Lee, Dominic J O'
2015-04-15
Dual mechanical braiding experiments provide a useful tool with which to investigate the nature of interactions between rod-like molecules, for instance actin and DNA. In conditions close to molecular condensation, one would expect an appearance of a local minimum in the interaction potential between the two molecules. We investigate this situation, introducing an attractive component into the interaction potential, using a model developed for describing such experiments. We consider both attractive interactions that do not depend on molecular structure and those which depend on a DNA-like helix structure. In braiding experiments, an attractive term may lead to certain effects. A local minimum may cause molecules to collapse from a loosely braided configuration into a tight one, occurring at a critical value of the moment applied about the axis of the braid. For a fixed number of braid pitches, this may lead to coexistence between the two braiding states, tight and loose. Coexistence implies certain proportions of the braid are in each state, their relative size depending on the number of braid pitches. This manifests itself as a linear dependence in numerically calculated quantities as functions of the number of braid pitches. Also, in the collapsed state, the braid radius stays roughly constant. Furthermore, if the attractive interaction is helix dependent, the left-right handed braid symmetry is broken. For a DNA like charge distribution, using the Kornyshev-Leikin interaction model, our results suggest that significant braid collapse and coexistence only occurs for left handed braids. Regardless of the interaction model, the study highlights the possible qualitative physics of braid collapse and coexistence; and the role helix specific forces might play, if important. The model could be used to connect other microscopic theories of interaction with braiding experiments.
Coexistence of Phases in a Protein Heterodimer
Krokhotin, Andrey; Liwo, Adam; Niemi, Antti J.; Scheraga, Harold A.
2012-01-01
A heterodimer consisting of two or more different kinds of proteins can display an enormous number of distinct molecular architectures. The conformational entropy is an essential ingredient in the Helmholtz free energy and, consequently, these heterodimers can have a very complex phase structure. Here, it is proposed that there is a state of proteins, in which the different components of a heterodimer exist in different phases. For this purpose, the structures in the protein data bank (PDB) have been analyzed, with radius of gyration as the order parameter. Two major classes of heterodimers with their protein components coexisting in different phases have been identified. An example is the PDB structure 3DXC. This is a transcriptionally active dimer. One of the components is an isoform of the intra-cellular domain of the Alzheimer-disease related amyloid precursor protein (AICD), and the other is a nuclear multidomain adaptor protein in the Fe65 family. It is concluded from the radius of gyration that neither of the two components in this dimer is in its own collapsed phase, corresponding to a biologically active protein. The UNRES energy function has been utilized to confirm that, if the two components are separated from each other, each of them collapses. The results presented in this work show that heterodimers whose protein components coexist in different phases, can have intriguing physical properties with potentially important biological consequences. PMID:22830730
NASA Astrophysics Data System (ADS)
Mukherji, Debashish; Marques, Carlos M.; Kremer, Kurt
2018-01-01
In this work we discuss two mirror but distinct phenomena of polymer paradoxical properties in mixed solvents: co-non-solvency and co-solvency. When a polymer collapses in a mixture of two miscible good solvents the phenomenon is known as co-non-solvency, while co-solvency is a phenomenon that is associated with the swelling of a polymer in poor solvent mixtures. A typical example of co-non-solvency is provided by poly(N-isopropylacrylamide) in aqueous alcohol, while poly(methyl methacrylate) in aqueous alcohol shows co-solvency. We discuss these two phenomena to compare their microscopic origins and show that both can be understood within generic universal concepts. A broad range of polymers is therefore expected to exhibit these phenomena where specific chemical details play a lesser role than the appropriate combination of interactions between the trio of molecular components.
Wu, Sangwook
2017-01-01
Two distinct crystal structures of prethrombin-2, the alternative and collapsed forms, are elucidated by X-ray crystallogrphy. We analyzed the conformational transition from the alternative to the collapsed form employing targeted molecular dynamics (TMD) simulation. Despite small RMSD difference in the two X-ray crystal structures, some hydrophobic residues (W60d, W148, W215, and F227) show a significant difference between the two conformations. TMD simulation shows that the four hydrophobic residues undergo concerted movement from dimer to trimer transition via tetramer state in the conformational change from the alternative to the collapsed form. We reveal that the concerted movement of the four hydrophobic residues is controlled by movement of specific loop regions behind. In this paper, we propose a sequential scenario for the conformational transition from the alternative form to the collapsed form, which is partially supported by the mutant W148A simulation.
Solid-solid collapse transition in a two dimensional model molecular system.
Singh, Rakesh S; Bagchi, Biman
2013-11-21
Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte-Carlo simulation to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB), which, for a specific set of parameters, sustains two solid phases: honeycomb and oblique. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by increasing temperature. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common belief and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as a linear strip, followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions, which enables the dominance of stabilizing energy over destabilizing surface energy. The nucleus of stable oblique phase is wetted by intermediate order particles, which minimizes the surface free energy. In the case of pressure induced transition at low temperature the collapsed state is a disordered solid. The disordered solid phase has diverse local quasi-stable structures along with oblique-solid like domains.
Solid-solid collapse transition in a two dimensional model molecular system
NASA Astrophysics Data System (ADS)
Singh, Rakesh S.; Bagchi, Biman
2013-11-01
Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte-Carlo simulation to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB), which, for a specific set of parameters, sustains two solid phases: honeycomb and oblique. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by increasing temperature. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common belief and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as a linear strip, followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions, which enables the dominance of stabilizing energy over destabilizing surface energy. The nucleus of stable oblique phase is wetted by intermediate order particles, which minimizes the surface free energy. In the case of pressure induced transition at low temperature the collapsed state is a disordered solid. The disordered solid phase has diverse local quasi-stable structures along with oblique-solid like domains.
Efficient radiative transfer techniques in hydrodynamic simulations
NASA Astrophysics Data System (ADS)
Mercer, A.; Stamatellos, D.; Dunhill, A.
2018-05-01
Radiative transfer is an important component of hydrodynamic simulations as it determines the thermal properties of a physical system. It is especially important in cases where heating and cooling regulate significant processes, such as in the collapse of molecular clouds, the development of gravitational instabilities in protostellar discs, disc-planet interactions, and planet migration. We compare two approximate radiative transfer methods which indirectly estimate optical depths within hydrodynamic simulations using two different metrics: (i) the gravitational potential and density of the gas (Stamatellos et al.), and (ii) the pressure scale-height (Lombardi et al.). We find that both methods are accurate for spherical configurations e.g. in collapsing molecular clouds and within clumps that form in protostellar discs. However, the pressure scale-height approach is more accurate in protostellar discs (low and high-mass discs, discs with spiral features, discs with embedded planets). We also investigate the β-cooling approximation which is commonly used when simulating protostellar discs, and in which the cooling time is proportional to the orbital period of the gas. We demonstrate that the use of a constant β cannot capture the wide range of spatial and temporal variations of cooling in protostellar discs, which may affect the development of gravitational instabilities, planet migration, planet mass growth, and the orbital properties of planets.
The Structure and Evolution of Self-Gravitating Molecular Clouds
NASA Astrophysics Data System (ADS)
Holliman, John Herbert, II
1995-01-01
We present a theoretical formalism to evaluate the structure of molecular clouds and to determine precollapse conditions in star-forming regions. Models consist of pressure-bounded, self-gravitating spheres of a single -fluid ideal gas. We treat the case without rotation. The analysis is generalized to consider states in hydrostatic equilibrium maintained by multiple pressure components. Individual pressures vary with density as P_i(r) ~ rho^{gamma {rm p},i}(r), where gamma_{rm p},i is the polytropic index. Evolution depends additionally on whether conduction occurs on a dynamical time scale and on the adiabatic index gammai of each component, which is modified to account for the effects of any thermal coupling to the environment of the cloud. Special attention is given to properly representing the major contributors to dynamical support in molecular clouds: the pressures due to static magnetic fields, Alfven waves, and thermal motions. Straightforward adjustments to the model allow us to treat the intrinsically anisotropic support provided by the static fields. We derive structure equations, as well as perturbation equations for performing a linear stability analysis. The analysis provides insight on the nature of dynamical motions due to collapse from an equilibrium state and estimates the mass of condensed objects that form in such a process. After presenting a set of general results, we describe models of star-forming regions that include the major pressure components. We parameterize the extent of ambipolar diffusion. The analysis contributes to the physical understanding of several key results from observations of these regions. Commonly observed quantities are explicitly cross-referenced with model results. We theoretically determine density and linewidth profiles on scales ranging from that of molecular cloud cores to that of giant molecular clouds (GMCs). The model offers an explanation of the mean pressures in GMCs, which are observed to be high relative to that in the intercloud medium. We estimate what fraction of a cloud on the verge of gravitational collapse will ultimately form a condensed object, and we predict the qualitative appearance of the collapse. Finally, we simulate fragmentation--a key step in the star-forming process whereby molecular clouds or clumps within more massive clouds break up into substantially less massive cores that can in turn condense into stars. Fragmentation occurs in the context of dynamical collapse--a highly nonlinear process--so it has been difficult to reach a consensus on its specific appearance or on the influence of initial conditions. Increases in density by several orders of magnitude and the unknown, time-dependent positions of the rapidly evolving fragments present difficulties for the simulation of fragmentation. In order to increase the efficiency and effective resolution with which we can model this process, we have assembled can adaptive mesh refinement (AMR) hydrodynamics algorithm and an adaptive elliptical solver for self-gravity. The code is adaptive in the sense that it can dynamically and automatically alter the configuration of a recursively finer mesh in the computational domain. A test suite helps confirm the proper operation of the algorithm. Using initial conditions adopted in previous fragmentation studies, we simulate the collapse of a molecular cloud core. (Abstract shortened by UMI.).
Nayar, Divya; Folberth, Angelina; van der Vegt, Nico F A
2017-07-19
Osmolytes affect hydrophobic collapse and protein folding equilibria. The underlying mechanisms are, however, not well understood. We report large-scale conformational sampling of two hydrophobic polymers with secondary and tertiary amide side chains using extensive molecular dynamics simulations. The calculated free energy of unfolding increases with urea for the secondary amide, yet decreases for the tertiary amide, in agreement with experiment. The underlying mechanism is rooted in opposing entropic driving forces: while urea screens the hydrophobic macromolecular interface and drives unfolding of the tertiary amide, urea's concomitant loss in configurational entropy drives collapse of the secondary amide. Only at sufficiently high urea concentrations bivalent urea hydrogen bonding interactions with the secondary amide lead to further stabilisation of its collapsed state. The observations provide a new angle on the interplay between side chain chemistry, urea hydrogen bonding, and the role of urea in attenuating or strengthening the hydrophobic effect.
2017-01-01
The selectivity filter of the KcsA K+ channel has two typical conformations—the conductive and the collapsed conformations, respectively. The transition from the conductive to the collapsed filter conformation can represent the process of inactivation that depends on many environmental factors. Water molecules permeating behind the filter can influence the collapsed filter stability. Here we perform the molecular dynamics simulations to study the stability of the collapsed filter of the KcsA K+ channel under the different water patterns. We find that the water patterns are dynamic behind the collapsed filter and the filter stability increases with the increasing number of water molecules. In addition, the stability increases significantly when water molecules distribute uniformly behind the four monomeric filter chains, and the stability is compromised if water molecules only cluster behind one or two adjacent filter chains. The altered filter stabilities thus suggest that the collapsed filter can inactivate gradually under the dynamic water patterns. We also demonstrate how the different water patterns affect the filter recovery from the collapsed conformation. PMID:29049423
Wu, Di
2017-01-01
The selectivity filter of the KcsA K+ channel has two typical conformations-the conductive and the collapsed conformations, respectively. The transition from the conductive to the collapsed filter conformation can represent the process of inactivation that depends on many environmental factors. Water molecules permeating behind the filter can influence the collapsed filter stability. Here we perform the molecular dynamics simulations to study the stability of the collapsed filter of the KcsA K+ channel under the different water patterns. We find that the water patterns are dynamic behind the collapsed filter and the filter stability increases with the increasing number of water molecules. In addition, the stability increases significantly when water molecules distribute uniformly behind the four monomeric filter chains, and the stability is compromised if water molecules only cluster behind one or two adjacent filter chains. The altered filter stabilities thus suggest that the collapsed filter can inactivate gradually under the dynamic water patterns. We also demonstrate how the different water patterns affect the filter recovery from the collapsed conformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boss, Alan P., E-mail: aboss@carnegiescience.edu
Recent meteoritical analyses support an initial abundance of the short-lived radioisotope (SLRI) {sup 60}Fe that may be high enough to require nucleosynthesis in a core-collapse supernova, followed by rapid incorporation into primitive meteoritical components, rather than a scenario where such isotopes were inherited from a well-mixed region of a giant molecular cloud polluted by a variety of supernovae remnants and massive star winds. This paper continues to explore the former scenario, by calculating three-dimensional, adaptive mesh refinement, hydrodynamical code (FLASH 2.5) models of the self-gravitational, dynamical collapse of a molecular cloud core that has been struck by a thin shockmore » front with a speed of 40 km s{sup −1}, leading to the injection of shock front matter into the collapsing cloud through the formation of Rayleigh–Taylor fingers at the shock–cloud intersection. These models extend the previous work into the nonisothermal collapse regime using a polytropic approximation to represent compressional heating in the optically thick protostar. The models show that the injection efficiencies of shock front materials are enhanced compared to previous models, which were not carried into the nonisothermal regime, and so did not reach such high densities. The new models, combined with the recent estimates of initial {sup 60}Fe abundances, imply that the supernova triggering and injection scenario remains a plausible explanation for the origin of the SLRIs involved in the formation of our solar system.« less
Miñones Conde, M; Conde, O; Trillo, J M; Miñones, J
2011-04-05
Mixed monolayers of poly(methyl methacrylate) (PMMA), the main component of hard contact lenses, and dipalmitoyl phosphatidyl choline (DPPC), a characteristic phospholipidic constituent of ocular tear films, were selected as an in vitro model in order to observe the behavior of contact lenses on the eye. Using Langmuir monolayer and Brewster angle microscopy (BAM) techniques, the interaction between both components was analyzed from the data of surface pressure-area isotherms, compressional modulus-surface pressure, and relative film thickness versus time elapsed from the beginning of compression, together with BAM images. Regardless of the surface pressure at which the molecular/monomer areas (A(m)) were recorded, the A(m) mole fractions of PMMA (X(PMMA)) plots show that the experimental results match the theoretical values calculated from additivity rule A(m) = X(PMMA)A(PMMA) + X(DPPC)A(DPPC). The application of the Crisp phase rule to the phase diagram of the PMMA-DPPC system can explain the existence of a mixed monolayer made up of miscible components with ideal behavior at surface pressures below 25 mN/m. However, at very high surface pressures, when collapse is reached (at 60 mN/m), the single collapsed components are segregated into two independent phases. These results allows us to argue that PMMA hard contact lenses in the eye do not alter the structural characteristics of the phospholipid (DPPC) in tears.
Dynamical Effects in Metal-Organic Frameworks: The Microporous Materials as Shock Absorbers
NASA Astrophysics Data System (ADS)
Banlusan, Kiettipong; Strachan, Alejandro
2017-06-01
Metal-organic frameworks (MOFs) are a class of nano-porous crystalline solids consisting of inorganic units coordinated to organic linkers. The unique molecular structures and outstanding properties with ultra-high porosity and tunable chemical functionality by various choices of metal clusters and organic ligands make this class of materials attractive for many applications. The complex and quite unique responses of these materials to mechanical loading including void collapse make them attractive for applications in energy absorption and storage. We will present using large-scale molecular dynamics simulations to investigate shock propagation in zeolitic imidazolate framework ZIF-8 and MOF-5. We find that for shock strengths above a threshold a two-wave structure develops with a leading elastic precursor followed by a second wave of structural collapse to relax the stress. Structural transition of MOFs in response to shock waves corresponds to the transition between two Hugoniot curves, and results in abrupt change in temperature. The pore-collapse wave propagates at slower velocity than the leading wave and weakens it, resulting in shock attenuation. Increasing piston speed results in faster propagation of pore-collapse wave, but the leading elastic wave remains unchanged below the overdriven regime. We discuss how the molecular structure of the MOFs and shock propagation direction affect the response of the materials and their ability to weaken shocks. Office of Naval Research, MURI 2012 02341 01.
Comparing solvophobic and multivalent induced collapse in polyelectrolyte brushes
Jackson, Nicholas E.; Brettmann, Blair K.; Vishwanath, Venkatram; ...
2017-02-03
Here, coarse-grained molecular dynamics enhanced by free-energy sampling methods is used to examine the roles of solvophobicity and multivalent salts on polyelectrolyte brush collapse. Specifically, we demonstrate that while ostensibly similar, solvophobic collapsed brushes and multivalent-ion collapsed brushes exhibit distinct mechanistic and structural features. Notably, multivalent-induced heterogeneous brush collapse is observed under good solvent polymer backbone conditions, demonstrating that the mechanism of multivalent collapse is not contingent upon a solvophobic backbone. Umbrella sampling of the potential of mean-force (PMF) between two individual brush strands confirms this analysis, revealing starkly different PMFs under solvophobic and multivalent conditions, suggesting the role ofmore » multivalent “bridging” as the discriminating feature in trivalent collapse. Structurally, multivalent ions show a propensity for nucleating order within collapsed brushes, whereas poor-solvent collapsed brushes are more disordered; this difference is traced to the existence of a metastable PMF minimum for poor solvent conditions, and a global PMF minimum for trivalent systems, under experimentally relevant conditions.« less
Comparing solvophobic and multivalent induced collapse in polyelectrolyte brushes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Nicholas E.; Brettmann, Blair K.; Vishwanath, Venkatram
Here, coarse-grained molecular dynamics enhanced by free-energy sampling methods is used to examine the roles of solvophobicity and multivalent salts on polyelectrolyte brush collapse. Specifically, we demonstrate that while ostensibly similar, solvophobic collapsed brushes and multivalent-ion collapsed brushes exhibit distinct mechanistic and structural features. Notably, multivalent-induced heterogeneous brush collapse is observed under good solvent polymer backbone conditions, demonstrating that the mechanism of multivalent collapse is not contingent upon a solvophobic backbone. Umbrella sampling of the potential of mean-force (PMF) between two individual brush strands confirms this analysis, revealing starkly different PMFs under solvophobic and multivalent conditions, suggesting the role ofmore » multivalent “bridging” as the discriminating feature in trivalent collapse. Structurally, multivalent ions show a propensity for nucleating order within collapsed brushes, whereas poor-solvent collapsed brushes are more disordered; this difference is traced to the existence of a metastable PMF minimum for poor solvent conditions, and a global PMF minimum for trivalent systems, under experimentally relevant conditions.« less
Collapsing Binary Asteroids With YORP And BYORP
NASA Astrophysics Data System (ADS)
Taylor, Patrick A.
2012-05-01
A separated binary system may be collapsed to contact via the removal of angular momentum from the system until a viable tidal end state no longer exists. The thermal YORP and BYORP effects are both capable of removing angular momentum from the system, by spin-down of the components and shrinking the mutual orbit, respectively. The YORP effect, with strength of order that measured for (1862) Apollo [1], can collapse a binary system with equal-mass components in as little as tens of thousands of years (depending on the initial angular momentum), while smaller secondaries require two or more orders of magnitude longer to collapse. BYORP, with a BYORP coefficent of 0.001 [2], is less efficient, especially for smaller secondaries. By these methods, only near-Earth binaries with large mass ratios can collapse within a dynamical lifetime, a population of which is observed by radar with a frequency comparable to separated binaries. [1] Kaasalainen et al., 2007, Nature 446, 420-422. [2] McMahon and Scheeres, 2010, Icarus 209, 494-509.
Infrared dust bubble CS51 and its interaction with the surrounding interstellar medium
NASA Astrophysics Data System (ADS)
Das, Swagat R.; Tej, Anandmayee; Vig, Sarita; Liu, Hong-Li; Liu, Tie; Ishwara Chandra, C. H.; Ghosh, Swarna K.
2017-12-01
A multiwavelength investigation of the southern infrared dust bubble CS51 is presented in this paper. We probe the associated ionized, cold dust, molecular and stellar components. Radio continuum emission mapped at 610 and 1300 MHz, using the Giant Metrewave Radio Telescope, India, reveals the presence of three compact emission components (A, B, and C) apart from large-scale diffuse emission within the bubble interior. Radio spectral index map shows the co-existence of thermal and non-thermal emission components. Modified blackbody fits to the thermal dust emission using Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver data is performed to generate dust temperature and column density maps. We identify five dust clumps associated with CS51 with masses and radius in the range 810-4600 M⊙ and 1.0-1.9 pc, respectively. We further construct the column density probability distribution functions of the surrounding cold dust which display the impact of ionization feedback from high-mass stars. The estimated dynamical and fragmentation time-scales indicate the possibility of collect and collapse mechanism in play at the bubble border. Molecular line emission from the Millimeter Astronomy Legacy Team 90 GHz survey is used to understand the nature of two clumps which show signatures of expansion of CS51.
GBT Observations of the Star-Forming Regions DR21 and MonR2 with the new Argus Instrument
NASA Astrophysics Data System (ADS)
Linville, Dylan; Frayer, David; Cunningham, Nichol; Maddalena, Ronald
2018-01-01
We present GBT molecular line observations of DR21 and MonR2 with the new 16 element 75--115 GHz Argus instrument. Both molecular cloud complexes are associated with regions of high-mass star formation. We present the results of our 13CO, C18O, and HCO+ observations. Both MonR2 and DR21 show multiple velocity components, and the data suggest that the core of MonR2 is collapsing, while DR21 contains a region with a strong outflow traced by HCO+.
Wu, Yuan-Ting; Adnan, Ashfaq
2017-07-13
The purpose of this study is to conduct modeling and simulation to understand the effect of shock-induced mechanical loading, in the form of cavitation bubble collapse, on damage to the brain's perineuronal nets (PNNs). It is known that high-energy implosion due to cavitation collapse is responsible for corrosion or surface damage in many mechanical devices. In this case, cavitation refers to the bubble created by pressure drop. The presence of a similar damage mechanism in biophysical systems has long being suspected but not well-explored. In this paper, we use reactive molecular dynamics (MD) to simulate the scenario of a shock wave induced cavitation collapse within the perineuronal net (PNN), which is the near-neuron domain of a brain's extracellular matrix (ECM). Our model is focused on the damage in hyaluronan (HA), which is the main structural component of PNN. We have investigated the roles of cavitation bubble location, shockwave intensity and the size of a cavitation bubble on the structural evolution of PNN. Simulation results show that the localized supersonic water hammer created by an asymmetrical bubble collapse may break the hyaluronan. As such, the current study advances current knowledge and understanding of the connection between PNN damage and neurodegenerative disorders.
Liao, Xiangbiao; Xiao, Hang; Lu, Xiaobo; Chen, Youlong; Shi, Xiaoyang; Chen, Xi
2018-02-23
A new phosphorous allotrope, closed-edged bilayer phosphorene nanoribbon, is proposed via radially deforming armchair phosphorene nanotubes. Using molecular dynamics simulations, the transformation pathway from round PNTs falls into two types of collapsed structures: arc-like and sigmoidal bilayer nanoribbons, dependent on the number of phosphorene unit cells. The fabricated nanoribbions are energetically more stable than their parent nanotubes. It is also found via ab initio calculations that the band structure along tube axis substantially changes with the structural transformation. The direct-to-indirect transition of band gap is highlighted when collapsing into the arc-like nanoribbons but not the sigmoidal ones. Furthermore, the band gaps of these two types of nanoribbons show significant size-dependence of the nanoribbon width, indicative of wider tunability of their electrical properties.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-10-01
Molecular clouds which youre likely familiar with from stunning popular astronomy imagery lead complicated, tumultuous lives. A recent study has now found that these features must be rapidly built and destroyed.Star-Forming CollapseA Hubble view of a molecular cloud, roughly two light-years long, that has broken off of the Carina Nebula. [NASA/ESA, N. Smith (University of California, Berkeley)/The Hubble Heritage Team (STScI/AURA)]Molecular gas can be found throughout our galaxy in the form of eminently photogenic clouds (as featured throughout this post). Dense, cold molecular gas makes up more than 20% of the Milky Ways total gas mass, and gravitational instabilities within these clouds lead them to collapse under their own weight, resulting in the formation of our galaxys stars.How does this collapse occur? The simplest explanation is that the clouds simply collapse in free fall, with no source of support to counter their contraction. But if all the molecular gas we observe collapsed on free-fall timescales, star formation in our galaxy would churn a rate thats at least an order of magnitude higher than the observed 12 solar masses per year in the Milky Way.Destruction by FeedbackAstronomers have theorized that there may be some mechanism that supports these clouds against gravity, slowing their collapse. But both theoretical studies and observations of the clouds have ruled out most of these potential mechanisms, and mounting evidence supports the original interpretation that molecular clouds are simply gravitationally collapsing.A sub-mm image from ESOs APEX telescope of part of the Taurus molecular cloud, roughly ten light-years long, superimposed on a visible-light image of the region. [ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized Sky Survey 2. Acknowledgment: Davide De Martin]If this is indeed the case, then one explanation for our low observed star formation rate could be that molecular clouds are rapidly destroyed by feedback from the very stars they create. But to match with observations, this wouldsuggest that molecular clouds are short-lived objects that are built (and therefore replenished) just as quickly as they are destroyed. Is this possible?Speedy Building?In a recent study, a team of scientists led by Mordecai-Mark Mac Low (American Museum of Natural History and Heidelberg University, Germany) explore whether there is a way to create molecular clouds rapidly enough to match the necessary rate of destruction.Mac Low and collaborators find that some common mechanisms used to explain the formation of molecular clouds like gas being swept up by supernovae cant quite operate quickly enough to combat the rate of cloud destruction. On the other hand, the Toomre gravitational instability,which is a large-scale gravitational instability that occurs in gas disks,can very rapidly assemble gas into clumps dense enough to form molecules.A composite of visible and near-infrared images from the VLT ANTU telescope of the Barnard 68 molecular cloud, roughly half a light-year in diameter. [ESO]A Rapid CycleBased on their findings, the authors argue that dense, star-forming molecular clouds persist only for a short time before collapsing into stars and then being blown apart by stellar feedback but these very clouds are built equally quickly via gravitational instabilities.Conveniently, this model has a very testable prediction: the Toomre instability is expected to become even stronger at higher redshift, which suggests that the fraction of gas in the form of molecules should increase at high redshifts. This appears to agree with observations, supporting the authors picture of a rapid cycle of cloud assembly and destruction.CitationMordecai-Mark Mac Low et al 2017 ApJL 847 L10. doi:10.3847/2041-8213/aa8a61
Gravitational collapse and the vacuum energy
NASA Astrophysics Data System (ADS)
Campos, M.
2014-03-01
To explain the accelerated expansion of the universe, models with interacting dark components (dark energy and dark matter) have been considered recently in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy of the all fields that fill the universe. As the other side of the same coin, the influence of the vacuum energy on the gravitational collapse is of great interest. We study such collapse adopting different parameterizations for the evolution of the vacuum energy. We discuss the homogeneous collapsing star fluid, that interacts with a vacuum energy component, using the stiff matter case as example. We conclude this work with a discussion of the Cahill-McVittie mass for the collapsed object.
Fuciños, Clara; Fuciños, Pablo; Míguez, Martín; Katime, Issa; Pastrana, Lorenzo M.; Rúa, María L.
2014-01-01
Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements). PMID:24520326
Fuciños, Clara; Fuciños, Pablo; Míguez, Martín; Katime, Issa; Pastrana, Lorenzo M; Rúa, María L
2014-01-01
Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).
Interfacial assignment of branched-alkyl benzene sulfonates: A molecular simulation
NASA Astrophysics Data System (ADS)
Liu, Zi-Yu; Wei, Ning; Wang, Ce; Zhou, He; Zhang, Lei; Liao, Qi; Zhang, Lu
2015-11-01
A molecular dynamics simulation was conducted to analyze orientations of sodium branched-alkyl benzene sulfonates molecules at nonane/water interface, which is helpful to design optimal surfactant structures to achieve ultralow interfacial tension (IFT). Through the two dimensional density profiles, monolayer collapses are found when surfactant concentration continues to increase. Thus the precise scope of monolayer is certain and orientation can be analyzed. Based on the simulated results, we verdict the interfacial assignment of branched-alkyl benzene sulfonates at the oil-water interface, and discuss the effect of hydrophobic tail structure on surfactant assignment. Bigger hydrophobic size can slow the change rate of surfactant occupied area as steric hindrance, and surfactant meta hydrophobic tails have a stronger tendency to stretch to the oil phase below the collapsed concentration. Furthermore, an interfacial model with reference to collapse, increasing steric hindrance and charge repulsive force between interfacial surfactant molecules, responsible for effecting of surfactant concentration and structure has been supposed.
The Influence of AN Interacting Vacuum Energy on the Gravitational Collapse of a Star Fluid
NASA Astrophysics Data System (ADS)
Campos, M.
2014-02-01
To explain the accelerated expansion of the universe, models with interacting dark components has been considered in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy. However, at the other side of the same coin, the influence of the vacuum energy in the gravitational collapse is a topic of scientific interest. Based in a simple assumption on the collapsed rate of the matter fluid density that is altered by the inclusion of a vacuum energy component that interacts with the matter fluid, we study the final fate of the collapse process.
Triggered massive star formation associated with the bubble Hii region Sh2-39 (N5)
NASA Astrophysics Data System (ADS)
Duronea, N. U.; Cappa, C. E.; Bronfman, L.; Borissova, J.; Gromadzki, M.; Kuhn, M. A.
2017-09-01
Aims: We perform a multiwavelength analysis of the bubble Hii region Sh2-39 (N5) and its environs with the aim of studying the physical properties of Galactic IR bubbles and exploring their impact in triggering massive star formation. Methods: To analyze the molecular gas, we used CO(3-2) and HCO+(4-3) line data obtained with the on-the-fly technique from the ASTE telescope. To study the distribution and physical characteristics of the dust, we made use of archival data from ATLASGAL, Herschel, and MSX, while the ionized gas was studied making use of an NVSS image. We used public WISE, Spitzer, and MSX point source catalogs to search for infrared candidate young stellar objects (YSOs) in the region. To investigate the stellar cluster [BDS2003]6 we used IR spectroscopic data obtained with the ARCoIRIS spectrograph, mounted on Blanco 4 m Telescope at CTIO, and new available IR Ks band observations from the VVVeXtended ESO Public Survey (VVVX). Results: The new ASTE observations allowed the molecular gas component in the velocity range from 30 km s-1 to 46 km s-1, associated with Sh2-39, to be studied in detail. The morphology of the molecular gas suggests that the ionized gas is expanding against its parental cloud. We identified four molecular clumps, which were likely formed by the expansion of the ionization front, and determined some of their physical and dynamical properties. Clumps with HCO+ and 870 μm counterparts show evidence of gravitational collapse. We identified several candidate YSOs across the molecular component. Their spatial distribution and the fragmentation time derived for the collected layers of the molecular gas suggest that massive star formation might have been triggered by the expansion of the nebula via the collect and collapse mechanism. The spectroscopical distance obtained for the stellar cluster [BDS2003]6, placed over one of the collapsing clumps in the border of the Hii region, reveals that this cluster is physically associated with the nebula and gives more support to the triggered massive star formation scenario. A radio continuum data analysis indicates that the nebula is older and expands at lower velocity than typical IR Galactic bubbles. The ASTE data cubes and ARCoIRIS spectrum are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/606/A8
Dutta, Amlan; Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri
2016-01-01
We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism.
NASA Astrophysics Data System (ADS)
Wang, Lin-Xue; Dai, Chao-Qing; Wen, Lin; Liu, Tao; Jiang, Hai-Feng; Saito, Hiroki; Zhang, Shou-Gang; Zhang, Xiao-Fei
2018-06-01
We explore the effects of system parameters on the dynamics of ring dark solitons (RDSs) and vortices followed by the collapse of RDSs in a two-component Bose-Einstein condensate (BEC). The system exhibits complicated dynamical behaviors, which are quite different from those in a scalar BEC. For two shallow RDSs with equal initial depths, the dynamical trajectories of generated vortex dipoles are similar to those in a scalar BEC, but the time for vortex dipoles to perform a periodic motion is increased. In particular, there exists a critical depth, above which vortex dipoles first move along the vertical direction and then preform complicated dynamics, including their rearrangement and recombination. Finally, we consider the case of unequal initial depths and find that the number of created vortices is determined by the depth of the shallow RDS, while their initial moving direction is determined by the deeper one.
Wang, L; Zhang, X M; Deng, L; Tang, J F; Xiao, S F; Deng, H Q; Hu, W Y
2018-06-04
We systematically investigate the collapse of a set of open-cell nanoporous Cu (np-Cu) materials with the same porosity and shape but different specific surface areas, during thermal annealing, by performing large-scale molecular dynamics simulations. Two mechanisms govern the collapse of np-Cu. One is direct surface premelting, facilitating the collapse of np-Cu, when the specific surface area is less than a critical value (∼2.38 nm-1). The other is recrystallization followed by surface premelting, accelerating the sloughing of ligaments and the annihilation of voids, when the critical specific surface area is exceeded. Surface premelting results from surface reconstruction by prompting localized "disordering" and "chaos" on the surface, and the melting temperature reduces linearly with the increase of the specific surface area. Recrystallization is followed by surface premelting as the melting temperature is below the supercooling point, where a liquid is unstable and instantaneously recrystallizes.
Gravity, turbulence and the scaling ``laws'' in molecular clouds
NASA Astrophysics Data System (ADS)
Ballesteros-Paredes, Javier
The so-called Larson (1981) scaling laws found empirically in molecular clouds have been generally interpreted as evidence that the clouds are turbulent and fractal. In the present contribution we discussed how recent observations and models of cloud formation suggest that: (a) these relations are the result of strong observational biases due to the cloud definition itself: since the filling factor of the dense structures is small, by thresholding the column density the computed mean density between clouds is nearly constant, and nearly the same as the threshold (Ballesteros-Paredes et al. 2012). (b) When accounting for column density variations, the velocity dispersion-size relation does not appears anymore. Instead, dense cores populate the upper-left corner of the δ v-R diagram (Ballesteros-Paredes et al. 2011a). (c) Instead of a δ v-R relation, a more appropriate relation seems to be δ v 2 / R = 2 GMΣ, which suggest that clouds are in collapse, rather than supported by turbulence (Ballesteros-Paredes et al. 2011a). (d) These results, along with the shapes of the star formation histories (Hartmann, Ballesteros-Paredes & Heitsch 2012), line profiles of collapsing clouds in numerical simulations (Heitsch, Ballesteros-Paredes & Hartmann 2009), core-to-core velocity dispersions (Heitsch, Ballesteros-Paredes & Hartmann 2009), time-evolution of the column density PDFs (Ballesteros-Paredes et al. 2011b), etc., strongly suggest that the actual source of the non-thermal motions is gravitational collapse of the clouds, so that the turbulent, chaotic component of the motions is only a by-product of the collapse, with no significant ``support" role for the clouds. This result calls into question if the scale-free nature of the motions has a turbulent, origin (Ballesteros-Paredes et al. 2011a; Ballesteros-Paredes et al. 2011b, Ballesteros-Paredes et al. 2012).
NASA Astrophysics Data System (ADS)
Ostriker, Eve C.; Gammie, Charles F.; Stone, James M.
1999-03-01
The molecular component of the Galaxy is comprised of turbulent, magnetized clouds, many of which are self-gravitating and form stars. To develop an understanding of how these clouds' kinetic and structural evolution may depend on their level of turbulence, mean magnetization, and degree of self-gravity, we perform a survey of direct numerical MHD simulations in which three parameters are independently varied. Our simulations consist of solutions to the time-dependent MHD equations on a two-dimensional grid with periodic boundary conditions; an additional ``half'' dimension is also incorporated as dependent variables in the third Cartesian direction. Two of our survey parameters, the mean magnetization parameter β≡c2sound/v2Alfven and the Jeans number nJ≡Lcloud/LJeans, allow us to model clouds that either meet or fail conditions for magneto-Jeans stability and magnetic criticality. Our third survey parameter, the sonic Mach number M≡σvelocity/csound, allows us to initiate turbulence of either sub- or super-Alfvénic amplitude; we employ an isothermal equation of state throughout. We evaluate the times for each cloud model to become gravitationally bound and measure each model's kinetic energy loss over the fluid-flow crossing time. We compare the evolution of density and magnetic field structural morphology and quantify the differences in the density contrast generated by internal stresses for models of differing mean magnetization. We find that the values of β and nJ, but not the initial Mach number M, determine the time for cloud gravitational binding and collapse: for mean cloud density nH2=100 cm-3, unmagnetized models collapse after ~5 Myr, and magnetically supercritical models generally collapse after 5-10 Myr (although the smallest magneto-Jeans stable clouds survive gravitational collapse until t~15 Myr), while magnetically subcritical clouds remain uncollapsed over the entire simulations; these cloud collapse times scale with the mean density as tg~n-1/2H2. We find, contrary to some previous expectations, less than a factor of 2 difference between turbulent decay times for models with varying magnetic field strength; the maximum decay time, for B~14 μG and nH2=100 cm-3, is 1.4 flow crossing times tcross=L/σvelocity (or 8 Myr for typical giant molecular cloud parameters). In all models we find turbulent amplification in the magnetic field strength up to at least the level βpert≡c2sound/δv2Alfven=0.1, with the turbulent magnetic energy between 25% and 60% of the turbulent kinetic energy after one flow crossing time. We find that for non-self-gravitating stages of evolution, when clouds have M=5-10, the mass-averaged density contrast magnitudes
NASA Astrophysics Data System (ADS)
Nimse, Rohit B.; Joshi, Digesh D.; Patel, Paresh V.
2014-12-01
Progressive collapse denotes a failure of a major portion of a structure that has been initiated by failure of a relatively small part of the structure such as failure of any vertical load carrying element (typically columns). Failure of large part of any structure will results into substantial loss of human lives and natural resources. Therefore, it is important to prevent progressive collapse which is also known as disproportionate collapse. Nowadays, there is an increasing trend toward construction of buildings using precast concrete. In precast concrete construction, all the components of structures are produced in controlled environment and they are being transported to the site. At site such individual components are connected appropriately. Connections are the most critical elements of any precast structure, because in past major collapse of precast structure took place because of connection failure. In this study, behavior of three different 1/3rd scaled wet precast beam column connections under progressive collapse scenario are studied and its performance is compared with monolithic connection. Precast connections are constructed by adopting different connection detailing at the junction by considering reinforced concrete corbel for two specimens and steel billet for one specimen. Performance of specimen is evaluated on the basis of ultimate load carrying capacity, maximum deflection and deflection measured along the span of the beam. From the results, it is observed that load carrying capacity and ductility of precast connections considered in this study are more than that of monolithic connections.
Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri
2016-01-01
Summary We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism. PMID:26977380
NASA Astrophysics Data System (ADS)
Derakhshani, Maaneli
In this thesis, we consider the implications of solving the quantum measurement problem for the Newtonian description of semiclassical gravity. First we review the formalism of the Newtonian description of semiclassical gravity based on standard quantum mechanics---the Schroedinger-Newton theory---and two well-established predictions that come out of it, namely, gravitational 'cat states' and gravitationally-induced wavepacket collapse. Then we review three quantum theories with 'primitive ontologies' that are well-known known to solve the measurement problem---Schroedinger's many worlds theory, the GRW collapse theory with matter density ontology, and Nelson's stochastic mechanics. We extend the formalisms of these three quantum theories to Newtonian models of semiclassical gravity and evaluate their implications for gravitational cat states and gravitational wavepacket collapse. We find that (1) Newtonian semiclassical gravity based on Schroedinger's many worlds theory is mathematically equivalent to the Schroedinger-Newton theory and makes the same predictions; (2) Newtonian semiclassical gravity based on the GRW theory differs from Schroedinger-Newton only in the use of a stochastic collapse law, but this law allows it to suppress gravitational cat states so as not to be in contradiction with experiment, while allowing for gravitational wavepacket collapse to happen as well; (3) Newtonian semiclassical gravity based on Nelson's stochastic mechanics differs significantly from Schroedinger-Newton, and does not predict gravitational cat states nor gravitational wavepacket collapse. Considering that gravitational cat states are experimentally ruled out, but gravitational wavepacket collapse is testable in the near future, this implies that only the latter two are viable theories of Newtonian semiclassical gravity and that they can be experimentally tested against each other in future molecular interferometry experiments that are anticipated to be capable of testing the gravitational wavepacket collapse prediction.
Expanding shell and star formation in the infrared dust bubble N6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Jing-Hua; Li, Jin Zeng; Liu, Hongli
2014-12-10
We have carried out a multiwavelength study of the infrared dust bubble N6 to extensively investigate the molecular environs and star-forming activities therein. Mapping observations in {sup 12}CO J = 1-0 and {sup 13}CO J = 1-0 performed with the Purple Mountain Observatory 13.7 m telescope have revealed four velocity components. Comparison between distributions of each component and the infrared emission suggests that three components are correlated with N6. There are 10 molecular clumps detected. Among them, five have reliable detections in both {sup 12}CO and {sup 13}CO and have similar LTE and non-LTE masses ranging from 200 to highermore » than 5000 M {sub ☉}. With larger gas masses than virial masses, these five clumps are gravitationally unstable and have the potential to collapse to form new stars. The other five clumps are only reliably detected in {sup 12}CO and have relatively small masses. Five clumps are located on the border of the ring structure, and four of them are elongated along the shell. This is well in agreement with the collect-and-collapse scenario. The detected velocity gradient reveals that the ring structure is still under expansion owing to stellar winds from the exciting star(s). Furthermore, 99 young stellar objects (YSOs) have been identified based on their infrared colors. A group of YSOs reside inside the ring, indicating active star formation in N6. Although no confirmative features of triggered star formation are detected, the bubble and the enclosed H II region have profoundly reconstructed the natal cloud and altered the dynamics therein.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Kuo-Chuan; Liebendörfer, Matthias; Hempel, Matthias
2016-01-20
The neutrino mechanism of core-collapse supernova is investigated via non-relativistic, two-dimensional (2D), neutrino radiation–hydrodynamic simulations. For the transport of electron flavor neutrinos, we use the interaction rates defined by Bruenn and the isotropic diffusion source approximation (IDSA) scheme, which decomposes the transported particles into trapped-particle and streaming-particle components. Heavy neutrinos are described by a leakage scheme. Unlike the “ray-by-ray” approach in some other multidimensional supernova models, we use cylindrical coordinates and solve the trapped-particle component in multiple dimensions, improving the proto-neutron star resolution and the neutrino transport in angular and temporal directions. We provide an IDSA verification by performing one-dimensionalmore » (1D) and 2D simulations with 15 and 20 M{sub ⊙} progenitors from Woosley et al. and discuss the difference between our IDSA results and those existing in the literature. Additionally, we perform Newtonian 1D and 2D simulations from prebounce core collapse to several hundred milliseconds postbounce with 11, 15, 21, and 27 M{sub ⊙} progenitors from Woosley et al. with the HS(DD2) equation of state. General-relativistic effects are neglected. We obtain robust explosions with diagnostic energies E{sub dia} ≳ 0.1–0.5 B (1 B ≡ 10{sup 51} erg) for all considered 2D models within approximately 100–300 ms after bounce and find that explosions are mostly dominated by the neutrino-driven convection, although standing accretion shock instabilities are observed as well. We also find that the level of electron deleptonization during collapse dramatically affects the postbounce evolution, e.g., the neglect of neutrino–electron scattering during collapse will lead to a stronger explosion.« less
Star Formation and the Hall Effect
NASA Astrophysics Data System (ADS)
Braiding, Catherine
2011-10-01
Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well-studied. This thesis describes a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, presenting similarity solutions that demonstrate that the Hall effect has a profound influence on the dynamics of collapse. ... Hall diffusion also determines the strength of the magnetic diffusion and centrifugal shocks that bound the pseudo and rotationally-supported discs, and can introduce subshocks that further slow accretion onto the protostar. In cores that are not initially rotating Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field would be worth exploring in future numerical simulations of star formation.
Initiation of Collapsing Pentacene Crystal by Au
NASA Astrophysics Data System (ADS)
Ihm, Kyuwook; Lee, Kyoung-Jae; Chung, Sukmin; Kang, Tai-Hee
2011-12-01
Metal contacts with gold on organics are an essential factor in organic electronics. The unveiled key challenge is to probe dynamic details of the microscopic evolution of the organic crystal when the atomic Au is introduced. Here, we show how the collapse of the pentacene crystal is initiated even by a few Au atoms. Our photoemission and x-ray absorption results indicate that the gentle decoupling of intra and inter-molecular π-π interactions causes the localization of the lowest unoccupied molecular orbital as well as the removal of cohesive forces between molecules, leading to the subsequent crystal collapse.
Direct observation of growth and collapse of a Bose-Einstein condensate with attractive interactions
NASA Astrophysics Data System (ADS)
Gerton, Jordan M.; Strekalov, Dmitry; Prodan, Ionut; Hulet, Randall G.
2000-12-01
Quantum theory predicts that Bose-Einstein condensation of a spatially homogeneous gas with attractive interactions is precluded by a conventional phase transition into either a liquid or solid. When confined to a trap, however, such a condensate can form, provided that its occupation number does not exceed a limiting value. The stability limit is determined by a balance between the self-attractive forces and a repulsion that arises from position-momentum uncertainty under conditions of spatial confinement. Near the stability limit, self-attraction can overwhelm the repulsion, causing the condensate to collapse. Growth of the condensate is therefore punctuated by intermittent collapses that are triggered by either macroscopic quantum tunnelling or thermal fluctuation. Previous observations of growth and collapse dynamics have been hampered by the stochastic nature of these mechanisms. Here we report direct observations of the growth and subsequent collapse of a 7Li condensate with attractive interactions, using phase-contrast imaging. The success of the measurement lies in our ability to reduce the stochasticity in the dynamics by controlling the initial number of condensate atoms using a two-photon transition to a diatomic molecular state.
NASA Astrophysics Data System (ADS)
Yuan, Xuebo; Wang, Youshan
2018-02-01
Carbon nanotubes (CNTs) can undergo collapse from the ordinary cylindrical configurations to bilayer ribbons when adhered on substrates. In this study, the collapsed adhesion of CNTs on the silicon substrates is investigated using both classical molecular dynamics (MD) simulations and continuum analysis. The governing equations and transversality conditions are derived based on the minimum potential energy principle and the energy-variational method, considering both the van der Waals interactions between CNTs and substrates and those inside CNTs. Closed-form solutions for the collapsed configuration are obtained which show good agreement with the results of MD simulations. The stability of adhesive configurations is investigated by analyzing the energy states. It is found that the adhesive states of single-walled CNTs (SWCNTs) (n, n) on the silicon substrates can be categorized by two critical radii, 0.716 and 0.892 nm. For SWCNTs with radius larger than 0.892 nm, they would fully collapse on the silicon substrates. For SWCNTs with radius less than 0.716 nm, the initial cylindrical configuration is energetically favorable. For SWCNTs with radius between two critical radii, the radially deformed state is metastable. The non-contact ends of all collapsed SWCNTs are identical with the same arc length of 2.38 nm. Finally, the role of number of walls on the adhesive configuration is investigated quantitatively. For multi-walled CNTs with the number of walls exceeding a certain value, the cylindrical configuration is stable due to the increasing bending stiffness. The present study can be useful for the design of CNT-based nanodevices.
NASA Astrophysics Data System (ADS)
Natta, A.
Contents 1 Introduction 2 Collapse of molecular cores 2.1 Giant molecular clouds and cores 2.2 Conditions for collapse 2.3 Free-fall collapse 2.4 Collapse of an isothermal sphere of gas 2.5 Collapse of a slowly rotating core 3 Observable properties of protostars 3.1 Evidence of infall from molecular line profiles 3.2 SEDs of protostars 3.3 The line spectrumof a protostar 4 Protostellar and pre-main-sequence evolution 4.1 The protostellar phase 4.2 Pre-main-sequence evolution 4.3 The birthline 5 Circumstellar disks 5.1 Accretion disks 5.2 Properties of steady accretion disks 5.3 Reprocessing disks 5.4 Disk-star interaction 6 SEDs of disks 6.1 Power-law disks 6.2 Long-wavelength flux and disk mass 6.3 Comparison with TTS observations: Heating mechanism 7 Disk properties from observations 7.1 Mass accretion rate 7.2 Inner radius 7.3 Masses 7.4 Sizes 8 Disk lifetimes 8.1 Ground-based near and mid-infrared surveys 8.2 Mid-infrared ISOCAMsurveys 8.3 ISOPHOT 60 microm survey 8.4 Surveys at millimeter wavelengths 9 Disk evolution 9.1 Can we observe the early planet formation phase? 9.2 Evidence for grain growth 9.3 Evidence of planetesimals 9.4 Where is the diskmass? 10 Secondary or debris disks 11 Summary
Park, Hae-Woong; Choi, Je; Ohn, Kimberly; Lee, Hyunsuk; Kim, Jin Woong; Won, You-Yeon
2012-08-07
It has been reported that the surface pressure-area isotherm of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) at the air-water interface exhibits several interesting features: (1) a plateau at intermediate compression levels, (2) a sharp rise in surface pressure upon further compression, and (3) marked surface pressure-area hysteresis during compression-expansion cycles. To investigate the molecular origin of this behavior, we conducted an extensive set of surface pressure and AFM imaging measurements with PLGA materials having several different molecular weights and also a poly(D,L-lactic acid-ran-glycolic acid-ran-caprolactone) (PLGACL) material in which the caprolactone monomers were incorporated as a plasticizing component. The results suggest that (i) the plateau in the surface pressure-area isotherm of PLGA (or PLGACL) occurs because of the formation (and collapse) of a continuous monolayer of the polymer under continuous compression; (ii) the PLGA monolayer becomes significantly resistant to compression at high compression because under that condition the collapsed domains become large enough to become glassy (such behavior was not observed in the nonglassy PLGACL sample); and (iii) the isotherm hysteresis is due to a coarsening of the collapsed domains that occurs under high-compression conditions. We also investigated the monolayer properties of PEG-PLGA and PEG-PLGACL diblock copolymers. The results demonstrate that the tendency of PLGA (or PLGACL) to spread on water allows the polymer to be used as an anchoring block to form a smooth biodegradable monolayer of block copolymers at the air-water interface. These diblock copolymer monolayers exhibit protein resistance.
Source Analysis of the Crandall Canyon, Utah, Mine Collapse
Dreger, D. S.; Ford, S. R.; Walter, W. R.
2008-07-11
Analysis of seismograms from a magnitude 3.9 seismic event on August 6, 2007 in central Utah reveals an anomalous radiation pattern that is contrary to that expected for a tectonic earthquake, and which is dominated by an implosive component. The results show the seismic event is best modeled as a shallow underground collapse. Interestingly, large transverse surface waves require a smaller additional non-collapse source component that represents either faulting in the rocks above the mine workings or deformation of the medium surrounding the mine.
Simulations of star-forming molecular clouds: observational predictions
NASA Astrophysics Data System (ADS)
Zhang, Shangjia; Hartmann, Lee; Kuznetsova, Aleksandra; Abelardo Zamora, Manuel
2018-01-01
Observations of protostellar molecular cloud cores can be used to test theories of star formation. However, observational results can be biased because of limited information: (a) only two spatial dimensions and one velocity dimension can be measured, (b) and cores generally are not spherically symmetric. We use numerical simulations of the formation and collapse of molecular gas with sink particles to make observational predictions. We use the radiative transfer code LIME to predict CO and NH3 channel maps. We find reasonable agreement with observed velocity structures and gradients but occasional large differences depending on viewing angle.
A Turbulent Origin for the Complex Envelope Kinematics in the Young Low-mass Core Per-bolo 58
NASA Astrophysics Data System (ADS)
Maureira, María José; Arce, Héctor G.; Offner, Stella S. R.; Dunham, Michael M.; Pineda, Jaime E.; Fernández-López, Manuel; Chen, Xuepeng; Mardones, Diego
2017-11-01
We use CARMA 3 mm continuum and molecular lines (NH2D, N2H+, HCO+, HCN, and CS) at ˜1000 au resolution to characterize the structure and kinematics of the envelope surrounding the deeply embedded first core candidate Per-bolo 58. The line profile of the observed species shows two distinct peaks separated by 0.4-0.6 km s-1, which most likely arise from two different optically thin velocity components rather than the product of self-absorption in an optically thick line. The two velocity components, each with a mass of ˜0.5-0.6 {M}⊙ , overlap spatially at the position of the continuum emission and produce a general gradient along the outflow direction. We investigate whether these observations are consistent with infall in a turbulent and magnetized envelope. We compare the morphology and spectra of the N2H+ (1-0) with synthetic observations of an MHD simulation that considers the collapse of an isolated core that is initially perturbed with a turbulent field. The proposed model matches the data in the production of two velocity components, traced by the isolated hyperfine line of the N2H+ (1-0) spectra, and shows a general agreement in morphology and velocity field. We also use large maps of the region to compare the kinematics of the core with that of the surrounding large-scale filamentary structure and find that accretion from the large-scale filament could also explain the complex kinematics exhibited by this young dense core.
Atomistic modeling of shock-induced void collapse in copper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davila, L P; Erhart, P; Bringa, E M
2005-03-09
Nonequilibrium molecular dynamics (MD) simulations show that shock-induced void collapse in copper occurs by emission of shear loops. These loops carry away the vacancies which comprise the void. The growth of the loops continues even after they collide and form sessile junctions, creating a hardened region around the collapsing void. The scenario seen in our simulations differs from current models that assume that prismatic loop emission is responsible for void collapse. We propose a new dislocation-based model that gives excellent agreement with the stress threshold found in the MD simulations for void collapse as a function of void radius.
Savel'ev, Sergey E; Zagoskin, Alexandre M
2018-06-25
A popular interpretation of the "collapse" of the wave function is as being the result of a local interaction ("measurement") of the quantum system with a macroscopic system ("detector"), with the ensuing loss of phase coherence between macroscopically distinct components of its quantum state vector. Nevetheless as early as in 1953 Renninger suggested a Gedankenexperiment, in which the collapse is triggered by non-observation of one of two mutually exclusive outcomes of the measurement, i.e., in the absence of interaction of the quantum system with the detector. This provided a powerful argument in favour of "physical reality" of (nonlocal) quantum state vector. In this paper we consider a possible version of Renninger's experiment using the light propagation through a birefringent quantum metamaterial. Its realization would provide a clear visualization of a wave function collapse produced by a "non-measurement", and make the concept of a physically real quantum state vector more acceptable.
A Multi-Dimensional Functional Principal Components Analysis of EEG Data
Hasenstab, Kyle; Scheffler, Aaron; Telesca, Donatello; Sugar, Catherine A.; Jeste, Shafali; DiStefano, Charlotte; Şentürk, Damla
2017-01-01
Summary The electroencephalography (EEG) data created in event-related potential (ERP) experiments have a complex high-dimensional structure. Each stimulus presentation, or trial, generates an ERP waveform which is an instance of functional data. The experiments are made up of sequences of multiple trials, resulting in longitudinal functional data and moreover, responses are recorded at multiple electrodes on the scalp, adding an electrode dimension. Traditional EEG analyses involve multiple simplifications of this structure to increase the signal-to-noise ratio, effectively collapsing the functional and longitudinal components by identifying key features of the ERPs and averaging them across trials. Motivated by an implicit learning paradigm used in autism research in which the functional, longitudinal and electrode components all have critical interpretations, we propose a multidimensional functional principal components analysis (MD-FPCA) technique which does not collapse any of the dimensions of the ERP data. The proposed decomposition is based on separation of the total variation into subject and subunit level variation which are further decomposed in a two-stage functional principal components analysis. The proposed methodology is shown to be useful for modeling longitudinal trends in the ERP functions, leading to novel insights into the learning patterns of children with Autism Spectrum Disorder (ASD) and their typically developing peers as well as comparisons between the two groups. Finite sample properties of MD-FPCA are further studied via extensive simulations. PMID:28072468
A multi-dimensional functional principal components analysis of EEG data.
Hasenstab, Kyle; Scheffler, Aaron; Telesca, Donatello; Sugar, Catherine A; Jeste, Shafali; DiStefano, Charlotte; Şentürk, Damla
2017-09-01
The electroencephalography (EEG) data created in event-related potential (ERP) experiments have a complex high-dimensional structure. Each stimulus presentation, or trial, generates an ERP waveform which is an instance of functional data. The experiments are made up of sequences of multiple trials, resulting in longitudinal functional data and moreover, responses are recorded at multiple electrodes on the scalp, adding an electrode dimension. Traditional EEG analyses involve multiple simplifications of this structure to increase the signal-to-noise ratio, effectively collapsing the functional and longitudinal components by identifying key features of the ERPs and averaging them across trials. Motivated by an implicit learning paradigm used in autism research in which the functional, longitudinal, and electrode components all have critical interpretations, we propose a multidimensional functional principal components analysis (MD-FPCA) technique which does not collapse any of the dimensions of the ERP data. The proposed decomposition is based on separation of the total variation into subject and subunit level variation which are further decomposed in a two-stage functional principal components analysis. The proposed methodology is shown to be useful for modeling longitudinal trends in the ERP functions, leading to novel insights into the learning patterns of children with Autism Spectrum Disorder (ASD) and their typically developing peers as well as comparisons between the two groups. Finite sample properties of MD-FPCA are further studied via extensive simulations. © 2017, The International Biometric Society.
Contraction Signatures toward Dense Cores in the Perseus Molecular Cloud
NASA Astrophysics Data System (ADS)
Campbell, J. L.; Friesen, R. K.; Martin, P. G.; Caselli, P.; Kauffmann, J.; Pineda, J. E.
2016-03-01
We report the results of an HCO+ (3-2) and N2D+ (3-2) molecular line survey performed toward 91 dense cores in the Perseus molecular cloud using the James Clerk Maxwell Telescope, to identify the fraction of starless and protostellar cores with systematic radial motions. We quantify the HCO+ asymmetry using a dimensionless asymmetry parameter δv, and identify 20 cores with significant blue or red line asymmetries in optically thick emission indicative of collapsing or expanding motions, respectively. We separately fit the HCO+ profiles with an analytic collapse model and determine contraction (expansion) speeds toward 22 cores. Comparing the δv and collapse model results, we find that δv is a good tracer of core contraction if the optically thin emission is aligned with the model-derived systemic velocity. The contraction speeds range from subsonic (0.03 km s-1) to supersonic (0.4 km s-1), where the supersonic contraction speeds may trace global rather than local core contraction. Most cores have contraction speeds significantly less than their free-fall speeds. Only 7 of 28 starless cores have spectra well-fit by the collapse model, which more than doubles (15 of 28) for protostellar cores. Starless cores with masses greater than the Jeans mass (M/MJ > 1) are somewhat more likely to show contraction motions. We find no trend of optically thin non-thermal line width with M/MJ, suggesting that any undetected contraction motions are small and subsonic. Most starless cores in Perseus are either not in a state of collapse or expansion, or are in a very early stage of collapse.
Eradicating catastrophic collapse in interdependent networks via reinforced nodes
Yuan, Xin; Hu, Yanqing; Havlin, Shlomo
2017-01-01
In interdependent networks, it is usually assumed, based on percolation theory, that nodes become nonfunctional if they lose connection to the network giant component. However, in reality, some nodes, equipped with alternative resources, together with their connected neighbors can still be functioning after disconnected from the giant component. Here, we propose and study a generalized percolation model that introduces a fraction of reinforced nodes in the interdependent networks that can function and support their neighborhood. We analyze, both analytically and via simulations, the order parameter—the functioning component—comprising both the giant component and smaller components that include at least one reinforced node. Remarkably, it is found that, for interdependent networks, we need to reinforce only a small fraction of nodes to prevent abrupt catastrophic collapses. Moreover, we find that the universal upper bound of this fraction is 0.1756 for two interdependent Erdős–Rényi (ER) networks: regular random (RR) networks and scale-free (SF) networks with large average degrees. We also generalize our theory to interdependent networks of networks (NONs). These findings might yield insight for designing resilient interdependent infrastructure networks. PMID:28289204
An XMM-Newton Study of the Mixed-morphology Supernova Remnant G346.6-0.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auchettl, Katie; Lopez, Laura; Ng, C-Y.
We present an X-ray imaging and spectroscopic study of the molecular cloud interacting mixed-morphology supernova remnant G346.6–0.2 using XMM-Newton . The X-ray spectrum of the remnant is well described by a recombining plasma that most likely arises from adiabatic cooling and has subsolar abundances of Mg, Si, and S. Our fits also suggest the presence of either an additional power-law component with a photon index of ∼2 or an additional thermal component with a temperature of ∼2.0 keV. We investigate the possible origin of this component and suggest that it could arise from either the Galactic ridge X-ray emission, anmore » unidentified pulsar wind nebula, or X-ray synchrotron emission from high-energy particles accelerated at the shock. However, deeper, high-resolution observations of this object are needed to shed light on the presence and origin of this feature. Based on its morphology, its Galactic latitude, the density of the surrounding environment, and its association with a dense molecular cloud, G346.6–0.2 most likely arises from a massive progenitor that underwent core collapse.« less
NASA Astrophysics Data System (ADS)
Inoue, Tsuyoshi; Hennebelle, Patrick; Fukui, Yasuo; Matsumoto, Tomoaki; Iwasaki, Kazunari; Inutsuka, Shu-ichiro
2018-05-01
Recent observations suggest an that intensive molecular cloud collision can trigger massive star/cluster formation. The most important physical process caused by the collision is a shock compression. In this paper, the influence of a shock wave on the evolution of a molecular cloud is studied numerically by using isothermal magnetohydrodynamics simulations with the effect of self-gravity. Adaptive mesh refinement and sink particle techniques are used to follow the long-time evolution of the shocked cloud. We find that the shock compression of a turbulent inhomogeneous molecular cloud creates massive filaments, which lie perpendicularly to the background magnetic field, as we have pointed out in a previous paper. The massive filament shows global collapse along the filament, which feeds a sink particle located at the collapse center. We observe a high accretion rate \\dot{M}_acc> 10^{-4} M_{⊙}yr-1 that is high enough to allow the formation of even O-type stars. The most massive sink particle achieves M > 50 M_{⊙} in a few times 105 yr after the onset of the filament collapse.
TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Tie; Wu Yuefang; Zhang Huawei
The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10{sup 3} cm{sup -3} and kinematic temperature {approx}20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed towardmore » core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.« less
Shock-induced nanobubble collapse and its applications
NASA Astrophysics Data System (ADS)
Vedadi, Mohammad Hossein
The shock-induced collapse of nanobubbles in water is investigated using molecular dynamics simulations based on a reactive force field. Monitoring the collapse of a cavitation nanobubble, we observe a focused nanojet at the onset of bubble shrinkage and a water hammer shock wave upon bubble collapse. The nanojet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. The shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of approximately 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. Moreover, a substantial number of positive and negative ions appear when the nanojet hits the distal side of the nanobubble and the water hammer shock forms. Furthermore, two promising applications of shock-induced nanobubble collapse have been explored. Our simulations of poration in lipid bilayers due to shock-induced collapse of nanobubbles reveal penetration of nanojets into lipid bilayers. The nanojet impact generates shear flow of water on bilayer leaflets and pressure gradients across them, which transiently enhance the bilayer permeability by creating nanopores through which water molecules translocate across the bilayer. The effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. Finally, the shock-induced collapse of CO2-filled nanobubbles in water is investigated. The energetic nanojet and high-pressure water hammer shock formed during and after collapse of the nanobubble trigger mechano-chemical H2O-CO2 reactions, some of which lead to splitting of water molecules. The dominant pathways through which splitting of water molecules occur are identified.
Small-angle neutron scattering study of micropore collapse in amorphous solid water.
Mitterdorfer, Christian; Bauer, Marion; Youngs, Tristan G A; Bowron, Daniel T; Hill, Catherine R; Fraser, Helen J; Finney, John L; Loerting, Thomas
2014-08-14
Vapor-deposited amorphous solid water (ASW) is the most abundant solid molecular material in space, where it plays a direct role in both the formation of more complex chemical species and the aggregation of icy materials in the earliest stages of planet formation. Nevertheless, some of its low temperature physics such as the collapse of the micropore network upon heating are still far from being understood. Here we characterize the nature of the micropores and their collapse using neutron scattering of gram-quantities of D2O-ASW of internal surface areas up to 230 ± 10 m(2) g(-1) prepared at 77 K. The model-free interpretation of the small-angle scattering data suggests micropores, which remain stable up to 120-140 K and then experience a sudden collapse. The exact onset temperature to pore collapse depends on the type of flow conditions employed in the preparation of ASW and, thus, the specific surface area of the initial deposit, whereas the onset of crystallization to cubic ice is unaffected by the flow conditions. Analysis of the small-angle neutron scattering signal using the Guinier-Porod model suggests that a sudden transition from three-dimensional cylindrical pores with 15 Å radius of gyration to two-dimensional lamellae is the mechanism underlying the pore collapse. The rather high temperature of about 120-140 K of micropore collapse and the 3D-to-2D type of the transition unraveled in this study have implications for our understanding of the processing and evolution of ices in various astrophysical environments.
CONTRACTION SIGNATURES TOWARD DENSE CORES IN THE PERSEUS MOLECULAR CLOUD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, J. L.; Friesen, R. K.; Martin, P. G.
We report the results of an HCO{sup +} (3–2) and N{sub 2}D{sup +} (3–2) molecular line survey performed toward 91 dense cores in the Perseus molecular cloud using the James Clerk Maxwell Telescope, to identify the fraction of starless and protostellar cores with systematic radial motions. We quantify the HCO{sup +} asymmetry using a dimensionless asymmetry parameter δ{sub v}, and identify 20 cores with significant blue or red line asymmetries in optically thick emission indicative of collapsing or expanding motions, respectively. We separately fit the HCO{sup +} profiles with an analytic collapse model and determine contraction (expansion) speeds toward 22more » cores. Comparing the δ{sub v} and collapse model results, we find that δ{sub v} is a good tracer of core contraction if the optically thin emission is aligned with the model-derived systemic velocity. The contraction speeds range from subsonic (0.03 km s{sup −1}) to supersonic (0.4 km s{sup −1}), where the supersonic contraction speeds may trace global rather than local core contraction. Most cores have contraction speeds significantly less than their free-fall speeds. Only 7 of 28 starless cores have spectra well-fit by the collapse model, which more than doubles (15 of 28) for protostellar cores. Starless cores with masses greater than the Jeans mass (M/M{sub J} > 1) are somewhat more likely to show contraction motions. We find no trend of optically thin non-thermal line width with M/M{sub J}, suggesting that any undetected contraction motions are small and subsonic. Most starless cores in Perseus are either not in a state of collapse or expansion, or are in a very early stage of collapse.« less
Feng, Zhihui; Zhang, Junran
2012-01-01
Homologous recombination (HR) is a major mechanism utilized to repair blockage of DNA replication forks. Here, we report that a sister chromatid exchange (SCE) generated by crossover-associated HR efficiently occurs in response to replication fork stalling before any measurable DNA double-strand breaks (DSBs). Interestingly, SCE produced by replication fork collapse following DNA DSBs creation is specifically suppressed by ATR, a central regulator of the replication checkpoint. BRCA1 depletion leads to decreased RPA2 phosphorylation (RPA2-P) following replication fork stalling but has no obvious effect on RPA2-P following replication fork collapse. Importantly, we found that BRCA1 promotes RAD51 recruitment and SCE induced by replication fork stalling independent of ATR. In contrast, BRCA1 depletion leads to a more profound defect in RAD51 recruitment and SCE induced by replication fork collapse when ATR is depleted. We concluded that BRCA1 plays a dual role in two distinct HR-mediated repair upon replication fork stalling and collapse. Our data established a molecular basis for the observation that defective BRCA1 leads to a high sensitivity to agents that cause replication blocks without being associated with DSBs, and also implicate a novel mechanism by which loss of cell cycle checkpoints promotes BRCA1-associated tumorigenesis via enhancing HR defect resulting from BRCA1 deficiency. PMID:21954437
Hierarchical Regularity in Multi-Basin Dynamics on Protein Landscapes
NASA Astrophysics Data System (ADS)
Matsunaga, Yasuhiro; Kostov, Konstatin S.; Komatsuzaki, Tamiki
2004-04-01
We analyze time series of potential energy fluctuations and principal components at several temperatures for two kinds of off-lattice 46-bead models that have two distinctive energy landscapes. The less-frustrated "funnel" energy landscape brings about stronger nonstationary behavior of the potential energy fluctuations at the folding temperature than the other, rather frustrated energy landscape at the collapse temperature. By combining principal component analysis with an embedding nonlinear time-series analysis, it is shown that the fast fluctuations with small amplitudes of 70-80% of the principal components cause the time series to become almost "random" in only 100 simulation steps. However, the stochastic feature of the principal components tends to be suppressed through a wide range of degrees of freedom at the transition temperature.
The effect of extreme ionization rates during the initial collapse of a molecular cloud core
NASA Astrophysics Data System (ADS)
Wurster, James; Bate, Matthew R.; Price, Daniel J.
2018-05-01
What cosmic ray ionization rate is required such that a non-ideal magnetohydrodynamics (MHD) simulation of a collapsing molecular cloud will follow the same evolutionary path as an ideal MHD simulation or as a purely hydrodynamics simulation? To investigate this question, we perform three-dimensional smoothed particle non-ideal MHD simulations of the gravitational collapse of rotating, one solar mass, magnetized molecular cloud cores, which include Ohmic resistivity, ambipolar diffusion, and the Hall effect. We assume a uniform grain size of ag = 0.1 μm, and our free parameter is the cosmic ray ionization rate, ζcr. We evolve our models, where possible, until they have produced a first hydrostatic core. Models with ζcr ≳ 10-13 s-1 are indistinguishable from ideal MHD models, and the evolution of the model with ζcr = 10-14 s-1 matches the evolution of the ideal MHD model within 1 per cent when considering maximum density, magnetic energy, and maximum magnetic field strength as a function of time; these results are independent of ag. Models with very low ionization rates (ζcr ≲ 10-24 s-1) are required to approach hydrodynamical collapse, and even lower ionization rates may be required for larger ag. Thus, it is possible to reproduce ideal MHD and purely hydrodynamical collapses using non-ideal MHD given an appropriate cosmic ray ionization rate. However, realistic cosmic ray ionization rates approach neither limit; thus, non-ideal MHD cannot be neglected in star formation simulations.
NASA Astrophysics Data System (ADS)
Powell, Charles; Jiang, Jing; Walters, Diane; Ediger, Mark
Vapor-deposited glasses are widely investigated for use in organic electronics including the emitting layers of OLED devices. These materials, while macroscopically homogenous, have anisotropic packing and molecular orientation. By controlling this orientation, outcoupling efficiency can be increased by aligning the transition dipole moment of the light-emitting molecules parallel to the substrate. Light-emitting molecules are typically dispersed in a host matrix, as such, it is imperative to understand molecular orientation in two-component systems. In this study we examine two-component vapor-deposited films and the orientations of the constituent molecules using spectroscopic ellipsometry, UV-vis and IR spectroscopy. The role of temperature, composition and molecular shape as it effects molecular orientation is examined for mixtures of DSA-Ph in Alq3 and in TPD. Deposition temperature relative to the glass transition temperature of the two-component mixture is the primary controlling factor for molecular orientation. In mixtures of DSA-Ph in Alq3, the linear DSA-Ph has a horizontal orientation at low temperatures and slight vertical orientation maximized at 0.96Tg,mixture, analogous to one-component films.
A History of Collapse Factor Modeling and Empirical Data for Cryogenic Propellant Tanks
NASA Technical Reports Server (NTRS)
deQuay, Laurence; Hodge, B. Keith
2010-01-01
One of the major technical problems associated with cryogenic liquid propellant systems used to supply rocket engines and their subassemblies and components is the phenomenon of propellant tank pressurant and ullage gas collapse. This collapse is mainly caused by heat transfer from ullage gas to tank walls and interfacing propellant, which are both at temperatures well below those of this gas. Mass transfer between ullage gas and cryogenic propellant can also occur and have minor to significant secondary effects that can increase or decrease ullage gas collapse. Pressurant gas is supplied into cryogenic propellant tanks in order to initially pressurize these tanks and then maintain required pressures as propellant is expelled from these tanks. The net effect of pressurant and ullage gas collapse is increased total mass and mass flow rate requirements of pressurant gases. For flight vehicles this leads to significant and undesirable weight penalties. For rocket engine component and subassembly ground test facilities this results in significantly increased facility hardware, construction, and operational costs. "Collapse Factor" is a parameter used to quantify the pressurant and ullage gas collapse. Accurate prediction of collapse factors, through analytical methods and modeling tools, and collection and evaluation of collapse factor data has evolved over the years since the start of space exploration programs in the 1950 s. Through the years, numerous documents have been published to preserve results of studies associated with the collapse factor phenomenon. This paper presents a summary and selected details of prior literature that document the aforementioned studies. Additionally other literature that present studies and results of heat and mass transfer processes, related to or providing important insights or analytical methods for the studies of collapse factor, are presented.
Collapsing radiating stars with various equations of state
NASA Astrophysics Data System (ADS)
Brassel, Byron P.; Goswami, Rituparno; Maharaj, Sunil D.
2017-06-01
We study the gravitational collapse of radiating stars in the context of the cosmic censorship conjecture. We consider a generalized Vaidya spacetime with three concentric regions. The local internal atmosphere is a two-component system consisting of standard pressure-free, null radiation and an additional string fluid with energy density and nonzero pressure obeying all physically realistic energy conditions. The middle region is purely radiative which matches to a third region which is the Schwarzschild exterior. We outline the general mathematical framework to study the conditions on the mass function so that future-directed nonspacelike geodesics can terminate at the singularity in the past. Mass functions for several equations of state are analyzed using this framework and it is shown that the collapse in each case terminates at a locally naked central singularity. We calculate the strength of these singularities to show that they are strong curvature singularities which implies that no extension of spacetime through them is possible.
Collapse and revival of entanglement between qubits coupled to a spin coherent state
NASA Astrophysics Data System (ADS)
Bahari, Iskandar; Spiller, Timothy P.; Dooley, Shane; Hayes, Anthony; McCrossan, Francis
We extend the study of the Jayne-Cummings (JC) model involving a pair of identical two-level atoms (or qubits) interacting with a single mode quantized field. We investigate the effects of replacing the radiation field mode with a composite spin, comprising N qubits, or spin-1/2 particles. This model is relevant for physical implementations in superconducting circuit QED, ion trap and molecular systems. For the case of the composite spin prepared in a spin coherent state, we demonstrate the similarities of this set-up to the qubits-field model in terms of the time evolution, attractor states and in particular the collapse and revival of the entanglement between the two qubits. We extend our analysis by taking into account an effect due to qubit imperfections. We consider a difference (or “mismatch”) in the dipole interaction strengths of the two qubits, for both the field mode and composite spin cases. To address decoherence due to this mismatch, we then average over this coupling strength difference with distributions of varying width. We demonstrate in both the field mode and the composite spin scenarios that increasing the width of the “error” distribution increases suppression of the coherent dynamics of the coupled system, including the collapse and revival of the entanglement between the qubits.
Collapse of primordial gas clouds and the formation of quasar black holes
NASA Technical Reports Server (NTRS)
Loeb, Abraham; Rasio, Frederic A.
