. Berger; 38. A GRB simulation using 3D relativistic hydrodynamics J. Cannizo, N. Gehrels and E. T. Vishniac; 39. The first direct link in the Supernova/GRB connection: GRB 030329 and SN 2003dh T. Matheson; Part VI. Summary: 40. Three-dimensional explosions C. Wheeler.

  7. From Supernovae to Neutron Stars

    NASA Astrophysics Data System (ADS)

    Suwa, Yudai

    A core-collapse supernova is a generation site of a neutron star as well as one of the largest explosions in the universe. This article gives a brief overview of the studies on supernova explosion mechanism. Basic picture of the explosion mechanism, the method to solve neutrino transfer equation, the impact of the nuclear equation of state on the explosion, and long-term simulation of neutron star evolution from the onset of the explosion are presented.

  8. Progenitors of Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Hirschi, R.; Arnett, D.; Cristini, A.; Georgy, C.; Meakin, C.; Walkington, I.

    2017-02-01

    Massive stars have a strong impact on their surroundings, in particular when they produce a core-collapse supernova at the end of their evolution. In these proceedings, we review the general evolution of massive stars and their properties at collapse as well as the transition between massive and intermediate-mass stars. We also summarise the effects of metallicity and rotation. We then discuss some of the major uncertainties in the modelling of massive stars, with a particular emphasis on the treatment of convection in 1D stellar evolution codes. Finally, we present new 3D hydrodynamic simulations of convection in carbon burning and list key points to take from 3D hydrodynamic studies for the development of new prescriptions for convective boundary mixing in 1D stellar evolution codes.

  9. Neutrino signal of electron-capture supernovae from core collapse to cooling.

    PubMed

    Hüdepohl, L; Müller, B; Janka, H-T; Marek, A; Raffelt, G G

    2010-06-25

    An 8.8M{⊙} electron-capture supernova was simulated in spherical symmetry consistently from collapse through explosion to essentially complete deleptonization of the forming neutron star. The evolution time (∼9  s) is short because high-density effects suppress our neutrino opacities. After a short phase of accretion-enhanced luminosities (∼200  ms), luminosity equipartition among all species becomes almost perfect and the spectra of ν{e} and ν{μ,τ} very similar, ruling out the neutrino-driven wind as r-process site. We also discuss consequences for neutrino flavor oscillations.

  10. Key issues review: numerical studies of turbulence in stars

    NASA Astrophysics Data System (ADS)

    Arnett, W. David; Meakin, Casey

    2016-10-01

    Three major problems of single-star astrophysics are convection, magnetic fields and rotation. Numerical simulations of convection in stars now have sufficient resolution to be truly turbulent, with effective Reynolds numbers of \\text{Re}>{{10}4} , and some turbulent boundary layers have been resolved. Implications of these developments are discussed for stellar structure, evolution and explosion as supernovae. Methods for three-dimensional (3D) simulations of stars are compared and discussed for 3D atmospheres, solar rotation, core-collapse and stellar boundary layers. Reynolds-averaged Navier-Stokes (RANS) analysis of the numerical simulations has been shown to provide a novel and quantitative estimate of resolution errors. Present treatments of stellar boundaries require revision, even for early burning stages (e.g. for mixing regions during He-burning). As stellar core-collapse is approached, asymmetry and fluctuations grow, rendering spherically symmetric models of progenitors more unrealistic. Numerical resolution of several different types of three-dimensional (3D) stellar simulations are compared; it is suggested that core-collapse simulations may be under-resolved. The Rayleigh-Taylor instability in explosions has a deep connection to convection, for which the abundance structure in supernova remnants may provide evidence.

  11. Constraints on high-energy neutrino emission from SN 2008D

    NASA Astrophysics Data System (ADS)

    IceCube Collaboration; Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Ben Zvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; De Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Gro, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hül, J. P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K. H.; Kappes A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J. H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lehmann, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Singh, K.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.

    2011-03-01

    SN 2008D, a core collapse supernova at a distance of 27 Mpc, was serendipitously discovered by the Swift satellite through an associated X-ray flash. Core collapse supernovae have been observed in association with long gamma-ray bursts and X-ray flashes and a physical connection is widely assumed. This connection could imply that some core collapse supernovae possess mildly relativistic jets in which high-energy neutrinos are produced through proton-proton collisions. The predicted neutrino spectra would be detectable by Cherenkov neutrino detectors like IceCube. A search for a neutrino signal in temporal and spatial correlation with the observed X-ray flash of SN 2008D was conducted using data taken in 2007-2008 with 22 strings of the IceCube detector. Events were selected based on a boosted decision tree classifier trained with simulated signal and experimental background data. The classifier was optimized to the position and a "soft jet" neutrino spectrum assumed for SN 2008D. Using three search windows placed around the X-ray peak, emission time scales from 100-10 000 s were probed. No events passing the cuts were observed in agreement with the signal expectation of 0.13 events. Upper limits on the muon neutrino flux from core collapse supernovae were derived for different emission time scales and the principal model parameters were constrained. While no meaningful limits can be given in the case of an isotropic neutrino emission, the parameter space for a jetted emission can be constrained. Future analyses with the full 86 string IceCube detector could detect up to ~100 events for a core-collapse supernova at 10 Mpc according to the soft jet model.

  12. Multi-Dimensional Full Boltzmann-Neutrino-Radiation Hydrodynamic Simulations and Their Detailed Comparisons with Monte-Carlo Methods in Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Nagakura, H.; Richers, S.; Ott, C. D.; Iwakami, W.; Furusawa, S.; Sumiyoshi, K.; Yamada, S.; Matsufuru, H.; Imakura, A.

    2016-10-01

    We have developed a 7-dimensional Full Boltzmann-neutrino-radiation-hydrodynamical code and carried out ab-initio axisymmetric CCSNe simulations. I will talk about main results of our simulations and also discuss current ongoing projects.

  13. Toward Microscopic Equations of State for Core-Collapse Supernovae from Chiral Effective Field Theory

    NASA Astrophysics Data System (ADS)

    Aboona, Bassam; Holt, Jeremy

    2017-09-01

    Chiral effective field theory provides a modern framework for understanding the structure and dynamics of nuclear many-body systems. Recent works have had much success in applying the theory to describe the ground- and excited-state properties of light and medium-mass atomic nuclei when combined with ab initio numerical techniques. Our aim is to extend the application of chiral effective field theory to describe the nuclear equation of state required for supercomputer simulations of core-collapse supernovae. Given the large range of densities, temperatures, and proton fractions probed during stellar core collapse, microscopic calculations of the equation of state require large computational resources on the order of one million CPU hours. We investigate the use of graphics processing units (GPUs) to significantly reduce the computational cost of these calculations, which will enable a more accurate and precise description of this important input to numerical astrophysical simulations. Cyclotron Institute at Texas A&M, NSF Grant: PHY 1659847, DOE Grant: DE-FG02-93ER40773.

  14. Long gamma-ray bursts and core-collapse supernovae have different environments.

    PubMed

    Fruchter, A S; Levan, A J; Strolger, L; Vreeswijk, P M; Thorsett, S E; Bersier, D; Burud, I; Castro Cerón, J M; Castro-Tirado, A J; Conselice, C; Dahlen, T; Ferguson, H C; Fynbo, J P U; Garnavich, P M; Gibbons, R A; Gorosabel, J; Gull, T R; Hjorth, J; Holland, S T; Kouveliotou, C; Levay, Z; Livio, M; Metzger, M R; Nugent, P E; Petro, L; Pian, E; Rhoads, J E; Riess, A G; Sahu, K C; Smette, A; Tanvir, N R; Wijers, R A M J; Woosley, S E

    2006-05-25

    When massive stars exhaust their fuel, they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration gamma-ray burst. One would then expect that these long gamma-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the gamma-ray bursts are far more concentrated in the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long gamma-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long gamma-ray bursts are relatively rare in galaxies such as our own Milky Way.

  15. Gravitational-Wave and Neutrino Signals from Core-Collapse Supernovae with QCD Phase Transition

    NASA Astrophysics Data System (ADS)

    Zha, Shuai; Leung, Shing Chi; Lin, Lap Ming; Chu, Ming-Chung

    Core-collapse supernovae (CCSNe) mark the catastrophic death of massive stars. We simulate CCSNe with a hybrid equations of state (EOS) containing a QCD (quantum chromodynamics) phase transition. The hybrid EOS incorporates the pure hadronic HShen EOS and the MIT Bag Model, with a Gibbs construction. Our two-dimensional hydrodynamics code includes a fifth-order shock capturing scheme WENO and models neutrino transport with the isotropic diffusion source approximation (IDSA). As the proto-neutron-star accretes matter and the core enters the mixed phase, a second collapse takes place due to softening of the EOS. We calculate the gravitational-wave (GW) and neutrino signals for this kind of CCSNe model. Future detection of these signals from CCSNe may help to constrain this scenario and the hybrid EOS.

  16. Black Hole Formation and Fallback during the Supernova Explosion of a 40 M ⊙ Star

    NASA Astrophysics Data System (ADS)

    Chan, Conrad; Müller, Bernhard; Heger, Alexander; Pakmor, Rüdiger; Springel, Volker

    2018-01-01

    Fallback in core-collapse supernovae is considered a major ingredient for explaining abundance anomalies in metal-poor stars and the natal kicks and spins of black holes (BHs). We present a first 3D simulation of BH formation and fallback in an “aborted” neutrino-driven explosion of a 40 solar mass zero-metallicity progenitor from collapse to shock breakout. We follow the phase up to BH formation using the relativistic COCONUT-FMT code. For the subsequent evolution to shock breakout we apply the moving-mesh code AREPO to core-collapse supernovae for the first time. Our simulation shows that despite early BH formation, neutrino-heated bubbles can survive for tens of seconds before being accreted, leaving them sufficient time to transfer part of their energy to sustain the shock wave as is propagates through the envelope. Although the initial net energy (∼2 Bethe) of the neutrino-heated ejecta barely equals the binding energy of the envelope, 11 {M}ȯ of hydrogen are still expelled with an energy of 0.23 Bethe. We find no significant mixing and only a modest BH kick and spin, but speculate that stronger effects could occur for slightly more energetic explosions or progenitors with less tightly bound envelopes.

  17. Impact of Neutrino Opacities on Core-collapse Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Kotake, Kei; Takiwaki, Tomoya; Fischer, Tobias; Nakamura, Ko; Martínez-Pinedo, Gabriel

    2018-02-01

    The accurate description of neutrino opacities is central to both the core-collapse supernova (CCSN) phenomenon and the validity of the explosion mechanism itself. In this work, we study in a systematic fashion the role of a variety of well-selected neutrino opacities in CCSN simulations where the multi-energy, three-flavor neutrino transport is solved using the isotropic diffusion source approximation (IDSA) scheme. To verify our code, we first present results from one-dimensional (1D) simulations following the core collapse, bounce, and ∼250 ms postbounce of a 15 {M}ȯ star using a standard set of neutrino opacities by Bruenn. A detailed comparison with published results supports the reliability of our three-flavor IDSA scheme using the standard opacity set. We then investigate in 1D simulations how individual opacity updates lead to differences with the baseline run with the standard opacity set. Through detailed comparisons with previous work, we check the validity of our implementation of each update in a step-by-step manner. Individual neutrino opacities with the largest impact on the overall evolution in 1D simulations are selected for systematic comparisons in our two-dimensional (2D) simulations. Special attention is given to the criterion of explodability in the 2D models. We discuss the implications of these results as well as its limitations and the requirements for future, more elaborate CCSN modeling.

  18. Finding the First Cosmic Explosions. II. Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel J.; Joggerst, Candace C.; Fryer, Chris L.; Stiavelli, Massimo; Heger, Alexander; Holz, Daniel E.

    2013-05-01

    Understanding the properties of Population III (Pop III) stars is prerequisite to elucidating the nature of primeval galaxies, the chemical enrichment and reionization of the early intergalactic medium, and the origin of supermassive black holes. While the primordial initial mass function (IMF) remains unknown, recent evidence from numerical simulations and stellar archaeology suggests that some Pop III stars may have had lower masses than previously thought, 15-50 M ⊙ in addition to 50-500 M ⊙. The detection of Pop III supernovae (SNe) by JWST, WFIRST, or the TMT could directly probe the primordial IMF for the first time. We present numerical simulations of 15-40 M ⊙ Pop III core-collapse SNe performed with the Los Alamos radiation hydrodynamics code RAGE. We find that they will be visible in the earliest galaxies out to z ~ 10-15, tracing their star formation rates and in some cases revealing their positions on the sky. Since the central engines of Pop III and solar-metallicity core-collapse SNe are quite similar, future detection of any Type II SNe by next-generation NIR instruments will in general be limited to this epoch.

  19. Light-curve and spectral properties of ultra-stripped core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.

    2017-11-01

    We discuss light-curve and spectral properties of ultra-stripped core-collapse supernovae. Ultra-stripped supernovae are supernovae with ejecta masses of only ~0.1M ⊙ whose progenitors lose their envelopes due to binary interactions with their compact companion stars. We follow the evolution of an ultra-stripped supernova progenitor until core collapse and perform explosive nucleosynthesis calculations. We then synthesize light curves and spectra of ultra-stripped supernovae based on the nucleosynthesis results. We show that ultra-stripped supernovae synthesize ~0.01M ⊙ of the radioactive 56Ni, and their typical peak luminosity is around 1042 erg s-1 or -16 mag. Their typical rise time is 5 - 10 days. By comparing synthesized and observed spectra, we find that SN 2005ek and some of so-called calcium-rich gap transients like PTF10iuv may be related to ultra-stripped supernovae.

  20. The Core-Collapse Supernova-Black Hole Connection

    NASA Astrophysics Data System (ADS)

    O'Connor, Evan

    The death of a massive star is typically associated with a bright optical transient known as a core-collapse supernova. However, there is growing evidence that not all massive stars end their lives with a brillant optical display, but rather in a whimper. These failed supernovae, or unnovae, result from the central engine failing to turn the initial implosion of the iron core into an explosion that launches the supernova shock wave, unbinds the majority of the star, and creates the supernova as we know it. In these unnovae, the failure of the central engine is soon followed by the collapse of the would-be neutron star into a stellar mass black hole. Instead of the bright optical display following successful supernovae, little to no optical emission is expected from typical failed supernovae as most of the material quietly accretes onto the black hole. This makes the hunt for failed supernovae difficult. In this chapter for the Handbook of Supernovae, I present the growing observational evidence for failed supernovae and discuss the current theoretical understanding of how and in what stars the supernova central engine fails.

  1. Should One Use the Ray-by-Ray Approximation in Core-Collapse Supernova Simulations?

    DOE PAGES

    Skinner, M. Aaron; Burrows, Adam; Dolence, Joshua C.

    2016-10-28

    We perform the first self-consistent, time-dependent, multi-group calculations in two dimensions (2D) to address the consequences of using the ray-by-ray+ transport simplification in core-collapse supernova simulations. Such a dimensional reduction is employed by many researchers to facilitate their resource-intensive calculations. Our new code (Fornax) implements multi-D transport, and can, by zeroing out transverse flux terms, emulate the ray-by-ray+ scheme. Using the same microphysics, initial models, resolution, and code, we compare the results of simulating 12-, 15-, 20-, and 25-M⊙ progenitor models using these two transport methods. Our findings call into question the wisdom of the pervasive use of the ray-by-ray+more » approach. Employing it leads to maximum post-bounce/preexplosion shock radii that are almost universally larger by tens of kilometers than those derived using the more accurate scheme, typically leaving the post-bounce matter less bound and artificially more “explodable.” In fact, for our 25-M⊙ progenitor, the ray-by-ray+ model explodes, while the corresponding multi-D transport model does not. Therefore, in two dimensions the combination of ray-by-ray+ with the axial sloshing hydrodynamics that is a feature of 2D supernova dynamics can result in quantitatively, and perhaps qualitatively, incorrect results.« less

  2. Should One Use the Ray-by-Ray Approximation in Core-collapse Supernova Simulations?

    NASA Astrophysics Data System (ADS)

    Skinner, M. Aaron; Burrows, Adam; Dolence, Joshua C.

    2016-11-01

    We perform the first self-consistent, time-dependent, multi-group calculations in two dimensions (2D) to address the consequences of using the ray-by-ray+ transport simplification in core-collapse supernova simulations. Such a dimensional reduction is employed by many researchers to facilitate their resource-intensive calculations. Our new code (Fornax) implements multi-D transport, and can, by zeroing out transverse flux terms, emulate the ray-by-ray+ scheme. Using the same microphysics, initial models, resolution, and code, we compare the results of simulating 12, 15, 20, and 25 M ⊙ progenitor models using these two transport methods. Our findings call into question the wisdom of the pervasive use of the ray-by-ray+ approach. Employing it leads to maximum post-bounce/pre-explosion shock radii that are almost universally larger by tens of kilometers than those derived using the more accurate scheme, typically leaving the post-bounce matter less bound and artificially more “explodable.” In fact, for our 25 M ⊙ progenitor, the ray-by-ray+ model explodes, while the corresponding multi-D transport model does not. Therefore, in two dimensions, the combination of ray-by-ray+ with the axial sloshing hydrodynamics that is a feature of 2D supernova dynamics can result in quantitatively, and perhaps qualitatively, incorrect results.

  3. r-Process nucleosynthesis from three-dimensional jet-driven core-collapse supernovae with magnetic misalignments

    NASA Astrophysics Data System (ADS)

    Halevi, Goni; Mösta, Philipp

    2018-06-01

    We investigate r-process nucleosynthesis in three-dimensional general relativistic magnetohydrodynamic simulations of jet-driven supernovae resulting from rapidly rotating, strongly magnetized core-collapse. We explore the effect of misaligning the pre-collapse magnetic field with respect to the rotation axis by performing four simulations: one aligned model and models with 15°, 30°, and 45° misalignments. The simulations we present employ a microphysical finite-temperature equation of state and a leakage scheme that captures the overall energetics and lepton number exchange due to post-bounce neutrino emission and absorption. We track the thermodynamic properties of the ejected material with Lagrangian tracer particles and analyse its composition with the nuclear reaction network SKYNET. By using different neutrino luminosities in post-processing the tracer data with SKYNET, we constrain the impact of uncertainties in neutrino luminosities. We find that, for the aligned model considered here, the use of an approximate leakage scheme results in neutrino luminosity uncertainties corresponding to a factor of 100-1000 uncertainty in the abundance of third peak r-process elements. Our results show that for misalignments of 30° or less, r-process elements are robustly produced as long as neutrino luminosities are reasonably low (≲ 5 × 1052 erg s-1). For a more extreme misalignment of 45°, we find the production of r-process elements beyond the second peak significantly reduced. We conclude that robust r-process nucleosynthesis in magnetorotational supernovae requires a progenitor stellar core with a large poloidal magnetic field component that is at least moderately (within ˜30°) aligned with the rotation axis.

  4. A low-energy core-collapse supernova without a hydrogen envelope.

    PubMed

    Valenti, S; Pastorello, A; Cappellaro, E; Benetti, S; Mazzali, P A; Manteca, J; Taubenberger, S; Elias-Rosa, N; Ferrando, R; Harutyunyan, A; Hentunen, V P; Nissinen, M; Pian, E; Turatto, M; Zampieri, L; Smartt, S J

    2009-06-04

    The final fate of massive stars depends on many factors. Theory suggests that some with initial masses greater than 25 to 30 solar masses end up as Wolf-Rayet stars, which are deficient in hydrogen in their outer layers because of mass loss through strong stellar winds. The most massive of these stars have cores which may form a black hole and theory predicts that the resulting explosion of some of them produces ejecta of low kinetic energy, a faint optical luminosity and a small mass fraction of radioactive nickel. An alternative origin for low-energy supernovae is the collapse of the oxygen-neon core of a star of 7-9 solar masses. No weak, hydrogen-deficient, core-collapse supernovae have hitherto been seen. Here we report that SN 2008ha is a faint hydrogen-poor supernova. We propose that other similar events have been observed but have been misclassified as peculiar thermonuclear supernovae (sometimes labelled SN 2002cx-like events). This discovery could link these faint supernovae to some long-duration gamma-ray bursts, because extremely faint, hydrogen-stripped core-collapse supernovae have been proposed to produce such long gamma-ray bursts, the afterglows of which do not show evidence of associated supernovae.

  5. Light-curve and spectral properties of ultrastripped core-collapse supernovae leading to binary neutron stars

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Mazzali, Paolo A.; Tominaga, Nozomu; Hachinger, Stephan; Blinnikov, Sergei I.; Tauris, Thomas M.; Takahashi, Koh; Tanaka, Masaomi; Langer, Norbert; Podsiadlowski, Philipp

    2017-04-01

    We investigate light-curve and spectral properties of ultrastripped core-collapse supernovae. Ultrastripped supernovae are the explosions of heavily stripped massive stars that lost their envelopes via binary interactions with a compact companion star. They eject only ˜0.1 M⊙ and may be the main way to form double neutron-star systems that eventually merge emitting strong gravitational waves. We follow the evolution of an ultrastripped supernova progenitor until iron core collapse and perform explosive nucleosynthesis calculations. We then synthesize light curves and spectra of ultrastripped supernovae using the nucleosynthesis results and present their expected properties. Ultrastripped supernovae synthesize ˜0.01 M⊙ of radioactive 56Ni, and their typical peak luminosity is around 1042 erg s-1 or -16 mag. Their typical rise time is 5-10 d. Comparing synthesized and observed spectra, we find that SN 2005ek, some of the so-called calcium-rich gap transients, and SN 2010X may be related to ultrastripped supernovae. If these supernovae are actually ultrastripped supernovae, their event rate is expected to be about 1 per cent of core-collapse supernovae. Comparing the double neutron-star merger rate obtained by future gravitational-wave observations and the ultrastripped supernova rate obtained by optical transient surveys identified with our synthesized light-curve and spectral models, we will be able to judge whether ultrastripped supernovae are actually a major contributor to the binary neutron-star population and provide constraints on binary stellar evolution.

  6. On relative supernova rates and nucleosynthesis roles

    NASA Technical Reports Server (NTRS)

    Arnett, W. David; Schramm, David N.; Truran, James W.

    1988-01-01

    It is shown that the Ni-56-Fe-56 observed in SN 1987A argues that core collapse supernovae may be responsible for more that 50 percent of the iron in the galaxy. Furthermore it is argued that the time averaged rate of thermonuclear driven Type I supernovae may be at least an order of magnitude lower than the average rate of core collapse supernovae. The present low rate of Type II supernovae (below their time averaged rate of approx. 1/10 yr) is either because the past rate was much higher because many core collapse supernovae are dim like SN 1987A. However, even in this latter case they are only an order of magnitude dimmer that normal Type II's due to the contribution of Ni-56 decay to the light curve.

  7. On the induced gravitational collapse scenario of gamma-ray bursts associated with supernovae

    DOE PAGES

    Becerra, L.; Bianco, C. L.; Fryer, C. L.; ...

    2016-12-10

    Following the induced gravitational collapse (IGC) paradigm of gamma-ray bursts (GRBs) associated with type Ib/c supernovae, we present numerical simulations of the explosion of a carbon–oxygen (CO) core in a binary system with a neutron-star (NS) companion. The supernova ejecta trigger a hypercritical accretion process onto the NS thanks to a copious neutrino emission and the trapping of photons within the accretion flow. We show that temperatures of 1–10 MeV develop near the NS surface, hence electron–positron annihilation into neutrinos becomes the main cooling channel leading to accretion rates of 10–9–more » $${10}^{-1}\\,{M}_{\\odot }$$ s–1 and neutrino luminosities of 10 43–10 52 erg s –1 (the shorter the orbital period the higher the accretion rate). We estimate the maximum orbital period, $${P}_{\\max },$$ as a function of the NS initial mass, up to which the NS companion can reach by hypercritical accretion the critical mass for gravitational collapse leading to black hole formation. We then estimate the effects of the accreting and orbiting NS companion onto a novel geometry of the supernova ejecta density profile. We present the results of a $$1.4\\times {10}^{7}$$ particle simulation which show that the NS induces accentuated asymmetries in the ejecta density around the orbital plane. We elaborate on the observables associated with the above features of the IGC process. We apply this framework to specific GRBs: we find that X-ray flashes (XRFs) and binary-driven hypernovae are produced in binaries with $$P\\gt {P}_{\\max }$$ and $$P\\lt {P}_{\\max },$$ respectively. As a result, we analyze in detail the case of XRF 060218.« less

  8. On the Induced Gravitational Collapse Scenario of Gamma-ray Bursts Associated with Supernovae

    NASA Astrophysics Data System (ADS)

    Becerra, L.; Bianco, C. L.; Fryer, C. L.; Rueda, J. A.; Ruffini, R.

    2016-12-01

    Following the induced gravitational collapse (IGC) paradigm of gamma-ray bursts (GRBs) associated with type Ib/c supernovae, we present numerical simulations of the explosion of a carbon-oxygen (CO) core in a binary system with a neutron-star (NS) companion. The supernova ejecta trigger a hypercritical accretion process onto the NS thanks to a copious neutrino emission and the trapping of photons within the accretion flow. We show that temperatures of 1-10 MeV develop near the NS surface, hence electron-positron annihilation into neutrinos becomes the main cooling channel leading to accretion rates of 10-9-{10}-1 {M}⊙ s-1 and neutrino luminosities of 1043-1052 erg s-1 (the shorter the orbital period the higher the accretion rate). We estimate the maximum orbital period, {P}\\max , as a function of the NS initial mass, up to which the NS companion can reach by hypercritical accretion the critical mass for gravitational collapse leading to black hole formation. We then estimate the effects of the accreting and orbiting NS companion onto a novel geometry of the supernova ejecta density profile. We present the results of a 1.4× {10}7 particle simulation which show that the NS induces accentuated asymmetries in the ejecta density around the orbital plane. We elaborate on the observables associated with the above features of the IGC process. We apply this framework to specific GRBs: we find that X-ray flashes (XRFs) and binary-driven hypernovae are produced in binaries with P\\gt {P}\\max and P\\lt {P}\\max , respectively. We analyze in detail the case of XRF 060218.

  9. Studying Supernovae under the Current Paradigm

    DOE PAGES

    Fryer, Chris L.

    2016-10-27

    Abstract The convection-enhanced paradigm behind core-collapse supernovae (SNe) invokes a multi-physics model where convection above the proto-neutron star is able to convert the energy released in the collapse to produce the violent explosions observed as SNe. Over the past decade, the evidence in support of this engine has grown, including constraints placed by SN neutrinos, energies, progenitors and remnants. Although considerable theoretical work remains to utilize this data, our understanding of normal SNe is advancing. To achieve a deeper level of understanding, we must find ways to compare detailed simulations with the increasing set of observational data. Here we reviewmore » the current constraints and how we can apply our current understanding to broaden our understanding of these powerful engines.« less

  10. Studying Supernovae under the Current Paradigm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryer, Chris L.

    Abstract The convection-enhanced paradigm behind core-collapse supernovae (SNe) invokes a multi-physics model where convection above the proto-neutron star is able to convert the energy released in the collapse to produce the violent explosions observed as SNe. Over the past decade, the evidence in support of this engine has grown, including constraints placed by SN neutrinos, energies, progenitors and remnants. Although considerable theoretical work remains to utilize this data, our understanding of normal SNe is advancing. To achieve a deeper level of understanding, we must find ways to compare detailed simulations with the increasing set of observational data. Here we reviewmore » the current constraints and how we can apply our current understanding to broaden our understanding of these powerful engines.« less

  11. First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corpuz, A.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Loew, K.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, K. N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Santamaria, L.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-11-01

    We present results from a search for gravitational-wave bursts coincident with two core-collapse supernovae observed optically in 2007 and 2011. We employ data from the Laser Interferometer Gravitational-wave Observatory (LIGO), the Virgo gravitational-wave observatory, and the GEO 600 gravitational-wave observatory. The targeted core-collapse supernovae were selected on the basis of (1) proximity (within approximately 15 Mpc), (2) tightness of observational constraints on the time of core collapse that defines the gravitational-wave search window, and (3) coincident operation of at least two interferometers at the time of core collapse. We find no plausible gravitational-wave candidates. We present the probability of detecting signals from both astrophysically well-motivated and more speculative gravitational-wave emission mechanisms as a function of distance from Earth, and discuss the implications for the detection of gravitational waves from core-collapse supernovae by the upgraded Advanced LIGO and Virgo detectors.

  12. How Turbulence Enables Core-collapse Supernova Explosions

    NASA Astrophysics Data System (ADS)

    Mabanta, Quintin A.; Murphy, Jeremiah W.

    2018-03-01

    An important result in core-collapse supernova (CCSN) theory is that spherically symmetric, one-dimensional simulations routinely fail to explode, yet multidimensional simulations often explode. Numerical investigations suggest that turbulence eases the condition for explosion, but how it does it is not fully understood. We develop a turbulence model for neutrino-driven convection, and show that this turbulence model reduces the condition for explosions by about 30%, in concordance with multidimensional simulations. In addition, we identify which turbulent terms enable explosions. Contrary to prior suggestions, turbulent ram pressure is not the dominant factor in reducing the condition for explosion. Instead, there are many contributing factors, with ram pressure being only one of them, but the dominant factor is turbulent dissipation (TD). Primarily, TD provides extra heating, adding significant thermal pressure and reducing the condition for explosion. The source of this TD power is turbulent kinetic energy, which ultimately derives its energy from the higher potential of an unstable convective profile. Investigating a turbulence model in conjunction with an explosion condition enables insight that is difficult to glean from merely analyzing complex multidimensional simulations. An explosion condition presents a clear diagnostic to explain why stars explode, and the turbulence model allows us to explore how turbulence enables explosion. Although we find that TD is a significant contributor to successful supernova explosions, it is important to note that this work is to some extent qualitative. Therefore, we suggest ways to further verify and validate our predictions with multidimensional simulations.

  13. Angular momentum role in the hypercritical accretion of binary-driven hypernovae

    DOE PAGES

    Becerra, L.; Cipolletta, F.; Fryer, Chris L.; ...

    2015-10-12

    Here, the induced gravitational collapse paradigm explains a class of energetic,more » $${E}_{{\\rm{iso}}}\\gtrsim {10}^{52}$$ erg, long-duration gamma-ray bursts (GRBs) associated with Ic supernovae, recently named binary-driven hypernovae. The progenitor is a tight binary system formed of a carbon–oxygen (CO) core and a neutron star (NS) companion. The supernova ejecta of the exploding CO core trigger a hypercritical accretion process onto the NS, which reaches the critical mass in a few seconds, and gravitationally collapses to a black hole, emitting a GRB. In our previous simulations of this process, we adopted a spherically symmetric approximation to compute the features of the hypercritical accretion process. We here present the first estimates of the angular momentum transported by the supernova ejecta, $${L}_{{\\rm{acc}}},$$ and perform numerical simulations of the angular momentum transfer to the NS during the hyperaccretion process in full general relativity. We show that the NS (1) reaches either the mass-shedding limit or the secular axisymmetric instability in a few seconds depending on its initial mass, (2) reaches a maximum dimensionless angular momentum value, $${[{cJ}/({{GM}}^{2})]}_{{\\rm{max}}}\\approx 0.7$$, and (3) can support less angular momentum than the one transported by supernova ejecta, $${L}_{{\\rm{acc}}}\\gt {J}_{{\\rm{NS,max}}},$$ hence there is an angular momentum excess that necessarily leads to jetted emission.« less

  14. Angular momentum role in the hypercritical accretion of binary-driven hypernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becerra, L.; Cipolletta, F.; Fryer, Chris L.

    Here, the induced gravitational collapse paradigm explains a class of energetic,more » $${E}_{{\\rm{iso}}}\\gtrsim {10}^{52}$$ erg, long-duration gamma-ray bursts (GRBs) associated with Ic supernovae, recently named binary-driven hypernovae. The progenitor is a tight binary system formed of a carbon–oxygen (CO) core and a neutron star (NS) companion. The supernova ejecta of the exploding CO core trigger a hypercritical accretion process onto the NS, which reaches the critical mass in a few seconds, and gravitationally collapses to a black hole, emitting a GRB. In our previous simulations of this process, we adopted a spherically symmetric approximation to compute the features of the hypercritical accretion process. We here present the first estimates of the angular momentum transported by the supernova ejecta, $${L}_{{\\rm{acc}}},$$ and perform numerical simulations of the angular momentum transfer to the NS during the hyperaccretion process in full general relativity. We show that the NS (1) reaches either the mass-shedding limit or the secular axisymmetric instability in a few seconds depending on its initial mass, (2) reaches a maximum dimensionless angular momentum value, $${[{cJ}/({{GM}}^{2})]}_{{\\rm{max}}}\\approx 0.7$$, and (3) can support less angular momentum than the one transported by supernova ejecta, $${L}_{{\\rm{acc}}}\\gt {J}_{{\\rm{NS,max}}},$$ hence there is an angular momentum excess that necessarily leads to jetted emission.« less

  15. Supernova explosions in magnetized, primordial dark matter haloes

    NASA Astrophysics Data System (ADS)

    Seifried, D.; Banerjee, R.; Schleicher, D.

    2014-05-01

    The first supernova explosions are potentially relevant sources for the production of the first large-scale magnetic fields. For this reason, we present a set of high-resolution simulations studying the effect of supernova explosions on magnetized, primordial haloes. We focus on the evolution of an initially small-scale magnetic field formed during the collapse of the halo. We vary the degree of magnetization, the halo mass, and the amount of explosion energy in order to account for expected variations as well as to infer systematical dependences of the results on initial conditions. Our simulations suggest that core collapse supernovae with an explosion energy of 1051 erg and more violent pair instability supernovae with 1053 erg are able to disrupt haloes with masses up to about 106 and 107 M⊙, respectively. The peak of the magnetic field spectra shows a continuous shift towards smaller k-values, i.e. larger length scales, over time reaching values as low as k = 4. On small scales, the magnetic energy decreases at the cost of the energy on large scales resulting in a well-ordered magnetic field with a strength up to ˜10-8 G depending on the initial conditions. The coherence length of the magnetic field inferred from the spectra reaches values up to 250 pc in agreement with those obtained from autocorrelation functions. We find the coherence length to be as large as 50 per cent of the radius of the supernova bubble. Extrapolating this relation to later stages, we suggest that significantly strong magnetic fields with coherence lengths as large as 1.5 kpc could be created. We discuss possible implications of our results on processes like recollapse of the halo, first galaxy formation, and the magnetization of the intergalactic medium.

  16. Core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Mueller, Bernhard

    2017-01-01

    Core-collapse supernovae, the deaths of massive stars, are among the most spectacular phenomena in astrophysics: Not only can supernovae outshine their host galaxy for weeks; they are also laboratories for the behavior of matter at supranuclear densities, and one of the few environments where collective neutrino effects can become important. Moreover, supernovae play a central role in the cosmic matter cycle, e.g., as the dominant producers of oxygen in the Universe. Yet the mechanism by which massive stars explode has eluded us for decades, partly because classical astronomical observations across the electromagnetic spectrum cannot directly probe the supernovae ``engine''. Numerical simulations are thus our primary tool for understanding the explosion mechanism(s) of massive stars. Rigorous modeling needs to take a host of important physical ingredients into account, such as the emission and partial reabsorption of neutrinos from the young proto-neutron star, multi-dimensional fluid motions, general relativistic gravity, the equation of state of nuclear matter, and magnetic fields. This is a challenging multi-physics problem that has not been fully solved yet. Nonetheless, as I shall argue in this talk, recent first-principle 3D simulations have gone a long way towards demonstrating the viability of the most popular explosion scenario, the ``neutrino-driven mechanism''. Focusing on successful explosion models of the MPA-QUB-Monash collaboration, I will discuss possible requirements for robust explosions across a wide range of progenitors, such as accurate neutrino opacities, stellar rotation, and seed asymmetries from convective shell burning. With the advent of successful explosion models, supernova theory can also be confronted with astronomical observations. I will show that recent 3D models come closer to matching observed explosion parameters (explosion energies, neutron star kicks) than older 2D models, although there are still discrepancies. This work has been supported by the ARC (grant DE150101145), NSF (PHY-1430152, JINA-CEE) and the supercomputing centers/initiatives NCI, Pawsey, and DiRAC.

  17. Detectability and Uncertainties of the Supernova Relic Neutrino Background

    NASA Astrophysics Data System (ADS)

    Nakazato, Ken'ichiro; Mochida, Eri; Niino, Yuu; Suzuki, Hideyuki

    The spectrum of the supernova relic neutrino (SRN) background from past stellar core collapses is calculated and its detectability at SK-Gd (Super-Kamiokande experiment with gadolinium-loaded water) is investigated. Several uncertainties on the flux of SRNs are considered. The core collapse rate at each redshift depends on the cosmic star formation rate, initial mass function and mass range of progenitors that end with a core collapse. The shock revival time is introduced as a parameter that should depend on the still unknown explosion mechanism of core collapse supernovae. Furthermore, since the neutrino luminosity of black-hole-forming failed supernovae is higher than that of ordinary supernovae, their contribution to SRNs is quantitatively estimated. Assuming the mass and metallicity ranges of their progenitors, the redshift dependence of the black hole formation rate is considered on the basis of the metallicity evolution of galaxies. As a result, it is found that the expected event rate of SRNs is comparable with other backgrounds at SK-Gd. Therefore, the required observation time to detect SRNs at SK-Gd depends strongly on the core collapse rate and it is 10-300 years.

  18. See Change: Classifying single observation transients from HST using SNCosmo

    NASA Astrophysics Data System (ADS)

    Sofiatti Nunes, Caroline; Perlmutter, Saul; Nordin, Jakob; Rubin, David; Lidman, Chris; Deustua, Susana E.; Fruchter, Andrew S.; Aldering, Greg Scott; Brodwin, Mark; Cunha, Carlos E.; Eisenhardt, Peter R.; Gonzalez, Anthony H.; Jee, Myungkook J.; Hildebrandt, Hendrik; Hoekstra, Henk; Santos, Joana; Stanford, S. Adam; Stern, Dana R.; Fassbender, Rene; Richard, Johan; Rosati, Piero; Wechsler, Risa H.; Muzzin, Adam; Willis, Jon; Boehringer, Hans; Gladders, Michael; Goobar, Ariel; Amanullah, Rahman; Hook, Isobel; Huterer, Dragan; Huang, Jiasheng; Kim, Alex G.; Kowalski, Marek; Linder, Eric; Pain, Reynald; Saunders, Clare; Suzuki, Nao; Barbary, Kyle H.; Rykoff, Eli S.; Meyers, Joshua; Spadafora, Anthony L.; Hayden, Brian; Wilson, Gillian; Rozo, Eduardo; Hilton, Matt; Dixon, Samantha; Yen, Mike

    2016-01-01

    The Supernova Cosmology Project (SCP) is executing "See Change", a large HST program to look for possible variation in dark energy using supernovae at z>1. As part of the survey, we often must make time-critical follow-up decisions based on multicolor detection at a single epoch. We demonstrate the use of the SNCosmo software package to obtain simulated fluxes in the HST filters for type Ia and core-collapse supernovae at various redshifts. These simulations allow us to compare photometric data from HST with the distribution of the simulated SNe through methods such as Random Forest, a learning method for classification, and Gaussian Kernel Estimation. The results help us make informed decisions about triggered follow up using HST and ground based observatories to provide time-critical information needed about transients. Examples of this technique applied in the context of See Change are shown.

  19. Three dimensional core-collapse supernova simulated using a 15 M ⊙ progenitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentz, Eric J.; Bruenn, Stephen W.; Hix, W. Raphael

    We have performed ab initio neutrino radiation hydrodynamics simulations in three and two spatial dimensions (3D and 2D) of core-collapse supernovae from the same 15 M⊙ progenitor through 440 ms after core bounce. Both 3D and 2D models achieve explosions; however, the onset of explosion (shock revival) is delayed by ~100 ms in 3D relative to the 2D counterpart and the growth of the diagnostic explosion energy is slower. This is consistent with previously reported 3D simulations utilizing iron-core progenitors with dense mantles. In the ~100 ms before the onset of explosion, diagnostics of neutrino heating and turbulent kinetic energymore » favor earlier explosion in 2D. During the delay, the angular scale of convective plumes reaching the shock surface grows and explosion in 3D is ultimately lead by a single, large-angle plume, giving the expanding shock a directional orientation not dissimilar from those imposed by axial symmetry in 2D simulations. Finally, we posit that shock revival and explosion in the 3D simulation may be delayed until sufficiently large plumes form, whereas such plumes form more rapidly in 2D, permitting earlier explosions.« less

  20. Three dimensional core-collapse supernova simulated using a 15 M ⊙ progenitor

    DOE PAGES

    Lentz, Eric J.; Bruenn, Stephen W.; Hix, W. Raphael; ...

    2015-07-10

    We have performed ab initio neutrino radiation hydrodynamics simulations in three and two spatial dimensions (3D and 2D) of core-collapse supernovae from the same 15 M⊙ progenitor through 440 ms after core bounce. Both 3D and 2D models achieve explosions; however, the onset of explosion (shock revival) is delayed by ~100 ms in 3D relative to the 2D counterpart and the growth of the diagnostic explosion energy is slower. This is consistent with previously reported 3D simulations utilizing iron-core progenitors with dense mantles. In the ~100 ms before the onset of explosion, diagnostics of neutrino heating and turbulent kinetic energymore » favor earlier explosion in 2D. During the delay, the angular scale of convective plumes reaching the shock surface grows and explosion in 3D is ultimately lead by a single, large-angle plume, giving the expanding shock a directional orientation not dissimilar from those imposed by axial symmetry in 2D simulations. Finally, we posit that shock revival and explosion in the 3D simulation may be delayed until sufficiently large plumes form, whereas such plumes form more rapidly in 2D, permitting earlier explosions.« less

  1. A Physical Model for Mass Ejection in Failed Supernovae

    NASA Astrophysics Data System (ADS)

    Coughlin, Eric Robert; Quataert, Eliot; Fernandez, Rodrigo; Kasen, Daniel

    2018-01-01

    During the core collapse of a massive star, the formation of the protoneutron star is accompanied by the emission of a significant amount of mass-energy (a few tenths of a Solar mass) in the form of neutrinos. This mass-energy loss generates an outward-propagating pressure wave that steepens into a shock near the stellar surface, potentially powering a weak transient associated with an otherwise-failed supernova -- where the shock associated with the original core collapse cannot unbind the envelope in a successful explosion. We provide both rough estimates of the energy contained in the shock that powers the transient and a general formalism for analyzing the propagation and steepening of the pressure wave, and we apply this formalism to polytropic stellar models. We compare our results to simulations, and we find excellent agreement in both the early evolution of the pressure wave and in the energy contained in the shock. Our estimates provide important constraints on the observational implications of failed supernovae.

  2. FINDING THE FIRST COSMIC EXPLOSIONS. II. CORE-COLLAPSE SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whalen, Daniel J.; Joggerst, Candace C.; Fryer, Chris L.

    2013-05-01

    Understanding the properties of Population III (Pop III) stars is prerequisite to elucidating the nature of primeval galaxies, the chemical enrichment and reionization of the early intergalactic medium, and the origin of supermassive black holes. While the primordial initial mass function (IMF) remains unknown, recent evidence from numerical simulations and stellar archaeology suggests that some Pop III stars may have had lower masses than previously thought, 15-50 M{sub Sun} in addition to 50-500 M{sub Sun }. The detection of Pop III supernovae (SNe) by JWST, WFIRST, or the TMT could directly probe the primordial IMF for the first time. Wemore » present numerical simulations of 15-40 M{sub Sun} Pop III core-collapse SNe performed with the Los Alamos radiation hydrodynamics code RAGE. We find that they will be visible in the earliest galaxies out to z {approx} 10-15, tracing their star formation rates and in some cases revealing their positions on the sky. Since the central engines of Pop III and solar-metallicity core-collapse SNe are quite similar, future detection of any Type II SNe by next-generation NIR instruments will in general be limited to this epoch.« less

  3. Asymmetric core collapse of rapidly rotating massive star

    NASA Astrophysics Data System (ADS)

    Gilkis, Avishai

    2018-02-01

    Non-axisymmetric features are found in the core collapse of a rapidly rotating massive star, which might have important implications for magnetic field amplification and production of a bipolar outflow that can explode the star, as well as for r-process nucleosynthesis and natal kicks. The collapse of an evolved rapidly rotating MZAMS = 54 M⊙ star is followed in three-dimensional hydrodynamic simulations using the FLASH code with neutrino leakage. A rotating proto-neutron star (PNS) forms with a non-zero linear velocity. This can contribute to the natal kick of the remnant compact object. The PNS is surrounded by a turbulent medium, where high shearing is likely to amplify magnetic fields, which in turn can drive a bipolar outflow. Neutron-rich material in the PNS vicinity might induce strong r-process nucleosynthesis. The rapidly rotating PNS possesses a rotational energy of E_rot ≳ 10^{52} erg. Magnetar formation proceeding in a similar fashion will be able to deposit a portion of this energy later on in the supernova ejecta through a spin-down mechanism. These processes can be important for rare supernovae generated by rapidly rotating progenitors, even though a complete explosion is not simulated in the present study.

  4. An instability in neutron stars at birth

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Fryxell, Bruce A.

    1992-01-01

    Calculations with a two-dimensional hydrodynamic simulation show that a generic Raleigh-Taylor-like instability occurs in the mantles of nascent neutron stars, that it is possibly violent, and that the standard spherically symmetric models of neutron star birth and supernova explosion may be inadequate. Whether this 'convective' instability is pivotal to the supernova mechanism, pulsar nagnetic fields, or a host of other important issues that attend stellar collapse remains to be seen, but its existence promises to modify all questions concerning this most energetic of astronomical phenomena.

  5. Kepler Beyond Planets: Finding Exploding Stars (Type Ia Supernova from a White Dwarf Stealing Matter)

    NASA Image and Video Library

    2018-03-26

    This frame from an animation shows a gigantic star exploding in a "core collapse" supernova. As atoms fuse inside the star, eventually the star can't support its own weight anymore. Gravity makes the star collapse on itself. Core collapse supernovae are called type Ib, Ic, or II depending on the chemical elements present. Stellar explosions forge and distribute materials that make up the world in which we live, and also hold clues to how fast the universe is expanding. By understanding supernovae, scientists can unlock mysteries that are key to what we are made of and the fate of our universe. But to get the full picture, scientists must observe supernovae from a variety of perspectives, especially in the first moments of the explosion. That's really difficult -- there's no telling when or where a supernova might happen next. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22352

  6. Core-collapse supernovae as supercomputing science: A status report toward six-dimensional simulations with exact Boltzmann neutrino transport in full general relativity

    NASA Astrophysics Data System (ADS)

    Kotake, Kei; Sumiyoshi, Kohsuke; Yamada, Shoichi; Takiwaki, Tomoya; Kuroda, Takami; Suwa, Yudai; Nagakura, Hiroki

    2012-08-01

    This is a status report on our endeavor to reveal the mechanism of core-collapse supernovae (CCSNe) by large-scale numerical simulations. Multi-dimensionality of the supernova engine, general relativistic magnetohydrodynamics, energy and lepton number transport by neutrinos emitted from the forming neutron star, as well as nuclear interactions there, are all believed to play crucial roles in repelling infalling matter and producing energetic explosions. These ingredients are non-linearly coupled with one another in the dynamics of core collapse, bounce, and shock expansion. Serious quantitative studies of CCSNe hence make extensive numerical computations mandatory. Since neutrinos are neither in thermal nor in chemical equilibrium in general, their distributions in the phase space should be computed. This is a six-dimensional (6D) neutrino transport problem and quite a challenge, even for those with access to the most advanced numerical resources such as the "K computer". To tackle this problem, we have embarked on efforts on multiple fronts. In particular, we report in this paper our recent progresses in the treatment of multidimensional (multi-D) radiation hydrodynamics. We are currently proceeding on two different paths to the ultimate goal. In one approach, we employ an approximate but highly efficient scheme for neutrino transport and treat 3D hydrodynamics and/or general relativity rigorously; some neutrino-driven explosions will be presented and quantitative comparisons will be made between 2D and 3D models. In the second approach, on the other hand, exact, but so far Newtonian, Boltzmann equations are solved in two and three spatial dimensions; we will show some example test simulations. We will also address the perspectives of exascale computations on the next generation supercomputers.

  7. SHOULD ONE USE THE RAY-BY-RAY APPROXIMATION IN CORE-COLLAPSE SUPERNOVA SIMULATIONS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, M. Aaron; Burrows, Adam; Dolence, Joshua C., E-mail: burrows@astro.princeton.edu, E-mail: askinner@astro.princeton.edu, E-mail: jdolence@lanl.gov

    2016-11-01

    We perform the first self-consistent, time-dependent, multi-group calculations in two dimensions (2D) to address the consequences of using the ray-by-ray+ transport simplification in core-collapse supernova simulations. Such a dimensional reduction is employed by many researchers to facilitate their resource-intensive calculations. Our new code (Fornax) implements multi-D transport, and can, by zeroing out transverse flux terms, emulate the ray-by-ray+ scheme. Using the same microphysics, initial models, resolution, and code, we compare the results of simulating 12, 15, 20, and 25 M {sub ⊙} progenitor models using these two transport methods. Our findings call into question the wisdom of the pervasive usemore » of the ray-by-ray+ approach. Employing it leads to maximum post-bounce/pre-explosion shock radii that are almost universally larger by tens of kilometers than those derived using the more accurate scheme, typically leaving the post-bounce matter less bound and artificially more “explodable.” In fact, for our 25 M {sub ⊙} progenitor, the ray-by-ray+ model explodes, while the corresponding multi-D transport model does not. Therefore, in two dimensions, the combination of ray-by-ray+ with the axial sloshing hydrodynamics that is a feature of 2D supernova dynamics can result in quantitatively, and perhaps qualitatively, incorrect results.« less

  8. Numeric simulation of relativistic stellar core collapse and the formation of Reissner-Nordstroem black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghezzi, Cristian R.; Letelier, Patricio S.

    2007-01-15

    The time evolution of a set of 22M{sub {center_dot}} unstable charged stars that collapse is computed integrating the Einstein-Maxwell equations. The model simulates the collapse of a spherical star that had exhausted its nuclear fuel and has or acquires a net electric charge in its core while collapsing. When the charge-to-mass ratio is Q/{radical}(G)M{>=}1, the star does not collapse but spreads. On the other hand, a different physical behavior is observed with a charge-to-mass ratio of 1>Q/{radical}(G)M>0.1. In this case, the collapsing matter forms a bubble enclosing a lower density core. We discuss an immediate astrophysical consequence of these resultsmore » that is a more efficient neutrino trapping during the stellar collapse and an alternative mechanism for powerful supernova explosions. The outer space-time of the star is the Reissner-Nordstroem solution that matches smoothly with our interior numerical solution; thus the collapsing models form Reissner-Nordstroem black holes.« less

  9. Ozone Depletion from Nearby Supernovae

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the 'biologically active' UV flux received at the surface of the Earth, the supernova must occur at approximately or less than 8 parsecs.

  10. Evaluating nuclear physics inputs in core-collapse supernova models

    NASA Astrophysics Data System (ADS)

    Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.

    Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.

  11. A mixed helium-oxygen shell in some core-collapse supernova progenitors

    NASA Astrophysics Data System (ADS)

    Gofman, Roni Anna; Gilkis, Avishai; Soker, Noam

    2018-04-01

    We evolve models of rotating massive stars up to the stage of iron core collapse using the MESA code and find a shell with a mixed composition of primarily helium and oxygen in some cases. In the parameter space of initial masses of 13-40M⊙ and initial rotation velocities of 0-450 kms-1 that we investigate, we find a mixed helium-oxygen (He-O) shell with a significant total He-O mass and with a helium to oxygen mass ratio in the range of 0.5-2 only for a small fraction of the models. While the shell formation due to mixing is instigated by rotation, the pre-collapse rotation rate is not very high. The fraction of models with a shell of He-O composition required for an energetic collapse-induced thermonuclear explosion is small, as is the fraction of models with high specific angular momentum, which can aid the thermonuclear explosion by retarding the collapse. Our results suggest that the collapse-induced thermonuclear explosion mechanism that was revisited recently can account for at most a small fraction of core-collapse supernovae. The presence of such a mixed He-O shell still might have some implications for core-collapse supernovae, such as some nucleosynthesis processes when jets are present, or might result in peculiar sub-luminous core-collapse supernovae.

  12. A mixed helium-oxygen shell in some core-collapse supernova progenitors

    NASA Astrophysics Data System (ADS)

    Gofman, Roni Anna; Gilkis, Avishai; Soker, Noam

    2018-07-01

    We evolve models of rotating massive stars up to the stage of iron core collapse using the MESA code and find a shell with a mixed composition of primarily helium and oxygen in some cases. In the parameter space of initial masses of 13-40 M⊙ and initial rotation velocities of 0-450 km s-1 that we investigate, we find a mixed helium-oxygen (He-O) shell with a significant total He-O mass and with a helium to oxygen mass ratio in the range of 0.5-2 only for a small fraction of the models. While the shell formation due to mixing is instigated by rotation, the pre-collapse rotation rate is not very high. The fraction of models with a shell of He-O composition required for an energetic collapse-induced thermonuclear explosion is small, as is the fraction of models with high specific angular momentum, which can aid the thermonuclear explosion by retarding the collapse. Our results suggest that the collapse-induced thermonuclear explosion mechanism that was revisited recently can account for at most a small fraction of core-collapse supernovae. The presence of such a mixed He-O shell still might have some implications for core-collapse supernovae, such as some nucleosynthesis processes when jets are present, or might result in peculiar sub-luminous core-collapse supernovae.

  13. The locations of cosmic explosions

    NASA Technical Reports Server (NTRS)

    Fruchter, A. S.; Levan, A. J.; Strolger, L.; Vreeswijk, P. M.; Bersier, D.; Burud, I.; Castro-Ceron, J. M.; Consclice, C.; Dahlen, T.; Strolger, L.

    2005-01-01

    When massive stars exhaust their fuel they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. Recently, it has become apparent that stellar collapse can power the even more brilliant relativistic explosions known as long-duration gamma-ray bursts. In some cases, a gamma-ray burst and a supernova have been observed from the same event. One would thus expect that gamma-ray bursts and supernovae should be found in similar environments. Here we show that this expectation is wrong. Using Hubble Space Telescope imaging of the host galaxies of long-duration gamma-ray bursts and core-collapse supernovae, we demonstrate that while the distribution of the supernovae in their hosts traces the blue light of young stars, the gamma-ray bursts are much more concentrated on the very brightest regions of their hosts. Furthermore, the host galaxies of the gamma-ray bursts are significantly fainter and more irregular than the hosts of the supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the very most massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long-duration gamma-ray bursts are relatively rare in galaxies such as our own Milky Way.

  14. A new equation of state for core-collapse supernovae based on realistic nuclear forces and including a full nuclear ensemble

    NASA Astrophysics Data System (ADS)

    Furusawa, S.; Togashi, H.; Nagakura, H.; Sumiyoshi, K.; Yamada, S.; Suzuki, H.; Takano, M.

    2017-09-01

    We have constructed a nuclear equation of state (EOS) that includes a full nuclear ensemble for use in core-collapse supernova simulations. It is based on the EOS for uniform nuclear matter that two of the authors derived recently, applying a variational method to realistic two- and three-body nuclear forces. We have extended the liquid drop model of heavy nuclei, utilizing the mass formula that accounts for the dependences of bulk, surface, Coulomb and shell energies on density and/or temperature. As for light nuclei, we employ a quantum-theoretical mass evaluation, which incorporates the Pauli- and self-energy shifts. In addition to realistic nuclear forces, the inclusion of in-medium effects on the full ensemble of nuclei makes the new EOS one of the most realistic EOSs, which covers a wide range of density, temperature and proton fraction that supernova simulations normally encounter. We make comparisons with the FYSS EOS, which is based on the same formulation for the nuclear ensemble but adopts the relativistic mean field theory with the TM1 parameter set for uniform nuclear matter. The new EOS is softer than the FYSS EOS around and above nuclear saturation densities. We find that neutron-rich nuclei with small mass numbers are more abundant in the new EOS than in the FYSS EOS because of the larger saturation densities and smaller symmetry energy of nuclei in the former. We apply the two EOSs to 1D supernova simulations and find that the new EOS gives lower electron fractions and higher temperatures in the collapse phase owing to the smaller symmetry energy. As a result, the inner core has smaller masses for the new EOS. It is more compact, on the other hand, due to the softness of the new EOS and bounces at higher densities. It turns out that the shock wave generated by core bounce is a bit stronger initially in the simulation with the new EOS. The ensuing outward propagations of the shock wave in the outer core are very similar in the two simulations, which may be an artifact, though, caused by the use of the same tabulated electron capture rates for heavy nuclei ignoring differences in the nuclear composition between the two EOSs in these computations.

  15. The Last Minutes of Oxygen Shell Burning in a Massive Star

    NASA Astrophysics Data System (ADS)

    Müller, Bernhard; Viallet, Maxime; Heger, Alexander; Janka, Hans-Thomas

    2016-12-01

    We present the first 4π-three-dimensional (3D) simulation of the last minutes of oxygen shell burning in an 18 M ⊙ supernova progenitor up to the onset of core collapse. A moving inner boundary is used to accurately model the contraction of the silicon and iron core according to a one-dimensional stellar evolution model with a self-consistent treatment of core deleptonization and nuclear quasi-equilibrium. The simulation covers the full solid angle to allow the emergence of large-scale convective modes. Due to core contraction and the concomitant acceleration of nuclear burning, the convective Mach number increases to ˜0.1 at collapse, and an ℓ = 2 mode emerges shortly before the end of the simulation. Aside from a growth of the oxygen shell from 0.51 M ⊙ to 0.56 M ⊙ due to entrainment from the carbon shell, the convective flow is reasonably well described by mixing-length theory, and the dominant scales are compatible with estimates from linear stability analysis. We deduce that artificial changes in the physics, such as accelerated core contraction, can have precarious consequences for the state of convection at collapse. We argue that scaling laws for the convective velocities and eddy sizes furnish good estimates for the state of shell convection at collapse and develop a simple analytic theory for the impact of convective seed perturbations on shock revival in the ensuing supernova. We predict a reduction of the critical luminosity for explosion by 12%-24% due to seed asphericities for our 3D progenitor model relative to the case without large seed perturbations.

  16. Simulations of Supernova Shock Breakout

    NASA Astrophysics Data System (ADS)

    Frey, Lucille; Fryer, C. L.; Hungerford, A. L.

    2009-01-01

    Massive stars at the end of their lives release huge amounts of energy in supernova explosions which can be detected across cosmological distances. Even if prior observations exist, such distances make supernova progenitors difficult to identify. Very early observations of supernovae give us a rare view of these short-lived stars immediately before core collapse. Several recently observed X-ray and UV bursts associated with supernova have been interpreted as shock breakout observations. When the radiation-dominated shock wave from core collapse approaches the stellar surface, the optical depth of the plasma ahead of the shock decreases until the radiation can escape in a burst. If a dense wind is present, the shock breaks out beyond the stellar surface. Occurring days or weeks before the optical light from radioactive decay peaks, shock breakout radiation can be used to determine the radius of the progenitor star or its recent mass loss history. Whether the durations and spectra of the observed X-ray and UV bursts match those expected for shock breakout is currently being debated. A similar phenomenon would occur when the shockwave interacts with gas shells such as those ejected by luminous blue variable outbursts. Full radiation-hydrodynamics calculations are necessary to reproduce the behavior of the radiation-dominated shock and shock breakout. We use a radiation-hydrodynamics code with adaptive mesh refinement to follow the motion of the shock wave with high resolution. We run a suite of one dimensional simulations using binary and single progenitors with a range of mass loss histories, wind velocities and explosion energies. These simulations will better constrain the properties of the progenitor star and its environment that can be derived from shock breakout observations. This work was funded in part under the auspices of the U.S. Dept. of Energy, and supported by its contract W-7405-ENG-36 to Los Alamos National Laboratory.

  17. Asymmetries in Core-Collapse Supernovae from Maps of Radioactiver 44Ti in Cassiopeia A

    NASA Technical Reports Server (NTRS)

    Grefenstette, B.W.; Harrison, F. A.; Boggs, S. E.; Reynolds, S. P.; Fryer, C. L.; Madsen, K. K.; Wik, Daniel R.; Zoglauer, A.; Ellinger, C. I.; Alexander, D. M.; hide

    2014-01-01

    Asymmetry is required by most numerical simulations of stellar core-collapse explosions, but the form it takes differs significantly among models. The spatial distribution of radioactive 44Ti, synthesized in an exploding star near the boundary between material falling back onto the collapsing core and that ejected into the surroundingmedium1, directly probes the explosion asymmetries. Cassiopeia A is a young2, nearby3, core-collapse4 remnant from which 44Ti emission has previously been detected5-8 but not imaged. Asymmetries in the explosion have been indirectly inferred from a high ratio of observed 44Ti emission to estimated 56Ni emission9, from optical light echoes10, and from jet-like features seen in the X-ray11 and optical12 ejecta. Here we report spatial maps and spectral properties of the 44Ti in Cassiopeia A. This may explain the unexpected lack of correlation between the 44Ti and iron X-ray emission, the latter being visible only in shock-heated material. The observed spatial distribution rules out symmetric explosions even with a high level of convective mixing, as well as highly asymmetric bipolar explosions resulting from a fast-rotating progenitor. Instead, these observations provide strong evidence for the development of low-mode convective instabilities in core-collapse supernovae.

  18. Supernova neutrino detection in LZ

    NASA Astrophysics Data System (ADS)

    Khaitan, D.

    2018-02-01

    In the first 10 seconds of a core-collapse supernova, almost all of its progenitor's gravitational potential, O(1053 ergs), is carried away in the form of neutrinos. These neutrinos, with O(10 MeV) kinetic energy, can interact via coherent elastic neutrino-nucleus scattering (CEνNS) depositing O(1 keV) in detectors. In this work we describe the performances of low-background dark matter detectors, such as LUX-ZEPLIN (LZ), optimized for detecting low-energy depositions, in detecting these neutrino interactions. For instance, a 27 Msolar supernova at 10 kpc is expected to produce ~350 neutrino interactions in the 7-tonne liquid xenon active volume of LZ. Based on the LS220 EoS neutrino flux model for a SN, the Noble Element Simulation Technique (NEST), and predicted CEνNS cross-sections for xenon, to study energy deposition and detection of SN neutrinos in LZ. We simulate the response of the LZ data acquisition system (DAQ) and demonstrate its capability and limitations in handling this interaction rate. We present an overview of the LZ detector, focusing on the benefits of liquid xenon for supernova neutrino detection. We discuss energy deposition and detector response simulations and their results. We present an analysis technique to reconstruct the total number of neutrinos and the time of the supernova core bounce.

  19. Electron-capture supernovae of super-asymptotic giant branch stars and the Crab supernova 1054

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomoto, Ken'ichi; Tominaga, Nozomu; Blinnikov, Sergei I.

    2014-05-02

    An electron-capture supernova (ECSN) is a core-collapse supernova explosion of a super-asymptotic giant branch (SAGB) star with a main-sequence mass M{sub Ms} ∼ 7 - 9.5M{sub ⊙}. The explosion takes place in accordance with core bounce and subsequent neutrino heating and is a unique example successfully produced by first-principle simulations. This allows us to derive a first self-consistent multicolor light curves of a core-collapse supernova. Adopting the explosion properties derived by the first-principle simulation, i.e., the low explosion energy of 1.5 × 10{sup 50} erg and the small {sup 56}Ni mass of 2.5 × 10{sup −3} M{sub ⊙}, we performmore » a multigroup radiation hydrodynamics calculation of ECSNe and present multicolor light curves of ECSNe of SAGB stars with various envelope mass and hydrogen abundance. We demonstrate that a shock breakout has peak luminosity of L ∼ 2 × 10{sup 44} erg s{sup −1} and can evaporate circumstellar dust up to R ∼ 10{sup 17} cm for a case of carbon dust, that plateau luminosity and plateau duration of ECSNe are L ∼ 10{sup 42} erg s{sup −1} and {sup t} ∼ 60 - 100 days, respectively, and that a plateau is followed by a tail with a luminosity drop by ∼ 4 mag. The ECSN shows a bright and short plateau that is as bright as typical Type II plateau supernovae, and a faint tail that might be influenced by spin-down luminosity of a newborn pulsar. Furthermore, the theoretical models are compared with ECSN candidates: SN 1054 and SN 2008S. We find that SN 1054 shares the characteristics of the ECSNe. For SN 2008S, we find that its faint plateau requires a ECSN model with a significantly low explosion energy of E ∼ 10{sup 48} erg.« less

  20. Light element production in the big bang and the synthesis of heavy elements in 3D MHD jets from core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Winteler, Christian

    2014-02-01

    In this dissertation we present the main features of a new nuclear reaction network evolution code. This new code allows nucleosynthesis calculations for large numbers of nuclides. The main results in this dissertation are all obtained using this new code. The strength of standard big bang nucleosynthesis is, that all primordial abundances are determined by only one free parameter, the baryon-to-photon ratio η. We perform self consistent nucleosynthesis calculations for the latest WMAP value η = (6.16±0.15)×10^-10 . We predict primordial light element abundances: D/H = (2.84 ± 0.23)×10^-5, 3He/H = (1.07 ± 0.09)×10^-5, Yp = 0.2490±0.0005 and 7Li/H = (4.57 ± 0.55)×10^-10, in agreement with current observations and other predictions. We investigate the influence of the main production rate on the 6 Li abundance, but find no significant increase of the predicted value, which is known to be orders of magnitude lower than the observed. The r-process is responsible for the formation of about half of the elements heavier than iron in our solar system. This neutron capture process requires explosive environments with large neutron densities. The exact astrophysical site where the r-process occurs has not yet been identified. We explore jets from magnetorotational core collapse supernovae (MHD jets) as possible r-process site. In a parametric study, assuming adiabatic expansion, we find good agreement with solar system abundances for a superposition of components with different electron fraction (Ye ), ranging from Ye = 0.1 to Ye = 0.3. Fission is found to be important only for Ye ≤ 0.17. The first postprocessing calculations with data from 3D MHD core collapse supernova simulations are performed for two different simulations. Calculations are based on two different methods to extract data from the simulation: tracer particles and a two dimensional, mass weighted histogram. Both results yield almost identical results. We find that both simulations can reproduce the global solar r-process abundance pattern. The ejected mass is found to be in agreement with galactic chemical evolution for a rare event rate of one MHD jet every hundredth to thousandth supernova.

  1. How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ke-Jung; Whalen, Daniel J.; Wollenberg, Katharina M. J.

    Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablativemore » flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.« less

  2. How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung; Whalen, Daniel J.; Wollenberg, Katharina M. J.; Glover, Simon C. O.; Klessen, Ralf S.

    2017-08-01

    Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablative flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.

  3. GENASIS: General Astrophysical Simulation System. I. Refinable Mesh and Nonrelativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Cardall, Christian Y.; Budiardja, Reuben D.; Endeve, Eirik; Mezzacappa, Anthony

    2014-02-01

    GenASiS (General Astrophysical Simulation System) is a new code being developed initially and primarily, though by no means exclusively, for the simulation of core-collapse supernovae on the world's leading capability supercomputers. This paper—the first in a series—demonstrates a centrally refined coordinate patch suitable for gravitational collapse and documents methods for compressible nonrelativistic hydrodynamics. We benchmark the hydrodynamics capabilities of GenASiS against many standard test problems; the results illustrate the basic competence of our implementation, demonstrate the strengths and limitations of the HLLC relative to the HLL Riemann solver in a number of interesting cases, and provide preliminary indications of the code's ability to scale and to function with cell-by-cell fixed-mesh refinement.

  4. Large-scale Instability during Gravitational Collapse with Neutrino Transport and a Core-Collapse Supernova

    NASA Astrophysics Data System (ADS)

    Aksenov, A. G.; Chechetkin, V. M.

