Sample records for collection efficiency filter

  1. Collection of biological and non-biological particles by new and used filters made from glass and electrostatically charged synthetic fibers.

    PubMed

    Raynor, P C; Kim, B G; Ramachandran, G; Strommen, M R; Horns, J H; Streifel, A J

    2008-02-01

    Synthetic filters made from fibers carrying electrostatic charges and fiberglass filters that do not carry electrostatic charges are both utilized commonly in heating, ventilating, and air-conditioning (HVAC) systems. The pressure drop and efficiency of a bank of fiberglass filters and a bank of electrostatically charged synthetic filters were measured repeatedly for 13 weeks in operating HVAC systems at a hospital. Additionally, the efficiency with which new and used fiberglass and synthetic filters collected culturable biological particles was measured in a test apparatus. Pressure drop measurements adjusted to equivalent flows indicated that the synthetic filters operated with a pressure drop less than half that of the fiberglass filters throughout the test. When measured using total ambient particles, synthetic filter efficiency decreased during the test period for all particle diameters. For particles 0.7-1.0 mum in diameter, efficiency decreased from 92% to 44%. It is hypothesized that this reduction in collection efficiency may be due to charge shielding. Efficiency did not change significantly for the fiberglass filters during the test period. However, when measured using culturable biological particles in the ambient air, efficiency was essentially the same for new filters and filters used for 13 weeks in the hospital for both the synthetic and fiberglass filters. It is hypothesized that the lack of efficiency reduction for culturable particles may be due to their having higher charge than non-biological particles, allowing them to overcome the effects of charge shielding. The type of particles requiring capture may be an important consideration when comparing the relative performance of electrostatically charged synthetic and fiberglass filters. Electrostatically charged synthetic filters with high initial efficiency can frequently replace traditional fiberglass filters with lower efficiency in HVAC systems because properly designed synthetic filters offer less resistance to air flow. Although the efficiency of charged synthetic filters at collecting non-biological particles declined substantially with use, the efficiency of these filters at collecting biological particles remained steady. These findings suggest that the merits of electrostatically charged synthetic HVAC filters relative to fiberglass filters may be more pronounced if collection of biological particles is of primary concern.

  2. Al-Coated Conductive Fiber Filters for High-Efficiency Electrostatic Filtration: Effects of Electrical and Fiber Structural Properties.

    PubMed

    Choi, Dong Yun; An, Eun Jeong; Jung, Soo-Ho; Song, Dong Keun; Oh, Yong Suk; Lee, Hyung Woo; Lee, Hye Moon

    2018-04-10

    Through the direct decomposition of an Al precursor ink AlH 3 {O(C 4 H 9 ) 2 }, we fabricated an Al-coated conductive fiber filter for the efficient electrostatic removal of airborne particles (>99%) with a low pressure drop (~several Pascals). The effects of the electrical and structural properties of the filters were investigated in terms of collection efficiency, pressure drop, and particle deposition behavior. The collection efficiency did not show a significant correlation with the extent of electrical conductivity, as the filter is electrostatically charged by the metallic Al layers forming electrical networks throughout the fibers. Most of the charged particles were collected via surface filtration by Coulombic interactions; consequently, the filter thickness had little effect on the collection efficiency. Based on simulations of various fiber structures, we found that surface filtration can transition to depth filtration depending on the extent of interfiber distance. Therefore, the effects of structural characteristics on collection efficiency varied depending on the degree of the fiber packing density. This study will offer valuable information pertaining to the development of a conductive metal/polymer composite air filter for an energy-efficient and high-performance electrostatic filtration system.

  3. Development of a double-layered ceramic filter for aerosol filtration at high-temperatures: the filter collection efficiency.

    PubMed

    de Freitas, Normanda L; Gonçalves, José A S; Innocentini, Murilo D M; Coury, José R

    2006-08-25

    The performance of double-layered ceramic filters for aerosol filtration at high temperatures was evaluated in this work. The filtering structure was composed of two layers: a thin granular membrane deposited on a reticulate ceramic support of high porosity. The goal was to minimize the high pressure drop inherent of granular structures, without decreasing their high collection efficiency for small particles. The reticulate support was developed using the technique of ceramic replication of polyurethane foam substrates of 45 and 75 pores per inch (ppi). The filtering membrane was prepared by depositing a thin layer of granular alumina-clay paste on one face of the support. Filters had their permeability and fractional collection efficiency analyzed for filtration of an airborne suspension of phosphatic rock in temperatures ranging from ambient to 700 degrees C. Results revealed that collection efficiency decreased with gas temperature and was enhanced with filtration time. Also, the support layer influenced the collection efficiency: the 75 ppi support was more effective than the 45 ppi. Particle collection efficiency dropped considerably for particles below 2 microm in diameter. The maximum collection occurred for particle diameters of approximately 3 microm, and decreased again for diameters between 4 and 8 microm. Such trend was successfully represented by the proposed correlation, which is based on the classical mechanisms acting on particle collection. Inertial impaction seems to be the predominant collection mechanism, with particle bouncing/re-entrainment acting as detachment mechanisms.

  4. Molecular comparison of the sampling efficiency of four types of airborne bacterial samplers.

    PubMed

    Li, Kejun

    2011-11-15

    In the present study, indoor and outdoor air samples were collected using four types of air samplers often used for airborne bacterial sampling. These air samplers included two solid impactors (BioStage and RCS), one liquid impinger (BioSampler), and one filter sampler with two kinds of filters (a gelatin and a cellulose acetate filter). The collected air samples were further processed to analyze the diversity and abundance of culturable bacteria and total bacteria through standard culture techniques, denaturing gradient gel electrophoresis (DGGE) fingerprinting and quantitative polymerase chain reaction (qPCR) analysis. The DGGE analysis indicated that the air samples collected using the BioStage and RCS samplers have higher culturable bacterial diversity, whereas the samples collected using the BioSampler and the cellulose acetate filter sampler have higher total bacterial diversity. To obtain more information on the sampled bacteria, some gel bands were excised and sequenced. In terms of sampling efficiency, results from the qPCR tests indicated that the collected total bacterial concentration was higher in samples collected using the BioSampler and the cellulose acetate filter sampler. In conclusion, the sampling bias and efficiency of four kinds of air sampling systems were compared in the present study and the two solid impactors were concluded to be comparatively efficient for culturable bacterial sampling, whereas the liquid impactor and the cellulose acetate filter sampler were efficient for total bacterial sampling. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Collection of Aerosolized Human Cytokines Using Teflon® Filters

    PubMed Central

    McKenzie, Jennifer H.; McDevitt, James J.; Fabian, M. Patricia; Hwang, Grace M.; Milton, Donald K.

    2012-01-01

    Background Collection of exhaled breath samples for the analysis of inflammatory biomarkers is an important area of research aimed at improving our ability to diagnose, treat and understand the mechanisms of chronic pulmonary disease. Current collection methods based on condensation of water vapor from exhaled breath yield biomarker levels at or near the detection limits of immunoassays contributing to problems with reproducibility and validity of biomarker measurements. In this study, we compare the collection efficiency of two aerosol-to-liquid sampling devices to a filter-based collection method for recovery of dilute laboratory generated aerosols of human cytokines so as to identify potential alternatives to exhaled breath condensate collection. Methodology/Principal Findings Two aerosol-to-liquid sampling devices, the SKC® Biosampler and Omni 3000™, as well as Teflon® filters were used to collect aerosols of human cytokines generated using a HEART nebulizer and single-pass aerosol chamber setup in order to compare the collection efficiencies of these sampling methods. Additionally, methods for the use of Teflon® filters to collect and measure cytokines recovered from aerosols were developed and evaluated through use of a high-sensitivity multiplex immunoassay. Our results show successful collection of cytokines from pg/m3 aerosol concentrations using Teflon® filters and measurement of cytokine levels in the sub-picogram/mL concentration range using a multiplex immunoassay with sampling times less than 30 minutes. Significant degradation of cytokines was observed due to storage of cytokines in concentrated filter extract solutions as compared to storage of dry filters. Conclusions Use of filter collection methods resulted in significantly higher efficiency of collection than the two aerosol-to-liquid samplers evaluated in our study. The results of this study provide the foundation for a potential new technique to evaluate biomarkers of inflammation in exhaled breath samples. PMID:22574123

  6. Evaluation of a Shaker Dust Collector for Use in a Recirculating Ventilation System

    PubMed Central

    Sawvel, Russell A.; Park, Jae Hong; Anthony, T. Renée

    2016-01-01

    General ventilation with recirculated air may be cost-effective to control the concentration of low-toxicity, contaminants in workplaces with diffuse, dusty operations, such as in agriculture. Such systems are, however, rarely adopted with little evidence showing improved air quality and ability to operate under harsh conditions. The goal of this work was to examine the initial and long-term performance of a fabric-filter shaker dust collector (SDC) in laboratory tests and as deployed within a recirculating ventilation system in an agricultural building. In laboratory tests, collection efficiency and pressure drop were tracked over several filter loading cycles, and the recovery of filter capacity (pressure drop) from filter shaking was examined. Collection efficiencies of particles larger than 5 μm was high (>95%) even when the filter was pristine, showing effective collection of large particles that dominate inhalable concentrations typical of agricultural dusts. For respirable-sized particles, collection efficiencies were low when the filter was pristine (e.g., 27% for 1 μm) but much higher when a dust cake developed on the filter (>99% for all size particles), even after shaking (e.g., 90% for 1 μm). The first shake of a filter was observed to recovery a substantial fraction of filter capacity, with subsequent shakes providing little benefit. In field tests, the SDC performed effectively over a period of three months in winter when incorporated in a recirculating ventilation system of a swine farrowing room. Trends in collection efficiency and pressure drop with loading were similar to those observed in the laboratory with overall collection efficiencies high (>80%) when pressure drop exceeded 230 Pa, or 23% of the maximum loading recommended by the manufacturer. This work shows that the SDC can function effectively over the harsh winter in swine rearing operations. Together with findings of improved air quality in the farrowing room reported in a companion manuscript, this article provides evidence that an SDC represents a cost-effective solution to improve air quality in agricultural settings. PMID:25955507

  7. Ion-recombination correction for different ionization chambers in high dose rate flattening-filter-free photon beams

    NASA Astrophysics Data System (ADS)

    Lang, Stephanie; Hrbacek, Jan; Leong, Aidan; Klöck, Stephan

    2012-05-01

    Recently, there has been an increased interest in flattening-filter-free (FFF) linear accelerators. Removal of the filter results in available dose rates up to 24 Gy min-1 (for nominal energy 10 MV in depth of maximum dose, a source-surface distance of 100 cm and a field size of 10×10 cm2). To guarantee accurate relative and reference dosimetry for the FFF beams, we investigated the charge collection efficiency of multiple air-vented and one liquid ionization chamber for dose rates up to 31.9 Gy min-1. For flattened beams, the ion-collection efficiency of all air-vented ionization chambers (except for the PinPoint chamber) was above 0.995. By removing the flattening filter, we found a reduction in collection efficiency of approximately 0.5-0.9% for a 10 MV beam. For FFF beams, the Markus chamber showed the largest collection efficiency of 0.994. The observed collection efficiencies were dependent on dose per pulse, but independent of the pulse repetition frequency. Using the liquid ionization chamber, the ion-collection efficiency for flattened beams was above 0.990 for all dose rates. However, this chamber showed a low collection efficiency of 0.940 for the FFF 10 MV beam at a dose rate of 31.9 Gy min-1. All investigated air-vented ionization chambers can be reliably used for relative dosimetry of FFF beams. The order of correction for reference dosimetry is given in the manuscript. Due to their increased saturation in high dose rate FFF beams, liquid ionization chambers appear to be unsuitable for dosimetry within these contexts.

  8. Removal of viable bioaerosol particles with a low-efficiency HVAC filter enhanced by continuous emission of unipolar air ions.

    PubMed

    Huang, R; Agranovski, I; Pyankov, O; Grinshpun, S

    2008-04-01

    Continuous emission of unipolar ions has been shown to improve the performance of respirators and stationary filters challenged with non-biological particles. In this study, we investigated the ion-induced enhancement effect while challenging a low-efficiency heating, ventilation and air-conditioning (HVAC) filter with viable bacterial cells, bacterial and fungal spores, and viruses. The aerosol concentration was measured in real time. Samples were also collected with a bioaerosol sampler for viable microbial analysis. The removal efficiency of the filter was determined, respectively, with and without an ion emitter. The ionization was found to significantly enhance the filter efficiency in removing viable biological particles from the airflow. For example, when challenged with viable bacteria, the filter efficiency increased as much as four- to fivefold. For viable fungal spores, the ion-induced enhancement improved the efficiency by a factor of approximately 2. When testing with virus-carrying liquid droplets, the original removal efficiency provided by the filter was rather low: 9.09 +/- 4.84%. While the ion emission increased collection about fourfold, the efficiency did not reach 75-100% observed with bacteria and fungi. These findings, together with our previously published results for non-biological particles, demonstrate the feasibility of a new approach for reducing aerosol particles in HVAC systems used for indoor air quality control. Recirculated air in HVAC systems used for indoor air quality control in buildings often contains considerable number of viable bioaerosol particles because of limited efficiency of the filters installed in these systems. In the present study, we investigated - using aerosolized bacterial cells, bacterial and fungal spores, and virus-carrying particles - a novel idea of enhancing the performance of a low-efficiency HVAC filter utilizing continuous emission of unipolar ions in the filter vicinity. The findings described in this paper, together with our previously published results for non-biological particles, demonstrate the feasibility of the newly developed approach.

  9. Testing Air-Filtering Systems

    PubMed Central

    Songer, Joseph R.; Sullivan, James F.; Hurd, James W.

    1963-01-01

    A procedure was developed for evaluating high-efficiency filters mounted in exhaust ducts at the National Animal Disease Laboratory. An aerosol of the test organism, Escherichia coli B T3 bacteriophage, was generated in a chamber attached to a ceiling exhaust register in concentrations of at least 1000 viable organisms per ft3 of air. Samples were collected from both the pre- and postfilter areas, and the number of organisms per ft3 of air was determined. The efficiency of the filter was calculated from these figures. A total of 269 high-efficiency filters were tested. Of these, 249 had efficiencies of 98% or greater. The remaining 20, with efficiencies of less than 98%, were repaired and retested. No filter was accepted with an efficiency of less than 98%. Images Fig. 2 PMID:14063779

  10. Collecting Protein Biomarkers in Breath Using Electret Filters: A Preliminary Method on New Technical Model and Human Study.

    PubMed

    Li, Wang; Pi, Xitian; Qiao, Panpan; Liu, Hongying

    2016-01-01

    Biomarkers in exhaled breath are useful for respiratory disease diagnosis in human volunteers. Conventional methods that collect non-volatile biomarkers, however, necessitate an extensive dilution and sanitation processes that lowers collection efficiencies and convenience of use. Electret filter emerged in recent decade to collect virus biomarkers in exhaled breath given its simplicity and effectiveness. To investigate the capability of electret filters to collect protein biomarkers, a model that consists of an atomizer that produces protein aerosol and an electret filter that collects albumin and carcinoembryonic antigen-a typical biomarker in lung cancer development- from the atomizer is developed. A device using electret filter as the collecting medium is designed to collect human albumin from exhaled breath of 6 volunteers. Comparison of the collecting ability between the electret filter method and other 2 reported methods is finally performed based on the amounts of albumin collected from human exhaled breath. In conclusion, a decreasing collection efficiency ranging from 17.6% to 2.3% for atomized albumin aerosol and 42% to 12.5% for atomized carcinoembryonic antigen particles is found; moreover, an optimum volume of sampling human exhaled breath ranging from 100 L to 200 L is also observed; finally, the self-designed collecting device shows a significantly better performance in collecting albumin from human exhaled breath than the exhaled breath condensate method (p<0.05) but is not significantly more effective than reported 3-stage impactor method (p>0.05). In summary, electret filters are potential in collecting non-volatile biomarkers in human exhaled breath not only because it was simpler, cheaper and easier to use than traditional methods but also for its better collecting performance.

  11. Development of a method for bacteria and virus recovery from heating, ventilation, and air conditioning (HVAC) filters.

    PubMed

    Farnsworth, James E; Goyal, Sagar M; Kim, Seung Won; Kuehn, Thomas H; Raynor, Peter C; Ramakrishnan, M A; Anantharaman, Senthilvelan; Tang, Weihua

    2006-10-01

    The aim of the work presented here is to study the effectiveness of building air handling units (AHUs) in serving as high volume sampling devices for airborne bacteria and viruses. An HVAC test facility constructed according to ASHRAE Standard 52.2-1999 was used for the controlled loading of HVAC filter media with aerosolized bacteria and virus. Nonpathogenic Bacillus subtilis var. niger was chosen as a surrogate for Bacillus anthracis. Three animal viruses; transmissible gastroenteritis virus (TGEV), avian pneumovirus (APV), and fowlpox virus were chosen as surrogates for three human viruses; SARS coronavirus, respiratory syncytial virus, and smallpox virus; respectively. These bacteria and viruses were nebulized in separate tests and injected into the test duct of the test facility upstream of a MERV 14 filter. SKC Biosamplers upstream and downstream of the test filter served as reference samplers. The collection efficiency of the filter media was calculated to be 96.5 +/- 1.5% for B. subtilis, however no collection efficiency was measured for the viruses as no live virus was ever recovered from the downstream samplers. Filter samples were cut from the test filter and eluted by hand-shaking. An extraction efficiency of 105 +/- 19% was calculated for B. subtilis. The viruses were extracted at much lower efficiencies (0.7-20%). Our results indicate that the airborne concentration of spore-forming bacteria in building AHUs may be determined by analyzing the material collected on HVAC filter media, however culture-based analytical techniques are impractical for virus recovery. Molecular-based identification techniques such as PCR could be used.

  12. Effect of open channel filter on particle emissions of modern diesel engine.

    PubMed

    Heikkilä, Juha; Rönkkö, Topi; Lähde, Tero; Lemmetty, Mikko; Arffman, Anssi; Virtanen, Annele; Keskinen, Jorma; Pirjola, Liisa; Rothe, Dieter

    2009-10-01

    Particle emissions of modern diesel engines are of a particular interest because of their negative health effects. The special interest is in nanosized solid particles. The effect of an open channel filter on particle emissions of a modern heavy-duty diesel engine (MAN D2066 LF31, model year 2006) was studied. Here, the authors show that the open channel filter made from metal screen efficiently reduced the number of the smallest particles and, notably, the number and mass concentration of soot particles. The filter used in this study reached 78% particle mass reduction over the European Steady Cycle. Considering the size-segregated number concentration reduction, the collection efficiency was over 95% for particles smaller than 10 nm. The diffusion is the dominant collection mechanism in small particle sizes, thus the collection efficiency decreased as particle size increased, attaining 50% at 100 nm. The overall particle number reduction was 66-99%, and for accumulation-mode particles the number concentration reduction was 62-69%, both depending on the engine load.

  13. COMPUTATIONS ON THE PERFORMANCE OF PARTICLE FILTERS AND ELECTRONIC AIR CLEANERS

    EPA Science Inventory

    The paper discusses computations on the performance of particle filters and electronic air cleaners (EACs). The collection efficiency of particle filters and ACs is calculable if certain factors can be assumed or calibrated. For fibrous particulate filters, measurement of colle...

  14. High Volume Air Sampling for Viral Aerosols: A Comparative Approach

    DTIC Science & Technology

    2010-03-01

    Solid Impaction Aerosol Collection (Verreault, 2008. Reproduced with Permission from American Society of Microbiology ) Liquid collection...Reproduced with Permission from American Society of Microbiology ) Filter aerosol collection is often more efficient than other sampling...collected using a crude filter consisting of a glass tube packed with dry cotton. Sample analysis was conducted by inoculating chicken embryos with

  15. Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES)

    NASA Astrophysics Data System (ADS)

    Tsai, Candace S.-J.; Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael

    2012-05-01

    Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20-46 % points compared to non-coated fabric and could provide collection efficiency above 95 %.

  16. Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES)

    PubMed Central

    Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael

    2013-01-01

    Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20–46 % points compared to non-coated fabric and could provide collection efficiency above 95 %. PMID:23412707

  17. Washable antimicrobial polyester/aluminum air filter with a high capture efficiency and low pressure drop.

    PubMed

    Choi, Dong Yun; Heo, Ki Joon; Kang, Juhee; An, Eun Jeong; Jung, Soo-Ho; Lee, Byung Uk; Lee, Hye Moon; Jung, Jae Hee

    2018-06-05

    Here, we introduce a reusable bifunctional polyester/aluminum (PET/Al) air filter for the high efficiency simultaneous capture and inactivation of airborne microorganisms. Both bacteria of Escherichia coli and Staphylococcus epidermidis were collected on the PET/Al filter with a high efficiency rate (∼99.99%) via the electrostatic interactions between the charged bacteria and fibers without sacrificing pressure drop. The PET/Al filter experienced a pressure drop approximately 10 times lower per thickness compared with a commercial high-efficiency particulate air filter. As the Al nanograins grew on the fibers, the antimicrobial activity against airborne E. coli and S. epidermidis improved to ∼94.8% and ∼96.9%, respectively, due to the reinforced hydrophobicity and surface roughness of the filter. Moreover, the capture and antimicrobial performances were stably maintained during a cyclic washing test of the PET/Al filter, indicative of its reusability. The PET/Al filter shows great potential for use in energy-efficient bioaerosol control systems suitable for indoor environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Novel diesel exhaust filters for underground mining vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickel, K.L.; Taubert, T.R.

    1995-12-31

    The U.S. Bureau of Mines (USBM) pioneered the development of disposable filters for reducing diesel particulate emissions from permissible mining machines. The USBM is now evaluating filter media that can withstand the high exhaust temperatures on nonpermissible machines. The goal of the evaluation is to find an inexpensive medium that can be cleaned or disposed of after use, and will reduce particulate emissions by 50 % or more. This report summarizes the results from screening tests of a lava rock and woven fiberglass filter media. The lava rock media exhibited low collection efficiencies, but with very low increases in exhaustmore » back pressure. Preliminary results indicate a collection efficiency exceeding 80 % for the woven fiber media. Testing of both media is continuing.« less

  19. Characterization of a Regenerable Impactor Filter for Spacecraft Cabin Applications

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.

    2015-01-01

    Regenerable filters will play an important role in human exploration beyond low-Earth orbit. Life Support Systems aboard crewed spacecrafts will have to operate reliably and with little maintenance over periods of more than a year, even multiple years. Air filters are a key component of spacecraft life support systems, but they often require frequent routine maintenance. Bacterial filters aboard the International Space Station require almost weekly cleaning of the pre-filter screen to remove large lint debris captured in the microgravity environment. The source of the airborne matter which is collected on the filter screen is typically from clothing fibers, biological matter (hair, skin, nails, etc.) and material wear. Clearly a need for low maintenance filters requiring little to no crew intervention will be vital to the success of the mission. An impactor filter is being developed and tested to address this need. This filter captures large particle matter through inertial separation and impaction methods on collection surfaces, which can be automatically cleaned after they become heavily loaded. The impactor filter can serve as a pre-filter to augment the life of higher efficiency filters that capture fine and ultrafine particles. A prototype of the filter is being tested at the Particulate Filtration Laboratory at NASA Glenn Research Center to determine performance characteristics, including particle cut size and overall efficiency. Model results are presented for the flow characteristics near the orifice plate through which the particle-laden flow is accelerated as well as around the collection bands.

  20. Water washable stainless steel HEPA filter

    DOEpatents

    Phillips, Terrance D.

    2001-01-01

    The invention is a high efficiency particulate (HEPA) filter apparatus and system, and method for assaying particulates. The HEPA filter provides for capture of 99.99% or greater of particulates from a gas stream, with collection of particulates on the surface of the filter media. The invention provides a filter system that can be cleaned and regenerated in situ.