1994-01-01
The formation of quasar black holes during the hydrodynamic collapse of protogalactic gas clouds is discussed. The dissipational collapse and long-term dynamical evolution of these systems is analyzed using three-dimensional numerical simulations. The calculations focus on the final collapse stages of the inner baryonic component and therefore ignore the presence of dark matter. Two types of initial conditions are considered: uniformly rotating spherical clouds, and iirotational ellipsoidal clouds. In both cases the clouds are initially cold, homogeneous, and not far from rotational support (T/(absolute value of W) approximately equals 0.1). Although the details of the dynamical evolution depend sensitively on the initial conditions, the qualitative features of the final configurations do not. Most of the gas is found to fragment into small dense clumps, that eventually make up a spheroidal component resembling a galactic bulge. About 5% of the initial mass remains in the form of a smooth disk of gas supported by rotation in the gravitational potential potential well of the outer spheroid. If a central seed black hole of mass approximately greater than 10(exp 6) solar mass forms, it can grow by steady accretion from the disk and reach a typical quasar black hole mass approximately 10(exp 8) solar mass in less than 5 x 10(exp 8) yr. In the absence of a sufficiently massive seed, dynamical instabilities in a strongly self-gravitating inner region of the disk will inhibit steady accretion of gas and may prevent the immediate formation of quasar.
Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites.
Van Kooten, Elishevah M M E; Wielandt, Daniel; Schiller, Martin; Nagashima, Kazuhide; Thomen, Aurélien; Larsen, Kirsten K; Olsen, Mia B; Nordlund, Åke; Krot, Alexander N; Bizzarro, Martin
2016-02-23
The short-lived (26)Al radionuclide is thought to have been admixed into the initially (26)Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent (54)Cr and (26)Mg*, the decay product of (26)Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling (26)Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived (26)Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a (26)Mg*-depleted and (54)Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived (26)Al. The (26)Mg* and (54)Cr compositions of bulk metal-rich chondrites require significant amounts (25-50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants.
Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites
Van Kooten, Elishevah M. M. E.; Wielandt, Daniel; Schiller, Martin; Nagashima, Kazuhide; Thomen, Aurélien; Olsen, Mia B.; Nordlund, Åke; Krot, Alexander N.; Bizzarro, Martin
2016-01-01
The short-lived 26Al radionuclide is thought to have been admixed into the initially 26Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent 54Cr and 26Mg*, the decay product of 26Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling 26Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived 26Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a 26Mg*-depleted and 54Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived 26Al. The 26Mg* and 54Cr compositions of bulk metal-rich chondrites require significant amounts (25–50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants. PMID:26858438
IRAS01202+6133: A Possible Case of Protostellar Collapse Triggered by a Small HIIRegion
NASA Astrophysics Data System (ADS)
Kang, Sung-Ju; Kerton, C.
2012-01-01
The molecular gas surrounding an HII region is thought to be a place where star formation can be induced. One of the main questions in the study of star formation is how protostars accrete material from their parent molecular clouds and observations of infall motions are needed to provide direct evidence for accretion. This poster will present an analysis of submm spectroscopic observations of the submm/infrared source IRAS 01202+6133 located on the periphery of the HII region KR 120. HCO+(J=3-2) spectra of this source show a classic blue-dominated double-peaked profile indicative of infall motions that would be expected to occur in the envelope surrounding a young protostellar object. The HCO+ spectrum toward the core was fitted using models incorporating both outflow and infall components along with basic assumptions regarding excitation temperature trends within molecular cloud cores. Using the models, we derive physical properties of the infall kinematics and the envelope structure.
IRAS 01202+6133 : A Possible Case of Protostellar Collapse Triggered by a Small HII Region
NASA Astrophysics Data System (ADS)
Kang, Sung-Ju; Kerton, C.
2012-01-01
The molecular gas surrounding an HII region is thought to be a place where star formation can be induced. One of the main questions in the study of star formation is how protostars accrete material from their parent molecular clouds and observations of infall motions are needed to provide direct evidence for accretion. This poster will present an analysis of submm spectroscopic observations of the submm/infrared source IRAS 01202+6133 located on the periphery of the HII region KR 120. HCO+(J=3-2) spectra of this source show a classic blue-dominated double-peaked profile indicative of infall motions that would be expected to occur in the envelope surrounding a young protostellar object. The HCO+ spectrum toward the core was fitted using models incorporating both outflow and infall components along with basic assumptions regarding excitation temperature trends within molecular cloud cores. Using the models, we derive physical properties of the infall kinematics and the envelope structure.
Current collapse in tunneling transport through benzene.
Hettler, M H; Wenzel, W; Wegewijs, M R; Schoeller, H
2003-02-21
We investigate the electrical transport through a system of benzene coupled to metal electrodes by electron tunneling. Using electronic structure calculations, a semiquantitative model for the pi electrons of the benzene is derived that includes general two-body interactions. After exact diagonalization of the benzene model the transport is computed using perturbation theory for weak electrode-benzene coupling (golden rule approximation). We include the effect of an applied electric field on the molecular states, as well as radiative relaxation. We predict a current collapse and strong negative differential conductance due to a "blocking" state when the electrode is coupled to the para-position of benzene. In contrast, for coupling to the meta-position, a series of steps in the I-V curve is found.
Hiruta, Yoshiki; Toh, Sadayoshi
2015-12-01
Two-dimensional Kolmogorov flow in wide periodic boxes is numerically investigated. It is shown that the total flow rate in the direction perpendicular to the force controls the characteristics of the flow, especially the existence of spatially localized solitary solutions such as traveling waves, periodic solutions, and chaotic solutions, which can behave as elementary components of the flow. We propose a procedure to construct approximate solutions consisting of solitary solutions. It is confirmed by direct numerical simulations that these solutions are stable and represent interactions between elementary components such as collisions, coexistence, and collapse of chaos.
Ito, Manabu; Abumi, Kuniyoshi; Kotani, Yoshihisa; Takahata, Masahiko; Hojo, Yoshihiro; Minami, Akio
2010-01-01
The number of reports describing osteoporotic vertebral fracture has increased as the number of elderly people has grown. Anterior decompression and fusion alone for the treatment of vertebral collapse is not easy for patients with comorbid medical problems and severe bone fragility. The purpose of the present study was to evaluate the efficacy of one-stage posterior instrumentation surgery for the treatment of osteoporotic vertebral collapse with neurological deficits. A consecutive series of 21 patients who sustained osteoporotic vertebral collapse with neurological deficits were managed with posterior decompression and short-segmental pedicle screw instrumentation augmented with ultra-high molecular weight polyethylene (UHMWP) cables with or without vertebroplasty using calcium phosphate cement. The mean follow-up was 42 months. All patients showed neurologic recovery. Segmental kyphotic angle at the instrumented level was significantly improved from an average preoperative kyphosis of 22.8–14.7 at a final follow-up. Spinal canal occupation was significantly reduced from an average before surgery of 40.4–19.1% at the final follow-up. Two patients experienced loosening of pedicle screws and three patients developed subsequent vertebral compression fractures within adjacent segments. However, these patients were effectively treated in a conservative fashion without any additional surgery. Our results indicated that one-stage posterior instrumentation surgery augmented with UHMWP cables could provide significant neurological improvement in the treatment of osteoporotic vertebral collapse. PMID:20157741
Sudo, Hideki; Ito, Manabu; Abumi, Kuniyoshi; Kotani, Yoshihisa; Takahata, Masahiko; Hojo, Yoshihiro; Minami, Akio
2010-06-01
The number of reports describing osteoporotic vertebral fracture has increased as the number of elderly people has grown. Anterior decompression and fusion alone for the treatment of vertebral collapse is not easy for patients with comorbid medical problems and severe bone fragility. The purpose of the present study was to evaluate the efficacy of one-stage posterior instrumentation surgery for the treatment of osteoporotic vertebral collapse with neurological deficits. A consecutive series of 21 patients who sustained osteoporotic vertebral collapse with neurological deficits were managed with posterior decompression and short-segmental pedicle screw instrumentation augmented with ultra-high molecular weight polyethylene (UHMWP) cables with or without vertebroplasty using calcium phosphate cement. The mean follow-up was 42 months. All patients showed neurologic recovery. Segmental kyphotic angle at the instrumented level was significantly improved from an average preoperative kyphosis of 22.8-14.7 at a final follow-up. Spinal canal occupation was significantly reduced from an average before surgery of 40.4-19.1% at the final follow-up. Two patients experienced loosening of pedicle screws and three patients developed subsequent vertebral compression fractures within adjacent segments. However, these patients were effectively treated in a conservative fashion without any additional surgery. Our results indicated that one-stage posterior instrumentation surgery augmented with UHMWP cables could provide significant neurological improvement in the treatment of osteoporotic vertebral collapse.
Characterizing 6 August 2007 Crandall Canyon mine collapse from ALOS PALSAR InSAR
Lu, Zhong; Wicks, Charles
2010-01-01
same as the moment of the collapse source, with each larger than the seismically computed moment. Our InSAR results, including the location of the event, the extent of the collapsed area, and constraints on the shearing component of the deformation source, all confirm and extend recent seismic studies of the 6 August 2007 event.
Giant Molecular Cloud Structure and Evolution
NASA Technical Reports Server (NTRS)
Hollenbach, David (Technical Monitor); Bodenheimer, P. H.
2003-01-01
Bodenheimer and Burkert extended earlier calculations of cloud core models to study collapse and fragmentation. The initial condition for an SPH collapse calculation is the density distribution of a Bonnor-Ebert sphere, with near balance between turbulent plus thermal energy and gravitational energy. The main parameter is the turbulent Mach number. For each Mach number several runs are made, each with a different random realization of the initial turbulent velocity field. The turbulence decays on a dynamical time scale, leading the cloud into collapse. The collapse proceeds isothermally until the density has increased to about 10(exp 13) g cm(exp -3). Then heating is included in the dense regions. The nature of the fragmentation is investigated. About 15 different runs have been performed with Mach numbers ranging from 0.3 to 3.5 (the typical value observed in molecular cloud cores is 0.7). The results show a definite trend of increasing multiplicity with increasing Mach number (M), with the number of fragments approximately proportional to (1 + M). In general, this result agrees with that of Fisher, Klein, and McKee who published three cases with an AMR grid code. However our results show that there is a large spread about this curve. For example, for M=0.3 one case resulted in no fragmentation while a second produced three fragments. Thus it is not only the value of M but also the details of the superposition of the various velocity modes that play a critical role in the formation of binaries. Also, the simulations produce a wide range of separations (10-1000 AU) for the multiple systems, in rough agreement with observations. These results are discussed in two conference proceedings.
Mendez-Arroyo, Jose; d'Aquino, Andrea I; Chinen, Alyssa B; Manraj, Yashin D; Mirkin, Chad A
2017-02-01
An allosterically regulated, asymmetric receptor featuring a binding cavity large enough to accommodate three-dimensional pharmaceutical guest molecules as opposed to planar, rigid aromatics, was synthesized via the Weak-Link Approach. This architecture is capable of switching between an expanded, flexible "open" configuration and a collapsed, rigid "closed" one. The structure of the molecular receptor can be completely modulated in situ through the use of simple ionic effectors, which reversibly control the coordination state of the Pt(II) metal hinges to open and close the molecular receptor. The substantial change in binding cavity size and electrostatic charge between the two configurations is used to explore the capture and release of two guest molecules, dextromethorphan and β-estradiol, which are widely found as pollutants in groundwater.
NASA Astrophysics Data System (ADS)
Füglistaler, A.; Pfenniger, D.
2016-06-01
Context. Molecular clouds typically consist of 3/4 H2, 1/4 He and traces of heavier elements. In an earlier work we showed that at very low temperatures and high densities, H2 can be in a phase transition leading to the formation of ice clumps as large as comets or even planets. However, He has very different chemical properties and no phase transition is expected before H2 in dense interstellar medium conditions. The gravitational stability of fluid mixtures has been studied before, but these studies did not include a phase transition. Aims: We study the gravitational stability of binary fluid mixtures with special emphasis on when one component is in a phase transition. The numerical results are aimed at applications in molecular cloud conditions, but the theoretical results are more general. Methods: First, we study the gravitational stability of van der Waals fluid mixtures using linearized analysis and examine virial equilibrium conditions using the Lennard-Jones intermolecular potential. Then, combining the Lennard-Jones and gravitational potentials, the non-linear dynamics of fluid mixtures are studied via computer simulations using the molecular dynamics code LAMMPS. Results: Along with the classical, ideal-gas Jeans instability criterion, a fluid mixture is always gravitationally unstable if it is in a phase transition because compression does not increase pressure. However, the condensed phase fraction increases. In unstable situations the species can separate: in some conditions He precipitates faster than H2, while in other conditions the converse occurs. Also, for an initial gas phase collapse the geometry is essential. Contrary to spherical or filamentary collapses, sheet-like collapses starting below 15 K easily reach H2 condensation conditions because then they are fastest and both the increase of heating and opacity are limited. Conclusions: Depending on density, temperature and mass, either rocky H2 planetoids, or gaseous He planetoids form. H2 planetoids are favoured by high density, low temperature and low mass, while He planetoids need more mass and can form at temperature well above the critical value.
Collapse and revival of the Fermi sea in a Bose-Fermi mixture
NASA Astrophysics Data System (ADS)
Iyer, Deepak; Will, Sebastian; Rigol, Marcos
2014-05-01
The collapse and revival of quantum fields is one of the most pristine forms of coherent quantum dynamics far from equilibrium. Until now, it has only been observed in the dynamical evolution of bosonic systems. We report on the first observation of the boson mediated collapse and revival of the Fermi sea in a Bose-Fermi mixture. Specifically, we present a simple model which captures the experimental observations shown in the talk titled Observation of Collapse and Revival Dynamics in the Fermionic Component of a Lattice Bose-Fermi Mixture by Sebastian Will. Our theoretical analysis shows why the results are robust to the presence of harmonic traps during the loading or the time evolution phase. It also makes apparent that the fermionic dynamics is independent of whether the bosonic component consists of a coherent state or localized Fock states with random occupation numbers. Because of the robustness of the experimental results, we argue that this kind of collapse and revival experiment can be used to accurately characterize interactions between bosons and fermions in a lattice.
NASA Astrophysics Data System (ADS)
Tremblin, P.; Minier, V.; Schneider, N.; Audit, E.; Hill, T.; Didelon, P.; Peretto, N.; Arzoumanian, D.; Motte, F.; Zavagno, A.; Bontemps, S.; Anderson, L. D.; André, Ph.; Bernard, J. P.; Csengeri, T.; Di Francesco, J.; Elia, D.; Hennemann, M.; Könyves, V.; Marston, A. P.; Nguyen Luong, Q.; Rivera-Ingraham, A.; Roussel, H.; Sousbie, T.; Spinoglio, L.; White, G. J.; Williams, J.
2013-12-01
Context. Herschel far-infrared imaging observations have revealed the density structure of the interface between H ii regions and molecular clouds in great detail. In particular, pillars and globules are present in many high-mass star-forming regions, such as the Eagle nebula (M 16) and the Rosette molecular cloud, and understanding their origin will help characterize triggered star formation. Aims: The formation mechanisms of these structures are still being debated. The initial morphology of the molecular cloud and its turbulent state are key parameters since they generate deformations and curvatures of the shell during the expansion of the H ii region. Recent numerical simulations have shown how pillars can arise from the collapse of the shell in on itself and how globules can be formed from the interplay of the turbulent molecular cloud and the ionization from massive stars. The goal here is to test this scenario through recent observations of two massive star-forming regions, M 16 and the Rosette molecular cloud. Methods: First, the column density structure of the interface between molecular clouds and associated H ii regions was characterized using column density maps obtained from far-infrared imaging of the Herschel HOBYS key programme. Then, the DisPerSe algorithm was used on these maps to detect the compressed layers around the ionized gas and pillars in different evolutionary states. Column density profiles were constructed. Finally, their velocity structure was investigated using CO data, and all observational signatures were tested against some distinct diagnostics established from simulations. Results: The column density profiles have revealed the importance of compression at the edge of the ionized gas. The velocity properties of the structures, i.e. pillars and globules, are very close to what we predict from the numerical simulations. We have identified a good candidate of a nascent pillar in the Rosette molecular cloud that presents the velocity pattern of the shell collapsing on itself, induced by a high local curvature. Globules have a bulk velocity dispersion that indicates the importance of the initial turbulence in their formation, as proposed from numerical simulations. Altogether, this study re-enforces the picture of pillar formation by shell collapse and globule formation by the ionization of highly turbulent clouds. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
A multispectral view of the periodic events in η Carinae†‡§¶
NASA Astrophysics Data System (ADS)
Damineli, A.; Hillier, D. J.; Corcoran, M. F.; Stahl, O.; Groh, J. H.; Arias, J.; Teodoro, M.; Morrell, N.; Gamen, R.; Gonzalez, F.; Leister, N. V.; Levato, H.; Levenhagen, R. S.; Grosso, M.; Colombo, J. F. Albacete; Wallerstein, G.
2008-06-01
A full description of the 5.5-yr low excitation events in η Carinae is presented. We show that they are not as simple and brief as previously thought, but a combination of two components. The first, the slow variation component, is revealed by slow changes in the ionization level of circumstellar matter across the whole cycle and is caused by gradual changes in the wind-wind collision shock-cone orientation, angular opening and gaseous content. The second, the collapse component, is restricted to around the minimum, and is due to a temporary global collapse of the wind-wind collision shock. High-energy photons (E > 16 eV) from the companion star are strongly shielded, leaving the Weigelt objects at low-ionization state for more than six months. High-energy phenomena are sensitive only to the collapse, low energy only to the slow variation and intermediate energies to both components. Simple eclipses and mechanisms effective only near periastron (e.g. shell ejection or accretion on to the secondary star) cannot account for the whole 5.5-yr cycle. We find anti-correlated changes in the intensity and the radial velocity of P Cygni absorption profiles in FeII λ6455 and HeI λ7065 lines, indicating that the former is associated to the primary and the latter to the secondary star. We present a set of light curves representative of the whole spectrum, useful for monitoring the next event (2009 January 11). Based partially on data collected at the OPD-LNA/MCT. Based partially on data collected at ESO telescopes. ‡ Based partially on data collected at Casleo Observatory. § Based partially on data collected at Magellan Telescopes. ¶ Based partially on data collected at CTIO. ∥ E-mail: damineli@astro.iag.usp.br
NASA Astrophysics Data System (ADS)
Shinde, R. B.; Mali, K. D.
2018-04-01
Collapsible impact energy absorbers play an important role of protecting automotive components from damage during collision. Collision of the two objects results into the damage to one or both of them. Damage may be in the form of crack, fracture and scratch. Designers must know about how the material and object behave under impact event. Owing to above reasons different types of collapsible impact energy absorbers are developed. In the past different studies were undertaken to improve such collapsible impact energy absorbers. This article highlights such studies on common shapes of collapsible impact energy absorber and their impact behaviour under the axial compression. The literature based on studies and analyses of effects of different geometrical parameters on the crushing behaviour of impact energy absorbers is presented in detail. The energy absorber can be of different shape such as circular tube, square tube, and frustums of cone and pyramids. The crushing behaviour of energy absorbers includes studies on crushing mechanics, modes of deformation, energy absorbing capacity, effect on peak and mean crushing load. In this work efforts are made to cover major outcomes from past studies on such behavioural parameters. Even though the major literature reviewed is related to metallic energy absorbers, emphasis is also laid on covering literature on use of composite tube, fiber metal lamination (FML) member, honeycomb plate and functionally graded thickness (FGT) tube as a collapsible impact energy absorber.
Nanomechanics of Carbon and CxByNz Nanotubes: Via a Quantum Molecular Dynamics Method
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Menon, M.; Cho, Kyeong Jae; Saini, Subhash (Technical Monitor)
1999-01-01
Nanomechanics of single-wall C, BN and BC$_3$ and B doped C nanotubes under axial compression and tension are investigated through a generalized tight-binding molecular dynamics (GTBMD) and {\\it ab-initio} electronic structure methods. The dynamic strength of BN, BC$_3$ and B doped C nanotubes for small axial strain are comparable to each other. The main difference is in the critical strain at which structural collapse occurs. For example, even a shallow doping with B lowers the value of critical strain for C nanotubes. The critical strain for BN nanotube is found to be more than that for the similar C nanotube. Once the structural collapse starts to occur we find that carbon nanotubes irreversibly go into plastic deformation regime via the formation of tetrahedral (four-fold coordinated) bonds at the location of sharp pinches or kinks. This finding is considerably different from the classical MD (molecular dynamics) simulation results known so far. The energetics and electronic densities of states of the collapsed structures, investigated with {\\it ab-initio) methods, will also be discussed.
Fast Molecular Cloud Destruction Requires Fast Cloud Formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mac Low, Mordecai-Mark; Burkert, Andreas; Ibáñez-Mejía, Juan C., E-mail: mordecai@amnh.org, E-mail: burkert@usm.lmu.de, E-mail: ibanez@ph1.uni-koeln.de
A large fraction of the gas in the Galaxy is cold, dense, and molecular. If all this gas collapsed under the influence of gravity and formed stars in a local free-fall time, the star formation rate in the Galaxy would exceed that observed by more than an order of magnitude. Other star-forming galaxies behave similarly. Yet, observations and simulations both suggest that the molecular gas is indeed gravitationally collapsing, albeit hierarchically. Prompt stellar feedback offers a potential solution to the low observed star formation rate if it quickly disrupts star-forming clouds during gravitational collapse. However, this requires that molecular cloudsmore » must be short-lived objects, raising the question of how so much gas can be observed in the molecular phase. This can occur only if molecular clouds form as quickly as they are destroyed, maintaining a global equilibrium fraction of dense gas. We therefore examine cloud formation timescales. We first demonstrate that supernova and superbubble sweeping cannot produce dense gas at the rate required to match the cloud destruction rate. On the other hand, Toomre gravitational instability can reach the required production rate. We thus argue that, although dense, star-forming gas may last only around a single global free-fall time; the dense gas in star-forming galaxies can globally exist in a state of dynamic equilibrium between formation by gravitational instability and disruption by stellar feedback. At redshift z ≳ 2, the Toomre instability timescale decreases, resulting in a prediction of higher molecular gas fractions at early times, in agreement with the observations.« less
Toward intradermal vaccination: preparation of powder formulations by collapse freeze-drying.
Etzl, Elsa E; Winter, Gerhard; Engert, Julia
2014-03-01
Intradermal powder immunization is an emerging technique in vaccine delivery. The purpose of this study was to generate powder particles for intradermal injection by freeze-drying and subsequent cryo-milling. Two different freeze-drying protocols were compared, a moderate freeze-drying cycle and an aggressive freeze-drying cycle, which induced a controlled collapse of the sugar matrix. Ovalbumin served as model antigen. The influence of collapse drying and cryo-milling on particle morphology and protein stability was investigated. Cryo-milling generated irregularly shaped particles of size 20-70 µm. The recovery of soluble monomer of ovalbumin was not changed during freeze-drying and after cryo-milling, or after 12 months of storage at 2-8 °C. A slight increase in higher molecular weight aggregates was found in formulations containing the polymer dextran after 12 months of storage at 50 °C. Light obscuration measurements showed an increase in cumulative particle counts after cryo-milling that did not further increase during storage at 2-8 °C for 12 months. The applicability of the cryo-milling process to other therapeutic proteins was shown using recombinant human granulocyte-colony stimulating factor. Collapse freeze-drying and subsequent cryo-milling allows the generation of particles suitable for intradermal powder injection.
The Hall effect in star formation
NASA Astrophysics Data System (ADS)
Braiding, C. R.; Wardle, M.
2012-05-01
Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well studied. We present a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, and similarity solutions that demonstrate the profound influence of the Hall effect on the dynamics of collapse. The solutions show that the size and sign of the Hall parameter can change the size of the protostellar disc by up to an order of magnitude and the protostellar accretion rate by 50 per cent when the ratio of the Hall to ambipolar diffusivities is varied between -0.5 ≤ηH/ηA≤ 0.2. These changes depend upon the orientation of the magnetic field with respect to the axis of rotation and create a preferred handedness to the solutions that could be observed in protostellar cores using next-generation instruments such as ALMA. Hall diffusion also determines the strength and position of the shocks that bound the pseudo and rotationally supported discs, and can introduce subshocks that further slow accretion on to the protostar. In cores that are not initially rotating (not examined here), Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field merits further exploration in numerical simulations of star formation.
CHEMICAL AND PHYSICAL CHARACTERIZATION OF COLLAPSING LOW-MASS PRESTELLAR DENSE CORES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hincelin, U.; Commerçon, B.; Wakelam, V.
The first hydrostatic core, also called the first Larson core, is one of the first steps in low-mass star formation as predicted by theory. With recent and future high-performance telescopes, the details of these first phases are becoming accessible, and observations may confirm theory and even present new challenges for theoreticians. In this context, from a theoretical point of view, we study the chemical and physical evolution of the collapse of prestellar cores until the formation of the first Larson core, in order to better characterize this early phase in the star formation process. We couple a state-of-the-art hydrodynamical modelmore » with full gas-grain chemistry, using different assumptions for the magnetic field strength and orientation. We extract the different components of each collapsing core (i.e., the central core, the outflow, the disk, the pseudodisk, and the envelope) to highlight their specific physical and chemical characteristics. Each component often presents a specific physical history, as well as a specific chemical evolution. From some species, the components can clearly be differentiated. The different core models can also be chemically differentiated. Our simulation suggests that some chemical species act as tracers of the different components of a collapsing prestellar dense core, and as tracers of the magnetic field characteristics of the core. From this result, we pinpoint promising key chemical species to be observed.« less
NASA Astrophysics Data System (ADS)
Lee, Yueh-Ning; Hennebelle, Patrick
2016-06-01
Context. Most stars are born in the gaseous protocluster environment where the gas is reprocessed after the global collapse from the diffuse molecular cloud. The knowledge of this intermediate step gives more accurate constraints on star formation characteristics. Aims: We demonstrate that a virialized globally supported structure, in which star formation happens, is formed out of a collapsing molecular cloud, and we derive a mapping from the parent cloud parameters to the protocluster to predict its properties with a view to confront analytical calculations with observations and simulations. Methods: We decomposed the virial theorem into two dimensions to account for the rotation and the flattened geometry. Equilibrium was found by balancing rotation, turbulence, and self-gravity, while turbulence was maintained through accretion driving and it dissipates in one crossing time. We estimated the angular momentum and the accretion rate of the protocluster from the parent cloud properties. Results: The two-dimensional virial model predicts the size and velocity dispersion given the mass of the protocluster and that of the parent cloud. The gaseous protoclusters lie on a sequence of equilibrium with the trend R ~ M0.5 with limited variations, depending on the evolutionary stage, parent cloud, and parameters that are not well known, such as turbulence driving efficiency by accretion and turbulence anisotropy. The model reproduces observations and simulation results successfully. Conclusions: The properties of protoclusters follow universal relations and they can be derived from that of the parent cloud. The gaseous protocluster is an important primary stage of stellar cluster formation, and should be taken into account when studying star formation. Using simple estimates to infer the peak position of the core mass function (CMF) we find a weak dependence on the cluster mass, suggesting that the physical conditions inside protoclusters may contribute to set a CMF, and by extension an initial mass function (IMF), that appears to be independent of the environment.
NASA Astrophysics Data System (ADS)
Rodriguez, Mauro; Johnsen, Eric
2015-11-01
Understanding the dynamics of cavitation bubbles and the shock waves emitted by their collapse in and near viscoelastic media is important for various naval and medical applications, particularly in the context of cavitation damage. Two examples are histotripsy, which utilizes this phenomenon for the ablation of pathogenic tissue, and erosion to elastomeric coatings on propellers. Although not fully understood, the damage mechanism combines the effect of the incoming pulses and cavitation produced by the high tension. Additionally, the influence of the shock on the material and the response of the material to the shock are not well known. A novel numerical approach for simulating shock and acoustic wave propagation in Zener-like viscoelastic media is proposed. This Eulerian method is based on a high-order accurate weighted essentially non-oscillatory scheme for shock capturing and introduces evolution equations for the components of the shear stress tensor. Validation studies between high-fidelity two-dimensional simulations of the bubble collapse dynamics for various experimental configurations (i.e. the viscous or viscoelastic material surrounding the bubble and the nearby compliant object are varied) will be presented. This work is supported by ONR grant N00014-12-1-0751.
Modeling Core Collapse Supernovae
NASA Astrophysics Data System (ADS)
Mezzacappa, Anthony
2017-01-01
Core collapse supernovae, or the death throes of massive stars, are general relativistic, neutrino-magneto-hydrodynamic events. The core collapse supernova mechanism is still not in hand, though key components have been illuminated, and the potential for multiple mechanisms for different progenitors exists. Core collapse supernovae are the single most important source of elements in the Universe, and serve other critical roles in galactic chemical and thermal evolution, the birth of neutron stars, pulsars, and stellar mass black holes, the production of a subclass of gamma-ray bursts, and as potential cosmic laboratories for fundamental nuclear and particle physics. Given this, the so called ``supernova problem'' is one of the most important unsolved problems in astrophysics. It has been fifty years since the first numerical simulations of core collapse supernovae were performed. Progress in the past decade, and especially within the past five years, has been exponential, yet much work remains. Spherically symmetric simulations over nearly four decades laid the foundation for this progress. Two-dimensional modeling that assumes axial symmetry is maturing. And three-dimensional modeling, while in its infancy, has begun in earnest. I will present some of the recent work from the ``Oak Ridge'' group, and will discuss this work in the context of the broader work by other researchers in the field. I will then point to future requirements and challenges. Connections with other experimental, observational, and theoretical efforts will be discussed, as well.
Explosive X-point collapse in relativistic magnetically dominated plasma
NASA Astrophysics Data System (ADS)
Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver
2017-12-01
The extreme properties of the gamma-ray flares in the Crab nebula present a clear challenge to our ideas on the nature of particle acceleration in relativistic astrophysical plasma. It seems highly unlikely that standard mechanisms of stochastic type are at work here and hence the attention of theorists has switched to linear acceleration in magnetic reconnection events. In this series of papers, we attempt to develop a theory of explosive magnetic reconnection in highly magnetized relativistic plasma which can explain the extreme parameters of the Crab flares. In the first paper, we focus on the properties of the X-point collapse. Using analytical and numerical methods (fluid and particle-in-cell simulations) we extend Syrovatsky's classical model of such collapse to the relativistic regime. We find that the collapse can lead to the reconnection rate approaching the speed of light on macroscopic scales. During the collapse, the plasma particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For sufficiently high magnetizations and vanishing guide field, the non-thermal particle spectrum consists of two components: a low-energy population with soft spectrum that dominates the number census; and a high-energy population with hard spectrum that possesses all the properties needed to explain the Crab flares.
The determination of temperature stability of silver nanotubes by the molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Filatov, O.; Soldatenko, S.; Soldatenko, O.
2018-04-01
Molecular dynamics simulation using the embedded-atom method is applied to study thermal stability of silver nanotubes and its coefficient of linear thermal expansion. The correspondence of face centered cubic structure potential for this task is tested. Three types of nanotubes are modelled: scrolled from graphene-like plane, scrolled from plane with cubic structure and cut from cylinder. It is established that only the last two of them are stable. The last one describes in details. There is critical temperature when free ends of the nanotube close but the interior surface retains. At higher temperatures, the interior surface collapses and the nanotube is unstable.
Bangladesh: currently the worst, but possibly the future's best.
Brown, Garrett
2015-02-01
Garment workers in Bangladesh producing clothing for international brands have experienced repeated factory fires and building collapses in the last 10 years, resulting in more than 1,600 deaths and hundreds of disabling injuries. After the Tazreen Fashion fire in December 2012 and the Rana Plaza building collapse in April 2013, more than 190 international clothing brands and retailers signed an "Accord on Fire and Building Safety" with two international union federations. Full implementation of the provisions of the Accord would change "business as usual" in Bangladesh's garment industry and set a positive example for other countries and other industries with global supply chains. The components, challenges, and controversies of the Accord are detailed in the article. © 2015 SAGE Publications.
NASA Astrophysics Data System (ADS)
Nagakura, Hiroki; Iwakami, Wakana; Furusawa, Shun; Okawa, Hirotada; Harada, Akira; Sumiyoshi, Kohsuke; Yamada, Shoichi; Matsufuru, Hideo; Imakura, Akira
2018-02-01
We present the first results of our spatially axisymmetric core-collapse supernova simulations with full Boltzmann neutrino transport, which amount to a time-dependent five-dimensional (two in space and three in momentum space) problem. Special relativistic effects are fully taken into account with a two-energy-grid technique. We performed two simulations for a progenitor of 11.2 M ⊙, employing different nuclear equations of state (EOSs): Lattimer and Swesty’s EOS with the incompressibility of K = 220 MeV (LS EOS) and Furusawa’s EOS based on the relativistic mean field theory with the TM1 parameter set (FS EOS). In the LS EOS, the shock wave reaches ∼700 km at 300 ms after bounce and is still expanding, whereas in the FS EOS it stalled at ∼200 km and has started to recede by the same time. This seems to be due to more vigorous turbulent motions in the former during the entire postbounce phase, which leads to higher neutrino-heating efficiency in the neutrino-driven convection. We also look into the neutrino distributions in momentum space, which is the advantage of the Boltzmann transport over other approximate methods. We find nonaxisymmetric angular distributions with respect to the local radial direction, which also generate off-diagonal components of the Eddington tensor. We find that the rθ component reaches ∼10% of the dominant rr component and, more importantly, it dictates the evolution of lateral neutrino fluxes, dominating over the θθ component, in the semitransparent region. These data will be useful to further test and possibly improve the prescriptions used in the approximate methods.
Shock response of nanoporous Cu--A molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Zhao, Fengpeng
2015-06-01
Shock response of porous materials can be of crucial significance for shock physics and bears many practical applications in materials synthesis and engineering. Molecular dynamics simulations are carried out to investigate shock response of nanoporous metal materials, including elastic-plastic deformation, Hugoniot states, shock-induced melting, partial or complete void collapse, hotspot formation, nanojetting, and vaporization. A model nanoporous Cu with cylindrical voids and a high porosity under shocking is established to investigate such physical properties as velocity, temperature, density, stress and von Mises stress at different stages of compression and release. The elastic-plastic and overtaking shocks are observed at different shock strengths. A modified power-law P- α model is proposed to describe the Hugoniot states. The Grüneisen equation of state is validated. Shock-induced melting shows no clear signs of bulk premelting or superheating. Void collapse via plastic flow nucleated from voids, and the exact processes are shock strength dependent. With increasing shock strengths, void collapse transits from the ``geometrical'' mode (collapse of a void is dominated by crystallography and void geometry and can be different from that of one another) to ``hydrodynamic'' mode (collapse of a void is similar to one another). The collapse may be achieved predominantly by plastic flows along the {111} slip planes, by way of alternating compression and tension zones, by means of transverse flows, via forward and transverse flows, or through forward nano-jetting. The internal jetting induces pronounced shock front roughening, leading to internal hotspot formation and sizable high speed jets on atomically flat free surfaces. P. O. Box 919-401, Mianyang, 621900, Sichuan, PRC.
NASA Astrophysics Data System (ADS)
Ichinose, G. A.; Ford, S. R.; Chiang, A.; Walter, W. R.; Dreger, D. S.
2017-12-01
The Democratic People's Republic of Korea (DPRK) conducted its sixth announced nuclear test on 3 September 2017, 03:30:00 with a magnitude of 6.1 (IDC mb). At 03:38:27, there was an aftershock of magnitude 4.1 (IDC mb). Moment tensor analysis using regional long-period surface waves was performed to identify the source type of these two events. The first event was an explosive isotropic source with total seismic moment magnitude of Mw 5.34 (Mo=1.16e+17 Nm) with strong 66% isotropic component (eigenvalues: 1.30e+17, 0.75e+17, 0.44e+17 Nm). The second event was a closing crack source with an Mw 4.64 (Mo=1.04e+17 Nm) also with a strong 68% isotropic component (eigenvalues: -4.82e+16, -5.33e+16, -10.93e+16 Nm). We used the same stations within 360-1140 km for inversion of both events (stations: IC.MDJ, IC.BJT, IC.HIA) and predict the long-period displacements at KG.TJN and IU.INCN. We used a 1-D velocity model appropriate for active tectonic regions and band pass the data between periods of 20 and 100 sec. Waveform time-shifts were incorporated from previous event-station pairs to account for velocity model inadequacies. Both DPRK events source-types plot within the population of other NNSS nuclear and western US collapse events (Ford et al., 2009) on the fundamental lune (Tape and Tape, 2012). The DPRK collapse event is similar to the hole collapse 0h21m26s after the 5 September 1982 Atrisco shot at NNSS (Springer et al., 2002; DOE NV-209). The DPRK collapse could be explained by a complete or partial apical cavity collapse. The estimated collapse volume is 122000-277000 m3 and crack radius is 30-40 m given the seismic moment, elastic moduli for granite and a closing crack model (Mueller, 2001). In comparison to Denny and Johnson (1994) cavity-yield scaling in granite, the cavity radius ranges from 40 to 60 m given an explosion yield range of 140-400 kT. This collapse event is noteworthy because large aftershocks are rare in nuclear testing and even more rare are collapses in granite. Analysis of surface wave relative amplitude and phase anomalies between the recent and previous DPRK events indicates no anomalies in the ratios with the 20160106 and 20160909 tests beneath the Mt. Mantap and large anomalies with ratios between the 2009 and 2013 tests beneath the mountain slope. Prepared by LLNL under Contract DE-AC52-07NA27344.
Magnetorotational Mechanism of the Explosion of Core-Collapse Supernovae
NASA Astrophysics Data System (ADS)
Bisnovatyi-Kogan, G. S.; Moiseenko, S. G.; Ardelyan, N. V.
2018-03-01
The idea of the magnetorotational explosion mechanism is that the energy of rotation of the neutron star formed in the course of a collapse is transformed into the energy of an expanding shock wave by means of a magnetic field. In the two-dimensional case, the time of this transformation depends weakly on the initial strength of the poloidal magnetic field because of the development of a magnetorotational instability. Differential rotation leads to the twisting and growth of the toroidal magnetic-field component, which becomes much stronger than the poloidal component. As a result, the development of the instability and an exponential growth of all field components occur. The explosion topology depends on the structure of the magnetic field. In the case where the initial configuration of the magnetic field is close to a dipole configuration, the ejection of matter has a jet character, whereas, in the case of a quadrupole configuration, there arises an equatorial ejection. In either case, the energy release is sufficient for explaining the observed average energy of supernova explosion. Neutrinos are emitted as the collapse and the formation of a rapidly rotating neutron star proceeds. In addition, neutrino radiation arises in the process of magnetorotational explosion owing to additional rotational-energy losses. If the mass of a newborn neutron star exceeds the mass limit for a nonrotating neutron star, then subsequent gradual energy losses may later lead to the formation of a black hole. In that case, the energy carried away by a repeated flash of neutrino radiation increases substantially. In order to explain an interval of 4.5 hours between the two observed neutrino signals from SN 1987A, it is necessary to assume a weakening of the magnetorotional instability and a small initial magnetic field (109-1010 G) in the newly formed rotating neutron star. The existence of a black hole in the SN 1987A remnant could explain the absence of any visible pointlike source at the center of the explosion.
Molecular analysis of mixed endometrial carcinomas shows clonality in most cases
Hoang, Lien N.; Almadani, Noorah; Li, Xiaodong; Soslow, Robert A; Gilks, C. Blake; Lee, Cheng-Han
2016-01-01
Mixed endometrial carcinoma refers to a tumor that is comprised of two or more distinct histotypes. We studied 18 mixed-type endometrial carcinomas - 11 mixed serous and low-grade endometrioid carcinomas (SC/EC), 5 mixed clear cell and low-grade endometrioid carcinomas (CCC/EC), and 2 mixed clear cell and serous carcinoma (CCC/SC), using targeted next generation sequencing and immunohistochemistry to compare the molecular profiles of the different histotypes present in each case. In 16 of 18 cases there was molecular evidence that both components shared a clonal origin. Eight cases (6 EC/SC, 1 EC/CCC and 1 SC/CCC) showed a serous carcinoma molecular profile that was the same in both components. Five cases (3 CCC/EC and 2 SC/EC) showed a shared endometrioid molecular profile and identical mismatch repair protein (MMR) deficiency in both components. A single SC/EC case harbored the same POLE exonuclease domain mutation in both components. One SC/CCC and one EC/CCC case showed both shared and unique molecular features in the two histotype components, suggesting early molecular divergence from a common clonal origin. In two cases, there were no shared molecular features and these appear to be biologically unrelated synchronous tumors. Overall, these results show that the different histologic components in mixed endometrial carcinomas typically share the same molecular aberrations. Mixed endometrial carcinomas most commonly occur through morphological mimicry, whereby tumors with serous-type molecular profile show morphological features of endometrioid or clear cell carcinoma, or through underlying deficiency in DNA nucleotide repair, with resulting rapid accrual of mutations and intratumoral phenotypic heterogeneity. Less commonly, mixed endometrial carcinomas are the result of early molecular divergence from a common progenitor clone or are synchronous biologically unrelated tumors (collision tumors). PMID:26492180
NASA Technical Reports Server (NTRS)
Thejappa, G.; MacDowall, R. J.; Bergamo, M.
2012-01-01
We present the high time resolution observations of one of the Langmuir wave packets obtained in the source region of a solar type III radio burst. This wave packet satisfies the threshold condition of the supersonic modulational instability, as well as the criterion of a collapsing Langmuir soliton, i.e., the spatial scale derived from its peak intensity is less than that derived from its short time scale. The spectrum of t his wave packet contains an intense spectral peak at local electron plasma frequency, f(sub pe) and relatively weaker peaks at 2f(sub pe) and 3f(sub pe). We apply the wavelet based bispectral analysis technique on this wave packet and compute the bicoherence between its spectral components. It is found that the bicoherence exhibits two peaks at (approximately f(sub pe), approximately f(sub pe)) and (approximately f(sub pe) approximately 2f(sub pe)), which strongly suggest that the spectral peak at 2f(sub pe) probably corresponds to the second harmonic radio emission, generated as a result of the merging of antiparallel propagating Langmuir waves trapped in the collapsing Langmuir soliton, and, the spectral peak at 3f(sub pe) probably corresponds to the third harmonic radio emission, generated as a result of merging of a trapped Langmuir wave and a second harmonic electromagnetic wave.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashlinsky, A., E-mail: Alexander.Kashlinsky@nasa.gov
LIGO's discovery of a gravitational wave from two merging black holes (BHs) of similar masses rekindled suggestions that primordial BHs (PBHs) make up the dark matter (DM). If so, PBHs would add a Poissonian isocurvature density fluctuation component to the inflation-produced adiabatic density fluctuations. For LIGO's BH parameters, this extra component would dominate the small-scale power responsible for collapse of early DM halos at z ≳ 10, where first luminous sources formed. We quantify the resultant increase in high- z abundances of collapsed halos that are suitable for producing the first generation of stars and luminous sources. The significantly increasedmore » abundance of the early halos would naturally explain the observed source-subtracted near-IR cosmic infrared background (CIB) fluctuations, which cannot be accounted for by known galaxy populations. For LIGO's BH parameters, this increase is such that the observed CIB fluctuation levels at 2–5 μ m can be produced if only a tiny fraction of baryons in the collapsed DM halos forms luminous sources. Gas accretion onto these PBHs in collapsed halos, where first stars should also form, would straightforwardly account for the observed high coherence between the CIB and unresolved cosmic X-ray background in soft X-rays. We discuss modifications possibly required in the processes of first star formation if LIGO-type BHs indeed make up the bulk or all of DM. The arguments are valid only if the PBHs make up all, or at least most, of DM, but at the same time the mechanism appears inevitable if DM is made of PBHs.« less
Early stages of collapsing pentacene crystal by Au
NASA Astrophysics Data System (ADS)
Ihm, Kyuwook; Chung, Sukmin; Kang, Tai-Hee; Cheong, Sang-Wook
2008-10-01
The characteristic feature of metal contacts with gold on organics is deterioration of the organic crystals during the contact formation. The unveiled key challenge is to probe dynamic details of the microscopic evolution of the organic crystal when the atomic Au is introduced. Here, we report how the collapse of the pentacene crystal is initiated even by a few Au atoms. Our results indicate that the gentle decoupling of intra and intermolecular π-π interactions causes the localization of the lowest unoccupied molecular orbital as well as the removal of cohesive forces between molecules, leading to the subsequent crystal collapse.
Trapping virtual pores by crystal retro-engineering
NASA Astrophysics Data System (ADS)
Little, Marc A.; Briggs, Michael E.; Jones, James T. A.; Schmidtmann, Marc; Hasell, Tom; Chong, Samantha Y.; Jelfs, Kim E.; Chen, Linjiang; Cooper, Andrew I.
2015-02-01
Stable guest-free porous molecular crystals are uncommon. By contrast, organic molecular crystals with guest-occupied cavities are frequently observed, but these cavities tend to be unstable and collapse on removal of the guests—this feature has been referred to as ‘virtual porosity’. Here, we show how we have trapped the virtual porosity in an unstable low-density organic molecular crystal by introducing a second molecule that matches the size and shape of the unstable voids. We call this strategy ‘retro-engineering’ because it parallels organic retrosynthetic analysis, and it allows the metastable two-dimensional hexagonal pore structure in an organic solvate to be trapped in a binary cocrystal. Unlike the crystal with virtual porosity, the cocrystal material remains single crystalline and porous after removal of guests by heating.
How hives collapse: Allee effects, ecological resilience, and the honey bee
USDA-ARS?s Scientific Manuscript database
We construct a mathematical model to quantify the loss of resilience in collapsing honey bee colonies due to the presence of a strong Allee effect. In the model, recruitment and mortality of adult bees have substantial social components, with recruitment enhanced and mortality reduced by additional ...
Spin Crossover in Solid and Liquid (Mg,Fe)O at Extreme Conditions
NASA Astrophysics Data System (ADS)
Stixrude, L. P.; Holmstrom, E.
2016-12-01
Ferropericlase, (Mg,Fe)O, is a major constituent of the Earth's lowermantle (24-136 GPa). Understanding the properties of this component is importantnot only in the solid state, but also in the molten state, as theplanet almost certainly hosted an extensive magma ocean initiallyWith increasing pressure, the Fe ions in the material begin to collapse from a magnetic to a nonmagnetic spin state. This crossover affects thermodynamic, transport, and electrical properties.Using first-principles molecular dynamics simulations,thermodynamic integration, and adiabatic switching, we present a phasediagram of the spin crossover In both solid and liquid, we find a broad pressure range of coexisting magnetic and non-magnetic ions due to the favorable enthalpy of mixing of the two. In the solid increasingtemperature favors the high spin state, while in the liquid the oppositeoccurs, due to the higher electronic entropy of the low spin state. Becausethe physics of the crossover differ in solid and liquid, melting produces a large change in spin state that may affect the buoyancy of crystals freezing from the magma ocean in the earliest Earth.
Turbulence in core-collapse supernovae
NASA Astrophysics Data System (ADS)
Radice, David; Abdikamalov, Ernazar; Ott, Christian D.; Mösta, Philipp; Couch, Sean M.; Roberts, Luke F.
2018-05-01
Multidimensional simulations show that non-radial, turbulent, fluid motion is a fundamental component of the core-collapse supernova explosion mechanism. Neutrino-driven convection, the standing accretion shock instability, and relic-perturbations from advanced nuclear burning stages can all impact the outcome of core collapse in a qualitative and quantitative way. Here, we review the current understanding of these phenomena and their role in the explosion of massive stars. We also discuss the role of protoneutron star convection and of magnetic fields in the context of the delayed neutrino mechanism.
Molecular dynamics simulations of void defects in the energetic material HMX.
Duan, Xiao Hui; Li, Wen Peng; Pei, Chong Hua; Zhou, Xiao Qing
2013-09-01
A molecular dynamics (MD) simulation was carried out to characterize the dynamic evolution of void defects in crystalline octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX). Different models were constructed with the same concentration of vacancies (10 %) to discuss the size effects of void. Energetic ground state properties were determined by annealing simulations. The void formation energy per molecule removed was found to be 55-63 kcal/mol(-1), and the average binding energy per molecule was between 32 and 34 kcal/mol(-1) according to the change in void size. Voids with larger size had lower formation energy. Local binding energies for molecules directly on the void surface decreased greatly compared to those in defect-free lattice, and then gradually increased until the distance away from the void surface was around 10 Å. Analysis of 1 ns MD simulations revealed that the larger the void size, the easier is void collapse. Mean square displacements (MSDs) showed that HMX molecules that had collapsed into void present liquid structure characteristics. Four unique low-energy conformers were found for HMX molecules in void: two whose conformational geometries corresponded closely to those found in HMX polymorphs and two, additional, lower energy conformers that were not seen in the crystalline phases. The ratio of different conformers changed with the simulated temperature, in that the ratio of α conformer increased with the increase in temperature.
Fragmentation of interstellar clouds and star formation
NASA Technical Reports Server (NTRS)
Silk, J.
1982-01-01
The principal issues are addressed: the fragmentation of molecular clouds into units of stellar mass and the impact of star formation on molecular clouds. The observational evidence for fragmentation is summarized, and the gravitational instability described of a uniform spherical cloud collapsing from rest. The implications are considered of a finite pressure for the minimum fragment mass that is attainable in opacity-limited fragmentation. The role of magnetic fields is discussed in resolving the angular momentum problem and in making the collapse anisotropic, with notable consequences for fragmentation theory. Interactions between fragments are described, with emphasis on the effect of protostellar winds on the ambient cloud matter and on inhibiting further star formation. Such interactions are likely to have profound consequences for regulating the rate of star formation and on the energetics and dynamics of molecular clouds.
TWO-STAGE FRAGMENTATION FOR CLUSTER FORMATION: ANALYTICAL MODEL AND OBSERVATIONAL CONSIDERATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Nicole D.; Basu, Shantanu, E-mail: nwityk@uwo.ca, E-mail: basu@uwo.ca
2012-12-10
Linear analysis of the formation of protostellar cores in planar magnetic interstellar clouds shows that molecular clouds exhibit a preferred length scale for collapse that depends on the mass-to-flux ratio and neutral-ion collision time within the cloud. We extend this linear analysis to the context of clustered star formation. By combining the results of the linear analysis with a realistic ionization profile for the cloud, we find that a molecular cloud may evolve through two fragmentation events in the evolution toward the formation of stars. Our model suggests that the initial fragmentation into clumps occurs for a transcritical cloud onmore » parsec scales while the second fragmentation can occur for transcritical and supercritical cores on subparsec scales. Comparison of our results with several star-forming regions (Perseus, Taurus, Pipe Nebula) shows support for a two-stage fragmentation model.« less
Multiscale Analysis of a Collapsible Respiratory Airway
NASA Astrophysics Data System (ADS)
Ghadiali, Samir; Bell, E. David; Swarts, J. Douglas
2006-11-01
The Eustachian tube (ET) is a collapsible respiratory airway that connects the nasopharynx with the middle ear (ME). The ET normally exists in a collapsed state and must be periodically opened to maintain a healthy and sterile ME. Although the inability to open the ET (i.e. ET dysfunction) is the primary etiology responsible for several common ME diseases (i.e. Otitis Media), the mechanisms responsible for ET dysfunction are not well established. To investigate these mechanisms, we developed a multi-scale model of airflow in the ET and correlated model results with experimental data obtained in healthy and diseased subjects. The computational models utilized finite-element methods to simulate fluid-structure interactions and molecular dynamics techniques to quantify the adhesive properties of mucus glycoproteins. Results indicate that airflow in the ET is highly sensitive to both the dynamics of muscle contraction and molecular adhesion forces within the ET lumen. In addition, correlation of model results with experimental data obtained in diseased subjects was used to identify the biomechanical mechanisms responsible for ET dysfunction.
Wood, Mitchell A.; Cherukara, Mathew J.; Kober, Edward M.; ...
2015-06-13
We use molecular dynamics simulations to describe the chemical reactions following shock-induced collapse of cylindrical pores in the high-energy density material RDX. For shocks with particle velocities of 2 km/s we find that the collapse of a 40 nm diameter pore leads to a deflagration wave. Molecular collisions during the collapse lead to ultrafast, multistep chemical reactions that occur under nonequilibrium conditions. WE found that exothermic products formed during these first few picoseconds prevent the nanoscale hotspot from quenching. Within 30 ps, a local deflagration wave develops. It propagates at 0.25 km/s and consists of an ultrathin reaction zone ofmore » only ~5 nm, thus involving large temperature and composition gradients. Contrary to the assumptions in current models, a static thermal hotspot matching the dynamical one in size and thermodynamic conditions fails to produce a deflagration wave indicating the importance of nonequilibrium loading in the criticality of nanoscale hot spots. These results provide insight into the initiation of reactive decomposition.« less
Designing heteropolymers to fold into unique structures via water-mediated interactions.
Jamadagni, Sumanth N; Bosoy, Christian; Garde, Shekhar
2010-10-28
Hydrophobic homopolymers collapse into globular structures in water driven by hydrophobic interactions. Here we employ extensive molecular dynamics simulations to study the collapse of heteropolymers containing one or two pairs of oppositely charged monomers. We show that charging a pair of monomers can dramatically alter the most stable conformations from compact globular to more open hairpin-like. We systematically explore a subset of the sequence space of one- and two-charge-pair polymers, focusing on the locations of the charge pairs. Conformational stability is governed by a balance of hydrophobic interactions, hydration and interactions of charge groups, water-mediated charged-hydrophobic monomer repulsions, and other factors. As a result, placing charge pairs in the middle, away from the hairpin ends, leads to stable hairpin-like structures. Turning off the monomer-water attractions enhances hydrophobic interactions significantly leading to a collapse into compact globular structures even for two-charge-pair heteropolymers. In contrast, the addition of salt leads to open and extended structures, suggesting that solvation of charged monomer sites by salt ions dominates the salt-induced enhancement of hydrophobic interactions. We also test the ability of a predictive scheme based on the additivity of free energy of contact formation. The success of the scheme for symmetric two-charge-pair sequences and the failure for their flipped versions highlight the complexity of the heteropolymer conformation space and of the design problem. Collectively, our results underscore the ability of tuning water-mediated interactions to design stable nonglobular structures in water and present model heteropolymers for further studies in the extended thermodynamic space and in inhomogeneous environments.
Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine.
Laemmli, U K
1975-01-01
High-molecular-weight DNA is known to collapse into very compact particles in a salt solution containing polymers like poly(ethylene oxide) [(EO)n] or polyacrylate. The biological relevance of this phenomenon is suggested by our recent finding that high concentrations of the highly acidic internal peptides found in the mature T4 bacteriophage head, as well as poly(glutamic acid) and poly(aspartic acid), can collapse DNA in a similar manner. The structure of DNAs collapsed by various methods has been studied with electron microscope. We find (EO)n collapses T4 or T7 bacteriophage DNA into compact particles only slightly larger than the size of the T4 and T7 head, respectively. In contrast, polylysine collapses DNA into different types of structures. Double-stranded DNA collapsed with (EO)n is cut by the single-strand specific Neurospora crassa endonuclease (EC 3.1.4.21) into small fragments. Extensive digestion only occurs above the critical concentration of polymer required for DNA collapse, demonstrating the (EO)n-collapsed DNA contains enzyme-vulnerable regions (probably at each fold), which are preferentially attacked. The size of the DNA fragments produced by limit-digestion with the nuclease ranges between 200 and 400 base pairs when DNA is collapsed by (EO)n. Only fragments of DNA which are larger than 600 base pairs are cut by the endonuclease in (EO)n-containing solution. Images PMID:1060108
Rotation in young massive star clusters
NASA Astrophysics Data System (ADS)
Mapelli, Michela
2017-05-01
Hydrodynamical simulations of turbulent molecular clouds show that star clusters form from the hierarchical merger of several sub-clumps. We run smoothed-particle hydrodynamics simulations of turbulence-supported molecular clouds with mass ranging from 1700 to 43 000 M⊙. We study the kinematic evolution of the main cluster that forms in each cloud. We find that the parent gas acquires significant rotation, because of large-scale torques during the process of hierarchical assembly. The stellar component of the embedded star cluster inherits the rotation signature from the parent gas. Only star clusters with final mass < few × 100 M⊙ do not show any clear indication of rotation. Our simulated star clusters have high ellipticity (˜0.4-0.5 at t = 4 Myr) and are subvirial (Qvir ≲ 0.4). The signature of rotation is stronger than radial motions due to subvirial collapse. Our results suggest that rotation is common in embedded massive (≳1000 M⊙) star clusters. This might provide a key observational test for the hierarchical assembly scenario.
Stretch-collapse transition of polyelectrolyte brushes in a poor solvent
NASA Astrophysics Data System (ADS)
von Goeler, F.; Muthukumar, M.
1996-12-01
This paper describes the behavior of charged, polymer brushes in electrolyte solutions of varying solvent quality. The brush height, d, dependence on the chain length, L (=Nl, where l is the Kuhn length), the grafting density σ, and solvent conditions is determined. We consider a monomer-monomer potential consisting of three components: (1) a long-ranged, screened Coulombic component of strength v¯/l (l is the Kuhn length) and range κ-1; (2) a short-ranged, two-body component of strength w¯l; and (3) a short-ranged, three-body component of strength ūl3. In particular, we examine the transition from a stretched state to a collapsed state in a poor solvent (w¯<0) as the solvent quality is decreased. Using dimensional analysis, Monte Carlo methods, and a variational technique, a first order transition is observed as predicted by the scaling arguments of Ross et al. and Borisov et al. for high charge/grafting densities. Using a variational procedure, we derive an analytical expression for the brush size and determine, quantitatively, the critical conditions for a first order transition in terms of key dimensionless variables, vN5/2, κlN1/2, wN3/2, and uN2 (where v=2πσl2v¯, w=σl2w¯, and u=σ2l4ū).
Reynold-Number Effects on Near-Wall Turbulence
NASA Technical Reports Server (NTRS)
Mansour, N. N.; Kim, J.; Moser, R. D.; Rai, Man Mohan (Technical Monitor)
1995-01-01
The Reynolds stress budget in a full developed turbulent channel flow for three Reynolds numbers (Re = 180,395,590) are used to investigate the near wall scaling of various turbulence quantities. We find that as the Reynolds number increases, the extent of the region where the production of the kinetic energy is equal to the dissipation increases. At the highest Reynolds number the region of equilibrium extends from y+ - 120 to y+ = 240. As the Reynolds number increases, we find that wall scaling collapses the budgets for the streamwise fluctuating component, but the budgets for the other two components show Reynolds number dependency.
Direct Numerical Simulation of a Weakly Stratified Turbulent Wake
NASA Technical Reports Server (NTRS)
Redford, J. A.; Lund, T. S.; Coleman, Gary N.
2014-01-01
Direct numerical simulation (DNS) is used to investigate a time-dependent turbulent wake evolving in a stably stratified background. A large initial Froude number is chosen to allow the wake to become fully turbulent and axisymmetric before stratification affects the spreading rate of the mean defect. The uncertainty introduced by the finite sample size associated with gathering statistics from a simulation of a time-dependent flow is reduced, compared to earlier simulations of this flow. The DNS reveals the buoyancy-induced changes to the turbulence structure, as well as to the mean-defect history and the terms in the mean-momentum and turbulence-kinetic-energy budgets, that characterize the various states of this flow - namely the three-dimensional (essentially unstratified), non-equilibrium (or 'wake-collapse') and quasi-two-dimensional (or 'two-component') regimes observed elsewhere for wakes embedded in both weakly and strongly stratified backgrounds. The wake-collapse regime is not accompanied by transfer (or 'reconversion') of the potential energy of the turbulence to the kinetic energy of the turbulence, implying that this is not an essential feature of stratified-wake dynamics. The dependence upon Reynolds number of the duration of the wake-collapse period is demonstrated, and the effect of the details of the initial/near-field conditions of the wake on its subsequent development is examined.
Ma, Xuekai; Driben, Rodislav; Malomed, Boris A.; Meier, Torsten; Schumacher, Stefan
2016-01-01
We consider a two-dimensional (2D) two-component spinor system with cubic attraction between the components and intra-species self-repulsion, which may be realized in atomic Bose-Einstein condensates, as well as in a quasi-equilibrium condensate of microcavity polaritons. Including a 2D spatially periodic potential, which is necessary for the stabilization of the system against the critical collapse, we use detailed numerical calculations and an analytical variational approximation (VA) to predict the existence and stability of several types of 2D symbiotic solitons in the spinor system. Stability ranges are found for symmetric and asymmetric symbiotic fundamental solitons and vortices, including hidden-vorticity (HV) modes, with opposite vorticities in the two components. The VA produces exceptionally accurate predictions for the fundamental solitons and vortices. The fundamental solitons, both symmetric and asymmetric ones, are completely stable, in either case when they exist as gap solitons or regular ones. The symmetric and asymmetric vortices are stable if the inter-component attraction is stronger than the intra-species repulsion, while the HV modes have their stability region in the opposite case. PMID:27703235
All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber
NASA Astrophysics Data System (ADS)
Choi, Hae Young; Kim, Myoung Jin; Lee, Byeong Ha
2007-04-01
We propose simple and compact methods for implementing all-fiber interferometers. The interference between the core and the cladding modes of a photonic crystal fiber (PCF) is utilized. To excite the cladding modes from the fundamental core mode of a PCF, a coupling point or region is formed by using two methods. One is fusion splicing two pieces of a PCF with a small lateral offset, and the other is partially collapsing the air-holes in a single piece of PCF. By making another coupling point at a different location along the fiber, the proposed all-PCF interferometer is implemented. The spectral response of the interferometer is investigated mainly in terms of its wavelength spectrum. The spatial frequency of the spectrum was proportional to the physical length of the interferometer and the difference between the modal group indices of involved waveguide modes. For the splicing type interferometer, only a single spatial frequency component was dominantly observed, while the collapsing type was associated with several components at a time. By analyzing the spatial frequency spectrum of the wavelength spectrum, the modal group index differences of the PCF were obtained from to . As potential applications of the all-PCF interferometer, strain sensing is experimentally demonstrated and ultra-high temperature sensing is proposed.
NASA Technical Reports Server (NTRS)
Butner, Harold M.
1999-01-01
Our understanding about the inter-relationship between the collapsing cloud envelope and the disk has been greatly altered. While the dominant star formation models invoke free fall collapse and r(sup -1.5) density profile, other star formation models are possible. These models invoke either different cloud starting conditions or the mediating effects of magnetic fields to alter the cloud geometry during collapse. To test these models, it is necessary to understand the envelope's physical structure. The discovery of disks, based on millimeter observations around young stellar objects, however makes a simple interpretation of the emission complicated. Depending on the wavelength, the disk or the envelope could dominate emission from a star. In addition, the discovery of planets around other stars has made understanding the disks in their own right quite important. Many star formation models predict disks should form naturally as the star is forming. In many cases, the information we derive about disk properties depends implicitly on the assumed envelope properties. How to understand the two components and their interaction with each other is a key problem of current star formation.
Bi-lobed Shape of Comet 67P from a Collapsed Binary
NASA Astrophysics Data System (ADS)
Nesvorný, David; Parker, Joel; Vokrouhlický, David
2018-06-01
The Rosetta spacecraft observations revealed that the nucleus of comet 67P/Churyumov–Gerasimenko consists of two similarly sized lobes connected by a narrow neck. Here, we evaluate the possibility that 67P is a collapsed binary. We assume that the progenitor of 67P was a binary and consider various physical mechanisms that could have brought the binary components together, including small-scale impacts and gravitational encounters with planets. We find that 67P could be a primordial body (i.e., not a collisional fragment) if the outer planetesimal disk lasted ≲10 Myr before it was dispersed by migrating Neptune. The probability of binary collapse by impact is ≃30% for tightly bound binaries. Most km-class binaries become collisionally dissolved. Roughly 10% of the surviving binaries later evolve to become contact binaries during the disk dispersal, when bodies suffer gravitational encounters with Neptune. Overall, the processes described in this work do not seem to be efficient enough to explain the large fraction (∼67%) of bi-lobed cometary nuclei inferred from spacecraft imaging.
Methods of producing epoxides from alkenes using a two-component catalyst system
Kung, Mayfair C.; Kung, Harold H.; Jiang, Jian
2013-07-09
Methods for the epoxidation of alkenes are provided. The methods include the steps of exposing the alkene to a two-component catalyst system in an aqueous solution in the presence of carbon monoxide and molecular oxygen under conditions in which the alkene is epoxidized. The two-component catalyst system comprises a first catalyst that generates peroxides or peroxy intermediates during oxidation of CO with molecular oxygen and a second catalyst that catalyzes the epoxidation of the alkene using the peroxides or peroxy intermediates. A catalyst system composed of particles of suspended gold and titanium silicalite is one example of a suitable two-component catalyst system.
Explosively driven hypervelocity launcher: Second-stage augmentation techniques
NASA Technical Reports Server (NTRS)
Baum, D. W.
1973-01-01
The results are described of a continuing study aimed at developing a two-stage explosively driven hypervelocity launcher capable of achieving projectile velocities between 15 and 20 km/sec. The testing and evaluation of a new cylindrical impact technique for collapsing the barrel of two-stage launcher are reported. Previous two-stage launchers have been limited in ultimate performance by incomplete barrel collapse behind the projectile. The cylindrical impact technique explosively collapses a steel tube concentric with and surrounding the barrel of the launcher. The impact of the tube on the barrel produces extremely high stresses which cause the barrel to collapse. The collapse rate can be adjusted by appropriate variation of the explosive charge and tubing parameters. Launcher experiments demonstrated that the technique did achieve complete barrel collapse and form a second-stage piston. However, jetting occurred in the barrel collapse process and was responsible for severe projectile damage.
Collapse of a nanoscopic void triggered by a spherically symmetric traveling sound wave.
Hołyst, Robert; Litniewski, Marek; Garstecki, Piotr
2012-05-01
Molecular-dynamics simulations of the Lennard-Jones fluid (up to 10(7) atoms) are used to analyze the collapse of a nanoscopic bubble. The collapse is triggered by a traveling sound wave that forms a shock wave at the interface. The peak temperature T(max) in the focal point of the collapse is approximately ΣR(0)(a), where Σ is the surface density of energy injected at the boundary of the container of radius R(0) and α ≈ 0.4-0.45. For Σ = 1.6 J/m(2) and R(0) = 51 nm, the shock wave velocity, which is proportional to √Σ, reaches 3400 m/s (4 times the speed of sound in the liquid); the pressure at the interface, which is proportional to Σ, reaches 10 GPa; and T(max) reaches 40,000 K. The Rayleigh-Plesset equation together with the time of the collapse can be used to estimate the pressure at the front of the shock wave.
A model for intergalactic filaments and galaxy formation during the first gigayear
NASA Astrophysics Data System (ADS)
Harford, A. Gayler; Hamilton, Andrew J. S.
2017-11-01
We propose a physically based, analytic model for intergalactic filaments during the first gigayear of the universe. The structure of a filament is based upon a gravitationally bound, isothermal cylinder of gas. The model successfully predicts for a cosmological simulation the total mass per unit length of a filament (dark matter plus gas) based solely upon the sound speed of the gas component, contrary to the expectation for collisionless dark matter aggregation. In the model, the gas, through its hydrodynamic properties, plays a key role in filament structure rather than being a passive passenger in a preformed dark matter potential. The dark matter of a galaxy follows the classic equation of collapse of a spherically symmetric overdensity in an expanding universe. In contrast, the gas usually collapses more slowly. The relative rates of collapse of these two components for individual galaxies can explain the varying baryon deficits of the galaxies under the assumption that matter moves along a single filament passing through the galaxy centre, rather than by spherical accretion. The difference in behaviour of the dark matter and gas can be simply and plausibly related to the model. The range of galaxies studied includes that of the so-called too big to fail galaxies, which are thought to be problematic for the standard Λ cold dark matter model of the universe. The isothermal-cylinder model suggests a simple explanation for why these galaxies are, unaccountably, missing from the night sky.
Materials characterization of dusts generated by the collapse of the World Trade Center
Meeker, Gregory P.; Sutley, Stephen J.; Brownfield, Isabelle; Lowers, Heather; Bern, Amy M.; Swayze, Gregg A.; Hoefen, Todd M.; Plumlee, Geoffrey S.; Clark, Roger N.; Gent, Carol A.
2009-01-01
The major inorganic components of the dusts generated from the collapse of the World Trade Center buildings on September 11, 2001 were concrete materials, gypsum, and man-made vitreous fibers. These components were likely derived from lightweight Portland cement concrete floors, gypsum wallboard, and spray-on fireproofing and ceiling tiles, respectively. All of the 36 samples collected by the USGS team had these materials as the three major inorganic components of the dust. Components found at minor and trace levels include chrysotile asbestos, lead, crystalline silica, and particles of iron and zinc oxides. Other heavy metals, such as lead, bismuth, copper, molybdenum, chromium, and nickel, were present at much lower levels occurring in a variety of chemical forms. Several of these materials have health implications based on their chemical composition, morphology, and bioaccessibility.
Molecular defense response of oil palm to Ganoderma infection.
Ho, C-L; Tan, Y-C
2015-06-01
Basal stem rot (BSR) of oil palm roots is due to the invasion of fungal mycelia of Ganoderma species which spreads to the bole of the stem. In addition to root contact, BSR can also spread by airborne basidiospores. These fungi are able to break down cell wall components including lignin. BSR not only decreases oil yield, it also causes the stands to collapse thus causing severe economic loss to the oil palm industry. The transmission and mode of action of Ganoderma, its interactions with oil palm as a hemibiotroph, and the molecular defence responses of oil palm to the infection of Ganoderma boninense in BSR are reviewed, based on the transcript profiles of infected oil palms. The knowledge gaps that need to be filled in oil palm-Ganoderma molecular interactions i.e. the associations of hypersensitive reaction (HR)-induced cell death and reactive oxygen species (ROS) kinetics to the susceptibility of oil palm to Ganoderma spp., the interactions of phytohormones (salicylate, jasmonate and ethylene) at early and late stages of BSR, and cell wall strengthening through increased production of guaiacyl (G)-type lignin, are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pitta, Elli; Zeri, Christina; Tzortziou, Maria; Mousdis, George; Scoullos, Michael
2017-10-01
The Dardanelles Straits - North Aegean Sea mixing zone is the area where the less saline waters of Black Sea origin supply organic material to the oligotrophic Mediterranean Sea. The objective of this work was to assess the seasonal dynamics of dissolved organic matter (DOM) in this region based on the optical properties (absorbance and fluorescence). By combining excitation-emission fluorescence with parallel factor analysis (EEM-PARAFAC), four fluorescent components were identified corresponding to three humic - like components and one amino acid - like. The latter was dominant during all seasons. Chromophoric DOM (CDOM) and dissolved organic carbon (DOC) were found to be strongly coupled only in early spring when conservative conditions prevailed and the two water masses present (Black Sea Waters - BSW and Levantine Waters - LW) could be identified by their absorption coefficients (a300) and spectral slopes S275-295. In summer and autumn the relationships collapsed. During summer two features appear to dominate the dynamics of CDOM: i) photodegradation that acts as an important sink for both the absorbing DOM and the terrestrially derived fluorescent humic substances and ii) the release of marine humic like fluorescent substances from bacterial transformation of DOM. Autumn results revealed a source of fluorescent CDOM of high molecular weight, which was independent of water mass sources and related to particle and sedimentary processes. The removal of the amino acid-like fluorescence during autumn provided evidence that although DOC was found to accumulate under low inorganic nutrient conditions, dissolved organic nitrogenous compounds could serve as bacterial substrate.
NASA Astrophysics Data System (ADS)
Drenscko, Mihaela
Polymers and lipid membranes are both essential soft materials. The structure and hydrophobicity/hydrophilicity of polymers, as well as the solvent they are embedded in, ultimately determines their size and shape. Understating the variation of shape of the polymer as well as its interactions with model biological membranes can assist in understanding the biocompatibility of the polymer itself. Computer simulations, in particular molecular dynamics, can aid in characterization of the interaction of polymers with solvent, as well as polymers with model membranes. In this thesis, molecular dynamics serve to describe polymer interactions with a solvent (water) and with a lipid membrane. To begin with, we characterize the hydrophobic collapse of single polystyrene chains in water using molecular dynamics simulations. Specifically, we calculate the potential of mean force for the collapse of a single polystyrene chain in water using metadynamics, comparing the results between all atomistic with coarse-grained molecular simulation. We next explore the scaling behavior of the collapsed globular shape at the minimum energy configuration, characterized by the radius of gyration, as a function of chain length. The exponent is close to one third, consistent with that predicted for a polymer chain in bad solvent. We also explore the scaling behavior of the Solvent Accessible Surface Area (SASA) as a function of chain length, finding a similar exponent for both all-atomistic and coarse-grained simulations. Furthermore, calculation of the local water density as a function of chain length near the minimum energy configuration suggests that intermediate chain lengths are more likely to form dewetted states, as compared to shorter or longer chain lengths. Next, in order to investigate the molecular interactions between single hydrophobic polymer chains and lipids in biological membranes and at lipid membrane/solvent interface, we perform a series of molecular dynamics simulations of small membranes using all atomistic and coarse-grained methods. The molecular interaction between common polymer chains used in biomedical applications and the cell membrane is unknown. This interaction may affect the biocompatibility of the polymer chains. Molecular dynamics simulations offer an emerging tool to characterize the interaction between common degradable polymer chains used in biomedical applications, such as polycaprolactone, and model cell membranes. We systematically characterize with long-time all-atomistic molecular dynamics simulations the interaction between single polycaprolactone chains of varying chain lengths with a model phospholipid membrane. We find that the length of polymer chain greatly affects the nature of interaction with the membrane, as well as the membrane properties. Furthermore, we next utilize advanced sampling techniques in molecular dynamics to characterize the two-dimensional free energy surface for the interaction of varying polymer chain lengths (short, intermediate, and long) with model cell membranes. We find that the free energy minimum shifts from the membrane-water interface to the hydrophobic core of the phospholipid membrane as a function of chain length. These results can be used to design polymer chain lengths and chemistries to optimize their interaction with cell membranes at the molecular level.
NASA Astrophysics Data System (ADS)
Graziano, Giuseppe
2014-09-01
Molecular dynamics simulations have shown that a totally unfolded protein in aqueous 8 M urea undergoes a collapse transition on replacing urea molecules by guanidinium chloride, GdmCl, assuming a compact conformation in 4 M urea + 4 M GdmCl [J. Am. Chem. Soc. 134 (2012) 18266]. This is unexpected because GdmCl is a denaturant stronger than urea. It is shown that such collapse can originate from an increase in the magnitude of the solvent-excluded volume effect due the high density of urea + GdmCl mixtures, coupled to their low water number density that pushes denaturant molecules toward the protein surface.
Simultaneous measurement of two noncommuting quantum variables: Solution of a dynamical model
NASA Astrophysics Data System (ADS)
Perarnau-Llobet, Martí; Nieuwenhuizen, Theodorus Maria
2017-05-01
The possibility of performing simultaneous measurements in quantum mechanics is investigated in the context of the Curie-Weiss model for a projective measurement. Concretely, we consider a spin-1/2 system simultaneously interacting with two magnets, which act as measuring apparatuses of two different spin components. We work out the dynamics of this process and determine the final state of the measuring apparatuses, from which we can find the probabilities of the four possible outcomes of the measurements. The measurement is found to be nonideal, as (i) the joint statistics do not coincide with the one obtained by separately measuring each spin component, and (ii) the density matrix of the spin does not collapse in either of the measured observables. However, we give an operational interpretation of the process as a generalized quantum measurement, and show that it is fully informative: The expected value of the measured spin components can be found with arbitrary precision for sufficiently many runs of the experiment.
Jiang, Jing [Nanjing University; Walters, Diane M [University of Wisconsin-Madison; Zhou, Dongshan [Nanjing University; Ediger, Mark D [University of Wisconsin-Madison
2016-08-18
Data set for work presented in Jiang, J.; Walters, D. M.; Zhou, D.; Ediger, M. D. “Substrate Temperature Controls Molecular Orientation in Two -Component Vapor-deposited Glasses.” Soft Matt. 2016, 12, 3265. Includes all data presented in the manuscript as well as example raw data and analysis.