    2018-04-01

    Most of the energy released in the gravitational collapse of the cores of massive stars is carried away by neutrinos. Neutrinos play a pivotal role in explaining core-collape supernovae. Currently, mathematical models of the gravitational collapse are based on multi-dimensional gas dynamics and thermonuclear reactions, while neutrino transport is considered in a simplified way. Multidimensional gas dynamics is used with neutrino transport in the flux-limited diffusion approximation to study the role of multi-dimensional effects. The possibility of large-scale convection is discussed, which is interesting both for explaining SN II and for setting up observations to register possible high-energy (≳10MeV) neutrinos from the supernova. A new multi-dimensional, multi-temperature gas dynamics method with neutrino transport is presented.

  5. Multi-D Full Boltzmann Neutrino Hydrodynamic Simulations in Core Collapse Supernovae and their detailed comparison with Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Nagakura, Hiroki; Richers, Sherwood; Ott, Christian; Iwakami, Wakana; Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi

    2017-01-01

    We have developed a multi-d radiation-hydrodynamic code which solves first-principles Boltzmann equation for neutrino transport. It is currently applicable specifically for core-collapse supernovae (CCSNe), but we will extend their applicability to further extreme phenomena such as black hole formation and coalescence of double neutron stars. In this meeting, I will discuss about two things; (1) detailed comparison with a Monte-Carlo neutrino transport (2) axisymmetric CCSNe simulations. The project (1) gives us confidence of our code. The Monte-Carlo code has been developed by Caltech group and it is specialized to obtain a steady state. Among CCSNe community, this is the first attempt to compare two different methods for multi-d neutrino transport. I will show the result of these comparison. For the project (2), I particularly focus on the property of neutrino distribution function in the semi-transparent region where only first-principle Boltzmann solver can appropriately handle the neutrino transport. In addition to these analyses, I will also discuss the ``explodability'' by neutrino heating mechanism.

  6. Correlated Signatures of Gravitational-wave and Neutrino Emission in Three-dimensional General-relativistic Core-collapse Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Kuroda, Takami; Kotake, Kei; Hayama, Kazuhiro; Takiwaki, Tomoya

    2017-12-01

    We present results from general-relativistic (GR) three-dimensional (3D) core-collapse simulations with approximate neutrino transport for three nonrotating progenitors (11.2, 15, and 40 M ⊙) using different nuclear equations of state (EOSs). We find that the combination of progenitor’s higher compactness at bounce and the use of softer EOS leads to stronger activity of the standing accretion shock instability (SASI). We confirm previous predications that the SASI produces characteristic time modulations both in neutrino and gravitational-wave (GW) signals. By performing a correlation analysis of the SASI-modulated neutrino and GW signals, we find that the correlation becomes highest when we take into account the time-delay effect due to the advection of material from the neutrino sphere to the proto-neutron star core surface. Our results suggest that the correlation of the neutrino and GW signals, if detected, would provide a new signature of the vigorous SASI activity in the supernova core, which can be hardly seen if neutrino-convection dominates over the SASI.

  7. Equation of State Dependent Dynamics and Multi-messenger Signals from Stellar-mass Black Hole Formation

    NASA Astrophysics Data System (ADS)

    Pan, Kuo-Chuan; Liebendörfer, Matthias; Couch, Sean M.; Thielemann, Friedrich-Karl

    2018-04-01

    We investigate axisymmetric black hole (BH) formation and its gravitational wave (GW) and neutrino signals with self-consistent core-collapse supernova simulations of a non-rotating 40 M ⊙ progenitor star using the isotropic diffusion source approximation for the neutrino transport and a modified gravitational potential for general relativistic effects. We consider four different neutron star (NS) equations of state (EoS): LS220, SFHo, BHBΛϕ, and DD2, and study the impact of the EoS on BH formation dynamics and GW emission. We find that the BH formation time is sensitive to the EoS from 460 to >1300 ms and is delayed in multiple dimensions for ∼100–250 ms due to the finite entropy effects. Depending on the EoS, our simulations show the possibility that shock revival can occur along with the collapse of the proto-neutron star (PNS) to a BH. The gravitational waveforms contain four major features that are similar to previous studies but show extreme values: (1) a low-frequency signal (∼300–500 Hz) from core-bounce and prompt convection, (2) a strong signal from the PNS g-mode oscillation among other features, (3) a high-frequency signal from the PNS inner-core convection, and (4) signals from the standing accretion shock instability and convection. The peak frequency at the onset of BH formation reaches to ∼2.3 kHz. The characteristic amplitude of a 10 kpc object at peak frequency is detectable but close to the noise threshold of the Advanced LIGO and KAGRA, suggesting that the next-generation GW detector will need to improve the sensitivity at the kHz domain to better observe stellar-mass BH formation from core-collapse supernovae or failed supernovae.

  8. Robust measurement of supernova ν e spectra with future neutrino detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikrant, Alex; Laha, Ranjan; Horiuchi, Shunsaku

    Measuring precise all-flavor neutrino information from a supernova is crucial for understanding the core-collapse process as well as neutrino properties. We apply a chi-squared analysis for different detector setups to explore determination of ν e spectral parameters. Using a long-term two-dimensional core-collapse simulation with three time-varying spectral parameters, we generate mock data to examine the capabilities of the current Super-Kamiokande detector and compare the relative improvements that gadolinium, Hyper-Kamiokande, and DUNE would have. We show that in a realistic three spectral parameter framework, the addition of gadolinium to Super-Kamiokande allows for a qualitative improvement in νe determination. Efficient neutron taggingmore » will allow Hyper-Kamiokande to constrain spectral information more strongly in both the accretion and cooling phases. Overall, significant improvements will be made by Hyper-Kamiokande and DUNE, allowing for much more precise determination of ν e spectral parameters.« less

  9. Robust measurement of supernova ν e spectra with future neutrino detectors

    DOE PAGES

    Nikrant, Alex; Laha, Ranjan; Horiuchi, Shunsaku

    2018-01-25

    Measuring precise all-flavor neutrino information from a supernova is crucial for understanding the core-collapse process as well as neutrino properties. We apply a chi-squared analysis for different detector setups to explore determination of ν e spectral parameters. Using a long-term two-dimensional core-collapse simulation with three time-varying spectral parameters, we generate mock data to examine the capabilities of the current Super-Kamiokande detector and compare the relative improvements that gadolinium, Hyper-Kamiokande, and DUNE would have. We show that in a realistic three spectral parameter framework, the addition of gadolinium to Super-Kamiokande allows for a qualitative improvement in νe determination. Efficient neutron taggingmore » will allow Hyper-Kamiokande to constrain spectral information more strongly in both the accretion and cooling phases. Overall, significant improvements will be made by Hyper-Kamiokande and DUNE, allowing for much more precise determination of ν e spectral parameters.« less

  10. THE LAST MINUTES OF OXYGEN SHELL BURNING IN A MASSIVE STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, Bernhard; Viallet, Maxime; Janka, Hans-Thomas

    We present the first  4 π– three-dimensional (3D) simulation of the last minutes of oxygen shell burning in an 18 M {sub ⊙} supernova progenitor up to the onset of core collapse. A moving inner boundary is used to accurately model the contraction of the silicon and iron core according to a one-dimensional stellar evolution model with a self-consistent treatment of core deleptonization and nuclear quasi-equilibrium. The simulation covers the full solid angle to allow the emergence of large-scale convective modes. Due to core contraction and the concomitant acceleration of nuclear burning, the convective Mach number increases to ∼0.1 at collapse,more » and an ℓ  = 2 mode emerges shortly before the end of the simulation. Aside from a growth of the oxygen shell from 0.51 M {sub ⊙} to 0.56 M {sub ⊙} due to entrainment from the carbon shell, the convective flow is reasonably well described by mixing-length theory, and the dominant scales are compatible with estimates from linear stability analysis. We deduce that artificial changes in the physics, such as accelerated core contraction, can have precarious consequences for the state of convection at collapse. We argue that scaling laws for the convective velocities and eddy sizes furnish good estimates for the state of shell convection at collapse and develop a simple analytic theory for the impact of convective seed perturbations on shock revival in the ensuing supernova. We predict a reduction of the critical luminosity for explosion by 12% – 24% due to seed asphericities for our 3D progenitor model relative to the case without large seed perturbations.« less

  11. A physical model of mass ejection in failed supernovae

    NASA Astrophysics Data System (ADS)

    Coughlin, Eric R.; Quataert, Eliot; Fernández, Rodrigo; Kasen, Daniel

    2018-06-01

    During the core collapse of massive stars, the formation of the proto-neutron star is accompanied by the emission of a significant amount of mass energy (˜0.3 M⊙) in the form of neutrinos. This mass-energy loss generates an outward-propagating pressure wave that steepens into a shock near the stellar surface, potentially powering a weak transient associated with an otherwise-failed supernova. We analytically investigate this mass-loss-induced wave generation and propagation. Heuristic arguments provide an accurate estimate of the amount of energy contained in the outgoing sound pulse. We then develop a general formalism for analysing the response of the star to centrally concentrated mass loss in linear perturbation theory. To build intuition, we apply this formalism to polytropic stellar models, finding qualitative and quantitative agreement with simulations and heuristic arguments. We also apply our results to realistic pre-collapse massive star progenitors (both giants and compact stars). Our analytic results for the sound pulse energy, excitation radius, and steepening in the stellar envelope are in good agreement with full time-dependent hydrodynamic simulations. We show that prior to the sound pulses arrival at the stellar photosphere, the photosphere has already reached velocities ˜ 20-100 per cent of the local sound speed, thus likely modestly decreasing the stellar effective temperature prior to the star disappearing. Our results provide important constraints on the physical properties and observational appearance of failed supernovae.

  12. Creation of a Unified Set of Core-Collapse Supernovae for Training of Photometric Classifiers

    NASA Astrophysics Data System (ADS)

    D'Arcy Kenworthy, William; Scolnic, Daniel; Kessler, Richard

    2017-01-01

    One of the key tasks for future supernova cosmology analyses is to photometrically distinguish type Ia supernovae (SNe) from their core collapse (CC) counterparts. In order to train programs for this purpose, it is necessary to train on a large number of core-collapse SNe. However, there are only a handful used for current programs. We plan to use the large amount of CC lightcurves available on the Open Supernova Catalog (OSC). Since this data is scraped from many different surveys, it is given in a number of photometric systems with different calibration and filters. We therefore created a program to fit smooth lightcurves (as a function of time) to photometric observations of arbitrary SNe. The Supercal method is then used to translate the smoothed lightcurves to a single photometric system. We can thus compile a training set of 782 supernovae, of which 127 are not type Ia. These smoothed lightcurves are also being contributed upstream to the OSC as derived data.

  13. ON THE IMPACT OF THREE DIMENSIONS IN SIMULATIONS OF NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVA EXPLOSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couch, Sean M., E-mail: smc@flash.uchicago.edu

    2013-09-20

    We present one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) hydrodynamical simulations of core-collapse supernovae including a parameterized neutrino heating and cooling scheme in order to investigate the critical core neutrino luminosity (L{sub crit}) required for explosion. In contrast to some previous works, we find that 3D simulations explode later than 2D simulations, and that L{sub crit} at fixed mass accretion rate is somewhat higher in three dimensions than in two dimensions. We find, however, that in two dimensions L{sub crit} increases as the numerical resolution of the simulation increases. In contrast to some previous works, we argue that the averagemore » entropy of the gain region is in fact not a good indicator of explosion but is rather a reflection of the greater mass in the gain region in two dimensions. We compare our simulations to semi-analytic explosion criteria and examine the nature of the convective motions in two dimensions and three dimensions. We discuss the balance between neutrino-driven buoyancy and drag forces. In particular, we show that the drag force will be proportional to a buoyant plume's surface area while the buoyant force is proportional to a plume's volume and, therefore, plumes with greater volume-to-surface-area ratios will rise more quickly. We show that buoyant plumes in two dimensions are inherently larger, with greater volume-to-surface-area ratios, than plumes in three dimensions. In the scenario that the supernova shock expansion is dominated by neutrino-driven buoyancy, this balance between buoyancy and drag forces may explain why 3D simulations explode later than 2D simulations and why L{sub crit} increases with resolution. Finally, we provide a comparison of our results with other calculations in the literature.« less

  14. Supernova shock breakout from a red supergiant.

    PubMed

    Schawinski, Kevin; Justham, Stephen; Wolf, Christian; Podsiadlowski, Philipp; Sullivan, Mark; Steenbrugge, Katrien C; Bell, Tony; Röser, Hermann-Josef; Walker, Emma S; Astier, Pierre; Balam, Dave; Balland, Christophe; Carlberg, Ray; Conley, Alex; Fouchez, Dominique; Guy, Julien; Hardin, Delphine; Hook, Isobel; Howell, D Andrew; Pain, Reynald; Perrett, Kathy; Pritchet, Chris; Regnault, Nicolas; Yi, Sukyoung K

    2008-07-11

    Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic "core-collapse" supernova. Such events are usually only detected at least a few days after the star has exploded. Observations of the supernova SNLS-04D2dc with the Galaxy Evolution Explorer space telescope reveal a radiative precursor from the supernova shock before the shock reached the surface of the star and show the initial expansion of the star at the beginning of the explosion. Theoretical models of the ultraviolet light curve confirm that the progenitor was a red supergiant, as expected for this type of supernova. These observations provide a way to probe the physics of core-collapse supernovae and the internal structures of their progenitor stars.

  15. A neutron-star-driven X-ray flash associated with supernova SN 2006aj.

    PubMed

    Mazzali, Paolo A; Deng, Jinsong; Nomoto, Ken'ichi; Sauer, Daniel N; Pian, Elena; Tominaga, Nozomu; Tanaka, Masaomi; Maeda, Keiichi; Filippenko, Alexei V

    2006-08-31

    Supernovae connected with long-duration gamma-ray bursts (GRBs) are hyper-energetic explosions resulting from the collapse of very massive stars ( approximately 40 M\\circ, where M\\circ is the mass of the Sun) stripped of their outer hydrogen and helium envelopes. A very massive progenitor, collapsing to a black hole, was thought to be a requirement for the launch of a GRB. Here we report the results of modelling the spectra and light curve of SN 2006aj (ref. 9), which demonstrate that the supernova had a much smaller explosion energy and ejected much less mass than the other GRB-supernovae, suggesting that it was produced by a star whose initial mass was only approximately 20 M\\circ. A star of this mass is expected to form a neutron star rather than a black hole when its core collapses. The smaller explosion energy of SN 2006aj is matched by the weakness and softness of GRB 060218 (an X-ray flash), and the weakness of the radio flux of the supernova. Our results indicate that the supernova-GRB connection extends to a much broader range of stellar masses than previously thought, possibly involving different physical mechanisms: a 'collapsar' (ref. 8) for the more massive stars collapsing to a black hole, and magnetic activity of the nascent neutron star for the less massive stars.

  16. Asymmetries in Core Collapse Supernovae Revealed by Maps of Radioactive Titanium

    NASA Technical Reports Server (NTRS)

    Grefenstette, B. W.; Harrison, F. A.; Boggs, S. E.; Reynolds, S. P.; Fryer, C. L.; Madsen, K. K.; Wik, D. R.; Zoglauer, A.; Ellinger, C. I.; Alexander, D. M.; hide

    2014-01-01

    Asymmetry is required by most numerical simulations of stellar core collapse explosions, however the nature differs significantly among models. The spatial distribution of radioactive Ti-44, synthesized in an exploding star near the boundary between material falling back onto the collapsing core and that ejected into the surrounding medium, directly probes the explosion1asymmetries. Cassiopeia A is a young, nearby, core-collapse remnant from which Ti-44 emission has previously been detected, but not imaged. Asymmetries in the explosion have been indirectly inferred from a high ratio of observed Ti-44 emission to that estimated from (56)Ni9, from optical light echoes, and by jet-like features seen in the X-ray and optical ejecta. Here we report on the spatial maps and spectral properties of Ti-44 in Cassiopeia A. We find the Ti-44 to be distributed non-uniformly in the un-shocked interior of the remnant. This may explain the unexpected lack of correlation between the Ti-44 and iron X-ray emission, the latter only being visible in shock heated material. The observed spatial distribution rules out symmetric explosions even with a high level of convective mixing, as well as highly asymmetric bipolar explosions resulting from a fast rotating progenitor. Instead, these observations provide strong evidence for the development of low-mode convective instabilities in core-collapse supernovae.

  17. Constraining the Final Fates of Massive Stars by Oxygen and Iron Enrichment History in the Galaxy

    NASA Astrophysics Data System (ADS)

    Suzuki, Akihiro; Maeda, Keiichi

    2018-01-01

    Recent observational studies of core-collapse supernovae suggest that only stars with zero-age main-sequence masses smaller than 16–18 {M}ȯ explode when they are red supergiants, producing Type IIP supernovae. This may imply that more massive stars produce other types of supernovae or they simply collapse to black holes without giving rise to bright supernovae. This failed supernova hypothesis can lead to significantly inefficient oxygen production because oxygen abundantly produced in inner layers of massive stars with zero-age main-sequence masses around 20–30 {M}ȯ might not be ejected into the surrounding interstellar space. We first assume an unspecified population of oxygen injection events related to massive stars and obtain a model-independent constraint on how much oxygen should be released in a single event and how frequently such events should happen. We further carry out one-box galactic chemical enrichment calculations with different mass ranges of massive stars exploding as core-collapse supernovae. Our results suggest that the model assuming that all massive stars with 9–100 {M}ȯ explode as core-collapse supernovae is still most appropriate in explaining the solar abundances of oxygen and iron and their enrichment history in the Galaxy. The oxygen mass in the Galaxy is not explained when assuming that only massive stars with zero-age main-sequence masses in the range of 9–17 {M}ȯ contribute to the galactic oxygen enrichment. This finding implies that a good fraction of stars more massive than 17 {M}ȯ should eject their oxygen layers in either supernova explosions or some other mass-loss processes.

  18. Estimating explosion properties of normal hydrogen-rich core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Pejcha, Ondrej

    2017-08-01

    Recent parameterized 1D explosion models of hundreds of core-collapse supernova progenitors suggest that success and failure are intertwined in a complex pattern that is not a simple function of the progenitor initial mass. This rugged landscape is present also in other explosion properties, allowing for quantitative tests of the neutrino mechanism from observations of hundreds of supernovae discovered every year. We present a new self-consistent and versatile method that derives photospheric radius and temperature variations of normal hydrogen-rich core-collapse supernovae based on their photometric measurements and expansion velocities. We construct SED and bolometric light curves, determine explosion energies, ejecta and nickel masses while taking into account all uncertainties and covariances of the model. We describe the efforts to compare the inferences to the predictions of the neutrino mechanim. The model can be adapted to include more physical assumptions to utilize primarily photometric data coming from surveys such as LSST.

  19. A unified model of supernova driven by magnetic monopoles

    NASA Astrophysics Data System (ADS)

    Peng, Qiu-He; Liu, Jing-Jing; Chou, Chih-Kang

    2017-12-01

    In this paper, we first discuss a series of important but puzzling physical mechanisms concerning the energy source, various kinds of core collapsed supernovae explosion mechanisms during central gravitational collapse in astrophysics. We also discuss the puzzle of possible association of γ -ray burst with gravitational wave perturbation, the heat source for the molten interior of the core of the Earth and finally the puzzling problem of the cooling of white dwarfs. We then make use of the estimations for the space flux of magnetic monopoles (hereafter MMs) and nucleon decay induced by MMs (called the Rubakov-Callen (RC) effect) to obtain the luminosity due to the RC effect. In terms of the formula for this RC luminosity, we present a unified treatment for the heat source of the Earth's core, the energy source for the white dwarf interior, various kinds of core collapsed supernovae (Type II Supernova (SNII), Type Ib Supernova (SNIb), Type Ic Supernova (SNIc), Super luminous supernova (SLSN)), and the production mechanism for γ -ray burst. This unified model can also be used to reasonably explain the possible association of the short γ -ray burst detected by the Fermi γ -ray Burst Monitoring Satellite (GBM) with the LIGO gravitational wave event GW150914 in September 2015.

  20. Core collapse supernovae from blue supergiant progenitors : The evolutionary history of SN 1987A

    NASA Astrophysics Data System (ADS)

    Menon, Athira

    2015-08-01

    SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The nuclear yields and light curve of the explosion are then compared with the observed data of SN 1987A.

  1. Neutrino nucleosynthesis in core-collapse Supernova explosions

    NASA Astrophysics Data System (ADS)

    Sieverding, A.; Huther, L.; Martínez-Pinedo, G.; Langanke, K.; Heger, A.

    2018-01-01

    The neutrino-induced nucleosynthesis (v process) in supernova explosions of massive stars of solar metallicity with initial main sequence masses between 15 and 40 M⨀ has been studied. A new extensive set of neutrino-nucleus cross-sections for all the nuclei included in the reaction network is used and the average neutrino energies are reduced to agree with modern supernova simulations. Despite these changes the v process is found to contribute still significantly to the production of the nuclei 7Li, 11B, 19F, 138La and 180Ta, even though the total yields for those nuclei are reduced. Furthermore we study in detail contributions of the v process to the production of radioactive isotopes 26Al, 22Na and confirm the production of 92Nb and 98Tc.

  2. Triggering collapse of the presolar dense cloud core and injecting short-lived radioisotopes with a shock wave. III. Rotating three-dimensional cloud cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boss, Alan P.; Keiser, Sandra A., E-mail: boss@dtm.ciw.edu

    2014-06-10

    A key test of the supernova triggering and injection hypothesis for the origin of the solar system's short-lived radioisotopes is to reproduce the inferred initial abundances of these isotopes. We present here the most detailed models to date of the shock wave triggering and injection process, where shock waves with varied properties strike fully three-dimensional, rotating, dense cloud cores. The models are calculated with the FLASH adaptive mesh hydrodynamics code. Three different outcomes can result: triggered collapse leading to fragmentation into a multiple protostar system; triggered collapse leading to a single protostar embedded in a protostellar disk; or failure tomore » undergo dynamic collapse. Shock wave material is injected into the collapsing clouds through Rayleigh-Taylor fingers, resulting in initially inhomogeneous distributions in the protostars and protostellar disks. Cloud rotation about an axis aligned with the shock propagation direction does not increase the injection efficiency appreciably, as the shock parameters were chosen to be optimal for injection even in the absence of rotation. For a shock wave from a core-collapse supernova, the dilution factors for supernova material are in the range of ∼10{sup –4} to ∼3 × 10{sup –4}, in agreement with recent laboratory estimates of the required amount of dilution for {sup 60}Fe and {sup 26}Al. We conclude that a type II supernova remains as a promising candidate for synthesizing the solar system's short-lived radioisotopes shortly before their injection into the presolar cloud core by the supernova's remnant shock wave.« less

  3. A very energetic supernova associated with the gamma-ray burst of 29 March 2003.

    PubMed

    Hjorth, Jens; Sollerman, Jesper; Møller, Palle; Fynbo, Johan P U; Woosley, Stan E; Kouveliotou, Chryssa; Tanvir, Nial R; Greiner, Jochen; Andersen, Michael I; Castro-Tirado, Alberto J; Castro Cerón, José María; Fruchter, Andrew S; Gorosabel, Javier; Jakobsson, Páll; Kaper, Lex; Klose, Sylvio; Masetti, Nicola; Pedersen, Holger; Pedersen, Kristian; Pian, Elena; Palazzi, Eliana; Rhoads, James E; Rol, Evert; van den Heuvel, Edward P J; Vreeswijk, Paul M; Watson, Darach; Wijers, Ralph A M J

    2003-06-19

    Over the past five years evidence has mounted that long-duration (>2 s) gamma-ray bursts (GRBs)-the most luminous of all astronomical explosions-signal the collapse of massive stars in our Universe. This evidence was originally based on the probable association of one unusual GRB with a supernova, but now includes the association of GRBs with regions of massive star formation in distant galaxies, the appearance of supernova-like 'bumps' in the optical afterglow light curves of several bursts and lines of freshly synthesized elements in the spectra of a few X-ray afterglows. These observations support, but do not yet conclusively demonstrate, the idea that long-duration GRBs are associated with the deaths of massive stars, presumably arising from core collapse. Here we report evidence that a very energetic supernova (a hypernova) was temporally and spatially coincident with a GRB at redshift z = 0.1685. The timing of the supernova indicates that it exploded within a few days of the GRB, strongly suggesting that core-collapse events can give rise to GRBs, thereby favouring the 'collapsar' model.

  4. Anisotropic emission of neutrino and gravitational-wave signals from rapidly rotating core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Takiwaki, Tomoya; Kotake, Kei

    2018-03-01

    We present analysis on neutrino and GW signals based on three-dimensional (3D) core-collapse supernova simulations of a rapidly rotating 27 M⊙ star. We find a new neutrino signature that is produced by a lighthouse effect where the spinning of strong neutrino emission regions around the rotational axis leads to quasi-periodic modulation in the neutrino signal. Depending on the observer's viewing angle, the time modulation will be clearly detectable in IceCube and the future Hyper-Kamiokande. The GW emission is also anisotropic where the GW signal is emitted, as previously identified, most strongly towards the equator at rotating core-collapse and bounce, and the non-axisymmetric instabilities in the postbounce phase lead to stronger GW emission towards the spin axis. We show that these GW signals can be a target of LIGO-class detectors for a Galactic event. The origin of the postbounce GW emission naturally explains why the peak GW frequency is about twice of the neutrino modulation frequency. We point out that the simultaneous detection of the rotation-induced neutrino and GW signatures could provide a smoking-gun signature of a rapidly rotating proto-neutron star at the birth.

  5. Improved models of stellar core collapse and still no explosions: what is missing?

    PubMed

    Buras, R; Rampp, M; Janka, H-Th; Kifonidis, K

    2003-06-20

    Two-dimensional hydrodynamic simulations of stellar core collapse are presented which for the first time were performed by solving the Boltzmann equation for the neutrino transport including a state-of-the-art description of neutrino interactions. Stellar rotation is also taken into account. Although convection develops below the neutrinosphere and in the neutrino-heated region behind the supernova shock, the models do not explode. This suggests missing physics, possibly with respect to the nuclear equation of state and weak interactions in the subnuclear regime. However, it might also indicate a fundamental problem with the neutrino-driven explosion mechanism.

  6. PUSHing core-collapse simulations to explosion

    NASA Astrophysics Data System (ADS)

    Fröhlich, C.; Perego, A.; Hempe, M.; Ebinger, K.; Eichler, M.; Casanova, J.; Liebendörfer, M.; Thielemann, F.-K.

    2018-01-01

    We report on the PUSH method for artificially triggering core-collapse supernova explosions of massive stars in spherical symmetry. The PUSH method increases the energy deposition in the gain region proportionally to the heavy flavor neutrino fluxes.We summarize the parameter dependence of the method and calibrate PUSH to reproduce SN 1987A observables. We identify a best-fit progenitor and set of parameters that fit the explosion properties of SN 1987A, assuming 0.1 M⊙ of fallback. For the explored progenitor range of 18-21 M⊙, we find correlations between explosion properties and the compactness of the progenitor model.

  7. An Updated Nuclear Equation of State for Neutron Stars and Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Meixner, M. A.; Mathews, G. J.; Dalhed, H. E.; Lan, N. Q.

    2011-10-01

    We present an updated and improved Equation of State based upon the framework originally developed by Bowers & Wilson. The details of the EoS and improvements are described along with a description of how to access this EOS for numerical simulations. Among the improvements are an updated compressibility based upon recent measurements, the possibility of the formation of proton excess (Ye> 0.5) material and an improved treatment of the nuclear statistical equilibrium and the transition to pasta nuclei as the density approaches nuclear matter density. The possibility of a QCD chiral phase transition is also included at densities above nuclear matter density. We show comparisons of this EOS with the other two publicly available equations of state used in supernova collapse simulations. The advantages of the present EoS is that it is easily amenable to phenomenological parameterization to fit observed explosion properties and to accommodate new physical parameters.

  8. Search for neutrinos from core-collapse supernova from the global network of detectors

    NASA Astrophysics Data System (ADS)

    Habig, Alec; Snews working Group

    2010-01-01

    The Supernova Early Warning System (SNEWS) is a cooperative effort between the world's neutrino detection experiments to spread the news that a star in our galaxy has just experienced a core-collapse event and is about to become a Type II Supernova. This project exploits the ~hours time difference between neutrinos promptly escaping the nascent supernova and photons which originate when the shock wave breaks through the stellar photosphere, to give the world a chance to get ready to observe such an exciting event at the earliest possible time. A coincidence trigger between experiments is used to eliminate potential local false alarms, allowing a rapid, automated alert.

  9. Implications for Post-processing Nucleosynthesis of Core-collapse Supernova Models with Lagrangian Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, J. Austin; Hix, W. Raphael; Chertkow, Merek A.

    In this paper, we investigate core-collapse supernova (CCSN) nucleosynthesis with self-consistent, axisymmetric (2D) simulations performed using the neutrino hydrodynamics code Chimera. Computational costs have traditionally constrained the evolution of the nuclear composition within multidimensional CCSN models to, at best, a 14-species α-network capable of tracking onlymore » $$(\\alpha ,\\gamma )$$ reactions from 4He to 60Zn. Such a simplified network limits the ability to accurately evolve detailed composition and neutronization or calculate the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks into post-processing nucleosynthesis calculations. However, limitations such as poor spatial resolution of the tracer particles; inconsistent thermodynamic evolution, including misestimation of expansion timescales; and uncertain determination of the multidimensional mass cut at the end of the simulation impose uncertainties inherent to this approach. Finally, we present a detailed analysis of the impact of such uncertainties for four self-consistent axisymmetric CCSN models initiated from solar-metallicity, nonrotating progenitors of 12, 15, 20, and 25 $${M}_{\\odot }$$ and evolved with the smaller α-network to more than 1 s after the launch of an explosion.« less

  10. Implications for Post-processing Nucleosynthesis of Core-collapse Supernova Models with Lagrangian Particles

    NASA Astrophysics Data System (ADS)

    Harris, J. Austin; Hix, W. Raphael; Chertkow, Merek A.; Lee, C. T.; Lentz, Eric J.; Messer, O. E. Bronson

    2017-07-01

    We investigate core-collapse supernova (CCSN) nucleosynthesis with self-consistent, axisymmetric (2D) simulations performed using the neutrino hydrodynamics code Chimera. Computational costs have traditionally constrained the evolution of the nuclear composition within multidimensional CCSN models to, at best, a 14-species α-network capable of tracking only (α ,γ ) reactions from 4He to 60Zn. Such a simplified network limits the ability to accurately evolve detailed composition and neutronization or calculate the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks into post-processing nucleosynthesis calculations. However, limitations such as poor spatial resolution of the tracer particles inconsistent thermodynamic evolution, including misestimation of expansion timescales and uncertain determination of the multidimensional mass cut at the end of the simulation impose uncertainties inherent to this approach. We present a detailed analysis of the impact of such uncertainties for four self-consistent axisymmetric CCSN models initiated from solar-metallicity, nonrotating progenitors of 12, 15, 20, and 25 {M}⊙ and evolved with the smaller α-network to more than 1 s after the launch of an explosion.

  11. Implications for Post-processing Nucleosynthesis of Core-collapse Supernova Models with Lagrangian Particles

    DOE PAGES

    Harris, J. Austin; Hix, W. Raphael; Chertkow, Merek A.; ...

    2017-06-26

    In this paper, we investigate core-collapse supernova (CCSN) nucleosynthesis with self-consistent, axisymmetric (2D) simulations performed using the neutrino hydrodynamics code Chimera. Computational costs have traditionally constrained the evolution of the nuclear composition within multidimensional CCSN models to, at best, a 14-species α-network capable of tracking onlymore » $$(\\alpha ,\\gamma )$$ reactions from 4He to 60Zn. Such a simplified network limits the ability to accurately evolve detailed composition and neutronization or calculate the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks into post-processing nucleosynthesis calculations. However, limitations such as poor spatial resolution of the tracer particles; inconsistent thermodynamic evolution, including misestimation of expansion timescales; and uncertain determination of the multidimensional mass cut at the end of the simulation impose uncertainties inherent to this approach. Finally, we present a detailed analysis of the impact of such uncertainties for four self-consistent axisymmetric CCSN models initiated from solar-metallicity, nonrotating progenitors of 12, 15, 20, and 25 $${M}_{\\odot }$$ and evolved with the smaller α-network to more than 1 s after the launch of an explosion.« less

  12. THE THREE-DIMENSIONAL EVOLUTION TO CORE COLLAPSE OF A MASSIVE STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couch, Sean M.; Chatzopoulos, Emmanouil; Arnett, W. David

    2015-07-20

    We present the first three-dimensional (3D) simulation of the final minutes of iron core growth in a massive star, up to and including the point of core gravitational instability and collapse. We capture the development of strong convection driven by violent Si burning in the shell surrounding the iron core. This convective burning builds the iron core to its critical mass and collapse ensues, driven by electron capture and photodisintegration. The non-spherical structure and motion generated by 3D convection is substantial at the point of collapse, with convective speeds of several hundreds of km s{sup −1}. We examine the impactmore » of such physically realistic 3D initial conditions on the core-collapse supernova mechanism using 3D simulations including multispecies neutrino leakage and find that the enhanced post-shock turbulence resulting from 3D progenitor structure aids successful explosions. We conclude that non-spherical progenitor structure should not be ignored, and should have a significant and favorable impact on the likelihood for neutrino-driven explosions. In order to make simulating the 3D collapse of an iron core feasible, we were forced to make approximations to the nuclear network making this effort only a first step toward accurate, self-consistent 3D stellar evolution models of the end states of massive stars.« less

  13. Black Hole Formation in Failing Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    O'Connor, Evan; Ott, Christian D.

    2011-04-01

    We present results of a systematic study of failing core-collapse supernovae and the formation of stellar-mass black holes (BHs). Using our open-source general-relativistic 1.5D code GR1D equipped with a three-species neutrino leakage/heating scheme and over 100 presupernova models, we study the effects of the choice of nuclear equation of state (EOS), zero-age main sequence (ZAMS) mass and metallicity, rotation, and mass-loss prescription on BH formation. We find that the outcome, for a given EOS, can be estimated, to first order, by a single parameter, the compactness of the stellar core at bounce. By comparing protoneutron star (PNS) structure at the onset of gravitational instability with solutions of the Tolman-Oppenheimer-Volkof equations, we find that thermal pressure support in the outer PNS core is responsible for raising the maximum PNS mass by up to 25% above the cold NS value. By artificially increasing neutrino heating, we find the critical neutrino heating efficiency required for exploding a given progenitor structure and connect these findings with ZAMS conditions, establishing, albeit approximately, for the first time based on actual collapse simulations, the mapping between ZAMS parameters and the outcome of core collapse. We also study the effect of progenitor rotation and find that the dimensionless spin of nascent BHs may be robustly limited below a* = Jc/GM 2 = 1 by the appearance of nonaxisymmetric rotational instabilities.

  14. Pair-instability supernovae of fast rotating stars

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung

    2015-01-01

    We present 2D simulations of pair-instability supernovae considering rapid rotation during their explosion phases. Recent studies of the Population III (Pop III) star formation suggested that these stars could be born with a mass scale about 100 M⊙ and with a strong rotation. Based on stellar evolution models, these massive Pop III stars might have died as highly energetic pair-instability supernovae. We perform 2D calculations to investigate the impact of rotation on pair-instability supernovae. Our results suggest that rotation leads to an aspherical explosion due to an anisotropic collapse. If the first stars have a 50% of keplerian rotational rate of the oxygen core before their pair-instability explosions, the overall 56Ni production can be significantly reduced by about two orders of magnitude. An extreme case of 100% keplerian rotational rate shows an interesting feature of fluid instabilities along the equatorial plane caused by non-synchronized and non-isotropic ignitions of explosions, so that the shocks run into the in-falling gas and generate the Richtmyer-Meshkov instability.

  15. THE DEPENDENCE OF THE NEUTRINO MECHANISM OF CORE-COLLAPSE SUPERNOVAE ON THE EQUATION OF STATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couch, Sean M., E-mail: smc@flash.uchicago.edu

    2013-03-01

    We study the dependence of the delayed neutrino-heating mechanism for core-collapse supernovae on the equation of state (EOS). Using a simplified treatment of the neutrino physics with a parameterized neutrino luminosity, we explore the relationship between explosion time, mass accretion rate, and neutrino luminosity for a 15 M {sub Sun} progenitor in 1D and 2D. We test the EOS most commonly used in core-collapse simulations: the models of Lattimer and Swesty and the model of Shen et al. We find that for a given neutrino luminosity, 'stiffer' EOS, where stiffness is determined by a combination of nuclear matter properties notmore » just incompressibility, K, explode later than 'softer' EOS. The EOS of Shen et al., being the stiffest EOS, by virtue of larger incompressibility and symmetry energy slope, L, explodes later than any of the Lattimer and Swesty EOS models. Amongst the Lattimer and Swesty EOS that all share the same value of L, the explosion time increases with increasing nuclear incompressibility, K. We find that this holds in both 1D and 2D, while for all of the models, explosions are obtained more easily in 2D than in 1D. We argue that this EOS dependence is due in part to a greater amount of acoustic flux from denser proto-neutron star atmospheres that result from a softer EOS. We also discuss the relevance of approximate instability criteria to realistic simulations.« less

  16. A faint type of supernova from a white dwarf with a helium-rich companion.

    PubMed

    Perets, H B; Gal-Yam, A; Mazzali, P A; Arnett, D; Kagan, D; Filippenko, A V; Li, W; Arcavi, I; Cenko, S B; Fox, D B; Leonard, D C; Moon, D-S; Sand, D J; Soderberg, A M; Anderson, J P; James, P A; Foley, R J; Ganeshalingam, M; Ofek, E O; Bildsten, L; Nelemans, G; Shen, K J; Weinberg, N N; Metzger, B D; Piro, A L; Quataert, E; Kiewe, M; Poznanski, D

    2010-05-20

    Supernovae are thought to arise from two different physical processes. The cores of massive, short-lived stars undergo gravitational core collapse and typically eject a few solar masses during their explosion. These are thought to appear as type Ib/c and type II supernovae, and are associated with young stellar populations. In contrast, the thermonuclear detonation of a carbon-oxygen white dwarf, whose mass approaches the Chandrasekhar limit, is thought to produce type Ia supernovae. Such supernovae are observed in both young and old stellar environments. Here we report a faint type Ib supernova, SN 2005E, in the halo of the nearby isolated galaxy, NGC 1032. The 'old' environment near the supernova location, and the very low derived ejected mass ( approximately 0.3 solar masses), argue strongly against a core-collapse origin. Spectroscopic observations and analysis reveal high ejecta velocities, dominated by helium-burning products, probably excluding this as a subluminous or a regular type Ia supernova. We conclude that it arises from a low-mass, old progenitor, likely to have been a helium-accreting white dwarf in a binary. The ejecta contain more calcium than observed in other types of supernovae and probably large amounts of radioactive (44)Ti.

  17. Neutrino astronomy with supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Brdar, Vedran; Lindner, Manfred; Xu, Xun-Jie

    2018-04-01

    Modern neutrino facilities will be able to detect a large number of neutrinos from the next Galactic supernova. We investigate the viability of the triangulation method to locate a core-collapse supernova by employing the neutrino arrival time differences at various detectors. We perform detailed numerical fits in order to determine the uncertainties of these time differences for the cases when the core collapses into a neutron star or a black hole. We provide a global picture by combining all the relevant current and future neutrino detectors. Our findings indicate that in the scenario of a neutron star formation, supernova can be located with precision of 1.5 and 3.5 degrees in declination and right ascension, respectively. For the black hole scenario, sub-degree precision can be reached.

  18. A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae.

    PubMed

    Mösta, Philipp; Ott, Christian D; Radice, David; Roberts, Luke F; Schnetter, Erik; Haas, Roland

    2015-12-17

    Magnetohydrodynamic turbulence is important in many high-energy astrophysical systems, where instabilities can amplify the local magnetic field over very short timescales. Specifically, the magnetorotational instability and dynamo action have been suggested as a mechanism for the growth of magnetar-strength magnetic fields (of 10(15) gauss and above) and for powering the explosion of a rotating massive star. Such stars are candidate progenitors of type Ic-bl hypernovae, which make up all supernovae that are connected to long γ-ray bursts. The magnetorotational instability has been studied with local high-resolution shearing-box simulations in three dimensions, and with global two-dimensional simulations, but it is not known whether turbulence driven by this instability can result in the creation of a large-scale, ordered and dynamically relevant field. Here we report results from global, three-dimensional, general-relativistic magnetohydrodynamic turbulence simulations. We show that hydromagnetic turbulence in rapidly rotating protoneutron stars produces an inverse cascade of energy. We find a large-scale, ordered toroidal field that is consistent with the formation of bipolar magnetorotationally driven outflows. Our results demonstrate that rapidly rotating massive stars are plausible progenitors for both type Ic-bl supernovae and long γ-ray bursts, and provide a viable mechanism for the formation of magnetars. Moreover, our findings suggest that rapidly rotating massive stars might lie behind potentially magnetar-powered superluminous supernovae.

  19. Evidence from stable isotopes and 10Be for solar system formation triggered by a low-mass supernova

    PubMed Central

    Banerjee, Projjwal; Qian, Yong-Zhong; Heger, Alexander; Haxton, W C

    2016-01-01

    About 4.6 billion years ago, some event disturbed a cloud of gas and dust, triggering the gravitational collapse that led to the formation of the solar system. A core-collapse supernova, whose shock wave is capable of compressing such a cloud, is an obvious candidate for the initiating event. This hypothesis can be tested because supernovae also produce telltale patterns of short-lived radionuclides, which would be preserved today as isotopic anomalies. Previous studies of the forensic evidence have been inconclusive, finding a pattern of isotopes differing from that produced in conventional supernova models. Here we argue that these difficulties either do not arise or are mitigated if the initiating supernova was a special type, low in mass and explosion energy. Key to our conclusion is the demonstration that short-lived 10Be can be readily synthesized in such supernovae by neutrino interactions, while anomalies in stable isotopes are suppressed. PMID:27873999

  20. Evidence from stable isotopes and 10Be for solar system formation triggered by a low-mass supernova

    DOE PAGES

    Banerjee, Projjwal; Qian, Yong -Zhong; Heger, Alexander; ...

    2016-11-22

    About 4.6 billion years ago, some event disturbed a cloud of gas and dust, triggering the gravitational collapse that led to the formation of the solar system. A core-collapse supernova, whose shock wave is capable of compressing such a cloud, is an obvious candidate for the initiating event. This hypothesis can be tested because supernovae also produce telltale patterns of short-lived radionuclides, which would be preserved today as isotopic anomalies. Previous studies of the forensic evidence have been inconclusive, finding a pattern of isotopes differing from that produced in conventional supernova models. Here we argue that these difficulties either domore » not arise or are mitigated if the initiating supernova was a special type, low in mass and explosion energy. Key to our conclusion is the demonstration that short-lived 10Be can be readily synthesized in such supernovae by neutrino interactions, while anomalies in stable isotopes are suppressed.« less

  1. Evidence from stable isotopes and 10Be for solar system formation triggered by a low-mass supernova

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Projjwal; Qian, Yong -Zhong; Heger, Alexander

    About 4.6 billion years ago, some event disturbed a cloud of gas and dust, triggering the gravitational collapse that led to the formation of the solar system. A core-collapse supernova, whose shock wave is capable of compressing such a cloud, is an obvious candidate for the initiating event. This hypothesis can be tested because supernovae also produce telltale patterns of short-lived radionuclides, which would be preserved today as isotopic anomalies. Previous studies of the forensic evidence have been inconclusive, finding a pattern of isotopes differing from that produced in conventional supernova models. Here we argue that these difficulties either domore » not arise or are mitigated if the initiating supernova was a special type, low in mass and explosion energy. Key to our conclusion is the demonstration that short-lived 10Be can be readily synthesized in such supernovae by neutrino interactions, while anomalies in stable isotopes are suppressed.« less

  2. MODA: a new algorithm to compute optical depths in multidimensional hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Perego, Albino; Gafton, Emanuel; Cabezón, Rubén; Rosswog, Stephan; Liebendörfer, Matthias

    2014-08-01

    Aims: We introduce the multidimensional optical depth algorithm (MODA) for the calculation of optical depths in approximate multidimensional radiative transport schemes, equally applicable to neutrinos and photons. Motivated by (but not limited to) neutrino transport in three-dimensional simulations of core-collapse supernovae and neutron star mergers, our method makes no assumptions about the geometry of the matter distribution, apart from expecting optically transparent boundaries. Methods: Based on local information about opacities, the algorithm figures out an escape route that tends to minimize the optical depth without assuming any predefined paths for radiation. Its adaptivity makes it suitable for a variety of astrophysical settings with complicated geometry (e.g., core-collapse supernovae, compact binary mergers, tidal disruptions, star formation, etc.). We implement the MODA algorithm into both a Eulerian hydrodynamics code with a fixed, uniform grid and into an SPH code where we use a tree structure that is otherwise used for searching neighbors and calculating gravity. Results: In a series of numerical experiments, we compare the MODA results with analytically known solutions. We also use snapshots from actual 3D simulations and compare the results of MODA with those obtained with other methods, such as the global and local ray-by-ray method. It turns out that MODA achieves excellent accuracy at a moderate computational cost. In appendix we also discuss implementation details and parallelization strategies.

  3. Distribution of nuclei in equilibrium stellar matter from the free-energy density in a Wigner-Seitz cell

    NASA Astrophysics Data System (ADS)

    Grams, G.; Giraud, S.; Fantina, A. F.; Gulminelli, F.

    2018-03-01

    The aim of the present study is to calculate the nuclear distribution associated at finite temperature to any given equation of state of stellar matter based on the Wigner-Seitz approximation, for direct applications in core-collapse simulations. The Gibbs free energy of the different configurations is explicitly calculated, with special care devoted to the calculation of rearrangement terms, ensuring thermodynamic consistency. The formalism is illustrated with two different applications. First, we work out the nuclear statistical equilibrium cluster distribution for the Lattimer and Swesty equation of state, widely employed in supernova simulations. Secondly, we explore the effect of including shell structure, and consider realistic nuclear mass tables from the Brussels-Montreal Hartree-Fock-Bogoliubov model (specifically, HFB-24). We show that the whole collapse trajectory is dominated by magic nuclei, with extremely spread and even bimodal distributions of the cluster probability around magic numbers, demonstrating the importance of cluster distributions with realistic mass models in core-collapse simulations. Simple analytical expressions are given, allowing further applications of the method to any relativistic or nonrelativistic subsaturation equation of state.

  4. Neutrino emission from nearby supernova progenitors

    NASA Astrophysics Data System (ADS)

    Yoshida, Takashi; Takahashi, Koh; Umeda, Hideyuki

    2016-05-01

    Neutrinos have an important role for energy loss process during advanced evolution of massive stars. Although the luminosity and average energy of neutrinos during the Si burning are much smaller than those of supernova neutrinos, these neutrinos are expected to be detected by the liquid scintillation neutrino detector KamLAND if a supernova explosion occurs at the distance of ~100 parsec. We investigate the neutrino emission from massive stars during advanced evolution. We calculate the evolution of the energy spectra of neutrinos produced through electron-positron pair-annihilation in the supernova progenitors with the initial mass of 12, 15, and 20 M ⊙ during the Si burning and core-collapse stages. The neutrino emission rate increases from ~ 1050 s-1 to ~ 1052 s-1. The average energy of electron-antineutrinos is about 1.25 MeV during the Si burning and gradually increases until the core-collapse. For one week before the supernova explosion, the KamLAND detector is expected to observe 12-24 and 6-13 v¯e events in the normal and inverted mass hierarchies, respectively, if a supernova explosion of a 12-20 M ⊙ star occurs at the distance of 200 parsec, corresponding to the distance to Betelgeuse. Observations of neutrinos from SN progenitors have a possibility to constrain the core structure and the evolution just before the core collapse of massive stars.

  5. Progenitor-dependent Explosion Dynamics in Self-consistent, Axisymmetric Simulations of Neutrino-driven Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Summa, Alexander; Hanke, Florian; Janka, Hans-Thomas; Melson, Tobias; Marek, Andreas; Müller, Bernhard

    2016-07-01

    We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11-28 M ⊙, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si-O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si-O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection timescales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.

  6. PROGENITOR-DEPENDENT EXPLOSION DYNAMICS IN SELF-CONSISTENT, AXISYMMETRIC SIMULATIONS OF NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summa, Alexander; Hanke, Florian; Janka, Hans-Thomas

    We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11–28 M {sub ⊙}, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si–O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion rammore » pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si–O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection timescales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.« less

  7. New Equations of State Based on the Liquid Drop Model of Heavy Nuclei and Quantum Approach to Light Nuclei for Core-collapse Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki

    2013-08-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to ~1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.

  8. Studying Electron-Capture on ^64Zn in Supernovae with the (t,^3He) Charge-Exchange Reaction

    NASA Astrophysics Data System (ADS)

    Hitt, G. W.; Austin, Sam M.; Bazin, D.; Gade, A.; Guess, C. J.; Galaviz-Redondo, D.; Shimbara, Y.; Tur, C.; Zegers, R. G. T.; Horoi, M.; Howard, M. E.; Smith, E. E.

    2008-10-01

    A secondary, 115 MeV/u triton beam has been developed at NSCL for use in (t,^3He) charge-exchange(CE) reaction studies. This (n,p)-type CE reaction is useful for extracting the full Gamow-Teller (GT) response of the nucleus, overcoming Q-value restrictions present in conventional beta-decay studies. The strength (B(GT)) in ^64Cu has been determined from the absolute cross section measurement of ^64Zn(t,^3He) near zero-degrees, exploiting an empirical proportionality between cross section and B(GT). The detailed features of the B(GT) distribution in a nucleus has an important impact on electron-capture (EC) rates in Type Ia and Core-Collapse supernovae. The measured B(GT) in ^64Cu is directly compared with the results of modern shell model interactions which are used to calculate the GT contribution to EC on nuclei in supernova simulations.

  9. Oscillation effects and time variation of the supernova neutrino signal

    NASA Astrophysics Data System (ADS)

    Kneller, James P.; McLaughlin, Gail C.; Brockman, Justin

    2008-02-01

    The neutrinos detected from the next galactic core-collapse supernova will contain valuable information on the internal dynamics of the explosion. One mechanism leading to a temporal evolution of the neutrino signal is the variation of the induced neutrino flavor mixing driven by changes in the density profile. With one and two-dimensional hydrodynamical simulations we identify the behavior and properties of prominent features of the explosion. Using these results we demonstrate the time variation of the neutrino crossing probabilities due to changes in the Mikheyev-Smirnov-Wolfenstein (MSW) neutrino transformations as the star explodes by using the S-matrix—Monte Carlo—approach to neutrino propagation. After adopting spectra for the neutrinos emitted from the proto-neutron star we calculate for a galactic supernova the evolution of the positron spectra within a water Cerenkov detector and find that this signal allows us to probe of a number of explosion features.

  10. Supernova Relic Neutrinos and the Supernova Rate Problem: Analysis of Uncertainties and Detectability of ONeMg and Failed Supernovae

    NASA Astrophysics Data System (ADS)

    Mathews, Grant J.; Hidaka, Jun; Kajino, Toshitaka; Suzuki, Jyutaro

    2014-08-01

    Direct measurements of the core collapse supernova rate (R SN) in the redshift range 0 <= z <= 1 appear to be about a factor of two smaller than the rate inferred from the measured cosmic massive star formation rate (SFR). This discrepancy would imply that about one-half of the massive stars that have been born in the local observed comoving volume did not explode as luminous supernovae. In this work, we explore the possibility that one could clarify the source of this "supernova rate problem" by detecting the energy spectrum of supernova relic neutrinos with a next generation 106 ton water Čerenkov detector like Hyper-Kamiokande. First, we re-examine the supernova rate problem. We make a conservative alternative compilation of the measured SFR data over the redshift range 0 <=z <= 7. We show that by only including published SFR data for which the dust obscuration has been directly determined, the ratio of the observed massive SFR to the observed supernova rate R SN has large uncertainties {\\sim }1.8^{+1.6}_{-0.6} and is statistically consistent with no supernova rate problem. If we further consider that a significant fraction of massive stars will end their lives as faint ONeMg SNe or as failed SNe leading to a black hole remnant, then the ratio reduces to {\\sim }1.1^{+1.0}_{-0.4} and the rate problem is essentially solved. We next examine the prospects for detecting this solution to the supernova rate problem. We first study the sources of uncertainty involved in the theoretical estimates of the neutrino detection rate and analyze whether the spectrum of relic neutrinos can be used to independently identify the existence of a supernova rate problem and its source. We consider an ensemble of published and unpublished core collapse supernova simulation models to estimate the uncertainties in the anticipated neutrino luminosities and temperatures. We illustrate how the spectrum of detector events might be used to establish the average neutrino temperature and constrain SN models. We also consider supernova ν-process nucleosynthesis to deduce constraints on the temperature of the various neutrino flavors. We study the effects of neutrino oscillations on the detected neutrino energy spectrum and also show that one might distinguish the equation of state (EoS) as well as the cause of the possible missing luminous supernovae from the detection of supernova relic neutrinos. We also analyze a possible enhanced contribution from failed supernovae leading to a black hole remnant as a solution to the supernova rate problem. We conclude that indeed it might be possible (though difficult) to measure the neutrino temperature, neutrino oscillations, and the EoS and confirm this source of missing luminous supernovae by the detection of the spectrum of relic neutrinos.

  11. Supernova relic neutrinos and the supernova rate problem: Analysis of uncertainties and detectability of ONeMg and failed supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathews, Grant J.; Hidaka, Jun; Kajino, Toshitaka

    2014-08-01

    Direct measurements of the core collapse supernova rate (R{sub SN}) in the redshift range 0 ≤ z ≤ 1 appear to be about a factor of two smaller than the rate inferred from the measured cosmic massive star formation rate (SFR). This discrepancy would imply that about one-half of the massive stars that have been born in the local observed comoving volume did not explode as luminous supernovae. In this work, we explore the possibility that one could clarify the source of this 'supernova rate problem' by detecting the energy spectrum of supernova relic neutrinos with a next generation 10{supmore » 6} ton water Čerenkov detector like Hyper-Kamiokande. First, we re-examine the supernova rate problem. We make a conservative alternative compilation of the measured SFR data over the redshift range 0 ≤z ≤ 7. We show that by only including published SFR data for which the dust obscuration has been directly determined, the ratio of the observed massive SFR to the observed supernova rate R{sub SN} has large uncertainties ∼1.8{sub −0.6}{sup +1.6} and is statistically consistent with no supernova rate problem. If we further consider that a significant fraction of massive stars will end their lives as faint ONeMg SNe or as failed SNe leading to a black hole remnant, then the ratio reduces to ∼1.1{sub −0.4}{sup +1.0} and the rate problem is essentially solved. We next examine the prospects for detecting this solution to the supernova rate problem. We first study the sources of uncertainty involved in the theoretical estimates of the neutrino detection rate and analyze whether the spectrum of relic neutrinos can be used to independently identify the existence of a supernova rate problem and its source. We consider an ensemble of published and unpublished core collapse supernova simulation models to estimate the uncertainties in the anticipated neutrino luminosities and temperatures. We illustrate how the spectrum of detector events might be used to establish the average neutrino temperature and constrain SN models. We also consider supernova ν-process nucleosynthesis to deduce constraints on the temperature of the various neutrino flavors. We study the effects of neutrino oscillations on the detected neutrino energy spectrum and also show that one might distinguish the equation of state (EoS) as well as the cause of the possible missing luminous supernovae from the detection of supernova relic neutrinos. We also analyze a possible enhanced contribution from failed supernovae leading to a black hole remnant as a solution to the supernova rate problem. We conclude that indeed it might be possible (though difficult) to measure the neutrino temperature, neutrino oscillations, and the EoS and confirm this source of missing luminous supernovae by the detection of the spectrum of relic neutrinos.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilkis, Avishai; Soker, Noam; Papish, Oded, E-mail: agilkis@tx.technion.ac.il, E-mail: soker@physics.technion.ac.il, E-mail: papish@campus.technion.ac.il

    We suggest that the energetic radiation from core-collapse super-energetic supernovae (SESNe) is due to a long-lasting accretion process onto the newly born neutron star (NS), resulting from an inefficient operation of the jet-feedback mechanism (JFM). The jets that are launched by the accreting NS or black hole maintain their axis due to a rapidly rotating pre-collapse core and do not manage to eject core material from near the equatorial plane. The jets are able to eject material from the core along the polar directions and reduce the gravity near the equatorial plane. The equatorial gas expands, and part of itmore » falls back over a timescale of minutes to days to prolong the jet-launching episode. According to the model for SESNe proposed in the present paper, the principal parameter that distinguishes between the different cases of core-collapse supernova (CCSN) explosions, such as between normal CCSNe and SESNe, is the efficiency of the JFM. This efficiency, in turn, depends on the pre-collapse core mass, envelope mass, core convection, and, most of all, the angular momentum profile in the core. One prediction of the inefficient JFM for SESNe is the formation of a slow equatorial outflow in the explosion. The typical velocity and mass of this outflow are estimated to be v {sub eq} ≈ 1000 km s{sup −1} and M {sub eq} ≳ 1 M {sub ⊙}, respectively, though quantitative values will have to be checked in future hydrodynamic simulations.« less

  13. Rayleigh-Taylor mixing in supernova experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swisher, N. C.; Abarzhi, S. I., E-mail: snezhana.abarzhi@gmail.com; Kuranz, C. C.

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properlymore » accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order.« less

  14. New developments in the mechanism for core-collapse supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guidry, M.

    1994-12-31

    Recent results indicate that the standard type-2 supernova scenario in which the shock wave stagnates but is reenergized by neutrino heating fails to consistently produce supernova explosions having the required characteristics. The authors review the theory of convection and survey some recent calculations indicating the importance of convection operating on millisecond timescales in the protoneutron star. These calculations suggest that such convection is probably generic to the type-2 scenario, that this produces a violet overturn of material below the stalled shock, and that this overturn could lead to significant alterations in the neutrino luminosity and energy. This provides a mechanismmore » that could be effective in reenergizing the stalled shock and producing supernovae explosions having the quantitative characteristics demands by observations. This mechanism implies, in turn, that the convection cannot be adequately described by the 1-dimensional hydrodynamics employed in most simulations. Thus, a full understanding of the supernova mechanism and the resulting heavy element production is likely to require 3-dimensional relativistic hydrodynamics and a comprehensive description of neutrino transport. The prospects for implementing such calculations using a new generation of massively parallel supercomputers and modern scalable algorithms are discussed.« less

  15. MISSING BLACK HOLES UNVEIL THE SUPERNOVA EXPLOSION MECHANISM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belczynski, Krzysztof; Wiktorowicz, Grzegorz; Fryer, Chris L.

    2012-09-20

    It is firmly established that the stellar mass distribution is smooth, covering the range 0.1-100 M{sub Sun }. It is to be expected that the masses of the ensuing compact remnants correlate with the masses of their progenitor stars, and thus it is generally thought that the remnant masses should be smoothly distributed from the lightest white dwarfs to the heaviest black holes (BHs). However, this intuitive prediction is not borne out by observed data. In the rapidly growing population of remnants with observationally determined masses, a striking mass gap has emerged at the boundary between neutron stars (NSs) andmore » BHs. The heaviest NSs reach a maximum of two solar masses, while the lightest BHs are at least five solar masses. Over a decade after the discovery, the gap has become a significant challenge to our understanding of compact object formation. We offer new insights into the physical processes that bifurcate the formation of remnants into lower-mass NSs and heavier BHs. Combining the results of stellar modeling with hydrodynamic simulations of supernovae, we both explain the existence of the gap and also put stringent constraints on the inner workings of the supernova explosion mechanism. In particular, we show that core-collapse supernovae are launched within 100-200 ms of the initial stellar collapse, implying that the explosions are driven by instabilities with a rapid (10-20 ms) growth time. Alternatively, if future observations fill in the gap, this will be an indication that these instabilities develop over a longer (>200 ms) timescale.« less

  16. A new equation of state Based on Nuclear Statistical Equilibrium for Core-Collapse Simulations

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2012-09-01

    We calculate a new equation of state for baryons at sub-nuclear densities for the use in core-collapse simulations of massive stars. The formulation is the nuclear statistical equilibrium description and the liquid drop approximation of nuclei. The model free energy to minimize is calculated by relativistic mean field theory for nucleons and the mass formula for nuclei with atomic number up to ~ 1000. We have also taken into account the pasta phase. We find that the free energy and other thermodynamical quantities are not very different from those given in the standard EOSs that adopt the single nucleus approximation. On the other hand, the average mass is systematically different, which may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores.

  17. STOCHASTICITY AND EFFICIENCY IN SIMPLIFIED MODELS OF CORE-COLLAPSE SUPERNOVA EXPLOSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardall, Christian Y.; Budiardja, Reuben D., E-mail: cardallcy@ornl.gov, E-mail: reubendb@utk.edu

    2015-11-01

    We present an initial report on 160 simulations of a highly simplified model of the post-bounce core-collapse supernova environment in three spatial dimensions (3D). We set different values of a parameter characterizing the impact of nuclear dissociation at the stalled shock in order to regulate the post-shock fluid velocity, thereby determining the relative importance of convection and the stationary accretion shock instability (SASI). While our convection-dominated runs comport with the paradigmatic notion of a “critical neutrino luminosity” for explosion at a given mass accretion rate (albeit with a nontrivial spread in explosion times just above threshold), the outcomes of ourmore » SASI-dominated runs are much more stochastic: a sharp threshold critical luminosity is “smeared out” into a rising probability of explosion over a ∼20% range of luminosity. We also find that the SASI-dominated models are able to explode with 3–4 times less efficient neutrino heating, indicating that progenitor properties, and fluid and neutrino microphysics, conducive to the SASI would make the neutrino-driven explosion mechanism more robust.« less

  18. Investigating the Origin of the Supernova Remnant W49B

    NASA Astrophysics Data System (ADS)

    Crum, Ryan Matthew; Frank, Kari A.; Dwarkadas, Vikram; Burrows, David N.

    2018-01-01

    W49B is a Galactic supernova remnant whose origin is still debated. Is it the remains of an unusual asymmetric Type 1a supernova or of a jet-driven core collapse supernova? Using the X-ray analysis method, Smoothed Particle Inference (SPI), we dig deeper into understanding the complex properties of SNR W49B. We do this by characterizing the temperatures and abundance ratios throughout the remnant. We will compare the results with a wide variety of supernova nucleosynthesis models in order to constrain the mechanism behind this unusual supernova remnant.

  19. Advancing Nucleosynthesis in Core-Collapse Supernovae Models Using 2D CHIMERA Simulations

    NASA Astrophysics Data System (ADS)

    Harris, J. A.; Hix, W. R.; Chertkow, M. A.; Bruenn, S. W.; Lentz, E. J.; Messer, O. B.; Mezzacappa, A.; Blondin, J. M.; Marronetti, P.; Yakunin, K.

    2014-01-01

    The deaths of massive stars as core-collapse supernovae (CCSN) serve as a crucial link in understanding galactic chemical evolution since the birth of the universe via the Big Bang. We investigate CCSN in polar axisymmetric simulations using the multidimensional radiation hydrodynamics code CHIMERA. Computational costs have traditionally constrained the evolution of the nuclear composition in CCSN models to, at best, a 14-species α-network. However, the limited capacity of the α-network to accurately evolve detailed composition, the neutronization and the nuclear energy generation rate has fettered the ability of prior CCSN simulations to accurately reproduce the chemical abundances and energy distributions as known from observations. These deficits can be partially ameliorated by "post-processing" with a more realistic network. Lagrangian tracer particles placed throughout the star record the temporal evolution of the initial simulation and enable the extension of the nuclear network evolution by incorporating larger systems in post-processing nucleosynthesis calculations. We present post-processing results of the four ab initio axisymmetric CCSN 2D models of Bruenn et al. (2013) evolved with the smaller α-network, and initiated from stellar metallicity, non-rotating progenitors of mass 12, 15, 20, and 25 M⊙ from Woosley & Heger (2007). As a test of the limitations of post-processing, we provide preliminary results from an ongoing simulation of the 15 M⊙ model evolved with a realistic 150 species nuclear reaction network in situ. With more accurate energy generation rates and an improved determination of the thermodynamic trajectories of the tracer particles, we can better unravel the complicated multidimensional "mass-cut" in CCSN simulations and probe for less energetically significant nuclear processes like the νp-process and the r-process, which require still larger networks.

  20. Detection of Neutrinos from Galactic and Cosmic Supernovae

    NASA Astrophysics Data System (ADS)

    Beacom, John

    2010-11-01

    Detecting neutrinos is the key to understanding core-collapse supernovae, but this is notoriously difficult due to the small interaction cross section of neutrinos and the low frequency of supernovae. The prospects for detecting Galactic supernovae depend almost completely on the probability of a fluctuation from the low supernova rate; the detection aspects are largely under control. The prospects for detecting Cosmic supernovae instead depend almost completely on the detection aspects, especially regarding reducing detector backgrounds; the supernova rate and neutrino flux of the universe are now rather well measured or predicted. After decades of effort and patience, we have good reasons to anticipate that detecting supernova neutrinos is within reach.

  1. On the Induced Gravitational Collapse

    NASA Astrophysics Data System (ADS)

    Becerra, Laura M.; Bianco, Carlo; Fryer, Chris; Rueda, Jorge; Ruffini, Remo

    2018-01-01

    The induced gravitational collapse (IGC) paradigm has been applied to explain the long gamma ray burst (GRB) associated with type Ic supernova, and recently the Xray flashes (XRFs). The progenitor is a binary systems of a carbon-oxygen core (CO) and a neutron star (NS). The CO core collapses and undergoes a supernova explosion which triggers the hypercritical accretion onto the NS companion (up to 10-2 M⊙s-1). For the binary driven hypernova (BdHNe), the binary system is enough bound, the NS reach its critical mass, and collapse to a black hole (BH) with a GRB emission characterized by an isotropic energy Eiso > 1052 erg. Otherwise, for binary systems with larger binary separations, the hypercritical accretion onto the NS is not sufficient to induced its gravitational collapse, a X-ray flash is produced with Eiso < 1052 erg. We're going to focus in identify the binary parameters that limits the BdHNe systems with the XRFs systems.

