Prediction of the wetting-induced collapse behaviour using the soil-water characteristic curve
NASA Astrophysics Data System (ADS)
Xie, Wan-Li; Li, Ping; Vanapalli, Sai K.; Wang, Jia-Ding
2018-01-01
Collapsible soils go through three distinct phases in response to matric suction decrease during wetting: pre-collapse phase, collapse phase and post-collapse phase. It is reasonable and conservative to consider a strain path that includes a pre-collapse phase in which constant volume is maintained and a collapse phase that extends to the final matric suction to be experienced by collapsible soils during wetting. Upon this assumption, a method is proposed for predicting the collapse behaviour due to wetting. To use the proposed method, two parameters, critical suction and collapse rate, are required. The former is the suction value below which significant collapse deformations take place in response to matric suction decease, and the later is the rate at which void ratio reduces with matric suction in the collapse phase. The value of critical suction can be estimated from the water-entry value taking account of both the microstructure characteristics and collapse mechanism of fine-grained collapsible soils; the wetting soil-water characteristic curve thus can be used as a tool. Five sets of data of wetting tests on both compacted and natural collapsible soils reported in the literature were used to validate the proposed method. The critical suction values were estimated from the water-entry value with parameter a that is suggested to vary between 0.10 and 0.25 for compacted soils and to be lower for natural collapsible soils. The results of a field permeation test in collapsible loess soils were also used to validate the proposed method. The relatively good agreement between the measured and estimated collapse deformations suggests that the proposed method can provide reasonable prediction of the collapse behaviour due to wetting.
Identification and behavior of collapsible soils : [technical summary].
DOT National Transportation Integrated Search
2011-01-01
Collapsible soils are susceptible to large volumetric strains when they become saturated. Numerous soil types : fall in the general category of collapsible soils, including : loess, a well-known aeolian deposit, present throughout : most of Indiana. ...
Van Gosen, Bradley S.; Wenrich, Karen J.
1991-01-01
Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.
Van Gosen, Bradley S.; Wenrich, Karen J.
1991-01-01
Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.
Van Gosen, Bradley S.; Wenrich, Karen J.
1991-01-01
Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.
Van Gosen, Bradley S.; Wenrich, Karen J.
1991-01-01
Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.
Geochemical soil sampling for deeply-buried mineralized breccia pipes, northwestern Arizona
Wenrich, K.J.; Aumente-Modreski, R. M.
1994-01-01
Thousands of solution-collapse breccia pipes crop out in the canyons and on the plateaus of northwestern Arizona; some host high-grade uranium deposits. The mineralized pipes are enriched in Ag, As, Ba, Co, Cu, Mo, Ni, Pb, Sb, Se, V and Zn. These breccia pipes formed as sedimentary strata collapsed into solution caverns within the underlying Mississippian Redwall Limestone. A typical pipe is approximately 100 m (300 ft) in diameter and extends upward from the Redwall Limestone as much as 1000 m (3000 ft). Unmineralized gypsum and limestone collapses rooted in the Lower Permian Kaibab Limestone or Toroweap Formation also occur throughout this area. Hence, development of geochemical tools that can distinguish these unmineralized collapse structures, as well as unmineralized breccia pipes, from mineralized breccia pipes could significantly reduce drilling costs for these orebodies commonly buried 300-360 m (1000-1200 ft) below the plateau surface. Design and interpretation of soil sampling surveys over breccia pipes are plagued with several complications. (1) The plateau-capping Kaibab Limestone and Moenkopi Formation are made up of diverse lithologies. Thus, because different breccia pipes are capped by different lithologies, each pipe needs to be treated as a separate geochemical survey with its own background samples. (2) Ascertaining true background is difficult because of uncertainties in locations of poorly-exposed collapse cones and ring fracture zones that surround the pipes. Soil geochemical surveys were completed on 50 collapse structures, three of which are known mineralized breccia pipes. Each collapse structure was treated as an independent geochemical survey. Geochemical data from each collapse feature were plotted on single-element geochemical maps and processed by multivariate factor analysis. To contrast the results between geochemical surveys (collapse structures), a means of quantifying the anomalousness of elements at each site was developed. This degree of anomalousness, named the "correlation value", was used to rank collapse features by their potential to overlie a deeply-buried mineralized breccia pipe. Soil geochemical results from the three mineralized breccia pipes (the only three of the 50 that had previously been drilled) show that: (1) Soils above the SBF pipe contain significant enrichment of Ag, Al, As, Ba, Ga, K, La, Mo, Nd, Ni, Pb, Sc, Th, U and Zn, and depletion in Ca, Mg and Sr, in contrast to soils outside the topographic and structural rim; (2) Soils over the inner treeless zone of the Canyon pipe show Mo and Pb enrichment anf As and Ga depletion, in contrast to soils from the surrounding forest; and (3) The soil survey of the Mohawk Canyon pipe was a failure because of the rocky terrane and lack of a B soil horizon, or because the pipe plunges. At least 11 of the 47 other collapse structures studied contain anomalous soil enrichments similar to the SBF uranium ore-bearing pipe, and thus have good potential as exploration targets for uranium. One of these 11, #1102, does contain surface mineralized rock. These surveys suggest that soil geochemical sampling is a useful tool for the recognition of many collapse structures with underlying ore-bearing breccia pipes. ?? 1994.
NASA Astrophysics Data System (ADS)
Tiecheng, Yan; Xingyuan, Zhang; Hongping, Yang
2018-03-01
This study describes an analytical comparison of the engineering characteristics of two-lime waste tire particle soil and soil with lime/loess ratio of 3:7 using density measurements, results of indoor consolidation tests, and direct shear tests to examine the strength and deformation characteristics. It investigates the engineering performance of collapsible loess treated with waste tire particles and lime. The results indicate that (1) the shear strength of the two-lime waste tire particle soils increases continuously with soil age; and (2) the two-lime waste tire particle soils are light-weight, strong, and low-deformation soils, and can be applied primarily to improve the foundation soil conditions in areas with collapsible loess soils. This could address the problem of used tire disposal, while providing a new method to consider and manage collapsible loess soils.
NASA Astrophysics Data System (ADS)
Deng, Yusong; Cai, Chongfa; Xia, Dong; Ding, Shuwen; Chen, Jiazhou; Wang, Tianwei
2017-04-01
Collapsing gullies are one of the most serious soil erosion problems in the tropical and subtropical areas of southern China. However, few studies have been performed on the relationship of soil Atterberg limits with soil profiles of the collapsing gullies. Soil Atterberg limits, which include plastic limit and liquid limit, have been proposed as indicators for soil vulnerability to degradation. Here, the soil Atterberg limits within different weathering profiles and their relationships with soil physicochemical properties were investigated by characterizing four collapsing gullies in four counties in the hilly granitic region of southern China. The results showed that with the fall of weathering degree, there was a sharp decrease in plastic limit, liquid limit, plasticity index, soil organic matter, cation exchange capacity and free iron oxide. Additionally, there was a gradual increase in liquidity index, a sharp increase in particle density and bulk density followed by a slight decline, a decrease in the finer soil particles, a noticeable decline in the clay contents, and a considerable increase in the gravel and sand contents. The plastic limit varied from 19.43 to 35.93 % in TC, 19.51 to 33.82 % in GX, 19.32 to 35.58 % in AX and 18.91 to 36.56 % in WH, while the liquid limit varied from 30.91 to 62.68 % in TC, 30.89 to 57.70 % in GX, 32.48 to 65.71 % in AX and 30.77 to 62.70 % in WH, respectively. The soil Atterberg limits in the sandy soil layers and detritus layers were lower than those in the surface layers and red soil layers, which results in higher vulnerability of the sandy soil layers and detritus layers to erosion and finally the formation of the collapsing gully. The regression analyses showed that soil Atterberg limits had significant and positive correlation with SOM, clay content, cationic exchange capacity and Fed, significant and negative correlation with sand content and no obvious correlation with other properties. The results of this study revealed that soil Atterberg limits are an informative indicator to reflect the weathering degree of different weathering profiles of the collapsing gullies in the hilly granitic region.
Collapsible soils in Louisiana.
DOT National Transportation Integrated Search
1972-01-01
In southwest Louisiana, some surface silts (up to 3 feet deep) collapse under load after moisture is added. These soils were indistinguishable from nearby normal silts through routine tests. The deposits occur as low, gently-sloping ridges. Very simi...
Identification and behavior of collapsible soils.
DOT National Transportation Integrated Search
2011-01-01
Loess is a soil that can exhibit large deformations upon wetting. Cases of wetting induced collapse in loess have : been documented for natural deposits and man-made fills. These issues are of concern to the Indiana DOT due to the growth : of the sta...
O’Donnell, Jonathan A.; Harden, Jennifer W.; Manies, Kristen L.; Jorgenson, M. Torre
2012-01-01
Peatlands in the northern permafrost region store large amounts of organic carbon, most of which is currently stored in frozen peat deposits. Recent warming at high-latitudes has accelerated permafrost thaw in peatlands, which will likely result in the loss of soil organic carbon from previously frozen peat deposits to the atmosphere. Here, we report soil organic carbon inventories, soil physical data, and field descriptions from a collapse-scar bog chronosequence located in a peatland ecosystem at Koyukuk Flats National Wildlife Refuge in Alaska.
NASA Astrophysics Data System (ADS)
Finger, R.; Euskirchen, E. S.; Turetsky, M.
2013-12-01
The degradation of ice-rich permafrost, which covers a large portion of Interior Alaska, typically leads to thermokarst and increases in soil saturation. As a result, conifer peat plateaus degrade and are often replaced by wet collapse scar bogs. This state change results in profound changes in regional hydrology, biogeochemical cycling, and plant community composition. Preliminary data suggest that permafrost thaw can increase surface soil inorganic nitrogen (IN) concentrations but it is still unknown whether these changes in nutrient availability are short-lived (pulse releases) and whether or not they impact collapse scar vegetation composition or productivity, particularly as collapse scars undergo succession with time-after-thaw. Therefore we are currently examining changes in plant community composition, N availability and plant N acquisition along three thermokarst gradients in Interior Alaska. Each gradient is comprised of a forested permafrost peat plateau, adjacent ecotones experiencing active permafrost degradation (including a collapsing forest canopy and a saturated moat), and a collapse scar bog where permafrost has completely degraded. We predicted that IN concentrations would be highest along the active thaw margin, and lowest in the peat plateau. We also predicted that IN concentrations would be positively related to shifts in vegetation community composition, nutrient use efficiency (NUE) and tissue 15N concentrations. Preliminary results have shown that IN concentrations increase in newer collapse scar features as well as with thaw depth. Our data also show a shift from feather moss and ericaceous shrub-dominate understories in the permafrost plateau to Sphagnum and sedge dominated thaw ecotone and bog communities. Further successional development of the collapse scar bog results in the reintroduction of small evergreen and deciduous shrubs as the peat mat develops. Over time, collapse scar succession and peat accumulation appears to lead to progressive N limitations, resulting in the dominance of plants with higher NUE. This likely has implications for plant litter quality, and could inhibit decomposition processes. We are collecting additional data to compare species-level NUE and nutrient resorption efficiency. We also will measure δ15N of aboveground plant organs, roots, soil, and pore water to explore sources of plant N, which we expect will influenced rooting depth as permafrost thaws as well as differences in mycorrhizal associations along our thaw gradient. Because thawing permafrost soils are anticipated to mobilize large amounts of N from soils, our results will improve our understanding of how permafrost thaw influences vegetation and soil N pools, soil N availability, and plant nutrition.
NASA Astrophysics Data System (ADS)
Klimova, E. V.; Semeykin, A. Yu
2018-01-01
The urgent task of modern production is to reduce the risks of man-made disasters and, as a consequence, preserve the life and health of workers, material properties and natural environment. In the mining industry, one of the reasons for the high level of injuries and accidents is the collapse of the soil. Macro system modelling of slopes stability of the quarries is based on the compliance with the conditions of physical and mathematical correctness of the application of the model of a continuous medium. This type of modelling allows to choose the safe parameters of the slopes of the quarries and to reduce the risk of collapse of the soil.
NASA Astrophysics Data System (ADS)
Bhamidipati, Raghava A.
Gypsum rich soils are found in many parts of the world, particularly in arid and semi-arid regions. Most gypsum occurs in the form of evaporites, which are minerals that precipitate out of water due to a high rate of evaporation and a high mineral concentration. Gypsum rich soils make good foundation material under dry conditions but pose major engineering hazards when exposed to water. Gypsum acts as a weak cementing material and has a moderate solubility of about 2.5 g/liter. The dissolution of gypsum causes the soils to undergo unpredictable collapse settlement leading to severe structural damages. The damages incur heavy financial losses every year. The objective of this research was to use geophysical methods such as free-free resonant column testing and electrical resistivity testing to characterize gypsum rich soils based on the shear wave velocity and electrical resistivity values. The geophysical testing methods could provide quick, non-intrusive and cost-effective methodologies to screen sites known to contain gypsum deposits. Reconstituted specimens of ground gypsum and quartz sand were prepared in the laboratory with varying amounts of gypsum and tested. Additionally geotechnical tests such as direct shear strength tests and consolidation tests were conducted to estimate the shear strength parameters (drained friction angle and cohesion) and the collapse potential of the soils. The effect of gypsum content on the geophysical and geotechnical parameters of soil was of particular interest. It was found that gypsum content had an influence on the shear wave velocity but had minimal effect on electrical resistivity. The collapsibility and friction angle of the soil increased with increase in gypsum. The information derived from the geophysical and geotechnical tests was used to develop statistical design equations and correlations to estimate gypsum content and soil collapse potential.
NASA Astrophysics Data System (ADS)
Sun, K.; Cheng, D. B.; He, J. J.; Zhao, Y. L.
2018-02-01
Collapse gully erosion is a specific type of soil erosion in the red soil region of southern China, and early warning and prevention of the occurrence of collapse gully erosion is very important. Based on the idea of risk assessment, this research, taking Guangdong province as an example, adopt the information acquisition analysis and the logistic regression analysis, to discuss the feasibility for collapse gully erosion risk assessment in regional scale, and compare the applicability of the different risk assessment methods. The results show that in the Guangdong province, the risk degree of collapse gully erosion occurrence is high in northeastern and western area, and relatively low in southwestern and central part. The comparing analysis of the different risk assessment methods on collapse gully also indicated that the risk distribution patterns from the different methods were basically consistent. However, the accuracy of risk map from the information acquisition analysis method was slightly better than that from the logistic regression analysis method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutter, B.L.; Chang, Ging-Song
The underground testing of nuclear devices causes the formation of large underground cavities which eventually may be filled by rubble and soil falling from the roof of the cavity. The zone of collapsing soil progresses upward toward the ground surface to form a ''chimney.'' The mechanisms of chimney collapse are important to understand for two important reasons. (1) A devastating and sudden propagation of the collapse may result in the formation of a surface crater which may threaten personnel and equipment in the vicinity of the crater. (2) Different collapse patterns are known to occur in the field and somemore » of these collapse patterns are known to be associated with leakage of radioactive wastes to the ground surface. A number of centrifuge tests were conducted by Kutter et al. (1988), to study the collapse of cavities in uniform dry sands. In these materials, the chimney collapse patterns were found to involve continuous, smoothly varying shear strain patterns in the chimney. The pattern of collapse in one of the tests is shown in figure 1. Figure 1a shows the surface crater that formed on the ground surface due to the collapse of a 6 inch diameter cavity buried 18'' beneath the ground surface. This result was obtained by draining fluid out of a 6'' rubber bag while the centrifuge was spinning at 11 g.« less
NASA Astrophysics Data System (ADS)
Özdemir, Adnan
2008-02-01
This study examines the local geological conditions and soil structure as possible causes of the collapse of the Zümrüt Building 2 February 2004. This catastrophe resulted in 92 fatalities and 35 injuries. This study also examines other views which claim weak soil structure, elastic and consolidation settlement of soil and excessive groundwater extraction as well as subsidence resulting from the underground silt erosion as possible factors. Zümrüt Building was constructed on normally consolidated, low plasticity clay. The underground water table was 30 m in depth. The internal friction angle of soil was 8°-30°, its cohesion was between 34 and 127 kN/m2 and standard penetration test numbers varied between 11 and 50. The underground water level beneath Zümrüt Building had risen 4.5 m since its construction. Therefore the claim that subsidence resulting from the decrease of underground water level contributed to the collapse is incorrect. Secondly the settlement, resulting from the filling up of the pores created by the silt receding with the underground water, was 4.4 mm in total, and attributing this as the primary cause of the collapse is also incorrect. Soil properties, in situ and laboratory test results showed that the existing and/or expected settlement and the differential ground settlement in the Zümrüt building vicinity had the potential to cause structural damage. The tensile stresses caused by differential settlements recorded here are thought to be an indicator, but not the main cause contributing to the collapse of the building. The Zümrüt Building collapse was due to several compounding mistakes during the construction phase. These were geotechnical and other project faults and the use of low quality construction materials. The resulting catastrophe caused 92 fatalities, 35 injuries and a material loss of approximately US7 million.
Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch
Cahoon, D.R.; Hensel, P.; Rybczyk, J.; McKee, K.L.; Proffitt, C.E.; Perez, B.C.
2003-01-01
We measured sediment elevation and accretion dynamics in mangrove forests on the islands of Guanaja and Roatan, Honduras, impacted by Hurricane Mitch in 1998 to determine if collapse of underlying peat was occurring as a result of mass tree mortality. Little is known about the balance between production and decomposition of soil organic matter in the maintenance of sediment elevation of mangrove forests with biogenic soils. Sediment elevation change measured with the rod surface elevation table from 18 months to 33 months after the storm differed significantly among low, medium and high wind impact sites. Mangrove forests suffering minimal to partial mortality gained elevation at a rate (5 mm yeara??1) greater than vertical accretion (2 mm yeara??1) measured from artificial soil marker horizons, suggesting that root production contributed to sediment elevation. Basin forests that suffered mass tree mortality experienced peat collapse of about 11 mm yeara??1 as a result of decomposition of dead root material and sediment compaction. Low soil shear strength and lack of root growth accompanied elevation decreases. Model simulations using the Relative Elevation Model indicate that peat collapse in the high impact basin mangrove forest would be 37 mm yeara??1 for the 2 years immediately after the storm, as root material decomposed. In the absence of renewed root growth, the model predicts that peat collapse will continue for at least 8 more years at a rate (7 mm yeara??1) similar to that measured (11 mm yeara??1). Mass tree mortality caused rapid elevation loss. Few trees survived and recovery of the high impact forest will thus depend primarily on seedling recruitment. Because seedling establishment is controlled in large part by sediment elevation in relation to tide height, continued peat collapse could further impair recovery rates.
NASA Astrophysics Data System (ADS)
Mu, C. C.; Abbott, B. W.; Zhao, Q.; Su, H.; Wang, S. F.; Wu, Q. B.; Zhang, T. J.; Wu, X. D.
2017-09-01
Important unknowns remain about how abrupt permafrost collapse (thermokarst) affects carbon balance and greenhouse gas flux, limiting our ability to predict the magnitude and timing of the permafrost carbon feedback. We measured monthly, growing-season fluxes of CO2, CH4, and N2O at a large thermokarst feature in alpine tundra on the northern Qinghai-Tibetan Plateau (QTP). Thermokarst formation disrupted plant growth and soil hydrology, shifting the ecosystem from a growing-season carbon sink to a weak source but decreasing feature level CH4 and N2O flux. Temperature-corrected ecosystem respiration from decomposing permafrost soil was 2.7 to 9.5-fold higher than in similar features from Arctic and Boreal regions, suggesting that warmer and dryer conditions on the northern QTP could accelerate carbon decomposition following permafrost collapse. N2O flux was similar to the highest values reported for Arctic ecosystems and was 60% higher from exposed mineral soil on the feature floor, confirming Arctic observations of coupled nitrification and denitrification in collapsed soils.
Deng, Yusong; Cai, Chongfa; Xia, Dong; Ding, Shuwen; Chen, Jiazhou
2017-01-01
Collapsing gullies are among the most severe soil erosion problems in the tropical and subtropical areas of southern China. However, few studies have examined the relationship of soil particle size distribution (PSD) changes with land-use patterns in the alluvial fans of collapsing gullies. Recently, the fractal method has been applied to estimate soil structure and has proven to be an effective tool in analyzing soil properties and their relationships with other eco-environmental factors. In this study, the soil fractal dimension (D), physico-chemical properties and their relationship with different land-use patterns in alluvial fans were investigated in an experiment that involved seven collapsing gully areas in seven counties of southern China. Our results demonstrated that different land-use patterns of alluvial fans had a significant effect on soil physico-chemical properties. Compared to grasslands and woodlands, farmlands and orchards generally contained more fine soil particles (silt and clay) and fewer coarse particles, whereas significant differences were found in the fractal dimension of soil PSD in different land-use patterns. Specifically, the soil fractal dimension was lower in grasslands and higher in orchards relative to that of other land-use patterns. The average soil fractal dimension of grasslands had a value that was 0.08 lower than that of orchards. Bulk density was lower but porosity was higher in farmlands and orchards. Saturated moisture content was lower in woodlands and grasslands, but saturated hydraulic conductivity was higher in all four land-use patterns. Additionally, the fractal dimension had significant linear relationships with the silt, clay and sand contents and soil properties and exhibited a positive correlation with the clay (R2 = 0.976, P<0.001), silt (R2 = 0.578, P<0.01), organic carbon (R2 = 0.777, P<0.001) and saturated water (R2 = 0.639, P<0.01) contents but a negative correlation with gravel content (R2 = 0.494, P<0.01), coarse sand content (R2 = 0.623, P<0.01) and saturated hydraulic conductivity (R2 = 0.788, P<0.001). However, the fractal dimension exhibited no significant correlation with pH, bulk density or total porosity. Furthermore, the second-degree polynomial equation was found to be more adequate for describing the correlations between soil fractal dimension and particle size distribution. The results of this study demonstrate that a fractal dimension analysis of soil particle size distribution is a useful method for the quantitative description of different land-use patterns in the alluvial fans of collapsing gullies in southern China. PMID:28301524
NASA Astrophysics Data System (ADS)
Mu, C.
2017-12-01
Important unknowns remain about how abrupt permafrost collapse (thermokarst) affects carbon balance and greenhouse gas flux, limiting our ability to predict the magnitude and timing of the permafrost carbon feedback. We measured monthly, growing-season fluxes of CO2, CH4, and N2O at a large thermokarst feature in alpine tundra on the northern Qinghai-Tibetan Plateau (QTP). Thermokarst formation disrupted plant growth and soil hydrology, shifting the ecosystem from a growing-season carbon sink to a weak source, but decreasing feature-level CH4 and N2O flux. Temperature-corrected ecosystem respiration from decomposing permafrost soil was 2.7 to 9.5-fold higher than in similar features from Arctic and Boreal regions, suggesting that warmer and dryer conditions on the northern QTP could accelerate carbon decomposition following permafrost collapse. N2O flux was similar to the highest values reported for Arctic ecosystems, and was 60% higher from exposed mineral soil on the feature floor, confirming Arctic observations of coupled nitrification and denitrification in collapsed soils. Q10 values for respiration were typically over 4, suggesting high temperature sensitivity of thawed carbon. Taken together, these results suggest that QTP permafrost carbon in alpine tundra is highly vulnerable to mineralization following thaw, and that N2O production could be an important non-carbon permafrost climate feedback.
Stability numerical analysis of soil cave in karst area to drawdown of underground water level
NASA Astrophysics Data System (ADS)
Mo, Yizheng; Xiao, Rencheng; Deng, Zongwei
2018-05-01
With the underground water level falling, the reliable estimates of the stability and deformation characteristics of soil caves in karst region area are required for analysis used for engineering design. Aimed at this goal, combined with practical engineering and field geotechnical test, detail analysis on vertical maximum displacement of top, vertical maximum displacement of surface, maximum principal stress and maximum shear stress were conducted by finite element software, with an emphasis on two varying factors: the size and the depth of soil cave. The calculations on the soil cave show that, its stability of soil cave is affected by both the size and depth, and only when extending a certain limit, the collapse occurred along with the falling of underground water; Additionally, its maximum shear stress is in arch toes, and its deformation curve trend of maximum displacement is similar to the maximum shear stress, which further verified that the collapse of soil cave was mainly due to shear-failure.
Quantitative Relationships Between Net Volume Change and Fabric Properties During Soil Evolution
NASA Technical Reports Server (NTRS)
Chadwick, O. A.; Nettleton, W. D.
1993-01-01
The state of soil evolution can be charted by net long-term volume and elemental mass changes for individual horizons compared with parent material. Volume collapse or dilation depends on relative elemental mass fluxes associated with losses form or additions to soil horizons.
NASA Astrophysics Data System (ADS)
yu, Zhang; hui, Li; guibo, Bao; wuyu, Zhang; ningshan, Jiang; xiaoyun, Yang
2018-05-01
The collapsibility test in field may have huge error with computed results[1-4]. The writer gave a compare between single-line and double-line method and then compared with the field’s result. The writer’s purpose is to reduce the error of measured value to computed value and propose a way to decrease the error through consider the matric suction’s influence to unsaturated soil in using finite element analysis, field test was completed to verify the reasonability of this method and get some regulate of development of collapse deformation and supply some calculation basis of engineering design and forecast in emergency situation.
Gray, John R.; Peters, Charles A.; ,
1985-01-01
Runoff, sediment transport, and precipitation were measured in three gaged basins composing two-thirds of the 20-acre site, and in a 3. 5-acre basin located 0. 3 mile south of the site. Locations and dimensions of surface collapses at the site were recorded by the site contractor. Volumes of collapsed material were calculated and converted to an equivalent weight of earth material by applying a mean value for the bulk density of soils at the site.
DOT National Transportation Integrated Search
2008-07-01
Often subgrade soils exhibit properties, particularly strength and/or volume change properties that limit their performance as a support element for pavements. : Typical problems include shrink-swell, settlement, collapse, erosion or simply insuffici...
Jonathan A. O' Donnell; M.Torre Jorgenson; Jennifer W. Harden; A.David McGuire; Mikhail Z. Kanevskiy; Kimberly P. Wickland
2012-01-01
Recent warming at high-latitudes has accelerated permafrost thaw in northern peatlands, and thaw can have profound effects on local hydrology and ecosystem carbon balance. To assess the impact of permafrost thaw on soil organic carbon (OC) dynamics, we measured soil hydrologic and thermal dynamics and soil OC stocks across a collapse-scar bog chronosequence in interior...
Method for the Preparation of Hazard Map in Urban Area Using Soil Depth and Groundwater Level
NASA Astrophysics Data System (ADS)
Kim, Sung-Wook; Choi, Eun-Kyeong; Cho, Jin Woo; Lee, Ju-Hyoung
2017-04-01
The hazard maps for predicting collapse on natural slopes consists of a combination of topographic, hydrological, and geological factors. Topographic factors are extracted from DEM, including aspect, slope, curvature, and topographic index. Hydrological factors, such as distance to drainage, drainage density, stream-power index, and wetness index are most important factors for slope instability. However, most of the urban areas are located on the plains and it is difficult to apply the hazard map using the topography and hydrological factors. In order to evaluate the risk of collapse of flat and low slope areas, soil depth and groundwater level data were collected and used as a factor for interpretation. In addition, the reliability of the hazard map was compared with the disaster history of the study area (Gangnam-gu and Yeouido district). In the disaster map of the disaster prevention agency, the urban area was mostly classified as the stable area and did not reflect the collapse history. Soil depth, drainage conditions and groundwater level obtained from boreholes were added as input data of hazard map, and disaster vulnerability increased at the location where the actual collapse points. In the study area where damage occurred, the moderate and low grades of the vulnerability of previous hazard map were 12% and 88%, respectively. While, the improved map showed 2% high grade, moderate grade 29%, low grade 66% and very low grade 2%. These results were similar to actual damage. Keywords: hazard map, urban area, soil depth, ground water level Acknowledgement This research was supported by a Grant from a Strategic Research Project (Horizontal Drilling and Stabilization Technologies for Urban Search and Rescue (US&R) Operation) funded by the Korea Institute of Civil Engineering and Building Technology.
Development of IoT-based Urban Sinkhole and Road Collapse Monitoring System
NASA Astrophysics Data System (ADS)
Jung, B.; Bang, E.; Lee, H. J.; Jeong, S. W.; Ryu, D.; Kim, S. W.; Kim, B. K.; Yum, B. W.; Lee, I. H.
2015-12-01
The consortium of Korean government-funded research institutes is developing IoT- (Internet of things) based underground safety monitoring and alerting system to manage risks arisen from land subsidence and road collapses in metropolitan areas in South Korea. The system consists of four major functional units: subsurface monitoring sensors sending data directly through the internet, centralized servers capable of collecting and processing big data, computational modules providing physical and statistical models for predicting high-risk areas, and geologic information service platforms visualizing underground safety maps for the public. The target urban area will be regionally covered by multi-sensors monitoring soil and groundwater conditions, and by high resolution satellite InSAR images filtering vertical land movements in a centimeter scale. Integrity of buried water supply and sewer lines are also monitored for the possibility of underground cavity formation. Once high-risk area is predicted, more tangible surveying methods such as ground penetrating radar (GPR) and resistivity survey can be applied for locating the cavities. Additionally, laboratory and field experiments are performed to understand overall road collapsing mechanism from the initial cavity creation to its progressive development depending on soil types, degree of compaction, and groundwater condition. Acquired results will update existing fully-coupled hydromechanical models for more accurate prediction of the collapsing-vulnerable area. Preliminary laboratory experiments show that the upward propagation of subsurface cavity is closely related to the soil properties, such as sand-clay ratios and moisture contents, and groundwater dynamics.
Delineation of a collapse feature in a noisy environment using a multichannel surface wave technique
Xia, J.; Chen, C.; Li, P.H.; Lewis, M.J.
2004-01-01
A collapse developed at Calvert Cliffs Nuclear Power Plant, Maryland, in early 2001. The location of the collapse was over a groundwater drainage system pipe buried at an elevation of +0??9 m (reference is to Chesapeake Bay level). The cause of the collapse was a subsurface drain pipe that collapsed because of saltwater corrosion of the corrugated metal pipe. The inflow/outflow of sea water and groundwater flow caused soil to be removed from the area where the pipe collapsed. To prevent damage to nearby structures, the collapse was quickly filled with uncompacted sand and gravel (???36000 kg). However, the plant had an immediate need to determine whether more underground voids existed. A high-frequency multichannel surface-wave survey technique was conducted to define the zone affected by the collapse. Although the surface-wave survey at Calvert Cliffs Nuclear Power Plant was conducted at a noise level 50-100 times higher than the normal environment for a shallow seismic survey, the shear (S)-wave velocity field calculated from surface-wave data delineated a possible zone affected by the collapse. The S-wave velocity field showed chimney-shaped low-velocity anomalies that were directly related to the collapse. Based on S-wave velocity field maps, a potential zone affected by the collapse was tentatively defined.
Geologic hazards in the region of the Hurricane fault
Lund, W.R.
1997-01-01
Complex geology and variable topography along the 250-kilometer-long Hurricane fault in northwestern Arizona and southwestern Utah combine to create natural conditions that can present a potential danger to life and property. Geologic hazards are of particular concern in southwestern Utah, where the St. George Basin and Interstate-15 corridor north to Cedar City are one of Utah's fastest growing areas. Lying directly west of the Hurricane fault and within the Basin and Range - Colorado Plateau transition zone, this region exhibits geologic characteristics of both physiographic provinces. Long, potentially active, normal-slip faults displace a generally continuous stratigraphic section of mostly east-dipping late Paleozoic to Cretaceous sedimentary rocks unconformably overlain by Tertiary to Holocene sedimentary and igneous rocks and unconsolidated basin-fill deposits. Geologic hazards (exclusive of earthquake hazards) of principal concern in the region include problem soil and rock, landslides, shallow ground water, and flooding. Geologic materials susceptible to volumetric change, collapse, and subsidence in southwestern Utah include; expansive soil and rock, collapse-prone soil, gypsum and gypsiferous soil, soluble carbonate rocks, and soil and rock subject to piping and other ground collapse. Expansive soil and rock are widespread throughout the region. The Petrified Forest Member of the Chinle Formation is especially prone to large volume changes with variations in moisture content. Collapse-prone soils are common in areas of Cedar City underlain by alluvial-fan material derived from the Moenkopi and Chinle Formations in the nearby Hurricane Cliffs. Gypsiferous soil and rock are subject to dissolution which can damage foundations and create sinkholes. The principal formations in the region affected by dissolution of carbonate are the Kaibab and Toroweap Formations; both formations have developed sinkholes where crossed by perennial streams. Soil piping is common in southwestern Utah where it has damaged roads, canal embankments, and water-retention structures. Several unexplained sinkholes near the town of Hurricane possibly are the result of collapse of subsurface volcanic features. Geologic formations associated with slope failures along or near the Hurricane fault include rocks of both Mesozoic and Tertiary age. Numerous landslides are present in these materials along the Hurricane Cliffs, and the Petrified Forest Member of the Chinle Formation is commonly associated with slope failures where it crops out in the St. George Basin. Steep slopes and numerous areas of exposed bedrock make rock fall a hazard in the St. George Basin. Debris flows and debris floods in narrow canyons and on alluvial fans often accompany intense summer cloudburst thunderstorms. Flooded basements and foundation problems associated with shallow ground water are common on benches north of the Santa Clara River in the city of Santa Clara. Stream flooding is the most frequently occurring and destructive geologic hazard in southwestern Utah. Since the 1850s, there have been three major riverine (regional) floods and more than 300 damaging flash floods. Although a variety of flood control measures have been implemented, continued rapid growth in the region is again increasing vulnerability to flood hazards. Site-specific studies to evaluate geologic hazards and identify hazard-reduction measures are recommended prior to construction to reduce the need for costly repair, maintenance, or replacement of improperly placed or protected facilities.
Did mud contribute to freeway collapse?
NASA Astrophysics Data System (ADS)
Hough, Susan E.; Friberg, Paul A.; Busby, Robert; Field, Edward F.; Jacob, Klaus H.; Borcherdt, Roger D.
At least 41 people were killed October 17 when the upper tier of the Nimitz Freeway in Oakland, Calif., collapsed during the Ms = 7.1 Loma Prieta earthquake. Seismologists studying aftershocks concluded that soil conditions and resulting ground motion amplification were important in the failure of the structure and should be considered in the reconstruction of the highway.Structural design weaknesses in the two-tiered freeway, known as the Cypress structure, had been identified before the tragedy. The seismologists, from Lamont Doherty Geological Observatory in Palisades, N.Y., and the U.S. Geological Survey in Menlo Park, Calif., found that the collapsed section was built on fill over Bay mud. A southern section of the Cypress structure built on alluvium of Quaternary age did not collapse (see Figure 1).
The role of fluid viscosity in an immersed granular collapse
NASA Astrophysics Data System (ADS)
Yang, Geng Chao; Kwok, Chung Yee; Sobral, Yuri Dumaresq
2017-06-01
Instabilities of immersed slopes and cliffs can lead to catastrophic events that involve a sudden release of huge soil mass. The scaled deposit height and runout distance are found to follow simple power laws when a granular column collapses on a horizontal plane. However, if the granular column is submerged in a fluid, the mobility of the granular collapse due to high inertia effects will be reduced by fluid-particle interactions. In this study, the effects of fluid viscosity on granular collapse is investigated qualitatively by adopting a numerical approach based on the coupled lattice Boltzmann method (LBM) and discrete element method (DEM). It is found that the granular collapse can be dramatically slowed down due to the presence of viscous fluids. For the considered granular configuration, when the fluid viscosity increases. the runout distance decreases and the final deposition shows a larger deposit angle.
NASA Astrophysics Data System (ADS)
Tao, Yu; He, Yangbo; Duan, Xiaoqian; Zou, Ziqiang; Lin, Lirong; Chen, Jiazhou
2017-10-01
Soil preferential flow (PF) has important effects on rainfall infiltration, moisture distribution, and hydrological and ecological process; but it is very difficult to monitor and characterize on a slope. In this paper, soil water and soil temperature at 20, 40, 60, 80 cm depths in six positions were simultaneously monitored at high frequency to confirm the occurrence of PF at a typical Benggang slope underlain granite residual deposits, and to determine the interaction of soil moisture distribution and Benggang erosion. In the presence of PF, the soil temperature was first (half to one hour) governed by the rainwater temperature, then (more than one hour) governed by the upper soil temperature; in the absence of PF (only matrix flow, MF), the soil temperature was initially governed by the upper soil temperature, then by the rainwater temperature. The results confirmed the water replacement phenomenon in MF, thus it can be distinguished from PF by additional temperature monitoring. It indicates that high frequency moisture and temperature monitoring can determine the occurrence of PF and reveal the soil water movement. The distribution of soil water content and PF on the different positions of the slope showed that a higher frequency of PF resulted in a higher variation of average of water content. The frequency of PF at the lower position can be three times as that of the upper position, therefore, the variation coefficient of soil water content increased from 4.67% to 12.68% at the upper position to 8.18%-33.12% at the lower position, where the Benggang erosion (soil collapse) was more possible. The results suggest strong relationships between PF, soil water variation, and collapse activation near the Benggang wall.
Deformational mass transport and invasive processes in soil evolution
NASA Technical Reports Server (NTRS)
Brimhall, George H.; Chadwick, Oliver A.; Lewis, Chris J.; Compston, William; Williams, Ian S.; Danti, Kathy J.; Dietrich, William E.; Power, Mary E.; Hendricks, David; Bratt, James
1992-01-01
Channels left in soil by decayed roots and burrowing animals allow organic and inorganic precipitates and detritus to move through soil from above, to depths at which the minuteness of pores restricts further passage. Consecutive translocation-and-root-growth phases stir the soil, constituting an invasive, dilatational process which generates cumulative strains. Below the depths thus affected, mineral dissolution by descending organic acids leads to internal collapse; this softened/condensed precursor horizon is then transformed into soil via biological activity that mixes and expands the evolving residuum through root and micropore-network invasion.
Subsidence of residual soils in a karst terrain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drumm, E.C.; Kane, W.F.; Ben-Hassine, J.
1990-06-01
Siting and operating landfills for solid waste disposal in eastern Tennessee that can operate with minimum impact on groundwater is problematic. The operational requirement of thick, excavational soils and the regulatory requirement of a buffer between disposal units and an aquifer result in siting most operating East Tennessee landfills in outcrop areas of the Knox Group. However, the common occurrence of karst terrain and sinkholes in the Knox Group indicates the vulnerability of such sites to rapid groundwater recharge and flow and the potential for subsidence or collapse of soil into bedrock cavities. To address the potential for subsidence ormore » collapse of soils at the East Chestnut Ridge site on the Department of Energy's (DOE) Oak Ridge Reservation (ORR), the following activities and analyses were completed: The locations of karst features on the site were determined by field reconnaissance; several sinkholes were selected for detailed examination; soil boring, sampling, and physical testing were performed in soils located within, adjacent to, and outside of sinkholes to characterize soil strength at various depths; detailed plane surveys were made for 11 sinkholes to measure accurately their dimension and shape for use in determining profile functions for subsidence basins at the site; The stress-deformation response of a typical soil profile overlying a hypothetical bedrock cavity was analyzed numerically for a range of soil thickness and a range of cavity radii. A consistent estimate of the relationship between subsidence basin dimension, soil thickness, and cavity radius has been derived. 30 refs., 41 figs., 7 tabs.« less
40 CFR 265.192 - Design and installation of new tank systems or components.
Code of Federal Regulations, 2010 CFR
2010-07-01
... stored or treated, and corrosion protection so that it will not collapse, rupture, or fail. The owner or... tank system is or will be in contact with the soil or with water, a determination by a corrosion expert of: (i) Factors affecting the potential for corrosion, including but not limited to: (A) Soil...
Yin, Xiangbiao; Wang, Xinpeng; Wu, Hao; Takahashi, Hideharu; Inaba, Yusuke; Ohnuki, Toshihiko; Takeshita, Kenji
2017-12-05
The reversibility of cesium adsorption in contaminated soil is largely dependent on its interaction with micaceous minerals, which may be greatly influenced by various cations. Herein, we systematically investigated the effects of NH 4 + , K + , Mg 2+ , and Ca 2+ on the adsorption/desorption of Cs + into different binding sites of vermiculitized biotite (VB). Original VB was initially saturated by NH 4 + , K + , or Mg 2+ ; we then evaluated the adsorption of Cs + on three treated VBs, and the desorption by extraction with NH 4 + , K + , Mg 2+ , or Ca 2+ was further evaluated. Our structural analysis and Cs + extractability determinations showed that NH 4 + and K + both collapsed the interlayers of VB, resulting in the dominant adsorption of Cs + to external surface sites on which Cs + was readily extracted by NH 4 + , K + , Mg 2+ , or Ca 2+ irrespective of their species, whereas Mg 2+ maintained the VB with expanded interlayers, leading to the overwhelming adsorption of Cs + in collapsed interlayer sites on which the Cs + desorption was difficult and varied significantly by the cations used in extraction. The order of Cs + extraction ability from the collapsed interlayers was K + ≫ Mg 2+ ≈ Ca 2+ ≫ NH 4 + . These results could provide important insights into Cs migration in soil and its decontamination for soil remediation.
NASA Technical Reports Server (NTRS)
Condit, C. D.; Elston, W. E.
1984-01-01
On Mars, the association of gullied escarpments and chaotic terrain is evidence for failure and scarp retreat of poorly consolidated materials. Some martian gullies have no surface outlets and may have drained through subterranean channels. Similar features, though on a much smaller scale, can be seen in alluvium along terrestrial river banks in semiarid regions, such as the Rio Puerco Valley of central New Mexico. Many of the escarpments along the Rio Puerco are developing through formation of collapse gullies, which drain through soil pipes. Gully development can be monitored on aerial photographs taken in 1935, 1962, and 1980. A regression model was developed to quantify gully evolution over a known time span. Soil pipes and their associated collapse gullies make recognizable signatures on the air photos. The areal extent of this signature can be normalized to the scarp length of each pipe-gully system, which makes comparisons between systems possible.
Natural and anthropogenic multi-type hazards for loess territories
NASA Astrophysics Data System (ADS)
Mavlyanova, Nadira; Zakirova, Zulfiya
2013-04-01
Central Asia (CA) is an extremely large region of varied geography from plains to high, rugged mountains (the region belongs to the Tien-Shan and Pamirs mountain system), vast deserts (Kara Kum, Kyzyl Kum, Taklamakan). The area of the CA region is including the territories of following countries: of Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan. CA is particularly exposed to natural hazards like earthquakes, landslide, rockfalls, avalanches, mudflows, flooding, high mountains lakes, sub flooding, and debris flow. This region is one of the most seismically active in the world. In XX century almost in each of five countries have occurred strong earthquakes with magnitude more than 7, led to human victims. Loess soils are widespread in this region in foothills, foothill plains and intermountain depressions. Loess can cause a number of engineering problems because loess undergoes structural collapse and subsidence due to saturation when both the initial dry density and initial water content are low. By comparison of the map of seismic zoning to a map of distribution of loess soils it is easy to be convinced that the territory of the majority of seismic areas are covering by collapsible loess soils with significant thickness (50-150 m). The natural hazards leads to a disaster, if it develops in an urbanized or industrial areas and directly affects people and economic objects. In this case, risk takes place with all its consequences especially on loess soil. In the past a formation of natural hazards was connected generally with two main groups of factors: geological structure and climatic conditions. Now to them the third factor - of human made influence was added. Intensive influence of human activity to the loess territories in CA for last 60 years is destruction of nature balance and changing in environment of loess land in zone with high seismic hazard. This processes primarily associated with following: 1) irrigation of new lands; 2) the developing of mining manufactures and their waste located in the foothill areas with high seismic risk and where manifested of dangerous geological processes as landslide, collapse, mud stream, rock falls and toxic contamination; 3) development of urbanization with manifestation of difference engineering geological processes in loess soil on the based of constructions in cities (collapse, liquefaction). That example of cascade effects when natural and anthropogenic multi type hazards in loess was the Gissar earthquake (1989) in Tajikistan when the earthquake of rather moderate intensity (M=5.2; H=5-7 km; I=7 - MSK scale) was triggered several landslides and mudslides connected with liquefaction of wetted loess and can cause a large number of human victims. In the pre 20 years steady irrigation of the slope area occurred for cotton field. This moistening has increase and the water content of the soil to wet 24-28%, up to a depth of 20-30 m that increased the vulnerability of this territory. The interactions between different natural hazards, include triggered, especially earthquakes, landslides, collapses, liquefaction in loess soil with taking account of anthropogenic hazard influence was investigate.
NASA Astrophysics Data System (ADS)
Ray, D. K.; Nair, U. S.; Welch, R. M.; Lawton, R. O.; Oglesby, R. J.; Pielke, R. A.; Sever, T. A.; Irwin, D.
2005-12-01
The classic Maya civilization produced thriving cities that attained population densities comparable to modern day cities during the zenith of its growth approximately around 750 A.D. The Mayan civilization then experienced a catastrophic collapse between 750-950 A.D. Among the various hypothesis forwarded to explain the sudden collapse, one that has recently attracted attention, is the role of deforestation and decreases of regional rainfall that could have affected the day-to-day lives of the ancient Mayas. Deep-rooted rainforest vegetation has access to water stored in deep soil layers, and this deep water is made available to the hydrological cycle through transpiration. Removal of rainforests for agricultural purposes, which is accompanied by soil compaction and reduction in the organic material at the surface, leads to increased runoff and decreased soil water storage. Shallow-rooted vegetation that replaces the deep-rooted rainforests cannot efficiently access the moisture in the deep soil layers, reducing flux of water vapor to the atmosphere. In this study the Colorado State University Regional Atmospheric Modeling System (CSU RAMS) is utilized to examine differences in precipitation between current and forested conditions and between current and deforested conditions similar to those that archaeologists believe were prevalent prior to the collapse. Moreover, current deforestation rates in this region is converting the landscape into one that is similar to those prior to the Maya collapse. The simulated rainfall is compared against climatological rain gauge rainfall values. The statistical scores such as probability of detection, false alarm ratio, and the threat scores all compare favorably with those reported in the literature. Our results suggest that with the removal of forests the rainfall can be expected to decrease by 10 to 100mm in the Maya lowlands. Averaged over the entire Maya lowlands region, dry season rainfall for the forested conditions is 143.3mm compared to 142.7 mm for current conditions (a negligible decrease of 0.4% over the forested scenario). However, domain averaged dry season rainfall in the Maya lowlands decreases to 128.9mm for the deforested scenario, a decrease in 9.7% over current conditions. The model simulations suggest that to-date deforestation has played an insignificant role in creating drier conditions in the Mayan lowlands, except in the regions in northern Guatemala and adjacent Mexico. However, continued deforestation that would be representative of those prior to the collapse of the Maya civilization in the region can be expected to lead to additional decreases in dry season precipitation throughout the entire region by about 10mm to 100mm. Improper land use management in this region could lead to futures catastrophes for the modern humans similar
Chemical transfers along slowly eroding catenas developed on granitic cratons in southern Africa
Khomo, Lesego; Bern, Carleton R.; Hartshorn, Anthony S.; Rogers, Kevin H.; Chadwick, Oliver A.
2013-01-01
A catena is a series of distinct but co-evolving soils arrayed along a slope. On low-slope, slowly eroding catenas the redistribution of mass occurs predominantly as plasma, the dissolved and suspended constituents in soil water. We applied mass balance methods to track how redistribution via plasma contributed to physical and geochemical differentiation of nine slowly eroding (~ 5 mm ky− 1) granitic catenas. The catenas were arrayed in a 3 × 3 climate by relief matrix and located in Kruger National Park, South Africa. Most of the catenas contained at least one illuviated soil profile that had undergone more volumetric expansion and less mass loss, and these soils were located in the lower halves of the slopes. By comparison, the majority of slope positions were eluviated. Soils from the wetter climates (550 and 730 mm precipitation yr− 1) generally had undergone greater collapse and lost more mass, while soils in the drier climate (470 mm yr− 1) had undergone expansion and lost less mass. Effects of differences in catena relief were less clear. Within each climate zone, soil horizon mass loss and strain were correlated, as were losses of most major elements, illustrating the predominant influence of primary mineral weathering. Nevertheless, mass loss and volumetric collapse did not become extreme because of the skeleton of resistant primary mineral grains inherited from the granite. Colloidal clay redistribution, as traced by the ratio of Ti to Zr in soil, suggested clay losses via suspension from catena eluvial zones. Thus illuviation of colloidal clays into downslope soils may be crucial to catena development by restricting subsurface flow there. Our analysis provides quantitative support for the conceptual understanding of catenas in cratonic landscapes and provides an endmember reference point in understanding the development of slowly eroding soil landscapes.
Remontant erosion in desert soils of Tamaulipas, México.
NASA Astrophysics Data System (ADS)
Rivera-Ortiz, P.; Andrade-Limas, E.; De la Garza-Requena, F.; Castro-Meza, B.
2012-04-01
REMONTANT EROSION IN DESERT SOILS OF TAMAULIPAS MÉXICO Rivera-Ortiz, P.1; Andrade-Limas, E.1; De la Garza-Requena, F.1 and Castro-Meza, B.1 1Facultad de Ingeniería y Ciencias, Universidad Autónoma de Tamaulipas, México The degradation of soil reduces the capacity of soils to produce food and sustain life. Erosion is one of the main types of soil degradation. Hydric erosion of remontant type can occur in soils located close to the channel of a river through the expansion of a gully that begins as a fluvial incision over the ravine of one side of the river. The incision takes place at the point of greatest flow of runoff from areas adjacent to empty into the river. The depth of the incision causes the growth of the gully by collapse to move their heads back, upstream. The soil loss by remontant erosion on land use in agriculture and livestock was estimated in order to understand the evolution of gullies formed by this type of erosion. Through measurements on satellite images and GPS (Global Positioning System) two gullies, developed on alluvial soils which drain into the river Chihue, were studied. The investigation was conducted during 2003 to 2010 period in the municipality of Jaumave, Tamaulipas, in northeastern Mexico. Soil loss in gullies developed by remontant erosion was large and it was caused by soil collapse and drag of soil on the headers. The estimated loss of soil by remontant erosion was 3500 t in the deeper gully during 2010 and nearly 1200 t per year in the period 2003-2009. New sections of gully of about 20 m length, with more than 3 m deep and up to 13 m wide, were formed each year. This degradation has significantly reduced the productive surface of soil that for many years has been used to the cultivation of maize (Zea mays) and beans (Phaseolus vulgaris) as well as pasture production.
The role of bank collapse on tidal creek ontogeny: A novel process-based model for bank retreat
NASA Astrophysics Data System (ADS)
Gong, Zheng; Zhao, Kun; Zhang, Changkuan; Dai, Weiqi; Coco, Giovanni; Zhou, Zeng
2018-06-01
Bank retreat in coastal tidal flats plays a primary role on the planimetric shape of tidal creeks and is commonly driven by both flow-induced bank erosion and gravity-induced bank collapse. However, existing modelling studies largely focus on bank erosion and overlook bank collapse. We build a bank retreat model coupling hydrodynamics, bank erosion and bank collapse. To simulate the process of bank collapse, a stress-deformation model is utilized to calculate the stress variation of bank soil after bank erosion, and the Mohr-Coulomb failure criterion is then applied to evaluate the stability of the tidal creek bank. Results show that the bank failure process can be categorized into three stages, i.e., shear failure at the bank toe (stage I), tensile failure on the bank top (stage II), and sectional cracking from the bank top to the toe (stage III). With only bank erosion, the planimetric shapes of tidal creeks are funneled due to the gradually seaward increasing discharge. In contrast to bank erosion, bank collapse is discontinuous, and the contribution of bank collapse to bank retreat can reach 85%, highlighting that the expansion of tidal creeks can be dominated by bank collapse process. The planimetric shapes of tidal creeks are funneled with a much faster expansion rate when bank collapse is considered. Overall, this study makes a further step toward more physical and realistic simulation of bank retreat in estuarine and coastal settings and the developed bank collapse module can be readily included in other morphodynamic models.
Geochemical exploration for mineralized breccia pipes in northern Arizona, U.S.A.
Wenrich, K.J.
1986-01-01
Thousands of solution-collapse breccia pipe crop out in the canyons and on the plateaus of northern Arizona. Over 80 of these are known to contain U or Cu mineralized rock. The high-grade U ore associated with potentially economic concentrations of Ag, Pb, Zn, Cu, Co and Ni in some of these pipes has continued to stimulate mining and exploration activity in northern Arizona, despite periods of depressed U prices. Large expanses of northern Arizona are comprised of undissected high plateaus; recognition of pipes in these areas is particularly important because mining access to the plateaus is far better than to the canyons. The small size of the pipes, generally less than 600 ft (200 m) in diameter, and limited rock outcrop on the plateaus, compounds the recognition problem. Although the breccia pipes, which bottom in the Mississippian Redwall Limestone, are occasionally exposed on the plateaus as circular features, so are unmineralized near-surface collapse features that bottom in the Permian Kaibab and Toroweap Formations. The distinction between these two classes of circular features is critical during exploration for this unique type of U deposit. Various geochemical and geophysical exploration methods have been tested over these classes of collapse features. Because of the small size of the deposits, and the low-level geochemical signatures in the overlying rock that are rarely dispersed for distances in excess of several hundred feet, most reconnaissance geochemical surveys, such as hydrogeochemistry or stream sediment, will not delineete mineralized pipes. Several types of detailed geochemical surveys made over collapse features, located through examination of aerial photographs and later field mapping, have been successful at delineating collapse features from the surrounding host rock: (1) Rock geochemistry commonly shows low level Ag, As, Ba, Co, Cu, Ni, Pb, Se and Zn anomalies over mineralized breccia pipes; (2) Soil surveys appear to have the greatest potential for distinguishing mineralized breccia pipes from the surrounding terrane. Although the soil anomalies are only twice the background concentrations for most anomalous elements, traverses made over collapse features show consistent enrichment inside of the feature as compared to outside; (3) B. Cereus surveys over a known mineralized pipe show significantly more anomalous samples collected from within the ring fracture than from outside of the breccia pipe; (4) Helium soil-gas surveys were made over 7 collapse features with discouraging results from 5 of the 7 features. Geophysical surveys indicate that scaler audio-magnetotelluric (AMT) and E-field telluric profile data show diagnostic conductivity differences over mineralized pipes as compared to the surrounding terrane. These surveys, coupled with the geochemical surveys conducted as detailed studies over features mapped by field and aerial photograph examination, can be a significant asset in the selection of potential breccia pipes for drilling. ?? 1986.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chengchao; Zhang, Yaoqi; Xu, Yecheng
Collapsed gully erosion constantly plagues the sustainability of rural areas in China. To control collapsed gully erosion, an ecological and economic approach, which uses tree plantation to gain economic benefits and control soil erosion, has been widely applied by local governments in Southern China. However, little is known about the economic feasibility of this new method. The objective of this study was to determine the effectiveness and economic benefits of the new method. Based on a case study in Changting County, Southeast China, two farms were selected to represent a timber tree plantation and a fruit tree plantation, respectively. Themore » Annual Capital Capitalization Method and Return on Investment (ROI) were selected to conduct cost-benefit analysis. In contrast to previous studies, we found that the new approach was far from economic. The value of the newly-built forestland in Sanzhou Village and Tufang Village is 2738 RMB ha -1 and 5477 RMB ha -1, respectively, which are extremely lower than the costs of ecological restoration. Meanwhile, the annual ROI is –3.60% and –8.90%, respectively, which is negative and also far poorer than the average value of forestry in China. The costs of conservation were substantially over the related economic benefits, and the investors would suffer from greater loss if they invested more in the conservation. Low-cost terraces with timber trees had less economic loss compared with the costly terraces with fruit tree plantation. Moreover, the cost efficiency of the new approaches in soil conservation was also greatly poorer than the conventional method. The costs of conserving one ton soil per year for conventional method, new method for planting timber trees, and planting fruit trees were 164 RMB, 696 RMB, and 11,664 RMB, respectively. Therefore, the new collapsed gully erosion control methods are uneconomic and unsuitable to be widely carried out in China in the near future.« less
Wang, Chengchao; Zhang, Yaoqi; Xu, Yecheng; ...
2015-07-31
Collapsed gully erosion constantly plagues the sustainability of rural areas in China. To control collapsed gully erosion, an ecological and economic approach, which uses tree plantation to gain economic benefits and control soil erosion, has been widely applied by local governments in Southern China. However, little is known about the economic feasibility of this new method. The objective of this study was to determine the effectiveness and economic benefits of the new method. Based on a case study in Changting County, Southeast China, two farms were selected to represent a timber tree plantation and a fruit tree plantation, respectively. Themore » Annual Capital Capitalization Method and Return on Investment (ROI) were selected to conduct cost-benefit analysis. In contrast to previous studies, we found that the new approach was far from economic. The value of the newly-built forestland in Sanzhou Village and Tufang Village is 2738 RMB ha -1 and 5477 RMB ha -1, respectively, which are extremely lower than the costs of ecological restoration. Meanwhile, the annual ROI is –3.60% and –8.90%, respectively, which is negative and also far poorer than the average value of forestry in China. The costs of conservation were substantially over the related economic benefits, and the investors would suffer from greater loss if they invested more in the conservation. Low-cost terraces with timber trees had less economic loss compared with the costly terraces with fruit tree plantation. Moreover, the cost efficiency of the new approaches in soil conservation was also greatly poorer than the conventional method. The costs of conserving one ton soil per year for conventional method, new method for planting timber trees, and planting fruit trees were 164 RMB, 696 RMB, and 11,664 RMB, respectively. Therefore, the new collapsed gully erosion control methods are uneconomic and unsuitable to be widely carried out in China in the near future.« less
Experimental shock metamorphism of lunar soil
NASA Technical Reports Server (NTRS)
Schaal, R. B.; Horz, F.
1980-01-01
Shock experiments in the pressure range 15-73 GPa were performed on lunar soil 15101 in order to investigate the effect of a single impact event on the formation of soil breccias and agglutinates. The study has demonstrated that the propagation of a shock wave emanating from a single impact in porous particulate samples causes collision and shear of grains, collapse of pore spaces, and compaction which is sufficient to indurate soil at low pressures (15-18 GPa) without significant melting (less than 5%). These low pressures create soil breccias or weakly shocked soil fragments from loose regolith. At pressures above 65 GPa, shock melting produces a pumiceous whole-soil glass which is equivalent to agglutinate glass, glass fragments, or ropy glasses depending on the abundance of lithic fragments and relict grains.
NASA Astrophysics Data System (ADS)
Verachtert, E.; Van Den Eeckhaut, M.; Martínez-Murillo, J. F.; Nadal-Romero, E.; Poesen, J.; Devoldere, S.; Wijnants, N.; Deckers, J.
2013-06-01
This study investigates the role of soil characteristics and land use in the development of soil pipes in the loess belt of Belgium. First, we tested the hypothesis that discontinuities in the soil profile enhance lateral flow and piping by impeding vertical infiltration. We focus on discontinuities in soil characteristics that can vary with soil depth, including texture, saturated hydraulic conductivity, penetration resistance, and bulk density. These characteristics as well as soil biological activity were studied in detail on 12 representative soil profiles for different land use types. Twelve sites were selected in the Flemish Ardennes (Belgium): four pastures with collapsed pipes (CP), four pastures without CP, two sites under arable land without CP and two sites under forest without CP. Secondly, this study aimed at evaluating the interaction of groundwater table positions (through soil augerings) and CP in a larger area, with a focus on pastures. Pasture is the land use where almost all CP in the study area are observed. Therefore, the position of the groundwater table was compared for 15 pastures with CP and 14 pastures without CP, having comparable topographical characteristics in terms of slope gradient and contributing area. Finally, the effect of land use history on the occurrence of pipe collapse was evaluated for a database of 84 parcels with CP and 84 parcels without CP, currently under pasture. As to the first hypothesis, no clear discontinuities for abiotic soil characteristics in soil profiles were observed at the depth where pipes occur, but pastures with CP had significantly more earthworm channels and mole burrows at larger depths (> 120 cm: mean of > 200 earthworm channels per m2) than pastures without CP, arable land or forest (> 120 cm depth, a few or no earthworm channels left). The land use history appeared to be similar for the pastures with and without CP. Combining all results from soil profiles and soil augering indicates that intense biological activity (especially by earthworms and moles), in combination with a sufficiently high groundwater table, favours the development of soil pipes in the study area.
A zonation technique for landslide susceptibility in southern Taiwan
NASA Astrophysics Data System (ADS)
Chiang, Jie-Lun; Tian, Yu-Qing; Chen, Yie-Ruey; Tsai, Kuang-Jung
2016-04-01
In recent years, global climate changes violently, extreme rainfall events occur frequently and also cause massive sediment related disasters in Taiwan. The disaster seriously hit the regional economic development and national infrastructures. For example, in August, 2009, the typhoon Morakot brought massive rainfall especially in the mountains in Chiayi County and Kaohsiung County in which the cumulative maximum rainfall was up to 2900 mm; meanwhile, the cumulative maximum rainfall was over 1500m.m. in Nantou County, Tainan County and Pingtung County. The typhoon caused severe damage in southern Taiwan. The study will search for the influence on the sediment hazards caused by the extreme rainfall and hydrological environmental changes focusing on southern Taiwan (including Chiayi, Tainan, Kaohsiung and Pingtung). The instability index and kriging theories are applied to analyze the factors of landslide to determine the susceptibility in southern Taiwan. We collected the landslide records during the period year, 2007~2013 and analyzed the instability factors including elevation, slope, aspect, soil, and geology. Among these factors, slope got the highest weight. The steeper the slope is, the more the landslides occur. As for the factor of aspect, the highest probability falls on the Southwest. However, this factor has the lowest weight among all the factors. Likewise, Darkish colluvial soil holds the highest probability of collapses among all the soils. Miocene middle Ruifang group and its equivalents have the highest probability of collapses among all the geologies. In this study, Kriging was used to establish the susceptibility map in southern Taiwan. The instability index above 4.21 can correspond to those landslide records. The potential landslide area in southern Taiwan, where collapses more likely occur, belongs to high level and medium-high level; the area is 5.12% and 17.81% respectively.
O'Donnell, Jonathan A.; Jorgenson, M. Torre; Harden, Jennifer W.; McGuire, A. David; Kanevskiy, Mikhail Z.; Wickland, Kimberly P.
2012-01-01
Recent warming at high-latitudes has accelerated permafrost thaw in northern peatlands, and thaw can have profound effects on local hydrology and ecosystem carbon balance. To assess the impact of permafrost thaw on soil organic carbon (OC) dynamics, we measured soil hydrologic and thermal dynamics and soil OC stocks across a collapse-scar bog chronosequence in interior Alaska. We observed dramatic changes in the distribution of soil water associated with thawing of ice-rich frozen peat. The impoundment of warm water in collapse-scar bogs initiated talik formation and the lateral expansion of bogs over time. On average, Permafrost Plateaus stored 137 ± 37 kg C m-2, whereas OC storage in Young Bogs and Old Bogs averaged 84 ± 13 kg C m-2. Based on our reconstructions, the accumulation of OC in near-surface bog peat continued for nearly 1,000 years following permafrost thaw, at which point accumulation rates slowed. Rapid decomposition of thawed forest peat reduced deep OC stocks by nearly half during the first 100 years following thaw. Using a simple mass-balance model, we show that accumulation rates at the bog surface were not sufficient to balance deep OC losses, resulting in a net loss of OC from the entire peat column. An uncertainty analysis also revealed that the magnitude and timing of soil OC loss from thawed forest peat depends substantially on variation in OC input rates to bog peat and variation in decay constants for shallow and deep OC stocks. These findings suggest that permafrost thaw and the subsequent release of OC from thawed peat will likely reduce the strength of northern permafrost-affected peatlands as a carbon dioxide sink, and consequently, will likely accelerate rates of atmospheric warming.
Soil-water interactions: implications for the sustainability of urban areas
NASA Astrophysics Data System (ADS)
Ferreira, António J. D.; Ferreira, Carla S. S.; Walsh, Rory P. D.
2015-04-01
Cities have become recently the home for more than half of the world's population. Cities are often seen as ecological systems just a short step away from collapse [Newman 2006]. Being a human construction, cities disrupt the natural cycles and the patterns of temporal and spatial distribution of environmental and ecological processes. Urbanization produces ruptures in biota, water, energy and nutrients connectivity that can lead to an enhanced exposure to disruptive events that hamper the wellbeing and the resilience of urban communities in a global change context. And yet, mankind can't give up of these structures one step away from collapse. In this paper we visit the ongoing research at the Ribeira dos Covões peri-urban catchment, as the basis to discuss several important processes and relations in the water-soil interface: A] the impact of the build environment and consequently the increase of the impervious area on the generation and magnitude of hydrological processes at different scales, the impact on flash flood risk and the mitigation approaches. B] the pollutant sources transport and fade in urban areas, with particular emphasis in the role of vegetation and soils in the transmission of pollutants from the atmosphere to the soil and to the water processes. C] the use and the environmental services of the urban ecosystems (where the relations of water, soil and vegetation have a dominate role) to promote a better risk and resources governance. D] the special issue of urban agriculture, where all the promises of sustainability and threats to wellbeing interact, and where the soil and water relations in urban areas are more significant and have the widest and deepest implications.
NASA Astrophysics Data System (ADS)
Bernatek-Jakiel, Anita; Jakiel, Michał; Krzemień, Kazimierz
2017-04-01
Soil erosion is caused not only by overland flow, but also by subsurface flow. Piping which is a process of mechanical removal of soil particles by concentrated subsurface flow is frequently being overlooked and not accounted for in soil erosion studies. However, it seems that it is far more widespread than it has often been supposed. Furthermore, our knowledge about piping dynamics and its quantification currently relies on a limited number of data available for mainly loess-mantled areas and marl badlands. Therefore, this research aims to recognize piping dynamics in mid-altitude mountains under a temperate climate, where piping occurs in Cambisols, not previously considered as piping-prone soils. The survey was carried out in the Bereźnica Wyżna catchment (305 ha), in the Bieszczady Mts. (the Eastern Carpathians, Poland), where 188 collapsed pipes were mapped. The research was based on the monitoring of selected piping systems located within grasslands (1971-1974, 2013-2016). The development of piping systems is mainly induced by the elongation of pipes and creation of new collapses (closed depressions and sinkholes), rather than by the enlargement of existing piping forms, or the deepening of pipes. It draws attention to the role of dense vegetation (grasslands) in the delay of pipe collapses and, also, to the boundary of pipe development (soil-bedrock interface). The obtained results reveal an episodic, and even stochastic nature of piping activity, expressed by varied one-year and short-term (3 years) erosion rates, and pipe elongation. Changes in soil loss vary significantly between different years (up to 27.36 t ha-1 y-1), reaching the rate of 1.34 t ha-1 y-1 for the 45-year study period. The elongation of pipes also differs, from no changes to 36 m during one year. The results indicate that soil loss due to piping can cause high soil loss even in highly vegetated lands (grasslands), which are generally considered as areas without a significant erosion problem. The scale of piping in the study area is at least by three orders of magnitude higher than surface erosion rates (i.e. sheet and rill erosion) under a similar land use (grasslands), and it is comparable to the scale of surface soil erosion on arable lands. It means that piping is an important sediment source for fluvial systems, and it leads to significant soil loss in mid-altitude mountains under a temperate climate. This study is supported by the National Science Centre of Poland, as a part of the first author's project - PRELUDIUM 3 (DEC-2012/05/N/ST10/03926). The first author was also granted the ETIUDA 3 doctoral scholarship (UMO-2015/16/T/ST10/00505) financed by the National Science Centre of Poland.
NASA Astrophysics Data System (ADS)
Nugroho, B.; Pranantya, P. A.; Witjahjati, R.; Rofinus
2018-01-01
This study aims to estimate the potential collapse in the Seropan cave, based on the existing geological structure conditions in the cave. This is very necessary because in the Seropan cave will be built Microhydro installation for power plants. The electricity will be used to raise the underground river water in the cave to a barren soil surface, which can be used for surface irrigation. The method used is analysis the quality of rock mass along the cave. Analysis of rock mass quality using Geomechanical Classification or Rock Mass Rating (RMR), to determine the magnitude of the effect of geological structure on rock mass stability. The research path is divided into several sections and quality analysis is performed on each section. The results show that the influence of geological structure is very large and along the cave where the research there are several places that have the potential to collapse, so need to get serious attention in handling it. Nevertheless, the construction of this Microhydro installation can still be carried out by making a reinforcement on potentially collapsing parts
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Annotated image of PIA04193 Windblown 'Whymper'
NASA's Spirit rover took this mosaic of the undisturbed soil deposit 'Whymper' on martian day, or sol 588 (August 29, 2005), using its microscopic imager. A well-defined impression about 3 centimeters (1.2 inches) wide was created when the rover's Moessbauer spectrometer faceplate was gently pushed into the soil. Note that the surface of the soil has been modified into wind streaks. The ability of the soil to make fine molds of the faceplate suggests the material is a mix of sand and dust. The dust is pushed into the pores of the sand and keeps the material from collapsing. This allows for very detailed impressions of the faceplate.USDA-ARS?s Scientific Manuscript database
Seepage flow initiates undercutting, similar to development and headward migration of internal gullies, by liquefaction of soil particles, followed by mass wasting of the bank. Although seepage erosion has three-dimensional characteristics, two-dimensional lysimeters have been used in previous resea...
Code of Federal Regulations, 2011 CFR
2011-04-01
... mortgage. A Plan issuer may be a State, an insurance company, a warranty company, a Risk Retention Group as...-site water supply or sewage disposal systems. State includes the several States, Puerto Rico, the... collapsible soils. Damage to the following nonload-bearing portions of the home is not considered a structural...
Code of Federal Regulations, 2014 CFR
2014-04-01
... mortgage. A Plan issuer may be a State, an insurance company, a warranty company, a Risk Retention Group as...-site water supply or sewage disposal systems. State includes the several States, Puerto Rico, the... collapsible soils. Damage to the following nonload-bearing portions of the home is not considered a structural...
Code of Federal Regulations, 2012 CFR
2012-04-01
... mortgage. A Plan issuer may be a State, an insurance company, a warranty company, a Risk Retention Group as...-site water supply or sewage disposal systems. State includes the several States, Puerto Rico, the... collapsible soils. Damage to the following nonload-bearing portions of the home is not considered a structural...
Code of Federal Regulations, 2013 CFR
2013-04-01
... mortgage. A Plan issuer may be a State, an insurance company, a warranty company, a Risk Retention Group as...-site water supply or sewage disposal systems. State includes the several States, Puerto Rico, the... collapsible soils. Damage to the following nonload-bearing portions of the home is not considered a structural...
ENVIRONMENTAL RESEARCH IN RESPONSE TO 9/11 AND HOMELAND SECURITY
The terrorist attacks on September 11, 2001 resulted in a disaster unlike any other on U.S. soil. The collapse of the World Trade Center (WTC) towers and the underground fires that burned for months required the efforts of numerous Federal, State and local agencies as well as uni...
NASA Astrophysics Data System (ADS)
Zegeye, Assefa D.; Langendoen, Eddy J.; Stoof, Cathelijne R.; Tilahun, Seifu A.; Dagnew, Dessalegn C.; Zimale, Fasikaw A.; Guzman, Christian D.; Yitaferu, Birru; Steenhuis, Tammo S.
2016-09-01
Gully expansion in the Ethiopian Highlands dissects vital agricultural lands with the eroded materials adversely impacting downstream resources, for example as they accumulate in reservoirs. While gully expansion and rehabilitation have been more extensively researched in the semiarid region of Ethiopia, few studies have been conducted in the (sub)humid region. For that reason, we assessed the severity of gully erosion by measuring the expansion of 13 selected permanent gullies in the subhumid Debre Mawi watershed, 30 km south of Lake Tana, Ethiopia. In addition, the rate of expansion of the entire drainage network in the watershed was determined using 0.5 m resolution aerial imagery from flights in 2005 and 2013. About 0.6 Mt (or 127 t ha-1 yr-1) of soil was lost during this period due to actively expanding gullies. The net gully area in the entire watershed increased more than 4-fold from 4.5 ha in 2005 to 20.4 ha in 2013 (> 3 % of the watershed area), indicating the growing severity of gully erosion and hence land degradation in the watershed. Soil losses were caused by upslope migrating gully heads through a combination of gully head collapse and removal of the failed material by runoff. Collapse of gully banks and retreat of headcuts was most severe in locations where elevated groundwater tables saturated gully heads and banks, destabilizing the soils by decreasing the shear strength. Elevated groundwater tables were therefore the most important cause of gully expansion. Additional factors that strongly relate to bank collapse were the height of the gully head and the size of the drainage area. Soil physical properties (e.g., texture and bulk density) only had minor effects. Conservation practices that address factors controlling erosion are the most effective in protecting gully expansion. These consist of lowering water table and regrading the gully head and sidewalls to reduce the occurrence of gravity-induced mass failures. Planting suitable vegetation on the regraded gully slopes will in addition decrease the risk of bank failure by reducing pore-water pressures and reinforcing the soil. Finally, best management practices that decrease runoff from the catchment will reduce the amount of gully-related sediment loss.
NASA Astrophysics Data System (ADS)
Wilson, C.; Matisoff, G.; Whiting, P.; Kuhnle, R.
2005-12-01
The naturally occurring radionuclides, 7Be and 210Pbxs, have been used individually as tracers of sediment particles throughout watersheds. However, use of the two radionuclides together enables eliciting information regarding the major contributors of fine sediment to the suspended load of a stream or wetland. We report on a study that uses these radionuclides to quantify the relative proportion of eroded surface soils, bank material and resuspended bed sediment in the fine suspended sediment load of the Goodwin Creek, MS, and Old Woman Creek, OH watersheds. The eroded surface soil has a unique radionuclide signature relative to the bed sediments in Old Woman Creek and the bank material along Goodwin Creek that allows for the quantification of the relative proportions of the different sediments in the sediment load. In Old Woman Creek, the different signatures are controlled by the differential decay of the two radionuclides. In Goodwin Creek, the different signatures are due to different erosion processes controlling the sediment delivery to streams, namely sheet erosion and bank collapse. The eroded surface soils will have higher activities of the 7Be and 210Pbxs than bed/bank sediments. The fine suspended sediment, which is a mixture of eroded surface soils and resuspended bed sediment or collapsed bank sediment, will have an intermediate radionuclide signature quantified in terms of the relative proportion from both sediments. A simple two-end member mixing model is used to determine the relative proportions of both sediments to the total fine sediment load.
NASA Astrophysics Data System (ADS)
Pegues, J. G.; Kaip, G.; Doser, D. I.