Earthquakes as collapse precursors at the Han-sur-Lesse Cave in the Belgian Ardennes
NASA Astrophysics Data System (ADS)
Camelbeeck, Thierry; Quinif, Yves; Verheyden, Sophie; Vanneste, Kris; Knuts, Elisabeth
2018-05-01
Collapse activation is an ongoing process in the evolution of karstic networks related to the weakening of cave vaults. Because collapses are infrequent, few have been directly observed, making it challenging to evaluate the role of external processes in their initiation and triggering. Here, we study the two most recent collapses in the Dôme chamber of the Han-sur-Lesse Cave (Belgian Ardenne) that occurred on or shortly after 3rd December 1828 and between the 13th and 14th of March 1984. Because of the low probability that the two earthquakes that generated the strongest ground motions in Han-sur-Lesse since 1800, on 23rd February 1828 (Mw = 5.1 in Central Belgium) and 8th November 1983 (Mw = 4.8 in Liège) occurred by coincidence less than one year before these collapses, we suggest that the collapses are related to these earthquakes. We argue that the earthquakes accelerated the cave vault instability, leading to the collapses by the action of other factors weakening the host rock. In particular, the 1828 collapse was likely triggered by a smaller Mw = 4.2 nearby earthquake. The 1984 collapse followed two months of heavy rainfall that would have increased water infiltration and pressure in the rock mass favoring destabilization of the cave ceiling. Lamina counting of a stalagmite growing on the 1828 debris dates the collapse at 1826 ± 9 CE, demonstrating the possibility of dating previous collapses with a few years of uncertainty. Furthermore, our study opens new perspectives for studying collapses and their chronology both in the Han-sur-Lesse Cave and in other karstic networks. We suggest that earthquake activity could play a stronger role than previously thought in initiating cave collapses.
Coagulation of grains in static and collapsing protostellar clouds
NASA Technical Reports Server (NTRS)
Weidenschilling, S. J.; Ruzmaikina, T. V.
1993-01-01
The wavelength dependence of extinction in the diffuse interstellar medium implies that it is produced by particles of dominant size of approximately 10(exp -5) cm. There is some indication that in the cores of dense molecular clouds, sub-micron grains can coagulate to form larger particles; this process is probably driven by turbulence. The most primitive meteorites (carbonaceous chondrites) are composed of particles with a bimodal size distribution with peaks near 1 micron (matrix) and 1 mm (chondrules). Models for chondrule formation that involve processing of presolar material by chemical reactions or through an accretion shock during infall assume that aggregates of the requisite mass could form before or during collapse. The effectiveness of coagulation during collapse has been disputed; it appears to depend on specific assumptions. The first results of detailed numerical modeling of spatial and temporal variations of particle sizes in presolar clouds, both static and collapsing, is reported in this article.
Does the Chemothermal Instability Have Any Role in the Fragmentation of Primordial Gas
NASA Astrophysics Data System (ADS)
Dutta, Jayanta
2015-10-01
The collapse of the primordial gas in the density regime ˜108-1010 cm-3 is controlled by the three-body H2 formation process, in which the gas can cool faster than free-fall time—a condition proposed as the chemothermal instability. We investigate how the heating and cooling rates are affected during the rapid transformation of atomic to molecular hydrogen. With a detailed study of the heating and cooling balance in a 3D simulation of Pop III collapse, we follow the chemical and thermal evolution of the primordial gas in two dark matter minihalos. The inclusion of sink particles in modified Gadget-2 smoothed particle hydrodynamics code allows us to investigate the long-term evolution of the disk that fragments into several clumps. We find that the sum of all the cooling rates is less than the total heating rate after including the contribution from the compressional heating (pdV). The increasing cooling rate during the rapid increase of the molecular fraction is offset by the unavoidable heating due to gas contraction. We conclude that fragmentation occurs because H2 cooling, the heating due to H2 formation and compressional heating together set a density and temperature structure in the disk that favors fragmentation, not the chemothermal instability.
NASA Astrophysics Data System (ADS)
Balakrishnan, A.; Frei, M.; Kerzenmacher, S.; Reinecke, H.; Mueller, C.
2015-12-01
In this work we present the design and fabrication of the miniaturized PEM fuel cell combined microreactor system with hydrogen regulation mechanism and testing of prototype microreactor. The system consists of two components (i) fuel cell component and (ii) microreactor component. The fuel cell component represents the miniaturized PEM fuel cell system (combination of screen printed fuel cell assembly and an on-board hydrogen storage medium). Hydrogen production based on catalytic hydrolysis of chemical hydride takes place in the microreactor component. The self-regulated hydrogen mechanism based on the gaseous hydrogen produced from the catalytic hydrolysis of sodium borohydride (NaBH4) gets accumulated as bubbles at the vicinity of the hydrophobic coated hydrogen exhaust holes. When the built up hydrogen bubbles pressure exceeds the burst pressure at the hydrogen exhaust holes the bubble collapses. This collapse causes a surge of fresh NaBH4 solution onto the catalyst surface leading to the removal of the reaction by-products formed at the active sites of the catalyst. The catalyst used in the system is platinum deposited on a base substrate. Nickel foam, carbon porous medium (CPM) and ceramic plate were selected as candidates for base substrate for developing a robust catalyst surface. For the first time the platinum layer fabricated by pulsed electrodeposition and dealloying (EPDD) technique is used for hydrolysis of NaBH4. The major advantages of such platinum catalyst layers are its high surface area and their mechanical stability. Prototype microreactor system with self-regulated hydrogen mechanism is demonstrated.
Mechano-chemical pathways to H2O and CO2 splitting
NASA Astrophysics Data System (ADS)
Vedadi, Mohammad H.; Haas, Stephan
2011-10-01
The shock-induced collapse of CO2-filled nanobubbles is investigated using molecular dynamics simulations based on a reactive force field. The energetic nanojet and high-pressure water hammer shock formed during and after collapse of the nanobubble trigger mechano-chemical H2O-CO2 reactions, some of which lead to splitting of water and formation of O2 molecules. The dominant pathways through which splitting of water molecules occur are identified.
Lin, Milo M; Meinhold, Lars; Shorokhov, Dmitry; Zewail, Ahmed H
2008-08-07
A 2D free-energy landscape model is presented to describe the (un)folding transition of DNA/RNA hairpins, together with molecular dynamics simulations and experimental findings. The dependence of the (un)folding transition on the stem sequence and the loop length is shown in the enthalpic and entropic contributions to the free energy. Intermediate structures are well defined by the two coordinates of the landscape during (un)zipping. Both the free-energy landscape model and the extensive molecular dynamics simulations totaling over 10 mus predict the existence of temperature-dependent kinetic intermediate states during hairpin (un)zipping and provide the theoretical description of recent ultrafast temperature-jump studies which indicate that hairpin (un)zipping is, in general, not a two-state process. The model allows for lucid prediction of the collapsed state(s) in simple 2D space and we term it the kinetic intermediate structure (KIS) model.
NASA Astrophysics Data System (ADS)
Kumano, Teruhisa
As known well, two of the fundamental processes which give rise to voltage collapse in power systems are the on load tap changers of transformers and dynamic characteristics of loads such as induction machines. It has been well established that, comparing among these two, the former makes slower collapse while the latter makes faster. However, in realistic situations, the load level of each induction machine is not uniform and it is well expected that only a part of loads collapses first, followed by collapse process of each load which did not go into instability during the preceding collapses. In such situations the over all equivalent collapse behavior viewed from bulk transmission level becomes somewhat different from the simple collapse driven by one aggregated induction machine. This paper studies the process of cascaded voltage collapse among many induction machines by time simulation, where load distribution on a feeder line is modeled by several hundreds of induction machines and static impedance loads. It is shown that in some cases voltage collapse really cascades among induction machines, where the macroscopic load dynamics viewed from upper voltage level makes slower collapse than expected by the aggregated load model. Also shown is the effects of machine protection of induction machines, which also makes slower collapse.
Ionization impact on molecular clouds and star formation. Numerical simulations and observations
NASA Astrophysics Data System (ADS)
Tremblin, P.
2012-11-01
At all the scales of Astrophysics, the impact of the ionization from massive stars is a crucial issue. At the galactic scale, the ionization can regulate star formation by supporting molecular clouds against gravitational collapse and at the stellar scale, indications point toward a possible birth place of the Solar System close to massive stars. At the molecular cloud scale, it is clear that the hot ionized gas compresses the surrounding cold gas, leading to the formation of pillars, globules, and shells of dense gas in which some young stellar objects are observed. What are the formation mechanisms of these structures? Are the formation of these young stellar objects triggered or would have they formed anyway? Do massive stars have an impact on the distribution of the surrounding gas? Do they have an impact on the mass distribution of stars (the initial mass function, IMF)? This thesis aims at shedding some light on these questions, by focusing especially on the formation of the structures between the cold and the ionized gas. We present the state of the art of the theoretical and observational works on ionized regions (H ii regions) and we introduce the numerical tools that have been developed to model the ionization in the hydrodynamic simulations with turbulence performed with the HERACLES code. Thanks to the simulations, we present a new model for the formation of pillars based on the curvature and collapse of the dense shell on itself and a new model for the formations of cometary globules based on the turbulence of the cold gas. Several diagnostics have been developed to test these new models in the observations. If pillars are formed by the collapse of the dense shell on itself, the velocity spectrum of a nascent pillar presents a large spectra with a red-shifted and a blue-shifted components that are caused by the foreground and background parts of the shell that collapse along the line of sight. If cometary globules emerge because of the turbulence of the molecular cloud, the velocity spectrum of these globules is shifted at different velocities than the velocity of the shell, pillars and clumps that follow the global expansion of the H ii region. An other diagnostic is the impact of the compression on the probability density function (PDF) of the cold gas. The distribution is double peaked when the turbulent ram pressure is low compared to the ionized-gas pressure. This is the signature of the compression caused by the expansion of the ionized bubble. When the turbulence is high, the two peaks merge and the compression can still be identified although the signature is less clear. We have used Herschel column density maps and molecular-line data to characterize the density and velocity structures of the interface between the ionized and the cold gas in several regions: RCW 120, RCW 36, Cygnus X, the Rosette and Eagle Nebulae. In addition to the diagnostics derived from the simulations, analytical predictions of the shell and pillar parameters was tested and confronted to the observations. In all the regions, we have seen that there is a good agreement with the analytical models and with the simulation diagnostics. The velocity structure of a nascent pillar in the Rosette Nebula suggests that it has been formed by the collapse of the shell on itself and the bulk velocity of cometary globules in Cygnus X and in the Rosette Nebula tends to confirm their turbulent origin. The compression caused by the ionized gas can be seen on the PDF of the cold gas in most of the regions studied. This result is important for the link between the IMF and the global prop! erties of the cloud. If the IMF can be derived from the PDF of a cloud, the impact of the massive stars on the PDF has to be taken in account. Furthermore, we present dedicated simulations of RCW 36 that suggest that the dense clumps at the edge of the ionized gas are not pre-existing, it is likely that their formation was triggered by the compression caused by the ionization. Therefore the ionization from the massive stars is a key process that has to be taken into account for the understanding of the IMF. We also present in appendix other works that have been done in parallel of this thesis: the charge exchange in colliding planetary and stellar winds in collaboration with Prof. E. Chiang during the ISIMA summer school 2011 in Beijing; and the sub-millimeter site testing at the Concordia station in Antarctica with the CAMISTIC team.
Large-eddy simulation of cavitating nozzle flow and primary jet break-up
DOE Office of Scientific and Technical Information (OSTI.GOV)
Örley, F., E-mail: felix.oerley@aer.mw.tum.de; Trummler, T.; Mihatsch, M. S.
We employ a barotropic two-phase/two-fluid model to study the primary break-up of cavitating liquid jets emanating from a rectangular nozzle, which resembles a high aspect-ratio slot flow. All components (i.e., gas, liquid, and vapor) are represented by a homogeneous mixture approach. The cavitating fluid model is based on a thermodynamic-equilibrium assumption. Compressibility of all phases enables full resolution of collapse-induced pressure wave dynamics. The thermodynamic model is embedded into an implicit large-eddy simulation (LES) environment. The considered configuration follows the general setup of a reference experiment and is a generic reproduction of a scaled-up fuel injector or control valve asmore » found in an automotive engine. Due to the experimental conditions, it operates, however, at significantly lower pressures. LES results are compared to the experimental reference for validation. Three different operating points are studied, which differ in terms of the development of cavitation regions and the jet break-up characteristics. Observed differences between experimental and numerical data in some of the investigated cases can be caused by uncertainties in meeting nominal parameters by the experiment. The investigation reveals that three main mechanisms promote primary jet break-up: collapse-induced turbulent fluctuations near the outlet, entrainment of free gas into the nozzle, and collapse events inside the jet near the liquid-gas interface.« less
Venkei, Zsolt; Szabad, János
2005-06-01
The dominant-negative female-sterile Kavar(D) mutations and their revertant kavar(r) alleles identify the alphaTubulin67C gene of Drosophila melanogaster, which codes for the maternally provided alpha-tubulin(4) isoform. The mutations result in the formation of monopolar, collapsed spindles (each with two nearby centrosomes, a tassel of microtubules and overcondensed chromosomes), thus revealing a novel function for alpha-tubulin(4) in spindle maintenance and elongation. Molecular features of the two Kavar(D) alleles and a kavar(null) allele are described and models for their actions are discussed.
Guanidinium can both Cause and Prevent the Hydrophobic Collapse of Biomacromolecules
2017-01-01
A combination of Fourier transform infrared and phase transition measurements as well as molecular computer simulations, and thermodynamic modeling were performed to probe the mechanisms by which guanidinium (Gnd+) salts influence the stability of the collapsed versus uncollapsed state of an elastin-like polypeptide (ELP), an uncharged thermoresponsive polymer. We found that the cation’s action was highly dependent upon the counteranion with which it was paired. Specifically, Gnd+ was depleted from the ELP/water interface and was found to stabilize the collapsed state of the macromolecule when paired with well-hydrated anions such as SO42–. Stabilization in this case occurred via an excluded volume (or depletion) effect, whereby SO42– was strongly partitioned away from the ELP/water interface. Intriguingly, at low salt concentrations, Gnd+ was also found to stabilize the collapsed state of the ELP when paired with SCN–, which is a strong binder for the ELP. In this case, the anion and cation were both found to be enriched in the collapsed state of the polymer. The collapsed state was favored because the Gnd+ cross-linked the polymer chains together. Moreover, the anion helped partition Gnd+ to the polymer surface. At higher salt concentrations (>1.5 M), GndSCN switched to stabilizing the uncollapsed state because a sufficient amount of Gnd+ and SCN– partitioned to the polymer surface to prevent cross-linking from occurring. Finally, in a third case, it was found that salts which interacted in an intermediate fashion with the polymer (e.g., GndCl) favored the uncollapsed conformation at all salt concentrations. These results provide a detailed, molecular-level, mechanistic picture of how Gnd+ influences the stability of polypeptides in three distinct physical regimes by varying the anion. It also helps explain the circumstances under which guanidinium salts can act as powerful and versatile protein denaturants. PMID:28054487
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherji, Debashish; Stuehn, Torsten; Kremer, Kurt
Smart polymers are a modern class of polymeric materials that often exhibit unpredictable behavior in mixtures of solvents. One such phenomenon is co-non-solvency. Co-non-solvency occurs when two (perfectly) miscible and competing good solvents, for a given polymer, are mixed together. As a result, the same polymer collapses into a compact globule within intermediate mixing ratios. More interestingly, polymer collapses when the solvent quality remains good and even gets increasingly better by the addition of the better cosolvent. This is a puzzling phenomenon that is driven by strong local concentration fluctuations. Because of the discrete particle based nature of the interactions,more » Flory-Huggins type mean field arguments become unsuitable. In this work, we extend the analysis of the co-non-solvency effect presented earlier [D. Mukherji et al., Nat. Commun. 5, 4882 (2014)]. We explain why co-non-solvency is a generic phenomenon, which can only be understood by the thermodynamic treatment of the competitive displacement of (co)solvent components. This competition can result in a polymer collapse upon improvement of the solvent quality. Specific chemical details are not required to understand these complex conformational transitions. Therefore, a broad range of polymers are expected to exhibit similar reentrant coil-globule-coil transitions in competing good solvents.« less
Scaling Laws in Canopy Flows: A Wind-Tunnel Analysis
NASA Astrophysics Data System (ADS)
Segalini, Antonio; Fransson, Jens H. M.; Alfredsson, P. Henrik
2013-08-01
An analysis of velocity statistics and spectra measured above a wind-tunnel forest model is reported. Several measurement stations downstream of the forest edge have been investigated and it is observed that, while the mean velocity profile adjusts quickly to the new canopy boundary condition, the turbulence lags behind and shows a continuous penetration towards the free stream along the canopy model. The statistical profiles illustrate this growth and do not collapse when plotted as a function of the vertical coordinate. However, when the statistics are plotted as function of the local mean velocity (normalized with a characteristic velocity scale), they do collapse, independently of the streamwise position and freestream velocity. A new scaling for the spectra of all three velocity components is proposed based on the velocity variance and integral time scale. This normalization improves the collapse of the spectra compared to existing scalings adopted in atmospheric measurements, and allows the determination of a universal function that provides the velocity spectrum. Furthermore, a comparison of the proposed scaling laws for two different canopy densities is shown, demonstrating that the vertical velocity variance is the most sensible statistical quantity to the characteristics of the canopy roughness.
Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei
2016-07-14
We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.
Shock Loading of Granular Ni/Al Composites. Part 1. Mechanics of Loading
Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.; ...
2014-10-16
We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (up ≲ 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. Furthermore, the mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion andmore » fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (up ≳ 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components including the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.« less
Round-the-table teaching: a novel approach to resuscitation education
McGarvey, Kathryn; Scott, Karen; O'Leary, Fenton
2014-01-01
Background Effective cardiopulmonary resuscitation saves lives. Health professionals who care for acutely unwell children need to be prepared to care for a child in arrest. Hospitals must ensure that their staff have the knowledge, confidence and ability to respond to a child in cardiac arrest. RESUS4KIDS is a programme designed to teach paediatric resuscitation to health care professionals who care for acutely unwell children. The programme is delivered in two components: an e–learning component for pre-learning, followed by a short, practical, face-to-face course that is taught using the round-the-table teaching approach. Context Round-the-table teaching is a novel, evidence-based small group teaching approach designed to teach paediatric resuscitation skills and knowledge. Round-the-table teaching uses a structured approach to managing a collapsed child, and ensures that each participant has the opportunity to practise the essential resuscitation skills of airway manoeuvres, bag mask ventilation and cardiac compressions. Innovation Round-the-table teaching is an engaging, non-threatening approach to delivering interdisciplinary paediatric resuscitation education. The methodology ensures that all participants have the opportunity to practise each of the different essential skills associated with the Danger, Response, Send for help, Airway, Breathing, Circulation, Defibrillation or rhythm recognition (DRSABCD) approach to the collapsed child. Implications Round-the-table teaching is based on evidence-based small group teaching methods. The methodology of round-the-table teaching can be applied to any topic where participants must demonstrate an understanding of a sequential approach to a clinical skill. Round-the-table teaching uses a structured approach to managing a collapsed child PMID:25212931
Scanning the parameter space of collapsing rotating thin shells
NASA Astrophysics Data System (ADS)
Rocha, Jorge V.; Santarelli, Raphael
2018-06-01
We present results of a comprehensive study of collapsing and bouncing thin shells with rotation, framing it in the context of the weak cosmic censorship conjecture. The analysis is based on a formalism developed specifically for higher odd dimensions that is able to describe the dynamics of collapsing rotating shells exactly. We analyse and classify a plethora of shell trajectories in asymptotically flat spacetimes. The parameters varied include the shell’s mass and angular momentum, its radial velocity at infinity, the (linear) equation-of-state parameter and the spacetime dimensionality. We find that plunges of rotating shells into black holes never produce naked singularities, as long as the matter shell obeys the weak energy condition, and so respects cosmic censorship. This applies to collapses of dust shells starting from rest or with a finite velocity at infinity. Not even shells with a negative isotropic pressure component (i.e. tension) lead to the formation of naked singularities, as long as the weak energy condition is satisfied. Endowing the shells with a positive isotropic pressure component allows for the existence of bouncing trajectories satisfying the dominant energy condition and fully contained outside rotating black holes. Otherwise any turning point occurs always inside the horizon. These results are based on strong numerical evidence from scans of numerous sections in the large parameter space available to these collapsing shells. The generalisation of the radial equation of motion to a polytropic equation-of-state for the matter shell is also included in an appendix.
van der Vegt, Nico F A; Rodríguez-Ropero, Francisco
2017-03-22
In a recent paper, Mukherji et al. describe the collapse of poly(N-isopropyl acrylamide) in methanol-water mixtures based on experiments and molecular dynamics simulations. The conclusion of their work is that chain collapse is dominated by enthalpic bridging interactions while entropic effects play no major role. Here we show that this claim arises from an improper interpretation of preferential binding and the corresponding thermodynamic data presented. When interpreted correctly, the data instead provide evidence for repulsive enthalpic interactions of methanol with the polymer, supporting the emerging view of entropic chain collapse.
The Birth of Disks Around Protostars
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-03-01
The dusty disks around young stars make the news regularly due to their appeal as the birthplace of early exoplanets. But how do disks like these first form and evolve around their newly born protostars? New observations from the Atacama Large Millimeter/submillimeter Array (ALMA) are helping us to better understand this process.Formation from CollapseStars are born from the gravitational collapse of a dense cloud of molecular gas. Long before they start fusing hydrogen at their centers when they are still just hot overdensities in the process of contracting we call them protostars. These low-mass cores are hidden at the hearts of the clouds of molecular gas from which they are born.Aerial image of the Atacama Large Millimeter/submillimeter Array. [EFE/Ariel Marinkovic]During this contraction phase, before a protostar transitions to a pre-main-sequence star (which it does by blowing away its outer gas envelope, halting the stars growth), much of the collapsing material will spin into a centrifugally supported Keplerian disk that surrounds the young protostar. Later, these circumstellar disks will become the birthplace for young planets something for which weve seen observational evidence in recent years.But how do these Keplerian disks which eventually have scales of hundreds of AU first form and grow around protostars? We need observations of these disks in their early stages of formation to understand their birth and evolution a challenging prospect, given the obscuring molecular gas that hides them at these stages. ALMA, however, is up to the task: it can peer through to the center of the gas clouds to see the emission from protostellar cores and their surroundings.ALMA observations of the protostar Lupus 3 MMS. The molecular outflows from the protostar are shown in panel a. Panel b shows the continuum emission, which has a compact component that likely traces a disk surrounding the protostar. [Adapted from Yen et al. 2017]New Disks Revealed?In a recent publication led by Hsi-Wei Yen (Academia Sinica Institute of Astronomy and Astrophysics, Taiwan), a team of scientists presents results from ALMAs observations of three very early-stage protostars: Lupus 3 MMS, IRAS 153983559, and IRAS 153982429. ALMAs spectacular resolution allowed Yen and collaborators to infer the presence of a 100-AU Keplerian disk around Lupus 3 MMS, and signatures of infall on scales of 30 AU around the other two sources.The authors construct models of the sources and show that the observations are consistent with the presence of disks around all three sources: a 100-AU disk around a 0.3 solar-mass protostar in the Lupus system, a 20-AU disk around a 0.01 solar-mass protostar in IRAS 153983559, and 6-AU disk around a 0.03 solar-mass protostar in IRAS 153982429.By comparing their observations to those of other early-stage protostars, the authors conclude that in the earliest protostar stage, known as the Class 0 stage, the protostars disk grows rapidly in radius. As the protostar ages and enters the Class I stage, the disk growth stagnates, changing only very slowly after this.These observations mark an important step in our ability to study the gas motions on such small scales at early stages of stellar birth. Additional future studies will hopefully allow us to continue to buildthis picture!CitationHsi-Wei Yen et al 2017 ApJ 834 178. doi:10.3847/1538-4357/834/2/178
Collapsing lattice animals and lattice trees in two dimensions
NASA Astrophysics Data System (ADS)
Hsu, Hsiao-Ping; Grassberger, Peter
2005-06-01
We present high statistics simulations of weighted lattice bond animals and lattice trees on the square lattice, with fugacities for each non-bonded contact and for each bond between two neighbouring monomers. The simulations are performed using a newly developed sequential sampling method with resampling, very similar to the pruned-enriched Rosenbluth method (PERM) used for linear chain polymers. We determine with high precision the line of second-order transitions from an extended to a collapsed phase in the resulting two-dimensional phase diagram. This line includes critical bond percolation as a multicritical point, and we verify that this point divides the line into different universality classes. One of them corresponds to the collapse driven by contacts and includes the collapse of (weakly embeddable) trees. There is some evidence that the other is subdivided again into two parts with different universality classes. One of these (at the far side from collapsing trees) is bond driven and is represented by the Derrida-Herrmann model of animals having bonds only (no contacts). Between the critical percolation point and this bond-driven collapse seems to be an intermediate regime, whose other end point is a multicritical point P* where a transition line between two collapsed phases (one bond driven and the other contact driven) sparks off. This point P* seems to be attractive (in the renormalization group sense) from the side of the intermediate regime, so there are four universality classes on the transition line (collapsing trees, critical percolation, intermediate regime, and Derrida-Herrmann). We obtain very precise estimates for all critical exponents for collapsing trees. It is already harder to estimate the critical exponents for the intermediate regime. Finally, it is very difficult to obtain with our method good estimates of the critical parameters of the Derrida-Herrmann universality class. As regards the bond-driven to contact-driven transition in the collapsed phase, we have some evidence for its existence and rough location, but no precise estimates of critical exponents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, B.; The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207; Wang, L.
With large-scale molecular dynamics simulations, we investigate shock response of He nanobubbles in single crystal Cu. For sufficient bubble size or internal pressure, a prismatic dislocation loop may form around a bubble in unshocked Cu. The internal He pressure helps to stabilize the bubble against plastic deformation. However, the prismatic dislocation loops may partially heal but facilitate nucleation of new shear and prismatic dislocation loops. For strong shocks, the internal pressure also impedes internal jetting, while a bubble assists local melting; a high speed jet breaks a He bubble into pieces dispersed among Cu. Near-surface He bubbles may burst andmore » form high velocity ejecta containing atoms and small fragments, while the ejecta velocities do not follow the three-dimensional Maxwell-Boltzmann distributions expected for thermal equilibrium. The biggest fragment size deceases with increasing shock strength. With a decrease in ligament thickness or an increase in He bubble size, the critical shock strength required for bubble bursting decreases, while the velocity range, space extension and average velocity component along the shock direction, increase. Small bubbles are more efficient in mass ejecting. Compared to voids and perfect single crystal Cu, He bubbles have pronounced effects on shock response including bubble/void collapse, Hugoniot elastic limit (HEL), deformation mechanisms, and surface jetting. HEL is the highest for perfect single crystal Cu with the same orientations, followed by He bubbles without pre-existing prismatic dislocation loops, and then voids. Complete void collapse and shear dislocations occur for embedded voids, as opposed to partial collapse, and shear and possibly prismatic dislocations for He bubbles. He bubbles lower the threshhold shock strength for ejecta formation, and increase ejecta velocity and ejected mass.« less
Collapse events of two-color optical beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukhinin, Alexey; Aceves, Alejandro B.; Diels, Jean-Claude
2017-03-08
Here in this work, we study optical self-focusing that leads to collapse events for the time-independent model of copropagating beams with different wavelengths. We show that collapse events depend on the combined critical power of two beams for fundamental, vortex, and mixed configurations as well as on the ratio of their individual powers.
Gamma-Ray Burst Optical Afterglows with Two-component Jets: Polarization Evolution Revisited
NASA Astrophysics Data System (ADS)
Lan, Mi-Xiang; Wu, Xue-Feng; Dai, Zi-Gao
2018-06-01
Gamma-ray bursts have been widely argued to originate from binary compact object mergers or core collapse of massive stars. Jets from these systems may have two components: an inner, narrow sub-jet and an outer, wider sub-jet. Such a jet subsequently interacts with its ambient gas, leading to a reverse shock (RS) and a forward shock. The magnetic field in the narrow sub-jet is very likely to be mixed by an ordered component and a random component during the afterglow phase. In this paper, we calculate light curves and polarization evolution of optical afterglows with this mixed magnetic field in the RS region of the narrow sub-jet in a two-component jet model. The resultant light curve has two peaks: an early peak arising from the narrow sub-jet and a late-time rebrightening due to the wider sub-jet. We find the polarization degree (PD) evolution under such a mixed magnetic field confined in the shock plane is very similar to that under the purely ordered magnetic field condition. The two-dimensional “mixed” magnetic fields confined in the shock plane are essentially the ordered magnetic fields only with different configurations. The position angle (PA) of the two-component jet can change gradually or abruptly by 90°. In particular, an abrupt 90° change of the PA occurs when the PD changes from its decline phase to the rise phase.
Liquid-Crystalline Collapse of Pulmonary Surfactant Monolayers
Schief, William R.; Antia, Meher; Discher, Bohdana M.; Hall, Stephen B.; Vogel, Viola
2003-01-01
During exhalation, the surfactant film of lipids and proteins that coats the alveoli in the lung is compressed to high surface pressures, and can remain metastable for prolonged periods at pressures approaching 70 mN/m. Monolayers of calf lung surfactant extract (CLSE), however, collapse in vitro, during an initial compression at ∼45 mN/m. To gain information on the source of this discrepancy, we investigated how monolayers of CLSE collapse from the interface. Observations with fluorescence, Brewster angle, and light scattering microscopies show that monolayers containing CLSE, CLSE-cholesterol (20%), or binary mixtures of dipalmitoyl phosphatidylcholine(DPPC)-dihydrocholesterol all form bilayer disks that reside above the monolayer. Upon compression and expansion, lipids flow continuously from the monolayer into the disks, and vice versa. In several respects, the mode of collapse resembles the behavior of other amphiphiles that form smectic liquid-crystal phases. These findings suggest that components of surfactent films must collapse collectively rather than being squeezed out individually. PMID:12770885
Theoretical Models of Protostellar Binary and Multiple Systems with AMR Simulations
NASA Astrophysics Data System (ADS)
Matsumoto, Tomoaki; Tokuda, Kazuki; Onishi, Toshikazu; Inutsuka, Shu-ichiro; Saigo, Kazuya; Takakuwa, Shigehisa
2017-05-01
We present theoretical models for protostellar binary and multiple systems based on the high-resolution numerical simulation with an adaptive mesh refinement (AMR) code, SFUMATO. The recent ALMA observations have revealed early phases of the binary and multiple star formation with high spatial resolutions. These observations should be compared with theoretical models with high spatial resolutions. We present two theoretical models for (1) a high density molecular cloud core, MC27/L1521F, and (2) a protobinary system, L1551 NE. For the model for MC27, we performed numerical simulations for gravitational collapse of a turbulent cloud core. The cloud core exhibits fragmentation during the collapse, and dynamical interaction between the fragments produces an arc-like structure, which is one of the prominent structures observed by ALMA. For the model for L1551 NE, we performed numerical simulations of gas accretion onto protobinary. The simulations exhibit asymmetry of a circumbinary disk. Such asymmetry has been also observed by ALMA in the circumbinary disk of L1551 NE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kortright, Jeffrey Barrett; Sun, Jing; Spencer, Ryan K.
The evolution of molecular morphology in bulk samples of comb diblock copolymer pNdc 12-b-pNte 21 across the lamellar order-disorder transition (ODT) is studied using resonant x-ray scattering at the oxygen K edge, with the goal of determining whether the molecules remain extended or collapse above the ODT. The distinct spectral resonances of carbonyl oxygen on the backbone and ether oxygen in the pNte side chains combine with their different site symmetry within the molecule to yield strong differences in bulk structural sensitivity at all temperatures. Comparison with simple models for the disordered phase clearly reveals that disordering at the ODTmore » corresponds to loss of positional order of molecules with extended backbones that retain orientational order, rather than backbone collapse into a locally isotropic disordered phase. This conclusion is facilitated directly by the distinct structural sensitivity at the two resonances. Lastly, we discuss the roles of depolarized scattering in enhancing this sensitivity, and background fluorescence in limiting dynamic range, in oxygen resonant scattering.« less
A Simple Model for Human and Nature Interaction
NASA Astrophysics Data System (ADS)
Motesharrei, S.; Rivas, J.; Kalnay, E.
2012-12-01
There are widespread concerns that current trends in population and resource-use are unsustainable, but the possibilities of an overshoot and collapse remain unclear and controversial. Collapses of civilizations have occurred many times in the past 5000 years, often followed by centuries of economic, intellectual, and population decline. Many different natural and social phenomena have been invoked to explain specific collapses, but a general explanation remains elusive. Two important features seem to appear across societies that have collapsed: Ecological Strain and Economic Stratification. Our new model (Human And Nature DYnamics, HANDY) has just four equations that describe the evolution of Elites, Commoners, Nature, and Wealth. Mechanisms leading to collapse are discussed and the measure "Carrying Capacity" is developed and defined. The model shows that societal collapse can happen due to either one of two independent factors: (1) over-consumption of natural resources, and/or (2) deep inequity between Elites and Commoners. The model also portrays two distinct types of collapse: (i) collapse followed by recovery of nature, and (ii) full collapse. The model suggests that the estimation of Carrying Capacity is a practical means for early detection of a collapse. Collapse can be avoided, and population can reach a sustainable equilibrium, if the rate of depletion of nature is reduced to a sustainable level, and if resources are distributed in a reasonably equitable fashion.; A type-ii (full) collapse is shown in this figure. With high inequality and high depletion, societies are doomed to collapse. Wealth starts to decrease when population rises above the carrying capacity. The large gap between carrying capacity and its maximum is a result of depletion factor being much larger than the sustainable limit. ; It is possible to overshoot, oscillate, and eventually converge to an equilibrium, even in an inequitable society. However, it requires policies that control birth rates and inequality. Additionally, depletion (production) must be kept within a reasonable range.
Mashiko, T; Hiraoka, S; Nagashima, U; Tachikawa, M
2017-01-04
Gear-shaped amphiphile molecules (1) recently synthesized by Hiraoka et al. self-assemble into a hexameric structure, nanocubes (1 6 ), in 25% aqueous methanol due to a solvophobic effect. Here we have carried out molecular dynamic simulations to elucidate the stability of these hexameric capsules (1 6 and 2 6 ) in water, 25% aqueous methanol, and methanol. In all solvents, the 1 6 nanocubes are maintained for all trajectories. On the other hand, 2 6 was found to collapse for one trajectory in water and seven trajectories in 25% aqueous methanol. In a pure methanol solvent, 2 6 was found to collapse for all trajectories. The number of collapsed trajectories of 2 6 increased with the amount of methanol in the solvent. We therefore focused on the structure of the π-π stacking between pyridyl groups and the CH-π interactions between the methyl and pyridyl groups within the nanocube. Our study clearly shows the role played by the methanol solvent molecules in the assembly of the nanocube in terms of the substituent and solvent effects at the molecular level, and that these substituent and solvent effects are important for the self-assembly of the nanocubes.
Hydrophobic Collapse of Ubiquitin Generates Rapid Protein-Water Motions.
Wirtz, Hanna; Schäfer, Sarah; Hoberg, Claudius; Reid, Korey M; Leitner, David M; Havenith, Martina
2018-06-04
We report time-resolved measurements of the coupled protein-water modes of solvated ubiquitin during protein folding. Kinetic terahertz absorption (KITA) spectroscopy serves as a label-free technique for monitoring large scale conformational changes and folding of proteins subsequent to a sudden T-jump. We report here KITA measurements at an unprecedented time resolution of 500 ns, a resolution 2 orders of magnitude better than those of any previous KITA measurements, which reveal the coupled ubiquitin-solvent dynamics even in the initial phase of hydrophobic collapse. Complementary equilibrium experiments and molecular simulations of ubiquitin solutions are performed to clarify non-equilibrium contributions and reveal the molecular picture upon a change in structure, respectively. On the basis of our results, we propose that in the case of ubiquitin a rapid (<500 ns) initial phase of the hydrophobic collapse from the elongated protein to a molten globule structure precedes secondary structure formation. We find that these very first steps, including large-amplitude changes within the unfolded manifold, are accompanied by a rapid (<500 ns) pronounced change of the coupled protein-solvent response. The KITA response upon secondary structure formation exhibits an opposite sign, which indicates a distinct effect on the solvent-exposed surface.
Very Deep inside the SN 1987A Core Ejecta: Molecular Structures Seen in 3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abellán, F. J.; Marcaide, J. M.; Indebetouw, R.
2017-06-20
Most massive stars end their lives in core-collapse supernova explosions and enrich the interstellar medium with explosively nucleosynthesized elements. Following core collapse, the explosion is subject to instabilities as the shock propagates outward through the progenitor star. Observations of the composition and structure of the innermost regions of a core-collapse supernova provide a direct probe of the instabilities and nucleosynthetic products. SN 1987A in the Large Magellanic Cloud is one of very few supernovae for which the inner ejecta can be spatially resolved but are not yet strongly affected by interaction with the surroundings. Our observations of SN 1987A withmore » the Atacama Large Millimeter/submillimeter Array are of the highest resolution to date and reveal the detailed morphology of cold molecular gas in the innermost regions of the remnant. The 3D distributions of carbon and silicon monoxide (CO and SiO) emission differ, but both have a central deficit, or torus-like distribution, possibly a result of radioactive heating during the first weeks (“nickel heating”). The size scales of the clumpy distribution are compared quantitatively to models, demonstrating how progenitor and explosion physics can be constrained.« less
Cascading failures in interdependent networks with finite functional components
NASA Astrophysics Data System (ADS)
Di Muro, M. A.; Buldyrev, S. V.; Stanley, H. E.; Braunstein, L. A.
2016-10-01
We present a cascading failure model of two interdependent networks in which functional nodes belong to components of size greater than or equal to s . We find theoretically and via simulation that in complex networks with random dependency links the transition is first order for s ≥3 and continuous for s =2 . We also study interdependent lattices with a distance constraint r in the dependency links and find that increasing r moves the system from a regime without a phase transition to one with a second-order transition. As r continues to increase, the system collapses in a first-order transition. Each regime is associated with a different structure of domain formation of functional nodes.
Robust mitotic entry is ensured by a latching switch.
Tuck, Chloe; Zhang, Tongli; Potapova, Tamara; Malumbres, Marcos; Novák, Béla
2013-01-01
Cell cycle events are driven by Cyclin dependent kinases (CDKs) and by their counter-acting phosphatases. Activation of the Cdk1:Cyclin B complex during mitotic entry is controlled by the Wee1/Myt1 inhibitory kinases and by Cdc25 activatory phosphatase, which are themselves regulated by Cdk1:Cyclin B within two positive circuits. Impairing these two feedbacks with chemical inhibitors induces a transient entry into M phase referred to as mitotic collapse. The pathology of mitotic collapse reveals that the positive circuits play a significant role in maintaining the M phase state. To better understand the function of these feedback loops during G2/M transition, we propose a simple model for mitotic entry in mammalian cells including spatial control over Greatwall kinase phosphorylation. After parameter calibration, the model is able to recapture the complex and non-intuitive molecular dynamics reported by Potapova et al. (Potapova et al., 2011). Moreover, it predicts the temporal patterns of other mitotic regulators which have not yet been experimentally tested and suggests a general design principle of cell cycle control: latching switches buffer the cellular stresses which accompany cell cycle processes to ensure that the transitions are smooth and robust.
Substrate temperature controls molecular orientation in two-component vapor-deposited glasses
Jiang, J.; Walters, D. M.; Zhou, D.; ...
2016-02-22
Vapor-deposited glasses can be anisotropic and molecular orientation is important for organic electronics applications. In organic light emitting diodes (OLEDs), for example, the orientation of dye molecules in two-component emitting layers significantly influences emission efficiency. Here we investigate how substrate temperature during vapor deposition influences the orientation of dye molecules in a model two-component system. We determine the average orientation of a linear blue light emitter 1,4-di-[4-( N,N-diphenyl)amino]styrylbenzene (DSA-Ph) in mixtures with aluminum-tris(8-hydroxyquinoline) (Alq 3) by spectroscopic ellipsometry and IR dichroism. We find that molecular orientation is controlled by the ratio of the substrate temperature during deposition and the glassmore » transition temperature of the mixture. Furthermore, these findings extend recent results for single component vapor-deposited glasses and suggest that, during vapor deposition, surface mobility allows partial equilibration towards orientations preferred at the free surface of the equilibrium liquid.« less
The early evolution of protostellar disks
NASA Technical Reports Server (NTRS)
Stahler, Steven W.; Korycansky, D. G.; Brothers, Maxwell J.; Touma, Jihad
1994-01-01
We consider the origin and intital growth of the disks that form around protostars during the collapse of rotating molecular cloud cores. These disks are assumed to be inviscid and pressure free, and to have masses small compared to those of their central stars. We find that there exist three distinct components-an outer disk, in which shocked gas moves with comparable azimuthal and radical velocities; and inner disk, where material follows nearly circular orbits, but spirals slowly toward the star because of the drag exerted by adjacent onfalling matter, and a turbulent ring adjoining the first two regions. Early in the evolution, i.e., soon after infalling matter begins to miss the star, only the outer disk is present, and the total mass acceration rate onto the protostar is undiminished. Once the outer disk boundary grows to more than 2.9 times the stellar radius, first the ring, and then the inner disk appear. Thereafter, the radii of all three components expand as t(exp 3). The mass of the ring increase with time and is always 13% of the total mass that has fallen from the cloud. Concurrently with the buildup of the inner disk and ring, the accretion rate onto the star falls off. However, the protostellar mass continue to rise, asymptotically as t(exp 1/4). We calculated the radiated flux from the inner and outer disk components due to the release of gravitational potential energy. The flux from the inner disk is dominant and rises steeply toward the stellar surface. We also determine the surface temperature of the inner disk as a function of radius. The total disk luminosity decreases slowly with time, while the contributions from the ring and inner disk both fall as t(exp -2).
Purification and properties of pyrazon dioxygenase from pyrazon-degrading bacteria.
Sauber, K; Fröhner, C; Rosenberg, G; Eberspächer, J; Lingens, F
1977-03-15
Chromatography on DEAE-cellulose and gel filtration on Sephadex revealed that pyrazon dioxygenase from pyrazon-degrading bacteria consists of three different enzyme components. No component alone oxidizes the phenyl moiety of pyrazon, only when the three components are combined can oxidation be detected. Following electron paramagnetic resonance and ultraviolet measurements the protein nature of the three components was determined: component A1 (molecular weight about 180000,red-brown in colour) is an iron-sulphur protein. The existence of approximately two moles of iron and two moles of inorganic sulphur per mole of protein was demonstrated. This enzyme component was purified to homogeneity in disc electrophoresis. Component A2 is a yellow protein of a molecular weight of about 67000. FAD was shown to be the prosthetic group of this protein. Component B (molecular weight about 12000, brown in colour) is a protein of the ferredoxin type, which was purified to homogeneity, as demonstrated by disc electrophoresis. A hypothetical scheme for the cooperation of the three components is proposed: component A2 accepts as cosubstrate NADH and functions as a ferredoxin reductase. The ferredoxin, component B, has the function of an electron carrier. The conversion of the substrates is effected by component A1, the terminal dioxygenase.
Source Characterization of the 2015 Collapse in Gypsum Mine in Shandong, China
NASA Astrophysics Data System (ADS)
Yang, H.; Chu, R.; Sheng, M.
2016-12-01
Source parameters of mining earthquakes are essential to investigating pressure redistribution and accumulation due to underground excavation. On 25 December 2015, a local magnitude 4.0 earthquake occurred at 07:56:12 BJT in Pingyi County, China (latitude: 35.5°N, longitude: 117.7°E) with a depth of 0 km. This earthquake is caused by underground cave collapse. In this paper, we used sliding-window cross-correlation method to detect aftershocks of this event. The result indicates there are at least six aftershocks within ten minutes after the earthquake. Then we inverted focal mechanisms and depths of the mainshock and the largest aftershock with three-component broadband seismic waveform data recorded by the National Seismic Network. We use the generalized Cut-and-Paste (gCAP) method to obtain their moment tensors, which allows for a characterization of the relative amounts of deviatoric and isotropic source components. This gCAP method divides three component waveforms into Pnl and surface wave segments, and allows adjustable time shifts between observed and synthetic data, so that it reduces the influence of uncertainties in the 1-D velocity model. The results show that both events have similar focal mechanisms, which contains obvious non-double-couple component with a large proportion of isotropic source component. The mechanisms are dominated by 80% implosive isotropic energy and 20% thrusting double couple energy. Such mechanisms might be explained by an asymmetric collapse of the mine cavity due to unevenly distributed in situ stresses, sympathetic shear on a roof fault, or between the roof and floor of the mine.
Dynamics of bubble collapse under vessel confinement in 2D hydrodynamic experiments
NASA Astrophysics Data System (ADS)
Shpuntova, Galina; Austin, Joanna
2013-11-01
One trauma mechanism in biomedical treatment techniques based on the application of cumulative pressure pulses generated either externally (as in shock-wave lithotripsy) or internally (by laser-induced plasma) is the collapse of voids. However, prediction of void-collapse driven tissue damage is a challenging problem, involving complex and dynamic thermomechanical processes in a heterogeneous material. We carry out a series of model experiments to investigate the hydrodynamic processes of voids collapsing under dynamic loading in configurations designed to model cavitation with vessel confinement. The baseline case of void collapse near a single interface is also examined. Thin sheets of tissue-surrogate polymer materials with varying acoustic impedance are used to create one or two parallel material interfaces near the void. Shadowgraph photography and two-color, single-frame particle image velocimetry quantify bubble collapse dynamics including jetting, interface dynamics and penetration, and the response of the surrounding material. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading.''
Shi, Wenxiong
2016-01-01
The super-saturated surfactant monolayer collapses with the nanoparticles (NPs) at the water/trichloroethylene (TCE) interface are investigated using molecular dynamics (MD) simulations. The results show that sodium alkyl sulfate (SDS) monolayer collapse is initiated by buckling and followed primarily by budding and the bud encapsulating the NPs and oil molecules. The developed bud detaches from the monolayer into a water phase and forms the swollen micelle emulsion with NPs and oil molecules. We investigate the wavelength of the initial budding and the theoretical description of the budding process. The wavelength of the monolayer increases with bending modulus. The energy barrier of the budding can be easily overcome by thermal fluctuation energy, which indicates that budding process proceeds rapidly. PMID:27853312
NASA Astrophysics Data System (ADS)
Shi, Wenxiong
2016-11-01
The super-saturated surfactant monolayer collapses with the nanoparticles (NPs) at the water/trichloroethylene (TCE) interface are investigated using molecular dynamics (MD) simulations. The results show that sodium alkyl sulfate (SDS) monolayer collapse is initiated by buckling and followed primarily by budding and the bud encapsulating the NPs and oil molecules. The developed bud detaches from the monolayer into a water phase and forms the swollen micelle emulsion with NPs and oil molecules. We investigate the wavelength of the initial budding and the theoretical description of the budding process. The wavelength of the monolayer increases with bending modulus. The energy barrier of the budding can be easily overcome by thermal fluctuation energy, which indicates that budding process proceeds rapidly.
Metallic Li colloids studied by Li-7 MAS NMR in electron-irradiated LiF
NASA Astrophysics Data System (ADS)
Zogal, O. J.; Beuneu, F.; Vajda, P.; Florian, P.; Massiot, D.
Li-7 MAS NMR spectra of 2.5 MeV electron-irradiated LiF crystals have been measured in a field of 9.4 T. Besides the resonance line of the ionic compound, a second well-separated spectrum is observed in the region of the Knight shift value for metallic lithium. At room temperature, the latter can be decomposed into two components with different Knight shift and linewidth values. When the temperature is increased, line narrowing takes place at first, indicating shortening of correlation times for self-diffusion, independently in both components. Above 370 K, both lines broaden and approach each other before collapsing into a single line. The high ppm component disappears after crossing the melting temperature of metallic lithium (454 K). The two lines are attributed to different types of metallic Li: one to bulk-like metal, the other to Li present initially under pressure and relaxing to the former under thermal treatment.
NASA Astrophysics Data System (ADS)
Bowler, Brendan P.; Hillenbrand, Lynne A.
2015-10-01
We present Keck/NIRC2 and OSIRIS near-infrared imaging and spectroscopy of 2M0441+2301 AabBab, a young (1-3 Myr) hierarchical quadruple system comprising a low-mass star, two brown dwarfs, and a planetary-mass companion in Taurus. All four components show spectroscopic signs of low surface gravity, and both 2M0441+2301 Aa and Ab possess Paβ emission indicating they each harbor accretion subdisks. Astrometry spanning 2008-2014 reveals orbital motion in both the Aab (0.″23 separation) and Bab (0.″095 separation) pairs, although the implied orbital periods of >300 years mean dynamical masses will not be possible in the near future. The faintest component (2M0441+2301 Bb) has an angular H-band shape, strong molecular absorption (VO, CO, H2O, and FeH), and shallow alkali lines, confirming its young age, late spectral type (L1 ± 1), and low temperature (≈1800 K). With individual masses of {200}-50+100 MJup, 35 ± 5 MJup, 19 ± 3 MJup, and 9.8 ± 1.8 MJup, 2M0441+2301 AabBab is the lowest-mass quadruple system known. Its hierarchical orbital architecture and mass ratios imply that it formed from the collapse and fragmentation of a molecular cloud core, demonstrating that planetary-mass companions can originate from a stellar-like pathway analogous to higher-mass quadruple star systems as first speculated by Todorov et al. More generally, cloud fragmentation may be an important formation pathway for the massive exoplanets that are now regularly being imaged on wide orbits. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Force loading explains spatial sensing of ligands by cells
NASA Astrophysics Data System (ADS)
Oria, Roger; Wiegand, Tina; Escribano, Jorge; Elosegui-Artola, Alberto; Uriarte, Juan Jose; Moreno-Pulido, Cristian; Platzman, Ilia; Delcanale, Pietro; Albertazzi, Lorenzo; Navajas, Daniel; Trepat, Xavier; García-Aznar, José Manuel; Cavalcanti-Adam, Elisabetta Ada; Roca-Cusachs, Pere
2017-12-01
Cells can sense the density and distribution of extracellular matrix (ECM) molecules by means of individual integrin proteins and larger, integrin-containing adhesion complexes within the cell membrane. This spatial sensing drives cellular activity in a variety of normal and pathological contexts. Previous studies of cells on rigid glass surfaces have shown that spatial sensing of ECM ligands takes place at the nanometre scale, with integrin clustering and subsequent formation of focal adhesions impaired when single integrin-ligand bonds are separated by more than a few tens of nanometres. It has thus been suggested that a crosslinking ‘adaptor’ protein of this size might connect integrins to the actin cytoskeleton, acting as a molecular ruler that senses ligand spacing directly. Here, we develop gels whose rigidity and nanometre-scale distribution of ECM ligands can be controlled and altered. We find that increasing the spacing between ligands promotes the growth of focal adhesions on low-rigidity substrates, but leads to adhesion collapse on more-rigid substrates. Furthermore, disordering the ligand distribution drastically increases adhesion growth, but reduces the rigidity threshold for adhesion collapse. The growth and collapse of focal adhesions are mirrored by, respectively, the nuclear or cytosolic localization of the transcriptional regulator protein YAP. We explain these findings not through direct sensing of ligand spacing, but by using an expanded computational molecular-clutch model, in which individual integrin-ECM bonds—the molecular clutches—respond to force loading by recruiting extra integrins, up to a maximum value. This generates more clutches, redistributing the overall force among them, and reducing the force loading per clutch. At high rigidity and high ligand spacing, maximum recruitment is reached, preventing further force redistribution and leading to adhesion collapse. Measurements of cellular traction forces and actin flow speeds support our model. Our results provide a general framework for how cells sense spatial and physical information at the nanoscale, precisely tuning the range of conditions at which they form adhesions and activate transcriptional regulation.
Physical conditions in star-forming regions around S235
NASA Astrophysics Data System (ADS)
Kirsanova, M. S.; Wiebe, D. S.; Sobolev, A. M.; Henkel, C.; Tsivilev, A. P.
2014-01-01
Gas density and temperature in star-forming regions around Sh2-235 are derived from ammonia line observations. This information is used to evaluate formation scenarios and to determine evolutionary stages of the young embedded clusters S235 East 1, S235 East 2 and S235 Central. We also estimate the gas mass in the embedded clusters and its ratio to the stellar mass. S235 East 1 appears to be less evolved than S235 East 2 and S235 Central. In S235 East 1 the molecular gas mass exceeds that in the other clusters. Also, this cluster is more embedded in the parent gas cloud than the other two. Comparison with a theoretical model shows that the formation of these three clusters could have been stimulated by the expansion of the Sh2-235 H II region (hereafter S235) via a collect-and-collapse process, provided the density in the surrounding gas exceeds 3 × 103 cm-3, or via collapse of pre-existing clumps. The expansion of S235 cannot be responsible for star formation in the southern S235 A-B region. However, formation of the massive stars in this region might have been triggered by a large-scale supernova shock. Thus, triggered star formation in the studied region may come in three varieties, namely collect-and-collapse and collapse of pre-existing clumps, both initiated by expansion of the local H II regions, and triggered by an external large-scale shock. We argue that the S235 A H II region expands into a highly non-uniform medium with increasing density. It is too young to trigger star formation in its vicinity by a collect-and-collapse process. There is an age spread inside the S235 A-B region. Massive stars in the S235 A-B region are considerably younger than lower mass stars in the same area. This follows from the estimates of their ages and the ages of associated H II regions.
NASA Astrophysics Data System (ADS)
Boss, Alan P.
2002-04-01
Recent observations of star-forming regions suggest that binary and multiple young stars are the rule rather than the exception and implicate fragmentation as the likely mechanism for their formation. Most numerical hydrodynamic calculations of fragmentation have neglected the possibly deleterious effects of magnetic fields, despite ample evidence for the importance of magnetic support of precollapse clouds. We present here the first numerical hydrodynamic survey of the collapse and fragmentation of initially magnetically supported clouds that takes into account several magnetic field effects in an approximate manner. The models are calculated with a three-dimensional, finite differences code that solves the equations of hydrodynamics, gravitation, and radiative transfer in the Eddington and diffusion approximations. Magnetic field effects are included through two simple approximations: magnetic pressure is added to the gas pressure, and magnetic tension is approximated by gravity dilution once collapse is well underway. Ambipolar diffusion of the magnetic field leading to cloud collapse is treated approximately as well. Models are calculated for a variety of initial cloud density profiles, shapes, and rotation rates. We find that in spite of the inclusion of magnetic field effects, dense cloud cores are capable of fragmenting into binary and multiple protostar systems. Initially prolate clouds tend to fragment into binary protostars, while initially oblate clouds tend to fragment into multiple protostar systems containing a small number (of the order of 4) of fragments. The latter are likely to be subject to rapid orbital evolution, with close encounters possibly leading to the ejection of fragments. Contrary to expectation, magnetic tension effects appear to enhance fragmentation, allowing lower mass fragments to form than would otherwise be possible, because magnetic tension helps to prevent a central density singularity from forming and producing a dominant single object. Magnetically supported dense cloud cores thus seem to be capable of collapsing and fragmenting into sufficient numbers of binary and multiple protostar systems to be compatible with observations of the relative rarity of single protostars.
3-D Waveform Modeling of the 11 September 2001 World Trade Center Collapse Events in New York City
NASA Astrophysics Data System (ADS)
Yoo, S.; Rhie, J.; Kim, W.
2010-12-01
The seismic signals from collapse of the twin towers of World Trade Center (WTC), NYC were well recorded by the seismographic stations in the northeastern United States. The building collapse can be represented by a vertical single force which does not generate tangential component seismic signals during the source process. The waveforms recorded by the Basking Ridge, NJ (BRNJ) station located due west of the WTC site show that the amplitude on tangential component is negligible and indicates that a vertical single force assumption is valid and the velocity structure is more or less homogeneous along the propagation path. However, 3-component seismograms recorded at Palisades, NY (PAL), which is located 33.8 km due north of the WTC site along the Hudson River (azimuth = 15.2°), show abnormal features. The amplitude on tangential component is larger than on vertical- or on radial-component. This observation may be attributable to the complex energy conversion between Rayleigh and Love waves due to the strong low velocity anomaly associated with unconsolidated sediments under the Hudson River. To test the effects of the low velocity anomaly on the enhanced amplitude in tangential component, we developed a 3D velocity model by considering local geology such as unconsolidated sediment layer, Palisades sill, Triassic sandstone, and crystalline basement and simulated waveforms at PAL. The preliminary synthetic results show that 3D velocity structure can significantly enhance the amplitude in tangential component but it is not as large as the observation. Although a more precise 3D model is required to better explain the observations, our results confirm that the low velocity layer under the Hudson River can enhance the amplitude in tangential component at PAL. This result suggests that a good understanding of the amplitude enhancements for specific event-site pairs may be important to evaluate seismic hazard of metropolitan New York City.
Round-the-table teaching: a novel approach to resuscitation education.
McGarvey, Kathryn; Scott, Karen; O'Leary, Fenton
2014-10-01
Effective cardiopulmonary resuscitation saves lives. Health professionals who care for acutely unwell children need to be prepared to care for a child in arrest. Hospitals must ensure that their staff have the knowledge, confidence and ability to respond to a child in cardiac arrest. RESUS4KIDS is a programme designed to teach paediatric resuscitation to health care professionals who care for acutely unwell children. The programme is delivered in two components: an e-learning component for pre-learning, followed by a short, practical, face-to-face course that is taught using the round-the-table teaching approach. Round-the-table teaching is a novel, evidence-based small group teaching approach designed to teach paediatric resuscitation skills and knowledge. Round-the-table teaching uses a structured approach to managing a collapsed child, and ensures that each participant has the opportunity to practise the essential resuscitation skills of airway manoeuvres, bag mask ventilation and cardiac compressions. Round-the-table teaching is an engaging, non-threatening approach to delivering interdisciplinary paediatric resuscitation education. The methodology ensures that all participants have the opportunity to practise each of the different essential skills associated with the Danger, Response, Send for help, Airway, Breathing, Circulation, Defibrillation or rhythm recognition (DRSABCD) approach to the collapsed child. Round-the-table teaching is based on evidence-based small group teaching methods. The methodology of round-the-table teaching can be applied to any topic where participants must demonstrate an understanding of a sequential approach to a clinical skill. Round-the-table teaching uses a structured approach to managing a collapsed child. © 2014 The Authors. The Clinical Teacher published by Association for the Study of Medical Education and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Yang, R. L.; Zheng, Y. P.; Wang, T. Y.; Li, P. P.; Wang, Y. D.; Yao, D. D.; Chen, L. X.
2018-01-01
A series of core/shell nanoparticle organic/inorganic hybrid materials (NOHMs) with different weight ratios of two components, consisting of multi-walled carbon nanotubes (MWCNTs) and silicon dioxide (SiO2) as the core were synthesized. The NOHMs display a liquid-like state in the absence of solvent at room temperature. Five NOHMs were categorized into three kinds of structure states based on different weight ratio of two components in the core, named the power strip model, the critical model and the collapse model. The capture capacities of these NOHMs for CO2 were investigated at 298 K and CO2 pressures ranging from 0 to 5 MPa. Compared with NOHMs having a neat MWCNT core, it was revealed that NOHMs with the power strip model show better adsorption capacity toward CO2 due to its lower viscosity and more reactive groups that can react with CO2. In addition, the capture capacities of NOHMs with the critical model were relatively worse than the neat MWCNT-based NOHM. The result is attributed to the aggregation of SiO2 in these samples, which may cause the consumption and hindrance of reactive groups. However, the capture capacity of NOHMs with the collapse model was the worst of all the NOHMs, owing to its lowest content of reactive groups and hollow structure in MWCNTs. In addition, they presented non-interference of MWCNTs and SiO2 without aggregation state.
NASA Astrophysics Data System (ADS)
Lin, Yuxin; Liu, Hauyu Baobab; Li, Di; Zhang, Zhi-Yu; Ginsburg, Adam; Pineda, Jaime E.; Qian, Lei; Galván-Madrid, Roberto; McLeod, Anna Faye; Rosolowsky, Erik; Dale, James E.; Immer, Katharina; Koch, Eric; Longmore, Steve; Walker, Daniel; Testi, Leonardo
2016-09-01
We have developed an iterative procedure to systematically combine the millimeter and submillimeter images of OB cluster-forming molecular clouds, which were taken by ground-based (CSO, JCMT, APEX, and IRAM-30 m) and space telescopes (Herschel and Planck). For the seven luminous (L\\gt {10}6 L ⊙) Galactic OB cluster-forming molecular clouds selected for our analyses, namely W49A, W43-Main, W43-South, W33, G10.6-0.4, G10.2-0.3, and G10.3-0.1, we have performed single-component, modified blackbody fits to each pixel of the combined (sub)millimeter images, and the Herschel PACS and SPIRE images at shorter wavelengths. The ˜10″ resolution dust column density and temperature maps of these sources revealed dramatically different morphologies, indicating very different modes of OB cluster-formation, or parent molecular cloud structures in different evolutionary stages. The molecular clouds W49A, W33, and G10.6-0.4 show centrally concentrated massive molecular clumps that are connected with approximately radially orientated molecular gas filaments. The W43-Main and W43-South molecular cloud complexes, which are located at the intersection of the Galactic near 3 kpc (or Scutum) arm and the Galactic bar, show a widely scattered distribution of dense molecular clumps/cores over the observed ˜10 pc spatial scale. The relatively evolved sources G10.2-0.3 and G10.3-0.1 appear to be affected by stellar feedback, and show a complicated cloud morphology embedded with abundant dense molecular clumps/cores. We find that with the high angular resolution we achieved, our visual classification of cloud morphology can be linked to the systematically derived statistical quantities (I.e., the enclosed mass profile, the column density probability distribution function (N-PDF), the two-point correlation function of column density, and the probability distribution function of clump/core separations). In particular, the massive molecular gas clumps located at the center of G10.6-0.4 and W49A, which contribute to a considerable fraction of their overall cloud masses, may be special OB cluster-forming environments as a direct consequence of global cloud collapse. These centralized massive molecular gas clumps also uniquely occupy much higher column densities than what is determined by the overall fit of power-law N-PDF. We have made efforts to archive the derived statistical quantities of individual target sources, to permit comparisons with theoretical frameworks, numerical simulations, and other observations in the future.
High-speed cylindrical collapse of two perfect fluids
NASA Astrophysics Data System (ADS)
Sharif, M.; Ahmad, Zahid
2007-09-01
In this paper, the study of the gravitational collapse of cylindrically distributed two perfect fluid system has been carried out. It is assumed that the collapsing speeds of the two fluids are very large. We explore this condition by using the high-speed approximation scheme. There arise two cases, i.e., bounded and vanishing of the ratios of the pressures with densities of two fluids given by c s , d s . It is shown that the high-speed approximation scheme breaks down by non-zero pressures p 1, p 2 when c s , d s are bounded below by some positive constants. The failure of the high-speed approximation scheme at some particular time of the gravitational collapse suggests the uncertainty on the evolution at and after this time. In the bounded case, the naked singularity formation seems to be impossible for the cylindrical two perfect fluids. For the vanishing case, if a linear equation of state is used, the high-speed collapse does not break down by the effects of the pressures and consequently a naked singularity forms. This work provides the generalisation of the results already given by Nakao and Morisawa (Prog Theor Phys 113:73, 2005) for the perfect fluid.
NASA Astrophysics Data System (ADS)
Petit, Olivier; Kuper, Marcel; López-Gunn, Elena; Rinaudo, Jean-Daniel; Daoudi, Ali; Lejars, Caroline
2017-09-01
The aim of this paper is to investigate the notion of collapse of agricultural groundwater economies using the adaptive-cycle analytical framework. This framework was applied to four case studies in southern Europe and North Africa to question and discuss the dynamics of agricultural groundwater economies. In two case studies (Saiss in Morocco and Clain basin in France), the imminent physical or socio-economic collapse was a major concern for stakeholders and the early signs of collapse led to re-organization of the groundwater economy. In the other two cases (Biskra in Algeria and Almeria in Spain), collapse was either not yet a concern or had been temporarily resolved through increased efficiency and access to additional water resources. This comparative analysis shows the importance of taking the early signs of collapse into account. These signs can be either related to resource depletion or to environmental and socio-economic impacts. Beyond these four case studies, the large number of groundwater economies under threat in (semi-)arid areas should present a warning regarding their possible collapse. Collapse can have severe and irreversible consequences in some cases, but it can also mean new opportunities and changes.
NASA Astrophysics Data System (ADS)
Padilla Espinosa, Ingrid Marcela
Concrete is a hierarchical composite material with a random structure over a wide range of length scales. At submicron length scale the main component of concrete is cement paste, formed by the reaction of Portland cement clinkers and water. Cement paste acts as a binding matrix for the other components and is responsible for the strength of concrete. Cement paste microstructure contains voids, hydrated and unhydrated cement phases. The main crystalline phases of unhydrated cement are tri-calcium silicate (C3S) and di-calcium silicate (C2S), and of hydrated cement are calcium silicate hydrate (CSH) and calcium hydroxide (CH). Although efforts have been made to comprehend the chemical and physical nature of cement paste, studies at molecular level have primarily been focused on individual components. Present research focuses on the development of a method to model, at molecular level, and analysis of the two-phase combination of hydrated and unhydrated phases of cement paste as macromolecular systems. Computational molecular modeling could help in understanding the influence of the phase interactions on the material properties, and mechanical performance of cement paste. Present work also strives to create a framework for molecular level models suitable for potential better comparisons with low length scale experimental methods, in which the sizes of the samples involve the mixture of different hydrated and unhydrated crystalline phases of cement paste. Two approaches based on two-phase cement paste macromolecular structures, one involving admixed molecular phases, and the second involving cluster of two molecular phases are investigated. The mechanical properties of two-phase macromolecular systems of cement paste consisting of key hydrated phase CSH and unhydrated phases C3S or C2S, as well as CSH with the second hydrated phase CH were calculated. It was found that these cement paste two-phase macromolecular systems predicted an isotropic material behavior. Also, these systems exhibited a high bulk modulus, compared to the elastic modulus. These results are an indication and concur with the high compression strength of cement paste seen at engineering length scale. In addition, the bulk modulus of two-phase systems consisting of hydrated CSH and unhydrated C3S or C2S was found to increase with higher levels of unhydrated components. The interaction energies of two-phase cement paste molecular structures studied in the present work were calculated, showing that a higher interaction is attained when the two phases are admixed as small components instead of cluster of phases. Finally, the mechanical behavior under shear deformation was predicted by using a quasi-static deformation method and analyzed for a representative two-phase (CSH and C2S) macromolecular structure of cement paste.
NASA Technical Reports Server (NTRS)
Thejappa, G.; MacDowall, R. J.; Bergamo, M.
2012-01-01
The four wave interaction process, known as the oscillating two stream instability (OTSI) is considered as one of the mechanisms responsible for stabilizing the electron beams associated with solar type III radio bursts. It has been reported that (1) an intense localized Langmuir wave packet associated with a type III burst contains the spectral characteristics of the OTSI: (a) a resonant peak at the local electron plasma frequency, f(sub pe), (b) a Stokes peak at a frequency slightly lower than f(sub pe), (c) anti-Stokes peak at a frequency slightly higher than f(sub pe), and (d) a low frequency enhancement below a few hundred Hz, (2) the frequencies and wave numbers of these spectral components satisfy the resonance conditions of the OTSI, and (3) the peak intensity of the wave packet is well above the thresholds for the OTSI as well as spatial collapse of envelope solitons. Here, for the first time, applying the trispectral analysis on this wave packet, we show that the tricoherence, which measures the degree of coherent four-wave coupling amongst the observed spectral components exhibits a peak. This provides an additional evidence for the OTSI and related spatial collapse of Langmuir envelope solitons in type III burst sources.
Gravitational collapse of conventional polytropic cylinder
NASA Astrophysics Data System (ADS)
Lou, Yu-Qing; Hu, Xu-Yao
2017-07-01
In reference to general polytropic and conventional polytropic hydrodynamic cylinders of infinite length with axial uniformity and axisymmetry under self-gravity, the dynamic evolution of central collapsing mass string in free-fall dynamic accretion phase is re-examined in details. We compare the central mass accretion rate and the envelope mass infall rate at small radii. Among others, we correct mistakes and typos of Kawachi & Hanawa (KH hereafter) and in particular prove that their key asymptotic free-fall solution involving polytropic index γ in the two power exponents is erroneous by analytical analyses and numerical tests. The correct free-fall asymptotic solutions at sufficiently small \\hat{r} (the dimensionless independent self-similar variable) scale as {˜ } -|ln \\hat{r}|^{1/2} in contrast to KH's ˜ -|ln \\hat{r}|^{(2-γ )/2} for the reduced bulk radial flow velocity and as {˜ } \\hat{r}^{-1}|ln \\hat{r}|^{-1/2} in contrast to KH's {˜ } \\hat{r}^{-1} |ln \\hat{r}|^{-(2-γ )/2} for the reduced mass density. We offer consistent scenarios for numerical simulation code testing and theoretical study on dynamic filamentary structure formation and evolution as well as pertinent stability properties. Due to unavoidable Jeans instabilities along the cylinder, such collapsing massive filaments or strings can further break up into clumps and segments of various lengths as well as clumps embedded within segments and evolve into chains of gravitationally collapsed objects (such as gaseous planets, brown dwarfs, protostars, white dwarfs, neutron stars, black holes in a wide mass range, globular clusters, dwarf spheroidals, galaxies, galaxy clusters and even larger mass reservoirs etc.) in various astrophysical and cosmological contexts as articulated by Lou & Hu recently. As an example, we present a model scheme for comparing with observations of molecular filaments for forming protostars, brown dwarfs and gaseous planets and so forth.
Cole, P.D.; Calder, E.S.; Druitt, T.H.; Hoblitt, R.; Robertson, R.; Sparks, R.S.J.; Young, S.R.
1998-01-01
Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9 ?? 106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated pyroclastic flow productivity and sustained dome collapse events are linked to pulses of high magma extrusion rates.Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9??106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated dome pyroclastic flow productivity and sustained collapse events are linked to pulses of high magma extrusion rates.
Mitochondrial N-formyl peptides induce cardiovascular collapse and sepsis-like syndrome
McCarthy, Cameron G.; Szasz, Theodora; Goulopoulou, Styliani; Webb, R. Clinton
2015-01-01
Fifty percent of trauma patients who present sepsis-like syndrome do not have bacterial infections. This condition is known as systemic inflammatory response syndrome (SIRS). A unifying factor of SIRS and sepsis is cardiovascular collapse. Trauma and severe blood loss cause the release of endogenous molecules known as damage-associated molecular patterns. Mitochondrial N-formyl peptides (F-MIT) are damage-associated molecular patterns that share similarities with bacterial N-formylated peptides and are potent immune system activators. The goal of this study was to investigate whether F-MIT trigger SIRS, including hypotension and vascular collapse via formyl peptide receptor (FPR) activation. We evaluated cardiovascular parameters in Wistar rats treated with FPR or histamine receptor antagonists and inhibitors of the nitric oxide pathway before and after F-MIT infusion. F-MIT, but not nonformylated peptides or mitochondrial DNA, induced severe hypotension via FPR activation and nitric oxide and histamine release. Moreover, F-MIT infusion induced hyperthermia, blood clotting, and increased vascular permeability. To evaluate the role of leukocytes in F-MIT-induced hypotension, neutrophil, basophil, or mast cells were depleted. Depletion of basophils, but not neutrophils or mast cells, abolished F-MIT-induced hypotension. Rats that underwent hemorrhagic shock increased plasma levels of mitochondrial formylated proteins associated with lung damage and antagonism of FPR ameliorated hemorrhagic shock-induced lung injury. Finally, F-MIT induced vasodilatation in isolated resistance arteries via FPR activation; however, F-MIT impaired endothelium-dependent relaxation in the presence of blood. These data suggest that F-MIT may be the link among trauma, SIRS, and cardiovascular collapse. PMID:25637548
Polyatomic molecular Dirac-Hartree-Fock calculations with Gaussian basis sets
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.; Faegri, Knut, Jr.; Taylor, Peter R.
1990-01-01
Numerical methods have been used successfully in atomic Dirac-Hartree-Fock (DHF) calculations for many years. Some DHF calculations using numerical methods have been done on diatomic molecules, but while these serve a useful purpose for calibration, the computational effort in extending this approach to polyatomic molecules is prohibitive. An alternative more in line with traditional quantum chemistry is to use an analytical basis set expansion of the wave function. This approach fell into disrepute in the early 1980's due to problems with variational collapse and intruder states, but has recently been put on firm theoretical foundations. In particular, the problems of variational collapse are well understood, and prescriptions for avoiding the most serious failures have been developed. Consequently, it is now possible to develop reliable molecular programs using basis set methods. This paper describes such a program and reports results of test calculations to demonstrate the convergence and stability of the method.
Pairing of one-dimensional Bose-Fermi mixtures with unequal masses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzi, Matteo; Max Planck Institut fuer QuantenOptik, Hans Kopfermann Strasse 1, D-85748 Garching; Imambekov, Adilet
We have considered one-dimensional Bose-Fermi mixture with equal densities and unequal masses using numerical density matrix renormalization group. For the mass ratio of K-Rb mixture and attraction between bosons and fermions, we determined the phase diagram. For weak boson-boson interactions, there is a direct transition between two-component Luttinger liquid and collapsed phases as the boson-fermion attraction is increased. For strong enough boson-boson interactions, we find an intermediate 'paired' phase, which is a single-component Luttinger liquid of composite particles. We investigated correlation functions of such a 'paired' phase, studied the stability of 'paired' phase to density imbalance, and discussed various experimentalmore » techniques which can be used to detect it.« less
Ultrafast Nonlinear Response of Atomic and Molecular Gases in Near-IR and Mid-IR Regions
NASA Astrophysics Data System (ADS)
Zahedpour Anaraki, Sina
There is a dynamical interaction between an ultrashort laser pulse and the medium it propagates through. At the shortest timescales, the near-instantaneous electronic response of the medium contributes to an induced polarization nonlinearity. On a longer timescale, the vibrational response can contribute, followed on even longer timescales by the rotational response. One of the major consequences of these nonlinearities is that they can induce the collapse and filamentation of the laser pulse, leading to ionization and plasma generation. In this dissertation, measurements and theory are presented for both the fundamental atomic and molecular nonlinearities themselves (electronic, rovibrational, and ionization rates) in the range lambda=400nm-2600nm, and their applications. The media investigated are air constituents (Ar, N 2, O2), H2, D2, and common transparent optical materials. In particular, in one application it is shown that in molecular gases like N2 and O2, the propagating laser electric field can pump a rotational wavepacket, producing molecular ensembles with both transient and long-lived ("permanent") alignment components. This alignment, which generates quantum echoes (rotational revivals), can interact with the pulse that generated it (rotational nonlinearity) and with any pulses that may follow. We show that a properly timed train of ultrashort laser pulses can resonate with the rotational revivals, causing a "permanent" alignment in the gas which thermalizes and then drives a strong hydrodynamic response which can exceed that from the plasma heating by a filament.