  2. Supernova Explosions Stay In Shape

    NASA Astrophysics Data System (ADS)

    2009-12-01

    At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same. A new study of images from NASA's Chandra X-ray Observatory on supernova remnants - the debris from exploded stars - shows that the symmetry of the remnants, or lack thereof, reveals how the star exploded. This is an important discovery because it shows that the remnants retain information about how the star exploded even though hundreds or thousands of years have passed. "It's almost like the supernova remnants have a 'memory' of the original explosion," said Laura Lopez of the University of California at Santa Cruz, who led the study. "This is the first time anyone has systematically compared the shape of these remnants in X-rays in this way." Astronomers sort supernovas into several categories, or "types", based on properties observed days after the explosion and which reflect very different physical mechanisms that cause stars to explode. But, since observed remnants of supernovas are leftover from explosions that occurred long ago, other methods are needed to accurately classify the original supernovas. Lopez and colleagues focused on the relatively young supernova remnants that exhibited strong X-ray emission from silicon ejected by the explosion so as to rule out the effects of interstellar matter surrounding the explosion. Their analysis showed that the X-ray images of the ejecta can be used to identify the way the star exploded. The team studied 17 supernova remnants both in the Milky Way galaxy and a neighboring galaxy, the Large Magellanic Cloud. For each of these remnants there is independent information about the type of supernova involved, based not on the shape of the remnant but, for example, on the elements observed in it. The researchers found that one type of supernova explosion - the so-called Type Ia - left behind relatively symmetric, circular remnants. This type of supernova is thought to be caused by a thermonuclear explosion of a white dwarf, and is often used by astronomers as "standard candles" for measuring cosmic distances. On the other hand, the remnants tied to the "core-collapse" supernova explosions were distinctly more asymmetric. This type of supernova occurs when a very massive, young star collapses onto itself and then explodes. "If we can link supernova remnants with the type of explosion", said co-author Enrico Ramirez-Ruiz, also of University of California, Santa Cruz, "then we can use that information in theoretical models to really help us nail down the details of how the supernovas went off." Models of core-collapse supernovas must include a way to reproduce the asymmetries measured in this work and models of Type Ia supernovas must produce the symmetric, circular remnants that have been observed. Out of the 17 supernova remnants sampled, ten were classified as the core-collapse variety, while the remaining seven of them were classified as Type Ia. One of these, a remnant known as SNR 0548-70.4, was a bit of an "oddball". This one was considered a Type Ia based on its chemical abundances, but Lopez finds it has the asymmetry of a core-collapse remnant. "We do have one mysterious object, but we think that is probably a Type Ia with an unusual orientation to our line of sight," said Lopez. "But we'll definitely be looking at that one again." While the supernova remnants in the Lopez sample were taken from the Milky Way and its close neighbor, it is possible this technique could be extended to remnants at even greater distances. For example, large, bright supernova remnants in the galaxy M33 could be included in future studies to determine the types of supernova that generated them. The paper describing these results appeared in the November 20 issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  3. Featured Image: Making a Rapidly Rotating Black Hole

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    These stills from a simulation show the evolution (from left to right and top to bottom) of a high-mass X-ray binary over 1.1 days, starting after the star on the right fails to explode as a supernova and then collapses into a black hole. Many high-mass X-ray binaries like the well-known Cygnus X-1, the first source widely accepted to be a black hole host rapidly spinning black holes. Despite our observations of these systems, however, were still not sure how these objects end up with such high rotation speeds. Using simulations like that shown above, a team of scientists led by Aldo Batta (UC Santa Cruz) has demonstrated how a failed supernova explosion can result in such a rapidly spinning black hole. The authors work shows that in a binary where one star attempts to explode as a supernova and fails it doesnt succeed in unbinding the star the large amount of fallback material can interact with the companion star and then accrete onto the black hole, spinning it up in the process. You can read more about the authors simulations and conclusions in the paper below.CitationAldo Batta et al 2017 ApJL 846 L15. doi:10.3847/2041-8213/aa8506

  4. How Well Do We Know The Supernova Equation of State?

    NASA Astrophysics Data System (ADS)

    Hempel, Matthias; Oertel, Micaela; Typel, Stefan; Klähn, Thomas

    We give an overview about equations of state (EOS) which are currently available for simulations of core-collapse supernovae and neutron star mergers. A few selected important aspects of the EOS, such as the symmetry energy, the maximum mass of neutron stars, and cluster formation, are confronted with constraints from experiments and astrophysical observations. There are just very few models which are compatible even with this very restricted set of constraints. These remaining models illustrate the uncertainty of the uniform nuclear matter EOS at high densities. In addition, at finite temperatures the medium modifications of nuclear clusters represent a conceptual challenge. In conclusion, there has been significant development in the recent years, but there is still need for further improved general purpose EOS tables.

  5. The Progenitor Dependence of Core-collapse Supernovae from Three-dimensional Simulations with Progenitor Models of 12–40 M ⊙

    NASA Astrophysics Data System (ADS)

    Ott, Christian D.; Roberts, Luke F.; da Silva Schneider, André; Fedrow, Joseph M.; Haas, Roland; Schnetter, Erik

    2018-03-01

    We present a first study of the progenitor star dependence of the three-dimensional (3D) neutrino mechanism of core-collapse supernovae. We employ full 3D general-relativistic multi-group neutrino radiation-hydrodynamics and simulate the postbounce evolutions of progenitors with zero-age main sequence masses of 12, 15, 20, 27, and 40 M ⊙. All progenitors, with the exception of the 12 M ⊙ star, experience shock runaway by the end of their simulations. In most cases, a strongly asymmetric explosion will result. We find three qualitatively distinct evolutions that suggest a complex dependence of explosion dynamics on progenitor density structure, neutrino heating, and 3D flow. (1) Progenitors with massive cores, shallow density profiles, and high post-core-bounce accretion rates experience very strong neutrino heating and neutrino-driven turbulent convection, leading to early shock runaway. Accretion continues at a high rate, likely leading to black hole formation. (2) Intermediate progenitors experience neutrino-driven, turbulence-aided explosions triggered by the arrival of density discontinuities at the shock. These occur typically at the silicon/silicon–oxygen shell boundary. (3) Progenitors with small cores and density profiles without strong discontinuities experience shock recession and develop the 3D standing-accretion shock instability (SASI). Shock runaway ensues late, once declining accretion rate, SASI, and neutrino-driven convection create favorable conditions. These differences in explosion times and dynamics result in a non-monotonic relationship between progenitor and compact remnant mass.

  6. Measuring the Properties of Dark Energy with Photometrically Classified Pan-STARRS Supernovae. I. Systematic Uncertainty from Core-collapse Supernova Contamination

    NASA Astrophysics Data System (ADS)

    Jones, D. O.; Scolnic, D. M.; Riess, A. G.; Kessler, R.; Rest, A.; Kirshner, R. P.; Berger, E.; Ortega, C. A.; Foley, R. J.; Chornock, R.; Challis, P. J.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Metcalfe, N.; Wainscoat, R. J.; Waters, C.

    2017-07-01

    The Pan-STARRS (PS1) Medium Deep Survey discovered over 5000 likely supernovae (SNe) but obtained spectral classifications for just 10% of its SN candidates. We measured spectroscopic host galaxy redshifts for 3147 of these likely SNe and estimate that ˜1000 are Type Ia SNe (SNe Ia) with light-curve quality sufficient for a cosmological analysis. We use these data with simulations to determine the impact of core-collapse SN (CC SN) contamination on measurements of the dark energy equation of state parameter, w. Using the method of Bayesian Estimation Applied to Multiple Species (BEAMS), distances to SNe Ia and the contaminating CC SN distribution are simultaneously determined. We test light-curve-based SN classification priors for BEAMS as well as a new classification method that relies upon host galaxy spectra and the association of SN type with host type. By testing several SN classification methods and CC SN parameterizations on large SN simulations, we estimate that CC SN contamination gives a systematic error on w ({σ }w{CC}) of 0.014, 29% of the statistical uncertainty. Our best method gives {σ }w{CC}=0.004, just 8% of the statistical uncertainty, but could be affected by incomplete knowledge of the CC SN distribution. This method determines the SALT2 color and shape coefficients, α and β, with ˜3% bias. However, we find that some variants require α and β to be fixed to known values for BEAMS to yield accurate measurements of w. Finally, the inferred abundance of bright CC SNe in our sample is greater than expected based on measured CC SN rates and luminosity functions.

  7. Supernova 2007bi as a pair-instability explosion.

    PubMed

    Gal-Yam, A; Mazzali, P; Ofek, E O; Nugent, P E; Kulkarni, S R; Kasliwal, M M; Quimby, R M; Filippenko, A V; Cenko, S B; Chornock, R; Waldman, R; Kasen, D; Sullivan, M; Beshore, E C; Drake, A J; Thomas, R C; Bloom, J S; Poznanski, D; Miller, A A; Foley, R J; Silverman, J M; Arcavi, I; Ellis, R S; Deng, J

    2009-12-03

    Stars with initial masses such that 10M[symbol: see text] or= 140M[symbol: see text] (if such exist) develop oxygen cores with masses, M(core), that exceed 50M[symbol: see text], where high temperatures are reached at relatively low densities. Conversion of energetic, pressure-supporting photons into electron-positron pairs occurs before oxygen ignition and leads to a violent contraction which triggers a nuclear explosion that unbinds the star in a pair-instability supernova. Transitional objects with 100M[symbol: see text] < M(initial) < 140M[symbol: see text] may end up as iron-core-collapse supernovae following violent mass ejections, perhaps as a result of brief episodes of pair instability, and may already have been identified. Here we report observations of supernova SN 2007bi, a luminous, slowly evolving object located within a dwarf galaxy. We estimate the exploding core mass to be M(core) approximately 100M[symbol: see text], in which case theory unambiguously predicts a pair-instability supernova. We show that >3M[symbol: see text] of radioactive (56)Ni was synthesized during the explosion and that our observations are well fitted by models of pair-instability supernovae. This indicates that nearby dwarf galaxies probably host extremely massive stars, above the apparent Galactic stellar mass limit, which perhaps result from processes similar to those that created the first stars in the Universe.

  8. Supernova simulations from a 3D progenitor model - Impact of perturbations and evolution of explosion properties

    NASA Astrophysics Data System (ADS)

    Müller, Bernhard; Melson, Tobias; Heger, Alexander; Janka, Hans-Thomas

    2017-11-01

    We study the impact of large-scale perturbations from convective shell burning on the core-collapse supernova explosion mechanism using 3D multigroup neutrino hydrodynamics simulations of an 18M⊙ progenitor. Seed asphericities in the O shell, obtained from a recent 3D model of O shell burning, help trigger a neutrino-driven explosion 330 ms after bounce whereas the shock is not revived in a model based on a spherically symmetric progenitor for at least another 300 ms. We tentatively infer a reduction of the critical luminosity for shock revival by ˜ 20 {per cent} due to pre-collapse perturbations. This indicates that convective seed perturbations play an important role in the explosion mechanism in some progenitors. We follow the evolution of the 18M⊙ model into the explosion phase for more than 2 s and find that the cycle of accretion and mass ejection is still ongoing at this stage. With a preliminary value of 7.7 × 1050 erg for the diagnostic explosion energy, a baryonic neutron star mass of 1.85M⊙, a neutron star kick of ˜ 600 km s^{-1} and a neutron star spin period of ˜ 20 ms at the end of the simulation, the explosion and remnant properties are slightly atypical, but still lie comfortably within the observed distribution. Although more refined simulations and a larger survey of progenitors are still called for, this suggests that a solution to the problem of shock revival and explosion energies in the ballpark of observations is within reach for neutrino-driven explosions in 3D.

  9. Revival of the fittest: exploding core-collapse supernovae from 12 to 25 M⊙

    NASA Astrophysics Data System (ADS)

    Vartanyan, David; Burrows, Adam; Radice, David; Skinner, M. Aaron; Dolence, Joshua

    2018-07-01

    We present results of 2D axisymmetric core-collapse supernova simulations, employing the FORNAX code, of nine progenitor models spanning 12 to 25 M⊙. Four of the models explode with inelastic scattering off electrons and neutrons as well as the many-body correction to neutrino-nucleon scattering opacities. We show that these four models feature sharp Si-O interfaces in their density profiles, and that the corresponding dip in density reduces the accretion rate around the stalled shock and prompts explosion. The non-exploding models lack such a steep feature, highlighting the Si-O interface as one key to explosion. Furthermore, we show that all of the non-exploding models can be nudged to explosion with modest changes to macrophysical inputs, including moderate rotation and perturbations to infall velocities, as well as to microphysical inputs, including reasonable changes to neutrino-nucleon interaction rates, suggesting that all the models are perhaps close to criticality. Exploding models have energies of a few × 1050 erg at the end of our simulation, and are rising, emphasizing the need to continue these simulations over larger grids and for longer times to reproduce the energies seen in nature. Morphology of the explosion contributes to the explosion energy, with more isotropic ejecta producing larger explosion energies. We do not find evidence for the Lepton-number Emission Self-sustained Asymmetry. Finally, we look at proto-neutron star (PNS) properties and explore the role of dimension in our simulations. We find that convection in the PNS produces larger PNS radii as well as greater `νμ' luminosities in 2D compared to 1D.

  10. Revival of the Fittest: Exploding Core-Collapse Supernovae from 12 to 25 M⊙

    NASA Astrophysics Data System (ADS)

    Vartanyan, David; Burrows, Adam; Radice, David; Skinner, M. Aaron; Dolence, Joshua

    2018-03-01

    We present results of 2D axisymmetric core-collapse supernova simulations, employing the FORNAX code, of nine progenitor models spanning 12 to 25 M⊙. Four of the models explode with inelastic scattering off electrons and neutrons as well as the many-body correction to neutrino-nucleon scattering opacities. We show that these four models feature sharp Si-O interfaces in their density profiles, and that the corresponding dip in density reduces the accretion rate around the stalled shock and prompts explosion. The non-exploding models lack such a steep feature, highlighting the Si-O interface as one key to explosion. Furthermore, we show that all of the non-exploding models can be nudged to explosion with modest changes to macrophysical inputs, including moderate rotation and perturbations to infall velocities, as well as to microphysical inputs, including reasonable changes to neutrino-nucleon interaction rates, suggesting that all the models are perhaps close to criticality. Exploding models have energies of few × 1050 ergs at the end of our simulation, and are rising, emphasizing the need to continue these simulations over larger grids and for longer times to reproduce the energies seen in Nature. Morphology of the explosion contributes to the explosion energy, with more isotropic ejecta producing larger explosion energies. We do not find evidence for the Lepton-number Emission Self-Sustained Asymmetry. Finally, we look at PNS properties and explore the role of dimension in our simulations. We find that convection in the proto-neutron star (PNS) produces larger PNS radii as well as greater "νμ" luminosities in 2D compared to 1D.

  11. Parameterizing the Supernova Engine and Its Effect on Remnants and Basic Yields

    NASA Astrophysics Data System (ADS)

    Fryer, Chris L.; Andrews, Sydney; Even, Wesley; Heger, Alex; Safi-Harb, Samar

    2018-03-01

    Core-collapse supernova science is now entering an era in which engine models are beginning to make both qualitative and, in some cases, quantitative predictions. Although the evidence in support of the convective engine for core-collapse supernova continues to grow, it is difficult to place quantitative constraints on this engine. Some studies have made specific predictions for the remnant distribution from the convective engine, but the results differ between different groups. Here we use a broad parameterization for the supernova engine to understand the differences between distinct studies. With this broader set of models, we place error bars on the remnant mass and basic yields from the uncertainties in the explosive engine. We find that, even with only three progenitors and a narrow range of explosion energies, we can produce a wide range of remnant masses and nucleosynthetic yields.

  12. Observational Evidence for Mixing and Dust Condensation in Core-Collapse Supernovae

    NASA Technical Reports Server (NTRS)

    Wooden, Diane; Young, Richard E. (Technical Monitor)

    1997-01-01

    Recent findings of isotopic anomalies of Ca-44 (the decay product of Ti-44) and the enhanced ratio of Si-28/Si-30 in SiC grains X, TiC subgrains, and graphite dust grains within primitive meteorites provides strong evidence that these presolar grains came from core-collapse supernovae. The chemical composition of the presolar grains requires macroscopic mixing of newly nucleo-synthesized elements from explosive silicon burning at the innermost zone of the ejects to higher velocities where C exists and where C/O > 1 in either the outer edge of the oxygen zone or in the He-C zone. To date, the only core-collapse supernova observed to form dust is the brightest supernova of the past four centuries, SN1987A in the Large Magellanic Cloud. Observations of SN1987A confirm large scale macroscopic mixing occurs in the explosions of massive stars. Rayleigh-Taylor instabilities macroscopically mix most of the ejects into regions which are still chemically homogeneous and which cool with different time scales. Only small clumps in the ejects are microscopically mixed. Observations show that dust condensed in the ejects of SN1987A after approx.500 days in the Fe-rich gas. Neither silicates nor SiC grains were seen in the dust emission spectrum of SN1987A. SN1987A, the Rosetta Stone of core-collapse supernovae, shows that while the mixing required to explain presolar grains occurs, the rapid cooling of the Fe zone and the sustained high temperatures of the O-Si, O-C, and He-C zones favor the formation of iron-rich rather than oxygen- or carbon-rich grains.

  13. Properties of convective oxygen and silicon burning shells in supernova progenitors

    NASA Astrophysics Data System (ADS)

    Collins, Christine; Müller, Bernhard; Heger, Alexander

    2018-01-01

    Recent 3D simulations have suggested that convective seed perturbations from shell burning can play an important role in triggering neutrino-driven supernova explosions. Since isolated simulations cannot determine whether this perturbation-aided mechanism is of general relevance across the progenitor mass range, we here investigate the pertinent properties of convective oxygen and silicon burning shells in a broad range of pre-supernova stellar evolution models. We find that conditions for perturbation-aided explosions are most favourable in the extended oxygen shells of progenitors between about 16 and 26 solar masses, which exhibit large-scale convective overturn with high convective Mach numbers. Although the highest convective Mach numbers of up to 0.3 are reached in the oxygen shells of low-mass progenitors, convection is typically dominated by small-scale modes in these shells, which implies a more modest role of initial perturbations in the explosion mechanism. Convective silicon burning rarely provides the high Mach numbers and large-scale perturbations required for perturbation-aided explosions. We also find that about 40 per cent of progenitors between 16 and 26 solar masses exhibit simultaneous oxygen and neon burning in the same convection zone as a result of a shell merger shortly before collapse.

  14. How Bright Can Supernovae Get?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Supernovae enormous explosions associated with the end of a stars life come in a variety of types with different origins. A new study has examined how the brightest supernovae in the Universe are produced, and what limits might be set on their brightness.Ultra-Luminous ObservationsRecent observations have revealed many ultra-luminous supernovae, which haveenergies that challenge our abilities to explain them usingcurrent supernova models. An especially extreme example is the 2015 discovery of the supernova ASASSN-15lh, which shone with a peak luminosity of ~2*1045 erg/s, nearly a trillion times brighter than the Sun. ASASSN-15lh radiated a whopping ~2*1052 erg in the first four months after its detection.How could a supernova that bright be produced? To explore the answer to that question, Tuguldur Sukhbold and Stan Woosley at University of California, Santa Cruz, have examined the different sources that could produce supernovae and calculated upper limits on the potential luminosities ofeach of these supernova varieties.Explosive ModelsSukhbold and Woosley explore multiple different models for core-collapse supernova explosions, including:Prompt explosionA stars core collapses and immediately explodes.Pair instabilityElectron/positron pair production at a massive stars center leads to core collapse. For high masses, radioactivity can contribute to delayed energy output.Colliding shellsPreviously expelled shells of material around a star collide after the initial explosion, providing additional energy release.MagnetarThe collapsing star forms a magnetar a rapidly rotating neutron star with an incredibly strong magnetic field at its core, which then dumps energy into the supernova ejecta, further brightening the explosion.They then apply these models to different types of stars.Setting the LimitThe authors show that the light curve of ASASSN-15lh (plotted in orange) can be described by a model (black curve) in which a magnetar with an initial spin period of 0.7 ms and a magnetic field of 2*1013 Gauss deposits energy into ~12 solar masses of ejecta. Click for a closerlook! [Adapted from SukhboldWoosley 2016]The authors find that the maximum luminosity that can be produced by these different supernova models ranges between 5*1043 and 2*1046 erg/s, with total radiated energies of 3*1050 to 4*1052 erg. This places the upper limit on the brightness of a supernova at about 5 trillion times the luminosity of the Sun.The calculations performed by Sukhbold and Woosley confirm that, of the options they explore, the least luminous events are produced by prompt explosions. The brightest events possible are powered by the rotational energy of a newly born magnetar at the heart of the explosion.The energies of observed ultra-luminous supernovae are (just barely) containedwithin the bounds of the mechanisms explored here. This is even true of the extreme ASASSN-15lh which, based on the authors calculations, was almost certainly powered by an embedded magnetar. If we were to observe a supernova more than twice as bright as ASASSN-15lh, however, it would be nearly impossible to explain with current models.CitationTuguldur Sukhbold and S. E. Woosley 2016 ApJ 820 L38. doi:10.3847/2041-8205/820/2/L38

  15. Recombining plasma in the remnant of a core-collapsed supernova, Kes 17

    NASA Astrophysics Data System (ADS)

    Washino, Ryosaku; Uchida, Hiroyuki; Nobukawa, Masayoshi; Tsuru, Takeshi Go; Tanaka, Takaaki; Kawabata Nobukawa, Kumiko; Koyama, Katsuji

    2016-06-01

    We report on Suzaku results concerning Kes 17, a Galactic mixed-morphology supernova remnant. The X-ray spectrum of the whole Kes 17 is well explained by a pure thermal plasma, in which we found Lyα of Al XIII and Heα of Al XII, Ar XVII, and Ca XIX lines for the first time. The abundance pattern and the plasma mass suggest that Kes 17 is a remnant of a core-collapsed supernova of a 25-30 M⊙ progenitor star. The X-ray spectrum of the north region is expressed by a recombining plasma. The origin would be due to the cooling of electrons by thermal conduction to molecular clouds located near the north region.

  16. Supernova Neutrino-Burst Search with the AMANDA Detector

    NASA Astrophysics Data System (ADS)

    Neunhöffer, T.; AMANDA Collaboration

    2001-08-01

    The neutrino telescope AMANDA located deep in the South Pole ice has been used to search for bursts of low energy neutrinos originating from supernova collapses. In the data sets taken during 1997 and 1998 with 302 of the detector's optical modules no candidate events were found. With this detector configuration 70% of the galaxy is covered with 90% efficiency allowing for one background fake per year. An upper limit at the 90% c.l. on the rate of star collapses in the Milky Way is derived, yielding 4.3 events per year. The new supernova readout system, which has been installed in 2000 and 2001, is discussed. With the full (19string) system we expect to cover 97% of our galaxy.

  17. Three-dimensional simulations of rapidly rotating core-collapse supernovae: finding a neutrino-powered explosion aided by non-axisymmetric flows

    NASA Astrophysics Data System (ADS)

    Takiwaki, Tomoya; Kotake, Kei; Suwa, Yudai

    2016-09-01

    We report results from a series of three-dimensional (3D) rotational core-collapse simulations for 11.2 and 27 M⊙ stars employing neutrino transport scheme by the isotropic diffusion source approximation. By changing the initial strength of rotation systematically, we find a rotation-assisted explosion for the 27 M⊙ progenitor , which fails in the absence of rotation. The unique feature was not captured in previous two-dimensional (2D) self-consistent rotating models because the growing non-axisymmetric instabilities play a key role. In the rapidly rotating case, strong spiral flows generated by the so-called low T/|W| instability enhance the energy transport from the proto-neutron star (PNS) to the gain region, which makes the shock expansion more energetic. The explosion occurs more strongly in the direction perpendicular to the rotational axis, which is different from previous 2D predictions.

  18. Simulating nonlinear neutrino flavor evolution

    NASA Astrophysics Data System (ADS)

    Duan, H.; Fuller, G. M.; Carlson, J.

    2008-10-01

    We discuss a new kind of astrophysical transport problem: the coherent evolution of neutrino flavor in core collapse supernovae. Solution of this problem requires a numerical approach which can simulate accurately the quantum mechanical coupling of intersecting neutrino trajectories and the associated nonlinearity which characterizes neutrino flavor conversion. We describe here the two codes developed to attack this problem. We also describe the surprising phenomena revealed by these numerical calculations. Chief among these is that the nonlinearities in the problem can engineer neutrino flavor transformation which is dramatically different to that in standard Mikheyev Smirnov Wolfenstein treatments. This happens even though the neutrino mass-squared differences are measured to be small, and even when neutrino self-coupling is sub-dominant. Our numerical work has revealed potential signatures which, if detected in the neutrino burst from a Galactic core collapse event, could reveal heretofore unmeasurable properties of the neutrinos, such as the mass hierarchy and vacuum mixing angle θ13.

  19. Coherent network analysis of gravitational waves from three-dimensional core-collapse supernova models

    NASA Astrophysics Data System (ADS)

    Hayama, Kazuhiro; Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya

    2015-12-01

    Using predictions from three-dimensional (3D) hydrodynamics simulations of core-collapse supernovae (CCSNe), we present a coherent network analysis for the detection, reconstruction, and source localization of the gravitational-wave (GW) signals. We use the RIDGE pipeline for the analysis, in which the network of LIGO Hanford, LIGO Livingston, VIRGO, and KAGRA is considered. By combining with a GW spectrogram analysis, we show that several important hydrodynamics features in the original waveforms persist in the waveforms of the reconstructed signals. The characteristic excess in the spectrograms originates not only from the rotating core collapse, bounce, and subsequent ringdown of the proto-neutron star (PNS) as previously identified, but also from the formation of magnetohydrodynamics jets and nonaxisymmetric instabilities in the vicinity of the PNS. Regarding the GW signals emitted near the rotating core bounce, the horizon distance extends up to ˜18 kpc for the most rapidly rotating 3D model in this work. Following the rotating core bounce, the dominant source of the GW emission shifts to the nonaxisymmetric instabilities. The horizon distances extend maximally up to ˜40 kpc seen from the spin axis. With an increasing number of 3D models trending towards explosion recently, our results suggest that in addition to the best-studied GW signals due to rotating core collapse and bounce, the time is ripe to consider how we can do science from GWs of CCSNe much more seriously than before. In particular, the quasiperiodic signals due to the nonaxisymmetric instabilities and the detectability deserves further investigation to elucidate the inner workings of the rapidly rotating CCSNe.

  20. VizieR Online Data Catalog: Long-term core-collapse supernova simulations (Nakamura+, 2016)

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Horiuchi, S.; Tanaka, M.; Hayama, K.; Takiwaki, T.; Kotake, K.

    2017-11-01

    In Table 2, we compiled a list of nearby RSGs from the literature. RSGs associated with OB associations and other RSGs. Our final RSG list consists of 212 RSG candidates. To estimate the CCSN rate of each galaxy, we adopt a subset of the Karachentsev catalogue for which the star formation rate can be observationally estimated. The resulting CCSN rates are summarized in the final column of Table 3. (2 data files).

  1. Parametric Study of Flow Patterns behind the Standing Accretion Shock Wave for Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Iwakami, Wakana; Nagakura, Hiroki; Yamada, Shoichi

    2014-05-01

    In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshing motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.

  2. Physics of Core-Collapse Supernovae in Three Dimensions: A Sneak Preview

    NASA Astrophysics Data System (ADS)

    Janka, Hans-Thomas; Melson, Tobias; Summa, Alexander

    2016-10-01

    Nonspherical mass motions are a generic feature of core-collapse supernovae, and hydrodynamic instabilities play a crucial role in the explosion mechanism. The first successful neutrino-driven explosions could be obtained with self-consistent, first-principles simulations in three spatial dimensions. But three-dimensional (3D) models tend to be less prone to explosion than the corresponding axisymmetric two-dimensional (2D) ones. The reason is that 3D turbulence leads to energy cascading from large to small spatial scales, the inverse of the 2D case, thus disfavoring the growth of buoyant plumes on the largest scales. Unless the inertia to explode simply reflects a lack of sufficient resolution in relevant regions, some important component of robust and sufficiently energetic neutrino-powered explosions may still be missing. Such a deficit could be associated with progenitor properties such as rotation, magnetic fields, or precollapse perturbations, or with microphysics that could cause enhancement of neutrino heating behind the shock. 3D simulations have also revealed new phenomena that are not present in 2D ones, such as spiral modes of the standing accretion shock instability (SASI) and a stunning dipolar lepton-number emission self-sustained asymmetry (LESA). Both impose time- and direction-dependent variations on the detectable neutrino signal. The understanding of these effects and of their consequences is still in its infancy.

  3. Neutrino Flavor Evolution in Turbulent Supernova Matter

    NASA Astrophysics Data System (ADS)

    Lund, Tina; Kneller, James P.

    In order to decode the neutrino burst signal from a Galactic core-collapse supernova and reveal the complicated inner workings of the explosion, we need a thorough understanding of the neutrino flavor evolution from the proto-neutron-star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution by including collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein (MSW) matter conversions due to the shock wave passing through the star, and the impact of turbulence. The density profiles utilized in our calculations represent a 10.8 MG progenitor and comes from a 1D numerical simulation by Fischer et al.[1]. We find that small amplitude turbulence, up to 10% of the average potential, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence are added, 30% and 50%, the features of collective and shock wave effects in the high density resonance channel are almost completely obscured at late times. At the same time we find the other mixing channels - the low density resonance channel and the non-resonant channels - begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal. We illustrate how the progression of the shock wave is reflected in the changing survival probabilities over time, and we show preliminary results on how some of these collective and shock wave induced signatures appear in a detector signal.

  4. Fizzlers

    NASA Astrophysics Data System (ADS)

    Imamura, James

    2008-05-01

    Type II Supernovae are produced by the collapse of the cores of massive stars at the ends of their nuclear lifetimes. The basic picture for the outburst mechanism of Type II Supernova explosions is rather secure with only the details of the shock generation and the outburst uncertain. However, broad issues remain concerning our understanding of Type II Supernovae when the less studied, but more general case of rotating and/or magnetic progenitor stars is considered. That rotation and magnetic fields may play large roles in core collapse has been suggested for almost 40 years dating from the discovery that pulsars, the remnants of Type II Supernovae, are strongly magnetic, rapidly rotating neutron stars. This fact has been further reinforced by the discovery of the class of neutron stars with ultra-strong magnetic fields known as Magnetars. The role that rotation plays in core collapse can be appreciated by noting that stable, stationary, degenerate equilibrium configurations are possible only for stars with central density ρc 10^4-10^9 g cm-3 (white dwarf densities) and ρc 10^14-10^15 g cm-3 (neutron star densities). Nonrotating objects with ρc between that of white dwarfs (typical of the densities of the precollapse cores of Type II Supernovae) and neutron stars are unstable to radial collapse because of the low effective γ of their equations-of-state (EOS) (see Shapiro & & Teukolsky 1983). Stars at intermediate ρc may be stabilized against collapse by rapid rotation. This possibility gives rise to what were coined fizzlers by Gold (1974) to describe fizzled core collapses of massive rotating stars through formation of rotation-supported stars with densities intermediate between those of the white dwarf-like precollapse core and a neutron star. Interest in fizzlers waned in the 1980s when it was showed that, although fizzlers could exist, they only occupied a small part of the precollapse core parameter space for cold equations-of-state (EOS). Interest in fizzlers was revived in the late 1990s when it was found that fizzlers could form under a wider range of conditions than had been suggested if hot dense EOSs were considered. Observationally, interest in fizzlers was also driven by the recognition that fizzlers could lead to the generation of gravitational wave emission in Type II Supernovae, emission potentially observable by LIGO, the Laser Interferometer Gravitational Wave Observatory), and other gravitational wave observatories, and that fizzlers could perhaps play roles in the γ-ray burster phenomenon and the formation of strange stars. We review the properties of fizzlers and consider their applications to LIGO, strange stars, and Magnetars.

  5. Neutrino Signal of Collapse-induced Thermonuclear Supernovae: The Case for Prompt Black Hole Formation in SN 1987A

    NASA Astrophysics Data System (ADS)

    Blum, Kfir; Kushnir, Doron

    2016-09-01

    Collapse-induced thermonuclear explosion (CITE) may explain core-collapse supernovae (CCSNe). We analyze the neutrino signal in CITE and compare it to the neutrino burst of SN 1987A. For strong (≳ {10}51 erg) CCSNe, such as SN 1987A, CITE predicts a proto-neutron star (PNS) accretion phase lasting up to a few seconds that is cut off by black hole (BH) formation. The neutrino luminosity can later be revived by accretion disk emission after a dead time of a few to a few tens of seconds. In contrast, the neutrino mechanism for CCSNe predicts a short (≲s) PNS accretion phase, followed by slowly declining PNS cooling luminosity. We repeat statistical analyses used in the literature to interpret the neutrino mechanism, and apply them to CITE. The first 1-2 s of the neutrino burst are equally compatible with CITE and with the neutrino mechanism. However, the data points toward a luminosity drop at t = 2-3 s, which is in some tension with the neutrino mechanism but can be naturally attributed to BH formation in CITE. The occurrence of neutrino signal events at 5 s suggests that, within CITE, the accretion disk formed by that time. We perform two-dimensional numerical simulations showing that CITE may be able to accommodate this disk formation time while reproducing the ejected 56Ni mass and ejecta kinetic energy within factors of 2-3 of observations. We estimate the accretion disk neutrino luminosity, finding it to be on the low side but compatible with the data to a factor of 10. Given comparable uncertainties in the disk luminosity simulation, we conclude that direct BH formation may have occurred in SN 1987A.

  6. Rotation-supported Neutrino-driven Supernova Explosions in Three Dimensions and the Critical Luminosity Condition

    NASA Astrophysics Data System (ADS)

    Summa, Alexander; Janka, Hans-Thomas; Melson, Tobias; Marek, Andreas

    2018-01-01

    We present the first self-consistent, 3D core-collapse supernova simulations performed with the PROMETHEUS-VERTEX code for a rotating progenitor star. Besides using the angular momentum of the 15 M ⊙ model as obtained in the stellar evolution calculation with an angular frequency of ∼10‑3 rad s‑1 (spin period of more than 6000 s) at the Si/Si–O interface, we also computed 2D and 3D cases with no rotation and with a ∼300 times shorter rotation period and different angular resolutions. In 2D, only the nonrotating and slowly rotating models explode, while rapid rotation prevents an explosion within 500 ms after bounce because of lower radiated neutrino luminosities and mean energies and thus reduced neutrino heating. In contrast, only the fast-rotating model develops an explosion in 3D when the Si/Si–O interface collapses through the shock. The explosion becomes possible by the support of a powerful standing accretion shock instability spiral mode, which compensates for the reduced neutrino heating and pushes strong shock expansion in the equatorial plane. Fast rotation in 3D leads to a “two-dimensionalization” of the turbulent energy spectrum (yielding roughly a ‑3 instead of a ‑5/3 power-law slope at intermediate wavelengths) with enhanced kinetic energy on the largest spatial scales. We also introduce a generalization of the “universal critical luminosity condition” of Summa et al. to account for the effects of rotation, and we demonstrate its viability for a set of more than 40 core-collapse simulations, including 9 and 20 M ⊙ progenitors, as well as black-hole-forming cases of 40 and 75 M ⊙ stars to be discussed in forthcoming papers.

  7. Co-production of Nitrogen-15 and Oxygen-18 in Explosive Helium Burning and Implications for Supernova Graphite Grains

    NASA Astrophysics Data System (ADS)

    Bojazi, Michael

    My Masters research involves simulations of a supernova whereby a shock wave of constant Mach number is sent through a 15-solar-mass star evolved to the point of core-collapse. The resulting nucleosynthesis is examined with the intent of explaining the overproduction, relative to solar values, of nitrogen-15 and oxygen-18 abundances in supernova presolar graphite grains, as experimentally determined by Groopman et al. via a NanoSIMS analysis. We find such overabundances to be present in the helium-rich zone. Oxygen-18 is leftover from presupernova helium burning while nitrogen-15 is produced by explosive helium burning. Interestingly, anomalous excesses in molybdenum-95 and molybdenum-97 abundances in SiC X grains, discovered by Pellin et al. using the CHARISMA instrument, probably arise from explosive helium burning as well. These results signal the importance of the helium-rich zone for supernova presolar grain growth. We suggest that matter deep from the supernova, which is rich in iron-peak elements, gets injected into the helium-rich zone. Small TiC grains form in this material. These subgrains then traverse the helium-rich zone and serve as seeds for the growth of the graphite or SiC X grains.

  8. Neutrinos from type Ia supernovae: The deflagration-to-detonation transition scenario

    DOE PAGES

    Wright, Warren P.; Nagaraj, Gautam; Kneller, James P.; ...

    2016-07-19

    It has long been recognized that the neutrinos detected from the next core-collapse supernova in the Galaxy have the potential to reveal important information about the dynamics of the explosion and the nucleosynthesis conditions as well as allowing us to probe the properties of the neutrino itself. The neutrinos emitted from thermonuclear—type Ia—supernovae also possess the same potential, although these supernovae are dimmer neutrino sources. For the first time, we calculate the time, energy, line of sight, and neutrino-flavor-dependent features of the neutrino signal expected from a three-dimensional delayed-detonation explosion simulation, where a deflagration-to-detonation transition triggers the complete disruption ofmore » a near-Chandrasekhar mass carbon-oxygen white dwarf. We also calculate the neutrino flavor evolution along eight lines of sight through the simulation as a function of time and energy using an exact three-flavor transformation code. We identify a characteristic spectral peak at ˜10 MeV as a signature of electron captures on copper. This peak is a potentially distinguishing feature of explosion models since it reflects the nucleosynthesis conditions early in the explosion. We simulate the event rates in the Super-K, Hyper-K, JUNO, and DUNE neutrino detectors with the SNOwGLoBES event rate calculation software and also compute the IceCube signal. Hyper-K will be able to detect neutrinos from our model out to a distance of ˜10 kpc. Here, at 1 kpc, JUNO, Super-K, and DUNE would register a few events while IceCube and Hyper-K would register several tens of events.« less

  9. The Type IIP SN 2005ay: An Extensive Study From UltraViolet To Near-IR

    NASA Astrophysics Data System (ADS)

    Bufano, F. M.; Turatto, M.; Zampieri, L.; Gal-Yam, A.

    2006-08-01

    Several supernova types are thought to explode via the gravitational collapse of the core of massive stars at the end of their lifetimes. The great observational diversity has not been fully understood even if it clearly involves the progenitor masses and configurations at the time of explosion. These Supernovae, called Core Collapse Supernovae (CC SNe), are expected to dominate the counts of SNe observed at high redshifts and to be the only observable probe of the first generation stars (Pop III). Recently indicated as reliable distance indicators (Hamuy 02, Pastorello `03), CC SNe are objects of great interest but significantly less studied in comparison with the Termonuclear ones. With the aim to understand better the reasons of the heterogeneous behaviour , we have started an extensive study of the properties of SN II with different observational features (luminosity, velocity, etc..). Here we present the last results on our first observed target, SN2005ay, a Type IIP supernova observed in an extended way from the Ultraviolet wavelengths, provided by the GALEX , to the Optical and near-IR , obtained with IISP (Italian Intensive Supernova Program).

  10. Observing the Next Galactic Supernova with the NOvA Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasel, Justin A.; Sheshukov, Andrey; Habig, Alec

    The next galactic core-collapse supernova will deliver a wealth of neutrinos which for the first time we are well-situated to measure. These explosions produce neutrinos with energies between 10 and 100 MeV over a period of tens of seconds. Galactic supernovae are relatively rare events, occurring with a frequency of just a few per century. It is therefore essential that all neutrino detectors capable of detecting these neutrinos are ready to trigger on this signal when it occurs. This poster describes a data-driven trigger which is designed to detect the neutrino signal from a galactic core-collapse supernova with the NOvAmore » detectors. The trigger analyzes 5ms blocks of detector activity and applies background rejection algorithms to detect the signal time structure over the background. This background reduction is an essential part of the process, as the NOvA detectors are designed to detect neutrinos from Fermilab's NuMI beam which have an average energy of 2GeV--well above the average energy of supernova neutrinos.« less

  11. Supernova neutrino three-flavor evolution with dominant collective effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogli, Gianluigi; Marrone, Antonio; Tamborra, Irene

    2009-04-15

    Neutrino and antineutrino fluxes from a core-collapse galactic supernova are studied, within a representative three-flavor scenario with inverted mass hierarchy and tiny 1-3 mixing. The initial flavor evolution is dominated by collective self-interaction effects, which are computed in a full three-family framework along an averaged radial trajectory. During the whole time span considered (t = 1-20 s), neutrino and antineutrino spectral splits emerge as dominant features in the energy domain for the final, observable fluxes. The main results can be useful for SN event rate simulations in specific detectors. Some minor or unobservable three-family features (e.g., related to the muonic-tauonicmore » flavor sector), as well as observable effects due to variations in the spectral input, are also discussed for completeness.« less

  12. Neutrino and Gravitational-Wave Signatures of Quark Stars

    NASA Astrophysics Data System (ADS)

    Chu, Ming-chung; Leung, Shing Chi; Lin, Lap Ming; Zha, Shuai

    We study two types of supernovae — Type IA (SNIa) and Core-collapse supernovae (CCSNe), particularly how they may help to probe new physics. First, using a two-dimensional hydrodynamics code with a fifth-order shock capturing scheme, we simulate the explosions of dark matter admixed SNIa and find that the explosion energy and abundance of 56Ni produced are sensitive to the mass of admixed dark matter. A small admixture of dark matter may account for some sub-luminous SNIa observed. Second, by incorporating a hybrid equation of state (EOS) that includes a hadron-to-quark phase transition, we study possible formation of quark stars in CCSNe. We calculate the gravitational-wave and neutrino emissions from such a system, and we study the effects of the parameters in the EOS on such signals.

  13. An integral condition for core-collapse supernova explosions

    DOE PAGES

    Murphy, Jeremiah W.; Dolence, Joshua C.

    2017-01-10

    Here, we derive an integral condition for core-collapse supernova (CCSN) explosions and use it to construct a new diagnostic of explodability. The fundamental challenge in CCSN theory is to explain how a stalled accretion shock revives to explode a star. In this manuscript, we assume that the shock revival is initiated by the delayed-neutrino mechanism and derive an integral condition for spherically symmetric shock expansion, v s > 0. One of the most useful one-dimensional explosion conditions is the neutrino luminosity and mass-accretion rate (more » $${L}_{\

  14. Newly Formed Dust in the Core-Collapse Supernova Remnant E0102

    NASA Astrophysics Data System (ADS)

    Ludwig, Bethany; Sandstrom, Karin; Bolatto, Alberto

    2018-01-01

    The mechanism of interstellar dust formation is a matter of continuing debate. In the very early universe, some high redshift galaxies are observed to have a substantial amount of dust. This has led to the suggestion that core collapse supernovae must be the producers of much of the dust in the universe. However, most observed supernova remnants (SNRs) in the local universe have measured dust yields far below the necessary levels. Cassiopeia A and SN 1987A are exceptions--in these young remnants, Herschel Space Observatory observations found large quantities of newly-formed dust. In these two cases, the SNR is young enough that the reverse shock has not yet interacted with most of the newly formed dust. To study supernova dust production, we observe SNR 1E0102.2-7219, which is approximately 1000 years old with a reverse shock that has only reached into a small part of its ejecta making it an excellent candidate to search for newly formed dust that has not yet been destroyed by those shocks. Using Herschel data, we carefully model the background around the remnant to remove emission that is unrelated to the SNR. We then measure the mass, temperature, and chemical composition of the dust by fitting the spectral energy distribution. Our findings reveal a substantial amount of previously undetected cold dust in the remnant, suggesting that indeed core collapse supernovae may host substantial amounts of newly formed dust, at least prior to the passage of the reverse shock.

  15. The imprints of the last jets in core collapse supernovae

    NASA Astrophysics Data System (ADS)

    Bear, Ealeal; Grichener, Aldana; Soker, Noam

    2017-12-01

    We analyse the morphologies of three core collapse supernova remnants (CCSNRs) and the energy of jets in other CCSNRs and in Super Luminous Supernovae (SLSNe) of type Ib/Ic/IIb, and conclude that these properties are well explained by the last jets' episode as expected in the jet feedback explosion mechanism of core collapse supernovae (CCSNe). The presence of two opposite protrusions, termed ears, and our comparison of the CCSNR morphologies with morphologies of planetary nebulae strengthen the claim that jets play a major role in the explosion mechanism of CCSNe. We crudely estimate the energy that was required to inflate the ears in two CCSNRs and assume that the ears were inflated by jets. We find that the energies of the jets which inflated ears in 11 CCSNRs span a range that is similar to that of jets in some energetic CCSNe (SLSNe) and that this energy, only of the last jets' episode, is much less than the explosion energy. This finding is compatible with the jet feedback explosion mechanism of CCSNe, where only the last jets, which carry a small fraction of the total energy carried by earlier jets, are expected to influence the outer parts of the ejecta. We reiterate our call for a paradigm shift from neutrino-driven to jet-driven explosion models of CCSNe.

  16. The primitive solar accretion disk and the formation of the planets

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1978-01-01

    The author develops the idea that the formation of the solar system was triggered by the explosion of a supernova near a compressed interstellar cloud, which was further compressed by the supernova ejecta until it went over the threshold for gravitational collapse. During the collapse it is expected that the cloud would fragment into much smaller pieces. The principle source of friction in the collapsing nebula is taken to be turbulent viscosity, the required stirring having been supplied possibly by meridional circulation currents. The theory can be shown to account for how a great deal of condensed matter in the form of cometary bodies could be put into elliptical orbits extending toward 100,000 AU, the region of the Oort reservoir.

  17. Simulations of Rayleigh Taylor Instabilities in the presence of a Strong Radiative shock

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Shvarts, Dov; Drake, R. P.

    2016-10-01

    Recent Supernova Rayleigh Taylor experiments on the National Ignition Facility (NIF) are relevant to the evolution of core-collapse supernovae in which red supergiant stars explode. Here we report simulations of these experiments using the CRASH code. The CRASH code, developed at the University of Michigan to design and analyze high-energy-density experiments, is an Eulerian code with block-adaptive mesh refinement, multigroup diffusive radiation transport, and electron heat conduction. We explore two cases, one in which the shock is strongly radiative, and another with negligible radiation. The experiments in all cases produced structures at embedded interfaces by the Rayleigh Taylor instability. The weaker shocked environment is cooler and the instability grows classically. The strongly radiative shock produces a warm environment near the instability, ablates the interface, and alters the growth. We compare the simulated results with the experimental data and attempt to explain the differences. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.

  18. Extinct Radioactivities and the R-Process Jet

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    2001-01-01

    All extinct radioactive species in the solar nebula were injected from a core-collapse supernova. I discuss primarily the products expected from an r-process jet in this supernova, and various supporting astrophysical observations. Additional information is contained in the original extended abstract.

  19. MHD supernova jets: the missing link

    NASA Technical Reports Server (NTRS)

    Meier, David L.; Nakamura, Masanori

    2003-01-01

    We review recent progress in the theory of jet production, with particular emphasis on the possibility of 1) powerful jets being produced in the first few seconds after collapse of a supernova core and 2)those jets being responsible for the aysmmetric explosion itself.

  20. NEUTRINO-DRIVEN TURBULENT CONVECTION AND STANDING ACCRETION SHOCK INSTABILITY IN THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdikamalov, Ernazar; Ott, Christian D.; Radice, David

    2015-07-20

    We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a 27 M{sub ⊙} progenitor star with a neutrino leakage/heating scheme. We vary the strength of neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-driven convection and subsequent development of the standing accretion shock instability (SASI), and (3) SASI-dominated evolution. This confirms previous 3D results of Hanke et al. and Couch and Connor. We carry out simulations with resolutions differing by up to a factor ofmore » ∼4 and demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-stationary angular kinetic energy spectrum E(ℓ) develops in the heating layer. Like other 3D studies, we find E(ℓ) ∝ℓ{sup −1} in the “inertial range,” while theory and local simulations argue for E(ℓ) ∝ ℓ{sup −5/3}. We argue that current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity up to the energy-containing scale, creating a “bottleneck” that prevents an efficient turbulent cascade.« less

  1. The development of explosions in axisymmetric ab initio core-collapse supernova simulations of 12–25 M ⊙ stars

    DOE PAGES

    Bruenn, Stephen W.; Lentz, Eric J.; Hix, William Raphael; ...

    2016-02-16

    We present four ab initio axisymmetric core-collapse supernova simulations initiated from 12, 15, 20, and 25 M⊙ zero-age main sequence progenitors. All of the simulations yield explosions and have been evolved for at least 1.2 s after core bounce and 1 s after material first becomes unbound. These simulations were computed with our Chimera code employing RbR spectral neutrino transport, special and general relativistic transport effects, and state-of-the-art neutrino interactions. Continuing the evolution beyond 1 s after core bounce allows the explosions to develop more fully and the processes involved in powering the explosions to become more clearly evident. Wemore » compute explosion energy estimates, including the negative gravitational binding energy of the stellar envelope outside the expanding shock, of 0.34, 0.88, 0.38, and 0.70 Bethe (B ≡ 10 51 erg) and increasing at 0.03, 0.15, 0.19, and 0.52 B S–1, respectively, for the 12, 15, 20, and 25 M⊙ models at the endpoint of this report. We examine the growth of the explosion energy in our models through detailed analyses of the energy sources and flows. We discuss how the explosion energies may be subject to stochastic variations as exemplfied by the effect of the explosion geometry of the 20 M⊙ model in reducing its explosion energy. We compute the proto-neutron star masses and kick velocities. In conclusion, we compare our results for the explosion energies and ejected 56Ni masses against some observational standards despite the large error bars in both models and observations.« less

  2. The development of explosions in axisymmetric ab initio core-collapse supernova simulations of 12–25 M ⊙ stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruenn, Stephen W.; Lentz, Eric J.; Hix, William Raphael

    We present four ab initio axisymmetric core-collapse supernova simulations initiated from 12, 15, 20, and 25 M⊙ zero-age main sequence progenitors. All of the simulations yield explosions and have been evolved for at least 1.2 s after core bounce and 1 s after material first becomes unbound. These simulations were computed with our Chimera code employing RbR spectral neutrino transport, special and general relativistic transport effects, and state-of-the-art neutrino interactions. Continuing the evolution beyond 1 s after core bounce allows the explosions to develop more fully and the processes involved in powering the explosions to become more clearly evident. Wemore » compute explosion energy estimates, including the negative gravitational binding energy of the stellar envelope outside the expanding shock, of 0.34, 0.88, 0.38, and 0.70 Bethe (B ≡ 10 51 erg) and increasing at 0.03, 0.15, 0.19, and 0.52 B S–1, respectively, for the 12, 15, 20, and 25 M⊙ models at the endpoint of this report. We examine the growth of the explosion energy in our models through detailed analyses of the energy sources and flows. We discuss how the explosion energies may be subject to stochastic variations as exemplfied by the effect of the explosion geometry of the 20 M⊙ model in reducing its explosion energy. We compute the proto-neutron star masses and kick velocities. In conclusion, we compare our results for the explosion energies and ejected 56Ni masses against some observational standards despite the large error bars in both models and observations.« less

  3. Revival of the fittest: exploding core-collapse supernovae from 12 to 25 M⊙

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vartanyan, David; Burrows, Adam; Radice, David

    Here, we present results of 2D axisymmetric core-collapse supernova simulations, employing the FORNAX code, of nine progenitor models spanning 12 to 25 M⊙. Four of the models explode with inelastic scattering off electrons and neutrons as well as the many-body correction to neutrino-nucleon scattering opacities. We show that these four models feature sharp Si–O interfaces in their density profiles, and that the corresponding dip in density reduces the accretion rate around the stalled shock and prompts explosion. The non-exploding models lack such a steep feature, highlighting the Si–O interface as one key to explosion. Furthermore, we show that all ofmore » the non-exploding models can be nudged to explosion with modest changes to macrophysical inputs, including moderate rotation and perturbations to infall velocities, as well as to microphysical inputs, including reasonable changes to neutrino-nucleon interaction rates, suggesting that all the models are perhaps close to criticality. Exploding models have energies of a few × 10 50 erg at the end of our simulation, and are rising, emphasizing the need to continue these simulations over larger grids and for longer times to reproduce the energies seen in nature. Morphology of the explosion contributes to the explosion energy, with more isotropic ejecta producing larger explosion energies. We do not find evidence for the Lepton-number Emission Self-sustained Asymmetry. Finally, we look at proto-neutron star (PNS) properties and explore the role of dimension in our simulations. We find that convection in the PNS produces larger PNS radii as well as greater ‘ν μ’ luminosities in 2D compared to 1D.« less

  4. Revival of the fittest: exploding core-collapse supernovae from 12 to 25 M⊙

    DOE PAGES

    Vartanyan, David; Burrows, Adam; Radice, David; ...

    2018-03-28

    Here, we present results of 2D axisymmetric core-collapse supernova simulations, employing the FORNAX code, of nine progenitor models spanning 12 to 25 M⊙. Four of the models explode with inelastic scattering off electrons and neutrons as well as the many-body correction to neutrino-nucleon scattering opacities. We show that these four models feature sharp Si–O interfaces in their density profiles, and that the corresponding dip in density reduces the accretion rate around the stalled shock and prompts explosion. The non-exploding models lack such a steep feature, highlighting the Si–O interface as one key to explosion. Furthermore, we show that all ofmore » the non-exploding models can be nudged to explosion with modest changes to macrophysical inputs, including moderate rotation and perturbations to infall velocities, as well as to microphysical inputs, including reasonable changes to neutrino-nucleon interaction rates, suggesting that all the models are perhaps close to criticality. Exploding models have energies of a few × 10 50 erg at the end of our simulation, and are rising, emphasizing the need to continue these simulations over larger grids and for longer times to reproduce the energies seen in nature. Morphology of the explosion contributes to the explosion energy, with more isotropic ejecta producing larger explosion energies. We do not find evidence for the Lepton-number Emission Self-sustained Asymmetry. Finally, we look at proto-neutron star (PNS) properties and explore the role of dimension in our simulations. We find that convection in the PNS produces larger PNS radii as well as greater ‘ν μ’ luminosities in 2D compared to 1D.« less

  5. Bellerophon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingerfelt, Eric J; Messer, II, Otis E

    2017-01-02

    The Bellerophon software system supports CHIMERA, a production-level HPC application that simulates the evolution of core-collapse supernovae. Bellerophon enables CHIMERA's geographically dispersed team of collaborators to perform job monitoring and real-time data analysis from multiple supercomputing resources, including platforms at OLCF, NERSC, and NICS. Its multi-tier architecture provides an encapsulated, end-to-end software solution that enables the CHIMERA team to quickly and easily access highly customizable animated and static views of results from anywhere in the world via a cross-platform desktop application.

  6. Triggering Collapse of the Presolar Dense Cloud Core and Injecting Short-lived Radioisotopes with a Shock Wave. V. Nonisothermal Collapse Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boss, Alan P., E-mail: aboss@carnegiescience.edu

    Recent meteoritical analyses support an initial abundance of the short-lived radioisotope (SLRI) {sup 60}Fe that may be high enough to require nucleosynthesis in a core-collapse supernova, followed by rapid incorporation into primitive meteoritical components, rather than a scenario where such isotopes were inherited from a well-mixed region of a giant molecular cloud polluted by a variety of supernovae remnants and massive star winds. This paper continues to explore the former scenario, by calculating three-dimensional, adaptive mesh refinement, hydrodynamical code (FLASH 2.5) models of the self-gravitational, dynamical collapse of a molecular cloud core that has been struck by a thin shockmore » front with a speed of 40 km s{sup −1}, leading to the injection of shock front matter into the collapsing cloud through the formation of Rayleigh–Taylor fingers at the shock–cloud intersection. These models extend the previous work into the nonisothermal collapse regime using a polytropic approximation to represent compressional heating in the optically thick protostar. The models show that the injection efficiencies of shock front materials are enhanced compared to previous models, which were not carried into the nonisothermal regime, and so did not reach such high densities. The new models, combined with the recent estimates of initial {sup 60}Fe abundances, imply that the supernova triggering and injection scenario remains a plausible explanation for the origin of the SLRIs involved in the formation of our solar system.« less

  7. NEAR-EXTREMAL BLACK HOLES AS INITIAL CONDITIONS OF LONG GRB SUPERNOVAE AND PROBES OF THEIR GRAVITATIONAL WAVE EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Putten, Maurice H. P. M.

    2015-09-01

    Long gamma-ray bursts (GRBs) associated with supernovae and short GRBs with extended emission (SGRBEE) from mergers are probably powered by black holes as a common inner engine, as their prompt GRB emission satisfies the same Amati correlation in the E{sub p,i}–E{sub iso} plane. We introduce modified Bardeen equations to identify hyper-accretion driving newly formed black holes in core-collapse supernovae to near-extremal spin as a precursor to prompt GRB emission. Subsequent spin-down is observed in the BATSE catalog of long GRBs. Spin-down provides a natural unification of long durations associated with the lifetime of black hole spin for normal long GRBsmore » and SGRBEEs, given the absence of major fallback matter in mergers. The results point to major emissions unseen in high frequency gravitational waves. A novel matched filtering method is described for LIGO–Virgo and KAGRA broadband probes of nearby core-collapse supernovae at essentially maximal sensitivity.« less

  8. 3-D explosions: a meditation on rotation (and magnetic fields)

    NASA Astrophysics Data System (ADS)

    Wheeler, J. C.

    This is the text of an introduction to a workshop on asymmetric explosions held in Austin in June, 2003. The great progress in supernova research over thirty-odd years is briefly reviewed. The context in which the meeting was called is then summarized. The theoretical success of the intrinsically multidimensional delayed detonation paradigm in explaining the nature of Type Ia supernovae coupled with new techniques of observations in the near IR and with spectropolarimetry promise great advances in understanding binary progenitors, the explosion physics, and the ever more accurate application to cosmology. Spectropolarimetry has also revealed the strongly asymmetric nature of core collapse and given valuable perspectives on the supernova - gamma-ray burst connection. The capability of the magneto-rotational instability to rapidly create strong toroidal magnetic fields in the core collapse ambiance is outlined. This physics may be the precursor to driving MHD jets that play a role in asymmetric supernovae. Welcome to the brave new world of three-dimensional explosions!

  9. Interacting supernovae and supernova impostors. LSQ13zm: an outburst heralds the death of a massive star

    DOE PAGES

    Tartaglia, L.; Pastorello, A.; Sullivan, M.; ...

    2016-03-23

    Here we report photometric and spectroscopic observations of the optical transient LSQ13zm. Historical data reveal the presence of an eruptive episode (that we label as ‘2013a’) followed by a much brighter outburst (‘2013b’) three weeks later, that we argue to be the genuine supernova explosion. This sequence of events closely resemble those observed for SN 2010mc and (in 2012) SN 2009ip. Furthermore, the absolute magnitude reached by LSQ13zm during 2013a (MR = -14.87 ± 0.25 mag) is comparable with those of supernova impostors, while that of the 2013b event (M R = -18.46 ± 0.21 mag) is consistent with thosemore » of interacting supernovae. Our spectra reveal the presence of a dense and structured circumstellar medium, probably produced through numerous pre-supernova mass-loss events. In addition, we find evidence for high-velocity ejecta, with a fraction of gas expelled at more than 20 000 km s -1. The spectra of LSQ13zm show remarkable similarity with those of well-studied core-collapse supernovae. From the analysis of the available photometric and spectroscopic data, we conclude that we first observed the last event of an eruptive sequence from a massive star, likely a Luminous Blue Variable, which a short time later exploded as a core-collapse supernova. Our detailed analysis of archival images suggests that the host galaxy is a star-forming Blue Dwarf Compact Galaxy.« less

  10. Interacting supernovae and supernova impostors. LSQ13zm: an outburst heralds the death of a massive star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartaglia, L.; Pastorello, A.; Sullivan, M.

    Here we report photometric and spectroscopic observations of the optical transient LSQ13zm. Historical data reveal the presence of an eruptive episode (that we label as ‘2013a’) followed by a much brighter outburst (‘2013b’) three weeks later, that we argue to be the genuine supernova explosion. This sequence of events closely resemble those observed for SN 2010mc and (in 2012) SN 2009ip. Furthermore, the absolute magnitude reached by LSQ13zm during 2013a (MR = -14.87 ± 0.25 mag) is comparable with those of supernova impostors, while that of the 2013b event (M R = -18.46 ± 0.21 mag) is consistent with thosemore » of interacting supernovae. Our spectra reveal the presence of a dense and structured circumstellar medium, probably produced through numerous pre-supernova mass-loss events. In addition, we find evidence for high-velocity ejecta, with a fraction of gas expelled at more than 20 000 km s -1. The spectra of LSQ13zm show remarkable similarity with those of well-studied core-collapse supernovae. From the analysis of the available photometric and spectroscopic data, we conclude that we first observed the last event of an eruptive sequence from a massive star, likely a Luminous Blue Variable, which a short time later exploded as a core-collapse supernova. Our detailed analysis of archival images suggests that the host galaxy is a star-forming Blue Dwarf Compact Galaxy.« less

  11. The mystery of a supposed massive star exploding in a brightest cluster galaxy

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Griffin

    2017-08-01

    Most of the diversity of core-collapse supernovae results from late-stage mass loss by their progenitor stars. Supernovae that interact with circumstellar material (CSM) are a particularly good probe of these last stages of stellar evolution. Type Ibn supernovae are a rare and poorly understood class of hydrogen-poor explosions that show signs of interaction with helium-rich CSM. The leading hypothesis is that they are explosions of very massive Wolf-Rayet stars in which the supernova ejecta excites material previously lost by stellar winds. These massive stars have very short lifetimes, and therefore should only found in actively star-forming galaxies. However, PS1-12sk is a Type Ibn supernova found on the outskirts of a giant elliptical galaxy. As this is extraordinary unlikely, we propose to obtain deep UV images of the host environment of PS1-12sk in order to map nearby star formation and/or find a potential unseen star-forming host. If star formation is detected, its amount and location will provide deep insights into the progenitor picture for the poorly-understood Type Ibn class. If star formation is still not detected, these observations would challenge the well-accepted hypothesis that these are core-collapse supernovae at all.

  12. SHEDDING NEW LIGHT ON EXPLODING STARS: TERASCALE SIMULATIONS OF NEUTRINO-DRIVEN SUPERNOVAE AND THEIR NUCLEOSYNTHESIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haxton, Wick

    2012-03-07

    This project was focused on simulations of core-collapse supernovae on parallel platforms. The intent was to address a number of linked issues: the treatment of hydrodynamics and neutrino diffusion in two and three dimensions; the treatment of the underlying nuclear microphysics that governs neutrino transport and neutrino energy deposition; the understanding of the associated nucleosynthesis, including the r-process and neutrino process; the investigation of the consequences of new neutrino phenomena, such as oscillations; and the characterization of the neutrino signal that might be recorded in terrestrial detectors. This was a collaborative effort with Oak Ridge National Laboratory, State University ofmore » New York at Stony Brook, University of Illinois at Urbana-Champaign, University of California at San Diego, University of Tennessee at Knoxville, Florida Atlantic University, North Carolina State University, and Clemson. The collaborations tie together experts in hydrodynamics, nuclear physics, computer science, and neutrino physics. The University of Washington contributions to this effort include the further development of techniques to solve the Bloch-Horowitz equation for effective interactions and operators; collaborative efforts on developing a parallel Lanczos code; investigating the nuclear and neutrino physics governing the r-process and neutrino physics; and exploring the effects of new neutrino physics on the explosion mechanism, nucleosynthesis, and terrestrial supernova neutrino detection.« less

  13. Strangeness driven phase transitions in compressed baryonic matter and their relevance for neutron stars and core collapsing supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raduta, Ad. R.; Gulminelli, F.; Oertel, M.

    2015-02-24

    We discuss the thermodynamics of compressed baryonic matter with strangeness within non-relativistic mean-field models with effective interactions. The phase diagram of the full baryonic octet under strangeness equilibrium is built and discussed in connection with its relevance for core-collapse supernovae and neutron stars. A simplified framework corresponding to (n, p, Λ)(+e)-mixtures is employed in order to test the sensitivity of the existence of a phase transition on the (poorely constrained) interaction coupling constants and the compatibility between important hyperonic abundances and 2M{sub ⊙} neutron stars.

  14. Toward Connecting Core-Collapse Supernova Theory with Observations: Nucleosynthetic Yields and Distribution of Elements in a 15 M⊙ Blue Supergiant Progenitor with SN 1987A Energetics

    NASA Astrophysics Data System (ADS)

    Plewa, Tomasz; Handy, Timothy; Odrzywolek, Andrzej

    2014-09-01

    We compute and discuss the process of nucleosynthesis in a series of core-collapse explosion models of a 15 solar mass, blue supergiant progenitor. We obtain nucleosynthetic yields and study the evolution of the chemical element distribution from the moment of core bounce until young supernova remnant phase. Our models show how the process of energy deposition due to radioactive decay modifies the dynamics and the core ejecta structure on small and intermediate scales. The results are compared against observations of young supernova remnants including Cas A and the recent data obtained for SN 1987A. We compute and discuss the process of nucleosynthesis in a series of core-collapse explosion models of a 15 solar mass, blue supergiant progenitor. We obtain nucleosynthetic yields and study the evolution of the chemical element distribution from the moment of core bounce until young supernova remnant phase. Our models show how the process of energy deposition due to radioactive decay modifies the dynamics and the core ejecta structure on small and intermediate scales. The results are compared against observations of young supernova remnants including Cas A and the recent data obtained for SN 1987A. The work has been supported by the NSF grant AST-1109113 and DOE grant DE-FG52-09NA29548. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the U.S. DoE under Contract No. DE-AC02-05CH11231.

  15. Supernova 1987A: 18 months later

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1989-01-01

    An overview of the significance for physics of the closest visual supernova in almost 400 years is presented. The supernova occurred in the Large Magellanic Cloud (LMC), approx. 50 kpc away. The supernova star was a massive star of approx. 15 to 20 solar mass. Observations now show that it was once a red giant but lost its outer envelope. The lower than standard luminosity and higher observed velocities are a natural consequence of the pre-supernova star being a blue rather than a red (supergiant). Of particular importance to physicsts is the detection of neutrinos from the event by detectors in the United States and Japan. Not only did this establish extra-solar system neutrino astronomy, but it also constrained the properties of neutrino. It is shown that the well established Kamioka-IMB neutrino burst experimentally implies an event with about 2 to 4 x 10 to the 53rd power ergs emitted in neutrinos and a temperature, T sub nu e, of between 4 and 4.5 MeV. This event is in excellent agreement with what one would expect from the gravitational core collapse of a massive star. The anticipated frequency of collapse events in our Galaxy is discussed.

  16. NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE: HIGH-RESOLUTION SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radice, David; Ott, Christian D.; Abdikamalov, Ernazar

    2016-03-20

    We present results from high-resolution semiglobal simulations of neutrino-driven convection in core-collapse supernovae. We employ an idealized setup with parameterized neutrino heating/cooling and nuclear dissociation at the shock front. We study the internal dynamics of neutrino-driven convection and its role in redistributing energy and momentum through the gain region. We find that even if buoyant plumes are able to locally transfer heat up to the shock, convection is not able to create a net positive energy flux and overcome the downward transport of energy from the accretion flow. Turbulent convection does, however, provide a significant effective pressure support to the accretionmore » flow as it favors the accumulation of energy, mass, and momentum in the gain region. We derive an approximate equation that is able to explain and predict the shock evolution in terms of integrals of quantities such as the turbulent pressure in the gain region or the effects of nonradial motion of the fluid. We use this relation as a way to quantify the role of turbulence in the dynamics of the accretion shock. Finally, we investigate the effects of grid resolution, which we change by a factor of 20 between the lowest and highest resolution. Our results show that the shallow slopes of the turbulent kinetic energy spectra reported in previous studies are a numerical artifact. Kolmogorov scaling is progressively recovered as the resolution is increased.« less

  17. Parametric study of flow patterns behind the standing accretion shock wave for core-collapse supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwakami, Wakana; Nagakura, Hiroki; Yamada, Shoichi, E-mail: wakana@heap.phys.waseda.ac.jp

    2014-05-10

    In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshingmore » motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.« less

  18. Electron-capture and Low-mass Iron-core-collapse Supernovae: New Neutrino-radiation-hydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Radice, David; Burrows, Adam; Vartanyan, David; Skinner, M. Aaron; Dolence, Joshua C.

    2017-11-01

    We present new 1D (spherical) and 2D (axisymmetric) simulations of electron-capture (EC) and low-mass iron-core-collapse supernovae (SN). We consider six progenitor models: the ECSN progenitor from Nomoto; two ECSN-like low-mass low-metallicity iron-core progenitors from A. Heger (2016, private communication); and the 9, 10, and 11 {M}⊙ (zero-age main-sequence) progenitors from Sukhbold et al. We confirm that the ECSN and ESCN-like progenitors explode easily even in 1D with explosion energies of up to a 0.15 Bethes (1 {{B}}\\equiv {10}51 {erg}), and are a viable mechanism for the production of very-low-mass neutron stars. However, the 9, 10, and 11 {M}⊙ progenitors do not explode in 1D and are not even necessarily easier to explode than higher-mass progenitor stars in 2D. We study the effect of perturbations and of changes to the microphysics and we find that relatively small changes can result in qualitatively different outcomes, even in 1D, for models sufficiently close to the explosion threshold. Finally, we revisit the impact of convection below the protoneutron star (PNS) surface. We analyze 1D and 2D evolutions of PNSs subject to the same boundary conditions. We find that the impact of PNS convection has been underestimated in previous studies and could result in an increase of the neutrino luminosity by up to factors of two.

  19. Electron-capture and Low-mass Iron-core-collapse Supernovae: New Neutrino-radiation-hydrodynamics Simulations

    DOE PAGES

    Radice, David; Burrows, Adam; Vartanyan, David; ...

