Sample records for collapse therapy

  1. Upper-Airway Collapsibility and Loop Gain Predict the Response to Oral Appliance Therapy in Patients with Obstructive Sleep Apnea

    PubMed Central

    Andara, Christopher; Landry, Shane; Sands, Scott A.; Joosten, Simon A.; Owens, Robert L.; White, David P.; Hamilton, Garun S.; Wellman, Andrew

    2016-01-01

    Rationale: Oral appliances (OAs) are commonly used as an alternative treatment to continuous positive airway pressure for patients with obstructive sleep apnea (OSA). However, OAs have variable success at reducing the apnea–hypopnea index (AHI), and predicting responders is challenging. Understanding this variability may lie with the recognition that OSA is a multifactorial disorder and that OAs may affect more than just upper-airway anatomy/collapsibility. Objectives: The objectives of this study were to determine how OA alters AHI and four phenotypic traits (upper-airway anatomy/collapsibility and muscle function, loop gain, and arousal threshold), and baseline predictors of which patients gain the greatest benefit from therapy. Methods: In a randomized crossover study, 14 patients with OSA attended two sleep studies with and without their OA. Under each condition, AHI and the phenotypic traits were assessed. Multiple linear regression was used to determine independent predictors of the reduction in AHI. Measurements and Main Results: OA therapy reduced the AHI (30 ± 5 vs. 11 ± 2 events/h; P < 0.05), which was driven by improvements in upper-airway anatomy/collapsibility under passive (1.9 ± 0.7 vs. 4.7 ± 0.6 L/min; P < 0.005) and active conditions (2.4 ± 0.9 vs. 6.2 ± 0.4 L/min; P < 0.001). No changes were seen in muscle function, loop gain, or the arousal threshold. Using multivariate analysis, baseline passive upper-airway collapsibility and loop gain were independent predictors of the reduction in AHI (r2 = 0.70; P = 0.001). Conclusions: Our findings suggest that OA therapy improves the upper-airway collapsibility under passive and active conditions. Importantly, a greater response to therapy occurred in those patients with a mild anatomic compromise and a lower loop gain. PMID:27181367

  2. The Safety and efficacy of a new self-expandable intratracheal nitinol stent for the tracheal collapse in dogs

    PubMed Central

    Kim, Joon-young; Han, Hyun-jung; Yun, Hun-young; Lee, Bora; Jang, Ha-young; Eom, Ki-dong; Park, Hee-myung

    2008-01-01

    To evaluate the potential utility of a self-expandable intratracheal nitinol stent with flared ends for the treatment of tracheal collapse in dogs, endotracheal stenting therapy was performed under fluoroscopic guidance in four dogs with severe tracheal collapse. During the 4 to 7 month follow-up, after stent implantation, clinical signs, including dyspnea and respiratory distress, dramatically improved in all dogs. The radiographs showed that the implanted stents improved the tracheal collapse, and there were no side effects such as collapse, shortening or migration of the stents. In conclusion, the self-expandable intratracheal nitinol stents provided adequate stability to the trachea and were effective for attenuating the clinical signs associated with severe tracheal collapse. PMID:18296893

  3. Lung deformations and radiation-induced regional lung collapse in patients treated with stereotactic body radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diot, Quentin, E-mail: quentin.diot@ucdenver.edu; Kavanagh, Brian; Vinogradskiy, Yevgeniy

    2015-11-15

    Purpose: To differentiate radiation-induced fibrosis from regional lung collapse outside of the high dose region in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Lung deformation maps were computed from pre-treatment and post-treatment computed tomography (CT) scans using a point-to-point translation method. Fifty anatomical landmarks inside the lung (vessel or airway branches) were matched on planning and follow-up scans for the computation process. Two methods using the deformation maps were developed to differentiate regional lung collapse from fibrosis: vector field and Jacobian methods. A total of 40 planning and follow-ups CT scans were analyzed for 20more » lung SBRT patients. Results: Regional lung collapse was detected in 15 patients (75%) using the vector field method, in ten patients (50%) using the Jacobian method, and in 12 patients (60%) by radiologists. In terms of sensitivity and specificity the Jacobian method performed better. Only weak correlations were observed between the dose to the proximal airways and the occurrence of regional lung collapse. Conclusions: The authors presented and evaluated two novel methods using anatomical lung deformations to investigate lung collapse and fibrosis caused by SBRT treatment. Differentiation of these distinct physiological mechanisms beyond what is usually labeled “fibrosis” is necessary for accurate modeling of lung SBRT-induced injuries. With the help of better models, it becomes possible to expand the therapeutic benefits of SBRT to a larger population of lung patients with large or centrally located tumors that were previously considered ineligible.« less

  4. Response to a combination of oxygen and a hypnotic as treatment for obstructive sleep apnoea is predicted by a patient's therapeutic CPAP requirement.

    PubMed

    Landry, Shane A; Joosten, Simon A; Sands, Scott A; White, David P; Malhotra, Atul; Wellman, Andrew; Hamilton, Garun S; Edwards, Bradley A

    2017-08-01

    Upper airway collapsibility predicts the response to several non-continuous positive airway pressure (CPAP) interventions for obstructive sleep apnoea (OSA). Measures of upper airway collapsibility cannot be easily performed in a clinical context; however, a patient's therapeutic CPAP requirement may serve as a surrogate measure of collapsibility. The present work aimed to compare the predictive use of CPAP level with detailed physiological measures of collapsibility. Therapeutic CPAP levels and gold-standard pharyngeal collapsibility measures (passive pharyngeal critical closing pressure (P crit ) and ventilation at CPAP level of 0 cmH 2 O (V passive )) were retrospectively analysed from a randomized controlled trial (n = 20) comparing the combination of oxygen and eszopiclone (treatment) versus placebo/air control. Responders (9/20) to treatment were defined as those who exhibited a 50% reduction in apnoea/hypopnoea index (AHI) plus an AHI<15 events/h on-therapy. Responders to treatment had a lower therapeutic CPAP requirement compared with non-responders (6.6 (5.4-8.1)  cmH 2 O vs 8.9 (8.4-10.4) cmH 2 O, P = 0.007), consistent with their reduced collapsibility (lower P crit , P = 0.017, higher V passive P = 0.025). Therapeutic CPAP level provided the highest predictive accuracy for differentiating responders from non-responders (area under the curve (AUC) = 0.86 ± 0.9, 95% CI: 0.68-1.00, P = 0.007). However, both P crit (AUC = 0.83 ± 0.11, 95% CI: 0.62-1.00, P = 0.017) and V passive (AUC = 0.77 ± 0.12, 95% CI: 0.53-1.00, P = 0.44) performed well, and the difference in AUC for these three metrics was not statistically different. A therapeutic CPAP level ≤8 cmH 2 O provided 78% sensitivity and 82% specificity (positive predictive value = 78%, negative predictive value = 82%) for predicting a response to these therapies. Therapeutic CPAP requirement, as a surrogate measure of pharyngeal collapsibility, predicts the response to non-anatomical therapy (oxygen and eszopiclone) for OSA. © 2017 Asian Pacific Society of Respirology.

  5. Fracture and Collapse of Balloon-Expandable Stents in the Bilateral Common Iliac Arteries Due to Shiatsu Massage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichihashi, Shigeo, E-mail: shigeoichihashi@yahoo.co.jp; Higashiura, Wataru; Itoh, Hirofumi

    2012-12-15

    We report a case of stent fracture and collapse of balloon-expandable stents caused by shiatsu massage. A 76-year-old man presented with complaints of intermittent claudication of the right lower extremity. Stenoses of the bilateral common iliac arteries (CIAs) were detected. Balloon-expandable stents were deployed in both CIAs, resulting in resolution of symptoms. Five months later, pelvis x-ray showed collapse of both stents. Despite the stent collapse, the patient was asymptomatic, and his ankle brachial index values were within the normal range. Further history showed that the patient underwent daily shiatsu therapy in the umbilical region, which may have triggered collapsemore » of the stent. Physicians should advise patients to avoid compression of the abdominal wall after implantation of a stent in the iliac artery.« less

  6. Difficulty in tracheal extubation followed by tracheal collapse after balloon dilatation for tracheal stenosis therapy: A case report.

    PubMed

    Li, Nana; Zhu, Linjia; Sun, Jie; Pan, Yinbing; Gao, Mei

    2018-06-01

    Tracheobronchomalacia (TBM) refers to the weakening trachea or the trachea loss of structural integrity of airway cartilaginous structures. It causes tracheal stenosis, resulting in significantly high rates of mortality. Bronchoplasty by high-pressure balloon dilation under general anesthesia is a simple but effective and safe method to treat tracheobronchial stenosis. However, recurrent postoperative dyspnea after extubation due to tracheal collapse is still a challenge for anesthetists. A 52-year-old man weighing 72 kg was scheduled for balloon dilatation surgery under general anesthesia because of breathing difficulties caused by tracheal stenosis. His previous medical history included rheumatoid arthritis, obstructive sleep apnea syndrome (OSAS), chronic bronchitis and a history of tracheal intubation. Laryngeal computerized tomography confirmed the stenosis at the level of thyroid gland. The tracheal collapse after balloon dilatation for tracheal stenosis therapy. Postoperatively, the patient presented with more serious and repetitive symptoms of dyspnea after extubation when compared to that before treatment. So, we had to re-insert the laryngeal mask airway (LMA), and exclude some anesthesia-associated factors, such as laryngospasm, bronchospasm and so on. After a series of treatments, we ultimately found the cause in time (the airway collapsed), and succeeded in tracheal extubation after the stent was inserted. The patient recovered well and reported high satisfaction with anesthesia management. In such an emergency even, the anesthesiologist should take valuable treatments to ensure the patient's effective ventilation. If the anesthesia-related factors can be eliminated, tracheomalacia or airway collapse should be considered whenever dyspnea occurs in the patients who unexpectedly fail to be extubated.

  7. Tuberculosis Fluoroscopy

    Cancer.gov

    Follow-up though Dec 31, 2002 has been completed for a study of site-specific cancer mortality among tuberculosis patients treated with artificial lung collapse therapy in Massachusetts tuberculosis sanatoria (1930-1950).

  8. Estimation of Pharyngeal Collapsibility During Sleep by Peak Inspiratory Airflow.

    PubMed

    Azarbarzin, Ali; Sands, Scott A; Taranto-Montemurro, Luigi; Oliveira Marques, Melania D; Genta, Pedro R; Edwards, Bradley A; Butler, James; White, David P; Wellman, Andrew

    2017-01-01

    Pharyngeal critical closing pressure (Pcrit) or collapsibility is a major determinant of obstructive sleep apnea (OSA) and may be used to predict the success/failure of non-continuous positive airway pressure (CPAP) therapies. Since its assessment involves overnight manipulation of CPAP, we sought to validate the peak inspiratory flow during natural sleep (without CPAP) as a simple surrogate measurement of collapsibility. Fourteen patients with OSA attended overnight polysomnography with pneumotachograph airflow. The middle third of the night (non-rapid eye movement sleep [NREM]) was dedicated to assessing Pcrit in passive and active states via abrupt and gradual CPAP pressure drops, respectively. Pcrit is the extrapolated CPAP pressure at which flow is zero. Peak and mid-inspiratory flow off CPAP was obtained from all breaths during sleep (excluding arousal) and compared with Pcrit. Active Pcrit, measured during NREM sleep, was strongly correlated with both peak and mid-inspiratory flow during NREM sleep (r = -0.71, p < .005 and r = -0.64, p < .05, respectively), indicating that active pharyngeal collapsibility can be reliably estimated from simple airflow measurements during polysomnography. However, there was no significant relationship between passive Pcrit, measured during NREM sleep, and peak or mid-inspiratory flow obtained from NREM sleep. Flow measurements during REM sleep were not significantly associated with active or passive Pcrit. Our study demonstrates the feasibility of estimating active Pcrit using flow measurements in patients with OSA. This method may enable clinicians to estimate pharyngeal collapsibility without sophisticated equipment and potentially aid in the selection of patients for non- positive airway pressure therapies. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  9. Cellular membrane collapse by atmospheric-pressure plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kangil; Sik Yang, Sang, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr; Jun Ahn, Hak

    2014-01-06

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation,more » and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.« less

  10. Therapeutic CPAP Level Predicts Upper Airway Collapsibility in Patients With Obstructive Sleep Apnea.

    PubMed

    Landry, Shane A; Joosten, Simon A; Eckert, Danny J; Jordan, Amy S; Sands, Scott A; White, David P; Malhotra, Atul; Wellman, Andrew; Hamilton, Garun S; Edwards, Bradley A

    2017-06-01

    Upper airway collapsibility is a key determinant of obstructive sleep apnea (OSA) which can influence the efficacy of certain non-continuous positive airway pressure (CPAP) treatments for OSA. However, there is no simple way to measure this variable clinically. The present study aimed to develop a clinically implementable tool to evaluate the collapsibility of a patient's upper airway. Collapsibility, as characterized by the passive pharyngeal critical closing pressure (Pcrit), was measured in 46 patients with OSA. Associations were investigated between Pcrit and data extracted from patient history and routine polysomnography, including CPAP titration. Therapeutic CPAP level, demonstrated the strongest relationship to Pcrit (r2=0.51, p < .001) of all the variables investigated including apnea-hypopnea index, body mass index, sex, and age. Patients with a mildly collapsible upper airway (Pcrit ≤ -2 cmH2O) had a lower therapeutic CPAP level (6.2 ± 0.6 vs. 10.3 ± 0.4 cmH2O, p < .001) compared to patients with more severe collapsibility (Pcrit > -2 cmH2O). A therapeutic CPAP level ≤8.0 cmH2O was sensitive (89%) and specific (84%) for detecting a mildly collapsible upper airway. When applied to the independent validation data set (n = 74), this threshold maintained high specificity (91%) but reduced sensitivity (75%). Our data demonstrate that a patient's therapeutic CPAP requirement shares a strong predictive relationship with their Pcrit and may be used to accurately differentiate OSA patients with mild airway collapsibility from those with moderate-to-severe collapsibility. Although this relationship needs to be confirmed prospectively, our findings may provide clinicians with better understanding of an individual patient's OSA phenotype, which ultimately could assist in determining which patients are most likely to respond to non-CPAP therapies. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  11. No air leak on PPV does not exclude tracheobronchial injury after blunt chest trauma.

    PubMed

    Ong, Victor Yeok Kein; Tan, Kenneth Hock Soon

    2008-04-01

    Tracheobronchial injuries are commonly associated with persistent air leak with pneumothoraces especially when on positive pressure ventilation (PPV). Injuries with absence of these features together with collapse of the lung and consequent low arterial oxygen tension while on PPV are less well recognised. We present a patient with traumatic aortic dissection and preoperatively undiagnosed complete transaction of the left main bronchus following blunt chest trauma. He had no persistent air leak with lower lung lobe collapse despite undergoing PPV and had low arterial oxygen tension which failed to respond to appropriate oxygen therapy.

  12. Delayed vertebral body collapse after stereotactic radiosurgery and radiofrequency ablation: Case report with histopathologic-MRI correlation.

    PubMed

    Wallace, Adam N; Vyhmeister, Ross; Hsi, Andy C; Robinson, Clifford G; Chang, Randy O; Jennings, Jack W

    2015-12-01

    Stereotactic radiosurgery and percutaneous radiofrequency ablation are emerging therapies for pain palliation and local control of spinal metastases. However, the post-treatment imaging findings are not well characterized and the risk of long-term complications is unknown. We present the case of a 46-year-old woman with delayed vertebral body collapse after stereotactic radiosurgery and radiofrequency ablation of a painful lumbar metastasis. Histopathologic-MRI correlation confirmed osteonecrosis as the underlying etiology and demonstrated that treatment-induced vascular fibrosis and tumor progression can have identical imaging appearances. © The Author(s) 2015.

  13. Bronchoscopic phototherapy at comparable dose rates: Early results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pass, H.I.; Delaney, T.; Smith, P.D.

    1989-05-01

    Photodynamic therapy is a recently introduced treatment for surface malignancies. Since January 1987, 10 patients with endobronchial neoplasms have had bronchoscopic photodynamic therapy at similar dose rates (400 mW/cm) for total atelectasis (2), carinal narrowing with respiratory insufficiency (2), or partial obstruction without collapse (4). Two patients underwent photodynamic therapy as a preliminary to immunotherapy. Histologies included endobronchial metastases (colon, ovary, melanoma, and sarcoma, 1 each; and renal cell, 3) and primary lung cancer (3). The 2 patients with total atelectasis had complete reexpansion after photodynamic therapy, which permitted eventual sleeve lobectomy in 1. Carinal narrowing was ameliorated in themore » 2 patients seen with inspiratory stridor, thereby permitting hospital discharge. Endoscopically resected fragments after photodynamic therapy exhibited avascular necrosis. These data support further controlled studies of photodynamic therapy by thoracic surgical oncologists to define its limitations as well as to improve and expand its efficacy as a palliative or surgical adjuvant.« less

  14. Cavitation in ultrasound and shockwave therapy

    NASA Astrophysics Data System (ADS)

    Colonius, Tim

    2014-11-01

    Acoustic waves, especially high-intensity ultrasound and shock waves, are used for medical imaging and intra- and extra-corporeal manipulation of cells, tissue, and urinary calculi. Waves are currently used to treat kidney stone disease, plantar fasciitis, and bone nonunion, and they are being investigated as a technique to ablate cancer tumors and mediate drug delivery. In many applications, acoustic waves induce the expansion and collapse of preexisting or newly cavitating bubbles whose presence can either mediate the generation of localized stresses or lead to collateral damage, depending on how effectively they can be controlled. We describe efforts aimed at simulating the collapse of bubbles, both individually and in clusters, with the aim to characterize the induced mechanical stresses and strains. To simulate collapse of one or a few bubbles, compressible Euler and Navier-Stokes simulations of multi-component materials are performed with WENO-based shock and interface capturing schemes. Repetitive insonification generates numerous bubbles that are difficult to resolve numerically. Such clouds are also important in traditional engineering applications such as caveating hydrofoils. Models that incorporate the dynamics of an unresolved dispersed phase consisting of the bubble cloud are also developed. The results of several model problems including bubble collapse near rigid surfaces, bubble collapse near compliant surfaces and in small capillaries are analyzed. The results are processed to determine the potential for micron-sized preexisting gas bubbles to damage capillaries. The translation of the fundamental fluid dynamics into improvements in the design and clinical application of shockwave lithotripters will be discussed. NIH Grant PO1-DK043881.

  15. Complications of silicone stent insertion in patients with expiratory central airway collapse.

    PubMed

    Murgu, Septimiu D; Colt, Henri G

    2007-12-01

    Silicone stent insertion is an alternative treatment for expiratory central airway collapse. This study evaluates the complications (mucus plugging, migration, and granulation tissue) associated with stenting in patients who failed medical therapy and were not surgical candidates. Chart review from 15 consecutive patients treated by silicone stent insertion was done over a 2-year period. Outcomes included (1) changes in functional class, extent and severity of airway collapse (graded from 1 to 4 by using a multidimensional system), procedure- and stent-related complications at 48 hours after stent insertion; (2) frequency of stent-related complications; and (3) frequency of emergent flexible and rigid bronchoscopy (scheduled or emergent) over the follow-up period. Mean functional class and severity and extent of airway collapse significantly improved within 48 hours after treatment (p < 0.05). There were no perioperative deaths. Stent-related complications within 48 hours after stent insertion occurred in 3 patients (1 granulation, 1 migration, and 1 mucus plugging). The mean duration of follow-up for the 12 patients who underwent clinical and bronchoscopic follow-up was 188 days. Twenty-six stent-related complications (12 mucus plugs, 8 migrations, and 6 granulation tissues) were seen in 10 of the 12 patients. Five emergent flexible bronchoscopies and 14 rigid bronchoscopies (6 of which were emergent) were performed during the follow-up period. Silicone stent insertion improves functional status immediately after intervention in patients with expiratory central airway collapse, but is associated with a high rate of stent-related complications and need for repeat bronchoscopic interventions.

  16. Photodynamic effects of pyropheophorbide-a methyl ester in nasopharyngeal carcinoma cells.

    PubMed

    Xu, Chuan Shan; Leung, Albert Wing Nang

    2006-08-01

    Nasopharyngeal carcinoma (NPC) is one of the most common cancers, and exploring novel therapeutic modalities will improve the clinical outcomes. It has been confirmed that photodynamic therapy can efficiently deactivate malignant cells. The aim of the present study was to explore the photodynamic effects of pyropheophorbide-a methyl ester (MPPa) in CNE2 nasopharyngeal carcinoma cells. CNE2 cells were subjected to photodynamic therapy with MPPa, in which the drug concentration was 0.25 to 4 microM and light energy 1 to 8 J/cm(2). Photodynamic toxicity was investigated 24 h after treatment. Apoptosis was determined using flow cytometry with annexin V-FITC and propidum iodine staining and with nuclear staining with Hoechst 33258. The mitochondrial membrane potential (DeltaPsim) was evaluated by Rhodamine 123 assay. There was no dark cytotoxicity of MPPa in the CNE2 cells at doses of 0.25-4 microM, and MPPa resulted in dose- and light-dependent phototoxicity. The apoptotic rate 8 h after PDT with MPPa (2 microM) increased to 16.43% under a light energy of 2 J/cm(2). Mitochondrial membrane potential (DeltaPsim) collapsed when the CNE2 cells were exposed to 2 microM MPPa for 20 h and then 2 J/cm(2) irradiation. Photodynamic therapy with MPPa significantly enhanced apoptosis and the collapse of DeltaPsim. This can be developed for treating nasopharyngeal carcinoma.

  17. Hypertensive emergency due to pheochromocytoma crisis complicated with refractory hemodynamic collapse.

    PubMed

    Hayıroğlu, Mert İlker; Yıldırımtürk, Özlem; Bozbay, Mehmet; Eren, Mehmet; Pehlivanoğlu, Seçkin

    2015-12-01

    Hypertensive emergency usually appears in older patients with previous recurrent episodes, and is among the most frequent admissions to emergency departments. A 29-year-old woman was referred to our clinic with the diagnosis of hypertensive emergency. The patient complained of severe headache, dyspnea, palpitation, diaphoresis, and confusion due to hypertensive encephalopathy. Her blood pressure was 250/150 mmHg on admission. At the referral hospital, the patient had undergone cranial CT because of her confused state and this excluded acute cerebral hemorrhage. Also at that hospital, thoracoabdominal CT for differential diagnosis depicted an adrenal mass with a necrotic core. After admission to our clinic, initial control of excessive blood pressure was not achieved despite high dose intravenous nitrate therapy. Thereafter intravenous esmolol treatment was initiated simultaneously with oral alpha blocker therapy in order to counterbalance the unopposed alpha adrenergic activity with beta blocker therapy. After 12 hours, sudden onset of hypotension developed and deepened despite IV saline, inotropic and vasopressor agents such as IV dopamine, noradrenaline and adrenaline. The patient died at the 24th hour due to hemodynamic collapse as a result of hyperadrenergic state due to possible pheochromocytoma crisis. This case is an exceptional example of hypertensive emergency secondary to fulminant pheochromocytoma crisis failing to respond to intensive antihypertensive treatment, and in which patient death was unavoidable due to uncontrolled excessive adrenergic activity which led to profound cardiogenic shock.

  18. [Tracheobronchoplasty for Severe Diffuse Tracheomalacia].

    PubMed

    Hoffmann, H; Gompelmann, D; Heußel, C P; Dienemann, H; Eberhardt, R

    2016-09-01

    Patients with diffuse airway instability due to tracheobronchomalacia or excessive dynamic airway collapse are typically highly symptomatic, with marked dyspnoea, recurrent bronchopulmonary infections and excruciating intractable cough. Silicone stents achieve immediate symptom control, but are - due to the typical complications associated with stent treatment - usually not an option for long-term treatment. The aim of surgical intervention is definitive stabilisation of the trachea and of both main bronchi by posterior splinting of the Paries membranaceus with a polypropylene mesh. This operation is an appropriate treatment option for patients with documented severe tracheobronchomalacia or excessive dynamic airway collapse and is ultimately the only therapy that can achieve permanent symptom control. The success of the operation, however, depends on many factors and requires close interdisciplinary collaboration. Georg Thieme Verlag KG Stuttgart · New York.

  19. Functional Cardiorespiratory Toxicity Screening of Candidate Antiparasitic Drugs and Antidotes for Chemical Poisons. Study of the Effects of Drugs Upon the Cardiovascular and Respiratory Systems

    DTIC Science & Technology

    1988-06-01

    and Hamilton, 1971). This lecithin -contain- ing substance keeps alveoli from collapsing and allows larger Increases in lung volume to occur without a...1979; Caldwell and Nash, 1977). Use of mefioqulne following chloroquine administration where resistance to chioroquine therapy might arise is a distinct

  20. Nonstent Combination Interventional Therapy for Treatment of Benign Cicatricial Airway Stenosis

    PubMed Central

    Qiu, Xiao-Jian; Zhang, Jie; Wang, Ting; Pei, Ying-Hua; Xu, Min

    2015-01-01

    Background: Benign cicatricial airway stenosis (BCAS) is a life-threatening disease. While there are numerous therapies, all have their defects, and stenosis can easily become recurrent. This study aimed to investigate the efficacy and complications of nonstent combination interventional therapy (NSCIT) when used for the treatment of BCAS of different causes and types. Methods: This study enrolled a cohort of patients with BCAS resulting from tuberculosis, intubation, tracheotomy, and other origins. The patients were assigned to three groups determined by their type of stenosis: Web-like stenosis, granulation stenosis, and complex stenosis, and all patients received NSCIT. The efficacy and complications of treatment in each group of patients were observed. The Chi-square test, one-factor analysis of variance (ANOVA), and the paired t-test were used to analyze different parameters. Results: The 10 patients with web-like stenosis and six patients with granulation stenosis exhibited durable remission rates of 100%. Among 41 patients with complex stenosis, 36 cases (88%) experienced remission and 29 cases (71%) experienced durable remission. When five patients with airway collapse were eliminated from the analysis, the overall remission rate was 97%. The average treatment durations for patients with web-like stenosis, granulation stenosis, and complex stenosis were 101, 21, and 110 days, respectively, and the average number of treatments was five, two, and five, respectively. Conclusions: NSCIT demonstrated good therapeutic efficacy and was associated with few complications. However, this approach was ineffective for treating patients with airway collapse or malacia. PMID:26265607

  1. Nonstent Combination Interventional Therapy for Treatment of Benign Cicatricial Airway Stenosis.

    PubMed

    Qiu, Xiao-Jian; Zhang, Jie; Wang, Ting; Pei, Ying-Hua; Xu, Min

    2015-08-20

    Benign cicatricial airway stenosis (BCAS) is a life-threatening disease. While there are numerous therapies, all have their defects, and stenosis can easily become recurrent. This study aimed to investigate the efficacy and complications of nonstent combination interventional therapy (NSCIT) when used for the treatment of BCAS of different causes and types. This study enrolled a cohort of patients with BCAS resulting from tuberculosis, intubation, tracheotomy, and other origins. The patients were assigned to three groups determined by their type of stenosis: Web-like stenosis, granulation stenosis, and complex stenosis, and all patients received NSCIT. The efficacy and complications of treatment in each group of patients were observed. The Chi-square test, one-factor analysis of variance (ANOVA), and the paired t -test were used to analyze different parameters. The 10 patients with web-like stenosis and six patients with granulation stenosis exhibited durable remission rates of 100%. Among 41 patients with complex stenosis, 36 cases (88%) experienced remission and 29 cases (71%) experienced durable remission. When five patients with airway collapse were eliminated from the analysis, the overall remission rate was 97%. The average treatment durations for patients with web-like stenosis, granulation stenosis, and complex stenosis were 101, 21, and 110 days, respectively, and the average number of treatments was five, two, and five, respectively. NSCIT demonstrated good therapeutic efficacy and was associated with few complications. However, this approach was ineffective for treating patients with airway collapse or malacia.

  2. Antagonistic Effects of BACE1 and APH1B-γ-Secretase Control Axonal Guidance by Regulating Growth Cone Collapse.

    PubMed

    Barão, Soraia; Gärtner, Annette; Leyva-Díaz, Eduardo; Demyanenko, Galina; Munck, Sebastian; Vanhoutvin, Tine; Zhou, Lujia; Schachner, Melitta; López-Bendito, Guillermina; Maness, Patricia F; De Strooper, Bart

    2015-09-01

    ΒACE1 is the major drug target for Alzheimer's disease, but we know surprisingly little about its normal function in the CNS. Here, we show that this protease is critically involved in semaphorin 3A (Sema3A)-mediated axonal guidance processes in thalamic and hippocampal neurons. An active membrane-bound proteolytic CHL1 fragment is generated by BACE1 upon Sema3A binding. This fragment relays the Sema3A signal via ezrin-radixin-moesin (ERM) proteins to the neuronal cytoskeleton. APH1B-γ-secretase-mediated degradation of this fragment stops the Sema3A-induced collapse and sensitizes the growth cone for the next axonal guidance cue. Thus, we reveal a cycle of proteolytic activity underlying growth cone collapse and restoration used by axons to find their correct trajectory in the brain. Our data also suggest that BACE1 and γ-secretase inhibition have physiologically opposite effects in this process, supporting the idea that combination therapy might attenuate some of the side effects associated with these drugs. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Reexpansion pulmonary edema: review of pediatric cases.

    PubMed

    Kira, Shinichiro

    2014-03-01

    Reexpansion pulmonary edema (RPE) is an increased permeability pulmonary edema that usually occurs in the reexpanded lung after several days of lung collapse. This condition is recognized to occur more frequently in patients under the age of 40 years, but there has been no detailed analysis of reported pediatric cases of RPE to date. For this review, PubMed literature searches were performed using the following terms: 're(-)expansion pulmonary (o)edema' AND ('child' OR 'children' OR 'infant' OR 'boy' OR 'girl' OR 'adolescent'). The 22 pediatric cases of RPE identified were included in this review. RPE was reported in almost the entire pediatric age range, and as in adult cases, the severity ranged from subclinical to lethal. No specific treatment for RPE was identified, and treatment was administered according to the clinical features of each patient. Of the 22 reported cases, 10 occurred during the perioperative period, but were not related to any specific surgical procedures or anesthetic techniques, or to the duration of lung collapse. Pediatric anesthesiologists should be aware that pediatric RPE can occur after reexpansion of any collapsed lung and that some invasive therapies can be useful in severe cases. © 2013 John Wiley & Sons Ltd.

  4. The predictive value of drug-induced sleep endoscopy for CPAP titration in OSA patients.

    PubMed

    Lan, Ming-Chin; Hsu, Yen-Bin; Lan, Ming-Ying; Huang, Yun-Chen; Kao, Ming-Chang; Huang, Tung-Tsun; Chiu, Tsan-Jen; Yang, Mei-Chen

    2017-12-15

    The aim of this study was to identify possible upper airway obstructions causing a higher continuous positive airway pressure (CPAP) titration level, utilizing drug-induced sleep endoscopy (DISE). A total of 76 patients with obstructive sleep apnea (OSA) underwent CPAP titration and DISE. DISE findings were recorded using the VOTE classification system. Polysomnographic (PSG) data, anthropometric variables, and patterns of airway collapse during DISE were analyzed with CPAP titration levels. A significant association was found between the CPAP titration level and BMI, oxygen desaturation index (ODI), apnea-hypopnea index (AHI), and neck circumference (NC) (P < 0.001, P < 0.001, P < 0.001, and P < 0.001, respectively, by Spearman correlation). Patients with concentric collapse of the velum or lateral oropharyngeal collapse were associated with a significantly higher CPAP titration level (P < 0.001 and P = 0.043, respectively, by nonparametric Mann-Whitney U test; P < 0.001 and P = 0.004, respectively, by Spearman correlation). No significant association was found between the CPAP titration level and any other collapse at the tongue base or epiglottis. By analyzing PSG data, anthropometric variables, and DISE results with CPAP titration levels, we can better understand possible mechanisms resulting in a higher CPAP titration level. We believe that the role of DISE can be expanded as a tool to identify the possible anatomical structures that may be corrected by oral appliance therapy or surgical intervention to improve CPAP compliance.

  5. Further thoughts on dualism, science, and the use of medication in psychoanalysis.

    PubMed

    Swoiskin, M H

    2001-01-01

    In response to Deborah Cabaniss's article, "Beyond Dualism: Psychoanalysis and Medication in the 21st Century," the author further considers the differences between the aims of symptom reduction and psychic integration, the concept of mind-body dualism, and the nature of scientific inquiry as they pertain to the use of medication in psychoanalytic therapies. He warns against the collapsing of concepts, aided by a misapplication of science, with respect to how we listen to, organize, and respond to clinical material. He argues that only when such scrutiny occurs can the important and challenging questions pertaining to the use of medication in psychoanalytic therapies be meaningfully considered.

  6. Prevention of the collapse of pial collaterals by remote ischemic perconditioning during acute ischemic stroke.

    PubMed

    Ma, Junqiang; Ma, Yonglie; Dong, Bin; Bandet, Mischa V; Shuaib, Ashfaq; Winship, Ian R

    2017-08-01

    Collateral circulation is a key variable determining prognosis and response to recanalization therapy during acute ischemic stroke. Remote ischemic perconditioning (RIPerC) involves inducing peripheral ischemia (typically in the limbs) during stroke and may reduce perfusion deficits and brain damage due to cerebral ischemia. In this study, we directly investigated pial collateral flow augmentation due to RIPerC during distal middle cerebral artery occlusion (MCAo) in rats. Blood flow through pial collaterals between the anterior cerebral artery (ACA) and the MCA was assessed in male Sprague Dawley rats using in vivo laser speckle contrast imaging (LSCI) and two photon laser scanning microscopy (TPLSM) during distal MCAo. LSCI and TPLSM revealed that RIPerC augmented collateral flow into distal MCA segments. Notably, while control rats exhibited an initial dilation followed by a progressive narrowing of pial arterioles 60 to 150-min post-MCAo (constricting to 80-90% of post-MCAo peak diameter), this constriction was prevented or reversed by RIPerC (such that vessel diameters increased to 105-110% of post-MCAo, pre-RIPerC diameter). RIPerC significantly reduced early ischemic damage measured 6 h after stroke onset. Thus, prevention of collateral collapse via RIPerC is neuroprotective and may facilitate other protective or recanalization therapies by improving blood flow in penumbral tissue.

  7. Post-infectious acute glomerulonephritis with podocytopathy induced by parvovirus B19 infection.

    PubMed

    Hara, Satoshi; Hirata, Masayoshi; Ito, Kiyoaki; Mizushima, Ichiro; Fujii, Hiroshi; Yamada, Kazunori; Nagata, Michio; Kawano, Mitsuhiro

    2018-03-01

    Human parvovirus B19 infection causes a variety of glomerular diseases such as post-infectious acute glomerulonephritis and collapsing glomerulopathy. Although each of these appears independently, it has not been fully determined why parvovirus B19 provokes such a variety of different glomerular phenotypes. Here, we report a 68-year-old Japanese man who showed endocapillary proliferative glomerulonephritis admixed with podocytopathy in association with parvovirus B19 infection. The patient showed acute onset of heavy proteinuria, microscopic hematuria and kidney dysfunction with arthralgia and oliguria after close contact with a person suffering from erythema infectiosum. In the kidney biopsy specimen, glomeruli revealed diffuse and global endocapillary infiltration of inflammatory cells, with some also showing tuft collapse with aberrant vacuolation, swelling, and hyperplasia of glomerular epithelial cells. Immunofluorescence revealed dense granular C3 deposition that resembled the "starry sky pattern". Intravenous glucocorticoid pulse therapy followed by oral prednisolone and cyclosporine combination therapy resulted in considerable amelioration of the kidney dysfunction and urinary abnormalities. The present case reveals that parvovirus B19 infection can induce different glomerular phenotypes even in the same kidney structure. This finding may provide hints useful for the further elucidation of the pathogenesis of parvovirus B19-induced glomerular lesions. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  8. Multiphoton imaging reveals that nanosecond pulsed electric fields collapse tumor and normal vascular perfusion in human glioblastoma xenografts.

    PubMed

    Bardet, Sylvia M; Carr, Lynn; Soueid, Malak; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2016-10-04

    Despite the biomedical advances of the last century, many cancers including glioblastoma are still resistant to existing therapies leaving patients with poor prognoses. Nanosecond pulsed electric fields (nsPEF) are a promising technology for the treatment of cancer that have thus far been evaluated in vitro and in superficial malignancies. In this paper, we develop a tumor organoid model of glioblastoma and apply intravital multiphoton microscopy to assess their response to nsPEFs. We demonstrate for the first time that a single 10 ns, high voltage electric pulse (35-45 kV/cm), collapses the perfusion of neovasculature, and also alters the diameter of capillaries and larger vessels in normal tissue. These results contribute to the fundamental understanding of nsPEF effects in complex tissue environments, and confirm the potential of nsPEFs to disrupt the microenvironment of solid tumors such as glioblastoma.

  9. Rapid Improvement of thyroid storm-related hemodynamic collapse by aggressive anti-thyroid therapy including steroid pulse: A case report.

    PubMed

    Kiriyama, Hiroyuki; Amiya, Eisuke; Hatano, Masaru; Hosoya, Yumiko; Maki, Hisataka; Nitta, Daisuke; Saito, Akihito; Shiraishi, Yasuyuki; Minatsuki, Shun; Sato, Tatsuyuki; Murakami, Haruka; Uehara, Masae; Manaka, Katsunori; Makita, Noriko; Watanabe, Masafumi; Komuro, Issei

    2017-06-01

    Heart failure is relatively common in patients with hyperthyroidism, but thyrotoxic cardiomyopathy with poor left ventricular (LV) systolic function is very rare. We experienced a representative case of a patient who presented with severe LV dysfunction related to thyroid storm and needed extracorporeal membrane oxygenation (ECMO) temporally. Thyrotoxic cardiomyopathy. Aggressive antithyroid therapy, including steroid pulse to hyperthyroidism, leads to the dramatic improvement of cardiac function and she was successfully weaned from ECMO. The most outstanding feature of the current case was the rapid decrease of cardiac injury and improvement of cardiac function by strengthening antithyroid therapy, including steroid pulse, without thyroid hormone level normalization. In thyroid storm, various systemic inflammatory reactions have different time courses and among them, the cardiac phenotype emerges in most striking and critical ways.

  10. A case of decompression sickness in a commercial pilot.

    PubMed

    Wolf, C W; Petzl, D H; Seidl, G; Burghuber, O C

    1989-10-01

    We report a case of decompression sickness (DCS) followed by pulmonary edema in a 47-year-old commercial pilot who operated a non-pressurized turboprop twin at flight level 290. He became unconscious and recovered after an emergency descent. The pilot collapsed and a pulmonary edema occurred 8 h after landing. The patient improved rapidly with fluid replacement and without hyperbaric therapy, which was not available at that time. This course of DCS is unusual because it is reported that fluid replacement without hyperbaric therapy normally cannot recover severe cases of DCS. The considerable increase in body weight of this pilot within the last 6 months may have been a predisposing factor for development of decompression sickness.

  11. Quantum mechanics and the psyche

    NASA Astrophysics Data System (ADS)

    Galli Carminati, G.; Martin, F.

    2008-07-01

    In this paper we apply the last developments of the theory of measurement in quantum mechanics to the phenomenon of consciousness and especially to the awareness of unconscious components. Various models of measurement in quantum mechanics can be distinguished by the fact that there is, or there is not, a collapse of the wave function. The passive aspect of consciousness seems to agree better with models in which there is no collapse of the wave function, whereas in the active aspect of consciousness—i.e., that which goes together with an act or a choice—there seems to be a collapse of the wave function. As an example of the second possibility we study in detail the photon delayed-choice experiment and its consequences for subjective or psychological time. We apply this as an attempt to explain synchronicity phenomena. As a model of application of the awareness of unconscious components we study the mourning process. We apply also the quantum paradigm to the phenomenon of correlation at a distance between minds, as well as to group correlations that appear during group therapies or group training. Quantum entanglement leads to the formation of group unconscious or collective unconscious. Finally we propose to test the existence of such correlations during sessions of group training.

  12. [Histological effects of short term endocrine therapy on prostatic cancer].

    PubMed

    Irisawa, C; Yoshimura, Y; Yokota, T; Yamaguchi, O; Kondou, Y; Hamasaki, T; Yamad, Y; Kurosu, S; Chiba, R

    1996-07-01

    The objective of this study is to investigate the pathological changes which occurred in prostatic cancer shortly after the commencement of endocrine therapy. Fourty-three patients underwent radical prostatectomy immediately after the short term endocrine therapy (treatment period was within one month) and the histological pictures of operative specimens were compared to those obtained from the pretreatment biopsy specimens. Degenerative changes of cancer cells, such as nuclear and cytoplasmic vacuole, collapse of the cytoplasm and the appearance of naked hyperchromatic nucleus were noticed after the short term endocrine therapy. Especially in the cases which were histologically evaluated to be poorly differentiated in the biopsy specimens, not only degenerative changes but also destruction of cancer nests caused by cell death were observed. The histological effects affected by short term endocrine treatment had no relation to the prognosis, but in the cases of stage D2, the pathological grade judged by post-therapeutic specimens were found to be useful for the prediction of prognosis. Endocrine therapy induces remarkable pathological changes in prostatic cancer within a very short time after beginning treatment.

  13. AFRRI Reports First Quarter, January-March 1991

    DTIC Science & Technology

    1991-01-01

    MIDDLEMAN. M. LUNA. and G. P. Bot tN. i Klebsiella bacteremia in cancer patients. .Am hJ ’d St1 165, 473- The effectiveness ofquinolones in the therapy of K...of the organism’s growth within the gut lumen, while pre- apy in the febrile neutropenic cancer patient: Clinical etficac\\ and serving the anaerobic...inhala- short-term beta /gamma radiation re- collapsed debris. tion. These patients were diagnosed leased in the emission cloud; external The triage officer

  14. Qualitative assessment of awake nasopharyngoscopy for prediction of oral appliance treatment response in obstructive sleep apnoea.

    PubMed

    Sutherland, Kate; Chan, Andrew S L; Ngiam, Joachim; Darendeliler, M Ali; Cistulli, Peter A

    2018-01-23

    Clinical methods to identify responders to oral appliance (OA) therapy for obstructive sleep apnoea (OSA) are needed. Awake nasopharyngoscopy during mandibular advancement, with image capture and subsequent processing and analysis, may predict treatment response. A qualitative assessment of awake nasopharyngoscopy would be simpler for clinical practice. We aimed to determine if a qualitative classification system of nasopharyngoscopic observations reflects treatment response. OSA patients were recruited for treatment with a customised two-piece OA. A custom scoring sheet was used to record observations of the pharyngeal airway (velopharynx, oropharynx, hypopharynx) during supine nasopharyngoscopy in response to mandibular advancement and performance of the Müller manoeuvre. Qualitative scores for degree (< 25%, 25-50%, 50-75%, > 75%), collapse pattern (concentric, anteroposterior, lateral) and diameter change (uniform, anteroposterior, lateral) were recorded. Treatment outcome was confirmed by polysomnography after a titration period of 14.6 ± 9.8 weeks. Treatment response was defined as (1) Treatment AHI < 5, (2) Treatment AHI < 10 plus > 50% AHI reduction and (3) > 50% AHI reduction. Eighty OSA patients (53.8% male) underwent nasopharyngoscopy. The most common naspharyngoscopic observation with mandibular advancement was a small (< 50%) increase in velopharyngeal lateral diameter (37.5%). The majority of subjects (72.5%) were recorded as having > 75% velopharyngeal collapse on performance of the Müller manoeuvre. Mandibular advancement reduced the observed level of pharyngeal collapse at all three pharyngeal regions (p < 0.001). None of the nasopharyngoscopic qualitative scores differed between responder and non-responder groups. Qualitative assessment of awake nasopharyngoscopy appears useful for assessing the effect of mandibular advancement on upper airway collapsibility. However, it is not sensitive enough to predict oral appliance treatment outcome.

  15. Candida albicans osteomyelitis of the spine: progressive clinical and radiological features and surgical management in three cases.

    PubMed

    Khazim, Rabi M; Debnath, Ujjwal K; Fares, Youssef

    2006-09-01

    Candida albicans vertebral osteomyelitis is rare. Three cases are presented. Without antifungal treatment, they developed spinal collapse and neurological deterioration within 3-6 months from the onset of symptoms. There was a delay of 4.5 and 7.5 months between the onset of symptoms and surgery. All patients were managed with surgical debridement and reconstruction and 12-week fluconazole treatment. The neurological deficits resolved completely. The infection has not recurred clinically or radiologically at 5-6 years follow-up. Although rare, Candida should be suspected as a causative pathogen in cases of spinal osteomyelitis. Without treatment the disease is progressive. As soon as osteomyelitis is suspected, investigations with MRI and percutaneous biopsy should be performed followed by medical therapy. This may prevent the need for surgery. However, if vertebral collapse and spinal cord compression occurs, surgical debridement, fusion and stabilisation combined with antifungal medications can successfully eradicate the infection and resolve the neurological deficits.

  16. Candida albicans osteomyelitis of the spine: progressive clinical and radiological features and surgical management in three cases

    PubMed Central

    Debnath, Ujjwal K; Fares, Youssef

    2006-01-01

    Candida albicans vertebral osteomyelitis is rare. Three cases are presented. Without antifungal treatment, they developed spinal collapse and neurological deterioration within 3–6 months from the onset of symptoms. There was a delay of 4.5 and 7.5 months between the onset of symptoms and surgery. All patients were managed with surgical debridement and reconstruction and 12-week fluconazole treatment. The neurological deficits resolved completely. The infection has not recurred clinically or radiologically at 5–6 years follow-up. Although rare, Candida should be suspected as a causative pathogen in cases of spinal osteomyelitis. Without treatment the disease is progressive. As soon as osteomyelitis is suspected, investigations with MRI and percutaneous biopsy should be performed followed by medical therapy. This may prevent the need for surgery. However, if vertebral collapse and spinal cord compression occurs, surgical debridement, fusion and stabilisation combined with antifungal medications can successfully eradicate the infection and resolve the neurological deficits. PMID:16429290

  17. Fistula Isolation and the Use of Negative Pressure to Promote Wound Healing: A Case Study.

    PubMed

    Reider, Kersten E

    A 54-year-old morbidly obese woman with a small bowel obstruction and large ventral hernia was admitted to hospital. She underwent an exploratory laparotomy, lysis of adhesions, and ventral hernia repair with mesh placement. She subsequently developed an enteroatmospheric fistula; several months of hospital care was required to effectively manage the wound and contain effluent from the fistula. Several approaches were used to manage output from the fistula during her hospital course. She was initially discharged to a skilled nursing facility where a fistula management pouch was used for several months to encompass the wound and contain effluent, but this method ultimately proved ineffective. The fistula was then isolated using a collapsible enteroatmospheric fistula isolation device and an ostomy appliance to contain effluent. The application of the collapsible enteroatmospheric fistula isolation and effluent containment devices in conjunction with negative-pressure wound therapy produced positive patient outcomes; it improved patient satisfaction with fistula management, promoted wound healing, and diminished cost.

  18. Organization and logistics of drug-induced sleep endoscopy in a training hospital.

    PubMed

    Benoist, L B L; de Vries, N

    2015-09-01

    Drug-induced sleep endoscopy (DISE) is a rapidly growing method to evaluate airway collapse in patients receiving non-CPAP therapies for sleep-disordered breathing (SDB). The growing number of DISEs has consequences for the organization of clinical protocols. In this paper we present our recent experiences with DISE, performed by an ENT resident, with sedation given by a nurse anesthetist, in an outpatient endoscopy setting, while the staff member/sleep surgeon discusses the findings and the recommended treatment proposal on the same day.

  19. Prediction of the wetting-induced collapse behaviour using the soil-water characteristic curve

    NASA Astrophysics Data System (ADS)

    Xie, Wan-Li; Li, Ping; Vanapalli, Sai K.; Wang, Jia-Ding

    2018-01-01

    Collapsible soils go through three distinct phases in response to matric suction decrease during wetting: pre-collapse phase, collapse phase and post-collapse phase. It is reasonable and conservative to consider a strain path that includes a pre-collapse phase in which constant volume is maintained and a collapse phase that extends to the final matric suction to be experienced by collapsible soils during wetting. Upon this assumption, a method is proposed for predicting the collapse behaviour due to wetting. To use the proposed method, two parameters, critical suction and collapse rate, are required. The former is the suction value below which significant collapse deformations take place in response to matric suction decease, and the later is the rate at which void ratio reduces with matric suction in the collapse phase. The value of critical suction can be estimated from the water-entry value taking account of both the microstructure characteristics and collapse mechanism of fine-grained collapsible soils; the wetting soil-water characteristic curve thus can be used as a tool. Five sets of data of wetting tests on both compacted and natural collapsible soils reported in the literature were used to validate the proposed method. The critical suction values were estimated from the water-entry value with parameter a that is suggested to vary between 0.10 and 0.25 for compacted soils and to be lower for natural collapsible soils. The results of a field permeation test in collapsible loess soils were also used to validate the proposed method. The relatively good agreement between the measured and estimated collapse deformations suggests that the proposed method can provide reasonable prediction of the collapse behaviour due to wetting.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemente, F; Perez, C

    Purpose: Redundant treatment verifications in conformal and intensity-modulated radiation therapy techniques are traditionally performed with single point calculations. New solutions can replace these checks with 3D treatment plan verifications. This work describes a software tool (Mobius3D, Mobius Medical Systems) that uses a GPU-accelerated collapsed cone algorithm to perform 3D independent verifications of TPS calculations. Methods: Mobius3D comes with reference beam models for common linear accelerators. The system uses an independently developed collapsed cone algorithm updated with recent enhancements. 144 isotropically-spaced cones are used for each voxel for calculations. These complex calculations can be sped up by using GPUs. Mobius3D calculatemore » dose using DICOM information coming from TPS (CT, RT Struct, RT Plan RT Dose). DVH-metrics and 3D gamma tests can be used to compare both TPS and secondary calculations. 170 patients treated with all common techniques as 3DCFRT (including wedged), static and dynamic IMRT and VMAT have been successfully verified with this solution. Results: Calculation times are between 3–5 minutes for 3DCFRT treatments and 15–20 for most complex dMLC and VMAT plans. For all PTVs mean dose and 90% coverage differences are (1.12±0.97)% and (0.68±1.19)%, respectively. Mean dose discrepancies for all OARs is (0.64±1.00)%. 3D gamma (global, 3%/3 mm) analysis shows a mean passing rate of (97.8 ± 3.0)% for PTVs and (99.0±3.0)% for OARs. 3D gamma pasing rate for all voxels in CT has a mean value of (98.5±1.6)%. Conclusion: Mobius3D is a powerful tool to verify all modalities of radiation therapy treatments. Dose discrepancies calculated by this system are in good agreement with TPS. The use of reference beam data results in time savings and can be used to avoid the propagation of errors in original beam data into our QA system. GPU calculations permit enhanced collapsed cone calculations with reasonable calculation times.« less

  1. Prediction of inspiratory flow shapes during sleep with a mathematic model of upper airway forces.

    PubMed

    Aittokallio, Tero; Gyllenberg, Mats; Saaresranta, Tarja; Polo, Olli

    2003-11-01

    To predict the airflow dynamics during sleep using a mathematic model that incorporates a number of static and dynamic upper airway forces, and to compare the numerical results to clinical flow data recorded from patients with sleep-disordered breathing on and off various treatment options. Upper airway performance was modeled in virtual subjects characterized by parameter settings that describe common combinations of risk factors predisposing to upper airway collapse during sleep. The treatments effect were induced by relevant changes of the initial parameter values. Computer simulations at our website (http://www.utu.fi/ml/sovmat/bio/). Risk factors considered in the simulation settings were sex, obesity, pharyngeal collapsibility, and decreased phasic activity of pharyngeal muscles. The effects of weight loss, pharyngeal surgery, nasal continuous positive airway pressure, and respiratory stimulation on the inspiratory flow characteristics were tested with the model. Numerical predictions were investigated by means of 3 measurable inspiratory airflow characteristics: initial slope, total volume, and flow shape. The model was able to reproduce the inspiratory flow shape characteristics that have previously been described in the literature. Simulation results also supported the observations that a multitude of factors underlie the pharyngeal collapse and, therefore, certain medical therapies that are effective in some conditions may prove ineffective in others. A mathematic model integrating the current knowledge of upper airway physiology is able to predict individual treatment responses. The model provides a framework for designing novel and potentially feasible treatment alternatives for sleep-disordered breathing.

  2. Testing collapse models by a thermometer

    NASA Astrophysics Data System (ADS)

    Bahrami, M.

    2018-05-01

    Collapse models postulate that space is filled with a collapse noise field, inducing quantum Brownian motions, which are dominant during the measurement, thus causing collapse of the wave function. An important manifestation of the collapse noise field, if any, is thermal energy generation, thus disturbing the temperature profile of a system. The experimental investigation of a collapse-driven heating effect has provided, so far, the most promising test of collapse models against standard quantum theory. In this paper, we calculate the collapse-driven heat generation for a three-dimensional multi-atomic Bravais lattice by solving stochastic Heisenberg equations. We perform our calculation for the mass-proportional continuous spontaneous localization collapse model with nonwhite noise. We obtain the temperature distribution of a sphere under stationary-state and insulated surface conditions. However, the exact quantification of the collapse-driven heat-generation effect highly depends on the actual value of cutoff in the collapse noise spectrum.

  3. Periodontal considerations for esthetics: edentulous ridge augmentation.

    PubMed

    Rosenberg, E S; Cutler, S A

    1993-01-01

    Edentulous ridge augmentation is a plastic surgical technique that is performed to improve patient esthetics when unsightly, deformed ridges exist. This article describes the etiology of ridge deformities and the many procedures that can be executed to achieve an esthetic, functional result. Historically, soft-tissue mucogingival techniques were described to augment collapsed ridges. Pedicle grafts, free soft-tissue grafts, and subepithelial connective tissue grafts are predictable forms of therapy. More recently, ridge augmentation techniques were developed that regenerate the lost periodontium. These include allografts, bioglasses, guided tissue regenerative procedures, and tissue expansion.

  4. Cardiopulmonary Resuscitation in Adults and Children With Mechanical Circulatory Support: A Scientific Statement From the American Heart Association.

    PubMed

    Peberdy, Mary Ann; Gluck, Jason A; Ornato, Joseph P; Bermudez, Christian A; Griffin, Russell E; Kasirajan, Vigneshwar; Kerber, Richard E; Lewis, Eldrin F; Link, Mark S; Miller, Corinne; Teuteberg, Jeffrey J; Thiagarajan, Ravi; Weiss, Robert M; O'Neil, Brian

    2017-06-13

    Cardiac arrest in patients on mechanical support is a new phenomenon brought about by the increased use of this therapy in patients with end-stage heart failure. This American Heart Association scientific statement highlights the recognition and treatment of cardiovascular collapse or cardiopulmonary arrest in an adult or pediatric patient who has a ventricular assist device or total artificial heart. Specific, expert consensus recommendations are provided for the role of external chest compressions in such patients. © 2017 American Heart Association, Inc.

  5. [The set of wearable medical equipment for medical and nursing teams].

    PubMed

    Efimenko, N a; Valevskii, V V; Lyutov, V V; Makhnovskii, A I; Sorokin, S I; Blinda, I V

    2015-06-01

    The kit is designed in accordance with the list of the first medical aid procedures and syndromic standards of emergency medical care providing. The kit contains modern local hemostatic agents, vent tubes, cricothyrotomy, needles to eliminate pneumothorax, portable oxygen machine, sets for intravenous and intraosseous infusion therapy, collapsible plastic tires, anti-shock pelvic girdle, and other medical products and pharmaceuticals. As containers used backpack and trolley bag on wheels camouflage colours. For the convenience and safety of the personnel of the vest is designed discharge to be converted in the body armour.

  6. [Treatment of tracheobronchomalacia with expandable metallic stents].

    PubMed

    Antón-Pacheco Sánchez, J; García Vázquez, A; Cuadros García, J; Cano Novillo, I; Villafruela Sanz, M; Berchi García, F J

    2002-10-01

    Tracheomalacia is an unfrequent disease that causes tracheal collapse during breathing. It is generally associated to esophageal atresia, but cases of primary tracheomalacia and others secondary to extrinsic compression, have also been described. Spontaneous resolution is generally the rule and only a few cases need surgical treatment. When this therapy fails or is not indicated for any reason, endoluminal tracheobronchial stents may be used. We have treated two patients with four expandable metallic stents: one had severe tracheomalacia associated to esophageal atresia and the other tracheobronchomalacia secondary to cardiomegaly. Results have been good in both cases.

  7. High-Dose Hypofractionated Radiation Therapy for Noncompressive Vertebral Metastases in Combination With Zoledronate: A Phase 1 Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pichon, Baptiste; Campion, Loïc; Delpon, Grégory

    Introduction: Hypofractionated stereotactic radiation therapy (HSRT) for vertebral metastases gives good results in terms of local control but increases the risk of fracture in the treated volume. Preclinical and clinical studies have shown that zoledronate not only reduces the risk of fracture and stimulates osteoclastic remodeling but also increases the immune response and radiosensitivity. This study aimed to evaluate the tolerability and effectiveness of zoledronate in association with radiation therapy. Patients and Methods: We conducted a multicenter phase 1 study that combined HSRT (3 × 9 Gy) and zoledronate in patients with vertebral metastasis ( (NCT01219790)). The principal objective was the absence ofmore » spinal cord adverse reactions at 1 year. The secondary objectives were acute tolerability, the presentation of a bone event, local tumor control, pain control, progression-free survival, and overall survival. Results: Thirty patients (25 male, 5 female), median age 66 years, who were followed up for a median period of 19.2 months, received treatment for 49 vertebral metastases. A grade 3 acute mucosal adverse event occurred in 1 patient during the treatment and in 2 more at 1 month. No late neurologic adverse events were reported at 1 year. The mean pain scores diminished significantly at 1 month (1.35; P=.0125) and 3 months (0.77; P<.0001) compared with pain scores at study entry (2.49). Vertebral collapse in the irradiated zone occurred in 1 (2%) treated vertebra. Control of local disease was achieved in 94% of irradiated patients (3 local recurrences). Conclusion: The combination of zoledronate and HSRT in the treatment of vertebral metastasis is well tolerated and seems to reduce the rate of vertebral collapse, effectively relieve pain, and achieve good local tumor control with no late neurologic adverse effects.« less

  8. A systematic review of goal directed fluid therapy: rating of evidence for goals and monitoring methods.

    PubMed

    Wilms, Heath; Mittal, Anubhav; Haydock, Matthew D; van den Heever, Marc; Devaud, Marcello; Windsor, John A

    2014-04-01

    To review the literature on goal directed fluid therapy and evaluate the quality of evidence for each combination of goal and monitoring method. A search of major digital databases and hand search of references was conducted. All studies assessing the clinical utility of a specific fluid therapy goal or set of goals using any monitoring method were included. Data was extracted using a pre-determined pro forma and papers were evaluated using GRADE principles to assess evidence quality. Eighty-one papers met the inclusion criteria, investigating 31 goals and 22 methods for monitoring fluid therapy in 13052 patients. In total there were 118 different goal/method combinations. Goals with high evidence quality were central venous lactate and stroke volume index. Goals with moderate quality evidence were sublingual microcirculation flow, the oxygen extraction ratio, cardiac index, cardiac output, and SVC collapsibility index. This review has highlighted the plethora of goals and methods for monitoring fluid therapy. Strikingly, there is scant high quality evidence, in particular for non-invasive G/M combinations in non-operative and non-intensive care settings. There is an urgent need to address this research gap, which will be helped by methodologies to compare utility of G/M combinations. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Evaluation of lumbar segmental instability in degenerative diseases by using a new intraoperative measurement system.

    PubMed

    Hasegawa, Kazuhiro; Kitahara, Ko; Hara, Toshiaki; Takano, Ko; Shimoda, Haruka; Homma, Takao

    2008-03-01

    In vivo quantitative measurement of lumbar segmental stability has not been established. The authors developed a new measurement system to determine intraoperative lumbar stability. The objective of this study was to clarify the biomechanical properties of degenerative lumbar segments by using the new method. Twenty-two patients with a degenerative symptomatic segment were studied and their measurements compared with those obtained in normal or asymptomatic degenerative segments (Normal group). The measurement system produces cyclic flexion-extension through spinous process holders by using a computer-controlled motion generator with all ligamentous structures intact. The following biomechanical parameters were determined: stiffness, absorption energy (AE), and neutral zone (NZ). Discs with degeneration were divided into 2 groups based on magnetic resonance imaging grading: degeneration without collapse (Collapse[-]) and degeneration with collapse (Collapse[+]). Biomechanical parameters were compared among the groups. Relationships among the biomechanical parameters and age, diagnosis, or radiographic parameters were analyzed. The mean stiffness value in the Normal group was significantly greater than that in Collapse(-) or Collapse(+) group. There was no significant difference in the average AE value among the Normal, Collapse(-), and Collapse(+) groups. The NZ in the Collapse(-) was significantly higher than in the Normal or Collapse(+) groups. Stiffness was negatively and NZ was positively correlated with age. Stiffness demonstrated a significant negative and NZ a significant positive relationship with disc height, however. There were no significant differences in stiffness between spines in the Collapse(-) and Collapse(+) groups. The values of a more sensitive parameter, NZ, were higher in Collapse(-) than in Collapse(+) groups, demonstrating that degenerative segments with preserved disc height have a latent instability compared to segments with collapsed discs.

  10. Effects of Cascaded Voltage Collapse and Protection of Many Induction Machine Loads upon Load Characteristics Viewed from Bulk Transmission System

    NASA Astrophysics Data System (ADS)

    Kumano, Teruhisa

    As known well, two of the fundamental processes which give rise to voltage collapse in power systems are the on load tap changers of transformers and dynamic characteristics of loads such as induction machines. It has been well established that, comparing among these two, the former makes slower collapse while the latter makes faster. However, in realistic situations, the load level of each induction machine is not uniform and it is well expected that only a part of loads collapses first, followed by collapse process of each load which did not go into instability during the preceding collapses. In such situations the over all equivalent collapse behavior viewed from bulk transmission level becomes somewhat different from the simple collapse driven by one aggregated induction machine. This paper studies the process of cascaded voltage collapse among many induction machines by time simulation, where load distribution on a feeder line is modeled by several hundreds of induction machines and static impedance loads. It is shown that in some cases voltage collapse really cascades among induction machines, where the macroscopic load dynamics viewed from upper voltage level makes slower collapse than expected by the aggregated load model. Also shown is the effects of machine protection of induction machines, which also makes slower collapse.

  11. Gravitational Waves from Gravitational Collapse.

    PubMed

    Fryer, Chris L; New, Kimberly C B

    2011-01-01

    Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.

  12. Dynamic Control of Collapse in a Vortex Airy Beam

    PubMed Central

    Chen, Rui-Pin; Chew, Khian-Hooi; He, Sailing

    2013-01-01

    Here we study systematically the self-focusing dynamics and collapse of vortex Airy optical beams in a Kerr medium. The collapse is suppressed compared to a non-vortex Airy beam in a Kerr medium due to the existence of vortex fields. The locations of collapse depend sensitively on the initial power, vortex order, and modulation parameters. The collapse may occur in a position where the initial field is nearly zero, while no collapse appears in the region where the initial field is mainly distributed. Compared with a non-vortex Airy beam, the collapse of a vortex Airy beam can occur at a position away from the area of the initial field distribution. Our study shows the possibility of controlling and manipulating the collapse, especially the precise position of collapse, by purposely choosing appropriate initial power, vortex order or modulation parameters of a vortex Airy beam. PMID:23518858

  13. Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles

    PubMed Central

    Kreider, Wayne; Crum, Lawrence A.; Bailey, Michael R.; Sapozhnikov, Oleg A.

    2011-01-01

    Bubbles excited by lithotripter shock waves undergo a prolonged growth followed by an inertial collapse and rebounds. In addition to the relevance for clinical lithotripsy treatments, such bubbles can be used to study the mechanics of inertial collapses. In particular, both phase change and diffusion among vapor and noncondensable gas molecules inside the bubble are known to alter the collapse dynamics of individual bubbles. Accordingly, the role of heat and mass transport during inertial collapses is explored by experimentally observing the collapses and rebounds of lithotripsy bubbles for water temperatures ranging from 20 to 60 °C and dissolved gas concentrations from 10 to 85% of saturation. Bubble responses were characterized through high-speed photography and acoustic measurements that identified the timing of individual bubble collapses. Maximum bubble diameters before and after collapse were estimated and the corresponding ratio of volumes was used to estimate the fraction of energy retained by the bubble through collapse. The rebounds demonstrated statistically significant dependencies on both dissolved gas concentration and temperature. In many observations, liquid jets indicating asymmetric bubble collapses were visible. Bubble rebounds were sensitive to these asymmetries primarily for water conditions corresponding to the most dissipative collapses. PMID:22088027

  14. High-resolution simulations of cylindrical void collapse in energetic materials: Effect of primary and secondary collapse on initiation thresholds

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.

    2017-04-01

    Void collapse in energetic materials leads to hot spot formation and enhanced sensitivity. Much recent work has been directed towards simulation of collapse-generated reactive hot spots. The resolution of voids in calculations to date has varied as have the resulting predictions of hot spot intensity. Here we determine the required resolution for reliable cylindrical void collapse calculations leading to initiation of chemical reactions. High-resolution simulations of collapse provide new insights into the mechanism of hot spot generation. It is found that initiation can occur in two different modes depending on the loading intensity: Either the initiation occurs due to jet impact at the first collapse instant or it can occur at secondary lobes at the periphery of the collapsed void. A key observation is that secondary lobe collapse leads to large local temperatures that initiate reactions. This is due to a combination of a strong blast wave from the site of primary void collapse and strong colliding jets and vortical flows generated during the collapse of the secondary lobes. The secondary lobe collapse results in a significant lowering of the predicted threshold for ignition of the energetic material. The results suggest that mesoscale simulations of void fields may suffer from significant uncertainty in threshold predictions because unresolved calculations cannot capture the secondary lobe collapse phenomenon. The implications of this uncertainty for mesoscale simulations are discussed in this paper.

  15. Bomb Blast and Its Consequences: Successful Intensive Care Management of Massive Pulmonary Embolsim.

    PubMed

    Shamim, Faisal; Rizwan, Muhammad; Aziz, Adil

    2016-06-01

    A suicide bomb blast in 2013 at a distant city of Pakistan killed 84 and wounded more than 150 people. Some patients were transferred to our tertiary care hospital because of extreme load on medical services there. This patient arrived at the Aga Khan Hospital, 2 days after the bomb blast injury and underwent an orthopedic procedure. Next day, he developed sudden tachypnea, desaturation, and circulatory collapse. After initial cardiopulmonary resuscitation, he was immediately transferred to surgical intensive care unit. Based on history, echocardiography findings and patient parameters, a clinical diagnosis of massive pulmonary embolism was made and immediate thrombolytic therapy with alteplase was started. The immediate improvement in hemodynamic status was evident following 2 hours of alteplase infusion. This case also highlights the aggressiveness of resuscitation, decision making in initiating thrombolytic therapy on clinical grounds, importance of deep venous thrombosis prophylaxis, and exhaustion of health resources due to blast related mass destruction.

  16. Acute Cor Pulmonale and Right Heat Failure Complicating Ethanol Ablative Therapy: Anesthetic and Radiologic Considerations and Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naik, Bhiken, E-mail: bin4n@virginia.edu; Matsumoto, Alan H.

    2013-10-15

    Ethanol is an effective ablative agent used for the treatment of certain solid organ tumors and vascular malformations (VMs). The egress of ethanol beyond the target tissue can be associated with significant changes to the cardiopulmonary system that can lead to cardiac arrest. This article reviews the contemporary role of ethanol in tumor and VM treatment and discusses the physiological mechanisms of acute pulmonary hypertension and cardiovascular collapse. The importance of periprocedural recognition of the hemodynamic changes that can occur with the use of ethanol and the treatment of this condition are discussed.

  17. Alveolar derecruitment and collapse induration as crucial mechanisms in lung injury and fibrosis.

    PubMed

    Lutz, Dennis; Gazdhar, Amiq; Lopez-Rodriguez, Elena; Ruppert, Clemens; Mahavadi, Poornima; Günther, Andreas; Klepetko, Walter; Bates, Jason H; Smith, Bradford; Geiser, Thomas; Ochs, Matthias; Knudsen, Lars

    2015-02-01

    Idiopathic pulmonary fibrosis (IPF) and bleomycin-induced pulmonary fibrosis are associated with surfactant system dysfunction, alveolar collapse (derecruitment), and collapse induration (irreversible collapse). These events play undefined roles in the loss of lung function. The purpose of this study was to quantify how surfactant inactivation, alveolar collapse, and collapse induration lead to degradation of lung function. Design-based stereology and invasive pulmonary function tests were performed 1, 3, 7, and 14 days after intratracheal bleomycin-instillation in rats. The number and size of open alveoli was correlated to mechanical properties. Active surfactant subtypes declined by Day 1, associated with a progressive alveolar derecruitment and a decrease in compliance. Alveolar epithelial damage was more pronounced in closed alveoli compared with ventilated alveoli. Collapse induration occurred on Day 7 and Day 14 as indicated by collapsed alveoli overgrown by a hyperplastic alveolar epithelium. This pathophysiology was also observed for the first time in human IPF lung explants. Before the onset of collapse induration, distal airspaces were easily recruited, and lung elastance could be kept low after recruitment by positive end-expiratory pressure (PEEP). At later time points, the recruitable fraction of the lung was reduced by collapse induration, causing elastance to be elevated at high levels of PEEP. Surfactant inactivation leading to alveolar collapse and subsequent collapse induration might be the primary pathway for the loss of alveoli in this animal model. Loss of alveoli is highly correlated with the degradation of lung function. Our ultrastructural observations suggest that collapse induration is important in human IPF.

  18. Delineation of a collapse feature in a noisy environment using a multichannel surface wave technique

    USGS Publications Warehouse

    Xia, J.; Chen, C.; Li, P.H.; Lewis, M.J.