Angeletti, M; Pucciarelli, S; Priori, A M; Canofeni, S; Barra, D; Fioretti, E; Coletta, M
2001-02-01
Two haemoglobin components have been identified and purified from fallow-deer (Dama dama) erythrocytes. They are present in similar amounts and the two tetrameric molecules share the same alpha chain, while two different beta chains are detected in the two components. The beta chains differ by 14 residues, even though they both have 145 amino-acid residues, which account for a molecular mass of 16,023 and 16,064 Da, respectively, while alpha chain has 141 residues, yielding a molecular mass of 15,142 Da. Compared with human Hb, the N-terminal region of both beta chains shows deletion of Val beta 1 and the replacement of His beta 2 by a methionyl residue, a modification which is common to most ruminant haemoglobins. Although both isolated components show a low intrinsic affinity for oxygen, meaningful differences between the two haemoglobins have been found with respect to the effect of heterotropic effectors, such as 2,3-diphosphoglycerate and chloride ions. In view of the high sequence homology between the two components, the different effect of heterotropic ligands has been tentatively correlated to possible localized structural variations between beta chains of the two haemoglobin components.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corpuz, A.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Loew, K.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, K. N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Santamaria, L.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-11-01
We present results from a search for gravitational-wave bursts coincident with two core-collapse supernovae observed optically in 2007 and 2011. We employ data from the Laser Interferometer Gravitational-wave Observatory (LIGO), the Virgo gravitational-wave observatory, and the GEO 600 gravitational-wave observatory. The targeted core-collapse supernovae were selected on the basis of (1) proximity (within approximately 15 Mpc), (2) tightness of observational constraints on the time of core collapse that defines the gravitational-wave search window, and (3) coincident operation of at least two interferometers at the time of core collapse. We find no plausible gravitational-wave candidates. We present the probability of detecting signals from both astrophysically well-motivated and more speculative gravitational-wave emission mechanisms as a function of distance from Earth, and discuss the implications for the detection of gravitational waves from core-collapse supernovae by the upgraded Advanced LIGO and Virgo detectors.
NASA Technical Reports Server (NTRS)
Koening, X. P.; Leisawitz, D. T.
2014-01-01
We present an assessment of the performance of WISE and the AllWISE data release in a section of the Galactic Plane. We lay out an approach to increasing the reliability of point source photometry extracted from the AllWISE catalog in Galactic Plane regions using parameters provided in the catalog. We use the resulting catalog to construct a new, revised young star detection and classification scheme combining WISE and 2MASS near and mid-infrared colors and magnitudes and test it in a section of the Outer Milky Way. The clustering properties of the candidate Class I and II stars using a nearest neighbor density calculation and the two-point correlation function suggest that the majority of stars do form in massive star forming regions, and any isolated mode of star formation is at most a small fraction of the total star forming output of the Galaxy. We also show that the isolated component may be very small and could represent the tail end of a single mechanism of star formation in line with models of molecular cloud collapse with supersonic turbulence and not a separate mode all to itself.
Spin crossover in solid and liquid (Mg,Fe)O at extreme conditions
NASA Astrophysics Data System (ADS)
Stixrude, Lars; Holmstrom, Eero
Ferropericlase, (Mg,Fe)O, is a major constituent of the Earth's lower mantle (24-136 GPa). Understanding the properties of this component is important not only in the solid state, but also in the molten state, as the planet almost certainly hosted an extensive magma ocean initially. With increasing pressure, the Fe ions in the material begin to collapse from a magnetic to a nonmagnetic spin state. This crossover affects thermodynamic, transport, and electrical properties. Using first-principles molecular dynamics simulations, thermodynamic integration, and adiabatic switching, we present a phase diagram of the spin crossover. In both solid and liquid, we find a broad pressure range of coexisting magnetic and non-magnetic ions due to the favorable enthalpy of mixing of the two. In the solid increasing temperature favors the high spin state, while in the liquid the opposite occurs, due to the higher electronic entropy of the low spin state. Because the physics of the crossover differ in solid and liquid, melting produces a large change in spin state that may affect the buoyancy of crystals freezing from the magma ocean in the earliest Earth. This research was supported by the European Research Council under Advanced Grant No. 291432 ``MoltenEarth'' (FP7/2007-2013).
Void collapse under distributed dynamic loading near material interfaces
NASA Astrophysics Data System (ADS)
Shpuntova, Galina; Austin, Joanna
2012-11-01
Collapsing voids cause significant damage in diverse applications from biomedicine to underwater propulsion to explosives. While shock-induced void collapse has been studied extensively, less attention has been devoted to stress wave loading, which will occur instead if there are mechanisms for wave attenuation or if the impact velocity is relatively low. A set of dynamic experiments was carried out in a model experimental setup to investigate the effect of acoustic heterogeneities in the surrounding medium on void collapse. Two tissue-surrogate polymer materials of varying acoustic properties were used to create flowfield geometries involving a boundary and a void. A stress wave, generated by projectile impact, triggered void collapse in the gelatinous polymer medium. When the length scales of features in the flow field were on the same order of magnitude as the stress wave length scale, the presence of the boundary was found to affect the void collapse process relative to collapse in the absence of a boundary. This effect was quantified for a range of geometries and impact conditions using a two-color, single-frame particle image velocimetry technique. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading'' with Prof. Henning Winter as Program Manager.
Kortright, Jeffrey Barrett; Sun, Jing; Spencer, Ryan K.; ...
2016-12-14
The evolution of molecular morphology in bulk samples of comb diblock copolymer pNdc 12-b-pNte 21 across the lamellar order-disorder transition (ODT) is studied using resonant x-ray scattering at the oxygen K edge, with the goal of determining whether the molecules remain extended or collapse above the ODT. The distinct spectral resonances of carbonyl oxygen on the backbone and ether oxygen in the pNte side chains combine with their different site symmetry within the molecule to yield strong differences in bulk structural sensitivity at all temperatures. Comparison with simple models for the disordered phase clearly reveals that disordering at the ODTmore » corresponds to loss of positional order of molecules with extended backbones that retain orientational order, rather than backbone collapse into a locally isotropic disordered phase. This conclusion is facilitated directly by the distinct structural sensitivity at the two resonances. Lastly, we discuss the roles of depolarized scattering in enhancing this sensitivity, and background fluorescence in limiting dynamic range, in oxygen resonant scattering.« less
NASA Astrophysics Data System (ADS)
Wang, Jing; Goh, Jane Betty; Goh, M. Cynthia; Giri, Neeraj Kumar; Paige, Matthew F.
2015-09-01
The synthesis and characterization of water-dispersible, luminescent CdSe/ZnS semiconductor quantum dots that exhibit nominal "white" fluorescence emission and have potential applications in solid-state lighting is described. The nanomaterials, prepared through counter ion-induced collapse and UV cross-linking of high-molecular weight polyacrylic acid in the presence of appropriate aqueous inorganic ions, were of ∼2-3 nm diameter and could be prepared in gram quantities. The quantum dots exhibited strong luminescence emission in two bands, the first in the blue-region (band edge) of the optical spectrum and the second, a broad emission in the red-region (attributed to deep trap states) of the optical spectrum. Because of the relative strength of emission of the band edge and deep trap state luminescence, it was possible to achieve visible white luminescence from the quantum dots in aqueous solution and in dried, solid films. The optical spectroscopic properties of the nanomaterials, including ensemble and single-molecule spectroscopy, was performed, with results compared to other white-emitting quantum dot systems described previously in the literature.
Partially collapsed cristobalite structure in the non molecular phase V in CO2
Santoro, Mario; Gorelli, Federico A.; Bini, Roberto; Haines, Julien; Cambon, Olivier; Levelut, Claire; Montoya, Javier A.; Scandolo, Sandro
2012-01-01
Non molecular CO2 has been an important subject of study in high pressure physics and chemistry for the past decade opening up a unique area of carbon chemistry. The phase diagram of CO2 includes several non molecular phases above 30 GPa. Among these, the first discovered was CO2-V which appeared silica-like. Theoretical studies suggested that the structure of CO2-V is related to that of β-cristobalite with tetrahedral carbon coordination similar to silicon in SiO2, but reported experimental structural studies have been controversial. We have investigated CO2-V obtained from molecular CO2 at 40–50 GPa and T > 1500 K using synchrotron X-ray diffraction, optical spectroscopy, and computer simulations. The structure refined by the Rietveld method is a partially collapsed variant of SiO2 β-cristobalite, space group , in which the CO4 tetrahedra are tilted by 38.4° about the c-axis. The existence of CO4 tetrahedra (average O-C-O angle of 109.5°) is thus confirmed. The results add to the knowledge of carbon chemistry with mineral phases similar to SiO2 and potential implications for Earth and planetary interiors. PMID:22431594
NASA Astrophysics Data System (ADS)
Jeffreson, S. M. R.; Kruijssen, J. M. D.; Krumholz, M. R.; Longmore, S. N.
2018-05-01
We apply an analytic theory for environmentally-dependent molecular cloud lifetimes to the Central Molecular Zone of the Milky Way. Within this theory, the cloud lifetime in the Galactic centre is obtained by combining the time-scales for gravitational instability, galactic shear, epicyclic perturbations and cloud-cloud collisions. We find that at galactocentric radii ˜45-120 pc, corresponding to the location of the `100-pc stream', cloud evolution is primarily dominated by gravitational collapse, with median cloud lifetimes between 1.4 and 3.9 Myr. At all other galactocentric radii, galactic shear dominates the cloud lifecycle, and we predict that molecular clouds are dispersed on time-scales between 3 and 9 Myr, without a significant degree of star formation. Along the outer edge of the 100-pc stream, between radii of 100 and 120 pc, the time-scales for epicyclic perturbations and gravitational free-fall are similar. This similarity of time-scales lends support to the hypothesis that, depending on the orbital geometry and timing of the orbital phase, cloud collapse and star formation in the 100-pc stream may be triggered by a tidal compression at pericentre. Based on the derived time-scales, this should happen in approximately 20 per cent of all accretion events onto the 100-pc stream.
Sloan Great Wall as a complex of superclusters with collapsing cores
NASA Astrophysics Data System (ADS)
Einasto, Maret; Lietzen, Heidi; Gramann, Mirt; Tempel, Elmo; Saar, Enn; Liivamägi, Lauri Juhan; Heinämäki, Pekka; Nurmi, Pasi; Einasto, Jaan
2016-10-01
Context. The formation and evolution of the cosmic web is governed by the gravitational attraction of dark matter and antigravity of dark energy (cosmological constant). In the cosmic web, galaxy superclusters or their high-density cores are the largest objects that may collapse at present or during the future evolution. Aims: We study the dynamical state and possible future evolution of galaxy superclusters from the Sloan Great Wall (SGW), the richest galaxy system in the nearby Universe. Methods: We calculated supercluster masses using dynamical masses of galaxy groups and stellar masses of galaxies. We employed normal mixture modelling to study the structure of rich SGW superclusters and search for components (cores) in superclusters. We analysed the radial mass distribution in the high-density cores of superclusters centred approximately at rich clusters and used the spherical collapse model to study their dynamical state. Results: The lower limit of the total mass of the SGW is approximately M = 2.5 × 1016 h-1 M⊙. Different mass estimators of superclusters agree well, the main uncertainties in masses of superclusters come from missing groups and clusters. We detected three high-density cores in the richest SGW supercluster (SCl 027) and two in the second richest supercluster (SCl 019). They have masses of 1.2 - 5.9 × 1015 h-1 M⊙ and sizes of up to ≈60 h-1 Mpc. The high-density cores of superclusters are very elongated, flattened perpendicularly to the line of sight. The comparison of the radial mass distribution in the high-density cores with the predictions of spherical collapse model suggests that their central regions with radii smaller than 8 h-1 Mpc and masses of up to M = 2 × 1015 h-1 M⊙ may be collapsing. Conclusions: The rich SGW superclusters with their high-density cores represent dynamically evolving environments for studies of the properties of galaxies and galaxy systems.
Prediction of the wetting-induced collapse behaviour using the soil-water characteristic curve
NASA Astrophysics Data System (ADS)
Xie, Wan-Li; Li, Ping; Vanapalli, Sai K.; Wang, Jia-Ding
2018-01-01
Collapsible soils go through three distinct phases in response to matric suction decrease during wetting: pre-collapse phase, collapse phase and post-collapse phase. It is reasonable and conservative to consider a strain path that includes a pre-collapse phase in which constant volume is maintained and a collapse phase that extends to the final matric suction to be experienced by collapsible soils during wetting. Upon this assumption, a method is proposed for predicting the collapse behaviour due to wetting. To use the proposed method, two parameters, critical suction and collapse rate, are required. The former is the suction value below which significant collapse deformations take place in response to matric suction decease, and the later is the rate at which void ratio reduces with matric suction in the collapse phase. The value of critical suction can be estimated from the water-entry value taking account of both the microstructure characteristics and collapse mechanism of fine-grained collapsible soils; the wetting soil-water characteristic curve thus can be used as a tool. Five sets of data of wetting tests on both compacted and natural collapsible soils reported in the literature were used to validate the proposed method. The critical suction values were estimated from the water-entry value with parameter a that is suggested to vary between 0.10 and 0.25 for compacted soils and to be lower for natural collapsible soils. The results of a field permeation test in collapsible loess soils were also used to validate the proposed method. The relatively good agreement between the measured and estimated collapse deformations suggests that the proposed method can provide reasonable prediction of the collapse behaviour due to wetting.
NASA Astrophysics Data System (ADS)
Corsaro, Enrico; Lee, Yueh-Ning; García, Rafael A.; Hennebelle, Patrick; Mathur, Savita; Beck, Paul G.; Mathis, Stephane; Stello, Dennis; Bouvier, Jérôme
2017-10-01
Stars originate by the gravitational collapse of a turbulent molecular cloud of a diffuse medium, and are often observed to form clusters. Stellar clusters therefore play an important role in our understanding of star formation and of the dynamical processes at play. However, investigating the cluster formation is diffcult because the density of the molecular cloud undergoes a change of many orders of magnitude. Hierarchical-step approaches to decompose the problem into different stages are therefore required, as well as reliable assumptions on the initial conditions in the clouds. We report for the first time the use of the full potential of NASA Kepler asteroseismic observations coupled with 3D numerical simulations, to put strong constraints on the early formation stages of open clusters. Thanks to a Bayesian peak bagging analysis of about 50 red giant members of NGC 6791 and NGC 6819, the two most populated open clusters observed in the nominal Kepler mission, we derive a complete set of detailed oscillation mode properties for each star, with thousands of oscillation modes characterized. We therefore show how these asteroseismic properties lead us to a discovery about the rotation history of stellar clusters. Finally, our observational findings will be compared with hydrodynamical simulations for stellar cluster formation to constrain the physical processes of turbulence, rotation, and magnetic fields that are in action during the collapse of the progenitor cloud into a proto-cluster.
Sonoporation at Small and Large Length Scales: Effect of Cavitation Bubble Collapse on Membranes.
Fu, Haohao; Comer, Jeffrey; Cai, Wensheng; Chipot, Christophe
2015-02-05
Ultrasound has emerged as a promising means to effect controlled delivery of therapeutic agents through cell membranes. One possible mechanism that explains the enhanced permeability of lipid bilayers is the fast contraction of cavitation bubbles produced on the membrane surface, thereby generating large impulses, which, in turn, enhance the permeability of the bilayer to small molecules. In the present contribution, we investigate the collapse of bubbles of different diameters, using atomistic and coarse-grained molecular dynamics simulations to calculate the force exerted on the membrane. The total impulse can be computed rigorously in numerical simulations, revealing a superlinear dependence of the impulse on the radius of the bubble. The collapse affects the structure of a nearby immobilized membrane, and leads to partial membrane invagination and increased water permeation. The results of the present study are envisioned to help optimize the use of ultrasound, notably for the delivery of drugs.
NASA Astrophysics Data System (ADS)
Martínez-Moreno, F. J.; Monteiro Santos, F. A.; Madeira, J.; Pous, J.; Bernardo, I.; Soares, A.; Esteves, M.; Adão, F.; Ribeiro, J.; Mata, J.; Brum da Silveira, A.
2018-05-01
One of the most remarkable natural events on Earth are the large lateral flank collapses of oceanic volcanoes, involving volumes of rock exceeding tens of km3. These collapses are relatively frequent in recent geological times as supported by evidence found in the geomorphology of volcanic island edifices and associated debris flows deposited on the proximal ocean floor. The Island of Fogo in the Cape Verde archipelago is one of the most active and prominent oceanic volcanoes on Earth. The island has an average diameter of 25 km and reaches a maximum elevation of 2829 m above sea level (m a.s.l.) at Pico do Fogo, a young stratovolcano located within a summit depression open eastward due to a large lateral flank collapse. The sudden collapse of the eastern flank of Fogo Island produced a megatsunami 73 ky ago. The limits of the flank collapse were deduced as well from geomorphologic markers within the island. The headwall of the collapse scar is interpreted as either being located beneath the post-collapse volcanic infill of the summit depression or located further west, corresponding to the Bordeira wall that partially surrounds it. The magnetotelluric (MT) method provides a depth distribution of the ground resistivity obtained by the simultaneous measurement of the natural variations of the electric and magnetic field of the Earth. Two N-S magnetotelluric profiles were acquired across the collapsed area to determine its geometry and boundaries. The acquired MT data allowed the determination of the limits of the collapsed area more accurately as well as its morphology at depth and thickness of the post-collapse infill. According to the newly obtained MT data and the bathymetry of the eastern submarine flank of Fogo, the volume involved in the flank collapse is estimated in 110 km3. This volume -the first calculated onshore- stands between the previously published more conservative and excessive calculations -offshore- that were exclusively based in geomorphic evidence. The model for the summit depression proposing two caldera collapses preceding the collapse of the eastern flank of Fogo is supported by the MT data.
Dilatancy and compaction effects on the submerged granular column collapse
NASA Astrophysics Data System (ADS)
Wang, Chun; Wang, Yongqi; Peng, Chong; Meng, Xiannan
2017-10-01
The effects of dilatancy on the collapse dynamics of granular materials in air or in a liquid are studied experimentally and numerically. Experiments show that dilatancy has a critical effect on the collapse of granular columns in the presence of an ambient fluid. Two regimes of the collapse, one being quick and the other being slow, are observed from the experiments and the underlying reasons are analyzed. A two-fluid smoothed particle hydrodynamics model, based on the granular-fluid mixture theory and the critical state theory, is employed to investigate the complex interactions between the solid particles and the ambient water. It is found that dilatancy, resulting in large effective stress and large frictional coefficient between solid particles, helps form the slow regime. Small permeability, representing large inter-phase drag force, also retards the collapse significantly. The proposed numerical model is capable of reproducing these effects qualitatively.
The collapse of a cavitation bubble in a corner
NASA Astrophysics Data System (ADS)
Peters, Ivo; Tagawa, Yoshiyuki
2017-11-01
The collapse of cavitation bubbles is influenced by the surrounding geometry. A classic example is the collapse of a bubble near a solid wall, where a fast jet is created towards the wall. The addition of a second wall creates a non-axisymmetric flow field, which influences the displacement and jet formation during the collapse of a bubble. In this experimental study we generate mm-sized vapor bubbles using a focused pulsed laser, giving us full control over the position of the bubble. The corner geometry is formed by two glass slides. High-speed imaging reveals the directional motion of the bubble during the collapse. We find that the bubble displacement cannot be fully described by a simple superposition of the bubble dynamics of the two walls individually. Comparison of our experimental results to a model based on potential flow shows a good agreement for the direction of displacement.
Theoretical study of solvent effects on the coil-globule transition
NASA Astrophysics Data System (ADS)
Polson, James M.; Opps, Sheldon B.; Abou Risk, Nicholas
2009-06-01
The coil-globule transition of a polymer in a solvent has been studied using Monte Carlo simulations of a single chain subject to intramolecular interactions as well as a solvent-mediated effective potential. This solvation potential was calculated using several different theoretical approaches for two simple polymer/solvent models, each employing hard-sphere chains and hard-sphere solvent particles as well as attractive square-well potentials between some interaction sites. For each model, collapse is driven by variation in a parameter which changes the energy mismatch between monomers and solvent particles. The solvation potentials were calculated using two fundamentally different methodologies, each designed to predict the conformational behavior of polymers in solution: (1) the polymer reference interaction site model (PRISM) theory and (2) a many-body solvation potential (MBSP) based on scaled particle theory introduced by Grayce [J. Chem. Phys. 106, 5171 (1997)]. For the PRISM calculations, two well-studied solvation monomer-monomer pair potentials were employed, each distinguished by the closure relation used in its derivation: (i) a hypernetted-chain (HNC)-type potential and (ii) a Percus-Yevick (PY)-type potential. The theoretical predictions were each compared to results obtained from explicit-solvent discontinuous molecular dynamics simulations on the same polymer/solvent model systems [J. Chem. Phys. 125, 194904 (2006)]. In each case, the variation in the coil-globule transition properties with solvent density is mostly qualitatively correct, though the quantitative agreement between the theory and prediction is typically poor. The HNC-type potential yields results that are more qualitatively consistent with simulation. The conformational behavior of the polymer upon collapse predicted by the MBSP approach is quantitatively correct for low and moderate solvent densities but is increasingly less accurate for higher densities. At high solvent densities, the PRISM-HNC and MBSP approaches tend to overestimate, while the PRISM-PY approach underestimates the tendency of the solvent to drive polymer collapse.
On the Minimum Core Mass for Giant Planet Formation
NASA Astrophysics Data System (ADS)
Piso, Ana-Maria; Youdin, Andrew; Murray-Clay, Ruth
2013-07-01
The core accretion model proposes that giant planets form by the accretion of gas onto a solid protoplanetary core. Previous studies have found that there exists a "critical core mass" past which hydrostatic solutions can no longer be found and unstable atmosphere collapse occurs. This core mass is typically quoted to be around 10Me. In standard calculations of the critical core mass, planetesimal accretion deposits enough heat to alter the luminosity of the atmosphere, increasing the core mass required for the atmosphere to collapse. In this study we consider the limiting case in which planetesimal accretion is negligible and Kelvin-Helmholtz contraction dominates the luminosity evolution of the planet. We develop a two-layer atmosphere model with an inner convective region and an outer radiative zone that matches onto the protoplanetary disk, and we determine the minimum core mass for a giant planet to form within the typical disk lifetime for a variety of disk conditions. We denote this mass as critical core mass. The absolute minimum core mass required to nucleate atmosphere collapse is ˜ 8Me at 5 AU and steadily decreases to ˜ 3.5Me at 100 AU, for an ideal diatomic gas with a solar composition and a standard ISM opacity law. Lower opacity and disk temperature significantly reduce the critical core mass, while a decrease in the mean molecular weight of the nebular gas results in a larger critical core mass. Our results yield lower mass cores than corresponding studies for large planetesimal accretion rates.
NASA Astrophysics Data System (ADS)
Sigalotti, Leonardo Di G.; Klapp, Jaime
2000-03-01
Fragmentation has long been advocated as the primary mechanism for explaining the observed binary frequency among pre-main-sequence stars and, more recently, for explaining the emerging evidence for binary and multiple protostellar systems. The role of magnetic fields and ambipolar diffusion is essential to understand how dense cloud cores begin dynamic collapse and eventually fragment into protostars. Here we consider new numerical models of the gravitational collapse and fragmentation of slowly rotating molecular cloud cores, including the effects of magnetic support and ambipolar diffusion. The starting point of the evolution is provided by a magnetically stable (subcritical) condensation that results from adding a magnetic field pressure, B2/8π [with the field strength given by the scaling relation B=B0(ρ/ρ0)1/2], to a reference state consisting of a thermally supercritical (α~0.36), slowly rotating (β~0.037), Gaussian cloud core of prolate shape and central density ρ0. The effects of ambipolar diffusion are approximated by allowing the reference field strength B0 to gradually decrease over a timescale of 10 free-fall times. The models also include the effects of tidal interaction due to a gravitational encounter with another protostar, and so they may apply to low-mass star formation within a cluster-forming environment. The results indicate that the magnetic forces delay the onset of dynamic collapse, and hence of fragmentation, by an amount of time that depends on the initial central mass-to-flux ratio. Compared with previous magnetic collapse calculations of rapidly rotating (β=0.12) clouds, lower initial rotation (β~0.037) is seen to result in much shorter delay periods, thus anticipating binary fragmentation. In general, the results show that the models are still susceptible to fragment into binary systems. Intermediate magnetic support (η~0.285) and low tidal forces (τ<~0.201) may lead to final triple or quadruple protostellar systems, while increasing the size of η and τ always results in final binary protostellar cores. The formed binary systems have separations of ~200-350 AU, suggesting that the recently observed peaks around ~90 AU and 215 AU for T Tauri stars may be explained by the collapse and fragmentation of initially slowly rotating magnetic cloud cores with β<~0.04.
Sugimoto, Yoshihisa; Akazawa, Hirofumi; Mitani, Shigeru; Tanaka, Masato; Nakagomi, Tadashi; Asaumi, Koji; Ozaki, Toshifumi
2006-03-01
The lateral pillar (LP) grade changes detected during treatment periods have received a lot of attention recently. Lappin et al. reported LP collapses in 92 of 275 (33%) patients during the treatment, but did not provide information for comparing treatment methods and age of onset of the disease. The purpose of this study was to review radiological changes in LP grade in older patients with Perthes disease during 20 months of treatment with skin traction and ROM exercises. We have also reported any grade changes in the posterior pillar (PP) classification. Twenty-one patients with unilateral disease who were 9 years or older at the onset of symptoms had been followed until skeletal maturity. Out of 21 older patients with Perthes disease, our study had two (9.5%) who experienced LP collapse and two (9.5%) who experienced PP collapse during the first 20 months of treatment. The average time from onset to hospitalization in hips, initially classified as LP group C and PP group C, was significantly longer than in LP and PP groups A and B. The LP collapse in two hips and PP collapse in two hips occurred during months 4-8 of treatment. On the other hand, of the patients allowed to ambulate with the Pogo stick orthosis from months 8 to 12 and without a brace from months 10 to 15, none had a collapse of their LPs or PPs during these periods. Lappin et al. reported that 92 of 275 patients (33%) who were managed conservatively in several hospitals experienced LP collapse during their treatment periods. Our results suggest that older patients with this disease treated with skin traction and ROM exercises rarely suffer a LP collapse, as compared with the Lappin et al. report.
NASA Astrophysics Data System (ADS)
Srzic, Veljko; Gotovac, Hrvoje; Cvetkovic, Vladimir; Andricevic, Roko
2014-05-01
In this work Langrangian framework is used for conservative tracer transport simulations through 2-D extremely heterogeneous porous media. Conducted numerical simulations enable large sets of concentration values in both spatial and temporal domains. In addition to the advection, which acts on all scales, an additional mechanism considered is local scale dispersion (LSD), accounting for both mechanical dispersion and molecular diffusion. The ratio between these two mechanisms is quantified by the Peclet (Pe) number. In its base, the work gives answers to concentration scalar features when influenced by: i) different log-conductivity variance; ii) log-conductivity structures defined by the same global variogram but with different log conductivity patterns correlated; and iii) for a wide range of Peclet values. Results conducted by Monte Carlo analysis show a complex interplay between the aforementioned parameters, indicating the influence of aquifer properties to temporal LSD evolution. A remarkable collapse of higher order to second-order concentration moments [Yee, 2009] leads to the conclusion that only two concentration moments are required for an accurate description of concentration fluctuations. This explicitly holds for the pure advection case, while in the case of LSD presence the moment deriving function(MDF) is involved to ensure the moment collapse validity. An inspection of the Beta distribution leads to the conclusion that the two-parametric distribution can be used for concentration fluctuation characterization even in cases of high aquifer heterogeneity and/or for different log-conductivity structures, independent of the sampling volume used. Furthermore, the expected mass fraction (EMF) [Heagy & Sullivan, 1996] concept is applied in groundwater transport. In its origin, EMF is function of the concentration but with lower number of realizations needed for its determination, compared to the one point PDF. From practical point of view, EMF excludes meandering effect and incorporates information about exposure time for each non-zero concentration value present. Also, it is shown that EMF is able to clearly reflect the effects of aquifer heterogeneity and structure as well as the Pe value. The latter is demonstrated through the non-carcinogenic risk assessment framework. To demonstrate the uniqueness of the moment collapse feature and ability of the Beta distribution to account for the concentration frequencies even in real cases, Macrodispersion Experiment (MADE1) [Boggs et al, 1992] data sets are used for validation.
NASA Astrophysics Data System (ADS)
Shan, Tzu-Ray; Wixom, Ryan R.; Thompson, Aidan P.
2016-08-01
In both continuum hydrodynamics simulations and also multimillion atom reactive molecular dynamics simulations of shockwave propagation in single crystal pentaerythritol tetranitrate (PETN) containing a cylindrical void, we observed the formation of an initial radially symmetric hot spot. By extending the simulation time to the nanosecond scale, however, we observed the transformation of the small symmetric hot spot into a longitudinally asymmetric hot region extending over a much larger volume. Performing reactive molecular dynamics shock simulations using the reactive force field (ReaxFF) as implemented in the LAMMPS molecular dynamics package, we showed that the longitudinally asymmetric hot region was formed by coalescence of the primary radially symmetric hot spot with a secondary triangular hot zone. We showed that the triangular hot zone coincided with a double-shocked region where the primary planar shockwave was overtaken by a secondary cylindrical shockwave. The secondary cylindrical shockwave originated in void collapse after the primary planar shockwave had passed over the void. A similar phenomenon was observed in continuum hydrodynamics shock simulations using the CTH hydrodynamics package. The formation and growth of extended asymmetric hot regions on nanosecond timescales has important implications for shock initiation thresholds in energetic materials.
Refined applications of the collapse of the wave function
NASA Astrophysics Data System (ADS)
Stodolsky, L.
2015-05-01
In a two-part system, the collapse of the wave function of one part can put the other part in a state which would be difficult or impossible to achieve otherwise, in particular, one sensitive to small effects in the "collapse" interaction. We present some applications to the very symmetric and experimentally accessible situations of the decays ϕ (1020 )→KoKo , ψ (3770 )→DoDo, or ϒ (4 s )→BoBo , involving the internal state of the two-state Ko, Do, or Bo mesons. The collapse of the wave function occasioned by a decay of one member of the pair (away side) fixes the state vector of that side's two-state system. Bose-Einstein statistics then determines the state of the recoiling meson (near side), whose evolution can then be followed further. In particular, the statistics requirement dictates that the "away side" and "near side" internal wave functions must be orthogonal at the time of the collapse. Thus a C P violation in the away side decay implies a complementary C P impurity on the near side, which can be detected in the further evolution. The C P violation so manifested is necessarily direct C P violation, since neither the mass matrix nor time evolution was involved in the collapse. A parametrization of the direct C P violation is given, and various manifestations are presented. Certain rates or combination of rates are identified which are nonzero only if there is direct C P violation. The very explicit and detailed use made of the collapse of the wave function makes the procedure interesting with respect to the fundamentals of quantum mechanics. We note an experimental consistency test for our treatment of the collapse of the wave function, which can be carried out by a certain measurement of partial decay rates.
How Hives Collapse: Allee Effects, Ecological Resilience, and the Honey Bee
Dennis, Brian; Kemp, William P.
2016-01-01
We construct a mathematical model to quantify the loss of resilience in collapsing honey bee colonies due to the presence of a strong Allee effect. In the model, recruitment and mortality of adult bees have substantial social components, with recruitment enhanced and mortality reduced by additional adult bee numbers. The result is an Allee effect, a net per-individual rate of hive increase that increases as a function of adult bee numbers. The Allee effect creates a critical minimum size in adult bee numbers, below which mortality is greater than recruitment, with ensuing loss of viability of the hive. Under ordinary and favorable environmental circumstances, the critical size is low, and hives remain large, sending off viably-sized swarms (naturally or through beekeeping management) when hive numbers approach an upper stable equilibrium size (carrying capacity). However, both the lower critical size and the upper stable size depend on many parameters related to demographic rates and their enhancement by bee sociality. Any environmental factors that increase mortality, decrease recruitment, or interfere with the social moderation of these rates has the effect of exacerbating the Allee effect by increasing the lower critical size and substantially decreasing the upper stable size. As well, the basin of attraction to the upper stable size, defined by the model potential function, becomes narrower and shallower, indicating the loss of resilience as the hive becomes subjected to increased risk of falling below the critical size. Environmental effects of greater severity can cause the two equilibria to merge and the basin of attraction to the upper stable size to disappear, resulting in collapse of the hive from any initial size. The model suggests that multiple proximate causes, among them pesticides, mites, pathogens, and climate change, working singly or in combinations, could trigger hive collapse. PMID:26910061
NASA Astrophysics Data System (ADS)
Hitzman, M. W.; Allan, J. R.; Beaty, D. W.
1998-06-01
The Lower Carboniferous Waulsortian limestone has been affected by late diagenetic, regional burial dolomitization over an area of ˜7000 km2 extending 170 km northeastward from the Hercynian front. The dolostone is composed of two components: (1) a very fine crystalline replacive component, and (2) a coarse-crystalline, baroque component that fills vuggy porosity developed within the replacive dolostone. Fluid inclusions within the coarse-crystalline component of the regional dolostone indicate that the dolomitizing solutions were warm (˜100 °C) and moderately saline (10 13 wt% NaCl equivalent). The replacive dolomite displays systematic decreases in crystal size and degree of xenotopic texture northward. Both components of the regional dolostone display a regular northward increase in mean δ18O values; the replacive dolomite has 87Sr/86Sr values that decrease northward. These laterally variable characteristics suggest that regional dolomitization resulted from large-scale, north-directed fluid flow of heated brines developed in response to topographic uplift associated with collapse of the continental margin south of Ireland during the Hercynian (Variscan) orogeny.
Chitsaz, Daryan; Morales, Daniel; Law, Chris; Kania, Artur
2015-01-01
During neural circuit development, attractive or repulsive guidance cue molecules direct growth cones (GCs) to their targets by eliciting cytoskeletal remodeling, which is reflected in their morphology. The experimental power of in vitro neuronal cultures to assay this process and its molecular mechanisms is well established, however, a method to rapidly find and quantify multiple morphological aspects of GCs is lacking. To this end, we have developed a free, easy to use, and fully automated Fiji macro, Conographer, which accurately identifies and measures many morphological parameters of GCs in 2D explant culture images. These measurements are then subjected to principle component analysis and k-means clustering to mathematically classify the GCs as “collapsed” or “extended”. The morphological parameters measured for each GC are found to be significantly different between collapsed and extended GCs, and are sufficient to classify GCs as such with the same level of accuracy as human observers. Application of a known collapse-inducing ligand results in significant changes in all parameters, resulting in an increase in ‘collapsed’ GCs determined by k-means clustering, as expected. Our strategy provides a powerful tool for exploring the relationship between GC morphology and guidance cue signaling, which in particular will greatly facilitate high-throughput studies of the effects of drugs, gene silencing or overexpression, or any other experimental manipulation in the context of an in vitro axon guidance assay. PMID:26496644
The role of viscosity in TATB hot spot ignition
NASA Astrophysics Data System (ADS)
Fried, Laurence E.; Zepeda-Ruis, Luis; Howard, W. Michael; Najjar, Fady; Reaugh, John E.
2012-03-01
The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse is closest to the viscous limit.
Phase transition in crystalline benzil : an infrared study of vibrational excitons.
NASA Astrophysics Data System (ADS)
Le Roy, A.; Et-Tabti, O.; Guérin, R.
1993-03-01
The molecular crystal of benzil, [C 6 H 5 CO] 2, is known to undergo a phase transition at T c = 84 K. The phase transition is from a high temperature trigonal phase with space group D 43 (P3 121) to a low temperature monoclinic phase with space group C 32 (C 2). This paper reports a study of the exciton structure of the infrared bands of benzil as a function of temperature in the vicinity of T c = 84 K. The benzil molecule belongs to the C 2 molecular point group. Group theoretical analysis of the exciton structure of infrared bands predicts two components for molecular B modes and one component for molecular A modes in the high temperature phase. Below T c all the internal modes of benzil are expected to split into two components. Our experimental results show that the A molecular modes are resolved in a doublet structure in the low temperature phase whereas only one component is observed above T c. The doublet structure of infrared bands is studied as a function of temperature in the vicinity of T c. These splittings of crystal states in the low temperature phase are found to be described by a ¦T c - T¦ β law. The temperature dependence of the doublet structure of internal B modes is also studied below and above T c.
Collapsing cavities in reactive and nonreactive media
NASA Astrophysics Data System (ADS)
Bourne, Neil K.; Field, John E.
1991-04-01
This paper presents results of a high-speed photographic study of cavities collapsed asymmetrically by shocks of strengths in the range 0.26 GPa to 3.5 GPa. Two-dimensional collapses of cavity configurations punched into a 12% by weight gelatine in water sheet, and an ammonium nitrate/sodium nitrate (AN/SN) emulsion explosive were photographed using schlieren optics. The single cavity collapses were characterized by the velocity of the liquid jet formed by the upstream wall as it was accelerated by the shock and by the time taken for the cavity to collapse. The shock pressure did not qualitatively affect the collapse behaviour but jet velocities were found to exceed incident shock velocities at higher pressures. The more violent collapses induced light emission from the compressed gas in the cavity. When an array of cavities collapsed, a wave, characterized by the particle velocity in the medium, the cavity diameter and the inter-cavity spacing, was found to run through the array. When such an array was created within an emulsion explosive, ignition of the reactive matrix occurred ahead of the collapse wave when the incident shock was strong.
Shell-corona microgels from double interpenetrating networks.
Rudyak, Vladimir Yu; Gavrilov, Alexey A; Kozhunova, Elena Yu; Chertovich, Alexander V
2018-04-18
Polymer microgels with a dense outer shell offer outstanding features as universal carriers for different guest molecules. In this paper, microgels formed by an interpenetrating network comprised of collapsed and swollen subnetworks are investigated using dissipative particle dynamics (DPD) computer simulations, and it is found that such systems can form classical core-corona structures, shell-corona structures, and core-shell-corona structures, depending on the subchain length and molecular mass of the system. The core-corona structures consisting of a dense core and soft corona are formed at small microgel sizes when the subnetworks are able to effectively separate in space. The most interesting shell-corona structures consist of a soft cavity in a dense shell surrounded with a loose corona, and are found at intermediate gel sizes; the area of their existence depends on the subchain length and the corresponding mesh size. At larger molecular masses the collapsing network forms additional cores inside the soft cavity, leading to the core-shell-corona structure.
He, Gui-Li; Merlitz, Holger; Sommer, Jens-Uwe
2014-03-14
Molecular dynamics simulations are applied to investigate salt-free planar polyelectrolyte brushes under poor solvent conditions. Starting above the Θ-point with a homogeneous brush and then gradually reducing the temperature, the polymers initially display a lateral structure formation, forming vertical bundles of chains. A further reduction of the temperature (or solvent quality) leads to a vertical collapse of the brush. By varying the size and selectivity of the counterions, we show that lateral structure formation persists and therefore demonstrate that the entropy of counterions being the dominant factor for the formation of the bundle phase. By applying an external compression force on the brush we calculate the minimal work done on the polymer phase only and prove that the entropy gain of counterions in the bundle state, as compared to the homogeneously collapsed state at the same temperature, is responsible for the lateral microphase segregation. As a consequence, the observed lateral structure formation has to be regarded universal for osmotic polymer brushes below the Θ-point.
Shimizu, Karina; Tariq, Mohammad; Costa Gomes, Margarida F; Rebelo, Luís P N; Canongia Lopes, José N
2010-05-06
Molecular dynamics simulations were used to calculate the density and the cohesive molar internal energy of seventeen different ionic liquids in the liquid phase. The results were correlated with previously reported experimental density and molar refraction data. The link between the dispersive component of the total cohesive energy of the fluid and the corresponding molar refraction was established in an unequivocal way. The results have shown that the two components of the total cohesive energy (dispersive and electrostatic) exhibit strikingly different trends and ratios along different families of ionic liquids, a notion that may help explain their diverse behavior toward different molecular solutes and solvents.
NASA Astrophysics Data System (ADS)
Zhai, Zirui; Wang, Yong; Jiang, Hanqing
2018-03-01
Origami has been employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. Deployable metamaterials are usually flexible, particularly along their deploying and collapsing directions, which unfortunately in many cases leads to an unstable deployed state, i.e., small perturbations may collapse the structure along the same deployment path. Here we create an origami-inspired mechanical metamaterial with on-demand deployability and selective collapsibility through energy analysis. This metamaterial has autonomous deployability from the collapsed state and can be selectively collapsed along two different paths, embodying low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields load-bearing capability in the deployed direction while possessing great deployability and collapsibility. The principle in this work can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications.
Zhai, Zirui; Wang, Yong; Jiang, Hanqing
2018-02-27
Origami has been employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. Deployable metamaterials are usually flexible, particularly along their deploying and collapsing directions, which unfortunately in many cases leads to an unstable deployed state, i.e., small perturbations may collapse the structure along the same deployment path. Here we create an origami-inspired mechanical metamaterial with on-demand deployability and selective collapsibility through energy analysis. This metamaterial has autonomous deployability from the collapsed state and can be selectively collapsed along two different paths, embodying low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields load-bearing capability in the deployed direction while possessing great deployability and collapsibility. The principle in this work can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications. Copyright © 2018 the Author(s). Published by PNAS.
Zhai, Zirui; Wang, Yong
2018-01-01
Origami has been employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. Deployable metamaterials are usually flexible, particularly along their deploying and collapsing directions, which unfortunately in many cases leads to an unstable deployed state, i.e., small perturbations may collapse the structure along the same deployment path. Here we create an origami-inspired mechanical metamaterial with on-demand deployability and selective collapsibility through energy analysis. This metamaterial has autonomous deployability from the collapsed state and can be selectively collapsed along two different paths, embodying low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields load-bearing capability in the deployed direction while possessing great deployability and collapsibility. The principle in this work can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications. PMID:29440441
Existence of Torsional Solitons in a Beam Model of Suspension Bridge
NASA Astrophysics Data System (ADS)
Benci, Vieri; Fortunato, Donato; Gazzola, Filippo
2017-11-01
This paper studies the existence of solitons, namely stable solitary waves, in an idealized suspension bridge. The bridge is modeled as an unbounded degenerate plate, that is, a central beam with cross sections, and displays two degrees of freedom: the vertical displacement of the beam and the torsional angles of the cross sections. Under fairly general assumptions, we prove the existence of solitons. Under the additional assumption of large tension in the sustaining cables, we prove that these solitons have a nontrivial torsional component. This appears relevant for security since several suspension bridges collapsed due to torsional oscillations.
NASA Astrophysics Data System (ADS)
Wang, Jiang; Ferguson, Andrew
Ring polymers offer a wide range of natural and engineered functions and applications, including as circular bacterial DNA, crown ethers for cation chelation, and ``molecular machines'' such as mechanical nanoswitches. The morphology and dynamics of ring polymers are governed by the chemistry and degree of polymerization of the ring, and intramolecular and supramolecular topological constraints such as knots or mechanically-interlocked rings. We perform molecular dynamics simulations of polyethylene ring polymers as a function of degree of polymerization and in different topological states, including a knotted state, catenane state (two interlocked rings), and borromean state (three interlocked rings). Applying nonlinear manifold learning to our all-atom simulation trajectories, we extract low-dimensional free energy surfaces governing the accessible conformational states and their relative thermodynamic stability. The free energy surfaces reveal how degree of polymerization and topological constraints affect the thermally accessible conformations, chiral symmetry breaking, and folding and collapse pathways of the rings, and present a means to rationally engineer ring size and topology to preferentially stabilize particular conformational states.
NASA Astrophysics Data System (ADS)
Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.
2017-04-01
Void collapse in energetic materials leads to hot spot formation and enhanced sensitivity. Much recent work has been directed towards simulation of collapse-generated reactive hot spots. The resolution of voids in calculations to date has varied as have the resulting predictions of hot spot intensity. Here we determine the required resolution for reliable cylindrical void collapse calculations leading to initiation of chemical reactions. High-resolution simulations of collapse provide new insights into the mechanism of hot spot generation. It is found that initiation can occur in two different modes depending on the loading intensity: Either the initiation occurs due to jet impact at the first collapse instant or it can occur at secondary lobes at the periphery of the collapsed void. A key observation is that secondary lobe collapse leads to large local temperatures that initiate reactions. This is due to a combination of a strong blast wave from the site of primary void collapse and strong colliding jets and vortical flows generated during the collapse of the secondary lobes. The secondary lobe collapse results in a significant lowering of the predicted threshold for ignition of the energetic material. The results suggest that mesoscale simulations of void fields may suffer from significant uncertainty in threshold predictions because unresolved calculations cannot capture the secondary lobe collapse phenomenon. The implications of this uncertainty for mesoscale simulations are discussed in this paper.
Detecting When “Quality of Life” Has Been “Enhanced”: Estimating Change in Quality of Life Ratings
Tractenberg, Rochelle E.; Yumoto, Futoshi; Aisen, Paul S.
2015-01-01
Objective To demonstrate challenges in the estimation of change in quality of life (QOL). Methods Data were taken from a completed clinical trial with negative results. Responses to 13 QOL items were obtained 12 months apart from 258 persons with Alzheimer’s disease (AD) participating in a randomized, placebo-controlled clinical trial with two treatment arms. Two analyses to estimate whether “change” in QOL occurred over 12 months are described. A simple difference (later - earlier) was calculated from total scores (standard approach). A Qualified Change algorithm (novel approach) was applied to each item: differences in ratings were classified as either: improved, worsened, stayed poor, or stayed “positive” (fair, good, excellent). The strengths of evidence supporting a claim that “QOL changed”, derived from the two analyses, were compared by considering plausible alternative explanations for, and interpretations of, results obtained under each approach. Results Total score approach: QOL total scores decreased, on average, in the two treatment (both −1.0, p < 0.05), but not the placebo (=−0.59, p > 0.3) groups. Qualified change approach: Roughly 60% of all change in QOL items was worsening in every arm; 17% - 42% of all subjects experienced change in each item. Conclusions Totalling the subjective QOL item ratings collapses over items, and suggests a potentially misleading “overall” level of change (or no change, as in the placebo arm). Leaving the items as individual components of “quality” of life they were intended to capture, and qualifying the direction and amount of change in each, suggests that at least 17% of any group experienced change on every item, with 60% of all observed change being worsening. Discussion Summarizing QOL item ratings as a total “score” collapses over the face-valid, multi-dimensional components of the construct “quality of life”. Qualified Change provides robust evidence of changes to QOL or “enhancements of” life quality. PMID:26213645
NASA Astrophysics Data System (ADS)
Romeo, Alessandro B.; Mogotsi, Keoikantse Moses
2017-07-01
The velocity dispersion of cold interstellar gas, σ, is one of the quantities that most radically affect the onset of gravitational instabilities in galaxy discs, and the quantity that is most drastically approximated in stability analyses. Here we analyse the stability of a large sample of nearby star-forming spirals treating molecular gas, atomic gas and stars as three distinct components, and using radial profiles of σCO and σ _{H I} derived from HERA CO-Line Extragalactic Survey (HERACLES) and The H I Nearby Galaxy Survey (THINGS) observations. We show that the radial variations of σCO and σ _{H I} have a weak effect on the local stability level of galaxy discs, which remains remarkably flat and well above unity, but is low enough to ensure (marginal) instability against non-axisymmetric perturbations and gas dissipation. More importantly, the radial variation of σCO has a strong impact on the size of the regions over which gravitational instabilities develop, and results in a characteristic instability scale that is one order of magnitude larger than the Toomre length of molecular gas. Disc instabilities are driven, in fact, by the self-gravity of stars at kiloparsec scales. This is true across the entire optical disc of every galaxy in the sample, with a few exceptions. In the linear phase of the disc-instability process, stars and molecular gas are strongly coupled, and it is such a coupling that ultimately triggers local gravitational collapse/fragmentation in the molecular gas.
NASA Astrophysics Data System (ADS)
Nieskoski, Michael D.; Marra, Kayla; Gunn, Jason R.; Doyley, Marvin; Samkoe, Kimberly S.; Pereira, Stephen P.; Trembly, B. Stuart; Pogue, Brian W.
2017-02-01
Pancreatic tumors are characterized by large interstitial hypertension from enhanced deposition of extracellular matrix components, resulting in widespread vascular collapse and reduced molecular uptake of systemically delivered therapies. Although the origins of hypoperfusion is debated amongst researchers, spatial distribution of collagen density and hyaluronic acid content have shown to be a key metric in understanding the lack of efficacy for both acute and chronic therapies in these tumors. In this study, the AsPC-1 tumor model was used both subcutaneously and orthotopically to study the measurable factors which are related to this. A conventional piezoelectric pressure catheter was used to measure total tissue pressure (TTP), defined as a combination of solid stress (SS) and interstitial fluid pressure (IFP), TTP = SS + IFP, in multiple locations within the tumor interstitium. Matrix components such as collagen and hyaluronic acid were scored using masson's trichrome stain and hyaluronic acid binding protein (HABP), respectively, and co-registered with values of TTP. The results show that these key measurements are related to the spatial distribution of verteporfin in the same tumors. Photodynamic treatment with verteporfin is known to ablate large regions of tumor tissue and also allow better permeability for chemotherapies. The study of spatial distribution of verteporfin in relation to stromal content and TTP will help us better control these types of combination therapies.
Pietrowski, R A; Cartwright, N J
1977-01-01
The meta O-dealkylase of Pseudomonas fluorescens Tp has been resolved into two protein components, neither of which is a cytochrome. The substrate binding terminal oxidase has been purified and shown to be a non-haem iron protein of approximate molecular weight 118,000, consisting of two seemingly identical subunits, each of molecular weight 55,000. Binding of substrate by the terminal oxidase has been established by difference spectroscopy. The amino acid composition of the protein has also been determined. The NADH-dependent reductase of the system has been partly purified and appears to have a molecular weight of 80,000. The similarity between this and other bacterial O-dealkylases is discussed.
Porosity and water activity effects on stability of crystalline β-carotene in freeze-dried solids.
Harnkarnsujarit, Nathdanai; Charoenrein, Sanguansri; Roos, Yrjö H
2012-11-01
Stability of entrapped crystalline β-carotene as affected by water activity, solids microstructure, and composition of freeze-dried systems was investigated. Aliquots (1000 mm(3) , 20% w/w solids) of solutions of maltodextrins of various dextrose equivalents (M040:DE6, M100:DE11, and M250:DE25.5), M100-sugars (1:1 glucose, fructose and sucrose), and agar for gelation with dispersed β-carotene were frozen at -20, -40, or -80 °C and freeze-dried. Glass transition and α-relaxation temperatures were determined with differential scanning calorimetry and dynamic mechanical analysis, respectively. β-Carotene contents were monitored spectrophotometrically. In the glassy solids, pore microstructure had a major effect on β-carotene stability. Small pores with thin walls and large surface area allowed β-carotene exposure to oxygen which led to a higher loss, whereas structural collapse enhanced stability of β-carotene by decreasing exposure to oxygen. As water plasticized matrices, an increase in molecular mobility in the matrix enhanced β-carotene degradation. Stability of dispersed β-carotene was highest at around 0.2 a(w) , but decreasing structural relaxation times above the glass transition correlated well with the rate of β-carotene degradation at higher a(w) . Microstructure, a(w) , and component mobility are important factors in the control of stability of β-carotene in freeze-dried solids. β-Carotene expresses various nutritional benefits; however, it is sensitive to oxygen and the degradation contributes to loss of nutritional values as well as product color. To increase stability of β-carotene in freeze-dried foods, the amount of oxygen penetration need to be limited. The modification of freeze-dried food structures, for example, porosity and structural collapse, components, and humidity effectively enhance the stability of dispersed β-carotene in freeze-dried solids. © 2012 Institute of Food Technologists®
Kax and kol: collapse and resilience in lowland Maya civilization.
Dunning, Nicholas P; Beach, Timothy P; Luzzadder-Beach, Sheryl
2012-03-06
Episodes of population loss and cultural change, including the famous Classic Collapse, punctuated the long course of Maya civilization. In many cases, these downturns in the fortunes of individual sites and entire regions included significant environmental components such as droughts or anthropogenic environmental degradation. Some afflicted areas remained depopulated for long periods, whereas others recovered more quickly. We examine the dynamics of growth and decline in several areas in the Maya Lowlands in terms of both environmental and cultural resilience and with a focus on downturns that occurred in the Terminal Preclassic (second century Common Era) and Terminal Classic (9th and 10th centuries CE) periods. This examination of available data indicates that the elevated interior areas of the Yucatán Peninsula were more susceptible to system collapse and less suitable for resilient recovery than adjacent lower-lying areas.
Convective radiation fluid-dynamics: formation and early evolution of ultra low-mass objects
NASA Astrophysics Data System (ADS)
Wuchterl, G.
2005-12-01
The formation process of ultra low-mass objects is some kind of extension of the star formation process. The physical changes towards lower mass are discussed by investigating the collapse of cloud cores that are modelled as Bonnor-Ebert spheres. Their collapse is followed by solving the equations of fluid dynamics with radiation and a model of time-dependent convection that has been calibrated to the Sun. For a sequence of cloud-cores with 1 to 0.01 solar masses, evolutionary tracks and isochrones are shown in the mass-radius diagram, the Hertzsprung-Russel diagram and the effective temperature-surface gravity or Kiel diagram. The collapse and the early hydrostatic evolution to ages of few Ma are briefly discussed and compared to observations of objects in Upper Scorpius and the low-mass components of GG Tau.
Stretching single fibrin fibers hampers their lysis.
Li, Wei; Lucioni, Tomas; Li, Rongzhong; Bonin, Keith; Cho, Samuel S; Guthold, Martin
2017-09-15
Blood clots, whose main structural component is a mesh of microscopic fibrin fibers, experience mechanical strain from blood flow, clot retraction and interactions with platelets and other cells. We developed a transparent, striated and highly stretchable substrate made from fugitive glue (a styrenic block copolymer) to investigate how mechanical strain affects lysis of single, suspended fibrin fibers. In this suspended fiber assay, lysis manifested itself by fiber elongation, thickening (disassembly), fraying and collapse. Stretching single fibrin fibers significantly hampered their lysis. This effect was seen in uncrosslinked and crosslinked fibers. Crosslinking (without stretching) also hampered single fiber lysis. Our data suggest that strain is a novel mechanosensitive factor that regulates blood clot dissolution (fibrinolysis) at the single fiber level. At the molecular level of single fibrin molecules, strain may distort, or hinder access to, plasmin cleavage sites and thereby hamper lysis. Fibrin fibers are the major structural component of a blood clot. We developed a highly stretchable substrate made from fugitive glue and a suspended fibrin fiber lysis assay to investigate the effect of stretching on single fibrin fibers lysis. The key findings from our experiments are: 1) Fibers thicken and elongate upon lysis; 2) stretching strongly reduces lysis; 3) this effect is more pronounced for uncrosslinked fibers; and 4) stretching fibers has a similar effect on reducing lysis as crosslinking fibers. At the molecular level, strain may distort plasmin cleavage sites, or restrict access to those sites. Our results suggest that strain may be a novel mechanobiological factor that regulates fibrinolysis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Evidence that viral RNAs have evolved for efficient, two-stage packaging.
Borodavka, Alexander; Tuma, Roman; Stockley, Peter G
2012-09-25
Genome packaging is an essential step in virus replication and a potential drug target. Single-stranded RNA viruses have been thought to encapsidate their genomes by gradual co-assembly with capsid subunits. In contrast, using a single molecule fluorescence assay to monitor RNA conformation and virus assembly in real time, with two viruses from differing structural families, we have discovered that packaging is a two-stage process. Initially, the genomic RNAs undergo rapid and dramatic (approximately 20-30%) collapse of their solution conformations upon addition of cognate coat proteins. The collapse occurs with a substoichiometric ratio of coat protein subunits and is followed by a gradual increase in particle size, consistent with the recruitment of additional subunits to complete a growing capsid. Equivalently sized nonviral RNAs, including high copy potential in vivo competitor mRNAs, do not collapse. They do support particle assembly, however, but yield many aberrant structures in contrast to viral RNAs that make only capsids of the correct size. The collapse is specific to viral RNA fragments, implying that it depends on a series of specific RNA-protein interactions. For bacteriophage MS2, we have shown that collapse is driven by subsequent protein-protein interactions, consistent with the RNA-protein contacts occurring in defined spatial locations. Conformational collapse appears to be a distinct feature of viral RNA that has evolved to facilitate assembly. Aspects of this process mimic those seen in ribosome assembly.
Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors
NASA Astrophysics Data System (ADS)
Li, Quan; Fuks, Gad; Moulin, Emilie; Maaloum, Mounir; Rawiso, Michel; Kulic, Igor; Foy, Justin T.; Giuseppone, Nicolas
2015-02-01
Making molecular machines that can be useful in the macroscopic world is a challenging long-term goal of nanoscience. Inspired by the protein machinery found in biological systems, and based on the theoretical understanding of the physics of motion at the nanoscale, organic chemists have developed a number of molecules that can produce work by contraction or rotation when triggered by various external chemical or physical stimuli. In particular, basic molecular switches that commute between at least two thermodynamic minima and more advanced molecular motors that behave as dissipative units working far from equilibrium when fuelled with external energy have been reported. However, despite recent progress, the ultimate challenge of coordinating individual molecular motors in a continuous mechanical process that can have a measurable effect at the macroscale has remained elusive. Here, we show that by integrating light-driven unidirectional molecular rotors as reticulating units in a polymer gel, it is possible to amplify their individual motions to achieve macroscopic contraction of the material. Our system uses the incoming light to operate under far-from-equilibrium conditions, and the work produced by the motor in the photostationary state is used to twist the entangled polymer chains up to the collapse of the gel. Our design could be a starting point to integrate nanomotors in metastable materials to store energy and eventually to convert it.
Hasegawa, Kazuhiro; Kitahara, Ko; Hara, Toshiaki; Takano, Ko; Shimoda, Haruka; Homma, Takao
2008-03-01
In vivo quantitative measurement of lumbar segmental stability has not been established. The authors developed a new measurement system to determine intraoperative lumbar stability. The objective of this study was to clarify the biomechanical properties of degenerative lumbar segments by using the new method. Twenty-two patients with a degenerative symptomatic segment were studied and their measurements compared with those obtained in normal or asymptomatic degenerative segments (Normal group). The measurement system produces cyclic flexion-extension through spinous process holders by using a computer-controlled motion generator with all ligamentous structures intact. The following biomechanical parameters were determined: stiffness, absorption energy (AE), and neutral zone (NZ). Discs with degeneration were divided into 2 groups based on magnetic resonance imaging grading: degeneration without collapse (Collapse[-]) and degeneration with collapse (Collapse[+]). Biomechanical parameters were compared among the groups. Relationships among the biomechanical parameters and age, diagnosis, or radiographic parameters were analyzed. The mean stiffness value in the Normal group was significantly greater than that in Collapse(-) or Collapse(+) group. There was no significant difference in the average AE value among the Normal, Collapse(-), and Collapse(+) groups. The NZ in the Collapse(-) was significantly higher than in the Normal or Collapse(+) groups. Stiffness was negatively and NZ was positively correlated with age. Stiffness demonstrated a significant negative and NZ a significant positive relationship with disc height, however. There were no significant differences in stiffness between spines in the Collapse(-) and Collapse(+) groups. The values of a more sensitive parameter, NZ, were higher in Collapse(-) than in Collapse(+) groups, demonstrating that degenerative segments with preserved disc height have a latent instability compared to segments with collapsed discs.
Pseudocosmospora, a new genus to accommodate Cosmospora vilior and related species
USDA-ARS?s Scientific Manuscript database
Cosmospora sensu Rossman accommodated nectroid fungi with small, reddish, smooth, thin-walled, laterally collapsing when dry, non- or weakly stromatic perithecia. Recently, the group was found to be polyphyletic based on molecular data, and has been segregated into multiple genera. Not all Cosmospor...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benetti, Micol; Alcaniz, Jailson S.; Landau, Susana J., E-mail: micolbenetti@on.br, E-mail: slandau@df.uba.ar, E-mail: alcaniz@on.br
The hypothesis of the self-induced collapse of the inflaton wave function was proposed as responsible for the emergence of inhomogeneity and anisotropy at all scales. This proposal was studied within an almost de Sitter space-time approximation for the background, which led to a perfect scale-invariant power spectrum, and also for a quasi-de Sitter background, which allows to distinguish departures from the standard approach due to the inclusion of the collapse hypothesis. In this work we perform a Bayesian model comparison for two different choices of the self-induced collapse in a full quasi-de Sitter expansion scenario. In particular, we analyze themore » possibility of detecting the imprint of these collapse schemes at low multipoles of the anisotropy temperature power spectrum of the Cosmic Microwave Background (CMB) using the most recent data provided by the Planck Collaboration. Our results show that one of the two collapse schemes analyzed provides the same Bayesian evidence of the minimal standard cosmological model ΛCDM, while the other scenario is weakly disfavoured with respect to the standard cosmology.« less
Marker selection for the transmission/disequilibrium test, in recently admixed populations.
Kaplan, N L; Martin, E R; Morris, R W; Weir, B S
1998-01-01
Recent admixture between genetically differentiated populations can result in high levels of association between alleles at loci that are <=10 cM apart. The transmission/disequilibrium test (TDT) proposed by Spielman et al. (1993) can be a powerful test of linkage between disease and marker loci in the presence of association and therefore could be a useful test of linkage in admixed populations. The degree of association between alleles at two loci depends on the differences in allele frequencies, at the two loci, in the founding populations; therefore, the choice of marker is important. For a multiallelic marker, one strategy that may improve the power of the TDT is to group marker alleles within a locus, on the basis of information about the founding populations and the admixed population, thereby collapsing the marker into one with fewer alleles. We have examined the consequences of collapsing a microsatellite into a two-allele marker, when two founding populations are assumed for the admixed population, and have found that if there is random mating in the admixed population, then typically there is a collapsing for which the power of the TDT is greater than that for the original microsatellite marker. A method is presented for finding the optimal collapsing that has minimal dependence on the disease and that uses estimates either of marker allele frequencies in the two founding populations or of marker allele frequencies in the current, admixed population and in one of the founding populations. Furthermore, this optimal collapsing is not always the collapsing with the largest difference in allele frequencies in the founding populations. To demonstrate this strategy, we considered a recent data set, published previously, that provides frequency estimates for 30 microsatellites in 13 populations. PMID:9497257
NASA Astrophysics Data System (ADS)
Shekhar, Adarsh
Nanotechnology is becoming increasingly important with the continuing advances in experimental techniques. As researchers around the world are trying to expand the current understanding of the behavior of materials at the atomistic scale, the limited resolution of equipment, both in terms of time and space, act as roadblocks to a comprehensive study. Numerical methods, in general and molecular dynamics, in particular act as able compliment to the experiments in our quest for understanding material behavior. In this research work, large scale molecular dynamics simulations to gain insight into the mechano-chemical behavior under extreme conditions of a variety of systems with many real world applications. The body of this work is divided into three parts, each covering a particular system: 1) Aggregates of aluminum nanoparticles are good solid fuel due to high flame propagation rates. Multi-million atom molecular dynamics simulations reveal the mechanism underlying higher reaction rate in a chain of aluminum nanoparticles as compared to an isolated nanoparticle. This is due to the penetration of hot atoms from reacting nanoparticles to an adjacent, unreacted nanoparticle, which brings in external heat and initiates exothermic oxidation reactions. 2) Cavitation bubbles readily occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163,840-processor BlueGene/P supercomputer to investigate chemical and mechanical damages caused by shock-induced collapse of nanobubbles in water near amorphous silica. Collapse of an empty nanobubble generates high-speed nanojet, resulting in the formation of a pit on the surface. The pit contains a large number of silanol groups and its volume is found to be directly proportional to the volume of the nanobubble. The gas-filled bubbles undergo partial collapse and consequently the damage on the silica surface is mitigated. 3) The structure and dynamics of water confined in nanoporous silica are different from that of bulk water, and insight into the properties of confined water is important for our understanding of many geological and biological processes. Nanoporous silica has a wide range of technological applications because it is easy to tune the size of pores and their morphologies and to functionalize pore surfaces with a variety of molecular moieties. Nanoporous silica is used in catalysis, chromatography, anticorrosion coatings, desalination membranes, and as drug delivery vehicles. We use reactive molecular dynamics to study the structure and dynamics of nanoconfined water between 100 and 300 K
Bronchial abnormalities found in a consecutive series of 40 brachycephalic dogs.
De Lorenzi, Davide; Bertoncello, Diana; Drigo, Michele
2009-10-01
To detect abnormalities of the lower respiratory tract (trachea, principal bronchi, and lobar bronchi) in brachycephalic dogs by use of endoscopy, evaluate the correlation between laryngeal collapse and bronchial abnormalities, and determine whether dogs with bronchial abnormalities have a less favorable postsurgical long-term outcome following correction of brachycephalic syndrome. Prospective case series study. 40 client-owned brachycephalic dogs with stertorous breathing and clinical signs of respiratory distress. Brachycephalic dogs anesthetized for pharyngoscopy and laryngoscopy between January 2007 and June 2008 underwent flexible bronchoscopy for systematic evaluation of the principal and lobar bronchi. For dogs that underwent surgical correction of any component of brachycephalic syndrome, owners rated surgical outcome during a follow-up telephone survey. Correlation between laryngeal collapse and bronchial abnormalities and association between bronchial abnormalities and long-term outcome were assessed. Pugs (n = 20), English Bulldogs (13), and French Bulldogs (7) were affected. A fixed bronchial collapse was recognized in 35 of 40 dogs with a total of 94 bronchial stenoses. Abnormalities were irregularly distributed between hemithoraces; 15 of 94 bronchial abnormalities were detected in the right bronchial system, and 79 of 94 were detected in the left. The left cranial bronchus was the most commonly affected structure, and Pugs were the most severely affected breed. Laryngeal collapse was significantly correlated with severe bronchial collapse; no significant correlation was found between severity of bronchial abnormalities and postsurgical outcome. Bronchial collapse was a common finding in brachycephalic dogs, and long-term postsurgical outcome was not affected by bronchial stenosis.
HOW MANY NUCLEOSYNTHESIS PROCESSES EXIST AT LOW METALLICITY?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, C. J.; Montes, F.; Arcones, A., E-mail: cjhansen@lsw.uni-heidelberg.de, E-mail: cjhansen@dark-cosmology.dk, E-mail: montes@nscl.msu.edu, E-mail: almudena.arcones@physik.tu-darmstadt.de
Abundances of low-metallicity stars offer a unique opportunity to understand the contribution and conditions of the different processes that synthesize heavy elements. Many old, metal-poor stars show a robust abundance pattern for elements heavier than Ba, and a less robust pattern between Sr and Ag. Here we probe if two nucleosynthesis processes are sufficient to explain the stellar abundances at low metallicity, and we carry out a site independent approach to separate the contribution from these two processes or components to the total observationally derived abundances. Our approach provides a method to determine the contribution of each process to themore » production of elements such as Sr, Zr, Ba, and Eu. We explore the observed star-to-star abundance scatter as a function of metallicity that each process leads to. Moreover, we use the deduced abundance pattern of one of the nucleosynthesis components to constrain the astrophysical conditions of neutrino-driven winds from core-collapse supernovae.« less
Nonspherically Symmetric Collapse in Asymptotically AdS Spacetimes.
Bantilan, Hans; Figueras, Pau; Kunesch, Markus; Romatschke, Paul
2017-11-10
We numerically simulate gravitational collapse in asymptotically anti-de Sitter spacetimes away from spherical symmetry. Starting from initial data sourced by a massless real scalar field, we solve the Einstein equations with a negative cosmological constant in five spacetime dimensions and obtain a family of nonspherically symmetric solutions, including those that form two distinct black holes on the axis. We find that these configurations collapse faster than spherically symmetric ones of the same mass and radial compactness. Similarly, they require less mass to collapse within a fixed time.
Nonspherically Symmetric Collapse in Asymptotically AdS Spacetimes
NASA Astrophysics Data System (ADS)
Bantilan, Hans; Figueras, Pau; Kunesch, Markus; Romatschke, Paul
2017-11-01
We numerically simulate gravitational collapse in asymptotically anti-de Sitter spacetimes away from spherical symmetry. Starting from initial data sourced by a massless real scalar field, we solve the Einstein equations with a negative cosmological constant in five spacetime dimensions and obtain a family of nonspherically symmetric solutions, including those that form two distinct black holes on the axis. We find that these configurations collapse faster than spherically symmetric ones of the same mass and radial compactness. Similarly, they require less mass to collapse within a fixed time.
NASA Astrophysics Data System (ADS)
Engstler, Justin; Giovambattista, Nicolas
2017-08-01
We characterize the phase behavior of glassy water by performing extensive out-of-equilibrium molecular dynamics simulations using the TIP4P/2005 water model. Specifically, we study (i) the pressure-induced transformations between low-density (LDA) and high-density amorphous ice (HDA), (ii) the pressure-induced amorphization (PIA) of hexagonal ice (Ih), (iii) the heating-induced LDA-to-HDA transformation at high pressures, (iv) the heating-induced HDA-to-LDA transformation at low and negative pressures, (v) the glass transition temperatures of LDA and HDA as a function of pressure, and (vi) the limit of stability of LDA upon isobaric heating and isothermal decompression (at negative pressures). These transformations are studied systematically, over a wide range of temperatures and pressures, allowing us to construct a P-T phase diagram for glassy TIP4P/2005 water. Our results are in qualitative agreement with experimental observations and with the P-T phase diagram obtained for glassy ST2 water that exhibits a liquid-liquid phase transition and critical point. We also discuss the mechanism for PIA of ice Ih and show that this is a two-step process where first, the hydrogen-bond network (HBN) is distorted and then the HBN abruptly collapses. Remarkably, the collapse of the HB in ice Ih occurs when the average molecular orientations order, a measure of the tetrahedrality of the HBN, is of the same order as in LDA, suggesting a common mechanism for the LDA-to-HDA and Ih-to-HDA transformations.
Engstler, Justin; Giovambattista, Nicolas
2017-08-21
We characterize the phase behavior of glassy water by performing extensive out-of-equilibrium molecular dynamics simulations using the TIP4P/2005 water model. Specifically, we study (i) the pressure-induced transformations between low-density (LDA) and high-density amorphous ice (HDA), (ii) the pressure-induced amorphization (PIA) of hexagonal ice (I h ), (iii) the heating-induced LDA-to-HDA transformation at high pressures, (iv) the heating-induced HDA-to-LDA transformation at low and negative pressures, (v) the glass transition temperatures of LDA and HDA as a function of pressure, and (vi) the limit of stability of LDA upon isobaric heating and isothermal decompression (at negative pressures). These transformations are studied systematically, over a wide range of temperatures and pressures, allowing us to construct a P-T phase diagram for glassy TIP4P/2005 water. Our results are in qualitative agreement with experimental observations and with the P-T phase diagram obtained for glassy ST2 water that exhibits a liquid-liquid phase transition and critical point. We also discuss the mechanism for PIA of ice I h and show that this is a two-step process where first, the hydrogen-bond network (HBN) is distorted and then the HBN abruptly collapses. Remarkably, the collapse of the HB in ice I h occurs when the average molecular orientations order, a measure of the tetrahedrality of the HBN, is of the same order as in LDA, suggesting a common mechanism for the LDA-to-HDA and I h -to-HDA transformations.
Repeated crossing of two concentric spherical thin-shells with charge
NASA Astrophysics Data System (ADS)
Mazharimousavi, S. Habib; Halilsoy, M.
Interaction/collision of two concentric spherical thin-shells of linear fluid resulting in collapse has been considered recently. We show that addition of finely tuned electric charges on the shells apart from the cosmological constant serves to delay the collapse indefinitely, yielding an ever colliding system of two concentric fluid shells. Given the finely tuned charges, this provides an example of a perpetual two-body motion in general relativity.
Peter, Emanuel K; Pivkin, Igor V; Shea, Joan-Emma
2015-04-14
In Monte-Carlo simulations of protein folding, pathways and folding times depend on the appropriate choice of the Monte-Carlo move or process path. We developed a generalized set of process paths for a hybrid kinetic Monte Carlo-Molecular dynamics algorithm, which makes use of a novel constant time-update and allows formation of α-helical and β-stranded secondary structures. We apply our new algorithm to the folding of 3 different proteins: TrpCage, GB1, and TrpZip4. All three systems are seen to fold within the range of the experimental folding times. For the β-hairpins, we observe that loop formation is the rate-determining process followed by collapse and formation of the native core. Cluster analysis of both peptides reveals that GB1 folds with equal likelihood along a zipper or a hydrophobic collapse mechanism, while TrpZip4 follows primarily a zipper pathway. The difference observed in the folding behavior of the two proteins can be attributed to the different arrangements of their hydrophobic core, strongly packed, and dry in case of TrpZip4, and partially hydrated in the case of GB1.
Neutrinos from Choked Jets Accompanied by Type-II Supernovae
NASA Astrophysics Data System (ADS)
He, Hao-Ning; Kusenko, Alexander; Nagataki, Shigehiro; Fan, Yi-Zhong; Wei, Da-Ming
2018-04-01
The origin of the IceCube neutrinos is still an open question. Upper limits from diffuse gamma-ray observations suggest that the neutrino sources are either distant or hidden from gamma-ray observations. It is possible that the neutrinos are produced in jets that are formed in core-collapsing massive stars and fail to break out, the so-called choked jets. We study neutrinos from the jets choked in the hydrogen envelopes of red supergiant stars. Fast photo-meson cooling softens the neutrino spectrum, making it hard to explain the PeV neutrinos observed by IceCube in a one-component scenario, but a two-component model can explain the spectrum. Furthermore, we predict that a newly born jet-driven type-II supernova may be observed to be associated with a neutrino burst detected by IceCube.
Quantum mechanics and the psyche
NASA Astrophysics Data System (ADS)
Galli Carminati, G.; Martin, F.
2008-07-01
In this paper we apply the last developments of the theory of measurement in quantum mechanics to the phenomenon of consciousness and especially to the awareness of unconscious components. Various models of measurement in quantum mechanics can be distinguished by the fact that there is, or there is not, a collapse of the wave function. The passive aspect of consciousness seems to agree better with models in which there is no collapse of the wave function, whereas in the active aspect of consciousness—i.e., that which goes together with an act or a choice—there seems to be a collapse of the wave function. As an example of the second possibility we study in detail the photon delayed-choice experiment and its consequences for subjective or psychological time. We apply this as an attempt to explain synchronicity phenomena. As a model of application of the awareness of unconscious components we study the mourning process. We apply also the quantum paradigm to the phenomenon of correlation at a distance between minds, as well as to group correlations that appear during group therapies or group training. Quantum entanglement leads to the formation of group unconscious or collective unconscious. Finally we propose to test the existence of such correlations during sessions of group training.
Unveiling early black holes with JWST
NASA Astrophysics Data System (ADS)
Natarajan, Priyamvada
The formation of direct collapse black hole seeds with masses ~104 - 105 ~M⊙ could help explain the assembly of supermassive black holes powering high redshift quasars. Conditions conducive to the formation of these massive initial seeds exist at high redshift. Halos hosting these massive seeds merge promptly with a nearby galaxy. These early stage mergers at high redshift produce a new class of transient galaxies that contain an accreting black hole that is over-massive compared to the newly acquired stellar component - Obese Black hole Galaxies (OBGs). During this phase, the accretion luminosity of the direct collapse black hole seed exceeds that of the acquired stellar component. Here we calculate the multi-wavelength spectrum of this short-lived OBG stage, and show that there exist unique observational signatures in long wavelengths spanning near, mid to far-infrared that should be detectable by instruments aboard the upcoming James Webb Space Telescope (JWST).
In Situ Detection of Strong Langmuir Turbulence Processes in Solar Type III Radio Bursts
NASA Technical Reports Server (NTRS)
Golla, Thejappa; Macdowall, Robert J.; Bergamo, M.