    2017-11-15

    We present new 1D (spherical) and 2D (axisymmetric) simulations of electron-capture (EC) and low-mass iron-core-collapse supernovae (SN). We consider six progenitor models: the ECSN progenitor from Nomoto; two ECSN-like low-mass low-metallicity iron-core progenitors from A. Heger (2016, private communication); and the 9, 10, and 11more » $${M}_{\\odot }$$ (zero-age main-sequence) progenitors from Sukhbold et al. We confirm that the ECSN and ESCN-like progenitors explode easily even in 1D with explosion energies of up to a 0.15 Bethes ($$1\\ {\\rm{B}}\\equiv {10}^{51}\\ \\mathrm{erg}$$), and are a viable mechanism for the production of very-low-mass neutron stars. However, the 9, 10, and 11 $${M}_{\\odot }$$ progenitors do not explode in 1D and are not even necessarily easier to explode than higher-mass progenitor stars in 2D. We study the effect of perturbations and of changes to the microphysics and we find that relatively small changes can result in qualitatively different outcomes, even in 1D, for models sufficiently close to the explosion threshold. Finally, we revisit the impact of convection below the protoneutron star (PNS) surface. We analyze 1D and 2D evolutions of PNSs subject to the same boundary conditions. Lastly, we find that the impact of PNS convection has been underestimated in previous studies and could result in an increase of the neutrino luminosity by up to factors of two.« less

  20. Electron-capture and Low-mass Iron-core-collapse Supernovae: New Neutrino-radiation-hydrodynamics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radice, David; Burrows, Adam; Vartanyan, David

    We present new 1D (spherical) and 2D (axisymmetric) simulations of electron-capture (EC) and low-mass iron-core-collapse supernovae (SN). We consider six progenitor models: the ECSN progenitor from Nomoto; two ECSN-like low-mass low-metallicity iron-core progenitors from A. Heger (2016, private communication); and the 9, 10, and 11more » $${M}_{\\odot }$$ (zero-age main-sequence) progenitors from Sukhbold et al. We confirm that the ECSN and ESCN-like progenitors explode easily even in 1D with explosion energies of up to a 0.15 Bethes ($$1\\ {\\rm{B}}\\equiv {10}^{51}\\ \\mathrm{erg}$$), and are a viable mechanism for the production of very-low-mass neutron stars. However, the 9, 10, and 11 $${M}_{\\odot }$$ progenitors do not explode in 1D and are not even necessarily easier to explode than higher-mass progenitor stars in 2D. We study the effect of perturbations and of changes to the microphysics and we find that relatively small changes can result in qualitatively different outcomes, even in 1D, for models sufficiently close to the explosion threshold. Finally, we revisit the impact of convection below the protoneutron star (PNS) surface. We analyze 1D and 2D evolutions of PNSs subject to the same boundary conditions. Lastly, we find that the impact of PNS convection has been underestimated in previous studies and could result in an increase of the neutrino luminosity by up to factors of two.« less

  1. Nuclear equation of state for core-collapse supernova simulations with realistic nuclear forces

    NASA Astrophysics Data System (ADS)

    Togashi, H.; Nakazato, K.; Takehara, Y.; Yamamuro, S.; Suzuki, H.; Takano, M.

    2017-05-01

    A new table of the nuclear equation of state (EOS) based on realistic nuclear potentials is constructed for core-collapse supernova numerical simulations. Adopting the EOS of uniform nuclear matter constructed by two of the present authors with the cluster variational method starting from the Argonne v18 and Urbana IX nuclear potentials, the Thomas-Fermi calculation is performed to obtain the minimized free energy of a Wigner-Seitz cell in non-uniform nuclear matter. As a preparation for the Thomas-Fermi calculation, the EOS of uniform nuclear matter is modified so as to remove the effects of deuteron cluster formation in uniform matter at low densities. Mixing of alpha particles is also taken into account following the procedure used by Shen et al. (1998, 2011). The critical densities with respect to the phase transition from non-uniform to uniform phase with the present EOS are slightly higher than those with the Shen EOS at small proton fractions. The critical temperature with respect to the liquid-gas phase transition decreases with the proton fraction in a more gradual manner than in the Shen EOS. Furthermore, the mass and proton numbers of nuclides appearing in non-uniform nuclear matter with small proton fractions are larger than those of the Shen EOS. These results are consequences of the fact that the density derivative coefficient of the symmetry energy of our EOS is smaller than that of the Shen EOS.

  2. Towards generating a new supernova equation of state: A systematic analysis of cold hybrid stars

    NASA Astrophysics Data System (ADS)

    Heinimann, Oliver; Hempel, Matthias; Thielemann, Friedrich-Karl

    2016-11-01

    The hadron-quark phase transition in core-collapse supernovae (CCSNe) has the potential to trigger explosions in otherwise nonexploding models. However, those hybrid supernova equations of state (EOS) shown to trigger an explosion do not support the observational 2 M⊙ neutron star maximum mass constraint. In this work, we analyze cold hybrid stars by the means of a systematic parameter scan for the phase transition properties, with the aim to develop a new hybrid supernova EOS. The hadronic phase is described with the state-of-the-art supernova EOS HS(DD2), and quark matter by an EOS with a constant speed of sound (CSS) of cQM2=1 /3 . We find promising cases which meet the 2 M⊙ criterion and are interesting for CCSN explosions. We show that the very simple CSS EOS is transferable into the well-known thermodynamic bag model, important for future application in CCSN simulations. In the second part, the occurrence of reconfinement and multiple phase transitions is discussed. In the last part, the influence of hyperons in our parameter scan is studied. Including hyperons no change in the general behavior is found, except for overall lower maximum masses. In both cases (with and without hyperons) we find that quark matter with cQM2=1 /3 can increase the maximum mass only if reconfinement is suppressed or if quark matter is absolutely stable.

  3. Assessing the link between recent supernovae near Earth and the iron-60 anomaly in a deep-sea crust

    NASA Astrophysics Data System (ADS)

    Schulreich, Michael M.; Breitschwerdt, Dieter

    2016-06-01

    Some time ago, an enhanced concentration of the radionuclide 60Fe was discovered in a deep-sea ferromanganese crust, isolated in layers dating from about 2.2, Myr ago. Since 60Fe (half-life of 2.6, Myr) is not naturally produced on Earth, such an excess can only be attributed to extraterrestrial sources, particularly one or several nearby supernovae in the recent past. It has been speculated that these supernovae might have been involved in the formation of the Local Superbubble, our Galactic habitat. The aim of this talk is to provide a quantitative evidence for this scenario. For that purpose, I will present results from high-resolution hydrodynamical simulations of the Local Superbubble and its neighbour Loop I in different environments, including a self-consistently evolved supernova-driven interstellar medium. For the superbubble modelling, the time sequence and locations of the generating core-collapse supernova explosions are taken into account, which are derived from the mass spectrum of the perished members of certain, carefully preselected stellar moving groups. The release and turbulent mixing of 60Fe is followed via passive scalars, where the yields of the decaying radioisotope were adjusted according to recent stellar evolution calculations. The models are able to reproduce both the timing and the intensity of the 60Fe excess observed with rather high precision.

  4. NIF laboratory astrophysics simulations investigating the effects of a radiative shock on hydrodynamic instabilities

    NASA Astrophysics Data System (ADS)

    Angulo, A. A.; Kuranz, C. C.; Drake, R. P.; Huntington, C. M.; Park, H.-S.; Remington, B. A.; Kalantar, D.; MacLaren, S.; Raman, K.; Miles, A.; Trantham, Matthew; Kline, J. L.; Flippo, K.; Doss, F. W.; Shvarts, D.

    2016-10-01

    This poster will describe simulations based on results from ongoing laboratory astrophysics experiments at the National Ignition Facility (NIF) relevant to the effects of radiative shock on hydrodynamically unstable surfaces. The experiments performed on NIF uniquely provide the necessary conditions required to emulate radiative shock that occurs in astrophysical systems. The core-collapse explosions of red supergiant stars is such an example wherein the interaction between the supernova ejecta and the circumstellar medium creates a region susceptible to Rayleigh-Taylor (R-T) instabilities. Radiative and nonradiative experiments were performed to show that R-T growth should be reduced by the effects of the radiative shocks that occur during this core-collapse. Simulations were performed using the radiation hydrodynamics code Hyades using the experimental conditions to find the mean interface acceleration of the instability and then further analyzed in the buoyancy drag model to observe how the material expansion contributes to the mix-layer growth. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas under Grant Number DE-FG52-09NA29548.

  5. Resolving neutrino mass hierarchy from supernova (anti)neutrino-nucleus reactions

    NASA Astrophysics Data System (ADS)

    Vale, Deni; Paar, Nils

    2015-10-01

    Recently a hybrid method has been introduced to determine neutrino mass hierarchy by simultaneous measurements of detector responses induced by antineutrino and neutrino fluxes from accretion and cooling phase of type II supernova. The (anti)neutrino-nucleus cross sections for 12C, 16O, 56Fe and 208Pb are calculated in the framework of relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons in mineral oil and water, p (v¯e,e+)n are obtained using heavy-baryon chiral perturbation theory. The simulations of (anti)neutrino fluxes emitted from a proto-neutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside star. It is shown that simultaneous use of ve/v¯e detectors with different target material allow to determine the neutrino mass hierarchy from the ratios of ve/v¯e induced particle emissions. The hybrid method favors detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil and water is more appropriate.

  6. The Type II Supernova Mechanism

    NASA Astrophysics Data System (ADS)

    Bruenn, Stephen W.

    1996-05-01

    Supernova 1987A has confirmed the basic core collapse paradigm for Type-II supernovae by the detection of electron antineutrinos in the Kamiokande II and IMB experiments several hours prior to the first optical sighting. Furthermore, the evidence of large-scale mixing and overturn in the debris of SN1987A indicates that hydrodynamic instabilities occurred early on in the evolution of the remnant and have played a crucial role in the explosion mechanism itself. Despite these important clues, and many years of theoretical and numerical investigation of increasing sophistication, the core collapse explosion mechanism is still not well understood. I review the status of the currently favored scenario, which is the transfer of energy from hot material at small radii to cooler material in the region further out behind the stalled shock by a combination of neutrino flow and hydrodynamic instabilities. The nature and role of these hydrodynamic instabilities is explored in detail on the basis of linear perturbation analyses and multidimensional hydrodynamic simulations. Neutrino flow is shown to have an inhibiting effect on convection in the region immediately below the neutrinosphere. Farther in, material is likely to be semiconvective for several hundred milliseconds, but stable thereafter. Convection in the neutrino heated-layer outside the neutrinosphere and below the shock front is found to help but by no means guarantee and explosion. General relativistic effects are shown to be deleterious for neutrino heated explosions. The role of the progenitor structure is discussed on the basis of two distinct but representative examples. Finally, the importance of several neutrino processes not incorporated in current calculations is assessed.

  7. THE ENGINES BEHIND SUPERNOVAE AND GAMMA-RAY BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FRYER, CHRISTOPHER LEE

    2007-01-23

    The authors review the different engines behind supernova (SNe) and gamma-ray bursts (GRBs), focusing on those engines driving explosions in massive stars: core-collapse SNe and long-duration GRBs. Convection and rotation play important roles in the engines of both these explosions. They outline the basic physics and discuss the wide variety of ways scientists have proposed that this physics can affect the supernova explosion mechanism, concluding with a review of the current status in these fields.

  8. Dark matter balls help supernovae to explode

    NASA Astrophysics Data System (ADS)

    Froggatt, C. D.; Nielsen, H. B.

    2015-10-01

    As a solution to the well-known problem that the shock wave potentially responsible for the explosion of a supernova actually tends to stall, we propose a new energy source arising from our model for dark matter. Our earlier model proposed that dark matter should consist of cm-large white dwarf-like objects kept together by a skin separating two different sorts of vacua. These dark matter balls or pearls will collect in the middle of any star throughout its lifetime. At some stage during the development of a supernova, the balls will begin to take in neutrons and then other surrounding material. By passing into a ball nucleons fall through a potential of order 10 MeV, causing a severe production of heat — of order 10 foe for a solar mass of material eaten by the balls. The temperature in the iron core will thereby be raised, splitting up the iron into smaller nuclei. This provides a mechanism for reviving the shock wave when it arrives and making the supernova explosion really occur. The onset of the heating due to the dark matter balls would at first stop the collapse of the supernova progenitor. This opens up the possibility of there being two collapses giving two neutrino outbursts, as apparently seen in the supernova SN1987A — one in Mont Blanc and one 4 h 43 min later in both IMB and Kamiokande.

  9. What Can We Learn By Observing Supernova Neutrinos?

    NASA Astrophysics Data System (ADS)

    Beacom, John

    1999-10-01

    A core-collapse supernova emits of the order of 10^58 neutrinos of all flavors over about 10 seconds, with an average energy of about 11 MeV for ν_e, 16 MeV for barν_e, and 25 MeV for ν_μ, ν_τ, barν_μ, and barν_τ. The present and near-term solar neutrino detectors can readily observe a supernova anywhere in our Galaxy. The expected supernova rate in our Galaxy is about 3 per century. What can we learn by observing the neutrinos from the next Galactic supernova? Besides the nuclear and astrophysical aspects of the collapse mechanism, there will be an unprecedented opportunity to measure neutrino properties, in particular their masses. The ν_μ and ν_τ masses can be measured by time-of-flight relative to the νe and barνe neutrinos, with a nearly model-independent sensitivity down to about 30 eV. If the time development of the supernova neutrino luminosities were better known from theory, this could be reduced to 10 eV or less. In either case, it will be essential to map out the neutrino energy spectra by measuring the signals on several different nuclear targets. Direct information on the absolute scale of the neutrino masses is especially crucial now since the apparently positive signals from neutrino oscillation experiments indicate nonzero differences in neutrino masses, with no information on the overall scale.

  10. The metamorphosis of supernova SN 2008D/XRF 080109: a link between supernovae and GRBs/hypernovae.

    PubMed

    Mazzali, Paolo A; Valenti, Stefano; Della Valle, Massimo; Chincarini, Guido; Sauer, Daniel N; Benetti, Stefano; Pian, Elena; Piran, Tsvi; D'Elia, Valerio; Elias-Rosa, Nancy; Margutti, Raffaella; Pasotti, Francesco; Antonelli, L Angelo; Bufano, Filomena; Campana, Sergio; Cappellaro, Enrico; Covino, Stefano; D'Avanzo, Paolo; Fiore, Fabrizio; Fugazza, Dino; Gilmozzi, Roberto; Hunter, Deborah; Maguire, Kate; Maiorano, Elisabetta; Marziani, Paola; Masetti, Nicola; Mirabel, Felix; Navasardyan, Hripsime; Nomoto, Ken'ichi; Palazzi, Eliana; Pastorello, Andrea; Panagia, Nino; Pellizza, L J; Sari, Re'em; Smartt, Stephen; Tagliaferri, Gianpiero; Tanaka, Masaomi; Taubenberger, Stefan; Tominaga, Nozomu; Trundle, Carrie; Turatto, Massimo

    2008-08-29

    The only supernovae (SNe) to show gamma-ray bursts (GRBs) or early x-ray emission thus far are overenergetic, broad-lined type Ic SNe (hypernovae, HNe). Recently, SN 2008D has shown several unusual features: (i) weak x-ray flash (XRF), (ii) an early, narrow optical peak, (iii) disappearance of the broad lines typical of SN Ic HNe, and (iv) development of helium lines as in SNe Ib. Detailed analysis shows that SN 2008D was not a normal supernova: Its explosion energy (E approximately 6x10(51) erg) and ejected mass [ approximately 7 times the mass of the Sun (M(middle dot in circle))] are intermediate between normal SNe Ibc and HNe. We conclude that SN 2008D was originally a approximately 30 M(middle dot in circle) star. When it collapsed, a black hole formed and a weak, mildly relativistic jet was produced, which caused the XRF. SN 2008D is probably among the weakest explosions that produce relativistic jets. Inner engine activity appears to be present whenever massive stars collapse to black holes.

  11. Simulations of Core-collapse Supernovae in Spatial Axisymmetry with Full Boltzmann Neutrino Transport

    NASA Astrophysics Data System (ADS)

    Nagakura, Hiroki; Iwakami, Wakana; Furusawa, Shun; Okawa, Hirotada; Harada, Akira; Sumiyoshi, Kohsuke; Yamada, Shoichi; Matsufuru, Hideo; Imakura, Akira

    2018-02-01

    We present the first results of our spatially axisymmetric core-collapse supernova simulations with full Boltzmann neutrino transport, which amount to a time-dependent five-dimensional (two in space and three in momentum space) problem. Special relativistic effects are fully taken into account with a two-energy-grid technique. We performed two simulations for a progenitor of 11.2 M ⊙, employing different nuclear equations of state (EOSs): Lattimer and Swesty’s EOS with the incompressibility of K = 220 MeV (LS EOS) and Furusawa’s EOS based on the relativistic mean field theory with the TM1 parameter set (FS EOS). In the LS EOS, the shock wave reaches ∼700 km at 300 ms after bounce and is still expanding, whereas in the FS EOS it stalled at ∼200 km and has started to recede by the same time. This seems to be due to more vigorous turbulent motions in the former during the entire postbounce phase, which leads to higher neutrino-heating efficiency in the neutrino-driven convection. We also look into the neutrino distributions in momentum space, which is the advantage of the Boltzmann transport over other approximate methods. We find nonaxisymmetric angular distributions with respect to the local radial direction, which also generate off-diagonal components of the Eddington tensor. We find that the rθ component reaches ∼10% of the dominant rr component and, more importantly, it dictates the evolution of lateral neutrino fluxes, dominating over the θθ component, in the semitransparent region. These data will be useful to further test and possibly improve the prescriptions used in the approximate methods.

  12. GRAVITATIONAL CONTRACTION VERSUS SUPERNOVA DRIVING AND THE ORIGIN OF THE VELOCITY DISPERSION–SIZE RELATION IN MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibáñez-Mejía, Juan C.; Mac Low, Mordecai-Mark; Klessen, Ralf S.

    Molecular cloud (MC) observations show that clouds have non-thermal velocity dispersions that scale with the cloud size as σ ∝ R {sup 1/2} at a constant surface density, and for varying surface density scale with both the cloud’s size and surface density, σ {sup 2} ∝ R Σ. The energy source driving these chaotic motions remains poorly understood. We describe the velocity dispersions observed in a cloud population formed in a numerical simulation of a magnetized, stratified, supernova (SN)-driven, interstellar medium, including diffuse heating and radiative cooling, before and after we include the effects of the self-gravity of the gas.more » We compare the relationships between velocity dispersion, size, and surface density measured in the simulated cloud population to those found in observations of Galactic MCs. Our simulations prior to the onset of self-gravity suggest that external SN explosions alone do not drive turbulent motions of the observed magnitudes within dense clouds. On the other hand, self-gravity induces non-thermal motions as gravitationally bound clouds begin to collapse in our model, approaching the observed relations between velocity dispersion, size, and surface density. Energy conservation suggests that the observed behavior is consistent with the kinetic energy being proportional to the gravitational energy. However, the clouds in our model show no sign of reaching a stable equilibrium state at any time, even for strongly magnetized clouds. We conclude that gravitationally bound MCs are always in a state of gravitational contraction and their properties are a natural result of this chaotic collapse. In order to agree with observed star formation efficiencies, this process must be terminated by the early destruction of the clouds, presumably from internal stellar feedback.« less

  13. Ti-44 Gamma-Ray Emission Lines from SN1987A Reveal an Asymmetric Explosion

    NASA Technical Reports Server (NTRS)

    Boggs, S. E.; Harrison, F. A.; Miyasaka, H.; Grefenstette, B. W.; Zoglauer, A.; Fryer, C. L.; Reynolds, S. P.; Alexander, D. M.; An, H.; Barret, D.; hide

    2015-01-01

    In core-collapse supernovae, titanium-44 (Ti-44) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.32-kilo-electron volt emission lines from decay of Ti-44 produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of 700 kilometers per second, direct evidence of large-scale asymmetry in the explosion.

  14. Supernova Neutrino-Process and Implication in Neutrino Oscillation

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Fujiya, W.; Mathews, G. J.; Yoshida, T.; Shaku, K.; Nakamura, K.; Hayakawa, T.

    2012-08-01

    We studied the supernova nucleosynthesis induced by neutrino interactions and found that several isotopes of rare elements like 7Li, 11B, 138La, 180Ta and many others are predominantly produced by the neutrino-process in core-collapse supernovae. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here propose a new novel method to determine the unknown neutrino oscillation parameters, θ13 and mass hierarchy simultaneously from the supernova neutrino-process, combined with the r-process for heavy-element synthsis and the Galactic chemical evolution on light nuclei.

  15. Pasta phases in core-collapse supernova matter

    NASA Astrophysics Data System (ADS)

    Pais, Helena; Chiacchiera, Silvia; Providência, Constança

    2016-04-01

    The pasta phase in core-collapse supernova matter (finite temperatures and fixed proton fractions) is studied within relativistic mean field models. Three different calculations are used for comparison, the Thomas-Fermi (TF), the Coexisting Phases (CP) and the Compressible Liquid Drop (CLD) approximations. The effects of including light clusters in nuclear matter and the densities at which the transitions between pasta configurations and to uniform matter occur are also investigated. The free energy and pressure, in the space of particle number densities and temperatures expected to cover the pasta region, are calculated. Finally, a comparison with a finite temperature Skyrme-Hartree-Fock calculation is drawn.

  16. Muon Creation in Supernova Matter Facilitates Neutrino-Driven Explosions.

    PubMed

    Bollig, R; Janka, H-T; Lohs, A; Martínez-Pinedo, G; Horowitz, C J; Melson, T

    2017-12-15

    Muons can be created in nascent neutron stars (NSs) due to the high electron chemical potentials and the high temperatures. Because of their relatively lower abundance compared to electrons, their role has so far been ignored in numerical simulations of stellar core collapse and NS formation. However, the appearance of muons softens the NS equation of state, triggers faster NS contraction, and thus leads to higher luminosities and mean energies of the emitted neutrinos. This strengthens the postshock heating by neutrinos and can facilitate explosions by the neutrino-driven mechanism.

  17. SciDAC Computational Astrophysics Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrows, Adam

    Supernova explosions are the central events in nuclear astrophysics. The core-collapse variety is a major source for the universe's heavy elements. The neutron stars, pulsars, and stellar-mass black holes of high-energy astrophysics are their products. Given their prodigious explosion energies, they are the major agencies of change in the interstellar medium, driving star formation and the evolution of galaxies. Their gas remnants are the birthplaces of the cosmic rays. Such is their brightness that they can be used as standard candles to measure the size and geometry of the universe. Recently, there is evidence that gamma-ray bursts (GRBs) originate inmore » a small fraction of core collapses, thereby connecting two of the most energetic phenomena in the universe. However, the mechanism by which core-collapse supernovae explode has not yet been unambiguously determined. Arguably, this is one of the great unsolved problems in modern astrophysics and its investigation draws on nuclear physics, particle physics, radiative transfer, kinetic theory, gravitational physics, thermodynamics, and the numerical arts. Hence, supernovae are unrivaled astrophysical laboratories. It is the quest for the mechanism and new insights our team has recently had that motivate this proposal.« less

  18. Very Deep inside the SN 1987A Core Ejecta: Molecular Structures Seen in 3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abellán, F. J.; Marcaide, J. M.; Indebetouw, R.

    2017-06-20

    Most massive stars end their lives in core-collapse supernova explosions and enrich the interstellar medium with explosively nucleosynthesized elements. Following core collapse, the explosion is subject to instabilities as the shock propagates outward through the progenitor star. Observations of the composition and structure of the innermost regions of a core-collapse supernova provide a direct probe of the instabilities and nucleosynthetic products. SN 1987A in the Large Magellanic Cloud is one of very few supernovae for which the inner ejecta can be spatially resolved but are not yet strongly affected by interaction with the surroundings. Our observations of SN 1987A withmore » the Atacama Large Millimeter/submillimeter Array are of the highest resolution to date and reveal the detailed morphology of cold molecular gas in the innermost regions of the remnant. The 3D distributions of carbon and silicon monoxide (CO and SiO) emission differ, but both have a central deficit, or torus-like distribution, possibly a result of radioactive heating during the first weeks (“nickel heating”). The size scales of the clumpy distribution are compared quantitatively to models, demonstrating how progenitor and explosion physics can be constrained.« less

  19. An extremely luminous X-ray outburst at the birth of a supernova

    NASA Astrophysics Data System (ADS)

    Soderberg, A. M.; Berger, E.; Page, K. L.; Schady, P.; Parrent, J.; Pooley, D.; Wang, X.-Y.; Ofek, E. O.; Cucchiara, A.; Rau, A.; Waxman, E.; Simon, J. D.; Bock, D. C.-J.; Milne, P. A.; Page, M. J.; Barentine, J. C.; Barthelmy, S. D.; Beardmore, A. P.; Bietenholz, M. F.; Brown, P.; Burrows, A.; Burrows, D. N.; Byrngelson, G.; Cenko, S. B.; Chandra, P.; Cummings, J. R.; Fox, D. B.; Gal-Yam, A.; Gehrels, N.; Immler, S.; Kasliwal, M.; Kong, A. K. H.; Krimm, H. A.; Kulkarni, S. R.; Maccarone, T. J.; Mészáros, P.; Nakar, E.; O'Brien, P. T.; Overzier, R. A.; de Pasquale, M.; Racusin, J.; Rea, N.; York, D. G.

    2008-05-01

    Massive stars end their short lives in spectacular explosions-supernovae-that synthesize new elements and drive galaxy evolution. Historically, supernovae were discovered mainly through their `delayed' optical light (some days after the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated. Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst. We attribute the outburst to the `break-out' of the supernova shock wave from the progenitor star, and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.

  20. An extremely luminous X-ray outburst at the birth of a supernova.

    PubMed

    Soderberg, A M; Berger, E; Page, K L; Schady, P; Parrent, J; Pooley, D; Wang, X-Y; Ofek, E O; Cucchiara, A; Rau, A; Waxman, E; Simon, J D; Bock, D C-J; Milne, P A; Page, M J; Barentine, J C; Barthelmy, S D; Beardmore, A P; Bietenholz, M F; Brown, P; Burrows, A; Burrows, D N; Bryngelson, G; Byrngelson, G; Cenko, S B; Chandra, P; Cummings, J R; Fox, D B; Gal-Yam, A; Gehrels, N; Immler, S; Kasliwal, M; Kong, A K H; Krimm, H A; Kulkarni, S R; Maccarone, T J; Mészáros, P; Nakar, E; O'Brien, P T; Overzier, R A; de Pasquale, M; Racusin, J; Rea, N; York, D G

    2008-05-22

    Massive stars end their short lives in spectacular explosions--supernovae--that synthesize new elements and drive galaxy evolution. Historically, supernovae were discovered mainly through their 'delayed' optical light (some days after the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated. Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst. We attribute the outburst to the 'break-out' of the supernova shock wave from the progenitor star, and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.

  1. The quest for blue supergiants : The evolution of the progenitor of SN 1987A

    NASA Astrophysics Data System (ADS)

    Menon, Athira; Heger, Alexander

    2015-08-01

    SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The nuclear yields and light curve of the explosion are then compared with the observed data of SN 1987A.

  2. Revealing the supernova-gamma-ray burst connection with TeV neutrinos.

    PubMed

    Ando, Shin'ichiro; Beacom, John F

    2005-08-05

    Gamma-ray bursts (GRBs) are rare, powerful explosions displaying highly relativistic jets. It has been suggested that a significant fraction of the much more frequent core-collapse supernovae are accompanied by comparably energetic but mildly relativistic jets, which would indicate an underlying supernova-GRB connection. We calculate the neutrino spectra from the decays of pions and kaons produced in jets in supernovae, and show that the kaon contribution is dominant and provides a sharp break near 20 TeV, which is a sensitive probe of the conditions inside the jet. For a supernova at 10 Mpc, 30 events above 100 GeV are expected in a 10 s burst in the IceCube detector.

  3. A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Langer, Norbert; Fossati, Luca; Bock, Douglas C.-J.; Castro, Norberto; Georgiev, Iskren Y.; Greiner, Jochen; Johnston, Simon; Rau, Arne; Tauris, Thomas M.

    2017-06-01

    When a massive star in a binary system explodes as a supernova, its companion star may be polluted with heavy elements from the supernova ejecta. Such pollution has been detected in a handful of post-supernova binaries 1 , but none of them is associated with a supernova remnant. We report the discovery of a binary G star strongly polluted with calcium and other elements at the position of the candidate neutron star [GV2003] N within the young galactic supernova remnant RCW 86. Our discovery suggests that the progenitor of the supernova that produced RCW 86 could have been a moving star, which exploded near the edge of its wind bubble and lost most of its initial mass because of common-envelope evolution shortly before core collapse, and that the supernova explosion might belong to the class of calcium-rich supernovae — faint and fast transients 2,3 , the origin of which is strongly debated 4-6 .

  4. The first ten years of Swift supernovae

    NASA Astrophysics Data System (ADS)

    Brown, Peter J.; Roming, Peter W. A.; Milne, Peter A.

    2015-09-01

    The Swift Gamma Ray Burst Explorer has proven to be an incredible platform for studying the multiwavelength properties of supernova explosions. In its first ten years, Swift has observed over three hundred supernovae. The ultraviolet observations reveal a complex diversity of behavior across supernova types and classes. Even amongst the standard candle type Ia supernovae, ultraviolet observations reveal distinct groups. When the UVOT data is combined with higher redshift optical data, the relative populations of these groups appear to change with redshift. Among core-collapse supernovae, Swift discovered the shock breakout of two supernovae and the Swift data show a diversity in the cooling phase of the shock breakout of supernovae discovered from the ground and promptly followed up with Swift. Swift observations have resulted in an incredible dataset of UV and X-ray data for comparison with high-redshift supernova observations and theoretical models. Swift's supernova program has the potential to dramatically improve our understanding of stellar life and death as well as the history of our universe.

  5. Red-Supergiant and Supernova Rate Problems: Implication for the Relic Supernova Neutrino Spectrum

    NASA Astrophysics Data System (ADS)

    Hidaka, J.; Kajino, T.; Mathews, G. J.

    2016-08-01

    Direct observations of core-collapse supernovae (SNe) and their red supergiant (RSG) progenitors suggest that the upper mass limit of RSGs may be only about 16.5{--}18{M}⊙ , while the standard theoretical value is as much as 25{M}⊙ . We investigate the possibility that RSGs with m\\gt 16.5{--}18{M}⊙ end their lives as failed supernovae (fSNe) and analyze their contribution to the relic supernova neutrino spectrum. We show that adopting this mass limit simultaneously solves both the RSG problem and the supernova rate problem. In addition, energetic neutrinos that originated from fSNe are sensitive to the explosion mechanism, and in particular, to the nuclear equation of state (EOS). We show that this solution to the RSG problem might also be used to constrain the EOS for failed supernovae.

  6. Research Performance Progress Report: Diverging Supernova Explosion Experiments on NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plewa, Tomasz

    2016-10-25

    The aim of this project was to design a series of blast-wave driven Rayleigh-Taylor (RT) experiments on the National Ignition Facility (NIF). The experiments of this kind are relevant to mixing in core-collapse supernovae (ccSNe) and have the potential to address previously unanswered questions in high-energy density physics (HEDP) and astrophysics. The unmatched laser power of the NIF laser offers a unique chance to observe and study “new physics” like the mass extensions observed in HEDP RT experiments performed on the Omega laser [1], which might be linked to self-generated magnetic fields [2] and so far could not be reproducedmore » by numerical simulations. Moreover, NIF is currently the only facility that offers the possibility to execute a diverging RT experiment, which would allow to observe processes such as inter-shell penetration via turbulent mixing and shock-proximity effects (distortion of the shock by RT spikes).« less

  7. Aspherical Supernovae: Effects on Early Light Curves

    NASA Astrophysics Data System (ADS)

    Afsariardchi, Niloufar; Matzner, Christopher D.

    2018-04-01

    Early light from core-collapse supernovae, now detectable in high-cadence surveys, holds clues to a star and its environment just before it explodes. However, effects that alter the early light have not been fully explored. We highlight the possibility of nonradial flows at the time of shock breakout. These develop in sufficiently nonspherical explosions if the progenitor is not too diffuse. When they do develop, nonradial flows limit ejecta speeds and cause ejecta–ejecta collisions. We explore these phenomena and their observational implications using global, axisymmetric, nonrelativistic FLASH simulations of simplified polytropic progenitors, which we scale to representative stars. We develop a method to track photon production within the ejecta, enabling us to estimate band-dependent light curves from adiabatic simulations. Immediate breakout emission becomes hidden as an oblique flow develops. Nonspherical effects lead the shock-heated ejecta to release a more constant luminosity at a higher, evolving color temperature at early times, effectively mixing breakout light with the early light curve. Collisions between nonradial ejecta thermalize a small fraction of the explosion energy; we will address emission from these collisions in a subsequent paper.

  8. Studing the Post Merger Evolution of White Dwarf Mergers with FLASH

    NASA Astrophysics Data System (ADS)

    Jenks, Malia

    2017-06-01

    There is still uncertainty as to the progenitor systems of type Ia supernova (SN Ia). Both single and double degenerate systems have been suggested as progenitors. In a double degenerate system a merger between the two white dwarfs, with total mass at or exceeding the Chandrasekhar mass, leads to the supernova. If the explosion occurs during the merging process it is a violent merger. If an explosion doesn't occur while the stars merge the system becomes a white dwarf of unstable mass. For mergers of this type with differing starting masses it has been shown that during the viscous evolution carbon burning starts far from the center and stably converts the star to oxygen and neon. In this case the star will eventually collapse to a neutron star and not produce an SN Ia. The case of similar mass mergers has been much less explored. Using the results of a smooth particle hydrodynamic merger we simulate the viscous evolution of an equal mass model with FLASH. These simulations test if a similar mass merger can lead to an SN Ia.

  9. Monte Carlo study of neutrino acceleration in supernova shocks

    NASA Technical Reports Server (NTRS)

    Kazanas, D.; Ellison, D. C.

    1981-01-01

    The first order Fermi acceleration mechanism of cosmic rays in shocks may be at work for neutrinos in supernova shocks when the latter are at densities greater than 10 to the 13th g/cu cm, at which the core material is opaque to neutrinos. A Monte Carlo approach to study this effect is employed, and the emerging neutrino power law spectra are presented. The increased energy acquired by the neutrinos may facilitate their detection in supernova explosions and provide information about the physics of collapse.

  10. Nucleosynthesis in Supernovae

    NASA Astrophysics Data System (ADS)

    Thielemann, Friedrich-Karl; Isern, Jordi; Perego, Albino; von Ballmoos, Peter

    2018-04-01

    We present the status and open problems of nucleosynthesis in supernova explosions of both types, responsible for the production of the intermediate mass, Fe-group and heavier elements (with the exception of the main s-process). Constraints from observations can be provided through individual supernovae (SNe) or their remnants (e.g. via spectra and gamma-rays of decaying unstable isotopes) and through surface abundances of stars which witness the composition of the interstellar gas at their formation. With a changing fraction of elements heavier than He in these stars (known as metallicity) the evolution of the nucleosynthesis in galaxies over time can be determined. A complementary way, related to gamma-rays from radioactive decays, is the observation of positrons released in β+-decays, as e.g. from ^{26}Al, ^{44}Ti, ^{56,57}Ni and possibly further isotopes of their decay chains (in competition with the production of e+e- pairs in acceleration shocks from SN remnants, pulsars, magnetars or even of particle physics origin). We discuss (a) the role of the core-collapse supernova explosion mechanism for the composition of intermediate mass, Fe-group (and heavier?) ejecta, (b) the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae, faint supernovae, and gamma-ray bursts/hypernovae, (c) Type Ia supernovae and their nucleosynthesis (e.g. addressing the ^{55}Mn puzzle), plus (d) further constraints from galactic evolution, γ-ray and positron observations. This is complemented by the role of rare magneto-rotational supernovae (related to magnetars) in comparison with the nucleosynthesis of compact binary mergers, especially with respect to forming the heaviest r-process elements in galactic evolution.

  11. AN OPEN-SOURCE NEUTRINO RADIATION HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Connor, Evan, E-mail: evanoconnor@ncsu.edu; CITA, Canadian Institute for Theoretical Astrophysics, Toronto, M5S 3H8

    2015-08-15

    We present an open-source update to the spherically symmetric, general-relativistic hydrodynamics, core-collapse supernova (CCSN) code GR1D. The source code is available at http://www.GR1Dcode.org. We extend its capabilities to include a general-relativistic treatment of neutrino transport based on the moment formalisms of Shibata et al. and Cardall et al. We pay special attention to implementing and testing numerical methods and approximations that lessen the computational demand of the transport scheme by removing the need to invert large matrices. This is especially important for the implementation and development of moment-like transport methods in two and three dimensions. A critical component of neutrinomore » transport calculations is the neutrino–matter interaction coefficients that describe the production, absorption, scattering, and annihilation of neutrinos. In this article we also describe our open-source neutrino interaction library NuLib (available at http://www.nulib.org). We believe that an open-source approach to describing these interactions is one of the major steps needed to progress toward robust models of CCSNe and robust predictions of the neutrino signal. We show, via comparisons to full Boltzmann neutrino-transport simulations of CCSNe, that our neutrino transport code performs remarkably well. Furthermore, we show that the methods and approximations we employ to increase efficiency do not decrease the fidelity of our results. We also test the ability of our general-relativistic transport code to model failed CCSNe by evolving a 40-solar-mass progenitor to the onset of collapse to a black hole.« less

  12. IceCube sensitivity for low-energy neutrinos from nearby supernovae

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K. H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Degner, T.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jakobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richard, A. S.; Richman, M.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Singh, K.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration

    2011-11-01

    This paper describes the response of the IceCube neutrino telescope located at the geographic south pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of ~1 km3 in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak of \\barνe's released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.

  13. A Study of the Type II-Plateau Supernova SN 2014cx

    NASA Astrophysics Data System (ADS)

    Flatland, Kelsi; Leonard, Douglas Christopher; Williams, George Grant; Smith, Paul S.; Bilinski, Christopher; Dessart, Luc; Gonzalez, Luis; Hoffman, Jennifer L.; Huk, Leah; Milne, Peter; Smith, Nathan

    2015-08-01

    The type II-plateau (II-P) class of supernova is the most commonly observed type of core-collapse event, and yet the basic characteristics of this class are still being defined (e.g. Pejcha & Prieto 2015). Here we add to the growing sample of type II-P events with well-sampled data from observations of SN 2014cx. SN 2014cx was independently discovered on September 2, 2014 UT by Nakano et al. (2014; CBET 3963) and Holoien et al. (2014; ATEL 6436) in the nearby (d ~ 20.7 Mpc, Tully 1988) SBd galaxy NGC 337. It was classified as a young Type II supernova through spectra taken within a day of discovery at both optical (Nakano et al. 2014) and near-infrared (Morrell et al. 2014; ATEL 6442) wavelengths. Later (Andrews et al. 2015; ATEL 7084), it was photometrically determined to be specifically a type II-P supernova, indicating the core-collapse event of a progenitor that had a large hydrogen envelope (Pejcha & Prieto 2015). We initiated a photometric and spectropolarimetric campaign to follow SN 2014cx; over a five month period following the supernova's discovery, we obtained optical images using the 1-meter telescope at Mount Laguna Observatory as part of the MOunt LAguna SUpernova Survey (MOLASUS), and spectra as part of the SuperNova SpectroPOLarimetry project (SNSPOL). Here we present the initial analysis of the photometry and spectroscopy obtained as part of this campaign. We acknowledge support from NSF grants AST-1009571 and AST-1210311, under which part of this research was carried out.

  14. A Study of the Type II-Plateau Supernova SN 2014cx

    NASA Astrophysics Data System (ADS)

    Flatland, Kelsi; Leonard, Douglas C.; Williams, Grant; Smith, Paul S.; Bilinski, Christopher; Gonzalez, Luis; Hoffman, Jennifer L.; Huk, Leah N.; Milne, Peter; Smith, Nathan; Supernova Spectropolarimetry Project

    2016-06-01

    The type II-plateau (II-P) class of supernova is the most commonly observed type of core-collapse event, and yet the basic characteristics of this class are still being defined (e.g. Pejcha & Prieto 2015). Here we add to the growing sample of type II-P events with well-sampled data from observations of SN 2014cx. SN 2014cx was independently discovered on September 2, 2014 UT by Nakano et al. (2014; CBET 3963) and Holoien et al. (2014; ATEL 6436) in the nearby (d ~ 20.7 Mpc, Tully 1988) SBd galaxy NGC 337. It was classified as a young Type II supernova through spectra taken within a day of discovery at both optical (Nakano et al. 2014) and near-infrared (Morrell et al. 2014; ATEL 6442) wavelengths. Later (Andrews et al. 2015; ATEL 7084), it was photometrically determined to be specifically a type II-P supernova, indicating the core-collapse event of a progenitor that had a large hydrogen envelope (Pejcha & Prieto 2015). We initiated a photometric and spectropolarimetric campaign to follow SN 2014cx; over a five month period following the supernova's discovery, we obtained optical images using the 1-meter telescope at Mount Laguna Observatory as part of the MOunt LAguna SUpernova Survey (MOLASUS), and spectra as part of the SuperNova SpectroPOLarimetry project (SNSPOL). Here we present the analysis of the photometry and spectroscopy obtained as part of this campaign. We acknowledge support from NSF grants AST-1009571 and AST-1210311, under which part of this research was carried out.

  15. IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae

    NASA Technical Reports Server (NTRS)

    Stamatikos, M.; Abbasi, R.; Berghaus, P.; Chirkin, D.; Desiati, P.; Diaz-Velez, J.; Dumm, J. P.; Eisch, J.; Feintzeig, J.; Hanson, K.; hide

    2012-01-01

    This paper describes the response of the IceCube neutrino telescope located at the geographic South Pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of approx. 1 cu km in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak's released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.

  16. The search for failed supernovae with the Large Binocular Telescope: constraints from 7 yr of data

    NASA Astrophysics Data System (ADS)

    Adams, S. M.; Kochanek, C. S.; Gerke, J. R.; Stanek, K. Z.

    2017-08-01

    We report updated results for the first 7 yr of our programme to monitor 27 galaxies within 10 Mpc using the Large Binocular Telescope to search for failed supernovae (SNe) - core collapses of massive stars that form black holes without luminous SNe. In the new data, we identify no new compelling candidates and confirm the existing candidate. Given the six successful core-collapse SNe in the sample and one likely failed SN, the implied fraction of core collapses that result in failed SNe is f=0.14^{+0.33}_{-0.10} at 90 per cent confidence. If the current candidate is a failed SN, the fraction of failed SN naturally explains the missing high-mass red supergiants SN progenitors and the black hole mass function. If the current candidate is ultimately rejected, the data imply a 90 per cent confidence upper limit on the failed SN fraction of f < 0.35.

  17. Evolution of Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Arbutina, B.

    2017-12-01

    This book, both a monograph and a graduate textbook, is based on my original research and partly on the materials prepared earlier for the 2007 and 2008 IARS Astrophysics Summer School in Istanbul, AstroMundus course 'Supernovae and Their Remnants' that was held for the first time in 2011 at the Department of Astronomy, Faculty of Mathematics, University of Belgrade, and a graduate course 'Evolution of Supernova Remnants' that I teach at the aforementioned university. The first part Supernovae (introduction, thermonuclear supernovae, core-collapse supernovae) provides introductory information and explains the classification and physics of supernova explosions, while the second part Supernova remnants (introduction, shock waves, cosmic rays and particle acceleration, magnetic fields, synchrotron radiation, hydrodynamic and radio evolution of supernova remnants), which is the field I work in, is more detailed in scope i.e. technical/mathematical. Special attention is paid to details of mathematical derivations that often cannot be found in original works or available literature. Therefore, I believe it can be useful to both, graduate students and researchers interested in the field.

  18. A Parametric Study of the Acoustic Mechanism for Core-collapse Supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, A.; Nagakura, H.; Iwakami, W.

    We investigate the criterion for the acoustic mechanism to work successfully in core-collapse supernovae. The acoustic mechanism is an alternative to the neutrino-heating mechanism. It was proposed by Burrows et al., who claimed that acoustic waves emitted by g -mode oscillations in proto-neutron stars (PNS) energize a stalled shock wave and eventually induce an explosion. Previous works mainly studied to which extent the g -modes are excited in the PNS. In this paper, on the other hand, we investigate how strong the acoustic wave needs to be if it were to revive a stalled shock wave. By adding the acousticmore » power as a new axis, we draw a critical surface, which is an extension of the critical curve commonly employed in the context of neutrino heating. We perform both 1D and 2D parametrized simulations, in which we inject acoustic waves from the inner boundary. In order to quantify the power of acoustic waves, we use the extended Myers theory to take neutrino reactions into proper account. We find for the 1D simulations that rather large acoustic powers are required to relaunch the shock wave, since the additional heating provided by the secondary shocks developed from acoustic waves is partially canceled by the neutrino cooling that is also enhanced. In 2D, the required acoustic powers are consistent with those of Burrows et al. Our results seem to imply, however, that it is the sum of neutrino heating and acoustic powers that matters for shock revival.« less

  19. Constraining high-energy neutrino emission from choked jets in stripped-envelope supernovae

    NASA Astrophysics Data System (ADS)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter

    2018-01-01

    There are indications that γ-ray dark objects such as supernovae (SNe) with choked jets, and the cores of active galactic nuclei may contribute to the diffuse flux of astrophysical neutrinos measured by the IceCube observatory. In particular, stripped-envelope SNe have received much attention since they are capable of producing relativistic jets and could explain the diversity in observations of collapsar explosions (e.g., gamma-ray bursts (GRBs), low-luminosity GRBs, and Type Ibc SNe). We use an unbinned maximum likelihood method to search for spatial and temporal coincidences between Type Ibc core-collapse SNe, which may harbor a choked jet, and muon neutrinos from a sample of IceCube up-going track-like events measured from May 2011–May 2012. In this stacking analysis, we find no significant deviation from a background-only hypothesis using one year of data, and are able to place upper limits on the total amount of isotropic equivalent energy that choked jet core-collapse SNe deposit in cosmic rays Script Ecr and the fraction of core-collapse SNe which have a jet pointed towards Earth fjet. This analysis can be extended with yet to be made public IceCube data, and the increased amount of optically detected core-collapse SNe discovered by wide field-of-view surveys such as the Palomar Transient Factory and All-Sky Automated Survey for Supernovae. The choked jet SNe/high-energy cosmic neutrino connection can be more tightly constrained in the near future.

  20. A black hole-white dwarf compact binary model for long gamma-ray bursts without supernova association

    NASA Astrophysics Data System (ADS)

    Dong, Yi-Ze; Gu, Wei-Min; Liu, Tong; Wang, Junfeng

    2018-03-01

    Gamma-ray bursts (GRBs) are luminous and violent phenomena in the Universe. Traditionally, long GRBs are expected to be produced by the collapse of massive stars and associated with supernovae. However, some low-redshift long GRBs have no detection of supernova association, such as GRBs 060505, 060614, and 111005A. It is hard to classify these events convincingly according to usual classifications, and the lack of the supernova implies a non-massive star origin. We propose a new path to produce long GRBs without supernova association, the unstable and extremely violent accretion in a contact binary system consisting of a stellar-mass black hole and a white dwarf, which fills an important gap in compact binary evolution.

  1. REVIEWS OF TOPICAL PROBLEMS Rotational explosion mechanism for collapsing supernovae and the two-stage neutrino signal from supernova 1987A in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Imshennik, Vladimir S.

    2011-02-01

    The two-stage (double) signal produced by the outburst of the close supernova (SN) in the Large Magellanic Cloud, which started on and involved two neutrino signals during the night of 23 February 1987 UT, is theoretically interpreted in terms of a scenario of rotationally exploding collapsing SNs, to whose class the outburst undoubtedly belongs. This scenario consists of a set of hydrodynamic and kinetic models in which key results are obtained by numerically solving non-one-dimensional and nonstationary problems. Of vital importance in this context is the inclusion of rotation effects, their role being particularly significant precisely in terms of the question of the transformation of the original collapse of the presupernova iron core to the explosion of the SN shell, with an energy release on a familiar scale of 1051 erg. The collapse in itself leads to the birth of neutron stars (black holes) emitting neutrino and gravitational radiation signals of gigantic intensity, whose total energy significantly (by a factor of hundreds) exceeds the above-cited SN burst energy. The proposed rotational scenario is described briefly by artificially dividing it into three (or four) characteristic stages. This division is dictated by the physical meaning of the chain of events a rotating iron core of a sufficiently massive (more than 10M) star triggers when it collapses. An attempt is made to quantitatively describe the properties of the associated neutrino and gravitational radiations. The review highlights the interpretation of the two-stage neutrino signal from SN 1987A, a problem which, given the present status of theoretical astrophysics, cannot, in the author's view, be solved without including rotation effects.

  2. Distributional Tests for Gravitational Waves from Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Szczepanczyk, Marek; LIGO Collaboration

    2017-01-01

    Core-Collapse Supernovae (CCSN) are spectacular and violent deaths of massive stars. CCSN are some of the most interesting candidates for producing gravitational-waves (GW) transients. Current published results focus on methodologies to detect single GW unmodelled transients. The advantages of these tests are that they do not require a background for which we have an analytical model. Examples of non-parametric tests that will be compared are Kolmogorov-Smirnov, Mann-Whitney, chi squared, and asymmetric chi squared. I will present methodological results using publicly released LIGO-S6 data recolored to the design sensitivity of Advanced LIGO and that will be time lagged between interferometers sites so that the resulting coincident events are not GW.

  3. Equations of state for neutron stars and core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Oertel, Micaela; Providência, Constança

    2018-04-01

    Modelling compact stars is a complex task which depends on many ingredients, among others the properties of dense matter. In this contribution models for the equation of state (EoS) of dense matter will be discussed, relevant for the description of core-collapse supernovae, compact stars and compact star mergers. Such EoS models have to cover large ranges in baryon number density, temperature and isospin asymmetry. The characteristics of matter change dramatically within these ranges, from a mixture of nucleons, nuclei, and electrons to uniform, strongly interacting matter containing nucleons, and possibly other particles such as hyperons or quarks. Some implications for compact star astrophysics will be highlighted, too.

  4. A Systematic Study of Explosions in Core Collapse Supernovae

    NASA Technical Reports Server (NTRS)

    Swesty, F. Douglas; Mihalas, Dimitri; Norman, Michael

    1997-01-01

    This report covers the research conducted from September 1996 to August 1997 (eighteen months into the three year grant). We have obtained a number of significant findings based on the on the work that we have conducted under this grant during the past year. As we stated in our original proposal the work has focused on multi-dimensional models of the convective epoch in core collapse supernovae. During the past year we have developed a large number of models of the convective epoch in 2-D under two levels of neutrino transport approximation and we are currently working on 3-D models. In the following pages will endeavor to give brief descriptions of our results.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Akihiro; Maeda, Keiichi; Shigeyama, Toshikazu

    A two-dimensional special relativistic radiation-hydrodynamics code is developed and applied to numerical simulations of supernova shock breakout in bipolar explosions of a blue supergiant. Our calculations successfully simulate the dynamical evolution of a blast wave in the star and its emergence from the surface. Results of the model with spherical energy deposition show a good agreement with previous simulations. Furthermore, we calculate several models with bipolar energy deposition and compare their results with the spherically symmetric model. The bolometric light curves of the shock breakout emission are calculated by a ray-tracing method. Our radiation-hydrodynamic models indicate that the early partmore » of the shock breakout emission can be used to probe the geometry of the blast wave produced as a result of the gravitational collapse of the iron core.« less

  6. AN ADVANCED LEAKAGE SCHEME FOR NEUTRINO TREATMENT IN ASTROPHYSICAL SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perego, A.; Cabezón, R. M.; Käppeli, R., E-mail: albino.perego@physik.tu-darmstadt.de

    We present an Advanced Spectral Leakage (ASL) scheme to model neutrinos in the context of core-collapse supernovae (CCSNe) and compact binary mergers. Based on previous gray leakage schemes, the ASL scheme computes the neutrino cooling rates by interpolating local production and diffusion rates (relevant in optically thin and thick regimes, respectively) separately for discretized values of the neutrino energy. Neutrino trapped components are also modeled, based on equilibrium and timescale arguments. The better accuracy achieved by the spectral treatment allows a more reliable computation of neutrino heating rates in optically thin conditions. The scheme has been calibrated and tested against Boltzmannmore » transport in the context of Newtonian spherically symmetric models of CCSNe. ASL shows a very good qualitative and a partial quantitative agreement for key quantities from collapse to a few hundreds of milliseconds after core bounce. We have proved the adaptability and flexibility of our ASL scheme, coupling it to an axisymmetric Eulerian and to a three-dimensional smoothed particle hydrodynamics code to simulate core collapse. Therefore, the neutrino treatment presented here is ideal for large parameter-space explorations, parametric studies, high-resolution tests, code developments, and long-term modeling of asymmetric configurations, where more detailed neutrino treatments are not available or are currently computationally too expensive.« less

  7. Emission line models for the lowest mass core-collapse supernovae - I. Case study of a 9 M⊙ one-dimensional neutrino-driven explosion

    NASA Astrophysics Data System (ADS)

    Jerkstrand, A.; Ertl, T.; Janka, H.-T.; Müller, E.; Sukhbold, T.; Woosley, S. E.

    2018-03-01

    A large fraction of core-collapse supernovae (CCSNe), 30-50 per cent, are expected to originate from the low-mass end of progenitors with MZAMS = 8-12 M⊙. However, degeneracy effects make stellar evolution modelling of such stars challenging, and few predictions for their supernova light curves and spectra have been presented. Here, we calculate synthetic nebular spectra of a 9 M⊙ Fe CCSN model exploded with the neutrino mechanism. The model predicts emission lines with FWHM ˜ 1000 km s-1, including signatures from each deep layer in the metal core. We compare this model to the observations of the three subluminous IIP SNe with published nebular spectra; SN 1997D, SN 2005cs and SN 2008bk. The predictions of both line profiles and luminosities are in good agreement with SN 1997D and SN 2008bk. The close fit of a model with no tuning parameters provides strong evidence for an association of these objects with low-mass Fe CCSNe. For SN 2005cs, the interpretation is less clear, as the observational coverage ended before key diagnostic lines from the core had emerged. We perform a parametrized study of the amount of explosively made stable nickel, and find that none of these three SNe show the high 58Ni/56Ni ratio predicted by current models of electron capture SNe (ECSNe) and ECSN-like explosions. Combined with clear detection of lines from O and He shell material, these SNe rather originate from Fe core progenitors. We argue that the outcome of self-consistent explosion simulations of low-mass stars, which gives fits to many key observables, strongly suggests that the class of subluminous Type IIP SNe is the observational counterpart of the lowest mass CCSNe.

  8. Gamow-Teller Strength Distributions for pf-shell Nuclei and its Implications in Astrophysics

    NASA Astrophysics Data System (ADS)

    Rahman, M.-U.; Nabi, J.-U.

    2009-08-01

    The {pf}-shell nuclei are present in abundance in the pre-supernova and supernova phases and these nuclei are considered to play an important role in the dynamics of core collapse supernovae. The B(GT) values are calculated for the {pf}-shell nuclei 55Co and 57Zn using the pn-QRPA theory. The calculated B(GT) strengths have differences with earlier reported shell model calculations, however, the results are in good agreement with the experimental data. These B(GT) strengths are used in the calculations of weak decay rates which play a decisive role in the core-collapse supernovae dynamics and nucleosynthesis. Unlike previous calculations the so-called Brink's hypothesis is not assumed in the present calculation which leads to a more realistic estimate of weak decay rates. The electron capture rates are calculated over wide grid of temperature ({0.01} × 109 - 30 × 109 K) and density (10-1011 g-cm-3). Our rates are enhanced compared to the reported shell model rates. This enhancement is attributed partly to the liberty of selecting a huge model space, allowing consideration of many more excited states in the present electron capture rates calculations.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Warren P.; Nagaraj, Gautam; Kneller, James P.

    It has long been recognized that the neutrinos detected from the next core-collapse supernova in the Galaxy have the potential to reveal important information about the dynamics of the explosion and the nucleosynthesis conditions as well as allowing us to probe the properties of the neutrino itself. The neutrinos emitted from thermonuclear—type Ia—supernovae also possess the same potential, although these supernovae are dimmer neutrino sources. For the first time, we calculate the time, energy, line of sight, and neutrino-flavor-dependent features of the neutrino signal expected from a three-dimensional delayed-detonation explosion simulation, where a deflagration-to-detonation transition triggers the complete disruption ofmore » a near-Chandrasekhar mass carbon-oxygen white dwarf. We also calculate the neutrino flavor evolution along eight lines of sight through the simulation as a function of time and energy using an exact three-flavor transformation code. We identify a characteristic spectral peak at ˜10 MeV as a signature of electron captures on copper. This peak is a potentially distinguishing feature of explosion models since it reflects the nucleosynthesis conditions early in the explosion. We simulate the event rates in the Super-K, Hyper-K, JUNO, and DUNE neutrino detectors with the SNOwGLoBES event rate calculation software and also compute the IceCube signal. Hyper-K will be able to detect neutrinos from our model out to a distance of ˜10 kpc. Here, at 1 kpc, JUNO, Super-K, and DUNE would register a few events while IceCube and Hyper-K would register several tens of events.« less

  10. The Progenitor of the New COMPTEL/ROSAT Supernova Remnant in Vela

    NASA Technical Reports Server (NTRS)

    Chen, Wan; Gehrels, Neil

    1999-01-01

    We show that (1) the newly discovered supernova remnant (SNR) GROJ0852-4642/RXJ0852.0-4622 was created by a core-collapse supernova of a massive star and (2) the same supernova event that produced the Ti-44 detected by COMPTEL from this source is probably also responsible for a large fraction of the observed Al-26 emission in the Vela region detected by the same instrument. The first conclusion is based on the fact that the remnant is currently expanding too slowly given its young age for it to be caused by a Type la supernova. If the current SNR shell expansion speed is greater than 3000 km/s, a 15 solar mass. Type II supernova with a moderate kinetic energy exploding at about 150 pc away is favored. If the SNR expansion speed is lower than 2000 km/s, as derived naively from X-ray data, a much more energetic supernova is required to have occurred at approximately 250 pc away in a dense environment at the edge of the Gum Nebula. This progenitor has a preferred ejecta mass of less than or equal to 10(Solar Mass), and therefore it is probably a Type Ib or Type Ic supernova. However, the required high ambient density of n(sub H) greater than or equal to 100 cu cm in this scenario is difficult to reconcile with the regional CO data. A combination of our estimates of the age/energetics of the new SNR and the almost perfect positional coincidence of the new SNR with the centroid of the COMPTEL Al-26 emission feature of the Vela region strongly favors a causal connection. If confirmed, this will be the first case in which both Ti-44 and Al-26 are detected from the same young SNR, and together they can be used to select preferred theoretical core-collapse supernova models.

  11. Radial distribution of metals in the hot intra-cluster medium as observed by XMM-Newton

    NASA Astrophysics Data System (ADS)

    Mernier, F.; de Plaa, J.; Kaastra, J.; Zhang, Y.; Akamatsu, H.; Gu, L.; Mao, J.; Pinto, C.; Reiprich, T.; Sanders, J.

    2017-10-01

    The hot intra-cluster medium (ICM), which accounts for ˜80% of the baryonic content in galaxy clusters, is rich in heavy elements. Since these metals have been produced by stars and supernovae before enriching the ICM, measuring metal abundance distributions in galaxy clusters and groups provides essential clues to determine the main astrophysical source(s) and epoch(s) of the ICM enrichment. In this work, we present radial abundance profiles averaged over 44 nearby cool-core galaxy clusters, groups, and massive ellipticals (the CHEERS sample) measured with XMM-Newton EPIC. While most of the Fe of the Universe is thought to be synthesised by Type Ia supernovae (SNIa), lighter elements, such as O, Mg, Si or S, are mostly produced by core-collapse supernovae (SNcc). The derived average radial profiles of the O, Mg, Si, S, Ar, Ca, Fe, and Ni abundances out to ˜ 0.5 r_{500} allows us to accurately compare the distributions of SNIa and SNcc products in clusters and groups. By comparing our results with recent chemo-dynamical simulations, we discuss the interpretation of the profiles in the context of early and late ICM enrichments.

  12. Toward Connecting Core-Collapse Supernova Theory with Observations: Nucleosynthetic Yields and Distribution of Elements in a 15 M⊙ Blue Supergiant Progenitor with SN 1987A Energetics

    NASA Astrophysics Data System (ADS)

    Plewa, Tomasz; Handy, Timothy; Odrzywolek, Andrzej

    2014-03-01

    We compute and discuss the process of nucleosynthesis in a series of core-collapse explosion models of a 15 solar mass, blue supergiant progenitor. We obtain nucleosynthetic yields and study the evolution of the chemical element distribution from the moment of core bounce until young supernova remnant phase. Our models show how the process of energy deposition due to radioactive decay modifies the dynamics and the core ejecta structure on small and intermediate scales. The results are compared against observations of young supernova remnants including Cas A and the recent data obtained for SN 1987A. The work has been supported by the NSF grant AST-1109113 and DOE grant DE-FG52-09NA29548. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the U.S. DoE under Contract No. DE-AC02-05CH11231.

  13. A look at Supernova 1987A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schramm, D.N.

    1987-10-01

    Supernova 1987A is reviewed with emphasis on the neutrino observations. It is shown that the results fit well with the expectations for neutrino temperatures (T approx. 4epsilon/sub 0/4.5 MeV) and total energy emitted (2epsilon/sub 0/4 x 10/sup 53/ ergs). It is argued that the detection tends to favor collapse models that yield emission for 10 second timescales with a 1epsilon/sub 0/2 second early accretion phase followed by Kelvin-Helmholtz cooling as opposed to prompt shocks with the immediate onset of cooling. It is also argued that the probable detection of one or more electron scattering event favors a superthermal tail atmore » high energies. Neutrino mass limits and flavor limits are comparable to laboratory experiments. An estimate for future collapse rates in our galaxy of 1/7 year is made based on nucleosynthesis yields. The supernova also has eliminated many axion and majoron models. 69 refs., 3 figs., 27 tabs.« less

  14. SESNPCA: Principal Component Analysis Applied to Stripped-Envelope Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Williamson, Marc; Bianco, Federica; Modjaz, Maryam

    2018-01-01

    In the new era of time-domain astronomy, it will become increasingly important to have rigorous, data driven models for classifying transients, including supernovae (SNe). We present the first application of principal component analysis (PCA) to stripped-envelope core-collapse supernovae (SESNe). Previous studies of SNe types Ib, IIb, Ic, and broad-line Ic (Ic-BL) focus only on specific spectral features, while our PCA algorithm uses all of the information contained in each spectrum. We use one of the largest compiled datasets of SESNe, containing over 150 SNe, each with spectra taken at multiple phases. Our work focuses on 49 SNe with spectra taken 15 ± 5 days after maximum V-band light where better distinctions can be made between SNe type Ib and Ic spectra. We find that spectra of SNe type IIb and Ic-BL are separable from the other types in PCA space, indicating that PCA is a promising option for developing a purely data driven model for SESNe classification.

  15. Modeling Type IIn Supernovae: Understanding How Shock Development Effects Light Curves Properties

    NASA Astrophysics Data System (ADS)

    De La Rosa, Janie

    2016-06-01

    Type IIn supernovae are produced when massive stars experience dramatic mass loss phases caused by opacity edges or violent explosions. Violent mass ejections occur quite often just prior to the collapse of the star. If the final episode happens just before collapse, the outward ejecta is sufficiently dense to alter the supernova light-curve, both by absorbing the initial supernova light and producing emission when the supernova shock hits the ejecta. Initially, the ejecta is driven by shock progating through the interior of the star, and eventually expands through the circumstellar medium, forming a cold dense shell. As the shock wave approaches the shell, there is an increase in UV and optical radiation at the location of the shock breakout. We have developed a suite of simple semi-analytical models in order to understand the relationship between our observations and the properties of the expanding SN ejecta. When we compare Type IIn observations to a set of modeled SNe, we begin to see the influence of initial explosion conditions on early UV light curve properties such as peak luminosities and decay rate.The fast rise and decay corresponds to the models representing a photosphere moving through the envelope, while the modeled light curves with a slower rise and decay rate are powered by 56Ni decay. However, in both of these cases, models that matched the luminosity were unable to match the low radii from the blackbody models. The effect of shock heating as the supernova material blasts through the circumstellar material can drastically alter the temperature and position of the photosphere. The new set of models redefine the initial modeling conditions to incorporate an outer shell-like structure, and include late-time shock heating from shocks produced as the supernova ejecta travels through the inhomogeneous circumstellar medium.

  16. Collaborative Research: Neutrinos & Nucleosynthesis in Hot Dense Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Sanjay

    2013-09-06

    It is now firmly established that neutrinos, which are copiously produced in the hot and dense core of the supernova, play a role in the supernova explosion mechanism and in the synthesis of heavy elements through a phenomena known as r-process nucleosynthesis. They are also detectable in terrestrial neutrino experiments, and serve as a probe of the extreme environment and complex dynamics encountered in the supernova. The major goal of the UW research activity relevant to this project was to calculate the neutrino interaction rates in hot and dense matter of relevance to core collapse supernova. These serve as keymore » input physics in large scale computer simulations of the supernova dynamics and nucleosynthesis being pursued at national laboratories here in the United States and by other groups in Europe and Japan. Our calculations show that neutrino production and scattering rate are altered by the nuclear interactions and that these modifications have important implications for nucleosynthesis and terrestrial neutrino detection. The calculation of neutrino rates in dense matter are difficult because nucleons in the dense matter are strongly coupled. A neutrino interacts with several nucleons and the quantum interference between scattering off different nucleons depends on the nature of correlations between them in dense matter. To describe these correlations we used analytic methods based on mean field theory and hydrodynamics, and computational methods such as Quantum Monte Carlo. We found that due to nuclear effects neutrino production rates at relevant temperatures are enhanced, and that electron neutrinos are more easily absorbed than anti-electron neutrinos in dense matter. The latter, was shown to favor synthesis of heavy neutron-rich elements in the supernova.« less

  17. The Supernova Triggered Formation and Enrichment of Our Solar System

    NASA Astrophysics Data System (ADS)

    Gritschneder, M.; Lin, D. N. C.; Murray, S. D.; Yin, Q.-Z.; Gong, M.-N.

    2012-01-01

    We investigate the enrichment of the pre-solar cloud core with short-lived radionuclides, especially 26Al. The homogeneity and the surprisingly small spread in the ratio 26Al/27Al observed in the overwhelming majority of calcium-aluminium-rich inclusions in a vast variety of primitive chondritic meteorites places strong constraints on the formation of the solar system. Freshly synthesized radioactive 26Al has to be included and well mixed within 20 kyr. After discussing various scenarios including X-winds, asymptotic giant branch stars, and Wolf-Rayet stars, we come to the conclusion that triggering the collapse of a cold cloud core by a nearby supernova (SN) is the most promising scenario. We then narrow down the vast parameter space by considering the pre-explosion survivability of such a clump as well as the cross-section necessary for sufficient enrichment. We employ numerical simulations to address the mixing of the radioactively enriched SN gas with the pre-existing gas and the forced collapse within 20 kyr. We show that a cold clump of 10 M ⊙ at a distance of 5 pc can be sufficiently enriched in 26Al and triggered into collapse fast enough—within 18 kyr after encountering the SN shock—for a range of different metallicities and progenitor masses, even if the enriched material is assumed to be distributed homogeneously in the entire SN bubble. In summary, we envision an environment for the birthplace of the solar system 4.567 Gyr ago similar to the situation of the pillars in M16 nowadays, where molecular cloud cores adjacent to an H II region will be hit by an SN explosion in the future. We show that the triggered collapse and formation of the solar system as well as the required enrichment with radioactive 26Al are possible in this scenario.