    2004-01-01

    A collapse developed at Calvert Cliffs Nuclear Power Plant, Maryland, in early 2001. The location of the collapse was over a groundwater drainage system pipe buried at an elevation of +0??9 m (reference is to Chesapeake Bay level). The cause of the collapse was a subsurface drain pipe that collapsed because of saltwater corrosion of the corrugated metal pipe. The inflow/outflow of sea water and groundwater flow caused soil to be removed from the area where the pipe collapsed. To prevent damage to nearby structures, the collapse was quickly filled with uncompacted sand and gravel (???36000 kg). However, the plant had an immediate need to determine whether more underground voids existed. A high-frequency multichannel surface-wave survey technique was conducted to define the zone affected by the collapse. Although the surface-wave survey at Calvert Cliffs Nuclear Power Plant was conducted at a noise level 50-100 times higher than the normal environment for a shallow seismic survey, the shear (S)-wave velocity field calculated from surface-wave data delineated a possible zone affected by the collapse. The S-wave velocity field showed chimney-shaped low-velocity anomalies that were directly related to the collapse. Based on S-wave velocity field maps, a potential zone affected by the collapse was tentatively defined.

  19. Collapse of Corroded Pipelines under Combined Tension and External Pressure

    PubMed Central

    Ye, Hao; Yan, Sunting; Jin, Zhijiang

    2016-01-01

    In this work, collapse of corroded pipeline under combined external pressure and tension is investigated through numerical method. Axially uniform corrosion with symmetric imperfections is firstly considered. After verifying with existing experimental results, the finite element model is used to study the effect of tension on collapse pressure. An extensive parametric study is carried out using Python script and FORTRAN subroutine to investigate the influence of geometric parameters on the collapse behavior under combined loads. The results are used to develop an empirical equation for estimating the collapse pressure under tension. In addition, the effects of loading path, initial imperfection length, yielding anisotropy and corrosion defect length on the collapse behavior are also investigated. It is found that tension has a significant influence on collapse pressure of corroded pipelines. Loading path and anisotropic yielding are also important factors affecting the collapse behavior. For pipelines with relatively long corrosion defect, axially uniform corrosion models could be used to estimate the collapse pressure. PMID:27111544

  20. Comparing solvophobic and multivalent induced collapse in polyelectrolyte brushes

    DOE PAGES

    Jackson, Nicholas E.; Brettmann, Blair K.; Vishwanath, Venkatram; ...

    2017-02-03

    Here, coarse-grained molecular dynamics enhanced by free-energy sampling methods is used to examine the roles of solvophobicity and multivalent salts on polyelectrolyte brush collapse. Specifically, we demonstrate that while ostensibly similar, solvophobic collapsed brushes and multivalent-ion collapsed brushes exhibit distinct mechanistic and structural features. Notably, multivalent-induced heterogeneous brush collapse is observed under good solvent polymer backbone conditions, demonstrating that the mechanism of multivalent collapse is not contingent upon a solvophobic backbone. Umbrella sampling of the potential of mean-force (PMF) between two individual brush strands confirms this analysis, revealing starkly different PMFs under solvophobic and multivalent conditions, suggesting the role ofmore » multivalent “bridging” as the discriminating feature in trivalent collapse. Structurally, multivalent ions show a propensity for nucleating order within collapsed brushes, whereas poor-solvent collapsed brushes are more disordered; this difference is traced to the existence of a metastable PMF minimum for poor solvent conditions, and a global PMF minimum for trivalent systems, under experimentally relevant conditions.« less

  1. Comparing solvophobic and multivalent induced collapse in polyelectrolyte brushes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Nicholas E.; Brettmann, Blair K.; Vishwanath, Venkatram

    Here, coarse-grained molecular dynamics enhanced by free-energy sampling methods is used to examine the roles of solvophobicity and multivalent salts on polyelectrolyte brush collapse. Specifically, we demonstrate that while ostensibly similar, solvophobic collapsed brushes and multivalent-ion collapsed brushes exhibit distinct mechanistic and structural features. Notably, multivalent-induced heterogeneous brush collapse is observed under good solvent polymer backbone conditions, demonstrating that the mechanism of multivalent collapse is not contingent upon a solvophobic backbone. Umbrella sampling of the potential of mean-force (PMF) between two individual brush strands confirms this analysis, revealing starkly different PMFs under solvophobic and multivalent conditions, suggesting the role ofmore » multivalent “bridging” as the discriminating feature in trivalent collapse. Structurally, multivalent ions show a propensity for nucleating order within collapsed brushes, whereas poor-solvent collapsed brushes are more disordered; this difference is traced to the existence of a metastable PMF minimum for poor solvent conditions, and a global PMF minimum for trivalent systems, under experimentally relevant conditions.« less

  2. Computed tomography of lobar collapse: 2. Collapse in the absence of endobronchial obstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naidich, D.P.; McCauley, D.I.; Khouri, N.F.

    1983-10-01

    The computed tomographic appearance of collapse without endobronchial obstruction is reviewed. These 57 cases were classified by the etiology of collapse. The largest group consisted of 29 patients with passive atelectasis, i.e., collapse secondary to fluid, air, or both in the pleural space. Twenty-three of 29 proved secondary to malignant pleural disease. Computed tomography accurately predicted a malignant etiology in 22 of 23 cases. The second largest group of patients had lobar collapse secondary to cicatrization from chronic inflammation. In all cases the underlying etiology was tuberculosis. Radiation caused adhesive atelectasis in six patients secondary to a lack of productionmore » of surfactant. In each case a sharp line of demarcation could be defined between normal and abnormal collapsed pulmonary parenchyma. Three cases of unchecked tumor growth caused a peripheral form of collapse (replacement atelectasis). This form of collapse was characterized by an absence of endobronchial obstruction and extensive tumor not delineated by the normal boundaries of the pulmonary lobes.« less

  3. Debris avalanches and slumps on the margins of volcanic domes on Venus: Characteristics of deposits

    NASA Technical Reports Server (NTRS)

    Bulmer, M. H.; Guest, J. E.; Beretan, K.; Michaels, Gregory A.; Saunders, R. Stephen

    1992-01-01

    Modified volcanic domes, referred to as collapsed margin domes, have diameters greater than those of terrestrial domes and were therefore thought to have no suitable terrestrial analogue. Comparison of the collapsed debris using the Magellan SAR images with volcanic debris avalanches on Earth has revealed morphological similarities. Some volcanic features identified on the seafloor from sonar images have diameters similar to those on Venus and also display scalloped margins, indicating modification by collapse. Examination of the SAR images of collapsed dome features reveals a number of distinct morphologies to the collapsed masses. Ten examples of collapsed margin domes displaying a range of differing morphologies and collapsed masses have been selected and examined.

  4. Earthquakes as collapse precursors at the Han-sur-Lesse Cave in the Belgian Ardennes

    NASA Astrophysics Data System (ADS)

    Camelbeeck, Thierry; Quinif, Yves; Verheyden, Sophie; Vanneste, Kris; Knuts, Elisabeth

    2018-05-01

    Collapse activation is an ongoing process in the evolution of karstic networks related to the weakening of cave vaults. Because collapses are infrequent, few have been directly observed, making it challenging to evaluate the role of external processes in their initiation and triggering. Here, we study the two most recent collapses in the Dôme chamber of the Han-sur-Lesse Cave (Belgian Ardenne) that occurred on or shortly after 3rd December 1828 and between the 13th and 14th of March 1984. Because of the low probability that the two earthquakes that generated the strongest ground motions in Han-sur-Lesse since 1800, on 23rd February 1828 (Mw = 5.1 in Central Belgium) and 8th November 1983 (Mw = 4.8 in Liège) occurred by coincidence less than one year before these collapses, we suggest that the collapses are related to these earthquakes. We argue that the earthquakes accelerated the cave vault instability, leading to the collapses by the action of other factors weakening the host rock. In particular, the 1828 collapse was likely triggered by a smaller Mw = 4.2 nearby earthquake. The 1984 collapse followed two months of heavy rainfall that would have increased water infiltration and pressure in the rock mass favoring destabilization of the cave ceiling. Lamina counting of a stalagmite growing on the 1828 debris dates the collapse at 1826 ± 9 CE, demonstrating the possibility of dating previous collapses with a few years of uncertainty. Furthermore, our study opens new perspectives for studying collapses and their chronology both in the Han-sur-Lesse Cave and in other karstic networks. We suggest that earthquake activity could play a stronger role than previously thought in initiating cave collapses.

  5. Real-time Tumor Oxygenation Changes After Single High-dose Radiation Therapy in Orthotopic and Subcutaneous Lung Cancer in Mice: Clinical Implication for Stereotactic Ablative Radiation Therapy Schedule Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Changhoon; Hong, Beom-Ju; Bok, Seoyeon

    Purpose: To investigate the serial changes of tumor hypoxia in response to single high-dose irradiation by various clinical and preclinical methods to propose an optimal fractionation schedule for stereotactic ablative radiation therapy. Methods and Materials: Syngeneic Lewis lung carcinomas were grown either orthotopically or subcutaneously in C57BL/6 mice and irradiated with a single dose of 15 Gy to mimic stereotactic ablative radiation therapy used in the clinic. Serial [{sup 18}F]-misonidazole (F-MISO) positron emission tomography (PET) imaging, pimonidazole fluorescence-activated cell sorting analyses, hypoxia-responsive element-driven bioluminescence, and Hoechst 33342 perfusion were performed before irradiation (day −1), at 6 hours (day 0), and 2 (daymore » 2) and 6 (day 6) days after irradiation for both subcutaneous and orthotopic lung tumors. For F-MISO, the tumor/brain ratio was analyzed. Results: Hypoxic signals were too low to quantitate for orthotopic tumors using F-MISO PET or hypoxia-responsive element-driven bioluminescence imaging. In subcutaneous tumors, the maximum tumor/brain ratio was 2.87 ± 0.483 at day −1, 1.67 ± 0.116 at day 0, 2.92 ± 0.334 at day 2, and 2.13 ± 0.385 at day 6, indicating that tumor hypoxia was decreased immediately after irradiation and had returned to the pretreatment levels at day 2, followed by a slight decrease by day 6 after radiation. Pimonidazole analysis also revealed similar patterns. Using Hoechst 33342 vascular perfusion dye, CD31, and cleaved caspase 3 co-immunostaining, we found a rapid and transient vascular collapse, which might have resulted in poor intratumor perfusion of F-MISO PET tracer or pimonidazole delivered at day 0, leading to decreased hypoxic signals at day 0 by PET or pimonidazole analyses. Conclusions: We found tumor hypoxia levels decreased immediately after delivery of a single dose of 15 Gy and had returned to the pretreatment levels 2 days after irradiation and had decreased slightly by day 6. Our results indicate that single high-dose irradiation can produce a rapid, but reversible, vascular collapse in tumors.« less

  6. The timing and intensity of column collapse during explosive volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Carazzo, Guillaume; Kaminski, Edouard; Tait, Stephen

    2015-02-01

    Volcanic columns produced by explosive eruptions commonly reach, at some stage, a collapse regime with associated pyroclastic density currents propagating on the ground. The threshold conditions for the entrance into this regime are mainly controlled by the mass flux and exsolved gas content at the source. However, column collapse is often partial and the controls on the fraction of total mass flux that feeds the pyroclastic density currents, defined here as the intensity of collapse, are unknown. To better understand this regime, we use a new experimental apparatus reproducing at laboratory scale the convecting and collapsing behavior of hot particle-laden air jets. We validate the predictions of a 1D theoretical model for the entrance into the regime of partial collapse. Furthermore, we show that where a buoyant plume and a collapsing fountain coexist, the intensity of collapse can be predicted by a universal scaling relationship. We find that the intensity of collapse in the partial collapse regime is controlled by magma gas content and temperature, and always exceeds 40%, independent of peak mass flux and total erupted volume. The comparison between our theoretical predictions and a set of geological data on historic and pre-historic explosive eruptions shows that the model can be used to predict both the onset and intensity of column collapse, hence it can be used for rapid assessment of volcanic hazards notably ash dispersal during eruptive crises.

  7. Fluoroscopic and radiographic evaluation of tracheal collapse in dogs: 62 cases (2001-2006).

    PubMed

    Macready, Dawn M; Johnson, Lynelle R; Pollard, Rachel E

    2007-06-15

    To compare the use of radiography and fluoroscopy for detection and grading of tracheal collapse in dogs. Retrospective case series. Animals-62 dogs with tracheal collapse. For each dog, tracheal collapse was confirmed fluoroscopically and lateral cervical and thoracic radiographic views were reviewed. A board-certified radiologist (who was unaware of the dogs' clinical history) evaluated the cervical, thoracic inlet, thoracic, carinal, and main stem bronchial regions in all fluoroscopic videos and radiographic images for evidence of collapse. Cervical, thoracic inlet, thoracic, and carinal regions in both radio-graphic and fluoroscopic studies were graded for collapse (0%, 25%, 50%, 75%, or 100% decrease in diameter). Lateral cervical and thoracic radiographic images were available for 54 dogs, and inspiratory and expiratory lateral cervical and thoracic radiographic images were available for 8 dogs. For detection of tracheal collapse, assessment of radiographic views was sensitive and had the best negative predictive value in the cervical and thoracic inlet regions. Assessment of radiographic views was most specific and had the best positive predictive value in the thoracic inlet, thoracic, carina, and main stem bronchial regions. Radiography underestimated the degree of collapse in all areas. Review of inspiratory and expiratory views improved the accuracy of radiography for tracheal collapse diagnosis only slightly. Compared with fluoroscopy, radiography underestimated the frequency and degree of tracheal collapse. However, radiography appears to be useful for screening dogs with potential tracheal collapse.

  8. Evolution of bubble clouds induced by pulsed cavitational ultrasound therapy - histotripsy.

    PubMed

    Xu, Zhen; Raghavan, M; Hall, T L; Mycek, M-A; Fowlkes, J B

    2008-05-01

    Mechanical tissue fractionation can be achieved using successive, high-intensity ultrasound pulses in a process termed histotripsy. Histotripsy has many potential clinical applications where noninvasive tissue removal is desired. The primary mechanism for histotripsy is believed to be cavitation. Using fast-gated imaging, this paper studies the evolution of a cavitating bubble cloud induced by a histotripsy pulse (10 and 14 cycles) at peak negative pressures exceeding 21MPa. Bubble clouds are generated inside a gelatin phantom and at a tissue-water interface, representing two situations encountered clinically. In both environments, the imaging results show that the bubble clouds share the same evolutionary trend. The bubble cloud and individual bubbles in the cloud were generated by the first cycle of the pulse, grew with each cycle during the pulse, and continued to grow and collapsed several hundred microseconds after the pulse. For example, the bubbles started under 10 microm, grew to 50 microm during the pulse, and continued to grow 100 microm after the pulse. The results also suggest that the bubble clouds generated in the two environments differ in growth and collapse duration, void fraction, shape, and size. This study furthers our understanding of the dynamics of bubble clouds induced by histotripsy.

  9. Exploring the links between volcano flank collapse and magma evolution: Fogo oceanic shield volcano, Cape Verde

    NASA Astrophysics Data System (ADS)

    Cornu, Melodie-Neige; Paris, Raphael; Doucelance, Regis; Bachelery, Patrick; Guillou, Hervé

    2017-04-01

    Mass wasting of oceanic shield volcanoes is largely documented through the recognition of collapse scars and submarine debris fans. However, it is actually difficult to infer the mechanisms controlling volcano flank failures that potentially imply tens to hundreds of km3. Studies coupling detailed petrological and geochemical analyses of eruptive products hold clues for better understanding the relationships between magma sources, the plumbing system, and flank instability. Our study aims at tracking potential variations of magma source, storage and transport beneath Fogo shield volcano (Cape Verde) before and after its major flank collapse. We also provide a geochronological framework of this magmatic evolution through new radiometric ages (K-Ar and Ar-Ar) of both pre-collapse and post-collapse lavas. The central part of Fogo volcanic edifice is truncated by an 8 km-wide caldera opened to the East, corresponding to the scar of the last flank collapse (Monte Amarelo collapse, Late Pleistocene, 150 km3). Lavas sampled at the base of the scar (the so-called Bordeira) yielded ages between 158 and 136 ka. The age of the collapse is constrained between 68 ka (youngest lava flow cut by the collapse scar) and 59 ka (oldest lava flow overlapping the scar). The collapse walls display a complex structural, intrusive and eruptive history. Undersaturated volcanism (SiO2<43%) is surprisingly dominated by explosive products such as ignimbrites, with 4 major explosive episodes representing half of the volume of the central edifice. This explosive record onshore is correlated with the offshore record of mafic tephra and turbidites (Eisele et al., 2015). Major elements analyses indicate that the pre-collapse lavas are significantly less differentiated than post-collapse lavas, with a peak of alkalis at the collapse. Rare-earth elements concentration decreases with time, with a notable positive anomaly before the collapse. The evolution of the isotopic ratios (Sr, Nd and Pb) through time displays unusual V-shaped profiles centered around the collapse. The occurrence of the Monte Amarelo collapse is thus not disconnected from the magmatic evolution, both at the crustal and mantellic levels. Our results also point out the importance and relative frequency of explosive eruptions of undersaturated magmas at Fogo volcano.

  10. Modelling shoal margin collapses and their morphodynamic effect on channels and shoals in a sandy estuary

    NASA Astrophysics Data System (ADS)

    van Dijk, W. M.; Mastbergen, D. R.; Van der Werf, J. J.; Leuven, J.; Kleinhans, M. G.

    2017-12-01

    Channel bank failure and collapses of shoal margins due to flow slides have been recorded in Dutch estuaries for the past 200 years. The effects of these collapses on the morphodynamics of estuaries are unknown, but could potentially increase the dynamics of channel-shoal interactions by causing perturbations of up to a million cubic meters per event, which could impact habitats and navigability. The processes of shoal margin collapses are currently not included in numerical morphodynamic models. The objectives of this study are to investigate where shoal margins collapses typically occur, what their dimensions are, and to model how shoal margin collapses affect the morphodynamics at the channel-shoal scale. We identified 300 shoal margin collapses from bathymetry data of the Western Scheldt estuary for the period 1959-2015, and found that the shape of a shoal margin collapse is well represented by 1/3 of an ellipsoid, and that its volume has a log-normal distribution with an average of 100,000 m3. We implemented a parameterization for shoal margin collapses and tested their effects on morphodynamics in a Delft3D numerical model schematization of the Western Scheldt estuary. Three sets of scenarios were analyzed for near-field morphodynamics and far-field effects on flow pattern and channel-bar morphology: 1) an observed single shoal margin collapse of 2014, 2) collapses on various locations that are susceptible to collapses, and 3) our novel stochastic model producing collapses over a time span of a decade. Results show that single shoal margin collapses only affect the local dynamics in longitudinal direction and dampen out within a year when the collapse is small. When larger disturbances reach the seaward or landward sill at tidal channel junctions over a longer time span, the bed elevation at the sill increases on average and decrease the hydraulic geometry of the channel junctions. The extent of far-field effects is sensitive to the grain-size of the deposit, where finer sediments are transported further away. The location of the deposit across the channel matters for disturbing the region around the collapse, where sediment transport is highest for the strongest residual current. These results imply that disturbances caused by dredging and dumping may likewise affect the dynamics of channel junctions.

  11. Collapsing cavities in reactive and nonreactive media

    NASA Astrophysics Data System (ADS)

    Bourne, Neil K.; Field, John E.

    1991-04-01

    This paper presents results of a high-speed photographic study of cavities collapsed asymmetrically by shocks of strengths in the range 0.26 GPa to 3.5 GPa. Two-dimensional collapses of cavity configurations punched into a 12% by weight gelatine in water sheet, and an ammonium nitrate/sodium nitrate (AN/SN) emulsion explosive were photographed using schlieren optics. The single cavity collapses were characterized by the velocity of the liquid jet formed by the upstream wall as it was accelerated by the shock and by the time taken for the cavity to collapse. The shock pressure did not qualitatively affect the collapse behaviour but jet velocities were found to exceed incident shock velocities at higher pressures. The more violent collapses induced light emission from the compressed gas in the cavity. When an array of cavities collapsed, a wave, characterized by the particle velocity in the medium, the cavity diameter and the inter-cavity spacing, was found to run through the array. When such an array was created within an emulsion explosive, ignition of the reactive matrix occurred ahead of the collapse wave when the incident shock was strong.

  12. A collaborative sequential meta-analysis of individual patient data from randomized trials of endovascular therapy and tPA vs. tPA alone for acute ischemic stroke: ThRombEctomy And tPA (TREAT) analysis: statistical analysis plan for a sequential meta-analysis performed within the VISTA-Endovascular collaboration.

    PubMed

    MacIsaac, Rachael L; Khatri, Pooja; Bendszus, Martin; Bracard, Serge; Broderick, Joseph; Campbell, Bruce; Ciccone, Alfonso; Dávalos, Antoni; Davis, Stephen M; Demchuk, Andrew; Diener, Hans-Christoph; Dippel, Diederik; Donnan, Geoffrey A; Fiehler, Jens; Fiorella, David; Goyal, Mayank; Hacke, Werner; Hill, Michael D; Jahan, Reza; Jauch, Edward; Jovin, Tudor; Kidwell, Chelsea S; Liebeskind, David; Majoie, Charles B; Martins, Sheila Cristina Ouriques; Mitchell, Peter; Mocco, J; Muir, Keith W; Nogueira, Raul; Saver, Jeffrey L; Schonewille, Wouter J; Siddiqui, Adnan H; Thomalla, Götz; Tomsick, Thomas A; Turk, Aquilla S; White, Philip; Zaidat, Osama; Lees, Kennedy R

    2015-10-01

    Endovascular treatment has been shown to restore blood flow effectively. Second-generation medical devices such as stent retrievers are now showing overwhelming efficacy in clinical trials, particularly in conjunction with intravenous recombinant tissue plasminogen activator. This statistical analysis plan utilizing a novel, sequential approach describes a prospective, individual patient data analysis of endovascular therapy in conjunction with intravenous recombinant tissue plasminogen activator agreed upon by the Thrombectomy and Tissue Plasminogen Activator Collaborative Group. This protocol will specify the primary outcome for efficacy, as 'favorable' outcome defined by the ordinal distribution of the modified Rankin Scale measured at three-months poststroke, but with modified Rankin Scales 5 and 6 collapsed into a single category. The primary analysis will aim to answer the questions: 'what is the treatment effect of endovascular therapy with intravenous recombinant tissue plasminogen activator compared to intravenous tissue plasminogen activator alone on full scale modified Rankin Scale at 3 months?' and 'to what extent do key patient characteristics influence the treatment effect of endovascular therapy?'. Key secondary outcomes include effect of endovascular therapy on death within 90 days; analyses of modified Rankin Scale using dichotomized methods; and effects of endovascular therapy on symptomatic intracranial hemorrhage. Several secondary analyses will be considered as well as expanding patient cohorts to intravenous recombinant tissue plasminogen activator-ineligible patients, should data allow. This collaborative meta-analysis of individual participant data from randomized trials of endovascular therapy vs. control in conjunction with intravenous thrombolysis will demonstrate the efficacy and generalizability of endovascular therapy with intravenous thrombolysis as a concomitant medication. © 2015 World Stroke Organization.

  13. Numerical simulations of non-spherical bubble collapse.

    PubMed

    Johnsen, Eric; Colonius, Tim

    2009-06-01

    A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined.

  14. Numerical simulations of non-spherical bubble collapse

    PubMed Central

    JOHNSEN, ERIC; COLONIUS, TIM

    2009-01-01

    A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined. PMID:19756233

  15. A Simple Model for Human and Nature Interaction

    NASA Astrophysics Data System (ADS)

    Motesharrei, S.; Rivas, J.; Kalnay, E.

    2012-12-01

    There are widespread concerns that current trends in population and resource-use are unsustainable, but the possibilities of an overshoot and collapse remain unclear and controversial. Collapses of civilizations have occurred many times in the past 5000 years, often followed by centuries of economic, intellectual, and population decline. Many different natural and social phenomena have been invoked to explain specific collapses, but a general explanation remains elusive. Two important features seem to appear across societies that have collapsed: Ecological Strain and Economic Stratification. Our new model (Human And Nature DYnamics, HANDY) has just four equations that describe the evolution of Elites, Commoners, Nature, and Wealth. Mechanisms leading to collapse are discussed and the measure "Carrying Capacity" is developed and defined. The model shows that societal collapse can happen due to either one of two independent factors: (1) over-consumption of natural resources, and/or (2) deep inequity between Elites and Commoners. The model also portrays two distinct types of collapse: (i) collapse followed by recovery of nature, and (ii) full collapse. The model suggests that the estimation of Carrying Capacity is a practical means for early detection of a collapse. Collapse can be avoided, and population can reach a sustainable equilibrium, if the rate of depletion of nature is reduced to a sustainable level, and if resources are distributed in a reasonably equitable fashion.; A type-ii (full) collapse is shown in this figure. With high inequality and high depletion, societies are doomed to collapse. Wealth starts to decrease when population rises above the carrying capacity. The large gap between carrying capacity and its maximum is a result of depletion factor being much larger than the sustainable limit. ; It is possible to overshoot, oscillate, and eventually converge to an equilibrium, even in an inequitable society. However, it requires policies that control birth rates and inequality. Additionally, depletion (production) must be kept within a reasonable range.

  16. Volcano collapse promoted by progressive strength reduction: New data from Mount St. Helens

    USGS Publications Warehouse

    Reid, Mark E.; Keith, Terry E.C.; Kayen, Robert E.; Iverson, Neal R.; Iverson, Richard M.; Brien, Dianne

    2010-01-01

    Rock shear strength plays a fundamental role in volcano flank collapse, yet pertinent data from modern collapse surfaces are rare. Using samples collected from the inferred failure surface of the massive 1980 collapse of Mount St. Helens (MSH), we determined rock shear strength via laboratory tests designed to mimic conditions in the pre-collapse edifice. We observed that the 1980 failure shear surfaces formed primarily in pervasively shattered older dome rocks; failure was not localized in sloping volcanic strata or in weak, hydrothermally altered rocks. Our test results show that rock shear strength under large confining stresses is reduced ∼20% as a result of large quasi-static shear strain, as preceded the 1980 collapse of MSH. Using quasi-3D slope-stability modeling, we demonstrate that this mechanical weakening could have provoked edifice collapse, even in the absence of transiently elevated pore-fluid pressures or earthquake ground shaking. Progressive strength reduction could promote collapses at other volcanic edifices.

  17. Massive collapse of volcano edifices triggered by hydrothermal pressurization

    USGS Publications Warehouse

    Reid, M.E.

    2004-01-01

    Catastrophic collapse of steep volcano flanks threatens lives at stratovolcanoes around the world. Although destabilizing shallow intrusion of magma into the edifice accompanies some collapses (e.g., Mount St. Helens), others have occurred without eruption of juvenile magmatic materials (e.g., Bandai). These latter collapses can be difficult to anticipate. Historic collapses without magmatic eruption are associated with shallow hydrothermal groundwater systems at the time of collapse. Through the use of numerical models of heat and groundwater flow, I evaluate the efficacy of hydrothermally driven collapse. Heating from remote magma intrusion at depth can generate temporarily elevated pore-fluid pressures that propagate upward into an edifice. Effective-stress deformation modeling shows that these pressures are capable of destabilizing the core of an edifice, resulting in massive, deep-seated collapse. Far-field pressurization only occurs with specific rock hydraulic properties; however, data from numerous hydrothermal systems illustrate that this process can transpire in realistic settings. ?? 2004 Geological Society of America.

  18. Bone Marrow Aspirate Concentrate in Combination With Intravenous Iloprost Increases Bone Healing in Patients With Avascular Necrosis of the Femoral Head: A Matched Pair Analysis.

    PubMed

    Pilge, Hakan; Bittersohl, Bernd; Schneppendahl, Johannes; Hesper, Tobias; Zilkens, Christoph; Ruppert, Martin; Krauspe, Rüdiger; Jäger, Marcus

    2016-11-17

    With disease progression, avascular necrosis (AVN) of the femoral head may lead to a collapse of the articular surface. The exact pathophysiology of AVN remains unclear, although several conditions are known that can result in spontaneous cell death, leading to a reduction of trabecular bone and the development of AVN. Hip AVN treatment is stage-dependent in which two main stages of the disease can be distinguished: pre-collapse (ARCO 0-II) and post-collapse stage (ARCO III-IV, crescent sign). In the pre-collapse phase, core decompression (CD), with or without the addition of bone marrow ( e.g . bone marrow aspirate concentrate, BMAC) or bone graft, is a common treatment alternative. In the post-collapse phase, THA (total hip arthroplasty) must be performed in most of the patients. In addition to surgical treatment, the intravenous application of Iloprost has been shown to have a curative potential and analgesic effect. From October 2009 to October 2014, 49 patients with AVN (stages I-III) were treated with core decompression at our institution. All patients were divided into group A (CD + BMAC) and group B (CD alone). Of these patients, 20 were included in a matched pair analysis. The patients were matched to age, gender, ARCO-stage, Kerboul combined necrotic angle, the cause of AVN, and whether Iloprost-therapy was performed. The Merle d'Aubigné Score and the Kerboul combined necrotic angle in a-p and lateral radiographs were evaluated pre- and postoperatively. The primary endpoint was a total hip arthroplasty. In group A, two patients needed THA while in group B four patients were treated with THA. In group A, the Merle d'Aubigné Score improved from 13.5 (pre-operatively) to 15.3 (postoperatively). In group B there was no difference between the pre- (14.3) and postoperative (14.1) assessment. The mean of the Kerboul angle showed no difference in both groups compared pre- to postoperatively (group A: pre-op 212°, postop 220°, group B: pre-op 213, postop 222°). Regarding radiographic evaluation, the interobserver variability revealed a moderate agreement between two raters regarding the pre-(ICC 0.594) and postoperative analysis (ICC 0.604).This study demonstrates that CD in combination with the application of autologous bone marrow aspirate concentrate into the femoral head seems to be a safe and efficient treatment alternative in the early stages of AVN of the femoral head when compared to CD alone.

  19. Investigating collapse structures in oceanic islands using magnetotelluric surveys: The case of Fogo Island in Cape Verde

    NASA Astrophysics Data System (ADS)

    Martínez-Moreno, F. J.; Monteiro Santos, F. A.; Madeira, J.; Pous, J.; Bernardo, I.; Soares, A.; Esteves, M.; Adão, F.; Ribeiro, J.; Mata, J.; Brum da Silveira, A.

    2018-05-01

    One of the most remarkable natural events on Earth are the large lateral flank collapses of oceanic volcanoes, involving volumes of rock exceeding tens of km3. These collapses are relatively frequent in recent geological times as supported by evidence found in the geomorphology of volcanic island edifices and associated debris flows deposited on the proximal ocean floor. The Island of Fogo in the Cape Verde archipelago is one of the most active and prominent oceanic volcanoes on Earth. The island has an average diameter of 25 km and reaches a maximum elevation of 2829 m above sea level (m a.s.l.) at Pico do Fogo, a young stratovolcano located within a summit depression open eastward due to a large lateral flank collapse. The sudden collapse of the eastern flank of Fogo Island produced a megatsunami 73 ky ago. The limits of the flank collapse were deduced as well from geomorphologic markers within the island. The headwall of the collapse scar is interpreted as either being located beneath the post-collapse volcanic infill of the summit depression or located further west, corresponding to the Bordeira wall that partially surrounds it. The magnetotelluric (MT) method provides a depth distribution of the ground resistivity obtained by the simultaneous measurement of the natural variations of the electric and magnetic field of the Earth. Two N-S magnetotelluric profiles were acquired across the collapsed area to determine its geometry and boundaries. The acquired MT data allowed the determination of the limits of the collapsed area more accurately as well as its morphology at depth and thickness of the post-collapse infill. According to the newly obtained MT data and the bathymetry of the eastern submarine flank of Fogo, the volume involved in the flank collapse is estimated in 110 km3. This volume -the first calculated onshore- stands between the previously published more conservative and excessive calculations -offshore- that were exclusively based in geomorphic evidence. The model for the summit depression proposing two caldera collapses preceding the collapse of the eastern flank of Fogo is supported by the MT data.

  20. Collapse Causes Analysis and Numerical Simulation for a Rigid Frame Multiple Arch Bridge

    NASA Astrophysics Data System (ADS)

    Zuo, XinDai

    2018-03-01

    Following the collapse accident of Baihe Bridge, the author built a plane model of the whole bridge firstly and analyzed the carrying capacity of the structure for a 170-tons lorry load. Then the author built a spatial finite element model which can accurately simulate the bridge collapse course. The collapse course was simulated and the accident scene was reproduced. Spatial analysis showed rotational stiffness of the pier bottom had a large influence on the collapse from of the superstructures. The conclusion was that the170 tons lorry load and multiple arch bridge design were the important factors leading to collapse.

  1. Centrifuge tests on simulation of the ''cookie cutter'' mechanism of chimney collapse into underground openings: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutter, B.L.; Chang, Ging-Song

    The underground testing of nuclear devices causes the formation of large underground cavities which eventually may be filled by rubble and soil falling from the roof of the cavity. The zone of collapsing soil progresses upward toward the ground surface to form a ''chimney.'' The mechanisms of chimney collapse are important to understand for two important reasons. (1) A devastating and sudden propagation of the collapse may result in the formation of a surface crater which may threaten personnel and equipment in the vicinity of the crater. (2) Different collapse patterns are known to occur in the field and somemore » of these collapse patterns are known to be associated with leakage of radioactive wastes to the ground surface. A number of centrifuge tests were conducted by Kutter et al. (1988), to study the collapse of cavities in uniform dry sands. In these materials, the chimney collapse patterns were found to involve continuous, smoothly varying shear strain patterns in the chimney. The pattern of collapse in one of the tests is shown in figure 1. Figure 1a shows the surface crater that formed on the ground surface due to the collapse of a 6 inch diameter cavity buried 18'' beneath the ground surface. This result was obtained by draining fluid out of a 6'' rubber bag while the centrifuge was spinning at 11 g.« less

  2. Physical properties and collapse force of according to the z-position of poly-Si pattern using nano-tribology.

    PubMed

    Kim, Soo In; Lee, Chang Woo

    2011-02-01

    Nowadays, many researchers try to measure the collapse force of fine pattern. However, most of the researches use LFM to gauge it indirectly and LFM can measure not for collapse force directly but only limited for horizontal force. Thus, nano-scratch is suggested to measure the collapse force possibly. We used poly-Si pattern on Si plate and changed the z-location of the pattern. From these experiments, the stiffness was decease as depth increase from surface and well fitted with negative exponential curve. Also, the elastic modulus was decreased. From the results, the collapse force of poly-Si nano-patterns was decreased as the depth increased over than 30% from the surface and the maximum collapse force was 26.91 microN and pattern was collapsed between poly-Si and plate.

  3. 26 CFR 1.341-1 - Collapsible corporations; in general.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 4 2014-04-01 2014-04-01 false Collapsible corporations; in general. 1.341-1... TAX (CONTINUED) INCOME TAXES (CONTINUED) Collapsible Corporations; Foreign Personal Holding Companies § 1.341-1 Collapsible corporations; in general. Subject to the limitations contained in § 1.341-4 and...

  4. 26 CFR 1.341-1 - Collapsible corporations; in general.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Collapsible corporations; in general. 1.341-1... TAX (CONTINUED) INCOME TAXES Collapsible Corporations; Foreign Personal Holding Companies § 1.341-1 Collapsible corporations; in general. Subject to the limitations contained in § 1.341-4 and the exceptions...

  5. 26 CFR 1.341-1 - Collapsible corporations; in general.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 4 2013-04-01 2013-04-01 false Collapsible corporations; in general. 1.341-1... TAX (CONTINUED) INCOME TAXES (CONTINUED) Collapsible Corporations; Foreign Personal Holding Companies § 1.341-1 Collapsible corporations; in general. Subject to the limitations contained in § 1.341-4 and...

  6. 26 CFR 1.341-1 - Collapsible corporations; in general.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 4 2011-04-01 2011-04-01 false Collapsible corporations; in general. 1.341-1... TAX (CONTINUED) INCOME TAXES Collapsible Corporations; Foreign Personal Holding Companies § 1.341-1 Collapsible corporations; in general. Subject to the limitations contained in § 1.341-4 and the exceptions...

  7. 26 CFR 1.341-1 - Collapsible corporations; in general.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 4 2012-04-01 2012-04-01 false Collapsible corporations; in general. 1.341-1... TAX (CONTINUED) INCOME TAXES (Continued) Collapsible Corporations; Foreign Personal Holding Companies § 1.341-1 Collapsible corporations; in general. Subject to the limitations contained in § 1.341-4 and...

  8. Lessons Learned from the University of Virginia's Balcony Collapse.

    ERIC Educational Resources Information Center

    Dillman, Robert P.; Klingel, Jay W.

    2002-01-01

    Discusses the 1997 collapse of a balcony on a historic building at the University of Virginia, which resulted in a death and several injuries. Explores the balcony structure and cause of the collapse, any possibly preventative measures, and the resolution of legal proceedings resulting from the collapse. (EV)

  9. On peaceful coexistence: is the collapse postulate incompatible with relativity?

    NASA Astrophysics Data System (ADS)

    Myrvold, Wayne C.

    In this paper, it is argued that the prima facie conflict between special relativity and the quantum-mechanical collapse postulate is only apparent, and that the seemingly incompatible accounts of entangled systems undergoing collapse yielded by different reference frames can be regarded as no more than differing accounts of the same processes and events. Attention to the transformation properties of quantum-mechanical states undergoing unitary, non-collapse evolution points the way to a treatment of collapse evolution consistent with the demands of relativity.

  10. Why do naked singularities form in gravitational collapse? II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Pankaj S.; Goswami, Rituparno; Dadhich, Naresh

    We examine physical features that could lead to formation of a naked singularity rather than black hole, as end state of spherical collapse. Generalizing earlier results on dust collapse to general type I matter fields, it is shown that collapse always creates black hole if shear vanishes or density is homogeneous. It follows that nonzero shear is a necessary condition for singularity to be visible to external observers, when trapped surface formation is delayed by shearing forces or inhomogeneity within the collapsing cloud.

  11. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness

    NASA Astrophysics Data System (ADS)

    Zhai, Zirui; Wang, Yong; Jiang, Hanqing

    2018-03-01

    Origami has been employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. Deployable metamaterials are usually flexible, particularly along their deploying and collapsing directions, which unfortunately in many cases leads to an unstable deployed state, i.e., small perturbations may collapse the structure along the same deployment path. Here we create an origami-inspired mechanical metamaterial with on-demand deployability and selective collapsibility through energy analysis. This metamaterial has autonomous deployability from the collapsed state and can be selectively collapsed along two different paths, embodying low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields load-bearing capability in the deployed direction while possessing great deployability and collapsibility. The principle in this work can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications.

  12. Explosively driven hypervelocity launcher: Second-stage augmentation techniques

    NASA Technical Reports Server (NTRS)

    Baum, D. W.

    1973-01-01

    The results are described of a continuing study aimed at developing a two-stage explosively driven hypervelocity launcher capable of achieving projectile velocities between 15 and 20 km/sec. The testing and evaluation of a new cylindrical impact technique for collapsing the barrel of two-stage launcher are reported. Previous two-stage launchers have been limited in ultimate performance by incomplete barrel collapse behind the projectile. The cylindrical impact technique explosively collapses a steel tube concentric with and surrounding the barrel of the launcher. The impact of the tube on the barrel produces extremely high stresses which cause the barrel to collapse. The collapse rate can be adjusted by appropriate variation of the explosive charge and tubing parameters. Launcher experiments demonstrated that the technique did achieve complete barrel collapse and form a second-stage piston. However, jetting occurred in the barrel collapse process and was responsible for severe projectile damage.

  13. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness.

    PubMed

    Zhai, Zirui; Wang, Yong; Jiang, Hanqing

    2018-02-27

    Origami has been employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. Deployable metamaterials are usually flexible, particularly along their deploying and collapsing directions, which unfortunately in many cases leads to an unstable deployed state, i.e., small perturbations may collapse the structure along the same deployment path. Here we create an origami-inspired mechanical metamaterial with on-demand deployability and selective collapsibility through energy analysis. This metamaterial has autonomous deployability from the collapsed state and can be selectively collapsed along two different paths, embodying low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields load-bearing capability in the deployed direction while possessing great deployability and collapsibility. The principle in this work can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications. Copyright © 2018 the Author(s). Published by PNAS.

  14. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness

    PubMed Central

    Zhai, Zirui; Wang, Yong

    2018-01-01

    Origami has been employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. Deployable metamaterials are usually flexible, particularly along their deploying and collapsing directions, which unfortunately in many cases leads to an unstable deployed state, i.e., small perturbations may collapse the structure along the same deployment path. Here we create an origami-inspired mechanical metamaterial with on-demand deployability and selective collapsibility through energy analysis. This metamaterial has autonomous deployability from the collapsed state and can be selectively collapsed along two different paths, embodying low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields load-bearing capability in the deployed direction while possessing great deployability and collapsibility. The principle in this work can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications. PMID:29440441

  15. Kinematic fingerprint of core-collapsed globular clusters

    NASA Astrophysics Data System (ADS)

    Bianchini, P.; Webb, J. J.; Sills, A.; Vesperini, E.

    2018-03-01

    Dynamical evolution drives globular clusters towards core collapse, which strongly shapes their internal properties. Diagnostics of core collapse have so far been based on photometry only, namely on the study of the concentration of the density profiles. Here, we present a new method to robustly identify core-collapsed clusters based on the study of their stellar kinematics. We introduce the kinematic concentration parameter, ck, the ratio between the global and local degree of energy equipartition reached by a cluster, and show through extensive direct N-body simulations that clusters approaching core collapse and in the post-core collapse phase are strictly characterized by ck > 1. The kinematic concentration provides a suitable diagnostic to identify core-collapsed clusters, independent from any other previous methods based on photometry. We also explore the effects of incomplete radial and stellar mass coverage on the calculation of ck and find that our method can be applied to state-of-art kinematic data sets.

  16. How Fast is Collapse of Proteins During Folding?

    NASA Astrophysics Data System (ADS)

    Chahine, J.; Onuchic, J. N.; Socci, N. D.

    1998-03-01

    Recent experiments in fast folding proteins are now starting to address the question of how fast is collapse relative to the total folding time. Using minimalist models, we are able to investigate the way in which different scenarios of folding can arise depending on the interplay between the collapse order parameter and the order parameter sensitive to specific tertiary contacts. Most of our earlier studies have focused on the limit that collapse is very fast compared to the total folding time. In this work we focus on the opposite limit, i.e., at the folding temperature, collapse and folding occurs simultaneously. The folding mechanism becomes very different in this limit. Particularly, the non-specific collapse transition, that occurs at temperatures higher than the folding temperature for the fast collapse limit, now occurs between the folding and the glass temperature. We show how this transition can be identified and its consequences for the folding kinetics.

  17. Dynamic water patterns change the stability of the collapsed filter conformation of the KcsA K+ channel

    PubMed Central

    2017-01-01

    The selectivity filter of the KcsA K+ channel has two typical conformations—the conductive and the collapsed conformations, respectively. The transition from the conductive to the collapsed filter conformation can represent the process of inactivation that depends on many environmental factors. Water molecules permeating behind the filter can influence the collapsed filter stability. Here we perform the molecular dynamics simulations to study the stability of the collapsed filter of the KcsA K+ channel under the different water patterns. We find that the water patterns are dynamic behind the collapsed filter and the filter stability increases with the increasing number of water molecules. In addition, the stability increases significantly when water molecules distribute uniformly behind the four monomeric filter chains, and the stability is compromised if water molecules only cluster behind one or two adjacent filter chains. The altered filter stabilities thus suggest that the collapsed filter can inactivate gradually under the dynamic water patterns. We also demonstrate how the different water patterns affect the filter recovery from the collapsed conformation. PMID:29049423

  18. Dynamic water patterns change the stability of the collapsed filter conformation of the KcsA K+ channel.

    PubMed

    Wu, Di

    2017-01-01

    The selectivity filter of the KcsA K+ channel has two typical conformations-the conductive and the collapsed conformations, respectively. The transition from the conductive to the collapsed filter conformation can represent the process of inactivation that depends on many environmental factors. Water molecules permeating behind the filter can influence the collapsed filter stability. Here we perform the molecular dynamics simulations to study the stability of the collapsed filter of the KcsA K+ channel under the different water patterns. We find that the water patterns are dynamic behind the collapsed filter and the filter stability increases with the increasing number of water molecules. In addition, the stability increases significantly when water molecules distribute uniformly behind the four monomeric filter chains, and the stability is compromised if water molecules only cluster behind one or two adjacent filter chains. The altered filter stabilities thus suggest that the collapsed filter can inactivate gradually under the dynamic water patterns. We also demonstrate how the different water patterns affect the filter recovery from the collapsed conformation.

  19. Numeric simulation of relativistic stellar core collapse and the formation of Reissner-Nordstroem black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghezzi, Cristian R.; Letelier, Patricio S.

    2007-01-15

    The time evolution of a set of 22M{sub {center_dot}} unstable charged stars that collapse is computed integrating the Einstein-Maxwell equations. The model simulates the collapse of a spherical star that had exhausted its nuclear fuel and has or acquires a net electric charge in its core while collapsing. When the charge-to-mass ratio is Q/{radical}(G)M{>=}1, the star does not collapse but spreads. On the other hand, a different physical behavior is observed with a charge-to-mass ratio of 1>Q/{radical}(G)M>0.1. In this case, the collapsing matter forms a bubble enclosing a lower density core. We discuss an immediate astrophysical consequence of these resultsmore » that is a more efficient neutrino trapping during the stellar collapse and an alternative mechanism for powerful supernova explosions. The outer space-time of the star is the Reissner-Nordstroem solution that matches smoothly with our interior numerical solution; thus the collapsing models form Reissner-Nordstroem black holes.« less

  20. The effect of giant flank collapses on magma pathways and location of volcanic vents

    NASA Astrophysics Data System (ADS)

    Maccaferri, Francesco; Richter, Nicole; Walter, Thomas

    2017-04-01

    Flank collapses have been identified at tall volcanoes and ocean islands worldwide. They are recurrent processes, significantly contributing to the morphological and structural evolution of volcanic edifices, and they often occur in interaction with magmatic activity. Moreover, it has been observed that the intrusion pathways and eruption's sites often differ before and after flank collapses. While it is understood that dyke intrusions might destabilise a volcano flank, and a moving flank might create the space needed for further intrusions, the effect of collapses on the magma pathways has been rarely addressed. Here we use a boundary element model for dyke propagation to study the effect of the stress redistribution due to a flank collapse on the location of eruptive vents. We use our model to simulate the path of magmatic intrusion after the collapse of the eastern flank of Fogo Volcano, Cabe Verde. We find that the competition between loading stress due to the volcanic edifice and unloading due to the collapse of a flank favours magmatic activity to cluster within the collapse scar, displaced with respect to the pre-collapse volcanic centre. Our results are compared with geomorphological observations at Fogo Island and are discussed in the general context of the long-term evolution intraplate volcanic ocean islands worldwide.

  1. Difference between continuous positive airway pressure via mask therapy and incentive spirometry to treat or prevent post-surgical atelectasis.

    PubMed

    Al-Mutairi, Fouad H; Fallows, Stephen J; Abukhudair, Waleed A; Islam, Baharul B; Morris, Michael M

    2012-11-01

    To assess the effect of early use of continuous positive airway pressure (CPAP) therapy to treat or prevent acute atelectasis in post-operative cardiac patients particularly smokers and elderly patients. A pilot study suggested enrolling at least 32 participants in each group to be significant. One hundred and eight patients from King Fahd Armed Forces Hospital, Jeddah, Kingdom of Saudi Arabia who met the inclusion criteria participated in this study conducted between March 2010 and March 2011. The participants were divided randomly into 3 groups, incentive spirometry (IS) therapy, and CPAP therapy every 2 (CPAP 2 hrs), or 4 hours (CPAP 4 hrs). Inspiratory capacity (IC) was used to compare the 3 therapy regimes. Simultaneously, respiratory rate (RR), heart rate (HR) and oxygen saturation (SpO2) were measured for all groups. Failure was defined as requiring intubation, bi-level positive airway pressure, or added chest physiotherapy. Thirty-six patients participated in each group (98 male and 10 female, with a mean age of 62+/-9.3 years). The IC increased significantly in the CPAP 2 hrs group when compared with the control group or the CPAP 4hrs group. The SpO2 decreased significantly in the control group and the CPAP 4 hrs groups when compared with the CPAP 2 hrs group. Also, there were no significant differences in RR and HR between all groups. Early use of CPAP via mask therapy for half an hour every 2 hours had better outcomes to re-open collapsed alveoli after cardiac surgery.

  2. Parvovirus-B19-associated complications in renal transplant recipients.

    PubMed

    Waldman, Meryl; Kopp, Jeffrey B

    2007-10-01

    Parvovirus B19 is a common human pathogen, causing erythema infectiosum in children, hydrops fetalis in pregnant women, and transient aplastic crisis in patients with chronic hemolytic anemia. Immunosuppressed patients can fail to mount an effective immune response to B19, resulting in prolonged or persistent viremia. Renal transplant recipients can develop symptomatic B19 infections as a result of primary infection acquired via the usual respiratory route or via the transplanted organ, or because of reactivation of latent or persistent viral infection. The most common manifestations of B19 infection in immunosuppressed patients are pure red cell aplasia and other cytopenias. Thus, this diagnosis should be considered in transplant recipients with unexplained anemia and reticulocytopenia or pancytopenia. Collapsing glomerulopathy and thrombotic microangiopathy have been reported in association with B19 infection in renal transplant recipients, but a causal relationship has not been definitively established. Prompt diagnosis of B19 infection in the renal transplant recipient requires a high index of suspicion and careful selection of diagnostic tests, which include serologies and polymerase chain reaction. Most patients benefit from intravenous immunoglobulin therapy and/or alteration or reduction of immunosuppressive therapy. Conservative therapy might be sufficient in some cases.

  3. The importance of obstructive sleep apnoea and hypopnea pathophysiology for customized therapy.

    PubMed

    Bosi, Marcello; De Vito, Andrea; Gobbi, Riccardo; Poletti, Venerino; Vicini, Claudio

    2017-03-01

    The objective of this study is to highlight the importance of anatomical and not-anatomical factors' identification for customized therapy in OSAHS patients. The data sources are: MEDLINE, The Cochrane Library and EMBASE. A systematic review was performed to identify studies that analyze the role of multiple interacting factors involved in the OSAHS pathophysiology. 85 out of 1242 abstracts were selected for full-text review. A variable combinations pathophysiological factors contribute to realize differentiated OSAHS phenotypes: a small pharyngeal airway with a low resistance to collapse (increased critical closing pressure), an inadequate responses of pharyngeal dilator muscles (wakefulness drive to breathe), an unstable ventilator responsiveness to hypercapnia (high loop gain), and an increased propensity to wake related to upper airway obstruction (low arousal threshold). Identifying if the anatomical or not-anatomical factors are predominant in each OSAHS patient represents the current challenge in clinical practice, moreover for the treatment decision-making. In the future, if a reliable and accurate pathophysiological pattern for each OSAHS patient can be identified, a customized therapy will be feasible, with a significant improvement of surgical success in sleep surgery and a better understanding of surgical failure.

  4. Late Cenozoic regional collapse due to evaporite flow and Dissolution in the Carbondale Collapse Center, West-Central Colorado

    USGS Publications Warehouse

    Kirkham, R.M.; Streufert, R.K.; Budahn, J.R.; Kunk, Michael J.; Perry, W.J.

    2001-01-01

    Dissolution and flow of Pennsylvanian evaporitic rocks in west-central Colorado created the Carbondale Collapse Center, a 450 mi2 structural depression with about 4,000 ft of vertical collapse during the late Cenozoic. This paper describes evidence of collapse in the lower Roaring Fork River valley. Both the lateral extent and amount of vertical collapse is constrained by deformed upper Cenozoic volcanic rocks that have been correlated using field mapping, 40Ar/39Ar geochronology, geochemistry, and paleomagnetism. The Carbondale Collapse Center is one of at least two contiguous areas that have experienced major evaporite tectonism during the late Cenozoic. Historic sinkholes, deformed Holocene deposits, and modern high-salinity loads in the rivers and thermal springs indicate the collapse process continues today. Flow of evaporitic rocks is an important element in the collapse process, and during initial stages of collapse it was probably the primary causative mechanism. Dissolution, however, is the ultimate means by which evaporite is removed from the collapse area. As the Roaring Fork River began to rapidly down-cut through a broad volcanic plateau during the late Miocene, the underlying evaporite beds were subjected to differential overburden pressures. The evaporitic rocks flowed from beneath the upland areas where overburden pressures remained high, toward the Roaring Fork River Valley where the pressures were much lower. Along the valley the evaporitic rocks rose upward, sometimes as diapirs, forming or enhancing a valley anticline in bedrock and locally upwarping Pleistocene terraces. Wherever the evaporites encountered relatively fresh ground water, they were dissolved, forming underground voids into which overlying bedrock and surficial deposits subsided. The saline ground water eventually discharged to streams and rivers through thermal springs and by seepage into alluvial aquifers.

  5. A History of Collapse Factor Modeling and Empirical Data for Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    deQuay, Laurence; Hodge, B. Keith

    2010-01-01

    One of the major technical problems associated with cryogenic liquid propellant systems used to supply rocket engines and their subassemblies and components is the phenomenon of propellant tank pressurant and ullage gas collapse. This collapse is mainly caused by heat transfer from ullage gas to tank walls and interfacing propellant, which are both at temperatures well below those of this gas. Mass transfer between ullage gas and cryogenic propellant can also occur and have minor to significant secondary effects that can increase or decrease ullage gas collapse. Pressurant gas is supplied into cryogenic propellant tanks in order to initially pressurize these tanks and then maintain required pressures as propellant is expelled from these tanks. The net effect of pressurant and ullage gas collapse is increased total mass and mass flow rate requirements of pressurant gases. For flight vehicles this leads to significant and undesirable weight penalties. For rocket engine component and subassembly ground test facilities this results in significantly increased facility hardware, construction, and operational costs. "Collapse Factor" is a parameter used to quantify the pressurant and ullage gas collapse. Accurate prediction of collapse factors, through analytical methods and modeling tools, and collection and evaluation of collapse factor data has evolved over the years since the start of space exploration programs in the 1950 s. Through the years, numerous documents have been published to preserve results of studies associated with the collapse factor phenomenon. This paper presents a summary and selected details of prior literature that document the aforementioned studies. Additionally other literature that present studies and results of heat and mass transfer processes, related to or providing important insights or analytical methods for the studies of collapse factor, are presented.

  6. Hydrostatic collapse research in support of the Oman India gas pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, P.R.; McKeehan, D.S.

    1995-12-01

    This paper provides a summary of the collapse test program conducted as part of the technical development for the Ultra Deep Oman to India Pipeline. The paper describes the motivation for conducting the collapse test program, outlines the test objectives and procedures, presents the results obtained, and draws conclusions on the factors affecting collapse resistance.

  7. Catastrophic volcanic collapse: relation to hydrothermal processes.

    PubMed

    López, D L; Williams, S N

    1993-06-18

    Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of hydrothermal discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between hydrothermal fluids and the volcanic edifice. Rock dissolution and hydrothermal mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes.

  8. The absence of horizon in black-hole formation

    NASA Astrophysics Data System (ADS)

    Ho, Pei-Ming

    2016-08-01

    With the back-reaction of Hawking radiation taken into consideration, the work of Kawai, Matsuo and Yokokura [1] has shown that, under a few assumptions, the collapse of matter does not lead to event horizon nor apparent horizon. In this paper, we relax their assumptions and elaborate on the space-time geometry of a generic collapsing body with spherical symmetry. The geometry outside the collapsing sphere is found to be approximated by the geometry outside the white-hole horizon, hence the collapsing matter remains outside the Schwarzschild radius. As particles in Hawking radiation are created in the vicinity of the collapsing matter, the information loss paradox is alleviated. Assuming that the collapsing body evaporates within finite time, there is no event horizon.

  9. Granular Silo collapse: an experimental study

    NASA Astrophysics Data System (ADS)

    Clement, Eric; Gutierriez, Gustavo; Boltenhagen, Philippe; Lanuza, Jose

    2008-03-01

    We present an experimental work that develop some basic insight into the pre-buckling behavior and the buckling transition toward plastic collapse of a granular silo. We study different patterns of deformation generated on thin paper cylindrical shells during granular discharge. We study the collapse threshold for different bed height, flow rates and grain sizes. We compare the patterns that appear during the discharge of spherical beads, with those obtained in the axially compressed cylindrical shells. When the height of the granular column is close to the collapse threshold, we describe a ladder like pattern that rises around the cylinder surface in a spiral path of diamond shaped localizations, and develops into a plastic collapsing fold that grows around the collapsing silo.

  10. Clostridium sordellii Toxic Shock Syndrome: A Case Report and Review of the Literature

    PubMed Central

    Savage, Beverley A.; Vaccarello, Luis

    1996-01-01

    Background: Since the 1980s, there have been isolated reports of a toxic shock syndrome associated with Clostridium sordellii necrotizing subcutaneous infections during the puerperium. Relatively localized fascial and muscle necrosis is noted at the surgical incision sites. However, circulating toxins produce marked edema, resulting in shock and cardiovascular collapse. Despite aggressive surgical and supportive therapy, all postpartum cases thus far have been fatal. Case: A 24-year-old primipara developed an episiotomy infection which progressed to involve the underlying fascia and muscle. Despite early and adequate debridement of the devitalized tissue, she developed anasarca, marked leukocytosis, refractory hypotension, hypothermia, and a persistent coagulopathy, and expired on postpartum day 5. The cultures from the excised tissue grew C. sordellii All blood cultures were negative. Conclusion: Treatment modalities aimed solely at the eradication of the microbe and removal of necrotic tissue, although essential components of therapy, have proved inadequate. Future efforts should be directed toward neutralization or elimination of the circulating exotoxins responsible for the systemic shock. PMID:18476062

  11. Successful Treatment of Severe Carbon Monoxide Poisoning and Refractory Shock Using Extracorporeal Membrane Oxygenation.

    PubMed

    Teerapuncharoen, Krittika; Sharma, Nirmal S; Barker, Andrew B; Wille, Keith M; Diaz-Guzman, Enrique

    2015-09-01

    Carbon monoxide (CO) is the most common cause of poisoning and poisoning-related death in the United States. It is a tasteless and odorless poisonous gas produced from incomplete combustion of hydrocarbons, such as those produced by cars and heating systems. CO rapidly binds to hemoglobin to form carboxyhemoglobin, leading to tissue hypoxia, multiple-organ failure, and cardiovascular collapse. CO also binds to myocardial myoglobin, preventing oxidative phosphorylation in cardiac mitochondria and resulting in cardiac ischemia or stunning and cardiogenic pulmonary edema. Treatment of CO poisoning is mainly supportive, and supplemental oxygen remains the cornerstone of therapy, whereas hyperbaric oxygen therapy is considered for patients with evidence of neurological and myocardial injury. Extracorporeal membrane oxygenation (ECMO) has been utilized effectively in patients with respiratory failure and hemodynamic instability, but its use has rarely been reported in patients with CO poisoning. We report the successful use of venoarterial ECMO in a patient with severe CO poisoning and multiple-organ failure. Copyright © 2015 by Daedalus Enterprises.

  12. Simulation and analysis of collapsing vapor-bubble clusters with special emphasis on potentially erosive impact loads at walls

    NASA Astrophysics Data System (ADS)

    Ogloblina, Daria; Schmidt, Steffen J.; Adams, Nikolaus A.

    2018-06-01

    Cavitation is a process where a liquid evaporates due to a pressure drop and re-condenses violently. Noise, material erosion and altered system dynamics characterize for such a process for which shock waves, rarefaction waves and vapor generation are typical phenomena. The current paper presents novel results for collapsing vapour-bubble clusters in a liquid environment close to a wall obtained by computational fluid mechanics (CFD) simulations. The driving pressure initially is 10 MPa in the liquid. Computations are carried out by using a fully compressible single-fluid flow model in combination with a conservative finite volume method (FVM). The investigated bubble clusters (referred to as "clouds") differ by their initial vapor volume fractions, initial stand-off distances to the wall and by initial bubble radii. The effects of collapse focusing due to bubble-bubble interaction are analysed by investigating the intensities and positions of individual bubble collapses, as well as by the resulting shock-induced pressure field at the wall. Stronger interaction of the bubbles leads to an intensification of the collapse strength for individual bubbles, collapse focusing towards the center of the cloud and enhanced re-evaporation. The obtained results reveal collapse features which are common for all cases, as well as case-specific differences during collapse-rebound cycles. Simultaneous measurements of maximum pressures at the wall and within the flow field and of the vapor volume evolution show that not only the primary collapse but also subsequent collapses are potentially relevant for erosion.

  13. The role of bank collapse on tidal creek ontogeny: A novel process-based model for bank retreat

    NASA Astrophysics Data System (ADS)

    Gong, Zheng; Zhao, Kun; Zhang, Changkuan; Dai, Weiqi; Coco, Giovanni; Zhou, Zeng

    2018-06-01

    Bank retreat in coastal tidal flats plays a primary role on the planimetric shape of tidal creeks and is commonly driven by both flow-induced bank erosion and gravity-induced bank collapse. However, existing modelling studies largely focus on bank erosion and overlook bank collapse. We build a bank retreat model coupling hydrodynamics, bank erosion and bank collapse. To simulate the process of bank collapse, a stress-deformation model is utilized to calculate the stress variation of bank soil after bank erosion, and the Mohr-Coulomb failure criterion is then applied to evaluate the stability of the tidal creek bank. Results show that the bank failure process can be categorized into three stages, i.e., shear failure at the bank toe (stage I), tensile failure on the bank top (stage II), and sectional cracking from the bank top to the toe (stage III). With only bank erosion, the planimetric shapes of tidal creeks are funneled due to the gradually seaward increasing discharge. In contrast to bank erosion, bank collapse is discontinuous, and the contribution of bank collapse to bank retreat can reach 85%, highlighting that the expansion of tidal creeks can be dominated by bank collapse process. The planimetric shapes of tidal creeks are funneled with a much faster expansion rate when bank collapse is considered. Overall, this study makes a further step toward more physical and realistic simulation of bank retreat in estuarine and coastal settings and the developed bank collapse module can be readily included in other morphodynamic models.

  14. A mixed helium-oxygen shell in some core-collapse supernova progenitors

    NASA Astrophysics Data System (ADS)

    Gofman, Roni Anna; Gilkis, Avishai; Soker, Noam

    2018-04-01

    We evolve models of rotating massive stars up to the stage of iron core collapse using the MESA code and find a shell with a mixed composition of primarily helium and oxygen in some cases. In the parameter space of initial masses of 13-40M⊙ and initial rotation velocities of 0-450 kms-1 that we investigate, we find a mixed helium-oxygen (He-O) shell with a significant total He-O mass and with a helium to oxygen mass ratio in the range of 0.5-2 only for a small fraction of the models. While the shell formation due to mixing is instigated by rotation, the pre-collapse rotation rate is not very high. The fraction of models with a shell of He-O composition required for an energetic collapse-induced thermonuclear explosion is small, as is the fraction of models with high specific angular momentum, which can aid the thermonuclear explosion by retarding the collapse. Our results suggest that the collapse-induced thermonuclear explosion mechanism that was revisited recently can account for at most a small fraction of core-collapse supernovae. The presence of such a mixed He-O shell still might have some implications for core-collapse supernovae, such as some nucleosynthesis processes when jets are present, or might result in peculiar sub-luminous core-collapse supernovae.

  15. Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine.

    PubMed Central

    Laemmli, U K

    1975-01-01

    High-molecular-weight DNA is known to collapse into very compact particles in a salt solution containing polymers like poly(ethylene oxide) [(EO)n] or polyacrylate. The biological relevance of this phenomenon is suggested by our recent finding that high concentrations of the highly acidic internal peptides found in the mature T4 bacteriophage head, as well as poly(glutamic acid) and poly(aspartic acid), can collapse DNA in a similar manner. The structure of DNAs collapsed by various methods has been studied with electron microscope. We find (EO)n collapses T4 or T7 bacteriophage DNA into compact particles only slightly larger than the size of the T4 and T7 head, respectively. In contrast, polylysine collapses DNA into different types of structures. Double-stranded DNA collapsed with (EO)n is cut by the single-strand specific Neurospora crassa endonuclease (EC 3.1.4.21) into small fragments. Extensive digestion only occurs above the critical concentration of polymer required for DNA collapse, demonstrating the (EO)n-collapsed DNA contains enzyme-vulnerable regions (probably at each fold), which are preferentially attacked. The size of the DNA fragments produced by limit-digestion with the nuclease ranges between 200 and 400 base pairs when DNA is collapsed by (EO)n. Only fragments of DNA which are larger than 600 base pairs are cut by the endonuclease in (EO)n-containing solution. Images PMID:1060108

  16. A mixed helium-oxygen shell in some core-collapse supernova progenitors

    NASA Astrophysics Data System (ADS)

    Gofman, Roni Anna; Gilkis, Avishai; Soker, Noam

    2018-07-01

    We evolve models of rotating massive stars up to the stage of iron core collapse using the MESA code and find a shell with a mixed composition of primarily helium and oxygen in some cases. In the parameter space of initial masses of 13-40 M⊙ and initial rotation velocities of 0-450 km s-1 that we investigate, we find a mixed helium-oxygen (He-O) shell with a significant total He-O mass and with a helium to oxygen mass ratio in the range of 0.5-2 only for a small fraction of the models. While the shell formation due to mixing is instigated by rotation, the pre-collapse rotation rate is not very high. The fraction of models with a shell of He-O composition required for an energetic collapse-induced thermonuclear explosion is small, as is the fraction of models with high specific angular momentum, which can aid the thermonuclear explosion by retarding the collapse. Our results suggest that the collapse-induced thermonuclear explosion mechanism that was revisited recently can account for at most a small fraction of core-collapse supernovae. The presence of such a mixed He-O shell still might have some implications for core-collapse supernovae, such as some nucleosynthesis processes when jets are present, or might result in peculiar sub-luminous core-collapse supernovae.

  17. Gravitational Collapse with Heat Flux and Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Ahmad, Zahid; Ahmed, Qazi Zahoor; Awan, Abdul Sami

    2013-10-01

    In this paper, we investigated the cylindrical gravitational collapse with heat flux by considering the appropriate geometry of the interior and exterior spacetimes. For this purpose, we matched collapsing fluid to an exterior containing gravitational waves.The effects of heat flux on gravitational collapse are investigated and matched with the results obtained by Herrera and Santos (Class. Quantum Gravity 22:2407, 2005).

  18. Can agricultural groundwater economies collapse? An inquiry into the pathways of four groundwater economies under threat

    NASA Astrophysics Data System (ADS)

    Petit, Olivier; Kuper, Marcel; López-Gunn, Elena; Rinaudo, Jean-Daniel; Daoudi, Ali; Lejars, Caroline

    2017-09-01

    The aim of this paper is to investigate the notion of collapse of agricultural groundwater economies using the adaptive-cycle analytical framework. This framework was applied to four case studies in southern Europe and North Africa to question and discuss the dynamics of agricultural groundwater economies. In two case studies (Saiss in Morocco and Clain basin in France), the imminent physical or socio-economic collapse was a major concern for stakeholders and the early signs of collapse led to re-organization of the groundwater economy. In the other two cases (Biskra in Algeria and Almeria in Spain), collapse was either not yet a concern or had been temporarily resolved through increased efficiency and access to additional water resources. This comparative analysis shows the importance of taking the early signs of collapse into account. These signs can be either related to resource depletion or to environmental and socio-economic impacts. Beyond these four case studies, the large number of groundwater economies under threat in (semi-)arid areas should present a warning regarding their possible collapse. Collapse can have severe and irreversible consequences in some cases, but it can also mean new opportunities and changes.

  19. Collapse susceptibility mapping in karstified gypsum terrain (Sivas basin - Turkey) by conditional probability, logistic regression, artificial neural network models

    NASA Astrophysics Data System (ADS)

    Yilmaz, Isik; Keskin, Inan; Marschalko, Marian; Bednarik, Martin

    2010-05-01

    This study compares the GIS based collapse susceptibility mapping methods such as; conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) applied in gypsum rock masses in Sivas basin (Turkey). Digital Elevation Model (DEM) was first constructed using GIS software. Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index- TWI, stream power index- SPI, Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from CP, LR and ANN models, and they were then compared by means of their validations. Area Under Curve (AUC) values obtained from all three methodologies showed that the map obtained from ANN model looks like more accurate than the other models, and the results also showed that the artificial neural networks is a usefull tool in preparation of collapse susceptibility map and highly compatible with GIS operating features. Key words: Collapse; doline; susceptibility map; gypsum; GIS; conditional probability; logistic regression; artificial neural networks.

  20. The effect of giant lateral collapses on magma pathways and the location of volcanism.

    PubMed

    Maccaferri, Francesco; Richter, Nicole; Walter, Thomas R

    2017-10-23

    Flank instability and lateral collapse are recurrent processes during the structural evolution of volcanic edifices, and they affect and are affected by magmatic activity. It is known that dyke intrusions have the potential to destabilise the flanks of a volcano, and that lateral collapses may change the style of volcanism and the arrangement of shallow dykes. However, the effect of a large lateral collapse on the location of a new eruptive centre remains unclear. Here, we use a numerical approach to simulate the pathways of magmatic intrusions underneath the volcanic edifice, after the stress redistribution resulting from a large lateral collapse. Our simulations are quantitatively validated against the observations at Fogo volcano, Cabo Verde. The results reveal that a lateral collapse can trigger a significant deflection of deep magma pathways in the crust, favouring the formation of a new eruptive centre within the collapse embayment. Our results have implications for the long-term evolution of intraplate volcanic ocean islands.

  1. Four tails problems for dynamical collapse theories

    NASA Astrophysics Data System (ADS)

    McQueen, Kelvin J.

    2015-02-01

    The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss the problem without considering the more severe formulations. Here I distinguish four distinct tails problems. The first (bare tails problem) and second (structured tails problem) exist in the literature. I argue that while the first is a pseudo-problem, the second has not been adequately addressed. The third (multiverse tails problem) reformulates the second to account for recently discovered dynamical consequences of collapse. Finally the fourth (tails problem dilemma) shows that solving the third by replacing the Gaussian with a non-Gaussian collapse function introduces new conflict with relativity theory.