2013-12-01
Farming in Rio Grande flood plain deposit soils has presented challenges concerning soil salinity, soil drainage and soil collapse. Typical soil forms include Saneli silted clay loam, Harkey loam, Harkey silky loam clay and Tigua silty clay. In the lower valley farmlands of Socorro, TX, cotton and alfalfa are the principal crops, but grain sorghum, corn and vegetable crops also are suitable. Pecan trees, as well as fruit trees suited to the climate, can be grown. Agrarians are faced with varying results of crop yields over relatively small stretches of land; for example, a 22 acre area can contain multiple soil inclusions. This study was conducted on a 22 acre tract of farmland which has recently undergone multiple geophysical testing analyses that include: magnetics, DC resistivity, gravity, and ground penetrating radar. Results will compare flood plain sedimentation qualities to agricultural soil classes through the identification of soil salinity and grain size. This investigation will focus on the testing of geo-electrical soil properties through resistivity assessment. Examination of the sight using a capacity coupled resistivity meter to measure the soil properties over various time periods will be conducted. The results will be compared with the other geophysical data to look for correlations that highlight soil properties.
Feeding group responses of a Neotropical termite assemblage to rain forest fragmentation.
Davies, Richard G
2002-10-01
Biomass collapse and its associated microclimatic stresses within recently isolated rain forest fragments may negatively affect species diversity of most resident taxa. However, for some decomposer organisms, increased resource availability via accompanying tree die-off may effect positive responses, at least for a time, with implications for rates of nutrient cycling and greenhouse gas release. This study investigates the early effects of forest fragmentation on a Neotropical termite assemblage. Numbers of encounters (surrogate for relative abundance) and species richness of wood and leaf-litter feeders, soil feeders, and the whole assemblage, were studied across true forest islands and mainland sites at a hydroelectric reservoir in French Guiana. Results showed no overall effect of fragmentation on either total termite encounters or species richness. However, numbers of encounters and species richness of wood and leaf-litter feeders showed positive responses to forest fragmentation. By contrast, soil feeders showed a negative response for numbers of encounters and no significant effect for species richness. Environmental data suggest that increased tree die-off, and other edge effects associated with biomass collapse, were underway at the time of sampling. Resulting increase in resource availability may therefore explain the positive influence on wood and leaf-litter feeders. A possible decrease in predation pressure from ants with decrease in island size was not tested for, but was a likely effect of the flooded matrix habitat. Fragmentation effects on soil feeder encounters may be due to the energetic and microclimatic constraints of feeding lower down the humification gradient of termite food substrates, but were not sufficient to affect species richness. The patterns revealed suggest that rates of wood decomposition following tree die-off, and of soil nutrient cycling, under different rain forest fragmentation scenarios, merit further study.
44 CFR 63.17 - Procedures and data requirements for imminent collapse certifications by States.
Code of Federal Regulations, 2014 CFR
2014-10-01
... by the Federal Insurance Administrator may certify that a coastal structure is subject to imminent...: (i) Any evidence of existing damage. The damage can include loss or erosion of soil near or around... vegetation). (B) Beach scarp (erosion line on beach, usually a sharp, nearly vertical drop of 0.5 to 3.0 feet...
44 CFR 63.17 - Procedures and data requirements for imminent collapse certifications by States.
Code of Federal Regulations, 2011 CFR
2011-10-01
... by the Federal Insurance Administrator may certify that a coastal structure is subject to imminent...: (i) Any evidence of existing damage. The damage can include loss or erosion of soil near or around... vegetation). (B) Beach scarp (erosion line on beach, usually a sharp, nearly vertical drop of 0.5 to 3.0 feet...
44 CFR 63.17 - Procedures and data requirements for imminent collapse certifications by States.
Code of Federal Regulations, 2013 CFR
2013-10-01
... by the Federal Insurance Administrator may certify that a coastal structure is subject to imminent...: (i) Any evidence of existing damage. The damage can include loss or erosion of soil near or around... vegetation). (B) Beach scarp (erosion line on beach, usually a sharp, nearly vertical drop of 0.5 to 3.0 feet...
44 CFR 63.17 - Procedures and data requirements for imminent collapse certifications by States.
Code of Federal Regulations, 2012 CFR
2012-10-01
... by the Federal Insurance Administrator may certify that a coastal structure is subject to imminent...: (i) Any evidence of existing damage. The damage can include loss or erosion of soil near or around... vegetation). (B) Beach scarp (erosion line on beach, usually a sharp, nearly vertical drop of 0.5 to 3.0 feet...
Compost addition reduces porosity and chlordecone transfer in soil microstructure.
Woignier, Thierry; Clostre, Florence; Fernandes, Paula; Rangon, Luc; Soler, Alain; Lesueur-Jannoyer, Magalie
2016-01-01
Chlordecone, an organochlorine insecticide, pollutes soils and contaminates crops and water resources and is biomagnified by food chains. As chlordecone is partly trapped in the soil, one possible alternative to decontamination may be to increase its containment in the soil, thereby reducing its diffusion into the environment. Containing the pesticide in the soil could be achieved by adding compost because the pollutant has an affinity for organic matter. We hypothesized that adding compost would also change soil porosity, as well as transport and containment of the pesticide. We measured the pore features and studied the nanoscale structure to assess the effect of adding compost on soil microstructure. We simulated changes in the transport properties (hydraulic conductivity and diffusion) associated with changes in porosity. During compost incubation, the clay microstructure collapsed due to capillary stresses. Simulated data showed that the hydraulic conductivity and diffusion coefficient were reduced by 95 and 70% in the clay microstructure, respectively. Reduced transport properties affected pesticide mobility and thus helped reduce its transfer from the soil to water and to the crop. We propose that the containment effect is due not only to the high affinity of chlordecone for soil organic matter but also to a trapping mechanism in the soil porosity.
A theoretical extension of the soil freezing curve paradigm
NASA Astrophysics Data System (ADS)
Amiri, Erfan A.; Craig, James R.; Kurylyk, Barret L.
2018-01-01
Numerical models of permafrost evolution in porous media typically rely upon a smooth continuous relation between pore ice saturation and sub-freezing temperature, rather than the abrupt phase change that occurs in pure media. Soil scientists have known for decades that this function, known as the soil freezing curve (SFC), is related to the soil water characteristic curve (SWCC) for unfrozen soils due to the analogous capillary and sorptive effects experienced during both soil freezing and drying. Herein we demonstrate that other factors beyond the SFC-SWCC relationship can influence the potential range over which pore water phase change occurs. In particular, we provide a theoretical extension for the functional form of the SFC based upon the presence of spatial heterogeneity in both soil thermal conductivity and the freezing point depression of water. We infer the functional form of the SFC from many abrupt-interface 1-D numerical simulations of heterogeneous systems with prescribed statistical distributions of water and soil properties. The proposed SFC paradigm extension has the appealing features that it (1) is determinable from measurable soil and water properties, (2) collapses into an abrupt phase transition for homogeneous media, (3) describes a wide range of heterogeneity within a single functional expression, and (4) replicates the observed hysteretic behavior of freeze-thaw cycles in soils.
Simulation of landslide and tsunami of the 1741 Oshima-Oshima eruption in Hokkaido, Japan
NASA Astrophysics Data System (ADS)
Ioki, K.; Yanagisawa, H.; Tanioka, Y.; Kawakami, G.; Kase, Y.; Nishina, K.; Hirose, W.; Ishimaru, S.
2017-12-01
The 1741 tsunami was generated by the Oshima-Oshima sector collapse in the southwestern Hokkaido, Japan. The tsunami caused great damage along the coast of Japan Sea in Oshima and Tsugaru peninsula and was the largest scale generated in the Japan sea. By the survey of tsunami deposits, at the coast of Okushiri Island and Hiyama in Hokkaido, tsunami deposits of this tsunami were found. In this study, the landslide and tsunami by the Oshima-Oshima eruption were modeled to explain distribution of debris deposits, tsunami heights by historical records, and distribution of tsunami deposits. First, region of landslide and debris deposits were made out from the bathymetry based on the bathymetry survey data (Satake and Kato, 2001) in the north slope of Oshima-Oshima. In addition, topography before the sector collapse and landslide volume were re-estimated. The volume of landslide was estimated at 2.2 km3. Based on those data, the landslide and tsunami were simulated using two-layer model considered soil mass and water mass. The model was made improvements the integrated model of landslide and tsunami (Yanagisawa et al., 2014). The angle of internal friction was calculated 4 cases, included the bottom friction term in soil mass, to affect the movement of landslide. The Manning's roughness coefficient was calculated 5 cases, included the bottom friction term in soil mass, to affect the generation of tsunami. By the parameter study, optimal solutions were found. As the results, soil mass slid slowly submarine slope and stopped after about 15 minutes. Distribution of computed debris deposits agree relatively well with region of debris deposits made out from the bathymetry. On the other hand, the first wave of tsunami was generated during 1 minute that soil mass was sliding. Calculated tsunami heights match with historical records along the coast of Okushiri and Hiyama in Hokkaido. Calculated inundation area of tsunami cover distribution of tsunami deposits found by tsunami deposits survey in Okushiri and Hiyama coast.
Permafrost collapse alters soil carbon stocks, respiration, CH4 , and N2O in upland tundra.
Abbott, Benjamin W; Jones, Jeremy B
2015-12-01
Release of greenhouse gases from thawing permafrost is potentially the largest terrestrial feedback to climate change and one of the most likely to occur; however, estimates of its strength vary by a factor of thirty. Some of this uncertainty stems from abrupt thaw processes known as thermokarst (permafrost collapse due to ground ice melt), which alter controls on carbon and nitrogen cycling and expose organic matter from meters below the surface. Thermokarst may affect 20-50% of tundra uplands by the end of the century; however, little is known about the effect of different thermokarst morphologies on carbon and nitrogen release. We measured soil organic matter displacement, ecosystem respiration, and soil gas concentrations at 26 upland thermokarst features on the North Slope of Alaska. Features included the three most common upland thermokarst morphologies: active-layer detachment slides, thermo-erosion gullies, and retrogressive thaw slumps. We found that thermokarst morphology interacted with landscape parameters to determine both the initial displacement of organic matter and subsequent carbon and nitrogen cycling. The large proportion of ecosystem carbon exported off-site by slumps and slides resulted in decreased ecosystem respiration postfailure, while gullies removed a smaller portion of ecosystem carbon but strongly increased respiration and N2 O concentration. Elevated N2 O in gully soils persisted through most of the growing season, indicating sustained nitrification and denitrification in disturbed soils, representing a potential noncarbon permafrost climate feedback. While upland thermokarst formation did not substantially alter redox conditions within features, it redistributed organic matter into both oxic and anoxic environments. Across morphologies, residual organic matter cover, and predisturbance respiration explained 83% of the variation in respiration response. Consistent differences between upland thermokarst types may contribute to the incorporation of this nonlinear process into projections of carbon and nitrogen release from degrading permafrost. © 2015 John Wiley & Sons Ltd.
McKee, K.L.; Cherry, J.A.
2009-01-01
Although hurricanes can damage or destroy coastal wetlands, they may play a beneficial role in reinvigorating marshes by delivering sediments that raise soil elevations and stimulate organic matter production. Hurricane Katrina altered elevation dynamics of two subsiding brackish marshes in the Mississippi River deltaic plain by adding 3 to 8 cm of sediment to the soil surface in August 2005. Soil elevations at both sites subsequently declined due to continued subsidence, but net elevation gain was still positive at both Pearl River (+1.7 cm) and Big Branch (+0.7 cm) marshes two years after the hurricane. At Big Branch where storm sediments had higher organic matter and water contents, post-storm elevation loss was more rapid due to initial compaction of the storm layer in combination with root-zone collapse. In contrast, elevation loss was slower at Pearl River where the storm deposit (high sand content) did not compact and the root zone did not collapse. Vegetation at both sites fully recovered within one year, and accumulation of root matter at Big Branch increased 10-fold from 2005 to 2006, suggesting that the hurricane stimulated belowground productivity. Results of this study imply that hurricane sediment may benefit subsiding marshes by slowing elevation loss. However, long-term effects of hurricane sediment on elevation dynamics will depend not only on the amount of sediment deposited, but on sediment texture and resistance to compaction as well as on changes in organic matter accumulation in the years following the hurricane.
Identification and characterization of natural pipe systems in forested tropical soils
NASA Astrophysics Data System (ADS)
Bovi, Renata Cristina; Moreira, Cesar Augusto; Stucchi Boschi, Raquel; Cooper, Miguel
2017-04-01
Erosive processes on soil surface have been well studied and comprehended by several researchers, however little is known about subsurface erosive processes (piping). Piping is a type of subsurface erosion caused by water flowing in the subsurface and is still considered one of the most difficult erosive processes to be studied. Several processes have been considered as resposible for subsurface erosion and their interaction is complex and difficult to be studied separately. Surface investigations on their own may underestimate the erosion processes, due to the possible occurrence of subsurface processes that are not yet exposed on the surface. The network of subsurface processes should also be understood to better control erosion. Conservation practices that focus on water runoff control may be inefficient if the subsurface flow is not considered. In this study, we aimed to identify and characterize subsurface cavities in the field, as well as understand the network of these cavities, by using geophysical methods (electrical tomography). The study area is situated at the Experimental Station of Tupi, state of São Paulo, Brazil. The soil of the area was classified as Hapludults. The area presents several erosive features, ranging from laminar to permanent gullies and subsurface erosions. The geophysical equipment used was the Terrameter LS resistivity meter, manufactured by ABEM Instruments. The method of electrical tomography was efficient to detect collapsed and non-collapsed pipes. The results presented valuable information to detect areas of risk.
Soil erosion and causative factors at Vandenberg Air Force Base, California
NASA Technical Reports Server (NTRS)
Butterworth, Joel B.
1988-01-01
Areas of significant soil erosion and unvegetated road cuts were identified and mapped for Vandenberg Air Force Base. One hundred forty-two eroded areas (most greater than 1.2 ha) and 51 road cuts were identified from recent color infrared aerial photography and ground truthed to determine the severity and causes of erosion. Comparison of the present eroded condition of soils (as shown in the 1986 photography) with that in historical aerial photography indicates that most erosion on the base took place prior to 1928. However, at several sites accelerated rates of erosion and sedimentation may be occurring as soils and parent materials are eroded vertically. The most conspicuous erosion is in the northern part of the base, where severe gully, sheet, and mass movement erosion have occurred in soils and in various sedimentary rocks. Past cultivation practices, compounded by highly erodible soils prone to subsurface piping, are probably the main causes. Improper range management practices following cultivation may have also increased runoff and erosion. Aerial photography from 1986 shows that no appreciable headward erosion or gully sidewall collapse have occurred in this area since 1928.
CO2 Efflux from Cleared Mangrove Peat
Lovelock, Catherine E.; Ruess, Roger W.; Feller, Ilka C.
2011-01-01
Background CO2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils. Methodology/Principal Findings We measured CO2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO2 efflux. CO2 efflux from soils declines from time of clearing from ∼10 600 tonnes km−2 year−1 in the first year to 3000 tonnes km2 year−1 after 20 years since clearing. Disturbing peat leads to short term increases in CO2 efflux (27 umol m−2 s−1), but this had returned to baseline levels within 2 days. Conclusions/Significance Deforesting mangroves that grow on peat soils results in CO2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks. PMID:21738628
CO2 efflux from cleared mangrove peat.
Lovelock, Catherine E; Ruess, Roger W; Feller, Ilka C
2011-01-01
CO(2) emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils. We measured CO(2) efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO(2) efflux. CO(2) efflux from soils declines from time of clearing from ∼10,600 tonnes km(-2) year(-1) in the first year to 3000 tonnes km(2) year(-1) after 20 years since clearing. Disturbing peat leads to short term increases in CO(2) efflux (27 umol m(-2) s(-1)), but this had returned to baseline levels within 2 days. Deforesting mangroves that grow on peat soils results in CO(2) emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks.
Application of Electrokinetic Stabilisation (EKS) Method for Soft Soil: A Review
NASA Astrophysics Data System (ADS)
Azhar, ATS; Azim, MAM; Syakeera, NN; Jefferson, IF; Rogers, CDF
2017-08-01
Soil properties such as low shear strength, excessive compression, collapsing behavior, high swell potential are some of the undesirable properties of soils in geotechnical engineering and those properties would cause severe distress to the structures. To solve these, an innovative stabilization of Electrokinetic (EKS) has been introduced. Electrokinetic is an applicable technique to transport charged particles and fluid in an electric potential. The EKS demonstrates changes in soil pH due to electrolysis reactions, water flow between the electrodes and migration of ions towards the cathode. This treatment has proven its efficiency in consolidating organic, peat and clayey silt as well as less expensive than other methods. Otherwise, this method also gives advantage by not disturbing site. The primary objective of this review is to discuss the application of electrokinetic and to investigate the current knowledge of electrokinetic in geotechnical application through a literature search and review, including consideration of certain aspects related to the soft soil application that may be relevant to the future study and at the same time addressing some key issues and their implications on soil behaviors.
Sediment-induced amplification and the collapse of the Nimitz Freeway
Hough, S.E.; Friberg, P.A.; Busby, R.; Field, E.F.; Jacob, K.H.; Borcherdt, R.D.
1990-01-01
THE amplification of ground motion by low-seismic-velocity surface sediments is an important factor in determining the seismic hazard specific to a given site. The Ms = 7.1 Loma Prieta earthquake of 17 October 1989 was the largest event in the contiguous United States in 37 years, and yielded an unparalleled volume of seismic data from the main shock and aftershock sequence1. These data can be used to image the seismic source, to study detailed Earth structure, and to study the propagation of seismic waves both through bedrock at depth and through sediment layers near the surface. Near the edge of San Francisco Bay, site conditions vary considerably on scales of hundreds of metres. The collapsed section of the two-tiered Nimitz Freeway in Oakland was built on San Francisco Bay mud, whereas stiffer alluvial sediments underlie a southern section that was damaged but did not collapse. Here we analyse high-quality, digital aftershock recordings from several sites near the Nimitz Freeway, and conclude that soil conditions and resulting ground-motion amplification may have contributed significantly to the failure of the structure.
Influence of disturbance on carbon exchange in a permafrost collapse and adjacent burned forest
Myers-Smith, I. H.; McGuire, A.D.; Harden, J.W.; Chapin, F. S.
2007-01-01
We measured CO2 and CH4 exchange from the center of a Sphagnum-dominated permafrost collapse, through an aquatic most, and into a recently burned black spruce forest on the Tanana River floodplain in interior Alaska. In the anomalously dry growing season of 2004, both the collapse and the surrounding burned area were net sink, s for CO2, with a mean daytime net ecosystem exchange of -1.4 ??mol CO2 m-2 s-1, while the moat was a CH4 source with a mean flux of 0.013 ??mol CH4 m-2 s-1. Regression analyses identified temperature as the dominant factor affecting intragrowing season variation in CO2 exchange and soil moisture as the primary control influencing CH4 emissions. CH4 emissions during the wettest portion of the growing season were four times higher than during the driest periods. If temperatures continue to warm, peatlahd vegetation will likely expand with permafrost degradation, resulting in greater carbon accumulation and methane emissions for the landscape as a whole. Copyright 2007 by the American Geophysical Union.
Development of A 5,000 BBL, Rubberized Fabric Fuel Storage Tank, Collapsible,
1981-04-01
Note l/ after soil burial. 6/ Reference fuel D is ASTM D-471, 60% iso-octane and 40% toluene. 7/ Retained after 56 days -25- i IGOODYEAR AEROSPACE 0 0...331.7) Pure. 9.I - 9.6 920 0() 09/O 0A) 2.7 ". paum Mese IEststa"t r.e ASIN 11-70 W1 I (ma) 7.3A -n-i I GAC 19-1337 Rev 2 USLE is (continmed) () The...the greater requirement. 5/ Method 5762 except that the specimens were prepared by Note 1/ after soil burial and the number of specimens was reduced
Zeng, Wei-quan; Song, Bo; Yuan, Li-zhu; Huang, Yu-fei; Fu, Feng-yan
2015-06-01
Due to the collapse of the Pb/Zn tailing dam of Huanjiang, Guangxi, the farmland along Huanjiang River are strongly acidic and heavy metal-contaminated, resulting in the loss of agricultural production. To explore some remedies and the migration of heavy metals in heavy metal contaminated-soil of Huanjiang, this study investigated the effects of different types of amendments (lime, calcium magnesium phosphate, organic fertilizer, polypropylene amide) on tested soils through soil leaching test. The results showed that T1 soil was severely acidified, reducing the pH of the soil layer to clean contact, while T2, T3, T4, T5 could significantly improve the contaminated soil pH, ranging from 2.7 to 3.2, 1.6 to 2.7 respectively. Compared with T1, in the contaminated soil at 0-20 cm, T2, T3, T4, T5 could effectively activate Pb and immobilize Zn. Compared with T1, in 20-60 cm clean soil, there was no significant differences in the effect of different treatments on DTPA-Pb and DTPA-Zn (P < 0.05). Compared with T1, T4 and T5 could provide good growing conditions for plants, which might provide technical support for future measurements such as bioremediation.
Controls on the methane released through ebullition affected by permafrost degradation
S.J. Klapstein; M.R. Turetsky; A.D. McGuire; J.W. Harden; C.I. Czimczik; X. Xu; J.P. Chanton; J.M. Waddington
2014-01-01
Permafrost thaw in peat plateaus leads to the flooding of surface soils and the formation of collapse scar bogs, which have the potential to be large emitters of methane (CH4) from surface peat as well as deeper, previously frozen, permafrost carbon (C). We used a network of bubble traps, permanently installed 20 cm and 60 cm beneath the moss surface, to examine...
Collapse of tall granular columns in fluid
NASA Astrophysics Data System (ADS)
Kumar, Krishna; Soga, Kenichi; Delenne, Jean-Yves
2017-06-01
Avalanches, landslides, and debris flows are geophysical hazards, which involve rapid mass movement of granular solids, water, and air as a multi-phase system. In order to describe the mechanism of immersed granular flows, it is important to consider both the dynamics of the solid phase and the role of the ambient fluid. In the present study, the collapse of a granular column in fluid is studied using 2D LBM - DEM. The flow kinematics are compared with the dry and buoyant granular collapse to understand the influence of hydrodynamic forces and lubrication on the run-out. In the case of tall columns, the amount of material destabilised above the failure plane is larger than that of short columns. Therefore, the surface area of the mobilised mass that interacts with the surrounding fluid in tall columns is significantly higher than the short columns. This increase in the area of soil - fluid interaction results in an increase in the formation of turbulent vortices thereby altering the deposit morphology. It is observed that the vortices result in the formation of heaps that significantly affects the distribution of mass in the flow. In order to understand the behaviour of tall columns, the run-out behaviour of a dense granular column with an initial aspect ratio of 6 is studied. The collapse behaviour is analysed for different slope angles: 0°, 2.5°, 5° and 7.5°.
Yin, Xiangbiao; Wang, Xinpeng; Wu, Hao; Ohnuki, Toshihiko; Takeshita, Kenji
2017-03-15
Adsorption of cesium (Cs) on phyllosilicates has been intensively investigated because natural soils have strong ability of immobilizing Cs within clay minerals resulting in difficulty of decontamination. The objectives of present study are to clarify how Cs fixation on vermiculite is influenced by structure change caused by Cs sorption at different loading levels and how Cs desorption is affected by various replacing cations induced at different treating temperature. As a result, more than 80% of Cs was readily desorbed from vermiculite with loading amount of 2% saturated Cs (5.49×10 -3 mmolg -1 ) after four cycles of treatment of 0.01M Mg 2+ /Ca 2+ at room temperature, but less than 20% of Cs was desorbed from saturated vermiculite. These distinct desorption patterns were attributed to inhibition of Cs desorption by interlayer collapse of vermiculite, especially at high Cs loadings. In contrast, elevated temperature significantly facilitated divalent cations to efficiently desorb Cs from collapsed regions. After five cycles of treatment at 250°C with 0.01M Mg 2+ , ∼100% removal of saturated Cs was achieved. X-ray diffraction analysis results suggested that Cs desorption was completed through enhanced diffusion of Mg 2+ cations into collapsed interlayer space under hydrothermal condition resulting in subsequent interlayer decollapse and readily release of Cs + . Copyright © 2016 Elsevier B.V. All rights reserved.
Evaluation of subsidence hazard in mantled karst setting: a case study from Val d'Orléans (France)
NASA Astrophysics Data System (ADS)
Perrin, Jérôme; Cartannaz, Charles; Noury, Gildas; Vanoudheusden, Emilie
2015-04-01
Soil subsidence/collapse is a major geohazard occurring in karst region. It occurs as suffosion or dropout sinkholes developing in the soft cover. Less frequently it corresponds to a breakdown of karst void ceiling (i.e., collapse sinkhole). This hazard can cause significant engineering challenges. Therefore decision-makers require the elaboration of methodologies for reliable predictions of such hazards (e.g., karst subsidence susceptibility and hazards maps, early-warning monitoring systems). A methodological framework was developed to evaluate relevant conditioning factors favouring subsidence (Perrin et al. submitted) and then to combine these factors to produce karst subsidence susceptibility maps. This approach was applied to a mantled karst area south of Paris (Val d'Orléans). Results show the significant roles of the overburden lithology (presence/absence of low-permeability layer) and of the karst aquifer piezometric surface position within the overburden. In parallel, an experimental site has been setup to improve the understanding of key processes leading to subsidence/collapse and includes piezometers for measurements of water levels and physico-chemical parameters in both the alluvial and karst aquifers as well as surface deformation monitoring. Results should help in designing monitoring systems to anticipate occurrence of subsidence/collapse. Perrin J., Cartannaz C., Noury G., Vanoudheusden E. 2015. A multicriteria approach to karst subsidence hazard mapping supported by Weights-of-Evidence analysis. Submitted to Engineering Geology.
A SPH elastic-viscoplastic model for granular flows and bed-load transport
NASA Astrophysics Data System (ADS)
Ghaïtanellis, Alex; Violeau, Damien; Ferrand, Martin; Abderrezzak, Kamal El Kadi; Leroy, Agnès; Joly, Antoine
2018-01-01
An elastic-viscoplastic model (Ulrich, 2013) is combined to a multi-phase SPH formulation (Hu and Adams, 2006; Ghaitanellis et al., 2015) to model granular flows and non-cohesive sediment transport. The soil is treated as a continuum exhibiting a viscoplastic behaviour. Thus, below a critical shear stress (i.e. the yield stress), the soil is assumed to behave as an isotropic linear-elastic solid. When the yield stress is exceeded, the soil flows and behaves as a shear-thinning fluid. A liquid-solid transition threshold based on the granular material properties is proposed, so as to make the model free of numerical parameter. The yield stress is obtained from Drucker-Prager criterion that requires an accurate computation of the effective stress in the soil. A novel method is proposed to compute the effective stress in SPH, solving a Laplace equation. The model is applied to a two-dimensional soil collapse (Bui et al., 2008) and a dam break over mobile beds (Spinewine and Zech, 2007). Results are compared with experimental data and a good agreement is obtained.
NASA Astrophysics Data System (ADS)
Ikemoto, Toshikazu; Mori, Masashi; Miyajima, Masakatsu; Hashimoto, Takao; Murata, Akira
There are many earthquake damages of kenchi block masonry wall. So, we carried out experimental studies on the collapse mechanism of kenchi block masonry wall during earthquake. From these experimental data, i.e. acceleration response magnification, displacement and soil pressure were found to destroy the central wall vibrations caused by the subsidence of the embankment.
Mapping and predicting sinkholes by integration of remote sensing and spectroscopy methods
NASA Astrophysics Data System (ADS)
Goldshleger, N.; Basson, U.; Azaria, I.
2013-08-01
The Dead Sea coastal area is exposed to the destructive process of sinkhole collapse. The increase in sinkhole activity in the last two decades has been substantial, resulting from the continuous decrease in the Dead Sea's level, with more than 1,000 sinkholes developing as a result of upper layer collapse. Large sinkholes can reach 25 m in diameter. They are concentrated mainly in clusters in several dozens of sites with different characteristics. In this research, methods for mapping, monitoring and predicting sinkholes were developed using active and passive remote-sensing methods: field spectrometer, geophysical ground penetration radar (GPR) and a frequency domain electromagnetic instrument (FDEM). The research was conducted in three stages: 1) literature review and data collection; 2) mapping regions abundant with sinkholes in various stages and regions vulnerable to sinkholes; 3) analyzing the data and translating it into cognitive and accessible scientific information. Field spectrometry enabled a comparison between the spectral signatures of soil samples collected near active or progressing sinkholes, and those collected in regions with no visual sign of sinkhole occurrence. FDEM and GPR investigations showed that electrical conductivity and soil moisture are higher in regions affected by sinkholes. Measurements taken at different time points over several seasons allowed monitoring the progress of an 'embryonic' sinkhole.
Capturing strain localization behind a geosynthetic-reinforced soil wall
NASA Astrophysics Data System (ADS)
Lai, Timothy Y.; Borja, Ronaldo I.; Duvernay, Blaise G.; Meehan, Richard L.
2003-04-01
This paper presents the results of finite element (FE) analyses of shear strain localization that occurred in cohesionless soils supported by a geosynthetic-reinforced retaining wall. The innovative aspects of the analyses include capturing of the localized deformation and the accompanying collapse mechanism using a recently developed embedded strong discontinuity model. The case study analysed, reported in previous publications, consists of a 3.5-m tall, full-scale reinforced wall model deforming in plane strain and loaded by surcharge at the surface to failure. Results of the analysis suggest strain localization developing from the toe of the wall and propagating upward to the ground surface, forming a curved failure surface. This is in agreement with a well-documented failure mechanism experienced by the physical wall model showing internal failure surfaces developing behind the wall as a result of the surface loading. Important features of the analyses include mesh sensitivity studies and a comparison of the localization properties predicted by different pre-localization constitutive models, including a family of three-invariant elastoplastic constitutive models appropriate for frictional/dilatant materials. Results of the analysis demonstrate the potential of the enhanced FE method for capturing a collapse mechanism characterized by the presence of a failure, or slip, surface through earthen materials.
Monitoring of shallow landslides by distributed optical fibers: insights from a physical model
NASA Astrophysics Data System (ADS)
Luca, Schenato; Matteo, Camporese; Luca, Palmieri; Alessandro, Pasuto; Salandin, Paolo
2017-04-01
Shallow landslides represent an extreme risk for individuals and structures due to their fast propagation and the very short time between appearance of warning signs and collapse. A lot of attention has been paid in the last decades to the analysis of activation mechanisms and to the implementation of appropriate early warning systems. Intense rainfall, stream erosion, flash floods, etc, are only few of the possible triggering factors that have been identified. All those factors may induce an increase in the forces acting and/or in the pore water pressure that eventually trigger the collapse. Due to the decrease of the shear resistance of soils, significant stresses develop at the sliding surface, determining local anomalous strain even before the collapse. This highlights the importance of monitoring the early appearance of hazardous strain fields. In light of the intrinsic lack of control and reproducibility in real cases, strain sensors have been applied in small-scale physical models and testbeds. Nonetheless, it has been observed that a reliable correlation between the landslide evolution and the strain field can be determined only by using minimally invasive sensors, while comprehensive information can be achieved at the cost of very fine spatial sampling, which represents the primary issue with small-to-medium scale physical models. It is evident how the two requirements, i.e., minimal invasiveness and high spatial resolution, are a limiting factor for standard sensor technology. In this regard, strain is one of the first variable addressed by optical fiber sensors, yet only recently for geotechnical applications and in very few case for landslide monitoring. In particular, the technology of distributed fiber optic sensors, with centimeter scale resolution, has the potential to address the aforementioned needs of small scale physical testing. In this work, for the first time, the strain field at the failure surface of a shallow landslide, reproduced in an artificial experimental hillslope, has been monitored by a distributed optical fiber sensing system based on optical fiber domain reflectometry with centimeter spatial resolution. The optical sensing system has been integrated with hydrological sensors for pore water pressure and moisture content, to the aim of supporting the data analysis. From the whole monitoring system a thorough knowledge of the collapsing mechanism has been achieved and it has been possible to identify precursory signs of the soil collapse well before its actual occurrence. The deployment of the sensing system and analysis of the collected data are discussed, together with possible potential for field installation.
NASA Astrophysics Data System (ADS)
Pan, Huali; Hu, Mingjian; Ou, Guoqiang
2017-04-01
According to the geological investigation in Fujian province, the total number of geological disasters was 9513, in which the number of landslide, collapse, unstable slope and surface collapse was 5816, 1888, 1591, 103 and 115 respectively. The main geological disaster was the landslide with 61.1% of total geological disasters. Among all these geological disasters, only 6.0% was relative stable, 17.0% was basic stable, nearly 76.0% was unstable. The slope disaster was the main geological disaster, if the unstable slope was the potential landslide or collapse; the slope collapse was 98.0% of all geological disasters. The rainfall, in particular the heavy rain, was direct dynamic factor for geological disasters, but the occurrence probability of geological disasters was different because of the sensitivity of the geological environment though of the same intensity rainfall. To obtain the characteristics of soil erosion under the rainfall condition, the rainfall characteristics and its related disasters of slag disposal pit of a certain Gold-Copper Deposit in Fujian province was analyzed by the meteorological and rainfall data. According to the distribution of monitoring stations of hydrological and rainfall in Longyan city of Fujian province and the location of gold-copper deposit, the Shanghang monitoring station of hydrological and rainfall was chosen, which is the nearest one to the gold-copper deposit. Then main parameters of the prediction model, the antecedent precipitation, the rainfall on the day and the rainfall threshold, were calculated by using the rainfall data from 2002 to 2010. And the relationship between geological disasters and the rainfall characteristics were analyzed. The results indicated that there was high risk for the debris flow with landslide collapse when either the daily rainfall was more than 100.0 mm, or the total rainfall was more than 136.0mm in the gold-copper deposit and the Shanghang region. At the same time, although there was few risk for the debris flow when the daily rainfall was between 50.0-100.0mm, once the soil was saturated or nearly saturated because of the continuous antecedent precipitation, debris flow disaster would occur even the daily rainfall was only 50.0mm. In addition, it was prone to trigger debris flow disaster when the daily heavy rainfall was more than 100.0mm or the torrential rainfall in 3 days was between 250.0 -300.0mm.
Effect of suction-dependent soil deformability on landslide susceptibility maps
NASA Astrophysics Data System (ADS)
Lizarraga, Jose J.; Buscarnera, Giuseppe; Frattini, Paolo; Crosta, Giovanni B.
2016-04-01
This contribution presents a physically-based, spatially-distributed model for shallow landslides promoted by rainfall infiltration. The model features a set of Factor of Safety values aimed to capture different failure mechanisms, namely frictional slips with limited mobility and flowslide events associated with the liquefaction of the considered soils. Indices of failure associated with these two modes of instability have been derived from unsaturated soil stability principles. In particular, the propensity to wetting-induced collapse of unsaturated soils is quantified through the introduction of a rigid-plastic model with suction-dependent yielding and strength properties. The model is combined with an analytical approach (TRIGRS) to track the spatio-temporal evolution of soil suction in slopes subjected to transient infiltration. The model has been tested to reply the triggering of shallow landslides in pyroclastic deposits in Sarno (1998, Campania Region, Southern Italy). It is shown that suction-dependent mechanical properties, such as soil deformability, have important effects on the predicted landslide susceptibility scenarios, resulting on computed unstable zones that may encompass a wide range of slope inclinations, saturation levels, and depths. Such preliminary results suggest that the proposed methodology offers an alternative mechanistic interpretation to the variability in behavior of rainfall-induced landslides. Differently to standard methods the explanation to this variability is based on suction-dependent soil behavior characteristics.
NASA Astrophysics Data System (ADS)
Xu, W.; Wang, X.; Zhang, Y.; Liu, Y.
2014-12-01
High soil-conservation herbs are very important for slope vegetation restoration of a highway in serious sandstorm regions. In this study, nine common herbs in northeast China were selected and compared to study soil-conservation effects by using an undisturbed-soil trough scouring method for soil anti-scourability enhancement and hydrostatic collapse method for soil anti-erodibility. Further, principal components analysis was used to identify significant root features that affected soil erosion resistance. Results indicated that different herbs had distinct enhancement effects on soil erosion resistance. Soil anti-scourability enhancement index decreased with increases of soil depth, slope gradient and rainfall amount. Relationship between soil anti-erodibility enhancement index ( S) and immersion time ( t) is a cubic spline in each different herb type ( R 2 ≥ 0.88). Herb root features such as micro-aggregates, organic matter, net leaf weight, thick root length, fine root length and biomass contributed a leading role in soil erosion resistance enhancement effect, and all their common factor variances were more than 0.81. Descending order of soil erosion resistance enhancement effect in soil anti-scourability for nine herbs is Poa pratensis, Medicago sativa, Viola philippica, Rudbeckia hirta, Clematis heracleifolia, Kalimeris indica, Cosmos bipinnata, Hemerocallis fulva and Sedum elatinoides, while the sequence of soil anti-erodibility is M. sativa, S. elatinoides, P. pratensis, R. hirta, H. fulva, V. philippica, C. heracleifolia, C. bipinnata and K. indica. Therefore, we concluded that P. pratensis and M. sativa were the most suitable herbs for resisting soil erosion and recommended to be widely planted for road vegetation recovery in this region.
Effects of Climate and Social Change on Pasture Productivity and Area in the Alay Valley, Kyrgyzstan
NASA Astrophysics Data System (ADS)
Zhang, L.; Smithwick, E. A. H.
2017-12-01
The high elevation Alay Valley, located in the central Asian country of Kyrgyzstan, has experienced substantial socio-political and environmental changes in recent decades, resulting from the collapse of the Soviet Union and an increase in average annual temperature from 1.8 C to 2.7 C between 1990 and 2014. However, the consequences of these changes on pastureland productivity and area has not been previously assessed, despite the critical cultural and economic importance of pasturelands for sustaining livelihoods in this region. We assessed spatial and temporal patterns of soil moisture, pasture productivity and pasture area in the Alay Valley. Supervised classification was performed on Landsat imagery over the study region to distinguish pastures and agricultural land in order to relate changes in soil moisture to specific land classes. Root Zone Soil Moisture (RZSM) was estimated between May 2015 and June 2017 from Soil Moisture Active Passive L4 RZSM product. Average monthly NDVI for 2016 was calculated to obtain seasonal patterns in productivity of the pasturelands in the region. Results show that annual RZSM trends closely matched those of precipitation, as RZSM peaks during May (the wettest month) and decreases during the dry summer. The NDVI trend is also notable as it peaks very early in June before declining due to limited precipitation and grazing practices. There has been a sharp increase in pasturelands encompassing the bank of the Kyzyl Suu river from 1993 to 2016. Likely due to turmoil from collapse of the USSR, the area of pasturelands decreased slightly from 59.98 to 55.99 km^2 from 1993-1994, corresponding with a decline in livestock count and GDP per capita. The area of pasturelands has since recovered and is hovering around 104.47 - 107.95 km^2 between 2009-2016. Overall results highlight both sensitivity and resilience of high elevation pasture to coupled socio-environmental drivers.
Civilian Resistance in Crete: 20 May 1941 - 15 May 1945
2010-03-23
indoctrinated since childhood , - these men were in a space of few hours, defeated by the valour of those whose soil they had attacked. How different might the...Metaxas, established a dictatorship in Greece. Metaxas ideologically was a nationalist, fascist, and a monarchist. Even though his movement on the...Cretans revolted against the dictatorship . The revolt collapsed after twelve days and a climate of terror was established. Because of the revolt, the
Manies, Kristen L.; Fuller, Christopher C.; Jones, Miriam C.; Waldrop, Mark P.; McGeehin, John P.
2017-01-19
Peatlands play an important role in boreal ecosystems, storing a large amount of soil organic carbon. In northern ecosystems, collapse-scar bogs (also known as thermokarst bogs) often form as the result of ground subsidence following permafrost thaw. To examine how ecosystem carbon balance changes with the loss of permafrost, we measured carbon and nitrogen storage within a thermokarst bog and the surrounding forest, which continues to have permafrost. These sites are a part of the Bonanza Creek Long Term Ecological Research (LTER) site and are located within Interior Alaska. Here, we report on methods used for core collection analysis as well as the cores’ physical, chemical, and descriptive properties.
NASA Astrophysics Data System (ADS)
Marcon, V.; Gu, X.; Brantley, S. L.
2017-12-01
Life on Earth relies on the breakdown of impermeable bedrock into porous weathered rock to release nutrients and open pathways for gases and fluids to move through the subsurface. Serpentinites, though rare, are found across the globe and often have thin soils. Few studies have evaluated how porosity, a first order control on weathering, evolves from unweathered serpentinite bedrock to the soil. In this study, we evaluated weathering of serpentinites from bedrock to soil along a ridgetop in Nottingham Park, PA. A suite of geochemical analyses were used to determine chemical and physical changes during weathering. We used neutron scattering to measure pores 2nm to 20 microns in size (referred to here as nanoporosity). As this serpentinite weathers, small pores ( 1nm in diameter) are occluded and total nanoporosity and pore connectivity decrease throughout the weathered rock. Specifically, total nanoporosity decreases from 10% in the unweathered parent material to 5% in the weathered rock. However, in the upper meter of the profile, total nanoporosity increases as Fe, Mg, Mn, Si, Ni, Cr, and V are depleted. Additionally, bulk density and strain calculations suggest total volume expansion throughout the weathered rock followed by volume collapse in the upper 0.5m of the profile. We propose that low temperature reactions alter olivine in the parent material to serpentine minerals at the parent-weathered rock interface, resulting in a volume expansion and the loss of nanopores 1-100nm in size in this weathered rock zone. Volume expansion has long been reported to occur during low temperature serpentinization. We also infer that this loss of porosity limits the infiltration of reactive meteoric fluids into the deeper rock material and restricts the depth of regolith development. Following low temperature serpentinization, serpentine minerals (e.g. antigorite and lizardite) dissolve higher in the weathered rock. Because serpentinite rocks lack a non-reactive mineral such as quartz to provide supportive skeleton in the regolith, dissolution ultimately leads to collapse in the upper meter of the profile. The evolution of porosity in this profile can help explain why serpentinite regolith is characteristically thin to non-existent in the Piedmont: thin regolith occurs because of porosity occlusion as well as collapse.
Mechanics of Granular Materials (MGM)
NASA Technical Reports Server (NTRS)
2000-01-01
The packing of particles can change radically during cyclic loading such as in an earthquake or when shaking a container to compact a powder. A large hole (1) is maintained by the particles sticking to each other. A small, counterclockwise strain (2) collapses the hole, and another large strain (3) forms more new holes which collapse when the strain reverses (4). Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (after T.L. Youd, Packing Changes and Liquefaction Susceptibility, Journal of the Geotechnical Engieering Division, 103: GT8,918-922, 1977)(Credit: NASA/Marshall Space Flight Center.)(Credit: University of Colorado at Boulder).
2000-07-01
The packing of particles can change radically during cyclic loading such as in an earthquake or when shaking a container to compact a powder. A large hole (1) is maintained by the particles sticking to each other. A small, counterclockwise strain (2) collapses the hole, and another large strain (3) forms more new holes which collapse when the strain reverses (4). Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (after T.L. Youd, Packing Changes and Liquefaction Susceptibility, Journal of the Geotechnical Engieering Division, 103: GT8,918-922, 1977)(Credit: NASA/Marshall Space Flight Center.)(Credit: University of Colorado at Boulder).
Distinct Element modeling of geophysical signatures during sinkhole collapse
NASA Astrophysics Data System (ADS)
Al-Halbouni, Djamil; Holohan, Eoghan P.; Taheri, Abbas; Dahm, Torsten
2017-04-01
A sinkhole forms due to the collapse of rocks or soil near the Earth's surface into an underground cavity. Such cavities represent large secondary pore spaces derived by dissolution and subrosion in the underground. By changing the stress field in the surrounding material, the growth of cavities can lead to a positive feedback, in which expansion and mechanical instability in the surrounding material increases or generates new secondary pore space (e.g. by fracturing), which in turn increases the cavity size, etc. A sinkhole forms due to the eventual subsidence or collapse of the overburden that becomes destabilized and fails all the way to the Earth's surface. Both natural processes like (sub)surface water movement and earthquakes, and human activities, such as mining, construction and groundwater extraction, intensify such feedbacks. The development of models for the mechanical interaction of a growing cavity and fracturing of its surrounding material, thus capturing related precursory geophysical signatures, has been limited, however. Here we report on the advances of a general, simplified approach to simulating cavity growth and sinkhole formation by using 2D Distinct Element Modeling (DEM) PFC5.0 software and thereby constraining pre-, syn- and post-collapse geophysical and geodetic signatures. This physically realistic approach allows for spontaneous cavity development and dislocation of rock mass to be simulated by bonded particle formulation of DEM. First, we present calibration and validation of our model. Surface subsidence above an instantaneously excavated circular cavity is tracked and compared with an incrementally increasing dissolution zone both for purely elastic and non-elastic material.This validation is important for the optimal choice of model dimensions and particles size with respect to simulation time. Second, a cavity growth approach is presented and compared to a well-documented case study, the deliberately intensified sinkhole collapse at Cerville-Buissoncourt in France. The outcomes of our model are compared with available extensiometer, surface-subsidence and microseismicity measurements during the pre- and syn-collapse period. The proposed model development and a possible archive of modeled scenarios may, in combination with a geodetic and seismological sinkhole monitoring, contribute to an early-warning tool for end-users and decision makers in areas affected by natural (e.g. Dead Sea) or man-made sinkhole collapses (mines).
Revisiting classic water erosion models in drylands: The strong impact of biological soil crusts
Bowker, M.A.; Belnap, J.; Bala, Chaudhary V.; Johnson, N.C.
2008-01-01
Soil erosion and subsequent degradation has been a contributor to societal collapse in the past and is one of the major expressions of desertification in arid regions. The revised universal soil loss equation (RUSLE) models soil lost to water erosion as a function of climate erosivity (the degree to which rainfall can result in erosion), topography, soil erodibility, and land use/management. The soil erodibility factor (K) is primarily based upon inherent soil properties (those which change slowly or not at all) such as soil texture and organic matter content, while the cover/management factor (C) is based on several parameters including biological soil crust (BSC) cover. We examined the effect of two more precise indicators of BSC development, chlorophyll a and exopolysaccharides (EPS), upon soil stability, which is closely inversely related to soil loss in an erosion event. To examine the relative influence of these elements of the C factor to the K factor, we conducted our investigation across eight strongly differing soils in the 0.8 million ha Grand Staircase-Escalante National Monument. We found that within every soil group, chlorophyll a was a moderate to excellent predictor of soil stability (R2 = 0.21-0.75), and consistently better than EPS. Using a simple structural equation model, we explained over half of the variance in soil stability and determined that the direct effect of chlorophyll a was 3?? more important than soil group in determining soil stability. Our results suggest that, holding the intensity of erosive forces constant, the acceleration or reduction of soil erosion in arid landscapes will primarily be an outcome of management practices. This is because the factor which is most influential to soil erosion, BSC development, is also among the most manageable, implying that water erosion in drylands has a solution. ?? 2008 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Brimhall, George H.; Dietrich, William E.
1987-03-01
Relations characterizing the chemical, physical, and mechanical changes resulting from metasomatic hydrochemical processes are developed using mass balance models which formally link chemical composition to bulk density, mineral density, volumetric properties, porosity, and amount of deformation (strain). Rigorous analysis of aqueous solute transport effects is then made possible in a variety of porous media flow environments including chemical weathering, pedogenesis (soil formation), diagenesis, ore deposition and enrichment, and metamorphism. Application of these linear constitutive relations to chemical weathering profiles shows that immobile and locally mobile chemical elements, with masses conserved on the scale of soil profiles, can be accurately identified from analysis of appropriate data arrays and then used as natural geochemical tracers to infer the nature and extent of hydrochemical weathering processes and volume changes during pedogenesis. Assumptions commonly made in the past about the supposed immobility of certain elements, e.g., Ti and Zr, become unnecessary. Quantitative differentiation between the effects of residual and supergene fractionation is then easily made. These methods are applied to Ni-rich laterites developed by weathering of ultramafic rocks, showing that during ordinary residual enrichment, Ni is concentrated by as much as 4× protolith peridotite concentrations. This occurs simply by silicate mineral dissolution and removal of chemical elements other than Ni ( e.g., Mg) with a corresponding reduction in saprolite density and increase in bulk porosity without significant deformation. In contrast, laterites with mineable concentrations of Ni which are similarly undeformed (such as the Nickel Mountain Mine in Riddle, Oregon) have experienced, in addition to residual enrichment, strong supergene enrichment by fractionation of ore elements between a leached zone from which Ni is extracted and a complementary enriched zone positioned farther along the direction of ground water flow. Soil-forming processes in podzol chronosequences developed on sandy beach terraces of the Mendocino Coast of California involved soil column collapse of 60 percent by dissolution of silicate minerals in the albic horizon of Al and Fe leaching, and 70 percent dilation (expansion) in the overlying organic-rich layer by root growth. The amount of erosion based upon paleosurface reconstructions using the excess mass of Fe, Al, Pb, Ga, and Cu in the zone of supergene enrichment (spodic horizon) below the ground water table indicates that subsurface erosion by dissolutional collapse is three times that of surficial erosion. Finally, using published chemical data for Ti, Zr, and Cr on major bauxite deposits in Australia where erosion rates are thought to be low, we infer that there may have been major amounts of dissolutional collapse to explain the upwards increase of detrital zircon and rutile in weathering profiles.
Evaporite karst of northern lower Michigan
Black, T.J.
1997-01-01
Michigan has three main zones of evaporite karst: collapse breccia in Late Silurian deposits of the Mackinac Straits region; breccia, collapse sinks, and mega-block collapse in Middle Devonian deposits of Northern Lower Michigan, which overlaps the preceding area; and areas of soil swallows in sinks of Mississippian deposits between Turner and Alabaster in Arenac and Iosco counties, and near Grand Rapids in Kent County. The author has focused his study on evaporite karst of the Middle Devonian deposits. The Middle Devonian depos its are the Detroit River Group: a series consisting of limestone, dolomite, shale, salt, gypsum, and anhydrite. The group occurs from subcrop, near the surface, to nearly 1400 feet deep from the northern tip of the Southern Peninsula to the south edge of the "solution front" Glacial drift is from zero to 350 feet thick. Oil and gas exploration has encountered some significant lost-circulation zones throughout the area. Drilling without fluid returns, casing-seal failures, and lost holes are strong risks in some parts of the region. Lost fluid returns near the top of the group in nearby areas indicate some karst development shortly after deposition. Large and irregular lost-circulation zones, linear and patch trends of large sink holes, and 0.25 mile wide blocks of down-dropped land in the northern Lower Peninsula of Michigan were caused by surface- and ground-water movement along faults into the Detroit River Group. Glaciation has removed some evidence of the karst area at the surface. Sinkhole development, collapse valleys, and swallows developed since retreat of the glacier reveal an active solution front in the Detroit River Group.
NASA Astrophysics Data System (ADS)
Schönbrodt, S.; Behrens, T.; Imbery, S.; Scholten, T.
2010-03-01
Globally, the Three-Gorges Ecosystem is currently one of the most anthropogenic influenced regions. Due to the Three-Gorges Dam large areas in the upper catchment of the Yangtze and its major tributaries become inundated. Consequently, high land-use dynamic with resettlements, construction of infrastructure, and new land reclamation for smallholder agriculture and cash crops characterize this area. Therefore, ecological impacts are expected in an unforeseeable dimension. Soil loss is one of the major threats and its control an enormous challenge. Even existing erosion control measures like dry-stone walling bench terraces have to be adapted to this new situation in order to keep their effectiveness. In the highly dynamic watershed of the Xiangxi, a first class tributary to the Yangtze, this study aims to assess and predict the spatial and temporal varying dam-caused soil erosion risk potential. Using a multi-level and multi-scale approach this study seeks to develop an integrative data-based methodology for soil erosion assessment by means of GIS-based erosion modeling using relevant digital terrain data, field investigations and remote sensing. The different scales considered cover the Xiangxi watershed (3.100 km²), the highly dynamic backwater area (500 km²), and two micro-scale study sites (3 km² and 88 km²) subject to flooding and high land-use dynamic. Central features of the Xiangxi watershed are steep slopes artificially fractured by terraces. A preliminary erosion survey has shown a strong connection of the frequency and intensity of erosion and the quality of terrace-maintenance. Terraces with wall disorders and technically poor constructed design show higher soil loss and runoff than well-maintained terraces. Their condition is regarded as a driving erosion factor. Therefore, a conceptual Terrace-Condition-Erosion model (TerraCE) was developed in order to assess to what extent soil erosion depends on the quality of terraces. Central aspects are the distance to the inundated area, to the road network, and to the settlements. Four classes of terrace-maintenance are analyzed: well-maintained (20 %), badly-maintained (48 %), partially collapsed (15 %), and completely collapsed (6 %). Unterraced farmland (7 %) is regarded as an extra class. First results of TerraCE indicate that with increasing distance from the highly dynamic inundated area and the main roads the better is the quality of terrace-maintenance with less wall disorders and less soil erosion potential. It is concluded that the construction of infrastructure and the artificially fluctuating water level at the dam lead to a degradation of terraces within close distances to the Xiangxi and the main road network. Terraced farmland that is more remote to the main transportation routes seems to be less influenced by the high land-use dynamic. The mean distance of (a) well-/badly-maintainedand(b)partially-/completely collapsed terraces from the Xiangxi is(a) 613.8 m with SD 318.2 m/474.4 m with SD 291.6 m and (b) 208.6m with SD 292.1 m/127.6 m with SD 81.7 m. In average, unterraced farmland is 261.9 m (SD 286.2 m) located from the new shoreline of the Xiangxi. By combining the model results with DEM-analysis and remote sensing data a high-resolution soil erosion risk model will be computed using spatial regression approaches. It aims to assess the soil erosion as a function of natural factors and anthropogenic impacts in an increasingly complex system. Especially against the background of global change and the increasing demand for water and energy the study aims at enhancing the understanding of the ecological consequences of large dam projects.
Ryan, Barbara J.
1989-01-01
Ten years of hydrologic research have been conducted by the U.S. Geological Survey at a commercial low-level radioactive-waste disposal site near Sheffield, Illinois. Research included studies of microclimate, evapotranspiration, and tritium release by plants; runoff and land modification; water movement through a trench cover; water and tritium movement in the unsaturated zone; gases in the unsaturated zone; water and tritium movement in the saturated zone; and water chemistry. Implications specific to each research topic and those based on overlapping research topics are summarized as to their potential effect on the selection, characterization, design, operation, and decommissioning processes of future low-level radioactive-waste disposal sites. Unconsolidated deposits at the site are diverse in lithologic character and are spatially and stratigraphically complex. Thickness of these Quaternary deposits ranges from 3 to 27 meters and averages 17 meters. The unconsolidated deposits overlay 140 meters of Pennsylvanian shale, mudstone, siltstone, and coal. Approximately 90,500 cubic meters of waste were buried from August 1967 through August 1978, in 21 trenches that were constructed in glacial materials by using a cut-and-fill process. Trenches generally were constructed below grade and ranged from 11 to 180 meters long, 2.4 to 21 meters wide, and 2.4 to about 7.9 meters deep. Research on microclimate and evapotranspiration at the site was conducted from July 1982 through June 1984. Continuous measurements were made of precipitation, incoming and reflected solar (shortwave) radiation, incoming and emitted terrestrial (longwave) radiation, horizontal windspeed and direction, wet- and dry-bulb air temperature, barometric pressure, soil-heat fluxes, and soil temperature. Soil-moisture content, for this research phase, was measured approximately biweekly. Evapotranspiration rates were estimated by using three techniques--energy budget, aerodynamic profile, and water budget. Although monthly totals for each method differed, estimated annual evapotranspiration averages ranged from 630 to 693 millimeters or about 70 percent of precipitation. Tritium concentrations in leaf water from on-site plants were determined for 125 vegetation samples collected during the summers of 1982 through 1986. Concentrations varied significantly among some locations and plant types. Tritium concentrations ranged from the detection limit of 0 .2 to 1,330 nanocuries per liter, with alfalfa (Medicago sativa) having the highest concentrations, followed by brome grass (Bromus inermis), and then red clover (Trifoleum pratense); these variations in concentration are most likely a result of root depth. Runoff and sediment transport were measured from July 1982 through December 1985 in four basins--three comprising almost two-thirds of the 8.1-hectare site and one comprising a 1.4-hectare undisturbed area. Volumes and equivalent weights of collapses were estimated from records of site surficial conditions from October 1978 through December 1985. Runoff showed a direct relation to degree of land modification; lowest mean yields were measured at the undisturbed area, and highest mean yields were measured from the basin composed wholly of trench and intertrench areas. Sediment yield measured onsite averaged 3.4 megagrams per hectare. A total of 315 collapse cavities, corresponding to a cumulative volume of about 500 cubic meters, were documented. Most collapses were recorded after periods of rainfall or snowmelt when soil moisture was near maximum. Almost two-thirds of the collapses, corresponding to 63 percent of the cumulative cavity volume, occurred during February through April. Data for the study of water movement through a trench cover were collected from July 1982 through June 1934. Pressure-head data were collected at four different clusters at depths ranging from 50 to 1,850 millimeters within a selected trench cover. Soil-moisture content f
Strength and Stiffness Development in Soft Soils: A FESEM aided Soil Microstructure Viewpoint
NASA Astrophysics Data System (ADS)
Wijeyesekera, D. C.; Ho, M. H.; Bai, X.; Bakar, I.
2016-07-01
This paper opens with an overview of the debatable definition of soft soil that goes beyond a (CH) organic / inorganic clay and OH peat to include weakly cemented periglacial deposits of loess and alike. It then outlines the findings obtained from stiffness test on cement-stabilised soft clay. The findings are complemented with a microstructure viewpoint obtained using field emission scanning electron microscope (FESEM). Research also comprised of making cylindrical stabilised clay samples, prepared in the laboratory with various rubber chips contents and cement, and then aged for 28 days. The samples were then subjected to unconfined compressive strength (UCS) test and observations were also made of its microstructure using the FESEM. The impact of the soil microstructure on the stiffness result was studied both with the stabilized soil and also of some of the natural undisturbed loess soils. Sustainability aspect and the potential of the use of rubber chips and sand as additives to cement stabilisation are also discussed. The overall test results indicated that rubber chips and sand contributed to the improvement in unconfined compressive strength (qu). The derogatory influence of moisture on the stiffness of the stabilised clay was studied simultaneously. SEM micrographs are presented that show bonding of cement, rubber chips/ sand and soft clay, granular units and aggregated / agglomerated units in loess. The paper concludes with observations on the dependence of soil microstructure on the soil strength and deformability and even collapsibility of the loess. Current practices adopted as engineering solutions to these challenging soils are outlined.
NASA Astrophysics Data System (ADS)
Turetsky, M. R.; Euskirchen, E. S.; Czimczik, C. I.; Waldrop, M. P.; Olefeldt, D.; Fan, Z.; Kane, E. S.; McGuire, A. D.; Harden, J. W.
2014-12-01
Wetlands are the largest natural source of atmospheric methane. Static chambers have been used to quantify variation in wetland CH4 flux for many decades. Regional to global scale synthesis studies of static chamber measurements show that relationships between temperature, water availability and CH4 emissions depend on wetland type (bog, fen, swamp), region (tropical, temperate, arctic) and disturbance. For example, while water table position and temperature serve as the dominant controls on bog and swamp CH4 flux, vegetation is an important control on emissions from fens. These studies highlight the fact that wetland types have distinct controls on CH4 emissions; however, it is unlikely that modeling of wetland CH4 flux will improve without a better mechanistic understanding of the processes underlying CH4 production, transport, and oxidation. At the Alaska Peatland Experiment, we are quantifying CH4 emission using static chambers, automated chambers, and towers. Our sites vary in permafrost regime, including groundwater fens without permafrost, forested peat plateaus with intact permafrost, and collapse scar bogs formed through permafrost thaw. Experimental studies that examine plant and microbial responses to altered water table position and soil temperature are complemented by a gradient approach, where we use a space-for-time substitutions to examine the consequences of thaw on time-scales of decades to centuries. Our results thus far have documented the importance of soil rewetting in governing large CH4 fluxes from northern wetland soils. Accounting for CH4, our collapse scar bog significantly contributed to the global warming potential of the landscape. A major objective of our work is to explore the role of permafrost C release in greenhouse gas fluxes from wetland soils, which we are assessing using radiocarbon as a natural tracer. We have shown, for example, that ebullition of CH4 is dominated by recently fixed C, but a significant fraction of CH4 in bubbles is derived from old C released during thaw. The APEX time series datasets are being used in a variety of modeling studies, from small-scale soil pore and microbial controls on gas production and transport to regional scale assessments of how carbon cycle feedbacks to climate vary with wetland type and abundance.
Soil, Food Security and Human Health
NASA Astrophysics Data System (ADS)
Oliver, Margaret
2017-04-01
"Upon this handful of soil our survival depends. Husband it and it will grow food, our fuel, and our shelter and surround us with beauty. Abuse it and the soil will collapse and die, taking humanity with it" Vedas Sanskrit Scripture, 1500 BC. As the world's population increases issues of food security become more pressing as does the need to sustain soil fertility and to minimize soil degradation. Soil and land are finite resources, and agricultural land is under severe competition from many other uses. Lack of adequate food and food of poor nutritional quality lead to under-nutrition of different degrees, all of which can cause ill- or suboptimal-health. The soil can affect human health directly and indirectly. Direct effects of soil or its constituents result from its ingestion, inhalation or absorption. For example, hook worms enter the body through the skin and cause anaemia, and fungi and dust can be inhaled resulting in respiratory problems. The soil is the source of actinomycetes on which our earliest antibiotics are based (actinomycin, neomycin and streptomycin). Furthermore, it is a potential reservoir of new antibiotics with methods such as functional metagenomics to identify antibiotic resistant genes. Indirect effects of soil arise from the quantity and quality of food that humans consume. Trace elements can have both beneficial and toxic effects on humans, especially where the range for optimal intake is narrow as for selenium. Deficiencies of four trace elements, iodine, iron, selenium and zinc, will be considered because of their substantial effects on human health. Relations between soil and human health are often difficult to extricate because of the many confounding factors present such as the source of food, social factors and so on. Nevertheless, recent scientific understanding of soil processes and factors that affect human health are enabling greater insight into the effects of soil on our health. Multidisciplinary research that includes soil science, agronomy, agricultural sustainability, toxicology, epidemiology and the medical sciences will promote greater understanding of the complex relationships between soil and human health.
Ecohydrological modeling in agroecosystems: Examples and challenges
Porporato, A.; Feng, X.; Manzoni, S.; ...
2015-06-01
We report that human societies are increasingly altering the water and biogeochemical cycles to both improve ecosystem productivity and reduce risks associated with the unpredictable variability of climatic drivers. These alterations, however, often cause large negative environmental consequences, raising the question as to how societies can ensure a sustainable use of natural resources for the future. Here we discuss how ecohydrological modeling may address these broad questions with special attention to agroecosystems. The challenges related to modeling the two-way interaction between society and environment are illustrated by means of a dynamical model in which soil and water quality supports themore » growth of human society but is also degraded by excessive pressure, leading to critical transitions and sustained societal growth-collapse cycles. We then focus on the coupled dynamics of soil water and solutes (nutrients or contaminants), emphasizing the modeling challenges, presented by the strong nonlinearities in the soil and plant system and the unpredictable hydroclimatic forcing, that need to be overcome to quantitatively analyze problems of soil water sustainability in both natural and agricultural ecosystems. Finally, we discuss applications of this framework to problems of irrigation, soil salinization, and fertilization and emphasize how optimal solutions for large-scale, long-term planning of soil and water resources in agroecosystems under uncertainty could be provided by methods from stochastic control, informed by physically and mathematically sound descriptions of ecohydrological and biogeochemical interactions.« less
Micromechanics of soil responses in cyclic simple shear tests
NASA Astrophysics Data System (ADS)
Cui, Liang; Bhattacharya, Subhamoy; Nikitas, George
2017-06-01
Offshore wind turbine (OWT) foundations are subjected to a combination of cyclic and dynamic loading arising from wind, wave, rotor and blade shadowing. Under cyclic loading, most soils change their characteristics including stiffness, which may cause the system natural frequency to approach the loading frequency and lead to unplanned resonance and system damage or even collapse. To investigate such changes and the underlying micromechanics, a series of cyclic simple shear tests were performed on the RedHill 110 sand with different shear strain amplitudes, vertical stresses and initial relative densities of soil. The test results showed that: (a) Vertical accumulated strain is proportional to the shear strain amplitude but inversely proportional to relative density of soil; (b) Shear modulus increases rapidly in the initial loading cycles and then the rate of increase diminishes and the shear modulus remains below an asymptote; (c) Shear modulus increases with increasing vertical stress and relative density, but decreasing with increasing strain amplitude. Coupled DEM simulations were performed using PFC2D to analyse the micromechanics underlying the cyclic behaviour of soils. Micromechanical parameters (e.g. fabric tensor, coordination number) were examined to explore the reasons for the various cyclic responses to different shear strain amplitudes or vertical stresses. Both coordination number and magnitude of fabric anisotropy contribute to the increasing shear modulus.
Stevenson, Christopher M; Puleston, Cedric O; Vitousek, Peter M; Chadwick, Oliver A; Haoa, Sonia; Ladefoged, Thegn N
2015-01-27
Many researchers believe that prehistoric Rapa Nui society collapsed because of centuries of unchecked population growth within a fragile environment. Recently, the notion of societal collapse has been questioned with the suggestion that extreme societal and demographic change occurred only after European contact in AD 1722. Establishing the veracity of demographic dynamics has been hindered by the lack of empirical evidence and the inability to establish a precise chronological framework. We use chronometric dates from hydrated obsidian artifacts recovered from habitation sites in regional study areas to evaluate regional land-use within Rapa Nui. The analysis suggests region-specific dynamics including precontact land use decline in some near-coastal and upland areas and postcontact increases and subsequent declines in other coastal locations. These temporal land-use patterns correlate with rainfall variation and soil quality, with poorer environmental locations declining earlier. This analysis confirms that the intensity of land use decreased substantially in some areas of the island before European contact.
Stevenson, Christopher M.; Puleston, Cedric O.; Vitousek, Peter M.; Chadwick, Oliver A.; Haoa, Sonia; Ladefoged, Thegn N.
2015-01-01
Many researchers believe that prehistoric Rapa Nui society collapsed because of centuries of unchecked population growth within a fragile environment. Recently, the notion of societal collapse has been questioned with the suggestion that extreme societal and demographic change occurred only after European contact in AD 1722. Establishing the veracity of demographic dynamics has been hindered by the lack of empirical evidence and the inability to establish a precise chronological framework. We use chronometric dates from hydrated obsidian artifacts recovered from habitation sites in regional study areas to evaluate regional land-use within Rapa Nui. The analysis suggests region-specific dynamics including precontact land use decline in some near-coastal and upland areas and postcontact increases and subsequent declines in other coastal locations. These temporal land-use patterns correlate with rainfall variation and soil quality, with poorer environmental locations declining earlier. This analysis confirms that the intensity of land use decreased substantially in some areas of the island before European contact. PMID:25561523
NASA Astrophysics Data System (ADS)
Ranasinghage, P. N.; Ortiz, J. D.; Moore, A.; Siriwardana, C.
2009-12-01
Core collapsing is a common problem in studies of lagoonal sediment cores. Coring liquefied sediments below the water table can lead to collapse of material from upper core drives in to the hole. This can be prevented by casing the hole. But casing is not always possible due to practical issues such as coring device type, resources, or time constraints. In such cases identifying the collapsed material in each drive is necessary to ensure accurate results. Direct visual identification of collapsed portion is not always possible and may not be precise. This study successfully recognized collapsed material using a suite of physical properties measurements including: visible (VIS) reflectance spectroscopy, magnetic susceptibility and grain size spectra. This enables us to use the verified stratigraphically continuous records for paleo-environmental studies. Sediment cores were collected from three coastal lagoons and a swale along south eastern and eastern Sri Lanka. Cores were collected using a customized AMS soil coring device with a 1-m long sample barrel. The metal barrel of this instrument collects a 2.5 cm diameter sample in 1-m long plastic tubes. Coring was conducted to refusal, with a maximum depth of 5 m. Casing was not applied to the holes due to small core diameter and time constrains. Drill holes were placed at locations situated both below and above the water level of the lagoons. A total of 100 m of sediment core were obtained from these locations. After opening the cores, suspected collapsed material was initially identified by visual observation using a high power binocular microscope. Particle size, magnetic susceptibility, X-ray fluorescence (XRF) and Diffuse Spectral Reflectance (DSR) was then measured on all cores at 1-2 cm resolution to precisely define the repeated sediment intervals. Down core variation plots of magnetic susceptibility, CIE L* (lightness), a*(red/green difference), b* (blue and yellow difference) clearly record abrupt changes at core drive boundaries at the presence of collapsed material. The correlation of grain-size spectra from the bottom and top of consecutive drives was used to precisely determine the thickness of the collapsed material between drives. Our analysis of 48 m of core material thus far indicates that ~4.4m or ~9% of the record represents collapsed material which can be excluded from further study. The remaining continuous record was analyzed for paleoenvironmental studies. Down core variation of grain size, geochemical ratios, principle components of DSR and geochemical data, and magnetic susceptibility from all locations indicate a gradual filling of these deep lagoons and a transition from reducing to oxic conditions. According to an age model constructed for a nearby lagoon the onset of regression began ~6,000 years BP. Several instantaneous sedimentation events were recorded in all lagoons. Further studies will be carried out to determine whether these represent tsunami, storm surge, or flood deposits.
Euskirchen, Eugenie S; Edgar, C.W.; Turetsky, M.R.; Waldrop, Mark P.; Harden, Jennifer W.
2016-01-01
Changes in vegetation and soil properties following permafrost degradation and thermokarst development in peatlands may cause changes in net carbon storage. To better understand these dynamics, we established three sites in Alaska that vary in permafrost regime, including a black spruce peat plateau forest with stable permafrost, an internal collapse scar bog formed as a result of thermokarst, and a rich fen without permafrost. Measurements include year-round eddy covariance estimates of carbon dioxide (CO2), water, and energy fluxes, associated environmental variables, and methane (CH4) fluxes at the collapse scar bog. The ecosystems all acted as net sinks of CO2 in 2011 and 2012, when air temperature and precipitation remained near long-term means. In 2013, under a late snowmelt and late leaf out followed by a hot, dry summer, the permafrost forest and collapse scar bog were sources of CO2. In this same year, CO2 uptake in the fen increased, largely because summer inundation from groundwater inputs suppressed ecosystem respiration. CO2 exchange in the permafrost forest and collapse scar bog was sensitive to warm air temperatures, with 0.5 g C m−2 lost each day when maximum air temperature was very warm (≥29°C). The bog lost 4981 ± 300 mg CH4 m−2 between April and September 2013, indicating that this ecosystem acted as a significant source of both CO2 and CH4 to the atmosphere in 2013. These results suggest that boreal peatland responses to warming and drying, both of which are expected to occur in a changing climate, will depend on permafrost regime.
A Layered Past: the Transformation and Development of Legacy Sediments as Alluvial Soils
NASA Astrophysics Data System (ADS)
Wade, A.; Richter, D. D., Jr.
2017-12-01
Legacy sediments are a widespread consequence of post-colonial upland erosion in the United States. Although these deposits are ubiquitous in valley bottoms of the southeastern Piedmont, mature hardwood forests and collapsed stream banks mask their occurrence. While these deposits have been studied for their fluvial dynamics and water quality impacts, they have received less attention in regards to soil structure and formation. In this study, we characterized legacy sediment mineraology, composition and structure to understand how pedogenic processes are overprinting sediment layering in a 40-hectare Piedmont floodplain. To constrain the timing of deposition, we used Pb-210 and C-14 dating on buried charcoal and tree stumps. Our results show that in 100 years of forest regeneration, vegetation and oscillating floodplain conditions have driven these eroded sediment deposits to evolve as soil profiles both in structure and composition. These textural and nutrient gradients have ramifications for the subsurface flow of nutrients through the floodplain. Given the estimated millennia it will take to erode legacy sediment from Piedmont floodplains, it is important to think of these deposits as new stable environments on their own trajectory of soil evolution.
Decreasing soil erosion rates with evolving land-use techniques in a central European catchment
NASA Astrophysics Data System (ADS)
Larsen, Annegret; Heckmann, Tobias; Hans-Rudolf, Bork; Alexander, Fuelling
2015-04-01
Agricultural societies around the world have caused accelerated soil erosion. Soil erosion and a decrease in soil fertility may also have caused the abandonment of entire landscapes and the collapse of civilizations. In central Europe, Medieval land-use is thought to have lead to the largest loss of top soil in history, which in turn lead to a malnutrition of the population and abandonment of agricultural land. However, this might be only part of the picture, as people are also able to adapt to changing environmental conditions, including the type of land-use they adopt. Within a catchment in the central European mountain belt, we were able to distinguish the evolution between three main types of land-use techniques between ~ 900 AD and 1950 AD: horticulture, agriculture and shifting cultivation. We were able to relate these techniques with different soil erosion rates, which differ by an order of magnitude, ranging from 0.83 ± 0.09 mm/yr to 1.62 ± 0.17 mm/yr. Using high-resolution surface data and chrono-stratigraphical methods in combination with soil charcoal analysis, we were able to reconstruct past land-use techniques on a local scale. This illustrates that less erosive and more sustainable techniques were developed through time, and hypothesize that people were able to adapt to the less favorable environmental conditions by changing the cultivation techniques. Although cultural adaptation to changing environmental conditions has been extensively discussed, this study is able to quantitatively demonstrate improved soil management with evolving land-use in central Europe.
Assessment of dry-stone terrace wall degradation with a 3D approach
NASA Astrophysics Data System (ADS)
Djuma, Hakan; Camera, Corrado; Faka, Marina; Bruggeman, Adriana; Hermon, Sorin
2016-04-01
In the Mediterranean basin, terracing is a common element of agricultural lands. Terraces retained by dry-stone walls are used to conserve arable soil, delay erosion processes and retain rainfall runoff. Currently, agricultural land abandonment is widespread in the Mediterranean region leading to terrace wall failure due to lack of maintenance and consequently an increase in soil erosion. The objective of this study is to test the applicability of digital 3D documentation on mountainous agricultural areas for assessing changes in terrace wall geometry, including terrace wall failures and associated soil erosion. The study area is located at 800-1100 m above sea level, in the Ophiolite complex of the Troodos Mountains in Cyprus. Average annual precipitation is 750 mm. Two sites with dry-stone terraces were selected for this study. The first site had a sequence of three terrace walls that were surveyed. The uppermost terrace wall was collapsed at several locations; the middle at few locations; and the lowest was still intact. Three fieldwork campaigns were conducted at this site: during the dry season (initial conditions), the middle and end of the wet season. The second site had one terrace wall that was almost completely collapsed. This terrace was restored during a communal terrace rehabilitation event. Two fieldwork campaigns were conducted for this terrace: before and after the terrace wall restoration. Terrace walls were documented with a set of digital images, and transformed into a 3D point cloud (using web-based services and commercial software - Autodesk 123D catch and Menci Software uMap, respectively). A set of points, registered with the total station and geo-referenced with a GPS, enabled the scaling of the 3D model and aligning the terrace walls within the same reference system. The density (distance between each point) of the reconstructed point clouds is 0.005 m by Umap and 0.025 m by 123D Catch. On the first site, the model analysis identified wall displacements between 3 and 8 cm on 1% of the middle terrace wall. High displacement values (> 8-10 cm) were associated with presence or removal of vegetation and/or data gaps. On the second site, the 3D models indicated that the collapsed terrace had lost a volume of 1.9 m3, which was restored during the communal terrace building event. This digital 3D documentation approach is more economical than laser scanning and it is a promising method for assessment of terrace wall displacement and changes after terrace wall restoration.