  1. Low Efficiency Control Measures for Jet Engine Test Cells

    DTIC Science & Technology

    1978-09-01

    replacement cost was based upon filter cost data ob- tained from Mr. Roland Langlois, Owens - Corning Fiberglas Inc., Technical Cen- ter, Granville, Ohio. 3...Torgeson’s theory was used to calculate the collection efficiency of three commercial glass fiber filter media samples obtained from Owens - Corning Fiberglas

  2. Improved method for concentration of Giardia, Cryptosporidium, and poliovirus from water.

    PubMed

    Watt, Pamela M; Johnson, Dana C; Gerba, Charles P

    2002-03-01

    Methods for the concentration of enteric viruses and the protozoan parasites, Giardia and Cryptosporidium, from drinking water currently require the use of two different types of filters. Electropositive or electronegative microporous filters (0.2-0.45 microm nominal porosity) are used for the collection of enteroviruses, while polypropylene spun-fiber filters (1 microm porosity) and small pleated cartridge filters are used for the collection of protozoan parasites from water. Since the filter mechanically traps the protozoa by size exclusion, a microporous filter with an appropriately small nominal porosity could possibly be used for co-collection of both protozoa and enteroviruses. This study compared the concentration efficiencies of a polypropylene fiber cartridge (DPPPY) filter and two different microporous filters (Filterite and IMDS) with poliovirus (type 1), with respect to their ability to concentrate Giardia and Cryptosporidium from water. Giardia cysts and Cryptosporidium oocysts were added to 4001 of either tap water or tertiary treated wastewater and passed through the test filter. The protozoa were eluted from the polypropylene filter by hand-washing in a detergent solution. Viruses and protozoa were eluted from the microporous filter by two consecutive back-washes with a 1.5% beef extract, 0.1% Tween 80 solution. The eluent was then centrifuged to remove the parasites and the supernatant assayed for viruses. The overall efficiency was greater for the Filterite filter (40.4% for Giardia; 36.6% for Cryptosporidium) when compared to the spun fiber filter (10.1% for Giardia; 16.0% for Cryptosporidium). The Filterite filters were easier and faster to process than the polypropylene spun fiber filters. There was no significant difference in the recovery of protozoa from 1MDS and DPPPY filters. Co-collection of viruses and protozoan parasites from water onto the same filter is possible and can reduce the time and cost of routine water monitoring.

  3. Fine dust filtration using a metal fiber bed.

    PubMed

    Lee, Kyung Mi; Lee, Young Sup; Jo, Young Min

    2006-08-01

    A bed-type filter composed of thin metal alloy fiber was closely examined with dust capturing in cold and hot runs. The investigation of an individual mechanism across the filter bed indicated that the aerated dust could be initially collected by depth filtration, and after a while, surface filtration dominated the overall dust collection. The present metal fiber bed was comparable to the conventional ceramic filters because of its good collection efficiency with low pressure drop. It also showed potential to be used as a prefilter in a diesel exhaust trapping system.

  4. Workplace Exposure to Titanium Dioxide Nanopowder Released from a Bag Filter System

    PubMed Central

    Ji, Jun Ho; Kim, Jong Bum; Lee, Gwangjae; Noh, Jung-Hun; Yook, Se-Jin; Cho, So-Hye; Bae, Gwi-Nam

    2015-01-01

    Many researchers who use laboratory-scale synthesis systems to manufacture nanomaterials could be easily exposed to airborne nanomaterials during the research and development stage. This study used various real-time aerosol detectors to investigate the presence of nanoaerosols in a laboratory used to manufacture titanium dioxide (TiO2). The TiO2 nanopowders were produced via flame synthesis and collected by a bag filter system for subsequent harvesting. Highly concentrated nanopowders were released from the outlet of the bag filter system into the laboratory. The fractional particle collection efficiency of the bag filter system was only 20% at particle diameter of 100 nm, which is much lower than the performance of a high-efficiency particulate air (HEPA) filter. Furthermore, the laboratory hood system was inadequate to fully exhaust the air discharged from the bag filter system. Unbalanced air flow rates between bag filter and laboratory hood systems could result in high exposure to nanopowder in laboratory settings. Finally, we simulated behavior of nanopowders released in the laboratory using computational fluid dynamics (CFD). PMID:26125024

  5. Evaluation of vacuum filter sock surface sample collection method for Bacillus spores from porous and non-porous surfaces.

    PubMed

    Brown, Gary S; Betty, Rita G; Brockmann, John E; Lucero, Daniel A; Souza, Caroline A; Walsh, Kathryn S; Boucher, Raymond M; Tezak, Matthew S; Wilson, Mollye C

    2007-07-01

    Vacuum filter socks were evaluated for recovery efficiency of powdered Bacillus atrophaeus spores from two non-porous surfaces, stainless steel and painted wallboard and two porous surfaces, carpet and bare concrete. Two surface coupons were positioned side-by-side and seeded with aerosolized Bacillus atrophaeus spores. One of the surfaces, a stainless steel reference coupon, was sized to fit into a sample vial for direct spore removal, while the other surface, a sample surface coupon, was sized for a vacuum collection application. Deposited spore material was directly removed from the reference coupon surface and cultured for enumeration of colony forming units (CFU), while deposited spore material was collected from the sample coupon using the vacuum filter sock method, extracted by sonication and cultured for enumeration. Recovery efficiency, which is a measure of overall transfer effectiveness from the surface to culture, was calculated as the number of CFU enumerated from the filter sock sample per unit area relative to the number of CFU enumerated from the co-located reference coupon per unit area. The observed mean filter sock recovery efficiency from stainless steel was 0.29 (SD = 0.14, n = 36), from painted wallboard was 0.25 (SD = 0.15, n = 36), from carpet was 0.28 (SD = 0.13, n = 40) and from bare concrete was 0.19 (SD = 0.14, n = 44). Vacuum filter sock recovery quantitative limits of detection were estimated at 105 CFU m(-2) from stainless steel and carpet, 120 CFU m(-2) from painted wallboard and 160 CFU m(-2) from bare concrete. The method recovery efficiency and limits of detection established in this work provide useful guidance for the planning of incident response environmental sampling for biological agents such as Bacillus anthracis.

  6. Electrospun Magnetic Nanoparticle-Decorated Nanofiber Filter and Its Applications to High-Efficiency Air Filtration.

    PubMed

    Kim, Juyoung; Chan Hong, Seung; Bae, Gwi Nam; Jung, Jae Hee

    2017-10-17

    Filtration technology has been widely studied due to concerns about exposure to airborne dust, including metal oxide nanoparticles, which cause serious health problems. The aim of these studies has been to develop mechanisms for the continuous and efficient removal of metal oxide dusts. In this study, we introduce a novel air filtration system based on the magnetic attraction force. The filtration system is composed of a magnetic nanoparticle (MNP)-decorated nanofiber (MNP-NF) filter. Using a simple electrospinning system, we fabricated continuous and smooth electrospun nanofibers with evenly distributed Fe 3 O 4 MNPs. Our electrospun MNP-NF filter exhibited high particle collection efficiency (∼97% at 300 nm particle size) compared to the control filter (w/o MNPs, ∼ 68%), with a ∼ 64% lower pressure drop (∼17 Pa) than the control filter (∼27 Pa). Finally, the filter quality factors of the MNP-NF filter were 4.7 and 11.9 times larger than those of the control filter and the conventional high-efficiency particulate air filters (>99% and ∼269 Pa), respectively. Furthermore, we successfully performed a field test of our MNP-NF filter using dust from a subway station tunnel. This work suggests that our novel MNP-NF filter can be used to facilitate effective protection against hazardous metal oxide dust in real environments.

  7. 75 FR 42132 - Notice of Lodging of Consent Decree Pursuant to the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... particulate filters. The hydraulic launch assist refuse collection vehicle is designed to be more efficient by... economy. The diesel particulate filters are aimed to reduce particulate matter emissions as well as carbon...

  8. 75 FR 42131 - Notice of Lodging of Consent Decree Pursuant to the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... particulate filters. The hydraulic launch assist refuse collection vehicle is designed to be more efficient by... economy. The diesel particulate filters are aimed to reduce particulate matter emissions as well as carbon...

  9. Fast ground filtering for TLS data via Scanline Density Analysis

    NASA Astrophysics Data System (ADS)

    Che, Erzhuo; Olsen, Michael J.

    2017-07-01

    Terrestrial Laser Scanning (TLS) efficiently collects 3D information based on lidar (light detection and ranging) technology. TLS has been widely used in topographic mapping, engineering surveying, forestry, industrial facilities, cultural heritage, and so on. Ground filtering is a common procedure in lidar data processing, which separates the point cloud data into ground points and non-ground points. Effective ground filtering is helpful for subsequent procedures such as segmentation, classification, and modeling. Numerous ground filtering algorithms have been developed for Airborne Laser Scanning (ALS) data. However, many of these are error prone in application to TLS data because of its different angle of view and highly variable resolution. Further, many ground filtering techniques are limited in application within challenging topography and experience difficulty coping with some objects such as short vegetation, steep slopes, and so forth. Lastly, due to the large size of point cloud data, operations such as data traversing, multiple iterations, and neighbor searching significantly affect the computation efficiency. In order to overcome these challenges, we present an efficient ground filtering method for TLS data via a Scanline Density Analysis, which is very fast because it exploits the grid structure storing TLS data. The process first separates the ground candidates, density features, and unidentified points based on an analysis of point density within each scanline. Second, a region growth using the scan pattern is performed to cluster the ground candidates and further refine the ground points (clusters). In the experiment, the effectiveness, parameter robustness, and efficiency of the proposed method is demonstrated with datasets collected from an urban scene and a natural scene, respectively.

  10. Low level determination of (226)Ra in water using a micro-precipitate track method for large-scale environmental monitoring.

    PubMed

    Taheri, M; Sohrabi, M; Jaleh, B; Hosseini, T; Montazer Rahmati, M M

    2009-12-01

    In the present paper a method has been developed for the determination of (226)Ra in water by the detection, using a solid-state nuclear track detector (SSNTD), of alpha particles from (226)Ra in equilibrium with (222)Rn in micro-precipitates collected on a filter. The micro-precipitates were prepared from environmental water samples by collection of radium with lead as Pb/RaSO(4). Several factors affect the (226)Ra precipitation on the filter and its recovery, in particular the filter pore size. Therefore in this experiment Whatman #42 and Millipore filters with different pore sizes were used. Using a 0.45 microm Millipore filter, the recovery efficiency was increased up to 96%, and the alpha self-absorption and scattering decreased remarkably. For efficient detection of alphas from (226)Ra/(222)Rn in equilibrium, three types of SSNTD were used-polycarbonate (PC) electrochemically etched (ECE), CR-39 and LR-115 chemically etched (CE). By preparing a standard micro-precipitate on a filter with known (226)Ra/(222)Rn characteristics, the calibration response of each detector and its minimum detection limit (MDL) were determined.

  11. Bottles as models: predicting the effects of varying swimming speed and morphology on size selectivity and filtering efficiency in fishes.

    PubMed

    Paig-Tran, E W Misty; Bizzarro, Joseph J; Strother, James A; Summers, Adam P

    2011-05-15

    We created physical models based on the morphology of ram suspension-feeding fishes to better understand the roles morphology and swimming speed play in particle retention, size selectivity and filtration efficiency during feeding events. We varied the buccal length, flow speed and architecture of the gills slits, including the number, size, orientation and pore size/permeability, in our models. Models were placed in a recirculating flow tank with slightly negatively buoyant plankton-like particles (~20-2000 μm) collected at the simulated esophagus and gill rakers to locate the highest density of particle accumulation. Particles were captured through sieve filtration, direct interception and inertial impaction. Changing the number of gill slits resulted in a change in the filtration mechanism of particles from a bimodal filter, with very small (≤ 50 μm) and very large (>1000 μm) particles collected, to a filter that captured medium-sized particles (101-1000 μm). The number of particles collected on the gill rakers increased with flow speed and skewed the size distribution towards smaller particles (51-500 μm). Small pore sizes (105 and 200 μm mesh size) had the highest filtration efficiencies, presumably because sieve filtration played a significant role. We used our model to make predictions about the filtering capacity and efficiency of neonatal whale sharks. These results suggest that the filtration mechanics of suspension feeding are closely linked to an animal's swimming speed and the structural design of the buccal cavity and gill slits.

  12. Further theoretical studies of modified cyclone separator as a diesel soot particulate emission arrester.

    PubMed

    Mukhopadhyay, N; Bose, P K

    2009-10-01

    Soot particulate emission reduction from diesel engine is one of the most emerging problems associated with the exhaust pollution. Diesel particulate filters (DPF) hold out the prospects of substantially reducing regulated particulate emissions but the question of the reliable regeneration of filters still remains a difficult hurdle to overcome. Many of the solutions proposed to date suffer from design complexity, cost, regeneration problem and energy demands. This study presents a computer aided theoretical analysis for controlling diesel soot particulate emission by cyclone separator--a non contact type particulate removal system considering outer vortex flow, inner vortex flow and packed ceramic fiber filter at the end of vortex finder tube. Cyclone separator with low initial cost, simple construction produces low back pressure and reasonably high collection efficiencies with reduced regeneration problems. Cyclone separator is modified by placing a continuous ceramic packed fiber filter placed at the end of the vortex finder tube. In this work, the grade efficiency model of diesel soot particulate emission is proposed considering outer vortex, inner vortex and the continuous ceramic packed fiber filter. Pressure drop model is also proposed considering the effect of the ceramic fiber filter. Proposed model gives reasonably good collection efficiency with permissible pressure drop limit of diesel engine operation. Theoretical approach is predicted for calculating the cut size diameter considering the effect of Cunningham molecular slip correction factor. The result shows good agreements with existing cyclone and DPF flow characteristics.

  13. Quantification of the fungal fraction released from various preloaded fibrous filters during a simulated ventilation restart.

    PubMed

    Morisseau, K; Joubert, A; Le Coq, L; Andres, Y

    2017-05-01

    This study aimed to demonstrate that particles, especially those associated with fungi, could be released from fibrous filters used in the air-handling unit (AHU) of heating, ventilation and air-conditioning (HVAC) systems during ventilation restarts. Quantification of the water retention capacity and SEM pictures of the filters was used to show the potential for fungal proliferation in unused or preloaded filters. Five fibrous filters with various particle collection efficiencies were studied: classes G4, M5, M6, F7, and combined F7 according to European standard EN779:2012. Filters were clogged with micronized rice particles containing the fungus Penicillium chrysogenum and then incubated for three weeks at 25°C and 90% relative humidity. The results indicated that the five clogged tested filters had various fungal growth capacities depending on their water retention capacity. Preloaded filters were subjected to a simulated ventilation restart in a controlled filtration device to quantify that the fraction of particles released was around 1% for the G4, 0.1% for the M5 and the M6, and 0.001% for the F7 and the combined F7 filter. The results indicate that the likelihood of fungal particle release by low efficiency filters is significantly higher than by high efficiency filters. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Method and apparatus for the collection, storage, and real time analysis of blood and other bodily fluids

    NASA Technical Reports Server (NTRS)

    Whitson, Peggy A. (Inventor); Clift, Vaughan L. (Inventor)

    1994-01-01

    The present invention provides a simple, portable, relatively inexpensive apparatus for accurately and efficiently collecting, separating, testing, and even storing between about 1-20 ml, preferably about 1-10 ml, of blood or other bodily fluid in situ. The apparatus includes a collection chamber bounded on its sides by an opening in a sheet of material, preferably clear plastic, abutting a filter card. The filter card is made of fibrous material, preferably less than about a millimeter thick, having an average pore size of less than about 3 microns. Preferably, the fibers are glass and the fibrous material has an average pore size of about 1 micron. The fibrous material is treated with a carbohydrate/protein mixture which contains between about 1-40 percent wt/vol carbohydrate and about 0.1-15 percent wt/vol nonspecific protein, preferably between about 10-20 percent carbohydrate and about 5-8 percent protein. A preferred carbohydrate/protein mixture comprises about 10 percent mannitol and about 6 percent albumin. The blood or other fluid moves through the filter card by capillary action aided by an absorbent matrix with a high Klemm factor which abuts the filter card. The absorbent matrix and/or filter card can be treated with a wide spectrum of test reagents. The speed, cleanliness, and efficiency of the separation process can be altered by: (a) changing the absolute concentration of the carbohydrate/protein mixture; (b) applying positive or negative pressure to one side of the filter; and/or (c) varying the relative density and pore size of the filter card and absorbent matrix.

  15. 40 CFR Appendix B to Part 50 - Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere (High...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... site, draws a measured quantity of ambient air into a covered housing and through a filter during a 24... filters used are specified to have a minimum collection efficiency of 99 percent for 0.3 µm (DOP) particles (see Section 7.1.4). 2.2 The filter is weighed (after moisture equilibration) before and after use...

  16. Comparison of Ahlstrom grade 226, Munktell TFN, and Whatman 903 filter papers for dried blood spot specimen collection and subsequent HIV-1 load and drug resistance genotyping analysis.

    PubMed

    Rottinghaus, Erin; Bile, Ebi; Modukanele, Mosetsanagape; Maruping, Maruping; Mine, Madisa; Nkengasong, John; Yang, Chunfu

    2013-01-01

    Dried blood spots (DBS) collected onto filter paper have eased the difficulty of blood collection in resource-limited settings. Currently, Whatman 903 (W-903) filter paper is the only filter paper that has been used for HIV load and HIV drug resistance (HIVDR) testing. We therefore evaluated two additional commercially available filter papers, Ahlstrom grade 226 (A-226) and Munktell TFN (M-TFN), for viral load (VL) testing and HIVDR genotyping using W-903 filter paper as a comparison group. DBS specimens were generated from 344 adult patients on antiretroviral therapy (ART) in Botswana. The VL was measured with NucliSENS EasyQ HIV-1 v2.0, and genotyping was performed for those specimens with a detectable VL (≥ 2.90 log(10) copies/ml) using an in-house method. Bland-Altman analysis revealed a strong concordance in quantitative VL analysis between W-903 and A-226 (bias = -0.034 ± 0.246 log(10) copies/ml [mean difference ± standard deviation]) and W-903 and M-TFN (bias = -0.028 ± 0.186 log(10) copies/ml) filter papers, while qualitative VL analysis for virological failure determination, defined as a VL of ≥ 3.00 log(10) copies/ml, showed low sensitivities for A-266 (71.54%) and M-TFN (65.71%) filter papers compared to W-903 filter paper. DBS collected on M-TFN filter paper had the highest genotyping efficiency (100%) compared to W-903 and A-226 filter papers (91.7%) and appeared more sensitive in detecting major HIVDR mutations. DBS collected on A-226 and M-TFN filter papers performed similarly to DBS collected on W-903 filter paper for quantitative VL analysis and HIVDR detection. Together, the encouraging genotyping results and the variability observed in determining virological failure from this small pilot study warrant further investigation of A-226 and M-TFN filter papers as specimen collection devices for HIVDR monitoring surveys.

  17. Characterization of ambient and extracted PM2.5 collected on filters for toxicology applications

    PubMed Central

    Roper, Courtney; Chubb, Lauren G.; Cambal, Leah; Tunno, Brett; Clougherty, Jane E.; Mischler, Steven E.

    2016-01-01

    Research on the health effects of fine particulate matter (PM2.5) frequently disregards the differences in particle composition between that measured on an ambient filter versus that measured in the corresponding extraction solution used for toxicological testing. This study presents a novel method for characterizing the differences, in metallic and organic species, between the ambient samples and the corresponding extracted solutions through characterization of extracted PM2.5 suspended on filters. Removal efficiency was found to be 98.0 ± 1.4% when measured using pre- and post-removal filter weights, however, this efficiency was significantly reduced to 80.2 ± 0.8% when measured based on particle mass in the extraction solution. Furthermore, only 47.2 ± 22.3% of metals and 24.8 ± 14.5% of organics measured on the ambient filter were found in the extraction solution. Individual metallic and organic components were extracted with varying efficiency, with many organics being lost entirely during extraction. Finally, extraction efficiencies of specific PM2.5 components were inversely correlated with total mass. This study details a method to assess compositional alterations resulting from extraction of PM2.5 from filters, emphasizing the need for standardized procedures that maintain compositional integrity of ambient samples for use in toxicology studies of PM2.5. PMID:26446919

  18. Define and Quantify the Physics of Air Flow, Pressure Drop and Aerosol Collection in Nuclear Grade HEPA Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Murray E.

    Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to massmore » flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is expected to require six months of time, after receipt of funding. Benefits: US DOE facilities that use HEPA filters will benefit from access to the new operational measurement methods. Uncertainty and guesswork will be removed from HEPA filter operations.« less

  19. [Method for concentration determination of mineral-oil fog in the air of workplace].

    PubMed

    Xu, Min; Zhang, Yu-Zeng; Liu, Shi-Feng

    2008-05-01

    To study the method of concentration determination of mineral-oil fog in the air of workplace. Four filter films such as synthetic fabric filter film, beta glass fiber filter film, chronic filter paper and microporous film were used in this study. Two kinds of dust samplers were used to collect the sample, one sampling at fast flow rate in a short time and the other sampling at slow flow rate with long duration. Subsequently, the filter membrane was weighed with electronic analytical balance. According to sampling efficiency and incremental size, the adsorbent ability of four different filter membranes was compared. When the flow rate was between 10 approximately 20 L/min and the sampling time was between 10 approximately 15 min, the average sampling efficiency of synthetic fabric filter film was 95.61% and the increased weight ranged from 0.87 to 2.60 mg. When the flow rate was between 10 approximately 20 L/min and sampling time was between 10 approximately 15 min, the average sampling efficiency of beta glass fiber filter film was 97.57% and the increased weight was 0.75 approximately 2.47 mg. When the flow rate was between 5 approximately 10 L/min and the sampling time between 10 approximately 20 min, the average sampling efficiency of chronic filter paper and microporous film was 48.94% and 63.15%, respectively and the increased weight was 0.75 approximately 2.15 mg and 0.23 approximately 0.85 mg, respectively. When the flow rate was 3.5 L/min and the sampling time was between 100 approximately 166 min, the average sampling efficiency of filter film were 94.44% and 93.45%, respectively and the average increased weight was 1.28 mg for beta glass fiber filter film and 0.78 mg for beta glass fiber filter film and synthetic fabric synthetic fabric filter film. The average sampling efficiency of chronic filter paper and microporous film were 37.65% and 88.21%, respectively. The average increased weight was 4.30 mg and 1.23 mg, respectively. Sampling with synthetic fabric filter film and beta glass fiber filter film is credible, accurate, simple and feasible for determination of the concentration of mineral-oil fog in workplaces.

  20. Fibrous filter efficiency and pressure drop in the viscous-inertial transition flow regime.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Andres L.; Brockmann, John E.; Dellinger, Jennifer Gwynne

    2011-10-01

    Fibrous filter pressure drop and aerosol collection efficiency were measured at low air pressures (0.2 to 0.8 atm) and high face velocities (5 to 20 meters per second) to give fiber Reynolds numbers in the viscous-inertial transition flow regime (1 to 16). In this regime, contemporary filtration theory based on Kuwabara's viscous flow through an ensemble of fibers under-predicts single fiber impaction by several orders of magnitude. Streamline curvature increases substantially as inertial forces become dominant. Dimensionless pressure drop measurements followed the viscous-inertial theory of Robinson and Franklin rather than Darcy's linear pressure-velocity relationship (1972). Sodium chloride and iron nano-agglomeratemore » test aerosols were used to evaluate the effects of particle density and shape factor. Total filter efficiency collapsed when plotted against the particle Stokes and fiber Reynolds numbers. Efficiencies were then fitted with an impactor type equation where the cutpoint Stokes number and a steepness parameter described data well in the sharply increasing portion of the curve (20% to 80% efficiency). The cutpoint Stokes number was a linearly decreasing function of fiber Reynolds number. Single fiber efficiencies were calculated from total filter efficiencies and compared to contemporary viscous flow impaction theory (Stechkina et al. 1969), and numerical simulations from the literature. Existing theories under-predicted measured single fiber efficiencies although the assumption of uniform flow conditions for each successive layer of fibers is questionable; the common exponential relationship between single fiber efficiency and total filter efficiency may not be appropriate in this regime.« less

  1. 40 CFR Appendix B to Part 50 - Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere (High...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... filters used are specified to have a minimum collection efficiency of 99 percent for 0.3 µm (DOP... electronic timers have much better set-point resolution than mechanical timers, but require a battery backup... Collection efficiency: 99 percent minimum as measured by the DOP test (ASTM-2986) for particles of 0.3 µm...

  2. 40 CFR Appendix B to Part 50 - Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere (High...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... filters used are specified to have a minimum collection efficiency of 99 percent for 0.3 µm (DOP... electronic timers have much better set-point resolution than mechanical timers, but require a battery backup... Collection efficiency: 99 percent minimum as measured by the DOP test (ASTM-2986) for particles of 0.3 µm...

  3. Variables Influencing Extraction of Nucleic Acids from Microbial Plankton (Viruses, Bacteria, and Protists) Collected on Nanoporous Aluminum Oxide Filters

    PubMed Central

    Mueller, Jaclyn A.; Culley, Alexander I.