  2. Long gamma-ray bursts and core-collapse supernovae have different environments.

    PubMed

    Fruchter, A S; Levan, A J; Strolger, L; Vreeswijk, P M; Thorsett, S E; Bersier, D; Burud, I; Castro Cerón, J M; Castro-Tirado, A J; Conselice, C; Dahlen, T; Ferguson, H C; Fynbo, J P U; Garnavich, P M; Gibbons, R A; Gorosabel, J; Gull, T R; Hjorth, J; Holland, S T; Kouveliotou, C; Levay, Z; Livio, M; Metzger, M R; Nugent, P E; Petro, L; Pian, E; Rhoads, J E; Riess, A G; Sahu, K C; Smette, A; Tanvir, N R; Wijers, R A M J; Woosley, S E

    2006-05-25

    When massive stars exhaust their fuel, they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration gamma-ray burst. One would then expect that these long gamma-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the gamma-ray bursts are far more concentrated in the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long gamma-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long gamma-ray bursts are relatively rare in galaxies such as our own Milky Way.

  3. Dynamics of bubble collapse under vessel confinement in 2D hydrodynamic experiments

    NASA Astrophysics Data System (ADS)

    Shpuntova, Galina; Austin, Joanna

    2013-11-01

    One trauma mechanism in biomedical treatment techniques based on the application of cumulative pressure pulses generated either externally (as in shock-wave lithotripsy) or internally (by laser-induced plasma) is the collapse of voids. However, prediction of void-collapse driven tissue damage is a challenging problem, involving complex and dynamic thermomechanical processes in a heterogeneous material. We carry out a series of model experiments to investigate the hydrodynamic processes of voids collapsing under dynamic loading in configurations designed to model cavitation with vessel confinement. The baseline case of void collapse near a single interface is also examined. Thin sheets of tissue-surrogate polymer materials with varying acoustic impedance are used to create one or two parallel material interfaces near the void. Shadowgraph photography and two-color, single-frame particle image velocimetry quantify bubble collapse dynamics including jetting, interface dynamics and penetration, and the response of the surrounding material. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading.''

  4. Collapse characteristics of hydroformed tubes

    NASA Astrophysics Data System (ADS)

    Kim, Young-Suk; Lee, Young-Moon; Kim, Cheol; Hwang, Sang-Moo

    2002-07-01

    Tube hydroforming technology (THF) has been extensively applied to auto-body structural members such as the engine cradle and side member in order to meet the urgent need for vehicle weight and cost reduction as well as high quality for collision accidents. In this paper, the mechanical properties for hydroformed tubes with various bulging strians under the plane strain mode are experimentally investigated. Axial compression tests for hydroformed tubes are performed to investigate the collapse load and collapse absorption capacity through the collapse load-displacement curves. Moreover, the collapse absorption capacities are compared and discussed among as-received, hydroformed, and press formed tubes. Results demonstrate that the hydroformed tubes show higher collapse absorption capability in comparison with the as-received tube and the press formed tube because of its high yield strength due to strain hardening.

  5. Spherical collapse in chameleon models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Ph.; Rosenfeld, R.; Steer, D.A., E-mail: brax@spht.saclay.cea.fr, E-mail: rosenfel@ift.unesp.br, E-mail: daniele.steer@apc.univ-paris7.fr

    2010-08-01

    We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in themore » presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse in principle depends on the initial comoving size of the inhomogeneity.« less

  6. Variation of the temperature coefficient of collapse field in bismuth-based bubble garnets

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Pierce, R. D.; Brandle, C. D.

    1985-01-01

    An approximation to the collapse-field formula is used to show its dependence on magnetization and wall energy and the effect of additions of Gd, Sm, and Eu on 1-micron Bi:YIG bubble materials. The collapse field, magnetization, and wall energy are fitted to quadratic functions of temperature from -50 to 150 C. It is shown that the addition of the various classes of rare earths reduces the temperature derivative of the collapse field in Bi:YIG. Gd influences the collapse field through the magnetization, Sm affects it through the domain wall energy, and Eu does both. The singular magnetic properties of Eu result in the most nearly constant temperature dependence of the collapse field and the best match to a barium-ferrite bias magnite.

  7. Protostellar collapse in a self-gravitating sheet

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee; Boss, Alan; Calvet, Nuria; Whitney, Barbara

    1994-01-01

    We present preliminary calculations of protostellar cloud collapse starting from an isothermal, self-gravitating gaseous layer in hydrostatic equilibrium. This gravitationally unstable layer collapses into a flattened or toroidal density distribution, even in the absence of rotation or magnetic fields. We suggest that the flat infalling envelope recently observed in HL Tau by Hayashi et al.is the result of collapse from an initially nonspherical layer. We also speculate that the later evolution of such a flattened, collapsing envelope can produce a structure similar to the 'flared disk' invoked by Kenyon and Hartmann to explain the infrared excesses of many T Tauri stars.

  8. Atomistic modeling of shock-induced void collapse in copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davila, L P; Erhart, P; Bringa, E M

    2005-03-09

    Nonequilibrium molecular dynamics (MD) simulations show that shock-induced void collapse in copper occurs by emission of shear loops. These loops carry away the vacancies which comprise the void. The growth of the loops continues even after they collide and form sessile junctions, creating a hardened region around the collapsing void. The scenario seen in our simulations differs from current models that assume that prismatic loop emission is responsible for void collapse. We propose a new dislocation-based model that gives excellent agreement with the stress threshold found in the MD simulations for void collapse as a function of void radius.

  9. Model for quantum effects in stellar collapse

    NASA Astrophysics Data System (ADS)

    Arderucio-Costa, Bruno; Unruh, William G.

    2018-01-01

    We present a simple model for stellar collapse and evaluate the quantum mechanical stress-energy tensor to argue that quantum effects do not play an important role for the collapse of astrophysical objects.

  10. Reversible collapse of insoluble monolayers: new insights on the influence of the anisotropic line tension of the domain.

    PubMed

    González-Delgado, Antonio M; Pérez-Morales, Marta; Giner-Casares, Juan J; Muñoz, Eulogia; Martín-Romero, María T; Camacho, Luis

    2009-10-08

    In this paper, we study the collapse of a mixed insoluble monolayer formed by a cationic matrix, dioctadecyl-dimethylammonium bromide (DOMA), and a tetra-anionic porphyrin, tetrakis(4-sulfonatophenyl)porphyrin (TSPP), in a molar ratio TSPP/DOMA = 1:4. During the collapse of this system, we visualized the formation of circular domains consisting exclusively of trilayer, although the domains coalescence was not observed. The coexistence of trilayer and monolayer at the final step of the collapse cannot be interpreted exclusively in terms of a thermodynamic phase equilibrium, intervening as an additional factor the anisotropic line tension of the domain. A high line tension implies a high resistance to the domain deformation, and the anisotropy of the line tension implies the lack of coalescence between these domains, which has been experimentally observed by Brewster angle microscopy for us. Under these circumstances, the domains of collapsed material could enclose monolayer regions where the local surface pressure drops thus stopping the collapse process. The collapse of the TSPP/DOMA system is reversible, that is, the return of the three-dimensional material to the monolayer fits into a simple kinetics according to the nucleation-growth-collision theory. As for the collapse, the reverse process is also affected by the line tension of the domains. This paper relates the high line tension and the anisotropic line tension of a given domains with the reversible nature of the collapse process.

  11. Void collapse under distributed dynamic loading near material interfaces

    NASA Astrophysics Data System (ADS)

    Shpuntova, Galina; Austin, Joanna

    2012-11-01

    Collapsing voids cause significant damage in diverse applications from biomedicine to underwater propulsion to explosives. While shock-induced void collapse has been studied extensively, less attention has been devoted to stress wave loading, which will occur instead if there are mechanisms for wave attenuation or if the impact velocity is relatively low. A set of dynamic experiments was carried out in a model experimental setup to investigate the effect of acoustic heterogeneities in the surrounding medium on void collapse. Two tissue-surrogate polymer materials of varying acoustic properties were used to create flowfield geometries involving a boundary and a void. A stress wave, generated by projectile impact, triggered void collapse in the gelatinous polymer medium. When the length scales of features in the flow field were on the same order of magnitude as the stress wave length scale, the presence of the boundary was found to affect the void collapse process relative to collapse in the absence of a boundary. This effect was quantified for a range of geometries and impact conditions using a two-color, single-frame particle image velocimetry technique. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading'' with Prof. Henning Winter as Program Manager.

  12. An assessment on the use of bivariate, multivariate and soft computing techniques for collapse susceptibility in GIS environ

    NASA Astrophysics Data System (ADS)

    Yilmaz, Işik; Marschalko, Marian; Bednarik, Martin

    2013-04-01

    The paper presented herein compares and discusses the use of bivariate, multivariate and soft computing techniques for collapse susceptibility modelling. Conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) models representing the bivariate, multivariate and soft computing techniques were used in GIS based collapse susceptibility mapping in an area from Sivas basin (Turkey). Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index (TWI), stream power index (SPI), Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from the models, and they were then compared by means of their validations. However, Area Under Curve (AUC) values obtained from all three models showed that the map obtained from soft computing (ANN) model looks like more accurate than the other models, accuracies of all three models can be evaluated relatively similar. The results also showed that the conditional probability is an essential method in preparation of collapse susceptibility map and highly compatible with GIS operating features.

  13. Identification and behavior of collapsible soils : [technical summary].

    DOT National Transportation Integrated Search

    2011-01-01

    Collapsible soils are susceptible to large volumetric strains when they become saturated. Numerous soil types : fall in the general category of collapsible soils, including : loess, a well-known aeolian deposit, present throughout : most of Indiana. ...

  14. Monitoring crater-wall collapse at active volcanoes: a study of the 12 January 2013 event at Stromboli

    NASA Astrophysics Data System (ADS)

    Calvari, Sonia; Intrieri, Emanuele; Di Traglia, Federico; Bonaccorso, Alessandro; Casagli, Nicola; Cristaldi, Antonio

    2016-05-01

    Crater-wall collapses are fairly frequent at active volcanoes and they are normally studied through the analysis of their deposits. In this paper, we present an analysis of the 12 January 2013 crater-wall collapse occurring at Stromboli volcano, investigated by means of a monitoring network comprising visible and infrared webcams and a Ground-Based Interferometric Synthetic Aperture Radar. The network revealed the triggering mechanisms of the collapse, which are comparable to the events that heralded the previous effusive eruptions in 1985, 2002, 2007 and 2014. The collapse occurred during a period of inflation of the summit cone and was preceded by increasing explosive activity and the enlargement of the crater. Weakness of the crater wall, increasing magmastatic pressure within the upper conduit induced by ascending magma and mechanical erosion caused by vent opening at the base of the crater wall and by lava fingering, are considered responsible for triggering the collapse on 12 January 2013 at Stromboli. We suggest that the combination of these factors might be a general mechanism to generate crater-wall collapse at active volcanoes.

  15. Experimental study of shock-driven cavity collapse with a single-stage gas gun driver

    NASA Astrophysics Data System (ADS)

    Anderson, Phillip; Betney, Matthew; Doyle, Hugo; Hawker, Nicholas; Roy, Ronald

    2014-10-01

    This paper explores experimental studies of shock-driven cavity collapse using a single-stage gas gun. Shocks of up to 1 GPa are generated in a hydrogel with the impact of a planar-faced projectile (50 mm dia.). Within the hydrogel, a pre-formed cavity (5 mm dia.) is cast, which is collapsed by the interaction with the shockwave. The basic collapse process involves the formation of a high-speed transverse jet and then a second collapse phase driven from jet impact. Single-shot multi-frame schlieren imaging is used to show the position and timing of optical emission in relation to the collapse hydrodynamics. Further, temporally and spectrally-resolved measurements of the optical emission are made through simultaneous use of multiple band-passed PMTs and an integrating spectrometer. This reveals three distinct pulses of emission possessing different frequency content. The first corresponds to the trapping of gas during jet impact; the second and third correspond to the further inertial collapse of the now toroidal cavity. Plasma models are used to provide the first indication of the temperature of these inertially confined plasmas.

  16. Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington

    USGS Publications Warehouse

    Reid, M.E.; Sisson, T.W.; Brien, D.L.

    2001-01-01

    Catastrophic collapses of steep volcano flanks threaten many populated regions, and understanding factors that promote collapse could save lives and property. Large collapses of hydrothermally altered parts of Mount Rainier have generated far-traveled debris flows; future flows would threaten densely populated parts of the Puget Sound region. We evaluate edifice collapse hazards at Mount Rainier using a new three-dimensional slope stability method incorporating detailed geologic mapping and subsurface geophysical imaging to determine distributions of strong (fresh) and weak (altered) rock. Quantitative three-dimensional slope stability calculations reveal that sizeable flank collapse (>0.1 km3) is promoted by voluminous, weak, hydrothermally altered rock situated high on steep slopes. These conditions exist only on Mount Rainier's upper west slope, consistent with the Holocene debris-flow history. Widespread alteration on lower flanks or concealed in regions of gentle slope high on the edifice does not greatly facilitate collapse. Our quantitative stability assessment method can also provide useful hazard predictions using reconnaissance geologic information and is a potentially rapid and inexpensive new tool for aiding volcano hazard assessments.

  17. Does Pressure Accentuate General Relativistic Gravitational Collapse and Formation of Trapped Surfaces?

    NASA Astrophysics Data System (ADS)

    Mitra, Abhas

    2013-04-01

    It is widely believed that though pressure resists gravitational collapse in Newtonian gravity, it aids the same in general relativity (GR) so that GR collapse should eventually be similar to the monotonous free fall case. But we show that, even in the context of radiationless adiabatic collapse of a perfect fluid, pressure tends to resist GR collapse in a manner which is more pronounced than the corresponding Newtonian case and formation of trapped surfaces is inhibited. In fact there are many works which show such collapse to rebound or become oscillatory implying a tug of war between attractive gravity and repulsive pressure gradient. Furthermore, for an imperfect fluid, the resistive effect of pressure could be significant due to likely dramatic increase of tangential pressure beyond the "photon sphere." Indeed, with inclusion of tangential pressure, in principle, there can be static objects with surface gravitational redshift z → ∞. Therefore, pressure can certainly oppose gravitational contraction in GR in a significant manner in contradiction to the idea of Roger Penrose that GR continued collapse must be unstoppable.

  18. Early warning signals of Atlantic Meridional Overturning Circulation collapse in a fully coupled climate model

    NASA Astrophysics Data System (ADS)

    Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M.

    2014-12-01

    The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.

  19. Early warning signals of Atlantic Meridional Overturning Circulation collapse in a fully coupled climate model

    PubMed Central

    Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M.

    2014-01-01

    The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached. PMID:25482065

  20. Early warning signals of Atlantic Meridional Overturning Circulation collapse in a fully coupled climate model.

    PubMed

    Boulton, Chris A; Allison, Lesley C; Lenton, Timothy M

    2014-12-08

    The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.

  1. Wetting dynamics of a collapsing fluid hole

    NASA Astrophysics Data System (ADS)

    Bostwick, J. B.; Dijksman, J. A.; Shearer, M.

    2017-01-01

    The collapse dynamics of an axisymmetric fluid cavity that wets the bottom of a rotating bucket bound by vertical sidewalls are studied. Lubrication theory is applied to the governing field equations for the thin film to yield an evolution equation that captures the effect of capillary, gravitational, and centrifugal forces on this converging flow. The focus is on the quasistatic spreading regime, whereby contact-line motion is governed by a constitutive law relating the contact-angle to the contact-line speed. Surface tension forces dominate the collapse dynamics for small holes with the collapse time appearing as a power law whose exponent compares favorably to experiments in the literature. Gravity accelerates the collapse process. Volume dependence is predicted and compared with experiment. Centrifugal forces slow the collapse process and lead to complex dynamics characterized by stalled spreading behavior that separates the large and small hole asymptotic regimes.

  2. Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow.

    PubMed

    Gudmundsson, Magnús T; Jónsdóttir, Kristín; Hooper, Andrew; Holohan, Eoghan P; Halldórsson, Sæmundur A; Ófeigsson, Benedikt G; Cesca, Simone; Vogfjörd, Kristín S; Sigmundsson, Freysteinn; Högnadóttir, Thórdís; Einarsson, Páll; Sigmarsson, Olgeir; Jarosch, Alexander H; Jónasson, Kristján; Magnússon, Eyjólfur; Hreinsdóttir, Sigrún; Bagnardi, Marco; Parks, Michelle M; Hjörleifsdóttir, Vala; Pálsson, Finnur; Walter, Thomas R; Schöpfer, Martin P J; Heimann, Sebastian; Reynolds, Hannah I; Dumont, Stéphanie; Bali, Eniko; Gudfinnsson, Gudmundur H; Dahm, Torsten; Roberts, Matthew J; Hensch, Martin; Belart, Joaquín M C; Spaans, Karsten; Jakobsson, Sigurdur; Gudmundsson, Gunnar B; Fridriksdóttir, Hildur M; Drouin, Vincent; Dürig, Tobias; Aðalgeirsdóttir, Guðfinna; Riishuus, Morten S; Pedersen, Gro B M; van Boeckel, Tayo; Oddsson, Björn; Pfeffer, Melissa A; Barsotti, Sara; Bergsson, Baldur; Donovan, Amy; Burton, Mike R; Aiuppa, Alessandro

    2016-07-15

    Large volcanic eruptions on Earth commonly occur with a collapse of the roof of a crustal magma reservoir, forming a caldera. Only a few such collapses occur per century, and the lack of detailed observations has obscured insight into the mechanical interplay between collapse and eruption. We use multiparameter geophysical and geochemical data to show that the 110-square-kilometer and 65-meter-deep collapse of Bárdarbunga caldera in 2014-2015 was initiated through withdrawal of magma, and lateral migration through a 48-kilometers-long dike, from a 12-kilometers deep reservoir. Interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual, near-exponential decline of both collapse rate and the intensity of the 180-day-long eruption. Copyright © 2016, American Association for the Advancement of Science.

  3. Black hole formation due to collapsing dark matter in a presence of dark energy in the brane-world scenario

    NASA Astrophysics Data System (ADS)

    Shah, Hasrat Hussain

    In the last three to four decades, various programs have been studied in order to investigate the final fate of gravitational collapse of massive astronomical objects. In the theoretical context, Black Holes (BHs) are the consequence of final stage of the gravitational collapse. In this work, we investigated the gravitational collapse process of a spherically symmetric star constituted of dark matter (DM), ρM, and Dark Energy (DE), ρ in the context of the brane-world scenario. In our model, we discussed the anisotropy of the pressure in a fluid with Equation of State (EoS) pt = kρ and pr = lρ, (l + 2k < ‑1). We briefly discussed various cases of gravitational collapse and it is found that BH can be formed by the gravitational collapse in brane-world regime while in some cases there is only a naked singularity at their end state.

  4. Successful treatment of a massive metoprolol overdose using intravenous lipid emulsion and hyperinsulinemia/euglycemia therapy.

    PubMed

    Barton, Cassie A; Johnson, Nathan B; Mah, Nathan D; Beauchamp, Gillian; Hendrickson, Robert

    2015-05-01

    Adrenergic β-antagonists, commonly known as β-blockers, are prescribed for many indications including hypertension, heart failure, arrhythmias, and migraines. Metoprolol is a moderately lipophilic β-blocker that in overdose causes direct myocardial depression leading to bradycardia, hypotension, and the potential for cardiovascular collapse. We describe the case of a 59-year-old man who intentionally ingested ~7.5 g of metoprolol tartrate. Initial treatment of bradycardia and hypotension included glucagon, atropine, dopamine, and norepinephrine. Despite these treatment modalities, the patient developed cardiac arrest. Intravenous lipid emulsion (ILE) and hyperinsulinemia/euglycemia (HIE) therapies were initiated during advanced cardiac life support and were immediately followed by return of spontaneous circulation. Further treatment included gastric lavage, activated charcoal, continued vasopressor therapy, and a repeat bolus of ILE. The patient was weaned off vasoactive infusions and was extubated within 24 hours. HIE therapy was continued for 36 hours after metoprolol ingestion. A urine β-blocker panel using mass spectrometry revealed a metoprolol concentration of 120 ng/ml and the absence of other β-blocking agents. To date, no clear treatment guidelines are available for β-blocker overdose, and the response to toxic concentrations is highly variable. In this case of a life-threatening single-agent metoprolol overdose, the patient was successfully treated with HIE and ILE therapy. Due to the increasing frequency with which ILE and HIE are being used for the treatment of β-blocker overdose, clinicians should be aware of their dosing strategies and indications. © 2015 Pharmacotherapy Publications, Inc.

  5. Collapsable seal member

    DOEpatents

    Sherrell, Dennis L.

    1990-01-01

    A hollow, collapsable seal member normally disposed in a natural expanded state offering fail-safe pressure sealing against a seating surface and adapted to be evacuated by a vacuum force for collapsing the seal member to disengage the same from said seating surface.

  6. Collapsable seal member

    DOEpatents

    Sherrell, D.L.

    1983-12-08

    A hollow, collapsable seal member normally disposed in a natural expanded state offering fail-safe pressure sealing against a seating surface and adapted to be evacuated by a vacuum force for collapsing the seal member to disengage the same from said seating surface.

  7. The research of collapsibility test and FEA of collapse deformation in loess collapsible under overburden pressure

    NASA Astrophysics Data System (ADS)

    yu, Zhang; hui, Li; guibo, Bao; wuyu, Zhang; ningshan, Jiang; xiaoyun, Yang

    2018-05-01

    The collapsibility test in field may have huge error with computed results[1-4]. The writer gave a compare between single-line and double-line method and then compared with the field’s result. The writer’s purpose is to reduce the error of measured value to computed value and propose a way to decrease the error through consider the matric suction’s influence to unsaturated soil in using finite element analysis, field test was completed to verify the reasonability of this method and get some regulate of development of collapse deformation and supply some calculation basis of engineering design and forecast in emergency situation.

  8. Gravitational collapse and the vacuum energy

    NASA Astrophysics Data System (ADS)

    Campos, M.

    2014-03-01

    To explain the accelerated expansion of the universe, models with interacting dark components (dark energy and dark matter) have been considered recently in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy of the all fields that fill the universe. As the other side of the same coin, the influence of the vacuum energy on the gravitational collapse is of great interest. We study such collapse adopting different parameterizations for the evolution of the vacuum energy. We discuss the homogeneous collapsing star fluid, that interacts with a vacuum energy component, using the stiff matter case as example. We conclude this work with a discussion of the Cahill-McVittie mass for the collapsed object.

  9. Inherently unstable networks collapse to a critical point

    NASA Astrophysics Data System (ADS)

    Sheinman, M.; Sharma, A.; Alvarado, J.; Koenderink, G. H.; MacKintosh, F. C.

    2015-07-01

    Nonequilibrium systems that are driven or drive themselves towards a critical point have been studied for almost three decades. Here we present a minimalist example of such a system, motivated by experiments on collapsing active elastic networks. Our model of an unstable elastic network exhibits a collapse towards a critical point from any macroscopically connected initial configuration. Taking into account steric interactions within the network, the model qualitatively and quantitatively reproduces results of the experiments on collapsing active gels.

  10. Inter-plume aerodynamics for gasoline spray collapse

    DOE PAGES

    Sphicas, Panos; Pickett, Lyle M.; Skeen, Scott A.; ...

    2017-11-10

    The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel–air mixing. But, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtainedmore » using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. Furthermore, the effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.« less

  11. Inter-plume aerodynamics for gasoline spray collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sphicas, Panos; Pickett, Lyle M.; Skeen, Scott A.

    The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel–air mixing. But, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtainedmore » using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. Furthermore, the effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.« less

  12. Ontogenesis of the collapsed layer during haustorium development in the root hemi-parasite Santalum album Linn.

    PubMed

    Yang, X; Zhang, X; Teixeira da Silva, J A; Liang, K; Deng, R; Ma, G

    2014-01-01

    The structure and development of collapsed layers of the haustorium were studied in Santalum album Linn. Through light and transmission electron microscopy, it was shown that the collapsed layers originated from starch-containing cells when the haustorium developed an internal gland, thickened gradually and ultimately developed into the mantle, which, combined with the sucker, buckled the host root. We report on the presence of inter-collapsed layers for the first time. These layers develop after penetration into the host and are located between the intrusive tissues and the vascular meristematic region, gradually linking the collapsed layers and remains around the sucker. The proliferation of cells in the meristematic region and the 'host tropism' of cortical layers contribute to pressure within the haustorium and result in development of the collapsed layers. Besides, starch-containing cells that turn into collapsed layers are vulnerable to pressure as they lack a large vacuole, have uneven cell wall thickness and a loose cell arrangement. We proposed that the functions of collapsed layers are to efficiently assure that cell inclusion and energy concentrate at the inner meristematic region and are recycled to affect penetration, reinforce the physical connection between the sandalwood haustorium and host root, and supply space for haustorial development. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Challenges in fitting a hearing aid to a severely collapsed ear canal and mixed hearing loss.

    PubMed

    Oeding, Kristi; Valente, Michael; Chole, Richard

    2012-04-01

    Collapsed ear canals typically occur when an outside force, such as a headset for audiometric testing, is present. However, when a collapsed ear canal occurs without external pressure, this creates a challenge not only for performing audiometric testing but also for coupling a hearing aid to the ear canal. This case report highlights the challenges associated with fitting a hearing aid on a patient with a severe anterior-posterior collapsed ear canal with a mixed hearing loss. A 67-yr-old female originally presented to Washington University in St. Louis School of Medicine in 1996 with a long-standing history of bilateral otosclerosis. She had chronic ear infections in the right ear and a severely collapsed ear canal in the left ear and was fit with a bone anchored hearing aid (BAHA®) on the right side in 2003. However, benefit from the BAHA started to decrease due to changes in hearing, and a different hearing solution was needed. It was proposed that a hearing aid be fit to her collapsed left ear canal; however, trying to couple a hearing aid to the collapsed ear canal required unique noncustom earmold solutions. This case study highlights some of the obstacles and potential solutions for coupling a hearing aid to a severely collapsed ear canal. American Academy of Audiology.

  14. Scale-free gravitational collapse as the origin of ρ ˜ r-2 density profile - a possible role of turbulence in regulating gravitational collapse

    NASA Astrophysics Data System (ADS)

    Li, Guang-Xing

    2018-03-01

    Astrophysical systems, such as clumps that form star clusters share a density profile that is close to ρ ˜ r-2. We prove analytically this density profile is the result of the scale-free nature of the gravitational collapse. Therefore, it should emerge in many different situations as long as gravity is dominating the evolution for a period that is comparable or longer than the free-fall time, and this does not necessarily imply an isothermal model, as many have previously believed. To describe the collapse process, we construct a model called the turbulence-regulated gravitational collapse model, where turbulence is sustained by accretion and dissipates in roughly a crossing time. We demonstrate that a ρ ˜ r-2 profile emerges due to the scale-free nature the system. In this particular case, the rate of gravitational collapse is regulated by the rate at which turbulence dissipates the kinetic energy such that the infall speed can be 20-50% of the free-fall speed(which also depends on the interpretation of the crossing time based on simulations of driven turbulence). These predictions are consistent with existing observations, which suggests that these clumps are in the stage of turbulence-regulated gravitational collapse. Our analysis provides a unified description of gravitational collapse in different environments.

  15. Gravitational Failures of Lava Domes at Intersections With Tectonic Faults: Examples from Tatun Volcanic Group, Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Belousova, M.; Belousov, A.; Chen, C.

    2009-12-01

    The dominantly andesitic Tatun Volcanic Group of Northern Taiwan was formed during the Pleistocene - Early Holocene. The volcanoes are represented by lava domes of moderate sizes: heights up to 350 m (absolute altitudes 800 - 1120 m a.s.l.), base diameters up to 1.5 km, and volumes up to 0.3 km3. Many of the domes have broad, shallow horseshoe-shaped scars (0.5-1.0 km across) formed by gravitational collapses. Field examination revealed deposits of collapses of volcanoes Datun, Cising, Siaoguanyin, Cigu, and Dajianhou. The largest of the collapses (V ~ 0.1 km3) occurred at Mt. Datun. The collapse formed a typical debris avalanche deposit composed mainly of block facies. The avalanche traveled a distance L ~ 5 km, dropped a height H ~ 1 km, and was moderately mobile H/L ~ 0.2. The age of the collapse is > 24,000 yrs because the related debris avalanche deposit is covered by a younger debris avalanche deposit of Siaoguanyin volcano containing charcoal having calibrated 14C age 22,600-23,780 BP. The Siaoguanyin debris avalanche deposit (V~ 0.02 km3; L ~ 6 km; H ~ 1 km; H/L ~ 0.16) is composed of massive, very coarse-grained, fines-poor, gravelly material represented predominantly by very dense, dark-grey andesite. The avalanche was hot during deposition; material of a lava dome which had no time to cool down completely after extrusion was involved into the collapse. The avalanche speed was 40 m/s at a distance 5 km from the source, basing on 80 m of the avalanche run-up. The latest (calibrated age 6000-6080 BP) large-scale collapse (V~0.05 km3, H/L ~ 0.25) occurred at Mt. Cising in the form of numerous retrogressive landslide blocks, which did not transform into a long runout debris avalanche. The leading snout of the landslide traveled 2.0 km, while rear slide blocks traveled only several hundred meters and stopped near the landslide source. Its maximum dropped height is only ~0.5 km. A former lava coulee, which was involved in the collapse, underwent weak disintegration: material of the collapse is represented by big boulders with few fine grained matrix. Collapses of Cigu and Dajianhou volcanoes had the smallest volumes, ~ 0.01 km3, and their character is transitional to large rockfalls. The studied collapses occurred after the volcanoes had stopped erupting, and thus were not triggered by volcanic activity. Hydrothermally altered rocks do not compose significant parts of the studied debris avalanches, although hydrothermal fields are common in the scars of the collapses. Probably weakening of mechanical properties of the volcanic edifices due to hydrothermal alteration did not play a key role in the studied collapses, but elevated fluid pressure and hydrothermal alteration in the foundations of the volcanoes might have had some role. Scars of the collapses are located on intersections of the edifices with active tectonic faults of NNE-SSW and/or W-E strike, which are expressed in relief and clearly visible on space images. Thus, the collapsed parts of the volcanic edifices were detached by tectonic motions, and the collapses were possibly triggered by seismic activity.

  16. Pharmacogenetics: Implications of Race and Ethnicity on Defining Genetic Profiles for Personalized Medicine

    PubMed Central

    Ortega, Victor E.; Meyers, Deborah A.

    2014-01-01

    Pharmacogenetics is being used to develop personalized therapies specific to individuals from different ethnic or racial groups. Pharmacogenetic studies to date have been primarily performed in trial cohorts consisting of non-Hispanic whites of European descent. A “bottleneck” or collapse of genetic diversity associated with the first human colonization of Europe during the Upper Paleolithic period, followed by the recent mixing of African, European, and Native American ancestries has resulted in different ethnic groups with varying degrees of genetic diversity. Differences in genetic ancestry may introduce genetic variation which has the potential to alter the therapeutic efficacy of commonly used asthma therapies, for example β2-adrenergic receptor agonists (beta agonists). Pharmacogenetic studies of admixed ethnic groups have been limited to small candidate gene association studies of which the best example is the gene coding for the receptor target of beta agonist therapy, ADRB2. Large consortium-based sequencing studies are using next-generation whole-genome sequencing to provide a diverse genome map of different admixed populations which can be used for future pharmacogenetic studies. These studies will include candidate gene studies, genome-wide association studies, and whole-genome admixture-based approaches which account for ancestral genetic structure, complex haplotypes, gene-gene interactions, and rare variants to detect and replicate novel pharmacogenetic loci. PMID:24369795

  17. Collapsing lattice animals and lattice trees in two dimensions

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiao-Ping; Grassberger, Peter

    2005-06-01

    We present high statistics simulations of weighted lattice bond animals and lattice trees on the square lattice, with fugacities for each non-bonded contact and for each bond between two neighbouring monomers. The simulations are performed using a newly developed sequential sampling method with resampling, very similar to the pruned-enriched Rosenbluth method (PERM) used for linear chain polymers. We determine with high precision the line of second-order transitions from an extended to a collapsed phase in the resulting two-dimensional phase diagram. This line includes critical bond percolation as a multicritical point, and we verify that this point divides the line into different universality classes. One of them corresponds to the collapse driven by contacts and includes the collapse of (weakly embeddable) trees. There is some evidence that the other is subdivided again into two parts with different universality classes. One of these (at the far side from collapsing trees) is bond driven and is represented by the Derrida-Herrmann model of animals having bonds only (no contacts). Between the critical percolation point and this bond-driven collapse seems to be an intermediate regime, whose other end point is a multicritical point P* where a transition line between two collapsed phases (one bond driven and the other contact driven) sparks off. This point P* seems to be attractive (in the renormalization group sense) from the side of the intermediate regime, so there are four universality classes on the transition line (collapsing trees, critical percolation, intermediate regime, and Derrida-Herrmann). We obtain very precise estimates for all critical exponents for collapsing trees. It is already harder to estimate the critical exponents for the intermediate regime. Finally, it is very difficult to obtain with our method good estimates of the critical parameters of the Derrida-Herrmann universality class. As regards the bond-driven to contact-driven transition in the collapsed phase, we have some evidence for its existence and rough location, but no precise estimates of critical exponents.

  18. Costa Rica's Chain of laterally collapsed volcanoes.

    NASA Astrophysics Data System (ADS)

    Duarte, E.; Fernandez, E.

    2007-05-01

    From the NW extreme to the SW end of Costa Rica's volcanic backbone, a number of laterally collapsed volcanoes can be observed. Due to several factors, attention has been given to active volcanoes disregarding the importance of collapsed features in terms of assessing volcanic hazards for future generations around inhabited volcanoes. In several cases the typical horseshoe shape amphitheater-like depression can be easily observed. In other cases due to erosion, vegetation, topography, seismic activity or drastic weather such characteristics are not easily recognized. In the order mentioned above appear: Orosi-Cacao, Miravalles, Platanar, Congo, Von Frantzius, Cacho Negro and Turrialba volcanoes. Due to limited studies on these structures it is unknown if sector collapse occurred in one or several phases. Furthermore, in the few studied cases no evidence has been found to relate collapses to actual eruptive episodes. Detailed studies on the deposits and materials composing dome-like shapes will shed light on unsolved questions about petrological and chemical composition. Volume, form and distance traveled by deposits are part of the questions surrounding most of these collapsed volcanoes. Although most of these mentioned structures are extinct, at least Irazú volcano (active volcano) has faced partial lateral collapses recently. It did presented strombolian activity in the early 60s. Collapse scars show on the NW flank show important mass removal in historic and prehistoric times. Moreover, in 1994 a minor hydrothermal explosion provoked the weakening of a deeply altered wall that holds a crater lake (150m diameter, 2.6x106 ). A poster will depict images of the collapsed volcanoes named above with mayor descriptive characteristics. It will also focus on the importance of deeper studies to assess the collapse potential of Irazú volcano with related consequences. Finally, this initiative will invite researchers interested in such topic to join future studies in these Costarrican volcanoes.

  19. Changes in movements of Chinook Salmon between lakes Huron and Michigan after Alewife population collapse

    USGS Publications Warehouse

    Clark, Richard D.; Bence, James R.; Claramunt, Randall M.; Clevenger, John A.; Kornis, Matthew S.; Bronte, Charles R.; Madenjian, Charles P.; Roseman, Edward

    2017-01-01

    Alewives Alosa pseudoharengus are the preferred food of Chinook Salmon Oncorhynchus tshawytscha in the Laurentian Great Lakes. Alewife populations collapsed in Lake Huron in 2003 but remained comparatively abundant in Lake Michigan. We analyzed capture locations of coded-wire-tagged Chinook Salmon before, during, and after Alewife collapse (1993–2014). We contrasted the pattern of tag recoveries for Chinook Salmon released at the Swan River in northern Lake Huron and Medusa Creek in northern Lake Michigan. We examined patterns during April–July, when Chinook Salmon were primarily occupied by feeding, and August–October, when the salmon were primarily occupied by spawning. We found evidence that Swan River fish shifted their feeding location from Lake Huron to Lake Michigan after the collapse. Over years, proportions of Swan River Chinook Salmon captured in Lake Michigan increased in correspondence with the Alewife decline in Lake Huron. Mean proportions of Swan River fish captured in Lake Michigan were 0.13 (SD = 0.14) before collapse (1993–1997) and 0.82 (SD = 0.22) after collapse (2008–2014) and were significantly different. In contrast, proportions of Medusa Creek fish captured in Lake Michigan did not change; means were 0.98 (SD = 0.05) before collapse and 0.99 (SD = 0.01) after collapse. The mean distance to the center of the coastal distribution of Swan River fish during April–July shifted 357 km (SD = 169) from central Lake Huron before collapse to central Lake Michigan after collapse. The coastal distributions during August–October were centered on the respective sites of origin, suggesting that Chinook Salmon returned to release sites to spawn regardless of their feeding locations. Regarding the impact on Alewife populations, this shift in interlake movement would be equivalent to increasing the Chinook Salmon stocking rate within Lake Michigan by 30%. The primary management implication is that interlake coordination of Chinook Salmon stocking policies would be expected to benefit the recreational fishery.

  20. Correlated random walks induced by dynamical wavefunction collapse

    NASA Astrophysics Data System (ADS)

    Bedingham, Daniel

    2015-03-01

    Wavefunction collapse models modify Schrödinger's equation so that it describes the collapse of a superposition of macroscopically distinguishable states as a genuine physical process [PRA 42, 78 (1990)]. This provides a basis for the resolution of the quantum measurement problem. An additional generic consequence of the collapse mechanism is that it causes particles to exhibit a tiny random diffusive motion. Furthermore, the diffusions of two sufficiently nearby particles are positively correlated -- it is more likely that the particles diffuse in the same direction than would happen if they behaved independently [PRA 89, 032713 (2014)]. The use of this effect is proposed as an experimental test of wave function collapse models in which pairs of nanoparticles are simultaneously released from nearby traps and allowed a brief period of free fall. The random displacements of the particles are then measured. The experiment must be carried out at sufficiently low temperature and pressure for the collapse effects to dominate over the ambient environmental noise. It is argued that these constraints can be satisfied by current technologies for a large class of viable wavefunction collapse models. Work supported by the Templeton World Charity Foundation.

  1. Inertial collapse of bubble pairs near a solid surface

    NASA Astrophysics Data System (ADS)

    Alahyari Beig, Shahaboddin; Johnsen, Eric

    2017-11-01

    Cavitation occurs in a variety of applications ranging from naval structures to biomedical ultrasound. One important consequence is structural damage to neighboring surfaces following repeated inertial collapse of vapor bubbles. Although the mechanical loading produced by the collapse of a single bubble has been widely investigated, less is known about the detailed dynamics of the collapse of multiple bubbles. In such a problem, the bubble-bubble interactions typically affect the dynamics, e.g., by increasing the non-sphericity of the bubbles and amplifying/hindering the collapse intensity depending on the flow parameters. Here, we quantify the effects of bubble-bubble interactions on the bubble dynamics, as well as the pressures/temperatures produced by the collapse of a pair of gas bubbles near a rigid surface. We perform high-resolution simulations of this problem by solving the three-dimensional compressible Navier-Stokes equations for gas/liquid flows. The results are used to investigate the non-spherical bubble dynamics and characterize the pressure and temperature fields based on the relevant parameters entering the problem: stand-off distance, geometrical configuration (angle, relative size, distance), collapse strength. This research was supported in part by ONR Grant N00014-12-1-0751 and NSF Grant CBET 1253157.

  2. Stress evolution during caldera collapse

    NASA Astrophysics Data System (ADS)

    Holohan, E. P.; Schöpfer, M. P. J.; Walsh, J. J.

    2015-07-01

    The mechanics of caldera collapse are subject of long-running debate. Particular uncertainties concern how stresses around a magma reservoir relate to fracturing as the reservoir roof collapses, and how roof collapse in turn impacts upon the reservoir. We used two-dimensional Distinct Element Method models to characterise the evolution of stress around a depleting sub-surface magma body during gravity-driven collapse of its roof. These models illustrate how principal stress orientations rotate during progressive deformation so that roof fracturing transitions from initial reverse faulting to later normal faulting. They also reveal four end-member stress paths to fracture, each corresponding to a particular location within the roof. Analysis of these paths indicates that fractures associated with ultimate roof failure initiate in compression (i.e. as shear fractures). We also report on how mechanical and geometric conditions in the roof affect pre-failure unloading and post-failure reloading of the reservoir. In particular, the models show how residual friction within a failed roof could, without friction reduction mechanisms or fluid-derived counter-effects, inhibit a return to a lithostatically equilibrated pressure in the magma reservoir. Many of these findings should be transferable to other gravity-driven collapse processes, such as sinkhole formation, mine collapse and subsidence above hydrocarbon reservoirs.

  3. a Statistical Texture Feature for Building Collapse Information Extraction of SAR Image

    NASA Astrophysics Data System (ADS)

    Li, L.; Yang, H.; Chen, Q.; Liu, X.

    2018-04-01

    Synthetic Aperture Radar (SAR) has become one of the most important ways to extract post-disaster collapsed building information, due to its extreme versatility and almost all-weather, day-and-night working capability, etc. In view of the fact that the inherent statistical distribution of speckle in SAR images is not used to extract collapsed building information, this paper proposed a novel texture feature of statistical models of SAR images to extract the collapsed buildings. In the proposed feature, the texture parameter of G0 distribution from SAR images is used to reflect the uniformity of the target to extract the collapsed building. This feature not only considers the statistical distribution of SAR images, providing more accurate description of the object texture, but also is applied to extract collapsed building information of single-, dual- or full-polarization SAR data. The RADARSAT-2 data of Yushu earthquake which acquired on April 21, 2010 is used to present and analyze the performance of the proposed method. In addition, the applicability of this feature to SAR data with different polarizations is also analysed, which provides decision support for the data selection of collapsed building information extraction.

  4. Search for core-collapse supernovae using the MiniBooNE neutrino detector

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Djurcic, Z.; Finley, D. A.; Fisher, M.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R. G.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.; MiniBooNE Collaboration

    2010-02-01

    We present a search for core-collapse supernovae in the Milky Way galaxy, using the MiniBooNE neutrino detector. No evidence is found for core-collapse supernovae occurring in our Galaxy in the period from December 14, 2004 to July 31, 2008, corresponding to 98% live time for collection. We set a limit on the core-collapse supernova rate out to a distance of 13.4 kpc to be less than 0.69 supernovae per year at 90% C.L.

  5. Role of large flank-collapse events on magma evolution of volcanoes. Insights from the Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Boudon, Georges; Villemant, Benoît; Friant, Anne Le; Paterne, Martine; Cortijo, Elsa

    2013-08-01

    Flank-collapse events are now recognized as common processes of destruction of volcanoes. They may occur several times on a volcanic edifice pulling out varying volumes of material from km3 to thousands of km3. In the Lesser Antilles Arc, a large number of flank-collapse events were identified. Here, we show that some of the largest events are correlated to significant variations in erupted magma compositions and eruptive styles. On Montagne Pelée (Martinique), magma production rate has been sustained during several thousand years following a 32 ka old flank-collapse event. Basic and dense magmas were emitted through open-vent eruptions that generated abundant scoria flows while significantly more acidic magmas were produced before the flank collapse. The rapid building of a new cone increased the load on magma bodies at depth and the density threshold. Magma production rate decreased and composition of the erupted products changed to more acidic compared to the preceding period of activity. These low density magma generated plinian and dome-forming eruptions up to the Present. In contrast at Soufrière Volcanic Centre of St. Lucia and at Pitons du Carbet in Martinique, the flank-collapses have an opposite effect: in both cases, the acidic magmas erupted immediately after the flank-collapses. These magmas are highly porphyritic (up to 60% phenocrysts) and much more viscous than the magmas erupted before the flank-collapses. They have been generally emplaced as voluminous and uptight lava domes (called “the Pitons”). Such magmas could not ascent without a significant decrease of the threshold effect produced by the volcanic edifice loading before the flank-collapse.

  6. Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches.

    PubMed

    Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac

    2016-07-01

    We provide detailed comparison between the adaptive mesh refinement (AMR) code enzo-2.4 and the smoothed particle hydrodynamics (SPH)/ N -body code gadget-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in gadget-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H 2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ∼ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, gadget-3 requires significantly larger computational resources than enzo-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.

  7. The direct collapse of a massive black hole seed under the influence of an anisotropic Lyman-Werner source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regan, John A.; Johansson, Peter H.; Wise, John H., E-mail: john.regan@helsinki.fi

    2014-11-10

    The direct collapse model of supermassive black hole seed formation requires that the gas cools predominantly via atomic hydrogen. To this end we simulate the effect of an anisotropic radiation source on the collapse of a halo at high redshift. The radiation source is placed at a distance of 3 kpc (physical) from the collapsing object and is set to emit monochromatically in the center of the Lyman-Werner (LW) band. The LW radiation emitted from the high redshift source is followed self-consistently using ray tracing techniques. Due to self-shielding, a small amount of H{sub 2} is able to form atmore » the very center of the collapsing halo even under very strong LW radiation. Furthermore, we find that a radiation source, emitting >10{sup 54} (∼ 10{sup 3} J{sub 21}) photons s{sup –1}, is required to cause the collapse of a clump of M ∼ 10{sup 5} M {sub ☉}. The resulting accretion rate onto the collapsing object is ∼0.25 M {sub ☉} yr{sup –1}. Our results display significant differences, compared to the isotropic radiation field case, in terms of the H{sub 2} fraction at an equivalent radius. These differences will significantly affect the dynamics of the collapse. With the inclusion of a strong anisotropic radiation source, the final mass of the collapsing object is found to be M ∼ 10{sup 5} M {sub ☉}. This is consistent with predictions for the formation of a supermassive star or quasi-star leading to a supermassive black hole.« less

  8. Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches

    NASA Astrophysics Data System (ADS)

    Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac

    2016-07-01

    We provide detailed comparison between the adaptive mesh refinement (AMR) code ENZO-2.4 and the smoothed particle hydrodynamics (SPH)/N-body code GADGET-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in GADGET-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ˜ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, GADGET-3 requires significantly larger computational resources than ENZO-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.

  9. Cavitation erosion prediction based on analysis of flow dynamics and impact load spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihatsch, Michael S., E-mail: michael.mihatsch@aer.mw.tum.de; Schmidt, Steffen J.; Adams, Nikolaus A.

    2015-10-15

    Cavitation erosion is the consequence of repeated collapse-induced high pressure-loads on a material surface. The present paper assesses the prediction of impact load spectra of cavitating flows, i.e., the rate and intensity distribution of collapse events based on a detailed analysis of flow dynamics. Data are obtained from a numerical simulation which employs a density-based finite volume method, taking into account the compressibility of both phases, and resolves collapse-induced pressure waves. To determine the spectrum of collapse events in the fluid domain, we detect and quantify the collapse of isolated vapor structures. As reference configuration we consider the expansion ofmore » a liquid into a radially divergent gap which exhibits unsteady sheet and cloud cavitation. Analysis of simulation data shows that global cavitation dynamics and dominant flow events are well resolved, even though the spatial resolution is too coarse to resolve individual vapor bubbles. The inviscid flow model recovers increasingly fine-scale vapor structures and collapses with increasing resolution. We demonstrate that frequency and intensity of these collapse events scale with grid resolution. Scaling laws based on two reference lengths are introduced for this purpose. We show that upon applying these laws impact load spectra recorded on experimental and numerical pressure sensors agree with each other. Furthermore, correlation between experimental pitting rates and collapse-event rates is found. Locations of high maximum wall pressures and high densities of collapse events near walls obtained numerically agree well with areas of erosion damage in the experiment. The investigation shows that impact load spectra of cavitating flows can be inferred from flow data that captures the main vapor structures and wave dynamics without the need for resolving all flow scales.« less

  10. Increase of Coastal Cliff Rockfall Trigerred By Rainfall On The Chalk Coast of NW France During The Year 2001

    NASA Astrophysics Data System (ADS)

    Duperret, A.; Genter, A.; Daigneault, M.; Mortimore, R. N.

    Coastal chalk cliffs exposed on each part of the English Channel suffer numerous collapses, with mean volumes varying between 10 000 and 100 000 cubic meters. Between October 1998 and October 2001, a minimum of 52 collapses have been ob- served along 120 km of the French chalk coastline located in Upper-Normandy and Picardy. The chalk coastline has evidenced 4 collapses in 1999 and 6 collapses in 2000 (winter and spring), whereas 28 collapses with volume greater than 1000 m3 was recorded in 2001 (winter, spring and summer). The increase of large-scale collapses during 2001 is interpreted as an excess of rainfalls recorded previously. Most of these collapses extend all over the vertical cliff height and are mainly controlled by ground- water infiltration. The modality of water circulation through the chalk rock depends on the chalk lithology and the hydrogeological properties of pre-existing fractures. In the framework of the European scientific project named ROCC (Risk of Cliff Col- lapse), the chalk lithology and the pre-existing fracture pattern have been investigated in order to determine the response of the rock mass to subaerial and marine solicita- tions, including rainfall conditions. Such data have been reported in a GIS system in order to determine the degree of cliff sensibility to collapses. Some rainfall-triggered collapses will be presented to illustrate the diversity of the rock mass response to rain- fall excess, in terms of rock mass characteristics and time delay: (1) a collapse was witnessed at Puys, the 17th May 2000, after two periods of intense rainfall inducing floods, during the two previous months. The occurrence of impervious marl seams levels within the chalk and its low fracture content may have generated water over- pressure and consequently stress concentration on the marl seams, which conduct to the rupture. The delay between rainfall and the rupture may be explained by the low velocity of groundwater through a poorly fractured porous chalk. (2) a series of large- scale collapses has been evidenced at Yport in June 2001, at Grandes Dalles the 15th July 2001 and at Benouville the 24th July 2001. These collapses occurred after a dry period, during the previous three months. A collapse occurred again at Yport the 27th August 2001, after an increase of rainfall during August 2001. All these sites present the same lithological chalk succession than at Puys, but their fracture pattern is made of large-scale subvertical fractures expanding all over the cliff height. Some of them 1 which correspond to dissolution pipes are filled with clays-with-flints. The sharp in- crease of collapses during the summer 2001 could be related to the superimposition of dry periods which alternate with heavy rainfalls, in karst environment. 2

  11. Visualizing the Histotripsy Process: Bubble Cloud-Cancer Cell Interactions in a Tissue-Mimicking Environment.

    PubMed

    Vlaisavljevich, Eli; Maxwell, Adam; Mancia, Lauren; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2016-10-01

    Histotripsy is a non-invasive ultrasonic ablation method that uses cavitation to mechanically fractionate tissue into acellular debris. With a sufficient number of pulses, histotripsy can completely fractionate tissue into a liquid-appearing homogenate with no cellular structures. The location, shape and size of lesion formation closely match those of the cavitation cloud. Previous work has led to the hypothesis that the rapid expansion and collapse of histotripsy bubbles fractionate tissue by inducing large stress and strain on the tissue structures immediately adjacent to the bubbles. In the work described here, the histotripsy bulk tissue fractionation process is visualized at the cellular level for the first time using a custom-built 2-MHz transducer incorporated into a microscope stage. A layer of breast cancer cells were cultured within an optically transparent fibrin-based gel phantom to mimic cells inside a 3-D extracellular matrix. To test the hypothesis, the cellular response to single and multiple histotripsy pulses was investigated using high-speed optical imaging. Bubbles were always generated in the extracellular space, and significant cell displacement/deformation was observed for cells directly adjacent to the bubble during both bubble expansion and collapse. The largest displacements were observed during collapse for cells immediately adjacent to the bubble, with cells moving more than 150-300 μm in less than 100 μs. Cells often underwent multiple large deformations (>150% strain) over multiple pulses, resulting in the bisection of cells multiple times before complete removal. To provide theoretical support to the experimental observations, a numerical simulation was conducted using a single-bubble model, which indicated that histotripsy exerts the largest strains and cell displacements in the regions immediately adjacent to the bubble. The experimental and simulation results support our hypothesis, which helps to explain the formation of the sharp lesions formed in histotripsy therapy localized to the regions directly exposed to the bubbles. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Phenotyping Pharyngeal Pathophysiology using Polysomnography in Patients with Obstructive Sleep Apnea.

    PubMed

    Sands, Scott A; Edwards, Bradley A; Terrill, Philip I; Taranto-Montemurro, Luigi; Azarbarzin, Ali; Marques, Melania; Hess, Lauren B; White, David P; Wellman, Andrew

    2018-05-01

    Therapies for obstructive sleep apnea (OSA) could be administered on the basis of a patient's own phenotypic causes ("traits") if a clinically applicable approach were available. Here we aimed to provide a means to quantify two key contributors to OSA-pharyngeal collapsibility and compensatory muscle responsiveness-that is applicable to diagnostic polysomnography. Based on physiological definitions, pharyngeal collapsibility determines the ventilation at normal (eupneic) ventilatory drive during sleep, and pharyngeal compensation determines the rise in ventilation accompanying a rising ventilatory drive. Thus, measuring ventilation and ventilatory drive (e.g., during spontaneous cyclic events) should reveal a patient's phenotypic traits without specialized intervention. We demonstrate this concept in patients with OSA (N = 29), using a novel automated noninvasive method to estimate ventilatory drive (polysomnographic method) and using "gold standard" ventilatory drive (intraesophageal diaphragm EMG) for comparison. Specialized physiological measurements using continuous positive airway pressure manipulation were employed for further comparison. The validity of nasal pressure as a ventilation surrogate was also tested (N = 11). Polysomnography-derived collapsibility and compensation estimates correlated favorably with those quantified using gold standard ventilatory drive (R = 0.83, P < 0.0001; and R = 0.76, P < 0.0001; respectively) and using continuous positive airway pressure manipulation (R = 0.67, P < 0.0001; and R = 0.64, P < 0.001; respectively). Polysomnographic estimates effectively stratified patients into high versus low subgroups (accuracy, 69-86% vs. ventilatory drive measures; P < 0.05). Traits were near-identical using nasal pressure versus pneumotach (N = 11, R ≥ 0.98, both traits; P < 0.001). Phenotypes of pharyngeal dysfunction in OSA are evident from spontaneous changes in ventilation and ventilatory drive during sleep, enabling noninvasive phenotyping in the clinic. Our approach may facilitate precision therapeutic interventions for OSA.

  13. First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corpuz, A.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Loew, K.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, K. N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Santamaria, L.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-11-01

    We present results from a search for gravitational-wave bursts coincident with two core-collapse supernovae observed optically in 2007 and 2011. We employ data from the Laser Interferometer Gravitational-wave Observatory (LIGO), the Virgo gravitational-wave observatory, and the GEO 600 gravitational-wave observatory. The targeted core-collapse supernovae were selected on the basis of (1) proximity (within approximately 15 Mpc), (2) tightness of observational constraints on the time of core collapse that defines the gravitational-wave search window, and (3) coincident operation of at least two interferometers at the time of core collapse. We find no plausible gravitational-wave candidates. We present the probability of detecting signals from both astrophysically well-motivated and more speculative gravitational-wave emission mechanisms as a function of distance from Earth, and discuss the implications for the detection of gravitational waves from core-collapse supernovae by the upgraded Advanced LIGO and Virgo detectors.

  14. Rapid onset of mafic magmatism facilitated by volcanic edifice collapse

    NASA Astrophysics Data System (ADS)

    Cassidy, M.; Watt, S. F. L.; Talling, P. J.; Palmer, M. R.; Edmonds, M.; Jutzeler, M.; Wall-Palmer, D.; Manga, M.; Coussens, M.; Gernon, T.; Taylor, R. N.; Michalik, A.; Inglis, E.; Breitkreuz, C.; Le Friant, A.; Ishizuka, O.; Boudon, G.; McCanta, M. C.; Adachi, T.; Hornbach, M. J.; Colas, S. L.; Endo, D.; Fujinawa, A.; Kataoka, K. S.; Maeno, F.; Tamura, Y.; Wang, F.

    2015-06-01

    Volcanic edifice collapses generate some of Earth's largest landslides. How such unloading affects the magma storage systems is important for both hazard assessment and for determining long-term controls on volcano growth and decay. Here we present a detailed stratigraphic and petrological analyses of volcanic landslide and eruption deposits offshore Montserrat, in a subduction zone setting, sampled during Integrated Ocean Drilling Program Expedition 340. A large (6-10 km3) collapse of the Soufrière Hills Volcano at ~130 ka was followed by explosive basaltic volcanism and the formation of a new basaltic volcanic center, the South Soufrière Hills, estimated to have initiated <100 years after collapse. This basaltic volcanism was a sharp departure from the andesitic volcanism that characterized Soufrière Hills' activity before the collapse. Mineral-melt thermobarometry demonstrates that the basaltic magma's transit through the crust was rapid and from midcrustal depths. We suggest that this rapid ascent was promoted by unloading following collapse.

  15. Comparison of two occurrence risk assessment methods for collapse gully erosion ——A case study in Guangdong province

    NASA Astrophysics Data System (ADS)

    Sun, K.; Cheng, D. B.; He, J. J.; Zhao, Y. L.

    2018-02-01

    Collapse gully erosion is a specific type of soil erosion in the red soil region of southern China, and early warning and prevention of the occurrence of collapse gully erosion is very important. Based on the idea of risk assessment, this research, taking Guangdong province as an example, adopt the information acquisition analysis and the logistic regression analysis, to discuss the feasibility for collapse gully erosion risk assessment in regional scale, and compare the applicability of the different risk assessment methods. The results show that in the Guangdong province, the risk degree of collapse gully erosion occurrence is high in northeastern and western area, and relatively low in southwestern and central part. The comparing analysis of the different risk assessment methods on collapse gully also indicated that the risk distribution patterns from the different methods were basically consistent. However, the accuracy of risk map from the information acquisition analysis method was slightly better than that from the logistic regression analysis method.

  16. FAILURE OF A NEUTRINO-DRIVEN EXPLOSION AFTER CORE-COLLAPSE MAY LEAD TO A THERMONUCLEAR SUPERNOVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushnir, Doron; Katz, Boaz, E-mail: kushnir@ias.edu

    We demonstrate that ∼10 s after the core-collapse of a massive star, a thermonuclear explosion of the outer shells is possible for some (tuned) initial density and composition profiles, assuming that the neutrinos failed to explode the star. The explosion may lead to a successful supernova, as first suggested by Burbidge et al. We perform a series of one-dimensional (1D) calculations of collapsing massive stars with simplified initial density profiles (similar to the results of stellar evolution calculations) and various compositions (not similar to 1D stellar evolution calculations). We assume that the neutrinos escaped with a negligible effect on themore » outer layers, which inevitably collapse. As the shells collapse, they compress and heat up adiabatically, enhancing the rate of thermonuclear burning. In some cases, where significant shells of mixed helium and oxygen are present with pre-collapsed burning times of ≲100 s (≈10 times the free-fall time), a thermonuclear detonation wave is ignited, which unbinds the outer layers of the star, leading to a supernova. The energy released is small, ≲10{sup 50} erg, and negligible amounts of synthesized material (including {sup 56}Ni) are ejected, implying that these 1D simulations are unlikely to represent typical core-collapse supernovae. However, they do serve as a proof of concept that the core-collapse-induced thermonuclear explosions are possible, and more realistic two-dimensional and three-dimensional simulations are within current computational capabilities.« less

  17. Reversible Leaf Xylem Collapse: A Potential “Circuit Breaker” against Cavitation1[OPEN

    PubMed Central

    Zhang, Yong-Jiang; Rockwell, Fulton E.; Graham, Adam C.; Alexander, Teressa; Holbrook, N. Michele

    2016-01-01

    We report a novel form of xylem dysfunction in angiosperms: reversible collapse of the xylem conduits of the smallest vein orders that demarcate and intrusively irrigate the areoles of red oak (Quercus rubra) leaves. Cryo-scanning electron microscopy revealed gradual increases in collapse from approximately −2 MPa down to −3 MPa, saturating thereafter (to −4 MPa). Over this range, cavitation remained negligible in these veins. Imaging of rehydration experiments showed spatially variable recovery from collapse within 20 s and complete recovery after 2 min. More broadly, the patterns of deformation induced by desiccation in both mesophyll and xylem suggest that cell wall collapse is unlikely to depend solely on individual wall properties, as mechanical constraints imposed by neighbors appear to be important. From the perspective of equilibrium leaf water potentials, petioles, whose vessels extend into the major veins, showed a vulnerability to cavitation that overlapped in the water potential domain with both minor vein collapse and buckling (turgor loss) of the living cells. However, models of transpiration transients showed that minor vein collapse and mesophyll capacitance could effectively buffer major veins from cavitation over time scales relevant to the rectification of stomatal wrong-way responses. We suggest that, for angiosperms, whose subsidiary cells give up large volumes to allow large stomatal apertures at the cost of potentially large wrong-way responses, vein collapse could make an important contribution to these plants’ ability to transpire near the brink of cavitation-inducing water potentials. PMID:27733514

  18. Can a collapse of global civilization be avoided?

    PubMed Central

    Ehrlich, Paul R.; Ehrlich, Anne H.

    2013-01-01

    Environmental problems have contributed to numerous collapses of civilizations in the past. Now, for the first time, a global collapse appears likely. Overpopulation, overconsumption by the rich and poor choices of technologies are major drivers; dramatic cultural change provides the main hope of averting calamity. PMID:23303549

  19. Cardiovascular Abnormalities in Carbon Monoxide Poisoning.

    PubMed

    Garg, Jalaj; Krishnamoorthy, Parasuram; Palaniswamy, Chandrasekar; Khera, Sahil; Ahmad, Hasan; Jain, Diwakar; Aronow, Wilbert S; Frishman, William H

    Acute carbon monoxide (CO) poisoning is the most common cause of poisoning and poisoning-related death in the United States. It manifests as broad spectrum of symptoms ranging from mild headache, nausea, and fatigue to dizziness, syncope, coma, seizures resulting in cardiovascular collapse, respiratory failure, and death. Cardiovascular complications of CO poisoning has been well reported and include myocardial stunning, left ventricular dysfunction, pulmonary edema, and arrhythmias. Acute myocardial ischemia has also been reported from increased thrombogenicity due to CO poisoning. Myocardial toxicity from CO exposure is associated with increased short-term and long-term mortality. Carboxyhemoglobin (COHb) levels do not correlate well with the clinical severity of CO poisoning. Supplemental oxygen remains the cornerstone of therapy for CO poisoning. Hyperbaric oxygen therapy increases CO elimination and has been used with wide variability in patients with evidence of neurological and myocardial injury from CO poisoning, but its benefit in limiting or reversing cardiac injury is unknown. We present a comprehensive review of literature on cardiovascular manifestations of CO poisoning and propose a diagnostic algorithm for managing patients with CO poisoning.

  20. Forced expiratory technique, directed cough, and autogenic drainage.

    PubMed

    Fink, James B

    2007-09-01

    In health, secretions produced in the respiratory tract are cleared by mucociliary transport, cephalad airflow bias, and cough. In disease, increased secretion viscosity and volume, dyskinesia of the cilia, and ineffective cough combine to reduce secretion clearance, leading to increased risk of infection. In obstructive lung disease these conditions are further complicated by early collapse of airways, due to airway compression, which traps both gas and secretions. Techniques have been developed to optimize expiratory flow and promote airway clearance. Directed cough, forced expiratory technique, active cycle of breathing, and autogenic drainage are all more effective than placebo and comparable in therapeutic effects to postural drainage; they require no special equipment or care-provider assistance for routine use. Researchers have suggested that standard chest physical therapy with active cycle of breathing and forced expiratory technique is more effective than chest physical therapy alone. Evidence-based reviews have suggested that, though successful adoption of techniques such as autogenic drainage may require greater control and training, patients with long-term secretion management problems should be taught as many of these techniques as they can master for adoption in their therapeutic routines.

  1. Dual-drug nanomedicine with hydrophilic F127-modified magnetic nanocarriers assembled in amphiphilic gelatin for enhanced penetration and drug delivery in deep tumor tissue.

    PubMed

    Lai, Yen-Ho; Chiang, Chih-Sheng; Kao, Tzu-Hsun; Chen, San-Yuan

    2018-01-01

    Deep penetration of large-sized drug nanocarriers into tumors is important to improve the efficacy of tumor therapy. In this study, we developed a size-changeable "Trojan Horse" nanocarrier (THNC) composed of paclitaxel (PTX)-loaded Greek soldiers (GSs; ~20 nm) assembled in an amphiphilic gelatin matrix with hydrophilic losartan (LST) added. With amphiphilic gelatin matrix cleavage by matrix metalloproteinase-2, LST showed fast release of up to 60% accumulated drug at 6 h, but a slow release kinetic (~20%) was detected in the PTX from the GSs, indicating that THNCs enable controllable release of LST and PTX drugs for penetration into the tumor tissue. The in vitro cell viability in a 3D tumor spheroid model indicated that the PTX-loaded GSs liberated from THNCs showed deeper penetration as well as higher cytotoxicity, reducing a tumor spheroid to half its original size and collapsing the structure of the tumor microenvironment. The results demonstrate that the THNCs with controlled drug release and deep penetration of magnetic GSs show great potential for cancer therapy.

  2. Nonspherically Symmetric Collapse in Asymptotically AdS Spacetimes.

    PubMed

    Bantilan, Hans; Figueras, Pau; Kunesch, Markus; Romatschke, Paul

    2017-11-10

    We numerically simulate gravitational collapse in asymptotically anti-de Sitter spacetimes away from spherical symmetry. Starting from initial data sourced by a massless real scalar field, we solve the Einstein equations with a negative cosmological constant in five spacetime dimensions and obtain a family of nonspherically symmetric solutions, including those that form two distinct black holes on the axis. We find that these configurations collapse faster than spherically symmetric ones of the same mass and radial compactness. Similarly, they require less mass to collapse within a fixed time.

  3. Recoverable and Programmable Collapse from Folding Pressurized Origami Cellular Solids.

    PubMed

    Li, S; Fang, H; Wang, K W

    2016-09-09

    We report a unique collapse mechanism by exploiting the negative stiffness observed in the folding of an origami solid, which consists of pressurized cells made by stacking origami sheets. Such a collapse mechanism is recoverable, since it only involves rigid folding of the origami sheets and it is programmable by pressure control and the custom design of the crease pattern. The collapse mechanism features many attractive characteristics for applications such as energy absorption. The reported results also suggest a new branch of origami study focused on its nonlinear mechanics associated with folding.

  4. Biological effects of stellar collapse neutrinos

    PubMed

    Collar, J I

    1996-02-05

    Massive stars in their final stages of collapse radiate most of their binding energy in the form of MeV neutrinos. The recoil atoms that they produce in elastic scattering off nuclei in organic tissue create radiation damage which is highly effective in the production of irreparable DNA harm, leading to cellular mutation, neoplasia, and oncogenesis. Using a conventional model of the galaxy and of the collapse mechanism, the periodicity of nearby stellar collapses and the radiation dose are calculated. The possible contribution of this process to the paleontological record of mass extinctions is examined.

  5. Benefits of Objective Collapse Models for Cosmology and Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Okon, Elias; Sudarsky, Daniel

    2014-02-01

    We display a number of advantages of objective collapse theories for the resolution of long-standing problems in cosmology and quantum gravity. In particular, we examine applications of objective reduction models to three important issues: the origin of the seeds of cosmic structure, the problem of time in quantum gravity and the information loss paradox; we show how reduction models contain the necessary tools to provide solutions for these issues. We wrap up with an adventurous proposal, which relates the spontaneous collapse events of objective collapse models to microscopic virtual black holes.

  6. Nonspherically Symmetric Collapse in Asymptotically AdS Spacetimes

    NASA Astrophysics Data System (ADS)

    Bantilan, Hans; Figueras, Pau; Kunesch, Markus; Romatschke, Paul

    2017-11-01

    We numerically simulate gravitational collapse in asymptotically anti-de Sitter spacetimes away from spherical symmetry. Starting from initial data sourced by a massless real scalar field, we solve the Einstein equations with a negative cosmological constant in five spacetime dimensions and obtain a family of nonspherically symmetric solutions, including those that form two distinct black holes on the axis. We find that these configurations collapse faster than spherically symmetric ones of the same mass and radial compactness. Similarly, they require less mass to collapse within a fixed time.

  7. Radiating gravitational collapse with shearing motion and bulk viscosity

    NASA Astrophysics Data System (ADS)

    Chan, R.

    2001-03-01

    A model is proposed of a collapsing radiating star consisting of a shearing fluid with bulk viscosity undergoing radial heat flow with outgoing radiation. The pressure of the star, at the beginning of the collapse, is isotropic but due to the presence of the bulk viscosity the pressure becomes more and more anisotropic. The behavior of the density, pressure, mass, luminosity, the effective adiabatic index and the Kretschmann scalar is analyzed. Our work is compared to the case of a collapsing shearing fluid of a previous model, for a star with 6 Msun.

  8. Radiating gravitational collapse with shear viscosity

    NASA Astrophysics Data System (ADS)

    Chan, R.

    2000-08-01

    A model is proposed of a collapsing radiating star consisting of an isotropic fluid with shear viscosity undergoing radial heat flow with outgoing radiation. The pressure of the star, at the beginning of the collapse, is isotropic but owing to the presence of the shear viscosity the pressure becomes more and more anisotropic. The behaviour of the density, pressure, mass, luminosity and the effective adiabatic index is analysed. Our work is compared to the case of a collapsing shearing fluid of a previous model, for a star with 6Msolar.

  9. Particle creation in (2+1) circular dust collapse

    NASA Astrophysics Data System (ADS)

    Gutti, Sashideep; Singh, T. P.

    2007-09-01

    We investigate the quantum particle creation during the circularly symmetric collapse of a 2+1 dust cloud, for the cases when the cosmological constant is either zero or negative. We derive the Ford-Parker formula for the 2+1 case, which can be used to compute the radiated quantum flux in the geometric optics approximation. It is shown that no particles are created when the collapse ends in a naked singularity, unlike in the 3+1 case. When the collapse ends in a Banados-Teitelboim-Zanelli black hole, we recover the expected Hawking radiation.

  10. Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy

    NASA Astrophysics Data System (ADS)

    Kilburn, Christopher R. J.; Petley, David N.

    2003-08-01

    Rapid, giant landslides, or sturzstroms, are among the most powerful natural hazards on Earth. They have minimum volumes of ˜10 6-10 7 m 3 and, normally preceded by prolonged intervals of accelerating creep, are produced by catastrophic and deep-seated slope collapse (loads ˜1-10 MPa). Conventional analyses attribute rapid collapse to unusual mechanisms, such as the vaporization of ground water during sliding. Here, catastrophic collapse is related to self-accelerating rock fracture, common in crustal rocks at loads ˜1-10 MPa and readily catalysed by circulating fluids. Fracturing produces an abrupt drop in resisting stress. Measured stress drops in crustal rock account for minimum sturzstrom volumes and rapid collapse accelerations. Fracturing also provides a physical basis for quantitatively forecasting catastrophic slope failure.