NASA Astrophysics Data System (ADS)
Camera, Corrado; Djuma, Hakan; Zoumides, Christos; Eliades, Marinos; Charalambous, Katerina; Bruggeman, Adriana
2017-04-01
In the Mediterranean region, rural communities in topographically challenging sites have converted large areas into dry-stone terraces, as the only way to develop sustainable agriculture. Terraces allow softening the steep mountainous slopes, favoring water infiltration and reducing water runoff and soil erosion. However, population decrease over the past 30 years has led to a lack of maintenance of the terraces and the onset of a process of land degradation. The objective of this study is the quantification of the effect of terrace maintenance on soil erosion. We selected two terraces - A and B, 11 and 14 m long, respectively - for monitoring purposes. They are located in a small catchment (10,000 m2) in the Troodos Mountains of Cyprus, at an elevation of 1,300 m a.s.l., and cultivated with vineyards, which is the main agricultural land use of the region. We monitored soil erosion by means of sediment traps, which are installed along 1-m long sections of terrace. We monitored four sections on terrace A and seven on terrace B. During the first monitoring season (winter 2015/16), on terrace A the traps caught sediment of two collapsed and two standing sections of dry-stone wall. The catchment areas of one set of traps (degraded and non-degraded) were closed by a 1x4-m2 plot, to relate erosion rates to a known draining area. On terrace B the traps were all open and caught four collapsed and three standing sections. Also, we installed a weather station (5-minute rainfall, temperature, and relative humidity) and 15 soil moisture sensors, to relate soil erosion processes with climate and (sub)surface hydrology. From the open traps, we observed that soil loss is on average 8 times higher from degraded terrace sections than from standing, well maintained sections, which in our case study corresponds to an 87% reduction of soil loss due to terrace maintenance. If we compare data from the two closed plots, we obtain a much higher soil loss ratio (degraded/standing) of 56, which corresponds to a soil loss reduction of 98%. From the closed plots, we derived an erosion rate of 2.8 t ha-1 y-1 for degraded terraces and 0.05 t ha-1 y-1 for well-maintained terraces. Also, soil moisture monitoring confirmed that standing terraces favor surface water infiltration. For the second season (winter 2016/17), given the differences in results between open and closed traps and therefore the difficulty in consistently upscaling the results, we modified the monitoring design. The 11 traps were kept, all open, but the comparison between maintained and degraded areas is carried out on a sub-catchment basis, rather than on a section basis. We restored the whole sub-catchment of terrace A (≈480-m2) to be considered the maintained treatment of our experiment and kept the sub-catchment of terrace B (≈600-m2) in degraded conditions. To obtain the sub-catchment erosion rate, the sediment collected in the traps is averaged on running meter of wall and integrated on the wall length. This research is supported by the European Union's FP7 RECARE Project (GA 603498).
Martian (and Cold Region Lunar) Soil Mechanics Considerations
NASA Astrophysics Data System (ADS)
Chua, Koon Meng; Johnson, Stewart W.
1998-01-01
The exploration of Mars has generated a lot of interest in recent years. With the completion of the Pathfinder Mission and the commencement of detailed mapping by Mars Global Surveyor, the possibility of an inhabited outpost on the planet is becoming more realistic. In spite of the upbeat mood, human exploration of Mars is still many years in the future. Additionally, the earliest return of any martian soil samples will probably not be until 2008. So why the discussion about martian soil mechanics when there are no returned soil samples on hand to examine? In view of the lack of samples, the basis of this or any discussion at this time must necessarily be one that involves conjecture, but not without the advantage of our knowledge of regolith mechanics of the Moon and soil mechanics on Earth. The objective of this presentation/discussion is fourfold: (1) Review some basic engineering-related information about Mars that may be of interest to engineers, and scientists - including characteristics of water and C02 at low temperature; (2) review and bring together principles of soil mechanics pertinent to studying and predicting how martian soil may behave, including the morphology and physical characteristics of coarse-grained and fine-grained soils (including clays), the characteristics of collapsing soils, potentials and factors that affect migration of water in unfrozen and freezing/frozen soils, and the strength and stiffness characteristics of soils at cold temperatures; (3) discuss some preliminary results of engineering experiments performed with frozen lunar soil simulants, JSC-1, in the laboratory that show the response to temperature change with and without water, effects of water on the strength and stiffness at ambient and at below freezing temperatures; and (4) discuss engineering studies that could be performed prior to human exploration and engineering research to be performed alongside future scientific missions to that planet.
NASA Astrophysics Data System (ADS)
Margottini, Claudio; Fidolini, Francesco; Iadanza, Carla; Trigila, Alessandro; Ubelmann, Yves
2015-06-01
The archaeological remains of Shahr-e Zohak are part of the Bamiyan valley, which has been recognized by UNESCO as World Heritage and is famous for hosting the main heritage of the Buddhist culture in Afghanistan. The site comprises the remains of the Zohak fortress, which is placed on a steep hill at the confluence of the Bamiyan and Kalu rivers. The fortress is protected by ramparts, built along the steep cliffs bounding the site, which are equipped with several watchtowers. The citadel is protected by three more orders of walls and is located on the topmost part of the hill. All the structures are made of mudbricks placed on top of stony foundations. Due to the prolonged exposure to weathering, the lack of conservation measures and the misuse during war periods, many constructions collapsed or are prone to collapse. A new topography (1 m contour lines) of the site was produced using drone-derived 3D photogrammetry combined with GPS data. Then a detailed geomorphological survey of the whole site was carried out in order to identify the main geomorphic processes acting on the land surface and structures. GIS analysis allowed defining the internal drainage system of the studied area. The site is affected by incised erosional phenomena on the eastern side, while the hilltop is mainly hit by diffuse erosion and soil mobilization during snowmelt. Monument deterioration is coupled with the lack of an adequate drainage system to collect runoff. Ramparts located on the steep hillslopes are severely affected by gully erosion and siphoning, which cause depressions infilled by eroded and weathered building material. The access path is locally eroded or buried by debris cones. The western margin of the plateau has been rapidly retreating due to collapses, while the citadel is in danger due to diffuse or gully erosional processes developed on all its sides. A mitigation strategy with low environmental impact (ecosystem-based approach) is proposed in order to adopt sustainable, systemic and cost-effective tools for soil conservation, in order to improve the environmental resilience of the site.
Cao, Congcong; Wang, Li; Li, Hairong; Wei, Binggan; Yang, Linsheng
2018-05-09
Metal contamination in soil from tailings induces risks for the ecosystem and for humans. In this study, the concentrations and ecological risks of Cd, Cu, Pb, and Zn in soil contaminated by a tailing from Yangshuo (YS) lead and zinc (Pb⁻Zn) mine, which collapsed for more than 40 years, were determined in 2015. The mean concentrations of Zn, Pb, Cu, and Cd were 1301.79, 768.41, 82.60, and 4.82 mg/kg, respectively, which, with years of remediation activities, decreased by 66.9%, 61.7%, 65.4%, and 65.3% since 1986, but still exceed the national standards. From 1986 to 2015, soil pH increased significantly, with available concentrations of Zn, Pb, Cu and Cd decreasing by 13%, 81%, 77%, and 67%, respectively, and potential ecological risk indexes ( E r ) of the determined metals decreasing by more than 60%. Horizontally, total contents and percentages of available concentrations of Zn, Pb, Cu, and Cd decreased with the distance from the tailing heap in SD village, while pH values showed the reverse pattern. Vertically, Zn and Cd, Pb, and Cu showed similar vertical distribution patterns in the soil profiles. There was a slight downward migration for the determined metals in soil of M and H area and the mobility was in the order of Cd > Zn > Pb > Cu. It can be concluded that although concentrations and ecological risks of Cd, Cu, Pb, and Zn in soil decreased significantly, SD village is still a high risk area, and the priority pollutant is Cd.
Cao, Congcong; Wang, Li; Li, Hairong; Wei, Binggan
2018-01-01
Metal contamination in soil from tailings induces risks for the ecosystem and for humans. In this study, the concentrations and ecological risks of Cd, Cu, Pb, and Zn in soil contaminated by a tailing from Yangshuo (YS) lead and zinc (Pb–Zn) mine, which collapsed for more than 40 years, were determined in 2015. The mean concentrations of Zn, Pb, Cu, and Cd were 1301.79, 768.41, 82.60, and 4.82 mg/kg, respectively, which, with years of remediation activities, decreased by 66.9%, 61.7%, 65.4%, and 65.3% since 1986, but still exceed the national standards. From 1986 to 2015, soil pH increased significantly, with available concentrations of Zn, Pb, Cu and Cd decreasing by 13%, 81%, 77%, and 67%, respectively, and potential ecological risk indexes (Er) of the determined metals decreasing by more than 60%. Horizontally, total contents and percentages of available concentrations of Zn, Pb, Cu, and Cd decreased with the distance from the tailing heap in SD village, while pH values showed the reverse pattern. Vertically, Zn and Cd, Pb, and Cu showed similar vertical distribution patterns in the soil profiles. There was a slight downward migration for the determined metals in soil of M and H area and the mobility was in the order of Cd > Zn > Pb > Cu. It can be concluded that although concentrations and ecological risks of Cd, Cu, Pb, and Zn in soil decreased significantly, SD village is still a high risk area, and the priority pollutant is Cd. PMID:29747376
NASA Astrophysics Data System (ADS)
Badry, Pallavi; Satyam, Neelima
2017-01-01
Seismic damage surveys and analyses conducted on modes of failure of structures during past earthquakes observed that the asymmetrical buildings show the most vulnerable effect throughout the course of failures (Wegner et al., 2009). Thus, all asymmetrical buildings significantly fails during the shaking events and it is really needed to focus on the accurate analysis of the building, including all possible accuracy in the analysis. Apart from superstructure geometry, the soil behavior during earthquake shaking plays a pivotal role in the building collapse (Chopra, 2012). Fixed base analysis where the soil is considered to be infinitely rigid cannot simulate the actual scenario of wave propagation during earthquakes and wave transfer mechanism in the superstructure (Wolf, 1985). This can be well explained in the soil structure interaction analysis, where the ground movement and structural movement can be considered with the equal rigor. In the present study the object oriented program has been developed in C++ to model the SSI system using the finite element methodology. In this attempt the seismic soil structure interaction analysis has been carried out for T, L and C types piled raft supported buildings in the recent 25th April 2015 Nepal earthquake (M = 7.8). The soil properties have been considered with the appropriate soil data from the Katmandu valley region. The effect of asymmetry of the building on the responses of the superstructure is compared with the author's research work. It has been studied/observed that the shape or geometry of the superstructure governs the response of the superstructure subjected to the same earthquake load.
NASA Astrophysics Data System (ADS)
Booth, B.; Collins, M.; Harris, G.; Chris, H.; Jones, C.
2007-12-01
A number of recent studies have highlighted the risk of abrupt dieback of the Amazon Rain Forest as the result of climate changes over the next century. The recent 2005 Amazon drought brought wider acceptance of the idea that that climate drivers will play a significant role in future rain forest stability, yet that stability is still subject to considerable degree of uncertainty. We present a study which seeks to explore some of the underlying uncertainties both in the climate drivers of dieback and in the terrestrial land surface formulation used in GCMs. We adopt a perturbed physics approach which forms part of a wider project which is covered in an accompanying abstract submitted to the multi-model ensembles session. We first couple the same interactive land surface model to a number of different versions of the Hadley Centre atmosphere-ocean model that exhibit a wide range of different physical climate responses in the future. The rainforest extent is shown to collapse in all model cases but the timing of the collapse is dependent on the magnitude of the climate drivers. In the second part, we explore uncertainties in the terrestrial land surface model using the perturbed physics ensemble approach, perturbing uncertain parameters which have an important role in the vegetation and soil response. Contrasting the two approaches enables a greater understanding of the relative importance of climatic and land surface model uncertainties in Amazon dieback.
Progressive failure of lower San Fernando dam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, W.H.; Morgenstern, N.R.; Robertson, P.K.
1993-02-01
Postearthquake deformation analyses of the lower San Fernando dam were conducted using an incremental finite-element method. In the analyses, an undrained elastoplastic model was used to simulate the collapse of liquefied materials. The model is developed based on the critical-state boundary-surface theory, the concept of steady-state strength, and the undrained behavior of liquefiable soils. A triggering condition in terms of a collapse surface was considered in this model. The hyperbolic strain-softening relationship has been introduced to simulate the postpeak behavior of liquefied materials. The analyses have shown that a progressive failure under undrained conditions may explain the observed response ofmore » the lower San Fernando dam following the 1971 earthquake. Stress redistribution initiated by the strain softening of liquefied materials is the main reason for undrained flow failures of dams, slopes, and foundations and can occur in a short period ranging from a few seconds to a few minutes. The liquefied zone after stress redistribution may be much larger than the initial liquefied zone caused directly by an earthquake. Therefore, a postearthquake deformation analysis may be essential in liquefaction stability evaluations.« less
Exploiting delayed transitions to sustain semiarid ecosystems after catastrophic shifts.
Vidiella, Blai; Sardanyés, Josep; Solé, Ricard
2018-06-01
Semiarid ecosystems (including arid, semiarid and dry-subhumid ecosystems) span more than 40% of extant habitats and contain a similar percentage of the human population. Theoretical models and palaeoclimatic data predict a grim future, with rapid shifts towards a desert state, with accelerated diversity losses and ecological collapses. These shifts are a consequence of the special nonlinearities resulting from ecological facilitation. Here, we investigate a simple model of semiarid ecosystems identifying the so-called ghost, which appears after a catastrophic transition from a vegetated to a desert state once a critical rate of soil degradation is overcome. The ghost involves a slowdown of transients towards the desert state, making the ecosystem seem stable even though vegetation extinction is inevitable. We use this model to show how to exploit the ecological ghosts to avoid collapse. Doing so involves the restoration of small fractions of desert areas with vegetation capable of maintaining a stable community once the catastrophic shift condition has been achieved. This intervention method is successfully tested under the presence of demographic stochastic fluctuations. © 2018 The Author(s).
Murano, Hirotatsu; Suzuki, Katsuhiro; Kayada, Saori; Saito, Mitsuhiko; Yuge, Naoya; Arishiro, Takuji; Watanabe, Akira; Isoi, Toshiyuki
2018-02-15
Humic substances (HS) in soil and sediments, and surface water influence the behavior of organic xenobiotics in the environment. However, our knowledge of the effects of specific HS fractions, i.e., humic acids (HAs), fulvic acids (FAs), and humin (HM), on the sorption of organic xenobiotics is limited. The neonicotinoid insecticide acetamiprid is thought to contribute to the collapse of honeybee colonies. To understand the role that soil organic matter plays in the fate of acetamiprid, interactions between acetamiprid and the above HS fractions were examined. Batch experiments were conducted using various combinations of a field soil sample and the above 3 HS fractions prepared from the same soil, and differences in isotherm values for acetamiprid sorption were investigated based on the structural differences among the HS fractions. The sorption of acetamiprid to soil minerals associated with HM (MHM) (Freundlich isotherm constant, K f : 6.100) was reduced when HAs or FAs were added (K f : 4.179 and 4.756, respectively). This can be attributed to hydrophobic interactions between HM and HAs or FAs in which their dissociated carboxyl and phenolic groups become oriented to face the soil solution. The amount of acetamiprid that was adsorbed to (MHM+HA) or (MHM+FA) increased when aluminum ions were added (K f : 6.933 and 10.48, respectively), or iron ions were added (K f : 7.303 and 11.29, respectively). Since acetamiprid has no affinity for inorganic components in soil, the formation of HS-metal complexes by cation bridging may have oriented the hydrophobic moieties in the HAs or FAs to face the soil solution and may also have resulted in the formation of dense structures, resulting in an increase in the amount of acetamiprid that becomes adsorbed to these structures. These results highlight the importance of interactions among soil components in the pedospheric diffusion of acetamiprid. Copyright © 2017 Elsevier B.V. All rights reserved.
Ruffell, Alastair
2005-11-01
A search for the body of a victim of terrorist abduction and murder was made in a graveyard on the periphery of a major conurbation in Northern Ireland. The area is politically sensitive and the case of high profile. This required non-invasive, completely non-destructive and rapid assessment of the scene. A MALA RAMAC ground-penetrating radar system was used to achieve these objectives. Unprocessed and processed 400 MHz data show the presence of a collapse feature above and around a known 1970s burial with no similar collapse above the suspect location. In the saturated, clay-rich sediments of the site, 200 MHz data offered no advantage over 400 MHz data. Unprocessed 100 MHz data shows a series of multiples in the known burial with no similar features in the suspect location. Processed 100 MHz lines defined the shape of the collapse around the known burial to 2 m depth, together with the geometry of the platform (1 m depth) the gravedigger used in the 1970s to construct the site. In addition, processed 100 MHz data showed both the dielectric contrast in and internal reflection geometry of the soil imported above the known grave. Thus the sequence, geometry, difference in infill and infill direction of the grave was reconstructed 30 years after burial. The suspect site showed no evidence of shallow or deep inhumation. Subsequently, the missing person's body was found some distance from this site, vindicating the results and interpretation from ground-penetrating radar. The acquisition, processing, collapse feature and sequence stratigraphic interpretation of the known burial and empty (suspect) burial site may be useful proxies for other, similar investigations. GPR was used to evaluate this site within 3 h of the survey commencing, using unprocessed data. An additional day of processing established that the suspect body did not reside here, which was counter to police and community intelligence.
3D Seismic Imaging over a Potential Collapse Structure
NASA Astrophysics Data System (ADS)
Gritto, Roland; O'Connell, Daniel; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil
2016-04-01
The Middle-East has seen a recent boom in construction including the planning and development of complete new sub-sections of metropolitan areas. Before planning and construction can commence, however, the development areas need to be investigated to determine their suitability for the planned project. Subsurface parameters such as the type of material (soil/rock), thickness of top soil or rock layers, depth and elastic parameters of basement, for example, comprise important information needed before a decision concerning the suitability of the site for construction can be made. A similar problem arises in environmental impact studies, when subsurface parameters are needed to assess the geological heterogeneity of the subsurface. Environmental impact studies are typically required for each construction project, particularly for the scale of the aforementioned building boom in the Middle East. The current study was conducted in Qatar at the location of a future highway interchange to evaluate a suite of 3D seismic techniques in their effectiveness to interrogate the subsurface for the presence of karst-like collapse structures. The survey comprised an area of approximately 10,000 m2 and consisted of 550 source- and 192 receiver locations. The seismic source was an accelerated weight drop while the geophones consisted of 3-component 10 Hz velocity sensors. At present, we analyzed over 100,000 P-wave phase arrivals and performed high-resolution 3-D tomographic imaging of the shallow subsurface. Furthermore, dispersion analysis of recorded surface waves will be performed to obtain S-wave velocity profiles of the subsurface. Both results, in conjunction with density estimates, will be utilized to determine the elastic moduli of the subsurface rock layers.
The properties and evolution of artificial soil-like bodies in the urban environment
NASA Astrophysics Data System (ADS)
Ivannikov, Fedor; Prokofieva, Tatiana
2010-05-01
Technogenic sediments as well as urban brownfields make to 90 % from the area of territory of Moscow. Today, in Moscow soil remediation and reclamation occurs by designing and constructing of lawns. Both naked sediments and mature city soils - urbanozems (according prof. M.Stroganova, Urbic Thechnosol - according WRB), are exposing by this reclamation. The reclaiming soil-like bodies named tehnozems (Technosols?). After their creation, tehnozems begin to operate under natural soil processes. This, in our opinion, can be considered the zero-moment for city soil formation The purpose of our research was to reveal the basic trend in technozems transformations, and also to understand the effectiveness of reclamation through construction on various tehnozem bases. In our research we examine sites within the city boundaries on various elements of a relief with various ages and different histories of nature management. The most typical objects of research - different varieties of city soils and soil-like bodies - have been allocated on these sites. With these objects we perform a set of physical, chemical and biological analyses. The following characteristics were identified: pH(H2O), organic carbon, soluble potassium, available phosphorus, total content of heavy metals (Zn, Cu, Cd, Pb), Red-Ox potential, penetration resistance, bulk density, cellulosolytic activity, species composition of soil animals and microbiological inoculation on anitrogenous medium Then, having learned the properties of city soils and soil-like bodies, we have tried to construct a trend of anthropogenous transformation of soil-like bodies. I. Natural soils collapse under action on settlements and covered by a technogenic ground. Then it is imposed a peat compost mix on them, for reclamation this territories. II. However, recultivation is unable to occur, and weed vegetation begins growing along with the formation of underdeveloped soils (Regosols and Arenosols). Furthermore, in a soil-like body, as well as in underdeveloped soil, soil processes are progressed, for example: humification, calcalization, zooturbation, etc. Technozems are also becoming Regopsols, but humic horizon is forming in both cases in different time (from 5-6 to as many as 30 years) III. Carbonate dust, trace materials, and other products of urban activity are added to soil surface. Then all this products are included in process of soilformation. This urban depositions change soil properties. Accumulation of carbonates, heavy metals, and artifacts is taking place. As a result the special urban soil - urbanozem is forming. It grows till the certain moment while it again not reclamation with formation the technozem on urbanozem basis. .
NASA Astrophysics Data System (ADS)
Cooper, H.; Zhang, C.
2017-12-01
Coastal wetlands are one of the most productive ecological systems in the world, providing critical habitat area and valuable ecosystem services such as carbon sequestration. However, due to their location in low lying areas, coastal wetlands are particularly vulnerable to sea-level rise (SLR). Everglades National Park (ENP) encompasses the southern-most portion of the Greater Everglades Ecosystem, and is the largest subtropical wetland in the USA. Water depths have shown to have a significant relationship to vegetation community composition and organization while also playing a crucial role in vegetation health throughout the Everglades. Live plants play a vital role in maintaining soil structure (i.e. elevation), and decreases in vegetation health can cause peat collapse or wetland loss resulting in dramatic habitat, organic soil, and elevation loss posing concerns for Everglades management and restoration. One suspected mechanism for peat collapse is enhanced inundation due to SLR, thus mapping and modeling water depths is a critical component to understanding the potential impacts of future SLR. Previous research in the Everglades focused on a conventional Water Depth Model (WDM) approach where a Digital Elevation Model (DEM) is subtracted from a Water Table Elevation Model (WTEM). In this study, the conventional WDM approach is extended to a more rigorous WDM technique so that the accuracy and precision of the underlying data may be considered. Monte Carlo simulation is used to propagate probability distributions through our SLR depth model using our Random Forest-based LiDAR DEM, Empirical Bayesian Kriging-based WTEMs, uncertainties in vertical datums, soil accretion projections, and regional sea-level rise projections. Water depth maps were produced for the wet and dry seasons in April and October, which successfully revealed the potential spatial and temporal water depth variations due to future SLR. It is concluded that a more rigorous WDM technique helps to increase the integrity of derived products used to support and guide coastal restoration managers and planners under the challenge of rising seas.
Aeolian Landscape Change in West Greenland
NASA Astrophysics Data System (ADS)
Heindel, Ruth Chaves
In the Arctic, aeolian processes can be important drivers of landscape change. Soil deflation, the removal of fine-grained sediment by wind, is one aeolian process that has had a profound impact in the Arctic. While soil deflation has been well studied in Iceland, our understanding of aeolian processes across the rest of the Arctic remains limited. Kangerlussuaq, West Greenland, provides an opportunity to study the mechanisms and impacts of soil deflation without direct anthropogenic influence. In Kangerlussuaq, strong katabatic winds have resulted in distinct erosional landforms, here referred to as deflation patches, that are largely devoid of vascular plants and are dominated by biological soil crusts. This dissertation considers the geomorphic and ecological impacts of soil deflation through an interdisciplinary framework. I show that deflation patches are a critical component of the Kangerlussuaq ecosystem, accounting for 22% of the terrestrial landscape and impacting vegetation dynamics by providing habitat for graminoid, herbaceous, and lichen species. Deflation patches formed roughly 230-800 years ago, during a period of cold, dry, and windy climate conditions. Deflation patches expand across the landscape when the active margin, or scarp, becomes undercut and collapses. I estimate that rates of patch expansion are roughly 2.5 cm yr-1, and that geomorphic change can be detected even over the short time period of two years. I suggest that an erosional threshold exists because climate conditions required for initial deflation-patch formation are harsher than those required for continued patch expansion. The future trajectory of deflation patches depends on the role of the biological soil crust as either a successional facilitator or a long-term landscape cover, as well as future climate conditions. While the biological soil crusts slightly enrich soil fertility over time, they decrease soil moisture and create an impenetrable soil surface, which may inhibit vascular plant growth. My results suggest that deflation patches may persist on the landscape for centuries or millennia if precipitation and temperature regimes do not dramatically alter the vegetation potential of the region. This dissertation provides a holistic view of soil deflation in Kangerlussuaq and improves our understanding of aeolian processes in the Arctic.
Saltwater intrusion coupled with drought accelerates carbon loss from a brackish coastal wetland
NASA Astrophysics Data System (ADS)
Wilson, B.; Troxler, T.
2017-12-01
Coastal wetlands, such as the Everglades, are critical ecosystems for blue carbon (C) storage, yet this storage capacity is vulnerable to environmental change, such as saltwater intrusion and altered hydrology. Saltwater intrusion can stress vegetation and bring new metabolites for microbial respiration, thereby altering the C cycle. Drought can reduce the depth of water covering the wetland soil, and, in extreme cases, lead to exposed soil surface. This increases oxygen levels, thus speeding up C decomposition and potentially leading to peat collapse. The combined effects of both saltwater intrusion and drought on coastal marshes, however, are still uncertain, but recent evidence suggests that saltwater intrusion accelerates C loss from wetlands when coupled with drought. Our objective was to determine the change in CO2 flux, decomposition, root and shoot production, and elevation in a brackish water marsh under conditions of drought and elevated salinity. During the onset of drought, soil CO2 efflux increased by 124% and 237% in the ambient and elevated salinity treatments, respectively, compared to the control. Within one month, elevated salinity decreased net ecosystem production (NEP) by 40%, while after 6 months it had decreased by 85%. During the onset of the drought, there was no difference in NEP with ambient salinity between the inundated and exposed monoliths (-3.4 ± 0.8 vs. -4.2 ± 2.0 μmol CO2 m-2 s-1, respectively). However, drought conditions in the elevated salinity treatment resulted in more CO2 release in the exposed monoliths than the inundated monoliths (1.5 ± 0.4 vs. -0.5 ± 0.3 μmol CO2 m-2 s-1, respectively). Elevation change collected at the end of the experiment will allow us to test if elevated salinity combined with drought contributes to peat collapse, and what mechanisms of ecosystem C cycling has the greatest influence. While the restoration of water flows to the southern Everglades is hypothesized to mitigate the periods of drought and slow down saltwater intrusion, this restoration has not occurred yet. Given accelerating sea level rise, increasing frequencies of saltwater intrusion coupled with drought could accelerate C loss from these coastal marshes.
NASA Astrophysics Data System (ADS)
Basara, J. B.; Otkin, J.; Mahan, H. R.; Anderson, M. C.; Hain, C.; Wagle, P.; Xiao, X.
2014-12-01
The Marena Oklahoma In Situ Sensor Testbed (MOISST) site was installed in May 2010 as part of the calibration and validation program for the NASA Soil Moisture Active Passive (SMAP) mission. The site includes more than 200 soil, vegetation, and atmospheric sensors installed over an approximately 64 hectare pasture in Central Oklahoma with 4 main stations and multiple sensors installed in profiles. Additional sensors located at the site include a COsmic-ray Soil Moisture Observing System, global position system reflectometers, a passive distributed temperature system, an eddy correlation flux tower, and a phenocam. During 2012, flash drought conditions occurred at the MOISST location as conditions transitioned from no drought in late April to D4 (exceptional drought) in mid August. The array of instruments captured the dramatic transition of land-surface conditions at the MOISST site, in particular during a period spanning approximately six weeks in July and August in whereby drought conditions changed from abnormally dry to exceptional drought and ecosystem collapsed occurred. Results for the analyses demonstrated that both soil moisture and vegetation dynamics were critical components to flash drought development. Further, when the Evaporative Stress Index (ESI) was applied to the MOISST site during 2012, the results demonstrated that the predictability of drought conditions were increased to nearly six weeks prior to flash drought development that began in July.
Reversibility of radiocaesium sorption on illite
NASA Astrophysics Data System (ADS)
de Koning, Arjan; Comans, Rob N. J.
2004-07-01
Adsorption of trace amounts of radiocaesium on NH 4-, K-, and Na-saturated Fithian illite and subsequent desorption by 1 M NH 4 showed that a substantial amount of radiocaesium (44%, 46%, and 91% for NH 4-, K-, and Na-illite, respectively) cannot be desorbed after only 5 min of adsorption. Our results suggest that this instantaneous fixation is caused by the collapse of the frayed edges of the clay mineral and the relatively high concentration of radiocaesium building up in solution in the batch desorption experiments. Consequently, commonly applied high-NH 4 extractions underestimate truly exchangeable amounts of radiocaesium in soils and sediments containing illitic clay minerals. The rate of desorption of trace amounts of radiocaesium from the solids using high NH 4 or Cs concentrations has a half-life of about 2 yr, reflecting radiocaesium desorption from (partially) collapsed interlayers. Extraction of radiocaesium from illite after 5 min of contact time with a Cs-selective adsorbent or a 1 × 10 -6 M CsCl solution shows that 100% of the bound radiocaesium is readily available. The desorption rate in the presence of a Cs-selective adsorbent has a half-life of about 0.2 yr. Desorption of radiocaesium from illite using different ammonium concentrations shows that radiocaesium partitioning follows reversible ion-exchange theory if the NH 4 concentration is below 1 × 10 -4 M, and sufficient time (weeks) is allowed for the reaction to proceed. Thus, radiocaesium sorption reversibility in the natural environment is much higher than generally assumed, and equilibrium solid/liquid partitioning may be assumed for the long-term modelling of radiocaesium mobility in the natural environment. In the particular case of anoxic freshwater sediments with very high NH 4 concentrations in the pore waters (up to several mmol.L -1), collapse of the frayed edges of illite may occur, influencing radiocaesium partitioning. If collapse occurs before radiocaesium adsorbs to illite, high caesium sorption reversibility as measured by high-NH 4 extraction can be expected because further collapse of the frayed edges during the extraction procedure will be limited. This effect has indeed been observed earlier in the extraction of radiocaesium from anoxic freshwater sediments with high-NH 4 solutions and was as yet unexplained.
NASA Astrophysics Data System (ADS)
Nevle, R. J.; Bird, D. K.
2007-12-01
A new reconstruction of the biomass burning history of the tropical Americas is consistent with expanding fire use by Mesoamerican and Amazonian agriculturalists from 2000 to 500 years BP and a subsequent period of fire reduction due to indigenous demographic collapse. Our reconstruction synthesizes published data from stratigraphic charcoal accumulation records from lake and bog sediments and soil charcoal records, including soil charcoal obtained from archeological Amazonian Dark Earth sites. The charcoal data provide fire histories from over 40 localities and enable reconstruction of the Late Holocene regional biomass burning history of the tropical Americas. Synthesis of the stratigraphic charcoal records yields indexes of 1) the inter-site variability in charcoal accumulation; and 2) the mean rate of regional charcoal accumulation during 500-year increments since 3500 years BP. The age distribution of dated soil charcoal particles from non-archeological sites provides an independent measure of variation in regional charcoal accumulation; whereas the age distribution of soil charcoal dates from archeological sites records variation in charcoal accumulation related to anthropogenic biomass burning. The charcoal accumulation indexes derived from stratigraphic records begin to increase at ~2000 years BP, obtain maxima during the 500-year period just prior to European arrival, then decline to near-minimum values during the 500-year period subsequent to contact. Similarly, the age distribution of soil charcoal dated from non-archeological and archeological sites both indicate increases in charcoal accumulation from 2000 to 500 years BP followed by decline. We interpret the covariation between measures of charcoal accumulation derived from archeological and non-archeological sites as a consequence of the expansive influence of anthropogenic activity on the regional fire regime. The increase in regional charcoal accumulation apparent in the stratigraphic and soil charcoal records beginning at 2000 years BP correlates with expanding indigenous population, agriculture, and fire use in the tropical Americas. The rise in inter-site variability in charcoal accumulation after 2000 years BP is consistent with a demographic shift toward sedentary agrarian communities and localized increases in charcoal accumulation in densely populated centers. The declines in regional charcoal accumulation and inter-site variability after 500 years BP suggest a correlative cause related to reduction in anthropogenic biomass burning resulting from pandemic-driven population collapse. Published reconstructions of Pre-Columbian demography indicate that during European conquest, pandemics killed ~90% of the indigenous American population (~60 million), estimated to represent ~20% of the 16th century global population. Our predictive calculations suggest that fire reduction in the tropical Americas indicated in the charcoal record is associated with massive forest regeneration on ~1 x 106 km2 of land and sequestration of >10 Gt C into the terrestrial biosphere, which contributed to the ~2% global reduction in atmospheric CO2 levels and the 0.1‰ increase in δ13C of atmospheric CO2 from 1500 to 1700 A.D. recorded in Antarctic ice cores and tropical sponges.
NASA Astrophysics Data System (ADS)
Lesschen, Jan Peter; Sikirica, Natasa; Bonten, Luc; Dibari, Camilla; Sanchez, Berta; Kuikman, Peter
2014-05-01
Soil Organic Carbon (SOC) is a key parameter to many soil functions and services. SOC is essential to support water retention and nutrient buffering and mineralization in the soil as well as to enhance soil biodiversity. Consequently, loss of SOC or low SOC levels might threaten soil productivity or even lead to a collapse of a farming system. Identification of areas in Europe with critically low SOC levels or with a negative carbon balance is a challenge in order to apply the appropriate strategies to restore these areas or prevent further SOC losses. The objective of this study is to assess current soil carbon flows and stocks at a regional scale; we follow a carbon balance approach which we developed within the MITERRA-Europe model. MITERRA-Europe is an environmental impact assessment model and calculates nitrogen and greenhouse emission on a deterministic and annual basis using emission and leaching factors at regional level (NUTS2, comparable to province level) in the EU27. The model already contained a soil carbon module based on the IPCC stock change approach. Within the EU FP7 SmartSoil project we developed a SOC balance approach, for which we quantified the input of carbon (manure, crop residues, other organic inputs) and the losses of carbon (decomposition, leaching and erosion). The calculations rules from the Roth-C model were used to estimate SOC decomposition. For the actual soil carbon stocks we used the data from the LUCAS soil sample survey. LUCAS collected soil samples in 2009 at about 22000 locations across the EU, which were analysed for a range of soil properties. Land management practices are accounted for, based on data from the EU wide Survey on Agricultural Production Methods in the 2010 Farm Structure Survey. The survey comprises data on the application of soil tillage, soil cover, crop rotation and irrigation. Based on the simulated soil carbon balance and the actual carbon stocks from LUCAS we now can identify regions within the EU that are at risk. We further present results of the potential soil carbon sequestration by land management practices, such as cover crops, zero and reduced tillage, crop residue management and additional input of organic carbon. These results will be relevant for defining region specific strategies to reach the policy target on preventing loss of soil organic matter as stipulated in the Roadmap to a Resource Efficient Europe.
NASA Astrophysics Data System (ADS)
Menenti, Massimo; Akdim, Nadia; Alfieri, Silvia Maria; Labbassi, Kamal; De Lorenzi, Francesca; Bonfante, Antonello; Basile, Angelo
2014-05-01
Frequent and contiguous observations of soil water content such as the ones to be provided by SMAP are potentially useful to improve distributed models of soil water balance. This requires matching of observations and model estimates provided both sample spatial patterns consistently. The spatial resolution of SMAP soil water content data products ranges from 3 km X 3 km to 40 km X 40 km. Even the highest spatial resolution may not be sufficient to capture the spatial variability due to terrain, soil properties and precipitation. We have evaluated the SMAP spatial resolution against spatial variability of soil water content in two Mediterranean landscapes: a hilly area dominated by vineyards and olive orchards in Central Italy and a large irrigation schemes (Doukkala) in Morocco. The "Valle Telesina" is a 20,000 ha complex landscape located in South Italy in the Campania region, which has a complex geology and geomorphology and it is characterised by an E-W elongated graben where the Calore river flows. The main crops are grapevine (6,448 ha) and olive (3,390 ha). Soil information was mainly derived from an existing soil map at 1:50 000 scale (Terribile et al., 1996). The area includes 47 SMUs (Soil Mapping Units) and about 60 soil typological units (STUs). (Bonfante et al., 2011). In Doukkala, the soil water retention and unsaturated capillary conductivity were estimated from grain size distribution of a number of samples (22 pilot points, each one sampled in 3 horizons of 20cm), and combined with a soil map. The land use classification was carried out using a NDVI time series at high spatial resolution (Landsat TM and SPOT HRV). We have calculated soil water content for each soil unit in each area in response to several climate cases generating daily maps of soil water content at different depths. To reproduce spatial sampling by SMAP we have filtered these spatial patterns by calculating box averages with grid sizes of 1 km X 1 km and 5 km X 5 km. We have repeated this procedure for soil water content in the 0 to 5 cm and 0 to 10 cm depths. For each case we have compared the variance of filtered soil water content with the expected accuracy of SMAP soil water content. The two areas are very different as regards morphology and soil formation. The Valle Telesina is characterized by a very significant variability of soil hydrological properties leading to complex patterns in soil water content. Contrariwise, the soil properties estimated for all soil mapping units in the Dhoukkala collapse into just two pairs of water retention and hydraulic conductivity characteristics, leading to smoother patterns of soil water content.
Moisture content measurements of moss (Sphagnum spp.) using commercial sensors
Yoshikawa, K.; Overduin, P.P.; Harden, J.W.
2004-01-01
Sphagnum (spp.) is widely distributed in permafrost regions around the arctic and subarctic. The moisture content of the moss layer affects the thermal insulative capacity and preservation of permafrost. It also controls the growth and collapse history of palsas and other peat mounds, and is relevant, in general terms, to permafrost thaw (thermokarst). In this study, we test and calibrate seven different soil moisture sensors for measuring the moisture content of Sphagnum moss under laboratory conditions. The soil volume to which each probe is sensitive is one of the important parameters influencing moisture measurement, particularly in a heterogeneous medium such as moss. Each sensor has a unique response to changing moisture content levels, solution salinity, moss bulk density and to the orientation (structure) of the Sphagnum relative to the sensor. All of the probes examined here require unique polynomial calibration equations to obtain moisture content from probe output. We provide polynomial equations for dead and live Sphagnum moss (R2 > 0.99. Copyright ?? 2004 John Wiley & Sons, Ltd.
Application of micropolar plasticity to post failure analysis in geomechanics
NASA Astrophysics Data System (ADS)
Manzari, Majid T.
2004-08-01
A micropolar elastoplastic model for soils is formulated and a series of finite element analyses are employed to demonstrate the use of a micropolar continuum in overcoming the numerical difficulties encountered in application of finite element method in standard Cauchy-Boltzmann continuum. Three examples of failure analysis involving a deep excavation, shallow foundation, and a retaining wall are presented. In all these cases, it is observed that the length scale introduced in the polar continuum regularizes the incremental boundary value problem and allows the numerical simulation to be continued until a clear collapse mechanism is achieved. The issue of grain size effect is also discussed. Copyright
NASA Astrophysics Data System (ADS)
Badorreck, Annika; Gerke, Horst H.; Weller, Ulrich; Vontobel, Peter
2010-05-01
An artificial catchment was constructed to study initial soil and ecosystem development. As a key process, the pore structure dynamics in the soil at the surface strongly influences erosion, infiltration, matter dynamics, and vegetation establishment. Little is known, however, about the first macropore formation in the very early stage. This presentation focuses on observations of soil pore geometry and its effect on water flow at the surface comparing samples from three sites in the catchment and in an adjacent "younger" site composed of comparable sediments. The surface soil was sampled in cylindrical plastic rings (10 cm³) down to 2 cm depth in three replicates each site and six where caves from pioneering ground-dwelling beetles Cicindelidae were found. The samples were scanned with micro-X-ray computed tomography (at UFZ-Halle, Germany) with a resolution of 0.084 mm. The infiltration dynamics were visualized with neutronradiography (at Paul-Scherer-Institute, Switzerland) on slab-type soil samples in 2D. The micro-tomographies exhibit formation of surface sealing whose thickness and intensity vary with silt and clay content. The CT images show several coarser- and finer-textured micro-layers at the sample surfaces that were formed as a consequence of repeated washing in of finer particles in underlying coarser sediment. In micro-depressions, the uppermost layers consist of sorted fine sand and silt due to wind erosion. Similar as for desert pavements, a vesicular pore structure developed in these sediments on top, but also scattered in fine sand- and silt-enriched micro-layers. The ground-dwelling activity of Cicindelidae beetles greatly modifies the soil structure through forming caves in the first centimetres of the soil. Older collapsed caves, which form isolated pores within mixed zones, were also found. The infiltration rates were severely affected both, by surface crusts and activity of ground-dwelling beetles. The observations demonstrate relatively high abiotic and biotic dynamics of soil pore structure in the soil surface even during the very early development stages. The structure formation has potentially great effects on changing runoff and infiltration by forming sealing layers or preferential flow paths.
Finite Element analyses of soil bioengineered slopes
NASA Astrophysics Data System (ADS)
Tamagnini, Roberto; Switala, Barbara Maria; Sudan Acharya, Madhu; Wu, Wei; Graf, Frank; Auer, Michael; te Kamp, Lothar
2014-05-01
Soil Bioengineering methods are not only effective from an economical point of view, but they are also interesting as fully ecological solutions. The presented project is aimed to define a numerical model which includes the impact of vegetation on slope stability, considering both mechanical and hydrological effects. In this project, a constitutive model has been developed that accounts for the multi-phase nature of the soil, namely the partly saturated condition and it also includes the effects of a biological component. The constitutive equation is implemented in the Finite Element (FE) software Comes-Geo with an implicit integration scheme that accounts for the collapse of the soils structure due to wetting. The mathematical formulation of the constitutive equations is introduced by means of thermodynamics and it simulates the growth of the biological system during the time. The numerical code is then applied in the analysis of an ideal rainfall induced landslide. The slope is analyzed for vegetated and non-vegetated conditions. The final results allow to quantitatively assessing the impact of vegetation on slope stability. This allows drawing conclusions and choosing whenever it is worthful to use soil bioengineering methods in slope stabilization instead of traditional approaches. The application of the FE methods show some advantages with respect to the commonly used limit equilibrium analyses, because it can account for the real coupled strain-diffusion nature of the problem. The mechanical strength of roots is in fact influenced by the stress evolution into the slope. Moreover, FE method does not need a pre-definition of any failure surface. FE method can also be used in monitoring the progressive failure of the soil bio-engineered system as it calculates the amount of displacements and strains of the model slope. The preliminary study results show that the formulated equations can be useful for analysis and evaluation of different soil bio-engineering methods of slope stabilization.
NASA Astrophysics Data System (ADS)
Desie, Ellen; Vancampenhout, Karen; Buelens, Jeroen; Verstraeten, Gorik; Verheyen, Kris; Heyens, Kathleen; Muys, Bart
2017-04-01
The choice of overstory species in relation to soil properties is one of the most important management decisions in forestry, especially when deciduous or mixed stands are replaced by coniferous monocultures. When assessed in relation to climate change, conversion effects are mainly studied in terms of total carbon stocks. These are generally considered to evolve linearly, according to similar stabilization processes across ecosystems. Here we show that the belowground carbon cycle is subject to ecosystem-specific stable process domains. The process domains are separated by steep thresholds, or even tipping points, where a small increase in environmental forcing can cause a drastic change in the way the ecosystem processes carbon. These effects are demonstrated in detail for the old-growth forest complex of the Gaume in Belgium. This forest spans a lithological gradient and mixed-species stands occur next to stands recently converted to Norway spruce (Picea abies) monocultures, creating a setting of paired plots that allow to address the magnitude of management choices relative to intrinsic natural potential. Vegetation descriptions, litter samples and soil samples at different depths were compared for above- and belowground functional biodiversity, litter layer characteristics, soil properties, nutrient status, bioturbation, soil carbon stocks and soil carbon functional pools. Results show that in soils with limited remaining buffer capacity, overstory-induced acidification under spruce causes a shift to an acid aluminum buffered environment, with a collapse in variability of abiotic and biotic soil properties. This entails a shift in soil fauna and depth relations, with a clear decoupling of the litter layer from the topsoil and the subsoil in terms of biological communities, carbon input and stochastic constraints. Finally, this study indicates that although spruce conversion increases the total soil carbon stocks, this extra carbon is stored in more labile carbon pools. Sustainable management strategies should therefore recognize the importance of aboveground species diversity and identity, and the corresponding litter characteristics for driving carbon cycles, especially in systems near a pedological threshold.
Testing collapse models by a thermometer
NASA Astrophysics Data System (ADS)
Bahrami, M.
2018-05-01
Collapse models postulate that space is filled with a collapse noise field, inducing quantum Brownian motions, which are dominant during the measurement, thus causing collapse of the wave function. An important manifestation of the collapse noise field, if any, is thermal energy generation, thus disturbing the temperature profile of a system. The experimental investigation of a collapse-driven heating effect has provided, so far, the most promising test of collapse models against standard quantum theory. In this paper, we calculate the collapse-driven heat generation for a three-dimensional multi-atomic Bravais lattice by solving stochastic Heisenberg equations. We perform our calculation for the mass-proportional continuous spontaneous localization collapse model with nonwhite noise. We obtain the temperature distribution of a sphere under stationary-state and insulated surface conditions. However, the exact quantification of the collapse-driven heat-generation effect highly depends on the actual value of cutoff in the collapse noise spectrum.
Hydrothermal deformation of granular quartz sand
NASA Astrophysics Data System (ADS)
Karner, Stephen L.; Kronenberg, Andreas K.; Chester, Frederick M.; Chester, Judith S.; Hajash, Andrew
2008-05-01
Isotropic and triaxial compression experiments were performed on porous aggregates of St Peter quartz sand to explore the influence of temperature (to 225°C). During isotropic stressing, samples loaded at elevated temperature exhibit the same sigmoidal stress-strain curves and non-linear acoustic emission rates as have previously been observed from room temperature studies on sands, sandstones, and soils. However, results from our hydrothermal experiments show that the critical effective pressure (P*) associated with the onset of significant pore collapse and pervasive cataclastic flow is lower at increased temperature. Samples subjected to triaxial loading at elevated temperature show yield behavior resembling that observed from room temperature studies on granular rocks and soils. When considered in terms of distortional and mean stresses, the yield strength data for a given temperature define an elliptical envelope consistent with critical state and CAP models from soil mechanics. For the conditions we tested, triaxial yield data at low effective pressure are essentially temperature-insensitive whereas yield levels at high effective pressure are lowered as a function of elevated temperature. We interpret our yield data in a manner consistent with Arrhenius behavior expected for thermally assisted subcritical crack growth. Taken together, our results indicate that increased stresses and temperatures associated with subsurface burial will significantly alter the yield strength of deforming granular media in systematic and predictable ways.
NASA Astrophysics Data System (ADS)
Mourhatch, Ramses
This thesis examines collapse risk of tall steel braced frame buildings using rupture-to-rafters simulations due to suite of San Andreas earthquakes. Two key advancements in this work are the development of (i) a rational methodology for assigning scenario earthquake probabilities and (ii) an artificial correction-free approach to broadband ground motion simulation. The work can be divided into the following sections: earthquake source modeling, earthquake probability calculations, ground motion simulations, building response, and performance analysis. As a first step the kinematic source inversions of past earthquakes in the magnitude range of 6-8 are used to simulate 60 scenario earthquakes on the San Andreas fault. For each scenario earthquake a 30-year occurrence probability is calculated and we present a rational method to redistribute the forecast earthquake probabilities from UCERF to the simulated scenario earthquake. We illustrate the inner workings of the method through an example involving earthquakes on the San Andreas fault in southern California. Next, three-component broadband ground motion histories are computed at 636 sites in the greater Los Angeles metropolitan area by superposing short-period (0.2s-2.0s) empirical Green's function synthetics on top of long-period (> 2.0s) spectral element synthetics. We superimpose these seismograms on low-frequency seismograms, computed from kinematic source models using the spectral element method, to produce broadband seismograms. Using the ground motions at 636 sites for the 60 scenario earthquakes, 3-D nonlinear analysis of several variants of an 18-story steel braced frame building, designed for three soil types using the 1994 and 1997 Uniform Building Code provisions and subjected to these ground motions, are conducted. Model performance is classified into one of five performance levels: Immediate Occupancy, Life Safety, Collapse Prevention, Red-Tagged, and Model Collapse. The results are combined with the 30-year probability of occurrence of the San Andreas scenario earthquakes using the PEER performance based earthquake engineering framework to determine the probability of exceedance of these limit states over the next 30 years.
Mayan urbanism: impact on a tropical karst environment.
Deevey, E S; Rice, D S; Rice, P M; Vaughan, H H; Brenner, M; Flannery, M S
1979-10-19
From the first millennium B.C. through the 9th-century A.D. Classic Maya collapse, nonurban populations grew exponentially, doubling every 408 years, in the twin-lake (Yaxha-Sacnab) basin that contained the Classic urban center of Yaxha. Pollen data show that forests were essentially cleared by Early Classic time. Sharply accelerated slopewash and colluviation, amplified in the Yaxha subbasin by urban construction, transferred nutrients plus calcareous, silty clay to both lakes. Except for the urban silt, colluvium appearing as lake sediments has a mean total phosphorus concentration close to that of basin soils. From this fact, from abundance and distribution of soil phosphorus, and from continuing post-Maya influxes (80 to 86 milligrams of phosphorus per square meter each year), which have no other apparent source, we conclude that riparian soils are anthrosols and that the mechanism of long-term phosphorus loading in lakes is mass transport of soil. Per capita deliveries of phosphorus match physiological outputs, approximately 0.5 kilogram of phosphorus per capita per year. Smaller apparent deliveries reflect the nonphosphatic composition of urban silt; larger societal outputs, expressing excess phosphorus from deforestation and from food waste and mortuary disposal, are probable but cannot be evaluated from our data. Eutrophication is not demonstrable and was probably impeded, even in less-impacted lakes, by suspended Maya silt. Environmental strain, the product of accelerating agroengineering demand and sequestering of nutrients in colluvium, developed too slowly to act as a servomechanism, damping population growth, at least until Late Classic time.
NASA Astrophysics Data System (ADS)
Arya, I. W.; Wiraga, I. W.; GAG Suryanegara, I.
2018-01-01
Slope is a part of soil topography formed due to elevation difference from two soil surface. Landslides is frequently occur in natural slope, it is because shear force is greater than shear strength in the soil. There are some factor that influence slope stability such as: rain dissipation, vibration from earthquake, construction and crack in the soil. Slope instability can cause risk in human activity or even threaten human lives. Every years in rainy season, landslides always occur in Indonesia. In 2016, there was some landslide occurred in Bali. One of the most damaging is landslide in Petang district, Badung regency. This landslide caused main road closed entirely. In order to overcome and prevent landslide, a lot of method have been practiced and still looking for more sophisticated method for forecasting slope stability. One of the method to strengthen soil stability is filling the soil pores with some certain material. Cement is one of the material that can be used to fill the soil pores because when it is in liquid form, it can infiltrate into soil pores and fill the gap between soil particles. And after it dry, it can formed a bond with soil particle so that soil become stronger and the slope as well. In this study, it will use experimental method, slope model in laboratory to simulate a real slope behavior in the field. The first model is the slope without any addition of cement. This model will be become a benchmark for the other models. The second model is a slope with improved soil that injects the slope with cement. Injection of cement is done with varying interval distance of injection point is 5 cm and 10 cm. Each slope model will be given a load until the slope collapses. The slope model will also be analyzed with slope stability program. The test results on the improved slope models will be compared with unimproved slope. In the initial test will consist of 3 model. First model is soil without improvement or cement injection, second model is soil with cement injection interval 5 cm and third model is soil with cement injection interval 10 cm. The result is the shear strength (ϕ value) the soil is increase from 32.02° to 47.57°. The increase value of internal friction angle (ϕ) shows that an increase in shear strength of the cement improved soil. While, the value of cohesion (c) is zero indicating there is no cohesion in the soil. This is common for sand soil or sandy soil. The calculation of safety factor with GeoStructural Analysis obtained an increase of safety factor from 0.78 if the soil without cement injection to 1.07 and 1.17 if the soil is injected with cement at a distance of 10 cm and 5 cm.
NASA Astrophysics Data System (ADS)
Nevle, R. J.; Bird, D. K.
2008-12-01
A new reconstruction of the Late Holocene biomass burning history of the tropical Americas is consistent with expanding fire use by Mesoamerican and Amazonian agriculturalists from 2000-500 BP and a subsequent period of fire reduction due to indigenous demographic collapse. Our reconstruction synthesizes published data from 50 charcoal accumulation records obtained from stratified lacustrine sediments and from soils, including soil charcoal records recovered from archeological sites. Synthesis of stratigraphic charcoal records yields indexes of the mean rate of regional charcoal accumulation and of variability in charcoal accumulation among sites during 500-year increments since 3500 BP. The age distribution of dated soil charcoal particles from non-archeological sites provides an independent measure of variation in regional charcoal accumulation; whereas age distribution of soil charcoal dates from archeological sites records variation in charcoal accumulation related to anthropogenic biomass burning. We observe that the charcoal accumulation indexes derived from stratigraphic records begin to increase at 2000 BP, remain high until 500 BP, and then decline to near-minimum values during the 500-year period subsequent to European contact. Similarly, the age distributions of soil charcoal dated from both non-archeological and archeological sites indicate increases in charcoal accumulation from 2000 to 500 BP followed by decline. An index of the inter- site variability in charcoal accumulation obtained from the stratigraphic records attains a maximum during the time period between 1000 and 500 BP and a near-minimum value afterward. We interpret the covariation between measures of charcoal accumulation derived from archeological and non-archeological sites as a consequence of the expansive influence of anthropogenic activity on the regional fire regime. Increases in regional charcoal accumulation apparent in both the stratigraphic and soil charcoal records beginning at 2000 BP correlate with expanding indigenous population, agriculture, and fire use in the tropical Americas. The rise in inter-site variability in charcoal accumulation after 2000 BP is consistent with a demographic shift toward sedentary agrarian communities and localized increases in charcoal accumulation in densely populated centers. Declines in regional charcoal accumulation and inter-site variability after 500 BP suggest a correlative cause related to reduction in anthropogenic biomass burning resulting from pandemic-driven population collapse. Published reconstructions of Pre-Columbian demography indicate that during European conquest, pandemics killed ~90% of the indigenous American population (~60 million), estimated to represent ~20% of the 16th century global population. Our predictive calculations suggest that fire reduction in the tropical Americas is associated with massive forest regeneration on ~5 x 105 km2 of land and sequestration of 5-10 Gt C into the terrestrial biosphere, which can account for 13- 50% of the ~2% global reduction in atmospheric CO2 levels and the 0.1‰ increase in δ13C of atmospheric CO2 from 1500 to 1700 CE recorded in Antarctic ice cores and tropical sponges. New archeological discoveries revealing extensive networks of geoglyphs and urban polities in Pre-Columbian Amazonia suggest that our estimates of reforestation, and consequent effects on atmospheric CO2, may be conservative.
Development of Inspection and Investigation Techniques to Prepare Debris Flow in Urban Areas
NASA Astrophysics Data System (ADS)
Seong, Joo-Hyun; Jung, Min-Hyeong; Park, Kyung-Han; An, Jai-Wook; Kim, Jiseong
2017-04-01
Due to the urban development, various facilities are located in mountainous areas near the city, and the damage to the occurrence of the debris flow is increasing in the urban area. However, quantitative inspection and investigation techniques are not sufficient for preparing debris flow in the urban area around the world. Therefore, in this study, we developed the debris flow inspection and investigation techniques, which are suitable for urban characteristics, regarding the soil hazard prevention and restoration in urban area. First, the inspection and investigation system is divided into the daily occurrence and the occurrence of the soil hazard event, and the inspection / investigation flow chart were developed based on the kind of inspection and correspondence required for each situation. The types of inspections applied in this study were determined as daily inspection, regular inspections, special emergency inspection, damage emergency inspection and In-depth safety inspection. The management agency, term of inspection, objects to be inspected, and contents of inspection work were presented according to type of each inspection. The daily inspection routinely checks for signs of collapse and conditions of facilities in urban areas which show vulnerability for soil hazard and that are conducted from the management agency. In the case of regular inspection, an expert for soil hazards regularly conducts detailed visual surveys on mountainous areas, steep slopes, prevention facilities and adjacent facilities in vulnerable areas. On the other hand, it was decided that the emergency inspection is carried out in the event of the occurrence of vulnerable element or soil hazards. Acknowledgement This study was conducted with the research iund support by the constructiontechnology research project of the Ministry of Land, Infrastructure and Transport (project number 16SCIP-B069989-04)
Chávez, José Alexander; Landaverde, José; Landaverde, Reynaldo López; Tejnecký, Václav
2016-01-01
Field monitoring and laboratory results are presented for an unsaturated volcanic pyroclastic. The pyroclastic belongs to the latest plinian eruption of the Ilopango Caldera in the Metropolitan Area of San Salvador, and is constantly affected by intense erosion, collapse, slab failure, sand/silt/debris flowslide and debris avalanche during the rainy season or earthquakes. Being the flowslides more common but with smaller volume. During the research, preliminary results of rain threshold were obtained of flowslides, this was recorded with the TMS3 (a moisture sensor device using time domain transmission) installed in some slopes. TMS3 has been used before in biology, ecology and soil sciences, and for the first time was used for engineering geology in this research. This device uses electromagnetic waves to obtain moisture content of the soil and a calibration curve is necessary. With the behavior observed during this project is possible to conclude that not only climatic factors as rain quantity, temperature and evaporation are important into landslide susceptibility but also information of suction-moisture content, seepage, topography, weathering, ground deformation, vibrations, cracks, vegetation/roots and the presence of crust covering the surface are necessary to research in each site. Results of the field monitoring indicates that the presence of biological soil crusts a complex mosaic of soil, green algae, lichens, mosses, micro-fungi, cyanobacteria and other bacteria covering the slopes surface can protect somehow the steep slopes reducing the runoff process and mass wasting processes. The results obtained during the assessment will help explaining the mass wasting problems occurring in some pyroclastic soils and its possible use in mitigation works and early warning system.
Resource competition between two fungal parasites in subterranean termites
NASA Astrophysics Data System (ADS)
Chouvenc, Thomas; Efstathion, Caroline A.; Elliott, Monica L.; Su, Nan-Yao
2012-11-01
Subterranean termites live in large groups in underground nests where the pathogenic pressure of the soil environment has led to the evolution of a complex interaction among individual and social immune mechanisms in the colonies. However, groups of termites under stress can show increased susceptibility to opportunistic parasites. In this study, an isolate of Aspergillus nomius Kurtzman, Horn & Hessltine was obtained from a collapsed termite laboratory colony. We determined that it was primarily a saprophyte and, secondarily, a facultative parasite if the termite immunity is undergoing a form of stress. This was determined by stressing individuals of the Formosan subterranean termite Coptotermes formosanus Shiraki via a co-exposure to the virulent fungal parasite Metarhizium anisopliae (Metch.) Sorokin. We also examined the dynamics of a mixed infection of A. nomius and M. anisopliae in a single termite host. The virulent parasite M. anisopliae debilitated the termite immune system, but the facultative, fast growing parasite A. nomius dominated the mixed infection process. The resource utilization strategy of A. nomius during the infection resulted in successful conidia production, while the chance for M. anisopliae to complete its life cycle was reduced. Our results also suggest that the occurrence of opportunistic parasites such as A. nomius in collapsing termite laboratory colonies is the consequence of a previous stress, not the cause of the stress.
Guatemala paleoseismicity: from Late Classic Maya collapse to recent fault creep
NASA Astrophysics Data System (ADS)
Brocard, Gilles; Anselmetti, Flavio S.; Teyssier, Christian
2016-11-01
We combine ‘on-fault’ trench observations of slip on the Polochic fault (North America-Caribbean plate boundary) with a 1200 years-long ‘near-fault’ record of seismo-turbidite generation in a lake located within 2 km of the fault. The lake record indicates that, over the past 12 centuries, 10 earthquakes reaching ground-shaking intensities ≥ VI generated seismo-turbidites in the lake. Seismic activity was highly unevenly distributed over time and noticeably includes a cluster of earthquakes spread over a century at the end of the Classic Maya period. This cluster may have contributed to the piecemeal collapse of the Classic Maya civilization in this wet, mountainous southern part of the Maya realm. On-fault observations within 7 km of the lake show that soils formed between 1665 and 1813 CE were displaced by the Polochic fault during a long period of seismic quiescence, from 1450 to 1976 CE. Displacement on the Polochic fault during at least the last 480 years included a component of slip that was aseismic, or associated with very light seismicity (magnitude <5 earthquakes). Seismicity of the plate boundary is therefore either non-cyclic, or dominated by long-period cycles (>1 ky) punctuated by destructive earthquake clusters.
Controls on methane released through ebullition in peatlands affected by permafrost degradation
Klapstein, Sara J.; Turetsky, Merritt R.; McGuire, A. David; Harden, Jennifer W.; Czimczik, C.I.; Xu, Xiaomei; Chanton, J.P.; Waddington, James Michael
2014-01-01
Permafrost thaw in peat plateaus leads to the flooding of surface soils and the formation of collapse scar bogs, which have the potential to be large emitters of methane (CH4) from surface peat as well as deeper, previously frozen, permafrost carbon (C). We used a network of bubble traps, permanently installed 20 cm and 60 cm beneath the moss surface, to examine controls on ebullition from three collapse bogs in interior Alaska. Overall, ebullition was dominated by episodic events that were associated with changes in atmospheric pressure, and ebullition was mainly a surface process regulated by both seasonal ice dynamics and plant phenology. The majority (>90%) of ebullition occurred in surface peat layers, with little bubble production in deeper peat. During periods of peak plant biomass, bubbles contained acetate-derived CH4 dominated (>90%) by modern C fixed from the atmosphere following permafrost thaw. Post-senescence, the contribution of CH4 derived from thawing permafrost C was more variable and accounted for up to 22% (on average 7%), in the most recently thawed site. Thus, the formation of thermokarst features resulting from permafrost thaw in peatlands stimulates ebullition and CH4 release both by creating flooded surface conditions conducive to CH4 production and bubbling as well as by exposing thawing permafrost C to mineralization.
Long-term evolution of Wink sinkholes in West Texas observed by high-resolution satellite imagery
NASA Astrophysics Data System (ADS)
Kim, J. W.; Lu, Z.
2016-12-01
Sinkhole is ground depression and/or collapse over the subsurface cavity in the karst terrain underlain by the carbonates, evaporites, and other soluble soils and rocks. The geohazards have been considered as a "hidden threat" to human life, infrastructures, and properties. The Delaware Basin of West Texas in the southwest part of the Permian Basin contains one of the greatest accumulations of evaporites in the United States. Sinkholes in West Texas have been developed by the dissolution of the subsurface evaporite deposits that come in contact with groundwater. Two Wink sinkholes in Wink, Texas, were developed in 1980 and 2002, respectively. However, monitoring the sinkholes in no man's lands has been challenging due to the lack of availability of high-resolution and temporally dense acquisitions. We employ aerial photography and radar satellite imagery to measure the long-term deformation from early 2000 and characterize the inherent hydrogeology that is closely related to sinkhole collapse and subsidence. Furthermore, data on oil/gas production and water injection into the subsurface as well as ground water level are analyzed to study their effects on the concurrent unstable ground surface in Wink sinkholes. Our study will provide invaluable information to understand the mechanism of sinkhole development and mitigate the catastrophic outcomes of the geohazards.
NASA Astrophysics Data System (ADS)
Mihalache, Constance
Assessing the potential for instability in non-saturated geomaterials is of critical importance for the prevention of disastrous failures that occur through these materials, from natural hazards such as rainfall-induced flow slides, to underwater sediment collapse due to methane hydrate dissociation, to the failure of key infrastructure components. In particular, the gaseous and liquid phases present within the pores of a geomaterial play a vital role in its overall behavior, and consequently must be considered in stability analyses. In this work, analytical techniques are presented to evaluate material stability for the different saturation states that occur during a wetting process, where soils progress from unsaturated conditions in the funicular regime, to quasi-saturated conditions in the insular regime, to complete saturation. Each of these different saturation states involves different interactions between the pore fluids and the solid skeleton hosting them. For example, while unsaturated soil behavior is characterized by the capillary effects from the interface between the gaseous and liquid phases, the dominant effect of isolated bubbles within the quasi-saturated regime is to increase the compressibility of the interstitial fluid mixture. By considering the different characteristics of these saturation states, energy-based work input expressions are developed and then used to derive criteria for loss of controllability of the material response. These criteria are then used to assess the stability of geomaterials under various loading configurations. Then, to unite the funicular and insular saturation regimes, the same methodology is adapted to the derivation of comprehensive three-phase criteria for non-saturated soils. An alternative interpretation of such constitutive singularities is also derived, with reference to the ill-posedness of the mass balance equations that control the transient flow of the fluid constituents of a deformable multiphase porous medium. Lastly, the concepts considered throughout the study are applied to the solution of boundary-value problems, using a finite element approach. Overall, it is shown that depending on the considered saturation regime, different stability criteria need to be applied for the accurate interpretation of material behavior. These techniques provide a mechanistic interpretation for a range of processes, such as the nature of so-called "wetting-collapse" events, the variability of the instability line for flow failures acting through gassy sediments, and the onset of runaway failures at the transition between funicular and insular states.
Hasegawa, Kazuhiro; Kitahara, Ko; Hara, Toshiaki; Takano, Ko; Shimoda, Haruka; Homma, Takao
2008-03-01
In vivo quantitative measurement of lumbar segmental stability has not been established. The authors developed a new measurement system to determine intraoperative lumbar stability. The objective of this study was to clarify the biomechanical properties of degenerative lumbar segments by using the new method. Twenty-two patients with a degenerative symptomatic segment were studied and their measurements compared with those obtained in normal or asymptomatic degenerative segments (Normal group). The measurement system produces cyclic flexion-extension through spinous process holders by using a computer-controlled motion generator with all ligamentous structures intact. The following biomechanical parameters were determined: stiffness, absorption energy (AE), and neutral zone (NZ). Discs with degeneration were divided into 2 groups based on magnetic resonance imaging grading: degeneration without collapse (Collapse[-]) and degeneration with collapse (Collapse[+]). Biomechanical parameters were compared among the groups. Relationships among the biomechanical parameters and age, diagnosis, or radiographic parameters were analyzed. The mean stiffness value in the Normal group was significantly greater than that in Collapse(-) or Collapse(+) group. There was no significant difference in the average AE value among the Normal, Collapse(-), and Collapse(+) groups. The NZ in the Collapse(-) was significantly higher than in the Normal or Collapse(+) groups. Stiffness was negatively and NZ was positively correlated with age. Stiffness demonstrated a significant negative and NZ a significant positive relationship with disc height, however. There were no significant differences in stiffness between spines in the Collapse(-) and Collapse(+) groups. The values of a more sensitive parameter, NZ, were higher in Collapse(-) than in Collapse(+) groups, demonstrating that degenerative segments with preserved disc height have a latent instability compared to segments with collapsed discs.
Wei, Shiping; Cui, Hongpeng; Zhu, Youhai; Lu, Zhenquan; Pang, Shouji; Zhang, Shuai; Dong, Hailiang; Su, Xin
2018-05-01
Permafrost thaw can bring negative consequences in terms of ecosystems, resulting in permafrost collapse, waterlogging, thermokarst lake development, and species composition changes. Little is known about how permafrost thaw influences microbial community shifts and their activities. Here, we show that the dominant archaeal community shifts from Methanomicrobiales to Methanosarcinales in response to the permafrost thaw, and the increase in methane emission is found to be associated with the methanogenic archaea, which rapidly bloom with nearly tenfold increase in total number. The mcrA gene clone libraries analyses indicate that Methanocellales/Rice Cluster I was predominant both in the original permafrost and in the thawed permafrost. However, only species belonging to Methanosarcinales showed higher transcriptional activities in the thawed permafrost, indicating a shift of methanogens from hydrogenotrophic to partly acetoclastic methane-generating metabolic processes. In addition, data also show the soil texture and features change as a result of microbial reproduction and activity induced by this permafrost thaw. Those data indicate that microbial ecology under warming permafrost has potential impacts on ecosystem and methane emissions.
NASA Astrophysics Data System (ADS)
Kumano, Teruhisa
As known well, two of the fundamental processes which give rise to voltage collapse in power systems are the on load tap changers of transformers and dynamic characteristics of loads such as induction machines. It has been well established that, comparing among these two, the former makes slower collapse while the latter makes faster. However, in realistic situations, the load level of each induction machine is not uniform and it is well expected that only a part of loads collapses first, followed by collapse process of each load which did not go into instability during the preceding collapses. In such situations the over all equivalent collapse behavior viewed from bulk transmission level becomes somewhat different from the simple collapse driven by one aggregated induction machine. This paper studies the process of cascaded voltage collapse among many induction machines by time simulation, where load distribution on a feeder line is modeled by several hundreds of induction machines and static impedance loads. It is shown that in some cases voltage collapse really cascades among induction machines, where the macroscopic load dynamics viewed from upper voltage level makes slower collapse than expected by the aggregated load model. Also shown is the effects of machine protection of induction machines, which also makes slower collapse.
Lara, Mark J; Genet, Hélène; McGuire, Anthony D; Euskirchen, Eugénie S; Zhang, Yujin; Brown, Dana R N; Jorgenson, Mark T; Romanovsky, Vladimir; Breen, Amy; Bolton, William R
2016-02-01
Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of lowland ice-rich permafrost ecosystems to climate changes depend on forest type. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Waldrop, M. P.; Neumann, R. B.; Jones, M.; Manies, K.; Mcfarland, J. W.; Blazewicz, S.; Turetsky, M. R.
2016-12-01
Permafrost thaw is expected to become widespread in interior Alaska over the coming century, resulting in increased CO2 and CH4 fluxes from soils and a positive feedback to global warming. However much of our understanding of the microbial response to thaw is predicated on simple laboratory incubations that preclude the multitude of interactions occurring in soils under field situations. Here, we utilize a time series of 13CO2 and 13CH4 measured in porewater collected from thermokarst bogs of different ages to estimate in-situ reaction rates of microbial respiration, methanogenesis from acetate, methanogenesis from CO2, homoacetogenesis, and methane oxidation from porewater concentrations and 13CO2 and 13CH4. We utilized this modeling technique to test the hypothesis that microbial activities are stimulated soon after permafrost thaw and this effect declines over time. Our field site is a chronosequence of thermokarst bogs at the Alaska Peatland Experiment (APEX) in interior AK where we have observed significant losses of peatland carbon since permafrost collapse over the last half century. Concentrations of dissolved CO2 and CH4 in porewater increased with depth, and were higher in the youngest bog compared to the older bogs. With increasing depth 13CH4 became more depleted while 13CO2 became more enriched. Preliminary modeling results, based upon these porewater gas concentrations and isotope values, indicate that microbial activities are higher in the youngest bogs compared to the older bogs, supporting the hypothesis that accelerated rates of microbial activities in young thermokarst features are responsible for high rates of C losses from these systems. Additionally, model results will be compared to variation in the abundance of methanogens, methane oxidizers, and acetogens as well as process rates measured in lab incubations, providing insights into the mechanisms responsible for these losses.
Lara, M.; Genet, Helene; McGuire, A. David; Euskirchen, Eugénie S.; Zhang, Yujin; Brown, Dana R. N.; Jorgenson, M.T.; Romanovsky, V.; Breen, Amy L.; Bolton, W.R.
2016-01-01
Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of lowland ice-rich permafrost ecosystems to climate changes depend on forest type.
Gravitational Waves from Gravitational Collapse.
Fryer, Chris L; New, Kimberly C B
2011-01-01
Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.
Dynamic Control of Collapse in a Vortex Airy Beam
Chen, Rui-Pin; Chew, Khian-Hooi; He, Sailing
2013-01-01
Here we study systematically the self-focusing dynamics and collapse of vortex Airy optical beams in a Kerr medium. The collapse is suppressed compared to a non-vortex Airy beam in a Kerr medium due to the existence of vortex fields. The locations of collapse depend sensitively on the initial power, vortex order, and modulation parameters. The collapse may occur in a position where the initial field is nearly zero, while no collapse appears in the region where the initial field is mainly distributed. Compared with a non-vortex Airy beam, the collapse of a vortex Airy beam can occur at a position away from the area of the initial field distribution. Our study shows the possibility of controlling and manipulating the collapse, especially the precise position of collapse, by purposely choosing appropriate initial power, vortex order or modulation parameters of a vortex Airy beam. PMID:23518858
Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles
Kreider, Wayne; Crum, Lawrence A.; Bailey, Michael R.; Sapozhnikov, Oleg A.
2011-01-01
Bubbles excited by lithotripter shock waves undergo a prolonged growth followed by an inertial collapse and rebounds. In addition to the relevance for clinical lithotripsy treatments, such bubbles can be used to study the mechanics of inertial collapses. In particular, both phase change and diffusion among vapor and noncondensable gas molecules inside the bubble are known to alter the collapse dynamics of individual bubbles. Accordingly, the role of heat and mass transport during inertial collapses is explored by experimentally observing the collapses and rebounds of lithotripsy bubbles for water temperatures ranging from 20 to 60 °C and dissolved gas concentrations from 10 to 85% of saturation. Bubble responses were characterized through high-speed photography and acoustic measurements that identified the timing of individual bubble collapses. Maximum bubble diameters before and after collapse were estimated and the corresponding ratio of volumes was used to estimate the fraction of energy retained by the bubble through collapse. The rebounds demonstrated statistically significant dependencies on both dissolved gas concentration and temperature. In many observations, liquid jets indicating asymmetric bubble collapses were visible. Bubble rebounds were sensitive to these asymmetries primarily for water conditions corresponding to the most dissipative collapses. PMID:22088027
NASA Astrophysics Data System (ADS)
Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.