    2014-01-01

    Anodic aluminum oxide (AAO) filters have high porosity and can be manufactured with a pore size that is small enough to quantitatively capture viruses. These properties make the filters potentially useful for harvesting total microbial communities from water samples for molecular analyses, but their performance for nucleic acid extraction has not been systematically or quantitatively evaluated. In this study, we characterized the flux of water through commercially produced nanoporous (0.02 μm) AAO filters (Anotop; Whatman) and used isolates (a virus, a bacterium, and a protist) and natural seawater samples to test variables that we expected would influence the efficiency with which nucleic acids are recovered from the filters. Extraction chemistry had a significant effect on DNA yield, and back flushing the filters during extraction was found to improve yields of high-molecular-weight DNA. Using the back-flush protocol, the mass of DNA recovered from microorganisms collected on AAO filters was ≥100% of that extracted from pellets of cells and viruses and 94% ± 9% of that obtained by direct extraction of a liquid bacterial culture. The latter is a minimum estimate of the relative recovery of microbial DNA, since liquid cultures include dissolved nucleic acids that are retained inefficiently by the filter. In conclusion, we demonstrate that nucleic acids can be extracted from microorganisms on AAO filters with an efficiency similar to that achievable by direct extraction of microbes in suspension or in pellets. These filters are therefore a convenient means by which to harvest total microbial communities from multiple aqueous samples in parallel for subsequent molecular analyses. PMID:24747903

  4. Quantitative real-time monitoring of multi-elements in airborne particulates by direct introduction into an inductively coupled plasma mass spectrometer

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshinari; Sato, Hikaru; Hiyoshi, Katsuhiro; Furuta, Naoki

    2012-10-01

    A new calibration system for real-time determination of trace elements in airborne particulates was developed. Airborne particulates were directly introduced into an inductively coupled plasma mass spectrometer, and the concentrations of 15 trace elements were determined by means of an external calibration method. External standard solutions were nebulized by an ultrasonic nebulizer (USN) coupled with a desolvation system, and the resulting aerosol was introduced into the plasma. The efficiency of sample introduction via the USN was calculated by two methods: (1) the introduction of a Cr standard solution via the USN was compared with introduction of a Cr(CO)6 standard gas via a standard gas generator and (2) the aerosol generated by the USN was trapped on filters and then analyzed. The Cr introduction efficiencies obtained by the two methods were the same, and the introduction efficiencies of the other elements were equal to the introduction efficiency of Cr. Our results indicated that our calibration method for introduction efficiency worked well for the 15 elements (Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Sn, Sb, Ba, Tl and Pb). The real-time data and the filter-collection data agreed well for elements with low-melting oxides (V, Co, As, Mo, Sb, Tl, and Pb). In contrast, the real-time data were smaller than the filter-collection data for elements with high-melting oxides (Ti, Cr, Mn, Ni, Cu, Zn, Sn, and Ba). This result implies that the oxides of these 8 elements were not completely fused, vaporized, atomized, and ionized in the initial radiation zone of the inductively coupled plasma. However, quantitative real-time monitoring can be realized after correction for the element recoveries which can be calculated from the ratio of real-time data/filter-collection data.

  5. Permeability optimization and performance evaluation of hot aerosol filters made using foam incorporated alumina suspension.

    PubMed

    Innocentini, Murilo D M; Rodrigues, Vanessa P; Romano, Roberto C O; Pileggi, Rafael G; Silva, Gracinda M C; Coury, José R

    2009-02-15

    Porous ceramic samples were prepared from aqueous foam incorporated alumina suspension for application as hot aerosol filtering membrane. The procedure for establishment of membrane features required to maintain a desired flow condition was theoretically described and experimental work was designed to prepare ceramic membranes to meet the predicted criteria. Two best membranes, thus prepared, were selected for permeability tests up to 700 degrees C and their total and fractional collection efficiencies were experimentally evaluated. Reasonably good performance was achieved at room temperature, while at 700 degrees C, increased permeability was obtained with significant reduction in collection efficiency, which was explained by a combination of thermal expansion of the structure and changes in the gas properties.

  6. A Carbon Free Filter for Collection of Large Volume Samples of Cellular Biomass from Oligotrophic Waters

    PubMed Central

    Mailloux, Brian J.; Dochenetz, Audra; Bishop, Michael; Dong, Hailiang; Ziolkowski, Lori A.; Wommack, K. Eric; Sakowski, Eric G.; Onstott, Tullis C.; Slater, Greg F.

    2018-01-01

    Isotopic analysis of cellular biomass has greatly improved our understanding of carbon cycling in the environment. Compound specific radiocarbon analysis (CSRA) of cellular biomass is being increasingly applied in a number of fields. However, it is often difficult to collect sufficient cellular biomass for analysis from oligotrophic waters because easy-to-use filtering methods that are free of carbon contaminants do not exist. The goal of this work was to develop a new column based filter to autonomously collect high volume samples of biomass from oligotrophic waters for CSRA using material that can be baked at 450°C to remove potential organic contaminants. A series of filter materials were tested, including uncoated sand, ferrihydrite-coated sand, goethite-coated sand, aluminum-coated sand, uncoated glass wool, ferrihydrite-coated glass wool, and aluminum-coated glass wool, in the lab with 0.1 and 1.0 µm microspheres and E. coli. Results indicated that aluminum-coated glass wool was the most efficient filter and that the retention capacity of the filter far exceeded the biomass requirements for CSRA. Results from laboratory tests indicate that for oligotrophic waters with 1×105 cells ml−1, 117 L of water would need to be filtered to collect 100 µg of PLFA for bulk PLFA analysis and 2000 L for analysis of individual PLFAs. For field sampling, filtration tests on South African mine water indicated that after filtering 5955 liters, 450 µg of total PLFAs were present, ample biomass for radiocarbon analysis. In summary, we have developed a filter that is easy to use and deploy for collection of biomass for CSRA including total and individual PLFAs. PMID:22561839

  7. A CAM (continuous air monitor) sampler for collecting and assessing alpha-emitting aerosol particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarland, A.R.; Bethel, E.L.; Ortiz, C.A.

    1991-07-01

    A new continuous air monitor (CAM) sampler for assessing alpha-emitting transuranic aerosol particles has been developed. The system has been designed to permit collection of particles that can potentially penetrate into the thoracic region of the human respiratory system. Wind tunnel testing of the sampler has been used to characterize the penetration of aerosol to the collection filter. Results show that greater than or equal to 50% of 10-micrograms aerodynamic equivalent diameter (AED) particles are collected by the filter at wind speeds of 0.3 to 2 m s-1 and at sampling flow rates of 28 to 113 L min-1 (1more » to 4 cfm). The deposition of 10-microns AED particles takes place primarily in the center of the filter, where the counting efficiency of the detector is highest.« less

  8. Development of an optical fiber SERS microprobe for minimally invasive sensing applications

    NASA Astrophysics Data System (ADS)

    Mamun, Md Abdullah Al; Juodkazis, Saulius; Mahadevan-Jansen, Anita; Stoddart, Paul R.

    2018-02-01

    Numerous potential biomedical sensing applications of surface-enhanced Raman scattering (SERS) have been reported, but its practical use has been limited by the lack of a robust sensing platform. Optical fiber SERS probes show great promise, but are limited by the prominent silica Raman background, which requires the use of bulky optics for filtering the signal collection and excitation delivery paths. In the present study, a SERS microprobe has been designed and developed to eliminate the bottlenecks outlined above. For efficient excitation and delivery of the SERS signal, both hollow core photonic crystal fiber and double clad fiber have been investigated. While the hollow core fiber was still found to have excessive silica background, the double clad fiber allows efficient signal collection via the multi-mode inner cladding. A micro filtering mechanism has been designed, which can be integrated into the tip of the optical fiber SERS probe, providing filtering to suppress silica Raman background and thus avoiding the need for bulky optics. The design also assists in the efficient collection of SERS signal from the sample by rejecting Rayleigh scattered light from the sample. Optical fiber cleaving using ultra-short laser pulses was tested for improved control of the fiber tip geometry. With this miniaturized and integrated filtering mechanism, it is expected that the developed probe will promote the use of SERS for minimally invasive biomedical monitoring and sensing applications in future. The probe could potentially be placed inside a small gauge hypodermic needle and would be compatible with handheld portable spectrometers.

  9. Investigation of the biofuel flue and producer gases cleaning efficiency using ESP

    NASA Astrophysics Data System (ADS)

    Poškas, Robertas; Sirvydas, Arūnas; Poškas, Povilas; Striūgas, Nerijus; Pedišius, Nerijus; Valinčius, Vitas

    2017-11-01

    The use of biofuel has been increasing in Europe over the last years, and the reason for that is acceptable cost and the least negative impact on the environment. However, NOx and emissions of fine particulates are important, and biofuel is still a disadvantage compared to oil and natural gas fired systems. Usually, flue gas is filtered in multicyclones or fibre filters before discharge into the atmosphere. Yet, in the case of fine particulates, the filters of such type do not show high effectiveness, thus electrostatic precipitators are used. In this comparative study on biofuel (wood pellets), the collection efficiency of solid particles from a class 3 boiler (50 kW) and from a gasification unit (100 kW) was investigated. Although releases of solid particles from modern boilers are low, a combination of such a boiler with an electrostatic precipitator may reduce the releases of particles to the minimum, and the collection efficiency of the electrostatic precipitator obtained during the investigation was 98-99%. There is a big difference in particle concentrations comparing the systems with flue gas and producer gas. As the working conditions in the test section with producer gas were harder, it led to lower efficiency of the electrostatic precipitator ( 75%).

  10. Computationally efficient video restoration for Nyquist sampled imaging sensors combining an affine-motion-based temporal Kalman filter and adaptive Wiener filter.

    PubMed

    Rucci, Michael; Hardie, Russell C; Barnard, Kenneth J

    2014-05-01

    In this paper, we present a computationally efficient video restoration algorithm to address both blur and noise for a Nyquist sampled imaging system. The proposed method utilizes a temporal Kalman filter followed by a correlation-model based spatial adaptive Wiener filter (AWF). The Kalman filter employs an affine background motion model and novel process-noise variance estimate. We also propose and demonstrate a new multidelay temporal Kalman filter designed to more robustly treat local motion. The AWF is a spatial operation that performs deconvolution and adapts to the spatially varying residual noise left in the Kalman filter stage. In image areas where the temporal Kalman filter is able to provide significant noise reduction, the AWF can be aggressive in its deconvolution. In other areas, where less noise reduction is achieved with the Kalman filter, the AWF balances the deconvolution with spatial noise reduction. In this way, the Kalman filter and AWF work together effectively, but without the computational burden of full joint spatiotemporal processing. We also propose a novel hybrid system that combines a temporal Kalman filter and BM3D processing. To illustrate the efficacy of the proposed methods, we test the algorithms on both simulated imagery and video collected with a visible camera.

  11. Experimental studies on particle impaction and bounce: effects of substrate design and material

    NASA Astrophysics Data System (ADS)

    Chang, Mingchih; Kim, Seongheon; Sioutas, Constantinos

    This paper presents an experimental investigation of the effects of impaction substrate designs and material in reducing particle bounce and reentrainment. Particle collection without coating by using combinations of different impaction substrate designs and surface materials was conducted using a personal particle sampler (PPS) developed by the University of Southern California. The PPS operates at flow rate of 4 l min -1 with a 50% cutpoint of approximately 0.9 μm in aerodynamic diameter. The laboratory results showed that the PPS collection efficiency for particles larger than 50% cutpoint is strikingly low (e.g., less than 50%) when an uncoated open cavity made of aluminum was used as an impaction substrate. The collection efficiency gradually increased when Teflon tape, Nuclepore, and glass fiber filters were used as impaction surfaces, respectively. Conical or partially enclosed cavity substrate designs increased collection efficiency of particles of 9 μm up to 80-90%. A conical cavity with glass fiber filter used as impaction surface was identified as the optimum configuration, resulting in a collection efficiency of 92% at Stokes numbers as high as 15.4 (corresponding to 9 μm in aerodynamic diameter). Particle losses were low (less than 10%) and relatively independent of particle size in any design with glass fiber filter. Losses seemed to increase slightly with particle size in all other configurations. Finally, outdoor PM 1 concentrations obtained with the PPS (in its optimum configuration) and a modified micro-orifice uniform deposit impactor (MOUDI) with coated impaction stages were in excellent agreement. The mean ratio of the PPS-to-MOUDI concentration was 1.13(±0.17) with a correlation coefficient R2=0.95. Results from this investigation can be readily applied to design particle bounce-free impaction substrates without the use of coating. This is a very important feature of impactors, especially when chemical analysis of the collected particulate matter is desirable.

  12. Optical modeling of an ultrathin scanning fiber endoscope, a preliminary study of confocal versus non-confocal detection.

    PubMed

    Barhoum, Erek; Johnston, Richard; Seibel, Eric

    2005-09-19

    An optical model of an ultrathin scanning fiber endoscope was constructed using a non-sequential ray tracing program and used to study the relationship between fiber deflection and collection efficiency from tissue. The problem of low collection efficiency of confocal detection through the scanned single-mode optical fiber was compared to non-confocal cladding detection. Collection efficiency is 40x greater in the non-confocal versus the confocal geometry due to the majority of rays incident on the core being outside the numerical aperture. Across scan angles of 0 to 30o, collection efficiency decreases from 14.4% to 6.3% for the non-confocal design compared to 0.34% to 0.10% for the confocal design. Non-confocality provides higher and more uniform collection efficiencies at larger scan angles while sacrificing the confocal spatial filter.

  13. Advanced particulate matter control apparatus and methods

    DOEpatents

    Miller, Stanley J [Grand Forks, ND; Zhuang, Ye [Grand Forks, ND; Almlie, Jay C [East Grand Forks, MN

    2012-01-10

    Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

  14. Field evaluation of personal sampling methods for multiple bioaerosols.

    PubMed

    Wang, Chi-Hsun; Chen, Bean T; Han, Bor-Cheng; Liu, Andrew Chi-Yeu; Hung, Po-Chen; Chen, Chih-Yong; Chao, Hsing Jasmine

    2015-01-01

    Ambient bioaerosols are ubiquitous in the daily environment and can affect health in various ways. However, few studies have been conducted to comprehensively evaluate personal bioaerosol exposure in occupational and indoor environments because of the complex composition of bioaerosols and the lack of standardized sampling/analysis methods. We conducted a study to determine the most efficient collection/analysis method for the personal exposure assessment of multiple bioaerosols. The sampling efficiencies of three filters and four samplers were compared. According to our results, polycarbonate (PC) filters had the highest relative efficiency, particularly for bacteria. Side-by-side sampling was conducted to evaluate the three filter samplers (with PC filters) and the NIOSH Personal Bioaerosol Cyclone Sampler. According to the results, the Button Aerosol Sampler and the IOM Inhalable Dust Sampler had the highest relative efficiencies for fungi and bacteria, followed by the NIOSH sampler. Personal sampling was performed in a pig farm to assess occupational bioaerosol exposure and to evaluate the sampling/analysis methods. The Button and IOM samplers yielded a similar performance for personal bioaerosol sampling at the pig farm. However, the Button sampler is more likely to be clogged at high airborne dust concentrations because of its higher flow rate (4 L/min). Therefore, the IOM sampler is a more appropriate choice for performing personal sampling in environments with high dust levels. In summary, the Button and IOM samplers with PC filters are efficient sampling/analysis methods for the personal exposure assessment of multiple bioaerosols.

  15. Evaluation of a new simple collection device for sampling of microparticles in exhaled breath.

    PubMed

    Seferaj, Sabina; Ullah, Shahid; Tinglev, Åsa; Carlsson, Sten; Winberg, Jesper; Stambeck, Peter; Beck, Olof

    2018-03-12

    The microparticle fraction of exhaled breath is of interest for developing clinical biomarkers. Exhaled particles may contain non-volatile components from all parts of the airway system, formed during normal breathing. This study aimed to evaluate a new, simple sampling device, based on impaction, for collecting microparticles from exhaled breath. Performance of the new device was compared with that of the existing SensAbues membrane filter device. The analytical work used liquid chromatography-tandem mass spectrometry methods. The new device collected three subsamples and these were separately analysed from eight individuals. No difference was observed between the centre position (0.91 ng/sample) and the side positions (1.01 ng/sample) using major phosphatidylcholine (PC) 16:0/16:0 as the analyte. Exhaled breath was collected from eight patients on methadone maintenance treatment. The intra-individual variability in measured methadone concentration between the three collectors was 8.7%. In another experiment using patients on methadone maintenance treatment, the sampling efficiency was compared with an established filter device. Compared to the existing device, the efficiency of the new device was 121% greater for methadone and 1450% greater for DPPC. The data from lipid analysis also indicated that a larger fraction of the collected material was from the distal parts. Finally, a study using an optical particle counter indicated that the device preferentially collects the larger particle fraction. In conclusion, this study demonstrates the usefulness of the new device for collecting non-volatile components from exhaled breath. The performance of the device was superior to the filter device in several aspects.

  16. An Energy-Efficient Algorithm for Wearable Electrocardiogram Signal Processing in Ubiquitous Healthcare Applications

    PubMed Central

    Sodhro, Ali Hassan; Sodhro, Gul Hassan; Lohano, Sonia; Pirbhulal, Sandeep

    2018-01-01

    Rapid progress and emerging trends in miniaturized medical devices have enabled the un-obtrusive monitoring of physiological signals and daily activities of everyone’s life in a prominent and pervasive manner. Due to the power-constrained nature of conventional wearable sensor devices during ubiquitous sensing (US), energy-efficiency has become one of the highly demanding and debatable issues in healthcare. This paper develops a single chip-based wearable wireless electrocardiogram (ECG) monitoring system by adopting analog front end (AFE) chip model ADS1292R from Texas Instruments. The developed chip collects real-time ECG data with two adopted channels for continuous monitoring of human heart activity. Then, these two channels and the AFE are built into a right leg drive right leg drive (RLD) driver circuit with lead-off detection and medical graded test signal. Human ECG data was collected at 60 beats per minute (BPM) to 120 BPM with 60 Hz noise and considered throughout the experimental set-up. Moreover, notch filter (cutoff frequency 60 Hz), high-pass filter (cutoff frequency 0.67 Hz), and low-pass filter (cutoff frequency 100 Hz) with cut-off frequencies of 60 Hz, 0.67 Hz, and 100 Hz, respectively, were designed with bilinear transformation for rectifying the power-line noise and artifacts while extracting real-time ECG signals. Finally, a transmission power control-based energy-efficient (ETPC) algorithm is proposed, implemented on the hardware and then compared with the several conventional TPC methods. Experimental results reveal that our developed chip collects real-time ECG data efficiently, and the proposed ETPC algorithm achieves higher energy savings of 35.5% with a slightly larger packet loss ratio (PLR) as compared to conventional TPC (e.g., constant TPC, Gao’s, and Xiao’s methods). PMID:29558433

  17. An Energy-Efficient Algorithm for Wearable Electrocardiogram Signal Processing in Ubiquitous Healthcare Applications.

    PubMed

    Sodhro, Ali Hassan; Sangaiah, Arun Kumar; Sodhro, Gul Hassan; Lohano, Sonia; Pirbhulal, Sandeep

    2018-03-20

    Rapid progress and emerging trends in miniaturized medical devices have enabled the un-obtrusive monitoring of physiological signals and daily activities of everyone's life in a prominent and pervasive manner. Due to the power-constrained nature of conventional wearable sensor devices during ubiquitous sensing (US), energy-efficiency has become one of the highly demanding and debatable issues in healthcare. This paper develops a single chip-based wearable wireless electrocardiogram (ECG) monitoring system by adopting analog front end (AFE) chip model ADS1292R from Texas Instruments. The developed chip collects real-time ECG data with two adopted channels for continuous monitoring of human heart activity. Then, these two channels and the AFE are built into a right leg drive right leg drive (RLD) driver circuit with lead-off detection and medical graded test signal. Human ECG data was collected at 60 beats per minute (BPM) to 120 BPM with 60 Hz noise and considered throughout the experimental set-up. Moreover, notch filter (cutoff frequency 60 Hz), high-pass filter (cutoff frequency 0.67 Hz), and low-pass filter (cutoff frequency 100 Hz) with cut-off frequencies of 60 Hz, 0.67 Hz, and 100 Hz, respectively, were designed with bilinear transformation for rectifying the power-line noise and artifacts while extracting real-time ECG signals. Finally, a transmission power control-based energy-efficient (ETPC) algorithm is proposed, implemented on the hardware and then compared with the several conventional TPC methods. Experimental results reveal that our developed chip collects real-time ECG data efficiently, and the proposed ETPC algorithm achieves higher energy savings of 35.5% with a slightly larger packet loss ratio (PLR) as compared to conventional TPC (e.g., constant TPC, Gao's, and Xiao's methods).

  18. Determination of formaldehyde by HPLC as the DNPH derivative following high-volume air sampling onto bisulfite-coated cellulose filters

    NASA Astrophysics Data System (ADS)

    de Andrade, Jailson B.; Tanner, Roger L.

    A method is described for the specific collection of formaldehyde as hydroxymethanesulfonate on bisulfate-coated cellulose filters. Following extraction in aqueous acid and removal on unreacted bisulfite, the hydroxymethanesulfonate is decomposed by base, and HCHO is determined by DNPH (2,4-dinitrophenylhydrazine) derivatization and HPLC. Since the collection efficiency for formaldehyde is moderately high even when sampling ambient air at high-volume flow rates, a limit of detection of 0.2 ppbv is achieved with 30 min sampling times. Interference from acetaldehyde co-collected as 1-hydroxyethanesulfonate is <5% using this procedure. The technique shows promise for both short-term airborne sampling, and as a means of collecting mg-sized samples of HCHO on an inorganic matrix for carbon isotopic analyses.

  19. A comparison study of the start-up of a MnOx filter for catalytic oxidative removal of ammonium from groundwater and surface water.

    PubMed

    Cheng, Ya; Li, Ye; Huang, Tinglin; Sun, Yuankui; Shi, Xinxin; Shao, Yuezong

    2018-03-01

    As an efficient method for ammonium (NH 4 + ) removal, contact catalytic oxidation technology has drawn much attention recently, due to its good low temperature resistance and short start-up period. Two identical filters were employed to compare the process for ammonium removal during the start-up period for ammonium removal in groundwater (Filter-N) and surface water (Filter-S) treatment. Two types of source water (groundwater and surface water) were used as the feed waters for the filtration trials. Although the same initiating method was used, Filter-N exhibited much better ammonium removal performance than Filter-S. The differences in catalytic activity among these two filters were probed using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and compositional analysis. XRD results indicated that different manganese oxide species were formed in Filter-N and Filter-S. Furthermore, the Mn3p XPS spectra taken on the surface of the filter films revealed that the average manganese valence of the inactive manganese oxide film collected from Filter-S (FS-MnO x ) was higher than in the film collected from Filter-N (FN-MnO x ). Mn(IV) was identified as the predominant oxidation state in FS-MnO x and Mn(III) was identified as the predominant oxidation state in FN-MnO x . The results of compositional analyses suggested that polyaluminum ferric chloride (PAFC) used during the surface water treatment was an important factor in the mineralogy and reactivity of MnO x . This study provides the theoretical basis for promoting the wide application of the technology and has great practical significance. Copyright © 2017. Published by Elsevier B.V.

  20. Broadband Gerchberg-Saxton algorithm for freeform diffractive spectral filter design.

    PubMed

    Vorndran, Shelby; Russo, Juan M; Wu, Yuechen; Pelaez, Silvana Ayala; Kostuk, Raymond K

    2015-11-30

    A multi-wavelength expansion of the Gerchberg-Saxton (GS) algorithm is developed to design and optimize a surface relief Diffractive Optical Element (DOE). The DOE simultaneously diffracts distinct wavelength bands into separate target regions. A description of the algorithm is provided, and parameters that affect filter performance are examined. Performance is based on the spectral power collected within specified regions on a receiver plane. The modified GS algorithm is used to design spectrum splitting optics for CdSe and Si photovoltaic (PV) cells. The DOE has average optical efficiency of 87.5% over the spectral bands of interest (400-710 nm and 710-1100 nm). Simulated PV conversion efficiency is 37.7%, which is 29.3% higher than the efficiency of the better performing PV cell without spectrum splitting optics.

  1. Results from Evaluation of Proposed ASME AG-1 Section FI Metal Media Filters - 13063

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, John A.; Giffin, Paxton K.; Parsons, Michael S.

    High efficiency particulate air (HEPA) filtration technology is commonly used in Department of Energy (DOE) facilities that require control of radioactive particulate matter (PM) emissions due to treatment or management of radioactive materials. Although HEPA technology typically makes use of glass fiber media, metal and ceramic media filters are also capable of filtering efficiencies beyond the required 99.97%. Sintered metal fiber filters are good candidates for use in DOE facilities due to their resistance to corrosive environments and resilience at high temperature and elevated levels of relative humidity. Their strength can protect them from high differential pressure or pressure spikesmore » and allow for back pulse cleaning, extending filter lifetime. Use of these filters has the potential to reduce the cost of filtration in DOE facilities due to life cycle cost savings. ASME AG-1 section FI has not been approved due to a lack of protocols and performance criteria for qualifying section FI filters. The Institute for Clean Energy Technology (ICET) with the aid of the FI project team has developed a Section FI test stand and test plan capable of assisting in the qualification ASME AG-1 section FI filters. Testing done at ICET using the FI test stand evaluates resistance to rated air flow, test aerosol penetration and resistance to heated air of the section FI filters. Data collected during this testing consists of temperature, relative humidity, differential pressure, flow rate, upstream particle concentration, and downstream particle concentration. (authors)« less

  2. Application of air ions for bacterial de-colonization in air filters contaminated by aerosolized bacteria.

    PubMed

    Kim, Yang Seon; Yoon, Ki Young; Park, Jae Hong; Hwang, Jungho

    2011-01-15

    We aerosolized the Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis) bacteria and collected them on membrane filters. Then we generated air ions by applying a high voltage to a carbon fiber tip and applied them to the contaminated filters. The antibacterial efficiency was not significantly affected by the bacteria being Gram-positive or Gram-negative, however, negative ions showed a lower antibacterial efficiency than positive ions to both E. coli and S. epidermidis, even though the concentration of negative air ions was much higher than that of positive air ions. With a field emission scanning electron microscope (FE-SEM) images and fluorescence microscopy images using a LIVE/DEAD BacLight Bacterial Viability Kit, electrostatic disruption of the bacteria was found to be the dominant antibacterial effect. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Mass absorption efficiency of elemental carbon over Van Vihar National Park, Bhopal, India: Temporal variability and implications to estimates of black carbon radiative forcing

    NASA Astrophysics Data System (ADS)

    Samiksha, S.; Raman, R. S.; Singh, A.