  11. The shadow of a collapsing dark star

    NASA Astrophysics Data System (ADS)

    Schneider, Stefanie; Perlick, Volker

    2018-06-01

    The shadow of a black hole is usually calculated, either analytically or numerically, on the assumption that the black hole is eternal, i.e., that it has existed for all time. Here we ask the question of how this shadow comes about in the course of time when a black hole is formed by gravitational collapse. To that end we consider a star that is spherically symmetric, dark and non-transparent and we assume that it begins, at some instant of time, to collapse in free fall like a ball of dust. We analytically calculate the dependence on time of the angular radius of the shadow, first for a static observer who is watching the collapse from a certain distance and then for an observer who is falling towards the centre following the collapsing star.

  12. Intracapsular implant rupture: MR findings of incomplete shell collapse.

    PubMed

    Soo, M S; Kornguth, P J; Walsh, R; Elenberger, C; Georgiade, G S; DeLong, D; Spritzer, C E

    1997-01-01

    The objective of this study was to determine the frequency and significance of the MR findings of incomplete shell collapse for detecting implant rupture in a series of surgically removed breast prostheses. MR images of 86 breast implants in 44 patients were studied retrospectively and correlated with surgical findings at explantation. MR findings included (a) complete shell collapse (linguine sign), 21 implants; (b) incomplete shell collapse (subcapsular line sign, teardrop sign, and keyhole sign), 33 implants; (c) radial folds, 31 implants; and (d) normal, 1 implant. The subcapsular line sign was seen in 26 implants, the teardrop sign was seen in 27 implants, and the keyhole sign was seen in 23 implants. At surgery, 48 implants were found to be ruptured and 38 were intact. The MR findings of ruptured implants showed signs of incomplete collapse in 52% (n = 25), linguine sign in 44% (n = 21), and radial folds in 4% (n = 2). The linguine sign perfectly predicted implant rupture, but sensitivity was low. Findings of incomplete shell collapse improved sensitivity and negative predictive values, and the subcapsular line sign produced a significant incremental increase in predictive ability. MRI signs of incomplete shell collapse were more common than the linguine sign in ruptured implants and are significant contributors to the high sensitivity and negative predictive values of MRI for evaluating implant integrity.

  13. Gravitational waves and core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Moiseenko, S. G.

    2017-11-01

    A mechanism of formation of gravitational waves in the Universe is considered for a nonspherical collapse of matter. Nonspherical collapse results are presented for a uniform spheroid of dust and a finite-entropy spheroid. Numerical simulation results on core-collapse supernova explosions are presented for the neutrino and magneto-rotational models. These results are used to estimate the dimensionless amplitude of the gravitational wave with a frequency ν ~ 1300 Hz, radiated during the collapse of the rotating core of a pre-supernova with a mass of 1.2 M⊙ (calculated by the authors in 2D). This estimate agrees well with many other calculations (presented in this paper) that have been done in 2D and 3D settings and which rely on more exact and sophisticated calculations of the gravitational wave amplitude. The formation of the large-scale structure of the Universe in the Zel’dovich pancake model involves the emission of very long-wavelength gravitational waves. The average amplitude of these waves is calculated from the simulation, in the uniform spheroid approximation, of the nonspherical collapse of noncollisional dust matter, which imitates dark matter. It is noted that a gravitational wave radiated during a core-collapse supernova explosion in our Galaxy has a sufficient amplitude to be detected by existing gravitational wave telescopes.

  14. Dynamic collapses of relativistic degenerate stellar cores and radiation pressure dominated stellar interiors

    NASA Astrophysics Data System (ADS)

    Shi, Chun-Hui; Lou, Yu-Qing

    2018-04-01

    We investigate and explore self-similar dynamic radial collapses of relativistic degenerate stellar cores (RDSCs) and radiation pressure dominated stellar interiors (RPDSIs) of spherical symmetry by invoking a conventional polytropic (CP) equation of state (EoS) with a constant polytropic index γ = 4 / 3 and by allowing free-fall non-zero RDSC or RPDSI surface mass density and pressure due to their sustained physical contact with the outer surrounding stellar envelopes also in contraction. Irrespective of the physical triggering mechanisms (including, e.g., photodissociation, electron-positron pair instability, general relativistic instability etc.) for initiating such a self-similar dynamically collapsing RDSC or RPDSI embedded within a massive star, a very massive star (VMS) or a supermassive star (SMS) in contraction and by comparing with the Schwarzschild radii associated with their corresponding RDSC/RPDSI masses, the emergence of central black holes in a wide mass range appears inevitable during such RDSC/RPDSI dynamic collapses inside massive stars, VMSs, and SMSs, respectively. Radial pulsations of progenitor cores or during a stellar core collapse may well leave imprints onto collapsing RDSCs/RPDSIs towards their self-similar dynamic evolution. Massive neutron stars may form during dynamic collapses of RDSC inside massive stars in contraction under proper conditions.

  15. Fishing, fast growth and climate variability increase the risk of collapse

    PubMed Central

    Pinsky, Malin L.; Byler, David

    2015-01-01

    Species around the world have suffered collapses, and a key question is why some populations are more vulnerable than others. Traditional conservation biology and evidence from terrestrial species suggest that slow-growing populations are most at risk, but interactions between climate variability and harvest dynamics may alter or even reverse this pattern. Here, we test this hypothesis globally. We use boosted regression trees to analyse the influences of harvesting, species traits and climate variability on the risk of collapse (decline below a fixed threshold) across 154 marine fish populations around the world. The most important factor explaining collapses was the magnitude of overfishing, while the duration of overfishing best explained long-term depletion. However, fast growth was the next most important risk factor. Fast-growing populations and those in variable environments were especially sensitive to overfishing, and the risk of collapse was more than tripled for fast-growing when compared with slow-growing species that experienced overfishing. We found little evidence that, in the absence of overfishing, climate variability or fast growth rates alone drove population collapse over the last six decades. Expanding efforts to rapidly adjust harvest pressure to account for climate-driven lows in productivity could help to avoid future collapses, particularly among fast-growing species. PMID:26246548

  16. Fishing, fast growth and climate variability increase the risk of collapse.

    PubMed

    Pinsky, Malin L; Byler, David

    2015-08-22

    Species around the world have suffered collapses, and a key question is why some populations are more vulnerable than others. Traditional conservation biology and evidence from terrestrial species suggest that slow-growing populations are most at risk, but interactions between climate variability and harvest dynamics may alter or even reverse this pattern. Here, we test this hypothesis globally. We use boosted regression trees to analyse the influences of harvesting, species traits and climate variability on the risk of collapse (decline below a fixed threshold) across 154 marine fish populations around the world. The most important factor explaining collapses was the magnitude of overfishing, while the duration of overfishing best explained long-term depletion. However, fast growth was the next most important risk factor. Fast-growing populations and those in variable environments were especially sensitive to overfishing, and the risk of collapse was more than tripled for fast-growing when compared with slow-growing species that experienced overfishing. We found little evidence that, in the absence of overfishing, climate variability or fast growth rates alone drove population collapse over the last six decades. Expanding efforts to rapidly adjust harvest pressure to account for climate-driven lows in productivity could help to avoid future collapses, particularly among fast-growing species. © 2015 The Author(s).

  17. Shock-induced collapse of a gas bubble in shockwave lithotripsy.

    PubMed

    Johnsen, Eric; Colonius, Tim

    2008-10-01

    The shock-induced collapse of a pre-existing nucleus near a solid surface in the focal region of a lithotripter is investigated. The entire flow field of the collapse of a single gas bubble subjected to a lithotripter pulse is simulated using a high-order accurate shock- and interface-capturing scheme, and the wall pressure is considered as an indication of potential damage. Results from the computations show the same qualitative behavior as that observed in experiments: a re-entrant jet forms in the direction of propagation of the pulse and penetrates the bubble during collapse, ultimately hitting the distal side and generating a water-hammer shock. As a result of the propagation of this wave, wall pressures on the order of 1 GPa may be achieved for bubbles collapsing close to the wall. The wall pressure decreases with initial stand-off distance and pulse width and increases with pulse amplitude. For the stand-off distances considered in the present work, the wall pressure due to bubble collapse is larger than that due to the incoming shockwave; the region over which this holds may extend to ten initial radii. The present results indicate that shock-induced collapse is a mechanism with high potential for damage in shockwave lithotripsy.

  18. Shock-induced collapse of a gas bubble in shockwave lithotripsy

    PubMed Central

    Johnsen, Eric; Colonius, Tim

    2008-01-01

    The shock-induced collapse of a pre-existing nucleus near a solid surface in the focal region of a lithotripter is investigated. The entire flow field of the collapse of a single gas bubble subjected to a lithotripter pulse is simulated using a high-order accurate shock- and interface-capturing scheme, and the wall pressure is considered as an indication of potential damage. Results from the computations show the same qualitative behavior as that observed in experiments: a re-entrant jet forms in the direction of propagation of the pulse and penetrates the bubble during collapse, ultimately hitting the distal side and generating a water-hammer shock. As a result of the propagation of this wave, wall pressures on the order of 1 GPa may be achieved for bubbles collapsing close to the wall. The wall pressure decreases with initial stand-off distance and pulse width and increases with pulse amplitude. For the stand-off distances considered in the present work, the wall pressure due to bubble collapse is larger than that due to the incoming shockwave; the region over which this holds may extend to ten initial radii. The present results indicate that shock-induced collapse is a mechanism with high potential for damage in shockwave lithotripsy. PMID:19062841

  19. Preliminary Seismological Report on the 6 August 2007 Crandall Canyon Mine Collapse in Utah

    NASA Astrophysics Data System (ADS)

    Pechmann, J. C.; Arabasz, W. J.; Pankow, K. L.; Burlacu, R.; McCarter, M. K.

    2007-12-01

    A large and tragic collapse occurred in the Crandall Canyon coal mine in east-central Utah on 6 Aug 2007, causing the loss of six miners and generating national attention. This collapse was accompanied by a local magnitude (ML) 3.9 seismic event having an origin time of 2:48 am MDT (8:48 UTC) and a location near the collapse. Two lines of evidence indicate that most of the seismic wave energy of this event was generated by the mine collapse rather than an earthquake: (1) the observation that all of the P-wave first motion directions are down and (2) the results of a moment tensor inversion by Ford et al. (2007; http://seismo.berkeley.edu/seismo/Homepage.html). The Crandall Canyon mine is in an area of Utah where there is abundant mining-induced seismicity, including events with both collapse and shear-slip sources. Prior to the 6 Aug collapse, and within a 3 km radius of it, there were 28 seismic events during 2007 that were large enough to be detected and located as part of the routine processing of University of Utah regional seismic network data: 8 in the 2.5-week period prior to the collapse (ML ≤ 1.9) and 15 during an earlier period of activity in late February and early March (ML ≤ 1.8). The 6 Aug collapse was followed by 37 locatable seismic events of ML ≤ 2.2 before the end of August. One of these "aftershocks" (ML 1.6) occurred in conjunction with the violent burst of coal from the mine walls on 17 Aug (UTC) that killed three rescuers. The aftershocks have an exponential frequency-magnitude distribution with a lower ratio between the frequencies of smaller- and larger-magnitude events (lower b-value) than for the prior events in the area. Aftershock rates generally decreased with time through August but there was a noteworthy 5.8-day hiatus in activity that began 37 hours after the collapse. The University of Utah deployed a 5-station temporary network near the mine beginning on 8 Aug. Data from these stations are being used to help develop travel-time corrections for these and other stations in order to improve the computed locations of seismic events that occurred in the area both before and after the 6 Aug collapse.

  20. Stress wave emission from plasmonic nanobubbles

    NASA Astrophysics Data System (ADS)

    Brujan, Emil-Alexandru

    2017-01-01

    Stress wave emission from the collapse of cavitation nanobubbles, generated after irradiation of single-spherical gold nanoparticles with laser pulses, was investigated numerically. The significant parameters of this study are the nanoparticle radius, laser pulse duration, and laser fluence. For conditions comparable to those existing during plasmonic photothermal therapy, a purely compressive pressure wave is emitted during nanobubble collapse, not a shock. In the initial stage of its propagation, the stress wave amplitude is proportional to the inverse of the stress wave radius. The maximum amplitude and the duration of the stress wave decreases with the laser fluence, laser pulse duration, and gold nanoparticle radius. The full width at half maximum duration of the stress wave is almost constant up to a distance of 50 µm from the emission center. The stress wave amplitude is smaller than 5 MPa, while the stress wave duration is smaller than 35 ns. The stress wave propagation results in minor mechanical effects on biological tissue that are restricted to very small dimensions on a cellular or sub-cellular level. The stress wave is, however, able to produce breaching of the human cell membrane and bacterial wall even at distances as large as 50 µm from the emission centre. The experimentally observed melting of gold nanoparticles comes from the large temperature reached inside the nanoparticles during laser irradiation and not from the propagation of the stress wave into the surrounding liquid during nanobubble rebound.

  1. Bubble Proliferation in Shock Wave Lithotripsy Occurs during Inertial Collapse

    NASA Astrophysics Data System (ADS)

    Pishchalnikov, Yuri A.; McAteer, James A.; Pishchalnikova, Irina V.; Williams, James C.; Bailey, Michael R.; Sapozhnikov, Oleg A.

    2008-06-01

    In shock wave lithotripsy (SWL), firing shock pulses at slow pulse repetition frequency (0.5 Hz) is more effective at breaking kidney stones than firing shock waves (SWs) at fast rate (2 Hz). Since at fast rate the number of cavitation bubbles increases, it appears that bubble proliferation reduces the efficiency of SWL. The goal of this work was to determine the basis for bubble proliferation when SWs are delivered at fast rate. Bubbles were studied using a high-speed camera (Imacon 200). Experiments were conducted in a test tank filled with nondegassed tap water at room temperature. Acoustic pulses were generated with an electromagnetic lithotripter (DoLi-50). In the focus of the lithotripter the pulses consisted of a ˜60 MPa positive-pressure spike followed by up to -8 MPa negative-pressure tail, all with a total duration of about 7 μs. Nonlinear propagation steepened the shock front of the pulses to become sufficiently thin (˜0.03 μm) to impose differential pressure across even microscopic bubbles. High-speed camera movies showed that the SWs forced preexisting microbubbles to collapse, jet, and break up into daughter bubbles, which then grew rapidly under the negative-pressure phase of the pulse, but later coalesced to re-form a single bubble. Subsequent bubble growth was followed by inertial collapse and, usually, rebound. Most, if not all, cavitation bubbles emitted micro-jets during their first inertial collapse and re-growth. After jetting, these rebounding bubbles could regain a spherical shape before undergoing a second inertial collapse. However, either upon this second inertial collapse, or sometimes upon the first inertial collapse, the rebounding bubble emerged from the collapse as a cloud of smaller bubbles rather than a single bubble. These daughter bubbles could continue to rebound and collapse for a few cycles, but did not coalesce. These observations show that the positive-pressure phase of SWs fragments preexisting bubbles but this initial fragmentation does not yield bubble proliferation, as the daughter bubbles coalesce to reform a single bubble. Instead, bubble proliferation is the product of the subsequent inertial collapses.

  2. Basic processes and factors determining the evolution of collapse sinkholes: a sensitivity study

    NASA Astrophysics Data System (ADS)

    Romanov, Douchko; Kaufmann, Georg

    2017-04-01

    Collapse sinkholes appear as closed depressions at the surface. The origin of these karst features is related to the continuous dissolution of the soluble rock caused by a focussed sub-surface flow. Water flowing along a preferential pathway through fissures and fractures within the phreatic part of a karst aquifer is able to dissolve the rock (limestone, gypsum, anhydrite). With time, the dissolved void volume increases and part of the ceiling above the stream can become unstable, collapses, and accumulates as debris in the flow path. The debris partially blocks the flow and thus activates new pathways. Because of the low compaction of the debris (high hydraulic conductivity), the flow and the dissolution rates within this crushed zone remain high. This allows a relatively fast dissolutional and erosional removal of the crushed material and the development of new empty voids. The void volume expands upwards towards the surface until a collapse sinkhole is formed. The collapse sinkholes exhibit a large variety of shapes (cylindrical, cone-, bowl-shaped), depths (from few to few hundred meters) and diameters (meters up to hundreds of meters). Two major processes are responsible for this diversity: a) the karst evolution of the aquifer - responsible for the dissolutional and erosional removal of material; b) the mechanical evolution of the host rock and the existence of structural features, faults for example, which determine the stability and the magnitude of the subsequent collapses. In this work we demonstrate the influence of the host rock type, the hydrological and geological boundary conditions, the chemical composition of the flowing water, and the geometry and the scale of the crushed zone, on the location and the evolution of the growing sinkhole. We demonstrate the ability of the karst evolution models to explain, at least qualitatively, the growth and the morphology of the collapse sinkholes and to roughly predict their shape and location. Implementing simple rules that describe the mechanical collapse, we come to the conclusion that a complete quantitative and qualitative description of a collapse sinkhole is possible, but for this it is necessary to take into account also the mechanical properties of the rock and the processes determining the mechanics of the collapses.

  3. Timescales of isotropic and anisotropic cluster collapse

    NASA Astrophysics Data System (ADS)

    Bartelmann, M.; Ehlers, J.; Schneider, P.

    1993-12-01

    From a simple estimate for the formation time of galaxy clusters, Richstone et al. have recently concluded that the evidence for non-virialized structures in a large fraction of observed clusters points towards a high value for the cosmological density parameter Omega0. This conclusion was based on a study of the spherical collapse of density perturbations, assumed to follow a Gaussian probability distribution. In this paper, we extend their treatment in several respects: first, we argue that the collapse does not start from a comoving motion of the perturbation, but that the continuity equation requires an initial velocity perturbation directly related to the density perturbation. This requirement modifies the initial condition for the evolution equation and has the effect that the collapse proceeds faster than in the case where the initial velocity perturbation is set to zero; the timescale is reduced by a factor of up to approximately equal 0.5. Our results thus strengthens the conclusion of Richstone et al. for a high Omega0. In addition, we study the collapse of density fluctuations in the frame of the Zel'dovich approximation, using as starting condition the analytically known probability distribution of the eigenvalues of the deformation tensor, which depends only on the (Gaussian) width of the perturbation spectrum. Finally, we consider the anisotropic collapse of density perturbations dynamically, again with initial conditions drawn from the probability distribution of the deformation tensor. We find that in both cases of anisotropic collapse, in the Zel'dovich approximation and in the dynamical calculations, the resulting distribution of collapse times agrees remarkably well with the results from spherical collapse. We discuss this agreement and conclude that it is mainly due to the properties of the probability distribution for the eigenvalues of the Zel'dovich deformation tensor. Hence, the conclusions of Richstone et al. on the value of Omega0 can be verified and strengthened, even if a more general approach to the collapse of density perturbations is employed. A simple analytic formula for the cluster redshift distribution in an Einstein-deSitter universe is derived.

  4. Implosive Collapse about Magnetic Null Points: A Quantitative Comparison between 2D and 3D Nulls

    NASA Astrophysics Data System (ADS)

    Thurgood, Jonathan O.; Pontin, David I.; McLaughlin, James A.

    2018-03-01

    Null collapse is an implosive process whereby MHD waves focus their energy in the vicinity of a null point, forming a current sheet and initiating magnetic reconnection. We consider, for the first time, the case of collapsing 3D magnetic null points in nonlinear, resistive MHD using numerical simulation, exploring key physical aspects of the system as well as performing a detailed parameter study. We find that within a particular plane containing the 3D null, the plasma and current density enhancements resulting from the collapse are quantitatively and qualitatively as per the 2D case in both the linear and nonlinear collapse regimes. However, the scaling with resistivity of the 3D reconnection rate—which is a global quantity—is found to be less favorable when the magnetic null point is more rotationally symmetric, due to the action of increased magnetic back-pressure. Furthermore, we find that, with increasing ambient plasma pressure, the collapse can be throttled, as is the case for 2D nulls. We discuss this pressure-limiting in the context of fast reconnection in the solar atmosphere and suggest mechanisms by which it may be overcome. We also discuss the implications of the results in the context of null collapse as a trigger mechanism of Oscillatory Reconnection, a time-dependent reconnection mechanism, and also within the wider subject of wave–null point interactions. We conclude that, in general, increasingly rotationally asymmetric nulls will be more favorable in terms of magnetic energy release via null collapse than their more symmetric counterparts.

  5. Geophysical observations at cavity collapse

    NASA Astrophysics Data System (ADS)

    Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe

    2010-05-01

    In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.

  6. Protein collapse is encoded in the folded state architecture.

    PubMed

    Samanta, Himadri S; Zhuravlev, Pavel I; Hinczewski, Michael; Hori, Naoto; Chakrabarti, Shaon; Thirumalai, D

    2017-05-21

    Folded states of single domain globular proteins are compact with high packing density. The radius of gyration, R g , of both the folded and unfolded states increase as N ν where N is the number of amino acids in the protein. The values of the Flory exponent ν are, respectively, ≈⅓ and ≈0.6 in the folded and unfolded states, coinciding with those for homopolymers. However, the extent of compaction of the unfolded state of a protein under low denaturant concentration (collapsibility), conditions favoring the formation of the folded state, is unknown. We develop a theory that uses the contact map of proteins as input to quantitatively assess collapsibility of proteins. Although collapsibility is universal, the propensity to be compact depends on the protein architecture. Application of the theory to over two thousand proteins shows that collapsibility depends not only on N but also on the contact map reflecting the native structure. A major prediction of the theory is that β-sheet proteins are far more collapsible than structures dominated by α-helices. The theory and the accompanying simulations, validating the theoretical predictions, provide insights into the differing conclusions reached using different experimental probes assessing the extent of compaction of proteins. By calculating the criterion for collapsibility as a function of protein length we provide quantitative insights into the reasons why single domain proteins are small and the physical reasons for the origin of multi-domain proteins. Collapsibility of non-coding RNA molecules is similar β-sheet proteins structures adding support to "Compactness Selection Hypothesis".

  7. Cell therapy of hip osteonecrosis with autologous bone marrow grafting.

    PubMed

    Hernigou, Philippe; Poignard, Alexandre; Zilber, Sebastien; Rouard, Hélène

    2009-01-01

    One of the reasons for bone remodeling leading to an insufficient creeping substitution after osteonecrosis in the femoral head may be the small number of progenitor cells in the proximal femur and the trochanteric region. Because of this lack of progenitor cells, treatment modalities should stimulate and guide bone remodeling to sufficient creeping substitution to preserve the integrity of the femoral head. Core decompression with bone graft is used frequently in the treatment of osteonecrosis of the femoral head. In the current series, grafting was done with autologous bone marrow obtained from the iliac crest of patients operated on for early stages of osteonecrosis of the hip before collapse with the hypothesis that before stage of subchondral collapse, increasing the number of progenitor cells in the proximal femur will stimulate bone remodeling and creeping substitution and thereby improve functional outcome. Between 1990 and 2000, 342 patients (534 hips) with avascular osteonecrosis at early stages (Stages I and II) were treated with core decompression and autologous bone marrow grafting obtained from the iliac crest of patients operated on for osteonecrosis of the hip. The percentage of hips affected by osteonecrosis in this series of 534 hips was 19% in patients taking corticosteroids, 28% in patients with excessive alcohol intake, and 31% in patients with sickle cell disease. The mean age of the patients at the time of decompression and autologous bone marrow grafting was 39 years (range: 16-61 years). The aspirated marrow was reduced in volume by concentration and injected into the femoral head after core decompression with a small trocar. To measure the number of progenitor cells transplanted, the fibroblast colony forming unit was used as an indicator of the stroma cell activity. Patients were followed up from 8 to 18 years. The outcome was determined by the changes in the Harris hip score, progression in radiographic stages, change in volume determined by digitizing area of the necrosis on the different cuts obtained on MRI, and by the need for hip replacement. Total hip replacement was necessary in 94 hips (evolution to collapse) among the 534 hips operated before collapse (Stages I and II). Sixty-nine hips with stage I osteonecrosis of the femoral head at the time of surgery demonstrated total resolution of osteonecrosis based on preoperative and postoperative MRI studies; these hips did not show any changes on plain radiographs. Before treatment, these 69 osteonecrosis had only a marginal band like pattern as abnormal signal and a volume less than 20 cubic centimeters. The intralesional area had kept a normal signal as regards the signal of the femoral head outside the osteonecrosis area. For the 371 other hips without collapse at the most recent follow up (average 12 years), the mean preoperative volume of the osteonecrosis was 26 cm(3) (minimum 12, maximum 30 cm(3)). The mean volume of the abnormal signal measured on MRI at the most recent follow up (mean 12 years) was 12 cm(3). The abnormal signal persisting as a sequelae was seen on T1 images as an intralesional area of low intensity signal with a disappearance of the marginal band like pattern. According to our experience, best indication for the procedure is symptomatic hips with osteonecrosis without collapse. In some patients who had Steinberg stage III osteonecrosis (subchondral lucency, no collapse) successful outcomes (no further surgery) has been obtained between 5 to 10 years. Therefore in selected patients, even more advanced disease can be considered for core decompression. Patients who had the greater number of progenitor cells transplanted in their hips had better outcomes.

  8. Mercury - the hollow planet

    NASA Astrophysics Data System (ADS)

    Rothery, D. A.

    2012-04-01

    Mercury is turning out to be a planet characterized by various kinds of endogenous hole (discounting impact craters), which are compared here. These include volcanic vents and collapse features on horizontal scales of tens of km, and smaller scale depressions ('hollows') associated with bright crater-floor deposits (BCFD). The BCFD hollows are tens of metres deep and kilometres or less across and are characteristically flat-floored, with steep, scalloped walls. Their form suggests that they most likely result from removal of surface material by some kind of mass-wasting process, probably associated with volume-loss caused by removal (via sublimation?) of a volatile component. These do not appear to be primarily a result of undermining. Determining the composition of the high-albedo bluish surface coating in BCFDs will be a key goal for BepiColombo instruments such as MIXS (Mercury Imaging Xray Spectrometer). In contrast, collapse features are non-circular rimless pits, typically on crater floors (pit-floor craters), whose morphology suggests collapse into void spaces left by magma withdrawal. This could be by drainage of either erupted lava (or impact melt) or of shallowly-intruded magma. Unlike the much smaller-scale BCFD hollows, these 'collapse pit' features tend to lack extensive flat floors and instead tend to be close to triangular in cross-section with inward slopes near to the critical angle of repose. The different scale and morphology of BCFD hollows and collapse pits argues for quite different modes of origin. However, BCFD hollows adjacent to and within the collapse pit inside Scarlatti crater suggest that the volatile material whose loss was responsible for the growth of the hollows may have been emplaced in association with the magma whose drainage caused the main collapse. Another kind of volcanic collapse can be seen within a 25 km-wide volcanic vent outside the southern rim of the Caloris basin (22.5° N, 146.1° E), on a 28 m/pixel MDIS NAC image from orbit. Although the vent itself may have been excavated partly by explosive volcanism, the most recent event is collapse of a 7 km wide zone in the south centre of the vent. The sharpness of features within this (unmuted either by regolith-forming processes or by fall of volcanic ejecta) suggests that this collapse considerably post-dates the rest of the vent interior. It could reflect a late-stage minor 'throat clearing' explosive eruption, but (in the absence of evidence of associated volcanic ejecta) more likely reflects collapse into a void within the volcanic conduit, itself a result of magma-drainage. A class of 'hole' that is so far conspicuous by its absence on Mercury is sinuous rilles (as opposed to much straighter tectonic grabens) or aligned skylights representing collapsed or partly-collapsed drained lava tubes. Tube-fed flows are to be expected during emplacement of volcanic plains, and it will be surprising if no examples are revealed on MESSENGER and BepiColombo high-resolution images.

  9. Maternal Postpartum Role Collapse as a Theory of Postpartum Depression

    ERIC Educational Resources Information Center

    Amankwaa, Linda Clark

    2005-01-01

    The purpose of this paper is to discuss the development of a theory of maternal postpartum role collapse. The influences of traditional role theory and symbolic interactionism are presented. The development of the maternal postpartum role collapse theory emerged from the study of postpartum depression among African-American women (Amankwaa, 2000).…

  10. Collapse events of two-color optical beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukhinin, Alexey; Aceves, Alejandro B.; Diels, Jean-Claude

    2017-03-08

    Here in this work, we study optical self-focusing that leads to collapse events for the time-independent model of copropagating beams with different wavelengths. We show that collapse events depend on the combined critical power of two beams for fundamental, vortex, and mixed configurations as well as on the ratio of their individual powers.

  11. How Fast Does a Building Fall?

    ERIC Educational Resources Information Center

    Denny, Mark

    2010-01-01

    In this paper, the time required for a tower block to collapse is calculated. The tower collapses progressively, with one floor falling onto the floor below, causing it to fall. The rate of collapse is found to be not much slower than freefall. The calculation is an engaging and relevant application of Newton's laws, suitable for undergraduate…

  12. A Mathematical Model Development for the Lateral Collapse of Octagonal Tubes

    NASA Astrophysics Data System (ADS)

    Ghazali Kamardan, M.; Sufahani, Suliadi; Othman, M. Z. M.; Che-Him, Norziha; Khalid, Kamil; Roslan, Rozaini; Ali, Maselan; Zaidi, A. M. A.

    2018-04-01

    Many researches has been done on the lateral collapse of tube. However, the previous researches only focus on cylindrical and square tubes. Then a research has been done discovering the collapse behaviour of hexagonal tube and the mathematic model of the deformation behaviour had been developed [8]. The purpose of this research is to study the lateral collapse behaviour of symmetric octagonal tubes and hence to develop a mathematical model of the collapse behaviour of these tubes. For that, a predictive mathematical model was developed and a finite element analysis procedure was conducted for the lateral collapse behaviour of symmetric octagonal tubes. Lastly, the mathematical model was verified by using the finite element analysis simulation results. It was discovered that these tubes performed different deformation behaviour than the cylindrical tube. Symmetric octagonal tubes perform 2 phases of elastic - plastic deformation behaviour patterns. The mathematical model had managed to show the fundamental of the deformation behaviour of octagonal tubes. However, further studies need to be conducted in order to further improve on the proposed mathematical model.

  13. Dynamics and noise emission of laser induced cavitation bubbles in a vortical flow field

    NASA Astrophysics Data System (ADS)

    Oweis, Ghanem F.; Choi, Jaehyug; Ceccio, Steven L.

    2004-03-01

    The sound produced by the collapse of discrete cavitation bubbles was examined. Laser-generated cavitation bubbles were produced in both a quiescent and a vortical flow. The sound produced by the collapse of the cavitation bubbles was recorded, and its spectral content was determined. It was found that the risetime of the sound pulse produced by the collapse of single, spherical cavitation bubbles in quiescent fluid exceeded that of the slew rate of the hydrophone, which is consistent with previously published results. It was found that, as collapsing bubbles were deformed by the vortical flow, the acoustic impulse of the bubbles was reduced. Collapsing nonspherical bubbles often created a sound pulse with a risetime that exceeded that of the hydrophone slew rate, although the acoustic impulse created by the bubbles was influenced largely by the degree to which the bubbles became nonspherical before collapse. The noise produced by the slow growth of cavitation bubbles in the vortex core was not detectable. These results have implications for the interpretation of hydrodynamic cavitation noise produced by vortex cavitation.

  14. Surgical management of laryngeal collapse associated with brachycephalic airway obstruction syndrome in dogs.

    PubMed

    White, R N

    2012-01-01

    To describe the use of cricoarytenoid lateralisation combined with thyroarytenoid caudo- lateralisation (arytenoid laryngoplasty) for the management of stage II and III laryngeal collapse in dogs. A retrospective study of a consecutive series of 12 dogs suffering from life-threatening stage II or III laryngeal collapse associated with brachycephalic airway obstruction syndrome. Pre-operatively, either stage II collapse (2/12) or stage III collapse (10/12) was confirmed on visual examination. In all cases, a left-sided arytenoid laryngoplasty was performed. Two dogs were euthanased postoperatively as a result of persistent life-threatening respiratory compromise. The procedure resulted in subjective enlargement of the rima glottidis and an associated improvement in respiratory function in the remaining 10 dogs. Follow-up, long-term outcome (median, 3·5 years) in these dogs indicated that all owners considered that the surgery had resulted in marked improvements in their dog's respiratory function, tolerance to exercise, and quality of life. Combined cricoarytenoid and thyroarytenoid caudo-lateralisation may be a useful procedure for treatment of stage II and III laryngeal collapse in the dog. © 2011 British Small Animal Veterinary Association.

  15. A Case of Concomitant Obstructive Sleep Apnea and Non-Alcoholic Steatohepatitis Treated With CPAP Therapy

    PubMed Central

    Bajantri, Bharat; Lvovsky, Dmitry

    2018-01-01

    Obstructive sleep apnea syndrome is a disorder of sleep breathing that is a result of recurrent and intermittent hypoxia during sleep induced by the repeated partial or complete collapse of the upper airway, eventually causing chronic intermittent hypoxia. Non-alcoholic fatty liver disease is divided into non-alcoholic fatty liver and non-alcoholic steatohepatitis. Animal and human studies showed that obesity is associated with chronic liver hypoxia, even in the presence of systemic normoxia causing inflammation and release of cytokines. A “two-hit” model has been proposed. The first hit is characterized by insulin resistance and excess hepatic lipid accumulation secondary to abnormal fatty acid metabolism. Oxidative stress and inflammation are thought to comprise the second hit. Gold standard for the diagnosis of non-alcoholic steatohepatitis is a liver biopsy. Many clinical scores and non-invasive tools are used for the diagnosis of non-alcoholic steatohepatitis. Conservative management with lifestyle modifications including diet, exercise and weight loss remains the therapy of choice today. We present a case report of a 39-year-old man who was diagnosed with concomitant non-alcoholic steatohepatitis and severe obstructive sleep apnea. He was started treatment with continuous positive airway pressure and demonstrated excellent adherence to therapy for 6 years, with concomitant obstructive sleep apnea and non-alcoholic steatohepatitis which reversed with prolonged optimal continuous positive airway pressure therapy. Physical examination remained unremarkable except for morbid obesity. His abdominal girth, as well as body mass index, remained unchanged. After 6 years of optimal continuous positive airway pressure therapy, liver enzymes and relevant lipid panel normalized, suggesting reversal of non-alcoholic steatohepatitis. PMID:29915639

  16. Calderas and caldera structures: a review

    NASA Astrophysics Data System (ADS)

    Cole, J. W.; Milner, D. M.; Spinks, K. D.

    2005-02-01

    Calderas are important features in all volcanic environments and are commonly the sites of geothermal activity and mineralisation. Yet, it is only in the last 25 years that a thorough three-dimensional study of calderas has been carried out, utilising studies of eroded calderas, geophysical analysis of their structures and analogue modelling of caldera formation. As more data has become available on calderas, their individuality has become apparent. A distinction between 'caldera', 'caldera complex', 'cauldron', and 'ring structure' is necessary, and new definitions are given in this paper. Descriptions of calderas, based on dominant composition of eruptives (basaltic, peralkaline, andesitic-dacitic, rhyolitic) can be used, and characteristics of each broad group are given. Styles of eruption may be effusive or explosive, with the former dominant in basaltic calderas, and the latter dominant in andesitic-dacitic, rhyolitic and peralkaline calderas. Four 'end-member' collapse styles occur—plate or piston, piecemeal, trapdoor, and downsag—but many calderas have multiple styles. Features of so-called 'funnel' and 'chaotic' calderas proposed in the literature can be explained by other collapse styles and the terms are considered unnecessary. Ground deformation comprises subsidence or collapse (essential characteristics of a caldera) and uplifting/doming and fracturing due to tumescence and/or resurgence (frequent, but not essential). Collapse may occur on pre-existing structures, such as regional faults or on faults created during the caldera formation, and the shape of the collapse area will be influenced by depth, size and shape of the magma chamber. The final morphology of a caldera will depend on how the caldera floor breaks up; whether collapse takes place in one event or multiple events, whether vertical movement is spasmodic or continuous throughout the eruptive sequence, and whether blocks subside uniformly or chaotically at one or more collapse centres. A meaningful description of any caldera should therefore include; number of collapse events, presence or absence of resurgence, caldera-floor coherency, caldera-floor collapse geometry, and dominant composition of eruptives.

  17. Marsh collapse thresholds for coastal Louisiana estimated using elevation and vegetation index data

    USGS Publications Warehouse

    Couvillion, Brady R.; Beck, Holly

    2013-01-01

    Forecasting marsh collapse in coastal Louisiana as a result of changes in sea-level rise, subsidence, and accretion deficits necessitates an understanding of thresholds beyond which inundation stress impedes marsh survival. The variability in thresholds at which different marsh types cease to occur (i.e., marsh collapse) is not well understood. We utilized remotely sensed imagery, field data, and elevation data to help gain insight into the relationships between vegetation health and inundation. A Normalized Difference Vegetation Index (NDVI) dataset was calculated using remotely sensed data at peak biomass (August) and used as a proxy for vegetation health and productivity. Statistics were calculated for NDVI values by marsh type for intermediate, brackish, and saline marsh in coastal Louisiana. Marsh-type specific NDVI values of 1.5 and 2 standard deviations below the mean were used as upper and lower limits to identify conditions indicative of collapse. As marshes seldom occur beyond these values, they are believed to represent a range within which marsh collapse is likely to occur. Inundation depth was selected as the primary candidate for evaluation of marsh collapse thresholds. Elevation relative to mean water level (MWL) was calculated by subtracting MWL from an elevation dataset compiled from multiple data types including light detection and ranging (lidar) and bathymetry. A polynomial cubic regression was used to examine a random subset of pixels to determine the relationship between elevation (relative to MWL) and NDVI. The marsh collapse uncertainty range values were found by locating the intercept of the regression line with the 1.5 and 2 standard deviations below the mean NDVI value for each marsh type. Results indicate marsh collapse uncertainty ranges of 30.7–35.8 cm below MWL for intermediate marsh, 20–25.6 cm below MWL for brackish marsh, and 16.9–23.5 cm below MWL for saline marsh. These values are thought to represent the ranges of inundation depths within which marsh collapse is probable.

  18. The Influence of AN Interacting Vacuum Energy on the Gravitational Collapse of a Star Fluid

    NASA Astrophysics Data System (ADS)

    Campos, M.

    2014-02-01

    To explain the accelerated expansion of the universe, models with interacting dark components has been considered in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy. However, at the other side of the same coin, the influence of the vacuum energy in the gravitational collapse is a topic of scientific interest. Based in a simple assumption on the collapsed rate of the matter fluid density that is altered by the inclusion of a vacuum energy component that interacts with the matter fluid, we study the final fate of the collapse process.

  19. Coexistence of collapse and stable spatiotemporal solitons in multimode fibers

    NASA Astrophysics Data System (ADS)

    Shtyrina, Olga V.; Fedoruk, Mikhail P.; Kivshar, Yuri S.; Turitsyn, Sergei K.

    2018-01-01

    We analyze spatiotemporal solitons in multimode optical fibers and demonstrate the existence of stable solitons, in a sharp contrast to earlier predictions of collapse of multidimensional solitons in three-dimensional media. We discuss the coexistence of blow-up solutions and collapse stabilization by a low-dimensional external potential in graded-index media, and also predict the existence of stable higher-order nonlinear waves such as dipole-mode spatiotemporal solitons. To support the main conclusions of our numerical studies we employ a variational approach and derive analytically the stability criterion for input powers for the collapse stabilization.

  20. NASA Satellite Eyes Deadly Tibetan Landslide

    NASA Image and Video Library

    2016-10-05

    On July 17, 2016, one of the largest ice avalanches ever recorded tumbled down a Tibetan mountain, killing 9 people. The cause of the collapse is still unclear. On September 22, a second glacier, 1.9 miles (3 kilometers) farther south, collapsed. Geologists investigating the July collapse warned about the possibility of a second collapse, which did occur. The image covers an area of 7.8 by 10.2 miles (12.6 by 16.4 kilometers), was acquired October 4, 2017, and is located at 334 degrees north, 82.3 degrees east. http://photojournal.jpl.nasa.gov/catalog/PIA21069

  1. Successful new anti-sloughing drilling fluid application, Yanchang gas field, China

    NASA Astrophysics Data System (ADS)

    He, Peng; Liu, Hanmei; Du, Sen; He, Chenghai

    2017-10-01

    Borehole collapse had always been encountered when drilling the Shiqianfeng and Shihezi formations in Yan Chang gas field. By analyzing the reasons for the collapse can be obtained, "double layer of stone" brittle strong, pore development, water sensitivity and high mineral content filling skeleton particles, water lock effect and stress sensitivity is a potential factor in inducing strong wall collapse. According to the characteristics of the geological structure developed anti-sloughing drilling fluid system "double layer of stone," "complex fluid loss - dual inhibition - materialized block" multiple cooperative mechanism to achieve the purpose of anti-collapse.

  2. Scalar field collapse in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Banerjee, Narayan; Paul, Tanmoy

    2018-02-01

    We consider a "scalar-Einstein-Gauss-Bonnet" theory in four dimension, where the scalar field couples non-minimally with the Gauss-Bonnet (GB) term. This coupling with the scalar field ensures the non-topological character of the GB term. In this scenario, we examine the possibility for collapsing of the scalar field. Our result reveals that such a collapse is possible in the presence of Gauss-Bonnet gravity for suitable choices of parametric regions. The singularity formed as a result of the collapse is found to be a curvature singularity which is hidden from the exterior by an apparent horizon.

  3. REVIEWS OF TOPICAL PROBLEMS: Neutrinos from stellar core collapses: present status of experiments

    NASA Astrophysics Data System (ADS)

    Ryazhskaya, Ol'ga G.

    2006-10-01

    The responses of the existing underground detectors to neutrino bursts from collapsing stars evolving in accordance with various models are considered. The interpretation of the results of detecting neutrino radiation from the SN1987A supernova explosion is discussed. A combination of large scintillation counters interlayered with iron slabs (as a target for the electron neutrino interaction) is suggested as a detector for core collapse neutrinos. Bounds for the galactic rate of core collapses based on 28 years of observations by neutrino telescopes of RAS INR, LSD, and LVD detectors are presented.

  4. Continued rapid glacier recession following the 1995 collapse of the Prince Gustav Ice Shelf on the Antarctic Peninsula (Invited)

    NASA Astrophysics Data System (ADS)

    Glasser, N. F.; Scambos, T. A.

    2009-12-01

    We use optical satellite imagery (ASTER and Landsat) to document changes in the Prince Gustav Ice Shelf (PGIS) and its tributary glaciers before and after its 1995 collapse. Interpretation of a pre-collapse Landsat 4-5 TM image acquired in February 1988 shows that the ice shelf was fed primarily by Sjogren Glacier from the Antarctic Peninsula and by Rhoss Glacier from James Ross Island (JRI). In 1988, the PGIS contained numerous structural discontinuities (rifts and crevasses), which collectively indicate that ice-shelf break-up had commenced at least seven years before collapse. Meltwater ponds and streams were also common across its surface. After the ice shelf collapsed, Rhoss Glacier became a tidewater glacier and has since experienced rapid and continued recession. Between January 2001 and December 2006 (six to eleven years after the collapse of the PGIS), the front of Rhoss Glacier receded a total of 13.6 km. We conclude that where tributary glaciers become tidewater glaciers they react to ice-shelf removal by rapid and continued recession and that the response time of glaciers on the Antarctic Peninsula to ice-shelf removal is measured on annual to decadal timescales. This rapid recession, coupled with previously documented tributary glacier thinning and acceleration, indicates that Antarctic Peninsula glaciers are extremely sensitive to ice-shelf collapse.

  5. Temperature- and pH-Sensitive Nanohydrogels of Poly(N-Isopropylacrylamide) for Food Packaging Applications: Modelling the Swelling-Collapse Behaviour

    PubMed Central

    Fuciños, Clara; Fuciños, Pablo; Míguez, Martín; Katime, Issa; Pastrana, Lorenzo M.; Rúa, María L.

    2014-01-01

    Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements). PMID:24520326

  6. Temperature- and pH-sensitive nanohydrogels of poly(N-Isopropylacrylamide) for food packaging applications: modelling the swelling-collapse behaviour.

    PubMed

    Fuciños, Clara; Fuciños, Pablo; Míguez, Martín; Katime, Issa; Pastrana, Lorenzo M; Rúa, María L

    2014-01-01

    Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).

  7. Highly-Damped Spectral Acceleration as a Ground Motion Intensity Measure for Estimating Collapse Vulnerability of Buildings

    NASA Astrophysics Data System (ADS)

    Buyco, K.; Heaton, T. H.

    2016-12-01

    Current U.S. seismic code and performance-based design recommendations quantify ground motion intensity using 5%-damped spectral acceleration when estimating the collapse vulnerability of buildings. This intensity measure works well for predicting inter-story drift due to moderate shaking, but other measures have been shown to be better for estimating collapse risk.We propose using highly-damped (>10%) spectral acceleration to assess collapse vulnerability. As damping is increased, the spectral acceleration at a given period T begins to behave like a weighted average of the corresponding lowly-damped (i.e. 5%) spectrum at a range of periods. Weights for periods longer than T increase as damping increases. Using high damping is physically intuitive for two reasons. Firstly, ductile buildings dissipate a large amount of hysteretic energy before collapse and thus behave more like highly-damped systems. Secondly, heavily damaged buildings experience period-lengthening, giving further credence to the weighted-averaging property of highly-damped spectral acceleration.To determine the optimal damping value(s) for this ground motion intensity measure, we conduct incremental dynamic analysis for a suite of ground motions on several different mid-rise steel buildings and select the damping value yielding the lowest dispersion of intensity at the collapse threshold. Spectral acceleration calculated with damping as high as 70% has been shown to be a better indicator of collapse than that with 5% damping.

  8. Transition to collapsed tetragonal phase in CaFe2As2 single crystals as seen by 57Fe Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan; Ran, Sheng; Valentí, Roser; Canfield, Paul C.

    2016-01-01

    Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe2As2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ˜25 % on cooling from room temperature to ˜100 K in the tetragonal phase and is only weakly temperature dependent at low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe2As2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.

  9. Towards asteroseismology of core-collapse supernovae with gravitational-wave observations - I. Cowling approximation

    NASA Astrophysics Data System (ADS)

    Torres-Forné, Alejandro; Cerdá-Durán, Pablo; Passamonti, Andrea; Font, José A.

    2018-03-01

    Gravitational waves from core-collapse supernovae are produced by the excitation of different oscillation modes in the protoneutron star (PNS) and its surroundings, including the shock. In this work we study the relationship between the post-bounce oscillation spectrum of the PNS-shock system and the characteristic frequencies observed in gravitational-wave signals from core-collapse simulations. This is a fundamental first step in order to develop a procedure to infer astrophysical parameters of the PNS formed in core-collapse supernovae. Our method combines information from the oscillation spectrum of the PNS, obtained through linear perturbation analysis in general relativity of a background physical system, with information from the gravitational-wave spectrum of the corresponding non-linear, core-collapse simulation. Using results from the simulation of the collapse of a 35 M⊙ pre-supernova progenitor we show that both types of spectra are indeed related and we are able to identify the modes of oscillation of the PNS, namely g-modes, p-modes, hybrid modes, and standing accretion shock instability (SASI) modes, obtaining a remarkably close correspondence with the time-frequency distribution of the gravitational-wave modes. The analysis presented in this paper provides a proof of concept that asteroseismology is indeed possible in the core-collapse scenario, and it may serve as a basis for future work on PNS parameter inference based on gravitational-wave observations.

  10. Compact X-ray Binary Re-creation in Core Collapse: NGC 6397

    NASA Astrophysics Data System (ADS)

    Grindlay, J. E.; Bogdanov, S.; van den Berg, M.; Heinke, C.

    2005-12-01

    We report new Chandra observations of the core collapsed globular cluster NGC 6397. In comparison with our original Chandra observations (Grindlay et al 2001, ApJ, 563, L53), we now detect some 30 sources (vs. 20) in the cluster. A new CV is confirmed, though new HST/ACS optical observations (see Cohn et al this meeting) show that one of the original CV candidates is a background AGN). The 9 CVs (optically identified) yet only one MSP and one qLMXB suggest either a factor of 7 reduction in NSs/WDs vs. what we find in 47Tuc (see Grindlay 2005, Proc. Cefalu Conf. on Interacting Binaries) or that CVs are produced in the core collapse. The possible second MSP with main sequence companion, source U18 (see Grindlay et al 2001) is similar in its X-ray and optical properties to MSP-W in 47Tuc, which must have swapped its binary companion. Together with the one confirmed (radio) MSP in NGC 6397, with an evolved main sequence secondary, the process of enhanced partner swapping in the high stellar density of core collapse is implicated. At the same time, main sequence - main sequence binaries (active binaries) are depleted in the cluster core, presumably by "binary burning" in core collapse. These binary re-creation and destruction mechanisms in core collapse have profound implications for binary evolution and mergers in globulars that have undergone core collapse.

  11. Study of current collapse by quiescent-bias-stresses in rf-plasma assisted MBE grown AlGaN/GaN high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Arulkumaran, S.; Ng, G. I.; Lee, C. H.; Liu, Z. H.; Radhakrishnan, K.; Dharmarasu, N.; Sun, Z.

    2010-11-01

    Studies on the influence of quiescent-gate ( Vgs0) and quiescent-drain ( Vds0) bias stresses in rf-plasma MBE grown AlGaN/GaN high-electron-mobility transistors (HEMTs) were performed. The increase of drain current ( ID) collapse by quiescent-bias-stress in AlGaN/GaN HEMTs were observed using pulsed (pulse width = 200 ns; pulse period = 1 ms) IDS- VDS characteristics. The Si 3N 4 passivation suppressed about 80% ID collapse in quiescent-bias-point stressed HEMTs. The remaining 20% ID collapse were not suppressed which may be coming from buffer-related traps. However, more than 10% of ID collapse suppression was observed on un-stressed or fresh-HEMTs. Similarly, improved cut-off frequency ( fT), maximum oscillation frequency ( fmax) and device output power ( Pout) values were also observed on the un-stressed HEMTs. The Si 3N 4 passivation completely suppressed the ID collapse in un-stressed or fresh-HEMTs which leads to 70% improvement in fT and 60% improvement in the device Pout. The Si 3N 4 passivation did not completely suppress ID collapse in the quiescent-bias stressed-HEMTs. This may be due to the generation of additional surface-related traps in the HEMTs by quiescent-bias-stresses.

  12. QCD axion star collapse with the chiral potential

    DOE PAGES

    Eby, Joshua; Leembruggen, Madelyn; Suranyi, Peter; ...

    2017-06-05

    In a previous study, we analyzed collapsing axion stars using the low-energy instanton potential, showing that the total energy is always bounded and that collapsing axion stars do not form black holes. In this paper, we provide a proof that the conclusions are unchanged when using instead the more general chiral potential for QCD axions.

  13. The Tacoma Narrows Bridge Collapse on Film and Video

    ERIC Educational Resources Information Center

    Olson, Don; Hook, Joseph; Doescher, Russell; Wolf, Steven

    2015-01-01

    This month marks the 75th anniversary of the Tacoma Narrows Bridge collapse. During a gale on Nov. 7, 1940, the bridge exhibited remarkable oscillations before collapsing spectacularly (Figs. 1-5). Physicists over the years have spent a great deal of time and energy studying this event. By using open-source analysis tools and digitized footage of…

  14. The 3D Death of a Massive Star

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    What happens at the very end of a massive star's life, just before its core's collapse? A group led by Sean Couch (California Institute of Technology and Michigan State University) claim to have carried out the first three-dimensional simulations of these final few minutes — revealing new clues about the factors that can lead a massive star to explode in a catastrophic supernova at the end of its life. A Giant Collapses In dying massive stars, in-falling matter bounces off the of collapsed core, creating a shock wave. If the shock wave loses too much energy as it expands into the star, it can stall out — but further energy input can revive it and result in a successful explosion of the star as a core-collapse supernova. In simulations of this process, however, theorists have trouble getting the stars to consistently explode: the shocks often stall out and fail to revive. Couch and his group suggest that one reason might be that these simulations usually start at core collapse assuming spherical symmetry of the progenitor star. Adding Turbulence Couch and his collaborators suspect that the key is in the final minutes just before the star collapses. Models that assume a spherically-symmetric star can't include the effects of convection as the final shell of silicon is burned around the core — and those effects might have a significant impact! To test this hypothesis, the group ran fully 3D simulations of the final three minutes of the life of a 15 solar-mass star, ending with core collapse, bounce, and shock-revival. The outcome was striking: the 3D modeling introduced powerful turbulent convection (with speeds of several hundred km/s!) in the last few minutes of silicon-shell burning. As a result, the initial structure and motions in the star just before core collapse were very different from those in core-collapse simulations that use spherically-symmetric initial conditions. The turbulence was then further amplified during collapse and formation of the shock, generating pressure that aided the shock expansion — which should ultimately help the star explode! The group cautions that their simulations are still very idealized, but these results clearly indicate that the 3D structure of massive stellar cores has an important impact on the core-collapse supernova mechanism. Citation Sean M. Couch et al. 2015 ApJ 808 L21 doi:10.1088/2041-8205/808/1/L21

  15. Part C: Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Wenrich, Karen J.

    1991-01-01

    Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.

  16. Part B: Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Wenrich, Karen J.

    1991-01-01

    Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.

  17. Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Wenrich, Karen J.

    1991-01-01

    Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.

  18. Part D: Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Wenrich, Karen J.

    1991-01-01

    Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.

  19. Stratovolcano stability assessment methods and results from Citlaltepetl, Mexico

    USGS Publications Warehouse

    Zimbelman, D.R.; Watters, R.J.; Firth, I.R.; Breit, G.N.; Carrasco-Nunez, Gerardo

    2004-01-01

    Citlaltépetl volcano is the easternmost stratovolcano in the Trans-Mexican Volcanic Belt. Situated within 110 km of Veracruz, it has experienced two major collapse events and, subsequent to its last collapse, rebuilt a massive, symmetrical summit cone. To enhance hazard mitigation efforts we assess the stability of Citlaltépetl's summit cone, the area thought most likely to fail during a potential massive collapse event. Through geologic mapping, alteration mineralogy, geotechnical studies, and stability modeling we provide important constraints on the likelihood, location, and size of a potential collapse event. The volcano's summit cone is young, highly fractured, and hydrothermally altered. Fractures are most abundant within 5–20-m wide zones defined by multiple parallel to subparallel fractures. Alteration is most pervasive within the fracture systems and includes acid sulfate, advanced argillic, argillic, and silicification ranks. Fractured and altered rocks both have significantly reduced rock strengths, representing likely bounding surfaces for future collapse events. The fracture systems and altered rock masses occur non-uniformly, as an orthogonal set with N–S and E–W trends. Because these surfaces occur non-uniformly, hazards associated with collapse are unevenly distributed about the volcano. Depending on uncertainties in bounding surfaces, but constrained by detailed field studies, potential failure volumes are estimated to range between 0.04–0.5 km3. Stability modeling was used to assess potential edifice failure events. Modeled failure of the outer portion of the cone initially occurs as an "intact block" bounded by steeply dipping joints and outwardly dipping flow contacts. As collapse progresses, more of the inner cone fails and the outer "intact" block transforms into a collection of smaller blocks. Eventually, a steep face develops in the uppermost and central portion of the cone. This modeled failure morphology mimics collapse amphitheaters

  20. The 2011 collapse of Puu Oo pit crater, Hawaii: insights from digital image correlation and Discrete Element Method models

    NASA Astrophysics Data System (ADS)

    Holohan, E. P.; Walter, T. R.; Schöpfer, M. P. J.; Walsh, J. J.; Orr, T.; Poland, M.

    2012-04-01

    In March 2011, a spectacular fissure eruption on Kilauea was associated with a major collapse event in the highly-active Puu Oo crater. Time-lapse cameras maintained by the Hawaii Volcano Observatory captured views of the crater in the moments before, during, and after the collapse. The 2011 event hence represents a unique opportunity to characterize the surface deformation related to the onset of a pit crater collapse and to understand what factors influence it. To do so, we used two approaches. First, we analyzed the available series of camera images by means of digital image correlation techniques. This enabled us to gain a semi-quantitative (pixel-unit) description of the surface displacements and the structural development of the collapsing crater floor. Secondly, we ran a series of 'true-scale' numerical pit-crater collapse simulations based on the two-dimensional Distinct Element Method (2D-DEM). This enabled us to gain insights into what geometric and mechanical factors could have controlled the observed surface displacement pattern and structural development. Our analysis of the time-lapse images reveals that the crater floor initially gently sagged, and then rapidly collapsed in association with the appearance of a large ring-like fault scarp. The observed structural development and surface displacement patterns of the March 2011 Puu Oo collapse are best reproduced in DEM models with a relatively shallow magma reservoir that is vertically elongated, and with a crater floor rock mass that is reasonably strong. In combining digital image correlation with DEM modeling, our study highlights the future potential of these relatively new techniques for understanding physical processes at active volcanoes.

  1. Newtonian semiclassical gravity in three ontological quantum theories that solve the measurement problem: Formalisms and empirical predictions

    NASA Astrophysics Data System (ADS)

    Derakhshani, Maaneli

    In this thesis, we consider the implications of solving the quantum measurement problem for the Newtonian description of semiclassical gravity. First we review the formalism of the Newtonian description of semiclassical gravity based on standard quantum mechanics---the Schroedinger-Newton theory---and two well-established predictions that come out of it, namely, gravitational 'cat states' and gravitationally-induced wavepacket collapse. Then we review three quantum theories with 'primitive ontologies' that are well-known known to solve the measurement problem---Schroedinger's many worlds theory, the GRW collapse theory with matter density ontology, and Nelson's stochastic mechanics. We extend the formalisms of these three quantum theories to Newtonian models of semiclassical gravity and evaluate their implications for gravitational cat states and gravitational wavepacket collapse. We find that (1) Newtonian semiclassical gravity based on Schroedinger's many worlds theory is mathematically equivalent to the Schroedinger-Newton theory and makes the same predictions; (2) Newtonian semiclassical gravity based on the GRW theory differs from Schroedinger-Newton only in the use of a stochastic collapse law, but this law allows it to suppress gravitational cat states so as not to be in contradiction with experiment, while allowing for gravitational wavepacket collapse to happen as well; (3) Newtonian semiclassical gravity based on Nelson's stochastic mechanics differs significantly from Schroedinger-Newton, and does not predict gravitational cat states nor gravitational wavepacket collapse. Considering that gravitational cat states are experimentally ruled out, but gravitational wavepacket collapse is testable in the near future, this implies that only the latter two are viable theories of Newtonian semiclassical gravity and that they can be experimentally tested against each other in future molecular interferometry experiments that are anticipated to be capable of testing the gravitational wavepacket collapse prediction.

  2. Shock-induced nanobubble collapse and its applications

    NASA Astrophysics Data System (ADS)

    Vedadi, Mohammad Hossein

    The shock-induced collapse of nanobubbles in water is investigated using molecular dynamics simulations based on a reactive force field. Monitoring the collapse of a cavitation nanobubble, we observe a focused nanojet at the onset of bubble shrinkage and a water hammer shock wave upon bubble collapse. The nanojet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. The shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of approximately 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. Moreover, a substantial number of positive and negative ions appear when the nanojet hits the distal side of the nanobubble and the water hammer shock forms. Furthermore, two promising applications of shock-induced nanobubble collapse have been explored. Our simulations of poration in lipid bilayers due to shock-induced collapse of nanobubbles reveal penetration of nanojets into lipid bilayers. The nanojet impact generates shear flow of water on bilayer leaflets and pressure gradients across them, which transiently enhance the bilayer permeability by creating nanopores through which water molecules translocate across the bilayer. The effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. Finally, the shock-induced collapse of CO2-filled nanobubbles in water is investigated. The energetic nanojet and high-pressure water hammer shock formed during and after collapse of the nanobubble trigger mechano-chemical H2O-CO2 reactions, some of which lead to splitting of water molecules. The dominant pathways through which splitting of water molecules occur are identified.

  3. Analysis of collapse in flattening a micro-grooved heat pipe by lateral compression

    NASA Astrophysics Data System (ADS)

    Li, Yong; He, Ting; Zeng, Zhixin

    2012-11-01

    The collapse of thin-walled micro-grooved heat pipes is a common phenomenon in the tube flattening process, which seriously influences the heat transfer performance and appearance of heat pipe. At present, there is no other better method to solve this problem. A new method by heating the heat pipe is proposed to eliminate the collapse during the flattening process. The effectiveness of the proposed method is investigated through a theoretical model, a finite element(FE) analysis, and experimental method. Firstly, A theoretical model based on a deformation model of six plastic hinges and the Antoine equation of the working fluid is established to analyze the collapse of thin walls at different temperatures. Then, the FE simulation and experiments of flattening process at different temperatures are carried out and compared with theoretical model. Finally, the FE model is followed to study the loads of the plates at different temperatures and heights of flattened heat pipes. The results of the theoretical model conform to those of the FE simulation and experiments in the flattened zone. The collapse occurs at room temperature. As the temperature increases, the collapse decreases and finally disappears at approximately 130 °C for various heights of flattened heat pipes. The loads of the moving plate increase as the temperature increases. Thus, the reasonable temperature for eliminating the collapse and reducing the load is approximately 130 °C. The advantage of the proposed method is that the collapse is reduced or eliminated by means of the thermal deformation characteristic of heat pipe itself instead of by external support. As a result, the heat transfer efficiency of heat pipe is raised.

  4. Refined applications of the collapse of the wave function

    NASA Astrophysics Data System (ADS)

    Stodolsky, L.

    2015-05-01

    In a two-part system, the collapse of the wave function of one part can put the other part in a state which would be difficult or impossible to achieve otherwise, in particular, one sensitive to small effects in the "collapse" interaction. We present some applications to the very symmetric and experimentally accessible situations of the decays ϕ (1020 )→KoKo , ψ (3770 )→DoDo, or ϒ (4 s )→BoBo , involving the internal state of the two-state Ko, Do, or Bo mesons. The collapse of the wave function occasioned by a decay of one member of the pair (away side) fixes the state vector of that side's two-state system. Bose-Einstein statistics then determines the state of the recoiling meson (near side), whose evolution can then be followed further. In particular, the statistics requirement dictates that the "away side" and "near side" internal wave functions must be orthogonal at the time of the collapse. Thus a C P violation in the away side decay implies a complementary C P impurity on the near side, which can be detected in the further evolution. The C P violation so manifested is necessarily direct C P violation, since neither the mass matrix nor time evolution was involved in the collapse. A parametrization of the direct C P violation is given, and various manifestations are presented. Certain rates or combination of rates are identified which are nonzero only if there is direct C P violation. The very explicit and detailed use made of the collapse of the wave function makes the procedure interesting with respect to the fundamentals of quantum mechanics. We note an experimental consistency test for our treatment of the collapse of the wave function, which can be carried out by a certain measurement of partial decay rates.

  5. Dilatancy and compaction effects on the submerged granular column collapse

    NASA Astrophysics Data System (ADS)

    Wang, Chun; Wang, Yongqi; Peng, Chong; Meng, Xiannan

    2017-10-01

    The effects of dilatancy on the collapse dynamics of granular materials in air or in a liquid are studied experimentally and numerically. Experiments show that dilatancy has a critical effect on the collapse of granular columns in the presence of an ambient fluid. Two regimes of the collapse, one being quick and the other being slow, are observed from the experiments and the underlying reasons are analyzed. A two-fluid smoothed particle hydrodynamics model, based on the granular-fluid mixture theory and the critical state theory, is employed to investigate the complex interactions between the solid particles and the ambient water. It is found that dilatancy, resulting in large effective stress and large frictional coefficient between solid particles, helps form the slow regime. Small permeability, representing large inter-phase drag force, also retards the collapse significantly. The proposed numerical model is capable of reproducing these effects qualitatively.

  6. The role of fluid viscosity in an immersed granular collapse

    NASA Astrophysics Data System (ADS)

    Yang, Geng Chao; Kwok, Chung Yee; Sobral, Yuri Dumaresq

    2017-06-01

    Instabilities of immersed slopes and cliffs can lead to catastrophic events that involve a sudden release of huge soil mass. The scaled deposit height and runout distance are found to follow simple power laws when a granular column collapses on a horizontal plane. However, if the granular column is submerged in a fluid, the mobility of the granular collapse due to high inertia effects will be reduced by fluid-particle interactions. In this study, the effects of fluid viscosity on granular collapse is investigated qualitatively by adopting a numerical approach based on the coupled lattice Boltzmann method (LBM) and discrete element method (DEM). It is found that the granular collapse can be dramatically slowed down due to the presence of viscous fluids. For the considered granular configuration, when the fluid viscosity increases. the runout distance decreases and the final deposition shows a larger deposit angle.

  7. Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas.

    PubMed

    Kolvin, Itamar; Livne, Eli; Meerson, Baruch

    2010-08-01

    We show that, in dimension higher than one, heat diffusion and viscosity cannot arrest thermal collapse in a freely evolving dilute granular gas, even in the absence of gravity. Thermal collapse involves a finite-time blowup of the gas density. It was predicted earlier in ideal, Euler hydrodynamics of dilute granular gases in the absence of gravity, and in nonideal, Navier-Stokes granular hydrodynamics in the presence of gravity. We determine, analytically and numerically, the dynamic scaling laws that characterize the gas flow close to collapse. We also investigate bifurcations of a freely evolving dilute granular gas in circular and wedge-shaped containers. Our results imply that, in general, thermal collapse can only be arrested when the gas density becomes comparable with the close-packing density of grains. This provides a natural explanation to the formation of densely packed clusters of particles in a variety of initially dilute granular flows.

  8. Voltage collapse in complex power grids

    PubMed Central

    Simpson-Porco, John W.; Dörfler, Florian; Bullo, Francesco

    2016-01-01

    A large-scale power grid's ability to transfer energy from producers to consumers is constrained by both the network structure and the nonlinear physics of power flow. Violations of these constraints have been observed to result in voltage collapse blackouts, where nodal voltages slowly decline before precipitously falling. However, methods to test for voltage collapse are dominantly simulation-based, offering little theoretical insight into how grid structure influences stability margins. For a simplified power flow model, here we derive a closed-form condition under which a power network is safe from voltage collapse. The condition combines the complex structure of the network with the reactive power demands of loads to produce a node-by-node measure of grid stress, a prediction of the largest nodal voltage deviation, and an estimate of the distance to collapse. We extensively test our predictions on large-scale systems, highlighting how our condition can be leveraged to increase grid stability margins. PMID:26887284

  9. Geological constraints of a structural model of sector collapse at Stromboli volcano, Italy

    NASA Astrophysics Data System (ADS)

    Vezzoli, L.; Corazzato, C.

    2016-09-01

    This study is focused on the reconstruction of the structure and dynamics of the first lateral collapse that occurred at Stromboli during the Holocene, which represents the structure inherited by all the following collapses that formed the present Sciara del Fuoco depression. The first lateral collapse of Stromboli occurred at the end of the Vancori volcano activity, at about 13 ka ago. The Neostromboli lava cone grew within this collapse amphitheater. Based on a comprehensive geologic and structural analysis of both Vancori and Neostromboli products, we propose an innovative interpretation of the sliding surface. Once considered to be a homogeneous landslide along a deep-seated sliding surface, we demonstrate that the Upper Vancori failure was accommodated by a more complex deformation regime comprising an upper (proximal) domain of tilted megablocks (toreva) and a lower (distal) domain of fragmental landslide transport and deposition.

  10. The collapse of Tacoma Narrows Bridge: a piece to the puzzle

    NASA Astrophysics Data System (ADS)

    Walther, J. H.; Christensen, D. S.; Malthe, M. G.; Roenne, M.; Spietz, H. J.; Larsen, A.; Larsen, S. V.

    2017-11-01

    On Nov. 7th 1940 the newly constructed Tacoma Narrows Bridge collapsed due to excessive torsional oscillations caused by the formation and shedding of large coherent vortices. The subsequent wind tunnel tests conducted on both section- and full bridge models concluded that the bridge should have collapsed at a wind speed corresponding to approximately half of the wind speed at the day of the collapse. This discrepancy questions our understanding of the phenomena responsible for the failure of the bridge. The present study aims at clarifying this ``mystery'' by considering historical records made available by the US coast guards, and by performing wind tunnel tests and detailed numerical flow simulations. Our findings indicate that the discrepancy is caused by an until now unnoticed yawed wind direction relative to the bridge, which was present at the day of the collapse. Danish Council for Independent Research Grant No. 4184-00349B.

  11. Gravity induced wave function collapse

    NASA Astrophysics Data System (ADS)

    Gasbarri, G.; Toroš, M.; Donadi, S.; Bassi, A.

    2017-11-01

    Starting from an idea of S. L. Adler [in Quantum Nonlocality and Reality: 50 Years of Bell's Theorem, edited by M. Bell and S. Gao (Cambridge University Press, Cambridge, England 2016)], we develop a novel model of gravity induced spontaneous wave function collapse. The collapse is driven by complex stochastic fluctuations of the spacetime metric. After deriving the fundamental equations, we prove the collapse and amplification mechanism, the two most important features of a consistent collapse model. Under reasonable simplifying assumptions, we constrain the strength ξ of the complex metric fluctuations with available experimental data. We show that ξ ≥10-26 in order for the model to guarantee classicality of macro-objects, and at the same time ξ ≤10-20 in order not to contradict experimental evidence. As a comparison, in the recent discovery of gravitational waves in the frequency range 35 to 250 Hz, the (real) metric fluctuations reach a peak of ξ ˜10-21.

  12. Collapse and Nonlinear Instability of AdS Space with Angular Momentum

    NASA Astrophysics Data System (ADS)

    Choptuik, Matthew W.; Dias, Óscar J. C.; Santos, Jorge E.; Way, Benson

    2017-11-01

    We present a numerical study of rotational dynamics in AdS5 with equal angular momenta in the presence of a complex doublet scalar field. We determine that the endpoint of gravitational collapse is a Myers-Perry black hole for high energies and a hairy black hole for low energies. We investigate the time scale for collapse at low energies E , keeping the angular momenta J ∝E in anti-de Sitter (AdS) length units. We find that the inclusion of angular momenta delays the collapse time, but retains a t ˜1 /E scaling. We perturb and evolve rotating boson stars, and find that boson stars near AdS space appear stable, but those sufficiently far from AdS space are unstable. We find that the dynamics of the boson star instability depend on the perturbation, resulting either in collapse to a Myers-Perry black hole, or development towards a stable oscillating solution.

  13. Collapse of axion stars

    DOE PAGES

    Eby, Joshua; Leembruggen, Madelyn; Suranyi, Peter; ...