2017-04-01
Void collapse in energetic materials leads to hot spot formation and enhanced sensitivity. Much recent work has been directed towards simulation of collapse-generated reactive hot spots. The resolution of voids in calculations to date has varied as have the resulting predictions of hot spot intensity. Here we determine the required resolution for reliable cylindrical void collapse calculations leading to initiation of chemical reactions. High-resolution simulations of collapse provide new insights into the mechanism of hot spot generation. It is found that initiation can occur in two different modes depending on the loading intensity: Either the initiation occurs due to jet impact at the first collapse instant or it can occur at secondary lobes at the periphery of the collapsed void. A key observation is that secondary lobe collapse leads to large local temperatures that initiate reactions. This is due to a combination of a strong blast wave from the site of primary void collapse and strong colliding jets and vortical flows generated during the collapse of the secondary lobes. The secondary lobe collapse results in a significant lowering of the predicted threshold for ignition of the energetic material. The results suggest that mesoscale simulations of void fields may suffer from significant uncertainty in threshold predictions because unresolved calculations cannot capture the secondary lobe collapse phenomenon. The implications of this uncertainty for mesoscale simulations are discussed in this paper.
Alveolar derecruitment and collapse induration as crucial mechanisms in lung injury and fibrosis.
Lutz, Dennis; Gazdhar, Amiq; Lopez-Rodriguez, Elena; Ruppert, Clemens; Mahavadi, Poornima; Günther, Andreas; Klepetko, Walter; Bates, Jason H; Smith, Bradford; Geiser, Thomas; Ochs, Matthias; Knudsen, Lars
2015-02-01
Idiopathic pulmonary fibrosis (IPF) and bleomycin-induced pulmonary fibrosis are associated with surfactant system dysfunction, alveolar collapse (derecruitment), and collapse induration (irreversible collapse). These events play undefined roles in the loss of lung function. The purpose of this study was to quantify how surfactant inactivation, alveolar collapse, and collapse induration lead to degradation of lung function. Design-based stereology and invasive pulmonary function tests were performed 1, 3, 7, and 14 days after intratracheal bleomycin-instillation in rats. The number and size of open alveoli was correlated to mechanical properties. Active surfactant subtypes declined by Day 1, associated with a progressive alveolar derecruitment and a decrease in compliance. Alveolar epithelial damage was more pronounced in closed alveoli compared with ventilated alveoli. Collapse induration occurred on Day 7 and Day 14 as indicated by collapsed alveoli overgrown by a hyperplastic alveolar epithelium. This pathophysiology was also observed for the first time in human IPF lung explants. Before the onset of collapse induration, distal airspaces were easily recruited, and lung elastance could be kept low after recruitment by positive end-expiratory pressure (PEEP). At later time points, the recruitable fraction of the lung was reduced by collapse induration, causing elastance to be elevated at high levels of PEEP. Surfactant inactivation leading to alveolar collapse and subsequent collapse induration might be the primary pathway for the loss of alveoli in this animal model. Loss of alveoli is highly correlated with the degradation of lung function. Our ultrastructural observations suggest that collapse induration is important in human IPF.
“Wave - Particle Duality” and Soil Liquefaction in Geotechnical Engineering
NASA Astrophysics Data System (ADS)
Wang, Demin
2017-10-01
In the disaster situation of multi-earthquake, with the phenomenon of vibrating phenomenon and the occurrence of cracks in the surface soil, the collapse of the buildings on the ground are caused. The author tries to explain the phenomenon of earthquake disaster in this geotechnical engineering by using the wave-particle duality theory of sunlight. And proposed the sun in the physics of the already high frequency of the weak light superimposed into the low frequency of the low light wave volatility, once again superimposed, superimposed as a lower frequency of linear light, the energy from low to high. Sunlight from weak light into a strong sunlight, that is, the sun near the observation may be weak light or black sunspots is composed of black holes. By long distance, the convergence of light becomes into a dazzling luminous body. Light from the numerous light quantum and an energy line form a half-space infinite volatility curve, and the role of light plays under the linear form of particles. When the night is manifested of l black approaching unconnected light quantum. The author plays the earth as the sun, compared to the deep pressure of low-viscosity clay soil pore, water performance is complex. Similar to the surface of the sun’s spectrum, saturated silty sand is showed volatility, Ground surface high-energy clay showed particle properties. Particle performance is shear strength.
Acidic deposition, plant pests, and the fate of forest ecosystems.
Gragnani, A; Gatto, M; Rinaldi, S
1998-12-01
We present and analyze a nonlinear dynamical system modelling forest-pests interactions and the way they are affected by acidic deposition. The model includes mechanisms of carbon and nitrogen exchange between soil and vegetation, biomass decomposition and microbial mineralization, and defoliation by pest grazers, which are partially controlled by avian or mammalian predators. Acidic deposition is assumed to directly damage vegetation, to decrease soil pH, which in turn damages roots and inhibits microbial activity, and to predispose trees to increased pest attack. All the model parameters are set to realistic values except the inflow of protons to soil and the predation mortality inflicted to the pest which are allowed to vary inside reasonable ranges. A numerical bifurcation analysis with respect to these two parameters is carried out. Five functioning modes are uncovered: (i) pest-free equilibrium; (ii) pest persisting at endemic equilibrium; (iii) forest-pest permanent oscillations; (iv) bistable behavior with the system converging either to pest-free equilibrium or endemic pest presence in accordance with initial conditions; (v) bistable behavior with convergence to endemic pest presence or permanent oscillations depending on initial conditions. Catastrophic bifurcations between the different behavior modes are possible, provided the abundance of predators is not too small. Numerical simulation shows that increasing acidic load can lead the forest to collapse in a short time period without important warning signals. Copyright 1998 Academic Press.
Centrifuge modeling of rocking-isolated inelastic RC bridge piers
Loli, Marianna; Knappett, Jonathan A; Brown, Michael J; Anastasopoulos, Ioannis; Gazetas, George
2014-01-01
Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation, this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil-footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking-isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self-centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Earthquake Engineering & Structural Dynamics Published by John Wiley & Sons Ltd. PMID:26300573
Centrifuge modeling of rocking-isolated inelastic RC bridge piers.
Loli, Marianna; Knappett, Jonathan A; Brown, Michael J; Anastasopoulos, Ioannis; Gazetas, George
2014-12-01
Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation , this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil-footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking-isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self-centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Byrdina, Svetlana; Revil, André; Gunawan, Hendra; Saing, Ugan B.; Grandis, Hendra
2017-07-01
Papandayan volcano in West Java, Indonesia, is characterized by intense hydrothermal activities manifested by numerous fumaroles at three craters or kawah, i.e. Mas, Manuk and Baru. The latter was created after November 2002 phreatic eruption. Since 2011, numerous volcano-tectonic B events are encountered and the volcano was set on alert status on several occasions. The purpose of the present study is to delineate the structure of the summital hydrothermal system from Self-Potential (SP), soil temperature and gas concentrations in the soil (CO2, SO2 and H2S) data. This combination of geophysical and geochemical methods allows identification of the weak permeable zones serving as preferential pathways for hydrothermal circulation and potential candidates to future landslides or flank collapses. This study is an on-going collaborative research project and we plan to conduct electrical resistivity tomography (ERT) and also Induced-Polarization (IP) surveys. Additional data would allow the 3D imaging of the studied area. The IP parameters will be used to characterise and to quantify the degree of alteration of the volcanic rocks as has been shown very recently in the laboratory studies. There are also rocks and soil samples that will undergo laboratory analyses at ISTerre for IP and complex resistivity parameters at the sample scale that will help to interpret the survey results.
Collapse of Corroded Pipelines under Combined Tension and External Pressure
Ye, Hao; Yan, Sunting; Jin, Zhijiang
2016-01-01
In this work, collapse of corroded pipeline under combined external pressure and tension is investigated through numerical method. Axially uniform corrosion with symmetric imperfections is firstly considered. After verifying with existing experimental results, the finite element model is used to study the effect of tension on collapse pressure. An extensive parametric study is carried out using Python script and FORTRAN subroutine to investigate the influence of geometric parameters on the collapse behavior under combined loads. The results are used to develop an empirical equation for estimating the collapse pressure under tension. In addition, the effects of loading path, initial imperfection length, yielding anisotropy and corrosion defect length on the collapse behavior are also investigated. It is found that tension has a significant influence on collapse pressure of corroded pipelines. Loading path and anisotropic yielding are also important factors affecting the collapse behavior. For pipelines with relatively long corrosion defect, axially uniform corrosion models could be used to estimate the collapse pressure. PMID:27111544
Comparing solvophobic and multivalent induced collapse in polyelectrolyte brushes
Jackson, Nicholas E.; Brettmann, Blair K.; Vishwanath, Venkatram; ...
2017-02-03
Here, coarse-grained molecular dynamics enhanced by free-energy sampling methods is used to examine the roles of solvophobicity and multivalent salts on polyelectrolyte brush collapse. Specifically, we demonstrate that while ostensibly similar, solvophobic collapsed brushes and multivalent-ion collapsed brushes exhibit distinct mechanistic and structural features. Notably, multivalent-induced heterogeneous brush collapse is observed under good solvent polymer backbone conditions, demonstrating that the mechanism of multivalent collapse is not contingent upon a solvophobic backbone. Umbrella sampling of the potential of mean-force (PMF) between two individual brush strands confirms this analysis, revealing starkly different PMFs under solvophobic and multivalent conditions, suggesting the role ofmore » multivalent “bridging” as the discriminating feature in trivalent collapse. Structurally, multivalent ions show a propensity for nucleating order within collapsed brushes, whereas poor-solvent collapsed brushes are more disordered; this difference is traced to the existence of a metastable PMF minimum for poor solvent conditions, and a global PMF minimum for trivalent systems, under experimentally relevant conditions.« less
Comparing solvophobic and multivalent induced collapse in polyelectrolyte brushes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Nicholas E.; Brettmann, Blair K.; Vishwanath, Venkatram
Here, coarse-grained molecular dynamics enhanced by free-energy sampling methods is used to examine the roles of solvophobicity and multivalent salts on polyelectrolyte brush collapse. Specifically, we demonstrate that while ostensibly similar, solvophobic collapsed brushes and multivalent-ion collapsed brushes exhibit distinct mechanistic and structural features. Notably, multivalent-induced heterogeneous brush collapse is observed under good solvent polymer backbone conditions, demonstrating that the mechanism of multivalent collapse is not contingent upon a solvophobic backbone. Umbrella sampling of the potential of mean-force (PMF) between two individual brush strands confirms this analysis, revealing starkly different PMFs under solvophobic and multivalent conditions, suggesting the role ofmore » multivalent “bridging” as the discriminating feature in trivalent collapse. Structurally, multivalent ions show a propensity for nucleating order within collapsed brushes, whereas poor-solvent collapsed brushes are more disordered; this difference is traced to the existence of a metastable PMF minimum for poor solvent conditions, and a global PMF minimum for trivalent systems, under experimentally relevant conditions.« less
Computed tomography of lobar collapse: 2. Collapse in the absence of endobronchial obstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naidich, D.P.; McCauley, D.I.; Khouri, N.F.
1983-10-01
The computed tomographic appearance of collapse without endobronchial obstruction is reviewed. These 57 cases were classified by the etiology of collapse. The largest group consisted of 29 patients with passive atelectasis, i.e., collapse secondary to fluid, air, or both in the pleural space. Twenty-three of 29 proved secondary to malignant pleural disease. Computed tomography accurately predicted a malignant etiology in 22 of 23 cases. The second largest group of patients had lobar collapse secondary to cicatrization from chronic inflammation. In all cases the underlying etiology was tuberculosis. Radiation caused adhesive atelectasis in six patients secondary to a lack of productionmore » of surfactant. In each case a sharp line of demarcation could be defined between normal and abnormal collapsed pulmonary parenchyma. Three cases of unchecked tumor growth caused a peripheral form of collapse (replacement atelectasis). This form of collapse was characterized by an absence of endobronchial obstruction and extensive tumor not delineated by the normal boundaries of the pulmonary lobes.« less
Debris avalanches and slumps on the margins of volcanic domes on Venus: Characteristics of deposits
NASA Technical Reports Server (NTRS)
Bulmer, M. H.; Guest, J. E.; Beretan, K.; Michaels, Gregory A.; Saunders, R. Stephen
1992-01-01
Modified volcanic domes, referred to as collapsed margin domes, have diameters greater than those of terrestrial domes and were therefore thought to have no suitable terrestrial analogue. Comparison of the collapsed debris using the Magellan SAR images with volcanic debris avalanches on Earth has revealed morphological similarities. Some volcanic features identified on the seafloor from sonar images have diameters similar to those on Venus and also display scalloped margins, indicating modification by collapse. Examination of the SAR images of collapsed dome features reveals a number of distinct morphologies to the collapsed masses. Ten examples of collapsed margin domes displaying a range of differing morphologies and collapsed masses have been selected and examined.
Earthquakes as collapse precursors at the Han-sur-Lesse Cave in the Belgian Ardennes
NASA Astrophysics Data System (ADS)
Camelbeeck, Thierry; Quinif, Yves; Verheyden, Sophie; Vanneste, Kris; Knuts, Elisabeth
2018-05-01
Collapse activation is an ongoing process in the evolution of karstic networks related to the weakening of cave vaults. Because collapses are infrequent, few have been directly observed, making it challenging to evaluate the role of external processes in their initiation and triggering. Here, we study the two most recent collapses in the Dôme chamber of the Han-sur-Lesse Cave (Belgian Ardenne) that occurred on or shortly after 3rd December 1828 and between the 13th and 14th of March 1984. Because of the low probability that the two earthquakes that generated the strongest ground motions in Han-sur-Lesse since 1800, on 23rd February 1828 (Mw = 5.1 in Central Belgium) and 8th November 1983 (Mw = 4.8 in Liège) occurred by coincidence less than one year before these collapses, we suggest that the collapses are related to these earthquakes. We argue that the earthquakes accelerated the cave vault instability, leading to the collapses by the action of other factors weakening the host rock. In particular, the 1828 collapse was likely triggered by a smaller Mw = 4.2 nearby earthquake. The 1984 collapse followed two months of heavy rainfall that would have increased water infiltration and pressure in the rock mass favoring destabilization of the cave ceiling. Lamina counting of a stalagmite growing on the 1828 debris dates the collapse at 1826 ± 9 CE, demonstrating the possibility of dating previous collapses with a few years of uncertainty. Furthermore, our study opens new perspectives for studying collapses and their chronology both in the Han-sur-Lesse Cave and in other karstic networks. We suggest that earthquake activity could play a stronger role than previously thought in initiating cave collapses.
NASA Astrophysics Data System (ADS)
Kanevskiy, M. Z.; Shur, Y.; Fortier, D.; Jorgenson, T.; Stephani, E.; Strauss, J.
2013-12-01
Riverbank erosion in areas underlain by ice-rich permafrost is strongly affected by the processes of thawing of ground ice, which include (1) thermal erosion, and (2) thermal denudation. Thermal erosion is a process of combined thermal and mechanical action of moving water, which results in simultaneous thawing of frozen soil and its removal by water. Thermal erosion can cause block collapse of eroded banks. Thermal denudation is a process of thawing of frozen soils exposed in the bluff due to solar energy and consequent removal of thawed soils by gravity. Studies of riverbank and coastal erosion revealed that the highest rates of erosion are typical of bluffs composed by yedoma (ice- and organic-rich syngenetically frozen silty deposits). Yedoma deposits can be up to 50 m thick, and they contain huge ice wedges up to 10 m wide. Since 2006, we have studied the process of riverbank erosion of the 35 m high exposure of yedoma along the Itkillik River in northern Alaska. Based on five measurements of the areas occupied by wedge ice in panoramic photographs taken in 2006, 2007, 2011, and 2012, the average wedge-ice volume makes 61% of the entire exposed bluff. The total volumetric ground ice content of the Itkillik yedoma, including wedge, segregated and pore ice, is 85%. We detect three main stages of the riverbank erosion for the study site and other similar sites in the areas of ice-rich permafrost: (1) thermal erosion combined with thermal denudation, (2) thermal denudation, and (3) slope stabilization. The first stage includes formation of thermoerosional niches; development of sub-vertical cracks and block-fall collapse of cornices; and thawing and disintegration of blocks of ground ice and frozen soil in the water. All these processes are accompanied by thermal denudation of the exposed bluff. On August 16, 2007, a big portion of the bluff fell down along the crack sub-parallel to the bluff. As a result, the vertical wall more than 65 m long entirely formed by the wedge ice was exposed. This block-fall affected the area of approximately 800 m2, and the volume of frozen soil and ice involved in the block-fall was about 15,000 m3. The riverbank retreat due to thermal erosion and/or thermal denudation, measured from August 2007 to August 2011, varied from less than 10 to almost 100 m. An estimated retreat rate average for the whole 680 m long bluff was 11.4 m/year, but for the most actively eroded central part of the bluff (150 m long) it was 20.3 m/year, ranging from 16 to 24 m/year. During these 4 years, about 650,000 m3 of ice and organic-rich frozen soil were transported to the river from the retreating bank (more than 160,000 m3/year). Analysis of aerial photographs (1948-1979) and satellite images (1974-2013) showed that the riverbank was relatively stable till July 1995, when the Itkillik River changed its course and triggered extremely active thermal erosion. The total retreat of the riverbank in 1995-2010 varied from 180 to 280 m, which means that the average retreat rate for the most actively eroded part of the riverbank reached almost 19 m/year. Such a high rate of riverbank erosion over a long time period has not been reported before for any permafrost regions of Eurasia and North America.
The timing and intensity of column collapse during explosive volcanic eruptions
NASA Astrophysics Data System (ADS)
Carazzo, Guillaume; Kaminski, Edouard; Tait, Stephen
2015-02-01
Volcanic columns produced by explosive eruptions commonly reach, at some stage, a collapse regime with associated pyroclastic density currents propagating on the ground. The threshold conditions for the entrance into this regime are mainly controlled by the mass flux and exsolved gas content at the source. However, column collapse is often partial and the controls on the fraction of total mass flux that feeds the pyroclastic density currents, defined here as the intensity of collapse, are unknown. To better understand this regime, we use a new experimental apparatus reproducing at laboratory scale the convecting and collapsing behavior of hot particle-laden air jets. We validate the predictions of a 1D theoretical model for the entrance into the regime of partial collapse. Furthermore, we show that where a buoyant plume and a collapsing fountain coexist, the intensity of collapse can be predicted by a universal scaling relationship. We find that the intensity of collapse in the partial collapse regime is controlled by magma gas content and temperature, and always exceeds 40%, independent of peak mass flux and total erupted volume. The comparison between our theoretical predictions and a set of geological data on historic and pre-historic explosive eruptions shows that the model can be used to predict both the onset and intensity of column collapse, hence it can be used for rapid assessment of volcanic hazards notably ash dispersal during eruptive crises.
Fluoroscopic and radiographic evaluation of tracheal collapse in dogs: 62 cases (2001-2006).
Macready, Dawn M; Johnson, Lynelle R; Pollard, Rachel E
2007-06-15
To compare the use of radiography and fluoroscopy for detection and grading of tracheal collapse in dogs. Retrospective case series. Animals-62 dogs with tracheal collapse. For each dog, tracheal collapse was confirmed fluoroscopically and lateral cervical and thoracic radiographic views were reviewed. A board-certified radiologist (who was unaware of the dogs' clinical history) evaluated the cervical, thoracic inlet, thoracic, carinal, and main stem bronchial regions in all fluoroscopic videos and radiographic images for evidence of collapse. Cervical, thoracic inlet, thoracic, and carinal regions in both radio-graphic and fluoroscopic studies were graded for collapse (0%, 25%, 50%, 75%, or 100% decrease in diameter). Lateral cervical and thoracic radiographic images were available for 54 dogs, and inspiratory and expiratory lateral cervical and thoracic radiographic images were available for 8 dogs. For detection of tracheal collapse, assessment of radiographic views was sensitive and had the best negative predictive value in the cervical and thoracic inlet regions. Assessment of radiographic views was most specific and had the best positive predictive value in the thoracic inlet, thoracic, carina, and main stem bronchial regions. Radiography underestimated the degree of collapse in all areas. Review of inspiratory and expiratory views improved the accuracy of radiography for tracheal collapse diagnosis only slightly. Compared with fluoroscopy, radiography underestimated the frequency and degree of tracheal collapse. However, radiography appears to be useful for screening dogs with potential tracheal collapse.
NASA Astrophysics Data System (ADS)
Cornu, Melodie-Neige; Paris, Raphael; Doucelance, Regis; Bachelery, Patrick; Guillou, Hervé
2017-04-01
Mass wasting of oceanic shield volcanoes is largely documented through the recognition of collapse scars and submarine debris fans. However, it is actually difficult to infer the mechanisms controlling volcano flank failures that potentially imply tens to hundreds of km3. Studies coupling detailed petrological and geochemical analyses of eruptive products hold clues for better understanding the relationships between magma sources, the plumbing system, and flank instability. Our study aims at tracking potential variations of magma source, storage and transport beneath Fogo shield volcano (Cape Verde) before and after its major flank collapse. We also provide a geochronological framework of this magmatic evolution through new radiometric ages (K-Ar and Ar-Ar) of both pre-collapse and post-collapse lavas. The central part of Fogo volcanic edifice is truncated by an 8 km-wide caldera opened to the East, corresponding to the scar of the last flank collapse (Monte Amarelo collapse, Late Pleistocene, 150 km3). Lavas sampled at the base of the scar (the so-called Bordeira) yielded ages between 158 and 136 ka. The age of the collapse is constrained between 68 ka (youngest lava flow cut by the collapse scar) and 59 ka (oldest lava flow overlapping the scar). The collapse walls display a complex structural, intrusive and eruptive history. Undersaturated volcanism (SiO2<43%) is surprisingly dominated by explosive products such as ignimbrites, with 4 major explosive episodes representing half of the volume of the central edifice. This explosive record onshore is correlated with the offshore record of mafic tephra and turbidites (Eisele et al., 2015). Major elements analyses indicate that the pre-collapse lavas are significantly less differentiated than post-collapse lavas, with a peak of alkalis at the collapse. Rare-earth elements concentration decreases with time, with a notable positive anomaly before the collapse. The evolution of the isotopic ratios (Sr, Nd and Pb) through time displays unusual V-shaped profiles centered around the collapse. The occurrence of the Monte Amarelo collapse is thus not disconnected from the magmatic evolution, both at the crustal and mantellic levels. Our results also point out the importance and relative frequency of explosive eruptions of undersaturated magmas at Fogo volcano.
NASA Astrophysics Data System (ADS)
van Dijk, W. M.; Mastbergen, D. R.; Van der Werf, J. J.; Leuven, J.; Kleinhans, M. G.
2017-12-01
Channel bank failure and collapses of shoal margins due to flow slides have been recorded in Dutch estuaries for the past 200 years. The effects of these collapses on the morphodynamics of estuaries are unknown, but could potentially increase the dynamics of channel-shoal interactions by causing perturbations of up to a million cubic meters per event, which could impact habitats and navigability. The processes of shoal margin collapses are currently not included in numerical morphodynamic models. The objectives of this study are to investigate where shoal margins collapses typically occur, what their dimensions are, and to model how shoal margin collapses affect the morphodynamics at the channel-shoal scale. We identified 300 shoal margin collapses from bathymetry data of the Western Scheldt estuary for the period 1959-2015, and found that the shape of a shoal margin collapse is well represented by 1/3 of an ellipsoid, and that its volume has a log-normal distribution with an average of 100,000 m3. We implemented a parameterization for shoal margin collapses and tested their effects on morphodynamics in a Delft3D numerical model schematization of the Western Scheldt estuary. Three sets of scenarios were analyzed for near-field morphodynamics and far-field effects on flow pattern and channel-bar morphology: 1) an observed single shoal margin collapse of 2014, 2) collapses on various locations that are susceptible to collapses, and 3) our novel stochastic model producing collapses over a time span of a decade. Results show that single shoal margin collapses only affect the local dynamics in longitudinal direction and dampen out within a year when the collapse is small. When larger disturbances reach the seaward or landward sill at tidal channel junctions over a longer time span, the bed elevation at the sill increases on average and decrease the hydraulic geometry of the channel junctions. The extent of far-field effects is sensitive to the grain-size of the deposit, where finer sediments are transported further away. The location of the deposit across the channel matters for disturbing the region around the collapse, where sediment transport is highest for the strongest residual current. These results imply that disturbances caused by dredging and dumping may likewise affect the dynamics of channel junctions.
Collapsing cavities in reactive and nonreactive media
NASA Astrophysics Data System (ADS)
Bourne, Neil K.; Field, John E.
1991-04-01
This paper presents results of a high-speed photographic study of cavities collapsed asymmetrically by shocks of strengths in the range 0.26 GPa to 3.5 GPa. Two-dimensional collapses of cavity configurations punched into a 12% by weight gelatine in water sheet, and an ammonium nitrate/sodium nitrate (AN/SN) emulsion explosive were photographed using schlieren optics. The single cavity collapses were characterized by the velocity of the liquid jet formed by the upstream wall as it was accelerated by the shock and by the time taken for the cavity to collapse. The shock pressure did not qualitatively affect the collapse behaviour but jet velocities were found to exceed incident shock velocities at higher pressures. The more violent collapses induced light emission from the compressed gas in the cavity. When an array of cavities collapsed, a wave, characterized by the particle velocity in the medium, the cavity diameter and the inter-cavity spacing, was found to run through the array. When such an array was created within an emulsion explosive, ignition of the reactive matrix occurred ahead of the collapse wave when the incident shock was strong.
NASA Astrophysics Data System (ADS)
Etienne, David; Ruffaldi, Pascale; Ritz, Frederic; Dupouey, Jean Luc; Dambrine, Etienne
2010-05-01
Recent archaeological surveys and ecological investigations in large "ancient" forests have shown that these areas had been often cultivated during the Roman or Medieval periods, and that this former land use is still deeply influencing present soil properties and plant biodiversity. This new perspective has boosted the research for sediment archives describing the state of forests across the archaeological and historical periods, especially in low altitude forest. Closed depressions (CD) or small hollows (over 30 000 CDs) are found in many silty plains of North-Western Europe (north-eastern France, Luxemburg and Belgium). They are defined as small (100 to 400 m²) closed wetlands, mostly supplied by rainwater. Their origin is debated. Recent coring campaigns in CDs of Lorraine (north-eastern France), 3 to 5 meters thick sediment cores were retrieved. It opened the way for palynological and pedological reconstruction of former landscapes. Here we present a sediment analysis of four peaty CDs (Assenoncourt, Römersberg, Sarrebourg and St Jean), located in different low altitude beech (Fagus) and oak (Quercus) forests, on silty clay soils, 50km from Nancy. As the oldest available map (Naudins, dated from 1728 to 1739) indicated forest boundaries similar to the present ones, these forests were considered as ancient forests. The sedimentation begins during the second Iron Age or Roman period. By this time, pollen analyses show an open landscape (70% of Non Arboreal Pollen), composed mostly by grassland (Plantago major/media, Poaceae and Asteraceae) and cropland (Cerealia-type, Centaurea cyanus). Around the 5th century AD, coinciding with the collapse of the Roman Empire, the pollen sequences describe rapid afforestation by Betula and Corylus, and later Carpinus forest. From the 8th century AD, Carpinus decreases in favour of Quercus which may reflect an anthropogenic clearing. From the 10th to the 14th century AD, croplands expand again with cultivation of hemp (Cannabis-type) and rye (Secale-type). From the 15th to the 19th century AD, pollen diagrams are similar at three sites and differ from the fourth. At Assenoncourt, St Jean and Römersberg, the contribution of Quercus, Carpinus and Fagus remains almost constant: 40%, 10% and 10%. This pattern may be related to short rotation forestry management applied in order to provide fuel wood to the local salt industry. At the fourth site (Sarrebourg), pollen assemblage varies with successive Quercus and Carpinus phases, following a natural sylvicultural evolution. Finally, the present-day forest extension took place during the 19th century with the replacement of wood by coal in the salt industry and the recent collapse of this salt industry during the 20th century. This study confirms, in the context of low altitude forests with heavy soils, what had been observed on shallow calcareous soils of the Lorrain plateau. Most of our state forests, that were thought to be "very ancient" or "immemorial" forest, have been managed for agriculture in the deep past. Because agriculture lands were often limed, fertilized, and eroded, this former agriculture use may to a large extent explain present soil properties and, as a consequence, present biodiversity.
Numerical simulations of non-spherical bubble collapse.
Johnsen, Eric; Colonius, Tim
2009-06-01
A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined.
Numerical simulations of non-spherical bubble collapse
JOHNSEN, ERIC; COLONIUS, TIM
2009-01-01
A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined. PMID:19756233
Preservation Benefits Geoscientific Investigations Across the Nation
NASA Astrophysics Data System (ADS)
Powers, L. A.; Latysh, N.
2017-12-01
Since 2005, the National Geological and Geophysical Data Preservation Program (NGGDPP) of the U.S. Geological Survey (USGS) has distributed financial grants to state geological surveys to preserve, archive, and make available valuable geoscientific samples and data to researchers and the public. States have cataloged and preserved materials that include geophysical logs, geotechnical reports, fragile historical documents, maps, geologic samples, and legacy aerial and field-investigation photographs. Approximately 3 million metadata records describing preserved data and artifacts are cataloged in the National Digital Catalog, a component of the USGS ScienceBase data management infrastructure. Providing a centralized domain in the National Digital Catalog for uniformly described records has enabled discovery of important geoscientific assets across the Nation. Scientific investigations continue to be informed by preserved materials and data. Tennessee Geological Survey's preserved collection of historical documents describing coal mining activities in the State was used to identify vulnerable areas overlying abandoned underground coal mines, which caused surface collapses and sinkholes in populated areas. Missouri Geological Survey's preserved collection of legacy field notebooks was used to identify thousands of abandoned mines, many of which have significant soil or groundwater lead contamination and are located in areas that now have residential development. The information enabled the evaluation of risk to human health, environment, and infrastructure and identification of needed remedial actions. Information in the field notebooks also assisted the Missouri Department of Transportation responding to highway collapses and assessing collapse potential in abandoned coal mining lands. Digitization of natural gamma ray logs allowed Minnesota Geological Survey staff to directly access well data in the field, accelerating the ability to address geoscientific questions related to aquifer studies, contaminant transport, and geologic mapping and characterization. Digitization and preservation of materials and data, which would otherwise be prohibitively expensive or impossible to reproduce, are a nominal cost compared to the return in societal value that they provide.
A Simple Model for Human and Nature Interaction
NASA Astrophysics Data System (ADS)
Motesharrei, S.; Rivas, J.; Kalnay, E.
2012-12-01
There are widespread concerns that current trends in population and resource-use are unsustainable, but the possibilities of an overshoot and collapse remain unclear and controversial. Collapses of civilizations have occurred many times in the past 5000 years, often followed by centuries of economic, intellectual, and population decline. Many different natural and social phenomena have been invoked to explain specific collapses, but a general explanation remains elusive. Two important features seem to appear across societies that have collapsed: Ecological Strain and Economic Stratification. Our new model (Human And Nature DYnamics, HANDY) has just four equations that describe the evolution of Elites, Commoners, Nature, and Wealth. Mechanisms leading to collapse are discussed and the measure "Carrying Capacity" is developed and defined. The model shows that societal collapse can happen due to either one of two independent factors: (1) over-consumption of natural resources, and/or (2) deep inequity between Elites and Commoners. The model also portrays two distinct types of collapse: (i) collapse followed by recovery of nature, and (ii) full collapse. The model suggests that the estimation of Carrying Capacity is a practical means for early detection of a collapse. Collapse can be avoided, and population can reach a sustainable equilibrium, if the rate of depletion of nature is reduced to a sustainable level, and if resources are distributed in a reasonably equitable fashion.; A type-ii (full) collapse is shown in this figure. With high inequality and high depletion, societies are doomed to collapse. Wealth starts to decrease when population rises above the carrying capacity. The large gap between carrying capacity and its maximum is a result of depletion factor being much larger than the sustainable limit. ; It is possible to overshoot, oscillate, and eventually converge to an equilibrium, even in an inequitable society. However, it requires policies that control birth rates and inequality. Additionally, depletion (production) must be kept within a reasonable range.
Volcano collapse promoted by progressive strength reduction: New data from Mount St. Helens
Reid, Mark E.; Keith, Terry E.C.; Kayen, Robert E.; Iverson, Neal R.; Iverson, Richard M.; Brien, Dianne
2010-01-01
Rock shear strength plays a fundamental role in volcano flank collapse, yet pertinent data from modern collapse surfaces are rare. Using samples collected from the inferred failure surface of the massive 1980 collapse of Mount St. Helens (MSH), we determined rock shear strength via laboratory tests designed to mimic conditions in the pre-collapse edifice. We observed that the 1980 failure shear surfaces formed primarily in pervasively shattered older dome rocks; failure was not localized in sloping volcanic strata or in weak, hydrothermally altered rocks. Our test results show that rock shear strength under large confining stresses is reduced ∼20% as a result of large quasi-static shear strain, as preceded the 1980 collapse of MSH. Using quasi-3D slope-stability modeling, we demonstrate that this mechanical weakening could have provoked edifice collapse, even in the absence of transiently elevated pore-fluid pressures or earthquake ground shaking. Progressive strength reduction could promote collapses at other volcanic edifices.
Massive collapse of volcano edifices triggered by hydrothermal pressurization
Reid, M.E.
2004-01-01
Catastrophic collapse of steep volcano flanks threatens lives at stratovolcanoes around the world. Although destabilizing shallow intrusion of magma into the edifice accompanies some collapses (e.g., Mount St. Helens), others have occurred without eruption of juvenile magmatic materials (e.g., Bandai). These latter collapses can be difficult to anticipate. Historic collapses without magmatic eruption are associated with shallow hydrothermal groundwater systems at the time of collapse. Through the use of numerical models of heat and groundwater flow, I evaluate the efficacy of hydrothermally driven collapse. Heating from remote magma intrusion at depth can generate temporarily elevated pore-fluid pressures that propagate upward into an edifice. Effective-stress deformation modeling shows that these pressures are capable of destabilizing the core of an edifice, resulting in massive, deep-seated collapse. Far-field pressurization only occurs with specific rock hydraulic properties; however, data from numerous hydrothermal systems illustrate that this process can transpire in realistic settings. ?? 2004 Geological Society of America.
NASA Astrophysics Data System (ADS)
Martínez-Moreno, F. J.; Monteiro Santos, F. A.; Madeira, J.; Pous, J.; Bernardo, I.; Soares, A.; Esteves, M.; Adão, F.; Ribeiro, J.; Mata, J.; Brum da Silveira, A.
2018-05-01
One of the most remarkable natural events on Earth are the large lateral flank collapses of oceanic volcanoes, involving volumes of rock exceeding tens of km3. These collapses are relatively frequent in recent geological times as supported by evidence found in the geomorphology of volcanic island edifices and associated debris flows deposited on the proximal ocean floor. The Island of Fogo in the Cape Verde archipelago is one of the most active and prominent oceanic volcanoes on Earth. The island has an average diameter of 25 km and reaches a maximum elevation of 2829 m above sea level (m a.s.l.) at Pico do Fogo, a young stratovolcano located within a summit depression open eastward due to a large lateral flank collapse. The sudden collapse of the eastern flank of Fogo Island produced a megatsunami 73 ky ago. The limits of the flank collapse were deduced as well from geomorphologic markers within the island. The headwall of the collapse scar is interpreted as either being located beneath the post-collapse volcanic infill of the summit depression or located further west, corresponding to the Bordeira wall that partially surrounds it. The magnetotelluric (MT) method provides a depth distribution of the ground resistivity obtained by the simultaneous measurement of the natural variations of the electric and magnetic field of the Earth. Two N-S magnetotelluric profiles were acquired across the collapsed area to determine its geometry and boundaries. The acquired MT data allowed the determination of the limits of the collapsed area more accurately as well as its morphology at depth and thickness of the post-collapse infill. According to the newly obtained MT data and the bathymetry of the eastern submarine flank of Fogo, the volume involved in the flank collapse is estimated in 110 km3. This volume -the first calculated onshore- stands between the previously published more conservative and excessive calculations -offshore- that were exclusively based in geomorphic evidence. The model for the summit depression proposing two caldera collapses preceding the collapse of the eastern flank of Fogo is supported by the MT data.
Collapse Causes Analysis and Numerical Simulation for a Rigid Frame Multiple Arch Bridge
NASA Astrophysics Data System (ADS)
Zuo, XinDai
2018-03-01
Following the collapse accident of Baihe Bridge, the author built a plane model of the whole bridge firstly and analyzed the carrying capacity of the structure for a 170-tons lorry load. Then the author built a spatial finite element model which can accurately simulate the bridge collapse course. The collapse course was simulated and the accident scene was reproduced. Spatial analysis showed rotational stiffness of the pier bottom had a large influence on the collapse from of the superstructures. The conclusion was that the170 tons lorry load and multiple arch bridge design were the important factors leading to collapse.
Kim, Soo In; Lee, Chang Woo
2011-02-01
Nowadays, many researchers try to measure the collapse force of fine pattern. However, most of the researches use LFM to gauge it indirectly and LFM can measure not for collapse force directly but only limited for horizontal force. Thus, nano-scratch is suggested to measure the collapse force possibly. We used poly-Si pattern on Si plate and changed the z-location of the pattern. From these experiments, the stiffness was decease as depth increase from surface and well fitted with negative exponential curve. Also, the elastic modulus was decreased. From the results, the collapse force of poly-Si nano-patterns was decreased as the depth increased over than 30% from the surface and the maximum collapse force was 26.91 microN and pattern was collapsed between poly-Si and plate.
26 CFR 1.341-1 - Collapsible corporations; in general.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 26 Internal Revenue 4 2014-04-01 2014-04-01 false Collapsible corporations; in general. 1.341-1... TAX (CONTINUED) INCOME TAXES (CONTINUED) Collapsible Corporations; Foreign Personal Holding Companies § 1.341-1 Collapsible corporations; in general. Subject to the limitations contained in § 1.341-4 and...
26 CFR 1.341-1 - Collapsible corporations; in general.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Collapsible corporations; in general. 1.341-1... TAX (CONTINUED) INCOME TAXES Collapsible Corporations; Foreign Personal Holding Companies § 1.341-1 Collapsible corporations; in general. Subject to the limitations contained in § 1.341-4 and the exceptions...
26 CFR 1.341-1 - Collapsible corporations; in general.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 26 Internal Revenue 4 2013-04-01 2013-04-01 false Collapsible corporations; in general. 1.341-1... TAX (CONTINUED) INCOME TAXES (CONTINUED) Collapsible Corporations; Foreign Personal Holding Companies § 1.341-1 Collapsible corporations; in general. Subject to the limitations contained in § 1.341-4 and...
26 CFR 1.341-1 - Collapsible corporations; in general.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 26 Internal Revenue 4 2011-04-01 2011-04-01 false Collapsible corporations; in general. 1.341-1... TAX (CONTINUED) INCOME TAXES Collapsible Corporations; Foreign Personal Holding Companies § 1.341-1 Collapsible corporations; in general. Subject to the limitations contained in § 1.341-4 and the exceptions...
26 CFR 1.341-1 - Collapsible corporations; in general.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 26 Internal Revenue 4 2012-04-01 2012-04-01 false Collapsible corporations; in general. 1.341-1... TAX (CONTINUED) INCOME TAXES (Continued) Collapsible Corporations; Foreign Personal Holding Companies § 1.341-1 Collapsible corporations; in general. Subject to the limitations contained in § 1.341-4 and...
Lessons Learned from the University of Virginia's Balcony Collapse.
ERIC Educational Resources Information Center
Dillman, Robert P.; Klingel, Jay W.
2002-01-01
Discusses the 1997 collapse of a balcony on a historic building at the University of Virginia, which resulted in a death and several injuries. Explores the balcony structure and cause of the collapse, any possibly preventative measures, and the resolution of legal proceedings resulting from the collapse. (EV)
Lamilla, Claudio; Braga, Douglas; Castro, Rui; Guimarães, Carolina; V. A. de Castilho, Livia; Freire, Denise M. G.
2018-01-01
The present study aimed to identify novel microbial producers of bioemulsificant compounds from Antarctic soils. Fifty-nine microbial strains were isolated from five different locations at South Shetland Islands, Antarctica, and screened for biosurfactant production by β-hemolytic activity. Strain So 3.2 was determined as bioemulsifier-producer and identified by phenotypic and molecular characterization as Streptomyces luridus. Emulsification activity, oil displacement method and drop-collapsing test were performed to evaluate the biosurfactant activity with different oils and hydrocarbons using two different culture media (Luria Bertani and Bushnell Haas in the presence of different carbon sources: glucose, glycerol, olive oil and n-Hexadecane). Cell free supernatant of Bushnell Haas culture supplemented with n-Hexadecane showed the best results for all tests. Emulsification of hydrocarbons exceeded 60%, reaching up to 90% on oil with high API grade, while displacement tests ranged from 8 cm to 4 cm in diameter according the culture media and tested oils. Our results revealed that Streptomyces luridus So3.2 is able to produce bioemulsifiers capable of emulsifying hydrocarbons and oils, which could be used in different biotechnological applications, particularly for bioremediation of environments contaminated by oil leaks. PMID:29684071
LAPSUS: soil erosion - landscape evolution model
NASA Astrophysics Data System (ADS)
van Gorp, Wouter; Temme, Arnaud; Schoorl, Jeroen
2015-04-01
LAPSUS is a soil erosion - landscape evolution model which is capable of simulating landscape evolution of a gridded DEM by using multiple water, mass movement and human driven processes on multiple temporal and spatial scales. It is able to deal with a variety of human landscape interventions such as landuse management and tillage and it can model their interactions with natural processes. The complex spatially explicit feedbacks the model simulates demonstrate the importance of spatial interaction of human activity and erosion deposition patterns. In addition LAPSUS can model shallow landsliding, slope collapse, creep, solifluction, biological and frost weathering, fluvial behaviour. Furthermore, an algorithm to deal with natural depressions has been added and event-based modelling with an improved infiltration description and dust deposition has been pursued. LAPSUS has been used for case studies in many parts of the world and is continuously developing and expanding. it is now available for third-party and educational use. It has a comprehensive user interface and it is accompanied by a manual and exercises. The LAPSUS model is highly suitable to quantify and understand catchment-scale erosion processes. More information and a download link is available on www.lapsusmodel.nl.
Lamilla, Claudio; Braga, Douglas; Castro, Rui; Guimarães, Carolina; V A de Castilho, Livia; Freire, Denise M G; Barrientos, Leticia
2018-01-01
The present study aimed to identify novel microbial producers of bioemulsificant compounds from Antarctic soils. Fifty-nine microbial strains were isolated from five different locations at South Shetland Islands, Antarctica, and screened for biosurfactant production by β-hemolytic activity. Strain So 3.2 was determined as bioemulsifier-producer and identified by phenotypic and molecular characterization as Streptomyces luridus. Emulsification activity, oil displacement method and drop-collapsing test were performed to evaluate the biosurfactant activity with different oils and hydrocarbons using two different culture media (Luria Bertani and Bushnell Haas in the presence of different carbon sources: glucose, glycerol, olive oil and n-Hexadecane). Cell free supernatant of Bushnell Haas culture supplemented with n-Hexadecane showed the best results for all tests. Emulsification of hydrocarbons exceeded 60%, reaching up to 90% on oil with high API grade, while displacement tests ranged from 8 cm to 4 cm in diameter according the culture media and tested oils. Our results revealed that Streptomyces luridus So3.2 is able to produce bioemulsifiers capable of emulsifying hydrocarbons and oils, which could be used in different biotechnological applications, particularly for bioremediation of environments contaminated by oil leaks.
Late Quaternary environments of the Waco Mammoth site, Texas USA
NASA Astrophysics Data System (ADS)
Nordt, Lee; Bongino, John; Forman, Steven; Esker, Don; Benedict, Anita
2015-11-01
The Waco Mammoth Site (WMS) in central Texas contains the remains of the largest mammoth herd (Mammuthus columbi) in North America that died in a single catastrophic event. Most mammoths at the site died on a gravel bar of the ancient Bosque River adjacent to a collapsing tributary wall. However, the timing and cause of death of the 26 mammoths documented to date are controversial. The objectives of this research are to: describe and interpret the alluvial stratigraphy and infer the cause of death, employ optically stimulated luminescence (OSL) dating to determine the timing of death, and analyze stable C isotopes of pedogenic carbonate to infer local plant communities, dietary habits, and summer temperatures. Dating of quartz from seven sediment samples by OSL places the death event to a weighted mean of 66.8 ± 5.0 ka. The site is coeval with Marine Oxygen Isotope Stage 4, consistent with our reconstructed mean July temperatures 4°C cooler than today based on a buried soil isotopic transfer function. Our buried soil isotopic interpretation of a dominance of C3 plants is contrary to previous studies of mammoth tooth enamel at the site suggesting a dietary preference for warm season grasses (C4).
The long-term fate of permafrost peatlands under rapid climate warming
Swindles, Graeme T.; Morris, Paul J.; Mullan, Donal; Watson, Elizabeth J.; Turner, T. Edward; Roland, Thomas P.; Amesbury, Matthew J.; Kokfelt, Ulla; Schoning, Kristian; Pratte, Steve; Gallego-Sala, Angela; Charman, Dan J.; Sanderson, Nicole; Garneau, Michelle; Carrivick, Jonathan L.; Woulds, Clare; Holden, Joseph; Parry, Lauren; Galloway, Jennifer M.
2015-01-01
Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms. PMID:26647837
Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi
2017-04-01
Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils requires a higher microbial viability and an increased PAH bioavailability. The clay/modified clay-modulated bacterial degradation could deliver a more efficient removal of PAHs in soils depending on the bioavailability of the compounds. In this study, we modified clay minerals (smectite and palygorskite) with mild acid (HCl) and alkali (NaOH) treatments (0.5-3 M), which increased the surface area and pore volume of the products, and removed the impurities without collapsing the crystalline structure of clay minerals. In soil incubation studies, supplements with the clay products increased bacterial growth in the order: 0.5 M HCl ≥ unmodified ≥ 0.5 M NaOH ≥ 3 M NaOH ≥ 3 M HCl for smectite, and 0.5 M HCl ≥ 3 M NaOH ≥ 0.5 M NaOH ≥ 3 M HCl ≥ unmodified for palygorskite. A 14 C-tracing study showed that the mild acid/alkali-treated clay products increased the PAH biodegradation (5-8%) in the order of 0.5 M HCl ≥ unmodified > 3 M NaOH ≥ 0.5 M NaOH for smectite, and 0.5 M HCl > 0.5 M NaOH ≥ unmodified ≥ 3 M NaOH for palygorskite. The biodegradation was correlated (r = 0.81) with the bioavailable fraction of PAHs and microbial growth as affected particularly by the 0.5 M HCl and 0.5 M NaOH-treated clay minerals. These results could be pivotal in developing a clay-modulated bioremediation technology for cleaning up PAH-contaminated soils and sediments in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.
On peaceful coexistence: is the collapse postulate incompatible with relativity?
NASA Astrophysics Data System (ADS)
Myrvold, Wayne C.
In this paper, it is argued that the prima facie conflict between special relativity and the quantum-mechanical collapse postulate is only apparent, and that the seemingly incompatible accounts of entangled systems undergoing collapse yielded by different reference frames can be regarded as no more than differing accounts of the same processes and events. Attention to the transformation properties of quantum-mechanical states undergoing unitary, non-collapse evolution points the way to a treatment of collapse evolution consistent with the demands of relativity.
Why do naked singularities form in gravitational collapse? II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Pankaj S.; Goswami, Rituparno; Dadhich, Naresh
We examine physical features that could lead to formation of a naked singularity rather than black hole, as end state of spherical collapse. Generalizing earlier results on dust collapse to general type I matter fields, it is shown that collapse always creates black hole if shear vanishes or density is homogeneous. It follows that nonzero shear is a necessary condition for singularity to be visible to external observers, when trapped surface formation is delayed by shearing forces or inhomogeneity within the collapsing cloud.
Effects of foliar applied nickel on tomato plants. [Lycopersicon esculentum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cash, R.C.; Leone, I.A.
Shoot-applied nickel (Ni) treatments produced symptomatology, foliar Ni accumulation, and cytological changes in tomato (Lycopersicon esculentum Mill.) similar to those caused by treatments with root-applied nickel (Ni). Leaf damage resulting from 100 ..mu..g/ml foliar Ni-treatments consisted of interveinal chlorosis and spotting necrosis which appeared histologically as tissue collapse, cell clumping, and chloroplast disintegration. Shoot-treated plants accumulated more Ni in leaves than in roots; whereas the reverse was true in root-treated plants. Interference with root-to-shoot manganese translocation was attributed to attenuated vascular tissue and phloem blockage. Evidence of reduced nutrient transport and inhibited meristem activity due to Ni toxicity presents amore » potential for crop damage from excessive Ni in the atmosphere as well as in the soil environment.« less
Role of Underground Erosion of Ice Wedges in Drainage System Formation
NASA Astrophysics Data System (ADS)
Fortier, D.; Shur, Y.; Allard, M.
2006-12-01
Natural rapid development of a new drainage system was studied on Bylot Island, Nunavut, Canada (73° 10' N, 80° 05' W). Formation of sinkholes eroded in ice wedges evolved in underground tunnels cut in ice- rich permafrost (average water content of 130%). The tunnel scouring process occurred mainly during snowmelt runoff and was manifestly a function of the intensity of the water flow entering the permafrost. When surface water flowed into the ground, the active layer was still frozen and the temperature of the permafrost at a depth of 3 m was below -15°C. Forced convection with a high convective heat transfer coefficient provided high rate of tunnels enlargement. The erosion rate was much higher in the beginning of runoff, when its velocity and discharge were high but water and soil were colder, than later in the summer, when water and soil temperature was much warmer but water discharge and velocity much lower. Widening of tunnels was followed by creep subsidence and collapse of their roofs and development of gullies. The drainage has generally developed along the elevation gradient. Some deviation from it was caused by temporal obstruction to water flow from collapsed blocks of soil. In such cases water found the way through connecting ice wedges. Retrogressive erosion escarpments exposed to flowing water retreated at a maximum rate of 1 to 5 meters per day for a total of 15 to 50 m during the summer. Escarpment exposed to atmospheric heat and solar radiation receded at a rate of 0.6 and 10 m per summer with a mean of 4 meters during the first year of exposition. Such slopes were nearly stabilized after 4 years with retreat rate of only a few centimeters per year in 2002. In four years, the underground tunnel network evolved into a continuous system of gullies over 750 m long and covering an area of about 20,000 m2. The main factors affecting rapid development of the new drainage system are the rate and volume of runoff, the presence of ice wedges, their dimension and orientation, and the ice content of the sediments. Ice wedge volume growth over the years increases their susceptibility to underground thermo-erosion. Climate warming scenarios predict increase in summer and winter precipitation in the Arctic and, as a result, underground thermo-erosion is likely to be more frequent and remodeling of the drainage system more aggressive. More work remains to be done to understand the changes that have occurred in the watershed to trigger such significant readjustments to the drainage system.
NASA Astrophysics Data System (ADS)
Zhai, Zirui; Wang, Yong; Jiang, Hanqing
2018-03-01
Origami has been employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. Deployable metamaterials are usually flexible, particularly along their deploying and collapsing directions, which unfortunately in many cases leads to an unstable deployed state, i.e., small perturbations may collapse the structure along the same deployment path. Here we create an origami-inspired mechanical metamaterial with on-demand deployability and selective collapsibility through energy analysis. This metamaterial has autonomous deployability from the collapsed state and can be selectively collapsed along two different paths, embodying low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields load-bearing capability in the deployed direction while possessing great deployability and collapsibility. The principle in this work can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications.
Explosively driven hypervelocity launcher: Second-stage augmentation techniques
NASA Technical Reports Server (NTRS)
Baum, D. W.
1973-01-01
The results are described of a continuing study aimed at developing a two-stage explosively driven hypervelocity launcher capable of achieving projectile velocities between 15 and 20 km/sec. The testing and evaluation of a new cylindrical impact technique for collapsing the barrel of two-stage launcher are reported. Previous two-stage launchers have been limited in ultimate performance by incomplete barrel collapse behind the projectile. The cylindrical impact technique explosively collapses a steel tube concentric with and surrounding the barrel of the launcher. The impact of the tube on the barrel produces extremely high stresses which cause the barrel to collapse. The collapse rate can be adjusted by appropriate variation of the explosive charge and tubing parameters. Launcher experiments demonstrated that the technique did achieve complete barrel collapse and form a second-stage piston. However, jetting occurred in the barrel collapse process and was responsible for severe projectile damage.
Zhai, Zirui; Wang, Yong; Jiang, Hanqing
2018-02-27
Origami has been employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. Deployable metamaterials are usually flexible, particularly along their deploying and collapsing directions, which unfortunately in many cases leads to an unstable deployed state, i.e., small perturbations may collapse the structure along the same deployment path. Here we create an origami-inspired mechanical metamaterial with on-demand deployability and selective collapsibility through energy analysis. This metamaterial has autonomous deployability from the collapsed state and can be selectively collapsed along two different paths, embodying low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields load-bearing capability in the deployed direction while possessing great deployability and collapsibility. The principle in this work can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications. Copyright © 2018 the Author(s). Published by PNAS.
Zhai, Zirui; Wang, Yong
2018-01-01
Origami has been employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. Deployable metamaterials are usually flexible, particularly along their deploying and collapsing directions, which unfortunately in many cases leads to an unstable deployed state, i.e., small perturbations may collapse the structure along the same deployment path. Here we create an origami-inspired mechanical metamaterial with on-demand deployability and selective collapsibility through energy analysis. This metamaterial has autonomous deployability from the collapsed state and can be selectively collapsed along two different paths, embodying low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields load-bearing capability in the deployed direction while possessing great deployability and collapsibility. The principle in this work can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications. PMID:29440441
Kinematic fingerprint of core-collapsed globular clusters
NASA Astrophysics Data System (ADS)
Bianchini, P.; Webb, J. J.; Sills, A.; Vesperini, E.
2018-03-01
Dynamical evolution drives globular clusters towards core collapse, which strongly shapes their internal properties. Diagnostics of core collapse have so far been based on photometry only, namely on the study of the concentration of the density profiles. Here, we present a new method to robustly identify core-collapsed clusters based on the study of their stellar kinematics. We introduce the kinematic concentration parameter, ck, the ratio between the global and local degree of energy equipartition reached by a cluster, and show through extensive direct N-body simulations that clusters approaching core collapse and in the post-core collapse phase are strictly characterized by ck > 1. The kinematic concentration provides a suitable diagnostic to identify core-collapsed clusters, independent from any other previous methods based on photometry. We also explore the effects of incomplete radial and stellar mass coverage on the calculation of ck and find that our method can be applied to state-of-art kinematic data sets.
How Fast is Collapse of Proteins During Folding?
NASA Astrophysics Data System (ADS)
Chahine, J.; Onuchic, J. N.; Socci, N. D.
1998-03-01
Recent experiments in fast folding proteins are now starting to address the question of how fast is collapse relative to the total folding time. Using minimalist models, we are able to investigate the way in which different scenarios of folding can arise depending on the interplay between the collapse order parameter and the order parameter sensitive to specific tertiary contacts. Most of our earlier studies have focused on the limit that collapse is very fast compared to the total folding time. In this work we focus on the opposite limit, i.e., at the folding temperature, collapse and folding occurs simultaneously. The folding mechanism becomes very different in this limit. Particularly, the non-specific collapse transition, that occurs at temperatures higher than the folding temperature for the fast collapse limit, now occurs between the folding and the glass temperature. We show how this transition can be identified and its consequences for the folding kinetics.
2017-01-01
The selectivity filter of the KcsA K+ channel has two typical conformations—the conductive and the collapsed conformations, respectively. The transition from the conductive to the collapsed filter conformation can represent the process of inactivation that depends on many environmental factors. Water molecules permeating behind the filter can influence the collapsed filter stability. Here we perform the molecular dynamics simulations to study the stability of the collapsed filter of the KcsA K+ channel under the different water patterns. We find that the water patterns are dynamic behind the collapsed filter and the filter stability increases with the increasing number of water molecules. In addition, the stability increases significantly when water molecules distribute uniformly behind the four monomeric filter chains, and the stability is compromised if water molecules only cluster behind one or two adjacent filter chains. The altered filter stabilities thus suggest that the collapsed filter can inactivate gradually under the dynamic water patterns. We also demonstrate how the different water patterns affect the filter recovery from the collapsed conformation. PMID:29049423
Wu, Di
2017-01-01
The selectivity filter of the KcsA K+ channel has two typical conformations-the conductive and the collapsed conformations, respectively. The transition from the conductive to the collapsed filter conformation can represent the process of inactivation that depends on many environmental factors. Water molecules permeating behind the filter can influence the collapsed filter stability. Here we perform the molecular dynamics simulations to study the stability of the collapsed filter of the KcsA K+ channel under the different water patterns. We find that the water patterns are dynamic behind the collapsed filter and the filter stability increases with the increasing number of water molecules. In addition, the stability increases significantly when water molecules distribute uniformly behind the four monomeric filter chains, and the stability is compromised if water molecules only cluster behind one or two adjacent filter chains. The altered filter stabilities thus suggest that the collapsed filter can inactivate gradually under the dynamic water patterns. We also demonstrate how the different water patterns affect the filter recovery from the collapsed conformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghezzi, Cristian R.; Letelier, Patricio S.
2007-01-15
The time evolution of a set of 22M{sub {center_dot}} unstable charged stars that collapse is computed integrating the Einstein-Maxwell equations. The model simulates the collapse of a spherical star that had exhausted its nuclear fuel and has or acquires a net electric charge in its core while collapsing. When the charge-to-mass ratio is Q/{radical}(G)M{>=}1, the star does not collapse but spreads. On the other hand, a different physical behavior is observed with a charge-to-mass ratio of 1>Q/{radical}(G)M>0.1. In this case, the collapsing matter forms a bubble enclosing a lower density core. We discuss an immediate astrophysical consequence of these resultsmore » that is a more efficient neutrino trapping during the stellar collapse and an alternative mechanism for powerful supernova explosions. The outer space-time of the star is the Reissner-Nordstroem solution that matches smoothly with our interior numerical solution; thus the collapsing models form Reissner-Nordstroem black holes.« less
Mukai, Hiroki; Tamura, Kenji; Kikuchi, Ryosuke; Takahashi, Yoshio; Yaita, Tsuyoshi; Kogure, Toshihiro
2018-10-01
For the better understanding of radioactive contamination in Fukushima Prefecture at present and in future, Cs desorption experiments have been conducted mainly using weathered biotite (WB) collected from Fukushima Prefecture and considering the actual contamination level (∼10 -10 wt%) of radiocesium in Fukushima Prefecture. In the experiments, 137 Cs sorbed to WB by immersing in 137 Cs solution for one day was mostly desorbed by solutions of 1 M NaNO 3 , 1 M LiNO 3 , 10 -1 M HCl, and 10 -1 M HNO 3 , although it was barely desorbed by 1 M KNO 3 , 1 M CsNO 3 , 1 M NH 4 NO 3 , and natural seawater. X-ray diffraction analysis of WB after immersing in these solutions suggested that the collapse of the hydrated interlayers in WB suppressed the desorption of Cs. On the other hand, 137 Cs was barely desorbed from WB even by the treatments with solutions of NaNO 3 and LiNO 3 if the duration for the sorption was longer than approximately two weeks, as well as radioactive WB collected from actual contaminated soils in Fukushima Prefecture. This result implies that Cs sorbed in WB became more strongly fixed with time. Probably removal of radiocesium sorbed in weathered granitic soil at Fukushima Prefecture is difficult by any electrolyte solutions, as more than seven years have passed since the accident. Copyright © 2018 Elsevier Ltd. All rights reserved.
The effect of giant flank collapses on magma pathways and location of volcanic vents
NASA Astrophysics Data System (ADS)
Maccaferri, Francesco; Richter, Nicole; Walter, Thomas
2017-04-01
Flank collapses have been identified at tall volcanoes and ocean islands worldwide. They are recurrent processes, significantly contributing to the morphological and structural evolution of volcanic edifices, and they often occur in interaction with magmatic activity. Moreover, it has been observed that the intrusion pathways and eruption's sites often differ before and after flank collapses. While it is understood that dyke intrusions might destabilise a volcano flank, and a moving flank might create the space needed for further intrusions, the effect of collapses on the magma pathways has been rarely addressed. Here we use a boundary element model for dyke propagation to study the effect of the stress redistribution due to a flank collapse on the location of eruptive vents. We use our model to simulate the path of magmatic intrusion after the collapse of the eastern flank of Fogo Volcano, Cabe Verde. We find that the competition between loading stress due to the volcanic edifice and unloading due to the collapse of a flank favours magmatic activity to cluster within the collapse scar, displaced with respect to the pre-collapse volcanic centre. Our results are compared with geomorphological observations at Fogo Island and are discussed in the general context of the long-term evolution intraplate volcanic ocean islands worldwide.
Kirkham, R.M.; Streufert, R.K.; Budahn, J.R.; Kunk, Michael J.; Perry, W.J.
2001-01-01
Dissolution and flow of Pennsylvanian evaporitic rocks in west-central Colorado created the Carbondale Collapse Center, a 450 mi2 structural depression with about 4,000 ft of vertical collapse during the late Cenozoic. This paper describes evidence of collapse in the lower Roaring Fork River valley. Both the lateral extent and amount of vertical collapse is constrained by deformed upper Cenozoic volcanic rocks that have been correlated using field mapping, 40Ar/39Ar geochronology, geochemistry, and paleomagnetism. The Carbondale Collapse Center is one of at least two contiguous areas that have experienced major evaporite tectonism during the late Cenozoic. Historic sinkholes, deformed Holocene deposits, and modern high-salinity loads in the rivers and thermal springs indicate the collapse process continues today. Flow of evaporitic rocks is an important element in the collapse process, and during initial stages of collapse it was probably the primary causative mechanism. Dissolution, however, is the ultimate means by which evaporite is removed from the collapse area. As the Roaring Fork River began to rapidly down-cut through a broad volcanic plateau during the late Miocene, the underlying evaporite beds were subjected to differential overburden pressures. The evaporitic rocks flowed from beneath the upland areas where overburden pressures remained high, toward the Roaring Fork River Valley where the pressures were much lower. Along the valley the evaporitic rocks rose upward, sometimes as diapirs, forming or enhancing a valley anticline in bedrock and locally upwarping Pleistocene terraces. Wherever the evaporites encountered relatively fresh ground water, they were dissolved, forming underground voids into which overlying bedrock and surficial deposits subsided. The saline ground water eventually discharged to streams and rivers through thermal springs and by seepage into alluvial aquifers.
A History of Collapse Factor Modeling and Empirical Data for Cryogenic Propellant Tanks
NASA Technical Reports Server (NTRS)
deQuay, Laurence; Hodge, B. Keith
2010-01-01
One of the major technical problems associated with cryogenic liquid propellant systems used to supply rocket engines and their subassemblies and components is the phenomenon of propellant tank pressurant and ullage gas collapse. This collapse is mainly caused by heat transfer from ullage gas to tank walls and interfacing propellant, which are both at temperatures well below those of this gas. Mass transfer between ullage gas and cryogenic propellant can also occur and have minor to significant secondary effects that can increase or decrease ullage gas collapse. Pressurant gas is supplied into cryogenic propellant tanks in order to initially pressurize these tanks and then maintain required pressures as propellant is expelled from these tanks. The net effect of pressurant and ullage gas collapse is increased total mass and mass flow rate requirements of pressurant gases. For flight vehicles this leads to significant and undesirable weight penalties. For rocket engine component and subassembly ground test facilities this results in significantly increased facility hardware, construction, and operational costs. "Collapse Factor" is a parameter used to quantify the pressurant and ullage gas collapse. Accurate prediction of collapse factors, through analytical methods and modeling tools, and collection and evaluation of collapse factor data has evolved over the years since the start of space exploration programs in the 1950 s. Through the years, numerous documents have been published to preserve results of studies associated with the collapse factor phenomenon. This paper presents a summary and selected details of prior literature that document the aforementioned studies. Additionally other literature that present studies and results of heat and mass transfer processes, related to or providing important insights or analytical methods for the studies of collapse factor, are presented.
In situ consolidation of offshore petroleum well structural casings by electrokinetic methods
NASA Astrophysics Data System (ADS)
Wrixon, Robert Christopher
Offshore drilling operations encounter cement wash-out problems while setting the initial structural casing (0--200 ft depth) due to the soft, unconsolidated nature of the sea-bed. Structural casings set by alternative methods have failed in up to 50% of cases due to insufficient frictional bearing capacity. This dissertation presents a method of increasing the bearing capacity of a jet-drilled or slick-drilled casing in-situ by applying a potential difference such that the casing is anodic compared to a remote cathode. It has been shown experimentally that clayey formations will swell and stick to a simulated anodic casing by the combined electrokinetic processes of electroosmosis and electrophoresis. Any cavities around the "casing" are eliminated and the formation is flush against the metal surface, increasing bearing capacity. The formation around the "casing" dries out due to electroosmotic migration of water away from the anode, increasing the shear strength of the surrounding soil. Corrosion products at the anode can further increase the soil shear strength by a process known as electrochemical hardening. This investigation has shown that the bearing capacity of anodic casings can potentially be increased by a factor of up to 1,000% in soft clays and silty clays. The existence of an optimal level of electrokinetic consolidation, beyond which the soil shear strength begins to degrade, has been demonstrated. The difficulties of applying electrokinetic methods to saline soil environments have been addressed and the process has been shown to be successful, as long as the requisite electric field strength is maintained. The efficiency of the electrokinetic consolidation technique has been shown to be affected by the soil water content, soil mineralogy, power supplied, time of treatment and the choice of anode material. Experiments in marine sediment show that increases in bearing capacities of about 300% can be achieved at optimal treatment conditions. With likely current and power restrictions, increases of 50% to 100% are realistic. This level of increase still makes offshore electrokinetic casing consolidation a viable process, given that it is attainable quickly and at a modest power requirement and given the enormous cost of a structural casing collapse.
Hydrostatic collapse research in support of the Oman India gas pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stark, P.R.; McKeehan, D.S.
1995-12-01
This paper provides a summary of the collapse test program conducted as part of the technical development for the Ultra Deep Oman to India Pipeline. The paper describes the motivation for conducting the collapse test program, outlines the test objectives and procedures, presents the results obtained, and draws conclusions on the factors affecting collapse resistance.
Catastrophic volcanic collapse: relation to hydrothermal processes.
López, D L; Williams, S N
1993-06-18
Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of hydrothermal discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between hydrothermal fluids and the volcanic edifice. Rock dissolution and hydrothermal mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes.
Kim, Joon-young; Han, Hyun-jung; Yun, Hun-young; Lee, Bora; Jang, Ha-young; Eom, Ki-dong; Park, Hee-myung
2008-01-01
To evaluate the potential utility of a self-expandable intratracheal nitinol stent with flared ends for the treatment of tracheal collapse in dogs, endotracheal stenting therapy was performed under fluoroscopic guidance in four dogs with severe tracheal collapse. During the 4 to 7 month follow-up, after stent implantation, clinical signs, including dyspnea and respiratory distress, dramatically improved in all dogs. The radiographs showed that the implanted stents improved the tracheal collapse, and there were no side effects such as collapse, shortening or migration of the stents. In conclusion, the self-expandable intratracheal nitinol stents provided adequate stability to the trachea and were effective for attenuating the clinical signs associated with severe tracheal collapse. PMID:18296893
The absence of horizon in black-hole formation
NASA Astrophysics Data System (ADS)
Ho, Pei-Ming
2016-08-01
With the back-reaction of Hawking radiation taken into consideration, the work of Kawai, Matsuo and Yokokura [1] has shown that, under a few assumptions, the collapse of matter does not lead to event horizon nor apparent horizon. In this paper, we relax their assumptions and elaborate on the space-time geometry of a generic collapsing body with spherical symmetry. The geometry outside the collapsing sphere is found to be approximated by the geometry outside the white-hole horizon, hence the collapsing matter remains outside the Schwarzschild radius. As particles in Hawking radiation are created in the vicinity of the collapsing matter, the information loss paradox is alleviated. Assuming that the collapsing body evaporates within finite time, there is no event horizon.
Granular Silo collapse: an experimental study
NASA Astrophysics Data System (ADS)
Clement, Eric; Gutierriez, Gustavo; Boltenhagen, Philippe; Lanuza, Jose
2008-03-01
We present an experimental work that develop some basic insight into the pre-buckling behavior and the buckling transition toward plastic collapse of a granular silo. We study different patterns of deformation generated on thin paper cylindrical shells during granular discharge. We study the collapse threshold for different bed height, flow rates and grain sizes. We compare the patterns that appear during the discharge of spherical beads, with those obtained in the axially compressed cylindrical shells. When the height of the granular column is close to the collapse threshold, we describe a ladder like pattern that rises around the cylinder surface in a spiral path of diamond shaped localizations, and develops into a plastic collapsing fold that grows around the collapsing silo.
NASA Astrophysics Data System (ADS)
Krklec, Kristina; Domínguez-Villar, David; Carrasco, Rosa M.; Pedraza, Javier
2016-07-01
Rock tablets of known weight were buried in the soil of a karst region in Central Spain to evaluate the carbonate weathering during a period of a year. The experiment was conducted at two different soil depths: 5-10 and 50-55 cm from the surface. The parental rock used in the experiment is composed of dolomite and magnesite with variable proportion of accessory minerals and minor elements. Soil mineral and chemical composition as well as its texture was also characterized. Meteorological conditions at the site together with temperature and CO2 in both soil levels were monitored. Sets of tablets were retrieved after 6 and 12 months of the start of the experiment to account for seasonal weathering. Different lithologies do not exhibit significant differences in weathering, although a large inter-sample variability is attributed to variable size and distribution of the porosity. Results show an enhanced weathering during the wet and cold season that accounts for 78 ± 1% of the total annual weathering. Rock tablets examined under scanning electron microscopy prior and after exposure to natural environment show that most of the material lost occurred along cracks, edges or large pores. Although dissolution is a common process, most of the weathering is due to crystal detachment. Rock tablets at the depth of 5-10 cm were weathered 68 ± 1% more than those set at 50-55 cm from the surface. Higher soil moisture and concentration of CO2 were found deeper in the soil, which likely enhanced the dissolution of carbonate. However, physical weathering dominated weight loss of rock tablets at both soil depths; especially at the 5-10 cm level where soil thermal and moisture cycles were more frequent and greater. Denudation rate calculated from the 12 months set provides values of 2.48 ± 1.07 μm/yr and 1.75 ± 0.66 μm/yr at the depths of 5-10 and 50-55 cm, respectively. Since the conditions at the average contact between soil and bedrock are similar to those at the 50-55 cm depth, we consider that this is a more reliable denudation rate for the studied location during the studied period. The calculated weathering rate suggests that denudation has a limited contribution to the thinning of bedrock over caves at this site. Therefore, we consider that the formation of unroofed caves in this region most likely results from the thinning of bedrock cover over caves due to collapse of blocks from their ceilings.
NASA Astrophysics Data System (ADS)
Ogloblina, Daria; Schmidt, Steffen J.; Adams, Nikolaus A.
2018-06-01
Cavitation is a process where a liquid evaporates due to a pressure drop and re-condenses violently. Noise, material erosion and altered system dynamics characterize for such a process for which shock waves, rarefaction waves and vapor generation are typical phenomena. The current paper presents novel results for collapsing vapour-bubble clusters in a liquid environment close to a wall obtained by computational fluid mechanics (CFD) simulations. The driving pressure initially is 10 MPa in the liquid. Computations are carried out by using a fully compressible single-fluid flow model in combination with a conservative finite volume method (FVM). The investigated bubble clusters (referred to as "clouds") differ by their initial vapor volume fractions, initial stand-off distances to the wall and by initial bubble radii. The effects of collapse focusing due to bubble-bubble interaction are analysed by investigating the intensities and positions of individual bubble collapses, as well as by the resulting shock-induced pressure field at the wall. Stronger interaction of the bubbles leads to an intensification of the collapse strength for individual bubbles, collapse focusing towards the center of the cloud and enhanced re-evaporation. The obtained results reveal collapse features which are common for all cases, as well as case-specific differences during collapse-rebound cycles. Simultaneous measurements of maximum pressures at the wall and within the flow field and of the vapor volume evolution show that not only the primary collapse but also subsequent collapses are potentially relevant for erosion.
A mixed helium-oxygen shell in some core-collapse supernova progenitors
NASA Astrophysics Data System (ADS)
Gofman, Roni Anna; Gilkis, Avishai; Soker, Noam
2018-04-01
We evolve models of rotating massive stars up to the stage of iron core collapse using the MESA code and find a shell with a mixed composition of primarily helium and oxygen in some cases. In the parameter space of initial masses of 13-40M⊙ and initial rotation velocities of 0-450 kms-1 that we investigate, we find a mixed helium-oxygen (He-O) shell with a significant total He-O mass and with a helium to oxygen mass ratio in the range of 0.5-2 only for a small fraction of the models. While the shell formation due to mixing is instigated by rotation, the pre-collapse rotation rate is not very high. The fraction of models with a shell of He-O composition required for an energetic collapse-induced thermonuclear explosion is small, as is the fraction of models with high specific angular momentum, which can aid the thermonuclear explosion by retarding the collapse. Our results suggest that the collapse-induced thermonuclear explosion mechanism that was revisited recently can account for at most a small fraction of core-collapse supernovae. The presence of such a mixed He-O shell still might have some implications for core-collapse supernovae, such as some nucleosynthesis processes when jets are present, or might result in peculiar sub-luminous core-collapse supernovae.
Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine.