    2016-12-01

    It is now well recognized that black carbon (a component of aerosols that is similar but not identical to elemental carbon) is an important contributor to global warming, second only to CO2.However, the most popular methods for estimation of black carbon rely on accurate estimates of its mass absorption efficiency (MAE) to convert optical attenuation measurements to black carbon concentrations. Often a constant manufacturer specified MAE is used for this purposes. Recent literature has unequivocally established that MAE shows large spatio-temporal heterogeneities. This is so because MAE depends on emission sources, chemical composition, and mixing state of aerosols. In this study, ambient PM2.5 samples were collected over an ecologically sensitive zone (Van Vihar National Park) in Bhopal, Central India for two years (01 January, 2012 to 31 December, 2013). Samples were collected on Teflon, Nylon, and Tissue quartz filter substrates. Punches of quartz fibre filter were analysed for organic and elemental carbon (OC/EC) by a thermal-optical-transmittance/reflectance (TOT-TOR) analyser operating with a 632 nm laser diode. Teflon filters were also used to interdependently measure PM2.5 attenuation (at 370 nm and 800 nm) by transmissometry. Site-specific mass absorption efficiency (MAE) for elemental carbon over the study site will be derived using a combination of measurements from the TOT/TOR analyser and transmissometer. An assessment of site-specific MAE values, its temporal variability and implications to black carbon radiative forcing will be discussed. It is now well recognized that black carbon (a component of aerosols that is similar but not identical to elemental carbon) is an important contributor to global warming, second only to CO2. However, the most popular methods for estimation of black carbon rely on accurate estimates of its mass absorption efficiency (MAE) to convert optical attenuation measurements to black carbon concentrations. Often a constant manufacturer specified MAE is used for this purposes. Recent literature has unequivocally established that MAE shows large spatio-temporal heterogeneities. This is so because MAE depends on emission sources, chemical composition, and mixing state of aerosols. In this study, ambient PM2.5 samples were collected over an ecologically sensitive zone (Van Vihar National Park) in Bhopal, Central India for two years (01 January, 2012 to 31 December, 2013). Samples were collected on Teflon, Nylon, and Tissue quartz filter substrates. Punches of quartz fibre filter were analysed for organic and elemental carbon (OC/EC) by a thermal-optical-transmittance/reflectance (TOT-TOR) analyser operating with a 632 nm laser diode. Teflon filters were also used to interdependently measure PM2.5 attenuation (at 370 nm and 800 nm) by transmissometry. Site-specific mass absorption efficiency (MAE) for elemental carbon over the study site will be derived using a combination of measurements from the TOT/TOR analyser and transmissometer. An assessment of site-specific MAE values, its temporal variability and implications to black carbon radiative forcing will be discussed.

  4. Evaluation of air samplers and filter materials for collection and recovery of airborne norovirus.

    PubMed

    Uhrbrand, K; Koponen, I K; Schultz, A C; Madsen, A M

    2018-04-01

    The aim of this study was to identify the most efficient sampling method for quantitative PCR-based detection of airborne human norovirus (NoV). A comparative experiment was conducted in an aerosol chamber using aerosolized murine norovirus (MNV) as a surrogate for NoV. Sampling was performed using a nylon (NY) filter in conjunction with four kinds of personal samplers: Gesamtstaubprobenahme sampler (GSP), Triplex-cyclone sampler (TC), 3-piece closed-faced Millipore cassette (3P) and a 2-stage NIOSH cyclone sampler (NIO). In addition, sampling was performed using the GSP sampler with four different filter types: NY, polycarbonate (PC), polytetrafluoroethylene (PTFE) and gelatine (GEL). The sampling efficiency of MNV was significantly influenced by both sampler and filter type. The GSP sampler was found to give significantly (P < 0·05) higher recovery of aerosolized MNV than 3P and NIO. A higher recovery was also found for GSP compared with TC, albeit not significantly. Finally, recovery of aerosolized MNV was significantly (P < 0·05) higher using NY than PC, PTFE and GEL filters. The GSP sampler combined with a nylon filter was found to be the best method for personal filter-based sampling of airborne NoV. The identification of a suitable NoV air sampler is an important step towards studying the association between exposure to airborne NoV and infection. © 2017 The Society for Applied Microbiology.

  5. Caught in a net: Retention efficiency of microplankton ≥ 10 and < 50 μm collected on mesh netting

    NASA Astrophysics Data System (ADS)

    Molina, Vanessa; Robbins-Wamsley, Stephanie H.; Riley, Scott C.; First, Matthew R.; Drake, Lisa A.

    2018-03-01

    Living organisms ≥ 10 μm and < 50 μm in ballast water discharged from ships are typically collected by filtering samples through a monofilament mesh net with pore openings sized to retain organisms ≥ 10 μm. This (or any) filtering method does not result in perfect size fractionation, and it can induce stress, mortality, and loss of organisms that, in turn, may underestimate the concentration of organisms within samples. To address this loss, the retention efficiency (RE) was determined for six filtration approaches using laboratory cultures of microalgae and ambient marine organisms. The approaches employed a membrane filter or mesh nettings of different compositions (nylon, stainless steel, polyester, and polycarbonate), nominal pore sizes (5, 7, and 10 μm), and filtering sequences (e.g., pre-filtering water through a coarse filter). Additionally, in trials with polycarbonate track etched (PCTE) membrane filters, water was amended with particulate material to increase turbidity. Organisms ≥ 10 μm were counted in the material retained on the filter (the filtrand), the material passing through the filter (the filtrate), and the whole water (i.e., unfiltered water). In addition, variable fluorescence fluorometry was used to gauge the relative photochemical yield of phytoplankton-a proximal measurement of the physiological status of phytoplankton-in the size fractions. Further, the mesh types and filters were examined using scanning electron microscopy, which showed irregular openings. The RE of cultured organisms-calculated as the concentration in the filtrand relative to combined concentration in the filtrand and the filtrate-was high for all filtration approaches when laboratory cultures were assessed (> 93%), but RE ranged from 66 to 98% when mixed assemblages of ambient organisms were evaluated. Although PCTE membrane filters had the highest RE (98%), it was not significantly higher than the efficiencies of the 7-μm polyester, Double 7-μm polyester, and Dual 35-μm and 7-μm polyester approaches, but it was significantly higher than the 5-μm nylon and 5-μm stainless steel techniques. This result suggests that PCTE membrane filters perform comparably to 7-μm polyester meshes, so that any of these approaches could be used for concentrating organisms. However, the potential for handling loss is inherently lower for one rinsing step rather than two. Therefore, it is recommended that, either PCTE filters or 7-μm polyester mesh could be used to concentrate organisms ≥ 10 μm and < 50 μm. In trials conducted using a 10-μm PCTE filters with water amended to increase the particulate concentration, no significant difference in RE of ambient organisms was found compared to unamended water. Finally, photochemical yield did not vary significantly between organisms in the filtrand or filtrate, regardless of the filtration approach used.

  6. Particle Collection Efficiency of a Lens-Liquid Filtration System

    NASA Astrophysics Data System (ADS)

    Wong, Ross Y. M.; Ng, Moses L. F.; Chao, Christopher Y. H.; Li, Z. G.

    2011-09-01

    Clinical and epidemiological studies have shown that indoor air quality has substantial impact on the health of building occupants [1]. Possible sources of indoor air contamination include hazardous gases as well as particulate matters (PMs) [2]. Experimental studies show that the size distribution of PMs in indoor air ranges from tens of nanometers to a few hundreds of micrometers [3]. Vacuum cleaners can be used as a major tool to collect PMs from floor/carpets, which are the main sources of indoor PMs. However, the particle collection efficiency of typical cyclonic filters in the vacuums drops significantly for particles of diameter below 10 μm. In this work, we propose a lens-liquid filtration system (see Figure 1), where the flow channel is formed by a liquid free surface and a planar plate with fin/lens structures. Computational fluid dynamics simulations are performed by using FLUENT to optimize the structure of the proposed system toward high particle collection efficiency and satisfactory pressure drop. Numerical simulations show that the system can collect 250 nm diameter particles with collection efficiency of 50%.

  7. [Respiratory protection provided by N95 filtering facepiece respirators and disposable medicine masks against airborne bacteria in different working environments].

    PubMed

    Lu, W; Zhu, X C; Zhang, X Y; Chen, Y T; Chen, W H

    2016-09-20

    Objective: To determine the relative protection provided by N95 filtering facepiece respirators (FFR) and disposable medicine masks (DMM) against airborne bacteria in different working environments. Methods: The field study was performed with 12 subjects wearing an N95 filtering facepiece respirator and a disposable medicine mask for 1h, respectively. Airborne microorganisms and bacteria samples from both the external (Ce) and the inner (Ci) surface of N95 FFR and DMM are collected. The Ce: Ci ratio was used to calculate the bacterial filtering proportion. Bacterial filtering efficiency (BFE) was measured using the JWL-2A Sampler. Results: The bacterial filtration efficiency of N95 FFR and DMM were 99.93% and 91.53%, respectively. There was significant difference between the two materials ( P <0.05). In summer, airborne bacterial concentration was higher than that in winter. In the same season, airborne bacterial concentration in hospital environment is higher than that in campus. The higher the airborne bacterial concentration, the greater bacterial contaminated on the external surface of the used masks. To all masks used in different working environment, bacterial contamination on the external surface was much greater than the inner surface ( P <0.01). Compared to N95 FFR, DMM had slighter bacterial contamination on the external surface and greater bacterial contamination on the inner surface. However, this difference was not significant ( P >0.05). The bacterial filtering proportion of N95 FFR is higher than DMM. These differences were significant in samples tested in summer ( P <0.05) , but were not significant in samples tested in winter ( P >0.05). Conclusion: Bacterial filtering efficiency of N95 respirator is superior to medicine mask, and this advantage become more obvious in high airborne bacterial concentration levels.

  8. Occurrence and fate of benzotriazoles UV filters in a typical residential wastewater treatment plant in Harbin, China.

    PubMed

    Zhao, Xue; Zhang, Zi-Feng; Xu, Lei; Liu, Li-Yan; Song, Wei-Wei; Zhu, Fu-Jie; Li, Yi-Fan; Ma, Wan-Li

    2017-08-01

    Benzotriazoles (BTs) UV filters are widely used as ultraviolet absorbents for our daily products, which received increasing attention in the past decades. Residential wastewater treatment plant (WWTP) is both an important sink for wastewater and a key pollution source for receiving water for these chemicals. In this study, pretreatment and gas chromatography-tandem mass spectrometry analysis method were developed to determine the occurrence and fate of 9 BTs UV filters in wastewater and sludge from the WWTP with anaerobic-oxic treatment process (A/O) and biological aerated filter treatment process (BAF). Totally, 81 wastewater samples and 11 sludge samples were collected in four seasons. In wastewater, UV-326 and UV-329 were frequently detected, while the highest mean concentrations were detected for UV-234 and UV-329. The concentrations were in the range of 85% in A/O process and 60-77% in BAF process except for UV-350, which was more difficult to remove with lower removal efficiencies of 33.3% for both A/O and BAF. All the target chemicals except for UV-320 were detected in sludge samples with the mean concentration ranging from 0.90 ng/g to 303.39 ng/g. There was no significant difference with concentrations and removal efficiency among different seasons. Higher detection frequency and concentration of BTs UV filters in downstream of the receiving water system indicated the contribution of effluent of the WWTP. Compared with other rivers, the lower concentrations in surface water in the Songhua River indicated light pollution status with of BTs UV filters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Vacuum collection of Douglas-fir pollen for supplemental mass pollinations.

    Treesearch

    D.L. Copes; N.C. Vance; W.K. Randall; A. Jasumback; R. Hallman

    1991-01-01

    An Aget Cyclone dust collector and peripheral equipment were fieldtested for use in vacuuming large quantities of pollen from 30- to 40-foot trees in a Douglas-fir seed orchard. The Cyclone machine (Model 20SN31P) operated without a vacuum bag or filter device, so no blockage or reduction in vacuum efficiency occurred when large volumes of pollen were collected....

  10. Experimental comparison of point-of-use filters for drinking water ultrafiltration.

    PubMed

    Totaro, M; Valentini, P; Casini, B; Miccoli, M; Costa, A L; Baggiani, A

    2017-06-01

    Waterborne pathogens such as Pseudomonas spp. and Legionella spp. may persist in hospital water networks despite chemical disinfection. Point-of-use filtration represents a physical control measure that can be applied in high-risk areas to contain the exposure to such pathogens. New technologies have enabled an extension of filters' lifetimes and have made available faucet hollow-fibre filters for water ultrafiltration. To compare point-of-use filters applied to cold water within their period of validity. Faucet hollow-fibre filters (filter A), shower hollow-fibre filters (filter B) and faucet membrane filters (filter C) were contaminated in two different sets of tests with standard bacterial strains (Pseudomonas aeruginosa DSM 939 and Brevundimonas diminuta ATCC 19146) and installed at points-of-use. Every day, from each faucet, 100 L of water was flushed. Before and after flushing, 250 mL of water was collected and analysed for microbiology. There was a high capacity of microbial retention from filter C; filter B released only low Brevundimonas spp. counts; filter A showed poor retention of both micro-organisms. Hollow-fibre filters did not show good micro-organism retention. All point-of-use filters require an appropriate maintenance of structural parameters to ensure their efficiency. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  11. International Space Station Bacteria Filter Element Service Life Evaluation

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    2005-01-01

    The International Space Station (ISS) uses high-efficiency particulate air filters to remove particulate matter from the cabin atmosphere. Known as bacteria filter elements (BFEs), there are 13 elements deployed on board the ISS's U.S. segment in the flight 4R assembly level. The preflight service life prediction of 1 yr for the BFEs is based upon engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS program resources. Testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are provided.

  12. Multisource least-squares reverse-time migration with structure-oriented filtering

    NASA Astrophysics Data System (ADS)

    Fan, Jing-Wen; Li, Zhen-Chun; Zhang, Kai; Zhang, Min; Liu, Xue-Tong

    2016-09-01

    The technology of simultaneous-source acquisition of seismic data excited by several sources can significantly improve the data collection efficiency. However, direct imaging of simultaneous-source data or blended data may introduce crosstalk noise and affect the imaging quality. To address this problem, we introduce a structure-oriented filtering operator as preconditioner into the multisource least-squares reverse-time migration (LSRTM). The structure-oriented filtering operator is a nonstationary filter along structural trends that suppresses crosstalk noise while maintaining structural information. The proposed method uses the conjugate-gradient method to minimize the mismatch between predicted and observed data, while effectively attenuating the interference noise caused by exciting several sources simultaneously. Numerical experiments using synthetic data suggest that the proposed method can suppress the crosstalk noise and produce highly accurate images.

  13. Impact of the air filtration on indoor particle concentration by using combination filters in offices building

    NASA Astrophysics Data System (ADS)

    Kabrein, H.; Hariri, A.; Leman, A. M.; Noraini, N. M. R.; Yusof, M. Z. M.; Afandi, A.

    2017-09-01

    Heating ventilation and air conditioning system (HVAC) is very important for offices building and human health. The combining filter method was used to reduce the air pollution indoor such as that particulate matter and gases pollution that affected in health and productivity. Using particle filters in industrial HVAC systems (factories and manufacturing process) does not enough to remove all the indoor pollution. The main objective of this study is to investigate the impact of combination filters for particle and gases removal efficiency. The combining method is by using two filters (particulate filter pre-filter and carbon filter) to reduce particle matter and gases respectively. The purpose of this study is to use minimum efficiency reporting value (MERV filter) rating 13 and activated carbon filter (ACF) to remove indoor air pollution and controlling the air change rate to enhance the air quality and energy saving. It was concluded that the combination filter showed good removal efficiency of particle up to 90.76% and 89.25% for PM10 and PM2.5 respectively. The pressure drop across the filters was small compared with the high-efficiency filters. The filtration efficiency of combination filters after three months’ was better than efficiency by the new MERV filter alone.

  14. The Least Mean Squares Adaptive FIR Filter for Narrow-Band RFI Suppression in Radio Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Głas, Dariusz

    2017-06-01

    Radio emission from the extensive air showers (EASs), initiated by ultrahigh-energy cosmic rays, was theoretically suggested over 50 years ago. However, due to technical limitations, successful collection of sufficient statistics can take several years. Nowadays, this detection technique is used in many experiments consisting in studying EAS. One of them is the Auger Engineering Radio Array (AERA), located within the Pierre Auger Observatory. AERA focuses on the radio emission, generated by the electromagnetic part of the shower, mainly in geomagnetic and charge excess processes. The frequency band observed by AERA radio stations is 30-80 MHz. Thus, the frequency range is contaminated by human-made and narrow-band radio frequency interferences (RFIs). Suppression of contaminations is very important to lower the rate of spurious triggers. There are two kinds of digital filters used in AERA radio stations to suppress these contaminations: the fast Fourier transform median filter and four narrow-band IIR-notch filters. Both filters have worked successfully in the field for many years. An adaptive filter based on a least mean squares (LMS) algorithm is a relatively simple finite impulse response (FIR) filter, which can be an alternative for currently used filters. Simulations in MATLAB are very promising and show that the LMS filter can be very efficient in suppressing RFI and only slightly distorts radio signals. The LMS algorithm was implemented into a Cyclone V field programmable gate array for testing the stability, RFI suppression efficiency, and adaptation time to new conditions. First results show that the FIR filter based on the LMS algorithm can be successfully implemented and used in real AERA radio stations.

  15. The long-term performance of electrically charged filters in a ventilation system.

    PubMed

    Raynor, Peter C; Chae, Soo Jae

    2004-07-01

    The efficiency and pressure drop of filters made from polyolefin fibers carrying electrical charges were compared with efficiency and pressure drop for filters made from uncharged glass fibers to determine if the efficiency of the charged filters changed with use. Thirty glass fiber filters and 30 polyolefin fiber filters were placed in different, but nearly identical, air-handling units that supplied outside air to a large building. Using two kinds of real-time aerosol counting and sizing instruments, the efficiency of both sets of filters was measured repeatedly for more than 19 weeks while the air-handling units operated almost continuously. Pressure drop was recorded by the ventilation system's computer control. Measurements showed that the efficiency of the glass fiber filters remained almost constant with time. However, the charged polyolefin fiber filters exhibited large efficiency reductions with time before the efficiency began to increase again toward the end of the test. For particles 0.6 microm in diameter, the efficiency of the polyolefin fiber filters declined from 85% to 45% after 11 weeks before recovering to 65% at the end of the test. The pressure drops of the glass fiber filters increased by about 0.40 in. H2O, whereas the pressure drop of the polyolefin fiber filters increased by only 0.28 in. H2O. The results indicate that dust loading reduces the effectiveness of electrical charges on filter fibers. Copyright 2004 JOEH, LLC

  16. The Future of Aircraft Paint Removal Methods

    DTIC Science & Technology

    1989-09-01

    barium, cadmium, chromium, lead, mercury , selenium, and silver. We must develop small efficient blast furnaces to burn the media thus reducing the...permit the safe collection, consolidation, and detoxication of stripping waste. This may be as simple as a series of filters to clean the air from

  17. 42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...

  18. 42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...

  19. 42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...

  20. 42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...

  1. 42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...

  2. Directly-deposited blocking filters for high-performance silicon x-ray detectors

    NASA Astrophysics Data System (ADS)

    Bautz, M.; Kissel, S.; Masterson, R.; Ryu, K.; Suntharalingam, V.

    2016-07-01

    Silicon X-ray detectors often require blocking filters to mitigate noise and out-of-band signal from UV and visible backgrounds. Such filters must be thin to minimize X-ray absorption, so direct deposition of filter material on the detector entrance surface is an attractive approach to fabrication of robust filters. On the other hand, the soft (E < 1 keV) X-ray spectral resolution of the detector is sensitive to the charge collection efficiency in the immediate vicinity of its entrance surface, so it is important that any filter layer is deposited without disturbing the electric field distribution there. We have successfully deposited aluminum blocking filters, ranging in thickness from 70 to 220nm, on back-illuminated CCD X-ray detectors passivated by means of molecular beam epitaxy. Here we report measurements showing that directly deposited filters have little or no effect on soft X-ray spectral resolution. We also find that in applications requiring very large optical density (> OD 6) care must be taken to prevent light from entering the sides and mounting surfaces of the detector. Our methods have been used to deposit filters on the detectors of the REXIS instrument scheduled to fly on OSIRIS-ReX later this year.

  3. International Space Station Bacteria Filter Element Post-Flight Testing and Service Life Prediction

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; von Jouanne, R. G.; Turner, E. H.

    2003-01-01

    The International Space Station uses high efficiency particulate air (HEPA) filters to remove particulate matter from the cabin atmosphere. Known as Bacteria Filter Elements (BFEs), there are 13 elements deployed on board the ISS's U.S. Segment. The pre-flight service life prediction of 1 year for the BFEs is based upon performance engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS Program resources. Thus testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are discussed. Recommendations for realizing significant savings to the ISS Program are presented.

  4. Measuring partial fluorescence yield using filtered detectors.

    PubMed

    Boyko, T D; Green, R J; Moewes, A; Regier, T Z

    2014-07-01

    Typically, X-ray absorption near-edge structure measurements aim to probe the linear attenuation coefficient. These measurements are often carried out using partial fluorescence yield techniques that rely on detectors having photon energy discrimination improving the sensitivity and the signal-to-background ratio of the measured spectra. However, measuring the partial fluorescence yield in the soft X-ray regime with reasonable efficiency requires solid-state detectors, which have limitations due to the inherent dead-time while measuring. Alternatively, many of the available detectors that are not energy dispersive do not suffer from photon count rate limitations. A filter placed in front of one of these detectors will make the energy-dependent efficiency non-linear, thereby changing the responsivity of the detector. It is shown that using an array of filtered X-ray detectors is a viable method for measuring soft X-ray partial fluorescence yield spectra without dead-time. The feasibility of this technique is further demonstrated using α-Fe2O3 as an example and it is shown that this detector technology could vastly improve the photon collection efficiency at synchrotrons and that these detectors will allow experiments to be completed with a much lower photon flux reducing X-ray-induced damage.

  5. Information-efficient spectral imaging sensor

    DOEpatents

    Sweatt, William C.; Gentry, Stephen M.; Boye, Clinton A.; Grotbeck, Carter L.; Stallard, Brian R.; Descour, Michael R.

    2003-01-01

    A programmable optical filter for use in multispectral and hyperspectral imaging. The filter splits the light collected by an optical telescope into two channels for each of the pixels in a row in a scanned image, one channel to handle the positive elements of a spectral basis filter and one for the negative elements of the spectral basis filter. Each channel for each pixel disperses its light into n spectral bins, with the light in each bin being attenuated in accordance with the value of the associated positive or negative element of the spectral basis vector. The spectral basis vector is constructed so that its positive elements emphasize the presence of a target and its negative elements emphasize the presence of the constituents of the background of the imaged scene. The attenuated light in the channels is re-imaged onto separate detectors for each pixel and then the signals from the detectors are combined to give an indication of the presence or not of the target in each pixel of the scanned scene. This system provides for a very efficient optical determination of the presence of the target, as opposed to the very data intensive data manipulations that are required in conventional hyperspectral imaging systems.

  6. Evaluation of Trapper-Collected Nobuto Filter-Paper Blood Samples for Distemper and Parvovirus Antibody Detection in Coyotes (Canis latrans) and Raccoons (Procyon lotor).