  18. Three-dimensional Boltzmann-Hydro Code for Core-collapse in Massive Stars. II. The Implementation of Moving-mesh for Neutron Star Kicks

    NASA Astrophysics Data System (ADS)

    Nagakura, Hiroki; Iwakami, Wakana; Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Matsufuru, Hideo; Imakura, Akira

    2017-04-01

    We present a newly developed moving-mesh technique for the multi-dimensional Boltzmann-Hydro code for the simulation of core-collapse supernovae (CCSNe). What makes this technique different from others is the fact that it treats not only hydrodynamics but also neutrino transfer in the language of the 3 + 1 formalism of general relativity (GR), making use of the shift vector to specify the time evolution of the coordinate system. This means that the transport part of our code is essentially general relativistic, although in this paper it is applied only to the moving curvilinear coordinates in the flat Minknowski spacetime, since the gravity part is still Newtonian. The numerical aspect of the implementation is also described in detail. Employing the axisymmetric two-dimensional version of the code, we conduct two test computations: oscillations and runaways of proto-neutron star (PNS). We show that our new method works fine, tracking the motions of PNS correctly. We believe that this is a major advancement toward the realistic simulation of CCSNe.

  19. A new baryonic equation of state at sub-nuclear densities for core-collapse simulations

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2012-11-01

    We construct a new equation of state for baryons at sub-nuclear densities for the use in core-collapse simulations of massive stars. The formulation is based on the nuclear statistical equilibrium description and the liquid drop approximation of nuclei. The model free energy to minimize is calculated by using relativistic mean field theory for nucleons and the mass formula for nuclei with atomic number up to ~ 1000. We have also taken into account the pasta phase. We find that the free energy and other thermodynamical quantities are not very different from those given in the standard EOSs that adopt the single nucleus approximation. On the other hand, the average mass is systematically different, which may have an important effect to the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. It is also interesting that the root mean square of the mass number is not very different from the average mass number, since the former is important for the evaluation of coherent scattering rates on nuclei but has been unavailable so far.

  20. A new supernova light curve modeling program

    NASA Astrophysics Data System (ADS)

    Jäger, Zoltán; Nagy, Andrea P.; Biro, Barna I.; Vinkó, József

    2017-12-01

    Supernovae are extremely energetic explosions that highlight the violent deaths of various types of stars. Studying such cosmic explosions may be important because of several reasons. Supernovae play a key role in cosmic nucleosynthesis processes, and they are also the anchors of methods of measuring extragalactic distances. Several exotic physical processes take place in the expanding ejecta produced by the explosion. We have developed a fast and simple semi-analytical code to model the the light curve of core collapse supernovae. This allows the determination of their most important basic physical parameters, like the the radius of the progenitor star, the mass of the ejected envelope, the mass of the radioactive nickel synthesized during the explosion, among others.

  1. Diffuse neutrino supernova background as a cosmological test

    NASA Astrophysics Data System (ADS)

    Barranco, J.; Bernal, A.; Delepine, D.

    2018-05-01

    The future detection and measurement of the diffuse neutrino supernova background will provide us with information about supernova neutrino emission and the cosmic core-collapse supernova rate. Little has been said about the information that this measurement could give us about the expansion history of the Universe. The purpose of this article is to study the change of the predicted diffuse supernova neutrino background as a function of the cosmological model. In particular, we study three different models: the Λ–Cold Dark Matter model, the Logotropic universe and a bulk viscous matter-dominated universe. By fitting the free parameters of each model with the supernova Ia probe, we calculate the predicted number of events in these three models. We found that the spectra and number of events for the Λ–Cold dark matter model and the Logotropic model are almost indistinguishable, while a bulk viscous matter-dominated cosmological model predicts more events.

  2. The impact of vorticity waves on the shock dynamics in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Huete, César; Abdikamalov, Ernazar; Radice, David

    2018-04-01

    Convective perturbations arising from nuclear shell burning can play an important role in propelling neutrino-driven core-collapse supernova explosions. In this work, we analyse the impact of vorticity waves on the shock dynamics, and subsequently on the post-shock flow, using the solution of the linear hydrodynamics equations. As a result of the interaction with the shock wave, vorticity waves increase their kinetic energy, and a new set of entropic and acoustic waves is deposited in the post-shock region. These perturbations interact with the neutrino-driven turbulent convection that develops in that region. Although both vorticity and acoustic waves inject non-radial motion into the gain region, the contribution of the acoustic waves is found to be negligibly small in comparison to that of the vorticity waves. On the other hand, entropy waves become buoyant and trigger more convection. Using the concept of critical neutrino luminosity, we assess the impact of these modes on the explosion conditions. While the direct injection of non-radial motion reduces the critical neutrino luminosity by ˜ 12 per cent for typical problem parameters, the buoyancy-driven convection triggered by entropy waves reduces the critical luminosity by ˜ 17-24 per cent, which approximately agrees with the results of three-dimensional neutrino-hydrodynamics simulations. Finally, we discuss the limits of validity of the assumptions employed.

  3. Radio Observations Reveal a Smooth Circumstellar Environment Around the Extraordinary Type Ib Supernova 2012au

    NASA Astrophysics Data System (ADS)

    Kamble, Atish; Soderberg, Alicia M.; Chomiuk, Laura; Margutti, Raffaella; Medvedev, Mikhail; Milisavljevic, Dan; Chakraborti, Sayan; Chevalier, Roger; Chugai, Nikolai; Dittmann, Jason; Drout, Maria; Fransson, Claes; Nakar, Ehud; Sanders, Nathan

    2014-12-01

    We present extensive radio and X-ray observations of SN 2012au, an energetic, radio-luminous supernova of Type Ib that exhibits multi-wavelength properties bridging subsets of hydrogen-poor superluminous supernovae, hypernovae, and normal core-collapse supernovae. The observations closely follow models of synchrotron emission from a shock-heated circumburst medium that has a wind density profile (ρvpropr -2). We infer a sub-relativistic velocity for the shock wave v ≈ 0.2 c and a radius of r ≈ 1.4 × 1016cm at 25 days after the estimated date of explosion. For a wind velocity of 1000 km s-1, we determine the mass-loss rate of the progenitor to be \\dot{M} = 3.6 × 10-6 M⊙ yr-1, consistent with the estimates from X-ray observations. We estimate the total internal energy of the radio-emitting material to be E ≈ 1047 erg, which is intermediate to SN 1998bw and SN 2002ap. The evolution of the radio light curve of SN 2012au is in agreement with its interaction with a smoothly distributed circumburst medium and the absence of stellar shells ejected from previous outbursts out to r ≈ 1017 cm from the supernova site. We conclude that the bright radio emission from SN 2012au was not dissimilar from other core-collapse supernovae despite its extraordinary optical properties, and that the evolution of the SN 2012au progenitor star was relatively quiet, marked with a steady mass loss, during the final years preceding explosion.

  4. Signs of Asymmetry in Exploding Stars

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry

    2018-03-01

    Supernova explosions enrich the interstellar medium and can even briefly outshine their host galaxies. However, the mechanism behind these massive explosions still isnt fully understood. Could probing the asymmetry of supernova remnants help us better understand what drives these explosions?Hubble image of the remnant of supernova 1987A, one of the first remnants discovered to be asymmetrical. [ESA/Hubble, NASA]Stellar Send-OffsHigh-mass stars end their lives spectacularly. Each supernova explosion churns the interstellar medium and unleashes high-energy radiation and swarms of neutrinos. Supernovae also suffuse the surrounding interstellar medium with heavy elements that are incorporated into later generations of stars and the planets that form around them.The bubbles of expanding gas these explosions leave behind often appear roughly spherical, but mounting evidence suggests that many supernova remnants are asymmetrical. While asymmetry in supernova remnants can arise when the expanding material plows into the non-uniform interstellar medium, it can also be an intrinsic feature of the explosion itself.Simulation results clockwise from top left: Mass density, calcium mass fraction, oxygen mass fraction, nickel-56 mass fraction. Click to enlarge. [Adapted from Wollaeger et al. 2017]Coding ExplosionsThe presence or absence of asymmetry in a supernova remnant can hold clues as to what drove the explosion. But how can we best observe asymmetry in a supernova remnant? Modeling lets us explore different observational approaches.A team of scientists led by Ryan T. Wollaeger (Los Alamos National Laboratory) used radiative transfer and radiative hydrodynamics simulations to model the explosion of a core-collapse supernova. Wollaeger and collaborators introduced asymmetry into the explosion by creating a single-lobed, fast-moving outflow along one axis.Their simulations showed that while some chemical elements lingered near the origin of the explosion or were distributed evenly throughout the remnant, calcium was isolated to the asymmetrical region, hinting that spectral lines of calcium may be good tracersof asymmetry.Bolometric (top) and gamma-ray (bottom) synthetic light curves for the authors model for a range of simulated viewing angles. [Adapted from Wollaeger et al. 2017]Synthesizing SpectraWollaeger and collaborators then generated synthetic light curves and spectra from their models to determine which spectral features or characteristics indicated the presence of the asymmetric outflow lobe. They found that when an asymmetric outflow lobe is present, the peak luminosity of the explosion depends on the angle at which you view it; the highest luminosity occurs when the lobe is viewed from the side, while the lowest luminosity nearly40%dimmer is seen when the explosion is viewed down the barrel of the lobe. The dense outflow shades the central radioactive source from view, lowering the luminosity.This effect also plays out in the gamma-ray light curves; when viewed down the barrel, the shading of the central source by ahigh-density lobe slows the rise of the gamma-ray luminosity and changes the shape of the light curve compared to views from other vantage points.Another promising avenue for exploring asymmetry is a near-infrared band encompassing an emission line of singly-ionized calcium near 815 nm. Since calcium is confined within the outflow lobe in the simulation, its emission lines are blueshifted when the lobe points toward the observer.The authors point out that there is much more to be done in their models, such as including the effects of shock heating of circumstellar material, which can contribute strongly to the light curve, but these simulations bring us a step closer to understanding the nature of asymmetrical supernova remnants and the explosions that create them.CitationRyan T. Wollaeger et al 2017ApJ845168. doi:10.3847/1538-4357/aa82bd

  5. A 'nu' look at gravitational waves: the black hole birth rate from neutrinos combined with the merger rate from LIGO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Jonathan H.; Fairbairn, Malcolm, E-mail: jonathan.davis@kcl.ac.uk, E-mail: malcolm.fairbairn@kcl.ac.uk

    We make projections for measuring the black hole birth rate from the diffuse supernova neutrino background (DSNB) by future neutrino experiments, and constrain the black hole merger fraction ε, when combined with information on the black hole merger rate from gravitational wave experiments such as LIGO. The DSNB originates from neutrinos emitted by all the supernovae in the Universe, and is expected to be made up of two components: neutrinos from neutron-star-forming supernovae, and a sub-dominant component at higher energies from black-hole-forming 'unnovae'. We perform a Markov Chain Monte Carlo analysis of simulated data of the DSNB in an experimentmore » similar to Hyper-Kamiokande, focusing on this second component. Since all knowledge of the neutrino emission from unnovae comes from simulations of collapsing stars, we choose two sets of priors: one where the unnovae are well-understood and one where their neutrino emission is poorly known. By combining the black hole birth rate from the DSNB with projected measurements of the black hole merger rate from LIGO, we show that the fraction of black holes which lead to binary mergers observed today ε could be constrained to be within the range 2 ⋅ 10{sup −4} ≤ ε ≤ 3 ⋅ 10{sup −2} at 3 σ confidence, after ten years of running an experiment like Hyper-Kamiokande.« less

  6. Neutrino flavor instabilities in a time-dependent supernova model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbar, Sajad; Duan, Huaiyu

    2015-10-19

    In this study, a dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, stationary supernova model which possesses the (spatial) spherical symmetry about the center of the supernova and the (directional) axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this letter we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collectivemore » neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.« less

  7. Evolution of an electron-positron plasma produced by induced gravitational collapse in binary-driven hypernovae

    NASA Astrophysics Data System (ADS)

    Melon Fuksman, J. D.; Becerra, L.; Bianco, C. L.; Karlica, M.; Kovacevic, M.; Moradi, R.; Muccino, M.; Pisani, G. B.; Primorac, D.; Rueda, J. A.; Ruffini, R.; Vereshchagin, G. V.; Wang, Y.

    2018-01-01

    The binary-driven hypernova (BdHN) model has been introduced in the past years, to explain a subfamily of gamma-ray bursts (GRBs) with energies Eiso ≥ 1052 erg associated with type Ic supernovae. Such BdHNe have as progenitor a tight binary system composed of a carbon-oxigen (CO) core and a neutron star undergoing an induced gravitational collapse to a black hole, triggered by the CO core explosion as a supernova (SN). This collapse produces an optically-thick e+e- plasma, which expands and impacts onto the SN ejecta. This process is here considered as a candidate for the production of X-ray flares, which are frequently observed following the prompt emission of GRBs. In this work we follow the evolution of the e+e- plasma as it interacts with the SN ejecta, by solving the equations of relativistic hydrodynamics numerically. Our results are compatible with the Lorentz factors estimated for the sources that produce the flares, of typically Γ ≲ 4.

  8. REVIEWS OF TOPICAL PROBLEMS: Neutrinos from stellar core collapses: present status of experiments

    NASA Astrophysics Data System (ADS)

    Ryazhskaya, Ol'ga G.

    2006-10-01

    The responses of the existing underground detectors to neutrino bursts from collapsing stars evolving in accordance with various models are considered. The interpretation of the results of detecting neutrino radiation from the SN1987A supernova explosion is discussed. A combination of large scintillation counters interlayered with iron slabs (as a target for the electron neutrino interaction) is suggested as a detector for core collapse neutrinos. Bounds for the galactic rate of core collapses based on 28 years of observations by neutrino telescopes of RAS INR, LSD, and LVD detectors are presented.

  9. Studying white dwarf merger remnants with FLASH

    NASA Astrophysics Data System (ADS)

    Jenks, Malia

    2017-01-01

    There is still uncertainty as to the progenitor systems of type Ia supernova (SN Ia). Both single and double degenerate systems have been suggested as progenitors. In a double degenerate system a merger between the two white dwarfs, with total mass at or exceeding the Chandrasekhar mass, leads to the supernova. If the explosion occurs during the merging process it is a violent merger. If an explosion doesn't occur while the stars merge the system becomes a white dwarf of unstable mass. For mergers of this type with differing starting masses it has been shown that during the viscous evolution carbon burning starts far from the center and stably converts the star to oxygen and neon. In this case the star will eventually collapse to a neutron star and not produce an SN Ia. The case of similar mass mergers has been much less explored. Using the results of a smooth particle hydrodynamic merger we simulate the viscous evolution of models of different mass ratios with FLASH. These simulations test if a similar mass merger can lead to an SN Ia, and begin to probe where the transition from similar to dissimilar mass occurs.

  10. Neutron Star Kicks by the Gravitational Tug-boat Mechanism in Asymmetric Supernova Explosions: Progenitor and Explosion Dependence

    NASA Astrophysics Data System (ADS)

    Janka, Hans-Thomas

    2017-03-01

    Asymmetric mass ejection in the early phase of supernova (SN) explosions can impart a kick velocity to the new-born neutron star (NS). For neutrino-driven explosions the NS acceleration has been shown to be mainly caused by the gravitational attraction of the anisotropically expelled inner ejecta, while hydrodynamic forces contribute on a subdominant level, and asymmetric neutrino emission plays only a secondary role. Two- and three-dimensional hydrodynamic simulations have demonstrated that this gravitational tug-boat mechanism can explain the observed space velocities of young NSs up to more than 1000 km s-1. Here, we discuss how the NS kick depends on the energy, ejecta mass, and asymmetry of the SN explosion, and what role the compactness of the pre-collapse stellar core plays for the momentum transfer to the NS. We also provide simple analytic expressions for the NS velocity in terms of these quantities. Referring to results of hydrodynamic simulations in the literature, we argue why, within the discussed scenario of NS acceleration, electron-capture SNe, low-mass Fe-core SNe, and ultra-stripped SNe can be expected to have considerably lower intrinsic NS kicks than core-collapse SNe of massive stellar cores. Our basic arguments also remain valid if progenitor stars possess large-scale asymmetries in their convective silicon and oxygen burning layers. Possible scenarios for spin-kick alignment are sketched. Much of our discussion stays on a conceptual and qualitative level, and more work is necessary on the numerical modeling side to determine the dependences of involved parameters, whose prescriptions will be needed for recipes that can be used to better describe NS kicks in binary evolution and population synthesis studies.

  11. Non-radial instabilities and progenitor asphericities in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Müller, B.; Janka, H.-Th.

    2015-04-01

    Since core-collapse supernova simulations still struggle to produce robust neutrino-driven explosions in 3D, it has been proposed that asphericities caused by convection in the progenitor might facilitate shock revival by boosting the activity of non-radial hydrodynamic instabilities in the post-shock region. We investigate this scenario in depth using 42 relativistic 2D simulations with multigroup neutrino transport to examine the effects of velocity and density perturbations in the progenitor for different perturbation geometries that obey fundamental physical constraints (like the anelastic condition). As a framework for analysing our results, we introduce semi-empirical scaling laws relating neutrino heating, average turbulent velocities in the gain region, and the shock deformation in the saturation limit of non-radial instabilities. The squared turbulent Mach number, , reflects the violence of aspherical motions in the gain layer, and explosive runaway occurs for ≳ 0.3, corresponding to a reduction of the critical neutrino luminosity by ˜ 25 per cent compared to 1D. In the light of this theory, progenitor asphericities aid shock revival mainly by creating anisotropic mass flux on to the shock: differential infall efficiently converts velocity perturbations in the progenitor into density perturbations δρ/ρ at the shock of the order of the initial convective Mach number Maprog. The anisotropic mass flux and ram pressure deform the shock and thereby amplify post-shock turbulence. Large-scale (ℓ = 2, ℓ = 1) modes prove most conducive to shock revival, whereas small-scale perturbations require unrealistically high convective Mach numbers. Initial density perturbations in the progenitor are only of the order of Ma_prog^2 and therefore play a subdominant role.

  12. Neutron Star Kicks by the Gravitational Tug-boat Mechanism in Asymmetric Supernova Explosions: Progenitor and Explosion Dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janka, Hans-Thomas

    Asymmetric mass ejection in the early phase of supernova (SN) explosions can impart a kick velocity to the new-born neutron star (NS). For neutrino-driven explosions the NS acceleration has been shown to be mainly caused by the gravitational attraction of the anisotropically expelled inner ejecta, while hydrodynamic forces contribute on a subdominant level, and asymmetric neutrino emission plays only a secondary role. Two- and three-dimensional hydrodynamic simulations have demonstrated that this gravitational tug-boat mechanism can explain the observed space velocities of young NSs up to more than 1000 km s{sup −1}. Here, we discuss how the NS kick depends onmore » the energy, ejecta mass, and asymmetry of the SN explosion, and what role the compactness of the pre-collapse stellar core plays for the momentum transfer to the NS. We also provide simple analytic expressions for the NS velocity in terms of these quantities. Referring to results of hydrodynamic simulations in the literature, we argue why, within the discussed scenario of NS acceleration, electron-capture SNe, low-mass Fe-core SNe, and ultra-stripped SNe can be expected to have considerably lower intrinsic NS kicks than core-collapse SNe of massive stellar cores. Our basic arguments also remain valid if progenitor stars possess large-scale asymmetries in their convective silicon and oxygen burning layers. Possible scenarios for spin-kick alignment are sketched. Much of our discussion stays on a conceptual and qualitative level, and more work is necessary on the numerical modeling side to determine the dependences of involved parameters, whose prescriptions will be needed for recipes that can be used to better describe NS kicks in binary evolution and population synthesis studies.« less

  13. DEPENDENCE OF THE Sr-TO-Ba AND Sr-TO-Eu RATIO ON THE NUCLEAR EQUATION OF STATE IN METAL-POOR HALO STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Famiano, M. A.; Kajino, T.; Aoki, W.

    A model is proposed in which the dependence on the equation of state (EOS) of the scatter of [Sr/Ba] in metal-poor stars is studied. Light r-process element enrichment in these stars has been explained via a truncated r-process, or “tr-process.” The truncation of the r-process from a generic core-collapse event followed by a collapse into an accretion-induced black hole is examined in the framework of a galactic chemical evolution model. The constraints on this model imposed by observations of extremely metal-poor stars are explained, and the upper limits in the [Sr/Ba] distributions are found to be related to the nuclearmore » EOS in a collapse scenario. The scatter in [Sr/Ba] and [Sr/Eu] as a function of metallicity has been found to be consistent with turbulent ejection in core-collapse supernovae. Adaptations of this model are evaluated to account for the scatter in isotopic observables. This is done by assuming mixing in ejecta in a supernova event. Stiff EOS are eliminated by this model.« less

  14. Runaway companions of supernova remnants with Gaia

    NASA Astrophysics Data System (ADS)

    Boubert, Douglas; Fraser, Morgan; Evans, N. Wyn

    2018-04-01

    It is expected that most massive stars have companions and thus that some core-collapse supernovae should have a runaway companion. The precise astrometry and photometry provided by Gaia allows for the systematic discovery of these runaway companions. We combine a prior on the properties of runaway stars from binary evolution with data from TGAS and APASS to search for runaway stars within ten nearby supernova remnants. We strongly confirm the existing candidate HD 37424 in S147, propose the Be star BD+50 3188 to be associated with HB 21, and suggest tentative candidates for the Cygnus and Monoceros Loops.

  15. Collective neutrino oscillations and r-process nucleosynthesis in supernovae

    NASA Astrophysics Data System (ADS)

    Duan, Huaiyu

    2012-10-01

    Neutrinos can oscillate collectively in a core-collapse supernova. This phenomenon can occur much deeper inside the supernova envelope than what is predicted from the conventional matter-induced Mikheyev-Smirnov-Wolfenstein effect, and hence may have an impact on nucleosynthesis. The oscillation patterns and the r-process yields are sensitive to the details of the emitted neutrino fluxes, the sign of the neutrino mass hierarchy, the modeling of neutrino oscillations and the astrophysical conditions. The effects of collective neutrino oscillations on the r-process will be illustrated using representative late-time neutrino spectra and outflow models.

  16. The convective engine paradigm for the supernova explosion mechanism and its consequences.

    NASA Astrophysics Data System (ADS)

    Herant, M.

    1995-05-01

    The convective engine paradigm for the explosion mechanism in core collapse supernovae is presented in a pedagogical manner. A candid evaluation of its strengths and weaknesses is attempted. The case where the convective mode corresponds to l=1, m=0 (one inflow, one outflow) is explored in more detail. The author also discusses the potential importance of such a convective pattern for neutron star kicks.

  17. Interstellar Lithium and Rubidium in the Diffuse Gas Near IC 443

    NASA Astrophysics Data System (ADS)

    Ritchey, Adam M.; Taylor, C. J.; Federman, S. R.; Lambert, D. L.

    2011-01-01

    We present an analysis of interstellar lithium and rubidium from observations made with the Hobby-Eberly Telescope at McDonald Observatory of the Li I λ6707 and Rb I λ7800 absorption lines along four lines of sight through the supernova remnant IC 443. The observations probe interstellar material polluted by the ejecta of a core-collapse (Type II) supernova and can thus be used to constrain the contribution from massive stars to the synthesis of lithium and rubidium. Production of 7Li is expected to occur through neutrino spallation in the helium and carbon shells of the progenitor star during the terminal supernova explosion, while both 6Li and 7Li are synthesized via spallation and fusion reactions involving cosmic rays accelerated by the remnant. Gamma-ray emission from IC 443 provides strong evidence for the interaction of accelerated cosmic rays with the ambient atomic and molecular gas. Rubidium is also produced by massive stars through the weak s-process in the He- and C-burning shells and the r-process during core collapse. We examine interstellar 7Li/6Li isotope ratios as well as Li/K and Rb/K ratios along each line of sight, and discuss the implications of our results in the context of nucleosynthesis associated with Type II supernovae.

  18. Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions

    NASA Astrophysics Data System (ADS)

    Vale, D.; Rauscher, T.; Paar, N.

    2016-02-01

    We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for 56Fe and 208Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons p(bar nue,e+)n are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of νe- and bar nue-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.

  19. The neutron capture process in the He shell in core-collapse supernovae: Presolar silicon carbide grains as a diagnostic tool for nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Pignatari, Marco; Hoppe, Peter; Trappitsch, Reto; Fryer, Chris; Timmes, F. X.; Herwig, Falk; Hirschi, Raphael

    2018-01-01

    Carbon-rich presolar grains are found in primitive meteorites, with isotopic measurements to date suggesting a core-collapse supernovae origin site for some of them. This holds for about 1-2% of presolar silicon carbide (SiC) grains, so-called Type X and C grains, and about 30% of presolar graphite grains. Presolar SiC grains of Type X show anomalous isotopic signatures for several elements heavier than iron compared to the solar abundances: most notably for strontium, zirconium, molybdenum, ruthenium and barium. We study the nucleosynthesis of zirconium and molybdenum isotopes in the He-shell of three core-collapse supernovae models of 15, 20 and 25 M⊙ with solar metallicity, and compare the results to measurements of presolar grains. We find the stellar models show a large scatter of isotopic abundances for zirconium and molybdenum, but the mass averaged abundances are qualitatively similar to the measurements. We find all models show an excess of 96Zr relative to the measurements, but the model abundances are affected by the fractionation between Sr and Zr since a large contribution to 90Zr is due to the radiogenic decay of 90Sr. Some supernova models show excesses of 95,97Mo and depletion of 96Mo relative to solar. The mass averaged distribution from these models shows an excess of 100Mo, but this may be alleviated by very recent neutron-capture cross section measurements. We encourage future explorations to assess the impact of the uncertainties in key neutron-capture reaction rates that lie along the n-process path.

  20. The Fermi Gamma-Ray Space Telescope discovers the pulsar in the young galactic supernova remnant CTA 1.

    PubMed

    Abdo, A A; Ackermann, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bogaert, G; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dormody, M; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Focke, W B; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Harding, A K; Hartman, R C; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Kanai, Y; Kanbach, G; Katagiri, H; Kawai, N; Kerr, M; Kishishita, T; Kiziltan, B; Knödlseder, J; Kocian, M L; Komin, N; Kuehn, F; Kuss, M; Latronico, L; Lemoine-Goumard, M; Longo, F; Lonjou, V; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; McGlynn, S; Meurer, C; Michelson, P F; Mineo, T; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piano, G; Pieri, L; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Parkinson, P M Saz; Schalk, T L; Sellerholm, A; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Thorsett, S E; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Usher, T L; Van Etten, A; Vilchez, N; Vitale, V; Wang, P; Watters, K; Winer, B L; Wood, K S; Yasuda, H; Ylinen, T; Ziegler, M

    2008-11-21

    Energetic young pulsars and expanding blast waves [supernova remnants (SNRs)] are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 milliseconds and a period derivative of 3.614 x 10(-13) seconds per second. Its characteristic age of 10(4) years is comparable to that estimated for the SNR. We speculate that most unidentified Galactic gamma-ray sources associated with star-forming regions and SNRs are such young pulsars.

  1. Investigating the Chemical Evolution of the Universe via Numerical Simulations: Supernova Dust Destruction and Non-Equilibrium Ionization Chemistry

    NASA Astrophysics Data System (ADS)

    Silvia, Devin W.

    2013-12-01

    The chemical evolution of the Universe is a complicated process with countless facets that define its properties over the course of time. In the early Universe, the metal-free first stars were responsible for originally introducing metals into the pristine gas left over from the Big Bang. Once these metals became prevalent, they forever altered the thermodynamics of the Universe. Understanding precisely where these metals originated, where they end up, and the conditions they experience along the way is of great interest in the astrophysical community. In this work, I have used numerical simulations as a means of understanding two separate phenomena related to the chemical evolution the Universe. The first topic focuses on the question as to whether or not core-collapse supernovae in the high-redshift universe are capable of being "dust factories" for the production of galactic dust. To achieve this, I carried out idealized simulations of supernova ejecta clouds being impacted by reverse-shock blast waves. By post-processing the results of these simulations, I was able to estimate the amount of dust destruction that would occur due to thermal sputtering. In the most extreme scenarios, simulated with high relative velocities between the shock and the ejecta cloud and high gas metallicities, I find complete destruction for some grains species and only 44% dust mass survival for even the most robust species. This raises the question as to whether or not high-redshift supernova can produce dust masses in sufficient excess of the ˜1 Msun per event required to match observations of high-z galaxies. The second investigation was driven by the desire to find an answer to the missing baryon problem and a curiosity as to the impact that including a full non-equilibrium treatment of ionization chemistry has on simulations of the intergalactic medium. To address these questions, I have helped to develop Dengo, a new software package for solving complex chemical networks. Once this new package was integrated into Enzo, I carried out a set of cosmological simulations that served as both a test of the new solver and a confirmation that non-equilibrium ionization chemistry produces results that are drastically different from those that assume collisional ionization equilibrium. Although my analysis of these simulations is in its early stages, I find that the observable properties of the intergalactic medium change considerably. Continued efforts to run state-of-the-art simulations of the intergalactic medium using Dengo are warranted.

  2. Supernova signatures of neutrino mass ordering

    NASA Astrophysics Data System (ADS)

    Scholberg, Kate

    2018-01-01

    A suite of detectors around the world is poised to measure the flavor-energy-time evolution of the ten-second burst of neutrinos from a core-collapse supernova occurring in the Milky Way or nearby. Next-generation detectors to be built in the next decade will have enhanced flavor sensitivity and statistics. Not only will the observation of this burst allow us to peer inside the dense matter of the extreme event and learn about the collapse processes and the birth of the remnant, but the neutrinos will bring information about neutrino properties themselves. This review surveys some of the physical signatures that the currently-unknown neutrino mass pattern will imprint on the observed neutrino events at Earth, emphasizing the most robust and least model-dependent signatures of mass ordering.

  3. The secondary supernova machine: Gravitational compression, stored Coulomb energy, and SNII displays

    NASA Astrophysics Data System (ADS)

    Clayton, Donald D.; Meyer, Bradley S.

    2016-04-01

    Radioactive power for several delayed optical displays of core-collapse supernovae is commonly described as having been provided by decays of 56Ni nuclei. This review analyses the provenance of that energy more deeply: the form in which that energy is stored; what mechanical work causes its storage; what conservation laws demand that it be stored; and why its release is fortuitously delayed for about 106 s into a greatly expanded supernova envelope. We call the unifying picture of those energy transfers the secondary supernova machine owing to its machine-like properties; namely, mechanical work forces storage of large increases of nuclear Coulomb energy, a positive energy component within new nuclei synthesized by the secondary machine. That positive-energy increase occurs despite the fusion decreasing negative total energy within nuclei. The excess of the Coulomb energy can later be radiated, accounting for the intense radioactivity in supernovae. Detailed familiarity with this machine is the focus of this review. The stored positive-energy component created by the machine will not be reduced until roughly 106 s later by radioactive emissions (EC and β +) owing to the slowness of weak decays. The delayed energy provided by the secondary supernova machine is a few × 1049 erg, much smaller than the one percent of the 1053 erg collapse that causes the prompt ejection of matter; however, that relatively small stored energy is vital for activation of the late displays. The conceptual basis of the secondary supernova machine provides a new framework for understanding the energy source for late SNII displays. We demonstrate the nuclear dynamics with nuclear network abundance calculations, with a model of sudden compression and reexpansion of the nuclear gas, and with nuclear energy decompositions of a nuclear-mass law. These tools identify excess Coulomb energy, a positive-energy component of the total negative nuclear energy, as the late activation energy. If the value of fundamental charge e were smaller, SNII would not be so profoundly radioactive. Excess Coulomb energy has been carried within nuclei radially for roughly 109 km before being radiated into greatly expanded supernova remnants. The Coulomb force claims heretofore unacknowledged significance for supernova physics.

  4. Radio observations reveal a smooth circumstellar environment around the extraordinary type Ib supernova 2012au

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamble, Atish; Soderberg, Alicia M.; Margutti, Raffaella

    2014-12-10

    We present extensive radio and X-ray observations of SN 2012au, an energetic, radio-luminous supernova of Type Ib that exhibits multi-wavelength properties bridging subsets of hydrogen-poor superluminous supernovae, hypernovae, and normal core-collapse supernovae. The observations closely follow models of synchrotron emission from a shock-heated circumburst medium that has a wind density profile (ρ∝r {sup –2}). We infer a sub-relativistic velocity for the shock wave v ≈ 0.2 c and a radius of r ≈ 1.4 × 10{sup 16}cm at 25 days after the estimated date of explosion. For a wind velocity of 1000 km s{sup –1}, we determine the mass-loss ratemore » of the progenitor to be M-dot =3.6×10{sup −6} M{sub ⊙} yr{sup −1}, consistent with the estimates from X-ray observations. We estimate the total internal energy of the radio-emitting material to be E ≈ 10{sup 47} erg, which is intermediate to SN 1998bw and SN 2002ap. The evolution of the radio light curve of SN 2012au is in agreement with its interaction with a smoothly distributed circumburst medium and the absence of stellar shells ejected from previous outbursts out to r ≈ 10{sup 17} cm from the supernova site. We conclude that the bright radio emission from SN 2012au was not dissimilar from other core-collapse supernovae despite its extraordinary optical properties, and that the evolution of the SN 2012au progenitor star was relatively quiet, marked with a steady mass loss, during the final years preceding explosion.« less

  5. Star-Forming Clouds Feed, Churn, and Fall

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    Molecular clouds, the birthplaces of stars in galaxies throughout the universe, are complicated and dynamic environments. A new series of simulations has explored how these clouds form, grow, and collapse over their lifetimes.This composite image shows part of the Taurus Molecular Cloud. [ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized Sky Survey]Stellar BirthplacesMolecular clouds form out of the matter in between stars, evolving through constant interactions with their turbulent environments. These interactions taking the form of accretion flows and surface forces, while gravity, turbulence, and magnetic fields interplay are thought to drive the properties and evolution of the clouds.Our understanding of the details of this process, however, remains fuzzy. How does mass accretion affect these clouds as they evolve? What happens when nearby supernova explosions blast the outsides of the clouds? What makes the clouds churn, producing the motion within them that prevents them from collapsing? The answers to these questions can tellus about the gas distributed throughout galaxies, revealing information about the environments in which stars form.A still from the simulation results showing the broader population of molecular clouds that formed in the authors simulations, as well as zoom-in panels of three low-mass clouds tracked in high resolution. [Ibez-Meja et al. 2017]Models of TurbulenceIn a new study led by Juan Ibez-Meja (MPI Garching and Universities of Heidelberg and Cologne in Germany, and American Museum of Natural History), scientists have now explored these questions using a series of three-dimensional simulations of a population of molecular clouds forming and evolving in the turbulent interstellar medium.The simulations take into account a whole host of physics, including the effects of nearby supernova explosions, self-gravitation, magnetic fields, diffuse heating, and radiative cooling. After looking at the behavior of the broader population of clouds, the authors zoom in and explore three clouds in high-resolution to learn more about the details.Watching Clouds EvolveIbez-Meja and collaborators find that mass accretion occurring after the molecular clouds form plays an important role in the clouds evolution, increasing the mass available to form stars and carrying kinetic energy into the cloud. The accretion process is driven both by background turbulent flows and gravitational attraction as the cloud draws in the gas in its nearby environment.Plots of the cloud mass and radius (top) and mass accretion rate (bottom) for one of the three zoomed-in clouds, shown as a function of time over the 10-Myr simulation. [Adapted from Ibez-Meja et al. 2017]The simulations show that nearby supernovae have two opposing effects on a cloud. On one hand, the blast waves from supernovae compress the envelope of the cloud, increasing the instantaneous rate of accretion. On the other hand, the blast waves disrupt parts of the envelope and erode mass from the clouds surface, decreasing accretion overall. These events ensure that the mass accretion rate of molecular clouds is non-uniform, regularly punctuated by sporadic increases and decreases as the clouds are battered by nearby explosions.Lastly, Ibez-Meja and collaborators show that mass accretion alone isnt enough to power the turbulent internal motions we observe inside molecular clouds. Instead, they conclude, the cloud motions must be primarily powered by gravitational potential energy being converted into kinetic energy as the cloud contracts.The authors simulations therefore show that molecular clouds exist in a state of precarious balance, prevented from collapsing by internal turbulence driven by interactions with their environment and by their own contraction. These results give us an intriguing glimpse into the complex environments in which stars are born.BonusCheck out the animated figure below, which displays how the clouds in the authors simulations evolve over the span of 10 million years.http://cdn.iopscience.com/images/0004-637X/850/1/62/Full/apjaa93fef1_video.mp4CitationJuan C. Ibez-Meja et al 2017 ApJ 850 62. doi:10.3847/1538-4357/aa93fe

  6. Constraints for the Progenitor Masses of Historic Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin F.; Hillis, Tristan J.; Murphy, Jeremiah W.; Gilbert, Karoline; Dalcanton, Julianne J.; Dolphin, Andrew E.

    2018-06-01

    We age-date the stellar populations associated with 12 historic nearby core-collapse supernovae (CCSNe) and two supernova impostors; from these ages, we infer their initial masses and associated uncertainties. To do this, we have obtained new Hubble Space Telescope imaging covering these CCSNe. Using these images, we measure resolved stellar photometry for the stars surrounding the locations of the SNe. We then fit the color–magnitude distributions of this photometry with stellar evolution models to determine the ages of any young existing populations present. From these age distributions, we infer the most likely progenitor masses for all of the SNe in our sample. We find ages between 4 and 50 Myr, corresponding to masses from 7.5 to 59 solar masses. There were no SNe that lacked a local young population. Our sample contains four SNe Ib/c; their masses have a wide range of values, suggesting that the progenitors of stripped-envelope SNe are binary systems. Both impostors have masses constrained to be ≲7.5 solar masses. In cases with precursor imaging measurements, we find that age-dating and precursor imaging give consistent progenitor masses. This consistency implies that, although the uncertainties for each technique are significantly different, the results of both are reliable to the measured uncertainties. We combine these new measurements with those from our previous work and find that the distribution of 25 core-collapse SNe progenitor masses is consistent with a standard Salpeter power-law mass function, no upper mass cutoff, and an assumed minimum mass for core-collapse of 7.5 M⊙. The distribution is consistent with a minimum mass <9.5 M⊙.

  7. Well-balanced Schemes for Gravitationally Stratified Media

    NASA Astrophysics Data System (ADS)

    Käppeli, R.; Mishra, S.

    2015-10-01

    We present a well-balanced scheme for the Euler equations with gravitation. The scheme is capable of maintaining exactly (up to machine precision) a discrete hydrostatic equilibrium without any assumption on a thermodynamic variable such as specific entropy or temperature. The well-balanced scheme is based on a local hydrostatic pressure reconstruction. Moreover, it is computationally efficient and can be incorporated into any existing algorithm in a straightforward manner. The presented scheme improves over standard ones especially when flows close to a hydrostatic equilibrium have to be simulated. The performance of the well-balanced scheme is demonstrated on an astrophysically relevant application: a toy model for core-collapse supernovae.

  8. Gravitational radiation from magnetically funneled supernova fallback onto a magnetar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melatos, A.; Priymak, M., E-mail: amelatos@unimelb.edu.au, E-mail: m.priymak@pgrad.unimelb.edu.au

    2014-10-20

    Protomagnetars spun up to millisecond rotation periods by supernova fallback are predicted to radiate gravitational waves via hydrodynamic instabilities for ∼10{sup 2} s before possibly collapsing to form a black hole. It is shown that magnetic funneling of the accretion flow (1) creates a magnetically confined polar mountain, which boosts the gravitational wave signal, and (2) 'buries' the magnetic dipole moment, delaying the propeller phase and assisting black hole formation.

  9. Astronomy in Denver: The polarization evolution of the luminous Type Ib SN 2012au

    NASA Astrophysics Data System (ADS)

    Hoffman, Jennifer L.; DeKlotz, Sophia; Cooper, Kevin; Slay, Hannah; Williams, George Grant; Supernova Spectropolarimetry Project (SNSPOL)

    2018-06-01

    We present an analysis of the spectropolarimetric behavior of the Type Ib SN 2012au over the first 315 days of its evolution. Our data were obtained by the Supernova Spectropolarimetry Project using the CCD Imaging/Spectropolarimeter (SPOL) at the 61" Kuiper, the 90" Bok, and the 6.5-m MMT telescopes. SN 2012au was a very energetic, luminous, and slowly evolving event that may represent an intermediate case between normal core-collapse supernovae and the enigmatic superluminous supernovae. Strong, time-variable line polarization signatures, particularly in the He Il λ5876 line, support previous hypotheses of an asymmetric explosion and allow us to trace detailed structures within the supernova ejecta as they change over time. We compare the polarimetric evolution of the continuum and emission lines in SN 2012au and compare its behavior with that of other bright and polarimetrically variable supernovae.

  10. An asymmetric energetic type Ic supernova viewed off-axis, and a link to gamma ray bursts.

    PubMed

    Mazzali, Paolo A; Kawabata, Koji S; Maeda, Keiichi; Nomoto, Ken'ichi; Filippenko, Alexei V; Ramirez-Ruiz, Enrico; Benetti, Stefano; Pian, Elena; Deng, Jinsong; Tominaga, Nozomu; Ohyama, Youichi; Iye, Masanori; Foley, Ryan J; Matheson, Thomas; Wang, Lifan; Gal-Yam, Avishay

    2005-05-27

    Type Ic supernovae, the explosions after the core collapse of massive stars that have previously lost their hydrogen and helium envelopes, are particularly interesting because of their link with long-duration gamma ray bursts. Although indications exist that these explosions are aspherical, direct evidence has been missing. Late-time observations of supernova SN 2003jd, a luminous type Ic supernova, provide such evidence. Recent Subaru and Keck spectra reveal double-peaked profiles in the nebular lines of neutral oxygen and magnesium. These profiles are different from those of known type Ic supernovae, with or without a gamma ray burst, and they can be understood if SN 2003jd was an aspherical axisymmetric explosion viewed from near the equatorial plane. If SN 2003jd was associated with a gamma ray burst, we missed the burst because it was pointing away from us.

  11. Neutrino Emission from Supernovae

    NASA Astrophysics Data System (ADS)

    Janka, Hans-Thomas

    Supernovae are the most powerful cosmic sources of MeV neutrinos. These elementary particles play a crucial role when the evolution of a massive star is terminated by the collapse of its core to a neutron star or a black hole and the star explodes as supernova. The release of electron neutrinos, which are abundantly produced by electron captures, accelerates the catastrophic infall and causes a gradual neutronization of the stellar plasma by converting protons to neutrons as dominant constituents of neutron star matter. The emission of neutrinos and antineutrinos of all flavors carries away the gravitational binding energy of the compact remnant and drives its evolution from the hot initial to the cold final state. The absorption of electron neutrinos and antineutrinos in the surroundings of the newly formed neutron star can power the supernova explosion and determines the conditions in the innermost supernova ejecta, making them an interesting site for the nucleosynthesis of iron-group elements and trans-iron nuclei.

  12. On the Explosion Geometry of Red Supergiant Stars

    NASA Astrophysics Data System (ADS)

    Leonard, Douglas C.; Dessart, L.; Hillier, D.; Pignata, G.

    2012-01-01

    From progenitor studies, type II-Plateau supernovae (SNe II-P) have been decisively and uniquely determined to arise from isolated red supergiant stars, establishing the most homogeneous --- and well understood --- progenitor class of any type of core-collapse supernova. The precise nature of the mechanism responsible for the stellar explosion, however, remains the subject of considerable debate. A fundamental clue to the nature of the explosion mechanism is explosion geometry: In short, are supernovae round? Because young supernova atmospheres are electron-scattering dominated, their net linear polarization provides a direct probe of early-time supernova geometry, with higher degrees of polarization generally indicating greater departures from spherical symmetry. Here we present spectropolarimetry data for the most well-sampled SN II-P to date, SN 2008bk, and compare (and contrast) the results with those obtained for SN 2004dj, the only other SN II-P for which spectropolarimetry data were obtained with similar fine temporal sampling before, during, and after the fall off of the photometric plateau (Leonard et al. 2006). Both objects are polarized, indicating departures from spherical symmetry, although the timing of the onset -- as well as the persistence -- of the polarization differ between the two objects. Curiously, the detailed spectropolarimetric characteristics of the two objects at the epochs of recorded maximum polarization are extremely similar, feature by feature, suggesting a common cause --- or, at least, geometry. We interpret the data in light of non-Local-Thermodynamic Equilibrium, time-dependent radiative-transfer simulations specifically crafted for SN II-P ejecta. DCL acknowledges support from NSF grant AST-1009571, under which part of this research was carried out. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under observing programs 081.D-0128, 082.D-0151, and 085.D-0391 (PI: Dessart).

  13. Neutrino Observation of Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Nakazato, Ken'ichiro

    The event rate of the supernova neutrinos are predicted for the future SK-Gd experiment. With an eye on the neutron tagging by Gd, the energy and angular distributions are calculated both for tagged events from inverse β decay reaction and untagged events from other reactions. As a result, it is indicated that the shock revival in the supernova is detectable through the decrease of the event rate and decline of the average energy of events. It is also implied that a careful treatment for the neutrino spectra is needed to investigate the untagged events owing to the high neutrino threshold energy of 16O reactions.

  14. The Fermi Gamma-Ray Space Telescope Discovers the Pulsar in the Young Galactic Supernova Remnant CTA 1

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Atwood, W. B.; ...

    2008-11-21

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10 -13 s s -1 . Its characteristic age of 10 4 years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma raymore » sources associated with star-forming regions and SNRs are such young pulsars.« less

  15. The Fermi Gamma Ray Space Telescope discovers the Pulsar in the Young Galactic Supernova-Remnant CTA 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10{sup -13} s s{sup -1}. Its characteristic age of 10{sup 4} years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma ray sourcesmore » associated with star-forming regions and SNRs are such young pulsars.« less

  16. Light Curves and Spectra from a Unimodal Core-collapse Supernova

    DOE PAGES

    Wollaeger, Ryan T.; Hungerford, Aimee L.; Fryer, Chris L.; ...

    2017-08-23

    To assess the effectiveness of optical emission as a probe of spatial asymmetry in core-collapse supernovae (CCSNe), we apply in this paper the radiative transfer software SuperNu to a unimodal CCSN model. The SNSPH radiation hydrodynamics software was used to simulate an asymmetric explosion of a 16more » $${M}_{\\odot }$$ zero-age main-sequence binary star. The ejecta has 3.36 $${M}_{\\odot }$$ with 0.024 $${M}_{\\odot }$$ of radioactive 56Ni, with unipolar asymmetry along the z-axis. For 96 discrete angular views, we find a ratio between maximum and minimum peak total luminosities of ~1.36. The brightest light curves emerge from views orthogonal to the z-axis. Multigroup spectra from UV to IR are obtained. We find a shift in wavelength with viewing angle in a near-IR Ca ii emission feature, consistent with Ca being mostly in the unimode. We compare emission from the gray gamma-ray transfer in SuperNu and from the detailed gamma-ray transfer code Maverick. Relative to the optical light curves, the brightness of the gamma-ray emission is more monotonic with respect to viewing angle. UBVRI broadband light curves are also calculated. Parallel with the unimode, the U and B bands have excess luminosity at $$\\gtrsim 10$$ days post-explosion, due to 56Ni on the unimode. Finally, we compare our CCSN model with SN 2002ap, which is thought to have a similar ejecta morphology.« less

  17. Systematic features of axisymmetric neutrino-driven core-collapse supernova models in multiple progenitors

    NASA Astrophysics Data System (ADS)

    Nakamura, Ko; Takiwaki, Tomoya; Kuroda, Takami; Kotake, Kei

    2015-12-01

    We present an overview of two-dimensional (2D) core-collapse supernova simulations employing a neutrino transport scheme by the isotropic diffusion source approximation. We study 101 solar-metallicity, 247 ultra metal-poor, and 30 zero-metal progenitors covering zero-age main sequence mass from 10.8 M⊙ to 75.0 M⊙. Using the 378 progenitors in total, we systematically investigate how the differences in the structures of these multiple progenitors impact the hydrodynamics evolution. By following a long-term evolution over 1.0 s after bounce, most of the computed models exhibit neutrino-driven revival of the stalled bounce shock at ˜200-800 ms postbounce, leading to the possibility of explosion. Pushing the boundaries of expectations in previous one-dimensional studies, our results confirm that the compactness parameter ξ that characterizes the structure of the progenitors is also a key in 2D to diagnosing the properties of neutrino-driven explosions. Models with high ξ undergo high ram pressure from the accreting matter onto the stalled shock, which affects the subsequent evolution of the shock expansion and the mass of the protoneutron star under the influence of neutrino-driven convection and the standing accretion-shock instability. We show that the accretion luminosity becomes higher for models with high ξ, which makes the growth rate of the diagnostic explosion energy higher and the synthesized nickel mass bigger. We find that these explosion characteristics tend to show a monotonic increase as a function of the compactness parameter ξ.

  18. Light Curves and Spectra from a Unimodal Core-collapse Supernova

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollaeger, Ryan T.; Hungerford, Aimee L.; Fryer, Chris L.

    To assess the effectiveness of optical emission as a probe of spatial asymmetry in core-collapse supernovae (CCSNe), we apply in this paper the radiative transfer software SuperNu to a unimodal CCSN model. The SNSPH radiation hydrodynamics software was used to simulate an asymmetric explosion of a 16more » $${M}_{\\odot }$$ zero-age main-sequence binary star. The ejecta has 3.36 $${M}_{\\odot }$$ with 0.024 $${M}_{\\odot }$$ of radioactive 56Ni, with unipolar asymmetry along the z-axis. For 96 discrete angular views, we find a ratio between maximum and minimum peak total luminosities of ~1.36. The brightest light curves emerge from views orthogonal to the z-axis. Multigroup spectra from UV to IR are obtained. We find a shift in wavelength with viewing angle in a near-IR Ca ii emission feature, consistent with Ca being mostly in the unimode. We compare emission from the gray gamma-ray transfer in SuperNu and from the detailed gamma-ray transfer code Maverick. Relative to the optical light curves, the brightness of the gamma-ray emission is more monotonic with respect to viewing angle. UBVRI broadband light curves are also calculated. Parallel with the unimode, the U and B bands have excess luminosity at $$\\gtrsim 10$$ days post-explosion, due to 56Ni on the unimode. Finally, we compare our CCSN model with SN 2002ap, which is thought to have a similar ejecta morphology.« less

  19. The Effects of Admixed Dark Matter on Accretion Induced Collapse

    NASA Astrophysics Data System (ADS)

    Leung, Shing-Chi; Chu, Ming-Chung; Lin, Lap-Ming; Nomoto, Ken'ichi

    About 90% mass of matter in the universe is dark matter (DM) and most of its properties remain poorly constrained since it does not interact with electromagnetic and strong forces. To constrain the properties of DM, studying its effects on stellar objects is one of the methods. In [Leung et al., Phys. Rev. D 87, 123506 (2013); Leung et al., Astrophys. J. 812, 110 (2015)] we have shown that the dark matter admixture can significantly lower the Chandrasekhar mass of a white dwarf and also its corresponding explosion as a Type Ia supernova (SNe Ia). This type of objects may explain some observed sub-luminous SNe Ia. Depending on their stellar evolution path and interactions with companion stars, such objects can also undergo a direct collapse to form neutron stars (NSs) instead of explosion. Here we present results of one-dimensional hydrodynamics simulations of a NS with admixed DM. The DM is assumed to be asymmetric and in the form of an ideal degenerate Fermi gas. We study how the admixture of DM affects the collapse dynamics, its neutrino signals and the properties of the proto-NS. Possible observational signals are also discussed.

  20. A small-scale dynamo in feedback-dominated galaxies - III. Cosmological simulations

    NASA Astrophysics Data System (ADS)

    Rieder, Michael; Teyssier, Romain

    2017-12-01

    Magnetic fields are widely observed in the Universe in virtually all astrophysical objects, from individual stars to entire galaxies, even in the intergalactic medium, but their specific genesis has long been debated. Due to the development of more realistic models of galaxy formation, viable scenarios are emerging to explain cosmic magnetism, thanks to both deeper observations and more efficient and accurate computer simulations. We present here a new cosmological high-resolution zoom-in magnetohydrodynamic (MHD) simulation, using the adaptive mesh refinement technique, of a dwarf galaxy with an initially weak and uniform magnetic seed field that is amplified by a small-scale dynamo (SSD) driven by supernova-induced turbulence. As first structures form from the gravitational collapse of small density fluctuations, the frozen-in magnetic field separates from the cosmic expansion and grows through compression. In a second step, star formation sets in and establishes a strong galactic fountain, self-regulated by supernova explosions. Inside the galaxy, the interstellar medium becomes highly turbulent, dominated by strong supersonic shocks, as demonstrated by the spectral analysis of the gas kinetic energy. In this turbulent environment, the magnetic field is quickly amplified via a SSD process and is finally carried out into the circumgalactic medium by a galactic wind. This realistic cosmological simulation explains how initially weak magnetic seed fields can be amplified quickly in early, feedback-dominated galaxies, and predicts, as a consequence of the SSD process, that high-redshift magnetic fields are likely to be dominated by their small-scale components.

  1. Revisiting The First Galaxies: The effects of Population III stars on their host galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muratov, Alexander L.; Gnedin, Oleg Y.; Gnedin, Nickolay Y.

    2013-07-12

    We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H 2 formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch duringmore » which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 10 8 years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 × 10 6 M ⊙ re-accrete most of their baryons and transition to metal-enriched Pop II star formation.« less

  2. REVISITING THE FIRST GALAXIES: THE EFFECTS OF POPULATION III STARS ON THEIR HOST GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muratov, Alexander L.; Gnedin, Oleg Y.; Zemp, Marcel

    2013-08-01

    We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H{sub 2} formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch duringmore » which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 10{sup 8} years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 Multiplication-Sign 10{sup 6} M{sub Sun} re-accrete most of their baryons and transition to metal-enriched Pop II star formation.« less

  3. STRESS: an intermediate redshift SN search

    NASA Astrophysics Data System (ADS)

    Botticella, Maria Teresa; Riello, Marco; Cappellaro, Enrico

    2007-08-01

    We present STRESS (Southern intermediate redshift ESO Supernova Search) a Supernova (SN) survey successfully carried out with ESO telescopes. This SN survey distinguishes itself by other ones for its main goals that are to obtain an estimate of both type Ia and core collapse SN rate and to link them with stellar populations. We detail the observing strategy and data sets collected during our survey and describe the analysis of data. Finally, we illustrate our preliminary results and progress report.

  4. Neutron Star Natal Kick and Jets in Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Bear, Ealeal; Soker, Noam

    2018-03-01

    We measure the angle between the neutron star (NS) natal kick direction and the inferred direction of jets according to the morphology of 12 core collapse supernova remnants (SNR), and find that the distribution is almost random, but missing small angles. The 12 SNRs are those for which we could both identify morphological features that we can attribute to jets and for which the direction of the NS natal kick is given in the literature. Unlike some claims for spin-kick alignment, here we rule out jet-kick alignment. We discuss the cumulative distribution function of the jet-kick angles under the assumption that dense clumps that are ejected by the explosion accelerate the NS by the gravitational attraction, and suggest that the jet feedback explosion mechanism might in principle account for the distribution of jet-kick angles.

  5. The neutrino opacity of neutron rich matter

    NASA Astrophysics Data System (ADS)

    Alcain, P. N.; Dorso, C. O.

    2017-05-01

    The study of neutron rich matter, present in neutron star, proto-neutron stars and core-collapse supernovae, can lead to further understanding of the behavior of nuclear matter in highly asymmetric nuclei. Heterogeneous structures are expected to exist in these systems, often referred to as nuclear pasta. We have carried out a systematic study of neutrino opacity for different thermodynamic conditions in order to assess the impact that the structure has on it. We studied the dynamics of the neutrino opacity of the heterogeneous matter at different thermodynamic conditions with semiclassical molecular dynamics model already used to study nuclear multifragmentation. For different densities, proton fractions and temperature, we calculate the very long range opacity and the cluster distribution. The neutrino opacity is of crucial importance for the evolution of the core-collapse supernovae and the neutrino scattering.

  6. Progenitor Masses for Every Nearby Historic Core-Collapse Supernova

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin

    2016-10-01

    Some of the most energetic explosions in the Universe are the core-collapse supernovae (CCSNe) that arise from the death of massive stars. They herald the birth of neutron stars and black holes, are prodigious emitters of neutrinos and gravitational waves, influence galactic hydrodynamics, trigger further star formation, and are a major site for nucleosynthesis, yet even the most basic elements of CCSN theory are poorly constrained by observations. Specifically, there are too few observations to constrain the progenitor mass distribution and fewer observations still to constrain the mapping between progenitor mass and explosion type (e.g. IIP IIL, IIb, Ib/c, etc.). Combining previous measurements with 9 proposed HST pointings covering 13 historic CCSNe, we plan to obtain progenitor mass measurements for all cataloged historic CCSNe within 8 Mpc, optimizing observational mass constraints for CCSN theory.

  7. Low mass SN Ia and the late light curve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colgate, S.A.; Fryer, C.L.; Hand, K.P.

    1995-12-31

    The late bolometric light curves of type Ia supernovae, when measured accurately over several years, show an exponential decay with a 56d half-life over a drop in luminosity of 8 magnitudes (10 half-lives). The late-time light curve is thought to be governed by the decay of Co{sup 56}, whose 77d half-life must then be modified to account for the observed decay time. Two mechanisms, both relying upon the positron fraction of the Co{sup 56} decay, have been proposed to explain this modification. One explanation requires a large amount of emission at infra-red wavelengths where it would not be detected. Themore » other explanation has proposed a progressive transparency or leakage of the high energy positrons (Colgate, Petschek and Kriese, 1980). For the positrons to leak out of the expanding nebula at the required rate necessary to produce the modified 56d exponential, the mass of the ejecta from a one foe (10{sup 51} erg in kinetic energy) explosion must be small, M{sub ejec} = 0.4M{sub {circle_dot}} with M{sub ejec} {proportional_to} KE{sup 0.5}. Thus, in this leakage explanation, any reasonable estimate of the total energy of the explosion requires that the ejected mass be very much less than the Chandrasekhar mass of 1.4M{sub {circle_dot}}. This is very difficult to explain with the ``canonical`` Chandrasekhar-mass thermonuclear explosion that disintegrates the original white dwarf star. This result leads us to pursue alternate mechanisms of type Ia supernovae. These mechanisms include sub-Chandrasekhar thermonuclear explosions and the accretion induced collapse of Chandrasekhar mass white dwarfs. We will summarize the advantages and disadvantages of both mechanisms with considerable detail spent on our new accretion induced collapse simulations. These mechanisms lead to lower Ni{sup 56} production and hence result in type Ia supernovae with luminosities decreased down to {approximately} 50% that predicted by the ``standard`` model.« less

  8. Numerical studies on the link between radioisotopic signatures on Earth and the formation of the Local Bubble. I. 60Fe transport to the solar system by turbulent mixing of ejecta from nearby supernovae into a locally homogeneous interstellar medium

    NASA Astrophysics Data System (ADS)

    Schulreich, M. M.; Breitschwerdt, D.; Feige, J.; Dettbarn, C.

    2017-08-01

    Context. The discovery of radionuclides like 60Fe with half-lives of million years in deep-sea crusts and sediments offers the unique possibility to date and locate nearby supernovae. Aims: We want to quantitatively establish that the 60Fe enhancement is the result of several supernovae which are also responsible for the formation of the Local Bubble, our Galactic habitat. Methods: We performed three-dimensional hydrodynamic adaptive mesh refinement simulations (with resolutions down to subparsec scale) of the Local Bubble and the neighbouring Loop I superbubble in different homogeneous, self-gravitating environments. For setting up the Local and Loop I superbubble, we took into account the time sequence and locations of the generating core-collapse supernova explosions, which were derived from the mass spectrum of the perished members of certain stellar moving groups. The release of 60Fe and its subsequent turbulent mixing process inside the superbubble cavities was followed via passive scalars, where the yields of the decaying radioisotope were adjusted according to recent stellar evolution calculations. Results: The models are able to reproduce both the timing and the intensity of the 60Fe excess observed with rather high precision, provided that the external density does not exceed 0.3 cm-3 on average. Thus the two best-fit models presented here were obtained with background media mimicking the classical warm ionised and warm neutral medium. We also found that 60Fe (which is condensed onto dust grains) can be delivered to Earth via two physical mechanisms: either through individual fast-paced supernova blast waves, which cross the Earth's orbit sometimes even twice as a result of reflection from the Local Bubble's outer shell, or, alternatively, through the supershell of the Local Bubble itself, injecting the 60Fe content of all previous supernovae at once, but over a longer time range.

  9. Dusty Dead Star

    NASA Image and Video Library

    2010-03-29

    A composite image from NASA Chandra and Spitzer space telescopes shows the dusty remains of a collapsed star, a supernova remnant called G54.1+0.3. The white source at the center is a dead star called a pulsar.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annis, J.

    The collapse of a stellar core is expected to produce gravitational waves (GWs), neutrinos, and in most cases a luminous supernova. Sometimes, however, the optical event could be significantly less luminous than a supernova and a direct collapse to a black hole, where the star just disappears, is possible. The GW event GW150914 was detected by the LIGO Virgo Collaboration via a burst analysis that gave localization contours enclosing the Large Magellanic Cloud (LMC). Shortly thereafter, we used DECam to observe 102 deg 2 of the localization area, including 38 deg 2 on the LMC for a missing supergiant search.more » We construct a complete catalog of LMC luminous red supergiants, the best candidates to undergo invisible core collapse, and collected catalogs of other candidates: less luminous red supergiants, yellow supergiants, blue supergiants, luminous blue variable stars, and Wolf–Rayet stars. Of the objects in the imaging region, all are recovered in the images. The timescale for stellar disappearance is set by the free-fall time, which is a function of the stellar radius. Our observations at 4 and 13 days after the event result in a search sensitive to objects of up to about 200 solar radii. We conclude that it is unlikely that GW150914 was caused by the core collapse of a relatively compact supergiant in the LMC, consistent with the LIGO Collaboration analyses of the gravitational waveform as best interpreted as a high mass binary black hole merger. Lastly, we discuss how to generalize this search for future very nearby core-collapse candidates.« less

  11. SNSEDextend: SuperNova Spectral Energy Distributions extrapolation toolkit

    NASA Astrophysics Data System (ADS)

    Pierel, Justin D. R.; Rodney, Steven A.; Avelino, Arturo; Bianco, Federica; Foley, Ryan J.; Friedman, Andrew; Hicken, Malcolm; Hounsell, Rebekah; Jha, Saurabh W.; Kessler, Richard; Kirshner, Robert; Mandel, Kaisey; Narayan, Gautham; Filippenko, Alexei V.; Scolnic, Daniel; Strolger, Louis-Gregory

    2018-05-01

    SNSEDextend extrapolates core-collapse and Type Ia Spectral Energy Distributions (SEDs) into the UV and IR for use in simulations and photometric classifications. The user provides a library of existing SED templates (such as those in the authors' SN SED Repository) along with new photometric constraints in the UV and/or NIR wavelength ranges. The software then extends the existing template SEDs so their colors match the input data at all phases. SNSEDextend can also extend the SALT2 spectral time-series model for Type Ia SN for a "first-order" extrapolation of the SALT2 model components, suitable for use in survey simulations and photometric classification tools; as the code does not do a rigorous re-training of the SALT2 model, the results should not be relied on for precision applications such as light curve fitting for cosmology.

  12. THE ORIGIN OF LOW [α/Fe] RATIOS IN EXTREMELY METAL-POOR STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Chiaki; Ishigaki, Miho N.; Tominaga, Nozomu

    2014-04-10

    We show that the low ratios of α elements (Mg, Si, and Ca) to Fe recently found for a small fraction of extremely metal-poor stars can be naturally explained with the nucleosynthesis yields of core-collapse supernovae, i.e., 13-25 M {sub ☉} supernovae, or hypernovae. For the case without carbon enhancement, the ejected iron mass is normal, consistent with observed light curves and spectra of nearby supernovae. On the other hand, the carbon enhancement requires much smaller iron production, and the low [α/Fe] of carbon-enhanced metal-poor stars can also be reproduced with 13-25 M {sub ☉} faint supernovae or faint hypernovae.more » Iron-peak element abundances, in particular Zn abundances, are important to put further constraints on the enrichment sources from galactic archaeology surveys.« less

  13. Astrophysics at RIA (ARIA) Working Group

    NASA Astrophysics Data System (ADS)

    Smith, Michael S.; Schatz, Hendrik; Timmes, Frank X.; Wiescher, Michael; Greife, Uwe

    2006-07-01

    The Astrophysics at RIA (ARIA) Working Group has been established to develop and promote the nuclear astrophysics research anticipated at the Rare Isotope Accelerator (RIA). RIA is a proposed next-generation nuclear science facility in the U.S. that will enable significant progress in studies of core collapse supernovae, thermonuclear supernovae, X-ray bursts, novae, and other astrophysical sites. Many of the topics addressed by the Working Group are relevant for the RIKEN RI Beam Factory, the planned GSI-Fair facility, and other advanced radioactive beam facilities.

  14. Isotropic neutrino flux from supernova explosions in the universe

    NASA Astrophysics Data System (ADS)

    Petkov, V. B.

    2018-01-01

    Neutrinos of all types are emitted from the gravitational collapse of massive star cores, and have been amassed in the Universe throughout the history of evolution of galaxies. The isotropic and stable flux of these neutrinos is a source of information on the spectra of neutrinos from individual supernovae and on their redshift distribution. The prospects for detecting the isotropic neutrino flux with the existing and upcoming experimental facilities and the current upper limits are discussed in this paper.

  15. iPTF Discoveries of Recent Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Taddia, F.; Ferretti, R.; Papadogiannakis, S.; Petrushevska, T.; Fremling, C.; Karamehmetoglu, E.; Nyholm, A.; Roy, R.; Hangard, L.; Horesh, A.; Khazov, D.; Knezevic, S.; Johansson, J.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Bar, I.; Cao, Y.; Kulkarni, S.; Blagorodnova, N.

    2016-05-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following core-collapse SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  16. iPTF Discoveries of Recent Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Taddia, F.; Ferretti, R.; Fremling, C.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Petrushevska, T.; Roy, R.; Hangard, L.; De Cia, A.; Vreeswijk, P.; Horesh, A.; Manulis, I.; Sagiv, I.; Rubin, A.; Yaron, O.; Leloudas, G.; Khazov, D.; Soumagnac, M.; Bilgi, P.

    2015-04-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Core-Collapse SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  17. iPTF Discoveries of Recent Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Taddia, F.; Ferretti, R.; Fremling, C.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Petrushevska, T.; Roy, R.; Hangard, L.; Vreeswijk, P.; Horesh, A.; Manulis, I.; Rubin, A.; Yaron, O.; Leloudas, G.; Khazov, D.; Soumagnac, M.; Knezevic, S.; Johansson, J.; Duggan, G.; Lunnan, R.; Cao, Y.

    2015-09-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Core-Collapse SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  18. iPTF Discoveries of Recent Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Taddia, F.; Ferretti, R.; Fremling, C.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Petrushevska, T.; Roy, R.; Hangard, L.; Vreeswijk, P.; Horesh, A.; Manulis, I.; Rubin, A.; Yaron, O.; Leloudas, G.; Khazov, D.; Soumagnac, M.; Knezevic, S.; Johansson, J.; Lunnan, R.; Cao, Y.; Miller, A.

    2015-11-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Core-Collapse SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  19. The hydrodynamics of off-center explosions. [of supernovae

    NASA Technical Reports Server (NTRS)

    Fryxell, B. A.

    1979-01-01

    The behavior of off-center supernova explosions is investigated using a two-dimensional hydrodynamic code. An important application of these calculations is the possible formation of high-velocity pulsars. The dependence of the final velocity of the collapsed remnant on the location and energy of the explosion is computed. The largest remnant velocities result from explosions located at a mass fraction of 0.5. An explosion energy 50% greater than the binding energy of the star ejects 0.51 solar masses, producing a 1.4 solar mass remnant with a velocity of 400 km/s. However, this energy must be generated in a very small region of the star in order to create the required asymmetry in the explosion. Because of this, a specific energy of about 10 to the 20th ergs/g is needed. Nuclear reactions can produce no more than about 5 x 10 to the 17th erg/g, and it is unclear how the energy produced in gravitational collapse models can be sufficiently localized. Unless a supernova mechanism can be found which can produce enough energy in a small region of the star, off-center explosions do not provide a satisfactory explanation for high-velocity pulsars.

  20. Implications of Barium Abundances for the Chemical Enrichment of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Duggan, Gina; Kirby, Evan N.