Laemmli, U K
1975-01-01
High-molecular-weight DNA is known to collapse into very compact particles in a salt solution containing polymers like poly(ethylene oxide) [(EO)n] or polyacrylate. The biological relevance of this phenomenon is suggested by our recent finding that high concentrations of the highly acidic internal peptides found in the mature T4 bacteriophage head, as well as poly(glutamic acid) and poly(aspartic acid), can collapse DNA in a similar manner. The structure of DNAs collapsed by various methods has been studied with electron microscope. We find (EO)n collapses T4 or T7 bacteriophage DNA into compact particles only slightly larger than the size of the T4 and T7 head, respectively. In contrast, polylysine collapses DNA into different types of structures. Double-stranded DNA collapsed with (EO)n is cut by the single-strand specific Neurospora crassa endonuclease (EC 3.1.4.21) into small fragments. Extensive digestion only occurs above the critical concentration of polymer required for DNA collapse, demonstrating the (EO)n-collapsed DNA contains enzyme-vulnerable regions (probably at each fold), which are preferentially attacked. The size of the DNA fragments produced by limit-digestion with the nuclease ranges between 200 and 400 base pairs when DNA is collapsed by (EO)n. Only fragments of DNA which are larger than 600 base pairs are cut by the endonuclease in (EO)n-containing solution. Images PMID:1060108
A mixed helium-oxygen shell in some core-collapse supernova progenitors
NASA Astrophysics Data System (ADS)
Gofman, Roni Anna; Gilkis, Avishai; Soker, Noam
2018-07-01
We evolve models of rotating massive stars up to the stage of iron core collapse using the MESA code and find a shell with a mixed composition of primarily helium and oxygen in some cases. In the parameter space of initial masses of 13-40 M⊙ and initial rotation velocities of 0-450 km s-1 that we investigate, we find a mixed helium-oxygen (He-O) shell with a significant total He-O mass and with a helium to oxygen mass ratio in the range of 0.5-2 only for a small fraction of the models. While the shell formation due to mixing is instigated by rotation, the pre-collapse rotation rate is not very high. The fraction of models with a shell of He-O composition required for an energetic collapse-induced thermonuclear explosion is small, as is the fraction of models with high specific angular momentum, which can aid the thermonuclear explosion by retarding the collapse. Our results suggest that the collapse-induced thermonuclear explosion mechanism that was revisited recently can account for at most a small fraction of core-collapse supernovae. The presence of such a mixed He-O shell still might have some implications for core-collapse supernovae, such as some nucleosynthesis processes when jets are present, or might result in peculiar sub-luminous core-collapse supernovae.
Gravitational Collapse with Heat Flux and Gravitational Waves
NASA Astrophysics Data System (ADS)
Ahmad, Zahid; Ahmed, Qazi Zahoor; Awan, Abdul Sami
2013-10-01
In this paper, we investigated the cylindrical gravitational collapse with heat flux by considering the appropriate geometry of the interior and exterior spacetimes. For this purpose, we matched collapsing fluid to an exterior containing gravitational waves.The effects of heat flux on gravitational collapse are investigated and matched with the results obtained by Herrera and Santos (Class. Quantum Gravity 22:2407, 2005).
NASA Astrophysics Data System (ADS)
Petit, Olivier; Kuper, Marcel; López-Gunn, Elena; Rinaudo, Jean-Daniel; Daoudi, Ali; Lejars, Caroline
2017-09-01
The aim of this paper is to investigate the notion of collapse of agricultural groundwater economies using the adaptive-cycle analytical framework. This framework was applied to four case studies in southern Europe and North Africa to question and discuss the dynamics of agricultural groundwater economies. In two case studies (Saiss in Morocco and Clain basin in France), the imminent physical or socio-economic collapse was a major concern for stakeholders and the early signs of collapse led to re-organization of the groundwater economy. In the other two cases (Biskra in Algeria and Almeria in Spain), collapse was either not yet a concern or had been temporarily resolved through increased efficiency and access to additional water resources. This comparative analysis shows the importance of taking the early signs of collapse into account. These signs can be either related to resource depletion or to environmental and socio-economic impacts. Beyond these four case studies, the large number of groundwater economies under threat in (semi-)arid areas should present a warning regarding their possible collapse. Collapse can have severe and irreversible consequences in some cases, but it can also mean new opportunities and changes.
NASA Astrophysics Data System (ADS)
Yilmaz, Isik; Keskin, Inan; Marschalko, Marian; Bednarik, Martin
2010-05-01
This study compares the GIS based collapse susceptibility mapping methods such as; conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) applied in gypsum rock masses in Sivas basin (Turkey). Digital Elevation Model (DEM) was first constructed using GIS software. Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index- TWI, stream power index- SPI, Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from CP, LR and ANN models, and they were then compared by means of their validations. Area Under Curve (AUC) values obtained from all three methodologies showed that the map obtained from ANN model looks like more accurate than the other models, and the results also showed that the artificial neural networks is a usefull tool in preparation of collapse susceptibility map and highly compatible with GIS operating features. Key words: Collapse; doline; susceptibility map; gypsum; GIS; conditional probability; logistic regression; artificial neural networks.
The effect of giant lateral collapses on magma pathways and the location of volcanism.
Maccaferri, Francesco; Richter, Nicole; Walter, Thomas R
2017-10-23
Flank instability and lateral collapse are recurrent processes during the structural evolution of volcanic edifices, and they affect and are affected by magmatic activity. It is known that dyke intrusions have the potential to destabilise the flanks of a volcano, and that lateral collapses may change the style of volcanism and the arrangement of shallow dykes. However, the effect of a large lateral collapse on the location of a new eruptive centre remains unclear. Here, we use a numerical approach to simulate the pathways of magmatic intrusions underneath the volcanic edifice, after the stress redistribution resulting from a large lateral collapse. Our simulations are quantitatively validated against the observations at Fogo volcano, Cabo Verde. The results reveal that a lateral collapse can trigger a significant deflection of deep magma pathways in the crust, favouring the formation of a new eruptive centre within the collapse embayment. Our results have implications for the long-term evolution of intraplate volcanic ocean islands.
Four tails problems for dynamical collapse theories
NASA Astrophysics Data System (ADS)
McQueen, Kelvin J.
2015-02-01
The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss the problem without considering the more severe formulations. Here I distinguish four distinct tails problems. The first (bare tails problem) and second (structured tails problem) exist in the literature. I argue that while the first is a pseudo-problem, the second has not been adequately addressed. The third (multiverse tails problem) reformulates the second to account for recently discovered dynamical consequences of collapse. Finally the fourth (tails problem dilemma) shows that solving the third by replacing the Gaussian with a non-Gaussian collapse function introduces new conflict with relativity theory.
Long gamma-ray bursts and core-collapse supernovae have different environments.
Fruchter, A S; Levan, A J; Strolger, L; Vreeswijk, P M; Thorsett, S E; Bersier, D; Burud, I; Castro Cerón, J M; Castro-Tirado, A J; Conselice, C; Dahlen, T; Ferguson, H C; Fynbo, J P U; Garnavich, P M; Gibbons, R A; Gorosabel, J; Gull, T R; Hjorth, J; Holland, S T; Kouveliotou, C; Levay, Z; Livio, M; Metzger, M R; Nugent, P E; Petro, L; Pian, E; Rhoads, J E; Riess, A G; Sahu, K C; Smette, A; Tanvir, N R; Wijers, R A M J; Woosley, S E
2006-05-25
When massive stars exhaust their fuel, they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration gamma-ray burst. One would then expect that these long gamma-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the gamma-ray bursts are far more concentrated in the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long gamma-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long gamma-ray bursts are relatively rare in galaxies such as our own Milky Way.
Dynamics of bubble collapse under vessel confinement in 2D hydrodynamic experiments
NASA Astrophysics Data System (ADS)
Shpuntova, Galina; Austin, Joanna
2013-11-01
One trauma mechanism in biomedical treatment techniques based on the application of cumulative pressure pulses generated either externally (as in shock-wave lithotripsy) or internally (by laser-induced plasma) is the collapse of voids. However, prediction of void-collapse driven tissue damage is a challenging problem, involving complex and dynamic thermomechanical processes in a heterogeneous material. We carry out a series of model experiments to investigate the hydrodynamic processes of voids collapsing under dynamic loading in configurations designed to model cavitation with vessel confinement. The baseline case of void collapse near a single interface is also examined. Thin sheets of tissue-surrogate polymer materials with varying acoustic impedance are used to create one or two parallel material interfaces near the void. Shadowgraph photography and two-color, single-frame particle image velocimetry quantify bubble collapse dynamics including jetting, interface dynamics and penetration, and the response of the surrounding material. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading.''
Collapse characteristics of hydroformed tubes
NASA Astrophysics Data System (ADS)
Kim, Young-Suk; Lee, Young-Moon; Kim, Cheol; Hwang, Sang-Moo
2002-07-01
Tube hydroforming technology (THF) has been extensively applied to auto-body structural members such as the engine cradle and side member in order to meet the urgent need for vehicle weight and cost reduction as well as high quality for collision accidents. In this paper, the mechanical properties for hydroformed tubes with various bulging strians under the plane strain mode are experimentally investigated. Axial compression tests for hydroformed tubes are performed to investigate the collapse load and collapse absorption capacity through the collapse load-displacement curves. Moreover, the collapse absorption capacities are compared and discussed among as-received, hydroformed, and press formed tubes. Results demonstrate that the hydroformed tubes show higher collapse absorption capability in comparison with the as-received tube and the press formed tube because of its high yield strength due to strain hardening.
Spherical collapse in chameleon models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brax, Ph.; Rosenfeld, R.; Steer, D.A., E-mail: brax@spht.saclay.cea.fr, E-mail: rosenfel@ift.unesp.br, E-mail: daniele.steer@apc.univ-paris7.fr
2010-08-01
We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in themore » presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse in principle depends on the initial comoving size of the inhomogeneity.« less
Variation of the temperature coefficient of collapse field in bismuth-based bubble garnets
NASA Technical Reports Server (NTRS)
Fratello, V. J.; Pierce, R. D.; Brandle, C. D.
1985-01-01
An approximation to the collapse-field formula is used to show its dependence on magnetization and wall energy and the effect of additions of Gd, Sm, and Eu on 1-micron Bi:YIG bubble materials. The collapse field, magnetization, and wall energy are fitted to quadratic functions of temperature from -50 to 150 C. It is shown that the addition of the various classes of rare earths reduces the temperature derivative of the collapse field in Bi:YIG. Gd influences the collapse field through the magnetization, Sm affects it through the domain wall energy, and Eu does both. The singular magnetic properties of Eu result in the most nearly constant temperature dependence of the collapse field and the best match to a barium-ferrite bias magnite.
Protostellar collapse in a self-gravitating sheet
NASA Technical Reports Server (NTRS)
Hartmann, Lee; Boss, Alan; Calvet, Nuria; Whitney, Barbara
1994-01-01
We present preliminary calculations of protostellar cloud collapse starting from an isothermal, self-gravitating gaseous layer in hydrostatic equilibrium. This gravitationally unstable layer collapses into a flattened or toroidal density distribution, even in the absence of rotation or magnetic fields. We suggest that the flat infalling envelope recently observed in HL Tau by Hayashi et al.is the result of collapse from an initially nonspherical layer. We also speculate that the later evolution of such a flattened, collapsing envelope can produce a structure similar to the 'flared disk' invoked by Kenyon and Hartmann to explain the infrared excesses of many T Tauri stars.
Atomistic modeling of shock-induced void collapse in copper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davila, L P; Erhart, P; Bringa, E M
2005-03-09
Nonequilibrium molecular dynamics (MD) simulations show that shock-induced void collapse in copper occurs by emission of shear loops. These loops carry away the vacancies which comprise the void. The growth of the loops continues even after they collide and form sessile junctions, creating a hardened region around the collapsing void. The scenario seen in our simulations differs from current models that assume that prismatic loop emission is responsible for void collapse. We propose a new dislocation-based model that gives excellent agreement with the stress threshold found in the MD simulations for void collapse as a function of void radius.
NASA Astrophysics Data System (ADS)
Thorsson, Johann; Petursdottir, Thorunn
2015-04-01
Soils are one of the main fundamental bodies of terrestrial ecosystems. Soil functions contribute substantially to the ecosystem services humans and all other living beings depend on. Current soil threats are in most cases related to anthropogenic impacts and derived environmental pressures. For instance, overexploitation has in many cases damaged ecosystem resilience, affected current equilibrium and caused severe soil degradation. The resulting dysfunctional ecosystems are incapable of providing necessary ecosystem services. In such cases ecosystem restoration is necessary to restore ecosystem functions and ecological succession. The Mt. Hekla area in Iceland is an example of land suffering from accelerated erosion amplified by anthropogenic impacts. The area is 900 km2 located in South Iceland in the vicinity of the volcano Mt. Hekla. Today over 40% of the area is classified as eroded but historical documents indicate that vast part of the area were fertile and vegetated at the time of settlement, 1100 years ago; hence was able to withstand the geological disturbances occurring prior to the arrival of man as is obvious from the pristine woody patches still remaining. Severe soil degradation followed the large-scale deforestation and overgrazing that took place within the area. The initial land degradation event is considered to have occurred in the 11th century, but has been ongoing since then in several episodes. The Þjórsá glacial river flows through the area and carries enormous amounts of sediments every year. After the deforestation, the ecosystem resilience was damaged and the land left exposed to the elements. Eventually large scale wind erosion started, followed with water erosion and increased impact of freeze-thaw processes. The Soil Conservation Service of Iceland started working in the area in the early 20th century and land reclamation operations have been ongoing until this day. Considerable successes have been made as is manifested in the fact that sandstorms, once frequent, do not occur any more in the area. A governmental project (the "Mt. Hekla Forest") has been ongoing since 2007 focusing explicitly on this area. The project's main aim is to restore ecosystem services and increase the system resilience towards volcanic eruptions and other potential natural hazards. In this presentation we will discuss the causes for the ecosystem collapse in the Hekla area in further details and the social-ecological context of the restoration activities implemented.
Model for quantum effects in stellar collapse
NASA Astrophysics Data System (ADS)
Arderucio-Costa, Bruno; Unruh, William G.
2018-01-01
We present a simple model for stellar collapse and evaluate the quantum mechanical stress-energy tensor to argue that quantum effects do not play an important role for the collapse of astrophysical objects.
González-Delgado, Antonio M; Pérez-Morales, Marta; Giner-Casares, Juan J; Muñoz, Eulogia; Martín-Romero, María T; Camacho, Luis
2009-10-08
In this paper, we study the collapse of a mixed insoluble monolayer formed by a cationic matrix, dioctadecyl-dimethylammonium bromide (DOMA), and a tetra-anionic porphyrin, tetrakis(4-sulfonatophenyl)porphyrin (TSPP), in a molar ratio TSPP/DOMA = 1:4. During the collapse of this system, we visualized the formation of circular domains consisting exclusively of trilayer, although the domains coalescence was not observed. The coexistence of trilayer and monolayer at the final step of the collapse cannot be interpreted exclusively in terms of a thermodynamic phase equilibrium, intervening as an additional factor the anisotropic line tension of the domain. A high line tension implies a high resistance to the domain deformation, and the anisotropy of the line tension implies the lack of coalescence between these domains, which has been experimentally observed by Brewster angle microscopy for us. Under these circumstances, the domains of collapsed material could enclose monolayer regions where the local surface pressure drops thus stopping the collapse process. The collapse of the TSPP/DOMA system is reversible, that is, the return of the three-dimensional material to the monolayer fits into a simple kinetics according to the nucleation-growth-collision theory. As for the collapse, the reverse process is also affected by the line tension of the domains. This paper relates the high line tension and the anisotropic line tension of a given domains with the reversible nature of the collapse process.
Soltani, Rasmi; Lkbel, Chaieb; Habib Ben Hamouda, Med
2008-01-01
Oryctes agamemnon (Burmeister 1847) (Coleoptera, Scarabaeidae) was accidentally introduced in the southwestern oases of Tunisia (Tozeur) around 1980 and spread to the Rjim Maatoug region. In these areas O. agamemnon was specific to date palm trees causing severe damage that can result in potential danger due to collapse of the tree. This study was conducted from April 2004 to March 2006 in 4 sites in the region of Rjim Maatoug. Different levels of palm tree attack were determined, ovioposition sites were identified, and pest damage was described in detail to specify their relative importance and to indicate factors governing palm tree attack. Eggs were individually oviposited in the attacked parts. Dead parts of palm trees were the main target of O. agamemnon including the respiratory roots, tough, trunk bark, dry petiole and the periphery of the crown. The crown itself was not attacked. Feeding by larvae caused significant damage. The biggest danger occurred when heavy attacks of larvae invaded the respiratory roots at the level of the soil, and secondarily on the periphery of the crown, which can result in fungal diseases. Several cases of Deglet Nour date palm tree collapse were caused by this pest in Rjim Maatoug. Attacks on other parts of the tree were without danger for the palm tree. In the absence of pest management, application of a quarantine program combined with field cultivation techniques could help farmers significantly decrease attack of O. agamemnon on palm trees.
NASA Astrophysics Data System (ADS)
Karaoz, U.; Couradeau, E.; da Rocha, U. N.; Chien Lim, H.; Garcia-Pichel, F.; Northen, T.; Brodie, E.
2016-12-01
Biological soil crusts (biocrusts), critical components of dryland ecosystem, successionally develop to deliver a suite of ecosystem services. Biocrust assemblages are extremely well adapted to survive desiccation and then take advantage of pulses of precipitation typical of arid climate, yet we know little about how these microbial communities of different developmental stages respond to wetup. Here we focus on the wetup response of incipient cyanobacterial crusts as they progress from "light" to "dark". We sampled a cyanobacterial biocrust chronosequence pre- (dry) and post-wetup within a day, and used high-throughput 16S rRNA sequencing to decipher wetup response of microbial communities. Overall, changes in phylogenetic beta-diversity attributable to crust successional stage were at least as large as those for wetup. Notably, more mature crusts showed significantly higher resistance to pulse hydration. Taxonomically, a drastic bloom of handful Firmicutes taxa, primarily from Bacillales order was apparent 18 hrs. after wetup. The wetup response of filamentous cyanobacteria was variable across the successional gradient, with populations collapsing in less developed light crusts but rising in dark crusts. Strong phylogenetic clustering that significantly increased with crust development and wetup suggested conservation and an evolutionary basis for the response of biocrust microbial communities to wetup. The consistent Bacillales bloom accompanied by the variable collapse of the Microcoleus we documented across the successional gradient suggests that the cumulative effects of increased precipitation frequencies on C cycling will depend on crust maturity.
Extraction Methods in Soil Phosphorus Characterisation
NASA Astrophysics Data System (ADS)
Soinne, Helena
2010-05-01
Extraction methods are widely used to assess the bioavailability of P and to characterise soil P reserves. Even though new and more sophisticated methods to characterise soil P are constantly developed the use of extraction methods is not likely to be replaced because of the relatively simple analytical equipment needed for the analysis. However, the large variety of extractants, pre-treatments and sample preparation procedures complicate the comparison of published results. In order to improve our understanding of the behaviour and cycling of P in soil, it is important to know the role of extracted P in the soil P cycle. The knowledge of the factors affecting the analytical outcome is a prerequisite for justified interpretation of the results. In this study, the effect of sample pre-treatment and properties of the used extractant on extractable molybdate-reactive phosphorus (MRP) and molybdate-unreactive phosphorus (MUP) was studied. Furthermore, the effect of sample preparation procedures prior the analysis on measured MRP and MUP was studied. Two widely used sequential extraction procedures were compared on their ability to show management induced differences on soil P. These results revealed that pre-treatments changed soil properties and air-drying was found to affect soil P, particularly extractable MUP, thought to represent organic P, by disrupting organic matter. This was evidenced by an increase in the water-extractable small-sized (<0.2 µm) P that, at least partly, took place at the expense of the large-sized (>0.2 µm) P. In addition to the effects of sample pre-treatment, the results showed that extractable organic P was sensitive to the chemical nature of the used extractant and to the sample preparation procedures employed prior to P analysis, including centrifugation and filtering of soil suspensions. Filtering may remove a major proportion of extractable MUP; therefore filtering cannot be recommended in the characterisation of solubilised MUP. However, extractants having high ionic strength may cause the organic molecules to collapse during centrifugation and thus affect the recovered concentration of MUP. These findings highlight the importance of characterising the nature of the MUP extracted with different extractants and acknowledging the sensitivity of MUP to analytical procedures when comparing published results. Widely used sequential fractionation procedures proved to be able to detect land-use -derived differences in the distribution of P among fractions of different solubilities. The results of this study demonstrate that, although the extraction methods do not reveal the biogeochemical function of a given P pool in soil, the extraction methods can be used to detect changes in soil P pools with different solubilities. To obtain the most benefit from extraction methods, we need a better understanding of the biological availability of P and the role of extracted P fraction in the P cycle in soils from different environments (climatic and weather) and land-uses.
Hydrologic Triggering of Shallow Landslides in a Field-scale Flume
NASA Astrophysics Data System (ADS)
Reid, M. E.; Iverson, R. M.; Iverson, N. R.; Brien, D. L.; Lahusen, R. G.; Logan, M.
2006-12-01
Hydrologic Triggering of Shallow Landslides in a Field-scale Flume Mark E. Reid, Richard M. Iverson, Neal R. Iverson, Dianne L. Brien, Richard G. LaHusen, and Mathew Logan Shallow landslides are often triggered by pore-water pressure increases driven by 1) groundwater inflow from underlying bedrock or soil, 2) prolonged moderate-intensity rainfall or snowmelt, or 3) bursts of high-intensity rainfall. These shallow failures are difficult to capture in the field, limiting our understanding of how different water pathways control failure style or timing. We used the field-scale, USGS debris-flow flume for 7 controlled landslide initiation experiments designed to examine the influence of different hydrologic triggers and the role of soil density, relative to critical state, on failure style and timing. Using sprinklers and/or groundwater injectors, we induced failure in a 0.65m thick, 2m wide, 6m3 prism of loamy sand on a 31° slope, placed behind a retaining wall. We monitored ~50 sensors to measure soil deformation (tiltmeters & extensometers), pore pressure (tensiometers and transducers), and soil moisture (TDR probes). We also extracted soil samples for laboratory estimates of porosity, shear strength, saturated hydraulic conductivity at differing porosities, unsaturated moisture retention characteristics, and compressibility. Experiments with loose soil all resulted in abrupt failure along the concrete flume bed with rapid mobilization into a debris flow. Each of the 3 water pathways, however, resulted in slightly different pore-pressure fields at failure and different times to failure. For example, groundwater injection at the flume bed led to a saturated zone that advanced upward, wetting over half the soil prism before pressures at the bed were sufficient to provoke collapse. With moderate-intensity surface sprinkling, an unsaturated wetting front propagated downward until reaching the bed, then a saturated zone built upward, with the highest pressures at the bed. With the third trigger, soils were initially wetted (but not saturated) with moderate-intensity sprinkling and then subjected to a high-intensity burst, causing failure without widespread positive pressures. It appears that a small pressure perturbation from the burst traveled rapidly downward through tension-saturated soil and led to positive pressure development at the flume bed resulting in failure. In contrast, failures in experiments with stronger, denser soil were gradual and episodic, requiring both sprinkling and groundwater injection. Numerical simulations of variably saturated groundwater flow mimic the behaviors described above. Simulated rainfall with an intensity greater than soil hydraulic conductivity generates rapid pressure perturbations, whereas lower intensity rainfall leads to wetting front propagation and water table buildup. Our results suggest that transient responses induced by high intensity bursts require relatively high frequency monitoring of unsaturated zone changes; in this case conventional piezometers would be unlikely to detect failure-inducing pore pressure changes. These experiments also indicate that although different water pathways control the timing of failure, initial soil density controls the style of failure.
Void collapse under distributed dynamic loading near material interfaces
NASA Astrophysics Data System (ADS)
Shpuntova, Galina; Austin, Joanna
2012-11-01
Collapsing voids cause significant damage in diverse applications from biomedicine to underwater propulsion to explosives. While shock-induced void collapse has been studied extensively, less attention has been devoted to stress wave loading, which will occur instead if there are mechanisms for wave attenuation or if the impact velocity is relatively low. A set of dynamic experiments was carried out in a model experimental setup to investigate the effect of acoustic heterogeneities in the surrounding medium on void collapse. Two tissue-surrogate polymer materials of varying acoustic properties were used to create flowfield geometries involving a boundary and a void. A stress wave, generated by projectile impact, triggered void collapse in the gelatinous polymer medium. When the length scales of features in the flow field were on the same order of magnitude as the stress wave length scale, the presence of the boundary was found to affect the void collapse process relative to collapse in the absence of a boundary. This effect was quantified for a range of geometries and impact conditions using a two-color, single-frame particle image velocimetry technique. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading'' with Prof. Henning Winter as Program Manager.
NASA Astrophysics Data System (ADS)
Yilmaz, Işik; Marschalko, Marian; Bednarik, Martin
2013-04-01
The paper presented herein compares and discusses the use of bivariate, multivariate and soft computing techniques for collapse susceptibility modelling. Conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) models representing the bivariate, multivariate and soft computing techniques were used in GIS based collapse susceptibility mapping in an area from Sivas basin (Turkey). Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index (TWI), stream power index (SPI), Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from the models, and they were then compared by means of their validations. However, Area Under Curve (AUC) values obtained from all three models showed that the map obtained from soft computing (ANN) model looks like more accurate than the other models, accuracies of all three models can be evaluated relatively similar. The results also showed that the conditional probability is an essential method in preparation of collapse susceptibility map and highly compatible with GIS operating features.
Validating Prehistoric and Current Social Phenomena Upon the Landscape of the Peten, Guatemala
NASA Technical Reports Server (NTRS)
Sever, Thomas L.
1997-01-01
The Peten, once inhabited by a population of several million before the collapse of the ancient Maya in the 10th and 11th centuries, is being repopulated toward its former demographic peak. Environmental dynamics, however, impose severe constraints to further development. Current practices in subsistence, commercial agriculture, and cattle raising are causing rapid deforestation on a scale that can only result in soil loss and regional degradation. In view of the current deforestation trends, the question emerges as to how millions of ancient Maya lived successfully in the area for centuries when relatively fewer occupants today threaten the sustainability of the landscape with current agricultural practices. The use of remote sensing technology is a cost-effective methodology for addressing issues in Maya archeology as well as monitoring the environmental impacts being experienced by the current population.
NASA Astrophysics Data System (ADS)
Uno, Kunihiko; Otsuka, Hisanori; Mitou, Masaaki
The pile foundation is heavily damaged at the boundary division of the ground types, liquefied ground and non-liquefied ground, during an earthquake and there is a possibility of the collapse of the piles. In this study, we conduct a shaking table test and effective stress analysis of the influence of soil liquefaction and the seismic inertial force exerted on the pile foundation. When the intermediate part of the pile, there is at the boundary division, is subjected to section force, this part increases in size as compared to the pile head in certain instances. Further, we develop a seismic resistance method for a pile foundation in liquefaction using seismic isolation rubber and it is shown the middle part seismic isolation system is very effective.
NASA Astrophysics Data System (ADS)
Calvari, Sonia; Intrieri, Emanuele; Di Traglia, Federico; Bonaccorso, Alessandro; Casagli, Nicola; Cristaldi, Antonio
2016-05-01
Crater-wall collapses are fairly frequent at active volcanoes and they are normally studied through the analysis of their deposits. In this paper, we present an analysis of the 12 January 2013 crater-wall collapse occurring at Stromboli volcano, investigated by means of a monitoring network comprising visible and infrared webcams and a Ground-Based Interferometric Synthetic Aperture Radar. The network revealed the triggering mechanisms of the collapse, which are comparable to the events that heralded the previous effusive eruptions in 1985, 2002, 2007 and 2014. The collapse occurred during a period of inflation of the summit cone and was preceded by increasing explosive activity and the enlargement of the crater. Weakness of the crater wall, increasing magmastatic pressure within the upper conduit induced by ascending magma and mechanical erosion caused by vent opening at the base of the crater wall and by lava fingering, are considered responsible for triggering the collapse on 12 January 2013 at Stromboli. We suggest that the combination of these factors might be a general mechanism to generate crater-wall collapse at active volcanoes.
Experimental study of shock-driven cavity collapse with a single-stage gas gun driver
NASA Astrophysics Data System (ADS)
Anderson, Phillip; Betney, Matthew; Doyle, Hugo; Hawker, Nicholas; Roy, Ronald
2014-10-01
This paper explores experimental studies of shock-driven cavity collapse using a single-stage gas gun. Shocks of up to 1 GPa are generated in a hydrogel with the impact of a planar-faced projectile (50 mm dia.). Within the hydrogel, a pre-formed cavity (5 mm dia.) is cast, which is collapsed by the interaction with the shockwave. The basic collapse process involves the formation of a high-speed transverse jet and then a second collapse phase driven from jet impact. Single-shot multi-frame schlieren imaging is used to show the position and timing of optical emission in relation to the collapse hydrodynamics. Further, temporally and spectrally-resolved measurements of the optical emission are made through simultaneous use of multiple band-passed PMTs and an integrating spectrometer. This reveals three distinct pulses of emission possessing different frequency content. The first corresponds to the trapping of gas during jet impact; the second and third correspond to the further inertial collapse of the now toroidal cavity. Plasma models are used to provide the first indication of the temperature of these inertially confined plasmas.
Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington
Reid, M.E.; Sisson, T.W.; Brien, D.L.
2001-01-01
Catastrophic collapses of steep volcano flanks threaten many populated regions, and understanding factors that promote collapse could save lives and property. Large collapses of hydrothermally altered parts of Mount Rainier have generated far-traveled debris flows; future flows would threaten densely populated parts of the Puget Sound region. We evaluate edifice collapse hazards at Mount Rainier using a new three-dimensional slope stability method incorporating detailed geologic mapping and subsurface geophysical imaging to determine distributions of strong (fresh) and weak (altered) rock. Quantitative three-dimensional slope stability calculations reveal that sizeable flank collapse (>0.1 km3) is promoted by voluminous, weak, hydrothermally altered rock situated high on steep slopes. These conditions exist only on Mount Rainier's upper west slope, consistent with the Holocene debris-flow history. Widespread alteration on lower flanks or concealed in regions of gentle slope high on the edifice does not greatly facilitate collapse. Our quantitative stability assessment method can also provide useful hazard predictions using reconnaissance geologic information and is a potentially rapid and inexpensive new tool for aiding volcano hazard assessments.
NASA Astrophysics Data System (ADS)
Mitra, Abhas
2013-04-01
It is widely believed that though pressure resists gravitational collapse in Newtonian gravity, it aids the same in general relativity (GR) so that GR collapse should eventually be similar to the monotonous free fall case. But we show that, even in the context of radiationless adiabatic collapse of a perfect fluid, pressure tends to resist GR collapse in a manner which is more pronounced than the corresponding Newtonian case and formation of trapped surfaces is inhibited. In fact there are many works which show such collapse to rebound or become oscillatory implying a tug of war between attractive gravity and repulsive pressure gradient. Furthermore, for an imperfect fluid, the resistive effect of pressure could be significant due to likely dramatic increase of tangential pressure beyond the "photon sphere." Indeed, with inclusion of tangential pressure, in principle, there can be static objects with surface gravitational redshift z → ∞. Therefore, pressure can certainly oppose gravitational contraction in GR in a significant manner in contradiction to the idea of Roger Penrose that GR continued collapse must be unstoppable.
NASA Astrophysics Data System (ADS)
Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M.
2014-12-01
The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.
Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M.
2014-01-01
The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached. PMID:25482065
Boulton, Chris A; Allison, Lesley C; Lenton, Timothy M
2014-12-08
The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.
Wetting dynamics of a collapsing fluid hole
NASA Astrophysics Data System (ADS)
Bostwick, J. B.; Dijksman, J. A.; Shearer, M.
2017-01-01
The collapse dynamics of an axisymmetric fluid cavity that wets the bottom of a rotating bucket bound by vertical sidewalls are studied. Lubrication theory is applied to the governing field equations for the thin film to yield an evolution equation that captures the effect of capillary, gravitational, and centrifugal forces on this converging flow. The focus is on the quasistatic spreading regime, whereby contact-line motion is governed by a constitutive law relating the contact-angle to the contact-line speed. Surface tension forces dominate the collapse dynamics for small holes with the collapse time appearing as a power law whose exponent compares favorably to experiments in the literature. Gravity accelerates the collapse process. Volume dependence is predicted and compared with experiment. Centrifugal forces slow the collapse process and lead to complex dynamics characterized by stalled spreading behavior that separates the large and small hole asymptotic regimes.
Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow.
Gudmundsson, Magnús T; Jónsdóttir, Kristín; Hooper, Andrew; Holohan, Eoghan P; Halldórsson, Sæmundur A; Ófeigsson, Benedikt G; Cesca, Simone; Vogfjörd, Kristín S; Sigmundsson, Freysteinn; Högnadóttir, Thórdís; Einarsson, Páll; Sigmarsson, Olgeir; Jarosch, Alexander H; Jónasson, Kristján; Magnússon, Eyjólfur; Hreinsdóttir, Sigrún; Bagnardi, Marco; Parks, Michelle M; Hjörleifsdóttir, Vala; Pálsson, Finnur; Walter, Thomas R; Schöpfer, Martin P J; Heimann, Sebastian; Reynolds, Hannah I; Dumont, Stéphanie; Bali, Eniko; Gudfinnsson, Gudmundur H; Dahm, Torsten; Roberts, Matthew J; Hensch, Martin; Belart, Joaquín M C; Spaans, Karsten; Jakobsson, Sigurdur; Gudmundsson, Gunnar B; Fridriksdóttir, Hildur M; Drouin, Vincent; Dürig, Tobias; Aðalgeirsdóttir, Guðfinna; Riishuus, Morten S; Pedersen, Gro B M; van Boeckel, Tayo; Oddsson, Björn; Pfeffer, Melissa A; Barsotti, Sara; Bergsson, Baldur; Donovan, Amy; Burton, Mike R; Aiuppa, Alessandro
2016-07-15
Large volcanic eruptions on Earth commonly occur with a collapse of the roof of a crustal magma reservoir, forming a caldera. Only a few such collapses occur per century, and the lack of detailed observations has obscured insight into the mechanical interplay between collapse and eruption. We use multiparameter geophysical and geochemical data to show that the 110-square-kilometer and 65-meter-deep collapse of Bárdarbunga caldera in 2014-2015 was initiated through withdrawal of magma, and lateral migration through a 48-kilometers-long dike, from a 12-kilometers deep reservoir. Interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual, near-exponential decline of both collapse rate and the intensity of the 180-day-long eruption. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Shah, Hasrat Hussain
In the last three to four decades, various programs have been studied in order to investigate the final fate of gravitational collapse of massive astronomical objects. In the theoretical context, Black Holes (BHs) are the consequence of final stage of the gravitational collapse. In this work, we investigated the gravitational collapse process of a spherically symmetric star constituted of dark matter (DM), ρM, and Dark Energy (DE), ρ in the context of the brane-world scenario. In our model, we discussed the anisotropy of the pressure in a fluid with Equation of State (EoS) pt = kρ and pr = lρ, (l + 2k < ‑1). We briefly discussed various cases of gravitational collapse and it is found that BH can be formed by the gravitational collapse in brane-world regime while in some cases there is only a naked singularity at their end state.
Sherrell, Dennis L.
1990-01-01
A hollow, collapsable seal member normally disposed in a natural expanded state offering fail-safe pressure sealing against a seating surface and adapted to be evacuated by a vacuum force for collapsing the seal member to disengage the same from said seating surface.
Sherrell, D.L.
1983-12-08
A hollow, collapsable seal member normally disposed in a natural expanded state offering fail-safe pressure sealing against a seating surface and adapted to be evacuated by a vacuum force for collapsing the seal member to disengage the same from said seating surface.
NASA Astrophysics Data System (ADS)
McClellan, Matthew; Comas, Xavier; Benscoter, Brian; Hinkle, Ross; Sumner, David
2017-11-01
Peat soils store a large fraction of the global soil carbon (C) pool and comprise 95% of wetland C stocks. While isolated freshwater wetlands in temperate and tropical biomes account for more than 20% of the global peatland C stock, most studies of wetland soil C have occurred in expansive peatlands in northern boreal and subarctic biomes. Furthermore, the contribution of small depressional wetlands in comparison to larger wetland systems in these environments is very uncertain. Given the fact that these wetlands are numerous and variable in terms of their internal geometry, innovative methods are needed for properly estimating belowground C stocks and their overall C contribution to the landscape. In this study, we use a combination of ground penetrating radar (GPR), aerial imagery, and direct measurements (coring) in conjunction with C core analysis to develop a relation between C stock and surface area, and estimate the contribution of subtropical depressional wetlands to the total C stock of pine flatwoods at the Disney Wilderness Preserve (DWP), Florida. Additionally, GPR surveys were able to image collapse structures underneath the peat basin of depressional wetlands, depicting lithological controls on the formation of depressional wetlands at the DWP. Results indicate the importance of depressional wetlands as critical contributors to the landscape C budget at the DWP and the potential of GPR-based approaches for (1) rapidly and noninvasively estimating the contribution of depressional wetlands to regional C stocks and (2) evaluating the formational processes of depressional wetlands.
McClellan, Matthew; Comas, Xavier; Hinkle, Ross; Sumner, David M.
2017-01-01
Peat soils store a large fraction of the global soil carbon (C) pool and comprise 95% of wetland C stocks. While isolated freshwater wetlands in temperate and tropical biomes account for more than 20% of the global peatland C stock, most studies of wetland soil C have occurred in expansive peatlands in northern boreal and subarctic biomes. Furthermore, the contribution of small depressional wetlands in comparison to larger wetland systems in these environments is very uncertain. Given the fact that these wetlands are numerous and variable in terms of their internal geometry, innovative methods are needed for properly estimating belowground C stocks and their overall C contribution to the landscape. In this study, we use a combination of ground penetrating radar (GPR), aerial imagery, and direct measurements (coring) in conjunction with C core analysis to develop a relation between C stock and surface area, and estimate the contribution of subtropical depressional wetlands to the total C stock of pine flatwoods at the Disney Wilderness Preserve (DWP), Florida. Additionally, GPR surveys were able to image collapse structures underneath the peat basin of depressional wetlands, depicting lithological controls on the formation of depressional wetlands at the DWP. Results indicate the importance of depressional wetlands as critical contributors to the landscape C budget at the DWP and the potential of GPR-based approaches for (1) rapidly and noninvasively estimating the contribution of depressional wetlands to regional C stocks and (2) evaluating the formational processes of depressional wetlands.
Gravitational collapse and the vacuum energy
NASA Astrophysics Data System (ADS)
Campos, M.
2014-03-01
To explain the accelerated expansion of the universe, models with interacting dark components (dark energy and dark matter) have been considered recently in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy of the all fields that fill the universe. As the other side of the same coin, the influence of the vacuum energy on the gravitational collapse is of great interest. We study such collapse adopting different parameterizations for the evolution of the vacuum energy. We discuss the homogeneous collapsing star fluid, that interacts with a vacuum energy component, using the stiff matter case as example. We conclude this work with a discussion of the Cahill-McVittie mass for the collapsed object.
Inherently unstable networks collapse to a critical point
NASA Astrophysics Data System (ADS)
Sheinman, M.; Sharma, A.; Alvarado, J.; Koenderink, G. H.; MacKintosh, F. C.
2015-07-01
Nonequilibrium systems that are driven or drive themselves towards a critical point have been studied for almost three decades. Here we present a minimalist example of such a system, motivated by experiments on collapsing active elastic networks. Our model of an unstable elastic network exhibits a collapse towards a critical point from any macroscopically connected initial configuration. Taking into account steric interactions within the network, the model qualitatively and quantitatively reproduces results of the experiments on collapsing active gels.
Inter-plume aerodynamics for gasoline spray collapse
Sphicas, Panos; Pickett, Lyle M.; Skeen, Scott A.; ...
2017-11-10
The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel–air mixing. But, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtainedmore » using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. Furthermore, the effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.« less
Inter-plume aerodynamics for gasoline spray collapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sphicas, Panos; Pickett, Lyle M.; Skeen, Scott A.
The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel–air mixing. But, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtainedmore » using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. Furthermore, the effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.« less
Yang, X; Zhang, X; Teixeira da Silva, J A; Liang, K; Deng, R; Ma, G
2014-01-01
The structure and development of collapsed layers of the haustorium were studied in Santalum album Linn. Through light and transmission electron microscopy, it was shown that the collapsed layers originated from starch-containing cells when the haustorium developed an internal gland, thickened gradually and ultimately developed into the mantle, which, combined with the sucker, buckled the host root. We report on the presence of inter-collapsed layers for the first time. These layers develop after penetration into the host and are located between the intrusive tissues and the vascular meristematic region, gradually linking the collapsed layers and remains around the sucker. The proliferation of cells in the meristematic region and the 'host tropism' of cortical layers contribute to pressure within the haustorium and result in development of the collapsed layers. Besides, starch-containing cells that turn into collapsed layers are vulnerable to pressure as they lack a large vacuole, have uneven cell wall thickness and a loose cell arrangement. We proposed that the functions of collapsed layers are to efficiently assure that cell inclusion and energy concentrate at the inner meristematic region and are recycled to affect penetration, reinforce the physical connection between the sandalwood haustorium and host root, and supply space for haustorial development. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Challenges in fitting a hearing aid to a severely collapsed ear canal and mixed hearing loss.
Oeding, Kristi; Valente, Michael; Chole, Richard
2012-04-01
Collapsed ear canals typically occur when an outside force, such as a headset for audiometric testing, is present. However, when a collapsed ear canal occurs without external pressure, this creates a challenge not only for performing audiometric testing but also for coupling a hearing aid to the ear canal. This case report highlights the challenges associated with fitting a hearing aid on a patient with a severe anterior-posterior collapsed ear canal with a mixed hearing loss. A 67-yr-old female originally presented to Washington University in St. Louis School of Medicine in 1996 with a long-standing history of bilateral otosclerosis. She had chronic ear infections in the right ear and a severely collapsed ear canal in the left ear and was fit with a bone anchored hearing aid (BAHA®) on the right side in 2003. However, benefit from the BAHA started to decrease due to changes in hearing, and a different hearing solution was needed. It was proposed that a hearing aid be fit to her collapsed left ear canal; however, trying to couple a hearing aid to the collapsed ear canal required unique noncustom earmold solutions. This case study highlights some of the obstacles and potential solutions for coupling a hearing aid to a severely collapsed ear canal. American Academy of Audiology.
NASA Astrophysics Data System (ADS)
Li, Guang-Xing
2018-03-01
Astrophysical systems, such as clumps that form star clusters share a density profile that is close to ρ ˜ r-2. We prove analytically this density profile is the result of the scale-free nature of the gravitational collapse. Therefore, it should emerge in many different situations as long as gravity is dominating the evolution for a period that is comparable or longer than the free-fall time, and this does not necessarily imply an isothermal model, as many have previously believed. To describe the collapse process, we construct a model called the turbulence-regulated gravitational collapse model, where turbulence is sustained by accretion and dissipates in roughly a crossing time. We demonstrate that a ρ ˜ r-2 profile emerges due to the scale-free nature the system. In this particular case, the rate of gravitational collapse is regulated by the rate at which turbulence dissipates the kinetic energy such that the infall speed can be 20-50% of the free-fall speed(which also depends on the interpretation of the crossing time based on simulations of driven turbulence). These predictions are consistent with existing observations, which suggests that these clumps are in the stage of turbulence-regulated gravitational collapse. Our analysis provides a unified description of gravitational collapse in different environments.
Effective Ecological Restoration of Collapsed Ecosystems - Linking Soil, Water and Society
NASA Astrophysics Data System (ADS)
Petursdottir, Thorunn; Finger, David
2014-05-01
All natural resources, utilized by humans are embedded in complex social-ecological systems (SESs). To maintain the systems' sustainability, the SESs needs to be managed within their resilience optimum, considering both social and ecological elements. Throughout the centuries the humankind has often failed in doing so. Overexploitation of natural resources has thus widely disrupted equilibrium within the respective SESs, driving unforeseen changes of ecosystems worldwide. Anthropogenic factors such as poor institutional structure on resource utilization and weak policies in combination to environmental factors like droughts, fires or other unpredictable events have ruptured ecosystems' resilience and caused global degradation on a scale that currently threatens the Earth's welfare. As an example it's worth to mention that up to 40% of the world's agricultural land is severely degraded mainly due to unsustainable landuse. Once an ecosystem, or part/s of it, have collapsed, ecological restoration is almost always necessary to overcome the threshold/s that may prevent the system from self-recovering. It also re-activates the system's environmental cycles like the water, carbon and nutrient circulation. Although soil is the fundamental body of terrestrial ecosystems, water availability is of equal importance and should be taken more into consideration in restoration than currently is done. Based on that, we will focus on how to best manage effective large-scale ecological restoration (LSER) of collapsed ecosystems and link it to water catchment areas. LSER is a fundamental social-ecological activity that substantially can improve ecosystem condition, human livelihood and if well organized, facilitate improved management of natural resources. By definition, restoration of ecological integrity and functions is the fundamental basis for all restoration activities. But to achieve long-term sustainability of LSER activities the initial set of rules/policies established by the stakeholders or the government must be congruent with local condition in context to regional, national and even global perspectives. The related parties need to be in agreement to the content of the existing policies related to large-scale restoration and collectively work on achieving their targets. The actors must operate in line with the existing laws and legislation. Furthermore, all the multiple layers of the governance system need to cooperate internally in a transparent and decentralized way on attaining LSER targets; through for instance local restoration projects and improved land management. To assess if the policies are facilitating the expected LSER progress, a monitoring and evaluation system should also be in place. Researches indicate that incoherency within the governance system and lack of social cohesion can significantly reduce the expected outcome of restoration projects. Here we will present an ecological restoration model based on a SES framework that can be used to analyse the SESs the restoration activities will take place within. The model can also be used to organize restoration projects on different scales, to identify potential leverage points or gaps within the SES and to design a tailor-made monitoring and evaluation program.
NASA Astrophysics Data System (ADS)
Belousova, M.; Belousov, A.; Chen, C.
2009-12-01
The dominantly andesitic Tatun Volcanic Group of Northern Taiwan was formed during the Pleistocene - Early Holocene. The volcanoes are represented by lava domes of moderate sizes: heights up to 350 m (absolute altitudes 800 - 1120 m a.s.l.), base diameters up to 1.5 km, and volumes up to 0.3 km3. Many of the domes have broad, shallow horseshoe-shaped scars (0.5-1.0 km across) formed by gravitational collapses. Field examination revealed deposits of collapses of volcanoes Datun, Cising, Siaoguanyin, Cigu, and Dajianhou. The largest of the collapses (V ~ 0.1 km3) occurred at Mt. Datun. The collapse formed a typical debris avalanche deposit composed mainly of block facies. The avalanche traveled a distance L ~ 5 km, dropped a height H ~ 1 km, and was moderately mobile H/L ~ 0.2. The age of the collapse is > 24,000 yrs because the related debris avalanche deposit is covered by a younger debris avalanche deposit of Siaoguanyin volcano containing charcoal having calibrated 14C age 22,600-23,780 BP. The Siaoguanyin debris avalanche deposit (V~ 0.02 km3; L ~ 6 km; H ~ 1 km; H/L ~ 0.16) is composed of massive, very coarse-grained, fines-poor, gravelly material represented predominantly by very dense, dark-grey andesite. The avalanche was hot during deposition; material of a lava dome which had no time to cool down completely after extrusion was involved into the collapse. The avalanche speed was 40 m/s at a distance 5 km from the source, basing on 80 m of the avalanche run-up. The latest (calibrated age 6000-6080 BP) large-scale collapse (V~0.05 km3, H/L ~ 0.25) occurred at Mt. Cising in the form of numerous retrogressive landslide blocks, which did not transform into a long runout debris avalanche. The leading snout of the landslide traveled 2.0 km, while rear slide blocks traveled only several hundred meters and stopped near the landslide source. Its maximum dropped height is only ~0.5 km. A former lava coulee, which was involved in the collapse, underwent weak disintegration: material of the collapse is represented by big boulders with few fine grained matrix. Collapses of Cigu and Dajianhou volcanoes had the smallest volumes, ~ 0.01 km3, and their character is transitional to large rockfalls. The studied collapses occurred after the volcanoes had stopped erupting, and thus were not triggered by volcanic activity. Hydrothermally altered rocks do not compose significant parts of the studied debris avalanches, although hydrothermal fields are common in the scars of the collapses. Probably weakening of mechanical properties of the volcanic edifices due to hydrothermal alteration did not play a key role in the studied collapses, but elevated fluid pressure and hydrothermal alteration in the foundations of the volcanoes might have had some role. Scars of the collapses are located on intersections of the edifices with active tectonic faults of NNE-SSW and/or W-E strike, which are expressed in relief and clearly visible on space images. Thus, the collapsed parts of the volcanic edifices were detached by tectonic motions, and the collapses were possibly triggered by seismic activity.
Collapsing lattice animals and lattice trees in two dimensions
NASA Astrophysics Data System (ADS)
Hsu, Hsiao-Ping; Grassberger, Peter
2005-06-01
We present high statistics simulations of weighted lattice bond animals and lattice trees on the square lattice, with fugacities for each non-bonded contact and for each bond between two neighbouring monomers. The simulations are performed using a newly developed sequential sampling method with resampling, very similar to the pruned-enriched Rosenbluth method (PERM) used for linear chain polymers. We determine with high precision the line of second-order transitions from an extended to a collapsed phase in the resulting two-dimensional phase diagram. This line includes critical bond percolation as a multicritical point, and we verify that this point divides the line into different universality classes. One of them corresponds to the collapse driven by contacts and includes the collapse of (weakly embeddable) trees. There is some evidence that the other is subdivided again into two parts with different universality classes. One of these (at the far side from collapsing trees) is bond driven and is represented by the Derrida-Herrmann model of animals having bonds only (no contacts). Between the critical percolation point and this bond-driven collapse seems to be an intermediate regime, whose other end point is a multicritical point P* where a transition line between two collapsed phases (one bond driven and the other contact driven) sparks off. This point P* seems to be attractive (in the renormalization group sense) from the side of the intermediate regime, so there are four universality classes on the transition line (collapsing trees, critical percolation, intermediate regime, and Derrida-Herrmann). We obtain very precise estimates for all critical exponents for collapsing trees. It is already harder to estimate the critical exponents for the intermediate regime. Finally, it is very difficult to obtain with our method good estimates of the critical parameters of the Derrida-Herrmann universality class. As regards the bond-driven to contact-driven transition in the collapsed phase, we have some evidence for its existence and rough location, but no precise estimates of critical exponents.
Costa Rica's Chain of laterally collapsed volcanoes.
NASA Astrophysics Data System (ADS)
Duarte, E.; Fernandez, E.
2007-05-01
From the NW extreme to the SW end of Costa Rica's volcanic backbone, a number of laterally collapsed volcanoes can be observed. Due to several factors, attention has been given to active volcanoes disregarding the importance of collapsed features in terms of assessing volcanic hazards for future generations around inhabited volcanoes. In several cases the typical horseshoe shape amphitheater-like depression can be easily observed. In other cases due to erosion, vegetation, topography, seismic activity or drastic weather such characteristics are not easily recognized. In the order mentioned above appear: Orosi-Cacao, Miravalles, Platanar, Congo, Von Frantzius, Cacho Negro and Turrialba volcanoes. Due to limited studies on these structures it is unknown if sector collapse occurred in one or several phases. Furthermore, in the few studied cases no evidence has been found to relate collapses to actual eruptive episodes. Detailed studies on the deposits and materials composing dome-like shapes will shed light on unsolved questions about petrological and chemical composition. Volume, form and distance traveled by deposits are part of the questions surrounding most of these collapsed volcanoes. Although most of these mentioned structures are extinct, at least Irazú volcano (active volcano) has faced partial lateral collapses recently. It did presented strombolian activity in the early 60s. Collapse scars show on the NW flank show important mass removal in historic and prehistoric times. Moreover, in 1994 a minor hydrothermal explosion provoked the weakening of a deeply altered wall that holds a crater lake (150m diameter, 2.6x106 ). A poster will depict images of the collapsed volcanoes named above with mayor descriptive characteristics. It will also focus on the importance of deeper studies to assess the collapse potential of Irazú volcano with related consequences. Finally, this initiative will invite researchers interested in such topic to join future studies in these Costarrican volcanoes.
Clark, Richard D.; Bence, James R.; Claramunt, Randall M.; Clevenger, John A.; Kornis, Matthew S.; Bronte, Charles R.; Madenjian, Charles P.; Roseman, Edward
2017-01-01
Alewives Alosa pseudoharengus are the preferred food of Chinook Salmon Oncorhynchus tshawytscha in the Laurentian Great Lakes. Alewife populations collapsed in Lake Huron in 2003 but remained comparatively abundant in Lake Michigan. We analyzed capture locations of coded-wire-tagged Chinook Salmon before, during, and after Alewife collapse (1993–2014). We contrasted the pattern of tag recoveries for Chinook Salmon released at the Swan River in northern Lake Huron and Medusa Creek in northern Lake Michigan. We examined patterns during April–July, when Chinook Salmon were primarily occupied by feeding, and August–October, when the salmon were primarily occupied by spawning. We found evidence that Swan River fish shifted their feeding location from Lake Huron to Lake Michigan after the collapse. Over years, proportions of Swan River Chinook Salmon captured in Lake Michigan increased in correspondence with the Alewife decline in Lake Huron. Mean proportions of Swan River fish captured in Lake Michigan were 0.13 (SD = 0.14) before collapse (1993–1997) and 0.82 (SD = 0.22) after collapse (2008–2014) and were significantly different. In contrast, proportions of Medusa Creek fish captured in Lake Michigan did not change; means were 0.98 (SD = 0.05) before collapse and 0.99 (SD = 0.01) after collapse. The mean distance to the center of the coastal distribution of Swan River fish during April–July shifted 357 km (SD = 169) from central Lake Huron before collapse to central Lake Michigan after collapse. The coastal distributions during August–October were centered on the respective sites of origin, suggesting that Chinook Salmon returned to release sites to spawn regardless of their feeding locations. Regarding the impact on Alewife populations, this shift in interlake movement would be equivalent to increasing the Chinook Salmon stocking rate within Lake Michigan by 30%. The primary management implication is that interlake coordination of Chinook Salmon stocking policies would be expected to benefit the recreational fishery.
Correlated random walks induced by dynamical wavefunction collapse
NASA Astrophysics Data System (ADS)
Bedingham, Daniel
2015-03-01
Wavefunction collapse models modify Schrödinger's equation so that it describes the collapse of a superposition of macroscopically distinguishable states as a genuine physical process [PRA 42, 78 (1990)]. This provides a basis for the resolution of the quantum measurement problem. An additional generic consequence of the collapse mechanism is that it causes particles to exhibit a tiny random diffusive motion. Furthermore, the diffusions of two sufficiently nearby particles are positively correlated -- it is more likely that the particles diffuse in the same direction than would happen if they behaved independently [PRA 89, 032713 (2014)]. The use of this effect is proposed as an experimental test of wave function collapse models in which pairs of nanoparticles are simultaneously released from nearby traps and allowed a brief period of free fall. The random displacements of the particles are then measured. The experiment must be carried out at sufficiently low temperature and pressure for the collapse effects to dominate over the ambient environmental noise. It is argued that these constraints can be satisfied by current technologies for a large class of viable wavefunction collapse models. Work supported by the Templeton World Charity Foundation.
Inertial collapse of bubble pairs near a solid surface
NASA Astrophysics Data System (ADS)
Alahyari Beig, Shahaboddin; Johnsen, Eric
2017-11-01
Cavitation occurs in a variety of applications ranging from naval structures to biomedical ultrasound. One important consequence is structural damage to neighboring surfaces following repeated inertial collapse of vapor bubbles. Although the mechanical loading produced by the collapse of a single bubble has been widely investigated, less is known about the detailed dynamics of the collapse of multiple bubbles. In such a problem, the bubble-bubble interactions typically affect the dynamics, e.g., by increasing the non-sphericity of the bubbles and amplifying/hindering the collapse intensity depending on the flow parameters. Here, we quantify the effects of bubble-bubble interactions on the bubble dynamics, as well as the pressures/temperatures produced by the collapse of a pair of gas bubbles near a rigid surface. We perform high-resolution simulations of this problem by solving the three-dimensional compressible Navier-Stokes equations for gas/liquid flows. The results are used to investigate the non-spherical bubble dynamics and characterize the pressure and temperature fields based on the relevant parameters entering the problem: stand-off distance, geometrical configuration (angle, relative size, distance), collapse strength. This research was supported in part by ONR Grant N00014-12-1-0751 and NSF Grant CBET 1253157.
Stress evolution during caldera collapse
NASA Astrophysics Data System (ADS)
Holohan, E. P.; Schöpfer, M. P. J.; Walsh, J. J.
2015-07-01
The mechanics of caldera collapse are subject of long-running debate. Particular uncertainties concern how stresses around a magma reservoir relate to fracturing as the reservoir roof collapses, and how roof collapse in turn impacts upon the reservoir. We used two-dimensional Distinct Element Method models to characterise the evolution of stress around a depleting sub-surface magma body during gravity-driven collapse of its roof. These models illustrate how principal stress orientations rotate during progressive deformation so that roof fracturing transitions from initial reverse faulting to later normal faulting. They also reveal four end-member stress paths to fracture, each corresponding to a particular location within the roof. Analysis of these paths indicates that fractures associated with ultimate roof failure initiate in compression (i.e. as shear fractures). We also report on how mechanical and geometric conditions in the roof affect pre-failure unloading and post-failure reloading of the reservoir. In particular, the models show how residual friction within a failed roof could, without friction reduction mechanisms or fluid-derived counter-effects, inhibit a return to a lithostatically equilibrated pressure in the magma reservoir. Many of these findings should be transferable to other gravity-driven collapse processes, such as sinkhole formation, mine collapse and subsidence above hydrocarbon reservoirs.
a Statistical Texture Feature for Building Collapse Information Extraction of SAR Image
NASA Astrophysics Data System (ADS)
Li, L.; Yang, H.; Chen, Q.; Liu, X.
2018-04-01
Synthetic Aperture Radar (SAR) has become one of the most important ways to extract post-disaster collapsed building information, due to its extreme versatility and almost all-weather, day-and-night working capability, etc. In view of the fact that the inherent statistical distribution of speckle in SAR images is not used to extract collapsed building information, this paper proposed a novel texture feature of statistical models of SAR images to extract the collapsed buildings. In the proposed feature, the texture parameter of G0 distribution from SAR images is used to reflect the uniformity of the target to extract the collapsed building. This feature not only considers the statistical distribution of SAR images, providing more accurate description of the object texture, but also is applied to extract collapsed building information of single-, dual- or full-polarization SAR data. The RADARSAT-2 data of Yushu earthquake which acquired on April 21, 2010 is used to present and analyze the performance of the proposed method. In addition, the applicability of this feature to SAR data with different polarizations is also analysed, which provides decision support for the data selection of collapsed building information extraction.
NASA Astrophysics Data System (ADS)
Teddy, Livian; Hardiman, Gagoek; Nuroji; Tudjono, Sri
2017-12-01
Indonesia is an area prone to earthquake that may cause casualties and damage to buildings. The fatalities or the injured are not largely caused by the earthquake, but by building collapse. The collapse of the building is resulted from the building behaviour against the earthquake, and it depends on many factors, such as architectural design, geometry configuration of structural elements in horizontal and vertical plans, earthquake zone, geographical location (distance to earthquake center), soil type, material quality, and construction quality. One of the geometry configurations that may lead to the collapse of the building is irregular configuration of non-parallel system. In accordance with FEMA-451B, irregular configuration in non-parallel system is defined to have existed if the vertical lateral force-retaining elements are neither parallel nor symmetric with main orthogonal axes of the earthquake-retaining axis system. Such configuration may lead to torque, diagonal translation and local damage to buildings. It does not mean that non-parallel irregular configuration should not be formed on architectural design; however the designer must know the consequence of earthquake behaviour against buildings with irregular configuration of non-parallel system. The present research has the objective to identify earthquake behaviour in architectural geometry with irregular configuration of non-parallel system. The present research was quantitative with simulation experimental method. It consisted of 5 models, where architectural data and model structure data were inputted and analyzed using the software SAP2000 in order to find out its performance, and ETAB2015 to determine the eccentricity occurred. The output of the software analysis was tabulated, graphed, compared and analyzed with relevant theories. For areas of strong earthquake zones, avoid designing buildings which wholly form irregular configuration of non-parallel system. If it is inevitable to design a building with building parts containing irregular configuration of non-parallel system, make it more rigid by forming a triangle module, and use the formula.A good collaboration is needed between architects and structural experts in creating earthquake architecture.
Search for core-collapse supernovae using the MiniBooNE neutrino detector
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Djurcic, Z.; Finley, D. A.; Fisher, M.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R. G.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.; MiniBooNE Collaboration
2010-02-01
We present a search for core-collapse supernovae in the Milky Way galaxy, using the MiniBooNE neutrino detector. No evidence is found for core-collapse supernovae occurring in our Galaxy in the period from December 14, 2004 to July 31, 2008, corresponding to 98% live time for collection. We set a limit on the core-collapse supernova rate out to a distance of 13.4 kpc to be less than 0.69 supernovae per year at 90% C.L.
NASA Astrophysics Data System (ADS)
Boudon, Georges; Villemant, Benoît; Friant, Anne Le; Paterne, Martine; Cortijo, Elsa
2013-08-01
Flank-collapse events are now recognized as common processes of destruction of volcanoes. They may occur several times on a volcanic edifice pulling out varying volumes of material from km3 to thousands of km3. In the Lesser Antilles Arc, a large number of flank-collapse events were identified. Here, we show that some of the largest events are correlated to significant variations in erupted magma compositions and eruptive styles. On Montagne Pelée (Martinique), magma production rate has been sustained during several thousand years following a 32 ka old flank-collapse event. Basic and dense magmas were emitted through open-vent eruptions that generated abundant scoria flows while significantly more acidic magmas were produced before the flank collapse. The rapid building of a new cone increased the load on magma bodies at depth and the density threshold. Magma production rate decreased and composition of the erupted products changed to more acidic compared to the preceding period of activity. These low density magma generated plinian and dome-forming eruptions up to the Present. In contrast at Soufrière Volcanic Centre of St. Lucia and at Pitons du Carbet in Martinique, the flank-collapses have an opposite effect: in both cases, the acidic magmas erupted immediately after the flank-collapses. These magmas are highly porphyritic (up to 60% phenocrysts) and much more viscous than the magmas erupted before the flank-collapses. They have been generally emplaced as voluminous and uptight lava domes (called “the Pitons”). Such magmas could not ascent without a significant decrease of the threshold effect produced by the volcanic edifice loading before the flank-collapse.
Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches.
Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac
2016-07-01
We provide detailed comparison between the adaptive mesh refinement (AMR) code enzo-2.4 and the smoothed particle hydrodynamics (SPH)/ N -body code gadget-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in gadget-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H 2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ∼ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, gadget-3 requires significantly larger computational resources than enzo-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regan, John A.; Johansson, Peter H.; Wise, John H., E-mail: john.regan@helsinki.fi
2014-11-10
The direct collapse model of supermassive black hole seed formation requires that the gas cools predominantly via atomic hydrogen. To this end we simulate the effect of an anisotropic radiation source on the collapse of a halo at high redshift. The radiation source is placed at a distance of 3 kpc (physical) from the collapsing object and is set to emit monochromatically in the center of the Lyman-Werner (LW) band. The LW radiation emitted from the high redshift source is followed self-consistently using ray tracing techniques. Due to self-shielding, a small amount of H{sub 2} is able to form atmore » the very center of the collapsing halo even under very strong LW radiation. Furthermore, we find that a radiation source, emitting >10{sup 54} (∼ 10{sup 3} J{sub 21}) photons s{sup –1}, is required to cause the collapse of a clump of M ∼ 10{sup 5} M {sub ☉}. The resulting accretion rate onto the collapsing object is ∼0.25 M {sub ☉} yr{sup –1}. Our results display significant differences, compared to the isotropic radiation field case, in terms of the H{sub 2} fraction at an equivalent radius. These differences will significantly affect the dynamics of the collapse. With the inclusion of a strong anisotropic radiation source, the final mass of the collapsing object is found to be M ∼ 10{sup 5} M {sub ☉}. This is consistent with predictions for the formation of a supermassive star or quasi-star leading to a supermassive black hole.« less
Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches
NASA Astrophysics Data System (ADS)
Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac
2016-07-01
We provide detailed comparison between the adaptive mesh refinement (AMR) code ENZO-2.4 and the smoothed particle hydrodynamics (SPH)/N-body code GADGET-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in GADGET-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ˜ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, GADGET-3 requires significantly larger computational resources than ENZO-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.
Cavitation erosion prediction based on analysis of flow dynamics and impact load spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihatsch, Michael S., E-mail: michael.mihatsch@aer.mw.tum.de; Schmidt, Steffen J.; Adams, Nikolaus A.
2015-10-15
Cavitation erosion is the consequence of repeated collapse-induced high pressure-loads on a material surface. The present paper assesses the prediction of impact load spectra of cavitating flows, i.e., the rate and intensity distribution of collapse events based on a detailed analysis of flow dynamics. Data are obtained from a numerical simulation which employs a density-based finite volume method, taking into account the compressibility of both phases, and resolves collapse-induced pressure waves. To determine the spectrum of collapse events in the fluid domain, we detect and quantify the collapse of isolated vapor structures. As reference configuration we consider the expansion ofmore » a liquid into a radially divergent gap which exhibits unsteady sheet and cloud cavitation. Analysis of simulation data shows that global cavitation dynamics and dominant flow events are well resolved, even though the spatial resolution is too coarse to resolve individual vapor bubbles. The inviscid flow model recovers increasingly fine-scale vapor structures and collapses with increasing resolution. We demonstrate that frequency and intensity of these collapse events scale with grid resolution. Scaling laws based on two reference lengths are introduced for this purpose. We show that upon applying these laws impact load spectra recorded on experimental and numerical pressure sensors agree with each other. Furthermore, correlation between experimental pitting rates and collapse-event rates is found. Locations of high maximum wall pressures and high densities of collapse events near walls obtained numerically agree well with areas of erosion damage in the experiment. The investigation shows that impact load spectra of cavitating flows can be inferred from flow data that captures the main vapor structures and wave dynamics without the need for resolving all flow scales.« less
NASA Astrophysics Data System (ADS)
Duperret, A.; Genter, A.; Daigneault, M.; Mortimore, R. N.
Coastal chalk cliffs exposed on each part of the English Channel suffer numerous collapses, with mean volumes varying between 10 000 and 100 000 cubic meters. Between October 1998 and October 2001, a minimum of 52 collapses have been ob- served along 120 km of the French chalk coastline located in Upper-Normandy and Picardy. The chalk coastline has evidenced 4 collapses in 1999 and 6 collapses in 2000 (winter and spring), whereas 28 collapses with volume greater than 1000 m3 was recorded in 2001 (winter, spring and summer). The increase of large-scale collapses during 2001 is interpreted as an excess of rainfalls recorded previously. Most of these collapses extend all over the vertical cliff height and are mainly controlled by ground- water infiltration. The modality of water circulation through the chalk rock depends on the chalk lithology and the hydrogeological properties of pre-existing fractures. In the framework of the European scientific project named ROCC (Risk of Cliff Col- lapse), the chalk lithology and the pre-existing fracture pattern have been investigated in order to determine the response of the rock mass to subaerial and marine solicita- tions, including rainfall conditions. Such data have been reported in a GIS system in order to determine the degree of cliff sensibility to collapses. Some rainfall-triggered collapses will be presented to illustrate the diversity of the rock mass response to rain- fall excess, in terms of rock mass characteristics and time delay: (1) a collapse was witnessed at Puys, the 17th May 2000, after two periods of intense rainfall inducing floods, during the two previous months. The occurrence of impervious marl seams levels within the chalk and its low fracture content may have generated water over- pressure and consequently stress concentration on the marl seams, which conduct to the rupture. The delay between rainfall and the rupture may be explained by the low velocity of groundwater through a poorly fractured porous chalk. (2) a series of large- scale collapses has been evidenced at Yport in June 2001, at Grandes Dalles the 15th July 2001 and at Benouville the 24th July 2001. These collapses occurred after a dry period, during the previous three months. A collapse occurred again at Yport the 27th August 2001, after an increase of rainfall during August 2001. All these sites present the same lithological chalk succession than at Puys, but their fracture pattern is made of large-scale subvertical fractures expanding all over the cliff height. Some of them 1 which correspond to dissolution pipes are filled with clays-with-flints. The sharp in- crease of collapses during the summer 2001 could be related to the superimposition of dry periods which alternate with heavy rainfalls, in karst environment. 2
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corpuz, A.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Loew, K.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, K. N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Santamaria, L.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-11-01
We present results from a search for gravitational-wave bursts coincident with two core-collapse supernovae observed optically in 2007 and 2011. We employ data from the Laser Interferometer Gravitational-wave Observatory (LIGO), the Virgo gravitational-wave observatory, and the GEO 600 gravitational-wave observatory. The targeted core-collapse supernovae were selected on the basis of (1) proximity (within approximately 15 Mpc), (2) tightness of observational constraints on the time of core collapse that defines the gravitational-wave search window, and (3) coincident operation of at least two interferometers at the time of core collapse. We find no plausible gravitational-wave candidates. We present the probability of detecting signals from both astrophysically well-motivated and more speculative gravitational-wave emission mechanisms as a function of distance from Earth, and discuss the implications for the detection of gravitational waves from core-collapse supernovae by the upgraded Advanced LIGO and Virgo detectors.
Rapid onset of mafic magmatism facilitated by volcanic edifice collapse
NASA Astrophysics Data System (ADS)
Cassidy, M.; Watt, S. F. L.; Talling, P. J.; Palmer, M. R.; Edmonds, M.; Jutzeler, M.; Wall-Palmer, D.; Manga, M.; Coussens, M.; Gernon, T.; Taylor, R. N.; Michalik, A.; Inglis, E.; Breitkreuz, C.; Le Friant, A.; Ishizuka, O.; Boudon, G.; McCanta, M. C.; Adachi, T.; Hornbach, M. J.; Colas, S. L.; Endo, D.; Fujinawa, A.; Kataoka, K. S.; Maeno, F.; Tamura, Y.; Wang, F.
2015-06-01
Volcanic edifice collapses generate some of Earth's largest landslides. How such unloading affects the magma storage systems is important for both hazard assessment and for determining long-term controls on volcano growth and decay. Here we present a detailed stratigraphic and petrological analyses of volcanic landslide and eruption deposits offshore Montserrat, in a subduction zone setting, sampled during Integrated Ocean Drilling Program Expedition 340. A large (6-10 km3) collapse of the Soufrière Hills Volcano at ~130 ka was followed by explosive basaltic volcanism and the formation of a new basaltic volcanic center, the South Soufrière Hills, estimated to have initiated <100 years after collapse. This basaltic volcanism was a sharp departure from the andesitic volcanism that characterized Soufrière Hills' activity before the collapse. Mineral-melt thermobarometry demonstrates that the basaltic magma's transit through the crust was rapid and from midcrustal depths. We suggest that this rapid ascent was promoted by unloading following collapse.
NASA Astrophysics Data System (ADS)
Galloway, D. L.
2012-12-01
Land-level lowering or land subsidence is a consequence of many local- and regional-scale physical, chemical or biologic processes affecting soils and geologic materials. The principal processes can be natural or anthropogenic, and include consolidation or compaction, karst or pseudokarst, hydrocompaction of collapsible soils, mining, oxidation of organic soils, erosive piping, tectonism, and volcanism. In terms of affected area, there are two principal regional-scale anthropogenic processes—compaction of compressible subsurface materials owing to the extraction of subsurface fluids (principally groundwater, oil and gas) and oxidation and compaction accompanying drainage of organic soils—which cause significant hazards related to flooding and infrastructure damage that are amenable to resource management measures. The importance of even small magnitude (< 10 mm/yr) subsidence rates in coastal areas is amplified by its contribution to relative sea-level rise compared to estimated rates of rising eustatic sea levels (2-3 mm/yr) attributed to global climate change. Multi- or interdisciplinary [scientific] studies, including those focused on geodetic, geologic, geophysical, hydrologic, hydrogeologic, geomechanical, geochemical, and biologic factors, improve understanding of these subsidence processes. Examples include geodetic measurement and analysis techniques, such as Global Positioning System (GPS), Light Detection and Ranging (LiDAR) and Interferometric Synthetic Aperture Radar (InSAR), which have advanced our capabilities to detect, measure and monitor land-surface motion at multiple scales. Improved means for simulating aquifer-system and hydrocarbon-reservoir deformation, and the oxidation and compaction of organic soils are leading to refined predictive capabilities. The role of interdisciplinary earth science in improving the characterization of land subsidence attributed to subsurface fluid withdrawals and the oxidation and compaction of organic soils is examined. How these improved capabilities are translating into improved sustainable management of regional land and water resources in a few select areas worldwide are presented. The importance of incorporating these improved capabilities in coherent resource management strategies to control the depletion of resources and attendant hazards also are discussed.
FAILURE OF A NEUTRINO-DRIVEN EXPLOSION AFTER CORE-COLLAPSE MAY LEAD TO A THERMONUCLEAR SUPERNOVA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kushnir, Doron; Katz, Boaz, E-mail: kushnir@ias.edu
We demonstrate that ∼10 s after the core-collapse of a massive star, a thermonuclear explosion of the outer shells is possible for some (tuned) initial density and composition profiles, assuming that the neutrinos failed to explode the star. The explosion may lead to a successful supernova, as first suggested by Burbidge et al. We perform a series of one-dimensional (1D) calculations of collapsing massive stars with simplified initial density profiles (similar to the results of stellar evolution calculations) and various compositions (not similar to 1D stellar evolution calculations). We assume that the neutrinos escaped with a negligible effect on themore » outer layers, which inevitably collapse. As the shells collapse, they compress and heat up adiabatically, enhancing the rate of thermonuclear burning. In some cases, where significant shells of mixed helium and oxygen are present with pre-collapsed burning times of ≲100 s (≈10 times the free-fall time), a thermonuclear detonation wave is ignited, which unbinds the outer layers of the star, leading to a supernova. The energy released is small, ≲10{sup 50} erg, and negligible amounts of synthesized material (including {sup 56}Ni) are ejected, implying that these 1D simulations are unlikely to represent typical core-collapse supernovae. However, they do serve as a proof of concept that the core-collapse-induced thermonuclear explosions are possible, and more realistic two-dimensional and three-dimensional simulations are within current computational capabilities.« less
Reversible Leaf Xylem Collapse: A Potential “Circuit Breaker” against Cavitation1[OPEN
Zhang, Yong-Jiang; Rockwell, Fulton E.; Graham, Adam C.; Alexander, Teressa; Holbrook, N. Michele
2016-01-01
We report a novel form of xylem dysfunction in angiosperms: reversible collapse of the xylem conduits of the smallest vein orders that demarcate and intrusively irrigate the areoles of red oak (Quercus rubra) leaves. Cryo-scanning electron microscopy revealed gradual increases in collapse from approximately −2 MPa down to −3 MPa, saturating thereafter (to −4 MPa). Over this range, cavitation remained negligible in these veins. Imaging of rehydration experiments showed spatially variable recovery from collapse within 20 s and complete recovery after 2 min. More broadly, the patterns of deformation induced by desiccation in both mesophyll and xylem suggest that cell wall collapse is unlikely to depend solely on individual wall properties, as mechanical constraints imposed by neighbors appear to be important. From the perspective of equilibrium leaf water potentials, petioles, whose vessels extend into the major veins, showed a vulnerability to cavitation that overlapped in the water potential domain with both minor vein collapse and buckling (turgor loss) of the living cells. However, models of transpiration transients showed that minor vein collapse and mesophyll capacitance could effectively buffer major veins from cavitation over time scales relevant to the rectification of stomatal wrong-way responses. We suggest that, for angiosperms, whose subsidiary cells give up large volumes to allow large stomatal apertures at the cost of potentially large wrong-way responses, vein collapse could make an important contribution to these plants’ ability to transpire near the brink of cavitation-inducing water potentials. PMID:27733514
Can a collapse of global civilization be avoided?