    PubMed

    Kamps, Amanda J; Dubay, Shelli A; Langenberg, Julie; Maes, Roger K

    2015-07-01

    Blood samples are often collected from free-ranging wildlife for antibody detection. However, filter-paper (FP) strips are more cost efficient and easy to collect and store. We evaluated trapper-collected FP strips and body-cavity blood for canine distemper (CDV) and parvovirus (CPV-2) antibody detection in raccoons (Procyon lotor) and coyotes (Canis latrans). From 2008 to 2010, licensed trappers near Madison and Milwaukee, Wisconsin, US collected paired samples from harvested animals. Canine distemper antibodies were detected using virus neutralization and parvovirus antibodies were detected using hemagglutination inhibition. Titers ≥ 1:32 for CDV and ≥ 1:25 for CPV-2 were considered evidence of exposure. Using Cohen's kappa test of agreement, FP strip titers agreed with sera for CDV in coyotes (n = 28, K = 0.772) and raccoons (n = 29, K = 0.858) and for CPV-2 in coyotes (n = 40, K = 0.775) and raccoons (n = 70, K = 0.646). However, raccoons determined to be exposed to CPV-2 from sera were unexposed by FP strips in 35% of the samples. Titer results may be affected by quality and volume of blood samples, interval between collection and processing, small sample sizes, and diagnostic testing procedures. Filter-paper strips can be useful for detecting CDV and CPV-2 exposure in coyotes and raccoons with correct field sample collection and appropriate diagnostic testing procedures.

  7. Antimicrobial nanoparticle-coated electrostatic air filter with high filtration efficiency and low pressure drop.

    PubMed

    Sim, Kyoung Mi; Park, Hyun-Seol; Bae, Gwi-Nam; Jung, Jae Hee

    2015-11-15

    In this study, we demonstrated an antimicrobial nanoparticle-coated electrostatic (ES) air filter. Antimicrobial natural-product Sophora flavescens nanoparticles were produced using an aerosol process, and were continuously deposited onto the surface of air filter media. For the electrostatic activation of the filter medium, a corona discharge electrification system was used before and after antimicrobial treatment of the filter. In the antimicrobial treatment process, the deposition efficiency of S. flavescens nanoparticles on the ES filter was ~12% higher than that on the pristine (Non-ES) filter. In the evaluation of filtration performance using test particles (a nanosized KCl aerosol and submicron-sized Staphylococcus epidermidis bioaerosol), the ES filter showed better filtration efficiency than the Non-ES filter. However, antimicrobial treatment with S. flavescens nanoparticles affected the filtration efficiency of the filter differently depending on the size of the test particles. While the filtration efficiency of the KCl nanoparticles was reduced on the ES filter after the antimicrobial treatment, the filtration efficiency was improved after the recharging process. In summary, we prepared an antimicrobial ES air filter with >99% antimicrobial activity, ~92.5% filtration efficiency (for a 300-nm KCl aerosol), and a ~0.8 mmAq pressure drop (at 13 cm/s). This study provides valuable information for the development of a hybrid air purification system that can serve various functions and be used in an indoor environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Study of the efficiency of some water treatment unit that present in houses in Erbil city-Iraq

    NASA Astrophysics Data System (ADS)

    Toma, Janan. Jabbar.; Hanna, Aveen. Matti.

    2017-09-01

    Many people in Erbil city started more than two decade to put special treatment units in their houses to purified water to become safer for drinking uses. The aim of this study was determine the efficiency of six kind water treatment units which include (two replicate of Crystal Water Purifier, So-Safe Water Filter, R O Water Purifier, Kontec Water Purified and Al-Kawther Purified Water). Water samples were collected in two sites one before and other after treatment unit. Each sample was collect with three replication during May to October-2016. Analyzed for Major cations concentration (calcium, magnesium, sodium and potassium), anions concentration (nitrate and chloride) and hydrogen ion concentration (pH), electrical conductivity (EC), total dissolved solids (TDS), alkalinity and total hardness by using standard methods. The water quality index values for all raw water sample befor and after treatment was good and excellent respectively for drinking purposes. Efficiency of So-Safe Water Filter was 66.32% it means was more efficiency than others special water treatment units while in RO Water Purifier was 27.14%, means less efficiency than other water purifier water under this study. Values for major cations, anions and others chemicals characteristics in the water samples after treatment became lower concentrations than befor treatment, likely an indication that these were removed by treatment. According to guideline of world health organization all of variables except total hardness befor treatment are safe and suitable for drinking purposes.

  9. Successful Training of Filtering Mechanisms in Multiple Object Tracking Does Not Transfer to Filtering Mechanisms in a Visual Working Memory Task: Behavioral and Electrophysiological Evidence

    ERIC Educational Resources Information Center

    Arend, Anna M.; Zimmer, Hubert D.

    2012-01-01

    In this training study, we aimed to selectively train participants' filtering mechanisms to enhance visual working memory (WM) efficiency. The highly restricted nature of visual WM capacity renders efficient filtering mechanisms crucial for its successful functioning. Filtering efficiency in visual WM can be measured via the lateralized change…

  10. Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation.

    PubMed

    Yamashita, Takuma; Takahashi, Yuki; Nishikawa, Makiya; Takakura, Yoshinobu

    2016-01-01

    Exosomes, which are expected to be delivery systems for biomolecules such as nucleic acids, are collected by several methods. However, the effect of exosome isolation methods on the characteristics of exosomes as drug carriers, such as recovery efficiency after sterile filtration and pharmacokinetics, has not been investigated despite the importance of these characteristics for the development of exosome-based delivery systems. In the present study, exosomes collected from murine melanoma B16-BL6 cells by several methods were compared with respect to dispersibility, recovery rate after filtering, and clearance from the blood circulation in mice. The exosomes were collected by three ultracentrifugation-based methods: simple ultracentrifugation/pelleting (pelleting method), ultracentrifugation with an iodixanol cushion (cushion method), and ultracentrifugation on an iodixanol density gradient (gradient method). The isolation methods had little effect on the particle number of exosomes. In contrast, transmission electron microscopy observation and size distribution measurement using tunable resistive pulse sensing indicated that the exosomes of the gradient method were more dispersed than the others. The exosomes were labeled with Gaussia luciferase and intravenously injected into mice. Clearance of injected exosomes from the blood circulation did not significantly change with isolation methods. When the exosomes were filtered using a 0.2-μm filter, the recovery rate was 82% for the exosomes of the gradient method, whereas it was less than 50% for the others. These results indicate that the exosome isolation method markedly affects the dispersibility and filtration efficiency of the exosomes. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Prediction of load threshold of fibre-reinforced laminated composite panels subjected to low velocity drop-weight impact using efficient data filtering techniques

    NASA Astrophysics Data System (ADS)

    Farooq, Umar; Myler, Peter

    This work is concerned with physical testing of carbon fibrous laminated composite panels with low velocity drop-weight impacts from flat and round nose impactors. Eight, sixteen, and twenty-four ply panels were considered. Non-destructive damage inspections of tested specimens were conducted to approximate impact-induced damage. Recorded data were correlated to load-time, load-deflection, and energy-time history plots to interpret impact induced damage. Data filtering techniques were also applied to the noisy data that unavoidably generate due to limitations of testing and logging systems. Built-in, statistical, and numerical filters effectively predicted load thresholds for eight and sixteen ply laminates. However, flat nose impact of twenty-four ply laminates produced clipped data that can only be de-noised involving oscillatory algorithms. Data filtering and extrapolation of such data have received rare attention in the literature that needs to be investigated. The present work demonstrated filtering and extrapolation of the clipped data using Fast Fourier Convolution algorithm to predict load thresholds. Selected results were compared to the damage zones identified with C-scan and acceptable agreements have been observed. Based on the results it is proposed that use of advanced data filtering and analysis methods to data collected by the available resources has effectively enhanced data interpretations without resorting to additional resources. The methodology could be useful for efficient and reliable data analysis and impact-induced damage prediction of similar cases' data.

  12. Denoising solar radiation data using coiflet wavelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my; Janier, Josefina B., E-mail: josefinajanier@petronas.com.my; Muthuvalu, Mohana Sundaram, E-mail: mohana.muthuvalu@petronas.com.my

    Signal denoising and smoothing plays an important role in processing the given signal either from experiment or data collection through observations. Data collection usually was mixed between true data and some error or noise. This noise might be coming from the apparatus to measure or collect the data or human error in handling the data. Normally before the data is use for further processing purposes, the unwanted noise need to be filtered out. One of the efficient methods that can be used to filter the data is wavelet transform. Due to the fact that the received solar radiation data fluctuatesmore » according to time, there exist few unwanted oscillation namely noise and it must be filtered out before the data is used for developing mathematical model. In order to apply denoising using wavelet transform (WT), the thresholding values need to be calculated. In this paper the new thresholding approach is proposed. The coiflet2 wavelet with variation diminishing 4 is utilized for our purpose. From numerical results it can be seen clearly that, the new thresholding approach give better results as compare with existing approach namely global thresholding value.« less

  13. Test of precoat filtration technology for treatment of swimming pool water.

    PubMed

    Christensen, Morten Lykkegaard; Klausen, Morten Møller; Christensen, Peter Vittrup

    2018-02-01

    The technical performance of a precoat filter was compared with that of a traditional sand filter. Particle concentration and size distribution were measured before and after the filtration of swimming pool water. Both the sand and precoat filters could reduce the particle concentration in the effluent. However, higher particle removal efficiency was generally observed for the precoat filter, especially for particles smaller than 10 μm in diameter. Adding flocculant improved the removal efficiency of the sand filter, resulting in removal efficiencies comparable to those of the precoat filter. Three powders, i.e., two types of perlite (Harbolite ® and Aquatec perlite) and cellulose fibers (Arbocel ® ), were tested for the precoat filter, but no significant difference in particle removal efficiency was observed among them. The maximum efficiency was reached within 30-40 min of filtration. The energy required for the pumps increased by approximately 35% over a period of 14 days. The energy consumption could be reduced by replacing the powder on the filter cloth. The sand filter was backwashed once a week, while the powder on the precoat filter was replaced every two weeks. Under these conditions, it was possible to reduce the water used for cleaning by 88% if the precoat filter was used instead of the sand filter.

  14. Summary of efficiency testing of standard and high-capacity high-efficiency particulate air filters subjected to simulated tornado depressurization and explosive shock waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.R.; Gregory, W.S.

    1985-04-01

    Pressure transients in nuclear facility air cleaning systems can originate from natural phenomena such as tornadoes or from accident-induced explosive blast waves. This study was concerned with the effective efficiency of high-efficiency particulate air (HEPA) filters during pressure surges resulting from simulated tornado and explosion transients. The primary objective of the study was to examine filter efficiencies at pressure levels below the point of structural failure. Both standard and high-capacity 0.61-m by 0.61-m HEPA filters were evaluated, as were several 0.2-m by 0.2-m HEPA filters. For a particular manufacturer, the material release when subjected to tornado transients is the samemore » (per unit area) for both the 0.2-m by 0.2-m and the 0.61-m by 0.61-m filters. For tornado transients, the material release was on the order of micrograms per square meter. When subjecting clean HEPA filters to simulated tornado transients with aerosol entrained in the pressure pulse, all filters tested showed a degradation of filter efficiency. For explosive transients, the material release from preloaded high-capacity filters was as much as 340 g. When preloaded high-capacity filters were subjected to shock waves approximately 50% of the structural limit level, 1 to 2 mg of particulate was released.« less

  15. Reducing emissions by using special air filters for internal combustion engines

    NASA Astrophysics Data System (ADS)

    Birtok-Băneasă, C.; Raţiu, S. A.; Alexa, V.; Crăciun, A. L.; Josan, A.; Budiul-Berghian, A.

    2017-05-01

    This paper presents the experimental methodology to carry out functional performance tests for an air filter with a particular design of its housing, generically named Super absorbing YXV „Air by Corneliu”, patented and homologated by the Romanian Automotive Registry, to which numerous prizes and medals were awarded at national and international innovations salons. The tests were carried out in the Internal Combustion Engines Laboratory, within the specialization “Road vehicles” belonging to the Faculty of Engineering Hunedoara, component of Politehnica University of Timisoara. The scope of the study is to optimise the air intake into the engine cylinders by reducing the gas-dynamic resistances caused by the air filter and, therefore, to achieve higher energy efficiency, i.e. fuel consumption reduction and engine performance increase. We present some comparative values of various operating parameters of the engine fitted, in the first measuring session, with the original filter, and then with the studied filter. The data collected shows a reduction in fuel consumption by using this type of filter, which leads to lower emissions.

  16. Efficient Lane Boundary Detection with Spatial-Temporal Knowledge Filtering

    PubMed Central

    Nan, Zhixiong; Wei, Ping; Xu, Linhai; Zheng, Nanning

    2016-01-01

    Lane boundary detection technology has progressed rapidly over the past few decades. However, many challenges that often lead to lane detection unavailability remain to be solved. In this paper, we propose a spatial-temporal knowledge filtering model to detect lane boundaries in videos. To address the challenges of structure variation, large noise and complex illumination, this model incorporates prior spatial-temporal knowledge with lane appearance features to jointly identify lane boundaries. The model first extracts line segments in video frames. Two novel filters—the Crossing Point Filter (CPF) and the Structure Triangle Filter (STF)—are proposed to filter out the noisy line segments. The two filters introduce spatial structure constraints and temporal location constraints into lane detection, which represent the spatial-temporal knowledge about lanes. A straight line or curve model determined by a state machine is used to fit the line segments to finally output the lane boundaries. We collected a challenging realistic traffic scene dataset. The experimental results on this dataset and other standard dataset demonstrate the strength of our method. The proposed method has been successfully applied to our autonomous experimental vehicle. PMID:27529248

  17. Gasoline on hands: preliminary study on collection and persistence.

    PubMed

    Darrer, Melinda; Jacquemet-Papilloud, Joëlle; Delémont, Olivier

    2008-03-05

    The identification of an arsonist remains one of the most difficult challenges a fire investigation has to face. Seeking and detection of traces of gasoline could provide a valuable information to link a suspect with an arson scene where gasoline was used to set-up the fire. In this perspective, a first study was undertaken to evaluate a simple, fast and efficient method for collecting gasoline from hands, and to assess its persistence over time. Four collection means were tested: PVC, PE and Latex gloves, as well as humidified filter paper. A statistical assessment of the results indicates that Latex and PVC gloves worn for about 20 min, as well as paper filter rubbed on hands, allow an efficient collection of gasoline applied to hands. Due to ease of manipulation and to a reduced amount of volatile compounds detected from the matrix, PVC gloves were selected for the second set of experiments. The evaluation of the persistence of gasoline on hands was then carried out using two initial quantities (500 and 1000 microl). Collection was made with PVC gloves after 0, 30 min, 1, 2 and 4h, on different volunteers. The results show a common tendency of massive evaporation of gasoline during the first 30 min: a continued but non-linear decrease was observed along different time intervals. The results of this preliminary study are in agreement with other previous researches conducted on the detection of flammable liquid residues on clothes, shoes and skin.

  18. Efficiency analysis of color image filtering

    NASA Astrophysics Data System (ADS)

    Fevralev, Dmitriy V.; Ponomarenko, Nikolay N.; Lukin, Vladimir V.; Abramov, Sergey K.; Egiazarian, Karen O.; Astola, Jaakko T.

    2011-12-01

    This article addresses under which conditions filtering can visibly improve the image quality. The key points are the following. First, we analyze filtering efficiency for 25 test images, from the color image database TID2008. This database allows assessing filter efficiency for images corrupted by different noise types for several levels of noise variance. Second, the limit of filtering efficiency is determined for independent and identically distributed (i.i.d.) additive noise and compared to the output mean square error of state-of-the-art filters. Third, component-wise and vector denoising is studied, where the latter approach is demonstrated to be more efficient. Fourth, using of modern visual quality metrics, we determine that for which levels of i.i.d. and spatially correlated noise the noise in original images or residual noise and distortions because of filtering in output images are practically invisible. We also demonstrate that it is possible to roughly estimate whether or not the visual quality can clearly be improved by filtering.

  19. MALDI-TOF MS identification of Anopheles gambiae Giles blood meal crushed on Whatman filter papers.

    PubMed

    Niare, Sirama; Almeras, Lionel; Tandina, Fatalmoudou; Yssouf, Amina; Bacar, Affane; Toilibou, Ali; Doumbo, Ogobara; Raoult, Didier; Parola, Philippe

    2017-01-01

    Identification of the source of mosquito blood meals is an important component for disease control and surveillance. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as an effective tool for mosquito blood meal identification, using the abdomens of freshly engorged mosquitoes. In the field, mosquito abdomens are crushed on Whatman filter papers to determine the host feeding patterns by identifying the origin of their blood meals. The aim of this study was to test whether crushing engorged mosquito abdomens on Whatman filter papers was compatible with MALDI-TOF MS for mosquito blood meal identification. Both laboratory reared and field collected mosquitoes were tested. Sixty Anopheles gambiae Giles were experimentally engorged on the blood of six distinct vertebrate hosts (human, sheep, rabbit, dog, chicken and rat). The engorged mosquito abdomens were crushed on Whatman filter papers for MALDI-TOF MS analysis. 150 Whatman filter papers, with mosquitoes engorged on cow and goat blood, were preserved. A total of 77 engorged mosquito abdomens collected in the Comoros Islands and crushed on Whatman filter papers were tested with MALDI-TOF MS. The MS profiles generated from mosquito engorged abdomens crushed on Whatman filter papers exhibited high reproducibility according to the original host blood. The blood meal host was correctly identified from mosquito abdomens crushed on Whatman filter papers by MALDI-TOF MS. The MS spectra obtained after storage were stable regardless of the room temperature and whether or not they were frozen. The MS profiles were reproducible for up to three months. For the Comoros samples, 70/77 quality MS spectra were obtained and matched with human blood spectra. This was confirmed by molecular tools. The results demonstrated that MALDI-TOF MS could identify mosquito blood meals from Whatman filter papers collected in the field during entomological surveys. The application of MALDI-TOF MS has proved to be rapid and successful, making it a new and efficient tool for mosquito-borne disease surveillance.

  20. Ultrafine particle removal by residential heating, ventilating, and air-conditioning filters.

    PubMed

    Stephens, B; Siegel, J A

    2013-12-01

    This work uses an in situ filter test method to measure the size-resolved removal efficiency of indoor-generated ultrafine particles (approximately 7-100 nm) for six new commercially available filters installed in a recirculating heating, ventilating, and air-conditioning (HVAC) system in an unoccupied test house. The fibrous HVAC filters were previously rated by the manufacturers according to ASHRAE Standard 52.2 and ranged from shallow (2.5 cm) fiberglass panel filters (MERV 4) to deep-bed (12.7 cm) electrostatically charged synthetic media filters (MERV 16). Measured removal efficiency ranged from 0 to 10% for most ultrafine particles (UFP) sizes with the lowest rated filters (MERV 4 and 6) to 60-80% for most UFP sizes with the highest rated filter (MERV 16). The deeper bed filters generally achieved higher removal efficiencies than the panel filters, while maintaining a low pressure drop and higher airflow rate in the operating HVAC system. Assuming constant efficiency, a modeling effort using these measured values for new filters and other inputs from real buildings shows that MERV 13-16 filters could reduce the indoor proportion of outdoor UFPs (in the absence of indoor sources) by as much as a factor of 2-3 in a typical single-family residence relative to the lowest efficiency filters, depending in part on particle size. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Chemical, dimensional and morphological ultrafine particle characterization from a waste-to-energy plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buonanno, Giorgio, E-mail: buonanno@unicas.it; Stabile, Luca; Avino, Pasquale

    2011-11-15

    Highlights: > Particle size distributions and total concentrations measurement at the stack and before the fabric filter of an incinerator. > Chemical characterization of UFPs in terms of heavy metal concentration through a nuclear method. > Mineralogical investigation through a Transmission Electron Microscope equipped with an Energy Dispersive Spectrometer. > Heavy metal concentrations on UFPs as function of the boiling temperature. > Different mineralogical and morphological composition amongst samples collected before the fabric filter and at the stack. - Abstract: Waste combustion processes are responsible of particles and gaseous emissions. Referring to the particle emission, in the last years specificmore » attention was paid to ultrafine particles (UFPs, diameter less than 0.1 {mu}m), mainly emitted by combustion processes. In fact, recent findings of toxicological and epidemiological studies indicate that fine and ultrafine particles could represent a risk for health and environment. Therefore, it is necessary to quantify particle emissions from incinerators also to perform an exposure assessment for the human populations living in their surrounding areas. To these purposes, in the present work an experimental campaign aimed to monitor UFPs was carried out at the incineration plant in San Vittore del Lazio (Italy). Particle size distributions and total concentrations were measured both at the stack and before the fabric filter inlet in order to evaluate the removal efficiency of the filter in terms of UFPs. A chemical characterization of UFPs in terms of heavy metal concentration was performed through a nuclear method, i.e. Instrumental Neutron Activation Analysis (INAA), as well as a mineralogical investigation was carried out through a Transmission Electron Microscope (TEM) equipped with an Energy Dispersive Spectrometer (EDS) in order to evaluate shape, crystalline state and mineral compound of sampled particles. Maximum values of 2.7 x 10{sup 7} part. cm{sup -3} and 2.0 x 10{sup 3} part. cm{sup -3} were found, respectively, for number concentration before and after the fabric filter showing a very high efficiency in particle removing by the fabric filter. With regard to heavy metal concentrations, the elements with higher boiling temperature present higher concentrations at lower diameters showing a not complete evaporation in the combustion section and the consequent condensation of semi-volatile compounds on solid nuclei. In terms of mineralogical and morphological analysis, the most abundant compounds found in samples collected before the fabric filter are Na-K-Pb oxides followed by phyllosilicates, otherwise, different oxides of comparable abundance were detected in the samples collected at the stack.« less

  2. Determination of permeability of ultra-fine cupric oxide aerosol through military filters and protective filters

    NASA Astrophysics Data System (ADS)

    Kellnerová, E.; Večeřa, Z.; Kellner, J.; Zeman, T.; Navrátil, J.

    2018-03-01

    The paper evaluates the filtration and sorption efficiency of selected types of military combined filters and protective filters. The testing was carried out with the use of ultra-fine aerosol containing cupric oxide nanoparticles ranging in size from 7.6 nm to 299.6 nm. The measurements of nanoparticles were carried out using a scanning mobility particle sizer before and after the passage through the filter and a developed sampling device at the level of particle number concentration approximately 750000 particles·cm-3. The basic parameters of permeability of ultra-fine aerosol passing through the tested material were evaluated, in particular particle size, efficiency of nanoparticle capture by filter, permeability coefficient and overall filtration efficiency. Results indicate that the military filter and particle filters exhibited the highest aerosol permeability especially in the nanoparticle size range between 100–200 nm, while the MOF filters had the highest permeability in the range of 200 to 300 nm. The Filter Nuclear and the Health and Safety filter had 100% nanoparticle capture efficiency and were therefore the most effective. The obtained measurement results have shown that the filtration efficiency over the entire measured range of nanoparticles was sufficient; however, it was different for particular particle sizes.

  3. GC-MS determination of levoglucosan in atmospheric particulate matter collected over different filter materials.

    PubMed

    Fabbri, Daniele; Modelli, Stefano; Torri, Cristian; Cemin, Andrea; Ragazzi, Marco; Scaramuzza, Patrizia

    2008-12-01

    An analytical procedure consisting of ultrasonic extraction with acetonitrile, trimethylsilylation and GC-MS analysis was applied to the determination of levoglucosan (LG) in aerosol collected with three different filter types (teflon, quartz, glass). Methyl-beta-L-arabinopyranoside (MA) and sedoheptulosan (SD, 2,7-anhydro-beta-D-altro-heptulopyranose) were investigated as recovery standards. Mean recovery of MA decreased in the order 82%, 78%, 74% and that of SD from 82% to 76% and 32% from teflon, quartz and glass blank filters, respectively, whereas recovery of LG was little affected (80-86%). The extraction efficiency from glass filters could be increased by using methanol in place of acetonitrile, but recovery of SD remained inadequate. Internal calibration with MA was linear in the 0.035-70 microg mL(-1) LG concentration interval. The method was tested on different air filter materials utilized to sample PM(10) in outdoor air and wood smoke emitted from stove and boiler encompassing LG concentrations from 0.06 to 230 microg m(-3) with RSD in the 2.9-22% range. The application of the method in aerosol sampled in alpine zones of Italy revealed a linear correlation between LG and PM(10) concentrations with a higher proportion of LG in winter and in rural areas where the use of woody biomass for residential heating is widespread.