    2016-12-15

    Axion stars, gravitationally bound states of low-energy axion particles, have a maximum mass allowed by gravitational stability. Weakly bound states obtaining this maximum mass have sufficiently large radii such that they are dilute, and as a result, they are well described by a leading-order expansion of the axion potential. Here, heavier states are susceptible to gravitational collapse. Inclusion of higher-order interactions, present in the full potential, can give qualitatively different results in the analysis of collapsing heavy states, as compared to the leading-order expansion. In this work, we find that collapsing axion stars are stabilized by repulsive interactions present inmore » the full potential, providing evidence that such objects do not form black holes. In the last moments of collapse, the binding energy of the axion star grows rapidly, and we provide evidence that a large amount of its energy is lost through rapid emission of relativistic axions.« less

  14. Mechanics of airway and alveolar collapse in human breath-hold diving.

    PubMed

    Fitz-Clarke, John R

    2007-11-15

    A computational model of the human respiratory tract was developed to study airway and alveolar compression and re-expansion during deep breath-hold dives. The model incorporates the chest wall, supraglottic airway, trachea, branched airway tree, and elastic alveoli assigned time-dependent surfactant properties. Total lung collapse with degassing of all alveoli is predicted to occur around 235 m, much deeper than estimates for aquatic mammals. Hysteresis of the pressure-volume loop increases with maximum diving depth due to progressive alveolar collapse. Reopening of alveoli occurs stochastically as airway pressure overcomes adhesive and compressive forces on ascent. Surface area for gas exchange vanishes at collapse depth, implying that the risk of decompression sickness should reach a plateau beyond this depth. Pulmonary capillary transmural stresses cannot increase after local alveolar collapse. Consolidation of lung parenchyma might provide protection from capillary injury or leakage caused by vascular engorgement due to outward chest wall recoil at extreme depths.

  15. Scrum injury risk in English professional rugby union.

    PubMed

    Taylor, Aileen E; Kemp, Simon; Trewartha, Grant; Stokes, Keith A

    2014-07-01

    To assess and evaluate the injury risk associated with the scrum in English professional rugby union in the 2011-2012 season. Prospective, cohort. Players at English Premiership rugby union clubs. Frequency of team scrum-events per match; incidence (injuries per 1000 player-hours; propensity (injuries/1000 events); risk (days absence per 1000 player-hours and days absence per 1000 events). 31% of scrums in competitive matches resulted in collapse. Injury incidence associated with collapsed scrum-events (incidence: 8.6 injuries/1000 scrum-events) was significantly higher than those scrums that did not collapse (incidence: 4.1/1000 scrum-events). The injury risk associated with collapsed scrum supports the continued focus on reducing scrum collapse through changes in, and strict application of, the laws surrounding the scrum. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Probing spontaneous wave-function collapse with entangled levitating nanospheres

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Zhang, Tiancai; Li, Jie

    2017-01-01

    Wave-function collapse models are considered to be the modified theories of standard quantum mechanics at the macroscopic level. By introducing nonlinear stochastic terms in the Schrödinger equation, these models (different from standard quantum mechanics) predict that it is fundamentally impossible to prepare macroscopic systems in macroscopic superpositions. The validity of these models can only be examined by experiments, and hence efficient protocols for these kinds of experiments are greatly needed. Here we provide a protocol that is able to probe the postulated collapse effect by means of the entanglement of the center-of-mass motion of two nanospheres optically trapped in a Fabry-Pérot cavity. We show that the collapse noise results in a large reduction of the steady-state entanglement, and the entanglement, with and without the collapse effect, shows distinguishable scalings with certain system parameters, which can be used to determine unambiguously the effect of these models.

  17. Cavitation Bubble Cluster Activity in the Breakage of Kidney Stones by Lithotripter Shock Waves

    PubMed Central

    Pishchalnikov, Yuriy A.; Sapozhnikov, Oleg A.; Bailey, Michael R.; Williams, James C.; Cleveland, Robin O.; Colonius, Tim; Crum, Lawrence A.; Evan, Andrew P.; McAteer, James A.

    2008-01-01

    High-speed photography was used to analyze cavitation bubble activity at the surface of artificial and natural kidney stones during exposure to lithotripter shock waves in vitro. Numerous individual bubbles formed at the surface of stones, but these bubbles did not remain independent and combined with one another to form bubble clusters. Bubble clusters formed at the proximal end, the distal end, and at the sides of stones. Each cluster collapsed to a narrow point of impact. Collapse of the proximal cluster caused erosion at the leading face of the stone and the collapse of clusters at the sides of stones appeared to contribute to the growth of cracks. Collapse of the distal cluster caused minimal damage. We conclude that cavitation-mediated damage to stones was due not to the action of solitary bubbles, but to the growth and collapse of bubble clusters. PMID:14565872

  18. Collapsing Radiative Shocks in Xenon Gas on the Omega Laser

    NASA Astrophysics Data System (ADS)

    Reighard, A. B.; Glendinning, S. G.; Knauer, J.; Bouquet, S.; Koenig, M.

    2005-10-01

    A number of astrophysical systems involve radiative shocks that collapse spatially in response to energy lost through radiation, producing thin shells believed to be Vishniac unstable. We report experiments intended to study such collapsing shocks. The Omega laser drives a thin slab of material at >100 km/s through Xe gas. Simulations predict a collapsed layer in which the density reaches 45 times initial density. X-ray backlighting techniques have yielded images of a collapsed shock compressed to <1/25 its initial thickness (45 μm) at a speed of ˜100 km/s when the shock has traveled 1.3 mm. Optical depth before and behind the shock is important for comparison to astrophysical systems. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-03NA00064, DE-FG53-2005-NA26014, and other grants and contracts.

  19. Seismic precursory patterns before a cliff collapse and critical point phenomena

    USGS Publications Warehouse

    Amitrano, D.; Grasso, J.-R.; Senfaute, G.

    2005-01-01

    We analyse the statistical pattern of seismicity before a 1-2 103 m3 chalk cliff collapse on the Normandie ocean shore, Western France. We show that a power law acceleration of seismicity rate and energy in both 40 Hz-1.5 kHz and 2 Hz-10kHz frequency range, is defined on 3 orders of magnitude, within 2 hours from the collapse time. Simultaneously, the average size of the seismic events increases toward the time to failure. These in situ results are derived from the only station located within one rupture length distance from the rock fall rupture plane. They mimic the "critical point" like behavior recovered from physical and numerical experiments before brittle failures and tertiary creep failures. Our analysis of this first seismic monitoring data of a cliff collapse suggests that the thermodynamic phase transition models for failure may apply for cliff collapse. Copyright 2005 by the American Geophysical Union.

  20. On the Induced Gravitational Collapse

    NASA Astrophysics Data System (ADS)

    Becerra, Laura M.; Bianco, Carlo; Fryer, Chris; Rueda, Jorge; Ruffini, Remo

    2018-01-01

    The induced gravitational collapse (IGC) paradigm has been applied to explain the long gamma ray burst (GRB) associated with type Ic supernova, and recently the Xray flashes (XRFs). The progenitor is a binary systems of a carbon-oxygen core (CO) and a neutron star (NS). The CO core collapses and undergoes a supernova explosion which triggers the hypercritical accretion onto the NS companion (up to 10-2 M⊙s-1). For the binary driven hypernova (BdHNe), the binary system is enough bound, the NS reach its critical mass, and collapse to a black hole (BH) with a GRB emission characterized by an isotropic energy Eiso > 1052 erg. Otherwise, for binary systems with larger binary separations, the hypercritical accretion onto the NS is not sufficient to induced its gravitational collapse, a X-ray flash is produced with Eiso < 1052 erg. We're going to focus in identify the binary parameters that limits the BdHNe systems with the XRFs systems.

  1. Loop-driven conformational transition between the alternative and collapsed form of prethrombin-2: targeted molecular dynamics study.

    PubMed

    Wu, Sangwook

    2017-01-01

    Two distinct crystal structures of prethrombin-2, the alternative and collapsed forms, are elucidated by X-ray crystallogrphy. We analyzed the conformational transition from the alternative to the collapsed form employing targeted molecular dynamics (TMD) simulation. Despite small RMSD difference in the two X-ray crystal structures, some hydrophobic residues (W60d, W148, W215, and F227) show a significant difference between the two conformations. TMD simulation shows that the four hydrophobic residues undergo concerted movement from dimer to trimer transition via tetramer state in the conformational change from the alternative to the collapsed form. We reveal that the concerted movement of the four hydrophobic residues is controlled by movement of specific loop regions behind. In this paper, we propose a sequential scenario for the conformational transition from the alternative form to the collapsed form, which is partially supported by the mutant W148A simulation.

  2. The collapse of a cavitation bubble in a corner

    NASA Astrophysics Data System (ADS)

    Peters, Ivo; Tagawa, Yoshiyuki

    2017-11-01

    The collapse of cavitation bubbles is influenced by the surrounding geometry. A classic example is the collapse of a bubble near a solid wall, where a fast jet is created towards the wall. The addition of a second wall creates a non-axisymmetric flow field, which influences the displacement and jet formation during the collapse of a bubble. In this experimental study we generate mm-sized vapor bubbles using a focused pulsed laser, giving us full control over the position of the bubble. The corner geometry is formed by two glass slides. High-speed imaging reveals the directional motion of the bubble during the collapse. We find that the bubble displacement cannot be fully described by a simple superposition of the bubble dynamics of the two walls individually. Comparison of our experimental results to a model based on potential flow shows a good agreement for the direction of displacement.

  3. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome

    PubMed Central

    Chang, Qing; Wang, Jianjun; Li, Qi; Kim, Yeunjung; Zhou, Binfei; Wang, Yunfeng; Li, Huawei; Lin, Xi

    2015-01-01

    Mutations in the potassium channel subunit KCNQ1 cause the human severe congenital deafness Jervell and Lange-Nielsen (JLN) syndrome. We applied a gene therapy approach in a mouse model of JLN syndrome (Kcnq1−/− mice) to prevent the development of deafness in the adult stage. A modified adeno-associated virus construct carrying a Kcnq1 expression cassette was injected postnatally (P0–P2) into the endolymph, which resulted in Kcnq1 expression in most cochlear marginal cells where native Kcnq1 is exclusively expressed. We also found that extensive ectopic virally mediated Kcnq1 transgene expression did not affect normal cochlear functions. Examination of cochlear morphology showed that the collapse of the Reissner’s membrane and degeneration of hair cells (HCs) and cells in the spiral ganglia were corrected in Kcnq1−/− mice. Electrophysiological tests showed normal endocochlear potential in treated ears. In addition, auditory brainstem responses showed significant hearing preservation in the injected ears, ranging from 20 dB improvement to complete correction of the deafness phenotype. Our results demonstrate the first successful gene therapy treatment for gene defects specifically affecting the function of the stria vascularis, which is a major site affected by genetic mutations in inherited hearing loss. PMID:26084842

  4. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome.

    PubMed

    Chang, Qing; Wang, Jianjun; Li, Qi; Kim, Yeunjung; Zhou, Binfei; Wang, Yunfeng; Li, Huawei; Lin, Xi

    2015-08-01

    Mutations in the potassium channel subunit KCNQ1 cause the human severe congenital deafness Jervell and Lange-Nielsen (JLN) syndrome. We applied a gene therapy approach in a mouse model of JLN syndrome (Kcnq1(-/-) mice) to prevent the development of deafness in the adult stage. A modified adeno-associated virus construct carrying a Kcnq1 expression cassette was injected postnatally (P0-P2) into the endolymph, which resulted in Kcnq1 expression in most cochlear marginal cells where native Kcnq1 is exclusively expressed. We also found that extensive ectopic virally mediated Kcnq1 transgene expression did not affect normal cochlear functions. Examination of cochlear morphology showed that the collapse of the Reissner's membrane and degeneration of hair cells (HCs) and cells in the spiral ganglia were corrected in Kcnq1(-/-) mice. Electrophysiological tests showed normal endocochlear potential in treated ears. In addition, auditory brainstem responses showed significant hearing preservation in the injected ears, ranging from 20 dB improvement to complete correction of the deafness phenotype. Our results demonstrate the first successful gene therapy treatment for gene defects specifically affecting the function of the stria vascularis, which is a major site affected by genetic mutations in inherited hearing loss. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Local pressure and matrix component effects on verteporfin distribution in pancreatic tumors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nieskoski, Michael D.; Marra, Kayla; Gunn, Jason R.; Doyley, Marvin; Samkoe, Kimberly S.; Pereira, Stephen P.; Trembly, B. Stuart; Pogue, Brian W.

    2017-02-01

    Pancreatic tumors are characterized by large interstitial hypertension from enhanced deposition of extracellular matrix components, resulting in widespread vascular collapse and reduced molecular uptake of systemically delivered therapies. Although the origins of hypoperfusion is debated amongst researchers, spatial distribution of collagen density and hyaluronic acid content have shown to be a key metric in understanding the lack of efficacy for both acute and chronic therapies in these tumors. In this study, the AsPC-1 tumor model was used both subcutaneously and orthotopically to study the measurable factors which are related to this. A conventional piezoelectric pressure catheter was used to measure total tissue pressure (TTP), defined as a combination of solid stress (SS) and interstitial fluid pressure (IFP), TTP = SS + IFP, in multiple locations within the tumor interstitium. Matrix components such as collagen and hyaluronic acid were scored using masson's trichrome stain and hyaluronic acid binding protein (HABP), respectively, and co-registered with values of TTP. The results show that these key measurements are related to the spatial distribution of verteporfin in the same tumors. Photodynamic treatment with verteporfin is known to ablate large regions of tumor tissue and also allow better permeability for chemotherapies. The study of spatial distribution of verteporfin in relation to stromal content and TTP will help us better control these types of combination therapies.

  6. Sclerotherapy of voluminous venous malformation in head and neck with absolute ethanol under digital subtraction angiography guidance.

    PubMed

    Wang, Y A; Zheng, J W; Zhu, H G; Ye, W M; He, Y; Zhang, Z Y

    2010-06-01

    Venous malformation (VM) is the most common symptomatic low-flow vascular malformation, which predominantly occurs in the head and neck region. The aim of this paper was to evaluate the results of endovascular sclerotherapy of voluminous VM, when the lesion is either >or=15 cm in maximum diameter or the lesion invades more than one anatomical space, in the head and neck region using absolute ethanol under digital subtraction angiography (DSA) guidance. A total of 23 patients with head and neck VMs between October 2005 and December 2008 were retrospectively reviewed. All patients received direct puncture ethanol sclerotherapy under DSA guidance. Follow-up assessments were performed at 3-25 months after therapies were completed, and complications were reported in some cases. All patients were satisfied with the results of therapy. Seventeen patients (73.9%) achieved excellent responses and six patients (26.1%) achieved good responses in magnetic resonance imaging assessments. Minor complications developed during the procedures, all of which were successfully managed with full recovery during follow-ups. Serious complications such as acute pulmonary hypertension, cardiovascular collapse and pulmonary embolism were not encountered. It is concluded that sclerotherapy with absolute ethanol under DSA guidance is an important alternative therapy for voluminous and extensive VM, as the procedure is reasonably safe and offers good therapeutic results.

  7. Collapsing white dwarfs

    NASA Technical Reports Server (NTRS)

    Baron, E.; Cooperstein, J.; Kahana, S.; Nomoto, K.

    1987-01-01

    The results of the hydrodynamic collapse of an accreting C + O white dwarf are presented. Collapse is induced by electron captures in the iron core behind a conductive deflagration front. The shock wave produced by the hydrodynamic bounce of the iron core stalls at about 115 km, and thus a neutron star formed in such a model would be formed as an optically quiet event.

  8. Cosmological collapse and the improved Zel'dovich approximation.

    NASA Astrophysics Data System (ADS)

    Salopek, D. S.; Stewart, J. M.; Croudace, K. M.; Parry, J.

    Using a general relativistic formulation, the authors show how to compute the higher order terms in the Zel'dovich approximation which describes cosmological collapse. They evolve the 3-metric in a spatial gradient expansion. Their method is an advance over earlier work because it is local at each order. Using the improved Zel'dovich approximation, they compute the epoch of collapse.

  9. Characterizing 6 August 2007 Crandall Canyon mine collapse from ALOS PALSAR InSAR

    USGS Publications Warehouse

    Lu, Zhong; Wicks, Charles

    2010-01-01

    same as the moment of the collapse source, with each larger than the seismically computed moment. Our InSAR results, including the location of the event, the extent of the collapsed area, and constraints on the shearing component of the deformation source, all confirm and extend recent seismic studies of the 6 August 2007 event.

  10. Plasticity-mediated collapse and recrystallization in hollow copper nanowires: a molecular dynamics simulation.

    PubMed

    Dutta, Amlan; Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri

    2016-01-01

    We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism.

  11. Pressure-induced half-collapsed-tetragonal phase in CaKFe 4 As 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaluarachchi, Udhara S.; Taufour, Valentin; Sapkota, Aashish

    Here, we report the temperature-pressure phase diagram of CaKFe 4As 4 established using high-pressure electrical resistivity, magnetization, and high-energy x-ray diffraction measurements up to 6 GPa. With increasing pressure, both resistivity and magnetization data show that the bulk superconducting transition of CaKFe 4As 4 is suppressed and then disappears at p ≳ 4 GPa. High-pressure x-ray data clearly indicate a phase transition to a collapsed tetragonal phase in CaKFe 4As 4 under pressure that coincides with the abrupt loss of bulk superconductivity near 4 GPa. The x-ray data, combined with resistivity data, indicate that the collapsed tetragonal transition line ismore » essentially independent of pressure, occurring at 4.0(5) GPa for temperatures below 150 K. Density functional theory calculations also find a sudden transition to a collapsed tetragonal state near 4 GPa, as As-As bonding develops across the Ca layer. Bonding across the K layer only occurs for p ≥ 12 GPa. These findings demonstrate a different type of collapsed tetragonal phase in CaKFe 4As 4 as compared to CaFe 2As 2: a half-collapsed tetragonal phase.« less

  12. Experimental and numerical study of shock-driven collapse of multiple cavity arrays

    NASA Astrophysics Data System (ADS)

    Betney, Matthew; Anderson, Phillip; Tully, Brett; Doyle, Hugo; Hawker, Nicholas; Ventikos, Yiannis

    2014-10-01

    This study presents a numerical and experimental investigation of the interaction of a single shock wave with multiple air-filled spherical cavities. The 5 mm diameter cavities are cast in a hydrogel, and collapsed by a shock wave generated by the impact of a projectile fired from a single-stage light-gas gun. Incident shock pressures of up to 1 GPa have been measured, and the results compared to simulations conducted using a front-tracking approach. The authors have previously studied the collapse dynamics of a single cavity. An important process is the formation of a high-speed transverse jet, which impacts the leeward cavity wall and produces a shockwave. The speed of this shock has been measured using schlieren imaging, and the density has been measured with a fibre optic probe. This confirmed the computational prediction that the produced shock is of a higher pressure than the original incident shock. When employing multiple cavity arrays, the strong shock produced by the collapse of one cavity can substantially affect the collapse of further cavities. With control over cavity placement, these effects may be utilised to intensify collapse. This intensification is experimentally measured via analysis of the optical emission.

  13. Hazard potential of volcanic flank collapses raised by new megatsunami evidence

    PubMed Central

    Ramalho, Ricardo S.; Winckler, Gisela; Madeira, José; Helffrich, George R.; Hipólito, Ana; Quartau, Rui; Adena, Katherine; Schaefer, Joerg M.

    2015-01-01

    Large-scale gravitational flank collapses of steep volcanic islands are hypothetically capable of triggering megatsunamis with highly catastrophic effects. Yet, evidence for the generation and impact of collapse-triggered megatsunamis and their high run-ups remains scarce or is highly controversial. Therefore, doubts remain on whether island flank failures truly generate enough volume flux to trigger giant tsunamis, leading to diverging opinions concerning the real hazard potential of such collapses. We show that one of the most prominent oceanic volcanoes on Earth—Fogo, in the Cape Verde Islands—catastrophically collapsed and triggered a megatsunami with devastating effects ~73,000 years ago. Our deductions are based on the recent discovery and cosmogenic 3He dating of tsunamigenic deposits found on nearby Santiago Island, which attest to the impact of this giant tsunami and document wave run-up heights exceeding 270 m. The evidence reported here implies that Fogo’s flank failure involved at least one fast and voluminous event that led to a giant tsunami, in contrast to what has been suggested before. Our observations therefore further demonstrate that flank collapses may indeed catastrophically happen and are capable of triggering tsunamis of enormous height and energy, adding to their hazard potential. PMID:26601287

  14. Gravitational collapse of colloidal gels: Origins of the tipping point

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Poornima; Zia, Roseanna

    2016-11-01

    Reversible colloidal gels are soft viscoelastic solids in which durable but reversible bonds permit on-demand transition from solidlike to liquidlike behavior; these O(kT) bonds also lead to ongoing coarsening and age stiffening, making their rheology inherently time dependent. To wit, such gels may remain stable for an extended time, but then suddenly collapse, sedimenting to the bottom of the container (or creaming to the top) and eliminating any intended functionality of the material. Although this phenomenon has been studied extensively in the experimental literature, the microscopic mechanism underlying the collapse is not well understood. Effects of gel age, interparticle attraction strength, and wall effects all have been shown to affect collapse behavior, but the microstructural transformations underlying the 'tipping point' remain murky. To study this behavior, we conduct large-scale dynamic simulation to model the structural and rheological evolution of colloidal gels subjected to various gravitational stresses, examining the detailed micromechanics in three temporal regimes: slow sedimentation prior to collapse; the tipping point leading to the onset of rapid collapse; and the subsequent compaction of the material as it approaches its final bed height. Acknowledgment for funding and support from the Office of Naval Research; the National Science Foundation; and NSF XSEDE.

  15. Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics

    NASA Astrophysics Data System (ADS)

    Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique

    2016-07-01

    Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the hydrothermal fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the hydrothermal system dynamics on the hazards associated to collapse-prone altered volcanic edifices.

  16. Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics

    PubMed Central

    Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique

    2016-01-01

    Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the hydrothermal fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the hydrothermal system dynamics on the hazards associated to collapse-prone altered volcanic edifices. PMID:27457494

  17. Numerical studies of cavitation erosion on an elastic-plastic material caused by shock-induced bubble collapse

    NASA Astrophysics Data System (ADS)

    Turangan, C. K.; Ball, G. J.; Jamaluddin, A. R.; Leighton, T. G.

    2017-09-01

    We present a study of shock-induced collapse of single bubbles near/attached to an elastic-plastic solid using the free-Lagrange method, which forms the latest part of our shock-induced collapse studies. We simulated the collapse of 40 μm radius single bubbles near/attached to rigid and aluminium walls by a 60 MPa lithotripter shock for various scenarios based on bubble-wall separations, and the collapse of a 255 μm radius bubble attached to aluminium foil with a 65 MPa lithotripter shock. The coupling of the multi-phases, compressibility, axisymmetric geometry and elastic-plastic material model within a single solver has enabled us to examine the impingement of high-speed liquid jets from the shock-induced collapsing bubbles, which imposes an extreme compression in the aluminium that leads to pitting and plastic deformation. For certain scenarios, instead of the high-speed jet, a radially inwards flow along the aluminium surface contracts the bubble to produce a `mushroom shape'. This work provides methods for quantifying which parameters (e.g. bubble sizes and separations from the solid) might promote or inhibit erosion on solid surfaces.

  18. Pressure-induced half-collapsed-tetragonal phase in CaKFe 4 As 4

    DOE PAGES

    Kaluarachchi, Udhara S.; Taufour, Valentin; Sapkota, Aashish; ...

    2017-10-02

    Here, we report the temperature-pressure phase diagram of CaKFe 4As 4 established using high-pressure electrical resistivity, magnetization, and high-energy x-ray diffraction measurements up to 6 GPa. With increasing pressure, both resistivity and magnetization data show that the bulk superconducting transition of CaKFe 4As 4 is suppressed and then disappears at p ≳ 4 GPa. High-pressure x-ray data clearly indicate a phase transition to a collapsed tetragonal phase in CaKFe 4As 4 under pressure that coincides with the abrupt loss of bulk superconductivity near 4 GPa. The x-ray data, combined with resistivity data, indicate that the collapsed tetragonal transition line ismore » essentially independent of pressure, occurring at 4.0(5) GPa for temperatures below 150 K. Density functional theory calculations also find a sudden transition to a collapsed tetragonal state near 4 GPa, as As-As bonding develops across the Ca layer. Bonding across the K layer only occurs for p ≥ 12 GPa. These findings demonstrate a different type of collapsed tetragonal phase in CaKFe 4As 4 as compared to CaFe 2As 2: a half-collapsed tetragonal phase.« less

  19. Alar batten cartilage graft: treatment of internal and external nasal valve collapse.

    PubMed

    Cervelli, Valerio; Spallone, Diana; Bottini, J Davide; Silvi, Erminia; Gentile, Pietro; Curcio, Beniamino; Pascali, Michele

    2009-07-01

    The aim of this study was to describe the efficacy of alar batten graft in correcting internal and external nasal valve collapse (i.n.v. and e.n.v.) and evaluate the functional and aesthetic results. From July 2006 to September 2008, 80 patients (54 females and 26 males) underwent alar batten cartilage grafting. The patients were divided into three groups: (1) 55 patients with iatrogenic nasal valve collapse (80% i.n.v., 20% e.n.v.), (2) 15 patients with posttraumatic nasal valve collapse (45% i.n.v., 55% e.n.v.), and (3) 10 patients with congenital nasal valve collapse (100% e.n.v.). Patients were evaluated at 6, 12, 24, and some at 36 months after surgery. The final follow-up was at least 24 months. The results of this study revealed a significant increase in the size of the aperture at the internal or external nasal valve after the application of alar batten grafts. All the patients noted improvement in their nasal airway breathing and in their cosmetic appearance. No major complication was observed. The alar batten graft is a simple, versatile technique for long-term reshaping, repositioning, and reconstruction of the nasal valve collapse.

  20. High energy radiation precursors to the collapse of black holes binaries based on resonating plasma modes

    NASA Astrophysics Data System (ADS)

    Coppi, B.

    2018-05-01

    The presence of well organized plasma structures around binary systems of collapsed objects [1,2] (black holes and neutron stars) is proposed in which processes can develop [3] leading to high energy electromagnetic radiation emission immediately before the binary collapse. The formulated theoretical model supporting this argument shows that resonating plasma collective modes can be excited in the relevant magnetized plasma structure. Accordingly, the collapse of the binary approaches, with the loss of angular momentum by emission of gravitational waves [2], the resonance conditions with vertically standing plasma density and magnetic field oscillations are met. Then, secondary plasma modes propagating along the magnetic field are envisioned to be sustained with mode-particle interactions producing the particle populations responsible for the observable electromagnetic radiation emission. Weak evidence for a precursor to the binary collapse reported in Ref. [2], has been offered by the Agile X-γ-ray observatory [4] while the August 17 (2017) event, identified first by the LIGO-Virgo detection of gravitational waves and featuring the inferred collapse of a neutron star binary, improves the evidence of such a precursor. A new set of experimental observations is needed to reassess the presented theory.

  1. Pressure-induced half-collapsed-tetragonal phase in CaKFe4As4

    NASA Astrophysics Data System (ADS)

    Kaluarachchi, Udhara S.; Taufour, Valentin; Sapkota, Aashish; Borisov, Vladislav; Kong, Tai; Meier, William R.; Kothapalli, Karunakar; Ueland, Benjamin G.; Kreyssig, Andreas; Valentí, Roser; McQueeney, Robert J.; Goldman, Alan I.; Bud'ko, Sergey L.; Canfield, Paul C.

    2017-10-01

    We report the temperature-pressure phase diagram of CaKFe4As4 established using high-pressure electrical resistivity, magnetization, and high-energy x-ray diffraction measurements up to 6 GPa. With increasing pressure, both resistivity and magnetization data show that the bulk superconducting transition of CaKFe4As4 is suppressed and then disappears at p ≳4 GPa. High-pressure x-ray data clearly indicate a phase transition to a collapsed tetragonal phase in CaKFe4As4 under pressure that coincides with the abrupt loss of bulk superconductivity near 4 GPa. The x-ray data, combined with resistivity data, indicate that the collapsed tetragonal transition line is essentially independent of pressure, occurring at 4.0(5) GPa for temperatures below 150 K. Density functional theory calculations also find a sudden transition to a collapsed tetragonal state near 4 GPa, as As-As bonding develops across the Ca layer. Bonding across the K layer only occurs for p ≥12 GPa. These findings demonstrate a different type of collapsed tetragonal phase in CaKFe4As4 as compared to CaFe2As2 : a half-collapsed tetragonal phase.

  2. Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics.

    PubMed

    Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique

    2016-07-26

    Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the hydrothermal fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the hydrothermal system dynamics on the hazards associated to collapse-prone altered volcanic edifices.

  3. Signatures of the collapse and incipient recovery of an overexploited marine ecosystem

    PubMed Central

    Thompson, Patrick L.; Ball, R. Aaron; Fortin, Marie-Josée; Gouhier, Tarik C.; Link, Heike; Moritz, Charlotte; Nenzen, Hedvig; Stanley, Ryan R. E.; Taranu, Zofia E.; Gonzalez, Andrew; Guichard, Frédéric; Pepin, Pierre

    2017-01-01

    The Northwest Atlantic cod stocks collapsed in the early 1990s and have yet to recover, despite the subsequent establishment of a continuing fishing moratorium. Efforts to understand the collapse and lack of recovery have so far focused mainly on the dynamics of commercially harvested species. Here, we use data from a 33-year scientific trawl survey to determine to which degree the signatures of the collapse and recovery of the cod are apparent in the spatial and temporal dynamics of the broader groundfish community. Over this 33-year period, the groundfish community experienced four phases of change: (i) a period of rapid, synchronous biomass collapse in most species, (ii) followed by a regime shift in community composition with a concomitant loss of functional diversity, (iii) followed in turn by periods of slow compositional recovery, and (iv) slow biomass growth. Our results demonstrate how a community-wide perspective can reveal new aspects of the dynamics of collapse and recovery unavailable from the analysis of individual species or a combination of a small number of species. Overall, we found evidence that such community-level signals should be useful for designing more effective management strategies to ensure the persistence of exploited marine ecosystems. PMID:28791149

  4. A validated approach for modeling collapse of steel structures

    NASA Astrophysics Data System (ADS)

    Saykin, Vitaliy Victorovich

    A civil engineering structure is faced with many hazardous conditions such as blasts, earthquakes, hurricanes, tornadoes, floods, and fires during its lifetime. Even though structures are designed for credible events that can happen during a lifetime of the structure, extreme events do happen and cause catastrophic failures. Understanding the causes and effects of structural collapse is now at the core of critical areas of national need. One factor that makes studying structural collapse difficult is the lack of full-scale structural collapse experimental test results against which researchers could validate their proposed collapse modeling approaches. The goal of this work is the creation of an element deletion strategy based on fracture models for use in validated prediction of collapse of steel structures. The current work reviews the state-of-the-art of finite element deletion strategies for use in collapse modeling of structures. It is shown that current approaches to element deletion in collapse modeling do not take into account stress triaxiality in vulnerable areas of the structure, which is important for proper fracture and element deletion modeling. The report then reviews triaxiality and its role in fracture prediction. It is shown that fracture in ductile materials is a function of triaxiality. It is also shown that, depending on the triaxiality range, different fracture mechanisms are active and should be accounted for. An approach using semi-empirical fracture models as a function of triaxiality are employed. The models to determine fracture initiation, softening and subsequent finite element deletion are outlined. This procedure allows for stress-displacement softening at an integration point of a finite element in order to subsequently remove the element. This approach avoids abrupt changes in the stress that would create dynamic instabilities, thus making the results more reliable and accurate. The calibration and validation of these models are shown. The calibration is performed using a particle swarm optimization algorithm to establish accurate parameters when calibrated to circumferentially notched tensile coupons. It is shown that consistent, accurate predictions are attained using the chosen models. The variation of triaxiality in steel material during plastic hardening and softening is reported. The range of triaxiality in steel structures undergoing collapse is investigated in detail and the accuracy of the chosen finite element deletion approaches is discussed. This is done through validation of different structural components and structural frames undergoing severe fracture and collapse.

  5. Identifying hazards associated with lava deltas

    USGS Publications Warehouse

    Poland, Michael P.; Orr, Tim R.

    2014-01-01

    Lava deltas, formed where lava enters the ocean and builds a shelf of new land extending from the coastline, represent a significant local hazard, especially on populated ocean island volcanoes. Such structures are unstable and prone to collapse—events that are often accompanied by small explosions that can deposit boulders and cobbles hundreds of meters inland. Explosions that coincide with collapses of the East Lae ‘Apuki lava delta at Kīlauea Volcano, Hawai‘i, during 2005–2007 followed an evolutionary progression mirroring that of the delta itself. A collapse that occurred when the lava–ocean entry was active was associated with a blast of lithic blocks and dispersal of spatter and fine, glassy tephra. Shortly after delta growth ceased, a collapse exposed hot rock to cold ocean water, resulting in an explosion composed entirely of lithic blocks and lapilli. Further collapse of the delta after several months of inactivity, by which time it had cooled significantly, resulted in no recognizable explosion deposit. Seaward displacement and subsidence of the coastline immediately inland of the delta was measured by both satellite and ground-based sensors and occurred at rates of several centimeters per month even after the lava–ocean entry had ceased. The anomalous deformation ended only after complete collapse of the delta. Monitoring of ground deformation may therefore provide an indication of the potential for delta collapse, while the hazard associated with collapse can be inferred from the level of activity, or the time since the last activity, on the delta.

  6. Investigation of the Mechanism of Roof Caving in the Jinchuan Nickel Mine, China

    NASA Astrophysics Data System (ADS)

    Ding, Kuo; Ma, Fengshan; Guo, Jie; Zhao, Haijun; Lu, Rong; Liu, Feng

    2018-04-01

    On 13 March 2016, a sudden, violent roof caving event with a collapse area of nearly 11,000 m2 occurred in the Jinchuan Nickel Mine and accompanied by air blasts, loud noises and ground vibrations. This collapse event coincided with related, conspicuous surface subsidence across an area of nearly 19,000 m2. This article aims to analyse this collapse event. In previous studies, various mining-induced collapses have been studied, but collapse accidents associated with the filling mining method are very rare and have not been thoroughly studied. The filling method has been regarded as a safe mining method for a long time, so research on associated collapse mechanisms is of considerable significance. In this study, a detailed field investigation of roadway damage was performed, and GPS monitoring results were used to analyse the surface failure. In addition, a numerical model was constructed based on the geometry of the ore body and a major fault. The analysis of the model revealed three failure mechanisms acting during different stages of destruction: double-sided embedded beam deformation, fault activation, and cantilever-articulated rock beam failure. The fault activation and the specific filling method are the key factors of this collapse event. To gain a better understanding of these factors, the shear stress and normal stress along the fault plane were monitored to determine the variation in stress at different failure stages. Discrete element models were established to study two filling methods and to analyse the stability of different filling structures.

  7. Exercising videoendoscopic evaluation of 45 horses with respiratory noise and/or poor performance after laryngoplasty.

    PubMed

    Davidson, Elizabeth J; Martin, Benson B; Rieger, Randall H; Parente, Eric J

    2010-12-01

    To (1) assess upper airway function by videoendoscopy in horses performing poorly after laryngoplasty and (2) establish whether dynamic collapse of the left arytenoid can be predicted by the degree of resting postsurgical abduction. Case series. Horses that had left laryngoplasty (n=45). Medical records (June 1993-December 2007) of horses evaluated for abnormal respiratory noise and/or poor performance after laryngoplasty were reviewed. Horses with video recordings of resting and exercising upper airway endoscopy were included and postsurgical abduction categorized. Horses with immediate postoperative endoscopy recordings were also evaluated and postsurgical abduction categorized. Relationships between resting postsurgical abduction and historical information with exercising endoscopic findings were examined. Dynamic collapse of the left arytenoid cartilage was probable in horses with no postsurgical abduction and could not be predicted in horses with grade 3 or 4 postsurgical abduction. Respiratory noise was associated with upper airway obstruction but was not specific for arytenoid collapse. Most horses with a left vocal fold had billowing of the fold during exercise. Other forms of dynamic collapse involved the right vocal fold, aryepiglottic folds, corniculate process of left arytenoid cartilage, dorsal displacement of soft palate, and pharyngeal collapse. Complex obstructions were observed in most examinations and in all horses with exercising collapse of the left arytenoid cartilage. There was no relationship between exercising collapse of the left arytenoid cartilage and grade 3 or 4 postsurgical abduction but was likely in horses with no abduction. © Copyright 2010 by The American College of Veterinary Surgeons.

  8. Study on Collapse Mechanism of Steel Frame Structure under High Temperature and Blast Loading

    NASA Astrophysics Data System (ADS)

    Baoxin, Qi; Yan, Shi; Bi, Jialiang

    2018-03-01

    Numerical simulation analysis for collapsing process and mechanism of steel frame structures under the combined effects of fire and explosion is performed in this paper. First of all, a new steel constitutive model considering fire (high temperature softening effect) and blast (strain rate effect) is established. On the basis of the traditional Johnson-Cook model and the Perzyna model, the relationship between strain and scaled distance as well as the EOUROCODE3 standard heating curve taking into account the temperature effect parameters is introduced, and a modified Johnson-Cook constitutive model is established. Then, the influence of considering the scaled distance is introduced in order to more effectively describe the destruction and collapse phenomena of steel frame structures. Some conclusions are obtained based on the numerical analysis that the destruction will be serious and even progressively collapse with decreasing of the temperature of the steel column for the same scaled distance under the combined effects of fire and blast; the damage will be serious with decreasing of the scaled distance of the steel column under the same temperature under the combined effects of fire and blast; in the case of the combined effects of fire and blast happening in the side-spans, the partial progressive collapse occurs as the scaled distance is less than or equal to 1.28; six kinds of damages which are no damage, minor damage, moderate damage, severe damage, critical collapse, and progressive collapse.

  9. Transition to collapsed tetragonal phase in CaFe 2As 2 single crystals as seen by 57Fe Mössbauer spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan

    Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe 2As 2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ~25% on cooling from room temperature to ~100 K in the tetragonal phase and is only weakly temperature dependent atmore » low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe 2As 2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Furthermore, based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.« less

  10. A debris avalanche at Süphan stratovolcano (Turkey) and implications for hazard evaluation

    NASA Astrophysics Data System (ADS)

    Özdemir, Yavuz; Akkaya, İsmail; Oyan, Vural; Kelfoun, Karim

    2016-02-01

    The Quaternary Süphan debris avalanche deposit is located in Eastern Anatolia, Turkey. The avalanche formed by the sector collapse of a major stratovolcano towards the north, possibly during a single catastrophic event. The deposit has an estimated volume of 4 km3 and ran out over 25 km to cover an area of approximately 200 km2. Products of the collapse are overlain by younger eruptive units from the Süphan volcano. We have tested the numerical code VolcFlow to first reproduce the emplacement of the Quaternary Süphan debris avalanche and then to develop a hazard assessment for potential future sector collapses and subsequent emplacement of debris avalanches and associated tsunami. The numerical model captures the main features of the propagation process, including travel distance, lateral spread, and run up. The best fit obtained for the existing flow has a constant retarding stress of 50 kPa and a collapse scar volume of 4 km3. Analysis of potential future collapse scenarios reveals that northern sector debris avalanches (up to 6 km3) could affect several towns. In the case of a sector collapse towards the south, a tsunami will reach the city of Van and several of the biggest towns on the southern shoreline of Lake Van. Cities most affected by the larger amplitude waves would be Van, Edremit, Gevaş, Tatvan, and, to a lesser extent, Erciş, with wave amplitudes (first waves after the onset of the collapse) between 8 and 10 m.

  11. Black hole formation from the gravitational collapse of a nonspherical network of structures

    NASA Astrophysics Data System (ADS)

    Delgado Gaspar, Ismael; Hidalgo, Juan Carlos; Sussman, Roberto A.; Quiros, Israel

    2018-05-01

    We examine the gravitational collapse and black hole formation of multiple nonspherical configurations constructed from Szekeres dust models with positive spatial curvature that smoothly match to a Schwarzschild exterior. These configurations are made of an almost spherical central core region surrounded by a network of "pancake-like" overdensities and voids with spatial positions prescribed through standard initial conditions. We show that a full collapse into a focusing singularity, without shell crossings appearing before the formation of an apparent horizon, is not possible unless the full configuration becomes exactly or almost spherical. Seeking for black hole formation, we demand that shell crossings are covered by the apparent horizon. This requires very special fine-tuned initial conditions that impose very strong and unrealistic constraints on the total black hole mass and full collapse time. As a consequence, nonspherical nonrotating dust sources cannot furnish even minimally realistic toy models of black hole formation at astrophysical scales: demanding realistic collapse time scales yields huge unrealistic black hole masses, while simulations of typical astrophysical black hole masses collapse in unrealistically small times. We note, however, that the resulting time-mass constraint is compatible with early Universe models of primordial black hole formation, suitable in early dust-like environments. Finally, we argue that the shell crossings appearing when nonspherical dust structures collapse are an indicator that such structures do not form galactic mass black holes but virialize into stable stationary objects.

  12. Collapse of the soap-film bridge - Quasistatic description

    NASA Astrophysics Data System (ADS)

    Cryer, Steven A.; Steen, Paul H.

    1992-11-01

    Observations of the collapse of a soap-film bridge from a connected to a disconnected state are recorded. The equilibrium framework for this nonequilibrium event is classical. Experiments confirm predictions of stable and unstable equilibria. A quasistatic description is introduced for the dynamic states to extend the static theory. It is found to adequately describe the collapse trajectory while the bridge is still connected.

  13. Collapse of the soap-film bridge - Quasistatic description

    NASA Technical Reports Server (NTRS)

    Cryer, Steven A.; Steen, Paul H.

    1992-01-01

    Observations of the collapse of a soap-film bridge from a connected to a disconnected state are recorded. The equilibrium framework for this nonequilibrium event is classical. Experiments confirm predictions of stable and unstable equilibria. A quasistatic description is introduced for the dynamic states to extend the static theory. It is found to adequately describe the collapse trajectory while the bridge is still connected.

  14. The Collapse of the I-35W Bridge in Minneapolis

    ERIC Educational Resources Information Center

    Feldman, Bernard J.

    2010-01-01

    On Wednesday, Aug. 1, 2007, at 6:05 p.m. (during evening rush hour), the I-35W bridge across the Mississippi River in Minneapolis collapsed, killing 13 people and injuring 145. At the time of the collapse, repair work was in progress on the deck of the bridge, resulting in an additional 287 tons of construction material and equipment being on the…

  15. Parametric analysis of lava dome-collapse events and pyroclastic deposits at Shiveluch volcano, Kamchatka, using visible and infrared satellite data

    NASA Astrophysics Data System (ADS)

    Krippner, Janine B.; Belousov, Alexander B.; Belousova, Marina G.; Ramsey, Michael S.

    2018-04-01

    For the years 2001 to 2013 of the ongoing eruption of Shiveluch volcano, a combination of different satellite remote sensing data are used to investigate the dome-collapse events and the resulting pyroclastic deposits. Shiveluch volcano in Kamchatka, Russia, is one of the world's most active dome-building volcanoes, which has produced some of the largest known historical block-and-ash flows (BAFs). Globally, quantitative data for deposits resulting from such large and long-lived dome-forming eruptions, especially like those at Shiveluch, are scarce. We use Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared (TIR), shortwave infrared (SWIR), and visible-near infrared (VNIR) data to analyze the dome-collapse scars and BAF deposits that were formed during eruptions and collapse events in 2001, 2004, 2005, 2007, 2009, 2010, and two events in 2013. These events produced flows with runout distances of as far as 19 km from the dome, and with aerial extents of as much as 22.3 km2. Over the 12 years of this period of investigation, there is no trend in deposit area or runout distances of the flows through time. However, two potentially predictive features are apparent in our data set: 1) the largest dome-collapse events occurred when the dome exceeded a relative height (from dome base to top) of 500 m; 2) collapses were preceded by thermal anomalies in six of the cases in which ASTER data were available, although the areal extent of these precursory thermal areas did not generally match the size of the collapse events as indicated by scar area (volumes are available for three collapse events). Linking the deposit distribution to the area, location, and temperature profiles of the dome-collapse scars provides a basis for determining similar future hazards at Shiveluch and at other dome-forming volcanoes. Because of these factors, we suggest that volcanic hazard analysis and mitigation at volcanoes with similar BAF emplacement behavior may be improved with detailed, synoptic studies, especially when it is possible to access and interpret appropriate remote sensing data in near-real time.

  16. Failure Analysis of Overhanging Blocks in the Walls of a Gas Storage Salt Cavern: A Case Study

    NASA Astrophysics Data System (ADS)

    Wang, Tongtao; Yang, Chunhe; Li, Jianjun; Li, Jinlong; Shi, Xilin; Ma, Hongling

    2017-01-01

    Most of the rock salt of China is bedded, in which non-salt layers and rock salt layers alternate. Due to the poor solubility of the non-salt layers, many blocks overhang on the walls of the caverns used for gas storage, constructed by water leaching. These overhanging blocks may collapse at any time, which may damage the tubing and casing string, and even cause instability of the cavern. They are one of the main factors threatening the safety of caverns excavated in bedded rock salt formations. In this paper, a geomechanical model of the JJKK-D salt cavern, located in Jintan salt district, Jintan city, Jiangsu province, China, is established to evaluate the stability of the overhanging blocks on its walls. The characters of the target formation, property parameters of the rock mass, and actual working conditions are considered in the geomechanical model. An index system composed of stress, displacement, plastic zone, safety factor, and equivalent strain is used to predict the collapse length of the overhanging blocks, the moment the collapse will take place, and the main factors causing the collapse. The sonar survey data of the JJKK-D salt cavern are used to verify the reliability and accuracy of the proposed geomechanical model. The results show that the proposed geomechanical model has a good reliability and accuracy, and can be used for the collapse prediction of the overhanging blocks on the wall of the JJKK-D salt cavern. The collapse length of the overhanging block is about 8 m. We conclude that the collapse takes place during the debrining. The reason behind the collapse is the sudden decrease of the fluid density, leading to the increase of the self-weight of the overhanging blocks. This study provides a basis for the collapse prediction method of the overhanging blocks of Jintan salt cavern gas storage, and can also serve as a reference for salt cavern gas storage with similar conditions to deal with overhanging blocks.

  17. Analogue of Caldera Dynamics: the Controlled Salt Cavern Collapse

    NASA Astrophysics Data System (ADS)

    Jousset, P. G.; Rohmer, J.

    2012-12-01

    Caldera collapse (or pit-crater) dynamics are inferred from geological observations and laboratory experiments. Here, we present an analogue of caldera collapse at field scale and possible analogy with large scale caldera dynamics. Through an original exploitation technique in sedimentary environment, a salt layer is emptied, leaving a brine-filled cavern, which eventually collapses after overburden falls into the cavern. Such a collapse was monitored in East France by many instruments (including GPS, extensometers, geophones, broadband seismological sensors, tiltmeter, gravity meter, … ), which allowed us to describe mechanisms of the collapse. Micro-seismicity is a good indicator of spatio-temporal evolution of physical properties of rocks prior to catastrophic events like volcanic eruptions or landslides and may be triggered by a number of causes including dynamic characteristics of processes in play or/and external forces. We show evidence of triggered micro-seismicity observed in the vicinity of this underground salt cavern prone to collapse by a remote M~7.2 earthquake, which occurred ~12000 kilometres away. High-dynamic broadband records reveal the strong time-correlation between a dramatic change in the rate of local high-frequency micro-seismicity and the passage of low-frequency seismic waves, including body, Love and Rayleigh surface waves. Pressure was lowered in the cavern by pumping operations of brine out of the cavern. We demonstrate the near critical state of the cavern before the collapse by means of 2D axisymmetric elastic finite-element simulations. Stress oscillations due to the seismic waves may have exceeded the strength required for the rupture of the complex media made of brine and rock triggering micro-earthquakes and leading to damage of the overburden and eventually collapse of the salt cavern. The increment of stress necessary for the failure of a Dolomite layer is of the same order or magnitude as the maximum dynamic stress magnitude observed during the passage of the earthquakes waves. On this basis, we discuss the possible contribution of the Love and Rayleigh low-frequency surfaces waves. This experiment may help us understand mechanisms of caldera formation.

  18. Einstein-Langevin and Einstein-Fokker-Planck equations for Oppenheimer-Snyder gravitational collapse in a spacetime with conformal vacuum fluctuations

    NASA Astrophysics Data System (ADS)

    Miller, Steven David

    1999-10-01

    A consistent extension of the Oppenheimer-Snyder gravitational collapse formalism is presented which incorporates stochastic, conformal, vacuum fluctuations of the metric tensor. This results in a tractable approach to studying the possible effects of vacuum fluctuations on collapse and singularity formation. The motivation here, is that it is known that coupling stochastic noise to a classical field theory can lead to workable methodologies that accommodate or reproduce many aspects of quantum theory, turbulence or structure formation. The effect of statistically averaging over the metric fluctuations gives the appearance of a deterministic Riemannian structure, with an induced non-vanishing cosmological constant arising from the nonlinearity. The Oppenheimer-Snyder collapse of a perfect fluid or dust star in the fluctuating or `turbulent' spacetime, is reformulated in terms of nonlinear Einstein-Langevin field equations, with an additional noise source in the energy-momentum tensor. The smooth deterministic worldlines of collapsing matter within the classical Oppenheimer-Snyder model, now become nonlinear Brownian motions due to the backreaction induced by vacuum fluctuations. As the star collapses, the matter worldlines become increasingly randomized since the backreaction coupling to the vacuum fluctuations is nonlinear; the input assumptions of the Hawking-Penrose singularity theorems should then be violated. Solving the nonlinear Einstein-Langevin field equation for collapse - via the Ito interpretation - gives a singularity-free solution, which is equivalent to the original Oppenheimer solution but with higher-order stochastic corrections; the original singular solution is recovered in the limit of zero vacuum fluctuations. The `geometro-hydrodynamics' of noisy gravitational collapse, were also translated into an equivalent mathematical formulation in terms of nonlinear Einstein-Fokker-Planck (EFP) continuity equations with respect to comoving coordinates: these describe the collapse as a conserved flow of probability. A solution was found in the dilute limit of weak fluctuations where the EFP equation is linearized. There is zero probability that the star collapses to a singular state in the presence of background vacuum fluctuations, but the singularity returns with unit probability when the fluctuations are reduced to zero. Finally, an EFP equation was considered with respect to standard exterior coordinates. Using the thermal Brownian motion paradigm, an exact stationary or equilibrium solution was found in the infinite standard time relaxation limit. The solution gives the conditions required for the final collapsed object (a black hole) to be in thermal equilibrium with the background vacuum fluctuations. From this solution, one recovers the Hawking temperature without using field theory. The stationary solution then seems to correspond to a black hole in thermal equilibrium with a fluctuating conformal scalar field; or the Hawking-Hartle state.

  19. Hot spaghetti: Viscous gravitational collapse

    NASA Astrophysics Data System (ADS)

    Müller, Berndt; Schäfer, Andreas

    2018-02-01

    We explore the fate of matter falling into a macroscopic Schwarzschild black hole for the simplified case of a radially collapsing thin spherical shell for which the back reaction of the geometry can be neglected. We treat the internal dynamics of the in-falling matter in the framework of viscous relativistic hydrodynamics and calculate how the internal temperature of the collapsing matter evolves as it falls toward the Schwarzschild singularity. We find that viscous hydrodynamics fails when either the dissipative radial pressure exceeds the thermal pressure and the total radial pressure becomes negative, or the time scale of variation of the tidal forces acting on the collapsing matter becomes shorter than the characteristic hydrodynamic response time.

  20. Damage tolerant design using collapse techniques

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.

    1982-01-01

    A new approach to the design of structures for improved global damage tolerance is presented. In its undamaged condition the structure is designed subject to strength, displacement and buckling constraints. In the damaged condition the only constraint is that the structure will not collapse. The collapse load calculation is formulated as a maximization problem and solved by an interior extended penalty function. The design for minimum weight subject to constraints on the undamaged structure and a specified level of the collapse load is a minimization problem which is also solved by a penalty function formulation. Thus the overall problem is of a nested or multilevel optimization. Examples are presented to demonstrate the difference between the present and more traditional approaches.

  1. Verification of nonlinear dynamic structural test results by combined image processing and acoustic analysis

    NASA Astrophysics Data System (ADS)

    Tene, Yair; Tene, Noam; Tene, G.

    1993-08-01

    An interactive data fusion methodology of video, audio, and nonlinear structural dynamic analysis for potential application in forensic engineering is presented. The methodology was developed and successfully demonstrated in the analysis of heavy transportable bridge collapse during preparation for testing. Multiple bridge elements failures were identified after the collapse, including fracture, cracks and rupture of high performance structural materials. Videotape recording by hand held camcorder was the only source of information about the collapse sequence. The interactive data fusion methodology resulted in extracting relevant information form the videotape and from dynamic nonlinear structural analysis, leading to full account of the sequence of events during the bridge collapse.

  2. Plasticity-mediated collapse and recrystallization in hollow copper nanowires: a molecular dynamics simulation

    PubMed Central

    Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri

    2016-01-01

    Summary We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism. PMID:26977380

  3. Semaphorin3a Promotes Advanced Diabetic Nephropathy

    PubMed Central

    Aggarwal, Pardeep K.; Veron, Delma; Thomas, David B.; Siegel, Dionicio; Moeckel, Gilbert; Kashgarian, Michael

    2015-01-01

    The onset of diabetic nephropathy (DN) is highlighted by glomerular filtration barrier abnormalities. Identifying pathogenic factors and targetable pathways driving DN is crucial to developing novel therapies and improving the disease outcome. Semaphorin3a (sema3a) is a guidance protein secreted by podocytes. Excess sema3a disrupts the glomerular filtration barrier. Here, using immunohistochemistry, we show increased podocyte SEMA3A in renal biopsies from patients with advanced DN. Using inducible, podocyte-specific Sema3a gain-of-function (Sema3a+) mice made diabetic with streptozotocin, we demonstrate that sema3a is pathogenic in DN. Diabetic Sema3a+ mice develop massive proteinuria, renal insufficiency, and extensive nodular glomerulosclerosis, mimicking advanced DN in humans. In diabetic mice, Sema3a+ exacerbates laminin and collagen IV accumulation in Kimmelstiel-Wilson-like glomerular nodules and causes diffuse podocyte foot process effacement and F-actin collapse via nephrin, αvβ3 integrin, and MICAL1 interactions with plexinA1. MICAL1 knockdown and sema3a inhibition render podocytes not susceptible to sema3a-induced shape changes, indicating that MICAL1 mediates sema3a-induced podocyte F-actin collapse. Moreover, sema3a binding inhibition or podocyte-specific plexinA1 deletion markedly ameliorates albuminuria and abrogates renal insufficiency and the diabetic nodular glomerulosclerosis phenotype of diabetic Sema3a+ mice. Collectively, these findings indicate that excess sema3a promotes severe diabetic nephropathy and identifies novel potential therapeutic targets for DN. PMID:25475434

  4. Effect of strong-column weak-beam design provision on the seismic fragility of RC frame buildings

    NASA Astrophysics Data System (ADS)

    Surana, Mitesh; Singh, Yogendra; Lang, Dominik H.

    2018-04-01

    Incremental dynamic analyses are conducted for a suite of low- and mid-rise reinforced-concrete special moment-resisting frame buildings. Buildings non-conforming and conforming to the strong-column weak-beam (SCWB) design criterion are considered. These buildings are designed for the two most severe seismic zones in India (i.e., zone IV and zone V) following the provisions of Indian Standards. It is observed that buildings non-conforming to the SCWB design criterion lead to an undesirable column failure collapse mechanism. Although yielding of columns cannot be avoided, even for buildings conforming to a SCWB ratio of 1.4, the observed collapse mechanism changes to a beam failure mechanism. This change in collapse mechanism leads to a significant increase in the building's global ductility capacity, and thereby in collapse capacity. The fragility analysis study of the considered buildings suggests that considering the SCWB design criterion leads to a significant reduction in collapse probability, particularly in the case of mid-rise buildings.

  5. Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave.

    PubMed

    Chitnis, Parag V; Cleveland, Robin O

    2006-04-01

    Measurements are presented of acoustic emissions from cavitation collapses on the surface of a synthetic kidney stone in response to shock waves (SWs) from an electrohydraulic lithotripter. A fiber optic probe hydrophone was used for pressure measurements, and passive cavitation detection was used to identify acoustic emissions from bubble collapse. At a lithotripter charging voltage of 20 kV, the focused SW incident on the stone surface resulted in a peak pressure of 43 +/- 6 MPa compared to 23 +/- 4 MPa in the free field. The focused SW incident upon the stone appeared to be enhanced due to the acoustic emissions from the forced cavitation collapse of the preexisting bubbles. The peak pressure of the acoustic emission from a bubble collapse was 34 +/- 15 MPa, that is, the same magnitude as the SWs incident on the stone. These data indicate that stresses induced by focused SWs and cavitation collapses are similar in magnitude thus likely play a similar role in stone fragmentation.

  6. Influence of West Antarctic Ice Sheet collapse on Antarctic surface climate

    NASA Astrophysics Data System (ADS)

    Steig, Eric J.; Huybers, Kathleen; Singh, Hansi A.; Steiger, Nathan J.; Ding, Qinghua; Frierson, Dargan M. W.; Popp, Trevor; White, James W. C.

    2015-06-01

    Climate model simulations are used to examine the impact of a collapse of the West Antarctic Ice Sheet (WAIS) on the surface climate of Antarctica. The lowered topography following WAIS collapse produces anomalous cyclonic circulation with increased flow of warm, maritime air toward the South Pole and cold-air advection from the East Antarctic plateau toward the Ross Sea and Marie Byrd Land, West Antarctica. Relative to the background climate, areas in East Antarctica that are adjacent to the WAIS warm, while substantial cooling (several °C) occurs over parts of West Antarctica. Anomalously low isotope-paleotemperature values at Mount Moulton, West Antarctica, compared with ice core records in East Antarctica, are consistent with collapse of the WAIS during the last interglacial period, Marine Isotope Stage 5e. More definitive evidence might be recoverable from an ice core record at Hercules Dome, East Antarctica, which would experience significant warming and positive oxygen isotope anomalies if the WAIS collapsed.

  7. Numerical investigation of wake-collapse internal waves generated by a submerged moving body

    NASA Astrophysics Data System (ADS)

    Liang, Jianjun; Du, Tao; Huang, Weigen; He, Mingxia

    2017-07-01

    The state-of-the-art OpenFOAM technology is used to develop a numerical model that can be devoted to numerically investigating wake-collapse internal waves generated by a submerged moving body. The model incorporates body geometry, propeller forcing, and stratification magnitude of seawater. The generation mechanism and wave properties are discussed based on model results. It was found that the generation of the wave and its properties depend greatly on the body speed. Only when that speed exceeds some critical value, between 1.5 and 4.5 m/s, can the moving body generate wake-collapse internal waves, and with increases of this speed, the time of generation advances and wave amplitude increases. The generated wake-collapse internal waves are confirmed to have characteristics of the second baroclinic mode. As the body speed increases, wave amplitude and length increase and its waveform tends to take on a regular sinusoidal shape. For three linearly temperature-stratified profiles examined, the weaker the stratification, the stronger the wake-collapse internal wave.

  8. Investigations of Pulmonary Epithelial Cell Damage due to Air-Liquid Interfacial Stresses in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Gaver, Donald P., III; Bilek, A. M.; Kay, S.; Dee, K. C.

    2004-01-01

    Pulmonary airway closure is a potentially dangerous event that can occur in microgravity environments and may result in limited gas exchange for flight crew during long-term space flight. Repetitive airway collapse and reopening subjects the pulmonary epithelium to large, dynamic, and potentially injurious mechanical stresses. During ventilation at low lung volumes and pressures, airway instability leads to repetitive collapse and reopening. During reopening, air must progress through a collapsed airway, generating stresses on the airway walls, potentially damaging airway tissues. The normal lung can tolerate repetitive collapse and reopening. However, combined with insufficient or dysfunctional pulmonary surfactant, repetitive airway collapse and reopening produces severe lung injury. Particularly at risk is the pulmonary epithelium. As an important regulator of lung function and physiology, the degree of pulmonary epithelial damage influences the course and outcome of lung injury. In this paper we present experimental and computational studies to explore the hypothesis that the mechanical stresses associated with airway reopening inflict injury to the pulmonary epithelium.

  9. Liquid-Crystalline Collapse of Pulmonary Surfactant Monolayers

    PubMed Central

    Schief, William R.; Antia, Meher; Discher, Bohdana M.; Hall, Stephen B.; Vogel, Viola

    2003-01-01

    During exhalation, the surfactant film of lipids and proteins that coats the alveoli in the lung is compressed to high surface pressures, and can remain metastable for prolonged periods at pressures approaching 70 mN/m. Monolayers of calf lung surfactant extract (CLSE), however, collapse in vitro, during an initial compression at ∼45 mN/m. To gain information on the source of this discrepancy, we investigated how monolayers of CLSE collapse from the interface. Observations with fluorescence, Brewster angle, and light scattering microscopies show that monolayers containing CLSE, CLSE-cholesterol (20%), or binary mixtures of dipalmitoyl phosphatidylcholine(DPPC)-dihydrocholesterol all form bilayer disks that reside above the monolayer. Upon compression and expansion, lipids flow continuously from the monolayer into the disks, and vice versa. In several respects, the mode of collapse resembles the behavior of other amphiphiles that form smectic liquid-crystal phases. These findings suggest that components of surfactent films must collapse collectively rather than being squeezed out individually. PMID:12770885

  10. Is Collapsing C1q Nephropathy Another MYH9-Associated Kidney Disease? A Case Report

    PubMed Central

    Reeves-Daniel, Amber M.; Iskandar, Samy S.; Bowden, Donald W.; Bostrom, Meredith A.; Hicks, Pamela J.; Comeau, Mary E.; Langefeld, Carl D.; Freedman, Barry I.

    2009-01-01

    C1q nephropathy is a rare kidney disease that can present with nephrotic syndrome and typically has the histological phenotype of either minimal change disease (MCD) or focal segmental glomerulosclerosis (FSGS). Disagreement exists as to whether it is a distinct immune complex-mediated glomerulopathy or whether it resides in the spectrum of FSGS-MCD. Two African American patients with C1q nephropathy histologically presenting as the collapsing variant of FSGS (collapsing C1q nephropathy) and rapid loss of kidney function were genotyped for polymorphisms in the non-muscle myosin heavy chain 9 gene (MYH9). Both cases were homozygous for the MYH9 E1 risk haplotype; the variant strongly associated with idiopathic FSGS, collapsing FSGS in Human Immunodeficiency Virus-associated nephropathy and focal global glomerulosclerosis (historically attributed to hypertensive nephrosclerosis). Collapsing C1q nephropathy with rapid progression to ESRD appears to reside in the MYH9-associated disease spectrum. PMID:20116156

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benetti, Micol; Alcaniz, Jailson S.; Landau, Susana J., E-mail: micolbenetti@on.br, E-mail: slandau@df.uba.ar, E-mail: alcaniz@on.br

    The hypothesis of the self-induced collapse of the inflaton wave function was proposed as responsible for the emergence of inhomogeneity and anisotropy at all scales. This proposal was studied within an almost de Sitter space-time approximation for the background, which led to a perfect scale-invariant power spectrum, and also for a quasi-de Sitter background, which allows to distinguish departures from the standard approach due to the inclusion of the collapse hypothesis. In this work we perform a Bayesian model comparison for two different choices of the self-induced collapse in a full quasi-de Sitter expansion scenario. In particular, we analyze themore » possibility of detecting the imprint of these collapse schemes at low multipoles of the anisotropy temperature power spectrum of the Cosmic Microwave Background (CMB) using the most recent data provided by the Planck Collaboration. Our results show that one of the two collapse schemes analyzed provides the same Bayesian evidence of the minimal standard cosmological model ΛCDM, while the other scenario is weakly disfavoured with respect to the standard cosmology.« less

  12. Auxiliary drying to prevent pattern collapse in high aspect ratio nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Zhou, Jie; Xiong, Ying; Zhang, Xiaobo; Tian, Yangchao

    2011-07-01

    Many defects are generated in densely packed high aspect ratio structures during nanofabrication. Pattern collapse is one of the serious problems that may arise, mainly due to the capillary force during drying after the rinsing process. In this paper, a method of auxiliary drying is presented to prevent pattern collapse in high aspect ratio nanostructures by adding an auxiliary substrate as a reinforcing rib to restrict deformation and to balance the capillary force. The principle of the method is presented based on the analysis of pattern collapse. A finite element method is then applied to analyze the deformation of the resist beams caused by the surface tension using the ANSYS software, and the effect of the nanostructure's length to width ratio simulated and analyzed. Finally, the possible range of applications based on the proposed method is discussed. Our results show that the aspect ratio may be increased 2.6 times without pattern collapse; furthermore, this method can be widely used in the removal of solvents in micro- and nanofabrication.

  13. Auxiliary drying to prevent pattern collapse in high aspect ratio nanostructures.

    PubMed

    Liu, Gang; Zhou, Jie; Xiong, Ying; Zhang, Xiaobo; Tian, Yangchao

    2011-07-29

    Many defects are generated in densely packed high aspect ratio structures during nanofabrication. Pattern collapse is one of the serious problems that may arise, mainly due to the capillary force during drying after the rinsing process. In this paper, a method of auxiliary drying is presented to prevent pattern collapse in high aspect ratio nanostructures by adding an auxiliary substrate as a reinforcing rib to restrict deformation and to balance the capillary force. The principle of the method is presented based on the analysis of pattern collapse. A finite element method is then applied to analyze the deformation of the resist beams caused by the surface tension using the ANSYS software, and the effect of the nanostructure's length to width ratio simulated and analyzed. Finally, the possible range of applications based on the proposed method is discussed. Our results show that the aspect ratio may be increased 2.6 times without pattern collapse; furthermore, this method can be widely used in the removal of solvents in micro- and nanofabrication.

  14. Inland-directed base surge generated by the explosive interaction of pyroclastic flows and seawater at Soufrière Hills volcano, Montserrat

    USGS Publications Warehouse

    Edmonds, Marie; Herd, Richard A.

    2005-01-01

    The largest and most intense lava-dome collapse during the eruption of Soufrière Hills volcano, Montserrat, 1995–2004, occurred 12–13 July 2003. The dome collapse involved around 200 × 106 m3 of material and was associated with a phenomenon previously unknown at this volcano. Large pyroclastic flows at the peak of the dome collapse interacted explosively with seawater at the mouth of the Tar River Valley and generated a hot, dry base surge that flowed 4 km inland and 300 m uphill. The surge was destructive to at least 25 m above the ground and it carbonized vegetation. The resulting two-layer deposits were as much as 0.9 m thick. Although the entire collapse lasted 18 h, the base surge greatly increased the land area affected by the dome collapse in a few minutes at the peak of the event, illustrating the complex nature of the interaction between pyroclastic flows and seawater.

  15. Delayed collapses of Bose-Einstein condensates in relation to anti-de Sitter gravity.

    PubMed

    Biasi, Anxo F; Mas, Javier; Paredes, Angel

    2017-03-01

    We numerically investigate spherically symmetric collapses in the Gross-Pitaevskii equation with attractive nonlinearity in a harmonic potential. Even below threshold for direct collapse, the wave function bounces off from the origin and may eventually become singular after a number of oscillations in the trapping potential. This is reminiscent of the evolution of Einstein gravity sourced by a scalar field in anti de Sitter space where collapse corresponds to black-hole formation. We carefully examine the long time evolution of the wave function for continuous families of initial states in order to sharpen out this qualitative coincidence which may bring new insights in both directions. On the one hand, we comment on possible implications for the so-called Bosenova collapses in cold atom Bose-Einstein condensates. On the other hand, Gross-Pitaevskii provides a toy model to study the relevance of either the resonance conditions or the nonlinearity for the problem of anti de Sitter instability.

  16. Caldera collapse: Perspectives from comparing Galápagos volcanoes, nuclear-test sinks, sandbox models, and volcanoes on Mars

    USGS Publications Warehouse

    Howard, K.A.

    2010-01-01

    The 1968 trapdoor collapse (1.5 km3) of Fernandina caldera in the Galapágos Islands developed the same kinds of structures as found in small sandbox-collapse models and in concentrically zoned sinks formed in desert alluvium by fault subsidence into underground nuclear-explosion cavities. Fernandina’s collapse developed through shear failure in which the roof above the evacuating chamber was lowered mostly intact. This coherent subsidence contrasts to chaotic piecemeal collapse at small, rocky pit craters, underscoring the role of rock strength relative to subsidence size. The zoning at Fernandina implies that the deflated magma chamber underlay a central basin and a bordering inward-dipping monocline, which separates a blind inner reverse fault from an outer zone of normal faulting. Similar concentric zoning patterns can be recognized in coherent subsidence structures ranging over 16 orders of magnitude in size, from sandbox experiments to the giant Olympus Mons caldera on Mars.

  17. Collapse of a nanoscopic void triggered by a spherically symmetric traveling sound wave.

    PubMed

    Hołyst, Robert; Litniewski, Marek; Garstecki, Piotr

    2012-05-01

    Molecular-dynamics simulations of the Lennard-Jones fluid (up to 10(7) atoms) are used to analyze the collapse of a nanoscopic bubble. The collapse is triggered by a traveling sound wave that forms a shock wave at the interface. The peak temperature T(max) in the focal point of the collapse is approximately ΣR(0)(a), where Σ is the surface density of energy injected at the boundary of the container of radius R(0) and α ≈ 0.4-0.45. For Σ = 1.6 J/m(2) and R(0) = 51 nm, the shock wave velocity, which is proportional to √Σ, reaches 3400 m/s (4 times the speed of sound in the liquid); the pressure at the interface, which is proportional to Σ, reaches 10 GPa; and T(max) reaches 40,000 K. The Rayleigh-Plesset equation together with the time of the collapse can be used to estimate the pressure at the front of the shock wave.