Ehrlich, Paul R.; Ehrlich, Anne H.
2013-01-01
Environmental problems have contributed to numerous collapses of civilizations in the past. Now, for the first time, a global collapse appears likely. Overpopulation, overconsumption by the rich and poor choices of technologies are major drivers; dramatic cultural change provides the main hope of averting calamity. PMID:23303549
Vibration Based Wind Turbine Tower Foundation Design Utilizing Soil-Foundation-Structure Interaction
NASA Astrophysics Data System (ADS)
Al Satari, P. E. Mohamed; Hussain, S. E. Saif
2008-07-01
Wind turbines have been used to generate electricity as an alternative energy source to conventional fossil fuels. This case study is for multiple wind towers located at different villages in Alaska where severe arctic weather conditions exist. The towers are supported by two different types of foundations; large mat or deep piles foundations. Initially, a Reinforced Concrete (RC) mat foundation was utilized to provide the system with vertical and lateral support. Where soil conditions required it, a pile foundation solution was devised utilizing a 30″ thick RC mat containing an embedded steel grillage of W18 beams supported by 20″-24″ grouted or un-grouted piles. The mixing and casting of concrete in-situ has become the major source of cost and difficulty of construction at these remote Alaska sites. An all-steel foundation was proposed for faster installation and lower cost, but was found to impact the natural frequencies of the structural system by significantly softening the foundation system. The tower-foundation support structure thus became near-resonant with the operational frequencies of the wind turbine leading to a likelihood of structural instability or even collapse. A detailed 3D Finite-Element model of the original tower-foundation-pile system with RC foundation was created using SAP2000. Soil springs were included in the model based on soil properties obtained from the geotechnical consultant. The natural frequency from the model was verified against the tower manufacturer analytical and the experimental values. Where piles were used, numerous iterations were carried out to eliminate the need for the RC and optimize the design. An optimized design was achieved with enough separation between the natural and operational frequencies to prevent damage to the structural system eliminating the need for any RC encasement to the steel foundation or grouting to the piles.
de la Rosa, José M; Paneque, Marina; Miller, Ana Z; Knicker, Heike
2014-11-15
Three pyrolysis biochars (B1: wood, B2: paper-sludge, B3: sewage-sludge) and one kiln-biochar (B4: grapevine wood) were characterized by determining different chemical and physical properties which were related to the germination rates and to the plant biomass production during a pot experiment of 79 days in which a Calcic Cambisol from SW Spain was amended with 10, 20 and 40 t ha(-1) of the four biochars. Biochar 1, B2 and B4 revealed comparable elemental composition, pH, water holding capacity and ash content. The H/C and O/C atomic ratios suggested high aromaticity of all biochars, which was confirmed by (13)C solid-state NMR spectroscopy. The FT-IR spectra confirmed the aromaticity of all the biochars as well as several specific differences in their composition. The FESEM-EDS distinguished compositional and structural differences of the studied biochars such as macropores on the surface of B1, collapsed structures in B2, high amount of mineral deposits (rich in Al, Si, Ca and Fe) and organic phases in B3 and vessel structures for B4. Biochar amendment improved germination rates and soil fertility (excepting for B4), and had no negative pH impact on the already alkaline soil. Application of B3, the richest in minerals and nitrogen, resulted in the highest soil fertility. In this case, increase of the dose went along with an enhancement of plant production. Considering costs due to production and transport of biochar, for all used chars with the exception of B3, the application of 10 t ha(-1) turned out as the most efficient for the crop and soil used in the present incubation experiment. Copyright © 2014 Elsevier B.V. All rights reserved.
Lévesque, Mathieu; Saurer, Matthias; Siegwolf, Rolf; Eilmann, Britta; Brang, Peter; Bugmann, Harald; Rigling, Andreas
2013-10-01
The ability of tree species to cope with anticipated decrease in water availability is still poorly understood. We evaluated the potential of Norway spruce, Scots pine, European larch, black pine, and Douglas-fir to withstand drought in a drier future climate by analyzing their past growth and physiological responses at a xeric and a mesic site in Central Europe using dendroecological methods. Earlywood, latewood, and total ring width, as well as the δ(13) C and δ(18) O in early- and latewood were measured and statistically related to a multiscalar soil water deficit index from 1961 to 2009. At the xeric site, δ(13) C values of all species were strongly linked to water deficits that lasted longer than 11 months, indicating a long-term cumulative effect on the carbon pool. Trees at the xeric site were particularly sensitive to soil water recharge in the preceding autumn and early spring. The native species European larch and Norway spruce, growing close to their dry distribution limit at the xeric site, were found to be the most vulnerable species to soil water deficits. At the mesic site, summer water availability was critical for all species, whereas water availability prior to the growing season was less important. Trees at the mesic were more vulnerable to water deficits of shorter duration than the xeric site. We conclude that if summers become drier, trees growing on mesic sites will undergo significant growth reductions, whereas at their dry distribution limit in the Alps, tree growth of the highly sensitive spruce and larch may collapse, likely inducing dieback and compromising the provision of ecosystem services. However, the magnitude of these changes will be mediated strongly by soil water recharge in winter and thus water availability at the beginning of the growing season. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Allen, C. D.
2006-12-01
In 1993 long-term research began on the runoff and erosion dynamics of a pinyon-juniper woodland hillslope at Bandelier National Monument in northern New Mexico (USA). In the 1.09 ha Frijolito watershed, erosion has been continuously studied at 3 spatial scales: 1 square meter, about 1000 square meters, and the entire watershed. This site is currently representative of degraded woodlands of pinyon (Pinus edulis) and one-seed juniper (Juniperus monosperma) in this region, exhibiting marked connectivity of exposed bare soil interspaces between tree canopy patches and obvious geomorphic signs of accelerated soil erosion (e.g., pedestalling, actively expanding rill networks). Ecological and land use histories show that this site has undergone a number of dramatic ecohydrological shifts since ca. C.E. 1850, transitioning from: 1) open ponderosa pine (Pinus ponderosa) overstory with limited pinyon-juniper component and substantial herbaceous understory that supported surface fires and constrained soil erosion, to; 2) ponderosa pine with reduced herbaceous cover due to livestock grazing after ca.1870, resulting in collapse of the surface fire regime and increased establishment of young pinyon and juniper trees, to; 3) mortality of all of the ponderosa pine during the extreme drought of the 1950s, leaving eroding pinyon-juniper woodland, to; 4) mortality of all mature pinyon at or above sapling size during the 2002-2003 drought, with juniper now the only dominant woody species. Detailed measurements since 1993 document high rates of soil erosion (> 2.75 Mg/ha/year on average at the watershed scale) that are rapidly stripping the local soils. Long-term observations are needed to distinguish short-term variability from longer term trends, as measurements of runoff and erosion show extreme variability at multiple time scales since 1993. The multi-scale erosion data from the Frijolito watershed reveal little dropoff in erosion rate (g/meter-squared) between the one meter-square scale and the 1.09 ha scale, in sharp contrast to the expected pattern observed at a nearby (7 km) relatively stable woodland watershed (cf. Wilcox et al. 2003). These results have important implications for modeling of soil erosion, highlighting the importance of including long-term field data and ecohydrological factors, particularly spatial patterns of canopy and intercanopy surface cover that are key determinants of scale-dependent erosion rates.
Mass movements and infiltration on abandoned terraces in the Iberian Range, Northern Spain
NASA Astrophysics Data System (ADS)
Arnáez, José; Lana-Renault, Noemí; Ruiz-Flaño, Purificación; Pascual, Nuria; Lasanta, Teodoro
2017-04-01
Terraced slopes were one of the most common agricultural landscapes in mountain areas of the Mediterranean region. Built to ensure agricultural production, terraces have acted as an effective soil conservation system at both slope and catchment scale. Demographic and socioeconomic changes in the last 60 years in the Mediterranean mountains have led to the abandonment of terraces. The consequent lack of maintenance of such agricultural structures has triggered diverse erosion processes. At the beginning of the 20th century, the upper valleys of the Leza, Jubera and Cidacos rivers, in the Iberian range (northern Spain), held more than 10,000 inhabitants and a cultivated area of 21,021 ha, of which 13,274 ha were farming terraces (63% of the agricultural space). At present, these terraces are abandoned. The most common erosion processes on the walls of abandoned terraces are stone collapses, which leave the riser completely unprotected, and small mass movements. A total amount of 240 terrace failures with mass movement were identified in the 53 studied plots, which means an average number of 4.5 per plot and 10.6 per 100 m of wall. At plot scale, the average volume of debris was 15.1 m3 (33.1 m3 for every 100 m of wall). Soil infiltration capacity and the way the water flows downslope may be the main triggers for mass movements. Rainfall simulations carried out in the study area showed an average infiltration coefficient above 75%. Infiltration coefficients were higher on concave hillslopes (above 85%), probably because the plots in these sectors were intensively tilled in the past, with plowed and permeable anthropogenic soils. The infiltrated water becomes a destabilizing factor for the terrace wall. The lack of deep percolation due to a more impermeable substrate (e.g., the original soil of the slope) favours the accumulation of water within the artificial soil, behind the stone wall. The increasing weight of the material can cause the activation of mass movements. The information obtained can be useful to identify the sectors prone to soil erosion due to terrace failure, and thus help to preserve terraces more efficiently. Acknowledgement This research was supported by the ESPAS project (CGL2015-65569-R, funded by the MINECO-FEDER)
Nonspherically Symmetric Collapse in Asymptotically AdS Spacetimes.
Bantilan, Hans; Figueras, Pau; Kunesch, Markus; Romatschke, Paul
2017-11-10
We numerically simulate gravitational collapse in asymptotically anti-de Sitter spacetimes away from spherical symmetry. Starting from initial data sourced by a massless real scalar field, we solve the Einstein equations with a negative cosmological constant in five spacetime dimensions and obtain a family of nonspherically symmetric solutions, including those that form two distinct black holes on the axis. We find that these configurations collapse faster than spherically symmetric ones of the same mass and radial compactness. Similarly, they require less mass to collapse within a fixed time.
Recoverable and Programmable Collapse from Folding Pressurized Origami Cellular Solids.
Li, S; Fang, H; Wang, K W
2016-09-09
We report a unique collapse mechanism by exploiting the negative stiffness observed in the folding of an origami solid, which consists of pressurized cells made by stacking origami sheets. Such a collapse mechanism is recoverable, since it only involves rigid folding of the origami sheets and it is programmable by pressure control and the custom design of the crease pattern. The collapse mechanism features many attractive characteristics for applications such as energy absorption. The reported results also suggest a new branch of origami study focused on its nonlinear mechanics associated with folding.
Biological effects of stellar collapse neutrinos
Collar, J I
1996-02-05
Massive stars in their final stages of collapse radiate most of their binding energy in the form of MeV neutrinos. The recoil atoms that they produce in elastic scattering off nuclei in organic tissue create radiation damage which is highly effective in the production of irreparable DNA harm, leading to cellular mutation, neoplasia, and oncogenesis. Using a conventional model of the galaxy and of the collapse mechanism, the periodicity of nearby stellar collapses and the radiation dose are calculated. The possible contribution of this process to the paleontological record of mass extinctions is examined.
Benefits of Objective Collapse Models for Cosmology and Quantum Gravity
NASA Astrophysics Data System (ADS)
Okon, Elias; Sudarsky, Daniel
2014-02-01
We display a number of advantages of objective collapse theories for the resolution of long-standing problems in cosmology and quantum gravity. In particular, we examine applications of objective reduction models to three important issues: the origin of the seeds of cosmic structure, the problem of time in quantum gravity and the information loss paradox; we show how reduction models contain the necessary tools to provide solutions for these issues. We wrap up with an adventurous proposal, which relates the spontaneous collapse events of objective collapse models to microscopic virtual black holes.
Nonspherically Symmetric Collapse in Asymptotically AdS Spacetimes
NASA Astrophysics Data System (ADS)
Bantilan, Hans; Figueras, Pau; Kunesch, Markus; Romatschke, Paul
2017-11-01
We numerically simulate gravitational collapse in asymptotically anti-de Sitter spacetimes away from spherical symmetry. Starting from initial data sourced by a massless real scalar field, we solve the Einstein equations with a negative cosmological constant in five spacetime dimensions and obtain a family of nonspherically symmetric solutions, including those that form two distinct black holes on the axis. We find that these configurations collapse faster than spherically symmetric ones of the same mass and radial compactness. Similarly, they require less mass to collapse within a fixed time.
Radiating gravitational collapse with shearing motion and bulk viscosity
NASA Astrophysics Data System (ADS)
Chan, R.
2001-03-01
A model is proposed of a collapsing radiating star consisting of a shearing fluid with bulk viscosity undergoing radial heat flow with outgoing radiation. The pressure of the star, at the beginning of the collapse, is isotropic but due to the presence of the bulk viscosity the pressure becomes more and more anisotropic. The behavior of the density, pressure, mass, luminosity, the effective adiabatic index and the Kretschmann scalar is analyzed. Our work is compared to the case of a collapsing shearing fluid of a previous model, for a star with 6 Msun.
Radiating gravitational collapse with shear viscosity
NASA Astrophysics Data System (ADS)
Chan, R.
2000-08-01
A model is proposed of a collapsing radiating star consisting of an isotropic fluid with shear viscosity undergoing radial heat flow with outgoing radiation. The pressure of the star, at the beginning of the collapse, is isotropic but owing to the presence of the shear viscosity the pressure becomes more and more anisotropic. The behaviour of the density, pressure, mass, luminosity and the effective adiabatic index is analysed. Our work is compared to the case of a collapsing shearing fluid of a previous model, for a star with 6Msolar.
Particle creation in (2+1) circular dust collapse
NASA Astrophysics Data System (ADS)
Gutti, Sashideep; Singh, T. P.
2007-09-01
We investigate the quantum particle creation during the circularly symmetric collapse of a 2+1 dust cloud, for the cases when the cosmological constant is either zero or negative. We derive the Ford-Parker formula for the 2+1 case, which can be used to compute the radiated quantum flux in the geometric optics approximation. It is shown that no particles are created when the collapse ends in a naked singularity, unlike in the 3+1 case. When the collapse ends in a Banados-Teitelboim-Zanelli black hole, we recover the expected Hawking radiation.
Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy
NASA Astrophysics Data System (ADS)
Kilburn, Christopher R. J.; Petley, David N.
2003-08-01
Rapid, giant landslides, or sturzstroms, are among the most powerful natural hazards on Earth. They have minimum volumes of ˜10 6-10 7 m 3 and, normally preceded by prolonged intervals of accelerating creep, are produced by catastrophic and deep-seated slope collapse (loads ˜1-10 MPa). Conventional analyses attribute rapid collapse to unusual mechanisms, such as the vaporization of ground water during sliding. Here, catastrophic collapse is related to self-accelerating rock fracture, common in crustal rocks at loads ˜1-10 MPa and readily catalysed by circulating fluids. Fracturing produces an abrupt drop in resisting stress. Measured stress drops in crustal rock account for minimum sturzstrom volumes and rapid collapse accelerations. Fracturing also provides a physical basis for quantitatively forecasting catastrophic slope failure.
The shadow of a collapsing dark star
NASA Astrophysics Data System (ADS)
Schneider, Stefanie; Perlick, Volker
2018-06-01
The shadow of a black hole is usually calculated, either analytically or numerically, on the assumption that the black hole is eternal, i.e., that it has existed for all time. Here we ask the question of how this shadow comes about in the course of time when a black hole is formed by gravitational collapse. To that end we consider a star that is spherically symmetric, dark and non-transparent and we assume that it begins, at some instant of time, to collapse in free fall like a ball of dust. We analytically calculate the dependence on time of the angular radius of the shadow, first for a static observer who is watching the collapse from a certain distance and then for an observer who is falling towards the centre following the collapsing star.
Intracapsular implant rupture: MR findings of incomplete shell collapse.
Soo, M S; Kornguth, P J; Walsh, R; Elenberger, C; Georgiade, G S; DeLong, D; Spritzer, C E
1997-01-01
The objective of this study was to determine the frequency and significance of the MR findings of incomplete shell collapse for detecting implant rupture in a series of surgically removed breast prostheses. MR images of 86 breast implants in 44 patients were studied retrospectively and correlated with surgical findings at explantation. MR findings included (a) complete shell collapse (linguine sign), 21 implants; (b) incomplete shell collapse (subcapsular line sign, teardrop sign, and keyhole sign), 33 implants; (c) radial folds, 31 implants; and (d) normal, 1 implant. The subcapsular line sign was seen in 26 implants, the teardrop sign was seen in 27 implants, and the keyhole sign was seen in 23 implants. At surgery, 48 implants were found to be ruptured and 38 were intact. The MR findings of ruptured implants showed signs of incomplete collapse in 52% (n = 25), linguine sign in 44% (n = 21), and radial folds in 4% (n = 2). The linguine sign perfectly predicted implant rupture, but sensitivity was low. Findings of incomplete shell collapse improved sensitivity and negative predictive values, and the subcapsular line sign produced a significant incremental increase in predictive ability. MRI signs of incomplete shell collapse were more common than the linguine sign in ruptured implants and are significant contributors to the high sensitivity and negative predictive values of MRI for evaluating implant integrity.
Gravitational waves and core-collapse supernovae
NASA Astrophysics Data System (ADS)
Bisnovatyi-Kogan, G. S.; Moiseenko, S. G.
2017-11-01
A mechanism of formation of gravitational waves in the Universe is considered for a nonspherical collapse of matter. Nonspherical collapse results are presented for a uniform spheroid of dust and a finite-entropy spheroid. Numerical simulation results on core-collapse supernova explosions are presented for the neutrino and magneto-rotational models. These results are used to estimate the dimensionless amplitude of the gravitational wave with a frequency ν ~ 1300 Hz, radiated during the collapse of the rotating core of a pre-supernova with a mass of 1.2 M⊙ (calculated by the authors in 2D). This estimate agrees well with many other calculations (presented in this paper) that have been done in 2D and 3D settings and which rely on more exact and sophisticated calculations of the gravitational wave amplitude. The formation of the large-scale structure of the Universe in the Zel’dovich pancake model involves the emission of very long-wavelength gravitational waves. The average amplitude of these waves is calculated from the simulation, in the uniform spheroid approximation, of the nonspherical collapse of noncollisional dust matter, which imitates dark matter. It is noted that a gravitational wave radiated during a core-collapse supernova explosion in our Galaxy has a sufficient amplitude to be detected by existing gravitational wave telescopes.
NASA Astrophysics Data System (ADS)
Shi, Chun-Hui; Lou, Yu-Qing
2018-04-01
We investigate and explore self-similar dynamic radial collapses of relativistic degenerate stellar cores (RDSCs) and radiation pressure dominated stellar interiors (RPDSIs) of spherical symmetry by invoking a conventional polytropic (CP) equation of state (EoS) with a constant polytropic index γ = 4 / 3 and by allowing free-fall non-zero RDSC or RPDSI surface mass density and pressure due to their sustained physical contact with the outer surrounding stellar envelopes also in contraction. Irrespective of the physical triggering mechanisms (including, e.g., photodissociation, electron-positron pair instability, general relativistic instability etc.) for initiating such a self-similar dynamically collapsing RDSC or RPDSI embedded within a massive star, a very massive star (VMS) or a supermassive star (SMS) in contraction and by comparing with the Schwarzschild radii associated with their corresponding RDSC/RPDSI masses, the emergence of central black holes in a wide mass range appears inevitable during such RDSC/RPDSI dynamic collapses inside massive stars, VMSs, and SMSs, respectively. Radial pulsations of progenitor cores or during a stellar core collapse may well leave imprints onto collapsing RDSCs/RPDSIs towards their self-similar dynamic evolution. Massive neutron stars may form during dynamic collapses of RDSC inside massive stars in contraction under proper conditions.
Fishing, fast growth and climate variability increase the risk of collapse
Pinsky, Malin L.; Byler, David
2015-01-01
Species around the world have suffered collapses, and a key question is why some populations are more vulnerable than others. Traditional conservation biology and evidence from terrestrial species suggest that slow-growing populations are most at risk, but interactions between climate variability and harvest dynamics may alter or even reverse this pattern. Here, we test this hypothesis globally. We use boosted regression trees to analyse the influences of harvesting, species traits and climate variability on the risk of collapse (decline below a fixed threshold) across 154 marine fish populations around the world. The most important factor explaining collapses was the magnitude of overfishing, while the duration of overfishing best explained long-term depletion. However, fast growth was the next most important risk factor. Fast-growing populations and those in variable environments were especially sensitive to overfishing, and the risk of collapse was more than tripled for fast-growing when compared with slow-growing species that experienced overfishing. We found little evidence that, in the absence of overfishing, climate variability or fast growth rates alone drove population collapse over the last six decades. Expanding efforts to rapidly adjust harvest pressure to account for climate-driven lows in productivity could help to avoid future collapses, particularly among fast-growing species. PMID:26246548
Fishing, fast growth and climate variability increase the risk of collapse.
Pinsky, Malin L; Byler, David
2015-08-22
Species around the world have suffered collapses, and a key question is why some populations are more vulnerable than others. Traditional conservation biology and evidence from terrestrial species suggest that slow-growing populations are most at risk, but interactions between climate variability and harvest dynamics may alter or even reverse this pattern. Here, we test this hypothesis globally. We use boosted regression trees to analyse the influences of harvesting, species traits and climate variability on the risk of collapse (decline below a fixed threshold) across 154 marine fish populations around the world. The most important factor explaining collapses was the magnitude of overfishing, while the duration of overfishing best explained long-term depletion. However, fast growth was the next most important risk factor. Fast-growing populations and those in variable environments were especially sensitive to overfishing, and the risk of collapse was more than tripled for fast-growing when compared with slow-growing species that experienced overfishing. We found little evidence that, in the absence of overfishing, climate variability or fast growth rates alone drove population collapse over the last six decades. Expanding efforts to rapidly adjust harvest pressure to account for climate-driven lows in productivity could help to avoid future collapses, particularly among fast-growing species. © 2015 The Author(s).
Shock-induced collapse of a gas bubble in shockwave lithotripsy.
Johnsen, Eric; Colonius, Tim
2008-10-01
The shock-induced collapse of a pre-existing nucleus near a solid surface in the focal region of a lithotripter is investigated. The entire flow field of the collapse of a single gas bubble subjected to a lithotripter pulse is simulated using a high-order accurate shock- and interface-capturing scheme, and the wall pressure is considered as an indication of potential damage. Results from the computations show the same qualitative behavior as that observed in experiments: a re-entrant jet forms in the direction of propagation of the pulse and penetrates the bubble during collapse, ultimately hitting the distal side and generating a water-hammer shock. As a result of the propagation of this wave, wall pressures on the order of 1 GPa may be achieved for bubbles collapsing close to the wall. The wall pressure decreases with initial stand-off distance and pulse width and increases with pulse amplitude. For the stand-off distances considered in the present work, the wall pressure due to bubble collapse is larger than that due to the incoming shockwave; the region over which this holds may extend to ten initial radii. The present results indicate that shock-induced collapse is a mechanism with high potential for damage in shockwave lithotripsy.
Shock-induced collapse of a gas bubble in shockwave lithotripsy
Johnsen, Eric; Colonius, Tim
2008-01-01
The shock-induced collapse of a pre-existing nucleus near a solid surface in the focal region of a lithotripter is investigated. The entire flow field of the collapse of a single gas bubble subjected to a lithotripter pulse is simulated using a high-order accurate shock- and interface-capturing scheme, and the wall pressure is considered as an indication of potential damage. Results from the computations show the same qualitative behavior as that observed in experiments: a re-entrant jet forms in the direction of propagation of the pulse and penetrates the bubble during collapse, ultimately hitting the distal side and generating a water-hammer shock. As a result of the propagation of this wave, wall pressures on the order of 1 GPa may be achieved for bubbles collapsing close to the wall. The wall pressure decreases with initial stand-off distance and pulse width and increases with pulse amplitude. For the stand-off distances considered in the present work, the wall pressure due to bubble collapse is larger than that due to the incoming shockwave; the region over which this holds may extend to ten initial radii. The present results indicate that shock-induced collapse is a mechanism with high potential for damage in shockwave lithotripsy. PMID:19062841
Preliminary Seismological Report on the 6 August 2007 Crandall Canyon Mine Collapse in Utah
NASA Astrophysics Data System (ADS)
Pechmann, J. C.; Arabasz, W. J.; Pankow, K. L.; Burlacu, R.; McCarter, M. K.
2007-12-01
A large and tragic collapse occurred in the Crandall Canyon coal mine in east-central Utah on 6 Aug 2007, causing the loss of six miners and generating national attention. This collapse was accompanied by a local magnitude (ML) 3.9 seismic event having an origin time of 2:48 am MDT (8:48 UTC) and a location near the collapse. Two lines of evidence indicate that most of the seismic wave energy of this event was generated by the mine collapse rather than an earthquake: (1) the observation that all of the P-wave first motion directions are down and (2) the results of a moment tensor inversion by Ford et al. (2007; http://seismo.berkeley.edu/seismo/Homepage.html). The Crandall Canyon mine is in an area of Utah where there is abundant mining-induced seismicity, including events with both collapse and shear-slip sources. Prior to the 6 Aug collapse, and within a 3 km radius of it, there were 28 seismic events during 2007 that were large enough to be detected and located as part of the routine processing of University of Utah regional seismic network data: 8 in the 2.5-week period prior to the collapse (ML ≤ 1.9) and 15 during an earlier period of activity in late February and early March (ML ≤ 1.8). The 6 Aug collapse was followed by 37 locatable seismic events of ML ≤ 2.2 before the end of August. One of these "aftershocks" (ML 1.6) occurred in conjunction with the violent burst of coal from the mine walls on 17 Aug (UTC) that killed three rescuers. The aftershocks have an exponential frequency-magnitude distribution with a lower ratio between the frequencies of smaller- and larger-magnitude events (lower b-value) than for the prior events in the area. Aftershock rates generally decreased with time through August but there was a noteworthy 5.8-day hiatus in activity that began 37 hours after the collapse. The University of Utah deployed a 5-station temporary network near the mine beginning on 8 Aug. Data from these stations are being used to help develop travel-time corrections for these and other stations in order to improve the computed locations of seismic events that occurred in the area both before and after the 6 Aug collapse.
Mine Waste at The Kherzet Youcef Mine : Environmental Characterization
NASA Astrophysics Data System (ADS)
Issaad, Mouloud; Boutaleb, Abdelhak; Kolli, Omar
2017-04-01
Mining activity in Algeria has existed since antiquity. But it was very important since the 20th century. This activity has virtually ceased since the beginning of the 1990s, leaving many mine sites abandoned (so-called orphan mines). The abandonment of mining today poses many environmental problems (soil pollution, contamination of surface water, mining collapses...). The mining wastes often occupy large volumes that can be hazardous to the environment and human health, often neglected in the past: Faulting geotechnical implementation, acid mine drainage (AMD), alkalinity, presence of pollutants and toxic substances (heavy metals, cyanide...). The study started already six years ago and it covers all mines located in NE Algeria, almost are stopped for more than thirty years. So the most important is to have an overview of all the study area. After the inventory job of the abandoned mines, the rock drainage prediction will help us to classify sites according to their acid generating potential.
Bonachela, Juan A; Pringle, Robert M; Sheffer, Efrat; Coverdale, Tyler C; Guyton, Jennifer A; Caylor, Kelly K; Levin, Simon A; Tarnita, Corina E
2015-02-06
Self-organized spatial vegetation patterning is widespread and has been described using models of scale-dependent feedback between plants and water on homogeneous substrates. As rainfall decreases, these models yield a characteristic sequence of patterns with increasingly sparse vegetation, followed by sudden collapse to desert. Thus, the final, spot-like pattern may provide early warning for such catastrophic shifts. In many arid ecosystems, however, termite nests impart substrate heterogeneity by altering soil properties, thereby enhancing plant growth. We show that termite-induced heterogeneity interacts with scale-dependent feedbacks to produce vegetation patterns at different spatial grains. Although the coarse-grained patterning resembles that created by scale-dependent feedback alone, it does not indicate imminent desertification. Rather, mound-field landscapes are more robust to aridity, suggesting that termites may help stabilize ecosystems under global change. Copyright © 2015, American Association for the Advancement of Science.
Distributed optical fibre sensing for early detection of shallow landslides triggering.
Schenato, Luca; Palmieri, Luca; Camporese, Matteo; Bersan, Silvia; Cola, Simonetta; Pasuto, Alessandro; Galtarossa, Andrea; Salandin, Paolo; Simonini, Paolo
2017-10-31
A distributed optical fibre sensing system is used to measure landslide-induced strains on an optical fibre buried in a large scale physical model of a slope. The fibre sensing cable is deployed at the predefined failure surface and interrogated by means of optical frequency domain reflectometry. The strain evolution is measured with centimetre spatial resolution until the occurrence of the slope failure. Standard legacy sensors measuring soil moisture and pore water pressure are installed at different depths and positions along the slope for comparison and validation. The evolution of the strain field is related to landslide dynamics with unprecedented resolution and insight. In fact, the results of the experiment clearly identify several phases within the evolution of the landslide and show that optical fibres can detect precursory signs of failure well before the collapse, paving the way for the development of more effective early warning systems.
Sequential Determination of U and Th Decay Series in Santana Cave, Southwest Brazil
NASA Astrophysics Data System (ADS)
Silva, P. S. C.; Damatto, S. R.; Mazzilli, B. P.
2008-08-01
Parque Estadual Turístico do Alto Ribeira (PETAR) is located in the South-western part of São Paulo State, in the Ribeira Valley. In this national state park a large number of caves are found, which are among the most visited of the country. These caves, located in a karstic zone, are characterized by the presence of carbonaceous rocks frequently fractured and collapsed. Although, carbonates (dolomites and calcitic rocks) usually have low U content, this element can be found in the structure of the surrounding rocks. This paper aims to determine 238U, 234U, 226Ra and 210Pb concentration in samples of rock, soil, river water and sediment, in Santana cave. The radionuclide 238U was determined by alpha spectrometry using a surface barrier detector. 226Ra and 210Pb were determined by measuring the gross alpha and beta activity on a gas flow proportional counter.
NASA Astrophysics Data System (ADS)
Zgonnik, Viacheslav; Beaumont, Valérie; Deville, Eric; Larin, Nikolay; Pillot, Daniel; Farrell, Kathleen M.
2015-12-01
A study of soil gases was made in North Carolina (USA) in and around morphological depressions called "Carolina bays." This type of depression is observed over the Atlantic coastal plains of the USA, but their origin remains debated. Significant concentrations of molecular hydrogen (H2) were detected, notably around the bays. These measurements suggest that Carolina bays are the surficial expression of fluid flow pathways for hydrogen gas moving from depth to the surface. The potential mechanisms of H2 production and transport and the geological controls on the fluid migration pathways are discussed, with reference to the hypothesis that Carolina bays are the result of local collapses caused by the alteration of rock along the deep pathways of H2 migrating towards the surface. The present H2 seepages are comparable to those in similar structures previously observed in the East European craton.
Ecological risks of Aluminum production and contaminated area by red mud in Western Hungary (Ajka)
NASA Astrophysics Data System (ADS)
Rasulov, Oqil; Horváth, Adrienn; Bidló, András; Winkler, Dániel
2016-04-01
In October 2010, Hungary experienced one of the most severe environmental disasters: the dam wall of a red mud depository of an alumina plant in collapsed and more than 1 million m3 of toxic sludge flooded the surrounding area. Red mud is a strongly alkaline (pH of 9-12.5) by-product due to the high NaOH content. Apart from residual minerals and oxides, its components also include heavy metals such as Cu, Zn, Cd, Hg, Pb, Ni, Co. As it has already been assessed, red mud had considerable effect on soil properties and thus on soil biodiversity. The aim of our study was to determine the aftereffects of red mud pollution on the soil mesofauna (Collembola). Study plots were selected in the area affected by the toxic flood, in agricultural and grassland habitats, at different distances (0.3 to 12.5 km) from the contamination source. Control plots of each habitat types were selected for comparative analyses. Soil samples were taken during the summer of 2015, five years after the red mud disaster. From each of the selected plots, 5 soil cores of 100 cm3 volume (3.6 cm in diameter and 10 cm in depth) were sampled from which springtails were extracted within 14 days using a modified Tullgren apparatus. Simultaneously with the Collembola sampling, we collected soil samples on each plots in order to determine soil properties (pH, CaCO3, particle size distribution) and the degree of heavy metal pollution. 25 heavy metals were measured (including total Hg) following the method of total (cc. HNO3 + H2O2-soluble) and bioavailable (NH4-acetate + EDTA-soluble) element content using ICP-OES and AMA 254. The studied habitats presented neutral to moderately alkaline soils (pH 7.2-8.1). Total metal content was higher in the plots formerly affected by red mud flood. The Hg concentration ranged from 0.023 to 1.167 mg.kg-1, exceeding the threshold concentration (0.5 mg.kg-1) defined by Hungarian legislation for toxic trace metals in soil. The collected 1442 Collembola specimens belong to 32 species. Species richness and diversity were the highest in the uncontaminated grassland plots. Abundance was the lowest in the polluted and intensively managed agricultural plots (1167±433 ind./m2), while the most abundant community was found the control grassland plots reaching 10233±1567 ind./m2. Community structure comparison was estimated using cluster analysis based on the Bray-Curtis index, which well emphasises the difference between the habitat types, as well as the separation of the polluted and control sites. CCA analysis revealed that the most sensitive species to the red mud pollution and thus to the increased heavy metal concentration were Mesaphorura macrochaeta and Sminthurinus elegans, while Brachystomella parvula and most Protaphorura spp. appeared to be more tolerant to the changed soil conditions.
Bubble Proliferation in Shock Wave Lithotripsy Occurs during Inertial Collapse
NASA Astrophysics Data System (ADS)
Pishchalnikov, Yuri A.; McAteer, James A.; Pishchalnikova, Irina V.; Williams, James C.; Bailey, Michael R.; Sapozhnikov, Oleg A.
2008-06-01
In shock wave lithotripsy (SWL), firing shock pulses at slow pulse repetition frequency (0.5 Hz) is more effective at breaking kidney stones than firing shock waves (SWs) at fast rate (2 Hz). Since at fast rate the number of cavitation bubbles increases, it appears that bubble proliferation reduces the efficiency of SWL. The goal of this work was to determine the basis for bubble proliferation when SWs are delivered at fast rate. Bubbles were studied using a high-speed camera (Imacon 200). Experiments were conducted in a test tank filled with nondegassed tap water at room temperature. Acoustic pulses were generated with an electromagnetic lithotripter (DoLi-50). In the focus of the lithotripter the pulses consisted of a ˜60 MPa positive-pressure spike followed by up to -8 MPa negative-pressure tail, all with a total duration of about 7 μs. Nonlinear propagation steepened the shock front of the pulses to become sufficiently thin (˜0.03 μm) to impose differential pressure across even microscopic bubbles. High-speed camera movies showed that the SWs forced preexisting microbubbles to collapse, jet, and break up into daughter bubbles, which then grew rapidly under the negative-pressure phase of the pulse, but later coalesced to re-form a single bubble. Subsequent bubble growth was followed by inertial collapse and, usually, rebound. Most, if not all, cavitation bubbles emitted micro-jets during their first inertial collapse and re-growth. After jetting, these rebounding bubbles could regain a spherical shape before undergoing a second inertial collapse. However, either upon this second inertial collapse, or sometimes upon the first inertial collapse, the rebounding bubble emerged from the collapse as a cloud of smaller bubbles rather than a single bubble. These daughter bubbles could continue to rebound and collapse for a few cycles, but did not coalesce. These observations show that the positive-pressure phase of SWs fragments preexisting bubbles but this initial fragmentation does not yield bubble proliferation, as the daughter bubbles coalesce to reform a single bubble. Instead, bubble proliferation is the product of the subsequent inertial collapses.
Basic processes and factors determining the evolution of collapse sinkholes: a sensitivity study
NASA Astrophysics Data System (ADS)
Romanov, Douchko; Kaufmann, Georg
2017-04-01
Collapse sinkholes appear as closed depressions at the surface. The origin of these karst features is related to the continuous dissolution of the soluble rock caused by a focussed sub-surface flow. Water flowing along a preferential pathway through fissures and fractures within the phreatic part of a karst aquifer is able to dissolve the rock (limestone, gypsum, anhydrite). With time, the dissolved void volume increases and part of the ceiling above the stream can become unstable, collapses, and accumulates as debris in the flow path. The debris partially blocks the flow and thus activates new pathways. Because of the low compaction of the debris (high hydraulic conductivity), the flow and the dissolution rates within this crushed zone remain high. This allows a relatively fast dissolutional and erosional removal of the crushed material and the development of new empty voids. The void volume expands upwards towards the surface until a collapse sinkhole is formed. The collapse sinkholes exhibit a large variety of shapes (cylindrical, cone-, bowl-shaped), depths (from few to few hundred meters) and diameters (meters up to hundreds of meters). Two major processes are responsible for this diversity: a) the karst evolution of the aquifer - responsible for the dissolutional and erosional removal of material; b) the mechanical evolution of the host rock and the existence of structural features, faults for example, which determine the stability and the magnitude of the subsequent collapses. In this work we demonstrate the influence of the host rock type, the hydrological and geological boundary conditions, the chemical composition of the flowing water, and the geometry and the scale of the crushed zone, on the location and the evolution of the growing sinkhole. We demonstrate the ability of the karst evolution models to explain, at least qualitatively, the growth and the morphology of the collapse sinkholes and to roughly predict their shape and location. Implementing simple rules that describe the mechanical collapse, we come to the conclusion that a complete quantitative and qualitative description of a collapse sinkhole is possible, but for this it is necessary to take into account also the mechanical properties of the rock and the processes determining the mechanics of the collapses.
Timescales of isotropic and anisotropic cluster collapse
NASA Astrophysics Data System (ADS)
Bartelmann, M.; Ehlers, J.; Schneider, P.
1993-12-01
From a simple estimate for the formation time of galaxy clusters, Richstone et al. have recently concluded that the evidence for non-virialized structures in a large fraction of observed clusters points towards a high value for the cosmological density parameter Omega0. This conclusion was based on a study of the spherical collapse of density perturbations, assumed to follow a Gaussian probability distribution. In this paper, we extend their treatment in several respects: first, we argue that the collapse does not start from a comoving motion of the perturbation, but that the continuity equation requires an initial velocity perturbation directly related to the density perturbation. This requirement modifies the initial condition for the evolution equation and has the effect that the collapse proceeds faster than in the case where the initial velocity perturbation is set to zero; the timescale is reduced by a factor of up to approximately equal 0.5. Our results thus strengthens the conclusion of Richstone et al. for a high Omega0. In addition, we study the collapse of density fluctuations in the frame of the Zel'dovich approximation, using as starting condition the analytically known probability distribution of the eigenvalues of the deformation tensor, which depends only on the (Gaussian) width of the perturbation spectrum. Finally, we consider the anisotropic collapse of density perturbations dynamically, again with initial conditions drawn from the probability distribution of the deformation tensor. We find that in both cases of anisotropic collapse, in the Zel'dovich approximation and in the dynamical calculations, the resulting distribution of collapse times agrees remarkably well with the results from spherical collapse. We discuss this agreement and conclude that it is mainly due to the properties of the probability distribution for the eigenvalues of the Zel'dovich deformation tensor. Hence, the conclusions of Richstone et al. on the value of Omega0 can be verified and strengthened, even if a more general approach to the collapse of density perturbations is employed. A simple analytic formula for the cluster redshift distribution in an Einstein-deSitter universe is derived.
Meremonte, M.; Frankel, A.; Cranswick, E.; Carver, D.; Worley, D.
1996-01-01
We deployed portable digital seismographs in the San Fernando Valley (SFV), the Los Angeles basin (LAB), and surrounding hills to record aftershocks of the 17 January 1994 Northridge California earthquake. The purpose of the deployment was to investigate factors relevant to seismic zonation in urban areas, such as site amplification, sedimentary basin effects, and the variability of ground motion over short baselines. We placed seismographs at 47 sites (not all concurrently) and recorded about 290 earthquakes with magnitudes up to 5.1 at five stations or more. We deployed widely spaced stations for profiles across the San Fernando Valley, as well as five dense arrays (apertures of 200 to 500 m) in areas of high damage, such as the collapsed Interstate 10 overpass, Sherman Oaks, and the collapsed parking garage at CalState Northridge. Aftershock data analysis indicates a correlation of site amplification with mainshock damage. We found several cases where the site amplification depended on the azimuth of the aftershock, possibly indicating focusing from basin structures. For the parking garage array, we found large ground-motion variabilities (a factor of 2) over 200-m distances for sites on the same mapped soil unit. Array analysis of the aftershock seismograms demonstrates that sizable arrivals after the direct 5 waves consist of surface waves traveling from the same azimuth as that of the epicenter. These surface waves increase the duration of motions and can have frequencies as high as about 4 Hz. For the events studied here, we do not observe large arrivals reflected from the southern edge of the San Fernando Valley.
Soltani, Rasmi; lkbel, Chaieb; Habib Ben Hamouda, Med
2008-01-01
Oryctes agamemnon (Burmeister 1847) (Coleoptera, Scarabaeidae) was accidentally introduced in the southwestern oases of Tunisia (Tozeur) around 1980 and spread to the Rjim Maatoug region. In these areas O. agamemnon was specific to date palm trees causing severe damage that can result in potential danger due to collapse of the tree. This study was conducted from April 2004 to March 2006 in 4 sites in the region of Rjim Maatoug. Different levels of palm tree attack were determined, ovioposition sites were identified, and pest damage was described in detail to specify their relative importance and to indicate factors governing palm tree attack. Eggs were individually oviposited in the attacked parts. Dead parts of palm trees were the main target of O. agamemnon including the respiratory roots, tough, trunk bark, dry petiole and the periphery of the crown. The crown itself was not attacked. Feeding by larvae caused significant damage. The biggest danger occurred when heavy attacks of larvae invaded the respiratory roots at the level of the soil, and secondarily on the periphery of the crown, which can result in fungal diseases. Several cases of Deglet Nour date palm tree collapse were caused by this pest in Rjim Maatoug. Attacks on other parts of the tree were without danger for the palm tree. In the absence of pest management, application of a quarantine program combined with field cultivation techniques could help farmers significantly decrease attack of O. agamemnon on palm trees. PMID:20302545
Earth Observations taken by the Expedition 18 Crew
2008-12-29
ISS018-E-015908 (29 Dec. 2008) --- The Biokovo Range in Croatia is featured in this image photographed by an Expedition 18 crewmember on the International Space Station. The Biokovo Range in Croatia is part of the Dinaric Alps extending northwest-southeast along the coastline of the Adriatic Sea. The Range itself is the location of a national park; the nearby city of Makarska, located between the mountains and the sea, is a popular tourist destination. The highest peak in the Biokovo Range, Sveti Jure (1762 meters above sea level), is reachable by road or hiking. The Range is comprised mainly of Mesozoic age carbonate rocks ? primarily limestone, a sedimentary rock type rich in calcium carbonate ? deposited in relatively warm, shallow waters. Later tectonic processes uplifted and exposed the carbonate rocks to erosion ? leading to a distinctive geological surface known as karst topography. Karst topography originates due to the chemical erosion of carbonate rocks by acids formed in surface and subsurface water; as the rock is dissolved, underground networks of drainages and caves form. As more underground void space develops through time, the overlaying rock and soil collapses to form a variety of landforms including sinkholes, blind valleys, and towers. In the Biokovo Range, much of the karst surface has a pitted appearance, made easily visible by early morning light in this astronaut photograph. The pitted appearance is produced by numerous circular or semi-circular collapse valleys known locally as vrtace. While this image captures Sveti Jure covered with snow, there are no glaciers or ice fields in the Biokovo Range.
Implosive Collapse about Magnetic Null Points: A Quantitative Comparison between 2D and 3D Nulls
NASA Astrophysics Data System (ADS)
Thurgood, Jonathan O.; Pontin, David I.; McLaughlin, James A.
2018-03-01
Null collapse is an implosive process whereby MHD waves focus their energy in the vicinity of a null point, forming a current sheet and initiating magnetic reconnection. We consider, for the first time, the case of collapsing 3D magnetic null points in nonlinear, resistive MHD using numerical simulation, exploring key physical aspects of the system as well as performing a detailed parameter study. We find that within a particular plane containing the 3D null, the plasma and current density enhancements resulting from the collapse are quantitatively and qualitatively as per the 2D case in both the linear and nonlinear collapse regimes. However, the scaling with resistivity of the 3D reconnection rate—which is a global quantity—is found to be less favorable when the magnetic null point is more rotationally symmetric, due to the action of increased magnetic back-pressure. Furthermore, we find that, with increasing ambient plasma pressure, the collapse can be throttled, as is the case for 2D nulls. We discuss this pressure-limiting in the context of fast reconnection in the solar atmosphere and suggest mechanisms by which it may be overcome. We also discuss the implications of the results in the context of null collapse as a trigger mechanism of Oscillatory Reconnection, a time-dependent reconnection mechanism, and also within the wider subject of wave–null point interactions. We conclude that, in general, increasingly rotationally asymmetric nulls will be more favorable in terms of magnetic energy release via null collapse than their more symmetric counterparts.
Geophysical observations at cavity collapse
NASA Astrophysics Data System (ADS)
Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe
2010-05-01
In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.
Protein collapse is encoded in the folded state architecture.
Samanta, Himadri S; Zhuravlev, Pavel I; Hinczewski, Michael; Hori, Naoto; Chakrabarti, Shaon; Thirumalai, D
2017-05-21
Folded states of single domain globular proteins are compact with high packing density. The radius of gyration, R g , of both the folded and unfolded states increase as N ν where N is the number of amino acids in the protein. The values of the Flory exponent ν are, respectively, ≈⅓ and ≈0.6 in the folded and unfolded states, coinciding with those for homopolymers. However, the extent of compaction of the unfolded state of a protein under low denaturant concentration (collapsibility), conditions favoring the formation of the folded state, is unknown. We develop a theory that uses the contact map of proteins as input to quantitatively assess collapsibility of proteins. Although collapsibility is universal, the propensity to be compact depends on the protein architecture. Application of the theory to over two thousand proteins shows that collapsibility depends not only on N but also on the contact map reflecting the native structure. A major prediction of the theory is that β-sheet proteins are far more collapsible than structures dominated by α-helices. The theory and the accompanying simulations, validating the theoretical predictions, provide insights into the differing conclusions reached using different experimental probes assessing the extent of compaction of proteins. By calculating the criterion for collapsibility as a function of protein length we provide quantitative insights into the reasons why single domain proteins are small and the physical reasons for the origin of multi-domain proteins. Collapsibility of non-coding RNA molecules is similar β-sheet proteins structures adding support to "Compactness Selection Hypothesis".
NASA Astrophysics Data System (ADS)
Rothery, D. A.
2012-04-01
Mercury is turning out to be a planet characterized by various kinds of endogenous hole (discounting impact craters), which are compared here. These include volcanic vents and collapse features on horizontal scales of tens of km, and smaller scale depressions ('hollows') associated with bright crater-floor deposits (BCFD). The BCFD hollows are tens of metres deep and kilometres or less across and are characteristically flat-floored, with steep, scalloped walls. Their form suggests that they most likely result from removal of surface material by some kind of mass-wasting process, probably associated with volume-loss caused by removal (via sublimation?) of a volatile component. These do not appear to be primarily a result of undermining. Determining the composition of the high-albedo bluish surface coating in BCFDs will be a key goal for BepiColombo instruments such as MIXS (Mercury Imaging Xray Spectrometer). In contrast, collapse features are non-circular rimless pits, typically on crater floors (pit-floor craters), whose morphology suggests collapse into void spaces left by magma withdrawal. This could be by drainage of either erupted lava (or impact melt) or of shallowly-intruded magma. Unlike the much smaller-scale BCFD hollows, these 'collapse pit' features tend to lack extensive flat floors and instead tend to be close to triangular in cross-section with inward slopes near to the critical angle of repose. The different scale and morphology of BCFD hollows and collapse pits argues for quite different modes of origin. However, BCFD hollows adjacent to and within the collapse pit inside Scarlatti crater suggest that the volatile material whose loss was responsible for the growth of the hollows may have been emplaced in association with the magma whose drainage caused the main collapse. Another kind of volcanic collapse can be seen within a 25 km-wide volcanic vent outside the southern rim of the Caloris basin (22.5° N, 146.1° E), on a 28 m/pixel MDIS NAC image from orbit. Although the vent itself may have been excavated partly by explosive volcanism, the most recent event is collapse of a 7 km wide zone in the south centre of the vent. The sharpness of features within this (unmuted either by regolith-forming processes or by fall of volcanic ejecta) suggests that this collapse considerably post-dates the rest of the vent interior. It could reflect a late-stage minor 'throat clearing' explosive eruption, but (in the absence of evidence of associated volcanic ejecta) more likely reflects collapse into a void within the volcanic conduit, itself a result of magma-drainage. A class of 'hole' that is so far conspicuous by its absence on Mercury is sinuous rilles (as opposed to much straighter tectonic grabens) or aligned skylights representing collapsed or partly-collapsed drained lava tubes. Tube-fed flows are to be expected during emplacement of volcanic plains, and it will be surprising if no examples are revealed on MESSENGER and BepiColombo high-resolution images.
Maternal Postpartum Role Collapse as a Theory of Postpartum Depression
ERIC Educational Resources Information Center
Amankwaa, Linda Clark
2005-01-01
The purpose of this paper is to discuss the development of a theory of maternal postpartum role collapse. The influences of traditional role theory and symbolic interactionism are presented. The development of the maternal postpartum role collapse theory emerged from the study of postpartum depression among African-American women (Amankwaa, 2000).…
Collapse events of two-color optical beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukhinin, Alexey; Aceves, Alejandro B.; Diels, Jean-Claude
2017-03-08
Here in this work, we study optical self-focusing that leads to collapse events for the time-independent model of copropagating beams with different wavelengths. We show that collapse events depend on the combined critical power of two beams for fundamental, vortex, and mixed configurations as well as on the ratio of their individual powers.
How Fast Does a Building Fall?
ERIC Educational Resources Information Center
Denny, Mark
2010-01-01
In this paper, the time required for a tower block to collapse is calculated. The tower collapses progressively, with one floor falling onto the floor below, causing it to fall. The rate of collapse is found to be not much slower than freefall. The calculation is an engaging and relevant application of Newton's laws, suitable for undergraduate…
A Mathematical Model Development for the Lateral Collapse of Octagonal Tubes
NASA Astrophysics Data System (ADS)
Ghazali Kamardan, M.; Sufahani, Suliadi; Othman, M. Z. M.; Che-Him, Norziha; Khalid, Kamil; Roslan, Rozaini; Ali, Maselan; Zaidi, A. M. A.
2018-04-01
Many researches has been done on the lateral collapse of tube. However, the previous researches only focus on cylindrical and square tubes. Then a research has been done discovering the collapse behaviour of hexagonal tube and the mathematic model of the deformation behaviour had been developed [8]. The purpose of this research is to study the lateral collapse behaviour of symmetric octagonal tubes and hence to develop a mathematical model of the collapse behaviour of these tubes. For that, a predictive mathematical model was developed and a finite element analysis procedure was conducted for the lateral collapse behaviour of symmetric octagonal tubes. Lastly, the mathematical model was verified by using the finite element analysis simulation results. It was discovered that these tubes performed different deformation behaviour than the cylindrical tube. Symmetric octagonal tubes perform 2 phases of elastic - plastic deformation behaviour patterns. The mathematical model had managed to show the fundamental of the deformation behaviour of octagonal tubes. However, further studies need to be conducted in order to further improve on the proposed mathematical model.
Dynamics and noise emission of laser induced cavitation bubbles in a vortical flow field
NASA Astrophysics Data System (ADS)
Oweis, Ghanem F.; Choi, Jaehyug; Ceccio, Steven L.
2004-03-01
The sound produced by the collapse of discrete cavitation bubbles was examined. Laser-generated cavitation bubbles were produced in both a quiescent and a vortical flow. The sound produced by the collapse of the cavitation bubbles was recorded, and its spectral content was determined. It was found that the risetime of the sound pulse produced by the collapse of single, spherical cavitation bubbles in quiescent fluid exceeded that of the slew rate of the hydrophone, which is consistent with previously published results. It was found that, as collapsing bubbles were deformed by the vortical flow, the acoustic impulse of the bubbles was reduced. Collapsing nonspherical bubbles often created a sound pulse with a risetime that exceeded that of the hydrophone slew rate, although the acoustic impulse created by the bubbles was influenced largely by the degree to which the bubbles became nonspherical before collapse. The noise produced by the slow growth of cavitation bubbles in the vortex core was not detectable. These results have implications for the interpretation of hydrodynamic cavitation noise produced by vortex cavitation.
White, R N
2012-01-01
To describe the use of cricoarytenoid lateralisation combined with thyroarytenoid caudo- lateralisation (arytenoid laryngoplasty) for the management of stage II and III laryngeal collapse in dogs. A retrospective study of a consecutive series of 12 dogs suffering from life-threatening stage II or III laryngeal collapse associated with brachycephalic airway obstruction syndrome. Pre-operatively, either stage II collapse (2/12) or stage III collapse (10/12) was confirmed on visual examination. In all cases, a left-sided arytenoid laryngoplasty was performed. Two dogs were euthanased postoperatively as a result of persistent life-threatening respiratory compromise. The procedure resulted in subjective enlargement of the rima glottidis and an associated improvement in respiratory function in the remaining 10 dogs. Follow-up, long-term outcome (median, 3·5 years) in these dogs indicated that all owners considered that the surgery had resulted in marked improvements in their dog's respiratory function, tolerance to exercise, and quality of life. Combined cricoarytenoid and thyroarytenoid caudo-lateralisation may be a useful procedure for treatment of stage II and III laryngeal collapse in the dog. © 2011 British Small Animal Veterinary Association.
Calderas and caldera structures: a review
NASA Astrophysics Data System (ADS)
Cole, J. W.; Milner, D. M.; Spinks, K. D.
2005-02-01
Calderas are important features in all volcanic environments and are commonly the sites of geothermal activity and mineralisation. Yet, it is only in the last 25 years that a thorough three-dimensional study of calderas has been carried out, utilising studies of eroded calderas, geophysical analysis of their structures and analogue modelling of caldera formation. As more data has become available on calderas, their individuality has become apparent. A distinction between 'caldera', 'caldera complex', 'cauldron', and 'ring structure' is necessary, and new definitions are given in this paper. Descriptions of calderas, based on dominant composition of eruptives (basaltic, peralkaline, andesitic-dacitic, rhyolitic) can be used, and characteristics of each broad group are given. Styles of eruption may be effusive or explosive, with the former dominant in basaltic calderas, and the latter dominant in andesitic-dacitic, rhyolitic and peralkaline calderas. Four 'end-member' collapse styles occur—plate or piston, piecemeal, trapdoor, and downsag—but many calderas have multiple styles. Features of so-called 'funnel' and 'chaotic' calderas proposed in the literature can be explained by other collapse styles and the terms are considered unnecessary. Ground deformation comprises subsidence or collapse (essential characteristics of a caldera) and uplifting/doming and fracturing due to tumescence and/or resurgence (frequent, but not essential). Collapse may occur on pre-existing structures, such as regional faults or on faults created during the caldera formation, and the shape of the collapse area will be influenced by depth, size and shape of the magma chamber. The final morphology of a caldera will depend on how the caldera floor breaks up; whether collapse takes place in one event or multiple events, whether vertical movement is spasmodic or continuous throughout the eruptive sequence, and whether blocks subside uniformly or chaotically at one or more collapse centres. A meaningful description of any caldera should therefore include; number of collapse events, presence or absence of resurgence, caldera-floor coherency, caldera-floor collapse geometry, and dominant composition of eruptives.
Landry, Shane A; Joosten, Simon A; Eckert, Danny J; Jordan, Amy S; Sands, Scott A; White, David P; Malhotra, Atul; Wellman, Andrew; Hamilton, Garun S; Edwards, Bradley A
2017-06-01
Upper airway collapsibility is a key determinant of obstructive sleep apnea (OSA) which can influence the efficacy of certain non-continuous positive airway pressure (CPAP) treatments for OSA. However, there is no simple way to measure this variable clinically. The present study aimed to develop a clinically implementable tool to evaluate the collapsibility of a patient's upper airway. Collapsibility, as characterized by the passive pharyngeal critical closing pressure (Pcrit), was measured in 46 patients with OSA. Associations were investigated between Pcrit and data extracted from patient history and routine polysomnography, including CPAP titration. Therapeutic CPAP level, demonstrated the strongest relationship to Pcrit (r2=0.51, p < .001) of all the variables investigated including apnea-hypopnea index, body mass index, sex, and age. Patients with a mildly collapsible upper airway (Pcrit ≤ -2 cmH2O) had a lower therapeutic CPAP level (6.2 ± 0.6 vs. 10.3 ± 0.4 cmH2O, p < .001) compared to patients with more severe collapsibility (Pcrit > -2 cmH2O). A therapeutic CPAP level ≤8.0 cmH2O was sensitive (89%) and specific (84%) for detecting a mildly collapsible upper airway. When applied to the independent validation data set (n = 74), this threshold maintained high specificity (91%) but reduced sensitivity (75%). Our data demonstrate that a patient's therapeutic CPAP requirement shares a strong predictive relationship with their Pcrit and may be used to accurately differentiate OSA patients with mild airway collapsibility from those with moderate-to-severe collapsibility. Although this relationship needs to be confirmed prospectively, our findings may provide clinicians with better understanding of an individual patient's OSA phenotype, which ultimately could assist in determining which patients are most likely to respond to non-CPAP therapies. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Marsh collapse thresholds for coastal Louisiana estimated using elevation and vegetation index data
Couvillion, Brady R.; Beck, Holly
2013-01-01
Forecasting marsh collapse in coastal Louisiana as a result of changes in sea-level rise, subsidence, and accretion deficits necessitates an understanding of thresholds beyond which inundation stress impedes marsh survival. The variability in thresholds at which different marsh types cease to occur (i.e., marsh collapse) is not well understood. We utilized remotely sensed imagery, field data, and elevation data to help gain insight into the relationships between vegetation health and inundation. A Normalized Difference Vegetation Index (NDVI) dataset was calculated using remotely sensed data at peak biomass (August) and used as a proxy for vegetation health and productivity. Statistics were calculated for NDVI values by marsh type for intermediate, brackish, and saline marsh in coastal Louisiana. Marsh-type specific NDVI values of 1.5 and 2 standard deviations below the mean were used as upper and lower limits to identify conditions indicative of collapse. As marshes seldom occur beyond these values, they are believed to represent a range within which marsh collapse is likely to occur. Inundation depth was selected as the primary candidate for evaluation of marsh collapse thresholds. Elevation relative to mean water level (MWL) was calculated by subtracting MWL from an elevation dataset compiled from multiple data types including light detection and ranging (lidar) and bathymetry. A polynomial cubic regression was used to examine a random subset of pixels to determine the relationship between elevation (relative to MWL) and NDVI. The marsh collapse uncertainty range values were found by locating the intercept of the regression line with the 1.5 and 2 standard deviations below the mean NDVI value for each marsh type. Results indicate marsh collapse uncertainty ranges of 30.7–35.8 cm below MWL for intermediate marsh, 20–25.6 cm below MWL for brackish marsh, and 16.9–23.5 cm below MWL for saline marsh. These values are thought to represent the ranges of inundation depths within which marsh collapse is probable.
The Influence of AN Interacting Vacuum Energy on the Gravitational Collapse of a Star Fluid
NASA Astrophysics Data System (ADS)
Campos, M.
2014-02-01
To explain the accelerated expansion of the universe, models with interacting dark components has been considered in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy. However, at the other side of the same coin, the influence of the vacuum energy in the gravitational collapse is a topic of scientific interest. Based in a simple assumption on the collapsed rate of the matter fluid density that is altered by the inclusion of a vacuum energy component that interacts with the matter fluid, we study the final fate of the collapse process.
Coexistence of collapse and stable spatiotemporal solitons in multimode fibers
NASA Astrophysics Data System (ADS)
Shtyrina, Olga V.; Fedoruk, Mikhail P.; Kivshar, Yuri S.; Turitsyn, Sergei K.
2018-01-01
We analyze spatiotemporal solitons in multimode optical fibers and demonstrate the existence of stable solitons, in a sharp contrast to earlier predictions of collapse of multidimensional solitons in three-dimensional media. We discuss the coexistence of blow-up solutions and collapse stabilization by a low-dimensional external potential in graded-index media, and also predict the existence of stable higher-order nonlinear waves such as dipole-mode spatiotemporal solitons. To support the main conclusions of our numerical studies we employ a variational approach and derive analytically the stability criterion for input powers for the collapse stabilization.
NASA Satellite Eyes Deadly Tibetan Landslide
2016-10-05
On July 17, 2016, one of the largest ice avalanches ever recorded tumbled down a Tibetan mountain, killing 9 people. The cause of the collapse is still unclear. On September 22, a second glacier, 1.9 miles (3 kilometers) farther south, collapsed. Geologists investigating the July collapse warned about the possibility of a second collapse, which did occur. The image covers an area of 7.8 by 10.2 miles (12.6 by 16.4 kilometers), was acquired October 4, 2017, and is located at 334 degrees north, 82.3 degrees east. http://photojournal.jpl.nasa.gov/catalog/PIA21069
Successful new anti-sloughing drilling fluid application, Yanchang gas field, China
NASA Astrophysics Data System (ADS)
He, Peng; Liu, Hanmei; Du, Sen; He, Chenghai
2017-10-01
Borehole collapse had always been encountered when drilling the Shiqianfeng and Shihezi formations in Yan Chang gas field. By analyzing the reasons for the collapse can be obtained, "double layer of stone" brittle strong, pore development, water sensitivity and high mineral content filling skeleton particles, water lock effect and stress sensitivity is a potential factor in inducing strong wall collapse. According to the characteristics of the geological structure developed anti-sloughing drilling fluid system "double layer of stone," "complex fluid loss - dual inhibition - materialized block" multiple cooperative mechanism to achieve the purpose of anti-collapse.
Scalar field collapse in Gauss-Bonnet gravity
NASA Astrophysics Data System (ADS)
Banerjee, Narayan; Paul, Tanmoy
2018-02-01
We consider a "scalar-Einstein-Gauss-Bonnet" theory in four dimension, where the scalar field couples non-minimally with the Gauss-Bonnet (GB) term. This coupling with the scalar field ensures the non-topological character of the GB term. In this scenario, we examine the possibility for collapsing of the scalar field. Our result reveals that such a collapse is possible in the presence of Gauss-Bonnet gravity for suitable choices of parametric regions. The singularity formed as a result of the collapse is found to be a curvature singularity which is hidden from the exterior by an apparent horizon.
REVIEWS OF TOPICAL PROBLEMS: Neutrinos from stellar core collapses: present status of experiments
NASA Astrophysics Data System (ADS)
Ryazhskaya, Ol'ga G.
2006-10-01
The responses of the existing underground detectors to neutrino bursts from collapsing stars evolving in accordance with various models are considered. The interpretation of the results of detecting neutrino radiation from the SN1987A supernova explosion is discussed. A combination of large scintillation counters interlayered with iron slabs (as a target for the electron neutrino interaction) is suggested as a detector for core collapse neutrinos. Bounds for the galactic rate of core collapses based on 28 years of observations by neutrino telescopes of RAS INR, LSD, and LVD detectors are presented.
NASA Astrophysics Data System (ADS)
Glasser, N. F.; Scambos, T. A.
2009-12-01
We use optical satellite imagery (ASTER and Landsat) to document changes in the Prince Gustav Ice Shelf (PGIS) and its tributary glaciers before and after its 1995 collapse. Interpretation of a pre-collapse Landsat 4-5 TM image acquired in February 1988 shows that the ice shelf was fed primarily by Sjogren Glacier from the Antarctic Peninsula and by Rhoss Glacier from James Ross Island (JRI). In 1988, the PGIS contained numerous structural discontinuities (rifts and crevasses), which collectively indicate that ice-shelf break-up had commenced at least seven years before collapse. Meltwater ponds and streams were also common across its surface. After the ice shelf collapsed, Rhoss Glacier became a tidewater glacier and has since experienced rapid and continued recession. Between January 2001 and December 2006 (six to eleven years after the collapse of the PGIS), the front of Rhoss Glacier receded a total of 13.6 km. We conclude that where tributary glaciers become tidewater glaciers they react to ice-shelf removal by rapid and continued recession and that the response time of glaciers on the Antarctic Peninsula to ice-shelf removal is measured on annual to decadal timescales. This rapid recession, coupled with previously documented tributary glacier thinning and acceleration, indicates that Antarctic Peninsula glaciers are extremely sensitive to ice-shelf collapse.
Fuciños, Clara; Fuciños, Pablo; Míguez, Martín; Katime, Issa; Pastrana, Lorenzo M.; Rúa, María L.
2014-01-01
Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements). PMID:24520326
Fuciños, Clara; Fuciños, Pablo; Míguez, Martín; Katime, Issa; Pastrana, Lorenzo M; Rúa, María L
2014-01-01
Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).
NASA Astrophysics Data System (ADS)
Buyco, K.; Heaton, T. H.
2016-12-01
Current U.S. seismic code and performance-based design recommendations quantify ground motion intensity using 5%-damped spectral acceleration when estimating the collapse vulnerability of buildings. This intensity measure works well for predicting inter-story drift due to moderate shaking, but other measures have been shown to be better for estimating collapse risk.We propose using highly-damped (>10%) spectral acceleration to assess collapse vulnerability. As damping is increased, the spectral acceleration at a given period T begins to behave like a weighted average of the corresponding lowly-damped (i.e. 5%) spectrum at a range of periods. Weights for periods longer than T increase as damping increases. Using high damping is physically intuitive for two reasons. Firstly, ductile buildings dissipate a large amount of hysteretic energy before collapse and thus behave more like highly-damped systems. Secondly, heavily damaged buildings experience period-lengthening, giving further credence to the weighted-averaging property of highly-damped spectral acceleration.To determine the optimal damping value(s) for this ground motion intensity measure, we conduct incremental dynamic analysis for a suite of ground motions on several different mid-rise steel buildings and select the damping value yielding the lowest dispersion of intensity at the collapse threshold. Spectral acceleration calculated with damping as high as 70% has been shown to be a better indicator of collapse than that with 5% damping.
NASA Astrophysics Data System (ADS)
Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan; Ran, Sheng; Valentí, Roser; Canfield, Paul C.
2016-01-01
Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe2As2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ˜25 % on cooling from room temperature to ˜100 K in the tetragonal phase and is only weakly temperature dependent at low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe2As2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.
NASA Astrophysics Data System (ADS)
Torres-Forné, Alejandro; Cerdá-Durán, Pablo; Passamonti, Andrea; Font, José A.
2018-03-01
Gravitational waves from core-collapse supernovae are produced by the excitation of different oscillation modes in the protoneutron star (PNS) and its surroundings, including the shock. In this work we study the relationship between the post-bounce oscillation spectrum of the PNS-shock system and the characteristic frequencies observed in gravitational-wave signals from core-collapse simulations. This is a fundamental first step in order to develop a procedure to infer astrophysical parameters of the PNS formed in core-collapse supernovae. Our method combines information from the oscillation spectrum of the PNS, obtained through linear perturbation analysis in general relativity of a background physical system, with information from the gravitational-wave spectrum of the corresponding non-linear, core-collapse simulation. Using results from the simulation of the collapse of a 35 M⊙ pre-supernova progenitor we show that both types of spectra are indeed related and we are able to identify the modes of oscillation of the PNS, namely g-modes, p-modes, hybrid modes, and standing accretion shock instability (SASI) modes, obtaining a remarkably close correspondence with the time-frequency distribution of the gravitational-wave modes. The analysis presented in this paper provides a proof of concept that asteroseismology is indeed possible in the core-collapse scenario, and it may serve as a basis for future work on PNS parameter inference based on gravitational-wave observations.
Compact X-ray Binary Re-creation in Core Collapse: NGC 6397
NASA Astrophysics Data System (ADS)
Grindlay, J. E.; Bogdanov, S.; van den Berg, M.; Heinke, C.
2005-12-01
We report new Chandra observations of the core collapsed globular cluster NGC 6397. In comparison with our original Chandra observations (Grindlay et al 2001, ApJ, 563, L53), we now detect some 30 sources (vs. 20) in the cluster. A new CV is confirmed, though new HST/ACS optical observations (see Cohn et al this meeting) show that one of the original CV candidates is a background AGN). The 9 CVs (optically identified) yet only one MSP and one qLMXB suggest either a factor of 7 reduction in NSs/WDs vs. what we find in 47Tuc (see Grindlay 2005, Proc. Cefalu Conf. on Interacting Binaries) or that CVs are produced in the core collapse. The possible second MSP with main sequence companion, source U18 (see Grindlay et al 2001) is similar in its X-ray and optical properties to MSP-W in 47Tuc, which must have swapped its binary companion. Together with the one confirmed (radio) MSP in NGC 6397, with an evolved main sequence secondary, the process of enhanced partner swapping in the high stellar density of core collapse is implicated. At the same time, main sequence - main sequence binaries (active binaries) are depleted in the cluster core, presumably by "binary burning" in core collapse. These binary re-creation and destruction mechanisms in core collapse have profound implications for binary evolution and mergers in globulars that have undergone core collapse.
NASA Astrophysics Data System (ADS)
Arulkumaran, S.; Ng, G. I.; Lee, C. H.; Liu, Z. H.; Radhakrishnan, K.; Dharmarasu, N.; Sun, Z.
2010-11-01
Studies on the influence of quiescent-gate ( Vgs0) and quiescent-drain ( Vds0) bias stresses in rf-plasma MBE grown AlGaN/GaN high-electron-mobility transistors (HEMTs) were performed. The increase of drain current ( ID) collapse by quiescent-bias-stress in AlGaN/GaN HEMTs were observed using pulsed (pulse width = 200 ns; pulse period = 1 ms) IDS- VDS characteristics. The Si 3N 4 passivation suppressed about 80% ID collapse in quiescent-bias-point stressed HEMTs. The remaining 20% ID collapse were not suppressed which may be coming from buffer-related traps. However, more than 10% of ID collapse suppression was observed on un-stressed or fresh-HEMTs. Similarly, improved cut-off frequency ( fT), maximum oscillation frequency ( fmax) and device output power ( Pout) values were also observed on the un-stressed HEMTs. The Si 3N 4 passivation completely suppressed the ID collapse in un-stressed or fresh-HEMTs which leads to 70% improvement in fT and 60% improvement in the device Pout. The Si 3N 4 passivation did not completely suppress ID collapse in the quiescent-bias stressed-HEMTs. This may be due to the generation of additional surface-related traps in the HEMTs by quiescent-bias-stresses.
QCD axion star collapse with the chiral potential
Eby, Joshua; Leembruggen, Madelyn; Suranyi, Peter; ...
2017-06-05
In a previous study, we analyzed collapsing axion stars using the low-energy instanton potential, showing that the total energy is always bounded and that collapsing axion stars do not form black holes. In this paper, we provide a proof that the conclusions are unchanged when using instead the more general chiral potential for QCD axions.
The Tacoma Narrows Bridge Collapse on Film and Video
ERIC Educational Resources Information Center
Olson, Don; Hook, Joseph; Doescher, Russell; Wolf, Steven
2015-01-01
This month marks the 75th anniversary of the Tacoma Narrows Bridge collapse. During a gale on Nov. 7, 1940, the bridge exhibited remarkable oscillations before collapsing spectacularly (Figs. 1-5). Physicists over the years have spent a great deal of time and energy studying this event. By using open-source analysis tools and digitized footage of…
The 3D Death of a Massive Star
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-07-01
What happens at the very end of a massive star's life, just before its core's collapse? A group led by Sean Couch (California Institute of Technology and Michigan State University) claim to have carried out the first three-dimensional simulations of these final few minutes — revealing new clues about the factors that can lead a massive star to explode in a catastrophic supernova at the end of its life. A Giant Collapses In dying massive stars, in-falling matter bounces off the of collapsed core, creating a shock wave. If the shock wave loses too much energy as it expands into the star, it can stall out — but further energy input can revive it and result in a successful explosion of the star as a core-collapse supernova. In simulations of this process, however, theorists have trouble getting the stars to consistently explode: the shocks often stall out and fail to revive. Couch and his group suggest that one reason might be that these simulations usually start at core collapse assuming spherical symmetry of the progenitor star. Adding Turbulence Couch and his collaborators suspect that the key is in the final minutes just before the star collapses. Models that assume a spherically-symmetric star can't include the effects of convection as the final shell of silicon is burned around the core — and those effects might have a significant impact! To test this hypothesis, the group ran fully 3D simulations of the final three minutes of the life of a 15 solar-mass star, ending with core collapse, bounce, and shock-revival. The outcome was striking: the 3D modeling introduced powerful turbulent convection (with speeds of several hundred km/s!) in the last few minutes of silicon-shell burning. As a result, the initial structure and motions in the star just before core collapse were very different from those in core-collapse simulations that use spherically-symmetric initial conditions. The turbulence was then further amplified during collapse and formation of the shock, generating pressure that aided the shock expansion — which should ultimately help the star explode! The group cautions that their simulations are still very idealized, but these results clearly indicate that the 3D structure of massive stellar cores has an important impact on the core-collapse supernova mechanism. Citation Sean M. Couch et al. 2015 ApJ 808 L21 doi:10.1088/2041-8205/808/1/L21
Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
Liu, Hongyu; Probst, Anne; Liao, Bohan
2005-03-01
In 1985, the collapse of the tailing dam in Chenzhou lead/zinc mine (Hunan, southern China) led to the spread of mining waste spills on the farmland along the Dong River. After the accident, an urgent soil cleaning up was carried out in some places. Seventeen years later, cereal (rice, maize, and sorghum), pulses (soybean, Adzuki bean, mung bean and peanut), vegetables (ipomoea, capsicum, taro and string bean) and the rooted soils were sampled at four sites: (1) the mining area (SZY), (2) the area still covered with the mining tailing spills (GYB), (3) the cleaned area from mining tailing spills (JTC), and (4) a background site (REF). Metal concentrations in the crops and soils were analyzed to evaluate the long-term effects of the spilled waste on the soil and the potential human exposure through food chains. The results showed that the physical-chemical properties of the soils obviously changed due to the different farming styles used by each individual farmer. Leaching effects and plant extraction of metals from some soils were quite weak. Certain soils were still heavily polluted with As, Cd, Zn, Pb and Cu. The contamination levels were in the order of GYB>SZY>JTC showing that the clean-up treatment was effective. The maximum allowable concentration (MAC) levels for Chinese agricultural soils were still highly exceeded, particularly for As and Cd (followed by Zn, Pb and Cu), with mean concentrations of 709 and 7.6 mg kg(-1), respectively. These concentrations exceed the MAC levels by 24 times for As and 13 times for Cd at GYB. Generally, the edible leaves or stems of crops were more heavily contaminated than seeds or fruits. Ipomoea was the most severely contaminated crop. The concentrations of Cd and Pb were 3.30 and 76.9 mg kg(-1) in ipomoea leaves at GYB, which exceeded the maximum permit levels (0.5 mg kg(-1) for Cd and 9 mg kg(-1) for Pb) by 6.6 and 8.5 times, respectively. Taro (+skin) could accumulate high concentrations of Zn and Cd in the edible stem, and rice and capsicum had high Cd concentration in the edible parts. However, the toxic element concentrations in maize, sorghum, Adzuki bean, soybean and mung bean remained lower than the threshold levels. The bio-accumulation factors (BAFs) of crops were in the order: Cd>Zn>Cu>Pb>As. BAF was typically lower in the edible seeds or fruits than in stems and leaves. The accumulation effect strongly depends on the crop's physiological properties, the mobility, of the metals, and the availability of metals in soils but not entirely on the total element concentrations in the soils. Even so, the estimated daily intake amount of Cu, Zn, Cd, and Pb from the crops grown in the affected three sites and arsenic at SZY and GYB exceeded the RDA (Recommended dietary allowance) levels. Subsequently, the crops grown in Chenzhou Pb/Zn mine waste affected area might have a hazardous effect on the consumer's health. This area still needs effective measures to cure the As, Cd, Pb, Zn and Cu contamination.