  4. Experimental Study on Ultrafine Particle Removal Performance of Portable Air Cleaners with Different Filters in an Office Room

    PubMed Central

    Ma, Huan; Shen, Henggen; Shui, Tiantian; Li, Qing; Zhou, Liuke

    2016-01-01

    Size- and time-dependent aerodynamic behaviors of indoor particles, including PM1.0, were evaluated in a school office in order to test the performance of air-cleaning devices using different filters. In-situ real-time measurements were taken using an optical particle counter. The filtration characteristics of filter media, including single-pass efficiency, volume and effectiveness, were evaluated and analyzed. The electret filter (EE) medium shows better initial removal efficiency than the high efficiency (HE) medium in the 0.3–3.5 μm particle size range, while under the same face velocity, the filtration resistance of the HE medium is several times higher than that of the EE medium. During service life testing, the efficiency of the EE medium decreased to 60% with a total purifying air flow of 25 × 104 m3/m2. The resistance curve rose slightly before the efficiency reached the bottom, and then increased almost exponentially. The single-pass efficiency of portable air cleaner (PAC) with the pre-filter (PR) or the active carbon granule filter (CF) was relatively poor. While PAC with the pre-filter and the high efficiency filter (PR&HE) showed maximum single-pass efficiency for PM1.0 (88.6%), PAC with the HE was the most effective at removing PM1.0. The enhancement of PR with HE and electret filters augmented the single-pass efficiency, but lessened the airflow rate and effectiveness. Combined with PR, the decay constant of large-sized particles could be greater than for PACs without PR. Without regard to the lifetime, the electret filters performed better with respect to resource saving and purification improvement. A most penetrating particle size range (MPPS: 0.4–0.65 μm) exists in both HE and electret filters; the MPPS tends to become larger after HE and electret filters are combined with PR. These results serve to provide a better understanding of the indoor particle removal performance of PACs when combined with different kinds of filters in school office buildings. PMID:26742055

  5. Highly efficient spatial data filtering in parallel using the opensource library CPPPO

    NASA Astrophysics Data System (ADS)

    Municchi, Federico; Goniva, Christoph; Radl, Stefan

    2016-10-01

    CPPPO is a compilation of parallel data processing routines developed with the aim to create a library for "scale bridging" (i.e. connecting different scales by mean of closure models) in a multi-scale approach. CPPPO features a number of parallel filtering algorithms designed for use with structured and unstructured Eulerian meshes, as well as Lagrangian data sets. In addition, data can be processed on the fly, allowing the collection of relevant statistics without saving individual snapshots of the simulation state. Our library is provided with an interface to the widely-used CFD solver OpenFOAM®, and can be easily connected to any other software package via interface modules. Also, we introduce a novel, extremely efficient approach to parallel data filtering, and show that our algorithms scale super-linearly on multi-core clusters. Furthermore, we provide a guideline for choosing the optimal Eulerian cell selection algorithm depending on the number of CPU cores used. Finally, we demonstrate the accuracy and the parallel scalability of CPPPO in a showcase focusing on heat and mass transfer from a dense bed of particles.

  6. EFFECT OF LOADING DUST TYPE ON THE FILTRATION EFFICIENCY OF ELECTROSTATICALLY CHARGED FILTERS

    EPA Science Inventory

    The paper gives results of an evaluation of the effect of loading dust type on the filtration efficiency of electrostatically charged filters. Three types of filters were evaluated: a rigid-cell filter charged using an electrodynamic spinning process, a pleated-panel filter cha...

  7. Filtration Efficiency of Functionalized Ceramic Foam Filters for Aluminum Melt Filtration

    NASA Astrophysics Data System (ADS)

    Voigt, Claudia; Jäckel, Eva; Taina, Fabio; Zienert, Tilo; Salomon, Anton; Wolf, Gotthard; Aneziris, Christos G.; Le Brun, Pierre

    2017-02-01

    The influence of filter surface chemistry on the filtration efficiency of cast aluminum alloys was evaluated for four different filter coating compositions (Al2O3—alumina, MgAl2O4—spinel, 3Al2O3·2SiO2—mullite, and TiO2—rutile). The tests were conducted on a laboratory scale with a filtration pilot plant, which facilitates long-term filtration tests (40 to 76 minutes). This test set-up allows the simultaneous use of two LiMCAs (before and after the filter) for the determination of the efficiency of inclusion removal. The four tested filter surface chemistries exhibited good thermal stability and mechanical robustness after 750 kg of molten aluminum had been cast. All four filter types exhibited a mean filtration efficiency of at least 80 pct. However, differences were also observed. The highest filtration efficiencies were obtained with alumina- and spinel-coated filter surfaces (>90 pct), and the complete removal of the largest inclusions (>90 µm) was observed. The efficiency was slightly lower with mullite- and rutile-coated filter surfaces, in particular for large inclusions. These observations are discussed in relation to the properties of the filters, in particular in terms of, for example, the surface roughness.

  8. Combined selective emitter and filter for high performance incandescent lighting

    NASA Astrophysics Data System (ADS)

    Leroy, Arny; Bhatia, Bikram; Wilke, Kyle; Ilic, Ognjen; Soljačić, Marin; Wang, Evelyn N.

    2017-08-01

    The efficiency of incandescent light bulbs (ILBs) is inherently low due to the dominant emission at infrared wavelengths, diminishing its popularity today. ILBs with cold-side filters that transmit visible light but reflect infrared radiation back to the filament can surpass the efficiency of state-of-the-art light-emitting diodes (LEDs). However, practical challenges such as imperfect geometrical alignment (view factor) between the filament and cold-side filters can limit the maximum achievable efficiency and make the use of cold-side filters ineffective. In this work, we show that by combining a cold-side optical filter with a selective emitter, the effect of the imperfect view factor between the filament and filter on the system efficiency can be minimized. We experimentally and theoretically demonstrate energy savings of up to 67% compared to a bare tungsten emitter at 2000 K, representing a 34% improvement over a bare tungsten filament with a filter. Our work suggests that this approach can be competitive with LEDs in both luminous efficiency and color rendering index (CRI) when using selective emitters and filters already demonstrated in the literature, thus paving the way for next-generation high-efficiency ILBs.

  9. Combined selective emitter and filter for high performance incandescent lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroy, Arny; Bhatia, Bikram; Wilke, Kyle

    The efficiency of incandescent light bulbs (ILBs) is inherently low due to the dominant emission at infrared wavelengths, diminishing its popularity today. ILBs with cold-side filters that transmit visible light but reflect infrared radiation back to the filament can surpass the efficiency of state-of-the- art light-emitting diodes (LEDs). However, practical challenges such as imperfect geometrical alignment (view factor) between the filament and cold-side filters can limit the maximum achievable efficiency and make the use of cold-side filters ineffective. Here in this work, we show that by combining a cold-side optical filter with a selective emitter, the effect of the imperfectmore » view factor between the filament and filter on the system efficiency can be minimized. We experimentally and theoretically demonstrate energy savings of up to 67% compared to a bare tungsten emitter at 2000 K, representing a 34% improvement over a bare tungsten filament with a filter. Our work suggests that this approach can be competitive with LEDs in both luminous efficiency and color rendering index (CRI) when using selective emitters and filters already demonstrated in the literature, thus paving the way for next-generation high-efficiency ILBs.« less

  10. Combined selective emitter and filter for high performance incandescent lighting

    DOE PAGES

    Leroy, Arny; Bhatia, Bikram; Wilke, Kyle; ...

    2017-09-01

    The efficiency of incandescent light bulbs (ILBs) is inherently low due to the dominant emission at infrared wavelengths, diminishing its popularity today. ILBs with cold-side filters that transmit visible light but reflect infrared radiation back to the filament can surpass the efficiency of state-of-the- art light-emitting diodes (LEDs). However, practical challenges such as imperfect geometrical alignment (view factor) between the filament and cold-side filters can limit the maximum achievable efficiency and make the use of cold-side filters ineffective. Here in this work, we show that by combining a cold-side optical filter with a selective emitter, the effect of the imperfectmore » view factor between the filament and filter on the system efficiency can be minimized. We experimentally and theoretically demonstrate energy savings of up to 67% compared to a bare tungsten emitter at 2000 K, representing a 34% improvement over a bare tungsten filament with a filter. Our work suggests that this approach can be competitive with LEDs in both luminous efficiency and color rendering index (CRI) when using selective emitters and filters already demonstrated in the literature, thus paving the way for next-generation high-efficiency ILBs.« less

  11. Alpha Air Sample Counting Efficiency Versus Dust Loading: Evaluation of a Large Data Set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogue, M. G.; Gause-Lott, S. M.; Owensby, B. N.

    Dust loading on air sample filters is known to cause a loss of efficiency for direct counting of alpha activity on the filters, but the amount of dust loading and the correction factor needed to account for attenuated alpha particles is difficult to assess. In this paper, correction factors are developed by statistical analysis of a large database of air sample results for a uranium and plutonium processing facility at the Savannah River Site. As is typically the case, dust-loading data is not directly available, but sample volume is found to be a reasonable proxy measure; the amount of dustmore » loading is inferred by a combination of the derived correction factors and a Monte Carlo model. The technique compares the distribution of activity ratios [beta/(beta + alpha)] by volume and applies a range of correction factors on the raw alpha count rate. The best-fit results with this method are compared with MCNP modeling of activity uniformly deposited in the dust and analytical laboratory results of digested filters. Finally, a linear fit is proposed to evenly-deposited alpha activity collected on filters with dust loading over a range of about 2 mg cm -2 to 1,000 mg cm -2.« less

  12. Alpha Air Sample Counting Efficiency Versus Dust Loading: Evaluation of a Large Data Set

    DOE PAGES

    Hogue, M. G.; Gause-Lott, S. M.; Owensby, B. N.; ...

    2018-03-03

    Dust loading on air sample filters is known to cause a loss of efficiency for direct counting of alpha activity on the filters, but the amount of dust loading and the correction factor needed to account for attenuated alpha particles is difficult to assess. In this paper, correction factors are developed by statistical analysis of a large database of air sample results for a uranium and plutonium processing facility at the Savannah River Site. As is typically the case, dust-loading data is not directly available, but sample volume is found to be a reasonable proxy measure; the amount of dustmore » loading is inferred by a combination of the derived correction factors and a Monte Carlo model. The technique compares the distribution of activity ratios [beta/(beta + alpha)] by volume and applies a range of correction factors on the raw alpha count rate. The best-fit results with this method are compared with MCNP modeling of activity uniformly deposited in the dust and analytical laboratory results of digested filters. Finally, a linear fit is proposed to evenly-deposited alpha activity collected on filters with dust loading over a range of about 2 mg cm -2 to 1,000 mg cm -2.« less

  13. Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems

    PubMed Central

    Hagen, Nathan; Kester, Robert T.; Gao, Liang; Tkaczyk, Tomasz S.

    2012-01-01

    The snapshot advantage is a large increase in light collection efficiency available to high-dimensional measurement systems that avoid filtering and scanning. After discussing this advantage in the context of imaging spectrometry, where the greatest effort towards developing snapshot systems has been made, we describe the types of measurements where it is applicable. We then generalize it to the larger context of high-dimensional measurements, where the advantage increases geometrically with measurement dimensionality. PMID:22791926

  14. Filtering Raw Terrestrial Laser Scanning Data for Efficient and Accurate Use in Geomorphologic Modeling

    NASA Astrophysics Data System (ADS)

    Gleason, M. J.; Pitlick, J.; Buttenfield, B. P.

    2011-12-01

    Terrestrial laser scanning (TLS) represents a new and particularly effective remote sensing technique for investigating geomorphologic processes. Unfortunately, TLS data are commonly characterized by extremely large volume, heterogeneous point distribution, and erroneous measurements, raising challenges for applied researchers. To facilitate efficient and accurate use of TLS in geomorphology, and to improve accessibility for TLS processing in commercial software environments, we are developing a filtering method for raw TLS data to: eliminate data redundancy; produce a more uniformly spaced dataset; remove erroneous measurements; and maintain the ability of the TLS dataset to accurately model terrain. Our method conducts local aggregation of raw TLS data using a 3-D search algorithm based on the geometrical expression of expected random errors in the data. This approach accounts for the estimated accuracy and precision limitations of the instruments and procedures used in data collection, thereby allowing for identification and removal of potential erroneous measurements prior to data aggregation. Initial tests of the proposed technique on a sample TLS point cloud required a modest processing time of approximately 100 minutes to reduce dataset volume over 90 percent (from 12,380,074 to 1,145,705 points). Preliminary analysis of the filtered point cloud revealed substantial improvement in homogeneity of point distribution and minimal degradation of derived terrain models. We will test the method on two independent TLS datasets collected in consecutive years along a non-vegetated reach of the North Fork Toutle River in Washington. We will evaluate the tool using various quantitative, qualitative, and statistical methods. The crux of this evaluation will include a bootstrapping analysis to test the ability of the filtered datasets to model the terrain at roughly the same accuracy as the raw datasets.

  15. Potential of filter-vermicomposter for household wastewater pre-treatment and sludge sanitisation on site.

    PubMed

    Gajurel, D; Deegener, S; Shalabi, M; Otterpohl, R

    2007-01-01

    Septic tank systems have been widely used to separate and digest solid matter in the household wastewater for a long time. However, they contaminate groundwater with pathogens and nutrients and deprive agriculture of valuable nutrients and soil conditioner from human excreta. Compared with septic tank systems the filter-composter (Rottebehaelter), which usually consists of an underground monolithic concrete tank having two filter beds at its bottom or two filter bags that are hung side by side and used alternately at intervals of 6-12 months, is an efficient component for solid-liquid separation, pre-treatment and collection/storage of solid matter in household wastewater. The solids are retained and decompose in the filter bags or on the filter bed while the liquid filters through. However, because of the high moisture content of the retained solids decomposition is slow. Therefore, secondary treatment of the retained solids is required for sanitisation. The breakthrough was the combination of vermicomposting with the filter-composter system. Relatively dry and stable retained materials were obtained in the filter bags in about 3 months only. No secondary treatment is required as the human excreta will be converted to vermicastings, which are hygienically safe and can be reused as soil conditioner. Therefore, further development of the filter-composter with vermicomposting is worthwhile, especially the aspects of sanitisation of the faecal matter and its reuse as a soil conditioner.

  16. Methodology for modeling the microbial contamination of air filters.

    PubMed

    Joe, Yun Haeng; Yoon, Ki Young; Hwang, Jungho

    2014-01-01

    In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter.

  17. Air analysis in the assessment of fumonisin contamination risk in maize.

    PubMed

    Torelli, Emanuela; Gubiani, Rino; Firrao, Giuseppe; Cividino, Sirio; Locci, Romano; Gobbi, Emanuela

    2010-03-15

    In maize-growing areas where fumonisin contamination is endemic, there is an urgent need for novel methods to assess the quality of grain lots before their delivery to common drying and storage collection centres. Aerobiological samples of fungal spores released during harvest were analysed to establish a relationship between fumonisin contamination and the abundance of pathogen propagules collected in the combine harvester using a cyclone and membrane filters. Filter-captured propagules were analysed by direct plating, immunoenzymatic assay of specific Fusarium extracellular polysaccharides and real time polymerase chain reaction of the extracted DNA using fum1, a gene involved in the biosynthesis of fumonisin, as a target. The results showed that time of harvest and environmental conditions strongly influenced the efficiency and performance of the collection system. The data obtained were informative in comparing individual samples collected under similar conditions. The immunoenzymatic assay provided the most reliable data, which improved the ability of a neural network to predict the fumonisin content of lots, when added to agronomic, environmental and phytosanitary data. This is the first attempt to evaluate the Fusarium propagules dispersed during harvesting as a predictive means to assess maize quality. A method based on cyclone/filter capture and immunological detection has been shown to be feasible and to have the potential for the development of a continuous monitoring system, but the prediction capabilities in the present implementation were limited.

  18. 78 FR 44957 - Agency Information Collection Activities: BioWatch Filter Holder Log, Filter Holder Log DHS Form...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-25

    ... DEPARTMENT OF HOMELAND SECURITY Agency Information Collection Activities: BioWatch Filter Holder Log, Filter Holder Log DHS Form 9500 AGENCY: Office of Health Affairs, DHS. ACTION: 60-Day Notice and....: Daniel Yereb, [email protected] 703- 647-8052. SUPPLEMENTARY INFORMATION: Following collection, the filter...

  19. Extracting metalworking fluid aerosol samples in cassettes by provisional ASTM and NIOSH methods.

    PubMed

    Harper, Martin

    2002-01-01

    Recent provisional methods for the determination of metalworking fluid aerosol in workplace air involve a solvent extraction procedure to separate the nonvolatile fraction of the fluid from insoluble material such as metal turnings and dirt. The procedure calls for preweighing a filter (W1) and assembling it into a cassette and taking a sample. In the laboratory the filter is removed from the cassette, desiccated to remove any collected water or other volatile substances, and weighed again (W2). The filter is then extracted in an organic solvent blend, allowed to dry, and weighed a final time (W3). The total weight collected by the filter is given by (W2-W1), and the weight of (nonvolatile) metalworking fluid collected is given by (W2-W3). The extraction step can take place within a cassette housing if it is relatively inert to the solvent blend used. The extraction of four metalworking fluids (straight oil, soluble oil, synthetic and semisynthetic) within disposable polypropylene cassettes was investigated using the same protocol used to evaluate the original method. For all fluids the extraction efficiency was greater than 95% with a precision better than 5%. The mean blank contribution to the extraction step was 16 micrograms. Blanks were also evaluated after storage, and after transport and storage. A small additional blank contribution could be removed by desiccation. The limits of detection and quantitation of the extraction step were calculated to be 28 and 94 micrograms, respectively.

  20. Assessment of exhaust emissions from carbon nanotube production and particle collection by sampling filters.

    PubMed

    Tsai, Candace Su-Jung; Hofmann, Mario; Hallock, Marilyn; Ellenbecker, Michael; Kong, Jing

    2015-11-01

    This study performed a workplace evaluation of emission control using available air sampling filters and characterized the emitted particles captured in filters. Characterized particles were contained in the exhaust gas released from carbon nanotube (CNT) synthesis using chemical vapor deposition (CVD). Emitted nanoparticles were collected on grids to be analyzed using transmission electron microscopy (TEM). CNT clusters in the exhaust gas were collected on filters for investigation. Three types of filters, including Nalgene surfactant-free cellulose acetate (SFCA), Pall A/E glass fiber, and Whatman QMA quartz filters, were evaluated as emission control measures, and particles deposited in the filters were characterized using scanning transmission electron microscopy (STEM) to further understand the nature of particles emitted from this CNT production. STEM analysis for collected particles on filters found that particles deposited on filter fibers had a similar morphology on all three filters, that is, hydrophobic agglomerates forming circular beaded clusters on hydrophilic filter fibers on the collecting side of the filter. CNT agglomerates were found trapped underneath the filter surface. The particle agglomerates consisted mostly of elemental carbon regardless of the shapes. Most particles were trapped in filters and no particles were found in the exhaust downstream from A/E and quartz filters, while a few nanometer-sized and submicrometer-sized individual particles and filament agglomerates were found downstream from the SFCA filter. The number concentration of particles with diameters from 5 nm to 20 µm was measured while collecting particles on grids at the exhaust piping. Total number concentration was reduced from an average of 88,500 to 700 particle/cm(3) for the lowest found for all filters used. Overall, the quartz filter showed the most consistent and highest particle reduction control, and exhaust particles containing nanotubes were successfully collected and trapped inside this filter. As concern for the toxicity of engineered nanoparticles grows, there is a need to characterize emission from carbon nanotube synthesis processes and to investigate methods to prevent their environmental release. At this time, the particles emitted from synthesis were not well characterized when collected on filters, and limited information was available about filter performance to such emission. This field study used readily available sampling filters to collect nanoparticles from the exhaust gas of a carbon nanotube furnace. New agglomerates were found on filters from such emitted particles, and the performance of using the filters studied was encouraging in terms of capturing emissions from carbon nanotube synthesis.

  1. Wide-Field Optic for Autonomous Acquisition of Laser Link

    NASA Technical Reports Server (NTRS)

    Page, Norman A.; Charles, Jeffrey R.; Biswas, Abhijit

    2011-01-01

    An innovation reported in Two-Camera Acquisition and Tracking of a Flying Target, NASA Tech Briefs, Vol. 32, No. 8 (August 2008), p. 20, used a commercial fish-eye lens and an electronic imaging camera for initially locating objects with subsequent handover to an actuated narrow-field camera. But this operated against a dark-sky background. An improved solution involves an optical design based on custom optical components for the wide-field optical system that directly addresses the key limitations in acquiring a laser signal from a moving source such as an aircraft or a spacecraft. The first challenge was to increase the light collection entrance aperture diameter, which was approximately 1 mm in the first prototype. The new design presented here increases this entrance aperture diameter to 4.2 mm, which is equivalent to a more than 16 times larger collection area. One of the trades made in realizing this improvement was to restrict the field-of-view to +80 deg. elevation and 360 azimuth. This trade stems from practical considerations where laser beam propagation over the excessively high air mass, which is in the line of sight (LOS) at low elevation angles, results in vulnerability to severe atmospheric turbulence and attenuation. An additional benefit of the new design is that the large entrance aperture is maintained even at large off-axis angles when the optic is pointed at zenith. The second critical limitation for implementing spectral filtering in the design was tackled by collimating the light prior to focusing it onto the focal plane. This allows the placement of the narrow spectral filter in the collimated portion of the beam. For the narrow band spectral filter to function properly, it is necessary to adequately control the range of incident angles at which received light intercepts the filter. When this angle is restricted via collimation, narrower spectral filtering can be implemented. The collimated beam (and the filter) must be relatively large to reduce the incident angle down to only a few degrees. In the presented embodiment, the filter diameter is more than ten times larger than the entrance aperture. Specifically, the filter has a clear aperture of about 51 mm. The optical design is refractive, and is comprised of nine custom refractive elements and an interference filter. The restricted maximum angle through the narrow-band filter ensures the efficient use of a 2-nm noise equivalent bandwidth spectral width optical filter at low elevation angles (where the range is longest), at the expense of less efficiency for high elevations, which can be tolerated because the range at high elevation angles is shorter. The image circle is 12 mm in diameter, mapped to 80 x 360 of sky, centered on the zenith.

  2. Endotoxin in Size-Separated Metal Working Fluid Aerosol Particles.

    PubMed

    Dahlman-Höglund, Anna; Lindgren, Åsa; Mattsby-Baltzer, Inger

    2016-08-01

    Patients with airway symptoms working in metal working industries are increasing, despite efforts to improve the environmental air surrounding the machines. Our aim was to analyse the amount of endotoxin in size-separated airborne particles of metal working fluid (MWF) aerosol, by using the personal sampler Sioutas cascade impactor, to compare filter types, and to compare the concentration of airborne endotoxin to that of the corresponding MWFs. In a pilot field study, aerosols were collected in two separate machine halls on totally 10 occasions, using glass fibre and polytetrafluoroethylene (PTFE) filters in parallel at each station. Airborne endotoxin was distributed over all size fractions. While a major part was found in the largest size fraction (72%, 2.5-10 µm), up to 8% of the airborne endotoxin was detected in the smallest size fraction (<0.25 µm). Comparing the efficiency of the filter types, a significantly higher median endotoxin level was found with glass fibres filters collecting the largest particle-size fraction (1.2-fold) and with PTFE filters collecting the smallest ones (5-fold). The levels of endotoxin in the size-separated airborne particle fractions correlated to those of the MWFs supporting the aerosol-generating machines. Our study indicates that a significant part of inhalable aerosols of MWFs consists of endotoxin-containing particles below the size of intact bacteria, and thus small enough to readily reach the deepest part of the lung. Combined with other chemical irritants of the MWF, exposure to MWF aerosols containing endotoxin pose a risk to respiratory health problems. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  3. Paper-based SERS swab for rapid trace detection on real-world surfaces.

    PubMed

    Lee, Chang H; Tian, Limei; Singamaneni, Srikanth

    2010-12-01

    One of the important but often overlooked considerations in the design of surface-enhanced Raman scattering (SERS) substrates for trace detection is the efficiency of sample collection. Conventional designs based on rigid substrates such as silicon, alumina, and glass resist conformal contact with the surface under investigation, making the sample collection inefficient. We demonstrate a novel SERS substrate based on common filter paper adsorbed with gold nanorods, which allows conformal contact with real-world surfaces, thus dramatically enhancing the sample collection efficiency compared to conventional rigid substrates. We demonstrate the detection of trace amounts of analyte (140 pg spread over 4 cm2) by simply swabbing the surface under investigation with the novel SERS substrate. The hierarchical fibrous structure of paper serves as a 3D vasculature for easy uptake and transport of the analytes to the electromagnetic hot spots in the paper. Simple yet highly efficient and cost-effective SERS substrate demonstrated here brings SERS-based trace detection closer to real-world applications.

  4. Removal of particulate matter emitted from a subway tunnel using magnetic filters.

    PubMed

    Son, Youn-Suk; Dinh, Trieu-Vuong; Chung, Sang-Gwi; Lee, Jai-Hyo; Kim, Jo-Chun

    2014-01-01

    We removed particulate matter (PM) emitted from a subway tunnel using magnetic filters. A magnetic filter system was installed on the top of a ventilation opening. Magnetic field density was increased by increasing the number of permanent magnet layers to determine PM removal characteristics. Moreover, the fan's frequency was adjusted from 30 to 60 Hz to investigate the effect of wind velocity on PM removal efficiency. As a result, PM removal efficiency increased as the number of magnetic filters or fan frequency increased. We obtained maximum removal efficiency of PM10 (52%), PM2.5 (46%), and PM1 (38%) at a 60 Hz fan frequency using double magnetic filters. We also found that the stability of the PM removal efficiency by the double filter (RSD, 3.2-5.8%) was higher than that by a single filter (10.9-24.5%) at all fan operating conditions.