2012-01-01
The high time resolution observations obtained by the WAVES experiment of the STEREO spacecraft in solar type III radio bursts show that Langmuir waves often occur as intense localized wave packets. These wave packets are characterized by short durations of only a few ms and peak intensities, which well exceed the supersonic modulational instability (MI) thresholds. These timescales and peak intensities satisfy the criterion of the solitons collapsed to spatial scales of a few hundred Debye lengths. The spectra of these wave packets consist of primary spectral peaks corresponding to beam-resonant Langmuir waves, two or more sidebands corresponding to down-shifted and up-shifted daughter Langmuir waves, and low frequency enhancements below a few hundred Hz corresponding to daughter ion sound waves. The frequencies and wave numbers of these spectral components satisfy the resonance conditions of the modulational instability (MI). Moreover, the tricoherences, computed using trispectral analysis techniques show that these spectral components are coupled to each other with a high degree of coherency as expected of the MI type of four wave interactions. The high intensities, short scale lengths, sideband spectral structures and low frequency spectral enhancements and, high levels of tricoherences amongst the spectral components of these wave packets provide unambiguous evidence for the supersonic MI and related strong turbulence processes in type III radio bursts. The implication of these observations include: (1) the MI and related strong turbulence processes often occur in type III source regions, (2) the strong turbulence processes probably play very important roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation at the fundamental and second harmonic of the electron plasma frequency, fpe, and (3) the Langmuir collapse probably follows the route of MI in type III radio bursts.
Benson, Christopher R; Maffeo, Christopher; Fatila, Elisabeth M; Liu, Yun; Sheetz, Edward G; Aksimentiev, Aleksei; Singharoy, Abhishek; Flood, Amar H
2018-05-07
The coordinated motion of many individual components underpins the operation of all machines. However, despite generations of experience in engineering, understanding the motion of three or more coupled components remains a challenge, known since the time of Newton as the "three-body problem." Here, we describe, quantify, and simulate a molecular three-body problem of threading two molecular rings onto a linear molecular thread. Specifically, we use voltage-triggered reduction of a tetrazine-based thread to capture two cyanostar macrocycles and form a [3]pseudorotaxane product. As a consequence of the noncovalent coupling between the cyanostar rings, we find the threading occurs by an unexpected and rare inchworm-like motion where one ring follows the other. The mechanism was derived from controls, analysis of cyclic voltammetry (CV) traces, and Brownian dynamics simulations. CVs from two noncovalently interacting rings match that of two covalently linked rings designed to thread via the inchworm pathway, and they deviate considerably from the CV of a macrocycle designed to thread via a stepwise pathway. Time-dependent electrochemistry provides estimates of rate constants for threading. Experimentally derived parameters (energy wells, barriers, diffusion coefficients) helped determine likely pathways of motion with rate-kinetics and Brownian dynamics simulations. Simulations verified intercomponent coupling could be separated into ring-thread interactions for kinetics, and ring-ring interactions for thermodynamics to reduce the three-body problem to a two-body one. Our findings provide a basis for high-throughput design of molecular machinery with multiple components undergoing coupled motion.
The Role of Viscosity in TATB Hot Spot Ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fried, L E; Zepeda-Ruis, L; Howard, W M
2011-08-02
The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse ismore » closest to the viscous limit.« less
Molecular mobility of nematic E7 confined to molecular sieves with a low filling degree.
Brás, A R; Frunza, S; Guerreiro, L; Fonseca, I M; Corma, A; Frunza, L; Dionísio, M; Schönhals, A
2010-06-14
The nematic liquid crystalline mixture E7 was confined with similar filling degrees to molecular sieves with constant composition but different pore diameters (from 2.8 to 6.8 nm). Fourier transform infrared analysis proved that the E7 molecules interact via the cyanogroup with the pore walls of the molecular sieves. The molecular dynamics of the system was investigated by broadband dielectric spectroscopy (10(-2)-10(9) Hz) covering a wide temperature range of approximately 200 K from temperatures well above the isotropic-nematic transition down to the glass transition of bulk E7. A variety of relaxation processes is observed including two modes that are located close to the bulk behavior in its temperature dependence. For all confined samples, two relaxation processes, at frequencies lower than the processes observed for the bulk, were detected. At lower temperatures, their relaxation rates have different temperature dependencies whereas at higher temperatures, they seem to collapse into one chart. The temperature dependence of the slowest process (S-process) obeys the Vogel-Fulcher-Tammann law indicating a glassy dynamics of the E7 molecules anchored to the pore surface. The pore size dependence of both the Vogel temperature and fragility revealed a steplike transition around 4 nm pore size, which indicates a transition from a strong to a fragile behavior. The process with a relaxation rate in between the bulklike and the S-process (I-process) shows no dependence on the pore size. The agreement of the I-process with the behavior of a 5CB surface layer adsorbed on nonporous silica leads to the assignment of E7 molecules anchored at the outer surface of the microcrystals of the molecular sieves.
Collapse of the surface dusty plasma waves under the plasma-beam instability
NASA Astrophysics Data System (ADS)
Grimalsky, Volodymyr; Kotsarenko, Anatoliy; Koshevaya, Svetlana; Escobedo-A., Jesus
2017-12-01
The nonlinear dynamics of the dusty plasma-dusty beam instability is investigated in the dusty plasma waveguides bounded by dielectrics. The dusty plasma includes the positive ions as the light component and the negative dust as the heavy component. A beam of dust particles moves along the waveguide. The set of hydrodynamic equations for the dust and beam particles, namely, the continuity equations and the equations for the momentum jointly with the Poisson one are used. The Boltzmann distribution is used for the ions. The electric and hydrodynamic boundary conditions are applied at the interfaces. The simulations have demonstrated that the dusty sound waves of small amplitudes are the subject to amplification with a high increment due to the convective instability, even when the concentration of the beam particles is ≤0.1 of the uniform dust concentration. The amplification very rapidly transits to the regime of strong surface nonlinearity, and near the interfaces the variations of the dust concentration reach extremely high values, where the collapse of the beam dust component occurs.
Barrett, Eoin; Hayes, Maria; O'Connor, Paula; Gardiner, Gillian; Fitzgerald, Gerald F.; Stanton, Catherine; Ross, R. Paul; Hill, Colin
2007-01-01
Lactobacillus salivarius DPC6005, a porcine intestinal isolate, produces a two-component bacteriocin, salivaricin P, with homology to ABP-118 produced by a human probiotic L. salivarius strain. Indeed, molecular characterization revealed that while the peptides Sln1 and ABP-118α are identical, their companion peptides (Sln2 and ABP-118β, respectively) differ by two amino acids. This observation suggests that two-component bacteriocins may be a common feature of intestinal L. salivarius strains. PMID:17416691
The equilibrium properties and folding kinetics of an all-atom Go model of the Trp-cage.
Linhananta, Apichart; Boer, Jesse; MacKay, Ian
2005-03-15
The ultrafast-folding 20-residue Trp-cage protein is quickly becoming a new benchmark for molecular dynamics studies. Already several all-atom simulations have probed its equilibrium and kinetic properties. In this work an all-atom Go model is used to accurately represent the side-chain packing and native atomic contacts of the Trp-cage. The model reproduces the hallmark thermodynamics cooperativity of small proteins. Folding simulations observe that in the fast-folding dominant pathway, partial alpha-helical structure forms before hydrophobic core collapse. In the slow-folding secondary pathway, partial core collapse occurs before helical structure. The slow-folding rate of the secondary pathway is attributed to the loss of side-chain rotational freedom, due to the early core collapse, which impedes the helix formation. A major finding is the observation of a low-temperature kinetic intermediate stabilized by a salt bridge between residues Asp-9 and Arg-16. Similar observations [R. Zhou, Proc. Natl. Acad. Sci. U.S.A. 100, 13280 (2003)] were reported in a recent study using an all-atom model of the Trp-cage in explicit water, in which the salt-bridge stabilized intermediate was hypothesized to be the origin of the ultrafast-folding mechanism. A theoretical mutation that eliminates the Asp-9-Arg-16 salt bridge, but leaves the residues intact, is performed. Folding simulations of the mutant Trp-cage observe a two-state free-energy landscape with no kinetic intermediate and a significant decrease in the folding rate, in support of the hypothesis.
The equilibrium properties and folding kinetics of an all-atom Go xAF model of the Trp-cage
NASA Astrophysics Data System (ADS)
Linhananta, Apichart; Boer, Jesse; MacKay, Ian
2005-03-01
The ultrafast-folding 20-residue Trp-cage protein is quickly becoming a new benchmark for molecular dynamics studies. Already several all-atom simulations have probed its equilibrium and kinetic properties. In this work an all-atom Go ¯ model is used to accurately represent the side-chain packing and native atomic contacts of the Trp-cage. The model reproduces the hallmark thermodynamics cooperativity of small proteins. Folding simulations observe that in the fast-folding dominant pathway, partial α-helical structure forms before hydrophobic core collapse. In the slow-folding secondary pathway, partial core collapse occurs before helical structure. The slow-folding rate of the secondary pathway is attributed to the loss of side-chain rotational freedom, due to the early core collapse, which impedes the helix formation. A major finding is the observation of a low-temperature kinetic intermediate stabilized by a salt bridge between residues Asp-9 and Arg-16. Similar observations [R. Zhou, Proc. Natl. Acad. Sci. U.S.A. 100, 13280 (2003)] were reported in a recent study using an all-atom model of the Trp-cage in explicit water, in which the salt-bridge stabilized intermediate was hypothesized to be the origin of the ultrafast-folding mechanism. A theoretical mutation that eliminates the Asp-9-Arg-16 salt bridge, but leaves the residues intact, is performed. Folding simulations of the mutant Trp-cage observe a two-state free-energy landscape with no kinetic intermediate and a significant decrease in the folding rate, in support of the hypothesis.
Multivariate analyses of crater parameters and the classification of craters
NASA Technical Reports Server (NTRS)
Siegal, B. S.; Griffiths, J. C.
1974-01-01
Multivariate analyses were performed on certain linear dimensions of six genetic types of craters. A total of 320 craters, consisting of laboratory fluidization craters, craters formed by chemical and nuclear explosives, terrestrial maars and other volcanic craters, and terrestrial meteorite impact craters, authenticated and probable, were analyzed in the first data set in terms of their mean rim crest diameter, mean interior relief, rim height, and mean exterior rim width. The second data set contained an additional 91 terrestrial craters of which 19 were of experimental percussive impact and 28 of volcanic collapse origin, and which was analyzed in terms of mean rim crest diameter, mean interior relief, and rim height. Principal component analyses were performed on the six genetic types of craters. Ninety per cent of the variation in the variables can be accounted for by two components. Ninety-nine per cent of the variation in the craters formed by chemical and nuclear explosives is explained by the first component alone.
de Ménorval, Marie-Amélie; Mir, Lluis M; Fernández, M Laura; Reigada, Ramon
2012-01-01
Dimethyl sulfoxide (DMSO) has been known to enhance cell membrane permeability of drugs or DNA. Molecular dynamics (MD) simulations with single-component lipid bilayers predicted the existence of three regimes of action of DMSO: membrane loosening, pore formation and bilayer collapse. We show here that these modes of action are also reproduced in the presence of cholesterol in the bilayer, and we provide a description at the atomic detail of the DMSO-mediated process of pore formation in cholesterol-containing lipid membranes. We also successfully explore the applicability of DMSO to promote plasma membrane permeability to water, calcium ions (Ca(2+)) and Yo-Pro-1 iodide (Yo-Pro-1) in living cell membranes. The experimental results on cells in culture can be easily explained according to the three expected regimes: in the presence of low doses of DMSO, the membrane of the cells exhibits undulations but no permeability increase can be detected, while at intermediate DMSO concentrations cells are permeabilized to water and calcium but not to larger molecules as Yo-Pro-1. These two behaviors can be associated to the MD-predicted consequences of the effects of the DMSO at low and intermediate DMSO concentrations. At larger DMSO concentrations, permeabilization is larger, as even Yo-Pro-1 can enter the cells as predicted by the DMSO-induced membrane-destructuring effects described in the MD simulations.
Engel, Juan C.; Ruby, J. Graham; Ganem, Donald; Andino, Raul; DeRisi, Joseph L.
2011-01-01
Honey bees (Apis mellifera) play a critical role in global food production as pollinators of numerous crops. Recently, honey bee populations in the United States, Canada, and Europe have suffered an unexplained increase in annual losses due to a phenomenon known as Colony Collapse Disorder (CCD). Epidemiological analysis of CCD is confounded by a relative dearth of bee pathogen field studies. To identify what constitutes an abnormal pathophysiological condition in a honey bee colony, it is critical to have characterized the spectrum of exogenous infectious agents in healthy hives over time. We conducted a prospective study of a large scale migratory bee keeping operation using high-frequency sampling paired with comprehensive molecular detection methods, including a custom microarray, qPCR, and ultra deep sequencing. We established seasonal incidence and abundance of known viruses, Nosema sp., Crithidia mellificae, and bacteria. Ultra deep sequence analysis further identified four novel RNA viruses, two of which were the most abundant observed components of the honey bee microbiome (∼1011 viruses per honey bee). Our results demonstrate episodic viral incidence and distinct pathogen patterns between summer and winter time-points. Peak infection of common honey bee viruses and Nosema occurred in the summer, whereas levels of the trypanosomatid Crithidia mellificae and Lake Sinai virus 2, a novel virus, peaked in January. PMID:21687739
Organometallic rotaxane dendrimers with fourth-generation mechanically interlocked branches.
Wang, Wei; Chen, Li-Jun; Wang, Xu-Qing; Sun, Bin; Li, Xiaopeng; Zhang, Yanyan; Shi, Jiameng; Yu, Yihua; Zhang, Li; Liu, Minghua; Yang, Hai-Bo
2015-05-05
Mechanically interlocked molecules, such as catenanes, rotaxanes, and knots, have applications in information storage, switching devices, and chemical catalysis. Rotaxanes are dumbbell-shaped molecules that are threaded through a large ring, and the relative motion of the two components along each other can respond to external stimuli. Multiple rotaxane units can amplify responsiveness, and repetitively branched molecules--dendrimers--can serve as vehicles for assembly of many rotaxanes on single, monodisperse compounds. Here, we report the synthesis of higher-generation rotaxane dendrimers by a divergent approach. Linkages were introduced as spacer elements to reduce crowding and to facilitate rotaxane motion, even at the congested periphery of the compounds up to the fourth generation. The structures were characterized by 1D multinuclear ((1)H, (13)C, and (31)P) and 2D NMR spectroscopy, MALDI-TOF-MS, gel permeation chromatography (GPC), and microscopy-based methods including atomic force microscopy (AFM) and transmission electron microscopy (TEM). AFM and TEM studies of rotaxane dendrimers vs. model dendrimers show that the rotaxane units enhance the rigidity and reduce the tendency of these assemblies to collapse by self-folding. Surface functionalization of the dendrimers with ferrocenes as termini produced electrochemically active assemblies. The preparation of dendrimers with a well-defined topological structure, enhanced rigidity, and diverse functional groups opens previously unidentified avenues for the application of these materials in molecular electronics and materials science.
Runckel, Charles; Flenniken, Michelle L; Engel, Juan C; Ruby, J Graham; Ganem, Donald; Andino, Raul; DeRisi, Joseph L
2011-01-01
Honey bees (Apis mellifera) play a critical role in global food production as pollinators of numerous crops. Recently, honey bee populations in the United States, Canada, and Europe have suffered an unexplained increase in annual losses due to a phenomenon known as Colony Collapse Disorder (CCD). Epidemiological analysis of CCD is confounded by a relative dearth of bee pathogen field studies. To identify what constitutes an abnormal pathophysiological condition in a honey bee colony, it is critical to have characterized the spectrum of exogenous infectious agents in healthy hives over time. We conducted a prospective study of a large scale migratory bee keeping operation using high-frequency sampling paired with comprehensive molecular detection methods, including a custom microarray, qPCR, and ultra deep sequencing. We established seasonal incidence and abundance of known viruses, Nosema sp., Crithidia mellificae, and bacteria. Ultra deep sequence analysis further identified four novel RNA viruses, two of which were the most abundant observed components of the honey bee microbiome (∼10(11) viruses per honey bee). Our results demonstrate episodic viral incidence and distinct pathogen patterns between summer and winter time-points. Peak infection of common honey bee viruses and Nosema occurred in the summer, whereas levels of the trypanosomatid Crithidia mellificae and Lake Sinai virus 2, a novel virus, peaked in January.
de Ménorval, Marie-Amélie; Mir, Lluis M.; Fernández, M. Laura; Reigada, Ramon
2012-01-01
Dimethyl sulfoxide (DMSO) has been known to enhance cell membrane permeability of drugs or DNA. Molecular dynamics (MD) simulations with single-component lipid bilayers predicted the existence of three regimes of action of DMSO: membrane loosening, pore formation and bilayer collapse. We show here that these modes of action are also reproduced in the presence of cholesterol in the bilayer, and we provide a description at the atomic detail of the DMSO-mediated process of pore formation in cholesterol-containing lipid membranes. We also successfully explore the applicability of DMSO to promote plasma membrane permeability to water, calcium ions (Ca2+) and Yo-Pro-1 iodide (Yo-Pro-1) in living cell membranes. The experimental results on cells in culture can be easily explained according to the three expected regimes: in the presence of low doses of DMSO, the membrane of the cells exhibits undulations but no permeability increase can be detected, while at intermediate DMSO concentrations cells are permeabilized to water and calcium but not to larger molecules as Yo-Pro-1. These two behaviors can be associated to the MD-predicted consequences of the effects of the DMSO at low and intermediate DMSO concentrations. At larger DMSO concentrations, permeabilization is larger, as even Yo-Pro-1 can enter the cells as predicted by the DMSO-induced membrane-destructuring effects described in the MD simulations. PMID:22848583
A multidisciplinary study of the 2014-2015 Bárðarbunga caldera collapse, Iceland
NASA Astrophysics Data System (ADS)
Tumi Gudmundsson, Magnus; Jonsdóttir, Kristin; Hooper, Andy; Holohan, Eoghan; Halldorsson, Saemundur
2016-04-01
The collapse of the ice-filled Bárðarbunga caldera in central Iceland occurred in autumn and winter, when weather was highly unsettled and conditions for monitoring in many ways difficult. Nevertheless several detailed time series could be obtained on the collapse and to a degree the associated flood-basalt eruption in Holuhraun. This was achieved through applying an array of sensors, that were ground, air and satellite based, partly made possible through the EU-funded FUTUREVOLC supersite project. This slow caldera collapse lasted six months, ending in February 2015. The array of sensors used, coupled with the long duration of the event, allowed unprecedented detail in observing a caldera collapse. The deciphering of the course of events required the use of aircraft altimeter surveys of the ice surface, seismic and GPS monitoring, the installation of a GPS station on the glacier surface in the centre of the caldera that continuously recorded the subsidence. Full Stokes 3-D modelling of the 700-800 m thick ice in the caldera, constrained by observations, was applied to remove the component of ice deformation that had a minor effect on the measured subsidence. The maximum subsidence of the subglacial caldera floor was about 65 meters. The combined interpretation of geochemical geobarometers, subsidence geometry with GPS and InSAR deformation signals, seismicity and distinct element deformation modelling of the subsidence provided unprecedented detail of the process and mechanism of caldera collapse. The collapse involved the re-activation of pre-existing ring faults, and was initiated a few days after magma started to drain from underneath the caldera towards the eventual eruption site in Holuhraun, 45 km to the northeast. The caldera collapse was slow and gradual, and the flow rate from underneath the caldera correlates well with the lava flow rate in Holuhraun, both in terms of total volume and variations in time.
Star cluster formation in a turbulent molecular cloud self-regulated by photoionization feedback
NASA Astrophysics Data System (ADS)
Gavagnin, Elena; Bleuler, Andreas; Rosdahl, Joakim; Teyssier, Romain
2017-12-01
Most stars in the Galaxy are believed to be formed within star clusters from collapsing molecular clouds. However, the complete process of star formation, from the parent cloud to a gas-free star cluster, is still poorly understood. We perform radiation-hydrodynamical simulations of the collapse of a turbulent molecular cloud using the RAMSES-RT code. Stars are modelled using sink particles, from which we self-consistently follow the propagation of the ionizing radiation. We study how different feedback models affect the gas expulsion from the cloud and how they shape the final properties of the emerging star cluster. We find that the star formation efficiency is lower for stronger feedback models. Feedback also changes the high-mass end of the stellar mass function. Stronger feedback also allows the establishment of a lower density star cluster, which can maintain a virial or sub-virial state. In the absence of feedback, the star formation efficiency is very high, as well as the final stellar density. As a result, high-energy close encounters make the cluster evaporate quickly. Other indicators, such as mass segregation, statistics of multiple systems and escaping stars confirm this picture. Observations of young star clusters are in best agreement with our strong feedback simulation.
Shan, Tzu -Ray; Wixom, Ryan R.; Thompson, Aidan P.
2016-08-01
In both continuum hydrodynamics simulations and also multimillion atom reactive molecular dynamics simulations of shockwave propagation in single crystal pentaerythritol tetranitrate (PETN) containing a cylindrical void, we observed the formation of an initial radially symmetric hot spot. By extending the simulation time to the nanosecond scale, however, we observed the transformation of the small symmetric hot spot into a longitudinally asymmetric hot region extending over a much larger volume. Performing reactive molecular dynamics shock simulations using the reactive force field (ReaxFF) as implemented in the LAMMPS molecular dynamics package, we showed that the longitudinally asymmetric hot region was formed bymore » coalescence of the primary radially symmetric hot spot with a secondary triangular hot zone. We showed that the triangular hot zone coincided with a double-shocked region where the primary planar shockwave was overtaken by a secondary cylindrical shockwave. The secondary cylindrical shockwave originated in void collapse after the primary planar shockwave had passed over the void. A similar phenomenon was observed in continuum hydrodynamics shock simulations using the CTH hydrodynamics package. Furthermore, the formation and growth of extended asymmetric hot regions on nanosecond timescales has important implications for shock initiation thresholds in energetic materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Tzu -Ray; Wixom, Ryan R.; Thompson, Aidan P.
In both continuum hydrodynamics simulations and also multimillion atom reactive molecular dynamics simulations of shockwave propagation in single crystal pentaerythritol tetranitrate (PETN) containing a cylindrical void, we observed the formation of an initial radially symmetric hot spot. By extending the simulation time to the nanosecond scale, however, we observed the transformation of the small symmetric hot spot into a longitudinally asymmetric hot region extending over a much larger volume. Performing reactive molecular dynamics shock simulations using the reactive force field (ReaxFF) as implemented in the LAMMPS molecular dynamics package, we showed that the longitudinally asymmetric hot region was formed bymore » coalescence of the primary radially symmetric hot spot with a secondary triangular hot zone. We showed that the triangular hot zone coincided with a double-shocked region where the primary planar shockwave was overtaken by a secondary cylindrical shockwave. The secondary cylindrical shockwave originated in void collapse after the primary planar shockwave had passed over the void. A similar phenomenon was observed in continuum hydrodynamics shock simulations using the CTH hydrodynamics package. Furthermore, the formation and growth of extended asymmetric hot regions on nanosecond timescales has important implications for shock initiation thresholds in energetic materials.« less
Zhang, Yong-Jiang; Rockwell, Fulton E.; Wheeler, James K.; Holbrook, N. Michele
2014-01-01
Declines in leaf hydraulic conductance (Kleaf) with increasing water stress have been attributed to cavitation of the leaf xylem. However, in the leaves of conifers, the reversible collapse of transfusion tracheids may provide an alternative explanation. Using Taxus baccata, a conifer species without resin, we developed a modified rehydration technique that allows the separation of declines in Kleaf into two components: one reversible and one irreversible upon relaxation of water potential to −1 MPa. We surveyed leaves at a range of water potentials for evidence of cavitation using cryo-scanning electron microscopy and quantified dehydration-induced structural changes in transfusion tracheids by cryo-fluorescence microscopy. Irreversible declines in Kleaf did not occur until leaf water potentials were more negative than −3 MPa. Declines in Kleaf between −2 and −3 MPa were reversible and accompanied by the collapse of transfusion tracheids, as evidenced by cryo-fluorescence microscopy. Based on cryo-scanning electron microscopy, cavitation of either transfusion or xylem tracheids did not contribute to declines in Kleaf in the reversible range. Moreover, the deformation of transfusion tracheids was quickly reversible, thus acting as a circuit breaker regulating the flux of water through the leaf vasculature. As transfusion tissue is present in all gymnosperms, the reversible collapse of transfusion tracheids may be a general mechanism in this group for the protection of leaf xylem from excessive loads generated in the living leaf tissue. PMID:24948828
Kax and kol: Collapse and resilience in lowland Maya civilization
Dunning, Nicholas P.; Beach, Timothy P.; Luzzadder-Beach, Sheryl
2012-01-01
Episodes of population loss and cultural change, including the famous Classic Collapse, punctuated the long course of Maya civilization. In many cases, these downturns in the fortunes of individual sites and entire regions included significant environmental components such as droughts or anthropogenic environmental degradation. Some afflicted areas remained depopulated for long periods, whereas others recovered more quickly. We examine the dynamics of growth and decline in several areas in the Maya Lowlands in terms of both environmental and cultural resilience and with a focus on downturns that occurred in the Terminal Preclassic (second century Common Era) and Terminal Classic (9th and 10th centuries CE) periods. This examination of available data indicates that the elevated interior areas of the Yucatán Peninsula were more susceptible to system collapse and less suitable for resilient recovery than adjacent lower-lying areas. PMID:22371571
Julka, Samir; Cortes, Hernan; Harfmann, Robert; Bell, Bruce; Schweizer-Theobaldt, Andreas; Pursch, Matthias; Mondello, Luigi; Maynard, Shawn; West, David
2009-06-01
A comprehensive multidimensional liquid chromatography system coupled to Electrospray Ionization-Mass Spectrometry (LCxLC-ESI-MS) was developed for detailed characterization and quantitation of solid epoxy resin components. The two orthogonal modes of separation selected were size exclusion chromatography (SEC) in the first dimension and liquid chromatography at critical conditions (LCCC) in the second dimension. Different components present in the solid epoxy resins were separated and quantitated for the first time based on the functional groups and molecular weight heterogeneity. Coupling LCxLC separations with mass spectrometry enabled the identification of components resolved in the two-dimensional space. Several different functional group families of compounds were separated and identified, including epoxy-epoxy and epoxy-alpha-glycol functional oligomers, and their individual molecular weight ranges were determined. Repeatability obtained ranged from 0.5% for the main product to 21% for oligomers at the 0.4% concentration level.
Circadian rhythms synchronize mitosis in Neurospora crassa.
Hong, Christian I; Zámborszky, Judit; Baek, Mokryun; Labiscsak, Laszlo; Ju, Kyungsu; Lee, Hyeyeong; Larrondo, Luis F; Goity, Alejandra; Chong, Hin Siong; Belden, William J; Csikász-Nagy, Attila
2014-01-28
The cell cycle and the circadian clock communicate with each other, resulting in circadian-gated cell division cycles. Alterations in this network may lead to diseases such as cancer. Therefore, it is critical to identify molecular components that connect these two oscillators. However, molecular mechanisms between the clock and the cell cycle remain largely unknown. A model filamentous fungus, Neurospora crassa, is a multinucleate system used to elucidate molecular mechanisms of circadian rhythms, but not used to investigate the molecular coupling between these two oscillators. In this report, we show that a conserved coupling between the circadian clock and the cell cycle exists via serine/threonine protein kinase-29 (STK-29), the Neurospora homolog of mammalian WEE1 kinase. Based on this finding, we established a mathematical model that predicts circadian oscillations of cell cycle components and circadian clock-dependent synchronized nuclear divisions. We experimentally demonstrate that G1 and G2 cyclins, CLN-1 and CLB-1, respectively, oscillate in a circadian manner with bioluminescence reporters. The oscillations of clb-1 and stk-29 gene expression are abolished in a circadian arrhythmic frq(ko) mutant. Additionally, we show the light-induced phase shifts of a core circadian component, frq, as well as the gene expression of the cell cycle components clb-1 and stk-29, which may alter the timing of divisions. We then used a histone hH1-GFP reporter to observe nuclear divisions over time, and show that a large number of nuclear divisions occur in the evening. Our findings demonstrate the circadian clock-dependent molecular dynamics of cell cycle components that result in synchronized nuclear divisions in Neurospora.
NASA Astrophysics Data System (ADS)
Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M.
2014-12-01
The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.
Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M.
2014-01-01
The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached. PMID:25482065
Boulton, Chris A; Allison, Lesley C; Lenton, Timothy M
2014-12-08
The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.
NASA Astrophysics Data System (ADS)
John, D. A.; Breit, G. N.; Sisson, T. W.; Vallance, J. W.; Rye, R. O.
2005-12-01
Mount Rainier is the result of episodic stages of edifice growth during periods of high eruptive activity and edifice destruction during periods of relative magmatic quiescence over the past 500 kyr. Edifice destruction occurred both by slow erosion and by catastrophic collapses, some of which were strongly influenced by hydrothermal alteration. Several large-volume Holocene debris-flow deposits contain abundant clasts of hydrothermally altered rocks, most notably the 4-km3 clay-rich Osceola Mudflow which formed by collapse of the northeast side and upper 1000+ m of the edifice about 5600 ya and flowed >120 km downstream into Puget Sound. Mineral assemblages and stable isotope data of hydrothermal alteration products in Holocene debris-flow deposits indicate formation in distinct hydrothermal environments, including magmatic-hydrothermal, steam-heated (including a large fumarolic component), magmatic steam (including a possible fumarolic component), and supergene. The Osceola Mudflow and phreatic components of coeval tephras contain the highest-temperature and inferred most deeply formed alteration minerals; assemblages include magmatic-hydrothermal quartz-alunite, quartz-topaz, quartz-pyrophyllite and quartz-illite (all +pyrite), in addition to steam-heated opal-alunite-kaolinite and abundant smectite-pyrite. In contrast, the Paradise lahar, which formed by a collapse of the surficial upper south side of the edifice, contains only steam-heated assemblages including those formed largely above the water table from condensation of fumarolic vapor (opal-alunite-jarosite). Younger debris-flow deposits on the west side of the volcano (Round Pass lahar and Electron Mudflow) contain only smectite-pyrite alteration, whereas an early 20th century rock avalanche on Tahoma Glacier also contains magmatic-hydrothermal alteration that is exposed in the avalanche headwall of Sunset Amphitheater. Mineralogy and isotopic composition of the alteration phases, geologic and geophysical data, as well as analog fossil hydrothermal systems in volcanoes elsewhere, constrain hydrothermal alteration geometry on the pre-Osceola-collapse edifice of Mount Rainier. Relatively narrow zones of acid magmatic-hydrothermal alteration in the central core of the volcano grade to more widely distributed smectite-pyrite alteration farther out on the upper flanks, capped by steam-heated alteration with a large component of alteration resulting from condensation of fumarolic vapor above the water table. Alteration was polygenetic in zones formed episodically, and was strongly controlled by fluxes of heat and magmatic fluid and by local permeability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutter, B.L.; Chang, Ging-Song
The underground testing of nuclear devices causes the formation of large underground cavities which eventually may be filled by rubble and soil falling from the roof of the cavity. The zone of collapsing soil progresses upward toward the ground surface to form a ''chimney.'' The mechanisms of chimney collapse are important to understand for two important reasons. (1) A devastating and sudden propagation of the collapse may result in the formation of a surface crater which may threaten personnel and equipment in the vicinity of the crater. (2) Different collapse patterns are known to occur in the field and somemore » of these collapse patterns are known to be associated with leakage of radioactive wastes to the ground surface. A number of centrifuge tests were conducted by Kutter et al. (1988), to study the collapse of cavities in uniform dry sands. In these materials, the chimney collapse patterns were found to involve continuous, smoothly varying shear strain patterns in the chimney. The pattern of collapse in one of the tests is shown in figure 1. Figure 1a shows the surface crater that formed on the ground surface due to the collapse of a 6 inch diameter cavity buried 18'' beneath the ground surface. This result was obtained by draining fluid out of a 6'' rubber bag while the centrifuge was spinning at 11 g.« less
Zerze, Gül H; Best, Robert B; Mittal, Jeetain
2015-11-19
We use all-atom molecular simulation with explicit solvent to study the properties of selected intrinsically disordered proteins and unfolded states of foldable proteins, which include chain dimensions and shape, secondary structure propensity, solvent accessible surface area, and contact formation. We find that the qualitative scaling behavior of the chains matches expectations from theory under ambient conditions. In particular, unfolded globular proteins tend to be more collapsed under the same conditions than charged disordered sequences of the same length. However, inclusion of explicit solvent in addition naturally captures temperature-dependent solvation effects, which results in an initial collapse of the chains as temperature is increased, in qualitative agreement with experiment. There is a universal origin to the collapse, revealed in the change of hydration of individual residues as a function of temperature: namely, that the initial collapse is driven by unfavorable solvation free energy of individual residues, which in turn has a strong temperature dependence. We also observe that in unfolded globular proteins, increased temperature also initially favors formation of native-like (rather than non-native-like) structure. Our results help to establish how sequence encodes the degree of intrinsic disorder or order as well as its response to changes in environmental conditions.
Fragmentation inside atomic cooling haloes exposed to Lyman-Werner radiation
NASA Astrophysics Data System (ADS)
Regan, John A.; Downes, Turlough P.
2018-04-01
Supermassive stars born in pristine environments in the early Universe hold the promise of being the seeds for the supermassive black holes observed as high redshift quasars shortly after the epoch of reionisation. H2 suppression is thought to be crucial in order to negate normal Population III star formation and allow high accretion rates to drive the formation of supermassive stars. Only in the cases where vigorous fragmentation is avoided will a monolithic collapse be successful, giving rise to a single massive central object. We investigate the number of fragmentation sites formed in collapsing atomic cooling haloes subject to various levels of background Lyman-Werner flux. The background Lyman-Werner flux manipulates the chemical properties of the gas in the collapsing halo by destroying H2. We find that only when the collapsing gas cloud shifts from the molecular to the atomic cooling regime is the degree of fragmentation suppressed. In our particular case, we find that this occurs above a critical Lyman-Werner background of J ˜ 10 J21. The important criterion being the transition to the atomic cooling regime rather than the actual value of J, which will vary locally. Once the temperature of the gas exceeds T ≳ 104 K and the gas transitions to atomic line cooling, then vigorous fragmentation is strongly suppressed.
NASA Astrophysics Data System (ADS)
Lee, Cheng-Hsien; Huang, Zhenhua
2018-05-01
The collapse process of a submerged granular column is strongly affected by its initial packing. Previous models for particle response time, which is used to quantify the drag force between the solid and liquid phases in rheology-based two-phase flow models, have difficulty in simulating the collapse process of granular columns with different initial concentrations (initial packing conditions). This study introduces a new model for particle response time, which enables us to satisfactorily model the drag force between the two phases for a wide range of volume concentration. The present model can give satisfactory results for both loose and dense packing conditions. The numerical results have shown that (i) the initial packing affects the occurrence of contractancy/diltancy behavior during the collapse process, (ii) the general buoyancy and drag force are strongly affected by the initial packing through contractancy and diltancy, and (iii) the general buoyancy and drag force can destabilize the granular material in loose packing condition but stabilize the granular material in dense packing condition. The results have shown that the collapse process of a densely-packed granular column is more sensitive to particle response time than that of a loosely-packed granular column.
Impact of multi-component diffusion in turbulent combustion using direct numerical simulations
Bruno, Claudio; Sankaran, Vaidyanathan; Kolla, Hemanth; ...
2015-08-28
This study presents the results of DNS of a partially premixed turbulent syngas/air flame at atmospheric pressure. The objective was to assess the importance and possible effects of molecular transport on flame behavior and structure. To this purpose DNS were performed at with two proprietary DNS codes and with three different molecular diffusion transport models: fully multi-component, mixture averaged, and imposing the Lewis number of all species to be unity.
Dark sector impact on gravitational collapse of an electrically charged scalar field
NASA Astrophysics Data System (ADS)
Nakonieczna, Anna; Rogatko, Marek; Nakonieczny, Łukasz
2015-11-01
Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under a U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. The wormhole throats were stabilized by the violation of the null energy condition, which occurred due to a significant increase of a value of the phantom scalar field function in its vicinity. The square of mass parameter of the dark matter scalar field potential controlled the formation of a Cauchy horizon or wormhole throats in the spacetime. The joint impact of dark energy and dark matter on the examined process indicated that the former decides what type of an object forms, while the latter controls the amount of time needed for the object to form. Additionally, the dark sector suppresses the natural tendency of an electrically charged scalar field to form a dynamical Reissner-Nordström spacetime during the gravitational collapse.
de Gracia Lux, Caroline; Gallani, Jean-Louis; Waton, Gilles; Krafft, Marie Pierre
2010-06-25
Understanding and controlling the molecular organization of amphiphilic molecules at interfaces is essential for materials and biological sciences. When spread on water, the model amphiphiles constituted by C(n)F(2n+1)C(m)H(2m+1) (FnHm) diblocks spontaneously self-assemble into surface hemimicelles. Therefore, compression of monolayers of FnHm diblocks is actually a compression of nanometric objects. Langmuir films of F8H16, F8H18, F8H20, and F10H16 can actually be compressed far beyond the "collapse" of their monolayers at approximately 30 A(2). For molecular areas A between 30 and 10 A(2), a partially reversible, 2D/3D transition occurs between a monolayer of surface micelles and a multilayer that coexist on a large plateau. For A<10 A(2), surface pressure increases again, reaching up to approximately 48 mN m(-1) before the film eventually collapses. Brewster angle microscopy and AFM indicate a several-fold increase in film thickness when scanning through the 2D/3D coexistence plateau. Compression beyond the plateau leads to a further increase in film thickness and, eventually, to film disruption. Reversibility was assessed by using compression-expansion cycles. AFM of F8H20 films shows that the initial monolayer of micelles is progressively covered by one (and eventually two) bilayers, which leads to a hitherto unknown organized composite arrangement. Compression of films of the more rigid F10H16 results in crystalline-like inflorescences. For both diblocks, a hexagonal array of surface micelles is consistently seen, even when the 3D structures eventually disrupt, which means that this monolayer persists throughout the compression experiments. Two examples of pressure-driven transformations of films of self-assembled objects are thus provided. These observations further illustrate the powerful self-assembling capacity of perfluoroalkyl chains.
Gravitational collapse of dark energy field configurations and supermassive black hole formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jhalani, V.; Kharkwal, H.; Singh, A., E-mail: anupamsingh.iitk@gmail.com
Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-timemore » and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.« less
THE FORMATION OF FILAMENTARY BUNDLES IN TURBULENT MOLECULAR CLOUDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moeckel, Nickolas; Burkert, Andreas, E-mail: nickolas1@gmail.com, E-mail: burkert@usm.uni-muenchen.de
2015-07-01
The classical picture of a star-forming filament is a near-equilibrium structure with its collapse dependent on its gravitational criticality. Recent observations have complicated this picture, revealing filaments to be a mess of apparently interacting subfilaments with transsonic internal velocity dispersions and mildly supersonic intra-subfilament dispersions. How structures like this form is unresolved. Here, we study the velocity structure of filamentary regions in a simulation of a turbulent molecular cloud. We present two main findings. First, the observed complex velocity features in filaments arise naturally in self-gravitating hydrodynamic simulations of turbulent clouds without the need for magnetic or other effects. Second,more » a region that is filamentary only in projection and is in fact made of spatially distinct features can display these same velocity characteristics. The fact that these disjoint structures can masquerade as coherent filaments in both projection and velocity diagnostics highlights the need to continue developing sophisticated filamentary analysis techniques for star formation observations.« less
A 2MASS Analysis of the Stability and Star Formation in Southern Bok Globules
NASA Astrophysics Data System (ADS)
Racca, G. A.; de La Reza, R.
2006-06-01
Bok globules are the simplest molecular clouds in which the study of low-mass star formation is not affected by disruptive phenomena that occur in other clouds that are actively forming low- and high-mass stars. The Two Micron All Sky Survey (2MASS) offer a great possibility to survey these clouds in the near-infrared distributed along the Galaxy. In this work we present extinction maps of Southern Bok globules from the catalog of Bourke, Hyland & Robinson (1995) constructed from extincted background stars in the 2MASS JHK_s bands. The radial distribution of column density obtained from these maps are then modeled with different solutions that arise from several models of the gravitational collapse of molecular clouds cores. We adjust these profiles with Bonnor-Ebert spheres, negative-index polytropes and a simple power-law. This work will help constrain the early stages of the process of isolated star formation of low-mass stars.
Critical velocities for deflagration and detonation triggered by voids in a REBO high explosive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herring, Stuart Davis; Germann, Timothy C; Jensen, Niels G
2010-01-01
The effects of circular voids on the shock sensitivity of a two-dimensional model high explosive crystal are considered. We simulate a piston impact using molecular dynamics simulations with a Reactive Empirical Bond Order (REBO) model potential for a sub-micron, sub-ns exothermic reaction in a diatomic molecular solid. The probability of initiating chemical reactions is found to rise more suddenly with increasing piston velocity for larger voids that collapse more deterministically. A void with radius as small as 10 nm reduces the minimum initiating velocity by a factor of 4. The transition at larger velocities to detonation is studied in amore » micron-long sample with a single void (and its periodic images). The reaction yield during the shock traversal increases rapidly with velocity, then becomes a prompt, reliable detonation. A void of radius 2.5 nm reduces the critical velocity by 10% from the perfect crystal. A Pop plot of the time-to-detonation at higher velocities shows a characteristic pressure dependence.« less
NASA Astrophysics Data System (ADS)
Kelley, Matthew Thomas
The implications of H+H2 cooling in astrophysics is important to several applications. One of the most significant and pure applications is its role in cooling in the early universe. Other applications would include molecular dynamics in nebulae and their collapse into stars and astrophysical shocks. Shortly after the big bang, the universe was a hot primordial gas of photons, electrons, and nuclei among other ingredients. By far the most dominant nuclei in the early universe was hydrogen. In fact, in the early universe the matter density was 90 percent hydrogen and only 10 percent helium with small amounts of lithium and deuterium. In order for structure to form in the universe, this primordial gas must form atoms and cool. One of the significant cooling mechanisms is the collision of neutral atomic hydrogen with a neutral diatomic hydrogen molecule. This work performs calculations to determine collisional cooling rates of hydrogen using two potential surfaces.
Dimer model for Tau proteins bound in microtubule bundles
NASA Astrophysics Data System (ADS)
Hall, Natalie; Kluber, Alexander; Hayre, N. Robert; Singh, Rajiv; Cox, Daniel
2013-03-01
The microtubule associated protein tau is important in nucleating and maintaining microtubule spacing and structure in neuronal axons. Modification of tau is implicated as a later stage process in Alzheimer's disease, but little is known about the structure of tau in microtubule bundles. We present preliminary work on a proposed model for tau dimers in microtubule bundles (dimers are the minimal units since there is one microtubule binding domain per tau). First, a model of tau monomer was created and its characteristics explored using implicit solvent molecular dynamics simulation. Multiple simulations yield a partially collapsed form with separate positively/negatively charged clumps, but which are a factor of two smaller than required by observed microtubule spacing. We argue that this will elongate in dimer form to lower electrostatic energy at a cost of entropic ``spring'' energy. We will present preliminary results on steered molecular dynamics runs on tau dimers to estimate the actual force constant. Supported by US NSF Grant DMR 1207624.
Molecular determinants for a cardiovascular collapse in anthrax
Brojatsch, Jurgen; Casadevall, Arturo; Goldman, David L.
2015-01-01
Bacillus anthracis releases two bipartite proteins, lethal toxin and edema factor, that contribute significantly to the progression of anthrax-associated shock. As blocking the anthrax toxins prevents disease, the toxins are considered the main virulence factors of the bacterium. The anthrax bacterium and the anthrax toxins trigger multiorgan failure associated with enhanced vascular permeability, hemorrhage and cardiac dysfunction in animal challenge models. A recent study using mice that either lacked the anthrax toxin receptor in specific cells and corresponding mice expressing the receptor in specific cell types demonstrated that cardiovascular cells are critical for disease mediated by anthrax lethal toxin. These studies are consistent with involvement of the cardiovascular system, and with an increase of cardiac failure markers observed in human anthrax and in animal models using B. anthracis and anthrax toxins. This review discusses the current state of knowledge regarding the pathophysiology of anthrax and tries to provide a mechanistic model and molecular determinants for the circulatory shock in anthrax. PMID:24389148
Targeting Paclitaxel-Loaded Nanoparticles to Ovarian Cancer
2011-05-01
with each other causes the polymer to collapse to form a nanoparticle of ~20 nm in aqueous solutions as determined by dynamic light scattering (2, 8...molecular target in tumor cells and tumor stroma. Cancer Res. 2008;68:7210-8. 19. von Maltzahn G, Ren Y, Park JH, Min DH, Kotamraju VR, Jayakumar J, et
Dust Coagulation in Infalling Protostellar Envelopes I. Compact Grains
NASA Technical Reports Server (NTRS)
Yorke, H.; Suttner, G.; Lin, D.
1999-01-01
Dust plays a key role in the optical, thermodynamic and gas dynamical behavior of collapsing molecular cores. Because of relative velocities of the individual dust grains, coagulation and shattering can modify the grain size distribution and due to corresponding changes in the medium's opacity significantly influence the evolution during early phase of star formation.
Dust Coagulation in Infalling Protostellar Envelopes I. Compact Grains
NASA Technical Reports Server (NTRS)
Yorke, H.; Lin, D.; Suttner, G.
1999-01-01
Dust plays a key role in the optical, thermodynamic and gas dynamical behavior of collapsing molecular cores. Because of relative velocities of the individual dust grains, coagulation and shattering can modify the grain size distribution and -- due to corresponding changes in the medium's opacity significantly -- influence the evolution during early phases of star formation.
Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging.
Ben-Zvi, Anat; Miller, Elizabeth A; Morimoto, Richard I
2009-09-01
Protein damage contributes prominently to cellular aging. To address whether this occurs at a specific period during aging or accumulates gradually, we monitored the biochemical, cellular, and physiological properties of folding sensors expressed in different tissues of C. elegans. We observed the age-dependent misfolding and loss of function of diverse proteins harboring temperature-sensitive missense mutations in all somatic tissues at the permissive condition. This widespread failure in proteostasis occurs rapidly at an early stage of adulthood, and coincides with a severely reduced activation of the cytoprotective heat shock response and the unfolded protein response. Enhancing stress responsive factors HSF-1 or DAF-16 suppresses misfolding of these metastable folding sensors and restores the ability of the cell to maintain a functional proteome. This suggests that a compromise in the regulation of proteostatic stress responses occurs early in adulthood and tips the balance between the load of damaged proteins and the proteostasis machinery. We propose that the collapse of proteostasis represents an early molecular event of aging that amplifies protein damage in age-associated diseases of protein conformation.
Hydrostatic pressure effects on the structural and electronicproperties of carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capaz,Rodrigo B.; Spataru, Catalin D.; Tangney, Paul
2004-03-15
We study the structural and electronic properties ofisolated single-wall carbon nanotubes (SWNTs) under hydrostatic pressureusing a combination of theoretical techniques: continuum elasticitymodels, classical molecular dynamics simulations, tight-bindingelectronic structure methods, and first-principles total energycalculations within the density-functional and pseudopotentialframeworks. For pressures below a certain critica pressure Pc, the SWNTs'structure remains cylindrical and the Kohn-Sham energy gaps ofsemiconducting SWNTs have either positive or negative pressurecoefficients depending on the value of (n,m) with a distinct "family" (ofthe same n-m) behavior. The diameter and chirality dependence of thepressure coefficients can be described by a simple analytical expression.At Pc, molecular-dynamics simulations predict that isolated SWNTsmore » undergoa pressure-induced symmetry-breaking transformation from a cylindricalshape to a collapsed geometry. This transition is described by a simpleelastic model as arising from the competition between the bond-bendingand PV terms in the enthalpy. The good agreement between calculated andexperimental values of Pc provides a strong support to the "collapse"interpretation of the experimental transitions in bundles.« less
NASA Astrophysics Data System (ADS)
Holohan, E. P.; Walter, T. R.; Schöpfer, M. P. J.; Walsh, J. J.; Orr, T.; Poland, M.
2012-04-01
In March 2011, a spectacular fissure eruption on Kilauea was associated with a major collapse event in the highly-active Puu Oo crater. Time-lapse cameras maintained by the Hawaii Volcano Observatory captured views of the crater in the moments before, during, and after the collapse. The 2011 event hence represents a unique opportunity to characterize the surface deformation related to the onset of a pit crater collapse and to understand what factors influence it. To do so, we used two approaches. First, we analyzed the available series of camera images by means of digital image correlation techniques. This enabled us to gain a semi-quantitative (pixel-unit) description of the surface displacements and the structural development of the collapsing crater floor. Secondly, we ran a series of 'true-scale' numerical pit-crater collapse simulations based on the two-dimensional Distinct Element Method (2D-DEM). This enabled us to gain insights into what geometric and mechanical factors could have controlled the observed surface displacement pattern and structural development. Our analysis of the time-lapse images reveals that the crater floor initially gently sagged, and then rapidly collapsed in association with the appearance of a large ring-like fault scarp. The observed structural development and surface displacement patterns of the March 2011 Puu Oo collapse are best reproduced in DEM models with a relatively shallow magma reservoir that is vertically elongated, and with a crater floor rock mass that is reasonably strong. In combining digital image correlation with DEM modeling, our study highlights the future potential of these relatively new techniques for understanding physical processes at active volcanoes.
Global metabolomic profiling targeting childhood obesity in the Hispanic population
USDA-ARS?s Scientific Manuscript database
Metabolomics may unravel important biological pathways involved in the pathophysiology of childhood obesity. We aimed to 1) identify metabolites that differ significantly between nonobese and obese Hispanic children; 2) collapse metabolites into principal components (PCs) associated with obesity and...
A validated approach for modeling collapse of steel structures
NASA Astrophysics Data System (ADS)
Saykin, Vitaliy Victorovich
A civil engineering structure is faced with many hazardous conditions such as blasts, earthquakes, hurricanes, tornadoes, floods, and fires during its lifetime. Even though structures are designed for credible events that can happen during a lifetime of the structure, extreme events do happen and cause catastrophic failures. Understanding the causes and effects of structural collapse is now at the core of critical areas of national need. One factor that makes studying structural collapse difficult is the lack of full-scale structural collapse experimental test results against which researchers could validate their proposed collapse modeling approaches. The goal of this work is the creation of an element deletion strategy based on fracture models for use in validated prediction of collapse of steel structures. The current work reviews the state-of-the-art of finite element deletion strategies for use in collapse modeling of structures. It is shown that current approaches to element deletion in collapse modeling do not take into account stress triaxiality in vulnerable areas of the structure, which is important for proper fracture and element deletion modeling. The report then reviews triaxiality and its role in fracture prediction. It is shown that fracture in ductile materials is a function of triaxiality. It is also shown that, depending on the triaxiality range, different fracture mechanisms are active and should be accounted for. An approach using semi-empirical fracture models as a function of triaxiality are employed. The models to determine fracture initiation, softening and subsequent finite element deletion are outlined. This procedure allows for stress-displacement softening at an integration point of a finite element in order to subsequently remove the element. This approach avoids abrupt changes in the stress that would create dynamic instabilities, thus making the results more reliable and accurate. The calibration and validation of these models are shown. The calibration is performed using a particle swarm optimization algorithm to establish accurate parameters when calibrated to circumferentially notched tensile coupons. It is shown that consistent, accurate predictions are attained using the chosen models. The variation of triaxiality in steel material during plastic hardening and softening is reported. The range of triaxiality in steel structures undergoing collapse is investigated in detail and the accuracy of the chosen finite element deletion approaches is discussed. This is done through validation of different structural components and structural frames undergoing severe fracture and collapse.
Glacier Acceleration and Thinning after Ice Shelf Collapse in the Larsen B Embayment, Antarctica
NASA Technical Reports Server (NTRS)
Scambos, T. A.; Bohlander, J. A.; Shuman, C. A.; Skvarca, P.
2004-01-01
Ice velocities derived from five Landsat 7 images acquired between January 2000 and February 2003 show a two- to six-fold increase in centerline speed of four glaciers flowing into the now-collapsed section of the Larsen B Ice Shelf. Satellite laser altimetry from ICEsat indicates the surface of Hektoria Glacier lowered by up to 38 +/- 6 m a six-month period beginning one year after the break-up in March 2002. Smaller elevation losses are observed for Crane and Jorum glaciers over a later 5-month period. Two glaciers south of the collapse area, Flask and Leppard, show little change in speed or elevation. Seasonal variations in speed preceding the large post-collapse velocity increases suggest that both summer melt percolation and changes in the stress field due to shelf removal play a major role in glacier dynamics.
Molecular System for the Division of Self-Propelled Oil Droplets by Component Feeding.
Banno, Taisuke; Toyota, Taro
2015-06-30
Unique dynamics using inanimate molecular assemblies have drawn a great amount of attention for demonstrating prebiomimetic molecular systems. For the construction of an organized logic combining two fundamental dynamics of life, we demonstrate here a molecular system that exhibits both division and self-propelled motion using oil droplets. The key molecule of this molecular system is a novel cationic surfactant containing a five-membered acetal moiety, and the molecular system can feed the self-propelled oil droplet composed of a benzaldehyde derivative and an alkanol. The division dynamics of the self-propelled oil droplets were observed through the hydrolysis of the cationic surfactant in bulk solution. The mechanism of the current dynamics is argued to be based on the supply of "fresh" oil components in the moving oil droplets, which is induced by the Marangoni instability. We consider this molecular system to be a prototype of self-reproducing inanimate molecular assembly exhibiting self-propelled motion.
A molecular gas-rich GRB host galaxy at the peak of cosmic star formation
NASA Astrophysics Data System (ADS)
Arabsalmani, M.; Le Floc'h, E.; Dannerbauer, H.; Feruglio, C.; Daddi, E.; Ciesla, L.; Charmandaris, V.; Japelj, J.; Vergani, S. D.; Duc, P.-A.; Basa, S.; Bournaud, F.; Elbaz, D.
2018-05-01
We report the detection of the CO(3-2) emission line from the host galaxy of gamma-ray burst (GRB) 080207 at z = 2.086. This is the first detection of molecular gas in emission from a GRB host galaxy beyond redshift 1. We find this galaxy to be rich in molecular gas with a mass of 1.1 × 10^{11} M_{{\\odot }} assuming αCO = 4.36 M_{{\\odot }} (K km s^{-1} pc^2)^{-1}. The molecular gas mass fraction of the galaxy is ˜0.5, typical of star-forming galaxies (SFGs) with similar stellar masses and redshifts. With an SFR_{FIR} of 260 M_{{\\odot }} yr^{-1}, we measure a molecular gas depletion time-scale of 0.43 Gyr, near the peak of the depletion time-scale distribution of SFGs at similar redshifts. Our findings are therefore in contradiction with the proposed molecular gas deficiency in GRB host galaxies. We argue that the reported molecular gas deficiency for GRB hosts could be the artefact of improper comparisons or neglecting the effect of the typical low metallicities of GRB hosts on the CO-to-molecular-gas conversion factor. We also compare the kinematics of the CO(3-2) emission line to that of the H α emission line from the host galaxy. We find the H α emission to have contributions from two separate components, a narrow and a broad one. The narrow component matches the CO emission well in velocity space. The broad component, with a full width at half-maximum of ˜1100 km s^{-1}, is separated by +390 km s^{-1} in velocity space from the narrow component. We speculate this broad component to be associated with a powerful outflow in the host galaxy or in an interacting system.
Lowers, Heather A; Meeker, Gregory P; Lioy, Paul J; Lippmann, Morton
2014-01-01
The collapse of the World Trade Center (WTC) towers on September 11, 2001, caused lower Manhattan and adjacent areas to be covered in millimeters to centimeters of dust. WTC dust penetrated into indoor spaces, and public health concerns remain regarding exposure to possible residual dust in the affected areas. The goal of the studies outlined in this review was to determine which, if any, components of the bulk WTC dust are sufficiently above typical background dust levels in New York City to develop an analytical method to screen for the component(s). Components of the <150-µm-size fraction of the dust are gypsum, phases compatible with crushed concrete, man-made vitreous fibers (MMVFs), silica, lead, chrysotile asbestos, and other materials. Slag wool was the most common WTC MMVF, whereas soda-lime glass and rock wool were minor to trace constituents. Most background samples also contained gypsum, phases compatible with concrete, and MMVF. However, the proportions of the various MMVF in background samples are typically unlike those characteristic of bulk WTC dust. Results indicate that slag wool can be used as a signature marker to identify areas that contain potential residual WTC dust contamination at concentrations that are less than average background levels for the material. PMID:18478046
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatischeff, Vincent; Duprat, Jean; De Séréville, Nicolas, E-mail: Vincent.Tatischeff@csnsm.in2p3.fr
The presence of short-lived radionuclides (t {sub 1/2} < 10 Myr) in the early solar system provides important information about the astrophysical environment in which the solar system formed. The discovery of now extinct {sup 10}Be (t {sub 1/2} = 1.4 Myr) in calcium-aluminum-rich inclusions (CAIs) with Fractionation and Unidentified Nuclear isotope anomalies (FUN-CAIs) suggests that a baseline concentration of {sup 10}Be in the early solar system was inherited from the protosolar molecular cloud. In this paper, we investigate various astrophysical contexts for the nonthermal nucleosynthesis of {sup 10}Be by cosmic-ray-induced reactions. We first show that the {sup 10}Be recordedmore » in FUN-CAIs cannot have been produced in situ by irradiation of the FUN-CAIs themselves. We then show that trapping of Galactic cosmic rays (GCRs) in the collapsing presolar cloud core induced a negligible {sup 10}Be contamination of the protosolar nebula, the inferred {sup 10}Be/{sup 9}Be ratio being at least 40 times lower than that recorded in FUN-CAIs ({sup 10}Be/{sup 9}Be ∼ 3 × 10{sup –4}). Irradiation of the presolar molecular cloud by background GCRs produced a steady-state {sup 10}Be/{sup 9}Be ratio ≲ 1.3 × 10{sup –4} at the time of the solar system formation, which suggests that the presolar cloud was irradiated by an additional source of CRs. Considering a detailed model for CR acceleration in a supernova remnant (SNR), we find that the {sup 10}Be abundance recorded in FUN-CAIs can be explained within two alternative scenarios: (1) the irradiation of a giant molecular cloud by CRs produced by ≳ 50 supernovae exploding in a superbubble of hot gas generated by a large star cluster of at least 20,000 members, and (2) the irradiation of the presolar molecular cloud by freshly accelerated CRs escaped from an isolated SNR at the end of the Sedov-Taylor phase. In the second picture, the SNR resulted from the explosion of a massive star that ran away from its parent OB association, expanded during most of its adiabatic phase in an intercloud medium of density of about 1 H-atom cm{sup –3}, and eventually interacted with the presolar molecular cloud only during the radiative stage. This model naturally provides an explanation for the injection of other short-lived radionuclides of stellar origin into the cold presolar molecular cloud ({sup 26}Al, {sup 41}Ca, and {sup 36}Cl) and is in agreement with the solar system originating from the collapse of a molecular cloud shocked by a supernova blast wave.« less
NASA Astrophysics Data System (ADS)
Nagai, Toshiki; Mitsutake, Ayori; Takano, Hiroshi
2013-02-01
A new relaxation mode analysis method, which is referred to as the principal component relaxation mode analysis method, has been proposed to handle a large number of degrees of freedom of protein systems. In this method, principal component analysis is carried out first and then relaxation mode analysis is applied to a small number of principal components with large fluctuations. To reduce the contribution of fast relaxation modes in these principal components efficiently, we have also proposed a relaxation mode analysis method using multiple evolution times. The principal component relaxation mode analysis method using two evolution times has been applied to an all-atom molecular dynamics simulation of human lysozyme in aqueous solution. Slow relaxation modes and corresponding relaxation times have been appropriately estimated, demonstrating that the method is applicable to protein systems.
Configuration-specific kinetic theory applied to an ideal binary gas mixture.
Wiseman, Floyd L
2006-10-05
This paper is the second in a two-part series dealing with the configuration-specific analyses for molecular collision events of hard, spherical molecules at thermal equilibrium. The first paper analyzed a single-component system, and the reader is referred to it for the fundamental concepts. In this paper, the expressions for the configuration-specific collision frequencies and the average line-of-centers collision angles and speeds are derived for an ideal binary gas mixture. The analyses show that the average line-of-centers quantities are all dependent upon the ratio of the masses of the two components, but not upon molecular size. Of course, the configuration-specific collision frequencies do depend on molecular size. The expression for the overall binary collision frequency is a simple sum of the configuration-specific collision frequencies and is identical to the conventional expression.
When the firm prevents the crash: Avoiding market collapse with partial control.
Levi, Asaf; Sabuco, Juan; A F Sanjuán, Miguel
2017-01-01
Market collapse is one of the most dramatic events in economics. Such a catastrophic event can emerge from the nonlinear interactions between the economic agents at the micro level of the economy. Transient chaos might be a good description of how a collapsing market behaves. In this work, we apply a new control method, the partial control method, with the goal of avoiding this disastrous event. Contrary to common control methods that try to influence the system from the outside, here the market is controlled from the bottom up by one of the most basic components of the market-the firm. This is the first time that the partial control method is applied on a strictly economical system in which we also introduce external disturbances. We show how the firm is capable of controlling the system avoiding the collapse by only adjusting the selling price of the product or the quantity of production in accordance to the market circumstances. Additionally, we demonstrate how a firm with a large market share is capable of influencing the demand achieving price stability across the retail and wholesale markets. Furthermore, we prove that the control applied in both cases is much smaller than the external disturbances.
NASA Astrophysics Data System (ADS)
Fukui, Yasuo; Kohno, Mikito; Yokoyama, Keiko; Torii, Kazufumi; Hattori, Yusuke; Sano, Hidetoshi; Nishimura, Atsushi; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo
2018-03-01
We carried out new CO (J = 1-0, 2-1, and 3-2) observations with NANTEN2 and ASTE in the region of the twin Galactic mini-starbursts NGC 6334 and NGC 6357. We detected two velocity molecular components of 12 km s-1 velocity separation, which is continuous over 3° along the plane. In NGC 6334 the two components show similar two-peaked intensity distributions toward the young H II regions and are linked by a bridge feature. In NGC 6357 we found spatially complementary distribution between the two velocity components as well as a bridge feature in velocity. Based on these results we hypothesize that the two clouds in the two regions collided with each other in the past few Myr and triggered the formation of the starbursts over ˜ 100 pc. We suggest that the formation of the starbursts happened toward the collisional region of extent ˜ 10 pc with initial high molecular column densities. For NGC 6334 we present a scenario which includes spatial variation of the colliding epoch due to non-uniform cloud separation. The scenario possibly explains the apparent age differences among the young O stars in NGC 6334, which range from 104 yr to 106 yr; the latest collision happened within 105 yr toward the youngest stars in NGC 6334 I(N) and I which exhibit molecular outflows without H II regions. For NGC 6357 the O stars were formed a few Myr ago, and the cloud dispersal by the O stars is significant. We conclude that cloud-cloud collision offers a possible explanation of the mini-starburst over a 100 pc scale.
NASA Astrophysics Data System (ADS)
Fukui, Yasuo; Kohno, Mikito; Yokoyama, Keiko; Torii, Kazufumi; Hattori, Yusuke; Sano, Hidetoshi; Nishimura, Atsushi; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo
2018-03-01
We carried out new CO (J = 1-0, 2-1, and 3-2) observations with NANTEN2 and ASTE in the region of the twin Galactic mini-starbursts NGC 6334 and NGC 6357. We detected two velocity molecular components of 12 km s-1 velocity separation, which is continuous over 3° along the plane. In NGC 6334 the two components show similar two-peaked intensity distributions toward the young H II regions and are linked by a bridge feature. In NGC 6357 we found spatially complementary distribution between the two velocity components as well as a bridge feature in velocity. Based on these results we hypothesize that the two clouds in the two regions collided with each other in the past few Myr and triggered the formation of the starbursts over ˜ 100 pc. We suggest that the formation of the starbursts happened toward the collisional region of extent ˜ 10 pc with initial high molecular column densities. For NGC 6334 we present a scenario which includes spatial variation of the colliding epoch due to non-uniform cloud separation. The scenario possibly explains the apparent age differences among the young O stars in NGC 6334, which range from 104 yr to 106 yr; the latest collision happened within 105 yr toward the youngest stars in NGC 6334 I(N) and I which exhibit molecular outflows without H II regions. For NGC 6357 the O stars were formed a few Myr ago, and the cloud dispersal by the O stars is significant. We conclude that cloud-cloud collision offers a possible explanation of the mini-starburst over a 100-pc scale.
NASA Astrophysics Data System (ADS)
Fukui, Yasuo; Kohno, Mikito; Yokoyama, Keiko; Torii, Kazufumi; Hattori, Yusuke; Sano, Hidetoshi; Nishimura, Atsushi; Ohama, Akio; Yamamoto, Hiroaki; Tachihara, Kengo
2018-05-01
We carried out new CO (J = 1-0, 2-1, and 3-2) observations with NANTEN2 and ASTE in the region of the twin Galactic mini-starbursts NGC 6334 and NGC 6357. We detected two velocity molecular components of 12 km s-1 velocity separation, which is continuous over 3° along the plane. In NGC 6334 the two components show similar two-peaked intensity distributions toward the young H II regions and are linked by a bridge feature. In NGC 6357 we found spatially complementary distribution between the two velocity components as well as a bridge feature in velocity. Based on these results we hypothesize that the two clouds in the two regions collided with each other in the past few Myr and triggered the formation of the starbursts over ˜ 100 pc. We suggest that the formation of the starbursts happened toward the collisional region of extent ˜ 10 pc with initial high molecular column densities. For NGC 6334 we present a scenario which includes spatial variation of the colliding epoch due to non-uniform cloud separation. The scenario possibly explains the apparent age differences among the young O stars in NGC 6334, which range from 104 yr to 106 yr; the latest collision happened within 105 yr toward the youngest stars in NGC 6334 I(N) and I which exhibit molecular outflows without H II regions. For NGC 6357 the O stars were formed a few Myr ago, and the cloud dispersal by the O stars is significant. We conclude that cloud-cloud collision offers a possible explanation of the mini-starburst over a 100 pc scale.
Collapse dynamics of ultrasound contrast agent microbubbles
NASA Astrophysics Data System (ADS)
King, Daniel Alan
Ultrasound contrast agents (UCAs) are micron-sized gas bubbles encapsulated with thin shells on the order of nanometers thick. The damping effects of these viscoelastic coatings are widely known to significantly alter the bubble dynamics for linear and low-amplitude behavior; however, their effects on strongly nonlinear and destruction responses are much less studied. This dissertation examines the behaviors of single collapsing shelled microbubbles using experimental and theoretical methods. The study of their dynamics is particularly relevant for emerging experimental uses of UCAs which seek to leverage localized mechanical forces to create or avoid specialized biomedical effects. The central component in this work is the study of postexcitation rebound and collapse, observed acoustically to identify shell rupture and transient inertial cavitation of single UCA microbubbles. This time-domain analysis of the acoustic response provides a unique method for characterization of UCA destruction dynamics. The research contains a systematic documentation of single bubble postexcitation collapse through experimental measurement with the double passive cavitation detection (PCD) system at frequencies ranging from 0.9 to 7.1 MHz and peak rarefactional pressure amplitudes (PRPA) ranging from 230 kPa to 6.37 MPa. The double PCD setup is shown to improve the quality of collected data over previous setups by allowing symmetric responses from a localized confocal region to be identified. Postexcitation signal percentages are shown to generally follow trends consistent with other similar cavitation metrics such as inertial cavitation, with greater destruction observed at both increased PRPA and lower frequency over the tested ranges. Two different types of commercially available UCAs are characterized and found to have very different collapse thresholds; lipid-shelled Definity exhibits greater postexcitation at lower PRPAs than albumin-shelled Optison. Furthermore, by altering the size distributions of these UCAs, it is shown that the shell material has a large influence on the occurrence of postexcitation rebound at all tested frequencies while moderate alteration of the size distribution may only play a significant role within certain frequency ranges. Finally, the conditions which generate the experimental postexcitation signal are examined theoretically using several forms of single bubble models. Evidence is provided for the usefulness of modeling this large amplitude UCA behavior with a size-varying surface tension as described in the Marmottant model; better agreement for lipid-shelled Definity UCAs is obtained by considering the dynamic response with a rupturing shell rather than either a non-rupturing or nonexistent shell. Moreover, the modeling indicates that maximum radial expansion from the initial UCA size is a suitable metric to predict postexcitation collapse, and that both shell rupture and inertial cavitation are necessary conditions to generate this behavior. Postexcitation analysis is found to be a beneficial characterization metric for studying the destruction behaviors of single UCAs when measured with the double PCD setup. This work provides quantitative documentation of UCA collapse, exploration into UCA material properties which affect this collapse, and comparison of existing single bubble models with experimentally measured postexcitation signals.
NASA Astrophysics Data System (ADS)
Migliori, Amy; Arya, Gaurav; Smith, Douglas E.
2012-10-01
Bacteriophage T4 is a double stranded DNA virus that infects E.coli by injecting the viral genome through the cellular wall of a host cell. The T4 genome must be ejected from the viral capsid with sufficient force to ensure infection. To generate high ejection forces, the genome is packaged to high density within the viral capsid. A DNA translocation motor, in which the protein gp17 hydrolyzes ATP and binds to the DNA, is responsible for translocating the genome into the capsid during viral maturation of T4. This motor generates forces in excess of 60 pN and packages DNA at rates exceeding 2000 base pairs/second (bp/s)1. Understanding these small yet powerful motors is important, as they have many potential applications. Though much is known about the activity of these motors from bulk and single molecule biophysical techniques, little is known about their detailed molecular mechanism. Recently, two structures of gp17 have been obtained: a high-resolution X-ray crystallographic structure showing a monomeric compacted form of the enzyme, and a cryo-electron microscopic structure of the extended form of gp17 in complex with actively packaging prohead complexes. Comparison of these two structures indicates several key differences, and a model has been proposed to explain the translocation action of the motor2. Key to this model are a set of residues forming ion pairs across two domains of the gp17 molecule that are proposed to be involved in force generation by causing the collapse of the extended form of gp17. Using a dual optical trap to measure the rates of DNA packaging and the generated forces, we present preliminary mutational data showing that these several of these ion pairs are important to motor function. We have also performed preliminary free energy calculations on the extended and collapsed state of gp17, to confirm that these interdomain ion pairs have large contributions to the change in free energy that occurs upon the collapse of gp17 during the proposed ratcheting mechanism.
Extremely rare collapse and build-up of turbulence in stochastic models of transitional wall flows.
Rolland, Joran
2018-02-01
This paper presents a numerical and theoretical study of multistability in two stochastic models of transitional wall flows. An algorithm dedicated to the computation of rare events is adapted on these two stochastic models. The main focus is placed on a stochastic partial differential equation model proposed by Barkley. Three types of events are computed in a systematic and reproducible manner: (i) the collapse of isolated puffs and domains initially containing their steady turbulent fraction; (ii) the puff splitting; (iii) the build-up of turbulence from the laminar base flow under a noise perturbation of vanishing variance. For build-up events, an extreme realization of the vanishing variance noise pushes the state from the laminar base flow to the most probable germ of turbulence which in turn develops into a full blown puff. For collapse events, the Reynolds number and length ranges of the two regimes of collapse of laminar-turbulent pipes, independent collapse or global collapse of puffs, is determined. The mean first passage time before each event is then systematically computed as a function of the Reynolds number r and pipe length L in the laminar-turbulent coexistence range of Reynolds number. In the case of isolated puffs, the faster-than-linear growth with Reynolds number of the logarithm of mean first passage time T before collapse is separated in two. One finds that ln(T)=A_{p}r-B_{p}, with A_{p} and B_{p} positive. Moreover, A_{p} and B_{p} are affine in the spatial integral of turbulence intensity of the puff, with the same slope. In the case of pipes initially containing the steady turbulent fraction, the length L and Reynolds number r dependence of the mean first passage time T before collapse is also separated. The author finds that T≍exp[L(Ar-B)] with A and B positive. The length and Reynolds number dependence of T are then discussed in view of the large deviations theoretical approaches of the study of mean first passage times and multistability, where ln(T) in the limit of small variance noise is studied. Two points of view, local noise of small variance and large length, can be used to discuss the exponential dependence in L of T. In particular, it is shown how a T≍exp[L(A^{'}R-B^{'})] can be derived in a conceptual two degrees of freedom model of a transitional wall flow proposed by Dauchot and Manneville. This is done by identifying a quasipotential in low variance noise, large length limit. This pinpoints the physical effects controlling collapse and build-up trajectories and corresponding passage times with an emphasis on the saddle points between laminar and turbulent states. This analytical analysis also shows that these effects lead to the asymmetric probability density function of kinetic energy of turbulence.
Extremely rare collapse and build-up of turbulence in stochastic models of transitional wall flows
NASA Astrophysics Data System (ADS)
Rolland, Joran
2018-02-01
This paper presents a numerical and theoretical study of multistability in two stochastic models of transitional wall flows. An algorithm dedicated to the computation of rare events is adapted on these two stochastic models. The main focus is placed on a stochastic partial differential equation model proposed by Barkley. Three types of events are computed in a systematic and reproducible manner: (i) the collapse of isolated puffs and domains initially containing their steady turbulent fraction; (ii) the puff splitting; (iii) the build-up of turbulence from the laminar base flow under a noise perturbation of vanishing variance. For build-up events, an extreme realization of the vanishing variance noise pushes the state from the laminar base flow to the most probable germ of turbulence which in turn develops into a full blown puff. For collapse events, the Reynolds number and length ranges of the two regimes of collapse of laminar-turbulent pipes, independent collapse or global collapse of puffs, is determined. The mean first passage time before each event is then systematically computed as a function of the Reynolds number r and pipe length L in the laminar-turbulent coexistence range of Reynolds number. In the case of isolated puffs, the faster-than-linear growth with Reynolds number of the logarithm of mean first passage time T before collapse is separated in two. One finds that ln(T ) =Apr -Bp , with Ap and Bp positive. Moreover, Ap and Bp are affine in the spatial integral of turbulence intensity of the puff, with the same slope. In the case of pipes initially containing the steady turbulent fraction, the length L and Reynolds number r dependence of the mean first passage time T before collapse is also separated. The author finds that T ≍exp[L (A r -B )] with A and B positive. The length and Reynolds number dependence of T are then discussed in view of the large deviations theoretical approaches of the study of mean first passage times and multistability, where ln(T ) in the limit of small variance noise is studied. Two points of view, local noise of small variance and large length, can be used to discuss the exponential dependence in L of T . In particular, it is shown how a T ≍exp[L (A'R -B') ] can be derived in a conceptual two degrees of freedom model of a transitional wall flow proposed by Dauchot and Manneville. This is done by identifying a quasipotential in low variance noise, large length limit. This pinpoints the physical effects controlling collapse and build-up trajectories and corresponding passage times with an emphasis on the saddle points between laminar and turbulent states. This analytical analysis also shows that these effects lead to the asymmetric probability density function of kinetic energy of turbulence.
Recombining plasma in the remnant of a core-collapsed supernova, Kes 17
NASA Astrophysics Data System (ADS)
Washino, Ryosaku; Uchida, Hiroyuki; Nobukawa, Masayoshi; Tsuru, Takeshi Go; Tanaka, Takaaki; Kawabata Nobukawa, Kumiko; Koyama, Katsuji
2016-06-01
We report on Suzaku results concerning Kes 17, a Galactic mixed-morphology supernova remnant. The X-ray spectrum of the whole Kes 17 is well explained by a pure thermal plasma, in which we found Lyα of Al XIII and Heα of Al XII, Ar XVII, and Ca XIX lines for the first time. The abundance pattern and the plasma mass suggest that Kes 17 is a remnant of a core-collapsed supernova of a 25-30 M⊙ progenitor star. The X-ray spectrum of the north region is expressed by a recombining plasma. The origin would be due to the cooling of electrons by thermal conduction to molecular clouds located near the north region.