Stratovolcano stability assessment methods and results from Citlaltepetl, Mexico
Zimbelman, D.R.; Watters, R.J.; Firth, I.R.; Breit, G.N.; Carrasco-Nunez, Gerardo
2004-01-01
Citlaltépetl volcano is the easternmost stratovolcano in the Trans-Mexican Volcanic Belt. Situated within 110 km of Veracruz, it has experienced two major collapse events and, subsequent to its last collapse, rebuilt a massive, symmetrical summit cone. To enhance hazard mitigation efforts we assess the stability of Citlaltépetl's summit cone, the area thought most likely to fail during a potential massive collapse event. Through geologic mapping, alteration mineralogy, geotechnical studies, and stability modeling we provide important constraints on the likelihood, location, and size of a potential collapse event. The volcano's summit cone is young, highly fractured, and hydrothermally altered. Fractures are most abundant within 5–20-m wide zones defined by multiple parallel to subparallel fractures. Alteration is most pervasive within the fracture systems and includes acid sulfate, advanced argillic, argillic, and silicification ranks. Fractured and altered rocks both have significantly reduced rock strengths, representing likely bounding surfaces for future collapse events. The fracture systems and altered rock masses occur non-uniformly, as an orthogonal set with N–S and E–W trends. Because these surfaces occur non-uniformly, hazards associated with collapse are unevenly distributed about the volcano. Depending on uncertainties in bounding surfaces, but constrained by detailed field studies, potential failure volumes are estimated to range between 0.04–0.5 km3. Stability modeling was used to assess potential edifice failure events. Modeled failure of the outer portion of the cone initially occurs as an "intact block" bounded by steeply dipping joints and outwardly dipping flow contacts. As collapse progresses, more of the inner cone fails and the outer "intact" block transforms into a collection of smaller blocks. Eventually, a steep face develops in the uppermost and central portion of the cone. This modeled failure morphology mimics collapse amphitheaters
NASA Astrophysics Data System (ADS)
Holohan, E. P.; Walter, T. R.; Schöpfer, M. P. J.; Walsh, J. J.; Orr, T.; Poland, M.
2012-04-01
In March 2011, a spectacular fissure eruption on Kilauea was associated with a major collapse event in the highly-active Puu Oo crater. Time-lapse cameras maintained by the Hawaii Volcano Observatory captured views of the crater in the moments before, during, and after the collapse. The 2011 event hence represents a unique opportunity to characterize the surface deformation related to the onset of a pit crater collapse and to understand what factors influence it. To do so, we used two approaches. First, we analyzed the available series of camera images by means of digital image correlation techniques. This enabled us to gain a semi-quantitative (pixel-unit) description of the surface displacements and the structural development of the collapsing crater floor. Secondly, we ran a series of 'true-scale' numerical pit-crater collapse simulations based on the two-dimensional Distinct Element Method (2D-DEM). This enabled us to gain insights into what geometric and mechanical factors could have controlled the observed surface displacement pattern and structural development. Our analysis of the time-lapse images reveals that the crater floor initially gently sagged, and then rapidly collapsed in association with the appearance of a large ring-like fault scarp. The observed structural development and surface displacement patterns of the March 2011 Puu Oo collapse are best reproduced in DEM models with a relatively shallow magma reservoir that is vertically elongated, and with a crater floor rock mass that is reasonably strong. In combining digital image correlation with DEM modeling, our study highlights the future potential of these relatively new techniques for understanding physical processes at active volcanoes.
NASA Astrophysics Data System (ADS)
Derakhshani, Maaneli
In this thesis, we consider the implications of solving the quantum measurement problem for the Newtonian description of semiclassical gravity. First we review the formalism of the Newtonian description of semiclassical gravity based on standard quantum mechanics---the Schroedinger-Newton theory---and two well-established predictions that come out of it, namely, gravitational 'cat states' and gravitationally-induced wavepacket collapse. Then we review three quantum theories with 'primitive ontologies' that are well-known known to solve the measurement problem---Schroedinger's many worlds theory, the GRW collapse theory with matter density ontology, and Nelson's stochastic mechanics. We extend the formalisms of these three quantum theories to Newtonian models of semiclassical gravity and evaluate their implications for gravitational cat states and gravitational wavepacket collapse. We find that (1) Newtonian semiclassical gravity based on Schroedinger's many worlds theory is mathematically equivalent to the Schroedinger-Newton theory and makes the same predictions; (2) Newtonian semiclassical gravity based on the GRW theory differs from Schroedinger-Newton only in the use of a stochastic collapse law, but this law allows it to suppress gravitational cat states so as not to be in contradiction with experiment, while allowing for gravitational wavepacket collapse to happen as well; (3) Newtonian semiclassical gravity based on Nelson's stochastic mechanics differs significantly from Schroedinger-Newton, and does not predict gravitational cat states nor gravitational wavepacket collapse. Considering that gravitational cat states are experimentally ruled out, but gravitational wavepacket collapse is testable in the near future, this implies that only the latter two are viable theories of Newtonian semiclassical gravity and that they can be experimentally tested against each other in future molecular interferometry experiments that are anticipated to be capable of testing the gravitational wavepacket collapse prediction.
Shock-induced nanobubble collapse and its applications
NASA Astrophysics Data System (ADS)
Vedadi, Mohammad Hossein
The shock-induced collapse of nanobubbles in water is investigated using molecular dynamics simulations based on a reactive force field. Monitoring the collapse of a cavitation nanobubble, we observe a focused nanojet at the onset of bubble shrinkage and a water hammer shock wave upon bubble collapse. The nanojet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. The shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of approximately 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. Moreover, a substantial number of positive and negative ions appear when the nanojet hits the distal side of the nanobubble and the water hammer shock forms. Furthermore, two promising applications of shock-induced nanobubble collapse have been explored. Our simulations of poration in lipid bilayers due to shock-induced collapse of nanobubbles reveal penetration of nanojets into lipid bilayers. The nanojet impact generates shear flow of water on bilayer leaflets and pressure gradients across them, which transiently enhance the bilayer permeability by creating nanopores through which water molecules translocate across the bilayer. The effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. Finally, the shock-induced collapse of CO2-filled nanobubbles in water is investigated. The energetic nanojet and high-pressure water hammer shock formed during and after collapse of the nanobubble trigger mechano-chemical H2O-CO2 reactions, some of which lead to splitting of water molecules. The dominant pathways through which splitting of water molecules occur are identified.
Analysis of collapse in flattening a micro-grooved heat pipe by lateral compression
NASA Astrophysics Data System (ADS)
Li, Yong; He, Ting; Zeng, Zhixin
2012-11-01
The collapse of thin-walled micro-grooved heat pipes is a common phenomenon in the tube flattening process, which seriously influences the heat transfer performance and appearance of heat pipe. At present, there is no other better method to solve this problem. A new method by heating the heat pipe is proposed to eliminate the collapse during the flattening process. The effectiveness of the proposed method is investigated through a theoretical model, a finite element(FE) analysis, and experimental method. Firstly, A theoretical model based on a deformation model of six plastic hinges and the Antoine equation of the working fluid is established to analyze the collapse of thin walls at different temperatures. Then, the FE simulation and experiments of flattening process at different temperatures are carried out and compared with theoretical model. Finally, the FE model is followed to study the loads of the plates at different temperatures and heights of flattened heat pipes. The results of the theoretical model conform to those of the FE simulation and experiments in the flattened zone. The collapse occurs at room temperature. As the temperature increases, the collapse decreases and finally disappears at approximately 130 °C for various heights of flattened heat pipes. The loads of the moving plate increase as the temperature increases. Thus, the reasonable temperature for eliminating the collapse and reducing the load is approximately 130 °C. The advantage of the proposed method is that the collapse is reduced or eliminated by means of the thermal deformation characteristic of heat pipe itself instead of by external support. As a result, the heat transfer efficiency of heat pipe is raised.
Refined applications of the collapse of the wave function
NASA Astrophysics Data System (ADS)
Stodolsky, L.
2015-05-01
In a two-part system, the collapse of the wave function of one part can put the other part in a state which would be difficult or impossible to achieve otherwise, in particular, one sensitive to small effects in the "collapse" interaction. We present some applications to the very symmetric and experimentally accessible situations of the decays ϕ (1020 )→KoKo , ψ (3770 )→DoDo, or ϒ (4 s )→BoBo , involving the internal state of the two-state Ko, Do, or Bo mesons. The collapse of the wave function occasioned by a decay of one member of the pair (away side) fixes the state vector of that side's two-state system. Bose-Einstein statistics then determines the state of the recoiling meson (near side), whose evolution can then be followed further. In particular, the statistics requirement dictates that the "away side" and "near side" internal wave functions must be orthogonal at the time of the collapse. Thus a C P violation in the away side decay implies a complementary C P impurity on the near side, which can be detected in the further evolution. The C P violation so manifested is necessarily direct C P violation, since neither the mass matrix nor time evolution was involved in the collapse. A parametrization of the direct C P violation is given, and various manifestations are presented. Certain rates or combination of rates are identified which are nonzero only if there is direct C P violation. The very explicit and detailed use made of the collapse of the wave function makes the procedure interesting with respect to the fundamentals of quantum mechanics. We note an experimental consistency test for our treatment of the collapse of the wave function, which can be carried out by a certain measurement of partial decay rates.
Dilatancy and compaction effects on the submerged granular column collapse
NASA Astrophysics Data System (ADS)
Wang, Chun; Wang, Yongqi; Peng, Chong; Meng, Xiannan
2017-10-01
The effects of dilatancy on the collapse dynamics of granular materials in air or in a liquid are studied experimentally and numerically. Experiments show that dilatancy has a critical effect on the collapse of granular columns in the presence of an ambient fluid. Two regimes of the collapse, one being quick and the other being slow, are observed from the experiments and the underlying reasons are analyzed. A two-fluid smoothed particle hydrodynamics model, based on the granular-fluid mixture theory and the critical state theory, is employed to investigate the complex interactions between the solid particles and the ambient water. It is found that dilatancy, resulting in large effective stress and large frictional coefficient between solid particles, helps form the slow regime. Small permeability, representing large inter-phase drag force, also retards the collapse significantly. The proposed numerical model is capable of reproducing these effects qualitatively.
Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas.
Kolvin, Itamar; Livne, Eli; Meerson, Baruch
2010-08-01
We show that, in dimension higher than one, heat diffusion and viscosity cannot arrest thermal collapse in a freely evolving dilute granular gas, even in the absence of gravity. Thermal collapse involves a finite-time blowup of the gas density. It was predicted earlier in ideal, Euler hydrodynamics of dilute granular gases in the absence of gravity, and in nonideal, Navier-Stokes granular hydrodynamics in the presence of gravity. We determine, analytically and numerically, the dynamic scaling laws that characterize the gas flow close to collapse. We also investigate bifurcations of a freely evolving dilute granular gas in circular and wedge-shaped containers. Our results imply that, in general, thermal collapse can only be arrested when the gas density becomes comparable with the close-packing density of grains. This provides a natural explanation to the formation of densely packed clusters of particles in a variety of initially dilute granular flows.
Voltage collapse in complex power grids
Simpson-Porco, John W.; Dörfler, Florian; Bullo, Francesco
2016-01-01
A large-scale power grid's ability to transfer energy from producers to consumers is constrained by both the network structure and the nonlinear physics of power flow. Violations of these constraints have been observed to result in voltage collapse blackouts, where nodal voltages slowly decline before precipitously falling. However, methods to test for voltage collapse are dominantly simulation-based, offering little theoretical insight into how grid structure influences stability margins. For a simplified power flow model, here we derive a closed-form condition under which a power network is safe from voltage collapse. The condition combines the complex structure of the network with the reactive power demands of loads to produce a node-by-node measure of grid stress, a prediction of the largest nodal voltage deviation, and an estimate of the distance to collapse. We extensively test our predictions on large-scale systems, highlighting how our condition can be leveraged to increase grid stability margins. PMID:26887284
Geological constraints of a structural model of sector collapse at Stromboli volcano, Italy
NASA Astrophysics Data System (ADS)
Vezzoli, L.; Corazzato, C.
2016-09-01
This study is focused on the reconstruction of the structure and dynamics of the first lateral collapse that occurred at Stromboli during the Holocene, which represents the structure inherited by all the following collapses that formed the present Sciara del Fuoco depression. The first lateral collapse of Stromboli occurred at the end of the Vancori volcano activity, at about 13 ka ago. The Neostromboli lava cone grew within this collapse amphitheater. Based on a comprehensive geologic and structural analysis of both Vancori and Neostromboli products, we propose an innovative interpretation of the sliding surface. Once considered to be a homogeneous landslide along a deep-seated sliding surface, we demonstrate that the Upper Vancori failure was accommodated by a more complex deformation regime comprising an upper (proximal) domain of tilted megablocks (toreva) and a lower (distal) domain of fragmental landslide transport and deposition.
The collapse of Tacoma Narrows Bridge: a piece to the puzzle
NASA Astrophysics Data System (ADS)
Walther, J. H.; Christensen, D. S.; Malthe, M. G.; Roenne, M.; Spietz, H. J.; Larsen, A.; Larsen, S. V.
2017-11-01
On Nov. 7th 1940 the newly constructed Tacoma Narrows Bridge collapsed due to excessive torsional oscillations caused by the formation and shedding of large coherent vortices. The subsequent wind tunnel tests conducted on both section- and full bridge models concluded that the bridge should have collapsed at a wind speed corresponding to approximately half of the wind speed at the day of the collapse. This discrepancy questions our understanding of the phenomena responsible for the failure of the bridge. The present study aims at clarifying this ``mystery'' by considering historical records made available by the US coast guards, and by performing wind tunnel tests and detailed numerical flow simulations. Our findings indicate that the discrepancy is caused by an until now unnoticed yawed wind direction relative to the bridge, which was present at the day of the collapse. Danish Council for Independent Research Grant No. 4184-00349B.
Gravity induced wave function collapse
NASA Astrophysics Data System (ADS)
Gasbarri, G.; Toroš, M.; Donadi, S.; Bassi, A.
2017-11-01
Starting from an idea of S. L. Adler [in Quantum Nonlocality and Reality: 50 Years of Bell's Theorem, edited by M. Bell and S. Gao (Cambridge University Press, Cambridge, England 2016)], we develop a novel model of gravity induced spontaneous wave function collapse. The collapse is driven by complex stochastic fluctuations of the spacetime metric. After deriving the fundamental equations, we prove the collapse and amplification mechanism, the two most important features of a consistent collapse model. Under reasonable simplifying assumptions, we constrain the strength ξ of the complex metric fluctuations with available experimental data. We show that ξ ≥10-26 in order for the model to guarantee classicality of macro-objects, and at the same time ξ ≤10-20 in order not to contradict experimental evidence. As a comparison, in the recent discovery of gravitational waves in the frequency range 35 to 250 Hz, the (real) metric fluctuations reach a peak of ξ ˜10-21.
Collapse and Nonlinear Instability of AdS Space with Angular Momentum
NASA Astrophysics Data System (ADS)
Choptuik, Matthew W.; Dias, Óscar J. C.; Santos, Jorge E.; Way, Benson
2017-11-01
We present a numerical study of rotational dynamics in AdS5 with equal angular momenta in the presence of a complex doublet scalar field. We determine that the endpoint of gravitational collapse is a Myers-Perry black hole for high energies and a hairy black hole for low energies. We investigate the time scale for collapse at low energies E , keeping the angular momenta J ∝E in anti-de Sitter (AdS) length units. We find that the inclusion of angular momenta delays the collapse time, but retains a t ˜1 /E scaling. We perturb and evolve rotating boson stars, and find that boson stars near AdS space appear stable, but those sufficiently far from AdS space are unstable. We find that the dynamics of the boson star instability depend on the perturbation, resulting either in collapse to a Myers-Perry black hole, or development towards a stable oscillating solution.
Eby, Joshua; Leembruggen, Madelyn; Suranyi, Peter; ...
2016-12-15
Axion stars, gravitationally bound states of low-energy axion particles, have a maximum mass allowed by gravitational stability. Weakly bound states obtaining this maximum mass have sufficiently large radii such that they are dilute, and as a result, they are well described by a leading-order expansion of the axion potential. Here, heavier states are susceptible to gravitational collapse. Inclusion of higher-order interactions, present in the full potential, can give qualitatively different results in the analysis of collapsing heavy states, as compared to the leading-order expansion. In this work, we find that collapsing axion stars are stabilized by repulsive interactions present inmore » the full potential, providing evidence that such objects do not form black holes. In the last moments of collapse, the binding energy of the axion star grows rapidly, and we provide evidence that a large amount of its energy is lost through rapid emission of relativistic axions.« less
Mechanics of airway and alveolar collapse in human breath-hold diving.
Fitz-Clarke, John R
2007-11-15
A computational model of the human respiratory tract was developed to study airway and alveolar compression and re-expansion during deep breath-hold dives. The model incorporates the chest wall, supraglottic airway, trachea, branched airway tree, and elastic alveoli assigned time-dependent surfactant properties. Total lung collapse with degassing of all alveoli is predicted to occur around 235 m, much deeper than estimates for aquatic mammals. Hysteresis of the pressure-volume loop increases with maximum diving depth due to progressive alveolar collapse. Reopening of alveoli occurs stochastically as airway pressure overcomes adhesive and compressive forces on ascent. Surface area for gas exchange vanishes at collapse depth, implying that the risk of decompression sickness should reach a plateau beyond this depth. Pulmonary capillary transmural stresses cannot increase after local alveolar collapse. Consolidation of lung parenchyma might provide protection from capillary injury or leakage caused by vascular engorgement due to outward chest wall recoil at extreme depths.
Scrum injury risk in English professional rugby union.
Taylor, Aileen E; Kemp, Simon; Trewartha, Grant; Stokes, Keith A
2014-07-01
To assess and evaluate the injury risk associated with the scrum in English professional rugby union in the 2011-2012 season. Prospective, cohort. Players at English Premiership rugby union clubs. Frequency of team scrum-events per match; incidence (injuries per 1000 player-hours; propensity (injuries/1000 events); risk (days absence per 1000 player-hours and days absence per 1000 events). 31% of scrums in competitive matches resulted in collapse. Injury incidence associated with collapsed scrum-events (incidence: 8.6 injuries/1000 scrum-events) was significantly higher than those scrums that did not collapse (incidence: 4.1/1000 scrum-events). The injury risk associated with collapsed scrum supports the continued focus on reducing scrum collapse through changes in, and strict application of, the laws surrounding the scrum. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Probing spontaneous wave-function collapse with entangled levitating nanospheres
NASA Astrophysics Data System (ADS)
Zhang, Jing; Zhang, Tiancai; Li, Jie
2017-01-01
Wave-function collapse models are considered to be the modified theories of standard quantum mechanics at the macroscopic level. By introducing nonlinear stochastic terms in the Schrödinger equation, these models (different from standard quantum mechanics) predict that it is fundamentally impossible to prepare macroscopic systems in macroscopic superpositions. The validity of these models can only be examined by experiments, and hence efficient protocols for these kinds of experiments are greatly needed. Here we provide a protocol that is able to probe the postulated collapse effect by means of the entanglement of the center-of-mass motion of two nanospheres optically trapped in a Fabry-Pérot cavity. We show that the collapse noise results in a large reduction of the steady-state entanglement, and the entanglement, with and without the collapse effect, shows distinguishable scalings with certain system parameters, which can be used to determine unambiguously the effect of these models.
Cavitation Bubble Cluster Activity in the Breakage of Kidney Stones by Lithotripter Shock Waves
Pishchalnikov, Yuriy A.; Sapozhnikov, Oleg A.; Bailey, Michael R.; Williams, James C.; Cleveland, Robin O.; Colonius, Tim; Crum, Lawrence A.; Evan, Andrew P.; McAteer, James A.
2008-01-01
High-speed photography was used to analyze cavitation bubble activity at the surface of artificial and natural kidney stones during exposure to lithotripter shock waves in vitro. Numerous individual bubbles formed at the surface of stones, but these bubbles did not remain independent and combined with one another to form bubble clusters. Bubble clusters formed at the proximal end, the distal end, and at the sides of stones. Each cluster collapsed to a narrow point of impact. Collapse of the proximal cluster caused erosion at the leading face of the stone and the collapse of clusters at the sides of stones appeared to contribute to the growth of cracks. Collapse of the distal cluster caused minimal damage. We conclude that cavitation-mediated damage to stones was due not to the action of solitary bubbles, but to the growth and collapse of bubble clusters. PMID:14565872
Collapsing Radiative Shocks in Xenon Gas on the Omega Laser
NASA Astrophysics Data System (ADS)
Reighard, A. B.; Glendinning, S. G.; Knauer, J.; Bouquet, S.; Koenig, M.
2005-10-01
A number of astrophysical systems involve radiative shocks that collapse spatially in response to energy lost through radiation, producing thin shells believed to be Vishniac unstable. We report experiments intended to study such collapsing shocks. The Omega laser drives a thin slab of material at >100 km/s through Xe gas. Simulations predict a collapsed layer in which the density reaches 45 times initial density. X-ray backlighting techniques have yielded images of a collapsed shock compressed to <1/25 its initial thickness (45 μm) at a speed of ˜100 km/s when the shock has traveled 1.3 mm. Optical depth before and behind the shock is important for comparison to astrophysical systems. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-03NA00064, DE-FG53-2005-NA26014, and other grants and contracts.
Seismic precursory patterns before a cliff collapse and critical point phenomena
Amitrano, D.; Grasso, J.-R.; Senfaute, G.
2005-01-01
We analyse the statistical pattern of seismicity before a 1-2 103 m3 chalk cliff collapse on the Normandie ocean shore, Western France. We show that a power law acceleration of seismicity rate and energy in both 40 Hz-1.5 kHz and 2 Hz-10kHz frequency range, is defined on 3 orders of magnitude, within 2 hours from the collapse time. Simultaneously, the average size of the seismic events increases toward the time to failure. These in situ results are derived from the only station located within one rupture length distance from the rock fall rupture plane. They mimic the "critical point" like behavior recovered from physical and numerical experiments before brittle failures and tertiary creep failures. Our analysis of this first seismic monitoring data of a cliff collapse suggests that the thermodynamic phase transition models for failure may apply for cliff collapse. Copyright 2005 by the American Geophysical Union.
On the Induced Gravitational Collapse
NASA Astrophysics Data System (ADS)
Becerra, Laura M.; Bianco, Carlo; Fryer, Chris; Rueda, Jorge; Ruffini, Remo
2018-01-01
The induced gravitational collapse (IGC) paradigm has been applied to explain the long gamma ray burst (GRB) associated with type Ic supernova, and recently the Xray flashes (XRFs). The progenitor is a binary systems of a carbon-oxygen core (CO) and a neutron star (NS). The CO core collapses and undergoes a supernova explosion which triggers the hypercritical accretion onto the NS companion (up to 10-2 M⊙s-1). For the binary driven hypernova (BdHNe), the binary system is enough bound, the NS reach its critical mass, and collapse to a black hole (BH) with a GRB emission characterized by an isotropic energy Eiso > 1052 erg. Otherwise, for binary systems with larger binary separations, the hypercritical accretion onto the NS is not sufficient to induced its gravitational collapse, a X-ray flash is produced with Eiso < 1052 erg. We're going to focus in identify the binary parameters that limits the BdHNe systems with the XRFs systems.
Wu, Sangwook
2017-01-01
Two distinct crystal structures of prethrombin-2, the alternative and collapsed forms, are elucidated by X-ray crystallogrphy. We analyzed the conformational transition from the alternative to the collapsed form employing targeted molecular dynamics (TMD) simulation. Despite small RMSD difference in the two X-ray crystal structures, some hydrophobic residues (W60d, W148, W215, and F227) show a significant difference between the two conformations. TMD simulation shows that the four hydrophobic residues undergo concerted movement from dimer to trimer transition via tetramer state in the conformational change from the alternative to the collapsed form. We reveal that the concerted movement of the four hydrophobic residues is controlled by movement of specific loop regions behind. In this paper, we propose a sequential scenario for the conformational transition from the alternative form to the collapsed form, which is partially supported by the mutant W148A simulation.
The collapse of a cavitation bubble in a corner
NASA Astrophysics Data System (ADS)
Peters, Ivo; Tagawa, Yoshiyuki
2017-11-01
The collapse of cavitation bubbles is influenced by the surrounding geometry. A classic example is the collapse of a bubble near a solid wall, where a fast jet is created towards the wall. The addition of a second wall creates a non-axisymmetric flow field, which influences the displacement and jet formation during the collapse of a bubble. In this experimental study we generate mm-sized vapor bubbles using a focused pulsed laser, giving us full control over the position of the bubble. The corner geometry is formed by two glass slides. High-speed imaging reveals the directional motion of the bubble during the collapse. We find that the bubble displacement cannot be fully described by a simple superposition of the bubble dynamics of the two walls individually. Comparison of our experimental results to a model based on potential flow shows a good agreement for the direction of displacement.
The MW 7.0 Haiti Earthquake of January 12, 2010: USGS/EERI Advance Reconnaissance Team Report
Eberhard, Marc O.; Baldridge, Steven; Marshall, Justin; Mooney, Walter; Rix, Glenn J.
2010-01-01
Executive Summary A field reconnaissance in Haiti by a five-member team with expertise in seismology and earthquake engineering has revealed a number of factors that led to catastrophic losses of life and property during the January 12, 2010, Mw 7.0 earthquake. The field study was conducted from January 26 to February 3, 2010, and included investigations in Port-au-Prince and the heavily damaged communities to the west, including Leogane, Grand Goave, Petite Goave, and Oliver. Seismology Despite recent seismic quiescence, Haiti has suffered similar devastating earthquakes in the historical past (1701, 1751, 1770 and 1860). Despite this knowledge of historical seismicity, Haiti had no seismograph stations during the main earthquake, so it is impossible to estimate accurately the intensity of ground motions. Nonetheless, the wide range of buildings damaged by the January 12, 2010, earthquake suggests that the ground motions contained seismic energy over a wide range of frequencies. Another earthquake of similar magnitude could strike at any time on the eastern end of the Enriquillo Fault, directly to the south of Port-au-Prince. Reconstruction must take this hazard into account. The four portable seismographs installed by the team recorded a series of small aftershocks. As expected, the ground motions recorded at a hard-rock site contained a greater proportion of high frequencies than the motions recorded at a soil site. Two of the stations continue to monitor seismic activity. A thorough field investigation of the mapped Enriquillo Fault south of the city of Leogane failed to find any evidence of surface faulting. This led the team to conclude that the earthquake was unlikely to have produced any surface rupture in the study area. Geotechnical Aspects Soil liquefaction, landslides and rockslides in cut slopes, and road embankment failures contributed to extensive damage in Port-au-Prince and elsewhere. A lack of detailed knowledge of the physical conditions of the soils (for example, lithology, stiffness, density, and thickness) made it difficult for us to quantitatively assess the role of ground-motion amplification in the widespread damage. Buildings The Haitian Ministry of Statistics and Informatics reported that one-story buildings represent 73 percent of the building inventory. Most ordinary, one-story houses have roofs made of sheet metal (82 percent), whereas most multistory houses and apartments have roofs made of concrete (71 percent). Walls made of concrete/block/stone predominate both in ordinary houses and apartments. It appears that the widespread damage to residences and commercial and government buildings was attributable to a great extent to the lack of earthquake-resistant design. In many cases, the structural types, member dimensions, and detailing practices were inadequate to resist strong ground motions. These vulnerabilities may have been exacerbated by poor construction practices. Reinforced concrete frames with concrete block masonry infill appeared to perform particularly poorly. Structures with light (timber or sheet metal) roofs performed better compared to structures with concrete roofs and slabs. The seismic performance of some buildings was adequate, and some of the damaged buildings appeared to have had low deformation demands. These observations suggest that structures designed and constructed with adequate stiffness and reinforcing details would have resisted the earthquake without being damaged severely. A damage survey of 107 buildings in downtown Port-au-Prince indicated that 28 percent had collapsed and another 33 percent were damaged enough to require repairs. A similar survey of 52 buildings in Leogane found that 62 percent had collapsed and another 31 percent required repairs. Bridges There was no evidence of bridge collapses attributable to the earthquake. Most bridges in Port-au-Prince are simple box culverts consisting of box girders 2.0 to 2.
NASA Technical Reports Server (NTRS)
Baron, E.; Cooperstein, J.; Kahana, S.; Nomoto, K.
1987-01-01
The results of the hydrodynamic collapse of an accreting C + O white dwarf are presented. Collapse is induced by electron captures in the iron core behind a conductive deflagration front. The shock wave produced by the hydrodynamic bounce of the iron core stalls at about 115 km, and thus a neutron star formed in such a model would be formed as an optically quiet event.
Cosmological collapse and the improved Zel'dovich approximation.
NASA Astrophysics Data System (ADS)
Salopek, D. S.; Stewart, J. M.; Croudace, K. M.; Parry, J.
Using a general relativistic formulation, the authors show how to compute the higher order terms in the Zel'dovich approximation which describes cosmological collapse. They evolve the 3-metric in a spatial gradient expansion. Their method is an advance over earlier work because it is local at each order. Using the improved Zel'dovich approximation, they compute the epoch of collapse.
Characterizing 6 August 2007 Crandall Canyon mine collapse from ALOS PALSAR InSAR
Lu, Zhong; Wicks, Charles
2010-01-01
same as the moment of the collapse source, with each larger than the seismically computed moment. Our InSAR results, including the location of the event, the extent of the collapsed area, and constraints on the shearing component of the deformation source, all confirm and extend recent seismic studies of the 6 August 2007 event.
Dutta, Amlan; Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri
2016-01-01
We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism.
Pressure-induced half-collapsed-tetragonal phase in CaKFe 4 As 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaluarachchi, Udhara S.; Taufour, Valentin; Sapkota, Aashish
Here, we report the temperature-pressure phase diagram of CaKFe 4As 4 established using high-pressure electrical resistivity, magnetization, and high-energy x-ray diffraction measurements up to 6 GPa. With increasing pressure, both resistivity and magnetization data show that the bulk superconducting transition of CaKFe 4As 4 is suppressed and then disappears at p ≳ 4 GPa. High-pressure x-ray data clearly indicate a phase transition to a collapsed tetragonal phase in CaKFe 4As 4 under pressure that coincides with the abrupt loss of bulk superconductivity near 4 GPa. The x-ray data, combined with resistivity data, indicate that the collapsed tetragonal transition line ismore » essentially independent of pressure, occurring at 4.0(5) GPa for temperatures below 150 K. Density functional theory calculations also find a sudden transition to a collapsed tetragonal state near 4 GPa, as As-As bonding develops across the Ca layer. Bonding across the K layer only occurs for p ≥ 12 GPa. These findings demonstrate a different type of collapsed tetragonal phase in CaKFe 4As 4 as compared to CaFe 2As 2: a half-collapsed tetragonal phase.« less
Experimental and numerical study of shock-driven collapse of multiple cavity arrays
NASA Astrophysics Data System (ADS)
Betney, Matthew; Anderson, Phillip; Tully, Brett; Doyle, Hugo; Hawker, Nicholas; Ventikos, Yiannis
2014-10-01
This study presents a numerical and experimental investigation of the interaction of a single shock wave with multiple air-filled spherical cavities. The 5 mm diameter cavities are cast in a hydrogel, and collapsed by a shock wave generated by the impact of a projectile fired from a single-stage light-gas gun. Incident shock pressures of up to 1 GPa have been measured, and the results compared to simulations conducted using a front-tracking approach. The authors have previously studied the collapse dynamics of a single cavity. An important process is the formation of a high-speed transverse jet, which impacts the leeward cavity wall and produces a shockwave. The speed of this shock has been measured using schlieren imaging, and the density has been measured with a fibre optic probe. This confirmed the computational prediction that the produced shock is of a higher pressure than the original incident shock. When employing multiple cavity arrays, the strong shock produced by the collapse of one cavity can substantially affect the collapse of further cavities. With control over cavity placement, these effects may be utilised to intensify collapse. This intensification is experimentally measured via analysis of the optical emission.
Hazard potential of volcanic flank collapses raised by new megatsunami evidence
Ramalho, Ricardo S.; Winckler, Gisela; Madeira, José; Helffrich, George R.; Hipólito, Ana; Quartau, Rui; Adena, Katherine; Schaefer, Joerg M.
2015-01-01
Large-scale gravitational flank collapses of steep volcanic islands are hypothetically capable of triggering megatsunamis with highly catastrophic effects. Yet, evidence for the generation and impact of collapse-triggered megatsunamis and their high run-ups remains scarce or is highly controversial. Therefore, doubts remain on whether island flank failures truly generate enough volume flux to trigger giant tsunamis, leading to diverging opinions concerning the real hazard potential of such collapses. We show that one of the most prominent oceanic volcanoes on Earth—Fogo, in the Cape Verde Islands—catastrophically collapsed and triggered a megatsunami with devastating effects ~73,000 years ago. Our deductions are based on the recent discovery and cosmogenic 3He dating of tsunamigenic deposits found on nearby Santiago Island, which attest to the impact of this giant tsunami and document wave run-up heights exceeding 270 m. The evidence reported here implies that Fogo’s flank failure involved at least one fast and voluminous event that led to a giant tsunami, in contrast to what has been suggested before. Our observations therefore further demonstrate that flank collapses may indeed catastrophically happen and are capable of triggering tsunamis of enormous height and energy, adding to their hazard potential. PMID:26601287
Gravitational collapse of colloidal gels: Origins of the tipping point
NASA Astrophysics Data System (ADS)
Padmanabhan, Poornima; Zia, Roseanna
2016-11-01
Reversible colloidal gels are soft viscoelastic solids in which durable but reversible bonds permit on-demand transition from solidlike to liquidlike behavior; these O(kT) bonds also lead to ongoing coarsening and age stiffening, making their rheology inherently time dependent. To wit, such gels may remain stable for an extended time, but then suddenly collapse, sedimenting to the bottom of the container (or creaming to the top) and eliminating any intended functionality of the material. Although this phenomenon has been studied extensively in the experimental literature, the microscopic mechanism underlying the collapse is not well understood. Effects of gel age, interparticle attraction strength, and wall effects all have been shown to affect collapse behavior, but the microstructural transformations underlying the 'tipping point' remain murky. To study this behavior, we conduct large-scale dynamic simulation to model the structural and rheological evolution of colloidal gels subjected to various gravitational stresses, examining the detailed micromechanics in three temporal regimes: slow sedimentation prior to collapse; the tipping point leading to the onset of rapid collapse; and the subsequent compaction of the material as it approaches its final bed height. Acknowledgment for funding and support from the Office of Naval Research; the National Science Foundation; and NSF XSEDE.
NASA Astrophysics Data System (ADS)
Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique
2016-07-01
Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the hydrothermal fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the hydrothermal system dynamics on the hazards associated to collapse-prone altered volcanic edifices.
Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique
2016-01-01
Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the hydrothermal fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the hydrothermal system dynamics on the hazards associated to collapse-prone altered volcanic edifices. PMID:27457494
NASA Astrophysics Data System (ADS)
Turangan, C. K.; Ball, G. J.; Jamaluddin, A. R.; Leighton, T. G.
2017-09-01
We present a study of shock-induced collapse of single bubbles near/attached to an elastic-plastic solid using the free-Lagrange method, which forms the latest part of our shock-induced collapse studies. We simulated the collapse of 40 μm radius single bubbles near/attached to rigid and aluminium walls by a 60 MPa lithotripter shock for various scenarios based on bubble-wall separations, and the collapse of a 255 μm radius bubble attached to aluminium foil with a 65 MPa lithotripter shock. The coupling of the multi-phases, compressibility, axisymmetric geometry and elastic-plastic material model within a single solver has enabled us to examine the impingement of high-speed liquid jets from the shock-induced collapsing bubbles, which imposes an extreme compression in the aluminium that leads to pitting and plastic deformation. For certain scenarios, instead of the high-speed jet, a radially inwards flow along the aluminium surface contracts the bubble to produce a `mushroom shape'. This work provides methods for quantifying which parameters (e.g. bubble sizes and separations from the solid) might promote or inhibit erosion on solid surfaces.
Pressure-induced half-collapsed-tetragonal phase in CaKFe 4 As 4
Kaluarachchi, Udhara S.; Taufour, Valentin; Sapkota, Aashish; ...
2017-10-02
Here, we report the temperature-pressure phase diagram of CaKFe 4As 4 established using high-pressure electrical resistivity, magnetization, and high-energy x-ray diffraction measurements up to 6 GPa. With increasing pressure, both resistivity and magnetization data show that the bulk superconducting transition of CaKFe 4As 4 is suppressed and then disappears at p ≳ 4 GPa. High-pressure x-ray data clearly indicate a phase transition to a collapsed tetragonal phase in CaKFe 4As 4 under pressure that coincides with the abrupt loss of bulk superconductivity near 4 GPa. The x-ray data, combined with resistivity data, indicate that the collapsed tetragonal transition line ismore » essentially independent of pressure, occurring at 4.0(5) GPa for temperatures below 150 K. Density functional theory calculations also find a sudden transition to a collapsed tetragonal state near 4 GPa, as As-As bonding develops across the Ca layer. Bonding across the K layer only occurs for p ≥ 12 GPa. These findings demonstrate a different type of collapsed tetragonal phase in CaKFe 4As 4 as compared to CaFe 2As 2: a half-collapsed tetragonal phase.« less
Alar batten cartilage graft: treatment of internal and external nasal valve collapse.
Cervelli, Valerio; Spallone, Diana; Bottini, J Davide; Silvi, Erminia; Gentile, Pietro; Curcio, Beniamino; Pascali, Michele
2009-07-01
The aim of this study was to describe the efficacy of alar batten graft in correcting internal and external nasal valve collapse (i.n.v. and e.n.v.) and evaluate the functional and aesthetic results. From July 2006 to September 2008, 80 patients (54 females and 26 males) underwent alar batten cartilage grafting. The patients were divided into three groups: (1) 55 patients with iatrogenic nasal valve collapse (80% i.n.v., 20% e.n.v.), (2) 15 patients with posttraumatic nasal valve collapse (45% i.n.v., 55% e.n.v.), and (3) 10 patients with congenital nasal valve collapse (100% e.n.v.). Patients were evaluated at 6, 12, 24, and some at 36 months after surgery. The final follow-up was at least 24 months. The results of this study revealed a significant increase in the size of the aperture at the internal or external nasal valve after the application of alar batten grafts. All the patients noted improvement in their nasal airway breathing and in their cosmetic appearance. No major complication was observed. The alar batten graft is a simple, versatile technique for long-term reshaping, repositioning, and reconstruction of the nasal valve collapse.
NASA Astrophysics Data System (ADS)
Coppi, B.
2018-05-01
The presence of well organized plasma structures around binary systems of collapsed objects [1,2] (black holes and neutron stars) is proposed in which processes can develop [3] leading to high energy electromagnetic radiation emission immediately before the binary collapse. The formulated theoretical model supporting this argument shows that resonating plasma collective modes can be excited in the relevant magnetized plasma structure. Accordingly, the collapse of the binary approaches, with the loss of angular momentum by emission of gravitational waves [2], the resonance conditions with vertically standing plasma density and magnetic field oscillations are met. Then, secondary plasma modes propagating along the magnetic field are envisioned to be sustained with mode-particle interactions producing the particle populations responsible for the observable electromagnetic radiation emission. Weak evidence for a precursor to the binary collapse reported in Ref. [2], has been offered by the Agile X-γ-ray observatory [4] while the August 17 (2017) event, identified first by the LIGO-Virgo detection of gravitational waves and featuring the inferred collapse of a neutron star binary, improves the evidence of such a precursor. A new set of experimental observations is needed to reassess the presented theory.
Pressure-induced half-collapsed-tetragonal phase in CaKFe4As4
NASA Astrophysics Data System (ADS)
Kaluarachchi, Udhara S.; Taufour, Valentin; Sapkota, Aashish; Borisov, Vladislav; Kong, Tai; Meier, William R.; Kothapalli, Karunakar; Ueland, Benjamin G.; Kreyssig, Andreas; Valentí, Roser; McQueeney, Robert J.; Goldman, Alan I.; Bud'ko, Sergey L.; Canfield, Paul C.
2017-10-01
We report the temperature-pressure phase diagram of CaKFe4As4 established using high-pressure electrical resistivity, magnetization, and high-energy x-ray diffraction measurements up to 6 GPa. With increasing pressure, both resistivity and magnetization data show that the bulk superconducting transition of CaKFe4As4 is suppressed and then disappears at p ≳4 GPa. High-pressure x-ray data clearly indicate a phase transition to a collapsed tetragonal phase in CaKFe4As4 under pressure that coincides with the abrupt loss of bulk superconductivity near 4 GPa. The x-ray data, combined with resistivity data, indicate that the collapsed tetragonal transition line is essentially independent of pressure, occurring at 4.0(5) GPa for temperatures below 150 K. Density functional theory calculations also find a sudden transition to a collapsed tetragonal state near 4 GPa, as As-As bonding develops across the Ca layer. Bonding across the K layer only occurs for p ≥12 GPa. These findings demonstrate a different type of collapsed tetragonal phase in CaKFe4As4 as compared to CaFe2As2 : a half-collapsed tetragonal phase.
Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique
2016-07-26
Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the hydrothermal fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the hydrothermal system dynamics on the hazards associated to collapse-prone altered volcanic edifices.
Signatures of the collapse and incipient recovery of an overexploited marine ecosystem
Thompson, Patrick L.; Ball, R. Aaron; Fortin, Marie-Josée; Gouhier, Tarik C.; Link, Heike; Moritz, Charlotte; Nenzen, Hedvig; Stanley, Ryan R. E.; Taranu, Zofia E.; Gonzalez, Andrew; Guichard, Frédéric; Pepin, Pierre
2017-01-01
The Northwest Atlantic cod stocks collapsed in the early 1990s and have yet to recover, despite the subsequent establishment of a continuing fishing moratorium. Efforts to understand the collapse and lack of recovery have so far focused mainly on the dynamics of commercially harvested species. Here, we use data from a 33-year scientific trawl survey to determine to which degree the signatures of the collapse and recovery of the cod are apparent in the spatial and temporal dynamics of the broader groundfish community. Over this 33-year period, the groundfish community experienced four phases of change: (i) a period of rapid, synchronous biomass collapse in most species, (ii) followed by a regime shift in community composition with a concomitant loss of functional diversity, (iii) followed in turn by periods of slow compositional recovery, and (iv) slow biomass growth. Our results demonstrate how a community-wide perspective can reveal new aspects of the dynamics of collapse and recovery unavailable from the analysis of individual species or a combination of a small number of species. Overall, we found evidence that such community-level signals should be useful for designing more effective management strategies to ensure the persistence of exploited marine ecosystems. PMID:28791149
A validated approach for modeling collapse of steel structures
NASA Astrophysics Data System (ADS)
Saykin, Vitaliy Victorovich
A civil engineering structure is faced with many hazardous conditions such as blasts, earthquakes, hurricanes, tornadoes, floods, and fires during its lifetime. Even though structures are designed for credible events that can happen during a lifetime of the structure, extreme events do happen and cause catastrophic failures. Understanding the causes and effects of structural collapse is now at the core of critical areas of national need. One factor that makes studying structural collapse difficult is the lack of full-scale structural collapse experimental test results against which researchers could validate their proposed collapse modeling approaches. The goal of this work is the creation of an element deletion strategy based on fracture models for use in validated prediction of collapse of steel structures. The current work reviews the state-of-the-art of finite element deletion strategies for use in collapse modeling of structures. It is shown that current approaches to element deletion in collapse modeling do not take into account stress triaxiality in vulnerable areas of the structure, which is important for proper fracture and element deletion modeling. The report then reviews triaxiality and its role in fracture prediction. It is shown that fracture in ductile materials is a function of triaxiality. It is also shown that, depending on the triaxiality range, different fracture mechanisms are active and should be accounted for. An approach using semi-empirical fracture models as a function of triaxiality are employed. The models to determine fracture initiation, softening and subsequent finite element deletion are outlined. This procedure allows for stress-displacement softening at an integration point of a finite element in order to subsequently remove the element. This approach avoids abrupt changes in the stress that would create dynamic instabilities, thus making the results more reliable and accurate. The calibration and validation of these models are shown. The calibration is performed using a particle swarm optimization algorithm to establish accurate parameters when calibrated to circumferentially notched tensile coupons. It is shown that consistent, accurate predictions are attained using the chosen models. The variation of triaxiality in steel material during plastic hardening and softening is reported. The range of triaxiality in steel structures undergoing collapse is investigated in detail and the accuracy of the chosen finite element deletion approaches is discussed. This is done through validation of different structural components and structural frames undergoing severe fracture and collapse.
NASA Astrophysics Data System (ADS)
Hata, Yoshiya; Yoshimi, Masayuki; Goto, Hiroyuki; Hosoya, Takashi; Morikawa, Hitoshi; Kagawa, Takao
2017-05-01
An earthquake of JMA magnitude 6.5 (foreshock) hit Kumamoto Prefecture, Japan, at 21:26 JST on April 14, 2016. Subsequently, an earthquake of JMA magnitude 7.3 (main shock) hit Kumamoto and Oita Prefectures at 1:25 JST on April 16, 2016. The two epicenters were located adjacent to central Mashiki Town, and both events caused significantly strong motions. The heavy damage including collapse of residential houses was concentrated in "Sandwich Area" between Prefectural Route 28 and Akitsu River. During the main shock, we have successfully observed strong motions at TMP03 in Sandwich Area. Simultaneously with installation of the seismograph at TMP03 on April 15, 2016, between the foreshock and the main shock, a microtremor measurement was taken. After the main shock, intermittent measurements of microtremor at TMP03 were also taken within December 6, 2016. As the result, recovery process of shear wave velocities of volcanic soil at TMP03 before/after the main shock was revealed by time history of peak frequencies of the microtremor H/V spectra. Using results of original PS logging tests at proximity site of TMP03 on July 28, 2016, the applicability for the shear wave velocities to TMP03 was then confirmed based on similarity between the theoretical and monitored H/V spectra.
NASA Astrophysics Data System (ADS)
Hundera, Kitessa; Aerts, Raf; Fontaine, Alexandre; Van Mechelen, Maarten; Gijbels, Pieter; Honnay, Olivier; Muys, Bart
2013-03-01
The effect of arabica coffee management intensity on composition, structure, and regeneration of moist evergreen Afromontane forests was studied in three traditional coffee-management systems of southwest Ethiopia: semiplantation coffee, semiforest coffee, and forest coffee. Vegetation and environmental data were collected in 84 plots from forests varying in intensity of coffee management. After controlling for environmental variation (altitude, aspect, slope, soil nutrient availability, and soil depth), differences in woody species composition, forest structure, and regeneration potential among management systems were compared using one way analysis of variance. The study showed that intensification of forest coffee cultivation to maximize coffee production negatively affects diversity and structure of Ethiopian moist evergreen Afromontane forests. Intensification of coffee productivity starts with the conversion of forest coffee to semiforest coffee, which has significant negative effects on tree seedling abundance. Further intensification leads to the conversion of semiforest to semiplantation coffee, causing significant diversity losses and the collapse of forest structure (decrease of stem density, basal area, crown closure, crown cover, and dominant tree height). Our study underlines the need for shade certification schemes to include variables other than canopy cover and that the loss of species diversity in intensively managed coffee systems may jeopardize the sustainability of coffee production itself through the decrease of ecosystem resilience and disruption of ecosystem services related to coffee yield, such as pollination and pest control.
Development and application of a modified wireless tracer for disaster prevention
NASA Astrophysics Data System (ADS)
Chung Yang, Han; Su, Chih Chiang
2016-04-01
Typhoon-induced flooding causes water overflow in a river channel, which results in general and bridge scour and soil erosion, thus leading to bridge failure, debris flow and landslide collapse. Therefore, dynamic measurement technology should be developed to assess scour in channels and landslide as a disaster-prevention measure against bridge failure and debris flow. This paper presents a wireless tracer that enables monitoring general scour in river channels and soil erosion in hillsides. The wireless tracer comprises a wireless high-power radio modem, various electronic components, and a self-designed printed circuit board that are all combined with a 9-V battery pack and an auto switch. The entire device is sealed in a jar by silicon. After it was modified, the wireless tracer underwent the following tests for practical applications: power continuation and durability, water penetration, and signal transmission during floating. A regression correlation between the wireless tracer's transmission signal and distance was also established. This device can be embedded at any location where scouring is monitored, and, in contrast to its counterparts that detect scour depth by identifying and analyzing received signals, it enables real-time observation of the scouring process. In summary, the wireless tracer developed in this study provides a dynamic technology for real-time monitoring of scouring (or erosion) and forecasting of landslide hazards. Keywords: wireless tracer; scour; real-time monitoring; landslide hazard.
GRACE, GLDAS and measured groundwater data products show water storage loss in Western Jilin, China.
Moiwo, Juana Paul; Lu, Wenxi; Tao, Fulu
2012-01-01
Water storage depletion is a worsening hydrological problem that limits agricultural production in especially arid/semi-arid regions across the globe. Quantifying water storage dynamics is critical for developing water resources management strategies that are sustainable and protective of the environment. This study uses GRACE (Gravity Recovery and Climate Experiment), GLDAS (Global Land Data Assimilation System) and measured groundwater data products to quantify water storage in Western Jilin (a proxy for semi-arid wetland ecosystems) for the period from January 2002 to December 2009. Uncertainty/bias analysis shows that the data products have an average error <10% (p < 0.05). Comparisons of the storage variables show favorable agreements at various temporal cycles, with R(2) = 0.92 and RMSE = 7.43 mm at the average seasonal cycle. There is a narrowing soil moisture storage change, a widening groundwater storage loss, and an overall storage depletion of 0.85 mm/month in the region. There is possible soil-pore collapse, and land subsidence due to storage depletion in the study area. Invariably, storage depletion in this semi-arid region could have negative implications for agriculture, valuable/fragile wetland ecosystems and people's livelihoods. For sustainable restoration and preservation of wetland ecosystems in the region, it is critical to develop water resources management strategies that limit groundwater extraction rate to that of recharge rate.
Identifying hazards associated with lava deltas
Poland, Michael P.; Orr, Tim R.
2014-01-01
Lava deltas, formed where lava enters the ocean and builds a shelf of new land extending from the coastline, represent a significant local hazard, especially on populated ocean island volcanoes. Such structures are unstable and prone to collapse—events that are often accompanied by small explosions that can deposit boulders and cobbles hundreds of meters inland. Explosions that coincide with collapses of the East Lae ‘Apuki lava delta at Kīlauea Volcano, Hawai‘i, during 2005–2007 followed an evolutionary progression mirroring that of the delta itself. A collapse that occurred when the lava–ocean entry was active was associated with a blast of lithic blocks and dispersal of spatter and fine, glassy tephra. Shortly after delta growth ceased, a collapse exposed hot rock to cold ocean water, resulting in an explosion composed entirely of lithic blocks and lapilli. Further collapse of the delta after several months of inactivity, by which time it had cooled significantly, resulted in no recognizable explosion deposit. Seaward displacement and subsidence of the coastline immediately inland of the delta was measured by both satellite and ground-based sensors and occurred at rates of several centimeters per month even after the lava–ocean entry had ceased. The anomalous deformation ended only after complete collapse of the delta. Monitoring of ground deformation may therefore provide an indication of the potential for delta collapse, while the hazard associated with collapse can be inferred from the level of activity, or the time since the last activity, on the delta.
Investigation of the Mechanism of Roof Caving in the Jinchuan Nickel Mine, China
NASA Astrophysics Data System (ADS)
Ding, Kuo; Ma, Fengshan; Guo, Jie; Zhao, Haijun; Lu, Rong; Liu, Feng
2018-04-01
On 13 March 2016, a sudden, violent roof caving event with a collapse area of nearly 11,000 m2 occurred in the Jinchuan Nickel Mine and accompanied by air blasts, loud noises and ground vibrations. This collapse event coincided with related, conspicuous surface subsidence across an area of nearly 19,000 m2. This article aims to analyse this collapse event. In previous studies, various mining-induced collapses have been studied, but collapse accidents associated with the filling mining method are very rare and have not been thoroughly studied. The filling method has been regarded as a safe mining method for a long time, so research on associated collapse mechanisms is of considerable significance. In this study, a detailed field investigation of roadway damage was performed, and GPS monitoring results were used to analyse the surface failure. In addition, a numerical model was constructed based on the geometry of the ore body and a major fault. The analysis of the model revealed three failure mechanisms acting during different stages of destruction: double-sided embedded beam deformation, fault activation, and cantilever-articulated rock beam failure. The fault activation and the specific filling method are the key factors of this collapse event. To gain a better understanding of these factors, the shear stress and normal stress along the fault plane were monitored to determine the variation in stress at different failure stages. Discrete element models were established to study two filling methods and to analyse the stability of different filling structures.
Davidson, Elizabeth J; Martin, Benson B; Rieger, Randall H; Parente, Eric J
2010-12-01
To (1) assess upper airway function by videoendoscopy in horses performing poorly after laryngoplasty and (2) establish whether dynamic collapse of the left arytenoid can be predicted by the degree of resting postsurgical abduction. Case series. Horses that had left laryngoplasty (n=45). Medical records (June 1993-December 2007) of horses evaluated for abnormal respiratory noise and/or poor performance after laryngoplasty were reviewed. Horses with video recordings of resting and exercising upper airway endoscopy were included and postsurgical abduction categorized. Horses with immediate postoperative endoscopy recordings were also evaluated and postsurgical abduction categorized. Relationships between resting postsurgical abduction and historical information with exercising endoscopic findings were examined. Dynamic collapse of the left arytenoid cartilage was probable in horses with no postsurgical abduction and could not be predicted in horses with grade 3 or 4 postsurgical abduction. Respiratory noise was associated with upper airway obstruction but was not specific for arytenoid collapse. Most horses with a left vocal fold had billowing of the fold during exercise. Other forms of dynamic collapse involved the right vocal fold, aryepiglottic folds, corniculate process of left arytenoid cartilage, dorsal displacement of soft palate, and pharyngeal collapse. Complex obstructions were observed in most examinations and in all horses with exercising collapse of the left arytenoid cartilage. There was no relationship between exercising collapse of the left arytenoid cartilage and grade 3 or 4 postsurgical abduction but was likely in horses with no abduction. © Copyright 2010 by The American College of Veterinary Surgeons.
Study on Collapse Mechanism of Steel Frame Structure under High Temperature and Blast Loading
NASA Astrophysics Data System (ADS)
Baoxin, Qi; Yan, Shi; Bi, Jialiang
2018-03-01
Numerical simulation analysis for collapsing process and mechanism of steel frame structures under the combined effects of fire and explosion is performed in this paper. First of all, a new steel constitutive model considering fire (high temperature softening effect) and blast (strain rate effect) is established. On the basis of the traditional Johnson-Cook model and the Perzyna model, the relationship between strain and scaled distance as well as the EOUROCODE3 standard heating curve taking into account the temperature effect parameters is introduced, and a modified Johnson-Cook constitutive model is established. Then, the influence of considering the scaled distance is introduced in order to more effectively describe the destruction and collapse phenomena of steel frame structures. Some conclusions are obtained based on the numerical analysis that the destruction will be serious and even progressively collapse with decreasing of the temperature of the steel column for the same scaled distance under the combined effects of fire and blast; the damage will be serious with decreasing of the scaled distance of the steel column under the same temperature under the combined effects of fire and blast; in the case of the combined effects of fire and blast happening in the side-spans, the partial progressive collapse occurs as the scaled distance is less than or equal to 1.28; six kinds of damages which are no damage, minor damage, moderate damage, severe damage, critical collapse, and progressive collapse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan
Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe 2As 2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ~25% on cooling from room temperature to ~100 K in the tetragonal phase and is only weakly temperature dependent atmore » low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe 2As 2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Furthermore, based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.« less
A debris avalanche at Süphan stratovolcano (Turkey) and implications for hazard evaluation
NASA Astrophysics Data System (ADS)
Özdemir, Yavuz; Akkaya, İsmail; Oyan, Vural; Kelfoun, Karim
2016-02-01
The Quaternary Süphan debris avalanche deposit is located in Eastern Anatolia, Turkey. The avalanche formed by the sector collapse of a major stratovolcano towards the north, possibly during a single catastrophic event. The deposit has an estimated volume of 4 km3 and ran out over 25 km to cover an area of approximately 200 km2. Products of the collapse are overlain by younger eruptive units from the Süphan volcano. We have tested the numerical code VolcFlow to first reproduce the emplacement of the Quaternary Süphan debris avalanche and then to develop a hazard assessment for potential future sector collapses and subsequent emplacement of debris avalanches and associated tsunami. The numerical model captures the main features of the propagation process, including travel distance, lateral spread, and run up. The best fit obtained for the existing flow has a constant retarding stress of 50 kPa and a collapse scar volume of 4 km3. Analysis of potential future collapse scenarios reveals that northern sector debris avalanches (up to 6 km3) could affect several towns. In the case of a sector collapse towards the south, a tsunami will reach the city of Van and several of the biggest towns on the southern shoreline of Lake Van. Cities most affected by the larger amplitude waves would be Van, Edremit, Gevaş, Tatvan, and, to a lesser extent, Erciş, with wave amplitudes (first waves after the onset of the collapse) between 8 and 10 m.
Black hole formation from the gravitational collapse of a nonspherical network of structures
NASA Astrophysics Data System (ADS)
Delgado Gaspar, Ismael; Hidalgo, Juan Carlos; Sussman, Roberto A.; Quiros, Israel
2018-05-01
We examine the gravitational collapse and black hole formation of multiple nonspherical configurations constructed from Szekeres dust models with positive spatial curvature that smoothly match to a Schwarzschild exterior. These configurations are made of an almost spherical central core region surrounded by a network of "pancake-like" overdensities and voids with spatial positions prescribed through standard initial conditions. We show that a full collapse into a focusing singularity, without shell crossings appearing before the formation of an apparent horizon, is not possible unless the full configuration becomes exactly or almost spherical. Seeking for black hole formation, we demand that shell crossings are covered by the apparent horizon. This requires very special fine-tuned initial conditions that impose very strong and unrealistic constraints on the total black hole mass and full collapse time. As a consequence, nonspherical nonrotating dust sources cannot furnish even minimally realistic toy models of black hole formation at astrophysical scales: demanding realistic collapse time scales yields huge unrealistic black hole masses, while simulations of typical astrophysical black hole masses collapse in unrealistically small times. We note, however, that the resulting time-mass constraint is compatible with early Universe models of primordial black hole formation, suitable in early dust-like environments. Finally, we argue that the shell crossings appearing when nonspherical dust structures collapse are an indicator that such structures do not form galactic mass black holes but virialize into stable stationary objects.
Collapse of the soap-film bridge - Quasistatic description
NASA Astrophysics Data System (ADS)
Cryer, Steven A.; Steen, Paul H.
1992-11-01
Observations of the collapse of a soap-film bridge from a connected to a disconnected state are recorded. The equilibrium framework for this nonequilibrium event is classical. Experiments confirm predictions of stable and unstable equilibria. A quasistatic description is introduced for the dynamic states to extend the static theory. It is found to adequately describe the collapse trajectory while the bridge is still connected.
Collapse of the soap-film bridge - Quasistatic description
NASA Technical Reports Server (NTRS)
Cryer, Steven A.; Steen, Paul H.
1992-01-01
Observations of the collapse of a soap-film bridge from a connected to a disconnected state are recorded. The equilibrium framework for this nonequilibrium event is classical. Experiments confirm predictions of stable and unstable equilibria. A quasistatic description is introduced for the dynamic states to extend the static theory. It is found to adequately describe the collapse trajectory while the bridge is still connected.
The Collapse of the I-35W Bridge in Minneapolis
ERIC Educational Resources Information Center
Feldman, Bernard J.
2010-01-01
On Wednesday, Aug. 1, 2007, at 6:05 p.m. (during evening rush hour), the I-35W bridge across the Mississippi River in Minneapolis collapsed, killing 13 people and injuring 145. At the time of the collapse, repair work was in progress on the deck of the bridge, resulting in an additional 287 tons of construction material and equipment being on the…
NASA Astrophysics Data System (ADS)
Krippner, Janine B.; Belousov, Alexander B.; Belousova, Marina G.; Ramsey, Michael S.
2018-04-01
For the years 2001 to 2013 of the ongoing eruption of Shiveluch volcano, a combination of different satellite remote sensing data are used to investigate the dome-collapse events and the resulting pyroclastic deposits. Shiveluch volcano in Kamchatka, Russia, is one of the world's most active dome-building volcanoes, which has produced some of the largest known historical block-and-ash flows (BAFs). Globally, quantitative data for deposits resulting from such large and long-lived dome-forming eruptions, especially like those at Shiveluch, are scarce. We use Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared (TIR), shortwave infrared (SWIR), and visible-near infrared (VNIR) data to analyze the dome-collapse scars and BAF deposits that were formed during eruptions and collapse events in 2001, 2004, 2005, 2007, 2009, 2010, and two events in 2013. These events produced flows with runout distances of as far as 19 km from the dome, and with aerial extents of as much as 22.3 km2. Over the 12 years of this period of investigation, there is no trend in deposit area or runout distances of the flows through time. However, two potentially predictive features are apparent in our data set: 1) the largest dome-collapse events occurred when the dome exceeded a relative height (from dome base to top) of 500 m; 2) collapses were preceded by thermal anomalies in six of the cases in which ASTER data were available, although the areal extent of these precursory thermal areas did not generally match the size of the collapse events as indicated by scar area (volumes are available for three collapse events). Linking the deposit distribution to the area, location, and temperature profiles of the dome-collapse scars provides a basis for determining similar future hazards at Shiveluch and at other dome-forming volcanoes. Because of these factors, we suggest that volcanic hazard analysis and mitigation at volcanoes with similar BAF emplacement behavior may be improved with detailed, synoptic studies, especially when it is possible to access and interpret appropriate remote sensing data in near-real time.
Failure Analysis of Overhanging Blocks in the Walls of a Gas Storage Salt Cavern: A Case Study
NASA Astrophysics Data System (ADS)
Wang, Tongtao; Yang, Chunhe; Li, Jianjun; Li, Jinlong; Shi, Xilin; Ma, Hongling
2017-01-01
Most of the rock salt of China is bedded, in which non-salt layers and rock salt layers alternate. Due to the poor solubility of the non-salt layers, many blocks overhang on the walls of the caverns used for gas storage, constructed by water leaching. These overhanging blocks may collapse at any time, which may damage the tubing and casing string, and even cause instability of the cavern. They are one of the main factors threatening the safety of caverns excavated in bedded rock salt formations. In this paper, a geomechanical model of the JJKK-D salt cavern, located in Jintan salt district, Jintan city, Jiangsu province, China, is established to evaluate the stability of the overhanging blocks on its walls. The characters of the target formation, property parameters of the rock mass, and actual working conditions are considered in the geomechanical model. An index system composed of stress, displacement, plastic zone, safety factor, and equivalent strain is used to predict the collapse length of the overhanging blocks, the moment the collapse will take place, and the main factors causing the collapse. The sonar survey data of the JJKK-D salt cavern are used to verify the reliability and accuracy of the proposed geomechanical model. The results show that the proposed geomechanical model has a good reliability and accuracy, and can be used for the collapse prediction of the overhanging blocks on the wall of the JJKK-D salt cavern. The collapse length of the overhanging block is about 8 m. We conclude that the collapse takes place during the debrining. The reason behind the collapse is the sudden decrease of the fluid density, leading to the increase of the self-weight of the overhanging blocks. This study provides a basis for the collapse prediction method of the overhanging blocks of Jintan salt cavern gas storage, and can also serve as a reference for salt cavern gas storage with similar conditions to deal with overhanging blocks.
Analogue of Caldera Dynamics: the Controlled Salt Cavern Collapse
NASA Astrophysics Data System (ADS)
Jousset, P. G.; Rohmer, J.
2012-12-01
Caldera collapse (or pit-crater) dynamics are inferred from geological observations and laboratory experiments. Here, we present an analogue of caldera collapse at field scale and possible analogy with large scale caldera dynamics. Through an original exploitation technique in sedimentary environment, a salt layer is emptied, leaving a brine-filled cavern, which eventually collapses after overburden falls into the cavern. Such a collapse was monitored in East France by many instruments (including GPS, extensometers, geophones, broadband seismological sensors, tiltmeter, gravity meter, … ), which allowed us to describe mechanisms of the collapse. Micro-seismicity is a good indicator of spatio-temporal evolution of physical properties of rocks prior to catastrophic events like volcanic eruptions or landslides and may be triggered by a number of causes including dynamic characteristics of processes in play or/and external forces. We show evidence of triggered micro-seismicity observed in the vicinity of this underground salt cavern prone to collapse by a remote M~7.2 earthquake, which occurred ~12000 kilometres away. High-dynamic broadband records reveal the strong time-correlation between a dramatic change in the rate of local high-frequency micro-seismicity and the passage of low-frequency seismic waves, including body, Love and Rayleigh surface waves. Pressure was lowered in the cavern by pumping operations of brine out of the cavern. We demonstrate the near critical state of the cavern before the collapse by means of 2D axisymmetric elastic finite-element simulations. Stress oscillations due to the seismic waves may have exceeded the strength required for the rupture of the complex media made of brine and rock triggering micro-earthquakes and leading to damage of the overburden and eventually collapse of the salt cavern. The increment of stress necessary for the failure of a Dolomite layer is of the same order or magnitude as the maximum dynamic stress magnitude observed during the passage of the earthquakes waves. On this basis, we discuss the possible contribution of the Love and Rayleigh low-frequency surfaces waves. This experiment may help us understand mechanisms of caldera formation.
NASA Astrophysics Data System (ADS)
Miller, Steven David
1999-10-01
A consistent extension of the Oppenheimer-Snyder gravitational collapse formalism is presented which incorporates stochastic, conformal, vacuum fluctuations of the metric tensor. This results in a tractable approach to studying the possible effects of vacuum fluctuations on collapse and singularity formation. The motivation here, is that it is known that coupling stochastic noise to a classical field theory can lead to workable methodologies that accommodate or reproduce many aspects of quantum theory, turbulence or structure formation. The effect of statistically averaging over the metric fluctuations gives the appearance of a deterministic Riemannian structure, with an induced non-vanishing cosmological constant arising from the nonlinearity. The Oppenheimer-Snyder collapse of a perfect fluid or dust star in the fluctuating or `turbulent' spacetime, is reformulated in terms of nonlinear Einstein-Langevin field equations, with an additional noise source in the energy-momentum tensor. The smooth deterministic worldlines of collapsing matter within the classical Oppenheimer-Snyder model, now become nonlinear Brownian motions due to the backreaction induced by vacuum fluctuations. As the star collapses, the matter worldlines become increasingly randomized since the backreaction coupling to the vacuum fluctuations is nonlinear; the input assumptions of the Hawking-Penrose singularity theorems should then be violated. Solving the nonlinear Einstein-Langevin field equation for collapse - via the Ito interpretation - gives a singularity-free solution, which is equivalent to the original Oppenheimer solution but with higher-order stochastic corrections; the original singular solution is recovered in the limit of zero vacuum fluctuations. The `geometro-hydrodynamics' of noisy gravitational collapse, were also translated into an equivalent mathematical formulation in terms of nonlinear Einstein-Fokker-Planck (EFP) continuity equations with respect to comoving coordinates: these describe the collapse as a conserved flow of probability. A solution was found in the dilute limit of weak fluctuations where the EFP equation is linearized. There is zero probability that the star collapses to a singular state in the presence of background vacuum fluctuations, but the singularity returns with unit probability when the fluctuations are reduced to zero. Finally, an EFP equation was considered with respect to standard exterior coordinates. Using the thermal Brownian motion paradigm, an exact stationary or equilibrium solution was found in the infinite standard time relaxation limit. The solution gives the conditions required for the final collapsed object (a black hole) to be in thermal equilibrium with the background vacuum fluctuations. From this solution, one recovers the Hawking temperature without using field theory. The stationary solution then seems to correspond to a black hole in thermal equilibrium with a fluctuating conformal scalar field; or the Hawking-Hartle state.
Hot spaghetti: Viscous gravitational collapse
NASA Astrophysics Data System (ADS)
Müller, Berndt; Schäfer, Andreas
2018-02-01
We explore the fate of matter falling into a macroscopic Schwarzschild black hole for the simplified case of a radially collapsing thin spherical shell for which the back reaction of the geometry can be neglected. We treat the internal dynamics of the in-falling matter in the framework of viscous relativistic hydrodynamics and calculate how the internal temperature of the collapsing matter evolves as it falls toward the Schwarzschild singularity. We find that viscous hydrodynamics fails when either the dissipative radial pressure exceeds the thermal pressure and the total radial pressure becomes negative, or the time scale of variation of the tidal forces acting on the collapsing matter becomes shorter than the characteristic hydrodynamic response time.
Damage tolerant design using collapse techniques
NASA Technical Reports Server (NTRS)
Haftka, R. T.
1982-01-01
A new approach to the design of structures for improved global damage tolerance is presented. In its undamaged condition the structure is designed subject to strength, displacement and buckling constraints. In the damaged condition the only constraint is that the structure will not collapse. The collapse load calculation is formulated as a maximization problem and solved by an interior extended penalty function. The design for minimum weight subject to constraints on the undamaged structure and a specified level of the collapse load is a minimization problem which is also solved by a penalty function formulation. Thus the overall problem is of a nested or multilevel optimization. Examples are presented to demonstrate the difference between the present and more traditional approaches.
NASA Astrophysics Data System (ADS)
Tene, Yair; Tene, Noam; Tene, G.
1993-08-01
An interactive data fusion methodology of video, audio, and nonlinear structural dynamic analysis for potential application in forensic engineering is presented. The methodology was developed and successfully demonstrated in the analysis of heavy transportable bridge collapse during preparation for testing. Multiple bridge elements failures were identified after the collapse, including fracture, cracks and rupture of high performance structural materials. Videotape recording by hand held camcorder was the only source of information about the collapse sequence. The interactive data fusion methodology resulted in extracting relevant information form the videotape and from dynamic nonlinear structural analysis, leading to full account of the sequence of events during the bridge collapse.
Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri
2016-01-01
Summary We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism. PMID:26977380
Effect of strong-column weak-beam design provision on the seismic fragility of RC frame buildings
NASA Astrophysics Data System (ADS)
Surana, Mitesh; Singh, Yogendra; Lang, Dominik H.
2018-04-01
Incremental dynamic analyses are conducted for a suite of low- and mid-rise reinforced-concrete special moment-resisting frame buildings. Buildings non-conforming and conforming to the strong-column weak-beam (SCWB) design criterion are considered. These buildings are designed for the two most severe seismic zones in India (i.e., zone IV and zone V) following the provisions of Indian Standards. It is observed that buildings non-conforming to the SCWB design criterion lead to an undesirable column failure collapse mechanism. Although yielding of columns cannot be avoided, even for buildings conforming to a SCWB ratio of 1.4, the observed collapse mechanism changes to a beam failure mechanism. This change in collapse mechanism leads to a significant increase in the building's global ductility capacity, and thereby in collapse capacity. The fragility analysis study of the considered buildings suggests that considering the SCWB design criterion leads to a significant reduction in collapse probability, particularly in the case of mid-rise buildings.
Chitnis, Parag V; Cleveland, Robin O
2006-04-01
Measurements are presented of acoustic emissions from cavitation collapses on the surface of a synthetic kidney stone in response to shock waves (SWs) from an electrohydraulic lithotripter. A fiber optic probe hydrophone was used for pressure measurements, and passive cavitation detection was used to identify acoustic emissions from bubble collapse. At a lithotripter charging voltage of 20 kV, the focused SW incident on the stone surface resulted in a peak pressure of 43 +/- 6 MPa compared to 23 +/- 4 MPa in the free field. The focused SW incident upon the stone appeared to be enhanced due to the acoustic emissions from the forced cavitation collapse of the preexisting bubbles. The peak pressure of the acoustic emission from a bubble collapse was 34 +/- 15 MPa, that is, the same magnitude as the SWs incident on the stone. These data indicate that stresses induced by focused SWs and cavitation collapses are similar in magnitude thus likely play a similar role in stone fragmentation.
Influence of West Antarctic Ice Sheet collapse on Antarctic surface climate
NASA Astrophysics Data System (ADS)
Steig, Eric J.; Huybers, Kathleen; Singh, Hansi A.; Steiger, Nathan J.; Ding, Qinghua; Frierson, Dargan M. W.; Popp, Trevor; White, James W. C.
2015-06-01
Climate model simulations are used to examine the impact of a collapse of the West Antarctic Ice Sheet (WAIS) on the surface climate of Antarctica. The lowered topography following WAIS collapse produces anomalous cyclonic circulation with increased flow of warm, maritime air toward the South Pole and cold-air advection from the East Antarctic plateau toward the Ross Sea and Marie Byrd Land, West Antarctica. Relative to the background climate, areas in East Antarctica that are adjacent to the WAIS warm, while substantial cooling (several °C) occurs over parts of West Antarctica. Anomalously low isotope-paleotemperature values at Mount Moulton, West Antarctica, compared with ice core records in East Antarctica, are consistent with collapse of the WAIS during the last interglacial period, Marine Isotope Stage 5e. More definitive evidence might be recoverable from an ice core record at Hercules Dome, East Antarctica, which would experience significant warming and positive oxygen isotope anomalies if the WAIS collapsed.