  5. Impact of culture media and sampling methods on Staphylococcus aureus aerosols.

    PubMed

    Chang, C-W; Wang, L-J

    2015-10-01

    Staphylococcus aureus has been detected indoors and is associated with human infection. Reliable quantification of S. aureus using a sampling technique followed by culture assay helps in assessing the risks of human exposure. The efficiency of five culture media and eight sampling methods in recovering S. aureus aerosols were evaluated. Methods to extract cells from filters were also studied. Tryptic soy agar (TSA) presented greater bacterial recovery than mannitol salt agar (MSA), CHROMagar staph aureus, Chapman stone medium, and Baird-Park agarose (P < 0.05). Moreover, 93 ± 2%-95 ± 2% and 42 ± 1%-49 ± 2% of S. aureus were, respectively, recovered by a 15-min heating of gelatin filters and 2-min vortex of polycarbonate (PC) filters. Evaluation of two filtration (IOM with gelatin filter and cassette with PC filter), two impaction (Andersen 1-STG loaded with TSA and MSA) and four impingement methods [AGI-30 and BioSampler filled with Tween mixture (TM) and phosphate-buffered saline (PBS)] revealed the BioSampler/TM performed best over 30 and 60 min of sampling (P < 0.05), while low recovery efficiencies were associated with the IOM/gelatin, cassette/PC, and AGI-30/PBS combinations (P < 0.05). In addition to BioSampler/TM, collecting S. aureus onto TSA from the Andersen 1-STG is also recommended, as it is the second best method at the 60-min sampling (P < 0.05). © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Calculation of airborne radioactivity in a Technegas lung ventilation unit.

    PubMed

    López Medina, A; Miñano, J A; Terrón, J A; Bullejos, J A; Guerrero, R; Arroyo, T; Ramírez, A; Llamas, J M

    1999-12-01

    Airborne contamination by 99Tcm has been monitored in the Nuclear Medicine Department in our hospital to assess the risk of internal contamination to occupational workers exposed to Technegas studies. An air sampler fitted with a membrane filter was used. The optimum time for air absorption for obtaining the maximum activity in the filter was calculated. Maximum activity in the membrane filter ensures minimum uncertainty, which is especially important when low-level activities are being measured. The optimum time depends on air absorption velocity, room volume and filter efficiency for isotope collection. It tends to 1/lambda (lambda = disintegration constant for 99Tcm) for large volume and low velocity. Room activity with the air pump switched on was related to filter activity, and its variation with time was studied. Free activity in air for each study was approximately 7 x 10(-4) the activity used, and the effective half-life of the isotope in the room was 13.9 min (decay and diffusion). For a typical study (630 MBq), the effective dose to staff was 0.01 microSv when in the room for 10 min.

  7. 76 FR 42130 - Agency Information Collection Activities: BioWatch Filter Holder Log

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... DEPARTMENT OF HOMELAND SECURITY Agency Information Collection Activities: BioWatch Filter Holder...) assigned responsibility for installing and removing filters from aerosol collection devices and transportation to local laboratories for sample analysis. A standard filter log form is completed for each sample...

  8. 76 FR 24504 - Agency Information Collection Activities: BioWatch Filter Holder Log

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... DEPARTMENT OF HOMELAND SECURITY Agency Information Collection Activities: BioWatch Filter Holder...) assigned responsibility for installing and removing filters from aerosol collection devices and transportation to local laboratories for sample analysis. A standard filter log form is completed for each sample...

  9. Preparation of Fiber Based Binder Materials to Enhance the Gas Adsorption Efficiency of Carbon Air Filter.

    PubMed

    Lim, Tae Hwan; Choi, Jeong Rak; Lim, Dae Young; Lee, So Hee; Yeo, Sang Young

    2015-10-01

    Fiber binder adapted carbon air filter is prepared to increase gas adsorption efficiency and environmental stability. The filter prevents harmful gases, as well as particle dusts in the air from entering the body when a human inhales. The basic structure of carbon air filter is composed of spunbond/meltblown/activated carbon/bottom substrate. Activated carbons and meltblown layer are adapted to increase gas adsorption and dust filtration efficiency, respectively. Liquid type adhesive is used in the conventional carbon air filter as a binder material between activated carbons and other layers. However, it is thought that the liquid binder is not an ideal material with respect to its bonding strength and liquid flow behavior that reduce gas adsorption efficiency. To overcome these disadvantages, fiber type binder is introduced in our study. It is confirmed that fiber type binder adapted air filter media show higher strip strength, and their gas adsorption efficiencies are measured over 42% during 60 sec. These values are higher than those of conventional filter. Although the differential pressure of fiber binder adapted air filter is relatively high compared to the conventional one, short fibers have a good potential as a binder materials of activated carbon based air filter.

  10. Modeling of submicrometer aerosol penetration through sintered granular membrane filters.

    PubMed

    Marre, Sonia; Palmeri, John; Larbot, André; Bertrand, Marielle

    2004-06-01

    We present a deep-bed aerosol filtration model that can be used to estimate the efficiency of sintered granular membrane filters in the region of the most penetrating particle size. In this region the capture of submicrometer aerosols, much smaller than the filter pore size, takes place mainly via Brownian diffusion and direct interception acting in synergy. By modeling the disordered sintered grain packing of such filters as a simple cubic lattice, and mapping the corresponding 3D connected pore volume onto a discrete cylindrical pore network, the efficiency of a granular filter can be estimated, using new analytical results for the efficiency of cylindrical pores. This model for aerosol penetration in sintered granular filters includes flow slip and the kinetics of particle capture by the pore surface. With a unique choice for two parameters, namely the structural tortuosity and effective kinetic coefficient of particle adsorption, this semiempirical model can account for the experimental efficiency of a new class of "high-efficiency particulate air" ceramic membrane filters as a function of particle size over a wide range of filter thickness and texture (pore size and porosity) and operating conditions (face velocity).

  11. Effect of filter designs on hydraulic properties and well efficiency.

    PubMed

    Kim, Byung-Woo

    2014-09-01

    To analyze the effect of filter pack arrangement on the hydraulic properties and the well efficiency of a well design, a step drawdown was conducted in a sand-filled tank model. Prior to the test, a single filter pack (SFP), granule only, and two dual filter packs (DFPs), type A (granule-pebble) and type B (pebble-granule), were designed to surround the well screen. The hydraulic properties and well efficiencies related to the filter packs were evaluated using the Hazen's, Eden-Hazel's, Jacob's, and Labadie-Helweg's methods. The results showed that the hydraulic properties and well efficiency of the DFPs were higher than those of a SFP, and the clogging effect and wellhead loss related to the aquifer material were the lowest owing to the grain size and the arrangement of the filter pack. The hydraulic conductivity of the DFPs types A and B was about 1.41 and 6.43 times that of a SFP, respectively. In addition, the well efficiency of the DFPs types A and B was about 1.38 and 1.60 times that of the SFP, respectively. In this study, hydraulic property and well efficiency changes were observed according to the variety of the filter pack used. The results differed from the predictions of previous studies on the grain-size ratio. Proper pack-aquifer ratios and filter pack arrangements are primary factors in the construction of efficient water wells, as is the grain ratio, intrinsic permeability (k), and hydraulic conductivity (K) between the grains of the filter packs and the grains of the aquifer. © 2014, National Ground Water Association.

  12. [In vitro comparison of epidural bacteria filters permeability and screening scanning electron microscopy].

    PubMed

    Sener, Aysin; Erkin, Yuksel; Sener, Alper; Tasdogen, Aydin; Dokumaci, Esra; Elar, Zahide

    2015-01-01

    Epidural catheter bacteria filters are barriers in the patient-controlled analgesia/anaesthesia for preventing contamination at the epidural insertion site. The efficiency of these filters varies according to pore sizes and materials. The bacterial adhesion capability of the two filters was measured in vitro experiment. Adhesion capacities for standard Staphylococcus aureus (ATCC 25923) and Pseudomonas aeruginosa (ATCC 27853) strains of the two different filters (Portex and Rusch) which have the same pore size were examined. Bacterial suspension of 0.5 Mc Farland was placed in the patient-controlled analgesia pump, was filtered at a speed of 5mL/h. in continuous infusion for 48h and accumulated in bottle. The two filters were compared with colony counts of bacteria in the filters and bottles. At the same time, the filters and adhered bacteria were monitored by scanning electron microscope. Electron microscopic examination of filters showed that the Portex filter had a granular and the Rusch filter fibrillary structure. Colony counting from the catheter and bottle showed that both of the filters have significant bacterial adhesion capability (p<0.001). After the bacteria suspension infusion, colony countings showed that the Portex filter was more efficient (p<0.001). There was not any difference between S. aureus and P. aeruginosa bacteria adhesion. In the SEM monitoring after the infusion, it was physically shown that the bacteria were adhered efficiently by both of the filters. The granular structured filter was found statistically and significantly more successful than the fibrial. Although the pore sizes of the filters were same - of which structural differences shown by SEM were the same - it would not be right to attribute the changes in the efficiencies to only structural differences. Using microbiological and physical proofs with regard to efficiency at the same time has been another important aspect of this experiment. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  13. In vitro comparison of epidural bacteria filters permeability and screening scanning electron microscopy.

    PubMed

    Sener, Aysin; Erkin, Yuksel; Sener, Alper; Tasdogen, Aydin; Dokumaci, Esra; Elar, Zahide

    2015-01-01

    Epidural catheter bacteria filters are barriers in the patient-controlled analgesia/anaesthesia for preventing contamination at the epidural insertion site. The efficiency of these filters varies according to pore sizes and materials. The bacterial adhesion capability of the two filters was measured in vitro experiment. Adhesion capacities for standard Staphylococcus aureus (ATCC 25923) and Pseudomonas aeruginosa (ATCC 27853) strains of the two different filters (Portex and Rusch) which have the same pore size were examined. Bacterial suspension of 0.5 Mc Farland was placed in the patient-controlled analgesia pump, was filtered at a speed of 5 mL/h. in continuous infusion for 48 h and accumulated in bottle. The two filters were compared with colony counts of bacteria in the filters and bottles. At the same time, the filters and adhered bacteria were monitored by scanning electron microscope. Electron microscopic examination of filters showed that the Portex filter had a granular and the Rusch filter fibrillary structure. Colony counting from the catheter and bottle showed that both of the filters have significant bacterial adhesion capability (p<0.001). After the bacteria suspension infusion, colony countings showed that the Portex filter was more efficient (p<0.001). There was not any difference between S. aureus and P. aeruginosa bacteria adhesion. In the SEM monitoring after the infusion, it was physically shown that the bacteria were adhered efficiently by both of the filters. The granular structured filter was found statistically and significantly more successful than the fibrial. Although the pore sizes of the filters were same - of which structural differences shown by SEM were the same - it would not be right to attribute the changes in the efficiencies to only structural differences. Using microbiological and physical proofs with regard to efficiency at the same time has been another important aspect of this experiment. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  14. Methodology for Modeling the Microbial Contamination of Air Filters

    PubMed Central

    Joe, Yun Haeng; Yoon, Ki Young; Hwang, Jungho

    2014-01-01

    In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter. PMID:24523908

  15. High performance incandescent lighting using a selective emitter and nanophotonic filters

    NASA Astrophysics Data System (ADS)

    Leroy, Arny; Bhatia, Bikram; Wilke, Kyle; Ilic, Ognjen; Soljačić, Marin; Wang, Evelyn N.

    2017-09-01

    Previous approaches for improving the efficiency of incandescent light bulbs (ILBs) have relied on tailoring the emitted spectrum using cold-side interference filters that reflect the infrared energy back to the emitter while transmitting the visible light. While this approach has, in theory, potential to surpass light-emitting diodes (LEDs) in terms of luminous efficiency while conserving the excellent color rendering index (CRI) inherent to ILBs, challenges such as low view factor between the emitter and filter, high emitter (>2800 K) and filter temperatures and emitter evaporation have significantly limited the maximum efficiency. In this work, we first analyze the effect of non-idealities in the cold-side filter, the emitter and the view factor on the luminous efficiency. Second, we theoretically and experimentally demonstrate that the loss in efficiency associated with low view factors can be minimized by using a selective emitter (e.g., high emissivity in the visible and low emissivity in the infrared) with a filter. Finally, we discuss the challenges in achieving a high performance and long-lasting incandescent light source including the emitter and filter thermal stability as well as emitter evaporation.

  16. The Influence of Grain Refiners on the Efficiency of Ceramic Foam Filters

    NASA Astrophysics Data System (ADS)

    Towsey, Nicholas; Schneider, Wolfgang; Krug, Hans-Peter; Hardman, Angela; Keegan, Neil J.

    An extensive program of work has been carried out to evaluate the efficiency of ceramic foam filters under carefully controlled conditions. Work reported at previous TMS meetings showed that in the absence of grain refiners, ceramic foam filters have the capacity for high filtration efficiency and consistent, reliable performance. The current phase of the investigation focuses on the impact grain refiner additions have on filter performance. The high filtration efficiencies obtained using 50 or 80ppi CFF's in the absence of grain refiners diminish when Al-3%Ti-1%B grain refiners are added. This, together with the impact of incoming inclusion loading on filter performance and the level of grain refiner addition are considered in detail. The new generation Al-3%Ti-0.15%C grain refiner has also been included. At typical addition levels (1kg/tonne) the effect on filter efficiency is similar to that for TiB2based grain refiners. The work was again conducted on a production scale using AA1050 alloy. Metal quality was determined using LiMCA and PoDFA. Spent filters were also analysed.

  17. In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of sub-micron aerosols and high water repellency

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zong, Yichen; Zhang, Yingying; Yang, Mengmeng; Zhang, Rufan; Li, Shuiqing; Wei, Fei

    2013-03-01

    We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols. Moreover, the CNT/QF filters show high water repellency, implying their superiority for applications in humid conditions.We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols. Moreover, the CNT/QF filters show high water repellency, implying their superiority for applications in humid conditions. Electronic supplementary information (ESI) available: Schematic of the synthesis process of the CNT/QF filter; typical size distribution of atomized polydisperse NaCl aerosols used for air filtration testing; images of a QF filter and a CNT/QF filter; SEM image of a CNT/QF filter after 5 minutes of sonication in ethanol; calculation of porosity and filter specific area. See DOI: 10.1039/c3nr34325a

  18. Efficiency of different air filter types for pig facilities at laboratory scale

    PubMed Central

    Wenke, Cindy; Pospiech, Janina; Reutter, Tobias; Truyen, Uwe

    2017-01-01

    Air filtration has been shown to be efficient in reducing pathogen burden in circulating air. We determined at laboratory scale the retention efficiency of different air filter types either composed of a prefilter (EU class G4) and a secondary fiberglass filter (EU class F9) or consisting of a filter mat (EU class M6 and F8-9). Four filter prototypes were tested for their capability to remove aerosol containing equine arteritis virus (EAV), porcine reproductive and respiratory syndrome virus (PRRSV), bovine enterovirus 1 (BEV), Actinobacillus pleuropneumoniae (APP), and Staphylococcus (S.) aureus from air. Depending on the filter prototype and utilisation, the airflow was set at 1,800 m3/h (combination of upstream prefilter and fiberglass filter) or 80 m3/h (filter mat). The pathogens were aerosolized and their concentration was determined in front of and behind the filter by culture or quantitative real-time RT-PCR. Furthermore, survival of the pathogens over time in the filter material was determined. Bacteria were most efficiently filtered with a reduction rate of up to 99.9% depending on the filter used. An approximately 98% reduction was achieved for the viruses tested. Viability or infectivity of APP or PRRSV in the filter material decreased below the detection limit after 4 h and 24 h, respectively, whereas S. aureus was still culturable after 4 weeks. Our results demonstrate that pathogens can efficiently be reduced by air filtration. Consequently, air filtration combined with other strict biosecurity measures markedly reduces the risk of introducing airborne transmitted pathogens to animal facilities. In addition, air filtration might be useful in reducing bioaerosols within a pig barn, hence improving respiratory health of pigs. PMID:29028843

  19. Efficiency of different air filter types for pig facilities at laboratory scale.

    PubMed

    Wenke, Cindy; Pospiech, Janina; Reutter, Tobias; Truyen, Uwe; Speck, Stephanie

    2017-01-01

    Air filtration has been shown to be efficient in reducing pathogen burden in circulating air. We determined at laboratory scale the retention efficiency of different air filter types either composed of a prefilter (EU class G4) and a secondary fiberglass filter (EU class F9) or consisting of a filter mat (EU class M6 and F8-9). Four filter prototypes were tested for their capability to remove aerosol containing equine arteritis virus (EAV), porcine reproductive and respiratory syndrome virus (PRRSV), bovine enterovirus 1 (BEV), Actinobacillus pleuropneumoniae (APP), and Staphylococcus (S.) aureus from air. Depending on the filter prototype and utilisation, the airflow was set at 1,800 m3/h (combination of upstream prefilter and fiberglass filter) or 80 m3/h (filter mat). The pathogens were aerosolized and their concentration was determined in front of and behind the filter by culture or quantitative real-time RT-PCR. Furthermore, survival of the pathogens over time in the filter material was determined. Bacteria were most efficiently filtered with a reduction rate of up to 99.9% depending on the filter used. An approximately 98% reduction was achieved for the viruses tested. Viability or infectivity of APP or PRRSV in the filter material decreased below the detection limit after 4 h and 24 h, respectively, whereas S. aureus was still culturable after 4 weeks. Our results demonstrate that pathogens can efficiently be reduced by air filtration. Consequently, air filtration combined with other strict biosecurity measures markedly reduces the risk of introducing airborne transmitted pathogens to animal facilities. In addition, air filtration might be useful in reducing bioaerosols within a pig barn, hence improving respiratory health of pigs.

  20. A resolved two-way coupled CFD/6-DOF approach for predicting embolus transport and the embolus-trapping efficiency of IVC filters.

    PubMed

    Aycock, Kenneth I; Campbell, Robert L; Manning, Keefe B; Craven, Brent A

    2017-06-01

    Inferior vena cava (IVC) filters are medical devices designed to provide a mechanical barrier to the passage of emboli from the deep veins of the legs to the heart and lungs. Despite decades of development and clinical use, IVC filters still fail to prevent the passage of all hazardous emboli. The objective of this study is to (1) develop a resolved two-way computational model of embolus transport, (2) provide verification and validation evidence for the model, and (3) demonstrate the ability of the model to predict the embolus-trapping efficiency of an IVC filter. Our model couples computational fluid dynamics simulations of blood flow to six-degree-of-freedom simulations of embolus transport and resolves the interactions between rigid, spherical emboli and the blood flow using an immersed boundary method. Following model development and numerical verification and validation of the computational approach against benchmark data from the literature, embolus transport simulations are performed in an idealized IVC geometry. Centered and tilted filter orientations are considered using a nonlinear finite element-based virtual filter placement procedure. A total of 2048 coupled CFD/6-DOF simulations are performed to predict the embolus-trapping statistics of the filter. The simulations predict that the embolus-trapping efficiency of the IVC filter increases with increasing embolus diameter and increasing embolus-to-blood density ratio. Tilted filter placement is found to decrease the embolus-trapping efficiency compared with centered filter placement. Multiple embolus-trapping locations are predicted for the IVC filter, and the trapping locations are predicted to shift upstream and toward the vessel wall with increasing embolus diameter. Simulations of the injection of successive emboli into the IVC are also performed and reveal that the embolus-trapping efficiency decreases with increasing thrombus load in the IVC filter. In future work, the computational tool could be used to investigate IVC filter design improvements, the effect of patient anatomy on embolus transport and IVC filter embolus-trapping efficiency, and, with further development and validation, optimal filter selection and placement on a patient-specific basis.

  1. PHYSICAL EFFECTS OCCURRING DURING GENERATION AND AMPLIFICATION OF LASER RADIATION: Enhancement of the efficiency of flashlamp-pumped lasers by conversion of the spectral composition of the exciting radiation

    NASA Astrophysics Data System (ADS)

    Levin, M. B.; Cherkasov, A. S.

    1989-02-01

    An account is given of the published investigations of ways of increasing the efficiency of flashlamp-pumped lasers by frequency conversion of the exciting radiation with the aid of luminescent filters. An analysis is made of the method for calculating the efficiency of luminescent filters absorbing short-wavelength radiation and reemitting it in the absorption region of the active medium. It is shown that the use of rhodamine 6G and other phosphors as luminescent filters can double the efficiency of neodymium glass lasers, increase the efficiency of YAG:Nd3+ lasers by a factor of 1.5, and improve the efficiency of lasers activated with Ti3+ by more than an order of magnitude. The use of luminescent filters in dye lasers can double the efficiency and make it possible to reach average output powers of hundreds of watts. Promising materials for luminescent filters are considered and margins for increasing their efficiency are analyzed. The main results are reported of studies of plasma pump-spectrum converters and it is shown that promising results can be expected by combining luminescent filters and an optimized plasma converter system in an "optical boiler" enclosure.

  2. Radiological results for samples collected on paired glass- and cellulose-fiber filters at the Sandia complex, Tonopah Test Range, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizell, Steve A.; Shadel, Craig A.

    Airborne particulates are collected at U.S. Department of Energy sites that exhibit radiological contamination on the soil surface to help assess the potential for wind to transport radionuclides from the contamination sites. Collecting these samples was originally accomplished by drawing air through a cellulose-fiber filter. These filters were replaced with glass-fiber filters in March 2011. Airborne particulates were collected side by side on the two filter materials between May 2013 and May 2014. Comparisons of the sample mass and the radioactivity determinations for the side-by-side samples were undertaken to determine if the change in the filter medium produced significant results.more » The differences in the results obtained using the two filter types were assessed visually by evaluating the time series and correlation plots and statistically by conducting a nonparametric matched-pair sign test. Generally, the glass-fiber filters collect larger samples of particulates and produce higher radioactivity values for the gross alpha, gross beta, and gamma spectroscopy analyses. However, the correlation between the radioanalytical results for the glass-fiber filters and the cellulose-fiber filters was not strong enough to generate a linear regression function to estimate the glass-fiber filter sample results from the cellulose-fiber filter sample results.« less

  3. High Efficiency Particulate Air (HEPA) Filter Generation, Characterization, and Disposal Experiences at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffey, D. E.

    2002-02-28

    High Efficiency Particulate Air filtration is an essential component of the containment and ventilation systems supporting the research and development activities at the Oak Ridge National Laboratory. High Efficiency Particulate Air filters range in size from 7.6cm (3 inch) by 10.2 cm (4 inch) cylindrical shape filters to filter array assemblies up to 2.1 m (7 feet) high by 1.5 m (5 feet) wide. Spent filters are grouped by contaminates trapped in the filter media and become one of the components in the respective waste stream. Waste minimization and pollution prevention efforts are applied for both radiological and non-radiological applications.more » Radiological applications include laboratory hoods, glove boxes, and hot cells. High Efficiency Particulate Air filters also are generated from intake or pre-filtering applications, decontamination activities, and asbestos abatement applications. The disposal avenues include sanitary/industrial waste, Resource Conservation and Recovery Act and Toxic Substance Control Act, regulated waste, solid low-level waste, contact handled transuranic, and remote handled transuranic waste. This paper discusses characterization and operational experiences associated with the disposal of the spent filters across multiple applications.« less

  4. High Efficiency, Transparent, Reusable, and Active PM2.5 Filters by Hierarchical Ag Nanowire Percolation Network.

    PubMed

    Jeong, Seongmin; Cho, Hyunmin; Han, Seonggeun; Won, Phillip; Lee, Habeom; Hong, Sukjoon; Yeo, Junyeob; Kwon, Jinhyeong; Ko, Seung Hwan

    2017-07-12

    Air quality has become a major public health issue in Asia including China, Korea, and India. Particulate matters are the major concern in air quality. We present the first environmental application demonstration of Ag nanowire percolation network for a novel, electrical type transparent, reusable, and active PM2.5 air filter although the Ag nanowire percolation network has been studied as a very promising transparent conductor in optoelectronics. Compared with previous particulate matter air filter study using relatively weaker short-range intermolecular force in polar polymeric nanofiber, Ag nanowire percolation network filters use stronger long-range electrostatic force to capture PM2.5, and they are highly efficient (>99.99%), transparent, working on an active mode, low power consumption, antibacterial, and reusable after simple washing. The proposed new particulate matter filter can be applied for a highly efficient, reusable, active and energy efficient filter for wearable electronics application.

  5. Increasing the efficiency of photon collection in LArTPCs: the ARAPUCA light trap

    NASA Astrophysics Data System (ADS)

    Cancelo, G.; Cavanna, F.; Escobar, C. O.; Kemp, E.; Machado, A. A.; Para, A.; Segreto, E.; Totani, D.; Warner, D.