  18. Naked singularity resolution in cylindrical collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurita, Yasunari; Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502; Nakao, Ken-ichi

    In this paper, we study the gravitational collapse of null dust in cylindrically symmetric spacetime. The naked singularity necessarily forms at the symmetry axis. We consider the situation in which null dust is emitted again from the naked singularity formed by the collapsed null dust and investigate the backreaction by this emission for the naked singularity. We show a very peculiar but physically important case in which the same amount of null dust as that of the collapsed one is emitted from the naked singularity as soon as the ingoing null dust hits the symmetry axis and forms the nakedmore » singularity. In this case, although this naked singularity satisfies the strong curvature condition by Krolak (limiting focusing condition), geodesics which hit the singularity can be extended uniquely across the singularity. Therefore, we may say that the collapsing null dust passes through the singularity formed by itself and then leaves for infinity. Finally, the singularity completely disappears and the flat spacetime remains.« less

  19. Collapsing Binary Asteroids With YORP And BYORP

    NASA Astrophysics Data System (ADS)

    Taylor, Patrick A.

    2012-05-01

    A separated binary system may be collapsed to contact via the removal of angular momentum from the system until a viable tidal end state no longer exists. The thermal YORP and BYORP effects are both capable of removing angular momentum from the system, by spin-down of the components and shrinking the mutual orbit, respectively. The YORP effect, with strength of order that measured for (1862) Apollo [1], can collapse a binary system with equal-mass components in as little as tens of thousands of years (depending on the initial angular momentum), while smaller secondaries require two or more orders of magnitude longer to collapse. BYORP, with a BYORP coefficent of 0.001 [2], is less efficient, especially for smaller secondaries. By these methods, only near-Earth binaries with large mass ratios can collapse within a dynamical lifetime, a population of which is observed by radar with a frequency comparable to separated binaries. [1] Kaasalainen et al., 2007, Nature 446, 420-422. [2] McMahon and Scheeres, 2010, Icarus 209, 494-509.

  20. Collapse of caves at shallow depth in Gaziantep city center, Turkey: a case study

    NASA Astrophysics Data System (ADS)

    Canakci, Hanifi

    2007-12-01

    This paper focuses on an investigation of the possible causes for the collapse of limestone caves in Gaziantep, Turkey. The city contains a lot of man-made caves, at a shallow depth, of various width and length. These caves were mainly excavated to provide work or storage space. As the city has been growing fast with increased population, many structures were constructed over these caves. Recently, two caves collapsed and five houses were damaged. These caves are all made of limestone and it was observed after the collapse that the limestone was saturated with water due to sewer pipe leakage and surface water. Tests were carried out on the limestone and it was determined that the compressive strength of limestone decreases by about 50% and the tensile strength decreased by about 80% when saturated with water. It was concluded that the reduced strength of the limestone combined with additional loads due to the factors mentioned above seem to be the main reason for these collapses.

  1. Three-dimensional simulations of void collapse in energetic materials

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Udaykumar, H. S.

    2018-03-01

    The collapse of voids in porous energetic materials leads to hot-spot formation and reaction initiation. This work advances the current knowledge of the dynamics of void collapse and hot-spot formation using 3D reactive void collapse simulations in HMX. Four different void shapes, i.e., sphere, cylinder, plate, and ellipsoid, are studied. For all four shapes, collapse generates complex three-dimensional (3D) baroclinic vortical structures. The hot spots are collocated with regions of intense vorticity. The differences in the vortical structures for the different void shapes are shown to significantly impact the relative sensitivity of the voids. Voids of high surface area generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In addition, all 3D voids are shown to be more sensitive than their two-dimensional (2D) counterparts. The results provide physical insights into hot-spot formation and growth and point to the limitations of 2D analyses of hot-spot formation.

  2. Investigation of Collapse Characteristics of Cylindrical Composite Panels with Large Cutouts

    DTIC Science & Technology

    1989-12-01

    COLLAPSE CHARACTERISTICS OF CYLINDRICAL COMPOSITE PANELS WITH LARGE CUTOUTS THESIS Scott A. Schimmels Captain, USAF AFIT/GAE/ENY/89D-33 Approved for...public release, distribution unlimited AFIT/GAE/ENY/89D-33 INVESTIGATION OF COLLAPSE * CHARACTERISTICS OF CYLINDRICAL COMPOSITE PANELS WITH LARGE...you would not be reading this. * This thesis research is part of an overall effort in composite nonlinear shell analysis sponsored by AFOSR, Dr

  3. Treat the patient not the blood test: the implications of an increase in cardiac troponin after prolonged endurance exercise

    PubMed Central

    Whyte, G; Stephens, N; Senior, R; George, K; Shave, R; Wilson, M; Sharma, S

    2007-01-01

    Collapse after prolonged endurance exercise is common and usually benign. This case study reports a triathlete who suffered a vaso‐vagal associated collapsed after exercise. Misdiagnosis of myocardial injury in the presence of elevated cardiac troponins and ECG anomalies led to inappropriate management and highlights the difficulty in treating the collapsed athlete following arduous exercise. PMID:17261549

  4. Treat the patient not the blood test: the implications of an increase in cardiac troponin after prolonged endurance exercise

    PubMed Central

    Whyte, Gregory; Whyte, Gregory; Stephens, Nigel; Senior, Roxy; George, Keith; Shave, Robert; Wilson, Mathew; Sharma, Sanjay

    2009-01-01

    Collapse after prolonged endurance exercise is common and usually benign. This case study reports a triathlete who suffered a vaso-vagal associated collapsed after exercise. Misdiagnosis of myocardial injury in the presence of elevated cardiac troponins and ECG anomalies led to inappropriate management and highlights the difficulty in treating the collapsed athlete following arduous exercise. PMID:21686646

  5. Improving Qubit Phase Estimation in Amplitude-damping Channel by Partial-collapse Measurement

    NASA Astrophysics Data System (ADS)

    Liao, Xiang-Ping; Zhou, Xin; Fang, Mao-Fa

    2018-03-01

    An efficient method is proposed to improve qubit phase estimation in amplitude-damping channel by partial-collapse measurement in this paper. It is shown that the quantum Fisher information (QFI) can be distinctly enhanced under amplitude-damping decoherence with partial-collapse measurement. Moreover, the optimal QFI is approximately close to the maximum value 1 regardless of the decoherence parameter by choosing the appropriate measurement strengths.

  6. Current sheet collapse in a plasma focus.

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.; Lee, J. H.

    1972-01-01

    Collapse of the current sheets in a plasma focus has been recorded simultaneously through slits parallel and perpendicular to the symmetry axis in the streak mode. The dark period following the collapse is due to the plasma moving out of the field of view. Microdensitometric measurements of intensity variation also support this conclusion. A large anisotropy is also found in the x-ray radiation pattern. Effects of different vacuum vessels were investigated.

  7. Subsidence and collapse sinkholes in soluble rock: a numerical perspective

    NASA Astrophysics Data System (ADS)

    Kaufmann, Georg; Romanov, Douchko; Hiller, Thomas

    2016-04-01

    Soluble rocks such as limestone, gypsum, anhydrite, and salt are prone to subsidence and the sudden creation of collapse sinkholes. The reason for this behaviour stems from the solubility of the rock: Water percolating through fissures and bedding partings can remove material from the rock walls and thus increase the permeability of the host rock by orders of magnitudes. This process occurs on time scales of 1,000-100,000 years, resulting in enlarged fractures, voids and cavities, which then carry flow efficiently through the rock. The enlargement of sub-surface voids to the meter-size within such short times creates mechanical conditions prone to collapse. The collapse initiates at depth, but then propagates to the surface. By means of numerical modelling, we discuss the long-term evolution of secondary porosity in gypsum rocks, resulting in zones of sub-surface voids, which then become mechanically unstable and collapse. We study two real-world case scenarios, in which we can relate field observations to our numerical model: (i) A dam-site scenario, where flow around the dam caused widespread dissolution of gypsum and subsequent subsidence of the dam and a nearby highway. (ii) A natural collapse sinkhole forming as a result of freshwater inflow into a shallow anhydrite formation with rapid evolution of voids in the sub-surface.

  8. Multi-species collapses at the warm edge of a warming sea

    PubMed Central

    Rilov, Gil

    2016-01-01

    Even during the current biodiversity crisis, reports on population collapses of highly abundant, non-harvested marine species were rare until very recently. This is starting to change, especially at the warm edge of species’ distributions where populations are more vulnerable to stress. The Levant basin is the southeastern edge of distribution of most Mediterranean species. Coastal water conditions are naturally extreme, and are fast warming, making it a potential hotspot for species collapses. Using multiple data sources, I found strong evidence for major, sustained, population collapses of two urchins, one large predatory gastropod and a reef-building gastropod. Furthermore, of 59 molluscan species once-described in the taxonomic literature as common on Levant reefs, 38 were not found in the present-day surveys, and there was a total domination of non-indigenous species in molluscan assemblages. Temperature trends indicate an exceptional warming of the coastal waters in the past three decades. Though speculative at this stage, the fast rise in SST may have helped pushing these invertebrates beyond their physiological tolerance limits leading to population collapses and possible extirpations. If so, these collapses may indicate the initiation of a multi-species range contraction at the Mediterranean southeastern edge that may spread westward with additional warming. PMID:27853237

  9. Monitoring the Collapse of pH-Sensitive Liposomal Nanocarriers and Environmental pH Simultaneously: A Fluorescence-Based Approach.

    PubMed

    Draffehn, Sören; Kumke, Michael U

    2016-05-02

    Nowadays, the encapsulation of therapeutic compounds in so-called carrier systems is a very smart method to achieve protection as well as an improvement of their temporal and spatial distribution. After the successful transport to the point of care, the delivery has to be released under controlled conditions. To monitor the triggered release from the carrier, we investigated different fluorescent probes regarding their response to the pH-induced collapse of pH-sensitive liposomes (pHSLip), which occurs when the environmental pH falls below a critical value. Depending on the probe, the fluorescence decay time as well as fluorescence anisotropy can be used equally as key parameters for monitoring the collapse. Especially the application of a fluorescein labeled fatty acid (fPA) enabled the monitoring of the pHSLips collapse and the pH of its microenvironment simultaneously without interference. Varying the pH in the range of 3 < pH < 9, anisotropy data revealed the critical pH value at which the collapse of the pHSLips occurs. Complementary methods, e.g., fluorescence correlation spectroscopy and dynamic light scattering, supported the analysis based on the decay time and anisotropy. Additional experiments with varying incubation times yielded information on the kinetics of the liposomal collapse.

  10. A study on the disaster medical response during the Mauna Ocean Resort gymnasium collapse.

    PubMed

    Cha, Myeong-Il; Kim, Gi Woon; Kim, Chu Hyun; Choa, Minhong; Choi, Dai Hai; Kim, Inbyung; Wang, Soon Joo; Yoo, In Sool; Yoon, Han Deok; Lee, Kang Hyun; Cho, Suck Ju; Heo, Tag; Hong, Eun Seog

    2016-09-01

    To investigate and document the disaster medical response during the Gyeongju Mauna Ocean Resort gymnasium collapse on February 17, 2014. Official records of each institution were verified to select the study population. All the medical records and emergency medical service run sheets were reviewed by an emergency physician. Personal or telephonic interviews were conducted, without a separate questionnaire, if the institutions or agencies crucial to disaster response did not have official records or if information from different institutions was inconsistent. One hundred fifty-five accident victims treated at 12 hospitals, mostly for minor wounds, were included in this study. The collapse killed 10 people. Although the news of collapse was disseminated in 4 minutes, dispatch of 4 disaster medical assistance teams took at least 69 minutes to take the decision of dispatch. Four point five percent were treated at the accident site, 56.7% were transferred to 2 hospitals that were nearest to the collapse site, and 42.6% were transferred to hospitals that were poorly prepared to handle disaster victims. In the Gyeongju Mauna Ocean Resort gymnasium collapse, the initial triage and distribution of patients was inefficient and medical assistance arrived late. These problems had also been noted in prior mass casualty incidents.

  11. Analysis of rotational and sliding collapse modes of masonry arches via Durand-Claye's method

    NASA Astrophysics Data System (ADS)

    Barsotti, Riccardo; Aita, Danila; Bennati, Stefano

    2017-11-01

    In this paper the mechanical behavior of circular and pointed masonry arches subject to their own weight is examined in order to determine their collapse modes. Different arch's shapes and thicknesses are considered; the influence of the friction coefficient on the arch collapse is analyzed as well. The safety level of arches is investigated by suitably reworking in semi-analytical form the stability area graphical method proposed by a renowned 19th century French scholar, Durand-Claye. Our analysis enables accounting for any given eccentricity of the thrust at the crown; furthermore, also the strength of masonry is taken into account. According to Durand-Claye's method, the arch is safe if along any given joint both the bending moment and the shear force do not exceed some given limit values. It is shown that attainment of a limit condition according to Durand-Claye corresponds to the onset of a collapse mechanism characterized by either relative rotation or sliding between masonry units. All possible symmetric collapse modes for an arch are thoroughly described. As it was expected, pointed and circular arches show different collapse behaviors. Limit values of arch thickness and friction coefficient are assessed. The results obtained are compared with those given by Michon in 1857.

  12. [Collapsing variant of focal segmental glomerulosclerosis by parvovirus B19: case report].

    PubMed

    Freitas, Geraldo Rubens Ramos de; Praxedes, Marcel Rodrigues Gurgel; Malheiros, Denise; Testagrossa, Leonardo; Dias, Cristiane Bitencourt; Woronik, Viktoria

    2015-01-01

    To describe the clinical and laboratory profile of focal segmental glomerulosclerosis (FSGS) of the collapsing subtype in association with infection by parvovirus B19 (PVB19). Female patient, 37 years old, mulatto, developed pharyngalgia and fever with partial improvement after penicillin. After one week we observed reduced urinary output and lower limb edema. Smoker, family and personal history negative for hypertension, diabetes or kidney disease. Patient presented with olyguria, hypertension and edema, also hypochromic microcytic hypoproliferative anemia, nephritic range proteinuria, microscopic hematuria and renal dysfunction. All rheumatologic investigation, HIV and hepatitis serology were negative. Unremarkable renal ultrasound. PCR positive for PVB19 in bone marrow aspirate and blood and renal biopsy conclusive of collapsing FSGS subtype. Spontaneous remission occurred within two weeks of the profile. The blood PVB19 PCR was repeated within a month and resulted negative. This finding demonstrated PVB19 acute infection or viral reactivation in association with collapsing FSGS. There is demonstrated the temporal association of PVB19 viremia and collapsing FSGS, due primary infection or viral reactivation. The association of collapsing FSGS and PVB19 is described in the literature, demonstrating virus presence in kidney tissue, but the real relationship of virus in the pathogenesis of this glomerulopathy remains unclear.

  13. A novel animal model for hyperdynamic airway collapse.

    PubMed

    Tsukada, Hisashi; O'Donnell, Carl R; Garland, Robert; Herth, Felix; Decamp, Malcolm; Ernst, Armin

    2010-12-01

    Tracheobronchomalacia (TBM) is increasingly recognized as a condition associated with significant pulmonary morbidity. However, treatment is invasive and complex, and because there is no appropriate animal model, novel diagnostic and treatment strategies are difficult to evaluate. We endeavored to develop a reliable airway model to simulate hyperdynamic airway collapse in humans. Seven 20-kg male sheep were enrolled in this study. Tracheomalacia was created by submucosal resection of > 50% of the circumference of 10 consecutive cervical tracheal cartilage rings through a midline cervical incision. A silicone stent was placed in the trachea to prevent airway collapse during recovery. Tracheal collapsibility was assessed at protocol-specific time points by bronchoscopy and multidetector CT imaging while temporarily removing the stent. Esophageal pressure and flow data were collected to assess flow limitation during spontaneous breathing. All animals tolerated the surgical procedure well and were stented without complications. One sheep died at 2 weeks because of respiratory failure related to stent migration. In all sheep, near-total forced inspiratory airway collapse was observed up to 3 months postprocedure. Esophageal manometry demonstrated flow limitation associated with large negative pleural pressure swings during rapid spontaneous inhalation. Hyperdynamic airway collapse can reliably be induced with this technique. It may serve as a model for evaluation of novel diagnostic and therapeutic strategies for TBM.

  14. Chain Collapse of an Amyloidogenic Intrinsically Disordered Protein

    PubMed Central

    Jain, Neha; Bhattacharya, Mily; Mukhopadhyay, Samrat

    2011-01-01

    Natively unfolded or intrinsically disordered proteins (IDPs) are under intense scrutiny due to their involvement in both normal biological functions and abnormal protein misfolding disorders. Polypeptide chain collapse of amyloidogenic IDPs is believed to play a key role in protein misfolding, oligomerization, and aggregation leading to amyloid fibril formation, which is implicated in a number of human diseases. In this work, we used bovine κ-casein, which serves as an archetypal model protein for amyloidogenic IDPs. Using a variety of biophysical tools involving both prediction and spectroscopic techniques, we first established that monomeric κ-casein adopts a collapsed premolten-globule-like conformational ensemble under physiological conditions. Our time-resolved fluorescence and light-scattering data indicate a change in the mean hydrodynamic radius from ∼4.6 nm to ∼1.9 nm upon chain collapse. We then took the advantage of two cysteines separated by 77 amino-acid residues and covalently labeled them using thiol-reactive pyrene maleimide. This dual-labeled protein demonstrated a strong excimer formation upon renaturation from urea- and acid-denatured states under both equilibrium and kinetic conditions, providing compelling evidence of polypeptide chain collapse under physiological conditions. The implication of the IDP chain collapse in protein aggregation and amyloid formation is also discussed. PMID:21961598

  15. Pigments in sediments beneath recently collapsed ice shelves: The case of Larsen A and B shelves, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Sañé, E.; Isla, E.; Grémare, A.; Gutt, J.; Vétion, G.; DeMaster, D. J.

    2011-01-01

    In March 2002, 3200 km 2 of the Larsen B ice shelf collapsed off the Eastern Antarctic Peninsula (EAP). In the austral summer of 2006, sea floor sediment was recovered beneath the extinct Larsen B ice shelf and in a region off the Northern Antarctic Peninsula (NAP), which has been free of ice shelves for more than 1000 yr. To assess changes in the chemical composition of the sediment after ice shelf collapses, chlorophylls and pheophytins were measured in sediment cores at six stations. This is the first time that chlorophyll pigments have been analysed in sediment samples from regions under recently collapsed ice shelves. Five years after the ice shelf collapse, Chla and Chlc concentrations were similar in the interfacial sediment (upper 1 cm) of NAP and EAP regions. However, in EAP Chla and Chlc concentrations decreased more rapidly with depth in the sediment column and were negligible below 2 cm depth. The high Chla to Pheoa ratios indicated that sedimentary pigments found in EAP had undergone limited degradation suggesting that they were locally produced rather than laterally advected. Complementary information from excess 210Pb activity and diatom valve distributions provided further evidence that the pigment fluxes to the seabed in EAP took place only after the ice shelf collapse.

  16. Blue straggler formation at core collapse

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran

    Among the most striking feature of blue straggler stars (BSS) in globular clusters is the presence of multiple sequences of BSSs in the colour-magnitude diagrams (CMDs) of several globular clusters. It is often envisaged that such a multiple BSS sequence would arise due a recent core collapse of the host cluster, triggering a number of stellar collisions and binary mass transfers simultaneously over a brief episode of time. Here we examine this scenario using direct N-body computations of moderately-massive star clusters (of order 104 {M⊙). As a preliminary attempt, these models are initiated with ≈8-10 Gyr old stellar population and King profiles of high concentrations, being ``tuned'' to undergo core collapse quickly. BSSs are indeed found to form in a ``burst'' at the onset of the core collapse and several of such BS-bursts occur during the post-core-collapse phase. In those models that include a few percent primordial binaries, both collisional and binary BSSs form after the onset of the (near) core-collapse. However, there is as such no clear discrimination between the two types of BSSs in the corresponding computed CMDs. We note that this may be due to the less number of BSSs formed in these less massive models than that in actual globular clusters.

  17. Fe moments in the pressure-induced collapsed tetragonal phase of (Ca0.67Sr0.33) Fe2As2

    NASA Astrophysics Data System (ADS)

    Jeffries, Jason; Butch, Nicha; Bradley, Joseph; Xiao, Yuming; Chow, Paul; Saha, Shanta; Kirshenbaum, Kevin; Paglione, Johnpierre

    2013-06-01

    The tetragonal AEFe2As2 (AE =alkaline earth element) family of iron-based superconductors exhibits magnetic order at ambient pressure and low temperature. Under pressure, the magnetic order is suppressed, and an isostructural volume collapse is induced due to increased As-As bonding across the mirror plane of the structure. This collapsed tetragonal phase has been shown to support superconductivity under some conditions, and theoretical calculations suggest an unconventional origin. Theoretical calculations also reveal that enhanced As-As bonding and the magnitude of the Fe moments are correlated, suggesting that the Fe moments can be quenched in the collapsed tetragonal phase. Whether the Fe moments persist in the collapsed tetragonal phase has implications for the pairing mechanism of the observed, pressure-induced superconductivity in these compounds. We will present pressure- dependent x-ray emission spectroscopy (XES) measurements that probe the Fe moments through the volume collapse transition of (Ca0.67Sr0.33) Fe2As2. These measurements will be compared with previously reported phase diagrams that include superconductivity. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy (DOE), National Nuclear Security Administration under Contract No. DE-AC52-07NA27344.

  18. Nonlinear lower hybrid structures in auroral plasmas: comparison of theory with observations

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.

    1999-01-01

    Intense, localized lower hybrid wave structures are widely observed in auroral plasmas, often associated with density depletions. Commonly it is concluded without further analysis that these structures are solitons, collapsing wave packets, or other nonlinear entities. Such conclusions are often not justified on theoretical grounds. This review outlines theoretical constraints on field intensity, wave-packet scale length, timescales, and levels of density perturbations that must be met before nonlinear phenomena such as wave collapse and strong turbulence can occur. These criteria are determined within the framework of the modern nucleation scenario for the maintenance of strong turbulence, which involves collapse and dissipation (burnout) of each wave packet, followed by relaxation of its associated density perturbation, then renucleation of further energy into fields trapped in this relaxing perturbation, often leading to further collapse. The criteria are illustrated by applying them to a range of in situ auroral data that have been commonly interpreted in terms of lower hybrid solitons. It will be shown that the data are consistent with some of these criteria, but violate others if packets are all assumed to be observed in the collapse phase. However, theory and observations are consistent within the full nucleation scenario in which packets spend most of their time in the relaxation and renucleation phases, rather than undergoing collapse or burnout.

  19. Temperature and Pressure from Collapsing Pores in HMX

    NASA Astrophysics Data System (ADS)

    Hardin, D. Barrett

    2017-06-01

    The thermal and mechanical response of collapsing voids in HMX is analyzed. In this work, the focus is simulating the temperature and pressure fields arising from isolated, idealized pores as they collapse in the presence of a shock. HMX slabs are numerically generated which contain a single pore, isolated from the boundaries to remove all wave reflections. In order to understand the primary pore characteristics leading to temperature rise, a series of 2D, plane strain simulations are conducted on HMX slabs containing both cylindrical and elliptical pores of constant size equal to the area of a circular pore with a 1 micron diameter. Each of these pore types is then subjected to shock pressures ranging from a weak shock that is unable to fully collapse the pore to a strong shock which overwhelms the tendency for localization. Results indicate that as shock strength increases, pore collapse phenomenology for a cylindrical pore transitions from a mode dominated by localized melt cracking to an idealized hydrodynamic pore collapse. For the case of elliptical pores, the orientation causing maximum temperature and pressure rise is found. The relative heating in elliptical pores is then quantified as a function of pore orientation and aspect ratio for a pore of a given area. Distribution A: Distribution unlimited. (96TW 2017-0036).

  20. The evolution of cave systems from the surface to subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loucks, R.G.; Handford, C.R.

    1996-01-01

    Many carbonate reservoirs are the result of cave-forming processes. The origin and recognition of fractures, breccias, and sediment fills associated with paleocaves were determined through the study of modern and paleocaves systems. Cave formation and destruction are the products of near-surface processes. Near-surface processes include solutional excavation, clastic and chemical sedimentation, and collapse of cave walls and ceilings. Cave sediment is derived from inside and/or outside the system. Depositional mechanisms include suspension, tractional, mass-flow and rock-fall. Collapse of ceilings and walls from chaotic breakdown breccias. These piles can be tens of meters thick and contain large voids and variable amountsmore » of matrix. Cave-roof crackle breccia forms from stress-and tension-related fractures in cave-roof strata. As the cave-bearing strata subside into the subsurface, mechanical compaction increases and restructures the existing breccias and remaining cavities. Fracture porosity increases and breccia and vug porosity decreases. Large cavities collapse forming burial chaotic breakdown breccias. Differentially compacted strata over the collapsed chamber fracture and form burial cave-roof crackle breccias. Continued burial leads to more extensive mechanical compaction causing previously formed clasts to fracture and pack closer together. The resulting product is a rebrecciated chaotic breakdown breccia composed predominantly of small clasts. Rebrecciated blocks are often overprinted by crackling. Subsurface paleocave systems commonly have a complex history with several episodes of fracturing and brecciation. The resulting collapsed-paleocave reservoir targets are not single collapsed passages of tens of feet across, but are homogenized collapsed-cave systems hundreds to several thousand feet across.« less

  1. The evolution of cave systems from the surface to subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loucks, R.G.; Handford, C.R.

    1996-12-31

    Many carbonate reservoirs are the result of cave-forming processes. The origin and recognition of fractures, breccias, and sediment fills associated with paleocaves were determined through the study of modern and paleocaves systems. Cave formation and destruction are the products of near-surface processes. Near-surface processes include solutional excavation, clastic and chemical sedimentation, and collapse of cave walls and ceilings. Cave sediment is derived from inside and/or outside the system. Depositional mechanisms include suspension, tractional, mass-flow and rock-fall. Collapse of ceilings and walls from chaotic breakdown breccias. These piles can be tens of meters thick and contain large voids and variable amountsmore » of matrix. Cave-roof crackle breccia forms from stress-and tension-related fractures in cave-roof strata. As the cave-bearing strata subside into the subsurface, mechanical compaction increases and restructures the existing breccias and remaining cavities. Fracture porosity increases and breccia and vug porosity decreases. Large cavities collapse forming burial chaotic breakdown breccias. Differentially compacted strata over the collapsed chamber fracture and form burial cave-roof crackle breccias. Continued burial leads to more extensive mechanical compaction causing previously formed clasts to fracture and pack closer together. The resulting product is a rebrecciated chaotic breakdown breccia composed predominantly of small clasts. Rebrecciated blocks are often overprinted by crackling. Subsurface paleocave systems commonly have a complex history with several episodes of fracturing and brecciation. The resulting collapsed-paleocave reservoir targets are not single collapsed passages of tens of feet across, but are homogenized collapsed-cave systems hundreds to several thousand feet across.« less

  2. Reassessment of True Core Collapse Differential Pressure Values for Filter Elements in Safety Critical Environments - 13076

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swain, Adam

    2013-07-01

    As the areas of application for diverse filter types increases, the mechanics and material sciences associated with the hardware and its relationship with more and more arduous process environments becomes critical to the successful and reliable operation of the filtration equipment. Where the filter is the last safe barrier between the process and the life environment, structural integrity and reliability is paramount in both the validation and the ethical acceptability of the designed equipment. Core collapse is a key factor influencing filter element selection, and is an extremely complex issue with a number of variables and failure mechanisms. It ismore » becoming clear that the theory behind core collapse calculations is not always supported with real tested data. In exploring this issue we have found that the calculation method is not always reflective of the true as tested collapse value, with the calculated values being typically in excess or even an order of magnitude higher than the tested values. The above claim is supported by a case study performed by the author, which disproves most of what was previously understood to be true. This paper also aims to explore the various failure mechanisms of different configurations of filter core, comparing calculated collapse values against real tested values, with a view to understanding a method of calculating their true collapse value. As the technology is advancing, and filter elements are being used in higher temperature, higher pressure, more radioactive and more chemically aggressive environments, confidence in core collapse values and data is crucial. (authors)« less

  3. Small-angle neutron scattering study of micropore collapse in amorphous solid water.

    PubMed

    Mitterdorfer, Christian; Bauer, Marion; Youngs, Tristan G A; Bowron, Daniel T; Hill, Catherine R; Fraser, Helen J; Finney, John L; Loerting, Thomas

    2014-08-14

    Vapor-deposited amorphous solid water (ASW) is the most abundant solid molecular material in space, where it plays a direct role in both the formation of more complex chemical species and the aggregation of icy materials in the earliest stages of planet formation. Nevertheless, some of its low temperature physics such as the collapse of the micropore network upon heating are still far from being understood. Here we characterize the nature of the micropores and their collapse using neutron scattering of gram-quantities of D2O-ASW of internal surface areas up to 230 ± 10 m(2) g(-1) prepared at 77 K. The model-free interpretation of the small-angle scattering data suggests micropores, which remain stable up to 120-140 K and then experience a sudden collapse. The exact onset temperature to pore collapse depends on the type of flow conditions employed in the preparation of ASW and, thus, the specific surface area of the initial deposit, whereas the onset of crystallization to cubic ice is unaffected by the flow conditions. Analysis of the small-angle neutron scattering signal using the Guinier-Porod model suggests that a sudden transition from three-dimensional cylindrical pores with 15 Å radius of gyration to two-dimensional lamellae is the mechanism underlying the pore collapse. The rather high temperature of about 120-140 K of micropore collapse and the 3D-to-2D type of the transition unraveled in this study have implications for our understanding of the processing and evolution of ices in various astrophysical environments.

  4. Gravity or turbulence? IV. Collapsing cores in out-of-virial disguise

    NASA Astrophysics Data System (ADS)

    Ballesteros-Paredes, Javier; Vázquez-Semadeni, Enrique; Palau, Aina; Klessen, Ralf S.

    2018-06-01

    We study the dynamical state of massive cores by using a simple analytical model, an observational sample, and numerical simulations of collapsing massive cores. From the analytical model, we find that cores increase their column density and velocity dispersion as they collapse, resulting in a time evolution path in the Larson velocity dispersion-size diagram from large sizes and small velocity dispersions to small sizes and large velocity dispersions, while they tend to equipartition between gravity and kinetic energy. From the observational sample, we find that: (a) cores with substantially different column densities in the sample do not follow a Larson-like linewidth-size relation. Instead, cores with higher column densities tend to be located in the upper-left corner of the Larson velocity dispersion σv, 3D-size R diagram, a result explained in the hierarchical and chaotic collapse scenario. (b) Cores appear to have overvirial values. Finally, our numerical simulations reproduce the behavior predicted by the analytical model and depicted in the observational sample: collapsing cores evolve towards larger velocity dispersions and smaller sizes as they collapse and increase their column density. More importantly, however, they exhibit overvirial states. This apparent excess is due to the assumption that the gravitational energy is given by the energy of an isolated homogeneous sphere. However, such excess disappears when the gravitational energy is correctly calculated from the actual spatial mass distribution. We conclude that the observed energy budget of cores is consistent with their non-thermal motions being driven by their self-gravity and in the process of dynamical collapse.

  5. Finite-element modeling of magma chamber-host rock interactions prior to caldera collapse

    NASA Astrophysics Data System (ADS)

    Kabele, Petr; Žák, Jiří; Somr, Michael

    2017-06-01

    Gravity-driven failure of shallow magma chamber roofs and formation of collapse calderas are commonly accompanied by ejection of large volumes of pyroclastic material to the Earth's atmosphere and thus represent severe volcanic hazards. In this respect, numerical analysis has proven as a key tool in understanding the mechanical conditions of caldera collapse. The main objective of this paper is to find a suitable approach to finite-element simulation of roof fracturing and caldera collapse during inflation and subsequent deflation of shallow magma chambers. Such a model should capture the dominant mechanical phenomena, for example, interaction of the host rock with magma and progressive deformation of the chamber roof. To this end, a comparative study, which involves various representations of magma (inviscid fluid, nearly incompressible elastic, or plastic solid) and constitutive models of the host rock (fracture and plasticity), was carried out. In particular, the quasi-brittle fracture model of host rock reproduced well the formation of tension-induced radial and circumferential fractures during magma injection into the chamber (inflation stage), especially at shallow crustal levels. Conversely, the Mohr-Coulomb shear criterion has shown to be more appropriate for greater depths. Subsequent magma withdrawal from the chamber (deflation stage) results in further damage or even collapse of the chamber roof. While most of the previous studies of caldera collapse rely on the elastic stress analysis, the proposed approach advances modeling of the process by incorporating non-linear failure phenomena and nearly incompressible behaviour of magma. This leads to a perhaps more realistic representation of the fracture processes preceding roof collapse and caldera formation.

  6. The heart works against gravity

    NASA Technical Reports Server (NTRS)

    Seymour, R. S.; Hargens, A. R.; Pedley, T. J.

    1993-01-01

    The circulatory systems of vertebrate animals are closed, and blood leaves and returns to the heart at the same level. It is often concluded, therefore, that the heart works only against the viscous resistance of the system, not against gravity, even in vascular loops above the heart in which the siphon principle operates. However, we argue that the siphon principle does not assist blood flow in superior vascular loops if any of the descending vasculature is collapsible. If central arterial blood pressure is insufficient to support a blood column between the heart and the head, blood flow ceases because of vascular collapse. Furthermore, the siphon principle does not assist the heart even when a continuous stream of blood is flowing in a superior loop. The potential energy gained by blood as it is pumped to the head is lost to friction in partially collapsed descending vessels and thus is not regained. Application of the Poiseuille equation to flow in collapsible vessels is limited; resistance depends on flow rate in partially collapsed vessels with no transmural pressure difference, but flow rate is independent of resistance. Thus the pressure developed by the heart to establish a given flow rate is independent of the resistance occurring in the partially collapsed vessels. The pressure depends only on the height of the blood column and the resistance in the noncollapsed parts of the system. Simple laboratory models, involving water flow in collapsible tubing, dispel the idea that the siphon principle facilitates blood flow and suggest that previously published results may have been affected by experimental artifact.

  7. Collapsed Lung: MedlinePlus Health Topic

    MedlinePlus

    ... tube insertion - slideshow Collapsed lung (pneumothorax) Hemothorax Lung surgery Pneumothorax - slideshow Pneumothorax - infants Related Health Topics Chest Injuries and Disorders Lung Diseases Pleural Disorders ...

  8. Presenting rhythm in sudden deaths temporally proximate to discharge of TASER conducted electrical weapons.

    PubMed

    Swerdlow, Charles D; Fishbein, Michael C; Chaman, Linda; Lakkireddy, Dhanunjaya R; Tchou, Patrick

    2009-08-01

    Sudden deaths proximate to use of conducted electrical weapons (CEWs) have been attributed to cardiac electrical stimulation. The rhythm in death caused by rapid, cardiac electrical stimulation usually is ventricular fibrillation (VF); electrical stimulation has not been reported to cause asystole or pulseless electrical activity (PEA). The authors studied the presenting rhythms in sudden deaths temporally proximate to use of TASER CEWs to estimate the likelihood that these deaths could be caused by cardiac electrical stimulation. This was a retrospective review of CEW-associated, nontraumatic sudden deaths from 2001 to 2008. Emergency medical services (EMS), autopsy, and law enforcement reports were requested and analyzed. Subjects were included if they collapsed within 15 minutes of CEW discharge and the first cardiac arrest rhythm was reported. Records for 200 cases were received. The presenting rhythm was reported for 56 of 118 subjects who collapsed within 15 minutes (47%). The rhythm was VF in four subjects (7%; 95% confidence interval [CI] = 3% to 17%) and bradycardia-asystole or PEA in 52 subjects (93%; 95% CI = 83% to 97%). None of the eight subjects who collapsed during electrocardiogram (ECG) monitoring had VF. Only one subject (2%) collapsed immediately after CEW discharge. This was the only death typical of electrically induced VF (2%, 95% CI = 0% to 9%). An additional 4 subjects (7%) collapsed within 1 minute, and the remaining 51 subjects (91%) collapsed more than 1 minute later. The time from collapse to first recorded rhythm was 3 minutes or less in 35 subjects (62%) and 5 minutes or less in 43 subjects (77%). In sudden deaths proximate to CEW discharge, immediate collapse is unusual, and VF is an uncommon VF presenting rhythm. Within study limitations, including selection bias and the possibility that VF terminated before the presenting rhythm was recorded, these data do not support electrically induced VF as a common mechanism of these sudden deaths.

  9. A multidisciplinary study of the 2014-2015 Bárðarbunga caldera collapse, Iceland

    NASA Astrophysics Data System (ADS)

    Tumi Gudmundsson, Magnus; Jonsdóttir, Kristin; Hooper, Andy; Holohan, Eoghan; Halldorsson, Saemundur

    2016-04-01

    The collapse of the ice-filled Bárðarbunga caldera in central Iceland occurred in autumn and winter, when weather was highly unsettled and conditions for monitoring in many ways difficult. Nevertheless several detailed time series could be obtained on the collapse and to a degree the associated flood-basalt eruption in Holuhraun. This was achieved through applying an array of sensors, that were ground, air and satellite based, partly made possible through the EU-funded FUTUREVOLC supersite project. This slow caldera collapse lasted six months, ending in February 2015. The array of sensors used, coupled with the long duration of the event, allowed unprecedented detail in observing a caldera collapse. The deciphering of the course of events required the use of aircraft altimeter surveys of the ice surface, seismic and GPS monitoring, the installation of a GPS station on the glacier surface in the centre of the caldera that continuously recorded the subsidence. Full Stokes 3-D modelling of the 700-800 m thick ice in the caldera, constrained by observations, was applied to remove the component of ice deformation that had a minor effect on the measured subsidence. The maximum subsidence of the subglacial caldera floor was about 65 meters. The combined interpretation of geochemical geobarometers, subsidence geometry with GPS and InSAR deformation signals, seismicity and distinct element deformation modelling of the subsidence provided unprecedented detail of the process and mechanism of caldera collapse. The collapse involved the re-activation of pre-existing ring faults, and was initiated a few days after magma started to drain from underneath the caldera towards the eventual eruption site in Holuhraun, 45 km to the northeast. The caldera collapse was slow and gradual, and the flow rate from underneath the caldera correlates well with the lava flow rate in Holuhraun, both in terms of total volume and variations in time.

  10. Lateral and posterior pillar grade changes during the treatment of Perthes disease in older patients using skin traction and range of motion exercises.

    PubMed

    Sugimoto, Yoshihisa; Akazawa, Hirofumi; Mitani, Shigeru; Tanaka, Masato; Nakagomi, Tadashi; Asaumi, Koji; Ozaki, Toshifumi

    2006-03-01

    The lateral pillar (LP) grade changes detected during treatment periods have received a lot of attention recently. Lappin et al. reported LP collapses in 92 of 275 (33%) patients during the treatment, but did not provide information for comparing treatment methods and age of onset of the disease. The purpose of this study was to review radiological changes in LP grade in older patients with Perthes disease during 20 months of treatment with skin traction and ROM exercises. We have also reported any grade changes in the posterior pillar (PP) classification. Twenty-one patients with unilateral disease who were 9 years or older at the onset of symptoms had been followed until skeletal maturity. Out of 21 older patients with Perthes disease, our study had two (9.5%) who experienced LP collapse and two (9.5%) who experienced PP collapse during the first 20 months of treatment. The average time from onset to hospitalization in hips, initially classified as LP group C and PP group C, was significantly longer than in LP and PP groups A and B. The LP collapse in two hips and PP collapse in two hips occurred during months 4-8 of treatment. On the other hand, of the patients allowed to ambulate with the Pogo stick orthosis from months 8 to 12 and without a brace from months 10 to 15, none had a collapse of their LPs or PPs during these periods. Lappin et al. reported that 92 of 275 patients (33%) who were managed conservatively in several hospitals experienced LP collapse during their treatment periods. Our results suggest that older patients with this disease treated with skin traction and ROM exercises rarely suffer a LP collapse, as compared with the Lappin et al. report.

  11. Fernandina caldera collapse morphology in geometric and dynamic comparison to sandbox models, subsidence sinks over nuclear-explosion cavities, and some other calderas

    NASA Astrophysics Data System (ADS)

    Howard, K. A.

    2009-12-01

    The 1968 collapse structure of Fernandina caldera (1.5 km3 collapsed) and also the smaller Darwin Bay caldera in Galápagos each closely resembles morphologically the structural zoning of features found in depressions collapsed into nuclear-explosion cavities (“sinks” of Houser, 1969) and in coherent sandbox-collapse models. Coherent collapses characterized by faulting, folding, and organized structure contrast with spalled pit craters (and lab experiments with collapsed powder) where disorganized piles of floor rubble result from tensile failure of the roof. Subsidence in coherent mode, whether in weak sand in the lab, stronger desert alluvium for nuclear-test sinks, or in hard rock for calderas, exhibits consistent morphologic zones. Characteristically in the sandbox and the nuclear-test analogs these include a first-formed central plug that drops along annular reverse faults. This plug and a surrounding inward-tilted or monoclinal ring (hanging wall of the reverse fault) contract as the structure expands outward by normal faulting, wherein peripheral rings of distending material widen the upper part of the structure along inward-dipping normal faults and compress inner zones and help keep them intact. In Fernandina, a region between the monocline and the outer zone of normal faulting is interpreted, by comparison to the analogs, to overlie the deflation margin of an underlying magma chamber. The same zoning pattern is recognized in structures ranging from sandbox subsidence features centimeters across, to Alae lave lake and nuclear-test sinks tens to hundreds of meters across, to Fenandina’s 2x4 km-wide collapse, to Martian calderas tens of kilometers across. Simple dimensional analysis using the height of cliffs as a proxie for material strength implies that the geometric analogs are good dynamic analogs, and validates that the pattern of both reverse and normal faulting that has been reported consistently from sandbox modeling applies widely to calderas.

  12. An Experimental Investigation of the Role of Solid Particles on the Collapse of Explosive Volcanic Plumes

    NASA Astrophysics Data System (ADS)

    Carazzo, G.; Kaminski, E.; Tait, S.

    2007-12-01

    Pyroclastic density currents generated by the collapse of an explosive volcanic plume represent the most dangerous flows associated with such eruptions. The study of the mechanical processes leading to column collapse is therefore at the heart of current investigations. Fluid dynamic models show that the behavior of a volcanic jet is mainly controlled by the efficiency with which it entrains and heats atmospheric air. The volcanic mixture initially denser than the atmosphere can thus become buoyant if both processes are effective. The complex role of the particle load and heat exchange makes it difficult to study their effect on the jet dynamics other than by sophisticated numerical simulations. Nevertheless to develop an alternative approach, we present an experimental study in which a turbulent 2-phase jet of hot gas and hot particles is propelled into a large chamber of cold air. The jet is initially driven by momentum and naturally collapses, but if the mixing with the surrounding environment is sufficient the buoyancy can reverse to drive a convective plume. We focus on the influence of source particle concentration and source gas velocity on the threshold between the convective and the collapsing regimes. In the range of the source conditions investigated the jet mostly separated into a po sitively buoyant part and a denser collapsing part. We quantify the fraction of the jet collapsed by collecting the particles and we show that the degree of jet collapse is mainly controlled by the initial amount of particles. A 1D model of turbulent jets accounting for the effect of the reversing buoyancy on the turbulent entrainment, the aggregation, the sedimentation and the recycling of particles is presented. The model is found in good agreement with the data. Further work is necessary to understand the fundamental physics behind the semi-empirical parametrization of re-entrainment and aggregation processes.

  13. Lobar analysis of collapsibility indices to assess functional lung volumes in COPD patients.

    PubMed

    Kitano, Mariko; Iwano, Shingo; Hashimoto, Naozumi; Matsuo, Keiji; Hasegawa, Yoshinori; Naganawa, Shinji

    2014-01-01

    We investigated correlations between lung volume collapsibility indices and pulmonary function test (PFT) results and assessed lobar differences in chronic obstructive pulmonary disease (COPD) patients, using paired inspiratory and expiratory three dimensional (3D) computed tomography (CT) images. We retrospectively assessed 28 COPD patients who underwent paired inspiratory and expiratory CT and PFT exams on the same day. A computer-aided diagnostic system calculated total lobar volume and emphysematous lobar volume (ELV). Normal lobar volume (NLV) was determined by subtracting ELV from total lobar volume, both for inspiratory phase (NLVI) and for expiratory phase (NLVE). We also determined lobar collapsibility indices: NLV collapsibility ratio (NLVCR) (%)=(1-NLVE/NLVI)×100%. Associations between lobar volumes and PFT results, and collapsibility indices and PFT results were determined by Pearson correlation analysis. NLVCR values were significantly correlated with PFT results. Forced expiratory volume in 1 second, measured as percent of predicted results (FEV1%P) was significantly correlated with NLVCR values for the lower lobes (P<0.01), whereas this correlation was not significant for the upper lobes (P=0.05). FEV1%P results were also moderately correlated with inspiratory, expiratory ELV (ELVI,E) for the lower lobes (P<0.05). In contrast, the ratio of the diffusion capacity for carbon monoxide to alveolar gas volume, measured as percent of predicted (DLCO/VA%P) results were strongly correlated with ELVI for the upper lobes (P<0.001), whereas this correlation with NLVCR values was weaker for upper lobes (P<0.01) and was not significant for the lower lobes (P=0.26). FEV1%P results were correlated with NLV collapsibility indices for lower lobes, whereas DLCO/VA%P results were correlated with NLV collapsibility indices and ELV for upper lobes. Thus, evaluating lobar NLV collapsibility might be useful for estimating pulmonary function in COPD patients.

  14. Comparison of plethysmographic and helium dilution lung volumes in patients with a giant emphysematous bulla as selection criteria for endobronchial valve implant.

    PubMed

    Fiorelli, Alfonso; Scaramuzzi, Roberto; Pierdiluca, Matteo; Frongillo, Elisabetta; Messina, Gaetana; Serra, Nicola; De Felice, Alberto; Santini, Mario

    2017-09-01

    To assess whether the difference in lung volume measured with plethysmography and with the helium dilution technique could differentiate an open from a closed bulla in patients with a giant emphysematous bulla and could be used as a selection criterion for the positioning of an endobronchial valve. We reviewed the data of 27 consecutive patients with a giant emphysematous bulla undergoing treatment with an endobronchial valve. In addition to standard functional and radiological examinations, total lung capacity and residual volume were measured with the plethysmographic and helium dilution technique. We divided the patients into 2 groups, the collapse or the no-collapse group, depending on whether the bulla collapsed or not after the valves were put in position. We statistically evaluated the intergroup differences in lung volume and outcome. In the no-collapse group (n = 6), the baseline plethysmographic values were significantly higher than the helium dilution volumes, including total lung capacity (188 ± 14 vs 145 ± 13, P = 0.0007) and residual volume (156 ± 156 vs 115 ± 15, P = 0.001). In the collapse group, there was no significant difference in lung volumes measured with the 2 methods. A difference in total lung capacity of ≤ 13% and in residual volume of ≤ 25% measured with the 2 methods predicted the collapse of the bulla with a success rate of 83% and 84%, respectively. Only the collapse group showed significant improvement in functional data. Similar values in lung volumes measured with the 2 methods support the hypothesis that the bulla communicates with the airway (open bulla) and thus is likely to collapse when the endobronchial valve is implanted. Further studies are needed to validate our model. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  15. Shock-induced collapse of a bubble inside a deformable vessel

    PubMed Central

    Coralic, Vedran; Colonius, Tim

    2013-01-01

    Shockwave lithotripsy repeatedly focuses shockwaves on kidney stones to induce their fracture, partially through cavitation erosion. A typical side effect of the procedure is hemorrhage, which is potentially the result of the growth and collapse of bubbles inside blood vessels. To identify the mechanisms by which shock-induced collapse could lead to the onset of injury, we study an idealized problem involving a preexisting bubble in a deformable vessel. We utilize a high-order accurate, shock- and interface-capturing, finite-volume scheme and simulate the three-dimensional shock-induced collapse of an air bubble immersed in a cylindrical water column which is embedded in a gelatin/water mixture. The mixture is a soft tissue simulant, 10% gelatin by weight, and is modeled by the stiffened gas equation of state. The bubble dynamics of this model configuration are characterized by the collapse of the bubble and its subsequent jetting in the direction of the propagation of the shockwave. The vessel wall, which is defined by the material interface between the water and gelatin/water mixture, is invaginated by the collapse and distended by the impact of the jet. The present results show that the highest measured pressures and deformations occur when the volumetric confinement of the bubble is strongest, the bubble is nearest the vessel wall and/or the angle of incidence of the shockwave reduces the distance between the jet tip and the nearest vessel surface. For a particular case considered, the 40 MPa shockwave utilized in this study to collapse the bubble generated a vessel wall pressure of almost 450 MPa and produced both an invagination and distention of nearly 50% of the initial vessel radius on a 𝒪(10) ns timescale. These results are indicative of the significant potential of shock-induced collapse to contribute to the injury of blood vessels in shockwave lithotripsy. PMID:24015027

  16. Multiple edifice-collapse events in the Eastern Mexican Volcanic Belt: The role of sloping substrate and implications for hazard assessment

    USGS Publications Warehouse

    Carrasco-Nunez, Gerardo; Diaz-Castellon, Rodolfo; Siebert, L.; Hubbard, B.; Sheridan, M.F.; Rodriguez, Sergio R.

    2006-01-01

    The Citlalte??petl-Cofre de Perote volcanic chain forms an important physiographic barrier that separates the Central Altiplano (2500??masl) from the Gulf Coastal Plain (GCP) (1300??masl). The abrupt eastward drop in relief between these provinces gives rise to unstable conditions and consequent gravitational collapse of large volcanic edifices built at the edge of the Altiplano. Eastward sloping substrate, caused by the irregular configuration of the basement rocks, is the dominant factor that controls the direction of collapsing sectors in all major volcanoes in the region to be preferentially towards the GCP. These collapses produced voluminous debris avalanches and lahars that inundated the well-developed drainages and clastic aprons that characterize the Coastal Plain. Large catastrophic collapses from Citlalte??petl, Las Cumbres, and Cofre de Perote volcanoes are well documented in the geologic record. Some of the avalanches and transformed flows have exceptionally long runouts and reach the Gulf of Mexico traveling more than 120??km from their source. So far, no direct evidence has been found for magmatic activity associated with the initiation of these catastrophic flank-collapses. Apparently, instability of the volcanic edifices has been strongly favored by very intense hydrothermal alteration, abrupt topographic change, and intense fracturing. In addition to the eastward slope of the substrate, the reactivation of pre-volcanic basement structures during the Late Tertiary, and the E-W to ENE-SSW oriented regional stress regimes may have played an important role in the preferential movement direction of the avalanches and flows. In addition to magmatic-hydrothermal processes, high amounts of rainfall in the area is another factor that enhances alteration and eventually weakens the rocks. It is very likely that seismic activity may be the principal triggering mechanism that caused the flank collapse of large volcanic edifices in the Eastern Mexican Volcanic Belt. However, critical pore water pressure from extraordinary amounts of rainfall associated with hurricanes or other meteorological perturbation cannot be ruled out, particularly for smaller volume collapses. There are examples in the area of small seismogenic debris flows that have occurred in historical times, showing that these processes are not uncommon. Assessing the stability conditions of major volcanic edifices that have experienced catastrophic sector collapses is crucial for forecasting future events. This is particularly true for the Eastern Mexican Volcanic Belt, where in many cases no magmatic activity was associated with the collapse. Therefore, edifice failure could occur again without any precursory warning. ?? 2006 Elsevier B.V. All rights reserved.

  17. Geochemical soil sampling for deeply-buried mineralized breccia pipes, northwestern Arizona

    USGS Publications Warehouse

    Wenrich, K.J.; Aumente-Modreski, R. M.

    1994-01-01

    Thousands of solution-collapse breccia pipes crop out in the canyons and on the plateaus of northwestern Arizona; some host high-grade uranium deposits. The mineralized pipes are enriched in Ag, As, Ba, Co, Cu, Mo, Ni, Pb, Sb, Se, V and Zn. These breccia pipes formed as sedimentary strata collapsed into solution caverns within the underlying Mississippian Redwall Limestone. A typical pipe is approximately 100 m (300 ft) in diameter and extends upward from the Redwall Limestone as much as 1000 m (3000 ft). Unmineralized gypsum and limestone collapses rooted in the Lower Permian Kaibab Limestone or Toroweap Formation also occur throughout this area. Hence, development of geochemical tools that can distinguish these unmineralized collapse structures, as well as unmineralized breccia pipes, from mineralized breccia pipes could significantly reduce drilling costs for these orebodies commonly buried 300-360 m (1000-1200 ft) below the plateau surface. Design and interpretation of soil sampling surveys over breccia pipes are plagued with several complications. (1) The plateau-capping Kaibab Limestone and Moenkopi Formation are made up of diverse lithologies. Thus, because different breccia pipes are capped by different lithologies, each pipe needs to be treated as a separate geochemical survey with its own background samples. (2) Ascertaining true background is difficult because of uncertainties in locations of poorly-exposed collapse cones and ring fracture zones that surround the pipes. Soil geochemical surveys were completed on 50 collapse structures, three of which are known mineralized breccia pipes. Each collapse structure was treated as an independent geochemical survey. Geochemical data from each collapse feature were plotted on single-element geochemical maps and processed by multivariate factor analysis. To contrast the results between geochemical surveys (collapse structures), a means of quantifying the anomalousness of elements at each site was developed. This degree of anomalousness, named the "correlation value", was used to rank collapse features by their potential to overlie a deeply-buried mineralized breccia pipe. Soil geochemical results from the three mineralized breccia pipes (the only three of the 50 that had previously been drilled) show that: (1) Soils above the SBF pipe contain significant enrichment of Ag, Al, As, Ba, Ga, K, La, Mo, Nd, Ni, Pb, Sc, Th, U and Zn, and depletion in Ca, Mg and Sr, in contrast to soils outside the topographic and structural rim; (2) Soils over the inner treeless zone of the Canyon pipe show Mo and Pb enrichment anf As and Ga depletion, in contrast to soils from the surrounding forest; and (3) The soil survey of the Mohawk Canyon pipe was a failure because of the rocky terrane and lack of a B soil horizon, or because the pipe plunges. At least 11 of the 47 other collapse structures studied contain anomalous soil enrichments similar to the SBF uranium ore-bearing pipe, and thus have good potential as exploration targets for uranium. One of these 11, #1102, does contain surface mineralized rock. These surveys suggest that soil geochemical sampling is a useful tool for the recognition of many collapse structures with underlying ore-bearing breccia pipes. ?? 1994.

  18. Obstructive sleep apnea syndrome: natural history, diagnosis, and emerging treatment options

    PubMed Central

    Gharibeh, Tarek; Mehra, Reena

    2010-01-01

    Sleep apnea is an entity characterized by repetitive upper airway obstruction resulting in nocturnal hypoxia and sleep fragmentation. It is estimated that 2%–4% of the middle-aged population has sleep apnea with a predilection in men relative to women. Risk factors of sleep apnea include obesity, gender, age, menopause, familial factors, craniofacial abnormalities, and alcohol. Sleep apnea has been increasingly recognized as a major health burden associated with hypertension and increased risk of cardiovascular disease and death. Increased airway collapsibility and derangement in ventilatory control responses are the major pathological features of this disorder. Polysomnography (PSG) is the gold-standard method for diagnosis of sleep apnea and assessment of sleep apnea severity; however, portable sleep monitoring has a diagnostic role in the setting of high pretest probability sleep apnea in the absence of significant comorbidity. Positive pressure therapy is the mainstay therapy of sleep apnea. Other treatment modalities, such as upper airway surgery or oral appliances, may be used for the treatment of sleep apnea in select cases. In this review, we focus on describing the sleep apnea definition, risk factor profile, underlying pathophysiologic mechanisms, associated adverse consequences, diagnostic modalities, and treatment strategies. PMID:23616712

  19. A case of deep infection after instrumentation in dorsal spinal surgery: the management with antibiotics and negative wound pressure without removal of fixation.

    PubMed

    Dobran, Mauro; Mancini, Fabrizio; Nasi, Davide; Scerrati, Massimo

    2017-07-28

    Until today the role of spinal instrumentation in the presence of a wound infection has been widely discussed and recently many authors leave the hardware in place with appropriate antibiotic therapy. This is a case of a 65-year-old woman suffering from degenerative scoliosis and osteoporotic multiple vertebral collapses treated with posterior dorsolumbar stabilisation with screws and rods. Four months later, skin necrosis and infection appeared in the cranial wound with exposure of the rods. A surgical procedure of debridement of the infected tissue and package with a myocutaneous trapezius muscle flap was performed. One week after surgery, negative pressure wound therapy was started on the residual skin defect. The wound healed after 2 months. The aim of this case report is to focus on the utility of this method even in the case of hardware exposure and infection. This may help avoid removing instrumentation and creating instability. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. An autopsy case of fatal acute peritonitis complicated by illegal acupuncture therapy.

    PubMed

    Kim, DongJa; Lee, SangHan

    2017-07-01

    Acupuncture is an alternative medical therapy and widely practiced in Northeast Asia. Although it is known as a safe procedure, complications including infection, pneumothorax, hemorrhage, and cardiac tamponade have been reported. The authors present a rare case of fatal acute peritonitis due to penetration of acupuncture needles directly into the abdominal and pelvic cavity. The victim was a 55-year-old woman who had a recent history of chemo-radiotherapy due to breast cancer. She was collapsed three days after receiving acupuncture. She had symptoms of fever and chilling sensation, general myalgia, and vomiting during three days. The autopsy revealed several needle marks in the lower abdomen and 180ml of bloody exudate in the abdominal cavity. There was no visible intestinal perforation, but hemorrhagic foci in the mesentery and paracolic area of sigmoid colon were noted. The deepest portion was 13.5cm from the needle marks on the abdominal skin. The practitioner had not a Chinese medical license. He was accused of illegal medical practice and manslaughter. Acute peritonitis associated with acupuncture might be caused by inadequate sterilization of skin and needle itself and/or direct mesentery injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Periodic collapse and long-time evolution of strong Langmuir turbulence

    NASA Astrophysics Data System (ADS)

    Cheung, P. Y.; Wong, A. Y.

    1985-10-01

    Experimental measurements on the long-time evolution of strong Langmuir turbulence in a beam-plasma system reveal a picture of periodic, short bursts of Langmuir wave collapse instead of the existence of long-lived solitons. The remnants of density cavities from burnout cavitons are observed to curtail wave growth periodically, creating time intervals of low wave activity between successive cycles of wave collapse, and establishing three regimes of wave evolution.

  2. Generation of Collapsed Cross Sections for Hatch 1 Cycles 1-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J

    2012-11-01

    Under NRC JCN V6361, Oak Ridge National Laboratory (ORNL) was tasked to develop and run SCALE/TRITON models for generation of collapsed few-group cross sections and to convert the cross sections to PMAXS format using the GENPMAXS conversion utility for use in PARCS/PATHS simulations of Hatch Unit 1, cycles 1-3. This letter report documents the final models used to produce the Hatch collapsed cross sections.

  3. Localized Tissue Surrogate Deformation due to Controlled Single Bubble Cavitation

    DTIC Science & Technology

    2014-08-27

    calculate liquid jet formation with collapse of an empty spherical bubble due to the high surrounding fluid pressure 18. Experimental evidence of...maximum collapse pressures over a wide range between 8 MPa 13 to 2.5 GPa 11 have also been calculated . 5 A fundamental problem in the study of...and a digital image correlation (DIC) technique was used to calculate strain fields during bubble growth and collapse. The subsequent response of the

  4. Csub60/Collapsed Carbon Nanotube Hybrids: A Variant of Peapods (Open Access)

    DTIC Science & Technology

    2015-01-02

    fullerenes , collapsed carbon nanotubes, silocrystals Hybrid nanostructures are of great interest due to thepotential for engineering new materials with...tunable physical and chemical properties. An example is the so-called nanotube “peapod” first described by Smith et al.,1 where fullerene C60 molecules...an interesting derivative of CNTs. It has been theoretically shown that CNTs are prone to collapse into a nearly flat, ribbon- like configuration if

  5. Observations of the Dynamics and Acoustics of Travelling Bubble Cavitation

    DTIC Science & Technology

    1990-06-25

    and Hollander (1948) and Parkin (1952)), and a cavitation bubble collapsing near a solid boundary may produce a microjet of fluid, which has been...bubbles collapsing near a solid surface (Lauterborn and Bolle (1975) and Kimoto (1987), for example), and this microjet is suspected to be the main cause of...cavitation erosion damage. Although many photographs were taken, a reentrant microjet was not observed in any of the photographs of bubble collapse

  6. Did mud contribute to freeway collapse?

    NASA Astrophysics Data System (ADS)

    Hough, Susan E.; Friberg, Paul A.; Busby, Robert; Field, Edward F.; Jacob, Klaus H.; Borcherdt, Roger D.

    At least 41 people were killed October 17 when the upper tier of the Nimitz Freeway in Oakland, Calif., collapsed during the Ms = 7.1 Loma Prieta earthquake. Seismologists studying aftershocks concluded that soil conditions and resulting ground motion amplification were important in the failure of the structure and should be considered in the reconstruction of the highway.Structural design weaknesses in the two-tiered freeway, known as the Cypress structure, had been identified before the tragedy. The seismologists, from Lamont Doherty Geological Observatory in Palisades, N.Y., and the U.S. Geological Survey in Menlo Park, Calif., found that the collapsed section was built on fill over Bay mud. A southern section of the Cypress structure built on alluvium of Quaternary age did not collapse (see Figure 1).

  7. Endogenic craters on basaltic lava flows - Size frequency distributions

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Gault, D. E.

    1979-01-01

    Circular crater forms, termed collapse depressions, which occur on many basalt flows on the earth have also been detected on the moon and Mars and possibly on Mercury and Io. The admixture of collapse craters with impact craters would affect age determinations of planetary surface units based on impact crater statistics by making them appear anomalously old. In the work described in the present paper, the techniques conventionally used in planetary crater counting were applied to the determination of the size range and size frequency distribution of collapse craters on lava flows in Idaho, California, and New Mexico. Collapse depressions range in size from 3 to 80 m in diameter; their cumulative size distributions are similar to those of small impact craters on the moon.

  8. Gravitational collapse of dark matter interacting with dark energy: Black hole formation

    NASA Astrophysics Data System (ADS)

    Shah, Hasrat Hussain; Iqbal, Quaid

    In this work, we study the gravitational collapsing process of a spherically symmetric star constitute of Dark Matter (DM), ρM, and Dark Energy (DE) ρ. In this model, we use anisotropic pressure with Equation of State (EoS) pt = λρ and pr = lρ, (l + 2λ < -1). It reveals that gravitational collapse of DM and DE with interaction leads to the formation of the black hole. When l + 2λ < -3 (phantoms), dust and phantoms could be ejected from the death of white hole. This emitted matter again undergoes to collapsing process and becomes the black hole. This study gives the generalization for isotropy of pressure in the fluid to anisotropy when there will be interaction between DM and DE.

  9. Collapse of magnetized hypermassive neutron stars in general relativity.

    PubMed

    Duez, Matthew D; Liu, Yuk Tung; Shapiro, Stuart L; Shibata, Masaru; Stephens, Branson C

    2006-01-27

    Hypermassive neutron stars (HMNSs)--equilibrium configurations supported against collapse by rapid differential rotation--are possible transient remnants of binary neutron-star mergers. Using newly developed codes for magnetohydrodynamic simulations in dynamical spacetimes, we are able to track the evolution of a magnetized HMNS in full general relativity for the first time. We find that secular angular momentum transport due to magnetic braking and the magnetorotational instability results in the collapse of an HMNS to a rotating black hole, accompanied by a gravitational wave burst. The nascent black hole is surrounded by a hot, massive torus undergoing quasistationary accretion and a collimated magnetic field. This scenario suggests that HMNS collapse is a possible candidate for the central engine of short gamma-ray bursts.

  10. Mid-tertiary ash flow tuff cauldrons, southwestern New Mexico

    NASA Technical Reports Server (NTRS)

    Elston, W. E.

    1984-01-01

    Characteristics of 28 known or suspected mid-Tertiary ash-flow tuff cauldrons in New Mexico are described. The largest region is 40 km in diameter, and erosional and block faulting processes have exposed levels as far down as the plutonic roots. The study supports a five-stage process: precursor, caldera collapse, early post-collapse, volcanism, major ring-fracture volcanism, and hydrothermal activity. The stages can repeat or the process can stop at any stage. Post-collapse lavas fell into two categories: cauldron lavas, derived from shallow defluidized residues of caldera-forming ash flow tuff eruption, and framework lavas, evolved from a siliceous pluton below the cauldron complex. The youngest caldera was shallow and formed from asymmetric subsidence and collapse of the caldera walls.

  11. Significant air embolism: A possibility even with collapsible intravenous fluid containers when used with rapid infuser system

    PubMed Central

    Pant, Deepanjali; Narani, Krishan Kumar; Sood, Jayashree

    2010-01-01

    Significant venous air embolism may develop acutely during the perioperative period due to a number of causes such as during head and neck surgery, spinal surgery, improper central venous and haemodialysis catheter handling, etc. The current trend of using self collapsible intravenous (IV) infusion bags instead of the conventional glass or plastic bottles has several advantages, one of thaem being protection against air embolism. We present a 56-year-old man undergoing kidney transplantation, who developed a near fatal venous air embolism during volume resuscitation with normal saline in collapsible IV bags used with rapid infuser system. To our knowledge, this problem with collapsible infusion bags has not been reported earlier. PMID:20532073

  12. Gravitational collapse and Hawking-like radiation of a shell in AdS spacetime

    NASA Astrophysics Data System (ADS)

    Saini, Anshul; Stojkovic, Dejan

    2018-01-01

    In this paper, we study the collapse of a massive shell in 2 +1 and 3 +1 dimensional gravity with anti-de Sitter asymptotics. Using the Gauss-Codazzi method, we derive gravitational equations of motion of the shell. We then use the functional Schrödinger formalism to calculate the spectrum of particles produced during the collapse. At the late time, radiation agrees very well with the standard Hawking results. In 3 +1 dimensions, we reproduce the Hawking-Page transition. We then construct the density matrix of this collapsing system and analyze the information content in the emitted radiation. We find that the off-diagonal elements of the density matrix are very important in preserving the unitarity of the system.

  13. High strength fusion splicing of hollow core photonic crystal fiber and single-mode fiber by large offset reheating

    NASA Astrophysics Data System (ADS)

    Song, Ningfang; Wu, Chunxiao; Luo, Wenyong; Zhang, Zuchen; Li, Wei

    2016-12-01

    High strength fusion splicing hollow core photonic crystal fiber (HC-PCF) and single-mode fiber (SMF) requires sufficient energy, which results in collapse of the air holes inside HC-PCF. Usually the additional splice loss induced by the collapse of air holes is too large. By large offset reheating, the collapse length of HC-PCF is reduced, thus the additional splice loss induced by collapse is effectively suppressed. This method guarantees high-strength fusion splicing between the two types of fiber with a low splice loss. The strength of the splice compares favorably with the strength of HC-PCF itself. This method greatly improves the reliability of splices between HC-PCFs and SMFs.

  14. Circular Polarizations of Gravitational Waves from Core-Collapse Supernovae: A Clear Indication of Rapid Rotation.

    PubMed

    Hayama, Kazuhiro; Kuroda, Takami; Nakamura, Ko; Yamada, Shoichi

    2016-04-15

    We propose to employ the circular polarization of gravitational waves emitted by core-collapse supernovae as an unequivocal indication of rapid rotation deep in their cores just prior to collapse. It has been demonstrated by three dimensional simulations that nonaxisymmetric accretion flows may develop spontaneously via hydrodynamical instabilities in the postbounce cores. It is not surprising, then, that the gravitational waves emitted by such fluid motions are circularly polarized. We show, in this Letter, that a network of the second generation detectors of gravitational waves worldwide may be able to detect such polarizations up to the opposite side of the Galaxy as long as the rotation period of the core is shorter than a few seconds prior to collapse.

  15. Microfracture development and foam collapse during lava dome growth

    NASA Astrophysics Data System (ADS)

    Ashwell, P.; Kendrick, J. E.; Lavallee, Y.; kennedy, B.; Hess, K.; Cole, J. W.; Dingwell, D. B.

    2012-12-01

    The ability of a volcano to degas effectively is regulated by the collapse of the foam during lava dome growth. As a lava dome extrudes and cools, it will begin to collapse under its own weight, leading to the closure of bubbles and the eventual blockage of the permeable foam network. A reduction in the lavas permeability hinders gas movement and increases internal bubble pressure, which may eventually lead to failure of the bubble walls, and ultimately to explosive fragmentation of the dome. However, the behaviour of lava dome material under compression is poorly understood. Here we present the results of low-load, uniaxial, high temperature (850oC) compression experiments on glassy, rhyolitic dome material from Ngongotaha (~200ka, following collapse of Rotorua Caldera) and Tarawera (1314AD, from dome collapse generated block and ash flow) domes in New Zealand. The development of textures and microstructures was tracked using neutron computed tomography at incremental stages of strain. Porosity and permeability measurements, using pycnometry and gas permeability, before and after each experiment quantified the evolution of the permeable bubble network. Our results show that uniaxial compression of vesicular lava leads to a systematic reduction of porosity on a timescale comparable to volcanic eruptions (hours - days). The closure of bubbles naturally decreases permeability parallel and perpendicular to the applied load, and at high strains fractures begin to initiate in phenocrysts and propagate vertically into the glass. These microfractures result in localised increases in permeability. Crystallinity and initial vesicularity of each sample affects the rate of bubble collapse and the evolution of permeability. The most highly compressed samples (60%) show textures similar to samples collected from the centre of Tarawera Dome, thought to have suffered from collapse shortly after dome emplacement. However, structures and porosities in the deformed Ngongotaha samples differ from the natural collapsed dome material. The interior of Ngongotaha Dome shows complex deformed flow banding, indicating that shearing during emplacement was a major component during collapse of the permeable foam. Understanding the development of the porous permeable network during lava dome growth is key to predicting the behaviour of an erupting volcano, and the assessing the likelihood of pressure build-up leading to a catastrophic explosive eruption.

  16. Protostellar Collapse with a Shock

    NASA Technical Reports Server (NTRS)

    Tsai, John C.; Hsu, Juliana J.