Numerical investigation of wake-collapse internal waves generated by a submerged moving body
NASA Astrophysics Data System (ADS)
Liang, Jianjun; Du, Tao; Huang, Weigen; He, Mingxia
2017-07-01
The state-of-the-art OpenFOAM technology is used to develop a numerical model that can be devoted to numerically investigating wake-collapse internal waves generated by a submerged moving body. The model incorporates body geometry, propeller forcing, and stratification magnitude of seawater. The generation mechanism and wave properties are discussed based on model results. It was found that the generation of the wave and its properties depend greatly on the body speed. Only when that speed exceeds some critical value, between 1.5 and 4.5 m/s, can the moving body generate wake-collapse internal waves, and with increases of this speed, the time of generation advances and wave amplitude increases. The generated wake-collapse internal waves are confirmed to have characteristics of the second baroclinic mode. As the body speed increases, wave amplitude and length increase and its waveform tends to take on a regular sinusoidal shape. For three linearly temperature-stratified profiles examined, the weaker the stratification, the stronger the wake-collapse internal wave.
NASA Technical Reports Server (NTRS)
Gaver, Donald P., III; Bilek, A. M.; Kay, S.; Dee, K. C.
2004-01-01
Pulmonary airway closure is a potentially dangerous event that can occur in microgravity environments and may result in limited gas exchange for flight crew during long-term space flight. Repetitive airway collapse and reopening subjects the pulmonary epithelium to large, dynamic, and potentially injurious mechanical stresses. During ventilation at low lung volumes and pressures, airway instability leads to repetitive collapse and reopening. During reopening, air must progress through a collapsed airway, generating stresses on the airway walls, potentially damaging airway tissues. The normal lung can tolerate repetitive collapse and reopening. However, combined with insufficient or dysfunctional pulmonary surfactant, repetitive airway collapse and reopening produces severe lung injury. Particularly at risk is the pulmonary epithelium. As an important regulator of lung function and physiology, the degree of pulmonary epithelial damage influences the course and outcome of lung injury. In this paper we present experimental and computational studies to explore the hypothesis that the mechanical stresses associated with airway reopening inflict injury to the pulmonary epithelium.
Liquid-Crystalline Collapse of Pulmonary Surfactant Monolayers
Schief, William R.; Antia, Meher; Discher, Bohdana M.; Hall, Stephen B.; Vogel, Viola
2003-01-01
During exhalation, the surfactant film of lipids and proteins that coats the alveoli in the lung is compressed to high surface pressures, and can remain metastable for prolonged periods at pressures approaching 70 mN/m. Monolayers of calf lung surfactant extract (CLSE), however, collapse in vitro, during an initial compression at ∼45 mN/m. To gain information on the source of this discrepancy, we investigated how monolayers of CLSE collapse from the interface. Observations with fluorescence, Brewster angle, and light scattering microscopies show that monolayers containing CLSE, CLSE-cholesterol (20%), or binary mixtures of dipalmitoyl phosphatidylcholine(DPPC)-dihydrocholesterol all form bilayer disks that reside above the monolayer. Upon compression and expansion, lipids flow continuously from the monolayer into the disks, and vice versa. In several respects, the mode of collapse resembles the behavior of other amphiphiles that form smectic liquid-crystal phases. These findings suggest that components of surfactent films must collapse collectively rather than being squeezed out individually. PMID:12770885
Is Collapsing C1q Nephropathy Another MYH9-Associated Kidney Disease? A Case Report
Reeves-Daniel, Amber M.; Iskandar, Samy S.; Bowden, Donald W.; Bostrom, Meredith A.; Hicks, Pamela J.; Comeau, Mary E.; Langefeld, Carl D.; Freedman, Barry I.
2009-01-01
C1q nephropathy is a rare kidney disease that can present with nephrotic syndrome and typically has the histological phenotype of either minimal change disease (MCD) or focal segmental glomerulosclerosis (FSGS). Disagreement exists as to whether it is a distinct immune complex-mediated glomerulopathy or whether it resides in the spectrum of FSGS-MCD. Two African American patients with C1q nephropathy histologically presenting as the collapsing variant of FSGS (collapsing C1q nephropathy) and rapid loss of kidney function were genotyped for polymorphisms in the non-muscle myosin heavy chain 9 gene (MYH9). Both cases were homozygous for the MYH9 E1 risk haplotype; the variant strongly associated with idiopathic FSGS, collapsing FSGS in Human Immunodeficiency Virus-associated nephropathy and focal global glomerulosclerosis (historically attributed to hypertensive nephrosclerosis). Collapsing C1q nephropathy with rapid progression to ESRD appears to reside in the MYH9-associated disease spectrum. PMID:20116156
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benetti, Micol; Alcaniz, Jailson S.; Landau, Susana J., E-mail: micolbenetti@on.br, E-mail: slandau@df.uba.ar, E-mail: alcaniz@on.br
The hypothesis of the self-induced collapse of the inflaton wave function was proposed as responsible for the emergence of inhomogeneity and anisotropy at all scales. This proposal was studied within an almost de Sitter space-time approximation for the background, which led to a perfect scale-invariant power spectrum, and also for a quasi-de Sitter background, which allows to distinguish departures from the standard approach due to the inclusion of the collapse hypothesis. In this work we perform a Bayesian model comparison for two different choices of the self-induced collapse in a full quasi-de Sitter expansion scenario. In particular, we analyze themore » possibility of detecting the imprint of these collapse schemes at low multipoles of the anisotropy temperature power spectrum of the Cosmic Microwave Background (CMB) using the most recent data provided by the Planck Collaboration. Our results show that one of the two collapse schemes analyzed provides the same Bayesian evidence of the minimal standard cosmological model ΛCDM, while the other scenario is weakly disfavoured with respect to the standard cosmology.« less
Auxiliary drying to prevent pattern collapse in high aspect ratio nanostructures
NASA Astrophysics Data System (ADS)
Liu, Gang; Zhou, Jie; Xiong, Ying; Zhang, Xiaobo; Tian, Yangchao
2011-07-01
Many defects are generated in densely packed high aspect ratio structures during nanofabrication. Pattern collapse is one of the serious problems that may arise, mainly due to the capillary force during drying after the rinsing process. In this paper, a method of auxiliary drying is presented to prevent pattern collapse in high aspect ratio nanostructures by adding an auxiliary substrate as a reinforcing rib to restrict deformation and to balance the capillary force. The principle of the method is presented based on the analysis of pattern collapse. A finite element method is then applied to analyze the deformation of the resist beams caused by the surface tension using the ANSYS software, and the effect of the nanostructure's length to width ratio simulated and analyzed. Finally, the possible range of applications based on the proposed method is discussed. Our results show that the aspect ratio may be increased 2.6 times without pattern collapse; furthermore, this method can be widely used in the removal of solvents in micro- and nanofabrication.
Auxiliary drying to prevent pattern collapse in high aspect ratio nanostructures.
Liu, Gang; Zhou, Jie; Xiong, Ying; Zhang, Xiaobo; Tian, Yangchao
2011-07-29
Many defects are generated in densely packed high aspect ratio structures during nanofabrication. Pattern collapse is one of the serious problems that may arise, mainly due to the capillary force during drying after the rinsing process. In this paper, a method of auxiliary drying is presented to prevent pattern collapse in high aspect ratio nanostructures by adding an auxiliary substrate as a reinforcing rib to restrict deformation and to balance the capillary force. The principle of the method is presented based on the analysis of pattern collapse. A finite element method is then applied to analyze the deformation of the resist beams caused by the surface tension using the ANSYS software, and the effect of the nanostructure's length to width ratio simulated and analyzed. Finally, the possible range of applications based on the proposed method is discussed. Our results show that the aspect ratio may be increased 2.6 times without pattern collapse; furthermore, this method can be widely used in the removal of solvents in micro- and nanofabrication.
Edmonds, Marie; Herd, Richard A.
2005-01-01
The largest and most intense lava-dome collapse during the eruption of Soufrière Hills volcano, Montserrat, 1995–2004, occurred 12–13 July 2003. The dome collapse involved around 200 × 106 m3 of material and was associated with a phenomenon previously unknown at this volcano. Large pyroclastic flows at the peak of the dome collapse interacted explosively with seawater at the mouth of the Tar River Valley and generated a hot, dry base surge that flowed 4 km inland and 300 m uphill. The surge was destructive to at least 25 m above the ground and it carbonized vegetation. The resulting two-layer deposits were as much as 0.9 m thick. Although the entire collapse lasted 18 h, the base surge greatly increased the land area affected by the dome collapse in a few minutes at the peak of the event, illustrating the complex nature of the interaction between pyroclastic flows and seawater.
Delayed collapses of Bose-Einstein condensates in relation to anti-de Sitter gravity.
Biasi, Anxo F; Mas, Javier; Paredes, Angel
2017-03-01
We numerically investigate spherically symmetric collapses in the Gross-Pitaevskii equation with attractive nonlinearity in a harmonic potential. Even below threshold for direct collapse, the wave function bounces off from the origin and may eventually become singular after a number of oscillations in the trapping potential. This is reminiscent of the evolution of Einstein gravity sourced by a scalar field in anti de Sitter space where collapse corresponds to black-hole formation. We carefully examine the long time evolution of the wave function for continuous families of initial states in order to sharpen out this qualitative coincidence which may bring new insights in both directions. On the one hand, we comment on possible implications for the so-called Bosenova collapses in cold atom Bose-Einstein condensates. On the other hand, Gross-Pitaevskii provides a toy model to study the relevance of either the resonance conditions or the nonlinearity for the problem of anti de Sitter instability.
Howard, K.A.
2010-01-01
The 1968 trapdoor collapse (1.5 km3) of Fernandina caldera in the Galapágos Islands developed the same kinds of structures as found in small sandbox-collapse models and in concentrically zoned sinks formed in desert alluvium by fault subsidence into underground nuclear-explosion cavities. Fernandina’s collapse developed through shear failure in which the roof above the evacuating chamber was lowered mostly intact. This coherent subsidence contrasts to chaotic piecemeal collapse at small, rocky pit craters, underscoring the role of rock strength relative to subsidence size. The zoning at Fernandina implies that the deflated magma chamber underlay a central basin and a bordering inward-dipping monocline, which separates a blind inner reverse fault from an outer zone of normal faulting. Similar concentric zoning patterns can be recognized in coherent subsidence structures ranging over 16 orders of magnitude in size, from sandbox experiments to the giant Olympus Mons caldera on Mars.
Collapse of a nanoscopic void triggered by a spherically symmetric traveling sound wave.
Hołyst, Robert; Litniewski, Marek; Garstecki, Piotr
2012-05-01
Molecular-dynamics simulations of the Lennard-Jones fluid (up to 10(7) atoms) are used to analyze the collapse of a nanoscopic bubble. The collapse is triggered by a traveling sound wave that forms a shock wave at the interface. The peak temperature T(max) in the focal point of the collapse is approximately ΣR(0)(a), where Σ is the surface density of energy injected at the boundary of the container of radius R(0) and α ≈ 0.4-0.45. For Σ = 1.6 J/m(2) and R(0) = 51 nm, the shock wave velocity, which is proportional to √Σ, reaches 3400 m/s (4 times the speed of sound in the liquid); the pressure at the interface, which is proportional to Σ, reaches 10 GPa; and T(max) reaches 40,000 K. The Rayleigh-Plesset equation together with the time of the collapse can be used to estimate the pressure at the front of the shock wave.
Naked singularity resolution in cylindrical collapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurita, Yasunari; Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502; Nakao, Ken-ichi
In this paper, we study the gravitational collapse of null dust in cylindrically symmetric spacetime. The naked singularity necessarily forms at the symmetry axis. We consider the situation in which null dust is emitted again from the naked singularity formed by the collapsed null dust and investigate the backreaction by this emission for the naked singularity. We show a very peculiar but physically important case in which the same amount of null dust as that of the collapsed one is emitted from the naked singularity as soon as the ingoing null dust hits the symmetry axis and forms the nakedmore » singularity. In this case, although this naked singularity satisfies the strong curvature condition by Krolak (limiting focusing condition), geodesics which hit the singularity can be extended uniquely across the singularity. Therefore, we may say that the collapsing null dust passes through the singularity formed by itself and then leaves for infinity. Finally, the singularity completely disappears and the flat spacetime remains.« less
Collapsing Binary Asteroids With YORP And BYORP
NASA Astrophysics Data System (ADS)
Taylor, Patrick A.
2012-05-01
A separated binary system may be collapsed to contact via the removal of angular momentum from the system until a viable tidal end state no longer exists. The thermal YORP and BYORP effects are both capable of removing angular momentum from the system, by spin-down of the components and shrinking the mutual orbit, respectively. The YORP effect, with strength of order that measured for (1862) Apollo [1], can collapse a binary system with equal-mass components in as little as tens of thousands of years (depending on the initial angular momentum), while smaller secondaries require two or more orders of magnitude longer to collapse. BYORP, with a BYORP coefficent of 0.001 [2], is less efficient, especially for smaller secondaries. By these methods, only near-Earth binaries with large mass ratios can collapse within a dynamical lifetime, a population of which is observed by radar with a frequency comparable to separated binaries. [1] Kaasalainen et al., 2007, Nature 446, 420-422. [2] McMahon and Scheeres, 2010, Icarus 209, 494-509.
Collapse of caves at shallow depth in Gaziantep city center, Turkey: a case study
NASA Astrophysics Data System (ADS)
Canakci, Hanifi
2007-12-01
This paper focuses on an investigation of the possible causes for the collapse of limestone caves in Gaziantep, Turkey. The city contains a lot of man-made caves, at a shallow depth, of various width and length. These caves were mainly excavated to provide work or storage space. As the city has been growing fast with increased population, many structures were constructed over these caves. Recently, two caves collapsed and five houses were damaged. These caves are all made of limestone and it was observed after the collapse that the limestone was saturated with water due to sewer pipe leakage and surface water. Tests were carried out on the limestone and it was determined that the compressive strength of limestone decreases by about 50% and the tensile strength decreased by about 80% when saturated with water. It was concluded that the reduced strength of the limestone combined with additional loads due to the factors mentioned above seem to be the main reason for these collapses.
Three-dimensional simulations of void collapse in energetic materials
NASA Astrophysics Data System (ADS)
Rai, Nirmal Kumar; Udaykumar, H. S.
2018-03-01
The collapse of voids in porous energetic materials leads to hot-spot formation and reaction initiation. This work advances the current knowledge of the dynamics of void collapse and hot-spot formation using 3D reactive void collapse simulations in HMX. Four different void shapes, i.e., sphere, cylinder, plate, and ellipsoid, are studied. For all four shapes, collapse generates complex three-dimensional (3D) baroclinic vortical structures. The hot spots are collocated with regions of intense vorticity. The differences in the vortical structures for the different void shapes are shown to significantly impact the relative sensitivity of the voids. Voids of high surface area generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In addition, all 3D voids are shown to be more sensitive than their two-dimensional (2D) counterparts. The results provide physical insights into hot-spot formation and growth and point to the limitations of 2D analyses of hot-spot formation.
Investigation of Collapse Characteristics of Cylindrical Composite Panels with Large Cutouts
1989-12-01
COLLAPSE CHARACTERISTICS OF CYLINDRICAL COMPOSITE PANELS WITH LARGE CUTOUTS THESIS Scott A. Schimmels Captain, USAF AFIT/GAE/ENY/89D-33 Approved for...public release, distribution unlimited AFIT/GAE/ENY/89D-33 INVESTIGATION OF COLLAPSE * CHARACTERISTICS OF CYLINDRICAL COMPOSITE PANELS WITH LARGE...you would not be reading this. * This thesis research is part of an overall effort in composite nonlinear shell analysis sponsored by AFOSR, Dr
Whyte, G; Stephens, N; Senior, R; George, K; Shave, R; Wilson, M; Sharma, S
2007-01-01
Collapse after prolonged endurance exercise is common and usually benign. This case study reports a triathlete who suffered a vaso‐vagal associated collapsed after exercise. Misdiagnosis of myocardial injury in the presence of elevated cardiac troponins and ECG anomalies led to inappropriate management and highlights the difficulty in treating the collapsed athlete following arduous exercise. PMID:17261549
Whyte, Gregory; Whyte, Gregory; Stephens, Nigel; Senior, Roxy; George, Keith; Shave, Robert; Wilson, Mathew; Sharma, Sanjay
2009-01-01
Collapse after prolonged endurance exercise is common and usually benign. This case study reports a triathlete who suffered a vaso-vagal associated collapsed after exercise. Misdiagnosis of myocardial injury in the presence of elevated cardiac troponins and ECG anomalies led to inappropriate management and highlights the difficulty in treating the collapsed athlete following arduous exercise. PMID:21686646
Improving Qubit Phase Estimation in Amplitude-damping Channel by Partial-collapse Measurement
NASA Astrophysics Data System (ADS)
Liao, Xiang-Ping; Zhou, Xin; Fang, Mao-Fa
2018-03-01
An efficient method is proposed to improve qubit phase estimation in amplitude-damping channel by partial-collapse measurement in this paper. It is shown that the quantum Fisher information (QFI) can be distinctly enhanced under amplitude-damping decoherence with partial-collapse measurement. Moreover, the optimal QFI is approximately close to the maximum value 1 regardless of the decoherence parameter by choosing the appropriate measurement strengths.
Current sheet collapse in a plasma focus.
NASA Technical Reports Server (NTRS)
Jalufka, N. W.; Lee, J. H.
1972-01-01
Collapse of the current sheets in a plasma focus has been recorded simultaneously through slits parallel and perpendicular to the symmetry axis in the streak mode. The dark period following the collapse is due to the plasma moving out of the field of view. Microdensitometric measurements of intensity variation also support this conclusion. A large anisotropy is also found in the x-ray radiation pattern. Effects of different vacuum vessels were investigated.
Subsidence and collapse sinkholes in soluble rock: a numerical perspective
NASA Astrophysics Data System (ADS)
Kaufmann, Georg; Romanov, Douchko; Hiller, Thomas
2016-04-01
Soluble rocks such as limestone, gypsum, anhydrite, and salt are prone to subsidence and the sudden creation of collapse sinkholes. The reason for this behaviour stems from the solubility of the rock: Water percolating through fissures and bedding partings can remove material from the rock walls and thus increase the permeability of the host rock by orders of magnitudes. This process occurs on time scales of 1,000-100,000 years, resulting in enlarged fractures, voids and cavities, which then carry flow efficiently through the rock. The enlargement of sub-surface voids to the meter-size within such short times creates mechanical conditions prone to collapse. The collapse initiates at depth, but then propagates to the surface. By means of numerical modelling, we discuss the long-term evolution of secondary porosity in gypsum rocks, resulting in zones of sub-surface voids, which then become mechanically unstable and collapse. We study two real-world case scenarios, in which we can relate field observations to our numerical model: (i) A dam-site scenario, where flow around the dam caused widespread dissolution of gypsum and subsequent subsidence of the dam and a nearby highway. (ii) A natural collapse sinkhole forming as a result of freshwater inflow into a shallow anhydrite formation with rapid evolution of voids in the sub-surface.
Multi-species collapses at the warm edge of a warming sea
Rilov, Gil
2016-01-01
Even during the current biodiversity crisis, reports on population collapses of highly abundant, non-harvested marine species were rare until very recently. This is starting to change, especially at the warm edge of species’ distributions where populations are more vulnerable to stress. The Levant basin is the southeastern edge of distribution of most Mediterranean species. Coastal water conditions are naturally extreme, and are fast warming, making it a potential hotspot for species collapses. Using multiple data sources, I found strong evidence for major, sustained, population collapses of two urchins, one large predatory gastropod and a reef-building gastropod. Furthermore, of 59 molluscan species once-described in the taxonomic literature as common on Levant reefs, 38 were not found in the present-day surveys, and there was a total domination of non-indigenous species in molluscan assemblages. Temperature trends indicate an exceptional warming of the coastal waters in the past three decades. Though speculative at this stage, the fast rise in SST may have helped pushing these invertebrates beyond their physiological tolerance limits leading to population collapses and possible extirpations. If so, these collapses may indicate the initiation of a multi-species range contraction at the Mediterranean southeastern edge that may spread westward with additional warming. PMID:27853237
Draffehn, Sören; Kumke, Michael U
2016-05-02
Nowadays, the encapsulation of therapeutic compounds in so-called carrier systems is a very smart method to achieve protection as well as an improvement of their temporal and spatial distribution. After the successful transport to the point of care, the delivery has to be released under controlled conditions. To monitor the triggered release from the carrier, we investigated different fluorescent probes regarding their response to the pH-induced collapse of pH-sensitive liposomes (pHSLip), which occurs when the environmental pH falls below a critical value. Depending on the probe, the fluorescence decay time as well as fluorescence anisotropy can be used equally as key parameters for monitoring the collapse. Especially the application of a fluorescein labeled fatty acid (fPA) enabled the monitoring of the pHSLips collapse and the pH of its microenvironment simultaneously without interference. Varying the pH in the range of 3 < pH < 9, anisotropy data revealed the critical pH value at which the collapse of the pHSLips occurs. Complementary methods, e.g., fluorescence correlation spectroscopy and dynamic light scattering, supported the analysis based on the decay time and anisotropy. Additional experiments with varying incubation times yielded information on the kinetics of the liposomal collapse.
A study on the disaster medical response during the Mauna Ocean Resort gymnasium collapse.
Cha, Myeong-Il; Kim, Gi Woon; Kim, Chu Hyun; Choa, Minhong; Choi, Dai Hai; Kim, Inbyung; Wang, Soon Joo; Yoo, In Sool; Yoon, Han Deok; Lee, Kang Hyun; Cho, Suck Ju; Heo, Tag; Hong, Eun Seog
2016-09-01
To investigate and document the disaster medical response during the Gyeongju Mauna Ocean Resort gymnasium collapse on February 17, 2014. Official records of each institution were verified to select the study population. All the medical records and emergency medical service run sheets were reviewed by an emergency physician. Personal or telephonic interviews were conducted, without a separate questionnaire, if the institutions or agencies crucial to disaster response did not have official records or if information from different institutions was inconsistent. One hundred fifty-five accident victims treated at 12 hospitals, mostly for minor wounds, were included in this study. The collapse killed 10 people. Although the news of collapse was disseminated in 4 minutes, dispatch of 4 disaster medical assistance teams took at least 69 minutes to take the decision of dispatch. Four point five percent were treated at the accident site, 56.7% were transferred to 2 hospitals that were nearest to the collapse site, and 42.6% were transferred to hospitals that were poorly prepared to handle disaster victims. In the Gyeongju Mauna Ocean Resort gymnasium collapse, the initial triage and distribution of patients was inefficient and medical assistance arrived late. These problems had also been noted in prior mass casualty incidents.
Analysis of rotational and sliding collapse modes of masonry arches via Durand-Claye's method
NASA Astrophysics Data System (ADS)
Barsotti, Riccardo; Aita, Danila; Bennati, Stefano
2017-11-01
In this paper the mechanical behavior of circular and pointed masonry arches subject to their own weight is examined in order to determine their collapse modes. Different arch's shapes and thicknesses are considered; the influence of the friction coefficient on the arch collapse is analyzed as well. The safety level of arches is investigated by suitably reworking in semi-analytical form the stability area graphical method proposed by a renowned 19th century French scholar, Durand-Claye. Our analysis enables accounting for any given eccentricity of the thrust at the crown; furthermore, also the strength of masonry is taken into account. According to Durand-Claye's method, the arch is safe if along any given joint both the bending moment and the shear force do not exceed some given limit values. It is shown that attainment of a limit condition according to Durand-Claye corresponds to the onset of a collapse mechanism characterized by either relative rotation or sliding between masonry units. All possible symmetric collapse modes for an arch are thoroughly described. As it was expected, pointed and circular arches show different collapse behaviors. Limit values of arch thickness and friction coefficient are assessed. The results obtained are compared with those given by Michon in 1857.
[Collapsing variant of focal segmental glomerulosclerosis by parvovirus B19: case report].
Freitas, Geraldo Rubens Ramos de; Praxedes, Marcel Rodrigues Gurgel; Malheiros, Denise; Testagrossa, Leonardo; Dias, Cristiane Bitencourt; Woronik, Viktoria
2015-01-01
To describe the clinical and laboratory profile of focal segmental glomerulosclerosis (FSGS) of the collapsing subtype in association with infection by parvovirus B19 (PVB19). Female patient, 37 years old, mulatto, developed pharyngalgia and fever with partial improvement after penicillin. After one week we observed reduced urinary output and lower limb edema. Smoker, family and personal history negative for hypertension, diabetes or kidney disease. Patient presented with olyguria, hypertension and edema, also hypochromic microcytic hypoproliferative anemia, nephritic range proteinuria, microscopic hematuria and renal dysfunction. All rheumatologic investigation, HIV and hepatitis serology were negative. Unremarkable renal ultrasound. PCR positive for PVB19 in bone marrow aspirate and blood and renal biopsy conclusive of collapsing FSGS subtype. Spontaneous remission occurred within two weeks of the profile. The blood PVB19 PCR was repeated within a month and resulted negative. This finding demonstrated PVB19 acute infection or viral reactivation in association with collapsing FSGS. There is demonstrated the temporal association of PVB19 viremia and collapsing FSGS, due primary infection or viral reactivation. The association of collapsing FSGS and PVB19 is described in the literature, demonstrating virus presence in kidney tissue, but the real relationship of virus in the pathogenesis of this glomerulopathy remains unclear.
A novel animal model for hyperdynamic airway collapse.
Tsukada, Hisashi; O'Donnell, Carl R; Garland, Robert; Herth, Felix; Decamp, Malcolm; Ernst, Armin
2010-12-01
Tracheobronchomalacia (TBM) is increasingly recognized as a condition associated with significant pulmonary morbidity. However, treatment is invasive and complex, and because there is no appropriate animal model, novel diagnostic and treatment strategies are difficult to evaluate. We endeavored to develop a reliable airway model to simulate hyperdynamic airway collapse in humans. Seven 20-kg male sheep were enrolled in this study. Tracheomalacia was created by submucosal resection of > 50% of the circumference of 10 consecutive cervical tracheal cartilage rings through a midline cervical incision. A silicone stent was placed in the trachea to prevent airway collapse during recovery. Tracheal collapsibility was assessed at protocol-specific time points by bronchoscopy and multidetector CT imaging while temporarily removing the stent. Esophageal pressure and flow data were collected to assess flow limitation during spontaneous breathing. All animals tolerated the surgical procedure well and were stented without complications. One sheep died at 2 weeks because of respiratory failure related to stent migration. In all sheep, near-total forced inspiratory airway collapse was observed up to 3 months postprocedure. Esophageal manometry demonstrated flow limitation associated with large negative pleural pressure swings during rapid spontaneous inhalation. Hyperdynamic airway collapse can reliably be induced with this technique. It may serve as a model for evaluation of novel diagnostic and therapeutic strategies for TBM.
Chain Collapse of an Amyloidogenic Intrinsically Disordered Protein
Jain, Neha; Bhattacharya, Mily; Mukhopadhyay, Samrat
2011-01-01
Natively unfolded or intrinsically disordered proteins (IDPs) are under intense scrutiny due to their involvement in both normal biological functions and abnormal protein misfolding disorders. Polypeptide chain collapse of amyloidogenic IDPs is believed to play a key role in protein misfolding, oligomerization, and aggregation leading to amyloid fibril formation, which is implicated in a number of human diseases. In this work, we used bovine κ-casein, which serves as an archetypal model protein for amyloidogenic IDPs. Using a variety of biophysical tools involving both prediction and spectroscopic techniques, we first established that monomeric κ-casein adopts a collapsed premolten-globule-like conformational ensemble under physiological conditions. Our time-resolved fluorescence and light-scattering data indicate a change in the mean hydrodynamic radius from ∼4.6 nm to ∼1.9 nm upon chain collapse. We then took the advantage of two cysteines separated by 77 amino-acid residues and covalently labeled them using thiol-reactive pyrene maleimide. This dual-labeled protein demonstrated a strong excimer formation upon renaturation from urea- and acid-denatured states under both equilibrium and kinetic conditions, providing compelling evidence of polypeptide chain collapse under physiological conditions. The implication of the IDP chain collapse in protein aggregation and amyloid formation is also discussed. PMID:21961598
NASA Astrophysics Data System (ADS)
Sañé, E.; Isla, E.; Grémare, A.; Gutt, J.; Vétion, G.; DeMaster, D. J.
2011-01-01
In March 2002, 3200 km 2 of the Larsen B ice shelf collapsed off the Eastern Antarctic Peninsula (EAP). In the austral summer of 2006, sea floor sediment was recovered beneath the extinct Larsen B ice shelf and in a region off the Northern Antarctic Peninsula (NAP), which has been free of ice shelves for more than 1000 yr. To assess changes in the chemical composition of the sediment after ice shelf collapses, chlorophylls and pheophytins were measured in sediment cores at six stations. This is the first time that chlorophyll pigments have been analysed in sediment samples from regions under recently collapsed ice shelves. Five years after the ice shelf collapse, Chla and Chlc concentrations were similar in the interfacial sediment (upper 1 cm) of NAP and EAP regions. However, in EAP Chla and Chlc concentrations decreased more rapidly with depth in the sediment column and were negligible below 2 cm depth. The high Chla to Pheoa ratios indicated that sedimentary pigments found in EAP had undergone limited degradation suggesting that they were locally produced rather than laterally advected. Complementary information from excess 210Pb activity and diatom valve distributions provided further evidence that the pigment fluxes to the seabed in EAP took place only after the ice shelf collapse.
Blue straggler formation at core collapse
NASA Astrophysics Data System (ADS)
Banerjee, Sambaran
Among the most striking feature of blue straggler stars (BSS) in globular clusters is the presence of multiple sequences of BSSs in the colour-magnitude diagrams (CMDs) of several globular clusters. It is often envisaged that such a multiple BSS sequence would arise due a recent core collapse of the host cluster, triggering a number of stellar collisions and binary mass transfers simultaneously over a brief episode of time. Here we examine this scenario using direct N-body computations of moderately-massive star clusters (of order 104 {M⊙). As a preliminary attempt, these models are initiated with ≈8-10 Gyr old stellar population and King profiles of high concentrations, being ``tuned'' to undergo core collapse quickly. BSSs are indeed found to form in a ``burst'' at the onset of the core collapse and several of such BS-bursts occur during the post-core-collapse phase. In those models that include a few percent primordial binaries, both collisional and binary BSSs form after the onset of the (near) core-collapse. However, there is as such no clear discrimination between the two types of BSSs in the corresponding computed CMDs. We note that this may be due to the less number of BSSs formed in these less massive models than that in actual globular clusters.
Fe moments in the pressure-induced collapsed tetragonal phase of (Ca0.67Sr0.33) Fe2As2
NASA Astrophysics Data System (ADS)
Jeffries, Jason; Butch, Nicha; Bradley, Joseph; Xiao, Yuming; Chow, Paul; Saha, Shanta; Kirshenbaum, Kevin; Paglione, Johnpierre
2013-06-01
The tetragonal AEFe2As2 (AE =alkaline earth element) family of iron-based superconductors exhibits magnetic order at ambient pressure and low temperature. Under pressure, the magnetic order is suppressed, and an isostructural volume collapse is induced due to increased As-As bonding across the mirror plane of the structure. This collapsed tetragonal phase has been shown to support superconductivity under some conditions, and theoretical calculations suggest an unconventional origin. Theoretical calculations also reveal that enhanced As-As bonding and the magnitude of the Fe moments are correlated, suggesting that the Fe moments can be quenched in the collapsed tetragonal phase. Whether the Fe moments persist in the collapsed tetragonal phase has implications for the pairing mechanism of the observed, pressure-induced superconductivity in these compounds. We will present pressure- dependent x-ray emission spectroscopy (XES) measurements that probe the Fe moments through the volume collapse transition of (Ca0.67Sr0.33) Fe2As2. These measurements will be compared with previously reported phase diagrams that include superconductivity. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy (DOE), National Nuclear Security Administration under Contract No. DE-AC52-07NA27344.
Nonlinear lower hybrid structures in auroral plasmas: comparison of theory with observations
NASA Astrophysics Data System (ADS)
Robinson, P. A.
1999-01-01
Intense, localized lower hybrid wave structures are widely observed in auroral plasmas, often associated with density depletions. Commonly it is concluded without further analysis that these structures are solitons, collapsing wave packets, or other nonlinear entities. Such conclusions are often not justified on theoretical grounds. This review outlines theoretical constraints on field intensity, wave-packet scale length, timescales, and levels of density perturbations that must be met before nonlinear phenomena such as wave collapse and strong turbulence can occur. These criteria are determined within the framework of the modern nucleation scenario for the maintenance of strong turbulence, which involves collapse and dissipation (burnout) of each wave packet, followed by relaxation of its associated density perturbation, then renucleation of further energy into fields trapped in this relaxing perturbation, often leading to further collapse. The criteria are illustrated by applying them to a range of in situ auroral data that have been commonly interpreted in terms of lower hybrid solitons. It will be shown that the data are consistent with some of these criteria, but violate others if packets are all assumed to be observed in the collapse phase. However, theory and observations are consistent within the full nucleation scenario in which packets spend most of their time in the relaxation and renucleation phases, rather than undergoing collapse or burnout.
Temperature and Pressure from Collapsing Pores in HMX
NASA Astrophysics Data System (ADS)
Hardin, D. Barrett
2017-06-01
The thermal and mechanical response of collapsing voids in HMX is analyzed. In this work, the focus is simulating the temperature and pressure fields arising from isolated, idealized pores as they collapse in the presence of a shock. HMX slabs are numerically generated which contain a single pore, isolated from the boundaries to remove all wave reflections. In order to understand the primary pore characteristics leading to temperature rise, a series of 2D, plane strain simulations are conducted on HMX slabs containing both cylindrical and elliptical pores of constant size equal to the area of a circular pore with a 1 micron diameter. Each of these pore types is then subjected to shock pressures ranging from a weak shock that is unable to fully collapse the pore to a strong shock which overwhelms the tendency for localization. Results indicate that as shock strength increases, pore collapse phenomenology for a cylindrical pore transitions from a mode dominated by localized melt cracking to an idealized hydrodynamic pore collapse. For the case of elliptical pores, the orientation causing maximum temperature and pressure rise is found. The relative heating in elliptical pores is then quantified as a function of pore orientation and aspect ratio for a pore of a given area. Distribution A: Distribution unlimited. (96TW 2017-0036).
The evolution of cave systems from the surface to subsurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loucks, R.G.; Handford, C.R.
1996-01-01
Many carbonate reservoirs are the result of cave-forming processes. The origin and recognition of fractures, breccias, and sediment fills associated with paleocaves were determined through the study of modern and paleocaves systems. Cave formation and destruction are the products of near-surface processes. Near-surface processes include solutional excavation, clastic and chemical sedimentation, and collapse of cave walls and ceilings. Cave sediment is derived from inside and/or outside the system. Depositional mechanisms include suspension, tractional, mass-flow and rock-fall. Collapse of ceilings and walls from chaotic breakdown breccias. These piles can be tens of meters thick and contain large voids and variable amountsmore » of matrix. Cave-roof crackle breccia forms from stress-and tension-related fractures in cave-roof strata. As the cave-bearing strata subside into the subsurface, mechanical compaction increases and restructures the existing breccias and remaining cavities. Fracture porosity increases and breccia and vug porosity decreases. Large cavities collapse forming burial chaotic breakdown breccias. Differentially compacted strata over the collapsed chamber fracture and form burial cave-roof crackle breccias. Continued burial leads to more extensive mechanical compaction causing previously formed clasts to fracture and pack closer together. The resulting product is a rebrecciated chaotic breakdown breccia composed predominantly of small clasts. Rebrecciated blocks are often overprinted by crackling. Subsurface paleocave systems commonly have a complex history with several episodes of fracturing and brecciation. The resulting collapsed-paleocave reservoir targets are not single collapsed passages of tens of feet across, but are homogenized collapsed-cave systems hundreds to several thousand feet across.« less
The evolution of cave systems from the surface to subsurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loucks, R.G.; Handford, C.R.
1996-12-31
Many carbonate reservoirs are the result of cave-forming processes. The origin and recognition of fractures, breccias, and sediment fills associated with paleocaves were determined through the study of modern and paleocaves systems. Cave formation and destruction are the products of near-surface processes. Near-surface processes include solutional excavation, clastic and chemical sedimentation, and collapse of cave walls and ceilings. Cave sediment is derived from inside and/or outside the system. Depositional mechanisms include suspension, tractional, mass-flow and rock-fall. Collapse of ceilings and walls from chaotic breakdown breccias. These piles can be tens of meters thick and contain large voids and variable amountsmore » of matrix. Cave-roof crackle breccia forms from stress-and tension-related fractures in cave-roof strata. As the cave-bearing strata subside into the subsurface, mechanical compaction increases and restructures the existing breccias and remaining cavities. Fracture porosity increases and breccia and vug porosity decreases. Large cavities collapse forming burial chaotic breakdown breccias. Differentially compacted strata over the collapsed chamber fracture and form burial cave-roof crackle breccias. Continued burial leads to more extensive mechanical compaction causing previously formed clasts to fracture and pack closer together. The resulting product is a rebrecciated chaotic breakdown breccia composed predominantly of small clasts. Rebrecciated blocks are often overprinted by crackling. Subsurface paleocave systems commonly have a complex history with several episodes of fracturing and brecciation. The resulting collapsed-paleocave reservoir targets are not single collapsed passages of tens of feet across, but are homogenized collapsed-cave systems hundreds to several thousand feet across.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swain, Adam
2013-07-01
As the areas of application for diverse filter types increases, the mechanics and material sciences associated with the hardware and its relationship with more and more arduous process environments becomes critical to the successful and reliable operation of the filtration equipment. Where the filter is the last safe barrier between the process and the life environment, structural integrity and reliability is paramount in both the validation and the ethical acceptability of the designed equipment. Core collapse is a key factor influencing filter element selection, and is an extremely complex issue with a number of variables and failure mechanisms. It ismore » becoming clear that the theory behind core collapse calculations is not always supported with real tested data. In exploring this issue we have found that the calculation method is not always reflective of the true as tested collapse value, with the calculated values being typically in excess or even an order of magnitude higher than the tested values. The above claim is supported by a case study performed by the author, which disproves most of what was previously understood to be true. This paper also aims to explore the various failure mechanisms of different configurations of filter core, comparing calculated collapse values against real tested values, with a view to understanding a method of calculating their true collapse value. As the technology is advancing, and filter elements are being used in higher temperature, higher pressure, more radioactive and more chemically aggressive environments, confidence in core collapse values and data is crucial. (authors)« less
Small-angle neutron scattering study of micropore collapse in amorphous solid water.
Mitterdorfer, Christian; Bauer, Marion; Youngs, Tristan G A; Bowron, Daniel T; Hill, Catherine R; Fraser, Helen J; Finney, John L; Loerting, Thomas
2014-08-14
Vapor-deposited amorphous solid water (ASW) is the most abundant solid molecular material in space, where it plays a direct role in both the formation of more complex chemical species and the aggregation of icy materials in the earliest stages of planet formation. Nevertheless, some of its low temperature physics such as the collapse of the micropore network upon heating are still far from being understood. Here we characterize the nature of the micropores and their collapse using neutron scattering of gram-quantities of D2O-ASW of internal surface areas up to 230 ± 10 m(2) g(-1) prepared at 77 K. The model-free interpretation of the small-angle scattering data suggests micropores, which remain stable up to 120-140 K and then experience a sudden collapse. The exact onset temperature to pore collapse depends on the type of flow conditions employed in the preparation of ASW and, thus, the specific surface area of the initial deposit, whereas the onset of crystallization to cubic ice is unaffected by the flow conditions. Analysis of the small-angle neutron scattering signal using the Guinier-Porod model suggests that a sudden transition from three-dimensional cylindrical pores with 15 Å radius of gyration to two-dimensional lamellae is the mechanism underlying the pore collapse. The rather high temperature of about 120-140 K of micropore collapse and the 3D-to-2D type of the transition unraveled in this study have implications for our understanding of the processing and evolution of ices in various astrophysical environments.
Gravity or turbulence? IV. Collapsing cores in out-of-virial disguise
NASA Astrophysics Data System (ADS)
Ballesteros-Paredes, Javier; Vázquez-Semadeni, Enrique; Palau, Aina; Klessen, Ralf S.
2018-06-01
We study the dynamical state of massive cores by using a simple analytical model, an observational sample, and numerical simulations of collapsing massive cores. From the analytical model, we find that cores increase their column density and velocity dispersion as they collapse, resulting in a time evolution path in the Larson velocity dispersion-size diagram from large sizes and small velocity dispersions to small sizes and large velocity dispersions, while they tend to equipartition between gravity and kinetic energy. From the observational sample, we find that: (a) cores with substantially different column densities in the sample do not follow a Larson-like linewidth-size relation. Instead, cores with higher column densities tend to be located in the upper-left corner of the Larson velocity dispersion σv, 3D-size R diagram, a result explained in the hierarchical and chaotic collapse scenario. (b) Cores appear to have overvirial values. Finally, our numerical simulations reproduce the behavior predicted by the analytical model and depicted in the observational sample: collapsing cores evolve towards larger velocity dispersions and smaller sizes as they collapse and increase their column density. More importantly, however, they exhibit overvirial states. This apparent excess is due to the assumption that the gravitational energy is given by the energy of an isolated homogeneous sphere. However, such excess disappears when the gravitational energy is correctly calculated from the actual spatial mass distribution. We conclude that the observed energy budget of cores is consistent with their non-thermal motions being driven by their self-gravity and in the process of dynamical collapse.
Finite-element modeling of magma chamber-host rock interactions prior to caldera collapse
NASA Astrophysics Data System (ADS)
Kabele, Petr; Žák, Jiří; Somr, Michael
2017-06-01
Gravity-driven failure of shallow magma chamber roofs and formation of collapse calderas are commonly accompanied by ejection of large volumes of pyroclastic material to the Earth's atmosphere and thus represent severe volcanic hazards. In this respect, numerical analysis has proven as a key tool in understanding the mechanical conditions of caldera collapse. The main objective of this paper is to find a suitable approach to finite-element simulation of roof fracturing and caldera collapse during inflation and subsequent deflation of shallow magma chambers. Such a model should capture the dominant mechanical phenomena, for example, interaction of the host rock with magma and progressive deformation of the chamber roof. To this end, a comparative study, which involves various representations of magma (inviscid fluid, nearly incompressible elastic, or plastic solid) and constitutive models of the host rock (fracture and plasticity), was carried out. In particular, the quasi-brittle fracture model of host rock reproduced well the formation of tension-induced radial and circumferential fractures during magma injection into the chamber (inflation stage), especially at shallow crustal levels. Conversely, the Mohr-Coulomb shear criterion has shown to be more appropriate for greater depths. Subsequent magma withdrawal from the chamber (deflation stage) results in further damage or even collapse of the chamber roof. While most of the previous studies of caldera collapse rely on the elastic stress analysis, the proposed approach advances modeling of the process by incorporating non-linear failure phenomena and nearly incompressible behaviour of magma. This leads to a perhaps more realistic representation of the fracture processes preceding roof collapse and caldera formation.
The heart works against gravity
NASA Technical Reports Server (NTRS)
Seymour, R. S.; Hargens, A. R.; Pedley, T. J.
1993-01-01
The circulatory systems of vertebrate animals are closed, and blood leaves and returns to the heart at the same level. It is often concluded, therefore, that the heart works only against the viscous resistance of the system, not against gravity, even in vascular loops above the heart in which the siphon principle operates. However, we argue that the siphon principle does not assist blood flow in superior vascular loops if any of the descending vasculature is collapsible. If central arterial blood pressure is insufficient to support a blood column between the heart and the head, blood flow ceases because of vascular collapse. Furthermore, the siphon principle does not assist the heart even when a continuous stream of blood is flowing in a superior loop. The potential energy gained by blood as it is pumped to the head is lost to friction in partially collapsed descending vessels and thus is not regained. Application of the Poiseuille equation to flow in collapsible vessels is limited; resistance depends on flow rate in partially collapsed vessels with no transmural pressure difference, but flow rate is independent of resistance. Thus the pressure developed by the heart to establish a given flow rate is independent of the resistance occurring in the partially collapsed vessels. The pressure depends only on the height of the blood column and the resistance in the noncollapsed parts of the system. Simple laboratory models, involving water flow in collapsible tubing, dispel the idea that the siphon principle facilitates blood flow and suggest that previously published results may have been affected by experimental artifact.
Collapsed Lung: MedlinePlus Health Topic
... tube insertion - slideshow Collapsed lung (pneumothorax) Hemothorax Lung surgery Pneumothorax - slideshow Pneumothorax - infants Related Health Topics Chest Injuries and Disorders Lung Diseases Pleural Disorders ...
Swerdlow, Charles D; Fishbein, Michael C; Chaman, Linda; Lakkireddy, Dhanunjaya R; Tchou, Patrick
2009-08-01
Sudden deaths proximate to use of conducted electrical weapons (CEWs) have been attributed to cardiac electrical stimulation. The rhythm in death caused by rapid, cardiac electrical stimulation usually is ventricular fibrillation (VF); electrical stimulation has not been reported to cause asystole or pulseless electrical activity (PEA). The authors studied the presenting rhythms in sudden deaths temporally proximate to use of TASER CEWs to estimate the likelihood that these deaths could be caused by cardiac electrical stimulation. This was a retrospective review of CEW-associated, nontraumatic sudden deaths from 2001 to 2008. Emergency medical services (EMS), autopsy, and law enforcement reports were requested and analyzed. Subjects were included if they collapsed within 15 minutes of CEW discharge and the first cardiac arrest rhythm was reported. Records for 200 cases were received. The presenting rhythm was reported for 56 of 118 subjects who collapsed within 15 minutes (47%). The rhythm was VF in four subjects (7%; 95% confidence interval [CI] = 3% to 17%) and bradycardia-asystole or PEA in 52 subjects (93%; 95% CI = 83% to 97%). None of the eight subjects who collapsed during electrocardiogram (ECG) monitoring had VF. Only one subject (2%) collapsed immediately after CEW discharge. This was the only death typical of electrically induced VF (2%, 95% CI = 0% to 9%). An additional 4 subjects (7%) collapsed within 1 minute, and the remaining 51 subjects (91%) collapsed more than 1 minute later. The time from collapse to first recorded rhythm was 3 minutes or less in 35 subjects (62%) and 5 minutes or less in 43 subjects (77%). In sudden deaths proximate to CEW discharge, immediate collapse is unusual, and VF is an uncommon VF presenting rhythm. Within study limitations, including selection bias and the possibility that VF terminated before the presenting rhythm was recorded, these data do not support electrically induced VF as a common mechanism of these sudden deaths.
A multidisciplinary study of the 2014-2015 Bárðarbunga caldera collapse, Iceland
NASA Astrophysics Data System (ADS)
Tumi Gudmundsson, Magnus; Jonsdóttir, Kristin; Hooper, Andy; Holohan, Eoghan; Halldorsson, Saemundur
2016-04-01
The collapse of the ice-filled Bárðarbunga caldera in central Iceland occurred in autumn and winter, when weather was highly unsettled and conditions for monitoring in many ways difficult. Nevertheless several detailed time series could be obtained on the collapse and to a degree the associated flood-basalt eruption in Holuhraun. This was achieved through applying an array of sensors, that were ground, air and satellite based, partly made possible through the EU-funded FUTUREVOLC supersite project. This slow caldera collapse lasted six months, ending in February 2015. The array of sensors used, coupled with the long duration of the event, allowed unprecedented detail in observing a caldera collapse. The deciphering of the course of events required the use of aircraft altimeter surveys of the ice surface, seismic and GPS monitoring, the installation of a GPS station on the glacier surface in the centre of the caldera that continuously recorded the subsidence. Full Stokes 3-D modelling of the 700-800 m thick ice in the caldera, constrained by observations, was applied to remove the component of ice deformation that had a minor effect on the measured subsidence. The maximum subsidence of the subglacial caldera floor was about 65 meters. The combined interpretation of geochemical geobarometers, subsidence geometry with GPS and InSAR deformation signals, seismicity and distinct element deformation modelling of the subsidence provided unprecedented detail of the process and mechanism of caldera collapse. The collapse involved the re-activation of pre-existing ring faults, and was initiated a few days after magma started to drain from underneath the caldera towards the eventual eruption site in Holuhraun, 45 km to the northeast. The caldera collapse was slow and gradual, and the flow rate from underneath the caldera correlates well with the lava flow rate in Holuhraun, both in terms of total volume and variations in time.
Sugimoto, Yoshihisa; Akazawa, Hirofumi; Mitani, Shigeru; Tanaka, Masato; Nakagomi, Tadashi; Asaumi, Koji; Ozaki, Toshifumi
2006-03-01
The lateral pillar (LP) grade changes detected during treatment periods have received a lot of attention recently. Lappin et al. reported LP collapses in 92 of 275 (33%) patients during the treatment, but did not provide information for comparing treatment methods and age of onset of the disease. The purpose of this study was to review radiological changes in LP grade in older patients with Perthes disease during 20 months of treatment with skin traction and ROM exercises. We have also reported any grade changes in the posterior pillar (PP) classification. Twenty-one patients with unilateral disease who were 9 years or older at the onset of symptoms had been followed until skeletal maturity. Out of 21 older patients with Perthes disease, our study had two (9.5%) who experienced LP collapse and two (9.5%) who experienced PP collapse during the first 20 months of treatment. The average time from onset to hospitalization in hips, initially classified as LP group C and PP group C, was significantly longer than in LP and PP groups A and B. The LP collapse in two hips and PP collapse in two hips occurred during months 4-8 of treatment. On the other hand, of the patients allowed to ambulate with the Pogo stick orthosis from months 8 to 12 and without a brace from months 10 to 15, none had a collapse of their LPs or PPs during these periods. Lappin et al. reported that 92 of 275 patients (33%) who were managed conservatively in several hospitals experienced LP collapse during their treatment periods. Our results suggest that older patients with this disease treated with skin traction and ROM exercises rarely suffer a LP collapse, as compared with the Lappin et al. report.
NASA Astrophysics Data System (ADS)
Howard, K. A.
2009-12-01
The 1968 collapse structure of Fernandina caldera (1.5 km3 collapsed) and also the smaller Darwin Bay caldera in Galápagos each closely resembles morphologically the structural zoning of features found in depressions collapsed into nuclear-explosion cavities (“sinks” of Houser, 1969) and in coherent sandbox-collapse models. Coherent collapses characterized by faulting, folding, and organized structure contrast with spalled pit craters (and lab experiments with collapsed powder) where disorganized piles of floor rubble result from tensile failure of the roof. Subsidence in coherent mode, whether in weak sand in the lab, stronger desert alluvium for nuclear-test sinks, or in hard rock for calderas, exhibits consistent morphologic zones. Characteristically in the sandbox and the nuclear-test analogs these include a first-formed central plug that drops along annular reverse faults. This plug and a surrounding inward-tilted or monoclinal ring (hanging wall of the reverse fault) contract as the structure expands outward by normal faulting, wherein peripheral rings of distending material widen the upper part of the structure along inward-dipping normal faults and compress inner zones and help keep them intact. In Fernandina, a region between the monocline and the outer zone of normal faulting is interpreted, by comparison to the analogs, to overlie the deflation margin of an underlying magma chamber. The same zoning pattern is recognized in structures ranging from sandbox subsidence features centimeters across, to Alae lave lake and nuclear-test sinks tens to hundreds of meters across, to Fenandina’s 2x4 km-wide collapse, to Martian calderas tens of kilometers across. Simple dimensional analysis using the height of cliffs as a proxie for material strength implies that the geometric analogs are good dynamic analogs, and validates that the pattern of both reverse and normal faulting that has been reported consistently from sandbox modeling applies widely to calderas.
NASA Astrophysics Data System (ADS)
Carazzo, G.; Kaminski, E.; Tait, S.
2007-12-01
Pyroclastic density currents generated by the collapse of an explosive volcanic plume represent the most dangerous flows associated with such eruptions. The study of the mechanical processes leading to column collapse is therefore at the heart of current investigations. Fluid dynamic models show that the behavior of a volcanic jet is mainly controlled by the efficiency with which it entrains and heats atmospheric air. The volcanic mixture initially denser than the atmosphere can thus become buoyant if both processes are effective. The complex role of the particle load and heat exchange makes it difficult to study their effect on the jet dynamics other than by sophisticated numerical simulations. Nevertheless to develop an alternative approach, we present an experimental study in which a turbulent 2-phase jet of hot gas and hot particles is propelled into a large chamber of cold air. The jet is initially driven by momentum and naturally collapses, but if the mixing with the surrounding environment is sufficient the buoyancy can reverse to drive a convective plume. We focus on the influence of source particle concentration and source gas velocity on the threshold between the convective and the collapsing regimes. In the range of the source conditions investigated the jet mostly separated into a po sitively buoyant part and a denser collapsing part. We quantify the fraction of the jet collapsed by collecting the particles and we show that the degree of jet collapse is mainly controlled by the initial amount of particles. A 1D model of turbulent jets accounting for the effect of the reversing buoyancy on the turbulent entrainment, the aggregation, the sedimentation and the recycling of particles is presented. The model is found in good agreement with the data. Further work is necessary to understand the fundamental physics behind the semi-empirical parametrization of re-entrainment and aggregation processes.
Lobar analysis of collapsibility indices to assess functional lung volumes in COPD patients.
Kitano, Mariko; Iwano, Shingo; Hashimoto, Naozumi; Matsuo, Keiji; Hasegawa, Yoshinori; Naganawa, Shinji
2014-01-01
We investigated correlations between lung volume collapsibility indices and pulmonary function test (PFT) results and assessed lobar differences in chronic obstructive pulmonary disease (COPD) patients, using paired inspiratory and expiratory three dimensional (3D) computed tomography (CT) images. We retrospectively assessed 28 COPD patients who underwent paired inspiratory and expiratory CT and PFT exams on the same day. A computer-aided diagnostic system calculated total lobar volume and emphysematous lobar volume (ELV). Normal lobar volume (NLV) was determined by subtracting ELV from total lobar volume, both for inspiratory phase (NLVI) and for expiratory phase (NLVE). We also determined lobar collapsibility indices: NLV collapsibility ratio (NLVCR) (%)=(1-NLVE/NLVI)×100%. Associations between lobar volumes and PFT results, and collapsibility indices and PFT results were determined by Pearson correlation analysis. NLVCR values were significantly correlated with PFT results. Forced expiratory volume in 1 second, measured as percent of predicted results (FEV1%P) was significantly correlated with NLVCR values for the lower lobes (P<0.01), whereas this correlation was not significant for the upper lobes (P=0.05). FEV1%P results were also moderately correlated with inspiratory, expiratory ELV (ELVI,E) for the lower lobes (P<0.05). In contrast, the ratio of the diffusion capacity for carbon monoxide to alveolar gas volume, measured as percent of predicted (DLCO/VA%P) results were strongly correlated with ELVI for the upper lobes (P<0.001), whereas this correlation with NLVCR values was weaker for upper lobes (P<0.01) and was not significant for the lower lobes (P=0.26). FEV1%P results were correlated with NLV collapsibility indices for lower lobes, whereas DLCO/VA%P results were correlated with NLV collapsibility indices and ELV for upper lobes. Thus, evaluating lobar NLV collapsibility might be useful for estimating pulmonary function in COPD patients.
Fiorelli, Alfonso; Scaramuzzi, Roberto; Pierdiluca, Matteo; Frongillo, Elisabetta; Messina, Gaetana; Serra, Nicola; De Felice, Alberto; Santini, Mario
2017-09-01
To assess whether the difference in lung volume measured with plethysmography and with the helium dilution technique could differentiate an open from a closed bulla in patients with a giant emphysematous bulla and could be used as a selection criterion for the positioning of an endobronchial valve. We reviewed the data of 27 consecutive patients with a giant emphysematous bulla undergoing treatment with an endobronchial valve. In addition to standard functional and radiological examinations, total lung capacity and residual volume were measured with the plethysmographic and helium dilution technique. We divided the patients into 2 groups, the collapse or the no-collapse group, depending on whether the bulla collapsed or not after the valves were put in position. We statistically evaluated the intergroup differences in lung volume and outcome. In the no-collapse group (n = 6), the baseline plethysmographic values were significantly higher than the helium dilution volumes, including total lung capacity (188 ± 14 vs 145 ± 13, P = 0.0007) and residual volume (156 ± 156 vs 115 ± 15, P = 0.001). In the collapse group, there was no significant difference in lung volumes measured with the 2 methods. A difference in total lung capacity of ≤ 13% and in residual volume of ≤ 25% measured with the 2 methods predicted the collapse of the bulla with a success rate of 83% and 84%, respectively. Only the collapse group showed significant improvement in functional data. Similar values in lung volumes measured with the 2 methods support the hypothesis that the bulla communicates with the airway (open bulla) and thus is likely to collapse when the endobronchial valve is implanted. Further studies are needed to validate our model. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Shock-induced collapse of a bubble inside a deformable vessel
Coralic, Vedran; Colonius, Tim
2013-01-01
Shockwave lithotripsy repeatedly focuses shockwaves on kidney stones to induce their fracture, partially through cavitation erosion. A typical side effect of the procedure is hemorrhage, which is potentially the result of the growth and collapse of bubbles inside blood vessels. To identify the mechanisms by which shock-induced collapse could lead to the onset of injury, we study an idealized problem involving a preexisting bubble in a deformable vessel. We utilize a high-order accurate, shock- and interface-capturing, finite-volume scheme and simulate the three-dimensional shock-induced collapse of an air bubble immersed in a cylindrical water column which is embedded in a gelatin/water mixture. The mixture is a soft tissue simulant, 10% gelatin by weight, and is modeled by the stiffened gas equation of state. The bubble dynamics of this model configuration are characterized by the collapse of the bubble and its subsequent jetting in the direction of the propagation of the shockwave. The vessel wall, which is defined by the material interface between the water and gelatin/water mixture, is invaginated by the collapse and distended by the impact of the jet. The present results show that the highest measured pressures and deformations occur when the volumetric confinement of the bubble is strongest, the bubble is nearest the vessel wall and/or the angle of incidence of the shockwave reduces the distance between the jet tip and the nearest vessel surface. For a particular case considered, the 40 MPa shockwave utilized in this study to collapse the bubble generated a vessel wall pressure of almost 450 MPa and produced both an invagination and distention of nearly 50% of the initial vessel radius on a 𝒪(10) ns timescale. These results are indicative of the significant potential of shock-induced collapse to contribute to the injury of blood vessels in shockwave lithotripsy. PMID:24015027
Pokharia, Anil K; Agnihotri, Rajesh; Sharma, Shalini; Bajpai, Sunil; Nath, Jitendra; Kumaran, R N; Negi, Bipin Chandra
2017-01-01
Archaeological sites hold important clues to complex climate-human relationships of the past. Human settlements in the peripheral zone of Indus culture (Gujarat, western India) are of considerable importance in the assessment of past monsoon-human-subsistence-culture relationships and their survival thresholds against climatic stress exerted by abrupt changes. During the mature phase of Harappan culture between ~4,600-3,900yrsBP, the ~4,100±100yrsBP time slice is widely recognized as one of the major, abrupt arid-events imprinted innumerous well-dated palaeo records. However, the veracity of this dry event has not been established from any archaeological site representing the Indus (Harappan) culture, and issues concerning timing, changes in subsistence pattern, and the likely causes of eventual abandonment (collapse) continue to be debated. Here we show a significant change in crop-pattern (from barley-wheat based agriculture to 'drought-resistant' millet-based crops) at ~4,200 yrs BP, based on abundant macrobotanical remains and C isotopes of soil organic matter (δ13CSOM) in an archaeological site at Khirsara, in the Gujarat state of western India. The crop-change appears to be intentional and was likely used as an adaptation measure in response to deteriorated monsoonal conditions. The ceramic and architectural remains of the site indicate that habitation survived and continued after the ~4,200yrsBP dry climatic phase, but with declined economic prosperity. Switching to millet-based crops initially helped inhabitants to avoid immediate collapse due to climatic stresses, but continued aridity and altered cropping pattern led to a decline in prosperity levels of inhabitants and eventual abandonment of the site at the end of the mature Harappan phase.
Perry, J A
1979-01-01
The Teton Dam in Southeastern Idaho collapsed on June 5, 1976. The resulting flood damaged a large area and caused the release of toxicants into the Snake River. A pesticide recovery team in a helicopter worked the flooded area for three weeks and collected 1,104 containers, about 35% of which contained toxicants. It was estimated that less than 60% of the lost pesticide containers were recovered. This paper addresses the results of a one-time sampling effort designed to determine the magnitude of the chemical contamination. Over 300 samples of fish, plankton, waterfowl, sediments, water, stream drift, aquatic plants, and soil were taken. Pesticide residues were measured as microgram/kg (ppb) wet weight, whole animal basis. Rainbow trout had as much as 1432 micrograms/kg total DDT plus analogs, 66 micrograms/kg dieldrin, and 1010 micrograms/kg PCBs. Utah suckers had up to 1420 micrograms/kg total DDT plus analogs, 32 micrograms/kg dieldrin, and 1800 micrograms/kg PCB. Rocky Mountain whitefish had as much as 2650 micrograms/kg total DDT and analogs, 30 micrograms/kg dieldrin and 1400 micrograms/kg PCBs. These PCB and DDT levels were high, approaching the 2,000 micrograms/kg FDA proposed tolerance, but were below the 5,000 micrograms/kg present tolerance. Dieldrin levels were low and organophosphates were undetectable. An undeveloped area (the Fort Hall Bottoms) showed higher levels of contaminants than did an industrialized area (the lower Portneuf River). This apparent discrepancy remains unexplained. Very little pre-flood data on a whole fish basis were available for comparison (Johnson et al 1977). However, it does not appear that any human health hazard due to pesticide levels exists in this portion of the Snake River.
Carrasco-Nunez, Gerardo; Diaz-Castellon, Rodolfo; Siebert, L.; Hubbard, B.; Sheridan, M.F.; Rodriguez, Sergio R.
2006-01-01
The Citlalte??petl-Cofre de Perote volcanic chain forms an important physiographic barrier that separates the Central Altiplano (2500??masl) from the Gulf Coastal Plain (GCP) (1300??masl). The abrupt eastward drop in relief between these provinces gives rise to unstable conditions and consequent gravitational collapse of large volcanic edifices built at the edge of the Altiplano. Eastward sloping substrate, caused by the irregular configuration of the basement rocks, is the dominant factor that controls the direction of collapsing sectors in all major volcanoes in the region to be preferentially towards the GCP. These collapses produced voluminous debris avalanches and lahars that inundated the well-developed drainages and clastic aprons that characterize the Coastal Plain. Large catastrophic collapses from Citlalte??petl, Las Cumbres, and Cofre de Perote volcanoes are well documented in the geologic record. Some of the avalanches and transformed flows have exceptionally long runouts and reach the Gulf of Mexico traveling more than 120??km from their source. So far, no direct evidence has been found for magmatic activity associated with the initiation of these catastrophic flank-collapses. Apparently, instability of the volcanic edifices has been strongly favored by very intense hydrothermal alteration, abrupt topographic change, and intense fracturing. In addition to the eastward slope of the substrate, the reactivation of pre-volcanic basement structures during the Late Tertiary, and the E-W to ENE-SSW oriented regional stress regimes may have played an important role in the preferential movement direction of the avalanches and flows. In addition to magmatic-hydrothermal processes, high amounts of rainfall in the area is another factor that enhances alteration and eventually weakens the rocks. It is very likely that seismic activity may be the principal triggering mechanism that caused the flank collapse of large volcanic edifices in the Eastern Mexican Volcanic Belt. However, critical pore water pressure from extraordinary amounts of rainfall associated with hurricanes or other meteorological perturbation cannot be ruled out, particularly for smaller volume collapses. There are examples in the area of small seismogenic debris flows that have occurred in historical times, showing that these processes are not uncommon. Assessing the stability conditions of major volcanic edifices that have experienced catastrophic sector collapses is crucial for forecasting future events. This is particularly true for the Eastern Mexican Volcanic Belt, where in many cases no magmatic activity was associated with the collapse. Therefore, edifice failure could occur again without any precursory warning. ?? 2006 Elsevier B.V. All rights reserved.
Liu, Zhibin; Liu, Songyu; Cai, Yi; Fang, Wei
2015-06-01
As the dielectric constant and conductivity of petroleum products are different from those of the pore water in soil, the electrical resistivity characteristics of oil-contaminated soil will be changed by the corresponding oil type and content. The contaminated soil specimens were manually prepared by static compaction method in the laboratory with commercial kaolin clay and diesel oil. The water content and dry density of the first group of soil specimens were controlled at 10 % and 1.58 g/cm(3). Corresponding electrical resistivities of the contaminated specimens were measured at the curing periods of 7, 14, and 28 and 90, 120, and 210 days on a modified oedometer cell with an LCR meter. Then, the electrical resistivity characteristics of diesel oil-contaminated kaolin clay were discussed. In order to realize a resistivity-based oil detection method, the other group of oil-contaminated kaolin clay specimens was also made and tested, but the initial water content, oil content, and dry density were controlled at 0~18 %, 0~18 %, 1.30~1.95 g/cm(3), respectively. Based on the test data, a resistivity-based artificial neural network (ANN) was developed. It was found that the electrical resistivity of kaolin clay decreased with the increase of oil content. Moreover, there was a good nonlinear relationship between electrical resistivity and corresponding oil content when the water content and dry density were kept constant. The decreasing velocity of the electrical resistivity of oil-contaminated kaolin clay was higher before the oil content of 12 % than after 12 %, which indicated a transition of the soil from pore water-controlled into oil-controlled electrical resistivity characteristics. Through microstructural analysis, the decrease of electrical resistivity could be explained by the increase of saturation degree together with the collapse of the electrical double layer. Environmental scanning electron microscopy (ESEM) photos indicated that the diesel oil in kaolin clay normally had three kinds of effects including oil filling, coating, and bridging. Finally, a resistivity-based ANN model was established based on the database collected from the experiment data. The performance of the model was proved to be reasonably accepted, which puts forward a possible simple, economic, and effective tool to detect the oil content in contaminated clayey soils just with four basic parameters: wet density, dry density, measured moisture content, and electrical resistivity.
NASA Astrophysics Data System (ADS)
Scharnagl, Benedikt; Durner, Wolfgang
2013-04-01
Models are inherently imperfect because they simplify processes that are themselves imperfectly known and understood. Moreover, the input variables and parameters needed to run a model are typically subject to various sources of error. As a consequence of these imperfections, model predictions will always deviate from corresponding observations. In most applications in soil hydrology, these deviations are clearly not random but rather show a systematic structure. From a statistical point of view, this systematic mismatch may be a reason for concern because it violates one of the basic assumptions made in inverse parameter estimation: the assumption of independence of the residuals. But what are the consequences of simply ignoring the autocorrelation in the residuals, as it is current practice in soil hydrology? Are the parameter estimates still valid even though the statistical foundation they are based on is partially collapsed? Theory and practical experience from other fields of science have shown that violation of the independence assumption will result in overconfident uncertainty bounds and that in some cases it may lead to significantly different optimal parameter values. In our contribution, we present three soil hydrological case studies, in which the effect of autocorrelated residuals on the estimated parameters was investigated in detail. We explicitly accounted for autocorrelated residuals using a formal likelihood function that incorporates an autoregressive model. The inverse problem was posed in a Bayesian framework, and the posterior probability density function of the parameters was estimated using Markov chain Monte Carlo simulation. In contrast to many other studies in related fields of science, and quite surprisingly, we found that the first-order autoregressive model, often abbreviated as AR(1), did not work well in the soil hydrological setting. We showed that a second-order autoregressive, or AR(2), model performs much better in these applications, leading to parameter and uncertainty estimates that satisfy all the underlying statistical assumptions. For theoretical reasons, these estimates are deemed more reliable than those estimates based on the neglect of autocorrelation in the residuals. In compliance with theory and results reported in the literature, our results showed that parameter uncertainty bounds were substantially wider if autocorrelation in the residuals was explicitly accounted for, and also the optimal parameter vales were slightly different in this case. We argue that the autoregressive model presented here should be used as a matter of routine in inverse modeling of soil hydrological processes.
NASA Astrophysics Data System (ADS)
Karssenberg, Derek; Bierkens, Marc
2014-05-01
Complex systems may switch between contrasting stable states under gradual change of a driver. Such critical transitions often result in considerable long-term damage because strong hysteresis impedes reversion, and the transition becomes catastrophic. Critical transitions largely reduce our capability of forecasting future system states because it is hard to predict the timing of their occurrence [2]. Moreover, for many systems it is unknown how rapidly the critical transition unfolds when the tipping point has been reached. The rate of change during collapse, however, is important information because it determines the time available to take action to reverse a shift [1]. In this study we explore the rate of change during the degradation of a vegetation-soil system on a hillslope from a state with considerable vegetation cover and large soil depths, to a state with sparse vegetation and a bare rock or negligible soil depths. Using a distributed, stochastic model coupling hydrology, vegetation, weathering and water erosion, we derive two differential equations describing the vegetation and the soil system, and their interaction. Two stable states - vegetated and bare - are identified by means of analytical investigation, and it is shown that the change between these two states is a critical transition as indicated by hysteresis. Surprisingly, when the tipping point is reached under a very slow increase of grazing pressure, the transition between the vegetated and the bare state can either unfold rapidly, over a few years, or gradually, occurring over decennia up to millennia. These differences in the rate of change during the transient state are explained by differences in bedrock weathering rates. This finding emphasizes the considerable uncertainty associated with forecasting catastrophic shifts in ecosystems, which is due to both difficulties in forecasting the timing of the tipping point and the rate of change when the transition unfolds. References [1] Hughes, T. P., Linares, C., Dakos, V., van de Leemput, I. a, & van Nes, E. H. (2013). Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends in ecology & evolution, 28(3), 149-55. [2] Karssenberg, D., & Bierkens, M. F. P. (2012). Early-warning signals (potentially) reduce uncertainty in forecasted timing of critical shifts. Ecosphere, 3(2).
Periodic collapse and long-time evolution of strong Langmuir turbulence
NASA Astrophysics Data System (ADS)
Cheung, P. Y.; Wong, A. Y.
1985-10-01
Experimental measurements on the long-time evolution of strong Langmuir turbulence in a beam-plasma system reveal a picture of periodic, short bursts of Langmuir wave collapse instead of the existence of long-lived solitons. The remnants of density cavities from burnout cavitons are observed to curtail wave growth periodically, creating time intervals of low wave activity between successive cycles of wave collapse, and establishing three regimes of wave evolution.
Generation of Collapsed Cross Sections for Hatch 1 Cycles 1-3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, Brian J
2012-11-01
Under NRC JCN V6361, Oak Ridge National Laboratory (ORNL) was tasked to develop and run SCALE/TRITON models for generation of collapsed few-group cross sections and to convert the cross sections to PMAXS format using the GENPMAXS conversion utility for use in PARCS/PATHS simulations of Hatch Unit 1, cycles 1-3. This letter report documents the final models used to produce the Hatch collapsed cross sections.
Localized Tissue Surrogate Deformation due to Controlled Single Bubble Cavitation
2014-08-27
calculate liquid jet formation with collapse of an empty spherical bubble due to the high surrounding fluid pressure 18. Experimental evidence of...maximum collapse pressures over a wide range between 8 MPa 13 to 2.5 GPa 11 have also been calculated . 5 A fundamental problem in the study of...and a digital image correlation (DIC) technique was used to calculate strain fields during bubble growth and collapse. The subsequent response of the
Csub60/Collapsed Carbon Nanotube Hybrids: A Variant of Peapods (Open Access)
2015-01-02
fullerenes , collapsed carbon nanotubes, silocrystals Hybrid nanostructures are of great interest due to thepotential for engineering new materials with...tunable physical and chemical properties. An example is the so-called nanotube “peapod” first described by Smith et al.,1 where fullerene C60 molecules...an interesting derivative of CNTs. It has been theoretically shown that CNTs are prone to collapse into a nearly flat, ribbon- like configuration if
Observations of the Dynamics and Acoustics of Travelling Bubble Cavitation
1990-06-25
and Hollander (1948) and Parkin (1952)), and a cavitation bubble collapsing near a solid boundary may produce a microjet of fluid, which has been...bubbles collapsing near a solid surface (Lauterborn and Bolle (1975) and Kimoto (1987), for example), and this microjet is suspected to be the main cause of...cavitation erosion damage. Although many photographs were taken, a reentrant microjet was not observed in any of the photographs of bubble collapse
Endogenic craters on basaltic lava flows - Size frequency distributions
NASA Technical Reports Server (NTRS)
Greeley, R.; Gault, D. E.
1979-01-01
Circular crater forms, termed collapse depressions, which occur on many basalt flows on the earth have also been detected on the moon and Mars and possibly on Mercury and Io. The admixture of collapse craters with impact craters would affect age determinations of planetary surface units based on impact crater statistics by making them appear anomalously old. In the work described in the present paper, the techniques conventionally used in planetary crater counting were applied to the determination of the size range and size frequency distribution of collapse craters on lava flows in Idaho, California, and New Mexico. Collapse depressions range in size from 3 to 80 m in diameter; their cumulative size distributions are similar to those of small impact craters on the moon.
Gravitational collapse of dark matter interacting with dark energy: Black hole formation
NASA Astrophysics Data System (ADS)
Shah, Hasrat Hussain; Iqbal, Quaid
In this work, we study the gravitational collapsing process of a spherically symmetric star constitute of Dark Matter (DM), ρM, and Dark Energy (DE) ρ. In this model, we use anisotropic pressure with Equation of State (EoS) pt = λρ and pr = lρ, (l + 2λ < -1). It reveals that gravitational collapse of DM and DE with interaction leads to the formation of the black hole. When l + 2λ < -3 (phantoms), dust and phantoms could be ejected from the death of white hole. This emitted matter again undergoes to collapsing process and becomes the black hole. This study gives the generalization for isotropy of pressure in the fluid to anisotropy when there will be interaction between DM and DE.
Collapse of magnetized hypermassive neutron stars in general relativity.
Duez, Matthew D; Liu, Yuk Tung; Shapiro, Stuart L; Shibata, Masaru; Stephens, Branson C
2006-01-27
Hypermassive neutron stars (HMNSs)--equilibrium configurations supported against collapse by rapid differential rotation--are possible transient remnants of binary neutron-star mergers. Using newly developed codes for magnetohydrodynamic simulations in dynamical spacetimes, we are able to track the evolution of a magnetized HMNS in full general relativity for the first time. We find that secular angular momentum transport due to magnetic braking and the magnetorotational instability results in the collapse of an HMNS to a rotating black hole, accompanied by a gravitational wave burst. The nascent black hole is surrounded by a hot, massive torus undergoing quasistationary accretion and a collimated magnetic field. This scenario suggests that HMNS collapse is a possible candidate for the central engine of short gamma-ray bursts.