    2018-06-01

    There are many candidate sites of the r-process: core-collapse supernovae (including rare magnetorotational core-collapse supernovae), neutron star mergers (NSMs), and neutron star/black hole mergers. The chemical enrichment of galaxies—specifically dwarf galaxies—helps distinguish between these sources based on the continual build-up of r-process elements. The existence of several nearby dwarf galaxies allows us to measure robust chemical abundances for galaxies with different star formation histories. Dwarf galaxies are especially useful because simple chemical evolution models can be used to determine the sources of r-process material. We have measured the r-process element barium with Keck/DEIMOS medium-resolution spectroscopy. We will present the largest sample of barium abundances (more than 200 stars) in dwarf galaxies ever assembled. We measure [Ba/Fe] as a function of [Fe/H] in this sample and compare with existing [alpha/Fe] measurements. We have found that a large contribution of barium needs to occur at timescales similar to Type Ia supernovae in order to recreate our observed abundances, namely the flat or slightly rising trend of [Ba/Fe] vs. [Fe/H]. We conclude that neutron star mergers are the main contribution of r-process enrichment in dwarf galaxies.

  1. Explosions of Thorne-Żytkow objects

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.

    2018-03-01

    We propose that massive Thorne-Żytkow objects can explode. A Thorne-Żytkow object is a theoretically predicted star that has a neutron core. When nuclear reactions supporting a massive Thorne-Żytkow object terminate, a strong accretion occurs towards the central neutron core. The accretion rate is large enough to sustain a super-Eddington accretion towards the neutron core. The neutron core may collapse to a black hole after a while. A strong large-scale outflow or a jet can be launched from the super-Eddington accretion disc and the collapsing Thorne-Żytkow object can be turned into an explosion. The ejecta have about 10 M⊙ but the explosion energy depends on when the accretion is suppressed. We presume that the explosion energy could be as low as ˜1047 erg and such a low-energy explosion could be observed like a failed supernova. The maximum possible explosion energy is ˜1052 erg and such a high-energy explosion could be observed as an energetic Type II supernova or a superluminous supernova. Explosions of Thorne-Żytkow objects may provide a new path to spread lithium and other heavy elements produced through the irp process such as molybdenum in the Universe.

  2. SNEWS The SuperNova Early Warning System

    NASA Astrophysics Data System (ADS)

    SNEWS Group

    2005-06-01

    SNEWS is a cooperative effort between the world's neutrino detection experiments to spread the news that a star in our galaxy has just experienced a core-collapse and is about to be seen as a Supernova. This project exploits the ˜hours time difference between neutrinos promptly escaping the nascent supernova and photons originating when the shock wave breaks through the stellar photosphere, to give the world a chance to get ready to observe such an exciting event at the earliest possible time. A coincidence trigger between experiments is used to eliminate potential local false alarms, allowing a rapid, automated alert. SNEWS is currently operational and ready, and this poster presents the procedures in use.

  3. Prompt directional detection of galactic supernova by combining large liquid scintillator neutrino detectors

    NASA Astrophysics Data System (ADS)

    Fischer, V.; Chirac, T.; Lasserre, T.; Volpe, C.; Cribier, M.; Durero, M.; Gaffiot, J.; Houdy, T.; Letourneau, A.; Mention, G.; Pequignot, M.; Sibille, V.; Vivier, M.

    2015-08-01

    Core-collapse supernovae produce an intense burst of electron antineutrinos in the few-tens-of-MeV range. Several Large Liquid Scintillator-based Detectors (LLSD) are currently operated worldwide, being very effective for low energy antineutrino detection through the Inverse Beta Decay (IBD) process. In this article, we develop a procedure for the prompt extraction of the supernova location by revisiting the details of IBD kinematics over the broad energy range of supernova neutrinos. Combining all current scintillator-based detector, we show that one can locate a canonical supernova at 10 kpc with an accuracy of 45 degrees (68% C.L.). After the addition of the next generation of scintillator-based detectors, the accuracy could reach 12 degrees (68% C.L.), therefore reaching the performances of the large water Čerenkov neutrino detectors. We also discuss a possible improvement of the SuperNova Early Warning System (SNEWS) inter-experiment network with the implementation of a directionality information in each experiment. Finally, we discuss the possibility to constrain the neutrino energy spectrum as well as the mass of the newly born neutron star with the LLSD data.

  4. Measuring the supernova unknowns at the next-generation neutrino telescopes through the diffuse neutrino background

    NASA Astrophysics Data System (ADS)

    MØller, Klaes; Suliga, Anna M.; Tamborra, Irene; Denton, Peter B.

    2018-05-01

    The detection of the diffuse supernova neutrino background (DSNB) will preciously contribute to gauge the properties of the core-collapse supernova population. We estimate the DSNB event rate in the next-generation neutrino detectors, Hyper-Kamiokande enriched with Gadolinium, JUNO, and DUNE. The determination of the supernova unknowns through the DSNB will be heavily driven by Hyper-Kamiokande, given its higher expected event rate, and complemented by DUNE that will help in reducing the parameters uncertainties. Meanwhile, JUNO will be sensitive to the DSNB signal over the largest energy range. A joint statistical analysis of the expected rates in 20 years of data taking from the above detectors suggests that we will be sensitive to the local supernova rate at most at a 20‑33% level. A non-zero fraction of supernovae forming black holes will be confirmed at a 90% CL, if the true value of that fraction is gtrsim20%. On the other hand, the DSNB events show extremely poor statistical sensitivity to the nuclear equation of state and mass accretion rate of the progenitors forming black holes.

  5. Molecular dynamics for dense matter

    NASA Astrophysics Data System (ADS)

    Maruyama, Toshiki; Watanabe, Gentaro; Chiba, Satoshi

    2012-08-01

    We review a molecular dynamics method for nucleon many-body systems called quantum molecular dynamics (QMD), and our studies using this method. These studies address the structure and the dynamics of nuclear matter relevant to neutron star crusts, supernova cores, and heavy-ion collisions. A key advantage of QMD is that we can study dynamical processes of nucleon many-body systems without any assumptions about the nuclear structure. First, we focus on the inhomogeneous structures of low-density nuclear matter consisting not only of spherical nuclei but also of nuclear "pasta", i.e., rod-like and slab-like nuclei. We show that pasta phases can appear in the ground and equilibrium states of nuclear matter without assuming nuclear shape. Next, we show our simulation of compression of nuclear matter which corresponds to the collapsing stage of supernovae. With the increase in density, a crystalline solid of spherical nuclei changes to a triangular lattice of rods by connecting neighboring nuclei. Finally, we discuss fragment formation in expanding nuclear matter. Our results suggest that a generally accepted scenario based on the liquid-gas phase transition is not plausible at lower temperatures.

  6. Probing the stellar initial mass function with high-z supernovae

    NASA Astrophysics Data System (ADS)

    de Souza, R. S.; Ishida, E. E. O.; Whalen, D. J.; Johnson, J. L.; Ferrara, A.

    2014-08-01

    The first supernovae (SNe) will soon be visible at the edge of the observable universe, revealing the birthplaces of Population III stars. With upcoming near-infrared missions, a broad analysis of the detectability of high-z SNe is paramount. We combine cosmological and radiation transport simulations, instrument specifications and survey strategies to create synthetic observations of primeval core-collapse (CC), Type IIn and pair-instability (PI) SNe with the James Webb Space Telescope (JWST). We show that a dedicated observational campaign with the JWST can detect up to ˜15 PI explosions, ˜300 CC SNe, but less than one Type IIn explosion per year, depending on the Population III star formation history. Our synthetic survey also shows that ≈1-2 × 102 SNe detections, depending on the accuracy of the classification, are sufficient to discriminate between a Salpeter and flat mass distribution for high-redshift stars with a confidence level greater than 99.5 per cent. We discuss how the purity of the sample affects our results and how supervised learning methods may help to discriminate between CC and PI SNe.

  7. Supernovae and gamma-ray bursts: The moment of the formation of a black hole and a newly born neutron star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruffini, Remo, E-mail: ruffini@icra.it; ICRANet, Piazzale della Repubblica 10, I-65122 Pescara; Université de Nice Sophie Antipolis, Nice, CEDEX 2 Grand Château Parc Valros

    2014-01-14

    We review recent progress in our understanding of the nature of gamma ray bursts (GRBs) and in particular, in the relationship between the short GRBs and the long GRBs. The coincidental occurence of a GRB with a Supernova (SN) is explained within the Induced Gravitational Collapse (IGC) paradigm, following the sequence: 1) an initial binary system consists in a compact Carbon-Oxygen (CO) core and a NS; 2) the CO core explodes giving origin to a SN and part of the SN ejecta accretes onto the NS which reaches its critical mass and collapses to a BH giving rise to amore » long GRB; 3) a new NS is generated by the SN as a remnant. The observational consequences of this scenario are outlined. The first example of a short GRB is given.« less

  8. Beta-Decay Rates for Exotic Nuclei and R-Process Nucleosynthesis up to Th and U

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Yoshida, Takashi; Shibagaki, Shota; Kajino, Toshitaka; Otsuka, Takaharu

    Beta-decay rates for exotic nuclei with N = 126 relevant to r-process nucleosynthesis are studied up to Z = 78 by shell-model calculations. The half-lives for the waiting-point nuclei obtained, which are short compared to a standard FRDM, are used to study r-process nucleosynthesis in neutrino-driven winds and magneto-hydrodynamic jets of core-collapse supernova explosions as well as in binary neutron star mergers. The element abundances are obtained up to the third peak as well as beyond the peak region up to thorium and uranium. Thorium and uranium are found to be produced more with the shorter shell-model half-lives and their abundances come closer to the observed values in core-collapse supernova explosions, while in case of binary neutron star mergers they are produced as much as the observed values rather independent of the half-lives.

  9. Reducing Uncertainties in the Production of the Gamma-emitting Nuclei 26Al, 44Ti, and 60Fe in Core-collapse Supernovae by Using Effective Helium Burning Rates

    NASA Astrophysics Data System (ADS)

    Austin, Sam M.; West, Christopher; Heger, Alexander

    2017-04-01

    We have used effective reaction rates (ERRs) for the helium burning reactions to predict the yield of the gamma-emitting nuclei 26Al, 44Ti, and 60Fe in core-collapse supernovae (SNe). The variations in the predicted yields for values of the reaction rates allowed by the ERR are much smaller than obtained previously, and smaller than other uncertainties. A “filter” for SN nucleosynthesis yields based on pre-SN structure was used to estimate the effect of failed SNe on the initial mass function averaged yields; this substantially reduced the yields of all these isotopes, but the predicted yield ratio 60Fe/26Al was little affected. The robustness of this ratio is promising for comparison with data, but it is larger than observed in nature; possible causes for this discrepancy are discussed.

  10. Pre-supernova models for massive stars produced with large nuclear reaction network by MESA

    NASA Astrophysics Data System (ADS)

    Park, Byeongchan; Kwak, Kyujin

    2018-04-01

    Core-collapsed Supernova (CCSN) is one of violent phenomena in the universe. CCSN generates heavy elements and leaves a neutron star behind. It has been known that the physical properties of CCSN depend on those of pre-supernova such as mass, metallicities including distribution of elements, and the density and temperature profile which are obtained from the stellar evolution calculation. In particular, the production of heavy elements in CCSN is sensitive to the abundance profiles in the pre-supernova models. In this study, we evolve a massive main sequence star with 15Msun and solar metallicity to the pre-supernova stage by using two different networks, small and large. The large nuclear reaction network includes more than four times isotopes than the small network. Our calculations were done by MESA (Modules for Experiments in Stellar Astrophysics) which allowed us to use the large network containing about a hundred isotopes. We compare the results obtained with two networks.

  11. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2000-03-01

    The Chandra X-Ray Observatory has captured this spectacular image of G292.0+1.8, a young, oxygen-rich supernova remnant with a pulsar at its center surrounded by outflowing material. This image shows a rapidly expanding shell of gas that is 36 light-years across and contains large amounts of elements such as oxygen, neon, magnesium, silicon and sulfur. Embedded in this cloud of multimillion-degree gas is a key piece of evidence linking neutron stars and supernovae produced by the collapse of massive stars. With an age estimated at 1,600 years, G292.0+1.8 is one of three known oxygen-rich supernovae in our galaxy. These supernovae are of great interest to astronomers because they are one of the primary sources of the heavy elements necessary to form planets and people. Scattered through the image are bluish knots of emissions containing material that is highly enriched in newly created oxygen, neon, and magnesium produced deep within the original star and ejected by the supernova explosion.

  12. Search for thermal X-ray features from the Crab nebula with the Hitomi soft X-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sato, Toshiki; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shin'ichiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen; Tominaga, Nozomu; Moriya, Takashi J.

    2018-03-01

    The Crab nebula originated from a core-collapse supernova (SN) explosion observed in 1054 AD. When viewed as a supernova remnant (SNR), it has an anomalously low observed ejecta mass and kinetic energy for an Fe-core-collapse SN. Intensive searches have been made for a massive shell that solves this discrepancy, but none has been detected. An alternative idea is that SN 1054 is an electron-capture (EC) explosion with a lower explosion energy by an order of magnitude than Fe-core-collapse SNe. X-ray imaging searches were performed for the plasma emission from the shell in the Crab outskirts to set a stringent upper limit on the X-ray emitting mass. However, the extreme brightness of the source hampers access to its vicinity. We thus employed spectroscopic technique using the X-ray micro-calorimeter on board the Hitomi satellite. By exploiting its superb energy resolution, we set an upper limit for emission or absorption features from as yet undetected thermal plasma in the 2-12 keV range. We also re-evaluated the existing Chandra and XMM-Newton data. By assembling these results, a new upper limit was obtained for the X-ray plasma mass of ≲ 1 M⊙ for a wide range of assumed shell radius, size, and plasma temperature values both in and out of collisional equilibrium. To compare with the observation, we further performed hydrodynamic simulations of the Crab SNR for two SN models (Fe-core versus EC) under two SN environments (uniform interstellar medium versus progenitor wind). We found that the observed mass limit can be compatible with both SN models if the SN environment has a low density of ≲ 0.03 cm-3 (Fe core) or ≲ 0.1 cm-3 (EC) for the uniform density, or a progenitor wind density somewhat less than that provided by a mass loss rate of 10-5 M⊙ yr-1 at 20 km s-1 for the wind environment.

  13. Extreme supernova models for the super-luminous transient ASASSN-15LH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatzopoulos, Emmanouil; Wheeler, John C.; Vinko, J.

    The recent discovery of the unprecedentedly super-luminous transient ASASSN-15lh (or SN 2015L) with its UV-bright secondary peak challenges all the power-input models that have been proposed for super-luminous supernovae. Here we examine some of the few viable interpretations of ASASSN-15lh in the context of a stellar explosion, involving combinations of one or more power inputs. We model the light curve of ASASSN-15lh with a hybrid model that includes contributions from magnetar spin-down energy and hydrogen-poor circumstellar interaction. We also investigate models of pure circumstellar interaction with a massive hydrogen-deficient shell and discuss the lack of interaction features in the observedmore » spectra. We find that, as a supernova, ASASSN-15lh can be best modeled by the energetic core-collapse of an ~40 M ⊙ star interacting with a hydrogen-poor shell of ~20 M ⊙. The circumstellar shell and progenitor mass are consistent with a rapidly rotating pulsational pair-instability supernova progenitor as required for strong interaction following the final supernova explosion. Additional energy injection by a magnetar with an initial period of 1–2 ms and magnetic field of 0.1–1 × 10 14 G may supply the excess luminosity required to overcome the deficit in single-component models, but this requires more fine-tuning and extreme parameters for the magnetar, as well as the assumption of efficient conversion of magnetar energy into radiation. As a result, we thus favor a single-input model where the reverse shock formed in a strong SN ejecta–circumstellar matter interaction following a very powerful core-collapse SN explosion can supply the luminosity needed to reproduce the late-time UV-bright plateau.« less

  14. The rates and time-delay distribution of multiply imaged supernovae behind lensing clusters

    NASA Astrophysics Data System (ADS)

    Li, Xue; Hjorth, Jens; Richard, Johan

    2012-11-01

    Time delays of gravitationally lensed sources can be used to constrain the mass model of a deflector and determine cosmological parameters. We here present an analysis of the time-delay distribution of multiply imaged sources behind 17 strong lensing galaxy clusters with well-calibrated mass models. We find that for time delays less than 1000 days, at z = 3.0, their logarithmic probability distribution functions are well represented by P(log Δt) = 5.3 × 10-4Δttilde beta/M2502tilde beta, with tilde beta = 0.77, where M250 is the projected cluster mass inside 250 kpc (in 1014M⊙), and tilde beta is the power-law slope of the distribution. The resultant probability distribution function enables us to estimate the time-delay distribution in a lensing cluster of known mass. For a cluster with M250 = 2 × 1014M⊙, the fraction of time delays less than 1000 days is approximately 3%. Taking Abell 1689 as an example, its dark halo and brightest galaxies, with central velocity dispersions σ>=500kms-1, mainly produce large time delays, while galaxy-scale mass clumps are responsible for generating smaller time delays. We estimate the probability of observing multiple images of a supernova in the known images of Abell 1689. A two-component model of estimating the supernova rate is applied in this work. For a magnitude threshold of mAB = 26.5, the yearly rate of Type Ia (core-collapse) supernovae with time delays less than 1000 days is 0.004±0.002 (0.029±0.001). If the magnitude threshold is lowered to mAB ~ 27.0, the rate of core-collapse supernovae suitable for time delay observation is 0.044±0.015 per year.

  15. Extreme supernova models for the super-luminous transient ASASSN-15LH

    DOE PAGES

    Chatzopoulos, Emmanouil; Wheeler, John C.; Vinko, J.; ...

    2016-09-07

    The recent discovery of the unprecedentedly super-luminous transient ASASSN-15lh (or SN 2015L) with its UV-bright secondary peak challenges all the power-input models that have been proposed for super-luminous supernovae. Here we examine some of the few viable interpretations of ASASSN-15lh in the context of a stellar explosion, involving combinations of one or more power inputs. We model the light curve of ASASSN-15lh with a hybrid model that includes contributions from magnetar spin-down energy and hydrogen-poor circumstellar interaction. We also investigate models of pure circumstellar interaction with a massive hydrogen-deficient shell and discuss the lack of interaction features in the observedmore » spectra. We find that, as a supernova, ASASSN-15lh can be best modeled by the energetic core-collapse of an ~40 M ⊙ star interacting with a hydrogen-poor shell of ~20 M ⊙. The circumstellar shell and progenitor mass are consistent with a rapidly rotating pulsational pair-instability supernova progenitor as required for strong interaction following the final supernova explosion. Additional energy injection by a magnetar with an initial period of 1–2 ms and magnetic field of 0.1–1 × 10 14 G may supply the excess luminosity required to overcome the deficit in single-component models, but this requires more fine-tuning and extreme parameters for the magnetar, as well as the assumption of efficient conversion of magnetar energy into radiation. As a result, we thus favor a single-input model where the reverse shock formed in a strong SN ejecta–circumstellar matter interaction following a very powerful core-collapse SN explosion can supply the luminosity needed to reproduce the late-time UV-bright plateau.« less

  16. Triggering Star Formation: From the Pillars of Creation to the Formation of Our Solar System

    NASA Astrophysics Data System (ADS)

    Gritschneder, Matthias; Lin, Douglas N. C.

    We study the evolution of molecular clouds under the influence of ionizing radiation. We propose that the Pipe Nebula is an HII region shell swept up by the B2 IV β Cephei star θ Ophiuchi. After reviewing the recent observations, we perform a series of analytical calculations. We are able to show that the current size, mass and pressure of the region can be explained in this scenario. The Pipe Nebula can be best described by a three phase medium in pressure equilibrium. The pressure support is provided by the ionized gas and mediated by an atomic component to confine the cores at the observed current pressure. We then present simulations on the future evolution as soon as the massive star explodes in a supernova. We show that a surviving core at the border of the HII-region (D = 5 pc) is getting enriched sufficiently with supernova material and is triggered into collapse fast enough to be consistent with the tight constraints put by meteoritic data of e.g.26Al on the formation of our Solar System. We therefore propose that the formation of the Solar System was triggered by the shock wave of a type IIa supernova interacting with surviving cold structures similar to the Pillars of Creation at the border of HII-regions.

  17. Supernova equations of state including full nuclear ensemble with in-medium effects

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki

    2017-01-01

    We construct new equations of state for baryons at sub-nuclear densities for the use in core-collapse supernova simulations. The abundance of various nuclei is obtained together with thermodynamic quantities. The formulation is an extension of the previous model, in which we adopted the relativistic mean field theory with the TM1 parameter set for nucleons, the quantum approach for d, t, h and α as well as the liquid drop model for the other nuclei under the nuclear statistical equilibrium. We reformulate the model of the light nuclei other than d, t, h and α based on the quasi-particle description. Furthermore, we modify the model so that the temperature dependences of surface and shell energies of heavy nuclei could be taken into account. The pasta phases for heavy nuclei and the Pauli- and self-energy shifts for d, t, h and α are taken into account in the same way as in the previous model. We find that nuclear composition is considerably affected by the modifications in this work, whereas thermodynamical quantities are not changed much. In particular, the washout of shell effect has a great impact on the mass distribution above T ∼ 1 MeV. This improvement may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores.

  18. Combining collective, MSW, and turbulence effects in supernova neutrino flavor evolution

    DOE PAGES

    Lund, Tina; Kneller, James P.

    2013-07-16

    In order to decode the neutrino burst signal from a Galactic core-collapse supernova and reveal the complicated inner workings of the explosion we need a thorough understanding of the neutrino flavor evolution from the proto-neutron star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution in three different progenitors and include collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein conversion due to the shock wave passage throughmore » the star, and the impact of turbulence. In the Oxygen-Neon-Magnesium supernova we find that the impact of turbulence is both brief and slight during a window of 1-2 seconds post bounce. Thus the spectral features of collective and shock effects in the neutrino signals from ONeMg supernovae may be almost turbulence free making them the easiest to interpret. For the more massive progenitors we again find that small amplitude turbulence, up to 10%, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence is added, 30% and 50%, the features of collective and shock wave effects in the high density resonance channel are almost completely obscured at late times. Yet at the same time we find the other mixing channels - the low density resonance channel and the non-resonant channels - begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of more massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal.« less

  19. Spatial distribution of radionuclides in 3D models of SN 1987A and Cas A

    NASA Astrophysics Data System (ADS)

    Janka, Hans-Thomas; Gabler, Michael; Wongwathanarat, Annop

    2017-02-01

    Fostered by the possibilities of multi-dimensional computational modeling, in particular the advent of three-dimensional (3D) simulations, our understanding of the neutrino-driven explosion mechanism of core-collapse supernovae (SNe) has experienced remarkable progress over the past decade. First self-consistent, first-principle models have shown successful explosions in 3D, and even failed cases may be cured by moderate changes of the microphysics inside the neutron star (NS), better grid resolution, or more detailed progenitor conditions at the onset of core collapse, in particular large-scale perturbations in the convective Si and O burning shells. 3D simulations have also achieved to follow neutrino-driven explosions continuously from the initiation of the blast wave, through the shock breakout from the progenitor surface, into the radioactively powered evolution of the SN, and towards the free expansion phase of the emerging remnant. Here we present results from such simulations, which form the basis for direct comparisons with observations of SNe and SN remnants in order to derive constraints on the still disputed explosion mechanism. It is shown that predictions based on hydrodynamic instabilities and mixing processes associated with neutrino-driven explosions yield good agreement with measured NS kicks, light-curve properties of SN 1987A and asymmetries of iron and 44Ti distributions observed in SN 1987A and Cassiopeia A.

  20. Constraining Core-collapse Supernova Theory Predictions with 400 Progenitor Masses

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremiah

    2017-08-01

    A new era is emerging in which we will have hundreds of progenitor masses for supernovae (SNe) and supernova remnants (SNRs); we propose to develop the statistical and theoretical tools needed to interpret this data. Two of the fundamental predictions of stellar evolution theory are that stars more massive than about 8 solar masses will explode and that some of these stars will not explode and form black holes. These statements are clear and simple, yet constraining them with observations has remained elusive until recently. For many years, the rate of progenitor discovery was steady but slow; each progenitor discovery required rare serendipitous pre-cursor imaging. With this steady drip of direct imaging, the number of progenitor masses numbered no more than 20. Recently, we developed a technique that increased the number of progenitor masses by a factor of 10 or more. In this new technique, we use HST photometry to age-date the stellar populations surrounding SNRs. From this age, we derive a progenitor mass for each SNR. We currently have progenitor masses for 115 SNRs in M31 and M33, soon we will have 300 more from M83, and there are hundreds more SNRs that could be analyzed in other nearby galaxies. To prepare for this watershed, we propose to develop the Bayesian framework needed to properly infer the progenitor mass distribution. This work will culminate in a direct constraint on the predictions of core-collapse supernova theory.

  1. A Detailed Comparison of Multidimensional Boltzmann Neutrino Transport Methods in Core-collapse Supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.

    The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. We carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to both methods. The DOmore » method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.« less

  2. A Detailed Comparison of Multidimensional Boltzmann Neutrino Transport Methods in Core-collapse Supernovae

    DOE PAGES

    Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.; ...

    2017-10-03

    The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. In this paper, we carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to bothmore » methods. The DO method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Finally, included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.« less

  3. A Detailed Comparison of Multidimensional Boltzmann Neutrino Transport Methods in Core-collapse Supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.

    The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. In this paper, we carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to bothmore » methods. The DO method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Finally, included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.« less

  4. Linear analysis on the growth of non-spherical perturbations in supersonic accretion flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Kazuya; Yamada, Shoichi, E-mail: ktakahashi@heap.phys.waseda.ac.jp

    We analyzed the growth of non-spherical perturbations in supersonic accretion flows. We have in mind an application to the post-bounce phase of core-collapse supernovae (CCSNe). Such non-spherical perturbations have been suggested by a series of papers by Arnett, who has numerically investigated violent convections in the outer layers of pre-collapse stars. Moreover, Couch and Ott demonstrated in their numerical simulations that such perturbations may lead to a successful supernova even for a progenitor that fails to explode without fluctuations. This study investigated the linear growth of perturbations during the infall onto a stalled shock wave. The linearized equations are solvedmore » as an initial and boundary value problem with the use of a Laplace transform. The background is a Bondi accretion flow whose parameters are chosen to mimic the 15 M {sub ☉} progenitor model by Woosley and Heger, which is supposed to be a typical progenitor of CCSNe. We found that the perturbations that are given at a large radius grow as they flow down to the shock radius; the density perturbations can be amplified by a factor of 30, for example. We analytically show that the growth rate is proportional to l, the index of the spherical harmonics. We also found that the perturbations oscillate in time with frequencies that are similar to those of the standing accretion shock instability. This may have an implication for shock revival in CCSNe, which will be investigated in our forthcoming paper in more detail.« less

  5. A Detailed Comparison of Multidimensional Boltzmann Neutrino Transport Methods in Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.; Dolence, Joshua; Sumiyoshi, Kohsuke; Yamada, Shoichi

    2017-10-01

    The mechanism driving core-collapse supernovae is sensitive to the interplay between matter and neutrino radiation. However, neutrino radiation transport is very difficult to simulate, and several radiation transport methods of varying levels of approximation are available. We carefully compare for the first time in multiple spatial dimensions the discrete ordinates (DO) code of Nagakura, Yamada, and Sumiyoshi and the Monte Carlo (MC) code Sedonu, under the assumptions of a static fluid background, flat spacetime, elastic scattering, and full special relativity. We find remarkably good agreement in all spectral, angular, and fluid interaction quantities, lending confidence to both methods. The DO method excels in determining the heating and cooling rates in the optically thick region. The MC method predicts sharper angular features due to the effectively infinite angular resolution, but struggles to drive down noise in quantities where subtractive cancellation is prevalent, such as the net gain in the protoneutron star and off-diagonal components of the Eddington tensor. We also find that errors in the angular moments of the distribution functions induced by neglecting velocity dependence are subdominant to those from limited momentum-space resolution. We briefly compare directly computed second angular moments to those predicted by popular algebraic two-moment closures, and we find that the errors from the approximate closures are comparable to the difference between the DO and MC methods. Included in this work is an improved Sedonu code, which now implements a fully special relativistic, time-independent version of the grid-agnostic MC random walk approximation.

  6. A kinematic study of 0509-67.5, the second youngest supernova remnant in the Large Magellanic Cloud, and its astrophysical implications

    NASA Astrophysics Data System (ADS)

    Hovey, Luke

    2016-05-01

    Supernova remnants are the lasting interactions of shock waves that develop in the wake of supernovae. These remnants, especially those in our galaxy and our companion galaxies, allow us to study supernovae for thousands of years after the initial stellar explosions. Remnants that are formed from Ia supernovae, which are the explosions and complete annihilation of white dwarf stars, are of particular interest due to the explosions' value as standard candles in cosmological studies. The shock waves in these young supernova remnants offer an unparalleled look into the physical processes that take place there, especially since these shocks are often simpler to study than shocks with strong radiative components that are present in remnants that are formed from the core-collapse supernovae of massive stars. I will detail the work of my kinematic study of the second youngest remnant in the Large Magellanic Cloud, 0509--67.5, which has been confirmed to be the result of a Ia supernova. Chapter 2 details the proper motion measurements made on the forward shock of this remnant, which has led to many key results. I was able to use the results of ii the global shock speed in the remnant to measure the density of neutral hydrogen in the ambient medium into which these shocks expand. In addition, I use the measurements of the shock speed for select portions of the forward shock to search for signatures of efficient cosmic-ray acceleration. Hydrodynamic simulations are then employed to constrain the age and ambient medium density of 0509--67.5, as well as to place limits on the compression factor at the immediate location of the blast wave. Chapter 3 uses the proper motion results from chapter 2 to determine possible asymmetries in the expansion of the remnant for the eastern and western limbs. These measurements are then used as constraints in hydrodynamic simulations to assess the possible dynamical offset of the explosion site compared to the geometric center of 0509?67.5 that we observe today. I find a continuum of possible offsets, which are sensitive to assumptions that are made about the evolutionary history of the remnant, and use the uncertainties in these calculations to determine the area in which to search for a leftover progenitor companion star in the event that the explosion resulted from a single-degenerate system. The stars within this search area are explored with a multi-band photometric study, wherein we determine the mass ranges for these candidates. Chapter four concludes this thesis, recapping the main results from chapters 2 and 3, and highlights the future projects I will carry out that are motivated by my findings in this comprehensive study of the supernova remnant 0509--67.5.

  7. The Supernova Early Warning System (SNEWS)

    NASA Astrophysics Data System (ADS)

    Habig, A.; SNEWS Collaboration

    2005-05-01

    SNEWS is a cooperative effort between the world's neutrino detection experiments to spread the news that a star in our galaxy has just experienced a core-collapse event and is about to become a Type-II Supernova. This project exploits the ˜hours time difference between neutrinos promptly escaping the nascent supernova and photons which originate when the shock wave breaks through the stellar photosphere, to give the world a chance to get ready to observe such an exciting event at the earliest possible time. A coincidence trigger between experiments is used to eliminate potential local false alarms, allowing a rapid, automated alert. SNEWS is currently operational and ready, and this poster presents the procedures in use. SNEWS work is supported by NSF collaborative grant #0302166.

  8. Binary progenitors of supernovae

    NASA Astrophysics Data System (ADS)

    Trimble, V.

    1984-12-01

    Among the massive stars that are expected to produce Type II, hydrogen-rich supernovae, the presence of a close companion can increase the main sequence mass needed to yield a collapsing core. In addition, due to mass transfer from the primary to the secondary, the companion enhances the stripping of the stellar hydrogen envelope produced by single star winds and thereby makes it harder for the star to give rise to a typical SN II light curve. Among the less massive stars that may be the basis for Type I, hydrogen-free supernovae, a close companion could be an innocent bystander to carbon detonation/deflagration in the primary. It may alternatively be a vital participant which transfers material to a white dwarf primary and drives it to explosive conditions.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annis, J.; Soares-Santos, M.; Diehl, H. T.

    The collapse of a stellar core is expected to produce gravitational waves (GWs), neutrinos, and in most cases a luminous supernova. Sometimes, however, the optical event could be significantly less luminous than a supernova and a direct collapse to a black hole, where the star just disappears, is possible. The GW event GW150914 was detected by the LIGO Virgo Collaboration via a burst analysis that gave localization contours enclosing the Large Magellanic Cloud (LMC). Shortly thereafter, we used DECam to observe 102 deg{sup 2} of the localization area, including 38 deg{sup 2} on the LMC for a missing supergiant search.more » We construct a complete catalog of LMC luminous red supergiants, the best candidates to undergo invisible core collapse, and collected catalogs of other candidates: less luminous red supergiants, yellow supergiants, blue supergiants, luminous blue variable stars, and Wolf–Rayet stars. Of the objects in the imaging region, all are recovered in the images. The timescale for stellar disappearance is set by the free-fall time, which is a function of the stellar radius. Our observations at 4 and 13 days after the event result in a search sensitive to objects of up to about 200 solar radii. We conclude that it is unlikely that GW150914 was caused by the core collapse of a relatively compact supergiant in the LMC, consistent with the LIGO Collaboration analyses of the gravitational waveform as best interpreted as a high mass binary black hole merger. We discuss how to generalize this search for future very nearby core-collapse candidates.« less

  10. A Dark Energy Camera Search for Missing Supergiants in the LMC After the Advanced LIGO Gravitational-Wave Event GW150914

    NASA Technical Reports Server (NTRS)

    Annis, J.; Soares-Santos, M.; Berger, E.; Brout, D.; Chen, H.; Chornock, R.; Cowperthwaite, P. S.; Diehl, H. T.; Doctor, Z.; Cenko, S. B.

    2016-01-01

    The collapse of a stellar core is expected to produce gravitational waves (GWs), neutrinos, and in most cases a luminous supernova. Sometimes, however, the optical event could be significantly less luminous than a supernova and a direct collapse to a black hole, where the star just disappears, is possible. The GW event GW150914 was detected by the LIGO Virgo Collaboration via a burst analysis that gave localization contours enclosing the Large Magellanic Cloud (LMC). Shortly thereafter, we used DECam to observe 102 deg(exp.2) of the localization area,including 38 deg(exp. 2) on the LMC for a missing supergiant search. We construct a complete catalog of LMC luminous red supergiants, the best candidates to undergo invisible core collapse, and collected catalogs of other candidates:less luminous red supergiants, yellow supergiants, blue supergiants, luminous blue variable stars, and Wolf-Rayet stars. Of the objects in the imaging region, all are recovered in the images. The timescale for stellar disappearance is set by the free-fall time, which is a function of the stellar radius. Our observations at 4 and 13 days after the event result in a search sensitive to objects of up to about 200 solar radii. We conclude that it is unlikely that GW150914 was caused by the core collapse of a relatively compact supergiant in the LMC, consistent with the LIGO Collaboration analyses of the gravitational waveform as best interpreted as a high mass binary black hole merger. We discuss how to generalize this search for future very nearby core-collapse candidates.

  11. Gravitational Collapse and Black Holes

    ERIC Educational Resources Information Center

    Ryder, Lewis

    1973-01-01

    The newest and most exotic manner in which stars die is investigated. A brief outline is presented, along with a discussion of the role supernova play, followed by a description of how the black holes originate, exist, and how they might be detected. (DF)

  12. Impact of electron-captures on nuclei near N = 50 on core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Titus, R.; Sullivan, C.; Zegers, R. G. T.; Brown, B. A.; Gao, B.

    2018-01-01

    The sensitivity of the late stages of stellar core collapse to electron-capture rates on nuclei is investigated, with a focus on electron-capture rates on 74 nuclei with neutron number close to 50, just above doubly magic 78Ni. It is demonstrated that variations in key characteristics of the evolution, such as the lepton fraction, electron fraction, entropy, stellar density, and in-fall velocity are about 50% due to uncertainties in the electron-capture rates on nuclei in this region, although thousands of nuclei are included in the simulations. The present electron-capture rate estimates used for the nuclei in this high-sensitivity region of the chart of isotopes are primarily based on a simple approximation, and it is shown that the estimated rates are likely too high, by an order of magnitude or more. Electron-capture rates based on Gamow-Teller strength distributions calculated in microscopic theoretical models will be required to obtain better estimates. Gamow-Teller distributions extracted from charge-exchange experiments performed at intermediate energies serve to guide the development and benchmark the models. A previously compiled weak-rate library that is used in the astrophysical simulations was updated as part of the work presented here, by adding additional rate tables for nuclei near stability for mass numbers between 60 and 110.

  13. Sir Fred Hoyle and the theory of the synthesis of the elements

    NASA Astrophysics Data System (ADS)

    Arnett, David

    Some of Fred Hoyle's pioneering ideas about the site and the nature of the synthesis of the elements are examined in a modern context of theory, experiment and observations. Hoyle's ideas concerning the nucleosynthesis cycle of stellar birth and death, rotational instability of supernovae, the onion-skin model of presupernovae, neutronization, nuclear statistical equilibrium and core collapse, thermonuclear supernovae, nucleosynthesis processes and freeze-out are discussed. The history of the clash of theory and experiment on the second excited state of 8Be and helium ignition in red giants is reviewed.

  14. Probing Late-Stage Stellar Evolution through Robotic Follow-Up of Nearby Supernovae

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Griffin

    2018-01-01

    Many of the remaining uncertainties in stellar evolution can be addressed through immediate and long-term photometry and spectroscopy of supernovae. The early light curves of thermonuclear supernovae can contain information about the nature of the binary companion to the exploding white dwarf. Spectra of core-collapse supernovae can reveal material lost by massive stars in their final months to years. Thanks to a revolution in technology—robotic telescopes, high-speed internet, machine learning—we can now routinely discover supernovae within days of explosion and obtain well-sampled follow-up data for months and years. Here I present three major results from the Global Supernova Project at Las Cumbres Observatory that take advantage of these technological advances. (1) SN 2017cbv is a Type Ia supernova discovered within a day of explosion. Early photometry shows a bump in the U-band relative to previously observed Type Ia light curves, possibly indicating the presence of a nondegenerate binary companion. (2) SN 2016bkv is a low-luminosity Type IIP supernova also caught very young. Narrow emission lines in the earliest spectra indicate interaction between the ejecta and a dense shell of circumstellar material, previously observed only in the brightest Type IIP supernovae. (3) Type Ibn supernovae are a rare class that interact with hydrogen-free circumstellar material. An analysis of the largest-yet sample of this class has found that their light curves are much more homogeneous and faster-evolving than their hydrogen-rich counterparts, Type IIn supernovae, but that their maximum-light spectra are more diverse.

  15. X-Ray Ejecta Kinematics of the Galactic Core-Collapse Supernova Remnant G292.0+1.8

    NASA Astrophysics Data System (ADS)

    Bhalerao, Jayant; Park, Sangwook; Dewey, Daniel; Hughes, John P.; Mori, Koji; Lee, Jae-Joon

    2015-02-01

    We report on the results from the analysis of our 114 ks Chandra High Energy Transmision Grating Spectrometer observation of the Galactic core-collapse supernova remnant G292.0+1.8. To probe the three-dimensional structure of the clumpy X-ray emitting ejecta material in this remnant, we measured Doppler shifts in emission lines from metal-rich ejecta knots projected at different radial distances from the expansion center. We estimate radial velocities of ejecta knots in the range of -2300 lsim vr lsim 1400 km s-1. The distribution of ejecta knots in velocity versus projected-radius space suggests an expanding ejecta shell with a projected angular thickness of ~90'' (corresponding to ~3 pc at d = 6 kpc). Based on this geometrical distribution of the ejecta knots, we estimate the location of the reverse shock approximately at the distance of ~4 pc from the center of the supernova remnant, putting it in close proximity to the outer boundary of the radio pulsar wind nebula. Based on our observed remnant dynamics and the standard explosion energy of 1051 erg, we estimate the total ejecta mass to be lsim8 M ⊙, and we propose an upper limit of lsim35 M ⊙ on the progenitor's mass.

  16. Self-similar dynamic converging shocks - I. An isothermal gas sphere with self-gravity

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing; Shi, Chun-Hui

    2014-07-01

    We explore novel self-similar dynamic evolution of converging spherical shocks in a self-gravitating isothermal gas under conceivable astrophysical situations. The construction of such converging shocks involves a time-reversal operation on feasible flow profiles in self-similar expansion with a proper care for the increasing direction of the specific entropy. Pioneered by Guderley since 1942 but without self-gravity so far, self-similar converging shocks are important for implosion processes in aerodynamics, combustion, and inertial fusion. Self-gravity necessarily plays a key role for grossly spherical structures in very broad contexts of astrophysics and cosmology, such as planets, stars, molecular clouds (cores), compact objects, planetary nebulae, supernovae, gamma-ray bursts, supernova remnants, globular clusters, galactic bulges, elliptical galaxies, clusters of galaxies as well as relatively hollow cavity or bubble structures on diverse spatial and temporal scales. Large-scale dynamic flows associated with such quasi-spherical systems (including collapses, accretions, fall-backs, winds and outflows, explosions, etc.) in their initiation, formation, and evolution are likely encounter converging spherical shocks at times. Our formalism lays an important theoretical basis for pertinent astrophysical and cosmological applications of various converging shock solutions and for developing and calibrating numerical codes. As examples, we describe converging shock triggered star formation, supernova explosions, and void collapses.

  17. They Came from the Deep in the Supernova: The Origin of TiC and Metal Subgrains in Presolar Graphite Grains

    NASA Astrophysics Data System (ADS)

    Lodders, Katharina

    2006-08-01

    A new formation scenario for TiC and Fe-Ni metal inclusions in presolar graphite grains of supernova origin is described. The mineralogy and chemistry require condensation of Fe-Ni titanides from Fe-, Ni-, and Ti-rich gaseous ejecta, subsequent carburization to make TiC and metal, and encapsulation into graphite. Titanides only condense if Si is depleted relative to heavier elements, which requires α-rich freeze-out and a deep mass cut for the supernova ejecta. This Si-poor core material must remain unmixed with other supernova zones until the titanides condense. This can be accomplished by transport of core ejecta in bipolar jets through the major expanding supernova zone ejecta. If the jets stall in regions dominated by C-rich ejecta such as the C-He zone, where graphite condenses, thermochemically favored in situ carburization of the titanides-either before or during encapsulation into condensing graphite-leads to a TiC-and-metal composite. This scenario agrees with theoretical models and observations of asymmetric core collapse in supernovae that are associated with bipolar jets loaded with iron-peak elements.

  18. Prompt directional detection of galactic supernova by combining large liquid scintillator neutrino detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, V.; Chirac, T.; Lasserre, T., E-mail: vincent.fischer@cea.fr, E-mail: tchirac@gmail.fr, E-mail: thierry.lasserre@cea.fr

    2015-08-01

    Core-collapse supernovae produce an intense burst of electron antineutrinos in the few-tens-of-MeV range. Several Large Liquid Scintillator-based Detectors (LLSD) are currently operated worldwide, being very effective for low energy antineutrino detection through the Inverse Beta Decay (IBD) process. In this article, we develop a procedure for the prompt extraction of the supernova location by revisiting the details of IBD kinematics over the broad energy range of supernova neutrinos. Combining all current scintillator-based detector, we show that one can locate a canonical supernova at 10 kpc with an accuracy of 45 degrees (68% C.L.). After the addition of the next generationmore » of scintillator-based detectors, the accuracy could reach 12 degrees (68% C.L.), therefore reaching the performances of the large water Čerenkov neutrino detectors. We also discuss a possible improvement of the SuperNova Early Warning System (SNEWS) inter-experiment network with the implementation of a directionality information in each experiment. Finally, we discuss the possibility to constrain the neutrino energy spectrum as well as the mass of the newly born neutron star with the LLSD data.« less

  19. SN2005da: A Spectroscopic and Photometric Analysis of a Peculiar Type Ic Supernova

    NASA Astrophysics Data System (ADS)

    Williamson, Jacob

    2017-12-01

    Core collapse supernovae are an important class of objects in stellar evolution research as they are the final life stage of high mass stars. Supernovae in general are classified into several spectral types; this paper explores SN 2005da, classified as a Type Ic, meaning it lacks hydrogen and helium lines. The supernova was originally classified as a broad-lined Type Ic (Type Ic-BL), with expansion velocities near maximum light greater than or approximately equal to 15000 km/s. However, some of the elements present in the spectrum, namely carbon and oxygen, have narrower lines (FWHM approximately equal to 2300 km/s) than other elements, indicating an interaction with a previously ejected envelope. The supernova is also found to have a decay time, with a change in magnitude over 15 days following maximum light of about 1.4 magnitudes, that is significantly faster than typical Type Ic or Ic-BL. This is more akin to a rarer object type known as a Type Ibn, although it lacks the characteristic narrow helium lines of this type. Therefore, SN 2005da appears to be unlike known examples of Type Ic supernovae.

  20. A New Gravitational-wave Signature from Standing Accretion Shock Instability in Supernovae

    NASA Astrophysics Data System (ADS)

    Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya

    2016-09-01

    We present results from fully relativistic three-dimensional core-collapse supernova simulations of a non-rotating 15{M}⊙ star using three different nuclear equations of state (EoSs). From our simulations covering up to ˜350 ms after bounce, we show that the development of the standing accretion shock instability (SASI) differs significantly depending on the stiffness of nuclear EoS. Generally, the SASI activity occurs more vigorously in models with softer EoS. By evaluating the gravitational-wave (GW) emission, we find a new GW signature on top of the previously identified one, in which the typical GW frequency increases with time due to an accumulating accretion to the proto-neutron star (PNS). The newly observed quasi-periodic signal appears in the frequency range from ˜100 to 200 Hz and persists for ˜150 ms before neutrino-driven convection dominates over the SASI. By analyzing the cycle frequency of the SASI sloshing and spiral modes as well as the mass accretion rate to the emission region, we show that the SASI frequency is correlated with the GW frequency. This is because the SASI-induced temporary perturbed mass accretion strikes the PNS surface, leading to the quasi-periodic GW emission. Our results show that the GW signal, which could be a smoking-gun signature of the SASI, is within the detection limits of LIGO, advanced Virgo, and KAGRA for Galactic events.

  1. How to Find Gravitationally Lensed Type Ia supernovae

    DOE PAGES

    Goldstein, Daniel A.; Nugent, Peter E.

    2016-12-29

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts (z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H 0, w, and Ω m via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear tomore » be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts' photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z-band search, more than an order of magnitude improvement over previous estimates. Finally, we also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R-band search - despite the fact that this survey will not resolve a single system.« less

  2. Effect of magnetic field on beta processes in a relativistic moderately degenerate plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ognev, I. S., E-mail: ognev@uniyar.ac.ru

    The effect of a magnetic field of arbitrary strength on the beta decay and crossing symmetric processes is analyzed. A covariant calculation technique is used to derive the expression for the squares of S-matrix elements of these reactions, which is also valid in reference frames in which the medium moves as a single whole along magnetic field lines. Simple analytic expressions obtained for the neutrino and antineutrino emissivities for a moderately degenerate plasma fully characterize the emissivity and absorbability of the studied medium. It is shown that the approximation used here is valid for core collapse supernovae and accretion disksmore » around black holes; beta processes in these objects are predominantly neutrino reactions. The analytic expressions obtained for the emissivities can serve as a good approximation for describing the interaction of electron neutrinos and antineutrinos with the medium of the objects in question and hold for an arbitrary magnetic field strength. Due to their simplicity, these expressions can be included in the magnetohydrodynamic simulation of supernovae and accretion disks to calculate neutrino and antineutrino transport in them. The rates of beta processes and the energy and momentum emitted in them are calculated for an optically transparent matter. It is shown that the macroscopic momentum transferred in the medium increases linearly with the magnetic field strength and can substantially affect the dynamics of supernovae and accretion disks in the regions of a degenerate matter. It is also shown that the rates of beta processes and the energy emission for a magnetic field strength of B ≲ 10{sup 15} G typical of supernovae and accretion disks are lower than in the absence of field. This suppression is stronger for reactions with neutrinos.« less

  3. Capturing Neutrinos from a Star's Final Hours

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry

    2018-04-01

    What happens on the last day of a massive stars life? In the hours before the star collapses and explodes as a supernova, the rapid evolution of material in its core creates swarms of neutrinos. Observing these neutrinos may help us understand the final stages of a massive stars life but theyve never been detected.A view of some of the 1,520 phototubes within the MiniBooNE neutrino detector. Observations from this and other detectors are helping to illuminate the nature of the mysterious neutrino. [Fred Ullrich/FNAL]Silent Signposts of Stellar EvolutionThe nuclear fusion that powers stars generates tremendous amounts of energy. Much of this energy is emitted as photons, but a curious and elusive particle the neutrino carries away most of the energy in the late stages of stellar evolution.Stellar neutrinos can be created through two processes: thermal processesand beta processes. Thermal processes e.g.,pair production, in which a particle/antiparticle pair are created depend on the temperature and pressure of the stellar core. Beta processes i.e.,when a proton converts to a neutron, or vice versa are instead linked to the isotopic makeup of the stars core. This means that, if we can observe them, beta-process neutrinos may be able to tell us about the last steps of stellar nucleosynthesis in a dying star.But observing these neutrinos is not so easilydone. Neutrinos arenearly massless, neutral particles that interact only feebly with matter; out of the whopping 1060neutrinos released in a supernova explosion, even the most sensitive detectors only record the passage of just a few. Do we have a chance of detectingthe beta-process neutrinos that are released in the final few hours of a stars life, beforethe collapse?Neutrino luminosities leading up to core collapse. Shortly before collapse, the luminosity of beta-process neutrinos outshines that of any other neutrino flavor or origin. [Adapted from Patton et al. 2017]Modeling Stellar CoresTo answer this question, Kelly Patton (University of Washington) and collaborators first used a stellar evolution model to explore neutrino production in massive stars. They modeled the evolution of two massive stars 15 and 30 times the mass of our Sun from the onset of nuclear fusion to the moment of collapse.The authors found that in the last few hours before collapse, during which the material in the stars cores is rapidly upcycled into heavier elements, the flux from beta-process neutrinos rivals that of thermal neutrinos and even exceeds it at high energies. So now we know there are many beta-process neutrinos but can we spot them?Neutrino and antineutrino fluxes at Earth from the last 2 hours of a 30-solar-mass stars life compared to the flux from background sources. The rows represent calculations using two different neutrino mass hierarchies. Click to enlarge. [Patton et al. 2017]Observing Elusive NeutrinosFor an imminent supernova at a distance of 1 kiloparsec, the authors find that the presupernova electron neutrino flux rises above the background noise from the Sun, nuclear reactors, and radioactive decay within the Earth in the final two hours before collapse.Based on these calculations, current and future neutrino observatories should be able to detect tens of neutrinos from a supernova within 1 kiloparsec, about 30% of which would be beta-process neutrinos. As the distance to the star increases, the time and energy window within which neutrinos can be observed gradually narrows, until it closes for stars at a distance of about 30 kiloparsecs.Are there any nearby supergiants soon to go supernova so these predictions can be tested? At a distance of only 650 light-years, the red supergiant star Betelgeuse should produce detectable neutrinos when it explodes an exciting opportunity for astronomers in the far future!CitationKelly M. Patton et al 2017ApJ8516. doi:10.3847/1538-4357/aa95c4

  4. Detecting the supernova breakout burst in terrestrial neutrino detectors

    DOE PAGES

    Wallace, Joshua; Burrows, Adam; Dolence, Joshua C.

    2016-02-01

    Here, we calculate the distance-dependent performance of a few representative terrestrial neutrino detectors in detecting and measuring the properties of the ν e breakout burst light curve in a Galactic core-collapse supernova. The breakout burst is a signature phenomenon of core collapse and offers a probe into the stellar core through collapse and bounce. We also examine cases of no neutrino oscillations and oscillations due to normal and inverted neutrino-mass hierarchies. For the normal hierarchy, other neutrino flavors emitted by the supernova overwhelm the νe signal, making a detection of the breakout burst difficult. Furthermore, for the inverted hierarchy (IH),more » some detectors at some distances should be able to see the ν e breakout burst peak and measure its properties. For the IH, the maximum luminosity of the breakout burst can be measured at 10 kpc to accuracies of ~30% for Hyper-Kamiokande (Hyper-K) and ~60% for the Deep Underground Neutrino Experiment (DUNE). Super-Kamiokande (Super-K) and Jiangmen Underground Neutrino Observatory (JUNO) lack the mass needed to make an accurate measurement. For the IH, the time of the maximum luminosity of the breakout burst can be measured in Hyper-K to an accuracy of ~3 ms at 7 kpc, in DUNE to ~2 ms at 4 kpc, and JUNO and Super-K can measure the time of maximum luminosity to an accuracy of ~2 ms at 1 kpc. Detector backgrounds in IceCube render a measurement of the νe breakout burst unlikely. For the IH, a measurement of the maximum luminosity of the breakout burst could be used to differentiate between nuclear equations of state.« less

  5. Neutrino Emissions in All Flavors up to the Pre-bounce of Massive Stars and the Possibility of Their Detections

    NASA Astrophysics Data System (ADS)

    Kato, Chinami; Nagakura, Hiroki; Furusawa, Shun; Takahashi, Koh; Umeda, Hideyuki; Yoshida, Takashi; Ishidoshiro, Koji; Yamada, Shoichi

    2017-10-01

    This paper is a sequel to our 2015 paper, Kato et al., which calculated the luminosities and spectra of electron-type anti-neutrinos ({\\bar{ν }}e) from the progenitors of core-collapse supernovae. Expecting that the capability to detect electron-type neutrinos ({ν }e) will increase dramatically with the emergence of liquid-argon detectors such as DUNE, we broaden the scope in this study to include all flavors of neutrinos emitted from the pre-bounce phase. We pick up three progenitor models of electron capture supernovae (ECSNe) and iron-core collapse supernovae (FeCCSNe). We find that the number luminosities reach ˜1057 s-1 and ˜1053 s-1 at maximum for {ν }e and {\\bar{ν }}e, respectively. We also estimate the numbers of detection events at terrestrial neutrino detectors including DUNE, taking flavor oscillations into account and assuming the distance to the progenitors to be 200 pc. It is demonstrated that {\\bar{ν }}e from the ECSN progenitor will be undetected at almost all detectors, whereas we will be able to observe ≳15,900 {ν }e at DUNE for the inverted mass hierarchy. From the FeCCSN progenitors, the number of {\\bar{ν }}e events will be largest for JUNO, 200-900 {\\bar{ν }}e, depending on the mass hierarchy, whereas the number of {ν }e events at DUNE is ≳ 2100 for the inverted mass hierarchy. These results imply that the detection of {\\bar{ν }}e is useful to distinguish progenitors of FeCCSNe from those of ECSNe, while {ν }e will provide us with detailed information on the collapse phase regardless of the type and mass of the progenitor.

  6. The Remarkable Deaths of 9-11 Solar Mass Stars

    NASA Astrophysics Data System (ADS)

    Woosley, S. E.; Heger, Alexander

    2015-09-01

    The post-helium-burning evolution of stars from 7 {M}⊙ to 11 {M}⊙ is complicated by the lingering effects of degeneracy and off-center ignition. Here, stars in this mass range are studied using a standard set of stellar physics. Two important aspects of the study are the direct coupling of a reaction network of roughly 220 nuclei to the structure calculation at all stages and the use of a subgrid model to describe the convective bounded flame that develops during neon and oxygen burning. Below 9.0 {M}⊙ degenerate oxygen-neon cores form that may become either white dwarfs or electron-capture supernovae. Above 10.3 {M}⊙ the evolution proceeds “normally” to iron-core collapse, without composition inversions or degenerate flashes. Emphasis here is upon the stars in between, which typically ignite oxygen burning off-center. After oxygen burns in a convectively bounded flame, silicon burning ignites in a degenerate flash that commences closer to the stellar center and with increasing violence for stars of larger mass. In some cases the silicon flash is so violent that it could lead to the early ejection of the hydrogen envelope. This might have interesting observable consequences. For example, the death of a 10.0 {M}⊙ star could produce two supernova-like displays, a faint low-energy event due to the silicon flash, and an unusually bright supernova many months later as the low-energy ejecta from core collapse collides with the previously ejected envelope. The potential relation to the Crab supernova is discussed.

  7. Constraints on core collapse from the black hole mass function

    NASA Astrophysics Data System (ADS)

    Kochanek, C. S.

    2015-01-01

    We model the observed black hole mass function under the assumption that black hole formation is controlled by the compactness of the stellar core at the time of collapse. Low-compactness stars are more likely to explode as supernovae and produce neutron stars, while high-compactness stars are more likely to be failed supernovae that produce black holes with the mass of the helium core of the star. Using three sequences of stellar models and marginalizing over a model for the completeness of the black hole mass function, we find that the compactness ξ2.5 above which 50% of core collapses produce black holes is ξ _{2.5}^{50%}=0.24 (0.15 < ξ _{2.5}^{50%} < 0.37 at 90% confidence). The models also predict that f = 0.18 (0.09 < f < 0.39) of core collapses fail. We tested four other criteria for black hole formation based on ξ2.0 and ξ3.0, the compactnesses at enclosed masses of 2.0 or 3.0 rather than 2.5 M⊙, the mass of the iron core MFe, and the mass inside the oxygen burning shell MO. We found that ξ2.0 works as well as ξ2.5, while ξ3.0, MFe and MO are significantly worse. As expected from the high compactness of 20-25 M⊙ stars, black hole formation in this mass range provides a natural explanation of the red supergiant problem.

  8. STRESS Counting Supernovae

    NASA Astrophysics Data System (ADS)

    Botticella, M. T.; Cappellaro, E.; Riello, M.; Greggio, L.; Benetti, S.; Patat, F.; Turatto, M.; Altavilla, G.; Pastorello, A.; Valenti, S.; Zampieri, L.; Harutyunyan, A.; Pignata, G.; Taubenberger, S.

    2008-12-01

    The rate of occurrence of supernovae (SNe) is linked to some of the basic ingredients of galaxy evolution, such as the star formation rate, the chemical enrichment and feedback processes. SN rates at intermediate redshift and their dependence on specific galaxy properties have been investigated in the Southern inTermediate Redshift ESO Supernova Search (STRESS). The rate of core collapse SNe (CC SNe) at a redshift of around 0.25 is found to be a factor two higher than the local value, whereas the SNe Ia rate remains almost constant. SN rates in red and blue galaxies were also measured and it was found that the SNe Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe.

  9. Supernova research with VLBI

    NASA Astrophysics Data System (ADS)

    Bartel, Norbert; Bietenholz, Michael F.

    2016-06-01

    Core-collapse supernovae have been monitored with VLBI from shortly after the explosion to many years thereafter. Radio emission is produced as the ejecta hit the stellar wind left over from the dyingstar. Images show the details of the interaction as the shock front expands into the circumstellar medium. Measurements of the velocity and deceleration of the expansion provide information on both the ejecta and the circumstellar medium. VLBI observations can also search for the stellar remnant of the explosion, a neutron star or a black hole. Combining the transverse expansion rate with the radial expansion rate from optical spectra allows a geometric determination of the distance to the host galaxy. We will present results from recent VLBI observations, focus on their interpretations, and show updated movies of supernovae from soon after their explosion to the present.

  10. Supernovae, neutrinos and the chirality of amino acids.

    PubMed

    Boyd, Richard N; Kajino, Toshitaka; Onaka, Takashi

    2011-01-01

    A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the (14)N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's proteinaceous amino acids.

  11. Luck Reveals Stellar Explosion's First Moments

    NASA Astrophysics Data System (ADS)

    2008-05-01

    Through a stroke of luck, astronomers have witnessed the first violent moments of a stellar explosion known as a supernova. Astronomers have seen thousands of these stellar explosions, but all previous supernovae were discovered days after the event had begun. This is the first time scientists have been able to study a supernova from its very beginning. Seeing one just moments after the event began is a major breakthrough that points the way to unraveling longstanding mysteries about how such explosions really work. Galaxy Before Supernova Explosion NASA's Swift satellite took these images of SN 2007uy in galaxy NGC 2770 before SN 2008D exploded. An X-ray image is on the left; image at right is in visible light. CREDIT: NASA/Swift Science Team/Stefan Immler. Large Image With Labels Large Image Without Labels Galaxy After Supernova Explosion On January 9, 2008, Swift caught a bright X-ray burst from an exploding star. A few days later, SN 2008D appeared in visible light. CREDIT: NASA/Swift Science Team/Stefan Immler. Large Image With Labels Large Image Without Labels "For years, we have dreamed of seeing a star just as it was exploding," said team leader Alicia Soderberg, a Hubble and Carnegie-Princeton Fellow at Princeton University. "This newly-born supernova is going to be the Rosetta Stone of supernova studies for years to come." Theorists had predicted for four decades that a bright burst of X-rays should be produced as the shock wave from a supernova blasts out of the star and through dense material surrounding the star. However, in order to see this burst, scientists faced the nearly-impossible challenge of knowing in advance where to point their telescopes to catch a supernova in the act of exploding. On January 9, luck intervened. Soderberg and her colleagues were making a scheduled observation of the galaxy NGC 2770, 88 million light-years from Earth, using the X-ray telescope on NASA's Swift satellite. During that observation, a bright burst of X-rays came from one of the galaxy's spiral arms. Soderberg led a 38-person international scientific team that quickly began an intensive effort to study the new object using both orbiting and ground-based telescopes. In order to conclude that they had, in fact, seen the predicted early burst of X-rays from a supernova, they needed to eliminate alternative explanations, such as a gamma-ray burst, and then to show that, as time went on, the object behaved like a normal supernova. The scientists scrutinized the object with Swift's gamma-ray instrument, the Chandra X-ray Observatory, and the Hubble Space Telescope. On the ground, they used the Gemini North telescope and the Keck I telescope in Hawaii, the 200-inch and 60-inch telescopes at Palomar Observatory in California, the 3.5-meter telescope at Apache Point Observatory in New Mexico, and the National Science Foundation's Very Large Array (VLA) and Very Long Baseline Array (VLBA) radio telescopes. The VLA and VLBA provided key information that showed the object evolving in a pattern similar to other supernovae. "The data from all these telescopes confirmed that what we were seeing is indeed a supernova and not some new type of object. That initial X-ray burst thus is the earliest observation ever of an exploding star," Soderberg said. The scientists are excited at the prospects of learning vital new details that will help them settle longstanding controversies about the mechanisms of supernova explosions. Stars much more massive than our Sun end their lives in supernova explosions, as they run out of fuel for the thermonuclear reactions that power them. With no more energy being released at the star's core, the core collapses. Further collapse of the star is thought to cause a violent rebound that blasts most of the stars's material into space. What remains is a superdense neutron star or a black hole. The details of this scenario, however, are not well understood, and astronomers differ over the exact mechanisms. Much of the difficulty in understanding the process comes from the fact that, until now, supernovae were only detected after the initial explosion was over. "We think that every core-collapse supernova will show an X-ray burst like this one. If so, with the right instruments, we should be able to discover and study several hundred of them every year. Astronomical instruments planned for the future should then allow us to finally unravel the mystery of how these explosions occur," Soderberg said. The scientists are reporting their findings in an article in the journal Nature. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  12. Fallback Accretion in Core-Collapse Supernova Explosions

    NASA Astrophysics Data System (ADS)

    Gerling-Dunsmore, Hannalore J.; Ott, Christian D.

    2015-04-01

    Core-collapse supernovae (CCSNe) are expected to result in one of two kinds remnants: neutron stars (NSs) and black holes (BHs). It is believed that if a CCSN explosion fails, a BH results, and if the explosion is successful, a NS results. This certainly is the case if there is a strong explosion that unbinds the entire stellar mantle. However, in the case of a weak or severely asymmetric explosion, a substantial quantity of material may fall back. This is commonly called fallback accretion, and it is a potential means of BH formation. We study fallback accretion in spherically-symmetric (1D) neutrino-driven CCSNe using the open-source GR1D code. We obtain explosions by artificially enchancing neutrino energy deposition and in this way also control the explosion energy. We present results on the mapping from progenitor structure and explosion energy to amount and rate of fallback accretion. This research was partially supported by NSF Award No. AST-1212170.

  13. SUPERNOVAE POWERED BY MAGNETARS THAT TRANSFORM INTO BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriya, Takashi J.; Metzger, Brian D.; Blinnikov, Sergei I., E-mail: takashi.moriya@nao.ac.jp

    2016-12-10

    Rapidly rotating, strongly magnetized neutron stars (NSs; magnetars) can release their enormous rotational energy via magnetic spin-down, providing a power source for bright transients such as superluminous supernovae (SNe). On the other hand, particularly massive (so-called supramassive) NSs require a minimum rotation rate to support their mass against gravitational collapse, below which the NS collapses to a black hole (BH). We model the light curves (LCs) of SNe powered with magnetars that transform into BHs. Although the peak luminosities can reach high values in the range of superluminous SNe, their post maximum LCs can decline very rapidly because of the suddenmore » loss of the central energy input. Early BH transformation also enhances the shock breakout signal from the magnetar-driven bubble relative to the main SN peak. Our synthetic LCs of SNe powered by magnetars transforming to BHs are consistent with those of some rapidly evolving bright transients recently reported by Arcavi et al.« less

  14. Nucleosynthesis in Hypernovae Associated with Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Nomoto, Ken'ichi

    We present nucleosynthesis in very energetic hypernovae, whose kinetic energy (KE) is more than 10 times the KE of normal core-collapse supernovae (SNe). The light curve and spectra fitting of individual SN are used to estimate the mass of the progenitor, explosion energy, and produced 56Ni mass. Comparison with the abundance patterns of extremely metal-poor (EMP) stars has made it possible to determine the model parameters of core-collapse SNe. Nucleosynthesis in hypernovae is characterized by larger abundance ratios (Zn, Co, V, Ti)/Fe and smaller (Mn, Cr)/Fe than normal SNe, which can explain the observed trends of these ratios in EMP stars. Hypernovae are also jet-induced explosions, so that their nucleosynthesis yields can well reproduce the large C/Fe ratio observed in carbon-enhanced metal-poor (CEMP) stars if a small fraction of Fe-peak elements is mixed into the C-rich ejecta in the form of a jet while the bulk of Fe undergoes fallback from equatorial direction (faint supernovae/hypernovae).

  15. Reducing Uncertainties in the Production of the Gamma-emitting Nuclei {sup 26}Al, {sup 44}Ti, and {sup 60}Fe in Core-collapse Supernovae by Using Effective Helium Burning Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, Sam M.; West, Christopher; Heger, Alexander, E-mail: austin@nscl.msu.edu, E-mail: christopher.west@metrostate.edu, E-mail: Alexander.Heger@Monash.edu

    2017-04-10

    We have used effective reaction rates (ERRs) for the helium burning reactions to predict the yield of the gamma-emitting nuclei {sup 26}Al, {sup 44}Ti, and {sup 60}Fe in core-collapse supernovae (SNe). The variations in the predicted yields for values of the reaction rates allowed by the ERR are much smaller than obtained previously, and smaller than other uncertainties. A “filter” for SN nucleosynthesis yields based on pre-SN structure was used to estimate the effect of failed SNe on the initial mass function averaged yields; this substantially reduced the yields of all these isotopes, but the predicted yield ratio {sup 60}Fe/{supmore » 26}Al was little affected. The robustness of this ratio is promising for comparison with data, but it is larger than observed in nature; possible causes for this discrepancy are discussed.« less

  16. Gravitational Waves from Fallback Accretion onto Neutron Stars

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.; Thrane, Eric

    2012-12-01

    Massive stars generally end their lives as neutron stars (NSs) or black holes (BHs), with NS formation typically occurring at the low-mass end and collapse to a BH more likely at the high-mass end. In an intermediate regime, with a mass range that depends on the uncertain details of rotation and mass loss during the star's life, an NS is initially formed, which then experiences fallback accretion and collapse to a BH. The electromagnetic consequence of such an event is not clear. Depending on the progenitor's structure, possibilities range from a long gamma-ray burst to a Type II supernova (which may or may not be jet powered) to a collapse with a weak electromagnetic signature. Gravitational waves (GWs) provide the exciting opportunity to peer through the envelope of a dying massive star and directly probe what is occurring inside. We explore whether fallback onto young NSs can be detected by ground-based interferometers. When the incoming material has sufficient angular momentum to form a disk, the accretion spins up the NS sufficiently to produce non-axisymmetric instabilities and gravitational radiation at frequencies of ~700-2400 Hz for ~30-3000 s until collapse to a BH occurs. Using a realistic excess cross-power search algorithm, we show that such events are detectable by Advanced LIGO out to ≈17 Mpc. From the rate of nearby core-collapse supernovae in the past five years, we estimate that there will be ~1-2 events each year that are worth checking for fallback GWs. The observation of these unique GW signatures coincident with electromagnetic detections would identify the transient events that are associated with this channel of BH formation, while providing information about the protoneutron star progenitor.