Mechanism of the 2016 giant twin glacier collapse in Aru range, Tibet
NASA Astrophysics Data System (ADS)
Gilbert, A.; Leinss, S.; Kääb, A.; Kargel, J. S.; Yao, T.; Gascoin, S.; Leonard, G. J.; Berthier, E.; Karki, A.
2017-12-01
In northwestern Tibet (34.0°N, 82.2°E) near lake Aru Co, the entire ablation area of two unnamed glaciers (Aru-1 and Aru-2) suddenly collapsed on 17 July 2016 and 21 September 2016 and transformed into a mass flow that ran out over a distance of over several km, killing nine people. These two events are unique and defined a new kind of glacier behavior almost never observed before. The only similar event currently documented is the 2002 Kolka Glacier mass flow (Caucasus Mountains). Using remote sensing observations and 3D thermo-mechanical modeling of the two glaciers, we reconstructed glacier thermal regime, thickness, basal friction evolution and ice damaging state prior to the collapse. We show that frictional change leading to the collapse occurred in the temperate areas of a polythermal structure that is likely close to equilibrium with the local climate. The collapses were driven by a fast and sustained friction change in the temperate part of the glacier for which the glacier shape was not able to adjust due to the cold-based parts providing strong resisting force to sliding. This led to high stresses on the cold margins of the glacier where ice deformation became partially accommodated by fracturing until the final collapse occurred. Field investigations reveal that those two glaciers are flowing on a soft and fine-grained sedimentary lithology prone to landslide activity in the presence of water. This suggests that fast friction change in the temperate part of the glacier is linked to shear strength weakening in the sediment and till underneath the glacier in response to increasing water pore pressure at the glacier base. The Kolka Glacier mass flow also occurred on pyroclastic rocks well known for their landslide activities. This suggests that the three gigantic glacier collapses documented to date involve specific bedrock lithology where failure is driven by shear strength weakening in the glacier till in a landslide-like process. Contrary to a classical surges, these collapses occurred when the glacier shape is not able to adjust to the apparent friction change and maintains high driving stresses either due to polythermal structure (Aru) or due to sudden mass loading from external sources (rock/ice avalanches in the Kolka case).
LDRD final report on light-powered nanovehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shelnutt, John Allen; van Swol, Frank B.; Miller, James Edward
2003-11-01
We have investigated the possibility of constructing nanoscale metallic vehicles powered by biological motors or flagella that are activated and powered by visible light. The vehicle's body is to be composed of the surfactant bilayer of a liposome coated with metallic nanoparticles or nanosheets grown together into a porous single crystal. The diameter of the rigid metal vesicles is from about 50 nm to microns. Illumination with visible light activates a photosynthetic system in the bilayer that can generate a pH gradient across the liposomal membrane. The proton gradient can fuel a molecular motor that is incorporated into the membrane.more » Some molecular motors require ATP to fuel active transport. The protein ATP synthase, when embedded in the membrane, will use the pH gradient across the membrane to produce ATP from ADP and inorganic phosphate. The nanoscale vehicle is thus composed of both natural biological components (ATPase, flagellum; actin-myosin, kinesin-microtubules) and biomimetic components (metal vehicle casing, photosynthetic membrane) as functional units. Only light and storable ADP, phosphate, water, and weak electron donor are required fuel components. These nano-vehicles are being constructed by self-assembly and photocatalytic and autocatalytic reactions. The nano-vehicles can potentially respond to chemical gradients and other factors such as light intensity and field gradients, in a manner similar to the way that magnetic bacteria navigate. The delivery package might include decision-making and guidance components, drugs or other biological and chemical agents, explosives, catalytic reactors, and structural materials. We expected in one year to be able only to assess the problems and major issues at each stage of construction of the vehicle and the likely success of fabricating viable nanovehicles with our biomimetic photocatalytic approach. Surprisingly, we have been able to demonstrate that metallized photosynthetic liposomes can indeed be made. We have completed the synthesis of metallized liposomes with photosynthetic function included and studied these structures by electron microscopy. Both platinum and palladium nanosheeting have been used to coat the micelles. The stability of the vehicles to mechanical stress and the solution environment is enhanced by the single-crystalline platinum or palladium coating on the vesicle. With analogous platinized micelles, it is possible to dry the vehicles and re-suspend them with full functionality. However, with the liposomes drying on a TEM grid may cause the platinized liposomes to collapse, although probably stay viable in solution. It remains to be shown whether a proton motive force across the metallized bilayer membrane can be generated and whether we will also be able to incorporate various functional capabilities including ATP synthesis and functional molecular motors. Future tasks to complete the nanovehicles would be the incorporation of ATP synthase into metallized liposomes and the incorporation of a molecular motor into metallized liposomes.« less
Protostellar Collapse with a Shock
NASA Technical Reports Server (NTRS)
Tsai, John C.; Hsu, Juliana J.
1995-01-01
We reexamine both numerically and analytically the collapse of the singular isothermal sphere in the context of low-mass star formation. We consider the case where the onset of collapse is initiated by some arbitrary process which is accompanied by a central output of either heat or kinetic energy. We find two classes of numerical solutions describing this manner of collapse. The first approaches in time the expansion wave solution of Shu, while the second class is characterized by an ever-decreasing central accretion rate and the presence of an outwardly propagating weak shock. The collapse solution which represents the dividing case between these two classes is determined analytically by a similarity analysis. This solution shares with the expansion wave solution the properties that the gas remains stationary with an r(exp -2) density profile at large radius and that, at small radius, the gas free-falls onto a nascent core at a constant rate which depends only on the isothermal sound speed. This accretion rate is a factor of approx. 0.1 that predicted by the expansion wave solution. This reduction is due in part to the presence of a weak shock which propagates outward at 1.26 times the sound speed. Gas in the postshock region first moves out subsonically but is then decelerated and begins to collapse. The existence of two classes of numerical collapse solutions is explained in terms of the instability to radial perturbations of the analytic solution. Collapse occurring in the manner described by some of our solutions would eventually unbind a finite-sized core. However, this does not constitute a violation of the instability properties of the singular isothermal sphere which is unstable both to collapse and to expansion. To emphasize this, we consider a purely expanding solution for isothermal spheres. This solution is found to be self-similar and results in a uniform density core in the central regions of the gas. Our solutions may be relevant to the 'luminosity' problem of protostellar cores since the predicted central accretion rates are significantly reduced relative to that of the expansion wave solution. Furthermore, our calculations indicate that star-forming cloud cores are not very tightly bound and that modest disturbances can easily result in both termination of infall and dispersal of unaccreted material.
Protostellar Collapse with a Shock
NASA Technical Reports Server (NTRS)
Tsai, John C.; Hsu, Juliana J. L.
1995-01-01
We reexamine both numerically and analytically the collapse of the singular isothermal sphere in the context of low-mass star formation. We consider the case where the onset of collapse is initiated by some arbitrary process which is accompanied by a central output of either heat or kinetic energy. We find two classes of numerical solutions describing this manner of collapse. The first approaches in time the expansion wave solution of Shu, while the second class is characterized by an ever-decreasing central accretion rate and the presence of an outwardly propagating weak shock. The collapse solution which represents the dividing case between these two classes is determined analytically by a similarity analysis. This solution shares with the expansion wave solution the properties that the gas remains stationary with an r(sup -2) density profile at large radius and that, at small radius, the gas free-falls onto a nascent core at a constant rate which depends only on the isothermal sound speed. This accretion rate is a factor of approx. 0.1 that predicted by the expansion wave solution. This reduction is due in part to the presence of a weak shock which propagates outward at 1.26 times the sound speed. Gas in the postshock region first moves out subsonically but is then decelerated and begins to collapse. The existence of two classes of numerical collapse solutions is explained in terms of the instability to radial perturbations of the analytic solution. Collapse occurring in the manner described by some of our solutions would eventually unbind a finite-sized core. However, this does not constitute a violation of the instability properties of the singular isothermal sphere which is unstable both to collapse and to expansion. To emphasize this, we consider a purely expanding solution for isothermal spheres. This solution is found to be self-similar and results in a uniform density core in the central regions of the gas. Our solutions may be relevant to the 'luminosity' problem of protostellar cores since the predicted central accretion rates are significantly reduced relative to that of the expansion wave solution. Furthermore, our calculations indicate that star-forming cloud cores are not very tightly bound and that modest disturbances can easily result in both termination of infall and dispersal of unaccreted material.
Cofilin-1 in the podocyte: a molecular switch for actin dynamics.
Berger, Katja; Moeller, Marcus J
2011-03-01
Studies by Garg et al. and Ashworth et al. investigated the functional relevance of a key regulatory protein, cofilin-1, for podocyte actin dynamics (Ashworth et al. in PLos One 5:e12626, 2010; Garg et al. in J Biol Chem 285:22676-22688, 2010). Using different model organisms (zebrafish or transgenic mice), both groups observed a collapse of the glomerular filtration barrier upon inactivation of cofilin-1. In elegant biochemical studies, Garg et al. established that cofilin-1 activity is regulated by nephrin, which is part of the slit diaphragm complex. Two feedback loops stabilize cofilin-1 in the phosphorylated versus dephosphorylated state. The novel findings render cofilin-1 activity as potential diagnostic marker for pathological changes in the podocyte cytoarchitecture.
NASA Astrophysics Data System (ADS)
Sun, K.; Cheng, D. B.; He, J. J.; Zhao, Y. L.
2018-02-01
Collapse gully erosion is a specific type of soil erosion in the red soil region of southern China, and early warning and prevention of the occurrence of collapse gully erosion is very important. Based on the idea of risk assessment, this research, taking Guangdong province as an example, adopt the information acquisition analysis and the logistic regression analysis, to discuss the feasibility for collapse gully erosion risk assessment in regional scale, and compare the applicability of the different risk assessment methods. The results show that in the Guangdong province, the risk degree of collapse gully erosion occurrence is high in northeastern and western area, and relatively low in southwestern and central part. The comparing analysis of the different risk assessment methods on collapse gully also indicated that the risk distribution patterns from the different methods were basically consistent. However, the accuracy of risk map from the information acquisition analysis method was slightly better than that from the logistic regression analysis method.
Olsen, Stine T; Brøndsted Nielsen, Mogens; Hansen, Thorsten; Ratner, Mark A; Mikkelsen, Kurt V
2017-06-20
Molecular photoswitches incorporated in molecular junctions yield the possibility of light-controlled switching of conductance due to the electronic difference of the photoisomers. Another isomerization mechanism, dark photoswitching, promoted by a voltage stimulus rather than by light, can be operative in the Coulomb blockade regime for a specific charge state of the molecule. Here we elucidate theoretically the mechanistic and thermodynamic restrictions for this dark photoswitching for donor-acceptor substituted 4n and 4n+2 π-electron open-chain oligoenes (1,3-butadiene and 1,3,5-hexatriene) by considering the molecular energies and orbitals of the molecules placed in a junction. For an electrocyclic ring closure reaction to occur for these compounds, we put forward two requirements: a) the closed stereoisomer (cis or trans form) must be of lower energy than the open form, and b) the reaction pathway must be in accordance to the orbital symmetry rules expressed by the Woodward-Hoffmann rules (when the electrodes do not significantly alter the molecular orbital appearances). We find these two requirements to be valid for the dianion of (1E,3Z,5E)-hexa-1,3,5-triene-1,6-diamine, and the Coulomb blockade diamonds were therefore modeled for this compound to elucidate how a dark photoswitching event would manifest itself in the stability plot. From this modeling of conductance as a function of gate and bias potentials, we predict a collapse in Coulomb diamond size, that is, a decrease in the height of the island of zero conductance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Simonov, Kyrylo; Hiesmayr, Beatrix C.
2016-11-01
Dynamical reduction models propose a solution to the measurement problem in quantum mechanics: the collapse of the wave function becomes a physical process. We compute the predictions to decaying and flavor-oscillating neutral mesons for the two most promising collapse models, the QMUPL (quantum mechanics with universal position localization) model and the mass-proportional CSL (continuous spontaneous localization) model. Our results are showing (i) a strong sensitivity to the very assumptions of the noise field underlying those two collapse models and (ii) under particular assumptions the CSL case allows one even to recover the decay dynamics. This in turn allows one to predict the effective collapse rates solely based on the measured values for the oscillation (mass differences) and the measured values of the decay constants. The four types of neutral mesons (K meson, D meson, Bd meson, and Bs meson) lead surprisingly to ranges comparable to those put forward by Adler [J. Phys. A: Math. Theor. 40, 2935 (2007), 10.1088/1751-8113/40/12/S03] and Ghirardi, Rimini, and Weber [Phys. Rev. D 34, 470 (1986), 10.1103/PhysRevD.34.470]. Our results show that these systems at high energies are very sensitive to possible modifications of the standard quantum theory, making them a very powerful laboratory to rule out certain collapse scenarios and study the detailed physical processes solving the measurement problem.
Introductory Guide to the Statistics of Molecular Genetics
ERIC Educational Resources Information Center
Eley, Thalia C.; Rijsdijk, Fruhling
2005-01-01
Background: This introductory guide presents the main two analytical approaches used by molecular geneticists: linkage and association. Methods: Traditional linkage and association methods are described, along with more recent advances in methodologies such as those using a variance components approach. Results: New methods are being developed all…
NASA Technical Reports Server (NTRS)
Irvine, W. M.; Schloerb, F. P.
1985-01-01
Two additional hyperfine components of the interstellar radical C3H were detected. In addition, methanol was discovered in interstellar clouds. The abundance of HCCN and various chemical isomers in molecular clouds was investigated.
Merger of Two Neutron Stars: Predictions from the Two-families Scenario
NASA Astrophysics Data System (ADS)
Drago, Alessandro; Pagliara, Giuseppe
2018-01-01
If only one family of “neutron stars” exists, their maximum mass must be equal to or larger than 2{M}ȯ and then, only in less than about 18% of cases, the outcome of the merger of two neutron stars is a prompt collapse to a black hole, since the newly formed system can avoid the collapse at least until differential rotation is present. In the so-called two-families scenario, stars made of hadrons are stable only up to about (1.5{--}1.6){M}ȯ , while the most massive compact stars are entirely made of strange quark matter. We show that in this scenario the outcome of the merger of two compact stars, entirely composed by hadrons, is a prompt collapse in at least 34% of the cases. It will therefore be easy to discriminate between the two scenarios once the gravitational waves emitted at the moment of the merger are detected. Finally, we shortly discuss the implications of GW170817‑GRB 170817A.
Electron correlation by polarization of interacting densities
NASA Astrophysics Data System (ADS)
Whitten, Jerry L.
2017-02-01
Coulomb interactions that occur in electronic structure calculations are correlated by allowing basis function components of the interacting densities to polarize dynamically, thereby reducing the magnitude of the interaction. Exchange integrals of molecular orbitals are not correlated. The modified Coulomb interactions are used in single-determinant or configuration interaction calculations. The objective is to account for dynamical correlation effects without explicitly introducing higher spherical harmonic functions into the molecular orbital basis. Molecular orbital densities are decomposed into a distribution of spherical components that conserve the charge and each of the interacting components is considered as a two-electron wavefunction embedded in the system acted on by an average field Hamiltonian plus r12-1. A method of avoiding redundancy is described. Applications to atoms, negative ions, and molecules representing different types of bonding and spin states are discussed.
NASA Astrophysics Data System (ADS)
Tiecheng, Yan; Xingyuan, Zhang; Hongping, Yang
2018-03-01
This study describes an analytical comparison of the engineering characteristics of two-lime waste tire particle soil and soil with lime/loess ratio of 3:7 using density measurements, results of indoor consolidation tests, and direct shear tests to examine the strength and deformation characteristics. It investigates the engineering performance of collapsible loess treated with waste tire particles and lime. The results indicate that (1) the shear strength of the two-lime waste tire particle soils increases continuously with soil age; and (2) the two-lime waste tire particle soils are light-weight, strong, and low-deformation soils, and can be applied primarily to improve the foundation soil conditions in areas with collapsible loess soils. This could address the problem of used tire disposal, while providing a new method to consider and manage collapsible loess soils.
The X-Ray Light Curve in GRB 170714A: Evidence for a Quark Star?
NASA Astrophysics Data System (ADS)
Hou, Shu-Jin; Liu, Tong; Xu, Ren-Xin; Mu, Hui-Jun; Song, Cui-Ying; Lin, Da-Bin; Gu, Wei-Min
2018-02-01
Two plateaus and a following bump in the X-ray light curve of GRB 170714A have been detected by the Swift/X-ray Telescope, which could be very significant for the central engine of gamma-ray bursts (GRBs), implying that the origin of this burst might be different from those of other ultra-long GRBs. We propose that merging two neutron stars into a hyper-massive quark star (QS) and then collapsing into a black hole (BH), with a delay time around 104 s, could be responsible for these X-ray components. The hyper-massive QS is initially in a fluid state, being turbulent and differentially rotating, but would solidify and release its latent heat, injecting it into the GRB fireball (lasting about 103 s during the liquid–solid phase transition). A magnetic field as high as ∼1015 G can be created by dynamo action of the newborn liquid QS, and a magnetar-like central engine (after solidification) supplies significant energy for the second plateau. More energy could be released during a fall-back accretion after the post-merger QS collapses to a BH, and the X-ray bump forms. This post-merger QS model could be tested by future observations, with either advanced gravitational wave detectors (e.g., advanced LIGO and VIRGO) or X-ray/optical telescopes.
Characteristic Structure of Star-forming Clouds
NASA Astrophysics Data System (ADS)
Myers, Philip C.
2015-06-01
This paper presents a new method to diagnose the star-forming potential of a molecular cloud region from the probability density function of its column density (N-pdf). This method provides expressions for the column density and mass profiles of a symmetric filament having the same N-pdf as a filamentary region. The central concentration of this characteristic filament can distinguish regions and can quantify their fertility for star formation. Profiles are calculated for N-pdfs which are pure lognormal, pure power law, or a combination. In relation to models of singular polytropic cylinders, characteristic filaments can be unbound, bound, or collapsing depending on their central concentration. Such filamentary models of the dynamical state of N-pdf gas are more relevant to star-forming regions than are spherical collapse models. The star formation fertility of a bound or collapsing filament is quantified by its mean mass accretion rate when in radial free fall. For a given mass per length, the fertility increases with the filament mean column density and with its initial concentration. In selected regions the fertility of their characteristic filaments increases with the level of star formation.
Velocity-induced collapses of stable neutron stars
NASA Astrophysics Data System (ADS)
Novak, J.
2001-09-01
The collapse of spherical neutron stars is studied in General Relativity. The initial state is a stable neutron star to which an inward radial kinetic energy has been added through some velocity profile. For two different equations of state and two different shapes of velocity profiles, it is found that neutron stars can collapse to black holes for high enough inward velocities, provided that their masses are higher than some minimal value, depending on the equation of state. For a polytropic equation of state of the form p=Krho gamma, with gamma = 2 it is found to be 1.16 ( (K)/(0.1) right )0.5 Msun, whereas for a more realistic one (described in Pons et al. \\cite{PonREPL00}), it is 0.36 Msun . In some cases of collapse forming a black hole, part of the matter composing the initial neutron star can be ejected through a shock, leaving only a fraction of the initial mass to form a black hole. Therefore, black holes of very small masses can be formed and, in particular, the mass scaling relation, as a function of initial velocity, takes the form discovered by Choptuik (\\cite{Cho93}) for critical collapses.
Electrostatically Tuned Self-Assembly of Branched Amphiphilic Peptides
Ting, Christina L.; Frischknecht, Amalie L.; Stevens, Mark J.; ...
2014-06-19
Electrostatics plays an important role in the self-assembly of amphiphilic peptides. To develop a molecular understanding of the role of the electrostatic interactions, we develop a coarse-grained model peptide and apply self-consistent field theory to investigate the peptide assembly into a variety of aggregate nanostructures. We find that the presence and distribution of charged groups on the hydrophilic branches of the peptide can modify the molecular configuration from extended to collapsed. This change in molecular configuration influences the packing into spherical micelles, cylindrical micelles (nanofibers), or planar bilayers. The effects of charge distribution therefore has important implications for the designmore » and utility of functional materials based on peptides.« less
NASA Astrophysics Data System (ADS)
Russell, H. R.; McNamara, B. R.; Fabian, A. C.; Nulsen, P. E. J.; Combes, F.; Edge, A. C.; Hogan, M. T.; McDonald, M.; Salomé, P.; Tremblay, G.; Vantyghem, A. N.
2017-12-01
We present new ALMA observations tracing the morphology and velocity structure of the molecular gas in the central galaxy of the cluster Abell 1795. The molecular gas lies in two filaments that extend 5-7 kpc to the N and S from the nucleus and project exclusively around the outer edges of two inner radio bubbles. Radio jets launched by the central active galactic nucleus have inflated bubbles filled with relativistic plasma into the hot atmosphere surrounding the central galaxy. The N filament has a smoothly increasing velocity gradient along its length from the central galaxy's systemic velocity at the nucleus to -370 km s^{-1}, the average velocity of the surrounding galaxies, at the furthest extent. The S filament has a similarly smooth but shallower velocity gradient and appears to have partially collapsed in a burst of star formation. The close spatial association with the radio lobes, together with the ordered velocity gradients and narrow velocity dispersions, shows that the molecular filaments are gas flows entrained by the expanding radio bubbles. Assuming a Galactic XCO factor, the total molecular gas mass is 3.2 ± 0.2 × 109 M⊙. More than half lies above the N radio bubble. Lifting the molecular clouds appears to require an infeasibly efficient coupling between the molecular gas and the radio bubble. The energy required also exceeds the mechanical power of the N radio bubble by a factor of 2. Stimulated feedback, where the radio bubbles lift low-entropy X-ray gas that becomes thermally unstable and rapidly cools in situ, provides a plausible model. Multiple generations of radio bubbles are required to lift this substantial gas mass. The close morphological association then indicates that the cold gas either moulds the newly expanding bubbles or is itself pushed aside and shaped as they inflate.
USDA-ARS?s Scientific Manuscript database
‘Rapid Apple Decline’ (RAD) is a newly emerging problem of young, dwarf apple trees in the northeastern USA. The affected trees show trunk necrosis, bark cracking and canker formation before collapsing in the summer. In this study, a new luteovirus and three common viruses were identified from apple...
Hierarchical graphs for better annotations of rule-based models of biochemical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Bin; Hlavacek, William
2009-01-01
In the graph-based formalism of the BioNetGen language (BNGL), graphs are used to represent molecules, with a colored vertex representing a component of a molecule, a vertex label representing the internal state of a component, and an edge representing a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions, with a rule that specifies addition (removal) of an edge representing a class of association (dissociation) reactions and with a rule that specifies a change of vertex label representing a class of reactions that affect the internal state of amore » molecular component. A set of rules comprises a mathematical/computational model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Here, for purposes of model annotation, we propose an extension of BNGL that involves the use of hierarchical graphs to represent (1) relationships among components and subcomponents of molecules and (2) relationships among classes of reactions defined by rules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR)/CD3 complex. Likewise, we illustrate how hierarchical graphs can be used to document the similarity of two related rules for kinase-catalyzed phosphorylation of a protein substrate. We also demonstrate how a hierarchical graph representing a protein can be encoded in an XML-based format.« less
Kirkham, R.M.; Streufert, R.K.; Budahn, J.R.; Kunk, Michael J.; Perry, W.J.
2001-01-01
Dissolution and flow of Pennsylvanian evaporitic rocks in west-central Colorado created the Carbondale Collapse Center, a 450 mi2 structural depression with about 4,000 ft of vertical collapse during the late Cenozoic. This paper describes evidence of collapse in the lower Roaring Fork River valley. Both the lateral extent and amount of vertical collapse is constrained by deformed upper Cenozoic volcanic rocks that have been correlated using field mapping, 40Ar/39Ar geochronology, geochemistry, and paleomagnetism. The Carbondale Collapse Center is one of at least two contiguous areas that have experienced major evaporite tectonism during the late Cenozoic. Historic sinkholes, deformed Holocene deposits, and modern high-salinity loads in the rivers and thermal springs indicate the collapse process continues today. Flow of evaporitic rocks is an important element in the collapse process, and during initial stages of collapse it was probably the primary causative mechanism. Dissolution, however, is the ultimate means by which evaporite is removed from the collapse area. As the Roaring Fork River began to rapidly down-cut through a broad volcanic plateau during the late Miocene, the underlying evaporite beds were subjected to differential overburden pressures. The evaporitic rocks flowed from beneath the upland areas where overburden pressures remained high, toward the Roaring Fork River Valley where the pressures were much lower. Along the valley the evaporitic rocks rose upward, sometimes as diapirs, forming or enhancing a valley anticline in bedrock and locally upwarping Pleistocene terraces. Wherever the evaporites encountered relatively fresh ground water, they were dissolved, forming underground voids into which overlying bedrock and surficial deposits subsided. The saline ground water eventually discharged to streams and rivers through thermal springs and by seepage into alluvial aquifers.
AN OPEN-SOURCE NEUTRINO RADIATION HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Connor, Evan, E-mail: evanoconnor@ncsu.edu; CITA, Canadian Institute for Theoretical Astrophysics, Toronto, M5S 3H8
2015-08-15
We present an open-source update to the spherically symmetric, general-relativistic hydrodynamics, core-collapse supernova (CCSN) code GR1D. The source code is available at http://www.GR1Dcode.org. We extend its capabilities to include a general-relativistic treatment of neutrino transport based on the moment formalisms of Shibata et al. and Cardall et al. We pay special attention to implementing and testing numerical methods and approximations that lessen the computational demand of the transport scheme by removing the need to invert large matrices. This is especially important for the implementation and development of moment-like transport methods in two and three dimensions. A critical component of neutrinomore » transport calculations is the neutrino–matter interaction coefficients that describe the production, absorption, scattering, and annihilation of neutrinos. In this article we also describe our open-source neutrino interaction library NuLib (available at http://www.nulib.org). We believe that an open-source approach to describing these interactions is one of the major steps needed to progress toward robust models of CCSNe and robust predictions of the neutrino signal. We show, via comparisons to full Boltzmann neutrino-transport simulations of CCSNe, that our neutrino transport code performs remarkably well. Furthermore, we show that the methods and approximations we employ to increase efficiency do not decrease the fidelity of our results. We also test the ability of our general-relativistic transport code to model failed CCSNe by evolving a 40-solar-mass progenitor to the onset of collapse to a black hole.« less
SESNPCA: Principal Component Analysis Applied to Stripped-Envelope Core-Collapse Supernovae
NASA Astrophysics Data System (ADS)
Williamson, Marc; Bianco, Federica; Modjaz, Maryam
2018-01-01
In the new era of time-domain astronomy, it will become increasingly important to have rigorous, data driven models for classifying transients, including supernovae (SNe). We present the first application of principal component analysis (PCA) to stripped-envelope core-collapse supernovae (SESNe). Previous studies of SNe types Ib, IIb, Ic, and broad-line Ic (Ic-BL) focus only on specific spectral features, while our PCA algorithm uses all of the information contained in each spectrum. We use one of the largest compiled datasets of SESNe, containing over 150 SNe, each with spectra taken at multiple phases. Our work focuses on 49 SNe with spectra taken 15 ± 5 days after maximum V-band light where better distinctions can be made between SNe type Ib and Ic spectra. We find that spectra of SNe type IIb and Ic-BL are separable from the other types in PCA space, indicating that PCA is a promising option for developing a purely data driven model for SESNe classification.
Source-Type Inversion of the September 03, 2017 DPRK Nuclear Test
NASA Astrophysics Data System (ADS)
Dreger, D. S.; Ichinose, G.; Wang, T.
2017-12-01
On September 3, 2017, the DPRK announced a nuclear test at their Punggye-ri site. This explosion registered a mb 6.3, and was well recorded by global and regional seismic networks. We apply the source-type inversion method (e.g. Ford et al., 2012; Nayak and Dreger, 2015), and the MDJ2 seismic velocity model (Ford et al., 2009) to invert low frequency (0.02 to 0.05 Hz) complete three-component waveforms, and first-motion polarities to map the goodness of fit in source-type space. We have used waveform data from the New China Digital Seismic Network (BJT, HIA, MDJ), Korean Seismic Network (TJN), and the Global Seismograph Network (INCN, MAJO). From this analysis, the event discriminates as an explosion. For a pure explosion model, we find a scalar seismic moment of 5.77e+16 Nm (Mw 5.1), however this model fails to fit the large Love waves registered on the transverse components. The best fitting complete solution finds a total moment of 8.90e+16 Nm (Mw 5.2) that is decomposed as 53% isotropic, 40% double-couple, and 7% CLVD, although the range of isotropic moment from the source-type analysis indicates that it could be as high as 60-80%. The isotropic moment in the source-type inversion is 4.75e16 Nm (Mw 5.05). Assuming elastic moduli from model MDJ2 the explosion cavity radius is approximately 51m, and the yield estimated using Denny and Johnson (1991) is 246kt. Approximately 8.5 minutes after the blast a second seismic event was registered, which is best characterized as a vertically closing horizontal crack, perhaps representing the partial collapse of the blast cavity, and/or a service tunnel. The total moment of the collapse is 3.34e+16 Nm (Mw 4.95). The volumetric moment of the collapse is 1.91e+16 Nm, approximately 1/3 to 1/2 of the explosive moment. German TerraSAR-X observations of deformation (Wang et al., 2017) reveal large radial outward motions consistent with expected deformation for an explosive source, but lack significant vertical motions above the shot point. Forward elastic half-space modeling of the static deformation field indicates that the combination of the explosion and collapse explains the observed deformation to first order. We will present these results as well as a two-step inversion of the explosion in an attempt to better resolve the nature of the non-isotropic radiation of the event.
Dynamical origin of non-thermal states in galactic filaments
NASA Astrophysics Data System (ADS)
Di Cintio, Pierfrancesco; Gupta, Shamik; Casetti, Lapo
2018-03-01
Observations strongly suggest that filaments in galactic molecular clouds are in a non-thermal state. As a simple model of a filament, we study a two-dimensional system of self-gravitating point particles by means of numerical simulations of the dynamics, with various methods: direct N-body integration of the equations of motion, particle-in-cell simulations, and a recently developed numerical scheme that includes multiparticle collisions in a particle-in-cell approach. Studying the collapse of Gaussian overdensities, we find that after the damping of virial oscillations the system settles in a non-thermal steady state whose radial density profile is similar to the observed ones, thus suggesting a dynamical origin of the non-thermal states observed in real filaments. Moreover, for sufficiently cold collapses, the density profiles are anticorrelated with the kinetic temperature, i.e. exhibit temperature inversion, again a feature that has been found in some observations of filaments. The same happens in the state reached after a strong perturbation of an initially isothermal cylinder. Finally, we discuss our results in the light of recent findings in other contexts (including non-astrophysical ones) and argue that the same kind of non-thermal states may be observed in any physical system with long-range interactions.
NASA Astrophysics Data System (ADS)
Rothery, D. A.
2012-04-01
Mercury is turning out to be a planet characterized by various kinds of endogenous hole (discounting impact craters), which are compared here. These include volcanic vents and collapse features on horizontal scales of tens of km, and smaller scale depressions ('hollows') associated with bright crater-floor deposits (BCFD). The BCFD hollows are tens of metres deep and kilometres or less across and are characteristically flat-floored, with steep, scalloped walls. Their form suggests that they most likely result from removal of surface material by some kind of mass-wasting process, probably associated with volume-loss caused by removal (via sublimation?) of a volatile component. These do not appear to be primarily a result of undermining. Determining the composition of the high-albedo bluish surface coating in BCFDs will be a key goal for BepiColombo instruments such as MIXS (Mercury Imaging Xray Spectrometer). In contrast, collapse features are non-circular rimless pits, typically on crater floors (pit-floor craters), whose morphology suggests collapse into void spaces left by magma withdrawal. This could be by drainage of either erupted lava (or impact melt) or of shallowly-intruded magma. Unlike the much smaller-scale BCFD hollows, these 'collapse pit' features tend to lack extensive flat floors and instead tend to be close to triangular in cross-section with inward slopes near to the critical angle of repose. The different scale and morphology of BCFD hollows and collapse pits argues for quite different modes of origin. However, BCFD hollows adjacent to and within the collapse pit inside Scarlatti crater suggest that the volatile material whose loss was responsible for the growth of the hollows may have been emplaced in association with the magma whose drainage caused the main collapse. Another kind of volcanic collapse can be seen within a 25 km-wide volcanic vent outside the southern rim of the Caloris basin (22.5° N, 146.1° E), on a 28 m/pixel MDIS NAC image from orbit. Although the vent itself may have been excavated partly by explosive volcanism, the most recent event is collapse of a 7 km wide zone in the south centre of the vent. The sharpness of features within this (unmuted either by regolith-forming processes or by fall of volcanic ejecta) suggests that this collapse considerably post-dates the rest of the vent interior. It could reflect a late-stage minor 'throat clearing' explosive eruption, but (in the absence of evidence of associated volcanic ejecta) more likely reflects collapse into a void within the volcanic conduit, itself a result of magma-drainage. A class of 'hole' that is so far conspicuous by its absence on Mercury is sinuous rilles (as opposed to much straighter tectonic grabens) or aligned skylights representing collapsed or partly-collapsed drained lava tubes. Tube-fed flows are to be expected during emplacement of volcanic plains, and it will be surprising if no examples are revealed on MESSENGER and BepiColombo high-resolution images.
Far-field phase contrast from orbiting objects: Characterizing progenitors of binary mergers
NASA Astrophysics Data System (ADS)
Matthias, P.; Hofmann, R.
2018-05-01
We propose an idea to determine the size of a binary, composed of two compact stars or black holes, its diffractive power, the distance between components, and the distance to an observer, in exploiting the emergence of intensity contrast by free-space propagation when the phase of coherent light from a very distant background source is affected by diffraction. We assume that this effect can be characterized by the projected real part of an effective refractive index n . Here we model the according two-dimensional exit phase-map by a superposition of two Gaussians. In the extreme far field, phase information is captured by scaling functions which are analyzed here. Both spatial and temporal scanning of the intensity contrast are discussed. While the former mode can be used, e.g., to determine the distance to the observer, the latter allows, e.g., one to measure the overall diffractive power of the binary in terms of the particular dependence of a scaling curve on the projected spatial separation between the binary's components. Both modes of observation may be of relevance in monitoring the progenitor dynamics of binary collapse using radio telescopes.
Bryce A. Richardson; Gerald E. Rehfeldt; Mee-Sook Kim
2009-01-01
Analyses of molecular and quantitative genetic data demonstrate the existence of congruent climate-related patterns in western white pine (Pinus monticola). Two independent studies allowed comparisons of amplified fragment length polymorphism (AFLP) markers with quantitative variation in adaptive traits. Principal component analyses...
NASA Astrophysics Data System (ADS)
Frayer, David T.; Maddalena, Ronald J.; Ivison, R. J.; Smail, Ian; Blain, Andrew W.; Vanden Bout, Paul
2018-06-01
We present CO(1–0), CO(3–2), and CO(7–6) observations using the Green Bank Telescope (GBT) and the Atacama Large Millimeter Array (ALMA) of the z = 2.8 submillimeter galaxy SMM J02399‑0136. This was the first submillimeter-selected galaxy discovered and remains an archetype of the class, comprising a merger of several massive and active components, including a quasar-luminosity AGN and a highly obscured, gas-rich starburst spread over a ∼25 kpc extent. The GBT CO(1–0) line profile is comprised of two distinct velocity components separated by about 600 km s‑1 and suggests the presence of a new component of molecular gas that had not been previously identified. The CO(3–2) observations with ALMA show that this new component, designated W1, is associated with a large extended structure stretching 13 kpc westward from the AGN. W1 is not detected in the ALMA CO(7–6) data, implying that this gas has much lower CO excitation than the central starburst regions, which are bright in CO(7–6). The molecular gas mass of W1 is about 30% of the total molecular gas mass in the system, depending on the CO-to-H2 conversion factor. W1 is arguably a merger remnant; alternatively, it could be a massive molecular outflow associated with the AGN, or perhaps inflowing metal-enriched molecular gas fueling the ongoing activity.
NASA Astrophysics Data System (ADS)
O’Connor, Evan P.; Couch, Sean M.
2018-02-01
We present results from simulations of core-collapse supernovae in FLASH using a newly implemented multidimensional neutrino transport scheme and a newly implemented general relativistic (GR) treatment of gravity. We use a two-moment method with an analytic closure (so-called M1 transport) for the neutrino transport. This transport is multienergy, multispecies, velocity dependent, and truly multidimensional, i.e., we do not assume the commonly used “ray-by-ray” approximation. Our GR gravity is implemented in our Newtonian hydrodynamics simulations via an effective relativistic potential that closely reproduces the GR structure of neutron stars and has been shown to match GR simulations of core collapse quite well. In axisymmetry, we simulate core-collapse supernovae with four different progenitor models in both Newtonian and GR gravity. We find that the more compact proto–neutron star structure realized in simulations with GR gravity gives higher neutrino luminosities and higher neutrino energies. These differences in turn give higher neutrino heating rates (upward of ∼20%–30% over the corresponding Newtonian gravity simulations) that increase the efficacy of the neutrino mechanism. Three of the four models successfully explode in the simulations assuming GREP gravity. In our Newtonian gravity simulations, two of the four models explode, but at times much later than observed in our GR gravity simulations. Our results, in both Newtonian and GR gravity, compare well with several other studies in the literature. These results conclusively show that the approximation of Newtonian gravity for simulating the core-collapse supernova central engine is not acceptable. We also simulate four additional models in GR gravity to highlight the growing disparity between parameterized 1D models of core-collapse supernovae and the current generation of 2D models.
Climate and the collapse of civilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abate, T.
1994-09-01
This article looks at the archaeological debate over two important questions: whether abrupt climate changes caused or contributed to the collapse of ancient civilizations and, if the archaeological and paleoclimatological record yields evidence to that effect, what would it mean in a world that today debates whether industrial civilization is altering Earth's climate with uncertain consequences. Areas discussed include the following: climate hints from archaeological sites; hesitations about whether climate change caused civilizations to collapse; and the interdisciplinary checks on each side.
Gray, John R.; Peters, Charles A.; ,
1985-01-01
Runoff, sediment transport, and precipitation were measured in three gaged basins composing two-thirds of the 20-acre site, and in a 3. 5-acre basin located 0. 3 mile south of the site. Locations and dimensions of surface collapses at the site were recorded by the site contractor. Volumes of collapsed material were calculated and converted to an equivalent weight of earth material by applying a mean value for the bulk density of soils at the site.
Correlated random walks induced by dynamical wavefunction collapse
NASA Astrophysics Data System (ADS)
Bedingham, Daniel
2015-03-01
Wavefunction collapse models modify Schrödinger's equation so that it describes the collapse of a superposition of macroscopically distinguishable states as a genuine physical process [PRA 42, 78 (1990)]. This provides a basis for the resolution of the quantum measurement problem. An additional generic consequence of the collapse mechanism is that it causes particles to exhibit a tiny random diffusive motion. Furthermore, the diffusions of two sufficiently nearby particles are positively correlated -- it is more likely that the particles diffuse in the same direction than would happen if they behaved independently [PRA 89, 032713 (2014)]. The use of this effect is proposed as an experimental test of wave function collapse models in which pairs of nanoparticles are simultaneously released from nearby traps and allowed a brief period of free fall. The random displacements of the particles are then measured. The experiment must be carried out at sufficiently low temperature and pressure for the collapse effects to dominate over the ambient environmental noise. It is argued that these constraints can be satisfied by current technologies for a large class of viable wavefunction collapse models. Work supported by the Templeton World Charity Foundation.
Stress evolution during caldera collapse
NASA Astrophysics Data System (ADS)
Holohan, E. P.; Schöpfer, M. P. J.; Walsh, J. J.
2015-07-01
The mechanics of caldera collapse are subject of long-running debate. Particular uncertainties concern how stresses around a magma reservoir relate to fracturing as the reservoir roof collapses, and how roof collapse in turn impacts upon the reservoir. We used two-dimensional Distinct Element Method models to characterise the evolution of stress around a depleting sub-surface magma body during gravity-driven collapse of its roof. These models illustrate how principal stress orientations rotate during progressive deformation so that roof fracturing transitions from initial reverse faulting to later normal faulting. They also reveal four end-member stress paths to fracture, each corresponding to a particular location within the roof. Analysis of these paths indicates that fractures associated with ultimate roof failure initiate in compression (i.e. as shear fractures). We also report on how mechanical and geometric conditions in the roof affect pre-failure unloading and post-failure reloading of the reservoir. In particular, the models show how residual friction within a failed roof could, without friction reduction mechanisms or fluid-derived counter-effects, inhibit a return to a lithostatically equilibrated pressure in the magma reservoir. Many of these findings should be transferable to other gravity-driven collapse processes, such as sinkhole formation, mine collapse and subsidence above hydrocarbon reservoirs.
Warm and cold molecular gas conditions modeled in 87 galaxies observed by the Herschel SPIRE FTS
NASA Astrophysics Data System (ADS)
Kamenetzky, Julia; Rangwala, Naseem; Glenn, Jason
2018-01-01
Molecular gas is the raw material for star formation, and like the interstellar medium (ISM) in general, it can exist in regions of higher and lower excitation. Rotational transitions of the CO molecule are bright and sensitive to cold molecular gas. While the majority of the molecular gas exists in the very cold component traced by CO J=1-0, the higher-J lines trace the highly excited gas that may be more indicative of star formation processes. The atmosphere is opaque to these lines, but the launch of the Herschel Space Observatory made them accessible for study of Galactic and extragalactic sources. We have conducted two-component, non-local thermodynamic equilibrium (non-LTE) modeling of the CO lines from J=1‑0 through J=13‑12 in 87 galaxies observed by the Herschel SPIRE Fourier Transform Spectrometer (FTS). We used the nested sampling algorithm Multinest to compare the measured CO spectral line energy distributions (SLEDs) to the ones produced by a custom version of the non-LTE code RADEX. This allowed us to fully examine the degeneracies in parameter space for kinetic temperature, molecular gas density, CO column density, and area filling factor.Here we discuss the major findings of our study, as well as the important implications of two-component molecular gas modeling. The average pressure of the warm gas is slightly correlated with galaxy LFIR, but that of the cold gas is not. A high-J (such as J=11-10) to J=1-0 line ratio is diagnostic of warm component pressure. We find a very large spread in our derived values of "alpha-CO," with no discernable trend with LFIR, and average molecular gas depletion times that decrease with LFIR. If only a few molecular lines are available in a galaxy's SLED, the limited ability to model only one component will change the results. A one-component fit often underestimates the flux of carbon monoxide (CO) J=1‑0 and the mass. If low-J lines are not included, mass is underestimated by an order of magnitude. Even when modeling the low-J lines alone or using a CO-to-mass conversion factor, the mass should be considered to be uncertain to a factor of at least 0.4 dex, and the vast majority of the CO luminosity will be missed (median, 65 per cent).
Empathic Concern and the Desire to Help as Separable Components of Compassionate Responding.
Ministero, Lauren M; Poulin, Michael J; Buffone, Anneke E K; DeLury, Shane
2018-04-01
When do people experience versus regulate responses to compassion-evoking stimuli? We hypothesized that compassionate responding is composed of two factors-empathic concern and the desire to help-and that these would be differentially affected by perspective taking and self-affirmation. Exploratory (Study 1) and confirmatory (Study 2) factor analyses indicated that a compassion measure consisted of two factors corresponding to empathic concern and the desire to help. In Study 1 ( N = 237), participants with high emotion regulation ability reported less empathic concern for multiple children than for one, but perspective taking prevented this effect. In Study 2 ( N = 155), participants reported less desire to help multiple children, but only in the presence of self-affirmation. In both the studies, empathic concern predicted greater distress while the desire to help predicted greater chances of donating. Compassionate responding may consist of two separable facets that collapse under distinct conditions and that predict distinct outcomes.
Yang, Ya-Jun; Li, Jian-Yong; Liu, Xi-Wang; Zhang, Ji-Yu; Liu, Yu-Rong; Li, Bing
2013-01-01
To develop a non-biological method for screening active components against influenza virus from traditional Chinese medicine (TCM) extraction, a liquid chromatography (LC) column prepared with oseltamivir molecularly imprinted polymer (OSMIP) was employed with LC-mass spectrometry (LC-MS). From chloroform extracts of compound TCM liquid preparation, we observed an affinitive component m/z 249, which was identified to be matrine following analysis of phytochemical literatures, OSMIP-LC column on-line of control compounds and MS/MS off-line. The results showed that matrine had similar bioactivities with OS against avian influenza virus H9N2 in vitro for both alleviating cytopathic effect and hemagglutination inhibition and that the stereostructures of these two compounds are similar while their two-dimensional structures were different. In addition, our results suggested that the bioactivities of those affinitive compounds were correlated with their chromatographic behaviors, in which less difference of the chromatographic behaviors might have more similar bioactivities. This indicates that matrine is a potential candidate drug to prevent or cure influenza for human or animal. In conclusion, the present study showed that molecularly imprinted polymers can be used as a non-biological method for screening active components against influenza virus from TCM. PMID:24386385
Microfracture development and foam collapse during lava dome growth
NASA Astrophysics Data System (ADS)
Ashwell, P.; Kendrick, J. E.; Lavallee, Y.; kennedy, B.; Hess, K.; Cole, J. W.; Dingwell, D. B.
2012-12-01
The ability of a volcano to degas effectively is regulated by the collapse of the foam during lava dome growth. As a lava dome extrudes and cools, it will begin to collapse under its own weight, leading to the closure of bubbles and the eventual blockage of the permeable foam network. A reduction in the lavas permeability hinders gas movement and increases internal bubble pressure, which may eventually lead to failure of the bubble walls, and ultimately to explosive fragmentation of the dome. However, the behaviour of lava dome material under compression is poorly understood. Here we present the results of low-load, uniaxial, high temperature (850oC) compression experiments on glassy, rhyolitic dome material from Ngongotaha (~200ka, following collapse of Rotorua Caldera) and Tarawera (1314AD, from dome collapse generated block and ash flow) domes in New Zealand. The development of textures and microstructures was tracked using neutron computed tomography at incremental stages of strain. Porosity and permeability measurements, using pycnometry and gas permeability, before and after each experiment quantified the evolution of the permeable bubble network. Our results show that uniaxial compression of vesicular lava leads to a systematic reduction of porosity on a timescale comparable to volcanic eruptions (hours - days). The closure of bubbles naturally decreases permeability parallel and perpendicular to the applied load, and at high strains fractures begin to initiate in phenocrysts and propagate vertically into the glass. These microfractures result in localised increases in permeability. Crystallinity and initial vesicularity of each sample affects the rate of bubble collapse and the evolution of permeability. The most highly compressed samples (60%) show textures similar to samples collected from the centre of Tarawera Dome, thought to have suffered from collapse shortly after dome emplacement. However, structures and porosities in the deformed Ngongotaha samples differ from the natural collapsed dome material. The interior of Ngongotaha Dome shows complex deformed flow banding, indicating that shearing during emplacement was a major component during collapse of the permeable foam. Understanding the development of the porous permeable network during lava dome growth is key to predicting the behaviour of an erupting volcano, and the assessing the likelihood of pressure build-up leading to a catastrophic explosive eruption.
NASA Astrophysics Data System (ADS)
Schneider, N.; Ossenkopf, V.; Csengeri, T.; Klessen, R. S.; Federrath, C.; Tremblin, P.; Girichidis, P.; Bontemps, S.; André, Ph.
2015-03-01
Column-density maps of molecular clouds are one of the most important observables in the context of molecular cloud- and star-formation (SF) studies. With the Herschel satellite it is now possible to precisely determine the column density from dust emission, which is the best tracer of the bulk of material in molecular clouds. However, line-of-sight (LOS) contamination from fore- or background clouds can lead to overestimating the dust emission of molecular clouds, in particular for distant clouds. This implies values that are too high for column density and mass, which can potentially lead to an incorrect physical interpretation of the column density probability distribution function (PDF). In this paper, we use observations and simulations to demonstrate how LOS contamination affects the PDF. We apply a first-order approximation (removing a constant level) to the molecular clouds of Auriga and Maddalena (low-mass star-forming), and Carina and NGC 3603 (both high-mass SF regions). In perfect agreement with the simulations, we find that the PDFs become broader, the peak shifts to lower column densities, and the power-law tail of the PDF for higher column densities flattens after correction. All corrected PDFs have a lognormal part for low column densities with a peak at Av ~ 2 mag, a deviation point (DP) from the lognormal at Av(DP) ~ 4-5 mag, and a power-law tail for higher column densities. Assuming an equivalent spherical density distribution ρ ∝ r- α, the slopes of the power-law tails correspond to αPDF = 1.8, 1.75, and 2.5 for Auriga, Carina, and NGC 3603. These numbers agree within the uncertainties with the values of α ≈ 1.5,1.8, and 2.5 determined from the slope γ (with α = 1-γ) obtained from the radial column density profiles (N ∝ rγ). While α ~ 1.5-2 is consistent with a structure dominated by collapse (local free-fall collapse of individual cores and clumps and global collapse), the higher value of α > 2 for NGC 3603 requires a physical process that leads to additional compression (e.g., expanding ionization fronts). From the small sample of our study, we find that clouds forming only low-mass stars and those also forming high-mass stars have slightly different values for their average column density (1.8 × 1021 cm-2 vs. 3.0 × 1021 cm-2), and they display differences in the overall column density structure. Massive clouds assemble more gas in smaller cloud volumes than low-mass SF ones. However, for both cloud types, the transition of the PDF from lognormal shape into power-law tail is found at the same column density (at Av ~ 4-5 mag). Low-mass and high-mass SF clouds then have the same low column density distribution, most likely dominated by supersonic turbulence. At higher column densities, collapse and external pressure can form the power-law tail. The relative importance of the twoprocesses can vary between clouds and thus lead to the observed differences in PDF and column density structure. Appendices are available in electronic form at http://www.aanda.orgHerschel maps as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A79
Interacting shells in AdS spacetime and chaos
NASA Astrophysics Data System (ADS)
Brito, Richard; Cardoso, Vitor; Rocha, Jorge V.
2016-07-01
We study the simplest two-body problem in asymptotically anti-de Sitter spacetime: two, infinitely thin, concentric spherical shells of matter. We include only gravitational interaction between the two shells, but we show that the dynamics of this system is highly nontrivial. We observe prompt collapse to a black hole, delayed collapse and even perpetual oscillatory motion, depending on the initial location of the shells (or their energy content). The system exhibits critical behavior, and we show strong hints that it is also chaotic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartnett, Chris A.; Mahady, Kyle; Fowlkes, Jason Davidson
We carry out experimental and numerical studies to investigate the collapse and breakup of finite size, nano- and microscale, liquid metal filaments supported on a substrate. We find the critical dimensions below which filaments do not break up but rather collapse to a single droplet. The transition from collapse to breakup can be described as a competition between two fluid dynamic phenomena: the capillary driven end retraction and the Rayleigh–Plateau type instability mechanism that drives the breakup. We focus on the unique spatial and temporal transition region between these two phenomena using patterned metallic thin film strips and pulsed-laser-induced dewetting.more » The experimental results are compared to an analytical model proposed by Driessen et al. and modified to include substrate interactions. Additionally, we report the results of numerical simulations based on a volume-of-fluid method to provide additional insight and highlight the importance of liquid metal resolidification, which reduces inertial effects.« less
Hartnett, Chris A.; Mahady, Kyle; Fowlkes, Jason Davidson; ...
2015-11-23
We carry out experimental and numerical studies to investigate the collapse and breakup of finite size, nano- and microscale, liquid metal filaments supported on a substrate. We find the critical dimensions below which filaments do not break up but rather collapse to a single droplet. The transition from collapse to breakup can be described as a competition between two fluid dynamic phenomena: the capillary driven end retraction and the Rayleigh–Plateau type instability mechanism that drives the breakup. We focus on the unique spatial and temporal transition region between these two phenomena using patterned metallic thin film strips and pulsed-laser-induced dewetting.more » The experimental results are compared to an analytical model proposed by Driessen et al. and modified to include substrate interactions. Additionally, we report the results of numerical simulations based on a volume-of-fluid method to provide additional insight and highlight the importance of liquid metal resolidification, which reduces inertial effects.« less
On the physical parameters for Centaurus X-3 and Hercules X-1.
NASA Technical Reports Server (NTRS)
Mccluskey, G. E., Jr.; Kondo, Y.
1972-01-01
It is shown how upper and lower limits on the physical parameters of X-ray sources in Centaurus X-3 and Hercules X-1 may be determined from a reasonably simple and straightforward consideration. The basic assumption is that component A (the non-X-ray emitting component) is not a star collapsing toward its Schwartzschild radius (i.e., a black hole). This assumption appears reasonable since component A (the radius of the central occulting star) appears to physically occult component X. If component A is a 'normal' star, both observation and theory indicate that its mass is not greater than about 60 solar masses. The possibility in which component X is either a neutron star or a white dwarf is considered.
Ki-67 acts as a biological surfactant to disperse mitotic chromosomes
Cuylen, Sara; Blaukopf, Claudia; Politi, Antonio Z.; Müller-Reichert, Thomas; Neumann, Beate; Poser, Ina; Ellenberg, Jan; Hyman, Anthony A.; Gerlich, Daniel W.
2016-01-01
Summary Eukaryotic genomes are partitioned into chromosomes, which during mitosis form compact and spatially well-separated mechanical bodies1–3.This enables chromosomes to move independently of each other for segregation of precisely one copy of the genome to each of the nascent daughter cells. Despite insights into the spatial organization of mitotic chromosomes4 and the discovery of proteins at the chromosome surface3,5,6, the molecular and biophysical basis of mitotic chromosome individuality have remained unclear. We report that Ki-67, a component of the mitotic chromosome periphery, prevents chromosomes from collapsing into a single chromatin mass after nuclear envelope disassembly, thus enabling independent chromosome motility and efficient interactions with the mitotic spindle. The chromosome separation function of Ki-67 is not confined within a specific protein domain but correlates with size and net charge of truncation mutants that apparently lack secondary structure. This suggests that Ki-67 forms a steric and electrical barrier, similar to surface-active agents (surfactants) that disperse particles or phase-separated liquid droplets in solvents. Fluorescence correlation spectroscopy showed a high surface density of Ki-67 and dual-color labeling of both protein termini revealed an extended molecular conformation, indicating brush-like arrangements that are characteristic for polymeric surfactants. Our study thus elucidates a biomechanical role of the mitotic chromosome periphery and suggests that natural proteins can function as surfactants in intracellular compartmentalization. PMID:27362226
Gravity induced wave function collapse
NASA Astrophysics Data System (ADS)
Gasbarri, G.; Toroš, M.; Donadi, S.; Bassi, A.
2017-11-01
Starting from an idea of S. L. Adler [in Quantum Nonlocality and Reality: 50 Years of Bell's Theorem, edited by M. Bell and S. Gao (Cambridge University Press, Cambridge, England 2016)], we develop a novel model of gravity induced spontaneous wave function collapse. The collapse is driven by complex stochastic fluctuations of the spacetime metric. After deriving the fundamental equations, we prove the collapse and amplification mechanism, the two most important features of a consistent collapse model. Under reasonable simplifying assumptions, we constrain the strength ξ of the complex metric fluctuations with available experimental data. We show that ξ ≥10-26 in order for the model to guarantee classicality of macro-objects, and at the same time ξ ≤10-20 in order not to contradict experimental evidence. As a comparison, in the recent discovery of gravitational waves in the frequency range 35 to 250 Hz, the (real) metric fluctuations reach a peak of ξ ˜10-21.
Probing spontaneous wave-function collapse with entangled levitating nanospheres
NASA Astrophysics Data System (ADS)
Zhang, Jing; Zhang, Tiancai; Li, Jie
2017-01-01
Wave-function collapse models are considered to be the modified theories of standard quantum mechanics at the macroscopic level. By introducing nonlinear stochastic terms in the Schrödinger equation, these models (different from standard quantum mechanics) predict that it is fundamentally impossible to prepare macroscopic systems in macroscopic superpositions. The validity of these models can only be examined by experiments, and hence efficient protocols for these kinds of experiments are greatly needed. Here we provide a protocol that is able to probe the postulated collapse effect by means of the entanglement of the center-of-mass motion of two nanospheres optically trapped in a Fabry-Pérot cavity. We show that the collapse noise results in a large reduction of the steady-state entanglement, and the entanglement, with and without the collapse effect, shows distinguishable scalings with certain system parameters, which can be used to determine unambiguously the effect of these models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, J.; Walters, D. M.; Zhou, D.
Vapor-deposited glasses can be anisotropic and molecular orientation is important for organic electronics applications. In organic light emitting diodes (OLEDs), for example, the orientation of dye molecules in two-component emitting layers significantly influences emission efficiency. Here we investigate how substrate temperature during vapor deposition influences the orientation of dye molecules in a model two-component system. We determine the average orientation of a linear blue light emitter 1,4-di-[4-( N,N-diphenyl)amino]styrylbenzene (DSA-Ph) in mixtures with aluminum-tris(8-hydroxyquinoline) (Alq 3) by spectroscopic ellipsometry and IR dichroism. We find that molecular orientation is controlled by the ratio of the substrate temperature during deposition and the glassmore » transition temperature of the mixture. Furthermore, these findings extend recent results for single component vapor-deposited glasses and suggest that, during vapor deposition, surface mobility allows partial equilibration towards orientations preferred at the free surface of the equilibrium liquid.« less
NASA Astrophysics Data System (ADS)
Duperret, A.; Genter, A.; Daigneault, M.; Mortimore, R. N.
Coastal chalk cliffs exposed on each part of the English Channel suffer numerous collapses, with mean volumes varying between 10 000 and 100 000 cubic meters. Between October 1998 and October 2001, a minimum of 52 collapses have been ob- served along 120 km of the French chalk coastline located in Upper-Normandy and Picardy. The chalk coastline has evidenced 4 collapses in 1999 and 6 collapses in 2000 (winter and spring), whereas 28 collapses with volume greater than 1000 m3 was recorded in 2001 (winter, spring and summer). The increase of large-scale collapses during 2001 is interpreted as an excess of rainfalls recorded previously. Most of these collapses extend all over the vertical cliff height and are mainly controlled by ground- water infiltration. The modality of water circulation through the chalk rock depends on the chalk lithology and the hydrogeological properties of pre-existing fractures. In the framework of the European scientific project named ROCC (Risk of Cliff Col- lapse), the chalk lithology and the pre-existing fracture pattern have been investigated in order to determine the response of the rock mass to subaerial and marine solicita- tions, including rainfall conditions. Such data have been reported in a GIS system in order to determine the degree of cliff sensibility to collapses. Some rainfall-triggered collapses will be presented to illustrate the diversity of the rock mass response to rain- fall excess, in terms of rock mass characteristics and time delay: (1) a collapse was witnessed at Puys, the 17th May 2000, after two periods of intense rainfall inducing floods, during the two previous months. The occurrence of impervious marl seams levels within the chalk and its low fracture content may have generated water over- pressure and consequently stress concentration on the marl seams, which conduct to the rupture. The delay between rainfall and the rupture may be explained by the low velocity of groundwater through a poorly fractured porous chalk. (2) a series of large- scale collapses has been evidenced at Yport in June 2001, at Grandes Dalles the 15th July 2001 and at Benouville the 24th July 2001. These collapses occurred after a dry period, during the previous three months. A collapse occurred again at Yport the 27th August 2001, after an increase of rainfall during August 2001. All these sites present the same lithological chalk succession than at Puys, but their fracture pattern is made of large-scale subvertical fractures expanding all over the cliff height. Some of them 1 which correspond to dissolution pipes are filled with clays-with-flints. The sharp in- crease of collapses during the summer 2001 could be related to the superimposition of dry periods which alternate with heavy rainfalls, in karst environment. 2
Tuning the critical solution temperature of polymers by copolymerization
NASA Astrophysics Data System (ADS)
Schulz, Bernhard; Chudoba, Richard; Heyda, Jan; Dzubiella, Joachim
2015-12-01
We study statistical copolymerization effects on the upper critical solution temperature (CST) of generic homopolymers by means of coarse-grained Langevin dynamics computer simulations and mean-field theory. Our systematic investigation reveals that the CST can change monotonically or non-monotonically with copolymerization, as observed in experimental studies, depending on the degree of non-additivity of the monomer (A-B) cross-interactions. The simulation findings are confirmed and qualitatively explained by a combination of a two-component Flory-de Gennes model for polymer collapse and a simple thermodynamic expansion approach. Our findings provide some rationale behind the effects of copolymerization and may be helpful for tuning CST behavior of polymers in soft material design.
Metastability versus collapse following a quench in attractive Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Golde, Jake; Ruhl, Joanna; Olshanii, Maxim; Dunjko, Vanja; Datta, Sumita; Malomed, Boris A.
2018-05-01
We consider a Bose-Einstein condensate (BEC) with attractive two-body interactions in a cigar-shaped trap, initially prepared in its ground state for a given negative scattering length, which is quenched to a larger absolute value of the scattering length. Using the mean-field approximation, we compute numerically, for an experimentally relevant range of aspect ratios and initial strengths of the coupling, two critical values of quench. One corresponds to the weakest attraction strength, the quench to which causes the system to collapse before completing even a single return from the narrow configuration (pericenter) in its breathing cycle. The other is a similar critical point for the occurrence of collapse before completing two returns. In the latter case, we also compute the limiting value, as we keep increasing the strength of the postquench attraction towards its critical value, of the time interval between the first two pericenters. We also use a Gaussian variational model to estimate the critical quenched attraction strength below which the system is stable against the collapse for long times. These time intervals and critical attraction strengths, apart from being fundamental properties of nonlinear dynamics of self-attractive BECs, may provide clues to the design of upcoming experiments that are trying to create robust BEC breathers.
Preliminary Analysis of Acoustic Measurements from the NASA-Gulfstream Airframe Noise Flight Test
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Lockhard, David D.; Humphreys, Willliam M.; Choudhari, Meelan M.; Van De Ven, Thomas
2008-01-01
The NASA-Gulfstream joint Airframe Noise Flight Test program was conducted at the NASA Wallops Flight Facility during October, 2006. The primary objective of the AFN flight test was to acquire baseline airframe noise data on a regional jet class of transport in order to determine noise source strengths and distributions for model validation. To accomplish this task, two measuring systems were used: a ground-based microphone array and individual microphones. Acoustic data for a Gulfstream G550 aircraft were acquired over the course of ten days. Over twenty-four test conditions were flown. The test matrix was designed to provide an acoustic characterization of both the full aircraft and individual airframe components and included cruise to landing configurations. Noise sources were isolated by selectively deploying individual components (flaps, main landing gear, nose gear, spoilers, etc.) and altering the airspeed, glide path, and engine settings. The AFN flight test program confirmed that the airframe is a major contributor to the noise from regional jets during landing operations. Sound pressure levels from the individual microphones on the ground revealed the flap system to be the dominant airframe noise source for the G550 aircraft. The corresponding array beamform maps showed that most of the radiated sound from the flaps originates from the side edges. Using velocity to the sixth power and Strouhal scaling of the sound pressure spectra obtained at different speeds failed to collapse the data into a single spectrum. The best data collapse was obtained when the frequencies were left unscaled.
NASA Astrophysics Data System (ADS)
Mondal, Santanu; Chakrabarti, Sandip K.; Debnath, Dipak
2015-01-01
In outburst sources, quasi-periodic oscillation (QPO) frequency is known to evolve in a certain way: in the rising phase, it monotonically goes up until a soft intermediate state is achieved. In the propagating oscillatory shock model, oscillation of the Compton cloud is thought to cause QPOs. Thus, in order to increase QPO frequency, the Compton cloud must collapse steadily in the rising phase. In decline phases, the exact opposite should be true. We investigate cause of this evolution of the Compton cloud. The same viscosity parameter that increases the Keplerian disk rate also moves the inner edge of the Keplerian component, thereby reducing the size of the Compton cloud and reducing the cooling timescale. We show that cooling of the Compton cloud by inverse Comptonization is enough for it to collapse sufficiently so as to explain the QPO evolution. In the two-component advective flow configuration of Chakrabarti-Titarchuk, centrifugal force-induced shock represents the boundary of the Compton cloud. We take the rising phase of 2010 outburst of Galactic black hole candidate H 1743-322 and find an estimation of variation of the α parameter of the sub-Keplerian flow to be monotonically rising from 0.0001 to 0.02, well within the range suggested by magnetorotational instability. We also estimate the inward velocity of the Compton cloud to be a few meters per second, which is comparable to what is found in several earlier studies of our group by empirically fitting the shock locations with the time of observations.
Sonoluminescence and acoustic cavitation
NASA Astrophysics Data System (ADS)
Choi, Pak-Kon
2017-07-01
Sonoluminescence (SL) is light emission under high-temperature and high-pressure conditions of a cavitating bubble under intense ultrasound in liquid. In this review, the fundamentals of the interactions between the sound field and the bubble, and between bubbles are explained. Experimental results on high-speed shadowgraphy of bubble dynamics and multibubble SL are shown, demonstrating that the SL intensity is closely related to the bubble dynamics. SL studies of alkali-metal atom (Na and K) emission are summarized. The spectral measurements in solutions with different noble-gas dissolutions and in surfactant solutions, and the results of spatiotemporal separation of SL distribution strongly suggested that the site of alkali-metal atom emission is the gas phase inside bubbles. The spectral studies indicated that alkali-metal atom lines are composed of two kinds of lines: a component that is broadened and shifted from the original D lines arises from van der Waals molecules formed between alkali-metal atoms and noble-gas atoms under extreme conditions at bubble collapse. The other spectral component exhibiting no broadening and no shift was suggested to originate from higher temperature bubbles than those producing the broadened component.
Tuning the density profile of surface-grafted hyaluronan and the effect of counter-ions.
Berts, Ida; Fragneto, Giovanna; Hilborn, Jöns; Rennie, Adrian R
2013-07-01
The present paper investigates the structure and composition of grafted sodium hyaluronan at a solid-liquid interface using neutron reflection. The solvated polymer at the surface could be described with a density profile that decays exponentially towards the bulk solution. The density profile of the polymer varied depending on the deposition protocol. A single-stage deposition resulted in denser polymer layers, while layers created with a two-stage deposition process were more diffuse and had an overall lower density. Despite the diffuse density profile, two-stage deposition leads to a higher surface excess. Addition of calcium ions causes a strong collapse of the sodium hyaluronan chains, increasing the polymer density near the surface. This effect is more pronounced on the sample prepared by two-stage deposition due to the initial less dense profile. This study provides an understanding at a molecular level of how surface functionalization alters the structure and how surface layers respond to changes in calcium ions in the solvent.
Photoionization-regulated star formation and the structure of molecular clouds
NASA Technical Reports Server (NTRS)
Mckee, Christopher F.
1989-01-01
A model for the rate of low-mass star formation in Galactic molecular clouds and for the influence of this star formation on the structure and evolution of the clouds is presented. The rate of energy injection by newly formed stars is estimated, and the effect of this energy injection on the size of the cloud is determined. It is shown that the observed rate of star formation appears adequate to support the observed clouds against gravitational collapse. The rate of photoionization-regulated star formation is estimated and it is shown to be in agreement with estimates of the observed rate of star formation if the observed molecular cloud parameters are used. The mean cloud extinction and the Galactic star formation rate per unit mass of molecular gas are predicted theoretically from the condition that photionization-regulated star formation be in equilibrium. A simple model for the evolution of isolated molecular clouds is developed.
Multiscale modeling of shock wave localization in porous energetic material
NASA Astrophysics Data System (ADS)
Wood, M. A.; Kittell, D. E.; Yarrington, C. D.; Thompson, A. P.
2018-01-01
Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (<6 GPa), atomistic simulations of pore collapse are used to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock waves interacting with pores as a function of this viscoplastic material response. We find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.
Elasticity and Inverse Temperature Transition in Elastin
Perticaroli, Stefania; Ehlers, Georg; Jalarvo, Niina; ...
2015-09-22
Structurally, elastin is protein and biomaterial that provides elasticity and resilience to a range of tissues. This work provides insights into the elastic properties of elastin and its peculiar inverse temperature transition (ITT). These features are dependent on hydration of elastin and are driven by a similar mechanism of hydrophobic collapse to an entropically favorable state. Moreover, when using neutron scattering, we quantify the changes in the geometry of molecular motions above and below the transition temperature, showing a reduction in the displacement of water-induced motions upon hydrophobic collapse at the ITT. Finally, we measured the collective vibrations of elastinmore » gels as a function of elongation, revealing no changes in the spectral features associated with local rigidity and secondary structure, in agreement with the entropic origin of elasticity.« less
Dhanda, Aaron S; Lulic, Katarina T; Vogl, A Wayne; Mc Gee, Margaret M; Chiu, Robert H; Guttman, Julian A
2018-05-04
Listeria generate actin-rich tubular protrusions at the plasma membrane that propel the bacteria into neighbouring cells. The precise molecular mechanisms governing the formation of these protrusions remain poorly defined. Here we demonstrate that the PPIase Cyclophilin A (CypA) is hijacked by Listeria at membrane protrusions used for cell-to-cell spreading. CypA localizes within the F-actin of these structures and is crucial for their proper formation, as in cells depleted of CypA, these extended actin-rich structures are mis-shaped and collapsed due to changes within the F-actin network. The lack of structural integrity within the Listeria membrane protrusions hampers the microbes from spreading from CypA null cells. Our results demonstrate a crucial role for CypA during Listeria infections.
Shock wave induced damage of a protein by void collapse
Lau, Edmond Y.; Berkowitz, Max L.; Schwegler, Eric R.
2016-01-05
In this study, we report on a series of molecular dynamics simulations that were used to examine the effects of shockwaves on a membrane bound ion channel. A planar shockwave was found to compress the ion channel upon impact but the protein geometry resembles the initial structure as soon as the solvent density begins to dissipate. When a void was placed in close proximity to the membrane, the shockwave proved to be much more destructive to the protein due to formation of a nanojet that results from the asymmetric collapse of the void. The nanojet was able to cause significantmore » structural changes to the protein even at low particle velocities that are not able to directly cause poration of the membrane.« less
Ring-through-ring molecular shuttling in a saturated [3]rotaxane
NASA Astrophysics Data System (ADS)
Zhu, Kelong; Baggi, Giorgio; Loeb, Stephen J.
2018-06-01
Mechanically interlocked molecules such as rotaxanes and catenanes comprise two or more components whose motion relative to each other can be controlled. A [2]rotaxane molecular shuttle, for example, consists of an axle bearing two recognition sites and a single macrocyclic wheel that can undergo a to-and-fro motion along the axle—shuttling between the recognition sites. The ability of mechanically interlocked molecules to undergo this type of large-amplitude change is the core mechanism behind almost every interlocked molecular switch or machine, including sophisticated mechanical systems such as a molecular elevator and a peptide synthesizer. Here, as a way to expand the scope of dynamics possible at the molecular level, we have developed a molecular shuttling mechanism involving the exchange of rings between two recognition sites in a saturated [3]rotaxane (one with no empty recognition sites). This was accomplished by passing a smaller ring through a larger one, thus achieving ring-through-ring molecular shuttling.
Wang, Zhiguo; Chen, Ruping; Hou, Ling; Li, Jianfeng; Liu, Jun-Ping
2015-06-01
Telomere assumes intra-molecular G-quadruplex that is a significant drug target for inhibiting telomerase maintenance of telomeres in cancer. Metal cations have been recognized as playing important roles in stabilizing G-quadruplex, but their binding processes to human telomeric G-quadruplex remain uncharacterized. To investigate the detailed binding procedures, molecular dynamics simulations were conducted on the hybrid [3 + 1] form-one human telomeric intra-molecular G-quadruplex. We show here that the binding of a potassium ion to a G-tetrad core is mediated by two alternative pathways. Principal component analysis illustrated the dominant concerted motions of G-quadruplex occurred at the loop domains. MM-PBSA calculations revealed that binding was energetically favorable and driven by the electrostatic interactions. The lower binding site was found more constructive favorable for binding. Our data provide useful information on a potassium-mediated stable structure of human telomeric intra-molecular G-quadruplex, implicating in ion disorder associated conformational changes and targeted drug design.
Planetesimal formation in self-gravitating discs - dust trapping by vortices
NASA Astrophysics Data System (ADS)
Gibbons, P. G.; Mamatsashvili, G. R.; Rice, W. K. M.
2015-11-01
The mechanism through which metre-sized boulders grow to km-sized planetesimals in protoplanetary discs is a subject of active research, since it is critical for planet formation. To avoid spiralling into the protostar due to aerodynamic drag, objects must rapidly grow from cm-sized pebbles, which are tightly coupled to the gas, to large boulders of 1-100 m in diameter. It is already well known that overdensities in the gaseous component of the disc provide potential sites for the collection of solids, and that significant density structures in the gaseous component of the disc (e.g. spiral density waves) can trap solids efficiently enough for the solid component of the disc to undergo further gravitational collapse due to their own self-gravity. In this work, we employ the PENCIL CODE to conduct local shearing sheet simulations of massive self-gravitating protoplanetary discs, to study the effect of anticyclonic transient vortices, or eddies, on the evolution of solids in these discs. We find that these types of structures are extremely efficient at concentrating small and intermediate-sized dust particles with friction times comparable to, or less than, the local orbital period of the disc. This can lead to significant over-densities in the solid component of the disc, with density enhancements comparable to, and even higher, than those within spiral density waves; increasing the rate of gravitational collapse of solids into bound structures.
NASA Astrophysics Data System (ADS)
Krippner, Janine B.; Belousov, Alexander B.; Belousova, Marina G.; Ramsey, Michael S.
2018-04-01
For the years 2001 to 2013 of the ongoing eruption of Shiveluch volcano, a combination of different satellite remote sensing data are used to investigate the dome-collapse events and the resulting pyroclastic deposits. Shiveluch volcano in Kamchatka, Russia, is one of the world's most active dome-building volcanoes, which has produced some of the largest known historical block-and-ash flows (BAFs). Globally, quantitative data for deposits resulting from such large and long-lived dome-forming eruptions, especially like those at Shiveluch, are scarce. We use Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared (TIR), shortwave infrared (SWIR), and visible-near infrared (VNIR) data to analyze the dome-collapse scars and BAF deposits that were formed during eruptions and collapse events in 2001, 2004, 2005, 2007, 2009, 2010, and two events in 2013. These events produced flows with runout distances of as far as 19 km from the dome, and with aerial extents of as much as 22.3 km2. Over the 12 years of this period of investigation, there is no trend in deposit area or runout distances of the flows through time. However, two potentially predictive features are apparent in our data set: 1) the largest dome-collapse events occurred when the dome exceeded a relative height (from dome base to top) of 500 m; 2) collapses were preceded by thermal anomalies in six of the cases in which ASTER data were available, although the areal extent of these precursory thermal areas did not generally match the size of the collapse events as indicated by scar area (volumes are available for three collapse events). Linking the deposit distribution to the area, location, and temperature profiles of the dome-collapse scars provides a basis for determining similar future hazards at Shiveluch and at other dome-forming volcanoes. Because of these factors, we suggest that volcanic hazard analysis and mitigation at volcanoes with similar BAF emplacement behavior may be improved with detailed, synoptic studies, especially when it is possible to access and interpret appropriate remote sensing data in near-real time.