    1995-01-01

    We reexamine both numerically and analytically the collapse of the singular isothermal sphere in the context of low-mass star formation. We consider the case where the onset of collapse is initiated by some arbitrary process which is accompanied by a central output of either heat or kinetic energy. We find two classes of numerical solutions describing this manner of collapse. The first approaches in time the expansion wave solution of Shu, while the second class is characterized by an ever-decreasing central accretion rate and the presence of an outwardly propagating weak shock. The collapse solution which represents the dividing case between these two classes is determined analytically by a similarity analysis. This solution shares with the expansion wave solution the properties that the gas remains stationary with an r(exp -2) density profile at large radius and that, at small radius, the gas free-falls onto a nascent core at a constant rate which depends only on the isothermal sound speed. This accretion rate is a factor of approx. 0.1 that predicted by the expansion wave solution. This reduction is due in part to the presence of a weak shock which propagates outward at 1.26 times the sound speed. Gas in the postshock region first moves out subsonically but is then decelerated and begins to collapse. The existence of two classes of numerical collapse solutions is explained in terms of the instability to radial perturbations of the analytic solution. Collapse occurring in the manner described by some of our solutions would eventually unbind a finite-sized core. However, this does not constitute a violation of the instability properties of the singular isothermal sphere which is unstable both to collapse and to expansion. To emphasize this, we consider a purely expanding solution for isothermal spheres. This solution is found to be self-similar and results in a uniform density core in the central regions of the gas. Our solutions may be relevant to the 'luminosity' problem of protostellar cores since the predicted central accretion rates are significantly reduced relative to that of the expansion wave solution. Furthermore, our calculations indicate that star-forming cloud cores are not very tightly bound and that modest disturbances can easily result in both termination of infall and dispersal of unaccreted material.

  17. Protostellar Collapse with a Shock

    NASA Technical Reports Server (NTRS)

    Tsai, John C.; Hsu, Juliana J. L.

    1995-01-01

    We reexamine both numerically and analytically the collapse of the singular isothermal sphere in the context of low-mass star formation. We consider the case where the onset of collapse is initiated by some arbitrary process which is accompanied by a central output of either heat or kinetic energy. We find two classes of numerical solutions describing this manner of collapse. The first approaches in time the expansion wave solution of Shu, while the second class is characterized by an ever-decreasing central accretion rate and the presence of an outwardly propagating weak shock. The collapse solution which represents the dividing case between these two classes is determined analytically by a similarity analysis. This solution shares with the expansion wave solution the properties that the gas remains stationary with an r(sup -2) density profile at large radius and that, at small radius, the gas free-falls onto a nascent core at a constant rate which depends only on the isothermal sound speed. This accretion rate is a factor of approx. 0.1 that predicted by the expansion wave solution. This reduction is due in part to the presence of a weak shock which propagates outward at 1.26 times the sound speed. Gas in the postshock region first moves out subsonically but is then decelerated and begins to collapse. The existence of two classes of numerical collapse solutions is explained in terms of the instability to radial perturbations of the analytic solution. Collapse occurring in the manner described by some of our solutions would eventually unbind a finite-sized core. However, this does not constitute a violation of the instability properties of the singular isothermal sphere which is unstable both to collapse and to expansion. To emphasize this, we consider a purely expanding solution for isothermal spheres. This solution is found to be self-similar and results in a uniform density core in the central regions of the gas. Our solutions may be relevant to the 'luminosity' problem of protostellar cores since the predicted central accretion rates are significantly reduced relative to that of the expansion wave solution. Furthermore, our calculations indicate that star-forming cloud cores are not very tightly bound and that modest disturbances can easily result in both termination of infall and dispersal of unaccreted material.

  18. The arterial blood pressure associated with terminal cardiovascular collapse in critically ill patients: a retrospective cohort study.

    PubMed

    Brunauer, Andreas; Koköfer, Andreas; Bataar, Otgon; Gradwohl-Matis, Ilse; Dankl, Daniel; Dünser, Martin W

    2014-12-19

    Liberal and overaggressive use of vasopressors during the initial period of shock resuscitation may compromise organ perfusion and worsen outcome. When transiently applying the concept of permissive hypotension, it would be helpful to know at which arterial blood pressure terminal cardiovascular collapse occurs. In this retrospective cohort study, we aimed to identify the arterial blood pressure associated with terminal cardiovascular collapse in 140 patients who died in the intensive care unit while being invasively monitored. Demographic data, co-morbid conditions and clinical data at admission and during the 24 hours before and at the time of terminal cardiovascular collapse were collected. The systolic, mean and diastolic arterial blood pressures immediately before terminal cardiovascular collapse were documented. Terminal cardiovascular collapse was defined as an abrupt (<5 minutes) and exponential decrease in heart rate (> 50% compared to preceding values) followed by cardiac arrest. The mean ± standard deviation (SD) values of the systolic, mean and diastolic arterial blood pressures associated with terminal cardiovascular collapse were 47 ± 12 mmHg, 35 ± 11 mmHg and 29 ± 9 mmHg, respectively. Patients with congestive heart failure (39 ± 13 mmHg versus 34 ± 10 mmHg; P = 0.04), left main stem stenosis (39 ± 11 mmHg versus 34 ± 11 mmHg; P = 0.03) or acute right heart failure (39 ± 13 mmHg versus 34 ± 10 mmHg; P = 0.03) had higher arterial blood pressures than patients without these risk factors. Patients with severe valvular aortic stenosis had the highest arterial blood pressures associated with terminal cardiovascular collapse (systolic, 60 ± 20 mmHg; mean, 46 ± 12 mmHg; diastolic, 36 ± 10 mmHg), but this difference was not significant. Patients with sepsis and patients exposed to sedatives or opioids during the terminal phase exhibited lower arterial blood pressures than patients without sepsis or administration of such drugs. The arterial blood pressure associated with terminal cardiovascular collapse in critically ill patients was very low and varied with individual co-morbid conditions (for example, congestive heart failure, left main stem stenosis, severe valvular aortic stenosis, acute right heart failure), drug exposure (for example, sedatives or opioids) and the type of acute illness (for example, sepsis).

  19. Practical Methods for the Analysis of Voltage Collapse in Electric Power Systems: a Stationary Bifurcations Viewpoint.

    NASA Astrophysics Data System (ADS)

    Jean-Jumeau, Rene

    1993-03-01

    Voltage collapse (VC) is generally caused by either of two types of system disturbances: load variations and contingencies. In this thesis, we study VC resulting from load variations. This is termed static voltage collapse. This thesis deals with this type of voltage collapse in electrical power systems by using a stationary bifurcations viewpoint by associating it with the occurrence of saddle node bifurcations (SNB) in the system. Approximate models are generically used in most VC analyses. We consider the validity of these models for the study of SNB and, thus, of voltage collapse. We justify the use of saddle node bifurcation as a model for VC in power systems. In particular, we prove that this leads to definition of a model and--since load demand is used as a parameter for that model--of a mode of parameterization of that model in order to represent actual power demand variations within the power system network. Ill-conditioning of the set of nonlinear equations defining a dynamical system is a generic occurence near the SNB point. We suggest a reparameterization of the set of nonlinear equations which allows to avoid this problem. A new indicator for the proximity of voltage collapse, the voltage collapse index (VCI), is developed. A new (n + 1)-dimensional set of characteristic equations for the computation of the exact SNB point, replacing the standard (2n + 1)-dimensional one is presented for general parameter -dependent nonlinear dynamical systems. These results are then applied to electric power systems for the analysis and prediction of voltage collapse. The new methods offer the potential of faster computation and greater flexibility. For reasons of theoretical development and clarity, the preceding methodologies are developed under the assumption of the absence of constraints on the system parameters and states, and the full differentiability of the functions defining the power system model. In the latter part of this thesis, we relax these assumptions in order to develop a framework and new formulation for application of the tools previously developed for the analysis and prediction of voltage collapse in practical power system models which include numerous constraints and discontinuities. Illustrations and numerical simulations throughout the thesis support our results.

  20. Preventive effects of conservative treatment with short-term teriparatide on the progression of vertebral body collapse after osteoporotic vertebral compression fracture.

    PubMed

    Park, J-H; Kang, K-C; Shin, D-E; Koh, Y-G; Son, J-S; Kim, B-H

    2014-02-01

    The progression of fractured vertebral collapse is not rare after a conservative treatment of vertebral compression fracture (VCF). Teriparatide has been shown to directly stimulate bone formation and improve bone density, but there is a lack of evidence regarding its use in fracture management. Conservative treatment with short-term teriparatide is effective for decreasing the progression of fractured vertebral body collapse. Few studies have reported on the prevention of collapsed vertebral body progression after osteoporotic VCF. Teriparatide rapidly enhances bone formation and increases bone strength. This study evaluated preventive effects of short-term teriparatide on the progression of vertebral body collapse after osteoporotic VCF. Radiographs of 68 women with single-level osteoporotic VCF at thoracolumbar junction (T11-L2) were reviewed. Among them, 32 patients were treated conservatively with teriparatide (minimum 3 months) (group I), and 36 were treated with antiresorptive (group II). We measured kyphosis and wedge angle of the fractured vertebral body, and ratios of anterior, middle, and posterior heights of the collapsed body to posterior height of a normal upper vertebra were determined. The degree of collapse progression was compared between two groups. The progression of fractured vertebral body collapse was shown in both groups, but the degree of progression was significantly lower in group I than in group II. At the last follow-up, mean increments of kyphosis and wedge angle were significantly lower in group I (4.0° ± 4.2° and 3.6° ± 3.6°) than in group II (6.8° ± 4.1° and 5.8° ± 3.5°) (p = 0.032 and p = 0.037). Decrement percentages of anterior and middle border height were significantly lower in group I (9.6 ± 10.3 and 7.4 ± 7.5 %) than in group II (18.1 ± 9.7 and 13.8 ± 12.2 %) (p = 0.001 and p = 0.025), but not in posterior height (p = 0.086). In female patients with single-level osteoporotic VCF at the thoracolumbar junction, short-term teriparatide treatment did not prevent but did decrease the progression of fractured vertebral body collapse.

  1. Evaluating susceptibility of karst dolines (sinkholes) for collapse in Sango, Tennessee, USA.

    PubMed

    Siska, Peter P; Goovaerts, Pierre; Hung, I-K

    2016-08-01

    Dolines or sinkholes are earth depressions that develop in soluble rocks complexes such as limestone, dolomite, gypsum, anhydrite, and halite; dolines appear in a variety of shapes from nearly circular to complex structures with highly curved perimeters. The occurrence of dolines in the studied karst area is not random; they are the results of geomorphic, hydrologic, and chemical processes that have caused partial subsidence, even the total collapse of the land surface when voids and caves are present in the bedrock and the regolith arch overbridging these voids is unstable. In the study area, the majority of collapses occur in the regolith (bedrock cover) that bridges voids in the bedrock. Because these collapsing dolines may result in property damage and even cause the loss of lives, there is a need to develop methods for evaluating karst hazards. These methods can then be used by planners and practitioners for urban and economic development, especially in regions with a growing population. The purpose of this project is threefold: 1) to develop a karst feature database, 2) to investigate critical indicators associated with doline collapse, and 3) to develop a doline susceptibility model for potential doline collapse based on external morphometric data. The study has revealed the presence of short range spatial dependence in the distribution of the dolines' morphometric parameters such as circularity, the geographic orientation of the main doline axes, and the length-to-width doline ratios; therefore, geostatistics can be used to spatially evaluate the susceptibility of the karst area for doline collapse. The partial susceptibility estimates were combined into a final probability map enabling the identification of areas where, until now, undetected dolines may cause significant hazards.

  2. Amplification of pressure waves in laser-assisted endodontics with synchronized delivery of Er:YAG laser pulses.

    PubMed

    Lukač, Nejc; Jezeršek, Matija

    2018-05-01

    When attempting to clean surfaces of dental root canals with laser-induced cavitation bubbles, the resulting cavitation oscillations are significantly prolonged due to friction on the cavity walls and other factors. Consequently, the collapses are less intense and the shock waves that are usually emitted following a bubble's collapse are diminished or not present at all. A new technique of synchronized laser-pulse delivery intended to enhance the emission of shock waves from collapsed bubbles in fluid-filled endodontic canals is reported. A laser beam deflection probe, a high-speed camera, and shadow photography were used to characterize the induced photoacoustic phenomena during synchronized delivery of Er:YAG laser pulses in a confined volume of water. A shock wave enhancing technique was employed which consists of delivering a second laser pulse at a delay with regard to the first cavitation bubble-forming laser pulse. Influence of the delay between the first and second laser pulses on the generation of pressure and shock waves during the first bubble's collapse was measured for different laser pulse energies and cavity volumes. Results show that the optimal delay between the two laser pulses is strongly correlated with the cavitation bubble's oscillation period. Under optimal synchronization conditions, the growth of the second cavitation bubble was observed to accelerate the collapse of the first cavitation bubble, leading to a violent collapse, during which shock waves are emitted. Additionally, shock waves created by the accelerated collapse of the primary cavitation bubble and as well of the accompanying smaller secondary bubbles near the cavity walls were observed. The reported phenomena may have applications in improved laser cleaning of surfaces during laser-assisted dental root canal treatments.

  3. Subsidence and Collapse Activity in Arabia Terra, Mars: Which Link with Magmatic Activity?

    NASA Astrophysics Data System (ADS)

    Mangold, N.; Howard, A. D.

    2014-12-01

    Collapsed terrains have been observed using Viking images in the northern part of Arabia Terra from Ismenius Lacus to Deuteronilus Mensae. Recent interpretations of some of these depressions as explosive volcanoes (Michalski and Bleacher, 2013) have renewed the interest for this region. However, recent observations also show the discovery in this region of a series of outflow channels named Okavango Valles (Mangold and Howard, 2013). These channels formed in the Hesperian through catastrophic flows having deposited sediments as deltas in ephemeral lakes. The source area of these channels takes place in a region of widespread depressions and local collapse pits. A continuum of landforms exists from broad depressions (~100 km in length and 100s m in depth) and sharper collapse structures (<100 km in diameter). Given the link between these depressions and the presence of outflow channels, we interpret the collapse structures as resulting from a specific lithology with volatile-rich sediments (or megaregolith) buried at depth. Collapse may be due either to the melting of subsurface ice, or subsurface flows triggered by a change in the groundwater table, or the (less likely) dissolution of buried chemical sediments. Magmatic activity is not excluded: a regionally enhanced thermal flux during the Hesperian could have triggered ground ice melting, and could have initiated subsidence subsequently, but explosive volcanism at the surface is not necessary to explain the presence of large collapsed terrains. Michalski, J. and J. Bleacher, 2013. Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars, Nature, doi:10.1038/nature12482 Mangold N., and A. D. Howard, 2013. Outflow channels with deltaic deposits in Ismenius Lacus, Mars, Icarus, doi.org/10.1016/j.icarus.2013.05.040

  4. Effect of re-expansion after short-period lung collapse on pulmonary capillary permeability and pro-inflammatory cytokine gene expression in isolated rabbit lungs.

    PubMed

    Funakoshi, T; Ishibe, Y; Okazaki, N; Miura, K; Liu, R; Nagai, S; Minami, Y

    2004-04-01

    Re-expansion pulmonary oedema is a rare complication caused by rapid re-expansion of a chronically collapsed lung. Several cases of pulmonary oedema associated with one-lung ventilation (OLV) have been reported recently. Elevated levels of pro-inflammatory cytokines in pulmonary oedema fluid are suggested to play important roles in its development. Activation of cytokines after re-expansion of collapsed lung during OLV has not been thoroughly investigated. Here we investigated the effects of re-expansion of the collapsed lung on pulmonary oedema formation and pro-inflammatory cytokine expression. Lungs isolated from female white Japanese rabbits were perfused and divided into a basal (BAS) group (n=7, baseline measurement alone), a control (CONT) group (n=9, ventilated without lung collapse for 120 min) and an atelectasis (ATEL) group (n=9, lung collapsed for 55 min followed by re-expansion and ventilation for 65 min). Pulmonary vascular resistance (PVR) and the coefficient of filtration (Kfc) were measured at baseline and 60 and 120 min. At the end of perfusion, bronchoalveolar lavage fluid/plasma protein ratio (B/P), wet/dry lung weight ratio (W/D) and mRNA expressions of tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta and myeloperoxidase (MPO) were determined. TNF-alpha and IL-1beta mRNA were significantly up-regulated in lungs of the ATEL group compared with BAS and CONT, though no significant differences were noted in PVR, Kfc, B/P and W/D within and between groups. MPO increased at 120 min in CONT and ATEL groups. Pro-inflammatory cytokines were up-regulated upon re-expansion and ventilation after short-period lung collapse, though no changes were noted in pulmonary capillary permeability.

  5. Evaluating susceptibility of karst dolines (sinkholes) for collapse in Sango, Tennessee, USA

    PubMed Central

    Siska, Peter P.; Goovaerts, Pierre; Hung, I-K

    2016-01-01

    Dolines or sinkholes are earth depressions that develop in soluble rocks complexes such as limestone, dolomite, gypsum, anhydrite, and halite; dolines appear in a variety of shapes from nearly circular to complex structures with highly curved perimeters. The occurrence of dolines in the studied karst area is not random; they are the results of geomorphic, hydrologic, and chemical processes that have caused partial subsidence, even the total collapse of the land surface when voids and caves are present in the bedrock and the regolith arch overbridging these voids is unstable. In the study area, the majority of collapses occur in the regolith (bedrock cover) that bridges voids in the bedrock. Because these collapsing dolines may result in property damage and even cause the loss of lives, there is a need to develop methods for evaluating karst hazards. These methods can then be used by planners and practitioners for urban and economic development, especially in regions with a growing population. The purpose of this project is threefold: 1) to develop a karst feature database, 2) to investigate critical indicators associated with doline collapse, and 3) to develop a doline susceptibility model for potential doline collapse based on external morphometric data. The study has revealed the presence of short range spatial dependence in the distribution of the dolines’ morphometric parameters such as circularity, the geographic orientation of the main doline axes, and the length-to-width doline ratios; therefore, geostatistics can be used to spatially evaluate the susceptibility of the karst area for doline collapse. The partial susceptibility estimates were combined into a final probability map enabling the identification of areas where, until now, undetected dolines may cause significant hazards. PMID:27616807

  6. Exercise-associated Excessive Dynamic Airway Collapse in Military Personnel.

    PubMed

    Weinstein, Daniel J; Hull, James E; Ritchie, Brittany L; Hayes, Jackie A; Morris, Michael J

    2016-09-01

    Evaluation of military personnel for exertional dyspnea can present a diagnostic challenge, given multiple unique factors that include wide variation in military deployment. Initial consideration is given to common disorders such as asthma, exercise-induced bronchospasm, and inducible laryngeal obstruction. Excessive dynamic airway collapse has not been reported previously as a cause of dyspnea in these individuals. To describe the clinical and imaging characteristics of military personnel with exertional dyspnea who were found to have excessive dynamic collapse of large airways during exercise. After deployment to Afghanistan or Iraq, 240 active U.S. military personnel underwent a standardized evaluation to determine the etiology of persistent dyspnea on exertion. Study procedures included full pulmonary function testing, impulse oscillometry, exhaled nitric oxide measurement, methacholine challenge testing, exercise laryngoscopy, cardiopulmonary exercise testing, and fiberoptic bronchoscopy. Imaging included high-resolution computed tomography with inspiratory and expiratory views. Selected individuals underwent further imaging with dynamic computed tomography. A total of five men and one woman were identified as having exercise-associated excessive dynamic airway collapse on the basis of the following criteria: (1) exertional dyspnea without resting symptoms, (2) focal expiratory wheezing during exercise, (3) functional collapse of the large airways during bronchoscopy, (4) expiratory computed tomographic imaging showing narrowing of a large airway, and (5) absence of underlying apparent pathology in small airways or pulmonary parenchyma. Identification of focal expiratory wheezing correlated with bronchoscopic and imaging findings. Among 240 military personnel evaluated after presenting with postdeployment exertional dyspnea, a combination of symptoms, auscultatory findings, imaging, and visualization of the airways by bronchoscopy identified six individuals with excessive dynamic central airway collapse as the sole apparent cause of dyspnea. Exercise-associated excessive dynamic airway collapse should be considered in the differential diagnosis of exertional dyspnea.

  7. Effect of Sleeping Position on Upper Airway Patency in Obstructive Sleep Apnea Is Determined by the Pharyngeal Structure Causing Collapse.

    PubMed

    Marques, Melania; Genta, Pedro R; Sands, Scott A; Azarbazin, Ali; de Melo, Camila; Taranto-Montemurro, Luigi; White, David P; Wellman, Andrew

    2017-03-01

    In some patients, obstructive sleep apnea (OSA) can be resolved with improvement in pharyngeal patency by sleeping lateral rather than supine, possibly as gravitational effects on the tongue are relieved. Here we tested the hypothesis that the improvement in pharyngeal patency depends on the anatomical structure causing collapse, with patients with tongue-related obstruction and epiglottic collapse exhibiting preferential improvements. Twenty-four OSA patients underwent upper airway endoscopy during natural sleep to determine the pharyngeal structure associated with obstruction, with simultaneous recordings of airflow and pharyngeal pressure. Patients were grouped into three categories based on supine endoscopy: Tongue-related obstruction (posteriorly located tongue, N = 10), non-tongue related obstruction (collapse due to the palate or lateral walls, N = 8), and epiglottic collapse (N = 6). Improvement in pharyngeal obstruction was quantified using the change in peak inspiratory airflow and minute ventilation lateral versus supine. Contrary to our hypothesis, patients with tongue-related obstruction showed no improvement in airflow, and the tongue remained posteriorly located while lateral. Patients without tongue involvement showed modest improvement in airflow (peak flow increased 0.07 L/s and ventilation increased 1.5 L/min). Epiglottic collapse was virtually abolished with lateral positioning and ventilation increased by 45% compared to supine position. Improvement in pharyngeal patency with sleeping position is structure specific, with profound improvements seen in patients with epiglottic collapse, modest effects in those without tongue involvement and-unexpectedly-no effect in those with tongue-related obstruction. Our data refute the notion that the tongue falls back into the airway during sleep via gravitational influences. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  8. Effect of Sleeping Position on Upper Airway Patency in Obstructive Sleep Apnea Is Determined by the Pharyngeal Structure Causing Collapse

    PubMed Central

    Genta, Pedro R.; Sands, Scott A.; Azarbazin, Ali; de Melo, Camila; Taranto-Montemurro, Luigi; White, David P.; Wellman, Andrew

    2017-01-01

    Abstract Objectives: In some patients, obstructive sleep apnea (OSA) can be resolved with improvement in pharyngeal patency by sleeping lateral rather than supine, possibly as gravitational effects on the tongue are relieved. Here we tested the hypothesis that the improvement in pharyngeal patency depends on the anatomical structure causing collapse, with patients with tongue-related obstruction and epiglottic collapse exhibiting preferential improvements. Methods: Twenty-four OSA patients underwent upper airway endoscopy during natural sleep to determine the pharyngeal structure associated with obstruction, with simultaneous recordings of airflow and pharyngeal pressure. Patients were grouped into three categories based on supine endoscopy: Tongue-related obstruction (posteriorly located tongue, N = 10), non-tongue related obstruction (collapse due to the palate or lateral walls, N = 8), and epiglottic collapse (N = 6). Improvement in pharyngeal obstruction was quantified using the change in peak inspiratory airflow and minute ventilation lateral versus supine. Results: Contrary to our hypothesis, patients with tongue-related obstruction showed no improvement in airflow, and the tongue remained posteriorly located while lateral. Patients without tongue involvement showed modest improvement in airflow (peak flow increased 0.07 L/s and ventilation increased 1.5 L/min). Epiglottic collapse was virtually abolished with lateral positioning and ventilation increased by 45% compared to supine position. Conclusions: Improvement in pharyngeal patency with sleeping position is structure specific, with profound improvements seen in patients with epiglottic collapse, modest effects in those without tongue involvement and—unexpectedly—no effect in those with tongue-related obstruction. Our data refute the notion that the tongue falls back into the airway during sleep via gravitational influences. PMID:28329099

  9. Pleural effusion leading to right atrial collapse.

    PubMed

    Khouzam, Rami N; Yusuf, Jawwad

    2014-01-01

    Rapid accumulation of pericardial fluid can lead to tamponade, resulting in cardiac chambers' collapse, which can lead to hemodynamic and clinical instability, potentially needing emergent pericardiocentesis. Pleural effusion should also be considered as a potential, if rare, cause of cardiac chambers' collapse and possibly cardiac tamponade. This phenomenon has clinical implications because hemodynamically unstable patients with moderate to large pleural effusion may actually need thoracentesis instead of massive volume resuscitation, inotropic agents, or pericardiocentesis. Copyright © 2013 Wiley Periodicals, Inc.

  10. The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments

    DOE PAGES

    Foglizzo, Thierry; Kazeroni, Rémi; Guilet, Jérôme; ...

    2015-01-01

    The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the center of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernovamore » remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as SASI and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. Lastly, we analyse the potential of this complementary research tool for supernova theory. We also review its potential for public outreach in science museums.« less

  11. Evidence that viral RNAs have evolved for efficient, two-stage packaging.

    PubMed

    Borodavka, Alexander; Tuma, Roman; Stockley, Peter G

    2012-09-25

    Genome packaging is an essential step in virus replication and a potential drug target. Single-stranded RNA viruses have been thought to encapsidate their genomes by gradual co-assembly with capsid subunits. In contrast, using a single molecule fluorescence assay to monitor RNA conformation and virus assembly in real time, with two viruses from differing structural families, we have discovered that packaging is a two-stage process. Initially, the genomic RNAs undergo rapid and dramatic (approximately 20-30%) collapse of their solution conformations upon addition of cognate coat proteins. The collapse occurs with a substoichiometric ratio of coat protein subunits and is followed by a gradual increase in particle size, consistent with the recruitment of additional subunits to complete a growing capsid. Equivalently sized nonviral RNAs, including high copy potential in vivo competitor mRNAs, do not collapse. They do support particle assembly, however, but yield many aberrant structures in contrast to viral RNAs that make only capsids of the correct size. The collapse is specific to viral RNA fragments, implying that it depends on a series of specific RNA-protein interactions. For bacteriophage MS2, we have shown that collapse is driven by subsequent protein-protein interactions, consistent with the RNA-protein contacts occurring in defined spatial locations. Conformational collapse appears to be a distinct feature of viral RNA that has evolved to facilitate assembly. Aspects of this process mimic those seen in ribosome assembly.

  12. THE THREE-DIMENSIONAL EVOLUTION TO CORE COLLAPSE OF A MASSIVE STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couch, Sean M.; Chatzopoulos, Emmanouil; Arnett, W. David

    2015-07-20

    We present the first three-dimensional (3D) simulation of the final minutes of iron core growth in a massive star, up to and including the point of core gravitational instability and collapse. We capture the development of strong convection driven by violent Si burning in the shell surrounding the iron core. This convective burning builds the iron core to its critical mass and collapse ensues, driven by electron capture and photodisintegration. The non-spherical structure and motion generated by 3D convection is substantial at the point of collapse, with convective speeds of several hundreds of km s{sup −1}. We examine the impactmore » of such physically realistic 3D initial conditions on the core-collapse supernova mechanism using 3D simulations including multispecies neutrino leakage and find that the enhanced post-shock turbulence resulting from 3D progenitor structure aids successful explosions. We conclude that non-spherical progenitor structure should not be ignored, and should have a significant and favorable impact on the likelihood for neutrino-driven explosions. In order to make simulating the 3D collapse of an iron core feasible, we were forced to make approximations to the nuclear network making this effort only a first step toward accurate, self-consistent 3D stellar evolution models of the end states of massive stars.« less

  13. Causal nature and dynamics of trapping horizons in black hole collapse

    NASA Astrophysics Data System (ADS)

    Helou, Alexis; Musco, Ilia; Miller, John C.

    2017-07-01

    In calculations of gravitational collapse to form black holes, trapping horizons (foliated by marginally trapped surfaces) make their first appearance either within the collapsing matter or where it joins on to a vacuum exterior. Those which then move outwards with respect to the matter have been proposed for use in defining black holes, replacing the global concept of an ‘event horizon’ which has some serious drawbacks for practical applications. We here present results from a study of the properties of both outgoing and ingoing trapping horizons, assuming strict spherical symmetry throughout. We have investigated their causal nature (i.e. whether they are spacelike, timelike or null), making contact with the Misner-Sharp-Hernandez formalism, which has often been used for numerical calculations of spherical collapse. We follow two different approaches, one using a geometrical quantity related to expansions of null geodesic congruences, and the other using the horizon velocity measured with respect to the collapsing matter. After an introduction to these concepts, we then implement them within numerical simulations of stellar collapse, revisiting pioneering calculations from the 1960s where some features of the emergence and subsequent behaviour of trapping horizons could already be seen. Our presentation here is aimed firmly at ‘real world’ applications of interest to astrophysicists and includes the effects of pressure, which may be important for the asymptotic behaviour of the ingoing horizon.

  14. Magnetic field dependence of the atomic collapse state in graphene

    NASA Astrophysics Data System (ADS)

    Moldovan, D.; Ramezani Masir, M.; Peeters, F. M.

    2018-01-01

    Quantum electrodynamics predicts that heavy atoms (Z > Zc ≈ 170 ) will undergo the process of atomic collapse where electrons sink into the positron continuum and a new family of so-called collapsing states emerges. The relativistic electrons in graphene exhibit the same physics but at a much lower critical charge (Zc ≈ 1 ) which has made it possible to confirm this phenomenon experimentally. However, there exist conflicting predictions on the effect of a magnetic field on atomic collapse. These theoretical predictions are based on the continuum Dirac-Weyl equation, which does not have an exact analytical solution for the interplay of a supercritical Coulomb potential and the magnetic field. Approximative solutions have been proposed, but because the two effects compete on similar energy scales, the theoretical treatment varies depending on the regime which is being considered. These limitations are overcome here by starting from a tight-binding approach and computing exact numerical results. By avoiding special limit cases, we found a smooth evolution between the different regimes. We predict that the atomic collapse effect persists even after the magnetic field is activated and that the critical charge remains unchanged. We show that the atomic collapse regime is characterized: (1) by a series of Landau level anticrossings and (2) by the absence of \\sqrt{B} scaling of the Landau levels with regard to magnetic field strength.

  15. Multi-stage volcanic island flank collapses with coeval explosive caldera-forming eruptions.

    PubMed

    Hunt, James E; Cassidy, Michael; Talling, Peter J

    2018-01-18

    Volcanic flank collapses and explosive eruptions are among the largest and most destructive processes on Earth. Events at Mount St. Helens in May 1980 demonstrated how a relatively small (<5 km 3 ) flank collapse on a terrestrial volcano could immediately precede a devastating eruption. The lateral collapse of volcanic island flanks, such as in the Canary Islands, can be far larger (>300 km 3 ), but can also occur in complex multiple stages. Here, we show that multistage retrogressive landslides on Tenerife triggered explosive caldera-forming eruptions, including the Diego Hernandez, Guajara and Ucanca caldera eruptions. Geochemical analyses were performed on volcanic glasses recovered from marine sedimentary deposits, called turbidites, associated with each individual stage of each multistage landslide. These analyses indicate only the lattermost stages of subaerial flank failure contain materials originating from respective coeval explosive eruption, suggesting that initial more voluminous submarine stages of multi-stage flank collapse induce these aforementioned explosive eruption. Furthermore, there are extended time lags identified between the individual stages of multi-stage collapse, and thus an extended time lag between the initial submarine stages of failure and the onset of subsequent explosive eruption. This time lag succeeding landslide-generated static decompression has implications for the response of magmatic systems to un-roofing and poses a significant implication for ocean island volcanism and civil emergency planning.

  16. Aftershock collapse vulnerability assessment of reinforced concrete frame structures

    USGS Publications Warehouse

    Raghunandan, Meera; Liel, Abbie B.; Luco, Nicolas

    2015-01-01

    In a seismically active region, structures may be subjected to multiple earthquakes, due to mainshock–aftershock phenomena or other sequences, leaving no time for repair or retrofit between the events. This study quantifies the aftershock vulnerability of four modern ductile reinforced concrete (RC) framed buildings in California by conducting incremental dynamic analysis of nonlinear MDOF analytical models. Based on the nonlinear dynamic analysis results, collapse and damage fragility curves are generated for intact and damaged buildings. If the building is not severely damaged in the mainshock, its collapse capacity is unaffected in the aftershock. However, if the building is extensively damaged in the mainshock, there is a significant reduction in its collapse capacity in the aftershock. For example, if an RC frame experiences 4% or more interstory drift in the mainshock, the median capacity to resist aftershock shaking is reduced by about 40%. The study also evaluates the effectiveness of different measures of physical damage observed in the mainshock-damaged buildings for predicting the reduction in collapse capacity of the damaged building in subsequent aftershocks. These physical damage indicators for the building are chosen such that they quantify the qualitative red tagging (unsafe for occupation) criteria employed in post-earthquake evaluation of RC frames. The results indicated that damage indicators related to the drift experienced by the damaged building best predicted the reduced aftershock collapse capacities for these ductile structures.

  17. Spontaneous collapse: A solution to the measurement problem and a source of the decay in mesonic systems

    NASA Astrophysics Data System (ADS)

    Simonov, Kyrylo; Hiesmayr, Beatrix C.

    2016-11-01

    Dynamical reduction models propose a solution to the measurement problem in quantum mechanics: the collapse of the wave function becomes a physical process. We compute the predictions to decaying and flavor-oscillating neutral mesons for the two most promising collapse models, the QMUPL (quantum mechanics with universal position localization) model and the mass-proportional CSL (continuous spontaneous localization) model. Our results are showing (i) a strong sensitivity to the very assumptions of the noise field underlying those two collapse models and (ii) under particular assumptions the CSL case allows one even to recover the decay dynamics. This in turn allows one to predict the effective collapse rates solely based on the measured values for the oscillation (mass differences) and the measured values of the decay constants. The four types of neutral mesons (K meson, D meson, Bd meson, and Bs meson) lead surprisingly to ranges comparable to those put forward by Adler [J. Phys. A: Math. Theor. 40, 2935 (2007), 10.1088/1751-8113/40/12/S03] and Ghirardi, Rimini, and Weber [Phys. Rev. D 34, 470 (1986), 10.1103/PhysRevD.34.470]. Our results show that these systems at high energies are very sensitive to possible modifications of the standard quantum theory, making them a very powerful laboratory to rule out certain collapse scenarios and study the detailed physical processes solving the measurement problem.

  18. Non-singular Brans-Dicke collapse in deformed phase space

    NASA Astrophysics Data System (ADS)

    Rasouli, S. M. M.; Ziaie, A. H.; Jalalzadeh, S.; Moniz, P. V.

    2016-12-01

    We study the collapse process of a homogeneous perfect fluid (in FLRW background) with a barotropic equation of state in Brans-Dicke (BD) theory in the presence of phase space deformation effects. Such a deformation is introduced as a particular type of non-commutativity between phase space coordinates. For the commutative case, it has been shown in the literature (Scheel, 1995), that the dust collapse in BD theory leads to the formation of a spacetime singularity which is covered by an event horizon. In comparison to general relativity (GR), the authors concluded that the final state of black holes in BD theory is identical to the GR case but differs from GR during the dynamical evolution of the collapse process. However, the presence of non-commutative effects influences the dynamics of the collapse scenario and consequently a non-singular evolution is developed in the sense that a bounce emerges at a minimum radius, after which an expanding phase begins. Such a behavior is observed for positive values of the BD coupling parameter. For large positive values of the BD coupling parameter, when non-commutative effects are present, the dynamics of collapse process differs from the GR case. Finally, we show that for negative values of the BD coupling parameter, the singularity is replaced by an oscillatory bounce occurring at a finite time, with the frequency of oscillation and amplitude being damped at late times.

  19. Acoustic transient generation in pulsed holmium laser ablation under water

    NASA Astrophysics Data System (ADS)

    Asshauer, Thomas; Rink, Klaus; Delacretaz, Guy P.; Salathe, Rene-Paul; Gerber, Bruno E.; Frenz, Martin; Pratisto, Hans; Ith, Michael; Romano, Valerio; Weber, Heinz P.

    1994-08-01

    In this study the role of acoustical transients during pulsed holmium laser ablation is addressed. For this the collapse of cavitation bubbles generated by 2.12 micrometers Cr:Tm:Ho:YAG laser pulses delivered via a fiber in water is investigated. Multiple consecutive collapses of a single bubble generating acoustic transients are documented. Pulse durations are varied from 130 - 230 microsecond(s) and pulse energies from 20 - 800 mJ. Fiber diameters of 400 and 600 micrometers are used. The bubble collapse behavior is observed by time resolved fast flash photography with 1 microsecond(s) strobe lamp or 5 ns 1064 nm Nd:YAG laser illumination. A PVDF needle probe transducer is used to observe acoustic transients and measure their pressure amplitudes. Under certain conditions, at the end of the collapse phase the bubbles emit spherical acoustic transients of up to several hundred bars amplitude. After the first collapse up to two rebounds leading to further acoustic transient emissions are observed. Bubbles generated near a solid surface under water are attracted towards the surface during their development. The final phase of the collapse generating the acoustic transients takes place directly on the surface, exposing it to maximum pressure amplitudes. Our results indicate a possible mechanism of unwanted tissue damage during holmium laser application in a liquid environment as in arthroscopy or angioplasty that may set limits to the choice of laser pulse duration and energies.

  20. The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foglizzo, Thierry; Kazeroni, Rémi; Guilet, Jérôme

    The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the center of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernovamore » remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as SASI and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. Lastly, we analyse the potential of this complementary research tool for supernova theory. We also review its potential for public outreach in science museums.« less

  1. Gravitational collapse of a turbulent vortex with application to star formation

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1976-01-01

    The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitational and rotational terms in the equations are of first order in the space variables, the pressure-gradient terms are of second order, and the turbulent-viscosity term is of third order. The presence of turbulent viscosity ensures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the initial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial flow is always inward and allows collapse to occur (axially) even when the rotation is large. An approximate solution of the governing partial differential equations is also given in order to study the spatial distributions of the density and velocity.

  2. Gravitational collapse of a turbulent vortex with application to star formation

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1975-01-01

    The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitation and rotation terms in the equations are of first order in the space variables, the pressure gradient terms are of second order, and the turbulent viscosity term is of third order. The presence of a turbulent viscosity insures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the intial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial inflow plays an important role and allows collapse to occur even when the rotation is large. An approximate solution of the governing partial differential equations is also given, in order to study the spacial distributions of the density and velocity.

  3. Interplay of Coil–Globule Transition and Surface Adsorption of a Lattice HP Protein Model

    PubMed Central

    2015-01-01

    An end-grafted hydrophobic-polar (HP) model protein chain with alternating H and P monomers is studied to examine interactions between the critical adsorption transition due to surface attraction and the collapse transition due to pairwise attractive H–H interactions. We find that the critical adsorption phenomenon can always be observed; however, the critical adsorption temperature TCAP is influenced by the attractive H–H interactions in some cases. When the collapse temperature Tc is lower than TCAP, the critical adsorption of the HP chain is similar to that of a homopolymer without intrachain attractions and TCAP remains unchanged, whereas the collapse transition is suppressed by the adsorption. In contrast, for cases where Tc is close to or higher than TCAP, TCAP of the HP chain is increased, indicating that a collapsed chain is more easily adsorbed on the surface. The strength of the H–H attraction also influences the statistical size and shape of the polymer, with strong H–H attractions resulting in adsorbed and collapsed chains adopting two-dimensional, circular conformations. PMID:25458556

  4. Advanced collapsible tank for liquid containment

    NASA Technical Reports Server (NTRS)

    Flanagan, David T.; Hopkins, Robert C.

    1993-01-01

    Tanks for bulk liquid containment will be required to support advanced planetary exploration programs. Potential applications include storage of potable, process, and waste water, and fuels and process chemicals. The launch mass and volume penalties inherent in rigid tanks suggest that collapsible tanks may be more efficient. Collapsible tanks are made of lightweight flexible material and can be folded compactly for storage and transport. Although collapsible tanks for terrestrial use are widely available, a new design was developed that has significantly less mass and bulk than existing models. Modelled after the shape of a sessible drop, this design features a dual membrane with a nearly uniform stress distribution and a low surface-to-volume ratio. It can be adapted to store a variety of liquids in nearly any environment with constant acceleration field. Three models of 10L, 50L, and 378L capacity have been constructed and tested. The 378L (100 gallon) model weighed less than 10 percent of a commercially available collapsible tank of equivalent capacity, and required less than 20 percent of the storage space when folded for transport.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughlin, Eric R., E-mail: eric_coughlin@berkeley.edu

    We present the exact solutions for the collapse of a spherically symmetric cold (i.e., pressureless) cloud under its own self-gravity, valid for arbitrary initial density profiles and not restricted to the realm of self-similarity. These solutions exhibit a number of remarkable features, including the self-consistent formation of and subsequent accretion onto a central point mass. A number of specific examples are provided, and we show that Penston’s solution of pressureless self-similar collapse is recovered for polytropic density profiles; importantly, however, we demonstrate that the time over which this solution holds is fleetingly short, implying that much of the collapse proceedsmore » non-self-similarly. We show that our solutions can naturally incorporate turbulent pressure support, and we investigate the evolution of overdensities—potentially generated by such turbulence—as the collapse proceeds. Finally, we analyze the evolution of the angular velocity and magnetic fields in the limit that their dynamical influence is small, and we recover exact solutions for these quantities. Our results may provide important constraints on numerical models that attempt to elucidate the details of protostellar collapse when the initial conditions are far less idealized.« less

  6. Gravitational collapse of a turbulent vortex with application to star formation

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1975-01-01

    The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitation and rotation terms in the equations are of first order in the space variables, the pressure gradient terms are of second order, and the turbulent viscosity term is of third order. The presence of a turbulent viscosity insures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the initial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial inflow plays an important role and allows collapse to occur even when the rotation is large. An approximate solution of the governing partial differential equations is also given; the equations are used to study the spacial distributions of the density and velocity.

  7. Economic conditions, hypertension, and cardiovascular disease: analysis of the Icelandic economic collapse.

    PubMed

    Birgisdóttir, Kristín Helga; Jónsson, Stefán Hrafn; Ásgeirsdóttir, Tinna Laufey

    2017-12-01

    Previous research has found a positive short-term relationship between the 2008 collapse and hypertension in Icelandic males. With Iceland's economy experiencing a phase of economic recovery, an opportunity to pursue a longer-term analysis of the collapse has emerged. Using data from a nationally representative sample, fixed-effect estimations and mediation analyses were performed to explore the relationship between the Icelandic economic collapse in 2008 and the longer-term impact on hypertension and cardiovascular health. A sensitivity analysis was carried out with pooled logit models estimated as well as an alternative dependent variable. Our attrition analysis revealed that results for cardiovascular diseases were affected by attrition, but not results from estimations on the relationship between the economic crisis and hypertension. When compared to the boom year 2007, our results point to an increased probability of Icelandic women having hypertension in the year 2012, when the Icelandic economy had recovered substantially from the economic collapse in 2008. This represents a deviation from pre-crisis trends, thus suggesting a true economic-recovery impact on hypertension.

  8. LISA pathfinder appreciably constrains collapse models

    NASA Astrophysics Data System (ADS)

    Helou, Bassam; Slagmolen, B. J. J.; McClelland, David E.; Chen, Yanbei

    2017-04-01

    Spontaneous collapse models are phenomological theories formulated to address major difficulties in macroscopic quantum mechanics. We place significant bounds on the parameters of the leading collapse models, the continuous spontaneous localization (CSL) model, and the Diosi-Penrose (DP) model, by using LISA Pathfinder's measurement, at a record accuracy, of the relative acceleration noise between two free-falling macroscopic test masses. In particular, we bound the CSL collapse rate to be at most (2.96 ±0.12 ) ×10-8 s-1 . This competitive bound explores a new frequency regime, 0.7 to 20 mHz, and overlaps with the lower bound 10-8 ±2 s-1 proposed by Adler in order for the CSL collapse noise to be substantial enough to explain the phenomenology of quantum measurement. Moreover, we bound the regularization cutoff scale used in the DP model to prevent divergences to be at least 40.1 ±0.5 fm , which is larger than the size of any nucleus. Thus, we rule out the DP model if the cutoff is the size of a fundamental particle.

  9. Detectability and Uncertainties of the Supernova Relic Neutrino Background

    NASA Astrophysics Data System (ADS)

    Nakazato, Ken'ichiro; Mochida, Eri; Niino, Yuu; Suzuki, Hideyuki

    The spectrum of the supernova relic neutrino (SRN) background from past stellar core collapses is calculated and its detectability at SK-Gd (Super-Kamiokande experiment with gadolinium-loaded water) is investigated. Several uncertainties on the flux of SRNs are considered. The core collapse rate at each redshift depends on the cosmic star formation rate, initial mass function and mass range of progenitors that end with a core collapse. The shock revival time is introduced as a parameter that should depend on the still unknown explosion mechanism of core collapse supernovae. Furthermore, since the neutrino luminosity of black-hole-forming failed supernovae is higher than that of ordinary supernovae, their contribution to SRNs is quantitatively estimated. Assuming the mass and metallicity ranges of their progenitors, the redshift dependence of the black hole formation rate is considered on the basis of the metallicity evolution of galaxies. As a result, it is found that the expected event rate of SRNs is comparable with other backgrounds at SK-Gd. Therefore, the required observation time to detect SRNs at SK-Gd depends strongly on the core collapse rate and it is 10-300 years.

  10. Comment on: Lawrence, J.A., Mortimore, R.N., Stone, K.J., Busby, J.P., 2013. Sea saltwater weakening of chalk and the impact on cliff instability. Geomorphology 191, 14-22

    NASA Astrophysics Data System (ADS)

    Dornbusch, Uwe

    2015-02-01

    This comment relates to the conclusion of the recently published paper that "This work challenges the established view by identifying the role of salt from seawater in the degradation of porous rocks in coastal environments as a third and potentially the most important mechanism leading to chalk cliff collapse." (Lawrence et al., 2013: 15). The 'established view' relates to "Traditionally, the two main factors leading to cliff collapse have been considered to be (i) waves attacking and eroding the base of the cliff […] and (ii) water weakening as the chalk becomes saturated […]." (Lawrence et al., 2013: 14). The particular aspect of the paper of making surface weakening the primary process has been picked up more widely following publication under the headlines 'Salt causes chalk cliffs to collapse' in Jarlett (2013), 'Salt makes chalk cliffs collapse' in NERC (2013) and in the web resource 'How does salt make chalk cliffs collapse?' from Leeds University (2013).

  11. IMPLEMENTATION OF SINK PARTICLES IN THE ATHENA CODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong Hao; Ostriker, Eve C., E-mail: hgong@astro.umd.edu, E-mail: eco@astro.princeton.edu

    2013-01-15

    We describe the implementation and tests of sink particle algorithms in the Eulerian grid-based code Athena. The introduction of sink particles enables the long-term evolution of systems in which localized collapse occurs, and it is impractical (or unnecessary) to resolve the accretion shocks at the centers of collapsing regions. We discuss the similarities and differences of our methods compared to other implementations of sink particles. Our criteria for sink creation are motivated by the properties of the Larson-Penston collapse solution. We use standard particle-mesh methods to compute particle and gas gravity together. Accretion of mass and momenta onto sinks ismore » computed using fluxes returned by the Riemann solver. A series of tests based on previous analytic and numerical collapse solutions is used to validate our method and implementation. We demonstrate use of our code for applications with a simulation of planar converging supersonic turbulent flow, in which multiple cores form and collapse to create sinks; these sinks continue to interact and accrete from their surroundings over several Myr.« less

  12. Collapse and revival of the Fermi sea in a Bose-Fermi mixture

    NASA Astrophysics Data System (ADS)

    Iyer, Deepak; Will, Sebastian; Rigol, Marcos

    2014-05-01

    The collapse and revival of quantum fields is one of the most pristine forms of coherent quantum dynamics far from equilibrium. Until now, it has only been observed in the dynamical evolution of bosonic systems. We report on the first observation of the boson mediated collapse and revival of the Fermi sea in a Bose-Fermi mixture. Specifically, we present a simple model which captures the experimental observations shown in the talk titled Observation of Collapse and Revival Dynamics in the Fermionic Component of a Lattice Bose-Fermi Mixture by Sebastian Will. Our theoretical analysis shows why the results are robust to the presence of harmonic traps during the loading or the time evolution phase. It also makes apparent that the fermionic dynamics is independent of whether the bosonic component consists of a coherent state or localized Fock states with random occupation numbers. Because of the robustness of the experimental results, we argue that this kind of collapse and revival experiment can be used to accurately characterize interactions between bosons and fermions in a lattice.

  13. Treatment expectations for cognitive-behavioral therapy and light therapy for seasonal affective disorder: Change across treatment and relation to outcome.

    PubMed

    Meyerhoff, Jonah; Rohan, Kelly J

    2016-10-01

    To examine the dynamic relationship between treatment expectations and treatment outcome over the course of a clinical trial for winter seasonal affective disorder (SAD). Currently depressed adults with Major Depression, Recurrent with Seasonal Pattern (N = 177) were randomized to 6 weeks of group-delivered cognitive-behavioral therapy for SAD (CBT-SAD) or light therapy (LT). The majority were female (83.6%) and white (92.1%), with a mean age of 45.6 years. Treatment expectations for CBT-SAD and LT were assessed using a modification of the Treatment Expectancy and Credibility Survey (Borkovec & Nau, 1972). Depression severity was assessed using the Beck Depression Inventory-Second Edition (Beck, Steer, & Brown, 1996). All measures were administered at pretreatment, midtreatment, and posttreatment. As treatment progressed, expectations for the treatment received increased across time steeply in CBT-SAD patients and moderately in LT patients. Collapsing across time, patients with higher treatment expectations had lower depression severity than those with lower treatment expectations. In a cross-lagged panel path analysis, there was a significant effect of treatment expectations at midtreatment on depression severity at posttreatment among CBT-SAD patients. Treatment expectations changed across treatment, affected outcome, and should be assessed and monitored repeatedly throughout treatment. Findings suggest that treatment expectations at midtreatment are a mechanism by which CBT-SAD reduces depression, which should be replicated in SAD samples and examined for generalizability to nonseasonal depression. These findings underscore the importance of further research examining treatment expectations in mediating CBT's effects in depression and other types of psychopathology. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Rhabdomyolysis and Artifactual Increase in Plasma Bicarbonate Concentration in an Amazon Parrot (Amazona species).

    PubMed

    Leissinger, Mary K; Johnson, James G; Tully, Thomas N; Gaunt, Stephen D

    2017-09-01

    A 7-year-old male Amazon parrot housed outdoors presented with acute collapse, marked lethargy, and open-mouth breathing. The patient had stiffness of the pectoral muscles, and petechiation and ecchymosis noted around the eyes and beneath the mandible. Laboratory data revealed markedly increased aspartate aminotransferase, creatine kinase, and lactate dehydrogenase activity consistent with rhabdomyolysis, as well as markedly increased plasma bicarbonate concentration. Marked clinical improvement and resolution of laboratory abnormalities occurred with fluid therapy, administration of a nonsteroidal anti-inflammatory medication, and husbandry modifications, including indoor housing and dietary alteration. A spurious increase in bicarbonate measurement as documented in equine and bovine cases of rhabdomyolysis also occurred in this avian patient and must be considered for accurate interpretation of acid-base status in exotic species presenting with consistent clinical signs.

  15. Pulmonary artery dissection following balloon valvuloplasty in a dog with pulmonic stenosis.

    PubMed

    Grint, K A; Kellihan, H B

    2017-04-01

    A 3-month-old, 9.9 kg, male pit bull cross was referred for evaluation of collapse. A left basilar systolic heart murmur graded V/VI and a grade IV/VI right basilar systolic heart murmur were ausculted. Echocardiography showed severe pulmonic stenosis characterized by annular hypoplasia, leaflet thickening, and leaflet fusion. After 1 month of atenolol therapy, a pulmonic valve balloon valvuloplasty procedure was performed, and the intra-operative right ventricular pressure was reduced by 43%. Echocardiography, performed the following day, showed apparent rupture of a pulmonary valve leaflet and a membranous structure within the pulmonary artery consistent with a dissecting membrane. Short-term follow-up has shown no apparent progression of the pulmonary artery dissection and the patient remains free of clinical signs. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Large-scale Instability during Gravitational Collapse with Neutrino Transport and a Core-Collapse Supernova

    NASA Astrophysics Data System (ADS)

    Aksenov, A. G.; Chechetkin, V. M.

    2018-04-01

    Most of the energy released in the gravitational collapse of the cores of massive stars is carried away by neutrinos. Neutrinos play a pivotal role in explaining core-collape supernovae. Currently, mathematical models of the gravitational collapse are based on multi-dimensional gas dynamics and thermonuclear reactions, while neutrino transport is considered in a simplified way. Multidimensional gas dynamics is used with neutrino transport in the flux-limited diffusion approximation to study the role of multi-dimensional effects. The possibility of large-scale convection is discussed, which is interesting both for explaining SN II and for setting up observations to register possible high-energy (≳10MeV) neutrinos from the supernova. A new multi-dimensional, multi-temperature gas dynamics method with neutrino transport is presented.

  17. A comparison of reliability and conventional estimation of safe fatigue life and safe inspection intervals

    NASA Technical Reports Server (NTRS)

    Hooke, F. H.

    1972-01-01

    Both the conventional and reliability analyses for determining safe fatigue life are predicted on a population having a specified (usually log normal) distribution of life to collapse under a fatigue test load. Under a random service load spectrum, random occurrences of load larger than the fatigue test load may confront and cause collapse of structures which are weakened, though not yet to the fatigue test load. These collapses are included in reliability but excluded in conventional analysis. The theory of risk determination by each method is given, and several reasonably typical examples have been worked out, in which it transpires that if one excludes collapse through exceedance of the uncracked strength, the reliability and conventional analyses gave virtually identical probabilities of failure or survival.

  18. The Interplay of Opacities and Rotation in Promoting the Explosion of Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Vartanyan, David; Burrows, Adam; Radice, David

    2018-01-01

    For over five decades, the mechanism of explosion in core-collapse supernovae has been a central unsolved problem in astrophysics, challenging both our computational capabilities and our understanding of relevant physics. Current simulations often produce explosions, but they are at times underenergetic. The neutrino mechanism, wherein a fraction of emitted neutrinos is absorbed in the mantle of the star to reignite the stalled shock, remains the dominant model for reviving explosions in massive stars undergoing core collapse. We present here a diverse suite of 2D axisymmetric simulations produced by FORNAX, a highly parallelizable multidimensional supernova simulation code. We explore the effects of various corrections, including the many-body correction, to neutrino-matter opacities and the possible role of rotation in promoting explosion amongst various core-collapse progenitors.

  19. Discriminating the effects of collapse models from environmental diffusion with levitated nanospheres

    NASA Astrophysics Data System (ADS)

    Li, Jie; Zippilli, Stefano; Zhang, Jing; Vitali, David

    2016-05-01

    Collapse models postulate the existence of intrinsic noise which modifies quantum mechanics and is responsible for the emergence of macroscopic classicality. Assessing the validity of these models is extremely challenging because it is nontrivial to discriminate unambiguously their presence in experiments where other hardly controllable sources of noise compete to the overall decoherence. Here we provide a simple procedure that is able to probe the hypothetical presence of the collapse noise with a levitated nanosphere in a Fabry-Pérot cavity. We show that the stationary state of the system is particularly sensitive, under specific experimental conditions, to the interplay between the trapping frequency, the cavity size, and the momentum diffusion induced by the collapse models, allowing one to detect them even in the presence of standard environmental noises.

  20. Improved Noninterferometric Test of Collapse Models Using Ultracold Cantilevers

    NASA Astrophysics Data System (ADS)

    Vinante, A.; Mezzena, R.; Falferi, P.; Carlesso, M.; Bassi, A.

    2017-09-01

    Spontaneous collapse models predict that a weak force noise acts on any mechanical system, as a consequence of the collapse of the wave function. Significant upper limits on the collapse rate have been recently inferred from precision mechanical experiments, such as ultracold cantilevers and the space mission LISA Pathfinder. Here, we report new results from an experiment based on a high-Q cantilever cooled to millikelvin temperatures, which is potentially able to improve the current bounds on the continuous spontaneous localization (CSL) model by 1 order of magnitude. High accuracy measurements of the cantilever thermal fluctuations reveal a nonthermal force noise of unknown origin. This excess noise is compatible with the CSL heating predicted by Adler. Several physical mechanisms able to explain the observed noise have been ruled out.

  1. Collapse of biodiversity in fractured metacommunities

    NASA Astrophysics Data System (ADS)

    Fisher, Charles; Mehta, Pankaj

    2014-03-01

    The increasing threat to global biodiversity from climate change, habitat destruction, and other anthropogenic factors motivates the search for features that increase the resistance of ecological communities to destructive disturbances. Recently, Gibson et al (Science 2013) observed that the damming of the Khlong Saeng river in Thailand caused a rapid collapse of biodiversity in the remaining tropical forests. Using a theoretical model that maps the distribution of coexisting species in an ecological community to a disordered system of Ising spins, we show that fracturing a metacommunity by inhibiting species dispersal leads to a collapse in biodiversity in the constituent local communities. The biodiversity collapse can be modeled as a diffusion on a rough energy landscape, and the resulting estimate for the rate of extinction highlights the role of species functional diversity in maintaining biodiversity following a disturbance.

  2. Collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri

    2016-10-01

    We study the collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction. Equilibrium states in which the gravitational attraction and the attraction due to the self-interaction are counterbalanced by the quantum pressure (Heisenberg's uncertainty principle) exist only below a maximum mass Mmax=1.012 ℏ/√{G m |as| } where as<0 is the scattering length of the bosons and m is their mass [P. H. Chavanis, Phys. Rev. D 84, 043531 (2011)]. For M >Mmax the system is expected to collapse and form a black hole. We study the collapse dynamics by making a Gaussian ansatz for the wave function and reducing the problem to the study of the motion of a particle in an effective potential. We find that the collapse time scales as (M /Mmax-1 )-1 /4 for M →Mmax+ and as M-1 /2 for M ≫Mmax. Other analytical results are given above and below the critical point corresponding to a saddle-node bifurcation. We apply our results to QCD axions with mass m =10-4 eV /c2 and scattering length as=-5.8 ×10-53 m for which Mmax=6.5 ×10-14M⊙ and R =3.3 ×10-4R⊙. We confirm our previous claim that bosons with attractive self-interaction, such as QCD axions, may form low mass stars (axion stars or dark matter stars) but cannot form dark matter halos of relevant mass and size. These mini axion stars could be the constituents of dark matter. They can collapse into mini black holes of mass ˜10-14M⊙ in a few hours. In that case, dark matter halos would be made of mini black holes. We also apply our results to ultralight axions with mass m =1.93 ×10-20 eV /c2 and scattering length as=-8.29 ×10-60 fm for which Mmax=0.39 ×1 06M⊙ and R =33 pc . These ultralight axions could cluster into dark matter halos. Axionic dark matter halos with attractive self-interaction can collapse into supermassive black holes of mass ˜1 06M⊙ (similar to those reported at the center of galaxies) in about one million years. We point out the limitations of the Gaussian ansatz to describe the late stages of the collapse dynamics. We also mention the possibility that, instead of forming a black hole, the collapse may be accompanied by a burst or relativistic axions (bosenova) leading to a cycle of collapses and explosions as observed for nongravitational Bose-Einstein condensates with attractive self-interaction.

  3. Collapsed lung (pneumothorax)

    MedlinePlus

    ... provider will listen to your breathing with a stethoscope. If you have a collapsed lung, there are ... rupture, chest x-ray Pneumothorax - chest x-ray Respiratory system Chest tube insertion - series Pneumothorax - series References ...

  4. Turbulence in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Radice, David; Abdikamalov, Ernazar; Ott, Christian D.; Mösta, Philipp; Couch, Sean M.; Roberts, Luke F.

    2018-05-01

    Multidimensional simulations show that non-radial, turbulent, fluid motion is a fundamental component of the core-collapse supernova explosion mechanism. Neutrino-driven convection, the standing accretion shock instability, and relic-perturbations from advanced nuclear burning stages can all impact the outcome of core collapse in a qualitative and quantitative way. Here, we review the current understanding of these phenomena and their role in the explosion of massive stars. We also discuss the role of protoneutron star convection and of magnetic fields in the context of the delayed neutrino mechanism.

  5. Can We Falsify the Consciousness-Causes-Collapse Hypothesis in Quantum Mechanics?

    NASA Astrophysics Data System (ADS)

    de Barros, J. Acacio; Oas, Gary

    2017-10-01

    In this paper we examine some proposals to disprove the hypothesis that the interaction between mind and matter causes the collapse of the wave function, showing that such proposals are fundamentally flawed. We then describe a general experimental setup retaining the key features of the ones examined, and show that even a more general case is inadequate to disprove the mind-matter collapse hypothesis. Finally, we use our setup provided to argue that, under some reasonable assumptions about consciousness, such hypothesis is unfalsifiable.

  6. Shock wave interaction with laser-generated single bubbles.

    PubMed

    Sankin, G N; Simmons, W N; Zhu, S L; Zhong, P

    2005-07-15

    The interaction of a lithotripter shock wave (LSW) with laser-generated single vapor bubbles in water is investigated using high-speed photography and pressure measurement via a fiber-optic probe hydrophone. The interaction leads to nonspherical collapse of the bubble with secondary shock wave emission and microjet formation along the LSW propagation direction. The maximum pressure amplification is produced during the collapse phase of the bubble oscillation when the compressive pulse duration of the LSW matches with the forced collapse time of the bubble.

  7. Solitons and ionospheric modification

    NASA Technical Reports Server (NTRS)

    Sheerin, J. P.; Nicholson, D. R.; Payne, G. L.; Hansen, P. J.; Weatherall, J. C.; Goldman, M. V.

    1982-01-01

    The possibility of Langmuir soliton formation and collapse during ionospheric modification is investigated. Parameters characterizing former facilities, existing facilities, and planned facilities are considered, using a combination of analytical and numerical techniques. At a spatial location corresponding to the exact classical reflection point of the modifier wave, the Langmuir wave evolution is found to be dominated by modulational instability followed by soliton formation and three-dimensional collapse. The earth's magnetic field is found to affect the shape of the collapsing soliton. These results provide an alternative explanation for some recent observations.

  8. [Prehospital arterial blood gas analysis after collapse connected to triathlon participation].

    PubMed

    Ettrup-Christensen, Asbjørn; Amstrup-Hansen, Louise; Zwisler, Stine T

    2017-05-01

    Long-distance athletes are at risk of serious fluid and electrolyte disturbances, such as hypernatraemia (dehydration). Recently, cases of serious morbidity have been reported, due to acute exercise-associated hyponatraemia, which can advance to encephalopathy. An arterial blood gas analysis (ABG) was drawn from collapsed athletes at the championship of full-distance triathlon 2015, and different electrolyte imbalances were found. Our findings show that prehospital ABG can assist in differentiating the cause of collapse, and presumably, targeted treatment can be initiated already on scene.

  9. The Collapse of Iraq and Syria: The End of the Colonial Construct in the Greater Levant

    DTIC Science & Technology

    2015-12-01

    dominated by the security state, not the military. Summary Projecting back in time, the political odysseys of Syria and Iraq between the end of...OPERATIONS UNIVERSITY The Collapse of Iraq and Syria: The End of the Colonial Construct in the Greater Levant Roby C. Barrett, Ph.D. JSOU Report 16-1 Dr...Roby Barrett’s The Collapse of Iraq and Syria: The End of the Colonial Construct in the Greater Levant is a timely, scholarly work that helps

  10. Lung lobar collapse as the first manifestation of pulmonary epithelioid haemangioendothelioma diagnosed with fibreoptic bronchoscopy.

    PubMed

    Abdalla, Ahmed; Seedahmed, Elfateh; Bachuwa, Ghassan; Congdon, Douglas

    2016-10-24

    Pulmonary epithelioid haemangioendothelioma (PEH) is a rare tumour of endothelial origin that usually occurs in the lung and liver. It usually presents as bilateral multiple nodular lesions. We report a middle-aged woman with a unique presentation of PEH with lung lobar collapse. The diagnosis was made with fibreoptic bronchoscopy rather than video-assisted thoracoscopy. Clinicians and pathologists should be aware of rare conditions that can present as lung lobar collapse. 2016 BMJ Publishing Group Ltd.

  11. Climate and the collapse of civilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abate, T.

    1994-09-01

    This article looks at the archaeological debate over two important questions: whether abrupt climate changes caused or contributed to the collapse of ancient civilizations and, if the archaeological and paleoclimatological record yields evidence to that effect, what would it mean in a world that today debates whether industrial civilization is altering Earth's climate with uncertain consequences. Areas discussed include the following: climate hints from archaeological sites; hesitations about whether climate change caused civilizations to collapse; and the interdisciplinary checks on each side.

  12. Source Analysis of the Crandall Canyon, Utah, Mine Collapse

    DOE PAGES

    Dreger, D. S.; Ford, S. R.; Walter, W. R.

    2008-07-11

    Analysis of seismograms from a magnitude 3.9 seismic event on August 6, 2007 in central Utah reveals an anomalous radiation pattern that is contrary to that expected for a tectonic earthquake, and which is dominated by an implosive component. The results show the seismic event is best modeled as a shallow underground collapse. Interestingly, large transverse surface waves require a smaller additional non-collapse source component that represents either faulting in the rocks above the mine workings or deformation of the medium surrounding the mine.

  13. Naked singularities in higher dimensional Vaidya space-times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S. G.; Dadhich, Naresh

    We investigate the end state of the gravitational collapse of a null fluid in higher-dimensional space-times. Both naked singularities and black holes are shown to be developing as the final outcome of the collapse. The naked singularity spectrum in a collapsing Vaidya region (4D) gets covered with the increase in dimensions and hence higher dimensions favor a black hole in comparison to a naked singularity. The cosmic censorship conjecture will be fully respected for a space of infinite dimension.

  14. The Macungie sinkhole, Lehigh Valley, Pennsylvania: Cause and repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougherty, P.H.; Perlow, M. Jr.

    1988-10-01

    A dramatic sinkhole collapse measuring some 100 feet in diameter by 41 feet deep occurred suddenly in the Borough of Macungie on June 23, 1986. The sinkhole collapse resulted in a major health and safety hazard. Continual growth of the sinkhole could have resulted in almost certain damage or loss to more than 17 residences adjacent to the sinkhole collapse. Stabilization and repair costs totaled some $450,000 and required almost three months to restore utility services, roadway, and parking areas.

  15. RUNOFF, SEDIMENT TRANSPORT, AND SURFACE COLLAPSE AT A LOW-LEVEL RADIOACTIVE-WASTE BURIAL SITE NEAR SHEFFIELD, ILLINOIS.

    USGS Publications Warehouse

    Gray, John R.; Peters, Charles A.; ,

    1985-01-01

    Runoff, sediment transport, and precipitation were measured in three gaged basins composing two-thirds of the 20-acre site, and in a 3. 5-acre basin located 0. 3 mile south of the site. Locations and dimensions of surface collapses at the site were recorded by the site contractor. Volumes of collapsed material were calculated and converted to an equivalent weight of earth material by applying a mean value for the bulk density of soils at the site.

  16. Abrupt climatic changes as triggering mechanisms of massive volcanic collapses: examples from Mexico (Invited)

    NASA Astrophysics Data System (ADS)

    Capra, L.

    2010-12-01

    Climate changes have been considered to be a triggering mechanism for large magmatic eruptions. However they can also trigger volcanic collapses, phenomena that cause the destruction of the entire sector of a volcano, including its summit. During the past 30 ka, major volcanic collapses occurred just after main glacial peaks that ended with a rapid deglaciation. Glacial debuttressing, load discharge and fluid circulation coupled with the post-glacial increase of humidity and heavy rains can activate the failure of unstable edifices. Looking at the synchronicity of the maximum glaciations during the late Pleistocene and Holocene in the northern and southern hemispheres it is evident that several volcanic collapses are absent during a glacial climax, but start immediately after it during a period of rapid retreat. Several examples can be detected around the world and Mexico is not an exception. The 28 ka Nevado de Toluca volcanic collapse occurred during an intraglacial stage, under humid conditions as evidenced by paleoclimatic studies on lacustrine sediments of the area. The debris avalanche deposit associated to this event clearly shows evidence of a large amount of water into the mass previous to the failure that enhanced its mobility. It also contains peculiar, plastically deformed, m-sized fragment of lacustrine sediments eroded from glacial berms. The 17 ka BP collapse of the Colima Volcano corresponds to the initial stage of glacial retreat in Mexico after the Last Glacial Maximum (22-17.5ka). Also in this case the depositional sequence reflects high humidity conditions with voluminous debris flow containing a large amount logs left by pine trees. The occurrence of cohesive debris flows originating from the failure of a volcanic edifice can also reflect the climatic conditions, indicating important hydrothermal alteration and fluid circulation from ice-melting at an ice-capped volcano, as observed for example at the Pico de Orizaba volcano for the Tetelzingo lahar, which collapse occurred after the Terminal Glacial (15-11 ka). Furthermore, significant global warming can be responsible for the collapse of ice-capped unstable volcanoes, an unpredictable hazard that in few minutes can bury inhabited areas.

  17. Key variables influencing patterns of lava dome growth and collapse

    NASA Astrophysics Data System (ADS)

    Husain, T.; Elsworth, D.; Voight, B.; Mattioli, G. S.; Jansma, P. E.

    2013-12-01

    Lava domes are conical structures that grow by the infusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Dome growth can be characterized by repeated cycles of growth punctuated by collapse, as the structure becomes oversized for its composite strength. Within these cycles, deformation ranges from slow long term deformation to sudden deep-seated collapses. Collapses may range from small raveling failures to voluminous and fast-moving pyroclastic flows with rapid and long-downslope-reach from the edifice. Infusion rate and magma rheology together with crystallization temperature and volatile content govern the spatial distribution of strength in the structure. Solidification, driven by degassing-induced crystallization of magma leads to the formation of a continuously evolving frictional talus as a hard outer shell. This shell encapsulates the cohesion-dominated soft ductile core. Here we explore the mechanics of lava dome growth and failure using a two-dimensional particle-dynamics model. This meshless model follows the natural evolution of a brittle carapace formed by loss of volatiles and rheological stiffening and avoids difficulties of hour-glassing and mesh-entangelment typical in meshed models. We test the fidelity of the model against existing experimental and observational models of lava dome growth. The particle-dynamics model follows the natural development of dome growth and collapse which is infeasible using simple analytical models. The model provides insight into the triggers that lead to the transition in collapse mechasnism from shallow flank collapse to deep seated sector collapse. Increase in material stiffness due to decrease in infusion rate results in the transition of growth pattern from endogenous to exogenous. The material stiffness and strength are strongly controlled by the magma infusion rate. Increase in infusion rate decreases the time available for degassing induced crystallization leading to a transition in the growth pattern, while a decrease in infusion rate results in larger crystals causing the material to stiffen leading to formation of spines. Material stiffness controls the growth direction of the viscous plug in the lava dome interior. Material strength and stiffness controled by rate of infusion influence lava dome growth more significantly than coefficient of frictional of the talus.