  17. A dark energy camera search for missing supergiants in the LMC after the advanced LIGO gravitational-wave event GW150914

    DOE PAGES

    Annis, J.

    2016-05-27

    The collapse of a stellar core is expected to produce gravitational waves (GWs), neutrinos, and in most cases a luminous supernova. Sometimes, however, the optical event could be significantly less luminous than a supernova and a direct collapse to a black hole, where the star just disappears, is possible. The GW event GW150914 was detected by the LIGO Virgo Collaboration via a burst analysis that gave localization contours enclosing the Large Magellanic Cloud (LMC). Shortly thereafter, we used DECam to observe 102 deg 2 of the localization area, including 38 deg 2 on the LMC for a missing supergiant search.more » We construct a complete catalog of LMC luminous red supergiants, the best candidates to undergo invisible core collapse, and collected catalogs of other candidates: less luminous red supergiants, yellow supergiants, blue supergiants, luminous blue variable stars, and Wolf–Rayet stars. Of the objects in the imaging region, all are recovered in the images. The timescale for stellar disappearance is set by the free-fall time, which is a function of the stellar radius. Our observations at 4 and 13 days after the event result in a search sensitive to objects of up to about 200 solar radii. We conclude that it is unlikely that GW150914 was caused by the core collapse of a relatively compact supergiant in the LMC, consistent with the LIGO Collaboration analyses of the gravitational waveform as best interpreted as a high mass binary black hole merger. Lastly, we discuss how to generalize this search for future very nearby core-collapse candidates.« less

  18. Interacting supernovae and supernova impostors

    NASA Astrophysics Data System (ADS)

    Tartaglia, Leonardo

    2016-02-01

    Massive stars are thought to end their lives with spectacular explosions triggered by the gravitational collapse of their cores. Interacting supernovae are generally attributed to supernova explosions occurring in dense circumstellar media, generated through mass-loss which characterisie the late phases of the life of their progenitors. In the last two decades, several observational evidences revealed that mass-loss in massive stars may be related to violent eruptions involving their outer layers, such as the luminous blue variables. Giant eruptions of extragalactic luminous blue variables, similar to that observed in Eta Car in the 19th century, are usually labelled 'SN impostors', since they mimic the behaviour of genuine SNe, but are not the final act of the life of the progenitor stars. The mechanisms producing these outbursts are still not understood, although the increasing number of observed cases triggered the efforts of the astronomical community to find possible theoretical interpretations. More recently, a number of observational evidences suggested that also lower-mass stars can experience pre-supernova outbursts, hence becoming supernova impostors. Even more interestingly, there is growing evidence of a connection among massive stars, their outbursts and interacting supernovae. All of this inspired this research, which has been focused in particular on the characterisation of supernova impostors and the observational criteria that may allow us to safely discriminate them from interacting supernovae. Moreover, the discovery of peculiar transients, motivated us to explore the lowest range of stellar masses that may experience violent outbursts. Finally, the quest for the link among massive stars, their giant eruptions and interacting supernovae, led us to study the interacting supernova LSQ13zm, which possibly exploded a very short time after an LBV-like major outburst.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Koh; Umeda, Hideyuki; Yoshida, Takashi, E-mail: ktakahashi@astron.s.u-tokyo.ac.jp

    We perform a stellar evolution simulation of first stars and calculate stellar yields from the first supernovae. The initial masses are taken from 12 to 140 M {sub ☉} to cover the whole range of core-collapse supernova progenitors, and stellar rotation is included, which results in efficient internal mixing. A weak explosion is assumed in supernova yield calculations, thus only outer distributed matter, which is not affected by the explosive nucleosynthesis, is ejected in the models. We show that the initial mass and the rotation affect the explosion yield. All the weak explosion models have abundances of [C/O] larger thanmore » unity. Stellar yields from massive progenitors of >40-60 M {sub ☉} show enhancement of Mg and Si. Rotating models yield abundant Na and Al, and Ca is synthesized in nonrotating heavy massive models of >80 M {sub ☉}. We fit the stellar yields to the three most iron-deficient stars and constrain the initial parameters of the mother progenitor stars. The abundance pattern in SMSS 0313–6708 is well explained by 50-80 M {sub ☉} nonrotating models, rotating 30-40 M {sub ☉} models well fit the abundance of HE 0107-5240, and both nonrotating and rotating 15-40 M {sub ☉} models explain HE 1327-2326. The presented analysis will be applicable to other carbon-enhanced hyper-metal-poor stars observed in the future. The abundance analyses will give valuable information about the characteristics of the first stars.« less

  20. The QSE-Reduced Nuclear Reaction Network for Silicon Burning

    NASA Astrophysics Data System (ADS)

    Hix, W. Raphael; Parete-Koon, Suzanne T.; Freiburghaus, Christian; Thielemann, Friedrich-Karl

    2007-09-01

    Iron and neighboring nuclei are formed in massive stars shortly before core collapse and during their supernova outbursts, as well as during thermonuclear supernovae. Complete and incomplete silicon burning are responsible for the production of a wide range of nuclei with atomic mass numbers from 28 to 64. Because of the large number of nuclei involved, accurate modeling of silicon burning is computationally expensive. However, examination of the physics of silicon burning has revealed that the nuclear evolution is dominated by large groups of nuclei in mutual equilibrium. We present a new hybrid equilibrium-network scheme which takes advantage of this quasi-equilibrium in order to reduce the number of independent variables calculated. This allows accurate prediction of the nuclear abundance evolution, deleptonization, and energy generation at a greatly reduced computational cost when compared to a conventional nuclear reaction network. During silicon burning, the resultant QSE-reduced network is approximately an order of magnitude faster than the full network it replaces and requires the tracking of less than a third as many abundance variables, without significant loss of accuracy. These reductions in computational cost and the number of species evolved make QSE-reduced networks well suited for inclusion within hydrodynamic simulations, particularly in multidimensional applications.

  1. Protomagnetar and black hole formation in high-mass stars

    NASA Astrophysics Data System (ADS)

    Obergaulinger, M.; Aloy, M. Á.

    2017-07-01

    Using axisymmetric simulations coupling special relativistic magnetohydrodynamics (MHD), an approximate post-Newtonian gravitational potential and two-moment neutrino transport, we show different paths for the formation of either protomagnetars or stellar mass black holes. The fraction of prototypical stellar cores which should result in collapsars depends on a combination of several factors, among which the structure of the progenitor star and the profile of specific angular momentum are probably the foremost. Along with the implosion of the stellar core, we also obtain supernova-like explosions driven by neutrino heating and hydrodynamic instabilities or by magneto-rotational effects in cores of high-mass stars. In the latter case, highly collimated, mildly relativistic outflows are generated. We find that after a rather long post-collapse phase (lasting ≳1 s) black holes may form in cases both of successful and failed supernova-like explosions. A basic trend is that cores with a specific angular momentum smaller than that obtained by standard, one-dimensional stellar evolution calculations form black holes (and eventually collapsars). Complementary, protomagnetars result from stellar cores with the standard distribution of specific angular momentum obtained from prototypical stellar evolution calculations including magnetic torques and moderate to large mass-loss rates.

  2. Monte Carlo closure for moment-based transport schemes in general relativistic radiation hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Foucart, Francois

    2018-04-01

    General relativistic radiation hydrodynamic simulations are necessary to accurately model a number of astrophysical systems involving black holes and neutron stars. Photon transport plays a crucial role in radiatively dominated accretion discs, while neutrino transport is critical to core-collapse supernovae and to the modelling of electromagnetic transients and nucleosynthesis in neutron star mergers. However, evolving the full Boltzmann equations of radiative transport is extremely expensive. Here, we describe the implementation in the general relativistic SPEC code of a cheaper radiation hydrodynamic method that theoretically converges to a solution of Boltzmann's equation in the limit of infinite numerical resources. The algorithm is based on a grey two-moment scheme, in which we evolve the energy density and momentum density of the radiation. Two-moment schemes require a closure that fills in missing information about the energy spectrum and higher order moments of the radiation. Instead of the approximate analytical closure currently used in core-collapse and merger simulations, we complement the two-moment scheme with a low-accuracy Monte Carlo evolution. The Monte Carlo results can provide any or all of the missing information in the evolution of the moments, as desired by the user. As a first test of our methods, we study a set of idealized problems demonstrating that our algorithm performs significantly better than existing analytical closures. We also discuss the current limitations of our method, in particular open questions regarding the stability of the fully coupled scheme.

  3. First results from the IllustrisTNG simulations: a tale of two elements - chemical evolution of magnesium and europium

    NASA Astrophysics Data System (ADS)

    Naiman, Jill P.; Pillepich, Annalisa; Springel, Volker; Ramirez-Ruiz, Enrico; Torrey, Paul; Vogelsberger, Mark; Pakmor, Rüdiger; Nelson, Dylan; Marinacci, Federico; Hernquist, Lars; Weinberger, Rainer; Genel, Shy

    2018-06-01

    The distribution of elements in galaxies provides a wealth of information about their production sites and their subsequent mixing into the interstellar medium. Here we investigate the elemental distributions of stars in the IllustrisTNG simulations. We analyse the abundance ratios of magnesium and europium in Milky Way-like galaxies from the TNG100 simulation (stellar masses log (M⋆/M⊙) ˜ 9.7-11.2). Comparison of observed magnesium and europium for individual stars in the Milky Way with the stellar abundances in our more than 850 Milky Way-like galaxies provides stringent constraints on our chemical evolutionary methods. Here, we use the magnesium-to-iron ratio as a proxy for the effects of our SNII (core-collapse supernovae) and SNIa (Type Ia supernovae) metal return prescription and as a comparison to a variety of galactic observations. The europium-to-iron ratio tracks the rare ejecta from neutron star-neutron star mergers, the assumed primary site of europium production in our models, and is a sensitive probe of the effects of metal diffusion within the gas in our simulations. We find that europium abundances in Milky Way-like galaxies show no correlation with assembly history, present-day galactic properties, and average galactic stellar population age. We reproduce the europium-to-iron spread at low metallicities observed in the Milky Way, and find it is sensitive to gas properties during redshifts z ≈ 2-4. We show that while the overall normalization of [Eu/Fe] is susceptible to resolution and post-processing assumptions, the relatively large spread of [Eu/Fe] at low [Fe/H] when compared to that at high [Fe/H] is quite robust.

  4. A New Method to Constrain Supernova Fractions Using X-ray Observations of Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Bulbul, Esra; Smith, Randall K.; Loewenstein, Michael

    2012-01-01

    Supernova (SN) explosions enrich the intracluster medium (ICM) both by creating and dispersing metals. We introduce a method to measure the number of SNe and relative contribution of Type Ia supernovae (SNe Ia) and core-collapse supernovae (SNe cc) by directly fitting X-ray spectral observations. The method has been implemented as an XSPEC model called snapec. snapec utilizes a single-temperature thermal plasma code (apec) to model the spectral emission based on metal abundances calculated using the latest SN yields from SN Ia and SN cc explosion models. This approach provides a self-consistent single set of uncertainties on the total number of SN explosions and relative fraction of SN types in the ICM over the cluster lifetime by directly allowing these parameters to be determined by SN yields provided by simulations. We apply our approach to XMM-Newton European Photon Imaging Camera (EPIC), Reflection Grating Spectrometer (RGS), and 200 ks simulated Astro-H observations of a cooling flow cluster, A3112.We find that various sets of SN yields present in the literature produce an acceptable fit to the EPIC and RGS spectra of A3112. We infer that 30.3% plus or minus 5.4% to 37.1% plus or minus 7.1% of the total SN explosions are SNe Ia, and the total number of SN explosions required to create the observed metals is in the range of (1.06 plus or minus 0.34) x 10(exp 9), to (1.28 plus or minus 0.43) x 10(exp 9), fromsnapec fits to RGS spectra. These values may be compared to the enrichment expected based on well-established empirically measured SN rates per star formed. The proportions of SNe Ia and SNe cc inferred to have enriched the ICM in the inner 52 kiloparsecs of A3112 is consistent with these specific rates, if one applies a correction for the metals locked up in stars. At the same time, the inferred level of SN enrichment corresponds to a star-to-gas mass ratio that is several times greater than the 10% estimated globally for clusters in the A3112 mass range.

  5. TOWARD CHARACTERIZATION OF THE TYPE IIP SUPERNOVA PROGENITOR POPULATION: A STATISTICAL SAMPLE OF LIGHT CURVES FROM Pan-STARRS1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, N. E.; Soderberg, A. M.; Chornock, R.

    2015-02-01

    In recent years, wide-field sky surveys providing deep multiband imaging have presented a new path for indirectly characterizing the progenitor populations of core-collapse supernovae (SNe): systematic light-curve studies. We assemble a set of 76 grizy-band Type IIP SN light curves from Pan-STARRS1, obtained over a constant survey program of 4 yr and classified using both spectroscopy and machine-learning-based photometric techniques. We develop and apply a new Bayesian model for the full multiband evolution of each light curve in the sample. We find no evidence of a subpopulation of fast-declining explosions (historically referred to as ''Type IIL'' SNe). However, we identify a highly significantmore » relation between the plateau phase decay rate and peak luminosity among our SNe IIP. These results argue in favor of a single parameter, likely determined by initial stellar mass, predominantly controlling the explosions of red supergiants. This relation could also be applied for SN cosmology, offering a standardizable candle good to an intrinsic scatter of ≲ 0.2 mag. We compare each light curve to physical models from hydrodynamic simulations to estimate progenitor initial masses and other properties of the Pan-STARRS1 Type IIP SN sample. We show that correction of systematic discrepancies between modeled and observed SN IIP light-curve properties and an expanded grid of progenitor properties are needed to enable robust progenitor inferences from multiband light-curve samples of this kind. This work will serve as a pathfinder for photometric studies of core-collapse SNe to be conducted through future wide-field transient searches.« less

  6. Three-phase Interstellar Medium in Galaxies Resolving Evolution with Star Formation and Supernova Feedback (TIGRESS): Algorithms, Fiducial Model, and Convergence

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Ostriker, Eve C.

    2017-09-01

    We introduce TIGRESS, a novel framework for multi-physics numerical simulations of the star-forming interstellar medium (ISM) implemented in the Athena MHD code. The algorithms of TIGRESS are designed to spatially and temporally resolve key physical features, including: (1) the gravitational collapse and ongoing accretion of gas that leads to star formation in clusters; (2) the explosions of supernovae (SNe), both near their progenitor birth sites and from runaway OB stars, with time delays relative to star formation determined by population synthesis; (3) explicit evolution of SN remnants prior to the onset of cooling, which leads to the creation of the hot ISM; (4) photoelectric heating of the warm and cold phases of the ISM that tracks the time-dependent ambient FUV field from the young cluster population; (5) large-scale galactic differential rotation, which leads to epicyclic motion and shears out overdense structures, limiting large-scale gravitational collapse; (6) accurate evolution of magnetic fields, which can be important for vertical support of the ISM disk as well as angular momentum transport. We present tests of the newly implemented physics modules, and demonstrate application of TIGRESS in a fiducial model representing the solar neighborhood environment. We use a resolution study to demonstrate convergence and evaluate the minimum resolution {{Δ }}x required to correctly recover several ISM properties, including the star formation rate, wind mass-loss rate, disk scale height, turbulent and Alfvénic velocity dispersions, and volume fractions of warm and hot phases. For the solar neighborhood model, all these ISM properties are converged at {{Δ }}x≤slant 8 {pc}.

  7. Neutrinos, supernovae, and the origin of the heavy elements

    NASA Astrophysics Data System (ADS)

    Qian, YongZhong

    2018-04-01

    Stars of 8-100 M ⊙ end their lives as core-collapse supernovae (SNe). In the process they emit a powerful burst of neutrinos, produce a variety of elements, and leave behind either a neutron star or a black hole. The wide mass range for SN progenitors results in diverse neutrino signals, explosion energies, and nucleosynthesis products. A major mechanism to produce nuclei heavier than iron is rapid neutron capture, or the r process. This process may be connected to SNe in several ways. A brief review is presented on current understanding of neutrino emission, explosion, and nucleosynthesis of SNe.

  8. Can we scan the supernova model space for collective oscillations?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pehlivan, Y., E-mail: yamac.pehlivan@msgsu.edu.tr; National Astronomical Observatory of Japan 2-21-1 Osawa, Mitaka, Tokyo, 181-8588; Subaşı, A. L.

    Collective neutrino oscillations in a core collapse supernova is a many-body phenomenon which can transform the neutrino energy spectra through emergent effects. One example of this behavior is the neutrino spectral swaps in which neutrinos of different flavors partially or completely exchange their spectra. In this talk, we address the question of how model dependent this behavior is. In particular, we demonstrate that these swaps may be independent of the mean field approximation that is typically employed in numerical treatments by showing an example of a spectral swap in the exact many-body picture.

  9. Simulating the detection and classification of high-redshift supernovae with HARMONI on the ELT

    NASA Astrophysics Data System (ADS)

    Bounissou, S.; Thatte, N.; Zieleniewski, S.; Houghton, R. C. W.; Tecza, M.; Hook, I.; Neichel, B.; Fusco, T.

    2018-02-01

    We present detailed simulations of integral field spectroscopic observations of a supernova in a host galaxy at z ˜ 3, as observed by the HARMONI spectrograph on the Extremely Large Telescope, asssisted by laser tomographic adaptive optics. The goal of the simulations, using the HSIM simulation tool, is to determine whether HARMONI can discern the supernova Type from spectral features in the supernova spectrum. We find that in a 3 hour observation, covering the near-infrared H and K bands, at a spectral resolving power of ˜3000, and using the 20×20 mas spaxel scale, we can classify supernova Type Ia and their redshift robustly up to 80 days past maximum light (20 days in the supernova rest frame). We show that HARMONI will provide spectra at z ˜ 3 that are of comparable (or better) quality to the best spectra we can currently obtain at z ˜ 1, thus allowing studies of cosmic expansion rates to be pushed to substantially higher redshifts.

  10. Quantum simulations of nuclei and nuclear pasta with the multiresolution adaptive numerical environment for scientific simulations

    NASA Astrophysics Data System (ADS)

    Sagert, I.; Fann, G. I.; Fattoyev, F. J.; Postnikov, S.; Horowitz, C. J.

    2016-05-01

    Background: Neutron star and supernova matter at densities just below the nuclear matter saturation density is expected to form a lattice of exotic shapes. These so-called nuclear pasta phases are caused by Coulomb frustration. Their elastic and transport properties are believed to play an important role for thermal and magnetic field evolution, rotation, and oscillation of neutron stars. Furthermore, they can impact neutrino opacities in core-collapse supernovae. Purpose: In this work, we present proof-of-principle three-dimensional (3D) Skyrme Hartree-Fock (SHF) simulations of nuclear pasta with the Multi-resolution ADaptive Numerical Environment for Scientific Simulations (MADNESS). Methods: We perform benchmark studies of 16O, 208Pb, and 238U nuclear ground states and calculate binding energies via 3D SHF simulations. Results are compared with experimentally measured binding energies as well as with theoretically predicted values from an established SHF code. The nuclear pasta simulation is initialized in the so-called waffle geometry as obtained by the Indiana University Molecular Dynamics (IUMD) code. The size of the unit cell is 24 fm with an average density of about ρ =0.05 fm-3 , proton fraction of Yp=0.3 , and temperature of T =0 MeV. Results: Our calculations reproduce the binding energies and shapes of light and heavy nuclei with different geometries. For the pasta simulation, we find that the final geometry is very similar to the initial waffle state. We compare calculations with and without spin-orbit forces. We find that while subtle differences are present, the pasta phase remains in the waffle geometry. Conclusions: Within the MADNESS framework, we can successfully perform calculations of inhomogeneous nuclear matter. By using pasta configurations from IUMD it is possible to explore different geometries and test the impact of self-consistent calculations on the latter.

  11. Astronomers Find Rare Beast by New Means

    NASA Astrophysics Data System (ADS)

    2010-01-01

    For the first time, astronomers have found a supernova explosion with properties similar to a gamma-ray burst, but without seeing any gamma rays from it. The discovery, using the National Science Foundation's Very Large Array (VLA) radio telescope, promises, the scientists say, to point the way toward locating many more examples of these mysterious explosions. "We think that radio observations will soon be a more powerful tool for finding this kind of supernova in the nearby Universe than gamma-ray satellites," said Alicia Soderberg, of the Harvard-Smithsonian Center for Astrophysics. The telltale clue came when the radio observations showed material expelled from the supernova explosion, dubbed SN2009bb, at speeds approaching that of light. This characterized the supernova, first seen last March, as the type thought to produce one kind of gamma-ray burst. "It is remarkable that very low-energy radiation, radio waves, can signal a very high-energy event," said Roger Chevalier of the University of Virginia. When the nuclear fusion reactions at the cores of very massive stars no longer can provide the energy needed to hold the core up against the weight of the rest of the star, the core collapses catastrophically into a superdense neutron star or black hole. The rest of the star's material is blasted into space in a supernova explosion. For the past decade or so, astronomers have identified one particular type of such a "core-collapse supernova" as the cause of one kind of gamma-ray burst. Not all supernovae of this type, however, produce gamma-ray bursts. "Only about one out of a hundred do this," according to Soderberg. In the more-common type of such a supernova, the explosion blasts the star's material outward in a roughly-spherical pattern at speeds that, while fast, are only about 3 percent of the speed of light. In the supernovae that produce gamma-ray bursts, some, but not all, of the ejected material is accelerated to nearly the speed of light. The superfast speeds in these rare blasts, astronomers say, are caused by an "engine" in the center of the supernova explosion that resembles a scaled-down version of a quasar. Material falling toward the core enters a swirling disk surrounding the new neutron star or black hole. This accretion disk produces jets of material boosted at tremendous speeds from the poles of the disk. "This is the only way we know that a supernova explosion could accelerate material to such speeds," Soderberg said. Until now, no such "engine-driven" supernova had been found any way other than by detecting gamma rays emitted by it. "Discovering such a supernova by observing its radio emission, rather than through gamma rays, is a breakthrough. With the new capabilities of the Expanded VLA coming soon, we believe we'll find more in the future through radio observations than with gamma-ray satellites," Soderberg said. Why didn't anyone see gamma rays from this explosion? "We know that the gamma-ray emission is beamed in such blasts, and this one may have been pointed away from Earth and thus not seen," Soderberg said. In that case, finding such blasts through radio observations will allow scientists to discover a much larger percentage of them in the future. "Another possibility," Soderberg adds, "is that the gamma rays were 'smothered' as they tried to escape the star. This is perhaps the more exciting possibility since it implies that we can find and identify engine-driven supernovae that lack detectable gamma rays and thus go unseen by gamma-ray satellites." One important question the scientists hope to answer is just what causes the difference between the "ordinary" and the "engine-driven" core-collapse supernovae. "There must be some rare physical property that separates the stars that produce the 'engine-driven' blasts from their more-normal cousins," Soderberg said. "We'd like to find out what that property is." One popular idea is that such stars have an unusually low concentration of elements heavier than hydrogen. However, Soderberg points out, that does not seem to be the case for this supernova. Soderberg and Chevalier worked with Alak Ray and Sayan Chakrabarti of the Tata Institute of Fundamental Research in India; Poonam Chandra of the Royal Military College of Canada; and a large group of collaborators at the Harvard-Smithsonian Center for Astrophysics. The scientists reported their findings in the January 28 issue of the journal Nature.

  12. Yet Another Model for the Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Leonard, P. J. T.

    2000-05-01

    We consider whether a gamma-ray burst can result from a merger between a neutron star and a massive main-sequence star in a binary system following a supernova explosion. The scenario for how this can happen is outlined in Leonard, Hills & Dewey 1994, ApJ, 423, L19-L22. The initially more massive star in a massive binary system evolves and undergoes core collapse to produce a neutron star and supernova. Since the outer layers of the originally more massive star have been transferred to the other star, then the supernova may be hydrogen deficient. The newly-formed neutron star receives a random kick during the explosion. In a small fraction of the cases, the kick has the appropriate direction and amplitude to remove most of the orbital angular momentum of the post-supernova binary system. The result is an orbit with a pericenter smaller than the radius of the non-exploding star. The neutron star rather quickly becomes embedded in the other star, and sinks to its center, giving the envelope of the merged object a lot of rotational angular momentum in the process. Leonard, Hills & Dewey estimate the rate of this process in the Galaxy to be 0.06 per square kpc per Myr for secondaries more massive than 15 solar masses. The fate of the merged object has been the source of much speculation, and we shall assume that a collapsar-like scenario results. That is, the neutron star experiences runaway accretion, collapses into a black hole, which continues to accrete, and produces a pair of jets that bore their way out of the merged object. Observers who lie in the direction of either jet will see a gamma-ray burst. Roughly 1% of supernovae in massive binary systems result in neutron stars quickly becoming embedded in the secondaries, and of those which produce black holes, only 1% would be observable as gamma-ray bursts, if the jets are beamed into 1% of the sky.

  13. New method for enhanced efficiency in detection of gravitational waves from supernovae using coherent network of detectors

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Salazar, L.; Mittelstaedt, J.; Valdez, O.

    2017-11-01

    Supernovae in our universe are potential sources of gravitational waves (GW) that could be detected in a network of GW detectors like LIGO and Virgo. Core-collapse supernovae are rare, but the associated gravitational radiation is likely to carry profuse information about the underlying processes driving the supernovae. Calculations based on analytic models predict GW energies within the detection range of the Advanced LIGO detectors, out to tens of Mpc for certain types of signals e.g. coalescing binary neutron stars. For supernovae however, the corresponding distances are much less. Thus, methods that can improve the sensitivity of searches for GW signals from supernovae are desirable, especially in the advanced detector era. Several methods have been proposed based on various likelihood-based regulators that work on data from a network of detectors to detect burst-like signals (as is the case for signals from supernovae) from potential GW sources. To address this problem, we have developed an analysis pipeline based on a method of noise reduction known as the harmonic regeneration noise reduction (HRNR) algorithm. To demonstrate the method, sixteen supernova waveforms from the Murphy et al. 2009 catalog have been used in presence of LIGO science data. A comparative analysis is presented to show detection statistics for a standard network analysis as commonly used in GW pipelines and the same by implementing the new method in conjunction with the network. The result shows significant improvement in detection statistics.

  14. A Deep Search with the Hubble Space Telescope for Late-Time Supernova Signatures in the Hosts of XRF 011030 and XRF 020427

    NASA Technical Reports Server (NTRS)

    Levan, Andrew; Patel, Sandeep; Kouveliotou, Chryssa; Fruchter, Andrew; Rhoads, James; Rol, Evert; Ramirez-Ruiz, Enrico; Gorosabel, Javier; Hiorth, Jens; Wijers, Ralph

    2005-01-01

    X-ray flashes (XRFs) are, like gamma-ray bursts (GRBs), thought to signal the collapse of massive stars in distant galaxies. Many models posit that the isotropic equivalent energies of XRFs are lower than those for GRBs, such that they are visible fiom a reduced range of distances when compared with GRBs. Here we present the results of two-epoch Hubble Space Telescope imaging of two XRFs. These images, taken approximately 45 and 200 days postburst, reveal no evidence of an associated supernova in either case. Supernovae such as SN 1998bw would have been visible out to z approximately 1.5 in each case, while fainter supernovae such as SN 2002ap would have been visible to z approximately 1. If the XRFs lie at such large distances, their energies would not fit the observed correlation between the GRB peak energy and isotropic energy release (E(sub p) proportional to E(sub iso)(sup 1/2), in which soft bursts are less energetic. We conclude that, should these XRFs reside at low redshifts (z less than 0.6), either their line of sight is heavily extinguished, they are associated with extremely faint supernovae, or, unlike GRBs, these XRFs do not have temporally coincident supernovae.

  15. Dependence of weak interaction rates on the nuclear composition during stellar core collapse

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Nagakura, Hiroki; Sumiyoshi, Kohsuke; Kato, Chinami; Yamada, Shoichi

    2017-02-01

    We investigate the influences of the nuclear composition on the weak interaction rates of heavy nuclei during the core collapse of massive stars. The nuclear abundances in nuclear statistical equilibrium (NSE) are calculated by some equation of state (EOS) models including in-medium effects on nuclear masses. We systematically examine the sensitivities of electron capture and neutrino-nucleus scattering on heavy nuclei to the nuclear shell effects and the single-nucleus approximation. We find that the washout of the shell effect at high temperatures brings significant change to weak rates by smoothing the nuclear abundance distribution: the electron capture rate decreases by ˜20 % in the early phase and increases by ˜40 % in the late phase at most, while the cross section for neutrino-nucleus scattering is reduced by ˜15 % . This is because the open-shell nuclei become abundant instead of those with closed neutron shells as the shell effects disappear. We also find that the single-nucleus description based on the average values leads to underestimations of weak rates. Electron captures and neutrino coherent scattering on heavy nuclei are reduced by ˜80 % in the early phase and by ˜5 % in the late phase, respectively. These results indicate that NSE like EOS accounting for shell washout is indispensable for the reliable estimation of weak interaction rates in simulations of core-collapse supernovae.

  16. Supernova 1987A: The Supernova of a Lifetime

    NASA Astrophysics Data System (ADS)

    Kirshner, Robert

    2017-01-01

    Supernova 1987A, the brightest supernova since Kepler's in 1604, was detected 30 years ago at a distance of 160 000 light years in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. Visible with the naked eye and detected with the full range of technology constructed since Kepler's time, SN 1987A has continued to be a rich source of empirical information to help understand supernova explosions and their evolution into supernova remnants. While the light output has faded by a factor of 10 000 000 over those 30 years, instrumentation, like the Hubble Space Telescope, the Chandra X-ray Observatory, and the Atacama Large Millimeter Array has continued to improve so that this supernova continues to be visible in X-rays, ultraviolet light, visible light, infrared light and in radio emission. In this review, I will sketch what has been learned from these observations about the pre-supernova star and its final stages of evolution, the explosion physics, the energy sources for emission, and the shock physics as the expanding debris encounters the circumstellar ring that was created about 20 000 years before the explosion. Today, SN 1987A is making the transition to a supernova remnant- the energetics are no longer dominated by the radioactive elements produced in the explosion, but by the interaction of the expanding debris with the surrounding gas. While we are confident that the supernova explosion had its origin in gravitational collapse, careful searches for a compact object at the center of the remnant place upper limits of a few solar luminosities on that relic. Support for HST GO programs 13401 and 13405 was provided by NASA through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  17. Exploding Stars and the Accelerating Universe

    NASA Astrophysics Data System (ADS)

    Kirshner, Robert P.

    2012-01-01

    Supernovae are exceptionally interesting astronomical objects: they punctuate the end of stellar evolution, create the heavy elements, and blast the interstellar gas with energetic shock waves. By studying supernovae, we can learn how these important aspects of cosmic evolution take place. Over the decades, we have learned that some supernovae are produced by gravitational collapse, and others by thermonuclear explosions. By understanding what supernovae are, or at least learning how they behave, supernovae explosions have been harnessed for the problem of measuring cosmic distances with some astonishing results. Carefully calibrated supernovae provide the best extragalactic distance indicators to probe the distances to galaxies and to measure the Hubble constant. Even more interesting is the evidence from supernovae that cosmic expansion has been speeding up over the last 5 billion years. We attribute this acceleration to a mysterious dark energy whose effects are clear, but whose nature is obscure. Combining the cosmic expansion history traced by supernovae with clues from galaxy clustering and cosmic geometry from the microwave background has produced today's standard, but peculiar, picture of a universe that is mostly dark energy, braked (with diminishing effect) by dark matter, and illuminated by a pinch of luminous baryons. In this talk, I will show how the attempt to understand supernovae, facilitated by ever-improving instruments, has led to the ability to measure the properties of dark energy. Looking ahead, the properties of supernovae as measured at infrared wavelengths seem to hold the best promise for more precise and accurate distances to help us understand the puzzle of dark energy. My own contribution to this work has been carried out in joyful collaboration with many excellent students, postdocs, and colleagues and with generous support from the places I have worked, the National Science Foundation, and from NASA.

  18. A uniform contribution of core-collapse and type Ia supernovae to the chemical enrichment pattern in the outskirts of the Virgo Cluster

    DOE PAGES

    Simionescu, A.; Werner, N.; Urban, O.; ...

    2015-09-24

    We present the first measurements of the abundances of α-elements (Mg, Si, and S) extending out beyond the virial radius of a cluster of galaxies. Our results, based on Suzaku Key Project observations of the Virgo Cluster, show that the chemical composition of the intracluster medium is consistent with being constant on large scales, with a flat distribution of the Si/Fe, S/Fe, and Mg/Fe ratios as a function of radius and azimuth out to 1.4 Mpc (1.3 r 200). Chemical enrichment of the intergalactic medium due solely to core-collapse supernovae (SNcc) is excluded with very high significance; instead, the measuredmore » metal abundance ratios are generally consistent with the solar value. The uniform metal abundance ratios observed today are likely the result of an early phase of enrichment and mixing, with both SNcc and SNe Ia contributing to the metal budget during the period of peak star formation activity at redshifts of 2–3. Furthermore, we estimate the ratio between the number of SNe Ia and the total number of supernovae enriching the intergalactic medium to be between 12% and 37%, broadly consistent with the metal abundance patterns in our own Galaxy or with the SN Ia contribution estimated for the cluster cores.« less

  19. The rise-time of Type II supernovae

    NASA Astrophysics Data System (ADS)

    González-Gaitán, S.; Tominaga, N.; Molina, J.; Galbany, L.; Bufano, F.; Anderson, J. P.; Gutierrez, C.; Förster, F.; Pignata, G.; Bersten, M.; Howell, D. A.; Sullivan, M.; Carlberg, R.; de Jaeger, T.; Hamuy, M.; Baklanov, P. V.; Blinnikov, S. I.

    2015-08-01

    We investigate the early-time light curves of a large sample of 223 Type II supernovae (SNe II) from the Sloan Digital Sky Survey and the Supernova Legacy Survey. Having a cadence of a few days and sufficient non-detections prior to explosion, we constrain rise-times, i.e. the durations from estimated first to maximum light, as a function of effective wavelength. At rest-frame g' band (λeff = 4722 Å), we find a distribution of fast rise-times with median of (7.5 ± 0.3) d. Comparing these durations with analytical shock models of Rabinak & Waxman and Nakar & Sari, and hydrodynamical models of Tominaga et al., which are mostly sensitive to progenitor radius at these epochs, we find a median characteristic radius of less than 400 solar radii. The inferred radii are on average much smaller than the radii obtained for observed red supergiants (RSG). Investigating the post-maximum slopes as a function of effective wavelength in the light of theoretical models, we find that massive hydrogen envelopes are still needed to explain the plateaus of SNe II. We therefore argue that the SN II rise-times we observe are either (a) the shock cooling resulting from the core collapse of RSG with small and dense envelopes, or (b) the delayed and prolonged shock breakout of the collapse of an RSG with an extended atmosphere or embedded within pre-SN circumstellar material.

  20. A UNIFORM CONTRIBUTION OF CORE-COLLAPSE AND TYPE Ia SUPERNOVAE TO THE CHEMICAL ENRICHMENT PATTERN IN THE OUTSKIRTS OF THE VIRGO CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simionescu, A.; Ichinohe, Y.; Werner, N.

    2015-10-01

    We present the first measurements of the abundances of α-elements (Mg, Si, and S) extending out beyond the virial radius of a cluster of galaxies. Our results, based on Suzaku Key Project observations of the Virgo Cluster, show that the chemical composition of the intracluster medium is consistent with being constant on large scales, with a flat distribution of the Si/Fe, S/Fe, and Mg/Fe ratios as a function of radius and azimuth out to 1.4 Mpc (1.3 r{sub 200}). Chemical enrichment of the intergalactic medium due solely to core-collapse supernovae (SNcc) is excluded with very high significance; instead, the measuredmore » metal abundance ratios are generally consistent with the solar value. The uniform metal abundance ratios observed today are likely the result of an early phase of enrichment and mixing, with both SNcc and SNe Ia contributing to the metal budget during the period of peak star formation activity at redshifts of 2–3. We estimate the ratio between the number of SNe Ia and the total number of supernovae enriching the intergalactic medium to be between 12% and 37%, broadly consistent with the metal abundance patterns in our own Galaxy or with the SN Ia contribution estimated for the cluster cores.« less

  1. The Shape of Superluminous Supernovae

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    What causes the tremendous explosions of superluminous supernovae? New observations reveal the geometry of one such explosion, SN 2015bn, providing clues as to its source.A New Class of ExplosionsImage of a type Ia supernova in the galaxy NGC 4526. [NASA/ESA]Supernovae are powerful explosions that can briefly outshine the galaxies that host them. There are several different classifications of supernovae, each with a different physical source such as thermonuclear instability in a white dwarf, caused by accretion of too much mass, or the exhaustion of fuel in the core of a massive star, leading to the cores collapse and expulsion of its outer layers.In recent years, however, weve detected another type of supernovae, referred to as superluminous supernovae. These particularly energetic explosions last longer months instead of weeks and are brighter at their peaks than normal supernovae by factors of tens to hundreds.The physical cause of these unusual explosions is still a topic of debate. Recently, however, a team of scientists led by Cosimo Inserra (Queens University Belfast) has obtained new observations of a superluminous supernova that might help address this question.The flux and the polarization level (black lines) along the dominant axis of SN 2015bn, 24 days before peak flux (left) and 28 days after peak flux (right). Blue lines show the authors best-fitting model. [Inserra et al. 2016]Probing GeometryInserra and collaborators obtained two sets of observations of SN 2015bn one roughly a month before and one a month after the superluminous supernovas peak brightness using a spectrograph on the Very Large Telescope in Chile. These observations mark the first spectropolarimetric data for a superluminous supernova.Spectropolarimetry is the practice of obtaining information about the polarization of radiation from an objects spectrum. Polarization carries information about broken spatial symmetries in the object: only if the object is perfectly symmetric can it emit an unpolarized spectrum. Otherwise, the polarization of an objects spectrum reveals information about its geometry.Modeling EjectaThe authors best model of the geometry of SN 2015bn 24 days before (top) and 28 days after (bottom) peak flux. The model consists of two ellipsoidal layers of ejecta material. [Inserra et al. 2016]Based on their observations, Inserra and collaborators find that SN 2015bn is not spherically symmetric but it does appear to be axisymmetric around a single dominant axis. They also find that the polarization level of the object changes both with wavelength and over time.To explain these dependencies, the authors produce a simple toy model of SN 2015bn. In the best-fitting model, the supernova has a two-layered ellipsoidal or bipolar geometry. The inner region becomes more and more aspherical as time passes.What does this model tell us about the physical cause of this superluminous supernova? Inserra and collaborators argue that the axisymmetric shape favors a core-collapse explosion. A central inner engine of a spinning magnetar (a highly magnetized neutron star) or black hole then remains at the center of this explosion, pumping energy into it and causing the increase of the inner asymmetry over time.The authors caution that their models are very preliminary but these observations should drive future, more detailed modeling, as well as further spectropolarimetric observations of future nearby superluminous supernovae. With luck, we will soon better understand what drives these unusual explosions.CitationC. Inserra et al 2016 ApJ 831 79. doi:10.3847/0004-637X/831/1/79

  2. Supernovae, Neutrinos and the Chirality of Amino Acids

    PubMed Central

    Boyd, Richard N.; Kajino, Toshitaka; Onaka, Takashi

    2011-01-01

    A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth’s proteinaceous amino acids. PMID:21747686

  3. r-process nucleosynthesis in the high-entropy supernova bubble

    NASA Technical Reports Server (NTRS)

    Meyer, B. S.; Mathews, G. J.; Howard, W. M.; Woosley, S. E.; Hoffman, R. D.

    1992-01-01

    We show that the high-temperature, high-entropy evacuated region outside the recent neutron star in a core-collapse supernova may be an ideal r-process site. In this high-entropy environment it is possible that most nucleons are in the form of free neutrons or bound into alpha particles. Thus, there can be many neutrons per seed nucleus even though the material is not particularly neutron rich. The predicted amount of r-process material ejected per event from this environment agrees well with that required by simple galactic evolution arguments. When averaged over regions of different neutron excess in the supernova ejecta, the calculated r-process abundance curve can give a good representation of the solar-system r-process abundances as long as the entropy per baryon is sufficiently high. Neutrino irradiation may aid in smoothing the final abundance distribution.

  4. Detection of a noble gas molecular ion, 36ArH+, in the Crab Nebula.

    PubMed

    Barlow, M J; Swinyard, B M; Owen, P J; Cernicharo, J; Gomez, H L; Ivison, R J; Krause, O; Lim, T L; Matsuura, M; Miller, S; Olofsson, G; Polehampton, E T

    2013-12-13

    Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of (36)ArH(+) at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed (36)ArH(+) emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.

  5. Spectral split in a prompt supernova neutrino burst: Analytic three-flavor treatment

    NASA Astrophysics Data System (ADS)

    Dasgupta, Basudeb; Dighe, Amol; Mirizzi, Alessandro; Raffelt, Georg G.

    2008-06-01

    The prompt νe burst from a core-collapse supernova is subject to both matter-induced flavor conversions and strong neutrino-neutrino refractive effects. For the lowest-mass progenitors, leading to O-Ne-Mg core supernovae, the matter density profile can be so steep that the usual Mikheyev-Smirnov-Wolfenstein matter effects occur within the dense-neutrino region close to the neutrino sphere. In this case a “split” occurs in the emerging spectrum, i.e., the νe flavor survival probability shows a steplike feature. We explain this feature analytically as a spectral split prepared by the Mikheyev-Smirnov-Wolfenstein effect. In a three-flavor treatment, the steplike feature actually consists of two narrowly spaced splits. They are determined by two combinations of flavor-lepton numbers that are conserved under collective oscillations.

  6. Neutrino Heating Drives a Supernova (Silent Animation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    When a neutron star forms, compression creates heat that generates neutrinos. When the star’s core collapses, a shock wave propagates around the star but stalls. The neutrinos reenergize a stalled shock wave, and the convection created leads to an asymmetric explosion that shoots elements into the cosmos. The heat content, or entropy, is shown, with greater entropy represented by “warmer” hues. At center is a volume rendering of the developing explosion above the newly formed neutron star (based on a simulation with the CHIMERA code); side images of orthogonal slices through the star reveal additional detail. The movie starts 100more » milliseconds after the formation of the neutron star, depicts the shockwave’s bounce and follows astrophysical events up to 432 milliseconds after the bounce.« less

  7. The magnetic field of molecular clouds

    NASA Astrophysics Data System (ADS)

    Padoan, P.

    2018-01-01

    The magnetic field of molecular clouds (MCs) plays an important role in the process of star formation: it determines the statistical properties of supersonic turbulence that controls the fragmentation of MCs, controls the angular momentum transport during the protostellar collapse, and affects the stability of circumstellar disks. In this work, we focus on the problem of the determination of the magnetic field strength. We review the idea that the MC turbulence is super-Alfvénic, and we argue that MCs are bound to be born super-Alfvénic. We show that this scenario is supported by results from a recent simulation of supernova-driven turbulence on a scale of 250 pc, where the turbulent cascade is resolved on a wide range of scales, including the interior of MCs.

  8. Modelling supernova line profile asymmetries to determine ejecta dust masses: SN 1987A from days 714 to 3604

    NASA Astrophysics Data System (ADS)

    Bevan, Antonia; Barlow, M. J.

    2016-02-01

    The late-time optical and near-IR line profiles of many core-collapse supernovae exhibit a red-blue asymmetry as a result of greater extinction by internal dust of radiation emitted from the receding parts of the supernova ejecta. We present here a new code, DAMOCLES, that models the effects of dust on the line profiles of core-collapse supernovae in order to determine newly formed dust masses. We find that late-time dust-affected line profiles may exhibit an extended red scattering wing (as noted by Lucy et al. 1989) and that they need not be flux-biased towards the blue, although the profile peak will always be blueshifted. We have collated optical spectra of SN 1987A from a variety of archival sources and have modelled the Hα line from days 714 to 3604 and the [O I] 6300,6363 Å doublet between days 714 and 1478. Our line profile fits rule out day 714 dust masses >3 × 10-3 M⊙ for all grain types apart from pure magnesium silicates, for which no more than 0.07 M⊙ can be accommodated. Large grain radii ( ≥ 0.6 μm) are generally required to fit the line profiles even at the earlier epochs. We find that a large dust mass (≥0.1 M⊙) had formed by day 3604 and infer that the majority of the present dust mass must have formed after this epoch. Our findings agree with recent estimates from spectral energy distribution fits for the dust mass evolution of SN 1987A and support the inference that the majority of SN 1987A's dust formed many years after the initial explosion.

  9. The Rate of Core Collapse Supernovae to Redshift 2.5 from the CANDELS and CLASH Supernova Surveys

    NASA Astrophysics Data System (ADS)

    Strolger, Louis-Gregory; Dahlen, Tomas; Rodney, Steven A.; Graur, Or; Riess, Adam G.; McCully, Curtis; Ravindranath, Swara; Mobasher, Bahram; Shahady, A. Kristin

    2015-11-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey and Cluster Lensing And Supernova survey with Hubble multi-cycle treasury programs with the Hubble Space Telescope (HST) have provided new opportunities to probe the rate of core-collapse supernovae (CCSNe) at high redshift, now extending to z≈ 2.5. Here we use a sample of approximately 44 CCSNe to determine volumetric rates, RCC, in six redshift bins in the range 0.1\\lt z\\lt 2.5. Together with rates from our previous HST program, and rates from the literature, we trace a more complete history of {R}{CC}(z), with {R}{CC}=0.72+/- 0.06 yr-1 Mpc-3 10-4{h}703 at z\\lt 0.08, and increasing to {3.7}-1.6+3.1 yr-1 Mpc-3 10-4{h}703 to z≈ 2.0. The statistical precision in each bin is several factors better than than the systematic error, with significant contributions from host extinction, and average peak absolute magnitudes of the assumed luminosity functions for CCSN types. Assuming negligible time delays from stellar formation to explosion, we find these composite CCSN rates to be in excellent agreement with cosmic star formation rate density (SFRs) derived largely from dust-corrected rest-frame UV emission, with a scaling factor of k=0.0091+/- 0.0017 {M}⊙ -1, and inconsistent (to \\gt 95% confidence) with SFRs from IR luminous galaxies, or with SFR models that include simple evolution in the initial mass function over time. This scaling factor is expected if the fraction of the IMF contributing to CCSN progenitors is in the 8-50 M⊙ range. It is not supportive, however, of an upper mass limit for progenitors at \\lt 20 {M}⊙ .

  10. RELATIVE CONTRIBUTIONS OF THE WEAK, MAIN, AND FISSION-RECYCLING r-PROCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibagaki, S.; Kajino, T.; Mathews, G. J.

    There has been a persistent conundrum in attempts to model the nucleosynthesis of heavy elements by rapid neutron capture (the r-process). Although the locations of the abundance peaks near nuclear mass numbers 130 and 195 identify an environment of rapid neutron capture near closed nuclear shells, the abundances of elements just above and below those peaks are often underproduced by more than an order of magnitude in model calculations. At the same time, there is a debate in the literature as to what degree the r-process elements are produced in supernovae or the mergers of binary neutron stars. In thismore » paper we propose a novel solution to both problems. We demonstrate that the underproduction of nuclides above and below the r-process peaks in main or weak r-process models (like magnetohydrodynamic jets or neutrino-driven winds in core-collapse supernovae) can be supplemented via fission fragment distributions from the recycling of material in a neutron-rich environment such as that encountered in neutron star mergers (NSMs). In this paradigm, the abundance peaks themselves are well reproduced by a moderately neutron-rich, main r-process environment such as that encountered in the magnetohydrodynamical jets in supernovae supplemented with a high-entropy, weakly neutron-rich environment such as that encountered in the neutrino-driven-wind model to produce the lighter r-process isotopes. Moreover, we show that the relative contributions to the r-process abundances in both the solar system and metal-poor stars from the weak, main, and fission-recycling environments required by this proposal are consistent with estimates of the relative Galactic event rates of core-collapse supernovae for the weak and main r-process and NSMs for the fission-recycling r-process.« less

  11. A Deep Search with HST for Late Time Supernova Signatures in the Hosts of XRF 011030 and XRF 020427

    NASA Technical Reports Server (NTRS)

    Patel, Sandeep; Kouveliotou, Chryssa; Levan, Andrew; Fruchter, Andrew; Rol, Evert; Rhoads, James; Gorosabel, Javier; Ramirez-Ruiz, Enrico; Hjorth, Jens; Wijers, Ralph

    2004-01-01

    X-ray Flashes (XRFs), are, like Gamma-Ray Bursts (GRBs) thought to signal the collapse of massive stars in distant galaxies. Many models posit that the isotropic equivalent energies of XRFs are lower than those for GRBs, such that they are visible hom a reduced range of distances when compared with GRBs. Here we present the results of two epoch Hubble Space Telescope imaging of two XRFs. These images taken approximately 45 and 200 days post bust reveal no evidence for an associated supernova in either case. Supernovae such as SN 1998bw would have been visible out to z approximately 1.5 in each case, while faint supernovae such as SN 2002ap would be visible to z approximately 1. At these distances the bursts would not fit the observed correlations between E(sub p) and E(sub iso) and would have required extremely luminous X-ray afterglows. We conclude that should these XRFs reside at low redshift, it is necessary either that their line of sight is heavily extinguished, or that XRFs, unlike GRBs do not have temporally coincident supernovae.

  12. Light Curve and Spectral Evolution of Type IIb Supernovae

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Anjasha; Misra, Kuntal; Pastorello, Andrea; Sahu, Devendra Kumar; Singh, Mridweeka; Dastidar, raya; Anapuma, Gadiyara Chakrapani; Kumar, Brijesh; Pandey, Shashi Bhushan

    2018-04-01

    Stripped-Envelope Supernovae constitute the sub-class of core-collapse supernovae that strip off their outer hydrogen envelope due to high stellar winds or due to interaction with a binary companion where mass transfer occurs as a result of Roche lobe overflow. We present here the photometric and spectroscopic analysis of a member of this class : SN 2015as classified as a type IIb supernova. Light curve features are similar to those of SN 2011fu while spectroscopic features are quite similar to those of SN 2008ax and SN 2011dh. Early epoch spectra have been modelled with SYN++ which indicates a photospheric velocity of 8500 km sec-1 and temperature of 6500K. Spectroscopic lines show transitioning from H to He features confirming it to be a type IIb supernova. Prominent oxygen and calcium emission features are indicative of the asymmetry of the ejecta. We also estimate the signal to noise ratio of the 3.6m telescope data. This telescope is located at ARIES, Devasthal, Nainital at an altitude of 2450m. We also show the comparison plots of spectra taken with a 2m and 4m class telescopes to enlighten the importance of spectral features displayed by bigger diameter telescopes.

  13. How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuranz, Carolyn C.; Park, Hye -Sook; Huntington, Channing M.

    Here, energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh–Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh–Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger thanmore » the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.« less

  14. How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants

    DOE PAGES

    Kuranz, Carolyn C.; Park, Hye -Sook; Huntington, Channing M.; ...

    2018-04-19

    Here, energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh–Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh–Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger thanmore » the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.« less

  15. Modeling the Evolution of Disk Galaxies. I. The Chemodynamical Method and the Galaxy Model

    NASA Astrophysics Data System (ADS)

    Samland, M.; Hensler, G.; Theis, Ch.

    1997-02-01

    Here we present our two-dimensional chemodynamical code CoDEx, which we developed for the purpose of modeling the evolution of galaxies in a self-consistent manner. The code solves the hydrodynamical and momentum equations for three stellar components and the multiphase interstellar medium (clouds and intercloud medium), including star formation, Type I and Type II supernovae, planetary nebulae, stellar winds, evaporation and condensation, drag, cloud collisions, heating and cooling, and stellar nucleosynthesis. These processes are treated simultaneously, coupling a large range in temporal and spatial scales, to account for feedback and self-regulation processes, which play an extraordinarily important role in the galactic evolution. The evolution of galaxies of different masses and angular momenta is followed through all stages from the initial protogalactic clouds until now. In this first paper we present a representative model of the Milky Way and compare it with observations. The capability of chemodynamical models is convincingly proved by the excellent agreement with various observations. In addition, well-known problems (the G-dwarf problem, the discrepancy between local effective yields, etc.), which so far could be only explained by artificial constraints, are also solved in the global scenario. Starting from a rotating protogalactic gas cloud in virial equilibrium, which collapses owing to dissipative cloud-cloud collisions, we can follow the galactic evolution in detail. Owing to the collapse, the gas density increases, stars are forming, and the first Type II supernovae explode. The collapse time is 1 order of magnitude longer than the dynamical free-fall time because of the energy release by Type II supernovae. The supernovae also drive hot metal-rich gas ejected from massive stars into the halo, and as a consequence, the clouds in the star-forming regions have lower metallicities than the clouds in the halo. The observed negative metallicity gradients do not form before t = 6 × 109 yr. These outward gas flows prevent any clear correlation between local star formation rate and enrichment and also prevent a unique age-metallicity relation. The situation, however, is even more complicated, because the mass return of intermediate-mass stars (Type I supernovae and planetary nebulae) is delayed depending on the type of precursor. Since our chemodynamical model includes all these processes, we can calculate, e.g., the [O/H] distribution of stars and find good agreement everywhere in bulge, disk, and halo. From the galactic oxygen to iron ratio, we can determine the supernovae ([II + Ib]/Ia) ratio for different types of Type Ia supernovae (such as carbon deflagration or sub-Chandrasekhar models) and find that the ratio should be in the range 1.0-3.8. The chemodynamical model also traces other chemical elements (e.g., N + C), density distributions, gas flows, velocity dispersions of the stars and clouds, star formation, planetary nebula rates, cloud collision, condensation and evaporation rates, and the cooling due to radiation. The chemodynamical treatment of galaxy evolution should be envisaged as a necessary development, which takes those processes into account that affect the dynamical, energetical, and chemical evolution.

  16. Using numerical simulations to study the ICM metallicity fields in clusters and groups

    NASA Astrophysics Data System (ADS)

    Mazzei, Renato; Vijayaraghavan, Rukmani; Sarazin, Craig L.

    2018-01-01

    Most baryonic matter in clusters resides in the intracluster medium (ICM) as hot and diffuse gas. The metal content of this gas is deposited from dying stars, typically synthesized in type Ia or core-collapse supernovae. The ICM gas traces the formation history of the cluster and the compositional signature of its constituent galaxies as a function of time. Studying the metallicity content thus aids in understanding the gradual evolution of the cluster as it is constructed. Within this framework, galaxy and star formation and evolution can be studied by tracing metals in the ICM. In this work we use numerical simulations to study the evolution of ICM metallicity due to the stripping of galaxies’ gas. We model metallicity fields using cloud-in-cell techniques, to determine the ratio between the mass of particles tracing galaxy outflows and the mass of ICM gas at different spatial locations in each simulation time step. Integrated abundance maps are produced. We then project photons and construct mock X-ray images to investigate the relationship between ICM metallicity and observable information.

  17. Interaction of electron neutrino with LSD detector

    NASA Astrophysics Data System (ADS)

    Ryazhskaya, O. G.; Semenov, S. V.

    2016-06-01

    The interaction of electron neutrino flux, originating in the rotational collapse mechanism on the first stage of Supernova burst, with the LSD detector components, such as 56Fe (a large amount of this metal is included in as shielding material) and liquid scintillator barNnH2n+2, is being investigated. Both charged and neutral channels of neutrino reaction with 12barN and 56Fe are considered. Experimental data, giving the possibility to extract information for nuclear matrix elements calculation are used. The number of signals, produced in LSD by the neutrino pulse of Supernova 1987A is determined. The obtained results are in good agreement with experimental data.

  18. Formation of a black hole in the dark.

    PubMed

    Mirabel, I Félix; Rodrigues, Irapuan

    2003-05-16

    We show that the black hole in the x-ray binary Cygnus X-1 was formed in situ and did not receive an energetic trigger from a nearby supernova. The progenitor of the black hole had an initial mass greater than 40 solar masses, and during the collapse to form the approximately 10-solar mass black hole of Cygnus X-1, the upper limit for the mass that could have been suddenly ejected is approximately 1 solar mass, much less than the mass ejected in a supernova. The observations suggest that high-mass stellar black holes may form promptly, when massive stars disappear silently.

  19. The locations of recent supernovae near the Sun from modelling (60)Fe transport.

    PubMed

    Breitschwerdt, D; Feige, J; Schulreich, M M; de Avillez, M A; Dettbarn, C; Fuchs, B

    2016-04-07

    The signature of (60)Fe in deep-sea crusts indicates that one or more supernovae exploded in the solar neighbourhood about 2.2 million years ago. Recent isotopic analysis is consistent with a core-collapse or electron-capture supernova that occurred 60 to 130 parsecs from the Sun. Moreover, peculiarities in the cosmic ray spectrum point to a nearby supernova about two million years ago. The Local Bubble of hot, diffuse plasma, in which the Solar System is embedded, originated from 14 to 20 supernovae within a moving group, whose surviving members are now in the Scorpius-Centaurus stellar association. Here we report calculations of the most probable trajectories and masses of the supernova progenitors, and hence their explosion times and sites. The (60)Fe signal arises from two supernovae at distances between 90 and 100 parsecs. The closest occurred 2.3 million years ago at present-day galactic coordinates l = 327°, b = 11°, and the second-closest exploded about 1.5 million years ago at l = 343°, b = 25°, with masses of 9.2 and 8.8 times the solar mass, respectively. The remaining supernovae, which formed the Local Bubble, contribute to a smaller extent because they happened at larger distances and longer ago ((60)Fe has a half-life of 2.6 million years). There are uncertainties relating to the nucleosynthesis yields and the loss of (60)Fe during transport, but they do not influence the relative distribution of (60)Fe in the crust layers, and therefore our model reproduces the measured relative abundances very well.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagakura, Hiroki; Iwakami, Wakana; Furusawa, Shun

    We present a newly developed moving-mesh technique for the multi-dimensional Boltzmann-Hydro code for the simulation of core-collapse supernovae (CCSNe). What makes this technique different from others is the fact that it treats not only hydrodynamics but also neutrino transfer in the language of the 3 + 1 formalism of general relativity (GR), making use of the shift vector to specify the time evolution of the coordinate system. This means that the transport part of our code is essentially general relativistic, although in this paper it is applied only to the moving curvilinear coordinates in the flat Minknowski spacetime, since the gravity partmore » is still Newtonian. The numerical aspect of the implementation is also described in detail. Employing the axisymmetric two-dimensional version of the code, we conduct two test computations: oscillations and runaways of proto-neutron star (PNS). We show that our new method works fine, tracking the motions of PNS correctly. We believe that this is a major advancement toward the realistic simulation of CCSNe.« less

  1. Limits on Planets Orbiting Massive Stars from Radio Pulsar Timing

    NASA Technical Reports Server (NTRS)

    Thorsett, S. E.; Dewey, R. J.

    1993-01-01

    When a massive star collapses to a neutron star, rapidly losing over half its mass in a symmetric supernova explosiosn, any planets orbiting the star will be unbound. However, to explain the observed space velocity and binary fraction of radio pulsars, an asymmetric kick must be given to the neutron star of birth.

  2. Supermassive population III supernovae and the birth of the first quasars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whalen, Daniel J.; Smidt, Joseph; Even, Wesley

    2013-11-20

    The existence of supermassive black holes as early as z ∼ 7 is one of the great, unsolved problems in cosmological structure formation. One leading theory argues that they are born during catastrophic baryon collapse in z ∼ 15 protogalaxies that form in strong Lyman-Werner UV backgrounds. Atomic line cooling in such galaxies fragments baryons into massive clumps that are thought to directly collapse to 10{sup 4}-10{sup 5} M {sub ☉} black holes. We have now discovered that some of these fragments can instead become supermassive stars that eventually explode as thermonuclear supernovae (SNe) with energies of ∼10{sup 55} erg,more » the most energetic explosions in the universe. We have calculated light curves and spectra for supermassive Pop III SNe with the Los Alamos RAGE and SPECTRUM codes. We find that they will be visible in near-infrared all-sky surveys by Euclid out to z ∼ 10-15 and by WFIRST and WISH out to z ∼ 15-20, perhaps revealing the birthplaces of the first quasars.« less

  3. Oxygen Issue in Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Elmhamdi, A.

    2011-06-01

    We study the spectroscopic properties of a selected sample of 26 events within Core Collapse Supernovae (CCSNe) family. Special attention is paid to the nebular oxygen forbidden line [OI] 6300, 6364 Å doublet. We analyze the line flux ratio F6300/F6364 and infer information about the optical depth evolution, densities, volume-filling factors in the oxygen emitting zones. The line luminosity is measured for the sample events and its evolution is discussed on the basis of the bolometric light curve properties in type II and in type Ib-c SNe. The luminosities are then translated into oxygen abundances using two different methods. The results are combined with the determined 56Ni masses and compared with theoretical models by means of the [O/Fe] vs. Mms diagram. Two distinguishable and continuous populations, corresponding to Ib-c and type II SNe, are found. The higher mass nature of the ejecta in type II objects is also imprinted in the [CaII] 7291, 7324Å to [OI] 6300, 6364Å luminosity ratios. Our results may be used as input parameters for theoretical models studying the chemical enrichment of galaxies.

  4. Dust masses for SN 1980K, SN1993J and Cassiopeia A from red-blue emission line asymmetries

    NASA Astrophysics Data System (ADS)

    Bevan, Antonia; Barlow, M. J.; Milisavljevic, D.

    2017-03-01

    We present Monte Carlo line transfer models that investigate the effects of dust on the very late time emission line spectra of the core-collapse supernovae SN 1980K and SN 1993J and the young core collapse supernova remnant Cassiopeia A. Their blueshifted emission peaks, resulting from the removal by dust of redshifted photons emitted from the far sides of the remnants, and the presence of extended red emission wings are used to constrain dust compositions and radii and to determine the masses of dust in the remnants. We estimate dust masses of between 0.08 and 0.15 M⊙ for SN 1993J at year 16, 0.12 and 0.30 M⊙ for SN 1980K at year 30 and ∼1.1 M⊙ for Cas A at year ∼330. Our models for the strong oxygen forbidden lines of Cas A require the overall modelled profiles to be shifted to the red by between 700 and 1000 km s-1, consistent with previous estimates for the shift of the dynamical centroid of this remnant.

  5. Gamma-ray bursts from stellar mass accretion disks around black holes

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.

    1993-01-01

    A cosmological model for gamma-ray bursts is explored in which the radiation is produced as a broadly beamed pair fireball along the rotation axis of an accreting black hole. The black hole may be a consequence of neutron star merger or neutron star-black hole merger, but for long complex bursts, it is more likely to come from the collapse of a single Wolf-Rayet star endowed with rotation ('failed' Type Ib supernova). The disk is geometrically thick and typically has a mass inside 100 km of several tenths of a solar mass. In the failed supernova case, the disk is fed for a longer period of time by the collapsing star. At its inner edge the disk is thick to its own neutrino emission and evolves on a viscous time scale of several seconds. In a region roughly 30 km across, interior to the accretion disk and along its axis of rotation, a pair fireball is generated by neutrino annihilation and electron-neutrino scattering which deposit approximately 10 exp 50 ergs/s.

  6. The Formation of Rapidly Rotating Black Holes in High-mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Batta, Aldo; Ramirez-Ruiz, Enrico; Fryer, Chris

    2017-09-01

    High-mass X-ray binaries (HMXRBs), such as Cygnus X-1, host some of the most rapidly spinning black holes (BHs) known to date, reaching spin parameters a≳ 0.84. However, there are several effects that can severely limit the maximum BH spin parameter that could be obtained from direct collapse, such as tidal synchronization, magnetic core-envelope coupling, and mass loss. Here, we propose an alternative scenario where the BH is produced by a failed supernova (SN) explosion that is unable to unbind the stellar progenitor. A large amount of fallback material ensues, whose interaction with the secondary naturally increases its overall angular momentum content, and therefore the spin of the BH when accreted. Through SPH hydrodynamic simulations, we studied the unsuccessful explosion of an 8 {M}⊙ pre-SN star in a close binary with a 12 {M}⊙ companion with an orbital period of ≈1.2 days, finding that it is possible to obtain a BH with a high spin parameter a≳ 0.8 even when the expected spin parameter from direct collapse is a≲ 0.3. This scenario also naturally explains the atmospheric metal pollution observed in HMXRB stellar companions.

  7. Time-resolved 2-million-year-old supernova activity discovered in Earth's microfossil record.

    PubMed

    Ludwig, Peter; Bishop, Shawn; Egli, Ramon; Chernenko, Valentyna; Deneva, Boyana; Faestermann, Thomas; Famulok, Nicolai; Fimiani, Leticia; Gómez-Guzmán, José Manuel; Hain, Karin; Korschinek, Gunther; Hanzlik, Marianne; Merchel, Silke; Rugel, Georg

    2016-08-16

    Massive stars ([Formula: see text]), which terminate their evolution as core-collapse supernovae, are theoretically predicted to eject [Formula: see text] of the radioisotope (60)Fe (half-life 2.61 Ma). If such an event occurs sufficiently close to our solar system, traces of the supernova debris could be deposited on Earth. Herein, we report a time-resolved (60)Fe signal residing, at least partially, in a biogenic reservoir. Using accelerator mass spectrometry, this signal was found through the direct detection of live (60)Fe atoms contained within secondary iron oxides, among which are magnetofossils, the fossilized chains of magnetite crystals produced by magnetotactic bacteria. The magnetofossils were chemically extracted from two Pacific Ocean sediment drill cores. Our results show that the (60)Fe signal onset occurs around 2.6 Ma to 2.8 Ma, near the lower Pleistocene boundary, terminates around 1.7 Ma, and peaks at about 2.2 Ma.

  8. INFRARED OBSERVATIONAL MANIFESTATIONS OF YOUNG DUSTY SUPER STAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-González, Sergio; Tenorio-Tagle, Guillermo; Silich, Sergiy, E-mail: sergiomtz@inaoep.mx

    The growing evidence pointing at core-collapse supernovae as large dust producers makes young massive stellar clusters ideal laboratories to study the evolution of dust immersed in a hot plasma. Here we address the stochastic injection of dust by supernovae, and follow its evolution due to thermal sputtering within the hot and dense plasma generated by young stellar clusters. Under these considerations, dust grains are heated by means of random collisions with gas particles which result in the appearance of  infrared spectral signatures. We present time-dependent infrared spectral energy distributions that are to be expected from young stellar clusters. Our results aremore » based on hydrodynamic calculations that account for the stochastic injection of dust by supernovae. These also consider gas and dust radiative cooling, stochastic dust temperature fluctuations, the exit of dust grains out of the cluster volume due to the cluster wind, and a time-dependent grain size distribution.« less

  9. The HALO / HALO-2 Supernova Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    Yen, Stanley; HALO Collaboration; HALO-2 Collaboration

    2016-09-01

    The Helium and Lead Observatory (HALO) is a dedicated supernova neutrino detector in SNOLAB, which is built from 79 tons of surplus lead and the helium-3 neutron detectors from the SNO experiment. It is sensitive primarily to electron neutrinos, and is thus complementary to water Cerenkov and organic scintillation detectors which are primarily sensitive to electron anti-neutrinos. A comparison of the rates in these complementary detectors will enable a flavor decomposition of the neutrino flux from the next galactic core-collapse supernova. We have tentative ideas to build a 1000-ton HALO-2 detector in the Gran Sasso laboratory by using the lead from the decommissioned OPERA detector. We are exploring several neutron detector technologies to supplement the existing helium-3 detectors. We welcome new collaborators to join us. This research is supported by the NRC and NSERC (Canada), the US DOE and NSF, and the German RISE program.