When the firm prevents the crash: Avoiding market collapse with partial control
2017-01-01
Market collapse is one of the most dramatic events in economics. Such a catastrophic event can emerge from the nonlinear interactions between the economic agents at the micro level of the economy. Transient chaos might be a good description of how a collapsing market behaves. In this work, we apply a new control method, the partial control method, with the goal of avoiding this disastrous event. Contrary to common control methods that try to influence the system from the outside, here the market is controlled from the bottom up by one of the most basic components of the market—the firm. This is the first time that the partial control method is applied on a strictly economical system in which we also introduce external disturbances. We show how the firm is capable of controlling the system avoiding the collapse by only adjusting the selling price of the product or the quantity of production in accordance to the market circumstances. Additionally, we demonstrate how a firm with a large market share is capable of influencing the demand achieving price stability across the retail and wholesale markets. Furthermore, we prove that the control applied in both cases is much smaller than the external disturbances. PMID:28832608
Satapathy, Sitakanta; Prabakaran, Palani; Prasad, Edamana
2018-04-20
Smart single-component materials with versatile functions require pre-programming of a higher order molecular assembly. An electroactive supergelator (c=0.07 wt %) triphenylamine core-appended poly(aryl ether) dendron (TPAPAE) is described, where substantial dendritic effects improve the order and crystallinity by switching the local minima from self-assembled molecular wires to thermodynamically favorable global minima of ordered crystals, ripened within the fibers. Controlled in situ phase change at room temperature ultimately stabilized the mixed valence states in the single-component supramolecular assembly with photoluminescence and photoinduced charge transport amplified by two orders of magnitude. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Terrestrial Planet Formation Around Close Binary Stars
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Quintana, Elisa V.
2003-01-01
Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets around close binary stars, using a new, ultrafast, symplectic integrator that we have developed for this purpose. The sum of the masses of the two stars is one solar mass, and the initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and in the Alpha Centauri wide binary star system. Giant planets &are included in the simulations, as they are in most simulations of the late stages of terrestrial planet accumulation in our Solar System. When the stars travel on a circular orbit with semimajor axis of up to 0.1 AU about their mutual center of mass, the planetary embryos grow into a system of terrestrial planets that is statistically identical to those formed about single stars, but a larger semimajor axis and/or a significantly eccentric binary orbit can lead to significantly more dynamically hot terrestrial planet systems.
Nanoscale orbital excitations and the infrared spectrum of a molecular Mott insulator: A15-Cs3C60.
Naghavi, S S; Fabrizio, M; Qin, T; Tosatti, E
2016-10-14
The quantum physics of ions and electrons behind low-energy spectra of strongly correlated molecular conductors, superconductors and Mott insulators is poorly known, yet fascinating especially in orbitally degenerate cases. The fulleride insulator Cs 3 C 60 (A15), one such system, exhibits infrared (IR) spectra with low temperature peak features and splittings suggestive of static Jahn-Teller distortions with a breakdown of orbital symmetry in the molecular site. That is puzzling, since there is no detectable static distortion, and because the features and splittings disappear upon modest heating, which they should not. Taking advantage of the Mott-induced collapse of electronic wavefunctions from lattice-extended to nanoscale localized inside a caged molecular site, we show that the unbroken spin and orbital symmetry of the ion multiplets explains the IR spectrum without adjustable parameters. This demonstrates the importance of a fully quantum treatment of nuclear positions and orbital momenta in the Mott insulator sites, dynamically but not statically distorted. The observed demise of these features with temperature is explained by the thermal population of a multiplet term whose nuclear positions are essentially undistorted, but whose energy is very low-lying. That term is in fact a scaled-down orbital excitation analogous to that of other Mott insulators, with the same spin 1/2 as the ground state, but with a larger orbital momentum of two instead of one.
Salehi, Farajollah; Emamzadeh, Rahman; Nazari, Mahboobeh; Rasa, Seyed Mohammad Mahdi
2016-12-01
Renilla luciferase is a sensitive enzyme and has wide applications in biotechnology such as drug screening. Previous studies have tried to show the catalytic residues, nevertheless, the accurate architecture and molecular behavior of its emitter site remains uncharacterized. In this study, the activity of Renilla luciferase, in the presence of two small organic molecules including dimethyl sulfoxide (DMSO) and isopropanol was considered and the structure was studied by circular dichroism (CD) and fluorescence spectroscopy. Moreover, the interaction of small organic molecules with the Renilla luciferase was studied using molecular dynamics simulations. Kinetics studies showed that at low concentration of DMSO (16.6-66mM) and isopropanol (19.3-76mM) the K m changed and a competitive inhibition pattern was observed. Moreover, spectroscopy studies reveled that the changes of activity of Renilla luciferase in the presence of low concentrations of small organic molecules was not associated with structural collapse or severe changes in the enzyme conformation. Molecular dynamics simulations indicated that DMSO and isopropanol, as probing molecules, were both able to bind to the emitter site and remained with the residues of the emitter site. Based on the probing data, the architecture of the emitter site in the "non-binding" model was proposed. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lou, Yu-Qing; Hu, Xu-Yao
2016-06-01
We present a theoretical model framework for general polytropic (GP) hydrodynamic cylinder under self-gravity of infinite length with axial uniformity and axisymmetry. For self-similar dynamic solutions, we derive valuable integrals, analytic asymptotic solutions, sonic critical curves, shock conditions, and global numerical solutions with or without expansion shocks. Among others, we investigate various dynamic solutions featured with central free-fall asymptotic behaviours, corresponding to a collapsed mass string with a sustained dynamic accretion from a surrounding mass reservoir. Depending on the allowed ranges of a scaling index a < -1, such cylindrical dynamic mass accretion rate could be steady, increasing with time and decreasing with time. Physically, such a collapsed mass string or filament would break up into a sequence of sub-clumps and segments as induced by gravitational Jeans instabilities. Depending on the scales involved, such sub-clumps would evolve into collapsed objects or gravitationally bound systems. In diverse astrophysical and cosmological contexts, such a scenario can be adapted on various temporal, spatial and mass scales to form a chain of collapsed clumps and/or compact objects. Examples include the formation of chains of proto-stars, brown dwarfs and gaseous planets along molecular filaments; the formation of luminous massive stars along magnetized spiral arms and circum-nuclear starburst rings in barred spiral galaxies; the formation of chains of compact stellar objects such as white dwarfs, neutron stars, and black holes along a highly condensed mass string. On cosmological scales, one can perceive the formation of chains of galaxies, chains of galaxy clusters or even chains of supermassive and hypermassive black holes in the Universe including the early Universe. All these chains referred to above include possible binaries.
NASA Astrophysics Data System (ADS)
Hogerheijde, Michiel R.; Sandell, Göran
2000-05-01
Theoretical models of star formation make predictions about the density and velocity structure of the envelopes surrounding isolated, low-mass young stars. This paper tests such models through high-quality submillimeter continuum imaging of four embedded young stellar objects in Taurus and previously obtained molecular-line data. Observations carried out with the Submillimeter Continuum Bolometer Array on the James Clerk Maxwell Telescope at 850 and 450 μm of L1489 IRS, L1535 IRS, L1527 IRS, and TMC 1 reveal ~2000 AU elongated structures embedded in extended envelopes. The density distribution in these envelopes is equally well fitted by a radial power-law of index p=1.0-2.0 or with a collapse model such as that of Shu. This inside-out collapse model predicts 13CO, C18O, HCO+, and H13CO+ line profiles that closely match observed spectra toward three of our four sources. This shows that the inside-out collapse model offers a good description of YSO envelopes, but also that reliable constraints on its parameters require independent measurements of the density and the velocity structure, e.g., through continuum and line observations. For the remaining source, L1489 IRS, we find that a model consisting of a 2000 AU radius, rotating, disklike structure better describes the data. Possibly, this source is in transition between the embedded class I and the optically revealed T Tauri phases. The spectral index of the dust emissivity decreases from β=1.5-2.0 in the extended envelope to 1.0+/-0.2 in the central peaks, indicating grain growth or high optical depth on small scales. The observations of L1527 IRS reveal warm (>~30 K) material outlining, and presumably heated by, its bipolar outflow. This material comprises <~0.2 Msolar, comparable to the amount of swept-up CO but only 10% of the total envelope mass. Two apparently starless cores are found at ~10,000 AU from L1489 IRS and L1535 IRS. They are cold, 10-15 K, contain 0.5-3.0 Msolar, and have flat density distributions characterized by a Gaussian of ~10,000 AU FWHM. The proximity of these cores shows that star formation in truly isolated cores is rare even in Taurus.
White, R N
2012-01-01
To describe the use of cricoarytenoid lateralisation combined with thyroarytenoid caudo- lateralisation (arytenoid laryngoplasty) for the management of stage II and III laryngeal collapse in dogs. A retrospective study of a consecutive series of 12 dogs suffering from life-threatening stage II or III laryngeal collapse associated with brachycephalic airway obstruction syndrome. Pre-operatively, either stage II collapse (2/12) or stage III collapse (10/12) was confirmed on visual examination. In all cases, a left-sided arytenoid laryngoplasty was performed. Two dogs were euthanased postoperatively as a result of persistent life-threatening respiratory compromise. The procedure resulted in subjective enlargement of the rima glottidis and an associated improvement in respiratory function in the remaining 10 dogs. Follow-up, long-term outcome (median, 3·5 years) in these dogs indicated that all owners considered that the surgery had resulted in marked improvements in their dog's respiratory function, tolerance to exercise, and quality of life. Combined cricoarytenoid and thyroarytenoid caudo-lateralisation may be a useful procedure for treatment of stage II and III laryngeal collapse in the dog. © 2011 British Small Animal Veterinary Association.
Multiple-component covalent organic frameworks
Huang, Ning; Zhai, Lipeng; Coupry, Damien E.; Addicoat, Matthew A.; Okushita, Keiko; Nishimura, Katsuyuki; Heine, Thomas; Jiang, Donglin
2016-01-01
Covalent organic frameworks are a class of crystalline porous polymers that integrate molecular building blocks into periodic structures and are usually synthesized using two-component [1+1] condensation systems comprised of one knot and one linker. Here we report a general strategy based on multiple-component [1+2] and [1+3] condensation systems that enable the use of one knot and two or three linker units for the synthesis of hexagonal and tetragonal multiple-component covalent organic frameworks. Unlike two-component systems, multiple-component covalent organic frameworks feature asymmetric tiling of organic units into anisotropic skeletons and unusually shaped pores. This strategy not only expands the structural complexity of skeletons and pores but also greatly enhances their structural diversity. This synthetic platform is also widely applicable to multiple-component electron donor–acceptor systems, which lead to electronic properties that are not simply linear summations of those of the conventional [1+1] counterparts. PMID:27460607
Multiple-component covalent organic frameworks
NASA Astrophysics Data System (ADS)
Huang, Ning; Zhai, Lipeng; Coupry, Damien E.; Addicoat, Matthew A.; Okushita, Keiko; Nishimura, Katsuyuki; Heine, Thomas; Jiang, Donglin
2016-07-01
Covalent organic frameworks are a class of crystalline porous polymers that integrate molecular building blocks into periodic structures and are usually synthesized using two-component [1+1] condensation systems comprised of one knot and one linker. Here we report a general strategy based on multiple-component [1+2] and [1+3] condensation systems that enable the use of one knot and two or three linker units for the synthesis of hexagonal and tetragonal multiple-component covalent organic frameworks. Unlike two-component systems, multiple-component covalent organic frameworks feature asymmetric tiling of organic units into anisotropic skeletons and unusually shaped pores. This strategy not only expands the structural complexity of skeletons and pores but also greatly enhances their structural diversity. This synthetic platform is also widely applicable to multiple-component electron donor-acceptor systems, which lead to electronic properties that are not simply linear summations of those of the conventional [1+1] counterparts.
Neutron Star Population Dynamics. II. Three-dimensional Space Velocities of Young Pulsars
NASA Astrophysics Data System (ADS)
Cordes, J. M.; Chernoff, David F.
1998-09-01
We use astrometric, distance, and spindown data on pulsars to (1) estimate three-dimensional velocity components, birth distances from the Galactic plane, and ages of individual objects; (2) determine the distribution of space velocities and the scale height of pulsar progenitors; (3) test spindown laws for pulsars; (4) test for correlations between space velocities and other pulsar parameters; and (5) place empirical requirements on mechanisms than can produce high-velocity neutron stars. Our approach incorporates measurement errors, uncertainties in distances, deceleration in the Galactic potential, and differential Galactic rotation. We focus on a sample of proper motion measurements of young (<10 Myr) pulsars whose trajectories may be accurately and simply modeled. This sample of 49 pulsars excludes millisecond pulsars and other objects that may have undergone accretion-driven spinup. We estimate velocity components and birth z distance on a case-by-case basis assuming that the actual age equals the conventional spindown age for a braking index n = 3, no torque decay, and birth periods much shorter than present-day periods. Every sample member could have originated within 0.3 kpc of the Galactic plane while still having reasonable present-day peculiar radial velocities. For the 49 object sample, the scale height of the progenitors is ~0.13 kpc, and the three-dimensional velocities are distributed in two components with characteristic speeds of 175+19-24 km s-1 and 700+300-132 km s-1, representing ~86% and ~14% of the population, respectively. The sample velocities are inconsistent with a single-component Gaussian model and are well described by a two-component Gaussian model but do not require models of additional complexity. From the best-fit distribution, we estimate that about 20% of the known pulsars will escape the Galaxy, assuming an escape speed of 500 km s-1. The best-fit, dual-component model, if augmented by an additional, low-velocity (<50 km s-1) component, tolerates, at most, only a small extra contribution in number, less than 5%. The best three-component models do not show a preference for filling in the probability distribution at speeds intermediate to 175 and 700 km s-1 but are nearly degenerate with the best two-component models. We estimate that the high-velocity tail (>1000 km s-1) may be underrepresented (in the observed sample) by a factor ~2.3 owing to selection effects in pulsar surveys. The estimates of scale height and velocity parameters are insensitive to the explicit relation of chronological and spindown ages. A further analysis starting from our inferred velocity distribution allows us to test spindown laws and age estimates. There exist comparably good descriptions of the data involving different combinations of braking index and torque decay timescale. We find that a braking index of 2.5 is favored if torque decay occurs on a timescale of ~3 Myr, while braking indices ~4.5 +/- 0.5 are preferred if there is no torque decay. For the sample as a whole, the most probable chronological ages are typically smaller than conventional spindown ages by factors as large as 2. We have also searched for correlations between three-dimensional speeds of individual pulsars and combinations of spin period and period derivative. None appears to be significant. We argue that correlations identified previously between velocity and (apparent) magnetic moment reflect the different evolutionary paths taken by young, isolated (nonbinary), high-field pulsars and older, low-field pulsars that have undergone accretion-driven spinup. We conclude that any such correlation measures differences in spin and velocity selection in the evolution of the two populations and is not a measure of processes taking place in the core collapse that produces neutron stars in the first place. We assess mechanisms for producing high-velocity neutron stars, including disruption of binary systems by symmetric supernovae and neutrino, baryonic, or electromagnetic rocket effects during or shortly after the supernova. The largest velocities seen (~1600 km s-1), along with the paucity of low-velocity pulsars, suggest that disruption of binaries by symmetric explosions is insufficient. Rocket effects appear to be a necessary and general phenomenon. The required kick amplitudes and the absence of a magnetic field-velocity correlation do not yet rule out any of the rocket models. However, the required amplitudes suggest that the core collapse process in a supernova is highly dynamic and aspherical and that the impulse delivered to the neutron star is larger than existing simulations of core collapse have achieved.
Did mud contribute to freeway collapse?
NASA Astrophysics Data System (ADS)
Hough, Susan E.; Friberg, Paul A.; Busby, Robert; Field, Edward F.; Jacob, Klaus H.; Borcherdt, Roger D.
At least 41 people were killed October 17 when the upper tier of the Nimitz Freeway in Oakland, Calif., collapsed during the Ms = 7.1 Loma Prieta earthquake. Seismologists studying aftershocks concluded that soil conditions and resulting ground motion amplification were important in the failure of the structure and should be considered in the reconstruction of the highway.Structural design weaknesses in the two-tiered freeway, known as the Cypress structure, had been identified before the tragedy. The seismologists, from Lamont Doherty Geological Observatory in Palisades, N.Y., and the U.S. Geological Survey in Menlo Park, Calif., found that the collapsed section was built on fill over Bay mud. A southern section of the Cypress structure built on alluvium of Quaternary age did not collapse (see Figure 1).
Mid-tertiary ash flow tuff cauldrons, southwestern New Mexico
NASA Technical Reports Server (NTRS)
Elston, W. E.
1984-01-01
Characteristics of 28 known or suspected mid-Tertiary ash-flow tuff cauldrons in New Mexico are described. The largest region is 40 km in diameter, and erosional and block faulting processes have exposed levels as far down as the plutonic roots. The study supports a five-stage process: precursor, caldera collapse, early post-collapse, volcanism, major ring-fracture volcanism, and hydrothermal activity. The stages can repeat or the process can stop at any stage. Post-collapse lavas fell into two categories: cauldron lavas, derived from shallow defluidized residues of caldera-forming ash flow tuff eruption, and framework lavas, evolved from a siliceous pluton below the cauldron complex. The youngest caldera was shallow and formed from asymmetric subsidence and collapse of the caldera walls.
NASA Astrophysics Data System (ADS)
Song, Ningfang; Wu, Chunxiao; Luo, Wenyong; Zhang, Zuchen; Li, Wei
2016-12-01
High strength fusion splicing hollow core photonic crystal fiber (HC-PCF) and single-mode fiber (SMF) requires sufficient energy, which results in collapse of the air holes inside HC-PCF. Usually the additional splice loss induced by the collapse of air holes is too large. By large offset reheating, the collapse length of HC-PCF is reduced, thus the additional splice loss induced by collapse is effectively suppressed. This method guarantees high-strength fusion splicing between the two types of fiber with a low splice loss. The strength of the splice compares favorably with the strength of HC-PCF itself. This method greatly improves the reliability of splices between HC-PCFs and SMFs.
Microcircuit Modeling and Simulation beyond Ohm's Law
ERIC Educational Resources Information Center
Saxena, T.; Chek, D. C. Y.; Tan, M. L. P.; Arora, V. K.
2011-01-01
Circuit theory textbooks rely heavily on the applicability of Ohm's law, which collapses as electronic components reach micro- and nanoscale dimensions. Circuit analysis is examined in the regime where the applied voltage V is greater than the critical voltage V[subscript c], which triggers the nonlinear behavior. The critical voltage is infinity…
NASA Astrophysics Data System (ADS)
Simin, A. A.; Fridman, A. M.; Haud, U. A.
1991-09-01
A Galaxy model in which the surface density of the gas component has a sharp (two orders of magnitude) jump in the region of the outer radius of the molecular ring is constructed on the basis of observational data. This model is used to calculate the contributions of each population to the model curve of Galactic rotation. The value of the dimensionless increment of hydrodynamical instability for the gas component, being much less than 1, coincides with a similar magnitude for the same gas in the gravity field of the entire Galaxy. It is concluded that the unstable gas component of the Galaxy lies near the limit of the hydrodynamical instability, which is in accordance with the Le Chatelier principle. The stellar populations of the Galaxy probably do not affect the generation of the spiral structure in the gaseous component.
Response of an arctic predator guild to collapsing lemming cycles
Schmidt, Niels M.; Ims, Rolf A.; Høye, Toke T.; Gilg, Olivier; Hansen, Lars H.; Hansen, Jannik; Lund, Magnus; Fuglei, Eva; Forchhammer, Mads C.; Sittler, Benoit
2012-01-01
Alpine and arctic lemming populations appear to be highly sensitive to climate change, and when faced with warmer and shorter winters, their well-known high-amplitude population cycles may collapse. Being keystone species in tundra ecosystems, changed lemming dynamics may convey significant knock-on effects on trophically linked species. Here, we analyse long-term (1988–2010), community-wide monitoring data from two sites in high-arctic Greenland and document how a collapse in collared lemming cyclicity affects the population dynamics of the predator guild. Dramatic changes were observed in two highly specialized lemming predators: snowy owl and stoat. Following the lemming cycle collapse, snowy owl fledgling production declined by 98 per cent, and there was indication of a severe population decline of stoats at one site. The less specialized long-tailed skua and the generalist arctic fox were more loosely coupled to the lemming dynamics. Still, the lemming collapse had noticeable effects on their reproductive performance. Predator responses differed somewhat between sites in all species and could arise from site-specific differences in lemming dynamics, intra-guild interactions or subsidies from other resources. Nevertheless, population extinctions and community restructuring of this arctic endemic predator guild are likely if the lemming dynamics are maintained at the current non-cyclic, low-density state. PMID:22977153
Response of an arctic predator guild to collapsing lemming cycles.
Schmidt, Niels M; Ims, Rolf A; Høye, Toke T; Gilg, Olivier; Hansen, Lars H; Hansen, Jannik; Lund, Magnus; Fuglei, Eva; Forchhammer, Mads C; Sittler, Benoit
2012-11-07
Alpine and arctic lemming populations appear to be highly sensitive to climate change, and when faced with warmer and shorter winters, their well-known high-amplitude population cycles may collapse. Being keystone species in tundra ecosystems, changed lemming dynamics may convey significant knock-on effects on trophically linked species. Here, we analyse long-term (1988-2010), community-wide monitoring data from two sites in high-arctic Greenland and document how a collapse in collared lemming cyclicity affects the population dynamics of the predator guild. Dramatic changes were observed in two highly specialized lemming predators: snowy owl and stoat. Following the lemming cycle collapse, snowy owl fledgling production declined by 98 per cent, and there was indication of a severe population decline of stoats at one site. The less specialized long-tailed skua and the generalist arctic fox were more loosely coupled to the lemming dynamics. Still, the lemming collapse had noticeable effects on their reproductive performance. Predator responses differed somewhat between sites in all species and could arise from site-specific differences in lemming dynamics, intra-guild interactions or subsidies from other resources. Nevertheless, population extinctions and community restructuring of this arctic endemic predator guild are likely if the lemming dynamics are maintained at the current non-cyclic, low-density state.
Colony Collapse Disorder: A descriptive studey
USDA-ARS?s Scientific Manuscript database
Over the last two winters, there have been large-scale, unexplained losses of managed honey bee (Apis mellifera L.) colonies in the United States. In the absence of a known cause, this syndrome was named Colony Collapse Disorder (CCD) because the main trait was a rapid loss of adult worker bees. We ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, Tien-Hao; Lai, Shih-Ping; Belloche, Arnaud
2016-07-20
The formation mechanism of brown dwarfs (BDs) is one of the long-standing problems in star formation because the typical Jeans mass in molecular clouds is too large to form these substellar objects. To answer this question, it is crucial to study a BD in the embedded phase. IRAS 16253–2429 is classified as a very low-luminosity object (VeLLO) with an internal luminosity of <0.1 L {sub ⊙}. VeLLOs are believed to be very low-mass protostars or even proto-BDs. We observed the jet/outflow driven by IRAS 16253–2429 in CO (2–1), (6–5), and (7–6) using the IRAM 30 m and Atacama Pathfinder Experimentmore » telescopes and the Submillimeter Array (SMA) in order to study its dynamical features and physical properties. Our SMA map reveals two protostellar jets, indicating the existence of a proto-binary system as implied by the precessing jet detected in H{sub 2} emission. We detect a wiggling pattern in the position–velocity diagrams along the jet axes, which is likely due to the binary orbital motion. Based on this information, we derive the current mass of the binary as ∼0.032 M{sub ⊙}. Given the low envelope mass, IRAS 16253–2429 will form a binary that probably consist of one or two BDs. Furthermore, we found that the outflow force as well as the mass accretion rate are very low based on the multi-transition CO observations, which suggests that the final masses of the binary components are at the stellar/substellar boundary. Since IRAS 16253 is located in an isolated environment, we suggest that BDs can form through fragmentation and collapse, similar to low-mass stars.« less
Cooperative Activated Transport of Dilute Penetrants in Viscous Molecular and Polymer Liquids
NASA Astrophysics Data System (ADS)
Schweizer, Kenneth; Zhang, Rui
We generalize the force-level Elastically Collective Nonlinear Langevin Equation theory of activated relaxation in one-component supercooled liquids to treat the hopping transport of a dilute penetrant in a dense hard sphere fluid. The new idea is to explicitly account for the coupling between penetrant displacement and a local matrix cage re-arrangement which facilitates its hopping. A temporal casuality condition is employed to self-consistently determine a dimensionless degree of matrix distortion relative to the penetrant jump distance using the dynamic free energy concept. Penetrant diffusion becomes increasingly coupled to the correlated matrix displacements for larger penetrant to matrix particle size ratio (R) and/or attraction strength (physical bonds), but depends weakly on matrix packing fraction. In the absence of attractions, a nearly exponential dependence of penetrant diffusivity on R is predicted in the intermediate range of 0.2
Evaporation of a sessile water drop and a drop of aqueous salt solution.
Misyura, S Y
2017-11-07
The influence of various factors on the evaporation of drops of water and aqueous salt solution has been experimentally studied. Typically, in the studies of drop evaporation, only the diffusive vapor transfer, radiation and the molecular heat conduction are taken into account. However, vapor-gas convection plays an important role at droplet evaporation. In the absence of droplet boiling, the influence of gas convection turns out to be the prevailing factor. At nucleate boiling, a prevailing role is played by bubbles generation and vapor jet discharge at a bubble collapse. The gas convection behavior for water and aqueous salt solution is substantially different. With a growth of salt concentration over time, the influence of the convective component first increases, reaches an extremum and then significantly decreases. At nucleate boiling in a salt solution it is incorrect to simulate the droplet evaporation and the heat transfer in quasi-stationary approximation. The evaporation at nucleate boiling in a liquid drop is divided into several characteristic time intervals. Each of these intervals is characterized by a noticeable change in both the evaporation rate and the convection role.
Formation of wide binaries by turbulent fragmentation
NASA Astrophysics Data System (ADS)
Lee, Jeong-Eun; Lee, Seokho; Dunham, Michael M.; Tatematsu, Ken'ichi; Choi, Minho; Bergin, Edwin A.; Evans, Neal J.
2017-08-01
Understanding the formation of wide-binary systems of very low-mass stars (M ≤ 0.1 solar masses, M⊙) is challenging 1,2,3 . The most obvious route is through widely separated low-mass collapsing fragments produced by turbulent fragmentation of a molecular core4,5. However, close binaries or multiples from disk fragmentation can also evolve to wide binaries over a few initial crossing times of the stellar cluster through tidal evolution6. Finding an isolated low-mass wide-binary system in the earliest stage of formation, before tidal evolution could occur, would prove that turbulent fragmentation is a viable mechanism for (very) low-mass wide binaries. Here we report high-resolution ALMA observations of a known wide-separation protostellar binary, showing that each component has a circumstellar disk. The system is too young7 to have evolved from a close binary, and the disk axes are misaligned, providing strong support for the turbulent fragmentation model. Masses of both stars are derived from the Keplerian rotation of the disks; both are very low-mass stars.
Terrestrial Planet Formation in Binary Star Systems
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Quintana, Elisa V.; Chambers, John; Duncan, Martin J.; Adams, Fred
2003-01-01
Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets within binary star systems, using a new, ultrafast, symplectic integrator that we have developed for this purpose. We show that the late stages of terrestrial planet formation can indeed take place in a wide variety of binary systems and we have begun to delineate the range of parameter space for which this statement is true. Results of our initial simulations of planetary growth around each star in the alpha Centauri system and other 'wide' binary systems, as well as around both stars in very close binary systems, will be presented.
Two-stages of chiral selectivity in the molecular self-assembly of tryptophan
NASA Astrophysics Data System (ADS)
Guisinger, Nathan
Both chirality and molecular assembly are essential and key components to life. In this study we explore the molecular assembly of the amino acid tryptophan (both L- and D- chiralities) on Cu(111). Our investigation utilizes low temperature scanning tunneling microscopy to observe resulting assemblies at the molecular scale. We find that depositing a racemic mixture of both L- and D- tryptophan results in the assembly of basic 6 molecule ``Lego'' structures that are enantiopure. These enantiopure ``Legos'' further assemble into 1-dimensional chains one block at a time. These resulting chains are also enantiopure with chiral selectivity occurring at two stages of assembly. Utilizing scanning tunneling spectroscopy we are able to probe the electronic structure of the chiral Legos that give insight into the root of the observed selectivity. Two-stages of chiral selectivity in the molecular self-assembly of tryptophan.
Interlocked molecules: Moving into another dimension
NASA Astrophysics Data System (ADS)
Fournel-Marotte, Karine; Coutrot, Frédéric
2017-02-01
Molecular daisy-chain structures are typically made up of two interlocked components and can exhibit muscle-like contraction and extension in one dimension. Zinc-based multicomponent systems that can operate in two and three dimensions have now been designed and synthesized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yunhee; Lee, Jeong-Eun; Bourke, Tyler L.
We present observations and analyses of the low-mass star-forming region, Taurus Molecular Cloud-1 (TMC-1). CS ( J = 2–1)/N{sub 2}H{sup +} ( J = 1–0) and C{sup 17}O ( J = 2–1)/C{sup 18}O ( J = 2–1) were observed with the Five College Radio Astronomy Observatory and the Seoul Radio Astronomy Observatory, respectively. In addition, Spitzer infrared data and 1.2 mm continuum data observed with Max-Planck Millimetre Bolometer are used. We also perform chemical modeling to investigate the relative molecular distributions of the TMC-1 filament. Based on Spitzer observations, there is no young stellar object along the TMC-1 filament, while five Classmore » II and one Class I young stellar objects are identified outside the filament. The comparison between column densities calculated from dust continuum and C{sup 17}O 2–1 line emission shows that CO is depleted much more significantly in the ammonia peak than in the cyanopolyyne peak, while the column densities calculated from the dust continuum are similar at the two peaks. N{sub 2}H{sup +} is not depleted much in either peak. According to our chemical calculation, the differential chemical distribution in the two peaks can be explained by different timescales required to reach the same density, i.e., by different dynamical processes.« less
Petrov, Jordan G; Andreeva, Tonya D; Moehwald, Helmuth
2009-04-09
We investigate unusual binary Langmuir monolayers with the same long CH3(CH2)21 hydrocarbon chains and fluorinated -O-CH2CF3 (FEE) versus nonfluorinated -O-CH2CH3 (EE) hydrophilic heads, whose opposite dipoles assist miscibility, in contrast to the equally oriented polar head dipoles of almost all natural or synthetic amphiphiles that minister to phase separation. Although two-component bulk micelles, lipid bilayers, and monolayers with fluorinated and nonfluorinated chains, which also have opposite dipoles, often show phase separation, we find complete miscibility and nonideality of the FEE-EE mixtures demonstrated via deviation of the composition dependencies of the mean molecular area at fixed surface pressure from the additivity rule. The composition dependencies of the excess molecular areas exhibit minima and maxima which show specific structural changes at particular compositions. They originate from the dipolar and steric interactions between the polar heads, because the interactions between the same chains of FEE and EE do not vary. The pi/A isotherms and the pi/X(FEE) phase diagram reveal that mixtures with molar fractions X(FEE) > or = 0.3 exist in an upright solid phase even in uncompressed state. This result is confirmed by the compressibility values and via Brewster angle microscopy, which does not show optical anisotropy at X(FEE) > or = 0.3. Comparison of the collapse and phase-transition molecular areas with literature data suggests that the upright architecture corresponds to LS-phase or S-phase with more defects as the S-phase in the pure monolayers. The mixtures with X(FEE) < 0.3 exist in tilted L2' phase at low surface pressures. Their mean molecular areas are smaller than the corresponding values in the EE film, which manifests reduction of the tilt of the EE chains with increasing FEE content. We ascribe the chain erection to partial dehydration of the EE heads caused by dipolar attraction between the EE and FEE heads. The excess free energy of mixing deltaG(exc)pi is positive but much smaller than the negative total free energy of mixing AG mix(pi) showing a spontaneous miscibility at all compositions due to an entropy increase. The analysis of the conflict between the deltaG(mix)pi minimum at molar fraction X(FEE) = 0.5 and the minimum and negative value of the excess molecular area A(pi,exc) at X(FEE) = 0.8 shows that the A(pi,exc)/X(FEE) minimum has not an electrostatic but a short-range structural origin.
NASA Astrophysics Data System (ADS)
Schirm, M. R. P.; Wilson, C. D.; Kamenetzky, J.; Parkin, T. J.; Glenn, J.; Maloney, P.; Rangwala, N.; Spinoglio, L.; Baes, M.; Boselli, A.; Cooray, A.; De Looze, I.; Fernández-Ontiveros, J. A.; Karczewski, O. Ł.; Wu, R.
2017-10-01
We present Herschel Spectral and Photometric Imaging Receiver (SPIRE)-Fourier Transform Spectrometer (FTS) intermediate-sampled mapping observations of the central ˜8 kpc (˜150 arcsec) of M51, with a spatial resolution of 40 arcsec. We detect four 12CO transitions (J = 4-3 to J = 7-6) and the [C I] 3P2-3P1 and 3P1-3P0 transitions. We supplement these observations with ground-based observations of 12CO J = 1-0 to J = 3-2 and perform a two-component non-local thermodynamic equilibrium analysis. We find that the molecular gas in the nucleus and centre regions has a cool component (Tkin ˜ 10-20 K) with a moderate but poorly constrained density (n(H2) ˜ 103-106 cm-3), as well as significant molecular gas in a warmer (Tkin ˜ 300-3000 K), lower density (n(H2) ˜ 101.6-102.5 cm-3) component. We compare our CO line ratios and calculated densities along with ratios of CO to total infrared luminosity to a grid of photon-dominated region (PDR) models and find that the cold molecular gas likely resides in PDRs with a field strength of G0 ˜ 102. The warm component likely requires an additional source of mechanical heating, from supernovae and stellar winds or possibly shocks produced in the strong spiral density wave. When compared to similar two-component models of other star-forming galaxies published as part of the Very Nearby Galaxies Survey (Arp 220, M82 and NGC 4038/39), M51 has the lowest density for the warm component, while having a warm gas mass fraction that is comparable to those of Arp 220 and M82, and significantly higher than that of NGC 4038/39.
Katsumi, Keiichi; Hirano, Toru; Watanabe, Kei; Ohashi, Masayuki; Yamazaki, Akiyoshi; Ito, Takui; Sawakami, Kimihiko; Sano, Atsuki; Kikuchi, Ren; Endo, Naoto
2016-11-01
The study aimed to investigate the clinical outcomes and limitations after vertebroplasty with posterior spinal fusion (VP+PSF) without neural decompression for osteoporotic vertebral collapse. We conducted a prospective multicenter study including 45 patients (12 men and 33 women, mean age: 77.0 years) evaluated between 2008 and 2012. Operation time, blood loss, visual analog scale (VAS) of back pain, neurological status, kyphosis angle in the fused area, and vertebral union of the collapsed vertebra were evaluated. The mean operation time was 162 min and blood loss was 381 mL. The postoperative VAS score significantly improved, and the neurological status improved in 35 patients (83 %), and none of the remaining patients demonstrated a deteriorating neurological status at two years post-operatively. The mean kyphosis angle pre-operatively, immediately post-operatively, and two years post-operatively was 23.8°, 10.7°, and 24.3°, respectively, and there was no significant difference between the angles pre-operatively and two years post-operatively. The extensive correction of kyphosis >16° was a risk factor for a higher correction loss and subsequent fracture. Union of the collapsed vertebra was observed in 43 patients (95 %) at two years post-operatively. The present study suggests that spinal stabilization rather than neural decompression is essential to treat OVC. Short-segment VP+PSF can achieve a high union rate of collapsed vertebra and provide a significant improvement in back pain or neurological status with less invasive surgery, but has a limit of kyphosis correction more than 16°.
NASA Astrophysics Data System (ADS)
Imshennik, Vladimir S.
2011-02-01
The two-stage (double) signal produced by the outburst of the close supernova (SN) in the Large Magellanic Cloud, which started on and involved two neutrino signals during the night of 23 February 1987 UT, is theoretically interpreted in terms of a scenario of rotationally exploding collapsing SNs, to whose class the outburst undoubtedly belongs. This scenario consists of a set of hydrodynamic and kinetic models in which key results are obtained by numerically solving non-one-dimensional and nonstationary problems. Of vital importance in this context is the inclusion of rotation effects, their role being particularly significant precisely in terms of the question of the transformation of the original collapse of the presupernova iron core to the explosion of the SN shell, with an energy release on a familiar scale of 1051 erg. The collapse in itself leads to the birth of neutron stars (black holes) emitting neutrino and gravitational radiation signals of gigantic intensity, whose total energy significantly (by a factor of hundreds) exceeds the above-cited SN burst energy. The proposed rotational scenario is described briefly by artificially dividing it into three (or four) characteristic stages. This division is dictated by the physical meaning of the chain of events a rotating iron core of a sufficiently massive (more than 10M) star triggers when it collapses. An attempt is made to quantitatively describe the properties of the associated neutrino and gravitational radiations. The review highlights the interpretation of the two-stage neutrino signal from SN 1987A, a problem which, given the present status of theoretical astrophysics, cannot, in the author's view, be solved without including rotation effects.
Cooperation between Magnesium and Metabolite Controls Collapse of the SAM-I Riboswitch.
Roy, Susmita; Onuchic, José N; Sanbonmatsu, Karissa Y
2017-07-25
The S-adenosylmethionine (SAM)-I riboswitch is a noncoding RNA that regulates the transcription termination process in response to metabolite (SAM) binding. The aptamer portion of the riboswitch may adopt an open or closed state depending on the presence of metabolite. Although the transition between the open and closed states is critical for the switching process, its atomistic details are not well understood. Using atomistic simulations, we calculate the effect of SAM and magnesium ions on the folding free energy landscape of the SAM-I riboswitch. These molecular simulation results are consistent with our previous wetlab experiments and aid in interpreting the SHAPE probing measurements. Here, molecular dynamics simulations explicitly identify target RNA motifs sensitive to magnesium ions and SAM. In the simulations, we observe that, whereas the metabolite mostly stabilizes the P1 and P3 helices, magnesium serves an important role in stabilizing a pseudoknot interaction between the P2 and P4 helices, even at high metabolite concentrations. The pseudoknot stabilization by magnesium, in combination with P1 stabilization by SAM, explains the requirement of both SAM and magnesium to form the fully collapsed metabolite-bound closed state of the SAM-I riboswitch. In the absence of SAM, frequent open-to-closed conformational transitions of the pseudoknot occur, akin to breathing. These pseudoknot fluctuations disrupt the binding site by facilitating fluctuations in the 5'-end of helix P1. Magnesium biases the landscape toward a collapsed state (preorganization) by coordinating pseudoknot and 5'-P1 fluctuations. The cooperation between SAM and magnesium in stabilizing important tertiary interactions elucidates their functional significance in transcription regulation. Published by Elsevier Inc.
Best, Robert B; Mittal, Jeetain
2011-04-01
Although it is now possible to fold peptides and miniproteins in molecular dynamics simulations, it is well appreciated that force fields are not all transferable to different proteins. Here, we investigate the influence of the protein force field and the solvent model on the folding energy landscape of a prototypical two-state folder, the GB1 hairpin. We use extensive replica-exchange molecular dynamics simulations to characterize the free-energy surface as a function of temperature. Most of these force fields appear similar at a global level, giving a fraction folded at 300 K between 0.2 and 0.8 in all cases, which is a difference in stability of 2.8 kT, and are generally consistent with experimental data at this temperature. The most significant differences appear in the unfolded state, where there are different residual secondary structures which are populated, and the overall dimensions of the unfolded states, which in most of the force fields are too collapsed relative to experimental Förster Resonance Energy Transfer (FRET) data.
Cavitation in ultrasound and shockwave therapy
NASA Astrophysics Data System (ADS)
Colonius, Tim
2014-11-01
Acoustic waves, especially high-intensity ultrasound and shock waves, are used for medical imaging and intra- and extra-corporeal manipulation of cells, tissue, and urinary calculi. Waves are currently used to treat kidney stone disease, plantar fasciitis, and bone nonunion, and they are being investigated as a technique to ablate cancer tumors and mediate drug delivery. In many applications, acoustic waves induce the expansion and collapse of preexisting or newly cavitating bubbles whose presence can either mediate the generation of localized stresses or lead to collateral damage, depending on how effectively they can be controlled. We describe efforts aimed at simulating the collapse of bubbles, both individually and in clusters, with the aim to characterize the induced mechanical stresses and strains. To simulate collapse of one or a few bubbles, compressible Euler and Navier-Stokes simulations of multi-component materials are performed with WENO-based shock and interface capturing schemes. Repetitive insonification generates numerous bubbles that are difficult to resolve numerically. Such clouds are also important in traditional engineering applications such as caveating hydrofoils. Models that incorporate the dynamics of an unresolved dispersed phase consisting of the bubble cloud are also developed. The results of several model problems including bubble collapse near rigid surfaces, bubble collapse near compliant surfaces and in small capillaries are analyzed. The results are processed to determine the potential for micron-sized preexisting gas bubbles to damage capillaries. The translation of the fundamental fluid dynamics into improvements in the design and clinical application of shockwave lithotripters will be discussed. NIH Grant PO1-DK043881.
Voight, B.; Young, K.D.; Hidayat, D.; ,; Purbawinata, M.A.; Ratdomopurbo, Antonius; ,; ,; Sayudi, D.S.; LaHusen, R.; Marso, J.; Murray, T.L.; Dejean, M.; Iguchi, M.; Ishihara, K.
2000-01-01
Following the eruption of January 1992, episodes of lava dome growth accompanied by generation of dome-collapse nuées ardentes occurred in 1994–1998. In addition, nuées ardentes were generated by fountain-collapse in January 1997, and the 1998 events also suggest an explosive component. Significant tilt and seismic precursors on varying time scales preceded these events. Deformation about the summit has been detected by electronic tiltmeters since November 1992, with inflation corresponding generally to lava dome growth, and deflation (or decreased inflation) corresponding to loss of dome mass. Strong short-term (days to weeks) accelerations in tilt rate and seismicity occurred prior to the major nuées ardentes episodes, apart from those of 22 November 1994 which were preceded by steadily increasing tilt for over 200 days but lacked short-term precursors. Because of the combination of populated hazardous areas and the lack of an issued warning, about 100 casualties occurred in 1994. In contrast, the strong precursors in 1997 and 1998 provided advance warning to observatory scientists, enabled the stepped raising of alert levels, and aided hazard management. As a result of these factors, but also the fortunate fact that the large nuées ardentes did not quite descend into populated areas, no casualties occurred. The nuée ardente episode of 1994 is interpreted as purely due to gravitational collapse, whereas those of 1997 and 1998 were influenced by gas-pressurization of the lava dome.
Design of crashworthy structures with controlled behavior in HCA framework
NASA Astrophysics Data System (ADS)
Bandi, Punit
The field of crashworthiness design is gaining more interest and attention from automakers around the world due to increasing competition and tighter safety norms. In the last two decades, topology and topometry optimization methods from structural optimization have been widely explored to improve existing designs or conceive new designs with better crashworthiness. Although many gradient-based and heuristic methods for topology- and topometry-based crashworthiness design are available these days, most of them result in stiff structures that are suitable only for a set of vehicle components in which maximizing the energy absorption or minimizing the intrusion is the main concern. However, there are some other components in a vehicle structure that should have characteristics of both stiffness and flexibility. Moreover, the load paths within the structure and potential buckle modes also play an important role in efficient functioning of such components. For example, the front bumper, side frame rails, steering column, and occupant protection devices like the knee bolster should all exhibit controlled deformation and collapse behavior. The primary objective of this research is to develop new methodologies to design crashworthy structures with controlled behavior. The well established Hybrid Cellular Automaton (HCA) method is used as the basic framework for the new methodologies, and compliant mechanism-type (sub)structures are the highlight of this research. The ability of compliant mechanisms to efficiently transfer force and/or motion from points of application of input loads to desired points within the structure is used to design solid and tubular components that exhibit controlled deformation and collapse behavior under crash loads. In addition, a new methodology for controlling the behavior of a structure under multiple crash load scenarios by adaptively changing the contributions from individual load cases is developed. Applied to practical design problems, the results demonstrate that the methodologies provide a practical tool to aid the design engineer in generating design concepts for crashworthy structures with controlled behavior. Although developed in the HCA framework, the basic ideas behind these methods are generic and can be easily implemented with other available topology- and topometry-based optimization methods.
NASA Astrophysics Data System (ADS)
Engelke, Philip; Allen, Ronald J.; Hogg, David E.
2016-06-01
Recent observations with the Green Bank Telescope (Allen et al. 2015) have shown that high-sensitivity measurements of OH 18-cm emission can be a useful alternative tracer for the large-scale distribution of molecular gas in the Galactic ISM. This component of the ISM is not well traced by 3-mm CO(1-0) emission. In the quiescent regions examined so far, fewer than half of the OH spectral features found show corresponding CO emission in the CfA survey (Dame el al. 2001). The intensities of the two main-line OH transitions at 1665 and 1667 MHz are in the “thermal” or LTE ratio of 5:9 and emanate from low-opacity gas with a wide spatial distribution similar to the HI. This morphology resembles that of the “dark gas” (or “dark neutral medium”) postulated by Grenier et al. (2005) as the possible source of target nucleii required to explain the excess gamma ray emission from the Galactic ISM. OH 18-cm emission provides a new tool for studies of the quantity, distance, and kinematics of this new CO-dark molecular component of the ISM. As a demonstration of the utility of this new tool, we apply it to two questions about the molecular structure of the Perseus Arm: the thickness in the z-direction, and the rolling motions of the arm discovered in the earliest HI maps of the Galaxy (e.g. Oort 1962, Rougoor 1964). Using OH emission as a molecular tracer, we find that the molecular component of gas in the Perseus Arm has a comparable z-thickness to that measured using HI, although it appears to be clumpier. OH also shows that the molecular component experiences the “rolling motions” known from the HI data. As a molecular tracer, OH allows more regions to be observed than can be observed using CO(1-0), and as an optically-thin emission line, OH can provide direct column density measurements.
Kirkwood–Buff integrals for ideal solutions
Ploetz, Elizabeth A.; Bentenitis, Nikolaos; Smith, Paul E.
2010-01-01
The Kirkwood–Buff (KB) theory of solutions is a rigorous theory of solution mixtures which relates the molecular distributions between the solution components to the thermodynamic properties of the mixture. Ideal solutions represent a useful reference for understanding the properties of real solutions. Here, we derive expressions for the KB integrals, the central components of KB theory, in ideal solutions of any number of components corresponding to the three main concentration scales. The results are illustrated by use of molecular dynamics simulations for two binary solutions mixtures, benzene with toluene, and methanethiol with dimethylsulfide, which closely approach ideal behavior, and a binary mixture of benzene and methanol which is nonideal. Simulations of a quaternary mixture containing benzene, toluene, methanethiol, and dimethylsulfide suggest this system displays ideal behavior and that ideal behavior is not limited to mixtures containing a small number of components. PMID:20441282
FAILURE OF A NEUTRINO-DRIVEN EXPLOSION AFTER CORE-COLLAPSE MAY LEAD TO A THERMONUCLEAR SUPERNOVA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kushnir, Doron; Katz, Boaz, E-mail: kushnir@ias.edu
We demonstrate that ∼10 s after the core-collapse of a massive star, a thermonuclear explosion of the outer shells is possible for some (tuned) initial density and composition profiles, assuming that the neutrinos failed to explode the star. The explosion may lead to a successful supernova, as first suggested by Burbidge et al. We perform a series of one-dimensional (1D) calculations of collapsing massive stars with simplified initial density profiles (similar to the results of stellar evolution calculations) and various compositions (not similar to 1D stellar evolution calculations). We assume that the neutrinos escaped with a negligible effect on themore » outer layers, which inevitably collapse. As the shells collapse, they compress and heat up adiabatically, enhancing the rate of thermonuclear burning. In some cases, where significant shells of mixed helium and oxygen are present with pre-collapsed burning times of ≲100 s (≈10 times the free-fall time), a thermonuclear detonation wave is ignited, which unbinds the outer layers of the star, leading to a supernova. The energy released is small, ≲10{sup 50} erg, and negligible amounts of synthesized material (including {sup 56}Ni) are ejected, implying that these 1D simulations are unlikely to represent typical core-collapse supernovae. However, they do serve as a proof of concept that the core-collapse-induced thermonuclear explosions are possible, and more realistic two-dimensional and three-dimensional simulations are within current computational capabilities.« less
Nitrogen Assimilation in Escherichia coli: Putting Molecular Data into a Systems Perspective
van Heeswijk, Wally C.; Westerhoff, Hans V.
2013-01-01
SUMMARY We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now. PMID:24296575
Liao, Yi-Ting; Manson, Anthony C; DeLyser, Michael R; Noid, William G; Cremer, Paul S
2017-03-07
We report experimental and computational studies investigating the effects of three osmolytes, trimethylamine N -oxide (TMAO), betaine, and glycine, on the hydrophobic collapse of an elastin-like polypeptide (ELP). All three osmolytes stabilize collapsed conformations of the ELP and reduce the lower critical solution temperature (LSCT) linearly with osmolyte concentration. As expected from conventional preferential solvation arguments, betaine and glycine both increase the surface tension at the air-water interface. TMAO, however, reduces the surface tension. Atomically detailed molecular dynamics (MD) simulations suggest that TMAO also slightly accumulates at the polymer-water interface, whereas glycine and betaine are strongly depleted. To investigate alternative mechanisms for osmolyte effects, we performed FTIR experiments that characterized the impact of each cosolvent on the bulk water structure. These experiments showed that TMAO red-shifts the OH stretch of the IR spectrum via a mechanism that was very sensitive to the protonation state of the NO moiety. Glycine also caused a red shift in the OH stretch region, whereas betaine minimally impacted this region. Thus, the effects of osmolytes on the OH spectrum appear uncorrelated with their effects upon hydrophobic collapse. Similarly, MD simulations suggested that TMAO disrupts the water structure to the least extent, whereas glycine exerts the greatest influence on the water structure. These results suggest that TMAO stabilizes collapsed conformations via a mechanism that is distinct from glycine and betaine. In particular, we propose that TMAO stabilizes proteins by acting as a surfactant for the heterogeneous surfaces of folded proteins.
Nap, Rikkert J; Gonzalez Solveyra, Estefania; Szleifer, Igal
2018-05-01
When engineering nanomaterials for application in biological systems, it is important to understand how multivalent ions, such as calcium, affect the structural and chemical properties of polymer-modified nanoconstructs. In this work, a recently developed molecular theory was employed to study the effect of surface curvature on the calcium-induced collapse of end-tethered weak polyelectrolytes. In particular, we focused on cylindrical and spherical nanoparticles coated with poly(acrylic acid) in the presence of different amounts of Ca2+ ions. We describe the structural changes that grafted polyelectrolytes undergo as a function of calcium concentration, surface curvature, and morphology. The polymer layers collapse in aqueous solutions that contain sufficient amounts of Ca2+ ions. This collapse, due to the formation of calcium bridges, is not only controlled by the calcium ion concentration but also strongly influenced by the curvature of the tethering surface. The transition from a swollen to a collapsed layer as a function of calcium concentration broadens and shifts to lower amounts of calcium ions as a function of the radius of cylindrical and spherical nanoparticles. The results show how the interplay between calcium binding and surface curvature governs the structural and functional properties of the polymer molecules. This would directly impact the fate of weak polyelectrolyte-coated nanoparticles in biological environments, in which calcium levels are tightly regulated. Understanding such interplay would also contribute to the rational design and optimization of smart interfaces with applications in, e.g., salt-sensitive and ion-responsive materials and devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diot, Quentin, E-mail: quentin.diot@ucdenver.edu; Kavanagh, Brian; Vinogradskiy, Yevgeniy
2015-11-15
Purpose: To differentiate radiation-induced fibrosis from regional lung collapse outside of the high dose region in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Lung deformation maps were computed from pre-treatment and post-treatment computed tomography (CT) scans using a point-to-point translation method. Fifty anatomical landmarks inside the lung (vessel or airway branches) were matched on planning and follow-up scans for the computation process. Two methods using the deformation maps were developed to differentiate regional lung collapse from fibrosis: vector field and Jacobian methods. A total of 40 planning and follow-ups CT scans were analyzed for 20more » lung SBRT patients. Results: Regional lung collapse was detected in 15 patients (75%) using the vector field method, in ten patients (50%) using the Jacobian method, and in 12 patients (60%) by radiologists. In terms of sensitivity and specificity the Jacobian method performed better. Only weak correlations were observed between the dose to the proximal airways and the occurrence of regional lung collapse. Conclusions: The authors presented and evaluated two novel methods using anatomical lung deformations to investigate lung collapse and fibrosis caused by SBRT treatment. Differentiation of these distinct physiological mechanisms beyond what is usually labeled “fibrosis” is necessary for accurate modeling of lung SBRT-induced injuries. With the help of better models, it becomes possible to expand the therapeutic benefits of SBRT to a larger population of lung patients with large or centrally located tumors that were previously considered ineligible.« less
NASA Astrophysics Data System (ADS)
Cui, Jianlei; Zhang, Jianwei; He, Xiaoqiao; Mei, Xuesong; Wang, Wenjun; Yang, Xinju; Xie, Hui; Yang, Lijun; Wang, Yang
2017-03-01
Carbon nanotubes (CNTs), including single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs), are considered to be the promising candidates for next-generation interconnects with excellent physical and chemical properties ranging from ultrahigh mechanical strength, to electrical properties, to thermal conductivity, to optical properties, etc. To further study the interfacial contact configurations of SWNT-based nanodevice with a 13.56-Å diameter, the corresponding simulations are carried out with the molecular dynamic method. The nanotube collapses dramatically into the surface with the complete collapse on the Au/Ag/graphite electrode surface and slight distortion on the Si/SiO2 substrate surface, respectively. The related dominant mechanism is studied and explained. Meanwhile, the interfacial contact configuration and behavior, depended on other factors, are also analyzed in this article.
Multiscale modeling of shock wave localization in porous energetic material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, M. A.; Kittell, D. E.; Yarrington, C. D.
Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (< 6 GPa), atomistic simulations of pore collapse are used here to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock wavesmore » interacting with pores as a function of this viscoplastic material response. Finally, we find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.« less
The neutrino opacity of neutron rich matter
NASA Astrophysics Data System (ADS)
Alcain, P. N.; Dorso, C. O.
2017-05-01
The study of neutron rich matter, present in neutron star, proto-neutron stars and core-collapse supernovae, can lead to further understanding of the behavior of nuclear matter in highly asymmetric nuclei. Heterogeneous structures are expected to exist in these systems, often referred to as nuclear pasta. We have carried out a systematic study of neutrino opacity for different thermodynamic conditions in order to assess the impact that the structure has on it. We studied the dynamics of the neutrino opacity of the heterogeneous matter at different thermodynamic conditions with semiclassical molecular dynamics model already used to study nuclear multifragmentation. For different densities, proton fractions and temperature, we calculate the very long range opacity and the cluster distribution. The neutrino opacity is of crucial importance for the evolution of the core-collapse supernovae and the neutrino scattering.
Multiscale modeling of shock wave localization in porous energetic material
Wood, M. A.; Kittell, D. E.; Yarrington, C. D.; ...
2018-01-30
Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (< 6 GPa), atomistic simulations of pore collapse are used here to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock wavesmore » interacting with pores as a function of this viscoplastic material response. Finally, we find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.« less
Pochukalina, G N; Parfenov, V N
2008-01-01
This study is the continuation of our previous investigation of the nucleolus transformation in growing oocytes from mouse multilayer follicles (Pochukalina, Parfenov, 2006). Here in the present research we have examined the features of organization and molecular composition of nucleolus like body, or postnucleolus, in two groups of oocytes with different chromatin configuration from mouse antral follicles. Using light and electron immunocytochemistry, we have defined the dynamics of ribosomal RNA synthesis and processing molecular component distribution in postnucleolus. Considerable changes in RNA polymerase I distribution and its colocalization with coilin at the periphery of postnucleolus were revealed. Putative role of coilin in formation of complexes with ribosomal RNA synthesis/processing components is discussed.
Effect of strong-column weak-beam design provision on the seismic fragility of RC frame buildings
NASA Astrophysics Data System (ADS)
Surana, Mitesh; Singh, Yogendra; Lang, Dominik H.
2018-04-01
Incremental dynamic analyses are conducted for a suite of low- and mid-rise reinforced-concrete special moment-resisting frame buildings. Buildings non-conforming and conforming to the strong-column weak-beam (SCWB) design criterion are considered. These buildings are designed for the two most severe seismic zones in India (i.e., zone IV and zone V) following the provisions of Indian Standards. It is observed that buildings non-conforming to the SCWB design criterion lead to an undesirable column failure collapse mechanism. Although yielding of columns cannot be avoided, even for buildings conforming to a SCWB ratio of 1.4, the observed collapse mechanism changes to a beam failure mechanism. This change in collapse mechanism leads to a significant increase in the building's global ductility capacity, and thereby in collapse capacity. The fragility analysis study of the considered buildings suggests that considering the SCWB design criterion leads to a significant reduction in collapse probability, particularly in the case of mid-rise buildings.
Is Collapsing C1q Nephropathy Another MYH9-Associated Kidney Disease? A Case Report
Reeves-Daniel, Amber M.; Iskandar, Samy S.; Bowden, Donald W.; Bostrom, Meredith A.; Hicks, Pamela J.; Comeau, Mary E.; Langefeld, Carl D.; Freedman, Barry I.
2009-01-01
C1q nephropathy is a rare kidney disease that can present with nephrotic syndrome and typically has the histological phenotype of either minimal change disease (MCD) or focal segmental glomerulosclerosis (FSGS). Disagreement exists as to whether it is a distinct immune complex-mediated glomerulopathy or whether it resides in the spectrum of FSGS-MCD. Two African American patients with C1q nephropathy histologically presenting as the collapsing variant of FSGS (collapsing C1q nephropathy) and rapid loss of kidney function were genotyped for polymorphisms in the non-muscle myosin heavy chain 9 gene (MYH9). Both cases were homozygous for the MYH9 E1 risk haplotype; the variant strongly associated with idiopathic FSGS, collapsing FSGS in Human Immunodeficiency Virus-associated nephropathy and focal global glomerulosclerosis (historically attributed to hypertensive nephrosclerosis). Collapsing C1q nephropathy with rapid progression to ESRD appears to reside in the MYH9-associated disease spectrum. PMID:20116156
Edmonds, Marie; Herd, Richard A.
2005-01-01
The largest and most intense lava-dome collapse during the eruption of Soufrière Hills volcano, Montserrat, 1995–2004, occurred 12–13 July 2003. The dome collapse involved around 200 × 106 m3 of material and was associated with a phenomenon previously unknown at this volcano. Large pyroclastic flows at the peak of the dome collapse interacted explosively with seawater at the mouth of the Tar River Valley and generated a hot, dry base surge that flowed 4 km inland and 300 m uphill. The surge was destructive to at least 25 m above the ground and it carbonized vegetation. The resulting two-layer deposits were as much as 0.9 m thick. Although the entire collapse lasted 18 h, the base surge greatly increased the land area affected by the dome collapse in a few minutes at the peak of the event, illustrating the complex nature of the interaction between pyroclastic flows and seawater.
Collapse of caves at shallow depth in Gaziantep city center, Turkey: a case study
NASA Astrophysics Data System (ADS)
Canakci, Hanifi
2007-12-01
This paper focuses on an investigation of the possible causes for the collapse of limestone caves in Gaziantep, Turkey. The city contains a lot of man-made caves, at a shallow depth, of various width and length. These caves were mainly excavated to provide work or storage space. As the city has been growing fast with increased population, many structures were constructed over these caves. Recently, two caves collapsed and five houses were damaged. These caves are all made of limestone and it was observed after the collapse that the limestone was saturated with water due to sewer pipe leakage and surface water. Tests were carried out on the limestone and it was determined that the compressive strength of limestone decreases by about 50% and the tensile strength decreased by about 80% when saturated with water. It was concluded that the reduced strength of the limestone combined with additional loads due to the factors mentioned above seem to be the main reason for these collapses.
Three-dimensional simulations of void collapse in energetic materials
NASA Astrophysics Data System (ADS)
Rai, Nirmal Kumar; Udaykumar, H. S.
2018-03-01
The collapse of voids in porous energetic materials leads to hot-spot formation and reaction initiation. This work advances the current knowledge of the dynamics of void collapse and hot-spot formation using 3D reactive void collapse simulations in HMX. Four different void shapes, i.e., sphere, cylinder, plate, and ellipsoid, are studied. For all four shapes, collapse generates complex three-dimensional (3D) baroclinic vortical structures. The hot spots are collocated with regions of intense vorticity. The differences in the vortical structures for the different void shapes are shown to significantly impact the relative sensitivity of the voids. Voids of high surface area generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In addition, all 3D voids are shown to be more sensitive than their two-dimensional (2D) counterparts. The results provide physical insights into hot-spot formation and growth and point to the limitations of 2D analyses of hot-spot formation.
Structural Architecture of Prothrombin in Solution Revealed by Single Molecule Spectroscopy.
Pozzi, Nicola; Bystranowska, Dominika; Zuo, Xiaobing; Di Cera, Enrico
2016-08-26
The coagulation factor prothrombin has a complex spatial organization of its modular assembly that comprises the N-terminal Gla domain, kringle-1, kringle-2, and the C-terminal protease domain connected by three intervening linkers. Here we use single molecule Förster resonance energy transfer to access the conformational landscape of prothrombin in solution and uncover structural features of functional significance that extend recent x-ray crystallographic analysis. Prothrombin exists in equilibrium between two alternative conformations, open and closed. The closed conformation predominates (70%) and features an unanticipated intramolecular collapse of Tyr(93) in kringle-1 onto Trp(547) in the protease domain that obliterates access to the active site and protects the zymogen from autoproteolytic conversion to thrombin. The open conformation (30%) is more susceptible to chymotrypsin digestion and autoactivation, and features a shape consistent with recent x-ray crystal structures. Small angle x-ray scattering measurements of prothrombin wild type stabilized 70% in the closed conformation and of the mutant Y93A stabilized 80% in the open conformation directly document two envelopes that differ 50 Å in length. These findings reveal important new details on the conformational plasticity of prothrombin in solution and the drastic structural difference between its alternative conformations. Prothrombin uses the intramolecular collapse of kringle-1 onto the active site in the closed form to prevent autoactivation. The open-closed equilibrium also defines a new structural framework for the mechanism of activation of prothrombin by prothrombinase. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Lin, Shiang-Tai; Maiti, Prabal K; Goddard, William A
2010-06-24
Presented here is the two-phase thermodynamic (2PT) model for the calculation of energy and entropy of molecular fluids from the trajectory of molecular dynamics (MD) simulations. In this method, the density of state (DoS) functions (including the normal modes of translation, rotation, and intramolecular vibration motions) are determined from the Fourier transform of the corresponding velocity autocorrelation functions. A fluidicity parameter (f), extracted from the thermodynamic state of the system derived from the same MD, is used to partition the translation and rotation modes into a diffusive, gas-like component (with 3Nf degrees of freedom) and a nondiffusive, solid-like component. The thermodynamic properties, including the absolute value of entropy, are then obtained by applying quantum statistics to the solid component and applying hard sphere/rigid rotor thermodynamics to the gas component. The 2PT method produces exact thermodynamic properties of the system in two limiting states: the nondiffusive solid state (where the fluidicity is zero) and the ideal gas state (where the fluidicity becomes unity). We examine the 2PT entropy for various water models (F3C, SPC, SPC/E, TIP3P, and TIP4P-Ew) at ambient conditions and find good agreement with literature results obtained based on other simulation techniques. We also validate the entropy of water in the liquid and vapor phases along the vapor-liquid equilibrium curve from the triple point to the critical point. We show that this method produces converged liquid phase entropy in tens of picoseconds, making it an efficient means for extracting thermodynamic properties from MD simulations.
V-Shaped Molecular Configuration of Wax Esters of Jojoba Oil in a Langmuir Film Model.
Caruso, Benjamín; Martini, M Florencia; Pickholz, Mónica; Perillo, María A
2018-06-19
The aim of the present work was to understand the interfacial properties of a complex mixture of wax esters (WEs) obtained from Jojoba oil (JO). Previously, on the basis of molecular area measurements, a hairpin structure was proposed as the hypothetical configuration of WEs, allowing their organization as compressible monolayers at the air-water interface. In the present work, we contributed with further experimental evidence by combining surface pressure (π), surface potential (Δ V), and PM-IRRAS measurements of JO monolayers and molecular dynamic simulations (MD) on a modified JO model. WEs were self-assembled in Langmuir films. Compression isotherms exhibited π lift-off at 100 Å 2 /molecule mean molecular area ( A lift-off ) and a collapse point at π c ≈ 2.2 mN/m and A c ≈ 77 Å 2 /molecule. The Δ V profile reflected two dipolar reorganizations, with one of them at A > A lift-off due to the release of loosely bound water molecules and another one at A c < A < A lift-off possibly due to reorientations of a more tightly bound water population. This was consistent with the maximal SP value that was calculated according to a model that considered two populations of oriented water and was very close to the experimental value. The orientation of the ester group that was assumed in that calculation was coherent with the PM-IRRAS behavior of the carbonyl group with the C═O oriented toward the water and the C-O oriented parallel to the surface and was in accordance with their orientational angles (∼45 and ∼90°, respectively) determined by MD simulations. Taken together, the present results confirm a V shape rather than a hairpin configuration of WEs at the air-water interface.
Comparative proteomic analysis of male and female venoms from the Cuban scorpion Rhopalurus junceus.
Rodríguez-Ravelo, Rodolfo; Batista, Cesar V F; Coronas, Fredy I V; Zamudio, Fernando Z; Hernández-Orihuela, Lorena; Espinosa-López, Georgina; Ruiz-Urquiola, Ariel; Possani, Lourival D
2015-12-01
A complete mass spectrometry analysis of venom components from male and female scorpions of the species Rhophalurus junceus of Cuba is reported. In the order of 200 individual molecular masses were identified in both venoms, from which 63 are identical in male and females genders. It means that a significant difference of venom components exists between individuals of different sexes, but the most abundant components are present in both sexes. The relative abundance of identical components is different among the genders. Three well defined groups of different peptides were separated and identified. The first group corresponds to peptides with molecular masses of 1000-2000 Da; the second to peptides with 3500-4500 Da molecular weight, and the third with 6500-8000 Da molecular weights. A total of 86 peptides rich in disulfide bridges were found in the venoms, 27 with three disulfide bridges and 59 with four disulfide bridges. LC-MS/MS analysis allowed the identification and amino acid sequence determination of 31 novel peptides in male venom. Two new putative K(+)-channel peptides were sequences by Edman degradation. They contain 37 amino acid residues, packed by three disulfide bridges and were assigned the systematic numbers: α-KTx 1.18 and α-KTx 2.15. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Q.; Lei, W. H.; Zhang, B. B.; Chen, W.; Xiong, S. L.; Song, L. M.
2018-03-01
`Internal plateau' followed by a sharp decay is commonly seen in short gamma-ray burst (GRB) light curves. The plateau component is usually interpreted as the dipole emission from a supra-massive magnetar, and the sharp decay may imply the collapse of the magnetar to a black hole (BH). Fall-back accretion on to the new-born BH could produce long-lasting activities via the Blandford-Znajek (BZ) process. The magnetic flux accumulated near the BH would be confined by the accretion discs for a period of time. As the accretion rate decreases, the magnetic flux is strong enough to obstruct gas infall, leading to a magnetically arrested disc. Within this scenario, we show that the BZ process could produce two types of typical X-ray light curves: type I exhibits a long-lasting plateau, followed by a power-law (PL) decay with slopes ranging from 5/3 to 40/9; type II shows roughly a single PL decay with a slope of 5/3. The former requires low magnetic field strength, while the latter corresponds to relatively high values. We search for such signatures of the new-born BH from a sample of short GRBs with an internal plateau, and find two candidates: GRB 101219A and GRB 160821B, corresponding to type II and type I light curves, respectively. It is shown that our model can explain the data very well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamora-Avilés, Manuel; Vázquez-Semadeni, Enrique
We discuss the evolution and dependence on cloud mass of the star formation rate (SFR) and efficiency (SFE) of star-forming molecular clouds (MCs) within the scenario that clouds are undergoing global collapse and that the SFR is controlled by ionization feedback. We find that low-mass clouds (M {sub max} ≲ 10{sup 4} M {sub ☉}) spend most of their evolution at low SFRs, but end their lives with a mini-burst, reaching a peak SFR ∼10{sup 4} M {sub ☉} Myr{sup –1}, although their time-averaged SFR is only (SFR) ∼ 10{sup 2} M {sub ☉} Myr{sup –1}. The corresponding efficiencies aremore » SFE{sub final} ≲ 60% and (SFE) ≲ 1%. For more massive clouds (M {sub max} ≳ 10{sup 5} M {sub ☉}), the SFR first increases and then reaches a plateau because the clouds are influenced by stellar feedback since earlier in their evolution. As a function of cloud mass, (SFR) and (SFE) are well represented by the fits (SFR) ≈ 100(1 + M {sub max}/1.4 × 10{sup 5} M {sub ☉}){sup 1.68} M {sub ☉} Myr{sup –1} and (SFE) ≈ 0.03(M {sub max}/2.5 × 10{sup 5} M {sub ☉}){sup 0.33}, respectively. Moreover, the SFR of our model clouds follows closely the SFR-dense gas mass relation recently found by Lada et al. during the epoch when their instantaneous SFEs are comparable to those of the clouds considered by those authors. Collectively, a Monte Carlo integration of the model-predicted SFR(M) over a Galactic giant molecular cloud mass spectrum yields values for the total Galactic SFR that are within half an order of magnitude of the relation obtained by Gao and Solomon. Our results support the scenario that star-forming MCs may be in global gravitational collapse and that the low observed values of the SFR and SFE are a result of the interruption of each SF episode, caused primarily by the ionizing feedback from massive stars.« less
NASA Astrophysics Data System (ADS)
Gorbach, Natalia; Plechova, Anastasiya; Portnyagin, Maxim
2017-04-01
Zhupanovsky volcano, situated 70 km north from Petropavlovsk-Kamchatsky city, resumed its activity in October 2013 [3]. In 2014 and in the first half of 2015, episodic explosions with ash plumes rising up to 6-8 km above sea level occurred on Priemish cone - one of four cones on the Zhupanovsky volcanic edifice [1]. In July 2015 after a series of seismic and explosive events, the southern sector of the active cone collapsed. The landslide and lahar deposits resulted from the collapse formed a large field on the volcano slopes [2]. In November 2015 and January-March 2016, a series of powerful explosions took place sending ash up to 8-10 km above sea level. No pure magmatic, effusive or extrusive, activity has been observed on Zhupanovsky in 2013-2016. We have studied the composition, morphology and textural features of ash particles produced by the largest explosive events of Zhupanovsky in the period from October 2013 to March 2016. The main components of the ash were found to be hydrothermally altered particles and lithics, likely originated by the defragmentation of rocks composing the volcanic edifice. Juvenile glass fragments occur in very subordinate quantities. The maximum amount of glass particles (up to 7%) was found in the ash erupted in January-March 2016, after the cone collapse. We suggest that the phreatic to phreatomagmatic explosive activity of Zhupanovsky volcano in 2013-2016 was initially caused by the intrusion of a new magma batch under the volcano. The intrusion and associated degassing of magma led to heating, overpressure and instability in the hydrothermal system of the volcano, causing episodic, predominantly phreatic explosions. Decompression of the shallow magmatic and hydrothermal system of the volcano due to the cone collapse in July 2015 facilitated a larger involvement of the magmatic component in the eruption and more powerful explosions. [1] Girina O.A. et al., 2016 Geophysical Research Abstracts Vol. 18, EGU2016-2101, doi: 10.13140/RG.2.1.5179.4001.[2] Gorbach N.V. et al., 2015. Bulletin of Kamchatka Regional Association "Educational-scientific Center". Earth Sciences. 3/27:5-11. [3] Samoilenko S.B. et al., 2014. Bulletin of Kamchatka Regional Association "Educational-scientific Center". Earth Sciences. 1/23:21-26.
NASA Astrophysics Data System (ADS)
Mattioli, G. S.; Voight, B.; Linde, A. T.; Sacks, I. S.; Watts, P.; Hidayat, D.; Young, S. R.; Widiwijayanti, C.; Shalev, E.; Malin, P. E.; Elsworth, D.; Williams, P.; van Boskirk, E.; Thompson, G.; Syers, T.; Sparks, R. S.; Schleigh, B.; Norton, G.; Neuberg, J.; Miller, V.; McWhorter, N.; Johnston, W.; Dunkley, P.; Clarke, A. B.; Bass, V.
2005-05-01
The CALIPSO Project (Caribbean Andesite Lava Island-volcano Precision Seismo-geodetic Observatory) has greatly enhanced the monitoring and scientific infrastructure at the Soufrière Hills Volcano, Montserrat with the recent installation of an integrated array of borehole and surface geophysical instrumentation at four sites (Mattioli et al., 2004). The sensor package at each site includes: a single-component, very broad band, Sacks-Evertson strainmeter, a three-component seismometer (~Hz to 1 kHz), a Pinnacle Technologies series 5000 tiltmeter, and a surface Ashtech u-Z CGPS station with choke ring antenna, SCIGN mount and radome. The project has been successfully launched with its capture of the tremendous SHV lava dome collapse of 12-13 July 2003 (Herd et al., 2003), involving about 120 million cubic meters--the largest lava dome collapse in the historical record. A wide variety of unique geophysical signals were acquired CALIPSO instrumentation during the July 2003 collapse and important constraints on a variety of volcanic processes are being obtained. For example, tsunami waves were generated 2 km east of the volcanic dome by pyroclastic flows entering the sea. We reconstruct collapse volume-time history from seismic signals generated by pyroclastic flows, using the method of Brodscholl et al. (2000). The tsunami left flotsam strandlines of runup >8m high along the east coast of Montserrat, and waves ~0.5m high were reported from Guadaloupe. Unique borehole dilatometer data (Voight et al., 2003; Mattioli et al., 2003; 2004) record details of tsunami wave passage. One station is located 40m from the sea, with the instrument ~180m below MSL. Strain wave packets at periods of ~200-500s occurred, consistent in period and amplitude with water loading from passing tsunami waves. Wave packets between ~0600-1130 LT can be correlated with pyroclastic flow seismic data. Non-linear Boussinesq hydrodynamic modeling fits wave decay from source to instrument site and is consistent with wave periods and delay times. Coherent near-field waves depend on flow volume, submerged time of motion, and bathymetry. The model matches the delay time between pyroclastic flow entry time and arrival of tsunami waves at the instrument site.
NASA Technical Reports Server (NTRS)
Katsuda, Satoru; Petre, Robert; Hwang, Una; Yamaguchi, Hiroya; Mori, Koji; Tsunemi, Hiroshi
2008-01-01
We present results from X-ray analysis of a Galactic middle-aged supernova remnant (SNR) G156.2+5.7 which is bright and largely extended in X-ray wavelengths, showing a clear circular shape (radius approx.50'). Using the Suzaku satellite, we observed this SNR in three pointings; partially covering the northwestern (NW) rim, the eastern (E) rim, and the central portion of this SNR. In the NW rim and the central portion, we confirm that the X-ray spectra consist of soft and hard-tail emission, while in the E rim we find no significant hard-tail emission. The soft emission is well fitted by either a one-component or two-component non-equilibrium ionization (NEI) model. In the NW and E rims, a one-component (the swept-up interstellar medium) NEI model well represents the soft emission. On the other hand, in the central portion, a two-component (the interstellar medium and the metal-rich ejecta) NEI model fits the soft emission better than the one-component NEI model from a statistical point of view. The relative abundances in the ejecta component suggest that G156.2+5.7 is a remnant from a core-collapse SN explosion whose progenitor mass is less than 15 Solar Mass. The origin of the hard-tail emission detected in the NW rim and the central portion of the SNR is highly likely non-thermal synchrotron emission from relativistic electrons. In the NW rim, the relativistic electrons seems to be accelerated by a forward shock with a slow velocity of APPROX.500 km/sec.