  18. Intense electromagnetic outbursts from collapsing hypermassive neutron stars

    NASA Astrophysics Data System (ADS)

    Lehner, Luis; Palenzuela, Carlos; Liebling, Steven L.; Thompson, Christopher; Hanna, Chad

    2012-11-01

    We study the gravitational collapse of a magnetized neutron star using a novel numerical approach able to capture both the dynamics of the star and the behavior of the surrounding plasma. In this approach, a fully general relativistic magnetohydrodynamics implementation models the collapse of the star and provides appropriate boundary conditions to a force-free model which describes the stellar exterior. We validate this strategy by comparing with known results for the rotating monopole and aligned rotator solutions and then apply it to study both rotating and nonrotating stellar collapse scenarios and contrast the behavior with what is obtained when employing the electrovacuum approximation outside the star. The nonrotating electrovacuum collapse is shown to agree qualitatively with a Newtonian model of the electromagnetic field outside a collapsing star. We illustrate and discuss a fundamental difference between the force-free and electrovacuum solutions, involving the appearance of large zones of electric-dominated field in the vacuum case. This provides a clear demonstration of how dissipative singularities appear generically in the nonlinear time evolution of force-free fluids. In both the rotating and nonrotating cases, our simulations indicate that the collapse induces a strong electromagnetic transient, which leaves behind an uncharged, unmagnetized Kerr black hole. In the case of submillisecond rotation, the magnetic field experiences strong winding, and the transient carries much more energy. This result has important implications for models of gamma-ray bursts. Even when the neutron star is surrounded by an accretion torus (as in binary merger and collapsar scenarios), a magnetosphere may emerge through a dynamo process operating in a surface shear layer. When this rapidly rotating magnetar collapses to a black hole, the electromagnetic energy released can compete with the later output in a Blandford-Znajek jet. Much less electromagnetic energy is released by a massive magnetar that is (initially) gravitationally stable: its rotational energy is dissipated mainly by internal torques. A distinct plasmoid structure is seen in our nonrotating simulations, which will generate a radio transient with subluminal expansion and greater synchrotron efficiency than is expected in shock models. Closely related phenomena appear to be at work in the giant flares of Galactic magnetars.

  19. Unusual gravitational failures on lava domes of Tatun Volcanic Group, Northern Taiwan.

    NASA Astrophysics Data System (ADS)

    Belousov, Alexander; Belousova, Marina; Chen, Chang-Hwa; Zellmer, Georg

    2010-05-01

    Tatun Volcanic Group of Northern Taiwan was formed mainly during the Pleistocene - Early Holocene. Most of the volcanoes are represented by andesitic lava domes of moderate sizes: heights up to 400 m (absolute altitudes 800-1100 m a.s.l.), base diameters up to 2 km, and volumes up to 0.3 km³. Many of the domes have broadly opened (0.5-1.0 km across and up to 140° wide), shallow-incised horseshoe-shaped scars formed by gravitational collapses. The failure planes did not intersect the volcanic conduits, and the scars were not filled by younger volcanic edifices: most of the collapses occurred a long time after the eruptions had ceased. The largest collapse, with a volume 0.1 km³, occurred at eastern part of Datun lava dome. Specific feature of the collapse was that the rear slide blocks did not travel far from the source; they stopped high inside the collapse scar, forming multiple narrow toreva blocks descending downslope. The leading slide blocks formed a low mobile debris avalanche (L~5 km; H~1 km; H/L~0.2). The deposit is composed mainly of block facies. The age of the collapse is older than 24,000 yrs, because the related debris avalanche deposit is covered by a younger debris avalanche deposit of Siaoguanyin volcano having calibrated 14C age 22,600-23,780 BP. The Siaoguanyin debris avalanche was formed as a result of collapse of southern part of a small flank dome. Specific feature of the resulted avalanche - it was hot during deposition. The deposit contains carbonized wood; andesite boulders within the deposit frequently have radial cooling joints, and in rare cases "bread-crust" surfaces. The paucity of fine fractions in the deposit can be connected with elutriation of fines into the convective cloud when the hot avalanche travelled downslope. However in several locations the deposit is represented by typical avalanche blocks surrounded by heterolithologic mixed facies containing abundant clasts of Miocene sandstone (picked up from the substrate). Thus the deposit bears features of both debris avalanches and lithic-rich block-and-ash flows. The avalanche was rather mobile (L~6 km; H~1 km; H/L~0.16), despite its small volume (0.02 km³). Its speed reached 40 m/s at a distance of 5 km from the source (based on 80 m high runup of the avalanche). The characteristics of the avalanche deposit indicate that crystallized, degassed, but still hot material of a newly extruded lava dome was involved in the collapse. Unusual low mobile debris avalanche was formed as a result of collapse of western slope of Mt. Cising. A former lava coulee, which was involved in the collapse, underwent only weak disintegration: debris avalanche deposit is represented by big boulders with few fine grained matrix. Leading snout of the landslide traveled only 2 km, while rear slide blocks stopped near the landslide source forming multiple narrow toreva blocks descending downslope. Volume of the collapse 0.05 km³; maximum dropped height 0.5 km, H/L 0.25. Around the distal snout of the avalanche a "bulldozer facies" is well developed. Dating of vegetation entrained into the deposit gave 14C calibrated age 6000-6080 BP. Mobility of the studied debris avalanches was twice smaller than the average mobility of volcanic debris avalanches. Relatively small volume of the collapses, the particular type of material involved (massive lava domes) and the fact that the collapses occurred long after the volcanoes stopped erupting may have played a role in the low mobility of the debris avalanches of the Tatun Group.

  20. Treatment Expectations for Cognitive-Behavioral Therapy and Light Therapy for Seasonal Affective Disorder: Change Across Treatment and Relation to Outcome

    PubMed Central

    Meyerhoff, Jonah; Rohan, Kelly J.

    2016-01-01

    Objective To examine the dynamic relationship between treatment expectations and treatment outcome over the course of a clinical trial for winter seasonal affective disorder (SAD). Method Currently depressed adults with Major Depression, Recurrent with Seasonal Pattern (N = 177) were randomized to 6-weeks of group-delivered cognitive-behavioral therapy for SAD (CBT-SAD) or light therapy (LT). The majority was female (83.6%) and white (92.1%), with a mean age of 45.6 years. Treatment expectations for CBT-SAD and LT were assessed using a modification of the Treatment Expectancy and Credibility Survey (Borkovec & Nau, 1972). Depression severity was assessed using the Beck Depression Inventory-Second Edition (Beck, Steer, & Brown, 1996). All measures were administered at pre-treatment, mid-treatment, and post-treatment. Results As treatment progressed, expectations for the treatment received increased across time steeply in CBT-SAD patients and moderately in LT patients. Collapsing across time, patients with higher treatment expectations had lower depression severity than those with lower treatment expectations. In a cross-lagged panel path analysis, there was a significant effect of treatment expectations at mid-treatment on depression severity at post-treatment among CBT-SAD patients. Conclusions Treatment expectations changed across treatment, affected outcome, and should be assessed and monitored repeatedly throughout treatment. Findings suggest that treatment expectations at mid-treatment are a mechanism by which CBT-SAD reduces depression, which should be replicated in SAD samples and examined for generalizability to non-seasonal depression. These findings underscore the importance of further research examining treatment expectations in mediating CBT’s effects in depression and other types of psychopathology. Public Health Significance This study highlights the importance of monitoring treatment expectations repeatedly during treatment regardless of treatment type. Moreover, therapists administering cognitive-based therapy for depression should actively attend to the degree of patient “buy-in” early in treatment as it has clear indications for depression severity at treatment endpoint. PMID:27281373

  1. Chest Tube Thoracostomy

    MedlinePlus

    ... outside the lung, causing its collapse (called a pneumothorax ). Chest tube thoracostomy involves placing a hollow plastic ... a chest tube is needed include: ■ ■ Collapsed lung (pneumothorax)— This occurs when air has built up in ...

  2. The Death of a Star

    ERIC Educational Resources Information Center

    Thorne, Kip S.

    1971-01-01

    Theories associated with the gravitational collapse of a star into black holes" are described. Suggests that the collapse and compression might go through the stages from white dwarf star to neutron core to black hole." (TS)

  3. Modeling colony collapse disorder in honeybees as a contagion.

    PubMed

    Kribs-Zaleta, Christopher M; Mitchell, Christopher

    2014-12-01

    Honeybee pollination accounts annually for over $14 billion in United States agriculture alone. Within the past decade there has been a mysterious mass die-off of honeybees, an estimated 10 million beehives and sometimes as much as 90% of an apiary. There is still no consensus on what causes this phenomenon, called Colony Collapse Disorder, or CCD. Several mathematical models have studied CCD by only focusing on infection dynamics. We created a model to account for both healthy hive dynamics and hive extinction due to CCD, modeling CCD via a transmissible infection brought to the hive by foragers. The system of three ordinary differential equations accounts for multiple hive population behaviors including Allee effects and colony collapse. Numerical analysis leads to critical hive sizes for multiple scenarios and highlights the role of accelerated forager recruitment in emptying hives during colony collapse.

  4. Magnetorotatioal Collapse of Supermassive Stars: Black Hole Formation and Jets

    NASA Astrophysics Data System (ADS)

    Sun, Lunan; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart

    2017-01-01

    We perform magnetohydrodynamic simulations in full general relativity of the collapse of radially unstable, uniformly rotating, massive stars to black holes. The stars spin at the mass-shedding limit, account for magnetic fields and obey a Γ = 4/3 EOS. The calculations lift the restriction of axisymmetry imposed in previous simulations. Our simulations model the direct collapse of supermassive stars to supermassive BHs (>=104M⊙) at high cosmological redshifts, which may explain the appearance of supermassive BHs and quasars by z 7. They also crudely model the collapse of massive Pop III stars to massive BHs, which could power some of the long gamma-ray bursts observed by FERMI and SWIFT at z 6-8. We analyze the properties of the electromagnetic and gravitational wave signatures of these events and discuss the detectability of such multimessenger sources.

  5. Electrostatic effects in the collapse transition of phospholiquid monolayer

    NASA Astrophysics Data System (ADS)

    Nguyen, Toan T.; Gopal, Ajaykumar; Lee, Ka Yee C.; Witten, Thomas A.

    2004-03-01

    We study the collapse transition of fluidic phospholipid surfactant monolayers under lateral compression. DMPC, DPPC or POPG surfactants and their binary mixtures are used. Various collapsed structures (circular discs, cylinderical tubes and pearls-on-a-string) were observed during the transition. We show that electrostatics plays an important role in the formation of these structures. By changing the composition of charged surfactant (POGP) or the screening condition of the solution, one can change the dominant collapsed structure from discs to tubes to pearls in the order of increasing the strength of electrostatic interactions, in accordance with theoretical estimates. We also study a complimentary electrostatic effect due charge relaxation in the transitions between these structures. It is shown that free energy gained from relaxations of charge molecule is small and can be neglected when considering electrostatics of these systems.

  6. Collapse of composite tubes under end moments

    NASA Technical Reports Server (NTRS)

    Stockwell, Alan E.; Cooper, Paul A.

    1992-01-01

    Cylindrical tubes of moderate wall thickness such as those proposed for the original space station truss, may fail due to the gradual collapse of the tube cross section as it distorts under load. Sometimes referred to as the Brazier instability, it is a nonlinear phenomenon. This paper presents an extension of an approximate closed form solution of the collapse of isotropic tubes subject to end moments developed by Reissner in 1959 to include specially orthotropic material. The closed form solution was verified by an extensive nonlinear finite element analysis of the collapse of long tubes under applied end moments for radius to thickness ratios and composite layups in the range proposed for recent space station truss framework designs. The finite element analysis validated the assumption of inextensional deformation of the cylindrical cross section and the approximation of the material as specially orthotropic.

  7. Higher-dimensional gravitational collapse of perfect fluid spherically symmetric spacetime in f(R, T) gravity

    NASA Astrophysics Data System (ADS)

    Khan, Suhail; Khan, Muhammad Shoaib; Ali, Amjad

    2018-04-01

    In this paper, our aim is to study (n + 2)-dimensional collapse of perfect fluid spherically symmetric spacetime in the context of f(R, T) gravity. The matching conditions are acquired by considering a spherically symmetric non-static (n + 2)-dimensional metric in the inner region and Schwarzschild (n + 2)-dimensional metric in the outer region of the star. To solve the field equations for above settings in f(R, T) gravity, we choose the stress-energy tensor trace and the Ricci scalar as constants. It is observed that two physical horizons, namely, cosmological and black hole horizons appear as a consequence of this collapse. A singularity is also formed after the birth of both the horizons. It is also observed that the term f(R0, T0) slows down the collapsing process.

  8. Desipramine improves upper airway collapsibility and reduces OSA severity in patients with minimal muscle compensation

    PubMed Central

    Taranto-Montemurro, Luigi; Sands, Scott A.; Edwards, Bradley A.; Azarbarzin, Ali; Marques, Melania; de Melo, Camila; Eckert, Danny J.; White, David P.; Wellman, Andrew

    2017-01-01

    We recently demonstrated that desipramine reduces the sleep-related loss of upper airway dilator muscle activity and reduces pharyngeal collapsibility in healthy humans without obstructive sleep apnoea (OSA). The aim of the present physiological study was to determine the effects of desipramine on upper airway collapsibility and apnoea–hypopnea index (AHI) in OSA patients. A placebo-controlled, double-blind, randomised crossover trial in 14 OSA patients was performed. Participants received treatment or placebo in randomised order before sleep. Pharyngeal collapsibility (critical collapsing pressure of the upper airway (Pcrit)) and ventilation under both passive (V′0,passive) and active (V′0,active) upper airway muscle conditions were evaluated with continuous positive airway pressure (CPAP) manipulation. AHI was quantified off CPAP. Desipramine reduced active Pcrit (median (interquartile range) −5.2 (4.3) cmH2O on desipramine versus −1.9 (2.7) cmH2O on placebo; p=0.049) but not passive Pcrit (−2.2 (3.4) versus −0.7 (2.1) cmH2O; p=0.135). A greater reduction in AHI occurred in those with minimal muscle compensation (defined as V′0,active−V′0, passive) on placebo (r=0.71, p=0.009). The reduction in AHI was driven by the improvement in muscle compensation (r=0.72, p=0.009). In OSA patients, noradrenergic stimulation with desipramine improves pharyngeal collapsibility and may be an effective treatment in patients with minimal upper airway muscle compensation. PMID:27799387

  9. Behavior of wet precast beam column connections under progressive collapse scenario: an experimental study

    NASA Astrophysics Data System (ADS)

    Nimse, Rohit B.; Joshi, Digesh D.; Patel, Paresh V.

    2014-12-01

    Progressive collapse denotes a failure of a major portion of a structure that has been initiated by failure of a relatively small part of the structure such as failure of any vertical load carrying element (typically columns). Failure of large part of any structure will results into substantial loss of human lives and natural resources. Therefore, it is important to prevent progressive collapse which is also known as disproportionate collapse. Nowadays, there is an increasing trend toward construction of buildings using precast concrete. In precast concrete construction, all the components of structures are produced in controlled environment and they are being transported to the site. At site such individual components are connected appropriately. Connections are the most critical elements of any precast structure, because in past major collapse of precast structure took place because of connection failure. In this study, behavior of three different 1/3rd scaled wet precast beam column connections under progressive collapse scenario are studied and its performance is compared with monolithic connection. Precast connections are constructed by adopting different connection detailing at the junction by considering reinforced concrete corbel for two specimens and steel billet for one specimen. Performance of specimen is evaluated on the basis of ultimate load carrying capacity, maximum deflection and deflection measured along the span of the beam. From the results, it is observed that load carrying capacity and ductility of precast connections considered in this study are more than that of monolithic connections.

  10. Predicting failure: acoustic emission of berlinite under compression.

    PubMed

    Nataf, Guillaume F; Castillo-Villa, Pedro O; Sellappan, Pathikumar; Kriven, Waltraud M; Vives, Eduard; Planes, Antoni; Salje, Ekhard K H

    2014-07-09

    Acoustic emission has been measured and statistical characteristics analyzed during the stress-induced collapse of porous berlinite, AlPO4, containing up to 50 vol% porosity. Stress collapse occurs in a series of individual events (avalanches), and each avalanche leads to a jerk in sample compression with corresponding acoustic emission (AE) signals. The distribution of AE avalanche energies can be approximately described by a power law p(E)dE = E(-ε)dE (ε ~ 1.8) over a large stress interval. We observed several collapse mechanisms whereby less porous minerals show the superposition of independent jerks, which were not related to the major collapse at the failure stress. In highly porous berlinite (40% and 50%) an increase of energy emission occurred near the failure point. In contrast, the less porous samples did not show such an increase in energy emission. Instead, in the near vicinity of the main failure point they showed a reduction in the energy exponent to ~ 1.4, which is consistent with the value reported for compressed porous systems displaying critical behavior. This suggests that a critical avalanche regime with a lack of precursor events occurs. In this case, all preceding large events were 'false alarms' and unrelated to the main failure event. Our results identify a method to use pico-seismicity detection of foreshocks to warn of mine collapse before the main failure (the collapse) occurs, which can be applied to highly porous materials only.

  11. Non-singular Brans–Dicke collapse in deformed phase space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasouli, S.M.M., E-mail: mrasouli@ubi.pt; Centro de Matemática e Aplicações; Physics Group, Qazvin Branch, Islamic Azad University, Qazvin

    2016-12-15

    We study the collapse process of a homogeneous perfect fluid (in FLRW background) with a barotropic equation of state in Brans–Dicke (BD) theory in the presence of phase space deformation effects. Such a deformation is introduced as a particular type of non-commutativity between phase space coordinates. For the commutative case, it has been shown in the literature (Scheel, 1995), that the dust collapse in BD theory leads to the formation of a spacetime singularity which is covered by an event horizon. In comparison to general relativity (GR), the authors concluded that the final state of black holes in BD theorymore » is identical to the GR case but differs from GR during the dynamical evolution of the collapse process. However, the presence of non-commutative effects influences the dynamics of the collapse scenario and consequently a non-singular evolution is developed in the sense that a bounce emerges at a minimum radius, after which an expanding phase begins. Such a behavior is observed for positive values of the BD coupling parameter. For large positive values of the BD coupling parameter, when non-commutative effects are present, the dynamics of collapse process differs from the GR case. Finally, we show that for negative values of the BD coupling parameter, the singularity is replaced by an oscillatory bounce occurring at a finite time, with the frequency of oscillation and amplitude being damped at late times.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansson, Karl Wahlberg; Johansen, Anders; Syed, Mohtashim Bukhari

    Some scenarios for planetesimal formation go through a phase of collapse of gravitationally bound clouds of millimeter- to centimeter-size pebbles. Such clouds can form, for example, through the streaming instability in protoplanetary disks. We model the collapse process with a statistical model to obtain the internal structure of planetesimals with solid radii between 10 and 1000 km. During the collapse, pebbles collide, and depending on their relative speeds, collisions have different outcomes. A mixture of particle sizes inside a planetesimal leads to better packing capabilities and higher densities. In this paper we apply results from new laboratory experiments of dustmore » aggregate collisions (presented in a companion paper) to model collision outcomes. We find that the internal structure of a planetesimal is strongly dependent on both its mass and the applied fragmentation model. Low-mass planetesimals have no/few fragmenting pebble collisions in the collapse phase and end up as porous pebble piles. The number of fragmenting collisions increases with increasing cloud mass, resulting in wider particle size distributions and higher density. The collapse is nevertheless “cold” in the sense that collision speeds are damped by the high collision frequency. This ensures that a significant fraction of large pebbles survive the collapse in all but the most massive clouds. Our results are in broad agreement with the observed increase in density of Kuiper Belt objects with increasing size, as exemplified by the recent characterization of the highly porous comet 67P/Churyumov–Gerasimenko.« less

  13. Classic Maya civilization collapse associated with reduction in tropical cyclone activity

    NASA Astrophysics Data System (ADS)

    Medina, M. A.; Polanco-Martinez, J. M.; Lases-Hernández, F.; Bradley, R. S.; Burns, S. J.

    2013-12-01

    In light of the increased destructiveness of tropical cyclones observed over recent decades one might assume that an increase and not a decrease in tropical cyclone activity would lead to societal stress and perhaps collapse of ancient cultures. In this study we present evidence that a reduction in the frequency and intensity of tropical Atlantic cyclones could have contributed to the collapse of the Maya civilization during the Terminal Classic Period (TCP, AD. 800-950). Statistical comparisons of a quantitative precipitation record from the Yucatan Peninsula (YP) Maya lowlands, based on the stalagmite known as Chaac (after the Mayan God of rain and agriculture), relative to environmental proxy records of El Niño/Southern Oscillation (ENSO), tropical Atlantic sea surface temperatures (SSTs), and tropical Atlantic cyclone counts, suggest that these records share significant coherent variability during the TCP and that summer rainfall reductions between 30 and 50% in the Maya lowlands occurred in association with decreased Atlantic tropical cyclones. Analysis of modern instrumental hydrological data suggests cyclone rainfall contributions to the YP equivalent to the range of rainfall deficits associated with decreased tropical cyclone activity during the collapse of the Maya civilization. Cyclone driven precipitation variability during the TCP, implies that climate change may have triggered Maya civilization collapse via freshwater scarcity for domestic use without significant detriment to agriculture. Pyramid in Tikal, the most prominent Maya Kingdom that collapsed during the Terminal Classic Period (circa C.E. 800-950) Rainfall feeding stalagmites inside Rio Secreto cave system, Yucatan, Mexico.

  14. Collapse of differentially rotating neutron stars and cosmic censorship

    NASA Astrophysics Data System (ADS)

    Giacomazzo, Bruno; Rezzolla, Luciano; Stergioulas, Nikolaos

    2011-07-01

    We present new results on the dynamics and gravitational-wave emission from the collapse of differentially rotating neutron stars. We have considered a number of polytropic stellar models having different values of the dimensionless angular momentum J/M2, where J and M are the asymptotic angular momentum and mass of the star, respectively. For neutron stars with J/M2<1, i.e. “sub-Kerr” models, we were able to find models that are dynamically unstable and that collapse promptly to a rotating black hole. Both the dynamics of the collapse and the consequent emission of gravitational waves resemble those seen for uniformly rotating stars, although with an overall decrease in the efficiency of gravitational-wave emission. For stellar models with J/M2>1, i.e. “supra-Kerr” models, on the other hand, we were not able to find models that are dynamically unstable and all of the computed supra-Kerr models were found to be far from the stability threshold. For these models a gravitational collapse is possible only after a very severe and artificial reduction of the pressure, which then leads to a torus developing nonaxisymmetric instabilities and eventually contracting to a stable axisymmetric stellar configuration. While this does not exclude the possibility that a naked singularity can be produced by the collapse of a differentially rotating star, it also suggests that cosmic censorship is not violated and that generic conditions for a supra-Kerr progenitor do not lead to a naked singularity.

  15. Fishing amplifies forage fish population collapses.

    PubMed

    Essington, Timothy E; Moriarty, Pamela E; Froehlich, Halley E; Hodgson, Emma E; Koehn, Laura E; Oken, Kiva L; Siple, Margaret C; Stawitz, Christine C

    2015-05-26

    Forage fish support the largest fisheries in the world but also play key roles in marine food webs by transferring energy from plankton to upper trophic-level predators, such as large fish, seabirds, and marine mammals. Fishing can, thereby, have far reaching consequences on marine food webs unless safeguards are in place to avoid depleting forage fish to dangerously low levels, where dependent predators are most vulnerable. However, disentangling the contributions of fishing vs. natural processes on population dynamics has been difficult because of the sensitivity of these stocks to environmental conditions. Here, we overcome this difficulty by collating population time series for forage fish populations that account for nearly two-thirds of global catch of forage fish to identify the fingerprint of fisheries on their population dynamics. Forage fish population collapses shared a set of common and unique characteristics: high fishing pressure for several years before collapse, a sharp drop in natural population productivity, and a lagged response to reduce fishing pressure. Lagged response to natural productivity declines can sharply amplify the magnitude of naturally occurring population fluctuations. Finally, we show that the magnitude and frequency of collapses are greater than expected from natural productivity characteristics and therefore, likely attributed to fishing. The durations of collapses, however, were not different from those expected based on natural productivity shifts. A risk-based management scheme that reduces fishing when populations become scarce would protect forage fish and their predators from collapse with little effect on long-term average catches.

  16. Mount St. Helens (Washington, USA) and World Trade Center (New York, USA) collapse: a fluid dynamic analogy

    NASA Astrophysics Data System (ADS)

    Doronzo, Domenico; de Tullio, Marco; Pascazio, Giuseppe; Dellino, Pierfrancesco

    2013-04-01

    When a skyscraper collapses, the non-fragmented material is rapidly deposited close to the source, whereas the fragmented counterpart is loaded turbulently in the associated currents. Indeed, on impact with the ground, collapses of volcanic columns, domes, or sectors of volcanoes generate thick deposits of coarser material, and from there on the finer material is suspended over the landscape, to be re-deposited far away in thin deposits. Here, we explore the multiphase fluid dynamic behavior of the World Trade Center (New York, USA) collapse, which on 11 September 2001 followed the fragmentation of the Twin Towers, and generated shear dusty currents. These currents had a multiphase and turbulent behavior, and resemble the volcanic flow generated during the 18 May 1980 explosive eruption of Mount St. Helens (Washington, USA), in which a sector of the volcano collapsed, then a highly mobile, multiphase turbulent current followed and heavily interacted with the surrounding landscape. This analogy allows to focus on the comparison between volcanic and skyscraper collapse. A computational fluid dynamic investigation, along with a locally refined Cartesian grid, are adopted to simulate numerically the propagation of the 11 September dusty currents in Manhattan. Results of flow dynamic pressure, the parameter of volcanic hazard, and particle deposition reveal that the pressure can locally increase up to a factor 10 because of flow-building interaction. Also, the surrounding buildings make the urban setting as of a high turbulence and exponential decay of deposit thickness.

  17. An Overview on Impact Behaviour and Energy Absorption of Collapsible Metallic and Non-Metallic Energy Absorbers used in Automotive Applications

    NASA Astrophysics Data System (ADS)

    Shinde, R. B.; Mali, K. D.

    2018-04-01

    Collapsible impact energy absorbers play an important role of protecting automotive components from damage during collision. Collision of the two objects results into the damage to one or both of them. Damage may be in the form of crack, fracture and scratch. Designers must know about how the material and object behave under impact event. Owing to above reasons different types of collapsible impact energy absorbers are developed. In the past different studies were undertaken to improve such collapsible impact energy absorbers. This article highlights such studies on common shapes of collapsible impact energy absorber and their impact behaviour under the axial compression. The literature based on studies and analyses of effects of different geometrical parameters on the crushing behaviour of impact energy absorbers is presented in detail. The energy absorber can be of different shape such as circular tube, square tube, and frustums of cone and pyramids. The crushing behaviour of energy absorbers includes studies on crushing mechanics, modes of deformation, energy absorbing capacity, effect on peak and mean crushing load. In this work efforts are made to cover major outcomes from past studies on such behavioural parameters. Even though the major literature reviewed is related to metallic energy absorbers, emphasis is also laid on covering literature on use of composite tube, fiber metal lamination (FML) member, honeycomb plate and functionally graded thickness (FGT) tube as a collapsible impact energy absorber.

  18. Bronchial abnormalities found in a consecutive series of 40 brachycephalic dogs.

    PubMed

    De Lorenzi, Davide; Bertoncello, Diana; Drigo, Michele

    2009-10-01

    To detect abnormalities of the lower respiratory tract (trachea, principal bronchi, and lobar bronchi) in brachycephalic dogs by use of endoscopy, evaluate the correlation between laryngeal collapse and bronchial abnormalities, and determine whether dogs with bronchial abnormalities have a less favorable postsurgical long-term outcome following correction of brachycephalic syndrome. Prospective case series study. 40 client-owned brachycephalic dogs with stertorous breathing and clinical signs of respiratory distress. Brachycephalic dogs anesthetized for pharyngoscopy and laryngoscopy between January 2007 and June 2008 underwent flexible bronchoscopy for systematic evaluation of the principal and lobar bronchi. For dogs that underwent surgical correction of any component of brachycephalic syndrome, owners rated surgical outcome during a follow-up telephone survey. Correlation between laryngeal collapse and bronchial abnormalities and association between bronchial abnormalities and long-term outcome were assessed. Pugs (n = 20), English Bulldogs (13), and French Bulldogs (7) were affected. A fixed bronchial collapse was recognized in 35 of 40 dogs with a total of 94 bronchial stenoses. Abnormalities were irregularly distributed between hemithoraces; 15 of 94 bronchial abnormalities were detected in the right bronchial system, and 79 of 94 were detected in the left. The left cranial bronchus was the most commonly affected structure, and Pugs were the most severely affected breed. Laryngeal collapse was significantly correlated with severe bronchial collapse; no significant correlation was found between severity of bronchial abnormalities and postsurgical outcome. Bronchial collapse was a common finding in brachycephalic dogs, and long-term postsurgical outcome was not affected by bronchial stenosis.

  19. Sulfur mustard disrupts human α3β1-integrin receptors in concert with α6β4-integrin receptors and collapse of the keratin K5/K14 cytoskeleton

    NASA Astrophysics Data System (ADS)

    Werrlein, Robert J.; Braue, Catherine R.

    2004-06-01

    Sulfur mustard (SM; bis(2-chloroethyl) sulfide) is a chemical warfare agent that produces persistent, incapacitating blisters of the skin. The lesions inducing vesication remain elusive, and there is no completely effective treatment. Using mulitphoton microscopy and immunofluorescent staining, we found that exposing human epidermal keratinocytes (HEK) and intact epidermis to SM (400 μm for 5 min) caused progressive collapse of the keratin (K5/K14) cytoskeleton and depletion of α6β integrins. We now report that SM causes concomitant disruption nad collapse of the basal cell's α3β1-integrin receptors. At 1 h postexposure, images of Alexa488-conjugated HEK/α3β1 integrins showed almost complete withdrawal and disappearance of retraction fibers and a progressive loss of polarized mobility. With stero imaging, in vitro expression of this SM effect was characterized by collapse and abutment of adjacent cell membranes. At 2 h postexposure, there was an average 13% dorso-ventral collapse of HEK membranes that paralleled progressive collapse of the K5/K14 cytoskeleton. α3β1 integrin, like α6β4 integrin, is a regulator of cytoskeletal assembly, a receptor for laminin 5 and a mediator of HEK attachment to the basement membrane. Our images indicate that SM disrupts these receptors. We suggest that the progressive disruption destabilizes and potentiates blistering of the epidermal-dermal junction.

  20. Identification of mine collapses, explosions and earthquakes using INSAR: a preliminary investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foxall, B; Sweeney, J J; Walter, W R

    1998-07-07

    Interferograms constmcted from satellite-borne synthetic aperture radar images have the capability of mapping sub-cm ground surface deformation over areas on the order of 100 x 100 km with a spatial resolution on the order of 10 meters. We investigate the utility of synthetic aperture radar interferomehy (InSAR) used in conjunction with regional seismic methods in detecting and discriminating different types of seismic events in the context of special event analysis for the CTBT. For this initial study, we carried out elastic dislocation modeling of underground explosions, mine collapses and small (M<5.5) shallow earthquakes to produce synthetic interferograms and then analyzedmore » satellite radar data for a large mine collapse. The synthetic modeling shows that, for a given magnitude each type of event produces a distinctive pattern of ground deformation that can be recognized in, and recovered from, the corresponding interferogram. These diagnostic characteristics include not only differences in the polarities of surface displacements but also differences in displacement amplitudes from the different sources. The technique is especially sensitive to source depth, a parameter that is crucial in discriminating earthquakes from the other event types but is often very poorly constrained by regional seismic data alone. The ERS radar data analyzed is from a M L 5.2 seismic event that occurred in southwestern Wyoming on February 3,1995. Although seismic data from the event have some characteristics of an underground explosion, based on seismological and geodetic data it has been identified as being caused by a large underground collapse in the Solvay Mine. Several pairs of before-collapse and after-collapse radar images were phase processed to obtain interferograms. The minimum time separation for a before-collapse and after-collapse pair was 548 days. Even with this long time separation, phase coherence between the image pairs was acceptable and a deformation map was successfully obtained. Two images, separated by 1 day and occurring after the mine collapse, were used to form a digital elevation map (DEM) that was used to correct for topography. The interferograms identify the large deformation at the Solvay Mine as well as some areas of lesser deformation near other mines in the area. The large amount of deformation at the Solvay Mine was identified, but (as predicted by our dislocation modeling) could not be quantified absolutely because of the incoherent interference pattern it produced« less

  1. Dispatcher assistance and automated external defibrillator performance among elders.

    PubMed

    Ecker, R; Rea, T D; Meischke, H; Schaeffer, S M; Kudenchuk, P; Eisenberg, M S

    2001-10-01

    Automated external defibrillators (AEDs) provide an opportunity to improve survival in out-of-hospital, ventricular fibrillation (VF) cardiac arrest by enabling laypersons not trained in rhythm recognition to deliver lifesaving therapy. The potential role of emergency dispatchers in the layperson use of AEDs is uncertain. This study was performed to examine whether dispatcher telephone assistance affected AED skill performance during a simulated VF cardiac arrest among a cohort of older adults. The hypothesis was that dispatcher assistance would increase the proportion who were able to correctly deliver a shock, but might require additional time. One hundred fifty community-dwelling persons aged 58-84 years were recruited from eight senior centers in King County, Washington. All participants had received AED training approximately six months previously. For this study, the participants were randomized to AED operation with or without dispatcher assistance during a simulated VF cardiac arrest. The proportions who successfully delivered a shock and the time intervals from collapse to shock were compared between the two groups. The participants who received dispatcher assistance were more likely to correctly deliver a shock with the AED during the simulated VF cardiac arrest (91% vs 68%, p = 0.001). Among those who were able to deliver a shock, the participants who received dispatcher assistance required a longer time interval from collapse to shock [median (25th, 75th percentile) = 193 seconds (165, 225) for dispatcher assistance, and 148 seconds (138, 166) for no dispatcher assistance, p = 0.001]. Among older laypersons previously trained in AED operation, dispatcher assistance may increase the proportion who can successfully deliver a shock during a VF cardiac arrest.

  2. Surface subsidence and collapse in relation to extraction of salt and other soluble evaporites

    USGS Publications Warehouse

    Ege, John R.

    1979-01-01

    Extraction of soluble minerals, whether by natural or man-induced processes, can result in localized land-surface subsidence and more rarely sinkhole formation. One process cited by many investigators is that uncontrolled dissolving of salt or other soluble evaporites can create or enlarge underground cavities, thereby increasing the span of the unsupported roof to the strength limit of the overlying rocks. Downwarping results when spans are exceeded, or collapse of the undermined roof leads to upward sloping or chimneying of the overburden rocks. If underground space is available for rock debris to collect, the void can migrate to the surface with the end result being surface subsidence or collapse. In North America natural solution subsidence and collapse features in rocks ranging in age from Silurian to the present are found in evaporite terranes in the Great Plains from Saskatchewan in the north to Texas and New Mexico in the south, in the Great Lakes area, and in the southeastern States. Man-induced subsidence and collapse in evaporites are generally associated with conventional or solution mining, oilfield operations, and reservoir and dam construction, and can be especially hazardous in populated or built-up areas.

  3. Collapse of the Maya: Could deforestation have contributed?

    NASA Astrophysics Data System (ADS)

    Oglesby, Robert J.; Sever, Thomas L.; Saturno, William; Erickson, David J.; Srikishen, Jayanthi

    2010-06-01

    The collapse of the Maya civilization during the ninth century A.D. is a major conundrum in the history of mankind. This civilization reached a spectacular peak but then almost completely collapsed in the space of a few decades. While numerous explanations have been put forth to explain this collapse, in recent years, drought has gained favor. This is because water resources were a key for the Maya, especially to ensure their survival during the lengthy dry season that occurs where they lived. Natural drought is a known, recurring feature of this region, as evidenced by observational data, reconstructions of past times, and global climate model output. Results from simulations with a regional climate model demonstrate that deforestation by the Maya also likely induced warmer, drier, drought-like conditions. It is therefore hypothesized that the drought conditions devastating the Maya resulted from a combination of natural variability and human activities. Neither the natural drought or the human-induced effects alone were sufficient to cause the collapse, but the combination created a situation the Maya could not recover from. These results may have sobering implications for the present and future state of climate and water resources in Mesoamerica as ongoing massive deforestation is again occurring.

  4. Inelastic collapse and near-wall localization of randomly accelerated particles.

    PubMed

    Belan, S; Chernykh, A; Lebedev, V; Falkovich, G

    2016-05-01

    Inelastic collapse of stochastic trajectories of a randomly accelerated particle moving in half-space z>0 has been discovered by McKean [J. Math. Kyoto Univ. 2, 227 (1963)] and then independently rediscovered by Cornell et al. [Phys. Rev. Lett. 81, 1142 (1998)PRLTAO0031-900710.1103/PhysRevLett.81.1142]. The essence of this phenomenon is that the particle arrives at the wall at z=0 with zero velocity after an infinite number of inelastic collisions if the restitution coefficient β of particle velocity is smaller than the critical value β_{c}=exp(-π/sqrt[3]). We demonstrate that inelastic collapse takes place also in a wide class of models with spatially inhomogeneous random forcing and, what is more, that the critical value β_{c} is universal. That class includes an important case of inertial particles in wall-bounded random flows. To establish how inelastic collapse influences the particle distribution, we derive the exact equilibrium probability density function ρ(z,v) for the particle position and velocity. The equilibrium distribution exists only at β<β_{c} and indicates that inelastic collapse does not necessarily imply near-wall localization.

  5. Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoke; Sun, Penggang; Wang, Yu

    2018-04-01

    Many networks derived from society and nature are temporal and incomplete. The temporal link prediction problem in networks is to predict links at time T + 1 based on a given temporal network from time 1 to T, which is essential to important applications. The current algorithms either predict the temporal links by collapsing the dynamic networks or collapsing features derived from each network, which are criticized for ignoring the connection among slices. to overcome the issue, we propose a novel graph regularized nonnegative matrix factorization algorithm (GrNMF) for the temporal link prediction problem without collapsing the dynamic networks. To obtain the feature for each network from 1 to t, GrNMF factorizes the matrix associated with networks by setting the rest networks as regularization, which provides a better way to characterize the topological information of temporal links. Then, the GrNMF algorithm collapses the feature matrices to predict temporal links. Compared with state-of-the-art methods, the proposed algorithm exhibits significantly improved accuracy by avoiding the collapse of temporal networks. Experimental results of a number of artificial and real temporal networks illustrate that the proposed method is not only more accurate but also more robust than state-of-the-art approaches.

  6. Vocal cord collapse during phrenic nerve-paced respiration in congenital central hypoventilation syndrome.

    PubMed

    Domanski, Mark C; Preciado, Diego A

    2012-01-01

    Phrenic nerve pacing can be used to treat congenital central hypoventilation syndrome (CCHS). We report how the lack of normal vocal cord tone during phrenic paced respiration can result in passive vocal cord collapse and produce obstructive symptoms. We describe a case of passive vocal cord collapse during phrenic nerve paced respiration in a patient with CCHS. As far as we know, this is the first report of this etiology of airway obstruction. The patient, a 7-year-old with CCHS and normal waking vocal cord movement, continued to require nightly continuous positive airway pressure (CPAP) despite successful utilization of phrenic nerve pacers. On direct laryngoscopy, the patient's larynx was observed while the diaphragmatic pacers were sequentially engaged. No abnormal vocal cord stimulation was witnessed during engaging of either phrenic nerve stimulator. However, the lack of normal inspiratory vocal cord abduction during phrenic nerve-paced respiration resulted in vocal cord collapse and partial obstruction due to passive adduction of the vocal cords through the Bernoulli effect. Bilateral phrenic nerve stimulation resulted in more vocal cord collapse than unilateral stimulation. The lack of vocal cord abduction on inspiration presents a limit to phrenic nerve pacers.

  7. Collapse-driven formation of depressions on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Leliwa-Kopystynski, J.

    2018-03-01

    The extremely diverse surface of comet 67P/Churyumov-Gerasimenko contains a large number of depressions or craters of very different scales. Among the most prominent are two large roughly circular depressions, each with radii of several hundred meters. In this work a model for the formation of the depressions is proposed. It is based on the theory of the deformation of a thin circular elastic plate under its own weight. The plate covers a circular cavity with a given radius. The resilience of the plate diminishes over time as a result of its thinning which is itself a consequence of sublimation. When the stress limit is achieved, a gravitational collapse occurs: the plate cracks and the remnants fall into the cavity bottom. A formula that links the radius of the plate corresponding to collapse with the plate thickness has been derived. The formula was discussed for the large intervals of the values of parameters that characterize surface layers of cometary nuclei. It was found that the surface above large cavities collapses sooner than one of a similar thickness that covers a smaller cavity. So, if the collapse mechanism theory works, that larger depressions are therefore older than smaller ones.

  8. Multidimensional neutrino-transport simulations of the core-collapse supernova central engine

    NASA Astrophysics Data System (ADS)

    O'Connor, Evan; Couch, Sean

    2017-01-01

    Core-collapse supernovae (CCSNe) mark the explosive death of a massive star. The explosion itself is triggered by the collapse of the iron core that forms near the end of a massive star's life. The core collapses to nuclear densities where the stiff nuclear equation of state halts the collapse and leads to the formation of the supernova shock. In many cases, this shock will eventually propagate throughout the entire star and produces a bright optical display. However, the path from shock formation to explosion has proven difficult to recreate in simulations. Soon after the shock forms, its outward propagation is stagnated and must be revived in order for the CCSNe to be successful. The leading theory for the mechanism that reenergizes the shock is the deposition of energy by neutrinos. In 1D simulations this mechanism fails. However, there is growing evidence that in 2D and 3D, hydrodynamic instabilities can assist the neutrino heating in reviving the shock. In this talk, I will present new multi-D neutrino-radiation-hydrodynamic simulations of CCSNe performed with the FLASH hydrodynamics package. I will discuss the efficacy of neutrino heating in our simulations and show the impact of the multi-D hydrodynamic instabilities.

  9. High-speed cylindrical collapse of two perfect fluids

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Ahmad, Zahid

    2007-09-01

    In this paper, the study of the gravitational collapse of cylindrically distributed two perfect fluid system has been carried out. It is assumed that the collapsing speeds of the two fluids are very large. We explore this condition by using the high-speed approximation scheme. There arise two cases, i.e., bounded and vanishing of the ratios of the pressures with densities of two fluids given by c s , d s . It is shown that the high-speed approximation scheme breaks down by non-zero pressures p 1, p 2 when c s , d s are bounded below by some positive constants. The failure of the high-speed approximation scheme at some particular time of the gravitational collapse suggests the uncertainty on the evolution at and after this time. In the bounded case, the naked singularity formation seems to be impossible for the cylindrical two perfect fluids. For the vanishing case, if a linear equation of state is used, the high-speed collapse does not break down by the effects of the pressures and consequently a naked singularity forms. This work provides the generalisation of the results already given by Nakao and Morisawa (Prog Theor Phys 113:73, 2005) for the perfect fluid.

  10. Star Formation and the Hall Effect

    NASA Astrophysics Data System (ADS)

    Braiding, Catherine

    2011-10-01

    Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well-studied. This thesis describes a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, presenting similarity solutions that demonstrate that the Hall effect has a profound influence on the dynamics of collapse. ... Hall diffusion also determines the strength of the magnetic diffusion and centrifugal shocks that bound the pseudo and rotationally-supported discs, and can introduce subshocks that further slow accretion onto the protostar. In cores that are not initially rotating Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field would be worth exploring in future numerical simulations of star formation.

  11. Direct observation of growth and collapse of a Bose-Einstein condensate with attractive interactions

    NASA Astrophysics Data System (ADS)

    Gerton, Jordan M.; Strekalov, Dmitry; Prodan, Ionut; Hulet, Randall G.

    2000-12-01

    Quantum theory predicts that Bose-Einstein condensation of a spatially homogeneous gas with attractive interactions is precluded by a conventional phase transition into either a liquid or solid. When confined to a trap, however, such a condensate can form, provided that its occupation number does not exceed a limiting value. The stability limit is determined by a balance between the self-attractive forces and a repulsion that arises from position-momentum uncertainty under conditions of spatial confinement. Near the stability limit, self-attraction can overwhelm the repulsion, causing the condensate to collapse. Growth of the condensate is therefore punctuated by intermittent collapses that are triggered by either macroscopic quantum tunnelling or thermal fluctuation. Previous observations of growth and collapse dynamics have been hampered by the stochastic nature of these mechanisms. Here we report direct observations of the growth and subsequent collapse of a 7Li condensate with attractive interactions, using phase-contrast imaging. The success of the measurement lies in our ability to reduce the stochasticity in the dynamics by controlling the initial number of condensate atoms using a two-photon transition to a diatomic molecular state.

  12. The risk of collapse in abandoned mine sites: the issue of data uncertainty

    NASA Astrophysics Data System (ADS)

    Longoni, Laura; Papini, Monica; Brambilla, Davide; Arosio, Diego; Zanzi, Luigi

    2016-04-01

    Ground collapses over abandoned underground mines constitute a new environmental risk in the world. The high risk associated with subsurface voids, together with lack of knowledge of the geometric and geomechanical features of mining areas, makes abandoned underground mines one of the current challenges for countries with a long mining history. In this study, a stability analysis of Montevecchia marl mine is performed in order to validate a general approach that takes into account the poor local information and the variability of the input data. The collapse risk was evaluated through a numerical approach that, starting with some simplifying assumptions, is able to provide an overview of the collapse probability. The final results is an easy-accessible-transparent summary graph that shows the collapse probability. This approach may be useful for public administrators called upon to manage this environmental risk. The approach tries to simplify this complex problem in order to achieve a roughly risk assessment, but, since it relies on just a small amount of information, any final user should be aware that a comprehensive and detailed risk scenario can be generated only through more exhaustive investigations.

  13. Velocity-induced collapses of stable neutron stars

    NASA Astrophysics Data System (ADS)

    Novak, J.

    2001-09-01

    The collapse of spherical neutron stars is studied in General Relativity. The initial state is a stable neutron star to which an inward radial kinetic energy has been added through some velocity profile. For two different equations of state and two different shapes of velocity profiles, it is found that neutron stars can collapse to black holes for high enough inward velocities, provided that their masses are higher than some minimal value, depending on the equation of state. For a polytropic equation of state of the form p=Krho gamma, with gamma = 2 it is found to be 1.16 ( (K)/(0.1) right )0.5 Msun, whereas for a more realistic one (described in Pons et al. \\cite{PonREPL00}), it is 0.36 Msun . In some cases of collapse forming a black hole, part of the matter composing the initial neutron star can be ejected through a shock, leaving only a fraction of the initial mass to form a black hole. Therefore, black holes of very small masses can be formed and, in particular, the mass scaling relation, as a function of initial velocity, takes the form discovered by Choptuik (\\cite{Cho93}) for critical collapses.

  14. Arytenoid lateralization for management of combined laryngeal paralysis and laryngeal collapse in small dogs.

    PubMed

    Nelissen, Pieter; White, Richard A S

    2012-02-01

    To identify combined laryngeal paralysis and collapse in small dogs and describe postoperative outcome after arytenoid lateralization. Case series. Small nonbrachycephalic breed dogs with laryngeal paralysis and collapse (n = 6). Medical records of small breed dogs with airway problems and undergoing laryngeal surgery (January-December 2008) were reviewed. Dogs with combined laryngeal paralysis and laryngeal collapse (LPLC) had arytenoid lateralization. The immediate, 4 week and 6 month postoperative outcomes were described. Direct visual laryngeal exam under a light plane of anesthesia revealed bilateral failure of arytenoid and vocal fold movement and concurrent bilateral medial folding with contact of the cuneiform processes in all dogs. None of the dogs had intra- or immediate postoperative complications after arytenoid lateralization. Two dogs required a 2nd contralateral procedure. Follow-up after 6 months revealed marked improvement in clinical signs related to upper airway obstruction, but all dogs continued to have mild respiratory noise. Concurrent laryngeal paralysis and collapse should be considered as part of the differential diagnosis for small, nonbrachycephalic dogs with upper airway disease. Arytenoid lateralization resulted in improvement of clinical signs related to obstructive airway disease. © Copyright 2011 by The American College of Veterinary Surgeons.

  15. Role of angular momentum and cosmic censorship in (2+1)-dimensional rotating shell collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Robert B.; Oh, John J.; Park, Mu-In

    2009-03-15

    We study the gravitational collapse problem of rotating shells in three-dimensional Einstein gravity with and without a cosmological constant. Taking the exterior and interior metrics to be those of stationary metrics with asymptotically constant curvature, we solve the equations of motion for the shells from the Darmois-Israel junction conditions in the corotating frame. We study various collapse scenarios with arbitrary angular momentum for a variety of geometric configurations, including anti-de Sitter, de Sitter, and flat spaces. We find that the collapsing shells can form a BTZ black hole, a three-dimensional Kerr-dS spacetime, and an horizonless geometry of point masses undermore » certain initial conditions. For pressureless dust shells, the curvature singularity is not formed due to the angular momentum barrier near the origin. However when the shell pressure is nonvanishing, we find that for all types of shells with polytropic-type equations of state (including the perfect fluid and the generalized Chaplygin gas), collapse to a naked singularity is possible under generic initial conditions. We conclude that in three dimensions angular momentum does not in general guard against violation of cosmic censorship.« less

  16. Collapsible Cubes and Other Curiosities.

    ERIC Educational Resources Information Center

    Johnson, Scott; Walser, Hans

    1997-01-01

    Describes some general techniques for making collapsible models, including spiral models, for all the Platonic solids except the cube. Discusses the nature of the dissections of the faces necessary for the construction of the spiral cube. (ASK)

  17. Countdown to Systems Collapse.

    ERIC Educational Resources Information Center

    Tysseling, John C.; Easton, Jeff; Weaks, Julie

    2002-01-01

    Describes how the University of New Mexico Albuquerque developed a strategic business plan for renewing its utility systems when faced with the imminent collapse of its entire energy infrastructure and a $75-100 million price tag for upgrades. (EV)

  18. 5. View of rear, side and collapsed porch with well. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of rear, side and collapsed porch with well. Photographer facing west by northwest, 300 degrees. - Andrew Nations House, Northeast corner of intersection of Redwing & Bernhard Roads, Peachtree City, Fayette County, GA

  19. Collapsible soils in Louisiana.

    DOT National Transportation Integrated Search

    1972-01-01

    In southwest Louisiana, some surface silts (up to 3 feet deep) collapse under load after moisture is added. These soils were indistinguishable from nearby normal silts through routine tests. The deposits occur as low, gently-sloping ridges. Very simi...

  20. Collapse Features

    NASA Image and Video Library

    2010-09-15

    The depressions in this image from NASA Mars Odyssey likely formed due to both volcanic and tectonic forces. Tectonic forces likely account for some of the depressions, while collapse into lava tubes and lava flow erosion account for the remainder.

  1. Activity-induced collapse and reexpansion of rigid polymers

    NASA Astrophysics Data System (ADS)

    Harder, J.; Valeriani, C.; Cacciuto, A.

    2014-12-01

    We study the elastic properties of a rigid filament in a bath of self-propelled particles. We find that while fully flexible filaments swell monotonically upon increasing the strength of the propelling force, rigid filaments soften for moderate activities, collapse into metastable hairpins for intermediate strengths, and eventually reexpand when the strength of the activity of the surrounding fluid is large. This collapse and reexpansion of the filament with the bath activity is reminiscent of the behavior observed in polyelectrolytes in the presence of different concentrations of multivalent salt.

  2. Band Structure and Contact Resistance of Carbon Nanotubes Deformed by a Metal Contact.

    PubMed

    Hafizi, Roohollah; Tersoff, Jerry; Perebeinos, Vasili

    2017-11-17

    Capillary and van der Waals forces cause nanotubes to deform or even collapse under metal contacts. Using ab initio band structure calculations, we find that these deformations reduce the band gap by as much as 30%, while fully collapsed nanotubes become metallic. Moreover, degeneracy lifting due to the broken axial symmetry, and wave functions mismatch between the fully collapsed and the round portions of a CNT, lead to a 3 times higher contact resistance. The latter we demonstrate by contact resistance calculations within the tight-binding approach.

  3. Gravitational radiation from rotating gravitational collapse

    NASA Technical Reports Server (NTRS)

    Stark, Richard F.

    1989-01-01

    The efficiency of gravitational wave emission from axisymmetric rotating collapse to a black hole was found to be very low: Delta E/Mc sq. less than 7 x 10(exp -4). The main waveform shape is well defined and nearly independent of the details of the collapse. Such a signature will allow pattern recognition techniques to be used when searching experimental data. These results (which can be scaled in mass) were obtained using a fully general relativistic computer code that evolves rotating axisymmetric configurations and directly computes their gravitational radiation emission.

  4. Evaluating nuclear physics inputs in core-collapse supernova models

    NASA Astrophysics Data System (ADS)

    Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.

    Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.

  5. Revisiting Higgs inflation in the context of collapse theories

    NASA Astrophysics Data System (ADS)

    Rodriguez, Saul; Sudarsky, Daniel

    2018-03-01

    In this work we consider the Higgs inflation scenario, but in contrast with past works, the present analysis is done in the context of a spontaneous collapse theory for the quantum state of the inflaton field. In particular, we will rely on a previously studied adaptation of the Continuous Spontaneous Localization model for the treatment of inflationary cosmology. We will show that with the introduction of the dynamical collapse hypothesis, some of the most serious problems of the Higgs inflation proposal can be resolved in a natural way.

  6. Pregnancy-Induced Hypertensive Disorders before and after a National Economic Collapse: A Population Based Cohort Study.

    PubMed

    Eiríksdóttir, Védís Helga; Valdimarsdóttir, Unnur Anna; Ásgeirsdóttir, Tinna Laufey; Hauksdóttir, Arna; Lund, Sigrún Helga; Bjarnadóttir, Ragnheiður Ingibjörg; Cnattingius, Sven; Zoëga, Helga

    2015-01-01

    Data on the potential influence of macroeconomic recessions on maternal diseases during pregnancy are scarce. We aimed to assess potential change in prevalence of pregnancy-induced hypertensive disorders (preeclampsia and gestational hypertension) during the first years of the major national economic recession in Iceland, which started abruptly in October 2008. Women whose pregnancies resulted in live singleton births in Iceland in 2005-2012 constituted the study population (N = 35,211). Data on pregnancy-induced hypertensive disorders were obtained from the Icelandic Medical Birth Register and use of antihypertensive drugs during pregnancy, including β-blockers and calcium channel blockers, from the Icelandic Medicines Register. With the pre-collapse period as reference, we used logistic regression analysis to assess change in pregnancy-induced hypertensive disorders and use of antihypertensives during the first four years after the economic collapse, adjusting for demographic and pregnancy characteristics, taking aggregate economic indicators into account. Compared with the pre-collapse period, we observed an increased prevalence of gestational hypertension in the first year following the economic collapse (2.4% vs. 3.9%; adjusted odds ratio [aOR] 1.47; 95 percent confidence interval [95%CI] 1.13-1.91) but not in the subsequent years. The association disappeared completely when we adjusted for aggregate unemployment rate (aOR 1.04; 95% CI 0.74-1.47). Similarly, there was an increase in prescription fills of β-blockers in the first year following the collapse (1.9% vs.3.1%; aOR 1.43; 95% CI 1.07-1.90), which disappeared after adjusting for aggregate unemployment rate (aOR 1.05; 95% CI 0.72-1.54). No changes were observed for preeclampsia or use of calcium channel blockers between the pre- and post-collapse periods. Our data suggest a transient increased risk of gestational hypertension and use of β-blockers among pregnant women in Iceland in the first and most severe year of the national economic recession.

  7. Atmospheric Collapse on Early Mars: The Role of CO2 Clouds

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.; Haberle, R. M.; Steakley, K. E.; Murphy, J. R.; Kling, A.

    2017-01-01

    The abundance of evidence that liquid water flowed on the surface early in Mars' history strongly implies that the early Martian atmosphere was significantly more massive than it is today. While it seems clear that the total CO2 inventory was likely substantially larger in the past, the fundamental question about the physical state of that CO2 is not completely understood. Because the temperature at which CO2 condenses increases with surface pressure, surface CO2 ice is more likely to form and persist as the atmospheric mass increases. For the atmosphere to remain stable against collapse, there must be enough energy, distributed planet wide, to stave off the formation of permanent CO2 caps that leads to atmospheric collapse. The presence of a "faint young sun" that was likely about 25 percent less luminous 3.8 billion years ago than the sun today makes this even more difficult. Several physical processes play a role in the ultimate stability of a CO2 atmosphere. The system is regulated by the energy balance between solar insolation, the radiative effects of the atmosphere and its constituents, atmospheric heat transport, heat exchange between the surface and the atmosphere, and latent heating/cooling. Specific considerations in this balance for a given orbital obliquity/eccentricity and atmospheric mass are the albedo of the caps, the dust content of the atmosphere, and the presence of water and/or CO2 clouds. Forget et al. show that, for Mars' current obliquity (in a circular orbit), CO2 atmospheres ranging in surface pressure from 500 hectopascals to 3000 hectopascals would have been stable against collapsing into permanent surface ice reservoirs. Soto et al. examined a similar range in initial surface pressure to investigate atmospheric collapse and to compute collapse rates. CO2 clouds and their radiative effects were included in Forget et al. but they were not included in Soto et al. Here we focus on how CO2 clouds affect the stability of the atmosphere against collapse.

  8. A Study on the Prediction of Damage Extent at the Time of Perforating Operation on Reinforced Concrete Structure through Horizontal Excavation

    NASA Astrophysics Data System (ADS)

    Lee, Ju-hyoung; Kim, Hakman; Cho, Jin Woo

    2017-04-01

    When a building collapses in downtown due to a sudden external factor such as earthquake, gas explosion or terror, the rescue of a survivor in the buried area should be prioritized. When a collapse accident occurs in downtown, there is a difficulty of access to the surrounding area of the collapsed building site due to building debris and a risk of the second collapse, and it takes a lot of time to rescue any survivor in the top excavation method to rescue while removing building debris. Therefore, there is a method to rescue any survivor safely by installing the second lifeline after securing the first lifeline within 72 hours using inclined excavation near the site of collapsed building or horizontal excavation at the underground parking lot of an adjacent building and prolonging the life of any survivor. When a building collapses in downtown, the perforating operation is carried out at the existing structure in the process of establishing the first lifeline to the position of a survivor through the parking lot of an adjacent building or the external wall of the building, and the damage extent in case of carrying out such operation was confirmed in this study. In order to determine the stability of the damaged existing structure and the range of repair, the reinforced concrete wall was produced and the damage extent of the reinforced concrete for each perforating position was measured by installing a measuring instrument at a position separated by 150%˜200% from the perforating position. As a result, it was shown that the average damage area for each perforating position was influenced within approximately a 254% radius. Keywords: horizontal excavation, damage, reinforced roncrete, building collapses Acknowledgement This research was supported by a Grant from a Strategic Research Project (Horizontal Drilling and Stabilization Technologies for Urban Search and Rescue (US&R) Operation) funded by the Korea Institute of Civil Engineering and Building Technology.

  9. Aggregation and stability of anisotropic charged clay colloids in aqueous medium in the presence of salt.

    PubMed

    Ali, Samim; Bandyopadhyay, Ranjini

    2016-01-01

    Na-montmorillonite nanoclay is a colloid of layered mineral silicate. When dispersed in water, this mineral swells on absorption of water and exfoliates into platelets with electric double layers on their surfaces. Even at low particle concentration, the aqueous dispersion can exhibit a spontaneous ergodicity breaking phase transition from a free flowing liquid to nonequilibrium, kinetically arrested and disordered states such as gels and glasses. In an earlier publication [Applied Clay Science, 2015, 114, 8592], we showed that the stability of clay gels can be enhanced by adding a salt later to the clay dispersion prepared in deionized water, rather than by adding the clay mineral to a previously mixed salt solution. Here, we directly track the collapsing interface of sedimenting clay gels using an optical method and show that adding salt after dispersing the clay mineral does indeed result in more stable gels even in very dilute dispersions. These weak gels are seen to exhibit a transient collapse after a finite delay time, a phenomenon observed previously in depletion gels. The velocity of the collapse oscillates with the age of the sample. However, the average velocity of collapse increases with sample age up to a peak value before decreasing at higher ages. With increasing salt concentration, the delay time for transient collapse decreases, while the peak value of the collapsing velocity increases. Using ultrasound attenuation spectroscopy, rheometry and cryogenic scanning electron microscopy, we confirm that morphological changes of the gel network assembly, facilitated by thermal fluctuations, lead to the observed collapse phenomenon. Since clay minerals are used extensively in polymer nanocomposites, as rheological modifiers, stabilizers and gas absorbents, we believe that the results reported in this work are extremely useful for several practical applications and also for understanding geophysical phenomena such as the formation and stability of quicksand and river deltas.

  10. Building damage assessment from PolSAR data using texture parameters of statistical model

    NASA Astrophysics Data System (ADS)

    Li, Linlin; Liu, Xiuguo; Chen, Qihao; Yang, Shuai

    2018-04-01

    Accurate building damage assessment is essential in providing decision support for disaster relief and reconstruction. Polarimetric synthetic aperture radar (PolSAR) has become one of the most effective means of building damage assessment, due to its all-day/all-weather ability and richer backscatter information of targets. However, intact buildings that are not parallel to the SAR flight pass (termed oriented buildings) and collapsed buildings share similar scattering mechanisms, both of which are dominated by volume scattering. This characteristic always leads to misjudgments between assessments of collapsed buildings and oriented buildings from PolSAR data. Because the collapsed buildings and the intact buildings (whether oriented or parallel buildings) have different textures, a novel building damage assessment method is proposed in this study to address this problem by introducing texture parameters of statistical models. First, the logarithms of the estimated texture parameters of different statistical models are taken as a new texture feature to describe the collapse of the buildings. Second, the collapsed buildings and intact buildings are distinguished using an appropriate threshold. Then, the building blocks are classified into three levels based on the building block collapse rate. Moreover, this paper also discusses the capability for performing damage assessment using texture parameters from different statistical models or using different estimators. The RADARSAT-2 and ALOS-1 PolSAR images are used to present and analyze the performance of the proposed method. The results show that using the texture parameters avoids the problem of confusing collapsed and oriented buildings and improves the assessment accuracy. The results assessed by using the K/G0 distribution texture parameters estimated based on the second moment obtain the highest extraction accuracies. For the RADARSAT-2 and ALOS-1 data, the overall accuracy (OA) for these three types of buildings is 73.39% and 68.45%, respectively.

  11. Devonian salt dissolution-collapse breccias flooring the Cretaceous Athabasca oil sands deposit and development of lower McMurray Formation sinkholes, northern Alberta Basin, Western Canada

    NASA Astrophysics Data System (ADS)

    Broughton, Paul L.

    2013-01-01

    The sub-Cretaceous paleotopography underlying giant Lower Cretaceous Athabasca oil sands, northern Alberta, has an orthogonal lattice pattern of troughs up to 50 km long and 100 m deep between pairs of cross-cutting lineaments. These structures are interpreted to have been inherited from a similar pattern of dissolution collapse-subsidence troughs in the underlying Middle Devonian salt beds. Removal of more than 100 m of halite salt fragmented the overlying Upper Devonian strata into fault blocks and collapse breccias that subsided into the underlying dissolution troughs. The unusually low 1:2 to 1:3 thickness ratios of halite salts to the overlying strata resulted in the Upper Devonian strata collapse-subsidence into underlying salt dissolution troughs being more cataclysmic during the first phase of salt removal. The second phase of slower but complete salt removal between the earlier troughs resulted in a more gradual subsidence of the overlying strata. This obliterated the earlier pattern of giant cross-cutting dissolution troughs bounded by major lineaments. The collapse breccia fabrics underlying the earlier troughs differ from those from areas between the troughs. Collapse breccias underlying the large troughs often have crushed fabrics distributed in zones that rapidly pinched out between fault blocks. Breccias between troughs developed as giant mosaics of detached carbonate blocks that formed breccia pipe complexes. Multiple sinkholes up to 100 m deep aligned along multi-km linear valley trends that dissected the sub-Cretaceous paleotopography. These sinkhole trends formed orthogonal patterns inherited from underlying lattice of NW-SE and NE-SW salt structured lineaments. These cross-cutting sinkhole trends have a smaller 5 km scale reticulate pattern similar to the giant 50 km scale pattern of collapse-subsidence troughs. Other sinkholes developed as lower McMurray strata sagged when underlying Devonian fault blocks and breccia pipes differentially subsided.

  12. The Chaotic Terrains of Mercury: A History of Large-Scale Crustal Devolatilization

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. A. P.; Domingue, D. L.; Berman, D. C.; Kargel, J. S.; Baker, V. R.; Teodoro, L. F.; Banks, M.; Leonard, G.

    2018-05-01

    Approximately 400 million years after the Caloris basin impact, extensive collapse formed Mercury's chaotic terrains. Collapse likely resulted from regionally elevated heat flow devolatilizing crustal materials along NE and NW extensional faults.

  13. Identifying Potential Collapse Features Under Highways

    DOT National Transportation Integrated Search

    2003-01-01

    In 1994, subsidence features were identified on Interstate 70 in eastern Ohio. These : features were caused by collapse of old mine workings beneath the highway. An attempt : was made to delineate these features using geophysical methods with no avai...

  14. Faulted Layers in Collapse Pits

    NASA Image and Video Library

    2016-04-06

    This image shows a set of coalesced collapse pits in western Valles Marineris as seen by NASA Mars Reconnaissance Orbiter. Fine layers are exposed in the walls of the pits, and in some places those layers are displaced by faults.

  15. 28. Rear lot of the Adelman Block. The collapsed truss ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Rear lot of the Adelman Block. The collapsed truss roof (ca. 1932) originally sheltered an automobile sales garage - Lockport Historic District, Bounded by Eighth, Hamilton & Eleventh Streets & Illinois & Michigan Canal, Lockport, Will County, IL

  16. 9. South abutment, detail of collapsed east wing wall; also ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. South abutment, detail of collapsed east wing wall; also detail of bottom lateral bracing and stringers; looking southeast - Dodd Ford Bridge, County Road 147 Spanning Blue Earth River, Amboy, Blue Earth County, MN

  17. On the non-equilibrium dynamics of cavitation around the underwater projectile in variable motion

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Lu, C. J.; Li, J.; Chen, X.; Gong, Z. X.

    2015-12-01

    In this work, the dynamic behavior of the non-equilibrium cavitation occurring around the underwater projectiles navigating with variable speed was numerically and theoretically investigated. The cavity collapse induced by the decelerating motion of the projectiles can be classified into two types: periodic oscillation and damped oscillation. In each type the evolution of the total mass of vapor in cavity are found to have strict correlation with the pressure oscillation in far field. By defining the equivalent radius of cavity, we introduce the specific kinetic energy of collapse and demonstrate that its change-rate is in good agreement with the pressure disturbance. We numerically investigated the influence of angle of attack on the collapse effect. The result shows that when the projectile decelerates, an asymmetric-focusing effect of the pressure induced by collapse occurs on its pressure side. We analytically explained such asymmetric-focusing effect.

  18. Rapid Configurational Fluctuations in a Model of Methylcellulose

    NASA Astrophysics Data System (ADS)

    Li, Xiaolan; Dorfman, Kevin

    Methylcellulose is a thermoresponsive polymer that undergoes a phase transition at elevated temperature, forming fibrils of a uniform diameter. However, the gelation mechanism is still unclear, in particular at higher polymer concentrations. We have investigated a coarse-grained model for methylcellulose, proposed by Larson and coworkers, that produces collapsed toroids in dilute solution with a radius close to that in experiments. Using Brownian Dynamics simulations, we demonstrate that this model's dihedral potential generates ``flipping events'', which helps the chain to avoid kinetic traps by undergoing a sudden transition between a coiled and a collapsed state. If the dihedral potential is removed, the chains cannot escape from their collapsed configuration, whereas at high dihedral potentials, the chains cannot stabilize the collapsed state. We will present quantitative results on the effect of the dihedral potential on both chain statistics and dynamic behavior, and discuss the implication of our results on the spontaneous formation of high-aspect ratio fibrils in experiments.

  19. Wrinkling and collapse of mesh reinforced membrane inflated beam under bending

    NASA Astrophysics Data System (ADS)

    Tao, Qiang; Wang, Changguo; Xue, Zhiming; Xie, Zhimin; Tan, Huifeng

    2016-11-01

    A novel concept of mesh reinforced membrane (MRM) is proposed in this paper. The tensile collapse mechanism of MRM is elucidated based on three obvious deformed stages. An improved Shell-Membrane model is used to predict the wrinkling and collapse of MRM inflated beam which is verified by a non-contact experiment based on the digital image correlation technique. Further the wrinkling details including the wrinkling evolution, pattern, shape, stress distribution are simulated to evaluate the functions of MRM for loading-carrying capacity of inflated beam. Pressure resistant performance of inflated beam was studied at last. The results revealed that MRM shows a great improvement on the collapse moment of inflated beam. MRM contributes to restrain wrinkling evolution by changing the transfer path of loadings which results from dispersing stress distribution and changing wrinkling pattern. The results show good references to the wrinkling control and the improvement of load-carrying capacity of inflated beam.

  20. Collapse for the higher-order nonlinear Schrödinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achilleos, V.; Diamantidis, S.; Frantzeskakis, D. J.

    We examine conditions for finite-time collapse of the solutions of the higher-order nonlinear Schr odinger (NLS) equation incorporating third-order dispersion, self-steepening, linear and nonlinear gain and loss, and Raman scattering; this is a system that appears in many physical contexts as a more realistic generalization of the integrable NLS. By using energy arguments, it is found that the collapse dynamics is chiefly controlled by the linear/nonlinear gain/loss strengths. We identify a critical value of the linear gain, separating the possible decay of solutions to the trivial zero-state, from collapse. The numerical simulations, performed for a wide class of initial data,more » are found to be in very good agreement with the analytical results, and reveal long-time stability properties of localized solutions. The role of the higher-order effects to the transient dynamics is also revealed in these simulations.« less

Top