  10. A New Supernova Remnant Coincident with the Slow X-Ray Pulsar AX J1845-0258.

    PubMed

    Gaensler; Gotthelf; Vasisht

    1999-11-20

    We report on Very Large Array observations in the direction of the recently discovered slow X-ray pulsar AX J1845-0258. In the resulting images, we find a 5&arcmin; shell of radio emission; the shell is linearly polarized with a nonthermal spectral index. We classify this source as a previously unidentified, young (<8000 yr) supernova remnant (SNR), G29.6+0.1, which we propose is physically associated with AX J1845-0258. The young age of G29.6+0.1 is then consistent with the interpretation that anomalous X-ray pulsars (AXPs) are isolated, highly magnetized neutron stars ("magnetars"). Three of the six known AXPs can now be associated with SNRs; we conclude that AXPs are young ( less, similar10,000 yr) objects and that they are produced in at least 5% of core-collapse supernovae.

  11. Spitzer Characterization of Transients from the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Ofek, Eran; Corsi, Alessandra; Nugent, Peter; Kulkarni, Shri; Cao, Yi; Helou, George; Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi

    2012-12-01

    We propose to continue Spitzer/IRAC follow-up of optical transients discovered by the Palomar Transient Factory. Our goals are: (i) probe the mass loss history and characterize the circumstellar environment of supernovae. (ii) construct a late-time bolometric light curve; the mid-infrared observations complement our ground-based optical and near-infrared data and (iii) understand the physical origin of new classes of transients (specifically, intermediate luminosity red transients) where the mystery is literally enshrouded in dust. We select extremely nearby supernovae, both thermonuclear and core-collapse, where the thermal echo is easily detectable in the mid-infrared. We also select peculiar supernovae that show tell-tale signs of circumstellar interaction. We also select rare and red gap transients in the local universe for IRAC follow-up. Additionally, we request low-impact target of opportunity observations for new discoveries in 2013. Our total request is 24 hrs.

  12. Spitzer Characterization of Transients from the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Goobar, Ariel; Johansson, Joel; Cenko, Brad; Ofek, Eran; Nugent, Peter; Kulkarni, Shri; Cao, Yi; Helou, George; Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi

    2013-10-01

    We propose to continue Spitzer/IRAC follow-up of optical transients discovered by the Palomar Transient Factory. Our goals are: (i) probe the mass loss history and characterize the circumstellar environment of supernovae. (ii) construct a late-time bolometric light curve; the mid-infrared observations complement our ground-based optical and near-infrared data and (iii) understand the physical origin of new classes of transients (specifically, intermediate luminosity red transients) where the mystery is literally enshrouded in dust. We select extremely nearby supernovae, both thermonuclear and core-collapse, where the thermal echo is easily detectable in the mid-infrared. We also select peculiar supernovae that show tell-tale signs of circumstellar interaction. We also select rare and red gap transients in the local universe. Additionally, we request low-impact target of opportunity observations for new discoveries in 2014. Our total request is 17 hrs.

  13. Supernova constraints on neutrino oscillation and EoS for proto-neutron star

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Mathews, G. J.; Nakamura, K.; Shibagaki, S.; Suzuki, T.

    2014-05-01

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We here discuss how to determine the neutrino temperatures and propose a method to determine still unknown neutrino oscillation parameters, mass hierarchy and θ13, simultaneously. Combining the recent experimental constraints on θ13 with isotopic ratios of the light elements discovered in presolar grains from the Murchison meteorite, we show that our method suggests at a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  14. NASA's Chandra Sees Brightest Supernova Ever

    NASA Astrophysics Data System (ADS)

    2007-05-01

    WASHINGTON - The brightest stellar explosion ever recorded may be a long-sought new type of supernova, according to observations by NASA's Chandra X-ray Observatory and ground-based optical telescopes. This discovery indicates that violent explosions of extremely massive stars were relatively common in the early universe, and that a similar explosion may be ready to go off in our own galaxy. "This was a truly monstrous explosion, a hundred times more energetic than a typical supernova," said Nathan Smith of the University of California at Berkeley, who led a team of astronomers from California and the University of Texas in Austin. "That means the star that exploded might have been as massive as a star can get, about 150 times that of our sun. We've never seen that before." Chandra X-ray Image of SN 2006gy Chandra X-ray Image of SN 2006gy Astronomers think many of the first generation of stars were this massive, and this new supernova may thus provide a rare glimpse of how the first stars died. It is unprecedented, however, to find such a massive star and witness its death. The discovery of the supernova, known as SN 2006gy, provides evidence that the death of such massive stars is fundamentally different from theoretical predictions. "Of all exploding stars ever observed, this was the king," said Alex Filippenko, leader of the ground-based observations at the Lick Observatory at Mt. Hamilton, Calif., and the Keck Observatory in Mauna Kea, Hawaii. "We were astonished to see how bright it got, and how long it lasted." The Chandra observation allowed the team to rule out the most likely alternative explanation for the supernova: that a white dwarf star with a mass only slightly higher than the sun exploded into a dense, hydrogen-rich environment. In that event, SN 2006gy should have been 1,000 times brighter in X-rays than what Chandra detected. Animation of SN 2006gy Animation of SN 2006gy "This provides strong evidence that SN 2006gy was, in fact, the death of an extremely massive star," said Dave Pooley of the University of California at Berkeley, who led the Chandra observations. The star that produced SN 2006gy apparently expelled a large amount of mass prior to exploding. This large mass loss is similar to that seen from Eta Carinae, a massive star in our galaxy, raising suspicion that Eta Carinae may be poised to explode as a supernova. Although SN 2006gy is intrinsically the brightest supernova ever, it is in the galaxy NGC 1260, some 240 million light years away. However, Eta Carinae is only about 7,500 light years away in our own Milky Way galaxy. "We don't know for sure if Eta Carinae will explode soon, but we had better keep a close eye on it just in case," said Mario Livio of the Space Telescope Science Institute in Baltimore, who was not involved in the research. "Eta Carinae's explosion could be the best star-show in the history of modern civilization." A New Line of Stellar Evolution A New Line of Stellar Evolution Supernovas usually occur when massive stars exhaust their fuel and collapse under their own gravity. In the case of SN 2006gy, astronomers think that a very different effect may have triggered the explosion. Under some conditions, the core of a massive star produces so much gamma ray radiation that some of the energy from the radiation converts into particle and anti-particle pairs. The resulting drop in energy causes the star to collapse under its own huge gravity. After this violent collapse, runaway thermonuclear reactions ensue and the star explodes, spewing the remains into space. The SN 2006gy data suggest that spectacular supernovas from the first stars - rather than completely collapsing to a black hole as theorized - may be more common than previously believed. "In terms of the effect on the early universe, there's a huge difference between these two possibilities," said Smith. "One pollutes the galaxy with large quantities of newly made elements and the other locks them up forever in a black hole." The results from Smith and his colleagues will appear in The Astrophysical Journal. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  15. Recent Hubble Space Telescope Imaging of the Light Echoes of Supernova 2014J in M 82 and Supernova 2016adj in Centaurus A

    NASA Astrophysics Data System (ADS)

    Lawrence, Stephen S.; Hyder, Ali; Sugerman, Ben; Crotts, Arlin P. S.

    2017-06-01

    We report on our ongoing use of Hubble Space Telescope (HST) imaging to monitor the scattered light echoes of recent heavily-extincted supernovae in two nearby, albeit unusual, galaxies.Supernova 2014J was a highly-reddened Type Ia supernova that erupted in the nearby irregular star-forming galaxy M 82 in 2014 January. It was discovered to have light echo by Crotts (2016) in early epoch HST imaging and has been further described by Yang, et al. (2017) based on HST imaging through late 2014. Our ongoing monitoring in the WFC3 F438W, F555W, and F814W filters shows that, consistent with Crotts (2106) and Yang, et al. (2017), throughout 2015 and 2016 the main light echo arc expanded through a dust complex located approximately 230 pc in the foreground of the supernova. This main light echo has, however, faded dramatically in our most recent HST imaging from 2017 March. The supernova itself has also faded to undetectable levels by 2017 March.Supernova 2016adj is a highly-reddened core-collapse supernova that erupted inside the unusual dust lane of the nearby giant elliptical galaxy Centaurus A (NGC 5128) in 2016 February. It was discovered to have a light echo by Sugerman & Lawrence (2016) in early epoch HST imaging in 2016 April. Our ongoing monitoring in the WFC3 F438W, F547M, and F814W filters shows a slightly elliptical series of light echo arc segments hosted by a tilted dust complex ranging approximately 150--225 pc in the foreground of the supernova. The supernova itself has also faded to undetectable levels by 2017 April.References: Crotts, A. P. S., ApJL, 804, L37 (2016); Yang et al., ApJ, 834, 60 (2017); Sugerman, B. and Lawrence, S., ATel #8890 (2016).

  16. Suppression of star formation in dwarf galaxies by photoelectric grain heating feedback.

    PubMed

    Forbes, John C; Krumholz, Mark R; Goldbaum, Nathan J; Dekel, Avishai

    2016-07-28

    Photoelectric heating--heating of dust grains by far-ultraviolet photons--has long been recognized as the primary source of heating for the neutral interstellar medium. Simulations of spiral galaxies have shown some indication that photoelectric heating could suppress star formation; however, simulations that include photoelectric heating have typically shown that it has little effect on the rate of star formation in either spiral galaxies or dwarf galaxies, which suggests that supernovae are responsible for setting the gas depletion time in galaxies. This result is in contrast with recent work indicating that a star formation law that depends on galaxy metallicity--as is expected with photoelectric heating,but not with supernovae--reproduces the present-day galaxy population better than does a metallicity-independent one. Here we report a series of simulations of dwarf galaxies, the class of galaxy in which the effects of both photoelectric heating and supernovae are expected to be strongest. We simultaneously include space and time-dependent photoelectric heating in our simulations, and we resolve the energy-conserving phase of every supernova blast wave, which allows us to directly measure the relative importance of feedback by supernovae and photoelectric heating in suppressing star formation. We find that supernovae are unable to account for the observed large gas depletion times in dwarf galaxies. Instead, photoelectric heating is the dominant means by which dwarf galaxies regulate their star formation rate at any given time,suppressing the rate by more than an order of magnitude relative to simulations with only supernovae.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulchaey, John S.; Kollmeier, Juna A.; Kasliwal, Mansi M., E-mail: mulchaey@obs.carnegiescience.edu

    X-ray measurements suggest that the abundance of calcium in the intracluster medium is higher than can be explained using favored models for core-collapse and Type Ia supernovae alone. We investigate whether the ''calcium conundrum'' in the intracluster medium can be alleviated by including a contribution from the recently discovered subclass of supernovae known as calcium-rich gap transients. Although the calcium-rich gap transients make up only a small fraction of all supernovae events, we find that their high calcium yields are sufficient to reproduce the X-ray measurements found for nearby rich clusters. We find the χ{sup 2} goodness-of-fit metric improves frommore » 84 to 2 by including this new class. Moreover, calcium-rich supernovae preferentially occur in the outskirts of galaxies making it easier for the nucleosynthesis products of these events to be incorporated in the intracluster medium via ram-pressure stripping. The discovery of calcium-rich gap transients in clusters and groups far from any individual galaxy suggests that supernovae associated with intracluster stars may play an important role in enriching the intracluster medium. Calcium-rich gap transients may also help explain anomalous calcium abundances in many other astrophysical systems including individual stars in the Milky Way, the halos of nearby galaxies, and the circumgalactic medium. Our work highlights the importance of considering the diversity of supernovae types and corresponding yields when modeling the abundance of the intracluster medium and other gas reservoirs.« less

  18. The Carnegie Supernova Project I. Photometry data release of low-redshift stripped-envelope supernovae

    NASA Astrophysics Data System (ADS)

    Stritzinger, M. D.; Anderson, J. P.; Contreras, C.; Heinrich-Josties, E.; Morrell, N.; Phillips, M. M.; Anais, J.; Boldt, L.; Busta, L.; Burns, C. R.; Campillay, A.; Corco, C.; Castellon, S.; Folatelli, G.; González, C.; Holmbo, S.; Hsiao, E. Y.; Krzeminski, W.; Salgado, F.; Serón, J.; Torres-Robledo, S.; Freedman, W. L.; Hamuy, M.; Krisciunas, K.; Madore, B. F.; Persson, S. E.; Roth, M.; Suntzeff, N. B.; Taddia, F.; Li, W.; Filippenko, A. V.

    2018-02-01

    The first phase of the Carnegie Supernova Project (CSP-I) was a dedicated supernova follow-up program based at the Las Campanas Observatory that collected science data of young, low-redshift supernovae between 2004 and 2009. Presented in this paper is the CSP-I photometric data release of low-redshift stripped-envelope core-collapse supernovae. The data consist of optical (uBgVri) photometry of 34 objects, with a subset of 26 having near-infrared (YJH) photometry. Twenty objects have optical pre-maximum coverage with a subset of 12 beginning at least five days prior to the epoch of B-band maximum brightness. In the near-infrared, 17 objects have pre-maximum observations with a subset of 14 beginning at least five days prior to the epoch of J-band maximum brightness. Analysis of this photometric data release is presented in companion papers focusing on techniques to estimate host-galaxy extinction and the light-curve and progenitor star properties of the sample. The analysis of an accompanying visual-wavelength spectroscopy sample of 150 spectra will be the subject of a future paper. Based on observations collected at Las Campanas Observatory.Tables 2-8 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A134

  19. Confined dense circumstellar material surrounding a regular type II supernova

    NASA Astrophysics Data System (ADS)

    Yaron, O.; Perley, D. A.; Gal-Yam, A.; Groh, J. H.; Horesh, A.; Ofek, E. O.; Kulkarni, S. R.; Sollerman, J.; Fransson, C.; Rubin, A.; Szabo, P.; Sapir, N.; Taddia, F.; Cenko, S. B.; Valenti, S.; Arcavi, I.; Howell, D. A.; Kasliwal, M. M.; Vreeswijk, P. M.; Khazov, D.; Fox, O. D.; Cao, Y.; Gnat, O.; Kelly, P. L.; Nugent, P. E.; Filippenko, A. V.; Laher, R. R.; Wozniak, P. R.; Lee, W. H.; Rebbapragada, U. D.; Maguire, K.; Sullivan, M.; Soumagnac, M. T.

    2017-02-01

    With the advent of new wide-field, high-cadence optical transient surveys, our understanding of the diversity of core-collapse supernovae has grown tremendously in the last decade. However, the pre-supernova evolution of massive stars, which sets the physical backdrop to these violent events, is theoretically not well understood and difficult to probe observationally. Here we report the discovery of the supernova iPTF 13dqy = SN 2013fs a mere ~3 h after explosion. Our rapid follow-up observations, which include multiwavelength photometry and extremely early (beginning at ~6 h post-explosion) spectra, map the distribution of material in the immediate environment (<~1015 cm) of the exploding star and establish that it was surrounded by circumstellar material (CSM) that was ejected during the final ~1 yr prior to explosion at a high rate, around 10-3 solar masses per year. The complete disappearance of flash-ionized emission lines within the first several days requires that the dense CSM be confined to within <~1015 cm, consistent with radio non-detections at 70-100 days. The observations indicate that iPTF 13dqy was a regular type II supernova; thus, the finding that the probable red supergiant progenitor of this common explosion ejected material at a highly elevated rate just prior to its demise suggests that pre-supernova instabilities may be common among exploding massive stars.

  20. Blue supergiant progenitors from binary mergers for SN 1987A and other Type II-peculiar supernovae

    NASA Astrophysics Data System (ADS)

    Menon, Athira; Heger, Alexander

    2017-11-01

    We present results of a systematic and detailed stellar evolution study of binary mergers for blue supergiant (BSG) progenitors of Type II supernovae, particularly for SN 1987A. We are able to reproduce nearly all observational aspects of the progenitor of SN 1987A, Sk -69 °202, such as its position in the HR diagram, the enrichment of helium and nitrogen in the triple-ring nebula and its lifetime before its explosion. We build our evolutionary model based on the merger model of Podsiadlowski et al. (1992), Podsiadlowski et al. (2007) and empirically explore an initial parameter consisting of primary masses, secondary masses and different depths up to which the secondary penetrates the He core during the merger. The evolution of the post-merger star is continued until just before iron-core collapse. Of the 84 pre-supernova models (16 M⊙ - 23 M⊙) computed, the majority of the pre-supernova models are compact, hot BSGs with effective temperature >12 kK and 30 R⊙ - 70 R⊙ of which six match nearly all the observational properties of Sk -69 °202.

  1. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paxton, Bill; Bildsten, Lars; Cantiello, Matteo

    We substantially update the capabilities of the open-source software instrument Modules for Experiments in Stellar Astrophysics (MESA). MESA can now simultaneously evolve an interacting pair of differentially rotating stars undergoing transfer and loss of mass and angular momentum, greatly enhancing the prior ability to model binary evolution. New MESA capabilities in fully coupled calculation of nuclear networks with hundreds of isotopes now allow MESA to accurately simulate the advanced burning stages needed to construct supernova progenitor models. Implicit hydrodynamics with shocks can now be treated with MESA, enabling modeling of the entire massive star lifecycle, from pre-main-sequence evolution to themore » onset of core collapse and nucleosynthesis from the resulting explosion. Coupling of the GYRE non-adiabatic pulsation instrument with MESA allows for new explorations of the instability strips for massive stars while also accelerating the astrophysical use of asteroseismology data. We improve the treatment of mass accretion, giving more accurate and robust near-surface profiles. A new MESA capability to calculate weak reaction rates “on-the-fly” from input nuclear data allows better simulation of accretion induced collapse of massive white dwarfs and the fate of some massive stars. We discuss the ongoing challenge of chemical diffusion in the strongly coupled plasma regime, and exhibit improvements in MESA that now allow for the simulation of radiative levitation of heavy elements in hot stars. We close by noting that the MESA software infrastructure provides bit-for-bit consistency for all results across all the supported platforms, a profound enabling capability for accelerating MESA's development.« less

  2. Non-spherical core collapse supernovae. III. Evolution towards homology and dependence on the numerical resolution

    NASA Astrophysics Data System (ADS)

    Gawryszczak, A.; Guzman, J.; Plewa, T.; Kifonidis, K.

    2010-10-01

    Aims: We study the hydrodynamic evolution of a non-spherical core-collapse supernova in two spatial dimensions. We begin our study from the moment of shock revival - taking into account neutrino heating and cooling, nucleosynthesis, convection, and the standing accretion shock (SASI) instability of the supernova blast - and continue for the first week after the explosion when the expanding flow becomes homologous and the ejecta enter the early supernova remnant (SNR) phase. We observe the growth and interaction of Richtmyer-Meshkov, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities resulting in an extensive mixing of the heavy elements throughout the ejecta. We obtain a series of models at progressively higher resolution and provide a discussion of numerical convergence. Methods: Different from previous studies, our computations are performed in a single domain. Periodic mesh mapping is avoided. This is made possible by employing cylindrical coordinates, and an adaptive mesh refinement (AMR) strategy in which the computational workload (defined as the product of the total number of computational cells and the length of the time step) is monitored and, if necessary, reduced. Results: Our results are in overall good agreement with the AMR simulations we have reported in the past. We show, however, that numerical convergence is difficult to achieve, due to the strongly non-linear nature of the problem. Even more importantly, we find that our model displays a strong tendency to expand laterally away from the equatorial plane and toward the poles. We demonstrate that this expansion is a physical property of the low-mode, SASI instability. Although the SASI operates only within about the first second of the explosion, it leaves behind a large lateral velocity gradient in the post shock layer which affects the evolution for minutes and hours later. This results in a prolate deformation of the ejecta and a fast advection of the highest-velocity 56Ni-rich material from moderate latitudes to the polar regions of our grid within only 300 s after core bounce. This effect - if confirmed by 3D simulations - might actually be responsible for the global asymmetry of the nickel lines in SN 1987A. Yet, it also poses difficulties for the analysis of 2D SASI-dominated explosions in terms of the maximum nickel velocities, since discretization errors at the poles are considered non-negligible. Conclusions: The simulations demonstrate that significant radial and lateral motions in the post-shock region, produced by convective overturn and the SASI during the early explosion phase, contribute to the evolution for minutes and hours after shock revival. They lead to both later clump formation, and a significant prolate deformation of the ejecta which are observed even as late as one week after the explosion. This ejecta deformation may be considered final, since the expansion has long become homologous by that time. As pointed out in the recent analysis by Kjaer et al., such an ejecta morphology is in good agreement with the observational data of SN 1987A. Systematic future studies are needed to investigate how the SASI-induced late-time lateral expansion that we find in this work depends on the dominant mode of the SASI when the early explosion phase ends, and to which extent it is affected by the dimensionality of the simulations. The impact on and importance of the SASI for the distribution of iron group nuclei and the morphology of the young SNR argues for future three-dimensional explosion and post-explosion studies on singularity-free grids that cover the entire sphere. Given the results of our 2D resolution study, present three-dimensional simulations must be regarded as underresolved, and their conclusions must be verified by a proper numerical convergence analysis in three dimensions.

  3. Probing the neutrino mass hierarchy with the rise time of a supernova burst

    NASA Astrophysics Data System (ADS)

    Serpico, Pasquale D.; Chakraborty, Sovan; Fischer, Tobias; Hüdepohl, Lorenz; Janka, Hans-Thomas; Mirizzi, Alessandro

    2012-04-01

    The rise time of a Galactic supernova (SN) ν¯e light curve, observable at a high-statistics experiment such as the Icecube Cherenkov detector, can provide a diagnostic tool for the neutrino mass hierarchy at “large” 1-3 leptonic mixing angle ϑ13. Thanks to the combination of matter suppression of collective effects at early post-bounce times on one hand and the presence of the ordinary Mikheyev-Smirnov-Wolfenstein effect in the outer layers of the SN on the other hand, a sufficiently fast rise time on O(100)ms scale is indicative of an inverted mass hierarchy. We investigate results from an extensive set of stellar core-collapse simulations, providing a first exploration of the astrophysical robustness of these features. We find that for all the models analyzed (sharing the same weak interaction microphysics) the rise times for the same hierarchy are similar not only qualitatively, but also quantitatively, with the signals for the two classes of hierarchies significantly separated. We show via Monte Carlo simulations that the two cases should be distinguishable at IceCube for SNe at a typical Galactic distance 99% of the time. Finally, a preliminary survey seems to show that the faster rise time for inverted hierarchy as compared to normal hierarchy is a qualitatively robust feature predicted by several simulation groups. Since the viability of this signature ultimately depends on the quantitative assessment of theoretical/numerical uncertainties, our results motivate an extensive campaign of comparison of different code predictions at early accretion times with implementation of microphysics of comparable sophistication, including effects such as nucleon recoils in weak interactions.

  4. The direct identification of core-collapse supernova progenitors.

    PubMed

    Van Dyk, Schuyler D

    2017-10-28

    To place core-collapse supernovae (SNe) in context with the evolution of massive stars, it is necessary to determine their stellar origins. I describe the direct identification of SN progenitors in existing pre-explosion images, particularly those obtained through serendipitous imaging of nearby galaxies by the Hubble Space Telescope I comment on specific cases representing the various core-collapse SN types. Establishing the astrometric coincidence of a SN with its putative progenitor is relatively straightforward. One merely needs a comparably high-resolution image of the SN itself and its stellar environment to perform this matching. The interpretation of these results, though, is far more complicated and fraught with larger uncertainties, including assumptions of the distance to and the extinction of the SN, as well as the metallicity of the SN environment. Furthermore, existing theoretical stellar evolutionary tracks exhibit significant variations one from the next. Nonetheless, it appears fairly certain that Type II-P (plateau) SNe arise from massive stars in the red supergiant phase. Many of the known cases are associated with subluminous Type II-P events. The progenitors of Type II-L (linear) SNe are less established. Among the stripped-envelope SNe, there are now a number of examples of cool, but not red, supergiants (presumably in binaries) as Type IIb progenitors. We appear now finally to have an identified progenitor of a Type Ib SN, but no known example yet for a Type Ic. The connection has been made between some Type IIn SNe and progenitor stars in a luminous blue variable phase, but that link is still thin, based on direct identifications. Finally, I also describe the need to revisit the SN site, long after the SN has faded, to confirm the progenitor identification through the star's disappearance and potentially to detect a putative binary companion that may have survived the explosion.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  5. Simulation turbulenter Konvektion in Supernova-Explosionen massereicher Sterne.

    NASA Astrophysics Data System (ADS)

    Janka, H.-T.; Müller, E.; Ruffert, M.

    Contents: 1. Das Projekt: Numerische Simulation von Typ-II-Supernovae. 2. Die numerischen Verfahren. 3. Die Visualisierung von dreidimensionalen Datensätzen. 4. Die Ergebnisse: Einblick in explodierende Sterne.

  6. The Quiet Explosion

    NASA Astrophysics Data System (ADS)

    2008-07-01

    A European-led team of astronomers are providing hints that a recent supernova may not be as normal as initially thought. Instead, the star that exploded is now understood to have collapsed into a black hole, producing a weak jet, typical of much more violent events, the so-called gamma-ray bursts. The object, SN 2008D, is thus probably among the weakest explosions that produce very fast moving jets. This discovery represents a crucial milestone in the understanding of the most violent phenomena observed in the Universe. Black Hole ESO PR Photo 23a/08 A Galaxy and two Supernovae These striking results, partly based on observations with ESO's Very Large Telescope, will appear tomorrow in Science Express, the online version of Science. Stars that were at birth more massive than about 8 times the mass of our Sun end their relatively short life in a cosmic, cataclysmic firework lighting up the Universe. The outcome is the formation of the densest objects that exist, neutron stars and black holes. When exploding, some of the most massive stars emit a short cry of agony, in the form of a burst of very energetic light, X- or gamma-rays. In the early afternoon (in Europe) of 9 January 2008, the NASA/STFC/ASI Swift telescope discovered serendipitously a 5-minute long burst of X-rays coming from within the spiral galaxy NGC 2770, located 90 million light-years away towards the Lynx constellation. The Swift satellite was studying a supernova that had exploded the previous year in the same galaxy, but the burst of X-rays came from another location, and was soon shown to arise from a different supernova, named SN 2008D. Researchers at the Italian National Institute for Astrophysics (INAF), the Max-Planck Institute for Astrophysics (MPA), ESO, and at various other institutions have observed the supernova at great length. The team is led by Paolo Mazzali of INAF's Padova Observatory and MPA. "What made this event very interesting," says Mazzali, "is that the X-ray signal was very weak and 'soft' [1], very different from a gamma-ray burst and more in line with what is expected from a normal supernova." So, after the supernova was discovered, the team rapidly observed it from the Asiago Observatory in Northern Italy and established that it was a Type Ic supernova. "These are supernovae produced by stars that have lost their hydrogen and helium-rich outermost layers before exploding, and are the only type of supernovae which are associated with (long) gamma-ray bursts," explains Mazzali. "The object thus became even more interesting!" Earlier this year, an independent team of astronomers reported in the journal Nature that SN 2008D is a rather normal supernova. The fact that X-rays were detected was, they said, because for the first time, astronomers were lucky enough to catch the star in the act of exploding. Mazzali and his team think otherwise. "Our observations and modeling show this to be a rather unusual event, to be better understood in terms of an object lying at the boundary between normal supernovae and gamma-ray bursts." The team set up an observational campaign to monitor the evolution of the supernova using both ESO and national telescopes, collecting a large quantity of data. The early behaviour of the supernova indicated that it was a highly energetic event, although not quite as powerful as a gamma-ray burst. After a few days, however, the spectra of the supernova began to change. In particular Helium lines appeared, showing that the progenitor star was not stripped as deeply as supernovae associated with gamma-ray bursts. Over the years, Mazzali and his group have developed theoretical models to analyse the properties of supernovae. When applied to SN2008D, their models indicated that the progenitor star was at birth as massive as 30 times the Sun, but had lost so much mass that at the time of the explosion the star had a mass of only 8-10 solar masses. The likely result of the collapse of such a massive star is a black hole. "Since the masses and energies involved are smaller than in every known gamma-ray burst related supernova, we think that the collapse of the star gave rise to a weak jet, and that the presence of the Helium layer made it even more difficult for the jet to remain collimated, so that when it emerged from the stellar surface the signal was weak," says Massimo Della Valle, co-author. "The scenario we propose implies that gamma-ray burst-like inner engine activity exists in all supernovae that form a black hole," adds co-author Stefano Valenti. "As our X-ray and gamma-ray instruments become more advanced, we are slowly uncovering the very diverse properties of stellar explosions," explains Guido Chincarini, co-author and the Principal Investigator of the Italian research on gamma-ray bursts. "The bright gamma-ray bursts were the easiest to discover, and now we are seeing variations on a theme that link these special events to more normal ones." These are however very important discoveries, as they continue to paint a picture of how massive star end their lives, producing dense objects, and injecting new chemical elements back into the gas from which new stars will be formed.

  7. Probing the Physics of Core-Collapse Supernovae and Ultra-Relativistic Outflows using Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Gelfand, Joseph

    Core-collapse supernovae, the powerful explosions triggered by the gravitational collapse of massive stars, play an important role in evolution of star-forming galaxies like our Milky Way. Not only do these explosions eject the outer envelope of the progenitor star with extremely high velocities, creating a supernova remnant (SNR), the rotational energy of the resultant neutron star powers an ultra-relativistic outflow called a pulsar wind which creates a pulsar wind nebula (PWN) as it expands into its surroundings. Despite almost a century of study, many fundamental questions remain, including: How is a neutron star formed during a core-collapse supernova? How are particles created in the neutron star magnetosphere? How are particles accelerated to the PeV energies inside PWNe? Answering these questions requires measuring the properties of the progenitor star and pulsar wind for a diverse collection of neutron stars. Currently, this is best done by studying those PWNe inside a SNR, since their evolution is very sensitive to the initial spin period of the neutron star, the mass and initial kinetic energy of the supernova ejecta, and the magnetization and particle spectrum of the pulsar wind - quantities critical for answering the above questions. To this end, we propose to measure these properties for 17 neutron stars whose spin-down inferred dipole surface magnetic field strengths and characteristic ages differ by 1.5 orders of magnitude by fitting the broadband spectral energy distribution (SED) and dynamical properties of their associated PWNe with a model for the dynamical and spectral evolution of a PWN inside SNR. To do so, we will first re-analyze all archival X-ray (e.g., XMM, Chandra, INTEGRAL, NuSTAR) and gamma-ray (e.g., Fermi-LAT Pass 8) data on each PWN to ensure consistent measurements of the volume-integrated properties (e.g., X-ray photon index and unabsorbed flux, GeV spectrum) needed for this analysis. Additionally, we will use a Markoff Chain Monte Carlo (MCMC) algorithm to search the entire parameter space - allowing us to both determine the statistical and systematic errors of the derived quantities and make testable predictions for future observations. The results of this investigation are relevant to many areas of astrophysics. Particle acceleration occurs in many magnetized relativistic outflows, from active galactic nuclei to gamma-ray bursts, and insight into the acceleration mechanism present in PWNe would be directly applicable to these systems. Additionally, our modeling with help us determine if PWNe are the origin of the anomalous population of GeV cosmic ray electrons and positrons often theorized to be the result of decaying dark matter. Lastly, PWNe are expected to be an important class of sources for next-generation observatories like ATHENA, the Square Kilometer Array, and the Cherenkov Telescope Array, and our modeling will provide valuable insight into what can and cannot be discovered using these telescopes. This work directly address NASA's strategic objective to advance understanding of the fundamental physics of the universe by studying the behavior of matter and energy in extreme environments.

  8. Combining collective, MSW, and turbulence effects in supernova neutrino flavor evolution

    NASA Astrophysics Data System (ADS)

    Lund, Tina; Kneller, James P.

    2013-07-01

    In order to decode the neutrino burst signal from a Galactic core-collapse supernova (ccSN) and reveal the complicated inner workings of the explosion we need a thorough understanding of the neutrino flavor evolution from the proto-neutron star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution in three different progenitors and include collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein (MSW) conversion due to the shock wave passage through the star, and the impact of turbulence. We consider both normal and inverted neutrino mass hierarchies and a value of θ13 close to the current experimental measurements. In the Oxygen-Neon-Magnesium (ONeMg) supernova we find that the impact of turbulence is both brief and slight during a window of 1-2 seconds post bounce. This is because the shock races through the star extremely quickly and the turbulence amplitude is expected to be small, less than 10%, since these stars do not require multidimensional physics to explode. Thus the spectral features of collective and shock effects in the neutrino signals from Oxygen-Neon-Magnesium supernovae may be almost turbulence free making them the easiest to interpret. For the more massive progenitors we again find that small amplitude turbulence, up to 10%, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence is added, 30% and 50%, which is justified by the requirement of multidimensional physics in order to make these stars explode, the features of collective and shock wave effects in the high (H) density resonance channel are almost completely obscured at late times. Yet at the same time we find the other mixing channels—the low (L) density resonance channel and the nonresonant channels—begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of more massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal.

  9. KSC-2012-1079

    NASA Image and Video Library

    2012-01-18

    VANDENBERG AIR FORCE BASE, Calif. -- Preparations for the second flight simulation of an Orbital Sciences Corp. Pegasus rocket are under way in processing facility 1555 at Vandenberg Air Force Base (VAFB) in California. The rocket is being prepared to launch NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on the Orbital Sciences' L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean's Kwajalein Atoll for launch, targeted for no earlier than March 14. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB

  10. A giant outburst two years before the core-collapse of a massive star.

    PubMed

    Pastorello, A; Smartt, S J; Mattila, S; Eldridge, J J; Young, D; Itagaki, K; Yamaoka, H; Navasardyan, H; Valenti, S; Patat, F; Agnoletto, I; Augusteijn, T; Benetti, S; Cappellaro, E; Boles, T; Bonnet-Bidaud, J-M; Botticella, M T; Bufano, F; Cao, C; Deng, J; Dennefeld, M; Elias-Rosa, N; Harutyunyan, A; Keenan, F P; Iijima, T; Lorenzi, V; Mazzali, P A; Meng, X; Nakano, S; Nielsen, T B; Smoker, J V; Stanishev, V; Turatto, M; Xu, D; Zampieri, L

    2007-06-14

    The death of massive stars produces a variety of supernovae, which are linked to the structure of the exploding stars. The detection of several precursor stars of type II supernovae has been reported (see, for example, ref. 3), but we do not yet have direct information on the progenitors of the hydrogen-deficient type Ib and Ic supernovae. Here we report that the peculiar type Ib supernova SN 2006jc is spatially coincident with a bright optical transient that occurred in 2004. Spectroscopic and photometric monitoring of the supernova leads us to suggest that the progenitor was a carbon-oxygen Wolf-Rayet star embedded within a helium-rich circumstellar medium. There are different possible explanations for this pre-explosion transient. It appears similar to the giant outbursts of luminous blue variable stars (LBVs) of 60-100 solar masses, but the progenitor of SN 2006jc was helium- and hydrogen-deficient (unlike LBVs). An LBV-like outburst of a Wolf-Rayet star could be invoked, but this would be the first observational evidence of such a phenomenon. Alternatively, a massive binary system composed of an LBV that erupted in 2004, and a Wolf-Rayet star exploding as SN 2006jc, could explain the observations.

  11. On the formation of SMC X-1: The effect of mass and orbital angular momentum loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tao; Li, X.-D., E-mail: litao@nju.edu.cn, E-mail: lixd@nju.edu.cn; The Key Laboratory of Modern Astronomy and Astrophysics, Ministry of Education, Nanjing 210093

    SMC X-1 is a high-mass X-ray binary with an orbital period of 3.9 days. The mass of the neutron star is as low as ∼1M {sub ☉}, suggesting that it was likely formed through an electron-capture supernova rather than an iron-core collapse supernova. From the present system configurations, we argue that the orbital period at the supernova was ≲ 10 days. Since the mass transfer process between the neutron star's progenitor and the companion star before the supernova should have increased the orbital period to tens of days, a mechanism with efficient orbit angular momentum loss and relatively small massmore » loss is required to account for its current orbital period. We have calculated the evolution of the progenitor binary systems from zero-age main sequence to the pre-supernova stage with different initial parameters and various mass and angular momentum loss mechanisms. Our results show that the outflow from the outer Lagrangian point or a circumbinary disk formed during the mass transfer phase may be qualified for this purpose. We point out that these mechanisms may be popular in binary evolution and significantly affect the formation of compact star binaries.« less

  12. Chemical Enrichment History Of Abell 3112 Galaxy Cluster Out To The Virial Radius

    NASA Astrophysics Data System (ADS)

    Ezer, C.; Bulbul, E.; Ercan, E.; Smith, R.; Bautz, M.; Loewenstein, M.; McDonald, M.; Miller, E.

    2017-10-01

    The deep potential well of the galaxy clusters confines all metals produced via supernova explosions within the intra-cluster medium (ICM). The radial distributions of these metals along the ICM are direct records of the metal enrichment history. In this work, we investigate the chemical enrichment history of Abell 3112 galaxy cluster from cluster's core to out to radius R_{200} (˜ 1470 kpc) by analyzing a deep 1.2 Ms Suzaku observations with overlapping 72 ks Chandra observations. The fraction of supernova explosions enriching the ICM is obtained by fitting the X-ray spectra with a robust snapec model implemented in XSPEC. The ratio of supernova type Ia explosions to the core collapse supernova explosions is found in the range 0.12 - 0.16 and uniformly distributed out to R_{200}. The uniform spatial distribution of supernova enrichment indicates an early metal enrichment between the epoch of z ˜ 2 - 3. We also observe that W7, CDD, and WDD SN Ia models equally better explain the highest signal-to-noise region compared to 2D delayed detonation model CDDT. We further report the first time temperature (3.37 ± 0.77 keV) and metallicity (0.22 ± 0.08 Z_{⊙}) measurements of this archetypal cluster at its virial radius.

  13. Supernova neutrinos and explosive nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Mathews, G. J.; Nakamura, K.; Shibagaki, S.; Suzuki, T.

    2014-05-01

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes 7Li, 11B, 92Nb, 138La and 180Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ13, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements 11B and 7Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ13, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  14. Models of Interacting Supernovae: Understanding the Physics and Probing the Circumstellar Environment

    NASA Astrophysics Data System (ADS)

    Baron, Edward

    "Interacting supernovae" are poorly understood astronomical events with great potential for expanding our understanding of how stars evolve and die, and could provide important clues about the early formation of large-scale structures such as galaxies in the universe. Interacting supernovae occur when a star explodes within a dense cloud of material shed from the star in the course of its evolution. The resulting violent interaction between the expanding supernova explosion and the cloud of circumstellar material can lead to an enormously bright visual display --- indeed, many of the brightest supernovae ever recorded are thought to arise from circumstellar interaction. In order to understand the properties of the progenitor star and the details of the circumstellar interaction, there is a need for theoretical models of interacting supernovae. These simulated computer spectra can be directly compared to the spectra observed by telescopes. These models allow us to probe the physical circumstances that underlie the observations. The spectra of interacting supernovae are dominated by strong, narrow emission lines of light elements such as hydrogen and helium. These narrow lines give Type IIn supernovae their designation. Similarly, objects of Type Ian, Ibn, Icn, and IIn are somewhat distinct, but are all defined by the narrow emission lines that result from the interaction of their expanding envelopes with their surroundings. The photosphere in these supernovae is formed in the material accreted during the coasting phase, and most of the luminosity has its origin from the conversion of kinetic explosion energy into luminosity. Both thermonuclear (Type Ia) and core-collapse (Types Ib/Ic and II) supernovae may be the inner engine. In fact, several Type IIn supernovae at early times have later been classified as Type Ia, Type Ib/c, or Type II as their spectra reveal more details about the nature of the central explosion. As a result of the dominance of the interaction, models of interacting supernovae must take into account descriptions of the hydrodynamical, ionization, and light fronts: a full radiation-hydrodynamical problem. The low densities imply strong departures from thermodynamic equilibrium and, thus, demand a non-LTE treatment in the radiative transfer calculation. We propose a collaboration between the University of Oklahoma (OU) and Florida State University (FSU) to calculate hydrodynamical models, light curves, and NLTE spectra of circumstellar interacting supernovae. We will parameterize the explosion of a massive star, study the hydrodynamical impact onto a circumstellar medium and calculate light curves and spectra. Direct comparison with observed supernovae with give us detailed information on the progenitor star, its mass loss history, and the nature of binary stellar evolution. We will calculate explosion models for some of the stellar structures and the ongoing interaction with the circumstellar material using our radiation hydro code HYDRA and NLTE generalized model atmospheres code PHOENIX. We intend to focus on the physics of interacting supernovae, going beyond the regime where self-similar solutions and phenomenological approaches are valid. This will limit the parameter space that needs to be examined, while still allowing for direct comparison with observations. Since many interacting supernovae are extremely bright, they can be seen at the highest redshifts and are good probes of the darkages. These supernovae will be well observed by upcoming NASA mission JWST as well as ground based surveys such as LSST. The tools for this work are in place: FSU PI Peter Hoeflich has been developing and using the hydrodynamic code HYDRA for over two decades and PI Eddie Baron (OU) has been developing the generalized stellar atmosphere code PHOENIX over the same time period. Baron and Hoeflich have a good working relationship and have cross-compared our codes.

  15. THE BIGGEST EXPLOSIONS IN THE UNIVERSE. II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whalen, Daniel J.; Smidt, Joseph; Johnson, Jarrett L.

    2013-11-10

    One of the leading contenders for the origin of supermassive black holes (SMBHs) at z ∼> 7 is catastrophic baryon collapse in atomically cooled halos at z ∼ 15. In this scenario, a few protogalaxies form in the presence of strong Lyman-Werner UV backgrounds that quench H{sub 2} formation in their constituent halos, preventing them from forming stars or blowing heavy elements into the intergalactic medium prior to formation. At masses of 10{sup 8} M{sub ☉} and virial temperatures of 10{sup 4} K, gas in these halos rapidly cools by H lines, in some cases forming 10{sup 4}-10{sup 6} M{submore » ☉} Population III stars and, a short time later, the seeds of SMBHs. Instead of collapsing directly to black holes (BHs), some of these stars died in the most energetic thermonuclear explosions in the universe. We have modeled the explosions of such stars in the dense cores of line-cooled protogalaxies in the presence of cosmological flows. In stark contrast to the explosions in diffuse regions in previous simulations, these supernovae briefly engulf the protogalaxy, but then collapse back into its dark matter potential. Fallback drives turbulence that efficiently distributes metals throughout the interior of the halo and fuels the rapid growth of nascent BHs at its center. The accompanying starburst and X-ray emission from these line-cooled galaxies easily distinguish them from more slowly evolving neighbors and might reveal the birthplaces of SMBHs on the sky.« less

  16. A Rotating Stellar Collapse Model for Supernova 1987A

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Fukugita, M.

    It is shown that the bunch structure of the Kamiokande neutrino events associated with SN 1987A can be naturally understood, if one assumes that the core of the progenitor star was rotating moderately with q(≡Jc/GM2) ≈ 3 with J the total angular momentum and M the gravitational mass of the core.

  17. Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star.

    PubMed

    Arcavi, Iair; Howell, D Andrew; Kasen, Daniel; Bildsten, Lars; Hosseinzadeh, Griffin; McCully, Curtis; Wong, Zheng Chuen; Katz, Sarah Rebekah; Gal-Yam, Avishay; Sollerman, Jesper; Taddia, Francesco; Leloudas, Giorgos; Fremling, Christoffer; Nugent, Peter E; Horesh, Assaf; Mooley, Kunal; Rumsey, Clare; Cenko, S Bradley; Graham, Melissa L; Perley, Daniel A; Nakar, Ehud; Shaviv, Nir J; Bromberg, Omer; Shen, Ken J; Ofek, Eran O; Cao, Yi; Wang, Xiaofeng; Huang, Fang; Rui, Liming; Zhang, Tianmeng; Li, Wenxiong; Li, Zhitong; Zhang, Jujia; Valenti, Stefano; Guevel, David; Shappee, Benjamin; Kochanek, Christopher S; Holoien, Thomas W-S; Filippenko, Alexei V; Fender, Rob; Nyholm, Anders; Yaron, Ofer; Kasliwal, Mansi M; Sullivan, Mark; Blagorodnova, Nadja; Walters, Richard S; Lunnan, Ragnhild; Khazov, Danny; Andreoni, Igor; Laher, Russ R; Konidaris, Nick; Wozniak, Przemek; Bue, Brian

    2017-11-08

    Every supernova so far observed has been considered to be the terminal explosion of a star. Moreover, all supernovae with absorption lines in their spectra show those lines decreasing in velocity over time, as the ejecta expand and thin, revealing slower-moving material that was previously hidden. In addition, every supernova that exhibits the absorption lines of hydrogen has one main light-curve peak, or a plateau in luminosity, lasting approximately 100 days before declining. Here we report observations of iPTF14hls, an event that has spectra identical to a hydrogen-rich core-collapse supernova, but characteristics that differ extensively from those of known supernovae. The light curve has at least five peaks and remains bright for more than 600 days; the absorption lines show little to no decrease in velocity; and the radius of the line-forming region is more than an order of magnitude bigger than the radius of the photosphere derived from the continuum emission. These characteristics are consistent with a shell of several tens of solar masses ejected by the progenitor star at supernova-level energies a few hundred days before a terminal explosion. Another possible eruption was recorded at the same position in 1954. Multiple energetic pre-supernova eruptions are expected to occur in stars of 95 to 130 solar masses, which experience the pulsational pair instability. That model, however, does not account for the continued presence of hydrogen, or the energetics observed here. Another mechanism for the violent ejection of mass in massive stars may be required.

  18. Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcavi, Iair; Howell, D. Andrew; Kasen, Daniel

    Every supernova so far observed has been considered to be the terminal explosion of a star. Moreover, all supernovae with absorption lines in their spectra show those lines decreasing in velocity over time, as the ejecta expand and thin, revealing slower-moving material that was previously hidden. In addition, every supernova that exhibits the absorption lines of hydrogen has one main light-curve peak, or a plateau in luminosity, lasting approximately 100 days before declining. Here we report observations of iPTF14hls, an event that has spectra identical to a hydrogen-rich core-collapse supernova, but characteristics that differ extensively from those of known supernovae.more » The light curve has at least five peaks and remains bright for more than 600 days; the absorption lines show little to no decrease in velocity; and the radius of the line-forming region is more than an order of magnitude bigger than the radius of the photosphere derived from the continuum emission. These characteristics are consistent with a shell of several tens of solar masses ejected by the progenitor star at supernova-level energies a few hundred days before a terminal explosion. Another possible eruption was recorded at the same position in 1954. Multiple energetic pre-supernova eruptions are expected to occur in stars of 95 to 130 solar masses, which experience the pulsational pair instability. That model, however, does not account for the continued presence of hydrogen, or the energetics observed here. Another mechanism for the violent ejection of mass in massive stars may be required.« less

  19. CHEMICAL EVOLUTION LIBRARY FOR GALAXY FORMATION SIMULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saitoh, Takayuki R., E-mail: saitoh@elsi.jp

    We have developed a software library for chemical evolution simulations of galaxy formation under the simple stellar population (SSP) approximation. In this library, all of the necessary components concerning chemical evolution, such as initial mass functions, stellar lifetimes, yields from Type II and Type Ia supernovae, asymptotic giant branch stars, and neutron star mergers, are compiled from the literature. Various models are pre-implemented in this library so that users can choose their favorite combination of models. Subroutines of this library return released energy and masses of individual elements depending on a given event type. Since the redistribution manner of thesemore » quantities depends on the implementation of users’ simulation codes, this library leaves it up to the simulation code. As demonstrations, we carry out both one-zone, closed-box simulations and 3D simulations of a collapsing gas and dark matter system using this library. In these simulations, we can easily compare the impact of individual models on the chemical evolution of galaxies, just by changing the control flags and parameters of the library. Since this library only deals with the part of chemical evolution under the SSP approximation, any simulation codes that use the SSP approximation—namely, particle-base and mesh codes, as well as semianalytical models—can use it. This library is named “CELib” after the term “Chemical Evolution Library” and is made available to the community.« less

  20. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  1. Gamma ray constraints on the galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1992-01-01

    Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.

  2. The cosmic MeV neutrino background as a laboratory for black hole formation

    NASA Astrophysics Data System (ADS)

    Yüksel, Hasan; Kistler, Matthew D.

    2015-12-01

    Calculations of the cosmic rate of core collapses, and the associated neutrino flux, commonly assume that a fixed fraction of massive stars collapse to black holes. We argue that recent results suggest that this fraction instead increases with redshift. With relatively more stars vanishing as ;unnovae; in the distant universe, the detectability of the cosmic MeV neutrino background is improved due to their hotter neutrino spectrum, and expectations for supernova surveys are reduced. We conclude that neutrino detectors, after the flux from normal SNe is isolated via either improved modeling or the next Galactic SN, can probe the conditions and history of black hole formation.

  3. ANTARES and KM3NeT programs for the supernova neutrino detection

    NASA Astrophysics Data System (ADS)

    Kulikovskiy, Vladimir

    2017-02-01

    The currently working ANTARES neutrino telescope has capabilities to detect neutrinos produced in astrophysical transient sources. Neutrino alerts are regularly generated to trigger multi-wavelength observatories. Potential sources include gamma-ray bursts, core-collapse supernovae, and flaring active galactic nuclei. In particular, the neutrino detection together with the multi-wavelength observations may reveal hidden jets in the supernova explosions. Supernovae remnants are currently the most promising acceleration sites of the cosmic rays in our Galaxy. The neutrino emission is expected during the cosmic ray interaction with the surrounding matter. The neutrino telescopes in the Northern hemisphere have excellent visibility to the most of the galactic supernovae remnants. Recent results on the search for point-sources with the ANTARES detector and the prospects for the future KM3NeT detector are presented. Although ANTARES and KM3NeT detectors are mainly designed for high energy neutrino detection, the MeV neutrino signal from the supernova can be identified as a simultaneous increase of the counting rate of the optical modules in the detector. The noise from the optical background due to 40K decay in the sea water and the bioluminescence can be significantly reduced by using nanosecond coincidences between the nearby placed photomultipliers. This technique has been tested with the ANTARES storeys, each one consisting of three 10-inch photomultipliers, and it is further optimized for the KM3NeT telescope where the directional optical modules containing 31 3-inch photomultipliers provide very promising expectations.

  4. Hot interstellar tunnels. 1: Simulation of interacting supernova remnants

    NASA Technical Reports Server (NTRS)

    Smith, B. W.

    1976-01-01

    The theory required to build a numerical simulation of interacting supernova remnants is developed. The hot cavities within a population of remnants will become connected, with varying ease and speed, for a variety of assumed conditions in the outer shells of old remnants. Apparently neither radiative cooling nor thermal conduction in a large-scale galactic magnetic field can destroy hot cavity regions, if they grow, faster than they are reheated by supernova shock waves, but interstellar mass motions disrupt the contiguity of extensive cavities necessary for the dispersal of these shocks over a wide volume. Monte Carlo simulations show that a quasi-equilibrium is reached in the test space within 10 million yrs of the first supernova and is characterized by an average cavity filling fraction of the interstellar volume. Aspects of this equilibrium are discussed for a range of supernova rates. Two predictions are not confirmed within this range: critical growth of hot regions to encompass the entire medium, and the efficient quenching of a remnant's expansion by interaction with other cavities.

  5. HOW TO FIND GRAVITATIONALLY LENSED TYPE Ia SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, Daniel A.; Nugent, Peter E.

    2017-01-01

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts ( z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H {sub 0}, w , and Ω{sub m} via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovaemore » that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts’ photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z -band search, more than an order of magnitude improvement over previous estimates. We also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R -band search—despite the fact that this survey will not resolve a single system.« less

  6. NEW HYPERON EQUATIONS OF STATE FOR SUPERNOVAE AND NEUTRON STARS IN DENSITY-DEPENDENT HADRON FIELD THEORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banik, Sarmistha; Hempel, Matthias; Bandyopadhyay, Debades

    2014-10-01

    We develop new hyperon equation of state (EoS) tables for core-collapse supernova simulations and neutron stars. These EoS tables are based on a density-dependent relativistic hadron field theory where baryon-baryon interaction is mediated by mesons, using the parameter set DD2 for nucleons. Furthermore, light and heavy nuclei along with interacting nucleons are treated in the nuclear statistical equilibrium model of Hempel and Schaffner-Bielich which includes excluded volume effects. Of all possible hyperons, we consider only the contribution of Λs. We have developed two variants of hyperonic EoS tables: in the npΛφ case the repulsive hyperon-hyperon interaction mediated by the strangemore » φ meson is taken into account, and in the npΛ case it is not. The EoS tables for the two cases encompass a wide range of densities (10{sup –12} to ∼1 fm{sup –3}), temperatures (0.1 to 158.48 MeV), and proton fractions (0.01 to 0.60). The effects of Λ hyperons on thermodynamic quantities such as free energy per baryon, pressure, or entropy per baryon are investigated and found to be significant at higher densities. The cold, β-equilibrated EoS (with the crust included self-consistently) results in a 2.1 M {sub ☉} maximum mass neutron star for the npΛφ case, whereas that for the npΛ case is 1.95 M {sub ☉}. The npΛφ EoS represents the first supernova EoS table involving hyperons that is directly compatible with the recently measured 2 M {sub ☉} neutron stars.« less

  7. Dynamics of stellar black holes in young star clusters with different metallicities - II. Black hole-black hole binaries

    NASA Astrophysics Data System (ADS)

    Ziosi, Brunetto Marco; Mapelli, Michela; Branchesi, Marica; Tormen, Giuseppe

    2014-07-01

    In this paper, we study the formation and dynamical evolution of black hole-black hole (BH-BH) binaries in young star clusters (YSCs), by means of N-body simulations. The simulations include metallicity-dependent recipes for stellar evolution and stellar winds, and have been run for three different metallicities (Z = 0.01, 0.1 and 1 Z⊙). Following recent theoretical models of wind mass-loss and core-collapse supernovae, we assume that the mass of the stellar remnants depends on the metallicity of the progenitor stars. We find that BH-BH binaries form efficiently because of dynamical exchanges: in our simulations, we find about 10 times more BH-BH binaries than double neutron star binaries. The simulated BH-BH binaries form earlier in metal-poor YSCs, which host more massive black holes (BHs) than in metal-rich YSCs. The simulated BH-BH binaries have very large chirp masses (up to 80 M⊙), because the BH mass is assumed to depend on metallicity, and because BHs can grow in mass due to the merger with stars. The simulated BH-BH binaries span a wide range of orbital periods (10-3-107 yr), and only a small fraction of them (0.3 per cent) is expected to merge within a Hubble time. We discuss the estimated merger rate from our simulations and the implications for Advanced VIRGO and LIGO.

  8. Beta-Decay Rates for Exotic Nuclei and R-Process Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Yoshida, Takashi; Wanajo, Shinya; Kajino, Toshitaka; Otsuka, Takaharu

    Beta-decay rates for exotic nuclei at N = 126 relevant to r-process nucleosynthesis are studied by shell-model calculations. The half-lives obtained are used to study r-process nucleosynthesis in core-collapse supernova explosions and binary neutron star mergers. The element abundances are obtained up to the third peak as well as beyond the peak region up to uranium.

  9. VLBI of supernovae and gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Bartel, N.; Karimi, B.; Bietenholz, M. F.

    2017-04-01

    Supernovae and gamma-ray bursts (GRBs) are among the brightest events in the universe. Excluding Type Ia supernovae and short GRBs, they are the result of the core collapse of a massive star with material being ejectedwith speeds of several 1000 km/s to nearly the speed of light, and with a neutron star or a black hole left over as the compact remnant of the explosion. Synchrotron radiation in the radio is generated in a shell when the ejecta interact with the surrounding medium and possibly also in the central region near the compact remnant itself. VLBI has allowed resolving some of these sources and monitoring their expansion in detail, thereby revealing characteristics of the dying star, the explosion, the expanding shock front, and the expected compact remnant. We report on updates of some of the most interesting results that have been obtained with VLBI so far. Movies of supernovae are available from our website. They show the evolution from shortly after the explosion to decades thereafter, in one case revealing an emerging compact central source, which may be associated with shock interaction near the explosion center or with the stellar corpse itself, a neutron star or a black hole.

  10. Dark gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Brdar, Vedran; Kopp, Joachim; Liu, Jia

    2017-03-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p -wave process than for s -wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to standard model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this "dark gamma-ray burst" may be observable in the Čerenkov Telescope Array.

  11. Neutrino Astrophysics in Slowly Rotating Spacetimes Permeated by Nonlinear Electrodynamics Fields

    NASA Astrophysics Data System (ADS)

    Mosquera Cuesta, Herman J.

    2017-02-01

    Many theoretical and astrophysical arguments involve consideration of the effects of super strong electromagnetic fields and the rotation during the late stages of core-collapse supernovae. In what follows, we solve Einstein field equations that are minimally coupled to an arbitrary (current-free) Born-Infeld nonlinear Lagrangian L(F,G) of electrodynamics (NLED) in the slow rotation regime a ≪ r+ (outer horizon size), up to first order in a/r. We cross-check the physical properties of such NLED spacetime w.r.t. against the Maxwell one. A study case on both neutrino flavor ({ν }e\\to {ν }μ ,{ν }τ ) oscillations and flavor+helicity (spin) flip ({ν }e\\to {\\overline{ν }}μ ,τ ) gyroscopic precession proves that in the spacetime of a slowly rotating nonlinear charged black hole (RNCBH), the neutrino dynamics translates into a positive enhancement of the r-process (reduction of the electron fraction Ye < 0.5). Consequently, it guarantees successful hyperluminous core-collapse supernova explosions due to the enlargement of the number and amount of decaying nuclide species. This posits that, as far as the whole luminosity is concerned, hypernovae will be a proof of the formation of astrophysical RNCBH.

  12. Core-collapse SNe of type IIP and their progenitors: The case study of PNV J01315945+3328458

    NASA Astrophysics Data System (ADS)

    Dastidar, Raya; Kumar, Brijesh; Sahu, Devendra Kumar; Misra, Kuntal; Singh, Mridweeka; Gangopadhyay, Anjasha; Anapuma, Gadiyara Chakrapani; Pandey, Shashi Bhushan

    2018-04-01

    The type II supernovae (SNe) are hydrogen-rich cosmic explosions resulting from the collapse of massive stars. The impetus of studying individual events arises from its cosmological importance and the diverse understanding of the evolution and explosion mechanism of such events. In this work, we present the preliminary photometric and spectroscopic analysis of a recent type IIP explosion, PNV J01315945+3328458 in the galaxy NGC 582. While the initial phases of these energetic events are bright enough to be observed with the 1-2m class telescopes, the supernovae fade below the detection limit of these telescopes in the nebular phase. In addition, the class of sub-luminous events with Mv ˜ -15 or the events occurring at higher redshift, fade below the detection limit of these telescopes very early in their evolution. Large aperture telescopes like the newly installed 3.6m Devasthal Optical Telescope (DOT) will ensure a longer coverage of such events and also to probe deeper into the Universe. With the 3.6m telescope installed in Devasthal (DOT), we plan to study the progenitor environment of CCSNe to infer the metallicity at the explosion site.

  13. Search for supernova neutrino bursts with the AMANDA detector

    NASA Astrophysics Data System (ADS)

    Ahrens, J.; Bai, X.; Barouch, G.; Barwick, S. W.; Bay, R. C.; Becka, T.; Becker, K.-H.; Bertrand, D.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Boyce, M. M.; Carius, S.; Chen, A.; Chirkin, D.; Conrad, J.; Cooley, J.; Costa, C. G. S.; Cowen, D. F.; Dalberg, E.; DeYoung, T.; Desiati, P.; Dewulf, J.-P.; Doksus, P.; Edsjö, J.; Ekström, P.; Feser, T.; Gaug, M.; Goldschmidt, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Hardtke, R.; Hellwig, M.; Heukenkamp, H.; Hill, G. C.; Hulth, P. O.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Kim, J.; Koci, B.; Köpke, L.; Kowalski, M.; Lamoureux, J. I.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Loaiza, P.; Lowder, D. M.; Madsen, J.; Marciniewski, P.; Matis, H. S.; Miller, T. C.; Minaeva, Y.; Miočinović, P.; Mock, P. C.; Morse, R.; Neunhöffer, T.; Niessen, P.; Nygren, D. R.; Ogelman, H.; Pérez de los Heros, C.; Porrata, R.; Price, P. B.; Rawlins, K.; Reed, C.; Rhode, W.; Richter, S.; Rodríguez Martino, J.; Romenesko, P.; Ross, D.; Sander, H.-G.; Schmidt, T.; Schneider, D.; Schwarz, R.; Silvestri, A.; Solarz, M.; Spiczak, G. M.; Spiering, C.; Starinsky, N.; Steele, D.; Steffen, P.; Stokstad, R. G.; Streicher, O.; Sudhoff, P.; Taboada, I.; Thollander, L.; Thon, T.; Tilav, S.; Vander Donckt, M.; Walck, C.; Weinheimer, C.; Wiebusch, C. H.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.

    2002-02-01

    The core collapse of a massive star in the Milky Way will produce a neutrino burst, intense enough to be detected by existing underground detectors. The AMANDA neutrino telescope located deep in the South Pole ice can detect MeV neutrinos by a collective rate increase in all photo-multipliers on top of dark noise. The main source of light comes from positrons produced in the CC reaction of anti-electron neutrinos on free protons ν¯e+ p→ e++ n. This paper describes the first supernova search performed on the full sets of data taken during 1997 and 1998 (215 days of live time) with 302 of the detector's optical modules. No candidate events resulted from this search. The performance of the detector is calculated, yielding a 70% coverage of the galaxy with one background fake per year with 90% efficiency for the detector configuration under study. An upper limit at the 90% c.l. on the rate of stellar collapses in the Milky Way is derived, yielding 4.3 events per year. A trigger algorithm is presented and its performance estimated. Possible improvements of the detector hardware are reviewed.

  14. The joint search for gravitational wave and low energy neutrino signals from core-collapse supernovae: methodology and status report

    NASA Astrophysics Data System (ADS)

    Gromov, M. B.; Casentini, C.

    2017-09-01

    The detection of gravitational waves opens a new era in physics. Now it's possible to observe the Universe using a fundamentally new way. Gravitational waves potentially permit getting insight into the physics of Core-Collapse Supernovae (CCSNe). However, due to significant uncertainties on the theoretical models of gravitational wave emission associated with CCSNe, benefits may come from multi-messenger observations of CCSNe. Such benefits include increased confidence in detection, extending the astrophysical reach of the detectors and allowing deeper understanding of the nature of the phenomenon. Fortunately, CCSNe have a neutrino signature confirmed by the observation of SN1987A. The gravitational and neutrino signals propagate with the speed of light and without significant interaction with interstellar matter. So that they must reach an observer on the Earth almost simultaneously. These facts open a way to search for the correlation between the signals. However, this method is limited by the sensitivity of modern neutrino detectors that allow to observe CCSNe only in the Local Group of galaxies. The methodology and status of a proposed joint search for the correlation signals are presented here.

  15. The joint search for gravitational wave and low energy neutrino signals from core-collapse supernovae: methodology and status report

    NASA Astrophysics Data System (ADS)

    Gromov, M. B.; Casentini, C.

    2017-09-01

    The detection of gravitational waves opens a new era in physics. Now it's possible to observe the Universe using a fundamentally new way. Gravitational waves potentially permit getting insight into the physics of Core-Collapse Supernovae (CCSNe). However, due to signi cant uncertainties on the theoretical models of gravitational wave emission associated with CCSNe, bene ts may come from multi-messenger observations of CCSNe. Such bene ts include increased con dence in detection, extending the astrophysical reach of the detectors and allowing deeper understanding of the nature of the phenomenon. Fortunately, CCSNe have a neutrino signature con rmed by the observation of SN1987A. The gravitational and neutrino signals propagate with the speed of light and without signi cant interaction with interstellar matter. So that they must reach an observer on the Earth almost simultaneously. These facts open a way to search for the correlation between the signals. However, this method is limited by the sensitivity of modern neutrino detectors that allow to observe CCSNe only in the Local Group of galaxies. The methodology and status of a proposed joint search for the correlation signals are presented here.

  16. The ν process in the innermost supernova ejecta

    NASA Astrophysics Data System (ADS)

    Sieverding, Andre; Martínez Pinedo, Gabriel; Langanke, Karlheinz; Harris, J. Austin; Hix, W. Raphael

    2018-01-01

    The neutrino-induced nucleosynthesis (ν process) in supernova explosions of massive stars of solar metallicity with initial main sequence masses between 13 and 30 M⊙ has been studied with an analytic explosion model using a new extensive set of neutrino-nucleus cross-sections and spectral properties that agree with modern supernova simulations. The production factors for the nuclei 7Li, 11B, 19F, 138La and 180Ta, are still significantly enhanced but do not reproduce the full solar abundances. We study the possible contribution of the innermost supernova eject to the production of the light elements 7Li and 11B with tracer particles based on a 2D supernova simulation of a 12 M⊙ progenitor and conclude, that a contribution exists but is negligible for the total yield for this explosion model.

  17. Infrared Emission from Supernova Remnants: Formation and Destruction of Dust

    NASA Astrophysics Data System (ADS)

    Williams, Brian J.; Temim, Tea

    2016-09-01

    We review the observations of dust emission in supernova remnants (SNRs) and supernovae (SNe). Theoretical calculations suggest that SNe, particularly core-collapse, should make significant quantities of dust, perhaps as much as a solar mass. Observations of extragalactic SNe have yet to find anywhere near this amount, but this may be the result of observational limitations. SN 1987A, in the process of transitioning from a SN to an SNR, does show signs of a significant amount of dust forming in its ejecta, but whether this dust will survive the passage of the reverse shock to be injected into the ISM is unknown. IR observations of SNRs have not turned up significant quantities of dust, and the dust that is observed is generally swept up by the forward shock, rather than created in the ejecta. Because the shock waves also destroy dust in the ISM, we explore the question of whether SNe might be net destroyers, rather than net creators of dust in the universe.

  18. Infrared Emission from Supernova Remnants: Formation and Destruction of Dust

    NASA Astrophysics Data System (ADS)

    Williams, Brian J.; Temim, Tea

    We review the observations of dust emission in supernova remnants (SNRs) and supernovae (SNe). Theoretical calculations suggest that SNe, particularly core-collapse, should make significant quantities of dust, perhaps as much as a solar mass. Observations of extragalactic SNe have yet to find anywhere near this amount, but this may be the result of observational limitations. SN 1987A, in the process of transitioning from a SN to an SNR, does show signs of a significant amount of dust forming in its ejecta, but whether this dust will survive the passage of the reverse shock to be injected into the ISM is unknown. IR observations of SNRs have not turned up significant quantities of dust, and the dust that is observed is generally swept up by the forward shock, rather than created in the ejecta. Because the shock waves also destroy dust in the ISM, we explore the question of whether SNe might be net destroyers, rather than net creators of dust in the universe.

  19. Predicting the nature of supernova progenitors

    NASA Astrophysics Data System (ADS)

    Groh, Jose H.

    2017-09-01

    Stars more massive than about 8 solar masses end their lives as a supernova (SN), an event of fundamental importance Universe-wide. The physical properties of massive stars before the SN event are very uncertain, both from theoretical and observational perspectives. In this article, I briefly review recent efforts to predict the nature of stars before death, in particular, by performing coupled stellar evolution and atmosphere modelling of single stars in the pre-SN stage. These models are able to predict the high-resolution spectrum and broadband photometry, which can then be directly compared with the observations of core-collapse SN progenitors. The predictions for the spectral types of massive stars before death can be surprising. Depending on the initial mass and rotation, single star models indicate that massive stars die as red supergiants, yellow hypergiants, luminous blue variables and Wolf-Rayet stars of the WN and WO subtypes. I finish by assessing the detectability of SN Ibc progenitors. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  20. Supernova constraints on neutrino oscillation and EoS for proto-neutron star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.

    2014-05-02

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We here discuss how to determine the neutrino temperatures and propose a method to determine still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. Combining the recent experimental constraints on θ{sub 13} with isotopic ratios of the light elements discovered in presolar grains from the Murchison meteorite, we show that our methodmore » suggests at a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.« less

Top