Cavitation erosion prediction based on analysis of flow dynamics and impact load spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihatsch, Michael S., E-mail: michael.mihatsch@aer.mw.tum.de; Schmidt, Steffen J.; Adams, Nikolaus A.
2015-10-15
Cavitation erosion is the consequence of repeated collapse-induced high pressure-loads on a material surface. The present paper assesses the prediction of impact load spectra of cavitating flows, i.e., the rate and intensity distribution of collapse events based on a detailed analysis of flow dynamics. Data are obtained from a numerical simulation which employs a density-based finite volume method, taking into account the compressibility of both phases, and resolves collapse-induced pressure waves. To determine the spectrum of collapse events in the fluid domain, we detect and quantify the collapse of isolated vapor structures. As reference configuration we consider the expansion ofmore » a liquid into a radially divergent gap which exhibits unsteady sheet and cloud cavitation. Analysis of simulation data shows that global cavitation dynamics and dominant flow events are well resolved, even though the spatial resolution is too coarse to resolve individual vapor bubbles. The inviscid flow model recovers increasingly fine-scale vapor structures and collapses with increasing resolution. We demonstrate that frequency and intensity of these collapse events scale with grid resolution. Scaling laws based on two reference lengths are introduced for this purpose. We show that upon applying these laws impact load spectra recorded on experimental and numerical pressure sensors agree with each other. Furthermore, correlation between experimental pitting rates and collapse-event rates is found. Locations of high maximum wall pressures and high densities of collapse events near walls obtained numerically agree well with areas of erosion damage in the experiment. The investigation shows that impact load spectra of cavitating flows can be inferred from flow data that captures the main vapor structures and wave dynamics without the need for resolving all flow scales.« less
Shi, Qicun; Meroueh, Samy O; Fisher, Jed F; Mobashery, Shahriar
2008-07-23
Penicillin-binding protein 5 (PBP 5) of Escherichia coli hydrolyzes the terminal D-Ala-D-Ala peptide bond of the stem peptides of the cell wall peptidoglycan. The mechanism of PBP 5 catalysis of amide bond hydrolysis is initial acylation of an active site serine by the peptide substrate, followed by hydrolytic deacylation of this acyl-enzyme intermediate to complete the turnover. The microscopic events of both the acylation and deacylation half-reactions have not been studied. This absence is addressed here by the use of explicit-solvent molecular dynamics simulations and ONIOM quantum mechanics/molecular mechanics (QM/MM) calculations. The potential-energy surface for the acylation reaction, based on MP2/6-31+G(d) calculations, reveals that Lys47 acts as the general base for proton abstraction from Ser44 in the serine acylation step. A discrete potential-energy minimum for the tetrahedral species is not found. The absence of such a minimum implies a conformational change in the transition state, concomitant with serine addition to the amide carbonyl, so as to enable the nitrogen atom of the scissile bond to accept the proton that is necessary for progression to the acyl-enzyme intermediate. Molecular dynamics simulations indicate that transiently protonated Lys47 is the proton donor in tetrahedral intermediate collapse to the acyl-enzyme species. Two pathways for this proton transfer are observed. One is the direct migration of a proton from Lys47. The second pathway is proton transfer via an intermediary water molecule. Although the energy barriers for the two pathways are similar, more conformers sample the latter pathway. The same water molecule that mediates the Lys47 proton transfer to the nitrogen of the departing D-Ala is well positioned, with respect to the Lys47 amine, to act as the hydrolytic water in the deacylation step. Deacylation occurs with the formation of a tetrahedral intermediate over a 24 kcal x mol(-1) barrier. This barrier is approximately 2 kcal x mol(-1) greater than the barrier (22 kcal x mol(-1)) for the formation of the tetrahedral species in acylation. The potential-energy surface for the collapse of the deacylation tetrahedral species gives a 24 kcal x mol(-1) higher energy species for the product, signifying that the complex would readily reorganize and pave the way for the expulsion of the product of the reaction from the active site and the regeneration of the catalyst. These computational data dovetail with the knowledge on the reaction from experimental approaches.
NASA Astrophysics Data System (ADS)
Olson, David Arthur
Many natural flyers and swimmers need to exploit unsteady mechanisms in order to generate sufficient aerodynamic forces for sustained flight and propulsion. This is, in part, due to the low speed and length scales at which they typically operate. In this low Reynolds number regime, there are many unanswered questions on how existing aerodynamic theory for both steady and unsteady flows can be applied. Additionally, most of these natural flyers and swimmers have deformable wing/fin structures, three dimensional wing planforms, and exhibit complex kinematics during motion. While some biologically-inspired studies seek to replicate these complex structures and kinematics in the laboratory or in numerical simulations, it becomes difficult to draw explicit connections to the existing knowledge base of classical unsteady aerodynamic theory due to the complexity of the problems. In this experimental study, wing kinematics, structure, and planform are greatly simplified to investigate the effect of chordwise flexibility on the streamwise force (thrust) and wake behavior of a sinusoidally pitching airfoil. The study of flexibility in the literature has typically utilized flat plates with varying thicknesses or lengths to change their chordwise flexibility. This choice introduces additional complexities when comparing to the wealth of knowledge originally developed on streamlined aerodynamic shapes. The current study capitalizes on the recent developments in 3D printer technology to create accurate shapes out of materials with varying degrees of flexibility by creating two standard NACA 0009 airfoils: one rigid and one flexible. Each of the two airfoils are sinusoidally pitched about the quarter chord over a range of oscillation amplitudes and frequencies while monitoring the deformation of the airfoil. The oscillation amplitude is selected to be small enough such that leading edge vortices do not form, and the vortical structures in the wake are formed from the trailing edge. Two-component Molecular Tagging Velocimetry (MTV) is employed to measure the vortical flowfield over the first chord length behind the airfoil. A control volume method is used to estimate the mean thrust of the airfoil based on the mean and fluctuating velocity profiles from the MTV results. The mean thrust results show chordwise flexibility increases the thrust produced by the airfoil over the range of motion parameters and the flexibility considered in this study. The flexible airfoil is also seen to experience the drag-to-thrust crossover at a lower oscillation frequency than its rigid counterpart. The relative change in thrust due to flexibility decreases with increasing amplitude. The increase in thrust can, however, be captured as an amplitude effect when the Strouhal number based on the actual trailing edge displacement, Stte, is used for scaling. Scaling based strictly on the prescribed motion, typically employed in the literature, is not sufficient for the data to collapse. Motion trajectories which produced a classical von Karman vortex street or a reverse von Karman vortex street (depending on the arrangement of the vortices), are considered for further study. The vortices in the wake are characterized in terms of their strength, size, and spacing using phase-averaged MTV results. The circulation of the vortices are shown to collapse for both rigid and flexible airfoils when plotted against Stte. The actual trailing edge displacement is used as a length scale to normalize the transverse and streamwise spacing, and the vortex core size. These measurements also now collapse when plotted against Stte across oscillation amplitude for both the rigid and flexible airfoils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Chih-Hao; Dong, Xue-Hui; Lin, Zhiwei
2015-12-03
The self-assembly behaviors of specifically designed giant surfactants are systematically studied in thin films using grazing incident X-ray and transmission electron microscopy (TEM), focusing on the effects of head surface functionalities and molecular architectures on nanostructure formation. Two molecular nanoparticles (MNPs) with different affinities, i.e., hydrophilic carboxylic acid functionalized [60]fullerene (AC60) and omniphobic fluorinated polyhedral oligomeric silsesquioxane (FPOSS), are utilized as heads of the giant surfactants. By covalently tethering these functional MNPs onto the chain end or the junction point of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer, linear and star-like giant surfactants possess distinct molecular architectures are constructed. With fixed lengthmore » of the PEO block, the molecular weight change of the PS block originates the phase formation and transition. Due to the distinct affinity, the AC60-based giant surfactants form two-component morphologies, while three-component morphologies are found in the FPOSS-based ones. A PS block stretching parameter is introduced to characterize the PS chain conformation in different morphologies. The highly diverse self-assembly behaviors and the tunable dimensions in thin films suggest the giant surfactants could be a promising and robust platform for nanolithography applications.« less
Shearfree cylindrical gravitational collapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Prisco, A.; Herrera, L.; MacCallum, M. A. H.
2009-09-15
We consider diagonal cylindrically symmetric metrics, with an interior representing a general nonrotating fluid with anisotropic pressures. An exterior vacuum Einstein-Rosen spacetime is matched to this using Darmois matching conditions. We show that the matching conditions can be explicitly solved for the boundary values of metric components and their derivatives, either for the interior or exterior. Specializing to shearfree interiors, a static exterior can only be matched to a static interior, and the evolution in the nonstatic case is found to be given in general by an elliptic function of time. For a collapsing shearfree isotropic fluid, only a Robertson-Walkermore » dust interior is possible, and we show that all such cases were included in Cocke's discussion. For these metrics, Nolan and Nolan have shown that the matching breaks down before collapse is complete, and Tod and Mena have shown that the spacetime is not asymptotically flat in the sense of Berger, Chrusciel, and Moncrief. The issues about energy that then arise are revisited, and it is shown that the exterior is not in an intrinsic gravitational or superenergy radiative state at the boundary.« less
Molecular genetic heterogeneity in undifferentiated endometrial carcinomas.
Rosa-Rosa, Juan M; Leskelä, Susanna; Cristóbal-Lana, Eva; Santón, Almudena; López-García, Ma Ángeles; Muñoz, Gloria; Pérez-Mies, Belen; Biscuola, Michele; Prat, Jaime; Esther, Oliva E; Soslow, Robert A; Matias-Guiu, Xavier; Palacios, Jose
2016-11-01
Undifferentiated and dedifferentiated endometrial carcinomas are rare and highly aggressive subtypes of uterine cancer, not well characterized at a molecular level. To investigate whether dedifferentiated carcinomas carry molecular genetic alterations similar to those of pure undifferentiated carcinomas, and to gain insight into the pathogenesis of these tumors, we selected a cohort of 18 undifferentiated endometrial carcinomas, 8 of them with a well-differentiated endometrioid carcinoma component (dedifferentiated endometrioid carcinomas), and studied them by immunohistochemistry and massive parallel and Sanger sequencing. Whole-exome sequencing of the endometrioid and undifferentiated components, as well as normal myometrium, was also carried out in one case. According to The Cancer Genome Atlas classification, we distributed 95% of the undifferentiated carcinomas in this series as follows: (a) hypermutated tumors with loss of any mismatch repair protein expression and microsatellite instability (eight cases, 45%); (b) ultramutated carcinomas carrying mutations in the exonuclease domain of POLE (two cases, 11%); (c) high copy number alterations (copy-number high) tumors group exhibiting only TP53 mutations and high number of alterations detected by FISH (two cases, 11%); and (d) low copy number alterations (copy-number low) tumors with molecular alterations typical of endometrioid endometrial carcinomas (five cases, 28%). Two of the latter cases, however, also had TP53 mutations and higher number of alterations detected by FISH and could have progressed to a copy-number high phenotype. Most dedifferentiated carcinomas belonged to the hypermutated group, whereas pure undifferentiated carcinomas shared molecular genetic alterations with copy-number low or copy-number high tumors. These results indicate that undifferentiated and dedifferentiated endometrial carcinomas are molecularly heterogeneous tumors, which may have prognostic value.
Molecular genetic heterogeneity in undifferentiated endometrial carcinomas
Rosa-Rosa, J.M.; Leskelä, S.; Cristóbal-Lana, E.; Santón, A.; López-García, M.A.; Muñoz, G.; Pérez-Mies, B.; Biscuola, M; Prat, J.; Oliva, E.; Soslow, R.A.; Matias-Guiu, X.; Palacios, J.
2017-01-01
Undifferentiated and dedifferentiated endometrial carcinomas are rare and highly aggressive subtypes of uterine cancer, not well characterized at a molecular level. To investigate whether dedifferentiated carcinomas carry molecular genetic alterations similar to those of pure undifferentiated carcinomas, and to gain insight into the pathogenesis of these tumours, we selected a cohort of 18 undifferentiated endometrial carcinomas, 8 of them with a well differentiated endometrioid carcinoma component (dedifferentiated endometrioid carcinomas), and studied them by immunohistochemistry and massive parallel and Sanger sequencing. Whole exome sequencing of the endometrioid and undifferentiated components as well as normal myometrium, was also carried out in one case. According to The Cancer Genome Atlas classification, we distributed 95% of the undifferentiated carcinomas in this series as follows: a) hypermutated tumours with loss of any mismatch repair protein expression and microsatellite instability (eight cases, 45%); b) ultramutated carcinomas carrying mutations in the exonuclease domain of POLE (two cases, 11%); c) high copy number alterations (copy-number high) tumours group exhibiting only TP53 mutations and high number of alterations detected by FISH (two cases, 11%) ; and d) low copy number alterations (copy-number low) tumours with molecular alterations typical of endometrioid endometrial carcinomas (five cases, 28%). Two of the latter cases, however, also had TP53 mutations and higher number of alterations detected by FISH and could have progressed to a copy-number high phenotype. Most dedifferentiated carcinomas belonged to the hypermutated group whereas pure undifferentiated carcinomas shared molecular genetic alterations with copy-number low or copy-number high tumours. These results indicate that undifferentiated and dedifferentiated endometrial carcinomas are molecularly heterogeneous tumours, which may have prognostic value. PMID:27491810
NASA Astrophysics Data System (ADS)
Jough, Fooad Karimi Ghaleh; Şensoy, Serhan
2016-12-01
Different performance levels may be obtained for sideway collapse evaluation of steel moment frames depending on the evaluation procedure used to handle uncertainties. In this article, the process of representing modelling uncertainties, record to record (RTR) variations and cognitive uncertainties for moment resisting steel frames of various heights is discussed in detail. RTR uncertainty is used by incremental dynamic analysis (IDA), modelling uncertainties are considered through backbone curves and hysteresis loops of component, and cognitive uncertainty is presented in three levels of material quality. IDA is used to evaluate RTR uncertainty based on strong ground motion records selected by the k-means algorithm, which is favoured over Monte Carlo selection due to its time saving appeal. Analytical equations of the Response Surface Method are obtained through IDA results by the Cuckoo algorithm, which predicts the mean and standard deviation of the collapse fragility curve. The Takagi-Sugeno-Kang model is used to represent material quality based on the response surface coefficients. Finally, collapse fragility curves with the various sources of uncertainties mentioned are derived through a large number of material quality values and meta variables inferred by the Takagi-Sugeno-Kang fuzzy model based on response surface method coefficients. It is concluded that a better risk management strategy in countries where material quality control is weak, is to account for cognitive uncertainties in fragility curves and the mean annual frequency.
LAD Dissertation Prize Talk: Molecular Collisional Excitation in Astrophysical Environments
NASA Astrophysics Data System (ADS)
Walker, Kyle M.
2017-06-01
While molecular excitation calculations are vital in determining particle velocity distributions, internal state distributions, abundances, and ionization balance in gaseous environments, both theoretical calculations and experimental data for these processes are lacking. Reliable molecular collisional data with the most abundant species - H2, H, He, and electrons - are needed to probe material in astrophysical environments such as nebulae, molecular clouds, comets, and planetary atmospheres. However, excitation calculations with the main collider, H2, are computationally expensive and therefore various approximations are used to obtain unknown rate coefficients. The widely-accepted collider-mass scaling approach is flawed, and alternate scaling techniques based on physical and mathematical principles are presented here. The most up-to-date excitation data are used to model the chemical evolution of primordial species in the Recombination Era and produce accurate non-thermal spectra of the molecules H2+, HD, and H2 in a primordial cloud as it collapses into a first generation star.
NASA Astrophysics Data System (ADS)
Buyco, K.; Heaton, T. H.
2016-12-01
Current U.S. seismic code and performance-based design recommendations quantify ground motion intensity using 5%-damped spectral acceleration when estimating the collapse vulnerability of buildings. This intensity measure works well for predicting inter-story drift due to moderate shaking, but other measures have been shown to be better for estimating collapse risk.We propose using highly-damped (>10%) spectral acceleration to assess collapse vulnerability. As damping is increased, the spectral acceleration at a given period T begins to behave like a weighted average of the corresponding lowly-damped (i.e. 5%) spectrum at a range of periods. Weights for periods longer than T increase as damping increases. Using high damping is physically intuitive for two reasons. Firstly, ductile buildings dissipate a large amount of hysteretic energy before collapse and thus behave more like highly-damped systems. Secondly, heavily damaged buildings experience period-lengthening, giving further credence to the weighted-averaging property of highly-damped spectral acceleration.To determine the optimal damping value(s) for this ground motion intensity measure, we conduct incremental dynamic analysis for a suite of ground motions on several different mid-rise steel buildings and select the damping value yielding the lowest dispersion of intensity at the collapse threshold. Spectral acceleration calculated with damping as high as 70% has been shown to be a better indicator of collapse than that with 5% damping.
NASA Astrophysics Data System (ADS)
Mourhatch, Ramses
This thesis examines collapse risk of tall steel braced frame buildings using rupture-to-rafters simulations due to suite of San Andreas earthquakes. Two key advancements in this work are the development of (i) a rational methodology for assigning scenario earthquake probabilities and (ii) an artificial correction-free approach to broadband ground motion simulation. The work can be divided into the following sections: earthquake source modeling, earthquake probability calculations, ground motion simulations, building response, and performance analysis. As a first step the kinematic source inversions of past earthquakes in the magnitude range of 6-8 are used to simulate 60 scenario earthquakes on the San Andreas fault. For each scenario earthquake a 30-year occurrence probability is calculated and we present a rational method to redistribute the forecast earthquake probabilities from UCERF to the simulated scenario earthquake. We illustrate the inner workings of the method through an example involving earthquakes on the San Andreas fault in southern California. Next, three-component broadband ground motion histories are computed at 636 sites in the greater Los Angeles metropolitan area by superposing short-period (0.2s-2.0s) empirical Green's function synthetics on top of long-period (> 2.0s) spectral element synthetics. We superimpose these seismograms on low-frequency seismograms, computed from kinematic source models using the spectral element method, to produce broadband seismograms. Using the ground motions at 636 sites for the 60 scenario earthquakes, 3-D nonlinear analysis of several variants of an 18-story steel braced frame building, designed for three soil types using the 1994 and 1997 Uniform Building Code provisions and subjected to these ground motions, are conducted. Model performance is classified into one of five performance levels: Immediate Occupancy, Life Safety, Collapse Prevention, Red-Tagged, and Model Collapse. The results are combined with the 30-year probability of occurrence of the San Andreas scenario earthquakes using the PEER performance based earthquake engineering framework to determine the probability of exceedance of these limit states over the next 30 years.
Riediker, Michael; Devlin, Robert B; Griggs, Thomas R; Herbst, Margaret C; Bromberg, Philip A; Williams, Ronald W; Cascio, Wayne E
2004-01-01
Background Exposure to fine particulate matter air pollutants (PM2.5) affects heart rate variability parameters, and levels of serum proteins associated with inflammation, hemostasis and thrombosis. This study investigated sources potentially responsible for cardiovascular and hematological effects in highway patrol troopers. Results Nine healthy young non-smoking male troopers working from 3 PM to midnight were studied on four consecutive days during their shift and the following night. Sources of in-vehicle PM2.5 were identified with variance-maximizing rotational principal factor analysis of PM2.5-components and associated pollutants. Two source models were calculated. Sources of in-vehicle PM2.5 identified were 1) crustal material, 2) wear of steel automotive components, 3) gasoline combustion, 4) speed-changing traffic with engine emissions and brake wear. In one model, sources 1 and 2 collapsed to a single source. Source factors scores were compared to cardiac and blood parameters measured ten and fifteen hours, respectively, after each shift. The "speed-change" factor was significantly associated with mean heart cycle length (MCL, +7% per standard deviation increase in the factor score), heart rate variability (+16%), supraventricular ectopic beats (+39%), % neutrophils (+7%), % lymphocytes (-10%), red blood cell volume MCV (+1%), von Willebrand Factor (+9%), blood urea nitrogen (+7%), and protein C (-11%). The "crustal" factor (but not the "collapsed" source) was associated with MCL (+3%) and serum uric acid concentrations (+5%). Controlling for potential confounders had little influence on the effect estimates. Conclusion PM2.5 originating from speed-changing traffic modulates the autonomic control of the heart rhythm, increases the frequency of premature supraventricular beats and elicits pro-inflammatory and pro-thrombotic responses in healthy young men. PMID:15813985
Riediker, Michael; Devlin, Robert B; Griggs, Thomas R; Herbst, Margaret C; Bromberg, Philip A; Williams, Ronald W; Cascio, Wayne E
2004-12-09
BACKGROUND: Exposure to fine particulate matter air pollutants (PM2.5) affects heart rate variability parameters, and levels of serum proteins associated with inflammation, hemostasis and thrombosis. This study investigated sources potentially responsible for cardiovascular and hematological effects in highway patrol troopers. RESULTS: Nine healthy young non-smoking male troopers working from 3 PM to midnight were studied on four consecutive days during their shift and the following night. Sources of in-vehicle PM2.5 were identified with variance-maximizing rotational principal factor analysis of PM2.5-components and associated pollutants. Two source models were calculated. Sources of in-vehicle PM2.5 identified were 1) crustal material, 2) wear of steel automotive components, 3) gasoline combustion, 4) speed-changing traffic with engine emissions and brake wear. In one model, sources 1 and 2 collapsed to a single source. Source factors scores were compared to cardiac and blood parameters measured ten and fifteen hours, respectively, after each shift. The "speed-change" factor was significantly associated with mean heart cycle length (MCL, +7% per standard deviation increase in the factor score), heart rate variability (+16%), supraventricular ectopic beats (+39%), % neutrophils (+7%), % lymphocytes (-10%), red blood cell volume MCV (+1%), von Willebrand Factor (+9%), blood urea nitrogen (+7%), and protein C (-11%). The "crustal" factor (but not the "collapsed" source) was associated with MCL (+3%) and serum uric acid concentrations (+5%). Controlling for potential confounders had little influence on the effect estimates. CONCLUSION: PM2.5 originating from speed-changing traffic modulates the autonomic control of the heart rhythm, increases the frequency of premature supraventricular beats and elicits pro-inflammatory and pro-thrombotic responses in healthy young men.
NASA Astrophysics Data System (ADS)
Yan, Yangqian; Blume, D.
2016-06-01
The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b4 of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b4 , our b4 agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions.
Weighting of topologically different interactions in a model of two-dimensional polymer collapse.
Bedini, Andrea; Owczarek, Aleksander L; Prellberg, Thomas
2013-01-01
We study by computer simulation a recently introduced generalized model of self-interacting self-avoiding trails on the square lattice that distinguishes two topologically different types of self-interaction: namely, crossings where the trail passes across itself and collisions where the lattice path visits the same site without crossing. This model generalizes the canonical interacting self-avoiding trail model of polymer collapse, which has a strongly divergent specific heat at its transition point. We confirm the recent prediction that the asymmetry does not affect the universality class for a range of asymmetry. Certainly, where the weighting of collisions outweighs that of crossings this is well supported numerically. When crossings are weighted heavily relative to collisions, the collapse transition reverts to the canonical θ-point-like behavior found in interacting self-avoiding walks.
Star-Forming Clouds Feed, Churn, and Fall
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-12-01
Molecular clouds, the birthplaces of stars in galaxies throughout the universe, are complicated and dynamic environments. A new series of simulations has explored how these clouds form, grow, and collapse over their lifetimes.This composite image shows part of the Taurus Molecular Cloud. [ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized Sky Survey]Stellar BirthplacesMolecular clouds form out of the matter in between stars, evolving through constant interactions with their turbulent environments. These interactions taking the form of accretion flows and surface forces, while gravity, turbulence, and magnetic fields interplay are thought to drive the properties and evolution of the clouds.Our understanding of the details of this process, however, remains fuzzy. How does mass accretion affect these clouds as they evolve? What happens when nearby supernova explosions blast the outsides of the clouds? What makes the clouds churn, producing the motion within them that prevents them from collapsing? The answers to these questions can tellus about the gas distributed throughout galaxies, revealing information about the environments in which stars form.A still from the simulation results showing the broader population of molecular clouds that formed in the authors simulations, as well as zoom-in panels of three low-mass clouds tracked in high resolution. [Ibez-Meja et al. 2017]Models of TurbulenceIn a new study led by Juan Ibez-Meja (MPI Garching and Universities of Heidelberg and Cologne in Germany, and American Museum of Natural History), scientists have now explored these questions using a series of three-dimensional simulations of a population of molecular clouds forming and evolving in the turbulent interstellar medium.The simulations take into account a whole host of physics, including the effects of nearby supernova explosions, self-gravitation, magnetic fields, diffuse heating, and radiative cooling. After looking at the behavior of the broader population of clouds, the authors zoom in and explore three clouds in high-resolution to learn more about the details.Watching Clouds EvolveIbez-Meja and collaborators find that mass accretion occurring after the molecular clouds form plays an important role in the clouds evolution, increasing the mass available to form stars and carrying kinetic energy into the cloud. The accretion process is driven both by background turbulent flows and gravitational attraction as the cloud draws in the gas in its nearby environment.Plots of the cloud mass and radius (top) and mass accretion rate (bottom) for one of the three zoomed-in clouds, shown as a function of time over the 10-Myr simulation. [Adapted from Ibez-Meja et al. 2017]The simulations show that nearby supernovae have two opposing effects on a cloud. On one hand, the blast waves from supernovae compress the envelope of the cloud, increasing the instantaneous rate of accretion. On the other hand, the blast waves disrupt parts of the envelope and erode mass from the clouds surface, decreasing accretion overall. These events ensure that the mass accretion rate of molecular clouds is non-uniform, regularly punctuated by sporadic increases and decreases as the clouds are battered by nearby explosions.Lastly, Ibez-Meja and collaborators show that mass accretion alone isnt enough to power the turbulent internal motions we observe inside molecular clouds. Instead, they conclude, the cloud motions must be primarily powered by gravitational potential energy being converted into kinetic energy as the cloud contracts.The authors simulations therefore show that molecular clouds exist in a state of precarious balance, prevented from collapsing by internal turbulence driven by interactions with their environment and by their own contraction. These results give us an intriguing glimpse into the complex environments in which stars are born.BonusCheck out the animated figure below, which displays how the clouds in the authors simulations evolve over the span of 10 million years.http://cdn.iopscience.com/images/0004-637X/850/1/62/Full/apjaa93fef1_video.mp4CitationJuan C. Ibez-Meja et al 2017 ApJ 850 62. doi:10.3847/1538-4357/aa93fe
Protein collapse is encoded in the folded state architecture.
Samanta, Himadri S; Zhuravlev, Pavel I; Hinczewski, Michael; Hori, Naoto; Chakrabarti, Shaon; Thirumalai, D
2017-05-21
Folded states of single domain globular proteins are compact with high packing density. The radius of gyration, R g , of both the folded and unfolded states increase as N ν where N is the number of amino acids in the protein. The values of the Flory exponent ν are, respectively, ≈⅓ and ≈0.6 in the folded and unfolded states, coinciding with those for homopolymers. However, the extent of compaction of the unfolded state of a protein under low denaturant concentration (collapsibility), conditions favoring the formation of the folded state, is unknown. We develop a theory that uses the contact map of proteins as input to quantitatively assess collapsibility of proteins. Although collapsibility is universal, the propensity to be compact depends on the protein architecture. Application of the theory to over two thousand proteins shows that collapsibility depends not only on N but also on the contact map reflecting the native structure. A major prediction of the theory is that β-sheet proteins are far more collapsible than structures dominated by α-helices. The theory and the accompanying simulations, validating the theoretical predictions, provide insights into the differing conclusions reached using different experimental probes assessing the extent of compaction of proteins. By calculating the criterion for collapsibility as a function of protein length we provide quantitative insights into the reasons why single domain proteins are small and the physical reasons for the origin of multi-domain proteins. Collapsibility of non-coding RNA molecules is similar β-sheet proteins structures adding support to "Compactness Selection Hypothesis".
NASA Technical Reports Server (NTRS)
Minton, Timothy K.; Moore, Teresa A.
1995-01-01
Mass spectra of products emerging from identical samples of a C-13-enriched polyimide polymer (chemically equivalent to Kapton) under atomic oxygen bombardment in space and in the laboratory were collected. Reaction products unambiguously detected in space were CO-13, NO, (12)CO2, and (13)CO2. These reaction products and two others, H2O and CO-12, were detected in the laboratory, along with inelastically scattered atomic and molecular oxygen. Qualitative agreement was seen in the mass spectra taken in space and in the laboratory; the agreement may be improved by reducing the fraction of O2 in the laboratory molecular beam. Both laboratory and space data indicated that CO and CO2 products come preferentially from reaction with the imide component of the polymer chain, raising the possibility that the either component may degrade in part by the 'evaporation' of higher molecular weight fragments. Laboratory time-of-flight distributions showed: (1) incomplete energy accommodation of impinging O and O2 species that do not react with the surface; and (2) both hyperthermal and thermal CO and CO2 products, suggesting two distinct reaction mechanisms with the surface.
NASA Astrophysics Data System (ADS)
Khan, Suhail; Khan, Muhammad Shoaib; Ali, Amjad
2018-04-01
In this paper, our aim is to study (n + 2)-dimensional collapse of perfect fluid spherically symmetric spacetime in the context of f(R, T) gravity. The matching conditions are acquired by considering a spherically symmetric non-static (n + 2)-dimensional metric in the inner region and Schwarzschild (n + 2)-dimensional metric in the outer region of the star. To solve the field equations for above settings in f(R, T) gravity, we choose the stress-energy tensor trace and the Ricci scalar as constants. It is observed that two physical horizons, namely, cosmological and black hole horizons appear as a consequence of this collapse. A singularity is also formed after the birth of both the horizons. It is also observed that the term f(R0, T0) slows down the collapsing process.
Strand, E; Fjordbakk, C T; Sundberg, K; Spangen, L; Lunde, H; Hanche-Olsen, S
2012-09-01
Two genetically and phenotypically distinct horse breeds are used for harness racing in Scandinavia: the Standardbred (SB) and Coldblooded Trotter. These racehorses have identical environmental, management and racing conditions. Therefore, this study was undertaken to identify and compare the relative prevalence of upper respiratory tract (URT) obstructive disorders in these 2 breeds. To determine whether these 2 phenotypically different breeds of harness racehorses have different predispositions for URT disorders. Retrospective study of 88 Norwegian Coldblooded Trotters (NCT) and 97 SBs referred to this hospital for URT evaluation between 1998 and 2006. Case records of all horses diagnosed with an URT disorder during resting endoscopy, and all horses undergoing high-speed treadmill videoendoscopy (HSTV) with one or more periods of induced poll flexion were evaluated. The relative prevalence of URT disorders between the 2 breeds was analysed using a Fisher's exact test. There was a significant (P<0.05) breed predisposition regarding 6 URT disorders. Bilateral dynamic laryngeal collapse associated with poll flexion and flaccid epiglottis was significantly more frequent in the NCT. Alar fold collapse and nasopharyngeal collapse were significantly more frequent in SBs. Epiglottic entrapment and nasal flutter were only diagnosed in the SBs. Dynamic disorders were more common than resting disorders in both breeds. URT obstructive disorders (dynamic laryngeal collapse associated with poll flexion, flaccid epiglottis, pharyngeal collapse, alar fold collapse, nasal flutter and epiglottic entrapment) are breed related, indicating an anatomic or functional cause. Periods of induced poll flexion during HSTV was essential to declare harness racehorses free of URT disorders. Further anatomic or physiological studies comparing these breeds could potentially provide insight into the pathogenesis of certain URT obstructive disorders. Induced poll flexion should be included in routine HSTV examinations of all harness racehorses. © 2011 EVJ Ltd.
Revolution evolution: tracing angular momentum during star and planetary system formation
NASA Astrophysics Data System (ADS)
Davies, Claire Louise
2015-04-01
Stars form via the gravitational collapse of molecular clouds during which time the protostellar object contracts by over seven orders of magnitude. If all the angular momentum present in the natal cloud was conserved during collapse, stars would approach rotational velocities rapid enough to tear themselves apart within just a few Myr. In contrast to this, observations of pre-main sequence rotation rates are relatively slow (∼ 1 - 15 days) indicating that significant quantities of angular momentum must be removed from the star. I use observations of fully convective pre-main sequence stars in two well-studied, nearby regions of star formation (namely the Orion Nebula Cluster and Taurus-Auriga) to determine the removal rate of stellar angular momentum. I find the accretion disc-hosting stars to be rotating at a slower rate and contain less specific angular momentum than the disc-less stars. I interpret this as indicating a period of accretion disc-regulated angular momentum evolution followed by near-constant rotational evolution following disc dispersal. Furthermore, assuming that the age spread inferred from the Hertzsprung-Russell diagram constructed for the star forming region is real, I find that the removal rate of angular momentum during the accretion-disc hosting phase to be more rapid than that expected from simple disc-locking theory whereby contraction occurs at a fixed rotation period. This indicates a more efficient process of angular momentum removal must operate, most likely in the form of an accretion-driven stellar wind or outflow emanating from the star-disc interaction. The initial circumstellar envelope that surrounds a protostellar object during the earliest stages of star formation is rotationally flattened into a disc as the star contracts. An effective viscosity, present within the disc, enables the disc to evolve: mass accretes inwards through the disc and onto the star while momentum migrates outwards, forcing the outer regions of the disc to expand. I used spatially resolved submillimetre detections of the dust and gas components of protoplanetary discs, gathered from the literature, to measure the radial extent of discs around low-mass pre-main sequence stars of ∼ 1-10 Myr and probe their viscous evolution. I find no clear observational evidence for the radial expansion of the dust component. However, I find tentative evidence for the expansion ofthe gas component. This suggests that the evolution of the gas and dust components of protoplanetary discs are likely governed by different astrophysical processes. Observations of jets and outflows emanating from protostars and pre-main sequence stars highlight that it may also be possible to remove angular momentum from the circumstellar material. Using the sample of spatially resolved protoplanetary discs, I find no evidence for angular momentum removal during disc evolution. I also use the spatially resolved debris discs from the Submillimetre Common-User Bolometer Array-2 Observations of Nearby Stars survey to constrain the amount of angular momentum retained within planetary systems. This sample is compared to the protoplanetary disc angular momenta and to the angular momentum contained within pre-stellar cores. I find that significant quantities of angular momentum must be removed during disc formation and disc dispersal. This likely occurs via magnetic braking during the formation of the disc, via the launching of a disc or photo-evaporative wind, and/or via ejection of planetary material following dynamical interactions.
Living Clusters and Crystals from Low-Density Suspensions of Active Colloids
NASA Astrophysics Data System (ADS)
Mognetti, B. M.; Šarić, A.; Angioletti-Uberti, S.; Cacciuto, A.; Valeriani, C.; Frenkel, D.
2013-12-01
Recent studies aimed at investigating artificial analogs of bacterial colonies have shown that low-density suspensions of self-propelled particles confined in two dimensions can assemble into finite aggregates that merge and split, but have a typical size that remains constant (living clusters). In this Letter, we address the problem of the formation of living clusters and crystals of active particles in three dimensions. We study two systems: self-propelled particles interacting via a generic attractive potential and colloids that can move toward each other as a result of active agents (e.g., by molecular motors). In both cases, fluidlike “living” clusters form. We explain this general feature in terms of the balance between active forces and regression to thermodynamic equilibrium. This balance can be quantified in terms of a dimensionless number that allows us to collapse the observed clustering behavior onto a universal curve. We also discuss how active motion affects the kinetics of crystal formation.
NASA Astrophysics Data System (ADS)
Jeffreson, Sarah M. R.; Kruijssen, J. M. Diederik
2018-05-01
We propose a simple analytic theory for environmentally dependent molecular cloud lifetimes, based on the large-scale (galactic) dynamics of the interstellar medium. Within this theory, the cloud lifetime is set by the time-scales for gravitational collapse, galactic shear, spiral arm interactions, epicyclic perturbations, and cloud-cloud collisions. It is dependent on five observable quantities, accessible through measurements of the galactic rotation curve, the gas and stellar surface densities, and the gas and stellar velocity dispersions of the host galaxy. We determine how the relative importance of each dynamical mechanism varies throughout the space of observable galactic properties, and conclude that gravitational collapse and galactic shear play the greatest role in setting the cloud lifetime for the considered range of galaxy properties, while cloud-cloud collisions exert a much lesser influence. All five environmental mechanisms are nevertheless required to obtain a complete picture of cloud evolution. We apply our theory to the galaxies M31, M51, M83, and the Milky Way, and find a strong dependence of the cloud lifetime upon galactocentric radius in each case, with a typical cloud lifetime between 10 and 50 Myr. Our theory is ideally suited for systematic observational tests with the Atacama Large Millimetre/submillimetre array.
Harpel, C.J.; Kyle, P.R.; Esser, R.P.; McIntosh, W.C.; Caldwell, D.A.
2004-01-01
Eruptive activity has occurred in the summit region of Mount Erebus over the last 95 ky, and has included numerous lava flows and small explosive eruptions, at least one plinian eruption, and at least one and probably two caldera-forming events. Furnace and laser step-heating 40Ar/39Ar ages have been determined for 16 summit lava flows and three englacial tephra layers erupted from Mount Erebus. The summit region is composed of at least one or possibly two superimposed calderas that have been filled by post-caldera lava flows ranging in age from 17 ?? 8 to 1 ?? 5 ka. Dated pre-caldera summit flows display two age populations at 95 ?? 9 to 76 ?? 4 ka and 27 ?? 3 to 21 ??4 ka of samples with tephriphonolite and phonolite compositions, respectively. A caldera-collapse event occurred between 25 and 11 ka. An older caldera-collapse event is likely to have occurred between 80 and 24 ka. Two englacial tephra layers from the flanks of Mount Erebus have been dated at 71 ?? 5 and 15 ?? 4 ka. These layers stratigraphically bracket 14 undated tephra layers, and predate 19 undated tephra layers, indicating that small-scale explosive activity has occurred throughout the late Pleistocene and Holocene eruptive history of Mount Erebus. A distal, englacial plinian-fall tephra sample has an age of 39 ?? 6 ka and may have been associated with the older of the two caldera-collapse events. A shift in magma composition from tephriphonolite to phonolite occurred at around 36 ka. ?? Springer-Verlag 2004.
A philosophical argument against evidence-based policy.
Anjum, Rani Lill; Mumford, Stephen D
2017-10-01
Evidence-based medicine has two components. The methodological or ontological component consists of randomized controlled trials and their systematic review. This makes use of a difference-making conception of cause. But there is also a policy component that makes a recommendation for uniform intervention, based on the evidence from randomized controlled trials. The policy side of evidence-based medicine is basically a form of rule utilitarianism. But it is then subject to an objection from Smart that rule utilitarianism inevitably collapses. If one assumes (1) you should recommend the intervention that has brought most benefit (the core of evidence-based policy making), (2) individual variation (acknowledged by use of randomization) and (3) no intervention benefits all (contingent but true), then the objection can be brought to bear. A utility maximizer should always ignore the rule in an individual case where greater benefit can be secured through doing so. In the medical case, this would mean that a clinician who knows that a patient would not benefit from the recommended intervention has good reason to ignore the recommendation. This is indeed the feeling of many clinicians who would like to offer other interventions but for an aversion to breaking clinical guidelines. © 2016 John Wiley & Sons, Ltd.
Gao, Jianxi; Buldyrev, S V; Havlin, S; Stanley, H E
2012-06-01
Many real-world networks interact with and depend upon other networks. We develop an analytical framework for studying a network formed by n fully interdependent randomly connected networks, each composed of the same number of nodes N. The dependency links connecting nodes from different networks establish a unique one-to-one correspondence between the nodes of one network and the nodes of the other network. We study the dynamics of the cascades of failures in such a network of networks (NON) caused by a random initial attack on one of the networks, after which a fraction p of its nodes survives. We find for the fully interdependent loopless NON that the final state of the NON does not depend on the dynamics of the cascades but is determined by a uniquely defined mutual giant component of the NON, which generalizes both the giant component of regular percolation of a single network (n=1) and the recently studied case of the mutual giant component of two interdependent networks (n=2). We also find that the mutual giant component does not depend on the topology of the NON and express it in terms of generating functions of the degree distributions of the network. Our results show that, for any n≥2 there exists a critical p=p(c)>0 below which the mutual giant component abruptly collapses from a finite nonzero value for p≥p(c) to zero for p
2, a RR NON is stable for any n with p(c)<1). This results arises from the critical role played by singly connected nodes which exist in an ER NON and enhance the cascading failures, but do not exist in a RR NON.
NASA Astrophysics Data System (ADS)
Torii, Kazufumi; Fujita, Shinji; Matsuo, Mitsuhiro; Nishimura, Atsushi; Kohno, Mikito; Kuriki, Mika; Tsuda, Yuya; Minamidani, Tetsuhiro; Umemoto, Tomofumi; Kuno, Nario; Hattori, Yusuke; Yoshiike, Satoshi; Ohama, Akio; Tachihara, Kengo; Shima, Kazuhiro; Habe, Asao; Fukui, Yasuo
2018-05-01
We report an observational study of the giant molecular cloud (GMC) associated with the Galactic infrared ring-like structure N35 and two nearby H II regions G024.392+00.072 (H II region A) and G024.510-00.060 (H II region B), using the new CO J = 1-0 data obtained as a part of the FOREST Unbiased Galactic Plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) project at a spatial resolution of 21″. Our CO data reveals that the GMC, with a total molecular mass of 2.1 × 106 M⊙, has two velocity components of over ˜10-15 km s-1. The majority of molecular gas in the GMC is included in the lower-velocity component (LVC) at ˜110-114 km s-1, while the higher-velocity components (HVCs) at ˜118-126 km s-1 consist of three smaller molecular clouds which are located near the three H II regions. The LVC and HVCs show spatially complementary distributions along the line-of-sight, despite large velocity separations of ˜5-15 km s-1, and are connected in velocity by the CO emission with intermediate intensities. By comparing the observations with simulations, we discuss a scenario where collisions of the three HVCs with the LVC at velocities of ˜10-15 km s-1 can provide an interpretation of these two observational signatures. The intermediate-velocity features between the LVC and HVCs can be understood as broad bridge features, which indicate the turbulent motion of the gas at the collision interfaces, while the spatially complementary distributions represent the cavities created in the LVC by the HVCs through the collisions. Our model indicates that the three H II regions were formed after the onset of the collisions, and it is therefore suggested that the high-mass star formation in the GMC was triggered by the collisions.
Nonlinear evolution of magnetic flux ropes. I - Low-beta limit
NASA Technical Reports Server (NTRS)
Osherovich, V. A.; Farrugia, C. J.; Burlaga, L. F.
1993-01-01
We study the nonlinear self-similar evolution of a cylindrical magnetic flux tube with two components of the magnetic field, axial and azimuthal. We restrict ourselves to the case of a plasma of low beta. Introducing a special class of configurations we call 'separable fields', we reduce the problem to an ordinary differential equation. Two cases are to be distinguished: (1) when the total field minimizes on the symmetry axis, the magnetic configuration inexorably collapses, and (2) when, on the other hand, the total field maximizes on the symmetry axis, the magnetic configuration behaves analogously to a nonlinear oscillator. Here we focus on the latter case. The effective potential of the motion contains two terms: a strong repulsive term and a weak restoring term associated with the pinch. We solve the nonlinear differential equation of motion numerically and find that the period of oscillations grows exponentially with the energy of the oscillator. Our treatment emphasizes the role of the force-free configuration as the lowest potential energy state about which the system oscillates.
Ni, Xiao Yu; Drengstig, Tormod; Ruoff, Peter
2009-09-02
Organisms have the property to adapt to a changing environment and keep certain components within a cell regulated at the same level (homeostasis). "Perfect adaptation" describes an organism's response to an external stepwise perturbation by regulating some of its variables/components precisely to their original preperturbation values. Numerous examples of perfect adaptation/homeostasis have been found, as for example, in bacterial chemotaxis, photoreceptor responses, MAP kinase activities, or in metal-ion homeostasis. Two concepts have evolved to explain how perfect adaptation may be understood: In one approach (robust perfect adaptation), the adaptation is a network property, which is mostly, but not entirely, independent of rate constant values; in the other approach (nonrobust perfect adaptation), a fine-tuning of rate constant values is needed. Here we identify two classes of robust molecular homeostatic mechanisms, which compensate for environmental variations in a controlled variable's inflow or outflow fluxes, and allow for the presence of robust temperature compensation. These two classes of homeostatic mechanisms arise due to the fact that concentrations must have positive values. We show that the concept of integral control (or integral feedback), which leads to robust homeostasis, is associated with a control species that has to work under zero-order flux conditions and does not necessarily require the presence of a physico-chemical feedback structure. There are interesting links between the two identified classes of homeostatic mechanisms and molecular mechanisms found in mammalian iron and calcium homeostasis, indicating that homeostatic mechanisms may underlie similar molecular control structures.
1992-01-01
collapse, levee breaks, islands disappearing and others appearing are prominent in the accounts of people on or near rivers. Reelfoot Lake in western...components. Site 3MS346 also contained an Early Mississippi period, Big Lake phase component. At 3CG847, Early Mississippi period material recovered included...in 1967, Morse (1968) studied part of the Big Lake Wildlife Refuge in advance of pending efforts to widen a drainage channel there. As a result, the
40 CFR 265.192 - Design and installation of new tank systems or components.
Code of Federal Regulations, 2010 CFR
2010-07-01
... stored or treated, and corrosion protection so that it will not collapse, rupture, or fail. The owner or... tank system is or will be in contact with the soil or with water, a determination by a corrosion expert of: (i) Factors affecting the potential for corrosion, including but not limited to: (A) Soil...
Ultrasoft microgels displaying emergent platelet-like behaviours
NASA Astrophysics Data System (ADS)
Brown, Ashley C.; Stabenfeldt, Sarah E.; Ahn, Byungwook; Hannan, Riley T.; Dhada, Kabir S.; Herman, Emily S.; Stefanelli, Victoria; Guzzetta, Nina; Alexeev, Alexander; Lam, Wilbur A.; Lyon, L. Andrew; Barker, Thomas H.
2014-12-01
Efforts to create platelet-like structures for the augmentation of haemostasis have focused solely on recapitulating aspects of platelet adhesion; more complex platelet behaviours such as clot contraction are assumed to be inaccessible to synthetic systems. Here, we report the creation of fully synthetic platelet-like particles (PLPs) that augment clotting in vitro under physiological flow conditions and achieve wound-triggered haemostasis and decreased bleeding times in vivo in a traumatic injury model. PLPs were synthesized by combining highly deformable microgel particles with molecular-recognition motifs identified through directed evolution. In vitro and in silico analyses demonstrate that PLPs actively collapse fibrin networks, an emergent behaviour that mimics in vivo clot contraction. Mechanistically, clot collapse is intimately linked to the unique deformability and affinity of PLPs for fibrin fibres, as evidenced by dissipative particle dynamics simulations. Our findings should inform the future design of a broader class of dynamic, biosynthetic composite materials.
Corresponding states law for a generalized Lennard-Jones potential.
Orea, P; Romero-Martínez, A; Basurto, E; Vargas, C A; Odriozola, G
2015-07-14
It was recently shown that vapor-liquid coexistence densities derived from Mie and Yukawa models collapse to define a single master curve when represented against the difference between the reduced second virial coefficient at the corresponding temperature and that at the critical point. In this work, we further test this proposal for another generalization of the Lennard-Jones pair potential. This is carried out for vapor-liquid coexistence densities, surface tension, and vapor pressure, along a temperature window set below the critical point. For this purpose, we perform molecular dynamics simulations by varying the potential softness parameter to produce from very short to intermediate attractive ranges. We observed all properties to collapse and yield master curves. Moreover, the vapor-liquid curve is found to share the exact shape of the Mie and attractive Yukawa. Furthermore, the surface tension and the logarithm of the vapor pressure are linear functions of this difference of reduced second virial coefficients.
Regimes of electrostatic collapse of a highly charged polyelectrolyte in a poor solvent.
Tom, Anvy Moly; Vemparala, Satyavani; Rajesh, R; Brilliantov, Nikolai V
2017-03-01
We perform extensive molecular dynamics simulations of a highly charged, collapsed, flexible polyelectrolyte chain in a poor solvent for the case when the electrostatic interactions, characterized by the reduced Bjerrum length l B , are strong. We find the existence of several sub-regimes in the dependence of the gyration radius of the chain R g on l B characterized by R g ∼ l. In contrast to a good solvent, the exponent γ for a poor solvent crucially depends on the size and valency of the counterions. To explain the different sub-regimes, we generalize the existing counterion fluctuation theory by including a more complete account of all possible volume interactions in the free energy of the polyelectrolyte chain. We also show that the presence of condensed counterions modifies the effective attraction among the chain monomers and modulates the sign of the second virial coefficient under poor solvent conditions.
NASA Astrophysics Data System (ADS)
Cremer, Michael; Scholer, Manfred
2000-12-01
The kinetic structure of the reconnection layer in the magnetotail is investigated by two-dimensional hybrid simulations. As a proxy, the solution of the Riemann problem of the collapse of a current sheet with a normal magnetic field component is considered for two cases of the plasma beta (particle to magnetic field pressure): β=0.02 and β=0.002. The collapse results in an expanding layer of compressed and heated plasma, which is accelerated up to the Alfvén speed vA. The boundary layer separating this hot reconnection like layer from the cold lobe plasma is characterized by a beam of back-streaming ions with a field-aligned bulk speed of ~=2vA relative to the cold lobe ion population at rest. As a consequence, obliquely propagating waves are excited via the electromagnetic ion/ion cyclotron instability, which led to perpendicular heating of the ions in the boundary layer as well as further outside the layer in the lobe. In both regions, waves are found which propagate almost parallel to the magnetic field and which are identified as Alfvén ion cyclotron (AIC) waves. These waves are excited by the temperature anisotropy instability. The temperature anisotropy increases with decreasing plasma beta. Thus the anisotropy threshold of the instability is exceeded even in the case of a rather small beta value. The AIC waves, when convected downstream of what can be defined as the the slow shock, make an important contribution to the ion thermalization process. More detailed information on the dissipation process in the slow shocks is gained by analyzing individual ion trajectories.
Gas and dust in the star-forming region ρ Oph A. II. The gas in the PDR and in the dense cores
NASA Astrophysics Data System (ADS)
Larsson, B.; Liseau, R.
2017-12-01
Context. The evolution of interstellar clouds of gas and dust establishes the prerequisites for star formation. The pathway to the formation of stars can be studied in regions that have formed stars, but which at the same time also display the earliest phases of stellar evolution, i.e. pre-collapse/collapsing cores (Class -1), protostars (Class 0), and young stellar objects (Class I, II, III). Aims: We investigate to what degree local physical and chemical conditions are related to the evolutionary status of various objects in star-forming media. Methods: ρ Oph A displays the entire sequence of low-mass star formation in a small volume of space. Using spectrophotometric line maps of H2, H2O, NH3, N2H+, O2, O I, CO, and CS, we examine the distribution of the atomic and molecular gas in this dense molecular core. The physical parameters of these species are derived, as are their relative abundances in ρ Oph A. Using radiative transfer models, we examine the infall status of the cold dense cores from their resolved line profiles of the ground state lines of H2O and NH3, where for the latter no contamination from the VLA 1623 outflow is observed and line overlap of the hyperfine components is explicitly taken into account. Results: The stratified structure of this photon dominated region (PDR), seen edge-on, is clearly displayed. Polycyclic aromatic hydrocarbons (PAHs) and O I are seen throughout the region around the exciting star S 1. At the interface to the molecular core 0.05 pc away, atomic hydrogen is rapidly converted into H2, whereas O I protrudes further into the molecular core. This provides oxygen atoms for the gas-phase formation of O2 in the core SM 1, where X(O2) 5 × 10-8. There, the ratio of the O2 to H2O abundance [X(H2O) 5 × 10-9] is significantly higher than unity. Away from the core, O2 experiences a dramatic decrease due to increasing H2O formation. Outside the molecular core ρ Oph A, on the far side as seen from S 1, the intense radiation from the 0.5 pc distant early B-type star HD 147889 destroys the molecules. Conclusions: Towards the dark core SM 1, the observed abundance ratio X(O2)/X(H2O) > 1, which suggests that this object is extremely young, which would explain why O2 is such an elusive molecule outside the solar system. Based on observations with Herschel which is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.The data cubes of Figs. 3-10, 12, and A.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A133
Purification and characterization of tomato polygalacturonase converter.
Pressey, R
1984-10-15
Extracts of ripe tomatoes contain two forms of polygalacturonase (PG I and PG II). A heat-stable component that binds PG II to produce PG I has been isolated from tomato fruit. This component has been named polygalacturonase converter (PG converter). The PG converter has been purified by gel filtration, ion-exchange chromatography and chromatofocusing. It appears to be a protein with a relative molecular mass of 102000. It was readily inactivated by papain and pronase. The converter was labile at alkaline conditions, and treatment of PG I at pH 11 released free PG II. A similar factor with a lower molecular mass was extracted from tomato foliage.
Gravitational collapse of a turbulent vortex with application to star formation
NASA Technical Reports Server (NTRS)
Deissler, R. G.
1976-01-01
The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitational and rotational terms in the equations are of first order in the space variables, the pressure-gradient terms are of second order, and the turbulent-viscosity term is of third order. The presence of turbulent viscosity ensures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the initial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial flow is always inward and allows collapse to occur (axially) even when the rotation is large. An approximate solution of the governing partial differential equations is also given in order to study the spatial distributions of the density and velocity.
Gravitational collapse of a turbulent vortex with application to star formation
NASA Technical Reports Server (NTRS)
Deissler, R. G.
1975-01-01
The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitation and rotation terms in the equations are of first order in the space variables, the pressure gradient terms are of second order, and the turbulent viscosity term is of third order. The presence of a turbulent viscosity insures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the intial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial inflow plays an important role and allows collapse to occur even when the rotation is large. An approximate solution of the governing partial differential equations is also given, in order to study the spacial distributions of the density and velocity.
Interplay of Coil–Globule Transition and Surface Adsorption of a Lattice HP Protein Model
2015-01-01
An end-grafted hydrophobic-polar (HP) model protein chain with alternating H and P monomers is studied to examine interactions between the critical adsorption transition due to surface attraction and the collapse transition due to pairwise attractive H–H interactions. We find that the critical adsorption phenomenon can always be observed; however, the critical adsorption temperature TCAP is influenced by the attractive H–H interactions in some cases. When the collapse temperature Tc is lower than TCAP, the critical adsorption of the HP chain is similar to that of a homopolymer without intrachain attractions and TCAP remains unchanged, whereas the collapse transition is suppressed by the adsorption. In contrast, for cases where Tc is close to or higher than TCAP, TCAP of the HP chain is increased, indicating that a collapsed chain is more easily adsorbed on the surface. The strength of the H–H attraction also influences the statistical size and shape of the polymer, with strong H–H attractions resulting in adsorbed and collapsed chains adopting two-dimensional, circular conformations. PMID:25458556
Gravitational collapse of a turbulent vortex with application to star formation
NASA Technical Reports Server (NTRS)
Deissler, R. G.
1975-01-01
The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitation and rotation terms in the equations are of first order in the space variables, the pressure gradient terms are of second order, and the turbulent viscosity term is of third order. The presence of a turbulent viscosity insures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the initial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial inflow plays an important role and allows collapse to occur even when the rotation is large. An approximate solution of the governing partial differential equations is also given; the equations are used to study the spacial distributions of the density and velocity.
LISA pathfinder appreciably constrains collapse models
NASA Astrophysics Data System (ADS)
Helou, Bassam; Slagmolen, B. J. J.; McClelland, David E.; Chen, Yanbei
2017-04-01
Spontaneous collapse models are phenomological theories formulated to address major difficulties in macroscopic quantum mechanics. We place significant bounds on the parameters of the leading collapse models, the continuous spontaneous localization (CSL) model, and the Diosi-Penrose (DP) model, by using LISA Pathfinder's measurement, at a record accuracy, of the relative acceleration noise between two free-falling macroscopic test masses. In particular, we bound the CSL collapse rate to be at most (2.96 ±0.12 ) ×10-8 s-1 . This competitive bound explores a new frequency regime, 0.7 to 20 mHz, and overlaps with the lower bound 10-8 ±2 s-1 proposed by Adler in order for the CSL collapse noise to be substantial enough to explain the phenomenology of quantum measurement. Moreover, we bound the regularization cutoff scale used in the DP model to prevent divergences to be at least 40.1 ±0.5 fm , which is larger than the size of any nucleus. Thus, we rule out the DP model if the cutoff is the size of a fundamental particle.
NASA Astrophysics Data System (ADS)
Dornbusch, Uwe
2015-02-01
This comment relates to the conclusion of the recently published paper that "This work challenges the established view by identifying the role of salt from seawater in the degradation of porous rocks in coastal environments as a third and potentially the most important mechanism leading to chalk cliff collapse." (Lawrence et al., 2013: 15). The 'established view' relates to "Traditionally, the two main factors leading to cliff collapse have been considered to be (i) waves attacking and eroding the base of the cliff […] and (ii) water weakening as the chalk becomes saturated […]." (Lawrence et al., 2013: 14). The particular aspect of the paper of making surface weakening the primary process has been picked up more widely following publication under the headlines 'Salt causes chalk cliffs to collapse' in Jarlett (2013), 'Salt makes chalk cliffs collapse' in NERC (2013) and in the web resource 'How does salt make chalk cliffs collapse?' from Leeds University (2013).
Subsidence and collapse sinkholes in soluble rock: a numerical perspective
NASA Astrophysics Data System (ADS)
Kaufmann, Georg; Romanov, Douchko; Hiller, Thomas
2016-04-01
Soluble rocks such as limestone, gypsum, anhydrite, and salt are prone to subsidence and the sudden creation of collapse sinkholes. The reason for this behaviour stems from the solubility of the rock: Water percolating through fissures and bedding partings can remove material from the rock walls and thus increase the permeability of the host rock by orders of magnitudes. This process occurs on time scales of 1,000-100,000 years, resulting in enlarged fractures, voids and cavities, which then carry flow efficiently through the rock. The enlargement of sub-surface voids to the meter-size within such short times creates mechanical conditions prone to collapse. The collapse initiates at depth, but then propagates to the surface. By means of numerical modelling, we discuss the long-term evolution of secondary porosity in gypsum rocks, resulting in zones of sub-surface voids, which then become mechanically unstable and collapse. We study two real-world case scenarios, in which we can relate field observations to our numerical model: (i) A dam-site scenario, where flow around the dam caused widespread dissolution of gypsum and subsequent subsidence of the dam and a nearby highway. (ii) A natural collapse sinkhole forming as a result of freshwater inflow into a shallow anhydrite formation with rapid evolution of voids in the sub-surface.
Multi-species collapses at the warm edge of a warming sea
Rilov, Gil
2016-01-01
Even during the current biodiversity crisis, reports on population collapses of highly abundant, non-harvested marine species were rare until very recently. This is starting to change, especially at the warm edge of species’ distributions where populations are more vulnerable to stress. The Levant basin is the southeastern edge of distribution of most Mediterranean species. Coastal water conditions are naturally extreme, and are fast warming, making it a potential hotspot for species collapses. Using multiple data sources, I found strong evidence for major, sustained, population collapses of two urchins, one large predatory gastropod and a reef-building gastropod. Furthermore, of 59 molluscan species once-described in the taxonomic literature as common on Levant reefs, 38 were not found in the present-day surveys, and there was a total domination of non-indigenous species in molluscan assemblages. Temperature trends indicate an exceptional warming of the coastal waters in the past three decades. Though speculative at this stage, the fast rise in SST may have helped pushing these invertebrates beyond their physiological tolerance limits leading to population collapses and possible extirpations. If so, these collapses may indicate the initiation of a multi-species range contraction at the Mediterranean southeastern edge that may spread westward with additional warming. PMID:27853237
[Collapsing variant of focal segmental glomerulosclerosis by parvovirus B19: case report].
Freitas, Geraldo Rubens Ramos de; Praxedes, Marcel Rodrigues Gurgel; Malheiros, Denise; Testagrossa, Leonardo; Dias, Cristiane Bitencourt; Woronik, Viktoria
2015-01-01
To describe the clinical and laboratory profile of focal segmental glomerulosclerosis (FSGS) of the collapsing subtype in association with infection by parvovirus B19 (PVB19). Female patient, 37 years old, mulatto, developed pharyngalgia and fever with partial improvement after penicillin. After one week we observed reduced urinary output and lower limb edema. Smoker, family and personal history negative for hypertension, diabetes or kidney disease. Patient presented with olyguria, hypertension and edema, also hypochromic microcytic hypoproliferative anemia, nephritic range proteinuria, microscopic hematuria and renal dysfunction. All rheumatologic investigation, HIV and hepatitis serology were negative. Unremarkable renal ultrasound. PCR positive for PVB19 in bone marrow aspirate and blood and renal biopsy conclusive of collapsing FSGS subtype. Spontaneous remission occurred within two weeks of the profile. The blood PVB19 PCR was repeated within a month and resulted negative. This finding demonstrated PVB19 acute infection or viral reactivation in association with collapsing FSGS. There is demonstrated the temporal association of PVB19 viremia and collapsing FSGS, due primary infection or viral reactivation. The association of collapsing FSGS and PVB19 is described in the literature, demonstrating virus presence in kidney tissue, but the real relationship of virus in the pathogenesis of this glomerulopathy remains unclear.
Chain Collapse of an Amyloidogenic Intrinsically Disordered Protein
Jain, Neha; Bhattacharya, Mily; Mukhopadhyay, Samrat
2011-01-01
Natively unfolded or intrinsically disordered proteins (IDPs) are under intense scrutiny due to their involvement in both normal biological functions and abnormal protein misfolding disorders. Polypeptide chain collapse of amyloidogenic IDPs is believed to play a key role in protein misfolding, oligomerization, and aggregation leading to amyloid fibril formation, which is implicated in a number of human diseases. In this work, we used bovine κ-casein, which serves as an archetypal model protein for amyloidogenic IDPs. Using a variety of biophysical tools involving both prediction and spectroscopic techniques, we first established that monomeric κ-casein adopts a collapsed premolten-globule-like conformational ensemble under physiological conditions. Our time-resolved fluorescence and light-scattering data indicate a change in the mean hydrodynamic radius from ∼4.6 nm to ∼1.9 nm upon chain collapse. We then took the advantage of two cysteines separated by 77 amino-acid residues and covalently labeled them using thiol-reactive pyrene maleimide. This dual-labeled protein demonstrated a strong excimer formation upon renaturation from urea- and acid-denatured states under both equilibrium and kinetic conditions, providing compelling evidence of polypeptide chain collapse under physiological conditions. The implication of the IDP chain collapse in protein aggregation and amyloid formation is also discussed. PMID:21961598
Blue straggler formation at core collapse
NASA Astrophysics Data System (ADS)
Banerjee, Sambaran
Among the most striking feature of blue straggler stars (BSS) in globular clusters is the presence of multiple sequences of BSSs in the colour-magnitude diagrams (CMDs) of several globular clusters. It is often envisaged that such a multiple BSS sequence would arise due a recent core collapse of the host cluster, triggering a number of stellar collisions and binary mass transfers simultaneously over a brief episode of time. Here we examine this scenario using direct N-body computations of moderately-massive star clusters (of order 104 {M⊙). As a preliminary attempt, these models are initiated with ≈8-10 Gyr old stellar population and King profiles of high concentrations, being ``tuned'' to undergo core collapse quickly. BSSs are indeed found to form in a ``burst'' at the onset of the core collapse and several of such BS-bursts occur during the post-core-collapse phase. In those models that include a few percent primordial binaries, both collisional and binary BSSs form after the onset of the (near) core-collapse. However, there is as such no clear discrimination between the two types of BSSs in the corresponding computed CMDs. We note that this may be due to the less number of BSSs formed in these less massive models than that in actual globular clusters.
Bubble inductors: Pneumatic tuning of a stretchable inductor
NASA Astrophysics Data System (ADS)
Lazarus, Nathan; Bedair, Sarah S.
2018-05-01
From adaptive matching networks in power systems to channel selectable RF filters and circuitry, tunable inductors are fundamental components for circuits requiring reconfigurability. Here we demonstrate a new continuously tunable inductor based on physically stretching the inductor traces themselves. Liquid-metal-based stretchable conductors are wrapped around a pneumatic bubble actuator, allowing the inductor to be collapsed or expanded by application of pressure. In vacuum the bubble collapses, bringing the loop area to nearly zero, while positive pressure brings a dramatic increase in area and loop inductance. Using this approach, the inductor demonstrated in this work was able to achieve a tuning ratio of 2.6 with 1-2 second response time. With conductors available that can stretch by hundreds of percent, this technique is promising for very large tuning ratios in continuously tunable inductors.
Liao, Yi-Ting; Manson, Anthony C.; DeLyser, Michael R.; Noid, William G.; Cremer, Paul S.
2017-01-01
We report experimental and computational studies investigating the effects of three osmolytes, trimethylamine N-oxide (TMAO), betaine, and glycine, on the hydrophobic collapse of an elastin-like polypeptide (ELP). All three osmolytes stabilize collapsed conformations of the ELP and reduce the lower critical solution temperature (LSCT) linearly with osmolyte concentration. As expected from conventional preferential solvation arguments, betaine and glycine both increase the surface tension at the air–water interface. TMAO, however, reduces the surface tension. Atomically detailed molecular dynamics (MD) simulations suggest that TMAO also slightly accumulates at the polymer–water interface, whereas glycine and betaine are strongly depleted. To investigate alternative mechanisms for osmolyte effects, we performed FTIR experiments that characterized the impact of each cosolvent on the bulk water structure. These experiments showed that TMAO red-shifts the OH stretch of the IR spectrum via a mechanism that was very sensitive to the protonation state of the NO moiety. Glycine also caused a red shift in the OH stretch region, whereas betaine minimally impacted this region. Thus, the effects of osmolytes on the OH spectrum appear uncorrelated with their effects upon hydrophobic collapse. Similarly, MD simulations suggested that TMAO disrupts the water structure to the least extent, whereas glycine exerts the greatest influence on the water structure. These results suggest that TMAO stabilizes collapsed conformations via a mechanism that is distinct from glycine and betaine. In particular, we propose that TMAO stabilizes proteins by acting as a surfactant for the heterogeneous surfaces of folded proteins. PMID:28228526
Coagulation of grains in static and collapsing protostellar clouds
NASA Technical Reports Server (NTRS)
Weidenschilling, S. J.; Ruzmaikina, T. V.
1994-01-01
We simulate collisional evolution of grains in dense turbulent molecular cloud cores (or Bok globules) in static equilibrium and free-fall collapse, assuming spherical symmetry. Relative velocities are due to thermal motions, differential settling, and turbulence, with the latter dominant for sonic turbulence with an assumed Kolmogorov spectrum. Realistic criteria are used to determine outcomes of collisions (coagulation vs. destruction) as functions of particle size and velocity. Results are presented for a variety of cloud parameters (radial density profile, turbulent velocity) and particle properties (density, impact strength). Results are sensitive to the assumed mechanical properties (density and impact strength) of grain aggregates. Particle growth is enhanced if aggregates have low density or fractal structures. On a timescale of a few Myr, an initial population of 0.1 micrometers grains may produce dense compact particles approximately 1 micrometer in size, or fluffy aggregates approximately 100 micrometers. For impact strengths less than or equal to 10(exp 6) ergs/g, a steady state is reached between coagulation of small grains and collisional disruption of larger aggregates. Formation of macroscopic aggregates requires high mechanical strengths and low aggregate densities. We assume sonic turbulence during collapse, with varied eddy size scales determining the dissipation rate or turbulence strength. The degree of collisional evolution during collapse is sensitive to the assumed small-scale structure (inner sc ale) of the turbulence. Weak turbulence results in few collisions and preserves the precollapse particle size distribution with little change. Strong turbulence tends to produce net destruction, rather than particle growth, during infall, unless inpact strengths are greater than 10(exp 6)ergs/g.
Shimizu, Karina; Canongia Lopes, José N; Gonçalves da Silva, Amélia M P S
2015-08-04
The behavior of ionic liquids trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide and trihexyl(tetradecyl)phosphonium dicyanamide, [P6 6 6 14][Ntf2] and [P6 6 6 14][N(CN)2], respectively, at the water-air interface was investigated using the Langmuir trough technique. The obtained surface pressure versus mean molecular area (MMA) isotherms, π-A, and surface potential versus MMA isotherms, ΔV-A, show distinct interfacial behavior between the two systems. The results were interpreted at a molecular level using molecular dynamics simulations: the different compression regimes along the [P6 6 6 14][Ntf2] isotherm correspond to the self-organization of the ions at the water surface into compact and planar monolayers that coalesce at an MMA value of ca. 1.85 nm(2)/ion pair to form an expanded liquidlike layer. Upon further compression, the monolayer collapses at around 1.2 nm(2)/ion pair to yield a progressively thicker and less organized layer. These transitions are much more subdued in the [P6 6 6 14][N(CN)2] system because of the more hydrophilic nature of the dicyanamide anion. The numerical density profiles obtained from the MD simulation trajectories are also able to emphasize the very unusual packing of the four long alkyl side chains of the cation above and below the ionic layer that forms at the water surface. Such a distribution is also different for the two studied systems during the different compression regimes.
Jun, Yong Woong; Wang, Taejun; Hwang, Sekyu; Kim, Dokyoung; Ma, Donghee; Kim, Ki Hean; Kim, Sungjee; Jung, Junyang; Ahn, Kyo Han
2018-06-05
Vesicles exchange its contents through membrane fusion processes-kiss-and-run and full-collapse fusion. Indirect observation of these fusion processes using artificial vesicles enhanced our understanding on the molecular mechanisms involved. Direct observation of the fusion processes in a real biological system, however, remains a challenge owing to many technical obstacles. We disclose a ratiometric two-photon probe offering real-time tracking of lysosomal ATP with quantitative information for the first time. By applying the probe to two-photon live-cell imaging technique, lysosomal membrane fusion process in cells has been directly observed along with the concentration of its content-lysosomal ATP. Results show that the kiss-and-run process between lysosomes proceeds through repeating transient interactions with gradual content mixing, whereas the full-fusion process occurs at once. Furthermore, it is confirmed that both the fusion processes proceed with conservation of the content. Such a small-molecule probe exerts minimal disturbance and hence has potential for studying various biological processes associated with lysosomal ATP. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Formation of structures around HII regions: ionization feedback from massive stars
NASA Astrophysics Data System (ADS)
Tremblin, P.; Audit, E.; Minier, V.; Schmidt, W.; Schneider, N.
2015-03-01
We present a new model for the formation of dense clumps and pillars around HII regions based on shocks curvature at the interface between a HII region and a molecular cloud. UV radiation leads to the formation of an ionization front and of a shock ahead. The gas is compressed between them forming a dense shell at the interface. This shell may be curved due to initial interface or density modulation caused by the turbulence of the molecular cloud. Low curvature leads to instabilities in the shell that form dense clumps while sufficiently curved shells collapse on itself to form pillars. When turbulence is high compared to the ionized-gas pressure, bubbles of cold gas have sufficient kinetic energy to penetrate into the HII region and detach themselves from the parent cloud, forming cometary globules. Using computational simulations, we show that these new models are extremely efficient to form dense clumps and stable and growing elongated structures, pillars, in which star formation might occur (see Tremblin et al. 2012a). The inclusion of turbulence in the model shows its importance in the formation of cometary globules (see Tremblin et al. 2012b). Globally, the density enhancement in the simulations is of one or two orders of magnitude higher than the density enhancement of the classical ``collect and collapse`` scenario. The code used for the simulation is the HERACLES code, that comprises hydrodynamics with various equation of state, radiative transfer, gravity, cooling and heating. Our recent observations with Herschel (see Schneider et al. 2012a) and SOFIA (see Schneider et al. 2012b) and additional Spitzer data archives revealed many more of these structures in regions where OB stars have already formed such as the Rosette Nebula, Cygnus X, M16 and Vela, suggesting that the UV radiation from massive stars plays an important role in their formation. We present a first comparison between the simulations described above and recent observations of these regions.
Rigid collapsible dish structure
NASA Technical Reports Server (NTRS)
Palmer, William B. (Inventor); Giebler, Martin M. (Inventor)
1982-01-01
A collapsible dish structure composed of a plurality of rows of rigid radial petal assemblies concentric with the axis of the dish. The petal assemblies consist of a center petal and two side petals, the center petal hinged on an axis tangent to a circle concentric with the axis of the dish and the side petals hinged to the center petal at their mating edge. The center petal is foldable inwardly and the side petals rotate about their hinges such that the collapsed dish structure occupies a much smaller volume than the deployed dish. Means of controlling the shape of the dish to compensate for differential expansion of the deployed dish are also provided.
ALMA view of the massive dense clump in the Galactic center 50 km s-1 molecular cloud .
NASA Astrophysics Data System (ADS)
Uehara, K.; Tsuboi, M.; Kitamura, Y.; Miyawaki, R.; Miyazaki, A.
We observed the 50 km s-1 molecular cloud with a high angular resolution (˜1.5 arcsec) using ALMA in the H13CO+ J=1-0, C34S J=2-1, CS J=2-1 and SiO v=0 J=2-1 emission lines. This cloud is a candidate for the massive star forming region induced by cloud-cloud collision (CCC). We newly found a massive dense clump (DC1) with a size of ˜0.3 pc in the CCC region of the cloud in the H13CO+ J=1-0 map. The DC1 seems to be located on a line where the four HII regions line up. Furthermore, the DC1 has a broad velocity width covering ˜30 km s-1 and ˜60 km s-1 components in the CS J=2-1 map; the 30 km s-1 component has filamentary structures and the 60 km s-1 one a sheet-like structure. From the position-velocity diagrams of the H13CO+ J=1-0 and CS J=2-1 lines and the intensity ratio of T(SiO v=0 J=2-1)/T(H13CO+ J=1-0), i.e., a shock tracer, we consider that the DC1 has formed by the CCC between the filaments and the sheet-like gas. The LTE mass and virial parameter of the DC1 is estimated to be ˜1.3×104 M_ȯ and ˜5, respectively. These facts suggest that the DC1 is likely in a gravitationally bound state and may start massive star formation. We propose a scenario that the CCC induced the massive star formation in the HII region A ˜105 years ago and now causes the formation and collapse of the DC1; the clump would evolve to an HII region within ˜105 years.
Investigation of the Mechanism of Roof Caving in the Jinchuan Nickel Mine, China
NASA Astrophysics Data System (ADS)
Ding, Kuo; Ma, Fengshan; Guo, Jie; Zhao, Haijun; Lu, Rong; Liu, Feng
2018-04-01
On 13 March 2016, a sudden, violent roof caving event with a collapse area of nearly 11,000 m2 occurred in the Jinchuan Nickel Mine and accompanied by air blasts, loud noises and ground vibrations. This collapse event coincided with related, conspicuous surface subsidence across an area of nearly 19,000 m2. This article aims to analyse this collapse event. In previous studies, various mining-induced collapses have been studied, but collapse accidents associated with the filling mining method are very rare and have not been thoroughly studied. The filling method has been regarded as a safe mining method for a long time, so research on associated collapse mechanisms is of considerable significance. In this study, a detailed field investigation of roadway damage was performed, and GPS monitoring results were used to analyse the surface failure. In addition, a numerical model was constructed based on the geometry of the ore body and a major fault. The analysis of the model revealed three failure mechanisms acting during different stages of destruction: double-sided embedded beam deformation, fault activation, and cantilever-articulated rock beam failure. The fault activation and the specific filling method are the key factors of this collapse event. To gain a better understanding of these factors, the shear stress and normal stress along the fault plane were monitored to determine the variation in stress at different failure stages. Discrete element models were established to study two filling methods and to analyse the stability of different filling structures.