    2018-03-01

    The Liquid Argon Time Projection Chambers (LArTPCs) are a choice for the next generation of large neutrino detectors due to their optimal performance in particle tracking and calorimetry. The detection of Argon scintillation light plays a crucial role in the event reconstruction as well as the time reference for non-beam physics such as supernovae neutrino detection and baryon number violation studies. In this contribution, we present the current R&D work on the ARAPUCA (Argon R&D Advanced Program at UNICAMP), a light trap device to enhance Ar scintillation light collection and thus the overall performance of LArTPCs. The ARAPUCA working principle is based on a suitable combination of dichroic filters and wavelength shifters to achieve a high efficiency in light collection. We discuss the operational principles, the last results of laboratory tests and the application of the ARAPUCA as the alternative photon detection system in the protoDUNE detector.

  6. Evaluation of a novel personal nanoparticle sampler.

    PubMed

    Zhou, Yue; Irshad, Hammad; Tsai, Chuen-Jinn; Hung, Shao-Ming; Cheng, Yung-Sung

    2014-02-01

    This work investigated the performance in terms of collection efficiency and aspiration efficiency of a personal sampler capable of collecting ultrafine particles (nanoparticles) in the occupational environment. This sampler consists of a cyclone for respirable particle classification, micro-orifice impactor stages with an acceleration nozzle to achieve nanoparticle classification and a backup filter to collect nanoparticles. Collection efficiencies of the cyclone and impactor stages were determined using monodisperse polystyrene latex and silver particles, respectively. Calibration of the cyclone and impactor stages showed 50% cut-off diameters of 3.95 μm and 94.7 nm meeting the design requirements. Aspiration efficiencies of the sampler were tested in a wind tunnel with wind speeds of 0.5, 1.0, and 1.5 m s(-1). The test samplers were mounted on a full size mannequin with three orientations toward the wind direction (0°, 90°, and 180°). Monodisperse oleic acid aerosols tagged with sodium fluorescein in the size range of 2 to 10 μm were used in the test. For particles smaller than 2 μm, the fluorescent polystyrene latex particles were generated by using nebulizers. For comparison of the aspiration efficiency, a NIOSH two-stage personal bioaerosol sampler was also tested. Results showed that the orientation-averaged aspiration efficiency for both samplers was close to the inhalable fraction curve. However, the direction of wind strongly affected the aspiration efficiency. The results also showed that the aspiration efficiency was not affected by the ratio of free-stream velocity to the velocity through the sampler orifice. Our evaluation showed that the current design of the personal sampler met the designed criteria for collecting nanoparticles ≤100 nm in occupational environments.

  7. Efficiency of several micro-fiber glass filters for recovery of poliovirus from tape water.

    PubMed Central

    Payment, P; Trudel, M

    1979-01-01

    Micro-fiber glass filters from Gelman, Filterite, Johns-Manville, and Whatman were compared with Millipore membrane filters on the basis of their virus adsorbancy, flow rate, clogging resistance, and virus concentration efficiency by using tap water at 2 nephelometric turbidity units. As virus adsorbants the Johns-Manville D39, Filterite 0.25-micron, Filterite 0.45-micron, and Millipore 0.45-micron filters were the most efficient, retaining more than 99% of the added virus in water at pH 3.5 and 0.0005 M aluminum chloride. The Johns-Manville D79 and D49 filters retained 92 and 96% of the virus, respectively, whereas the Whatman GF-D, Whatman GF-F, Gelman A-E, and Millipore AP-20 filters retained only 28, 78, 56, and 34% of the virus, respectively. The best flow rate and clogging resistance were obtained with the Johns-Manville D79 filter or with this filter acting as a prefilter to the Johns-Manville D49, Johns-Manville D39, or Filterite 0.45-micron filter. Finally, poliovirus experimentally seeded in 20 liters of tape water was recovered from Johns-Manville D79-Johns-Manville D39 or Johns-Manville D79-Filterite 0.45 micron 142-mm filter combinations was a efficiencies of 86 and 85%, respectively. PMID:231414

  8. A multilayer concentric filter device to diminish clogging for separation of particles and microalgae based on size.

    PubMed

    Chen, Chih-Chung; Chen, Yu-An; Liu, Yi-Ju; Yao, Da-Jeng

    2014-04-21

    Microalgae species have great economic importance; they are a source of medicines, health foods, animal feeds, industrial pigments, cosmetic additives and biodiesel. Specific microalgae species collected from the environment must be isolated for examination and further application, but their varied size and culture conditions make their isolation using conventional methods, such as filtration, streaking plate and flow cytometric sorting, labour-intensive and costly. A separation device based on size is one of the most rapid, simple and inexpensive methods to separate microalgae, but this approach encounters major disadvantages of clogging and multiple filtration steps when the size of microalgae varies over a wide range. In this work, we propose a multilayer concentric filter device with varied pore size and is driven by a centrifugation force. The device, which includes multiple filter layers, was employed to separate a heterogeneous population of microparticles into several subpopulations by filtration in one step. A cross-flow to attenuate prospective clogging was generated by altering the rate of rotation instantly through the relative motion between the fluid and the filter according to the structural design of the device. Mixed microparticles of varied size were tested to demonstrate that clogging was significantly suppressed due to a highly efficient separation. Microalgae in a heterogeneous population collected from an environmental soil collection were separated and enriched into four subpopulations according to size in a one step filtration process. A microalgae sample contaminated with bacteria and insect eggs was also tested to prove the decontamination capability of the device.

  9. EFFICIENCY OF THE FILTERS AGAINST RADIOACTIVE AEROSOL. ON THE RADIOACTIVE CONTAMINATION AND ITS REMOVAL (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, T.; Kimura, K.

    1959-12-01

    Dust filters were examined using a radioactive solidaerosol, decay product daughters of Rn/sup 220/. An examination with a thermal precipitator revealed that the major part of particles in the radioactive aerosol were smaller than 0.5 mu in diameter. Twenty-one kinds of filters were tested. The filtering efficiency was highest in asbestos fiber filters. A radioautographic examination revealed that the radioactive substance penetrated as deep as 1.4 to 1.5 mm into the filter layer. (auth)

  10. Comparison of MERV 16 and HEPA filters for cab filtration of underground mining equipment.

    PubMed

    Cecala, A B; Organiscak, J A; Noll, J D; Zimmer, J A

    2016-08-01

    Significant strides have been made in optimizing the design of filtration and pressurization systems used on the enclosed cabs of mobile mining equipment to reduce respirable dust and provide the best air quality to the equipment operators. Considering all of the advances made in this area, one aspect that still needed to be evaluated was a comparison of the efficiencies of the different filters used in these systems. As high-efficiency particulate arrestance (HEPA) filters provide the highest filtering efficiency, the general assumption would be that they would also provide the greatest level of protection to workers. Researchers for the U.S. National Institute for Occupational Safety and Health (NIOSH) speculated, based upon a previous laboratory study, that filters with minimum efficiency reporting value, or MERV rating, of 16 may be a more appropriate choice than HEPA filters in most cases for the mining industry. A study was therefore performed comparing HEPA and MERV 16 filters on two kinds of underground limestone mining equipment, a roof bolter and a face drill, to evaluate this theory. Testing showed that, at the 95-percent confidence level, there was no statistical difference between the efficiencies of the two types of filters on the two kinds of mining equipment. As the MERV 16 filters were less restrictive, provided greater airflow and cab pressurization, cost less and required less-frequent replacement than the HEPA filters, the MERV 16 filters were concluded to be the optimal choice for both the roof bolter and the face drill in this comparative-analysis case study. Another key finding of this study is the substantial improvement in the effectiveness of filtration and pressurization systems when using a final filter design.

  11. Comparison of MERV 16 and HEPA filters for cab filtration of underground mining equipment

    PubMed Central

    Cecala, A.B.; Organiscak, J.A.; Noll, J.D.; Zimmer, J.A.

    2016-01-01

    Significant strides have been made in optimizing the design of filtration and pressurization systems used on the enclosed cabs of mobile mining equipment to reduce respirable dust and provide the best air quality to the equipment operators. Considering all of the advances made in this area, one aspect that still needed to be evaluated was a comparison of the efficiencies of the different filters used in these systems. As high-efficiency particulate arrestance (HEPA) filters provide the highest filtering efficiency, the general assumption would be that they would also provide the greatest level of protection to workers. Researchers for the U.S. National Institute for Occupational Safety and Health (NIOSH) speculated, based upon a previous laboratory study, that filters with minimum efficiency reporting value, or MERV rating, of 16 may be a more appropriate choice than HEPA filters in most cases for the mining industry. A study was therefore performed comparing HEPA and MERV 16 filters on two kinds of underground limestone mining equipment, a roof bolter and a face drill, to evaluate this theory. Testing showed that, at the 95-percent confidence level, there was no statistical difference between the efficiencies of the two types of filters on the two kinds of mining equipment. As the MERV 16 filters were less restrictive, provided greater airflow and cab pressurization, cost less and required less-frequent replacement than the HEPA filters, the MERV 16 filters were concluded to be the optimal choice for both the roof bolter and the face drill in this comparative-analysis case study. Another key finding of this study is the substantial improvement in the effectiveness of filtration and pressurization systems when using a final filter design. PMID:27524838

  12. Apparatus for real-time airborne particulate radionuclide collection and analysis

    DOEpatents

    Smart, John E.; Perkins, Richard W.

    2001-01-01

    An improved apparatus for collecting and analyzing an airborne particulate radionuclide having a filter mounted in a housing, the housing having an air inlet upstream of the filter and an air outlet downstream of the filter, wherein an air stream flows therethrough. The air inlet receives the air stream, the filter collects the airborne particulate radionuclide and permits a filtered air stream to pass through the air outlet. The improvement which permits real time counting is a gamma detecting germanium diode mounted downstream of the filter in the filtered air stream. The gamma detecting germanium diode is spaced apart from a downstream side of the filter a minimum distance for a substantially maximum counting detection while permitting substantially free air flow through the filter and uniform particulate radionuclide deposition on the filter.

  13. Enhanced spectral efficiency using bandwidth switchable SAW filtering for mobile satellite communications systems

    NASA Technical Reports Server (NTRS)

    Peach, Robert; Malarky, Alastair

    1990-01-01

    Currently proposed mobile satellite communications systems require a high degree of flexibility in assignment of spectral capacity to different geographic locations. Conventionally this results in poor spectral efficiency which may be overcome by the use of bandwidth switchable filtering. Surface acoustic wave (SAW) technology makes it possible to provide banks of filters whose responses may be contiguously combined to form variable bandwidth filters with constant amplitude and phase responses across the entire band. The high selectivity possible with SAW filters, combined with the variable bandwidth capability, makes it possible to achieve spectral efficiencies over the allocated bandwidths of greater than 90 percent, while retaining full system flexibility. Bandwidth switchable SAW filtering (BSSF) achieves these gains with a negligible increase in hardware complexity.

  14. MR image reconstruction via guided filter.

    PubMed

    Huang, Heyan; Yang, Hang; Wang, Kang

    2018-04-01

    Magnetic resonance imaging (MRI) reconstruction from the smallest possible set of Fourier samples has been a difficult problem in medical imaging field. In our paper, we present a new approach based on a guided filter for efficient MRI recovery algorithm. The guided filter is an edge-preserving smoothing operator and has better behaviors near edges than the bilateral filter. Our reconstruction method is consist of two steps. First, we propose two cost functions which could be computed efficiently and thus obtain two different images. Second, the guided filter is used with these two obtained images for efficient edge-preserving filtering, and one image is used as the guidance image, the other one is used as a filtered image in the guided filter. In our reconstruction algorithm, we can obtain more details by introducing guided filter. We compare our reconstruction algorithm with some competitive MRI reconstruction techniques in terms of PSNR and visual quality. Simulation results are given to show the performance of our new method.

  15. Evaluation of methods for simultaneous collection and determination of nicotine and polynuclear aromatic hydrocarbons in indoor air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, J.C.; Kuhlman, M.R.; Wilson, N.K.

    1990-05-01

    A study was performed to determine whether one sampling system and one analytical method can be used to collect and measure both polynuclear aromatic hydrocarbons (PAHs) and nicotine. PAH collection efficiencies for both XAD-2 and XAD-4 adsorbents were very similar, but nicotine collection efficiency was greater for XAD-4. Spiked perdeuterated PAHs were retained well in both adsorbents after exposure to more than 300 m{sup 3} of air. A two-step Soxhlet extraction, dichloromethane followed by ethyl acetate, was used to remove nicotine and PAHs from XAD-4. The extract was analyzed by positive chemical ionization or electron impact gas chromatography/mass spectrometry (GC/MS)more » to determine nicotine and PAHs. It is shown that one sampling system (quartz fiber filter and XAD-4 in series) and one analytical method (Soxhlet extraction and GC/MS) can be used for both nicotine and PAHs in indoor.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Keane; Xiao-Chun Shi; Tong-man Ong

    The project staff partnered with Costas Sioutas from the University of Southern California to apply the VACES (Versatile Aerosol Concentration Enhancement System) to a diesel engine test facility at West Virginia University Department of Mechanical Engineering and later the NIOSH Lake Lynn Mine facility. The VACES system was able to allow diesel exhaust particulate matter (DPM) to grow to sufficient particle size to be efficiently collected with the SKC Biosampler impinger device, directly into a suspension of simulated pulmonary surfactant. At the WVU-MAE facility, the concentration of the aerosol was too high to allow efficient use of the VACES concentrationmore » enhancement, although aerosol collection was successful. Collection at the LLL was excellent with the diluted exhaust stream. In excess of 50 samples were collected at the LLL facility, along with matching filter samples, at multiple engine speed and load conditions. Replicate samples were combined and concentration increased using a centrifugal concentrator. Bioassays were negative for all tested samples, but this is believed to be due to insufficient concentration in the final assay suspensions.« less

  17. Experimental investigation of air pressure affecting filtration performance of fibrous filter sheet.

    PubMed

    Xu, Bin; Yu, Xiao; Wu, Ya; Lin, Zhongping

    2017-03-01

    Understanding the effect of air pressure on their filtration performance is important for assessing the effectiveness of fibrous filters under different practical circumstances. The effectiveness of three classes of air filter sheets were investigated in laboratory-based measurements at a wide range of air pressures (60-130 KPa). The filtration efficiency was found most sensitive to the air pressure change at smaller particle sizes. As the air pressure increased from 60 to 130 KPa, significant decrease in filtration efficiency (up to 15%) and increase in pressure drop (up to 90 Pa) were observed. The filtration efficiency of the filter sheet with largest fiber diameter and smallest solid volume fraction was affected most, while the pressure drop of the filter sheet with smallest fiber diameter and largest solid volume fraction was affected most. The effect of air pressure on the filtration efficiency was slightly larger at greater filter face air velocity. However, the effect of air pressure on the pressure drop was negligible. The filtration efficiency and pressure drop were explicitly expressed as functions of the air pressure. Two coefficients were empirically derived and successfully accounted for the effects of air pressure on filtration efficiency and pressure drop.

  18. Characterization of Airborne Particles Collected from Car Engine Air Filters Using SEM and EDX Techniques.

    PubMed

    Heredia Rivera, Birmania; Gerardo Rodriguez, Martín

    2016-10-01

    Particulate matter accumulated on car engine air-filters (CAFs) was examined in order to investigate the potential use of these devices as efficient samplers for collecting street level air that people are exposed to. The morphology, microstructure, and chemical composition of a variety of particles were studied using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). The particulate matter accumulated by the CAFs was studied in two categories; the first was of removed particles by friction, and the second consisted of particles retained on the filters. Larger particles with a diameter of 74-10 µm were observed in the first category. In the second one, the detected particles had a diameter between 16 and 0.7 µm. These particles exhibited different morphologies and composition, indicating mostly a soil origin. The elemental composition revealed the presence of three groups: mineral (clay and asphalt), metallic (mainly Fe), and biological particles (vegetal and animal debris). The palynological analysis showed the presence of pollen grains associated with urban plants. These results suggest that CAFs capture a mixture of atmospheric particles, which can be analyzed in order to monitor urban air. Thus, the continuous availability of large numbers of filters and the retroactivity associated to the car routes suggest that these CAFs are very useful for studying the high traffic zones within a city.

  19. Characterization of Airborne Particles Collected from Car Engine Air Filters Using SEM and EDX Techniques

    PubMed Central

    Heredia Rivera, Birmania; Gerardo Rodriguez, Martín

    2016-01-01

    Particulate matter accumulated on car engine air-filters (CAFs) was examined in order to investigate the potential use of these devices as efficient samplers for collecting street level air that people are exposed to. The morphology, microstructure, and chemical composition of a variety of particles were studied using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). The particulate matter accumulated by the CAFs was studied in two categories; the first was of removed particles by friction, and the second consisted of particles retained on the filters. Larger particles with a diameter of 74–10 µm were observed in the first category. In the second one, the detected particles had a diameter between 16 and 0.7 µm. These particles exhibited different morphologies and composition, indicating mostly a soil origin. The elemental composition revealed the presence of three groups: mineral (clay and asphalt), metallic (mainly Fe), and biological particles (vegetal and animal debris). The palynological analysis showed the presence of pollen grains associated with urban plants. These results suggest that CAFs capture a mixture of atmospheric particles, which can be analyzed in order to monitor urban air. Thus, the continuous availability of large numbers of filters and the retroactivity associated to the car routes suggest that these CAFs are very useful for studying the high traffic zones within a city. PMID:27706087

  20. Measurements of airglow on Maunakea at Gemini Observatory

    NASA Astrophysics Data System (ADS)

    Roth, Katherine C.; Smith, Adam; Stephens, Andrew; Smirnova, Olesja

    2016-07-01

    Gemini Observatory on Maunakea has been collecting optical and infrared science data for almost 15 years. We have begun a program to analyze imaging data from two of the original facility instruments, GMOS and NIRI, in order to measure sky brightness levels in multiple infrared and optical broad-band filters. The present work includes data from mid-2016 back through late-2008. We present measured background levels as a function of several operational quantities (e.g. moon phase, hours from twilight, season). We find that airglow is a significant contributor to background levels in several filters. Gemini is primarily a queue scheduled telescope, with observations being optimally executed in order to provide the most efficient use of telescope time. We find that while most parameters are well-understood, the atmospheric airglow remains challenging to predict. This makes it difficult to schedule observations which require dark skies in these filters, and we suggest improvements to ensure data quality.

  1. a Voxel-Based Filtering Algorithm for Mobile LIDAR Data

    NASA Astrophysics Data System (ADS)

    Qin, H.; Guan, G.; Yu, Y.; Zhong, L.

    2018-04-01

    This paper presents a stepwise voxel-based filtering algorithm for mobile LiDAR data. In the first step, to improve computational efficiency, mobile LiDAR points, in xy-plane, are first partitioned into a set of two-dimensional (2-D) blocks with a given block size, in each of which all laser points are further organized into an octree partition structure with a set of three-dimensional (3-D) voxels. Then, a voxel-based upward growing processing is performed to roughly separate terrain from non-terrain points with global and local terrain thresholds. In the second step, the extracted terrain points are refined by computing voxel curvatures. This voxel-based filtering algorithm is comprehensively discussed in the analyses of parameter sensitivity and overall performance. An experimental study performed on multiple point cloud samples, collected by different commercial mobile LiDAR systems, showed that the proposed algorithm provides a promising solution to terrain point extraction from mobile point clouds.

  2. Aerosol-phase activity of iodine captured from a triiodide resin filter on fine particles containing an infectious virus.

    PubMed

    Heimbuch, B K; Harnish, D A; Balzli, C; Lumley, A; Kinney, K; Wander, J D

    2015-06-01

    To avoid interference by water-iodine disinfection chemistry and measure directly the effect of iodine, captured from a triiodide complex bound to a filter medium, on viability of penetrating viral particles. Aerosols of MS2 coli phage were passed through control P100 or iodinated High-Efficiency Particulate Air media, collected in plastic bags, incubated for 0-10 min, collected in an impinger containing thiosulphate to consume all unreacted iodine, plated and enumerated. Comparison of viable counts demonstrated antimicrobial activity with an apparent half-life for devitalization in tens of seconds; rate of kill decreased at low humidity and free iodine was captured by the bags. The results support the mechanism of near-contact capture earlier proposed; however, the disinfection chemistry in the aerosol phase is very slow on the time scale of inhalation. This study shows that disinfection by filter-bound iodine in the aerosol phase is too slow to be clinically significant in individual respiratory protection, but that it might be of benefit to limit airborne transmission of infections in enclosed areas. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  3. Transient Heating and Thermomechanical Stress Modeling of Ceramic HEPA Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogle, Brandon; Kelly, James; Haslam, Jeffrey

    The purpose of this report is to showcase an initial finite-element analysis model of a ceramic High-Efficiency Particulate (HEPA) Air filter design. Next generation HEPA filter assemblies are being developed at LLNL to withstand high-temperature fire scenarios by use of ceramics and advanced materials. The filters are meant for use in radiological and nuclear facilities, and are required to survive 500°C fires over an hour duration. During such conditions, however, collecting data under varying parameters can be challenging; therefore, a Finite Element Analysis model of the filter was conducted using COMSOL ® Multiphysics to analyze the effects of fire. Finitemore » Element Analysis (FEA) modelling offers several opportunities: researchers can quickly and easily consider impacts of potential design changes, material selection, and flow characterization on filter performance. Specifically, this model provides stress references for the sealant at high temperatures. Modeling of full filter assemblies was deemed inefficient given the computational requirements, so a section of three tubes from the assembly was modeled. The model looked at the transient heating and thermomechanical stress development during a 500°C air flow at 6 CFM. Significant stresses were found at the ceramic-metal interfaces of the filter, and conservative temperature profiles at locations of interest were plotted. The model can be used for the development of sealants that minimize stresses at the ceramic-metal interface. Further work on the model would include the full filter assembly and consider heat losses to make more accurate predictions.« less

  4. PATHFINDER ATOMIC POWER PLANT. FILTRATION OF ALUMINUM CORROSION PRODUCTS PRODUCED IN HIGH-TEMPERATURE, HIGH PURITY WATER SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, J.H.; Davie, R.L.

    1961-05-01

    Filter tests were conducted to determine the most suitable filter for removing large quantities of aluminum corrosion product (boehmite) from reactor water. Filters tested included the following: wire-wound, sintered filter elements, sintered ceramic fllter elements, cotton stringwound filter elements, felted-cotton filter elements, cation resin, adsorption resin, diatomaceous earth precoat filter, and a wood-cellulose precoat filter. Parameters measured were flow rate, filter-influent and -effluent boehmite concentration, pressure drop, and final filter load. The pressure drop and efficiency of the filters was correlated with boehmite load. Boehmite deposits on filters as a nonporous gelatinous cake, and causes a rapidly increasing pressure drop.more » Tests indicate that the optimum load with filter elements and precoat filters is achieved at a pressure drop of 25 psi. Very little additional load can be obtained by operating to a higher pressure drop. Of the filters tested, the precoat filter snd 40 to 60 mesh cation resin were the more effective in removing boehmite. The efficiency of the precoat filter was in excess of 99%, and the efficiency of the cation resin was for the most part in excess of 95%. For various reasons, the other filters were eliminated from final consideration. The test program and available literature indicated that an element type precoat filter using wood cellulose as the precoat media would be most suitable for the proposed application. (auth)« less

  5. The NYC native air sampling pilot project: using HVAC filter data for urban biological incident characterization.

    PubMed

    Ackelsberg, Joel; Leykam, Frederic M; Hazi, Yair; Madsen, Larry C; West, Todd H; Faltesek, Anthony; Henderson, Gavin D; Henderson, Christopher L; Leighton, Terrance

    2011-09-01

    Native air sampling (NAS) is distinguished from dedicated air sampling (DAS) devices (eg, BioWatch) that are deployed to detect aerosol disseminations of biological threat agents. NAS uses filter samples from heating, ventilation, and air conditioning (HVAC) systems in commercial properties for environmental sampling after DAS detection of biological threat agent incidents. It represents an untapped, scientifically sound, efficient, widely distributed, and comparably inexpensive resource for postevent environmental sampling. Calculations predict that postevent NAS would be more efficient than environmental surface sampling by orders of magnitude. HVAC filter samples could be collected from pre-identified surrounding NAS facilities to corroborate the DAS alarm and delineate the path taken by the bioaerosol plume. The New York City (NYC) Native Air Sampling Pilot Project explored whether native air sampling would be acceptable to private sector stakeholders and could be implemented successfully in NYC. Building trade associations facilitated outreach to and discussions with property owners and managers, who expedited contact with building managers of candidate NAS properties that they managed or owned. Nominal NAS building requirements were determined; procedures to identify and evaluate candidate NAS facilities were developed; data collection tools and other resources were designed and used to expedite candidate NAS building selection and evaluation in Manhattan; and exemplar environmental sampling playbooks for emergency responders were completed. In this sample, modern buildings with single or few corporate tenants were the best NAS candidate facilities. The Pilot Project successfully demonstrated that in one urban setting a native air sampling strategy could be implemented with effective public-private collaboration.

  6. Development of a high efficiency personal/environmental radon dosimeter using polycarbonate detectors.

    PubMed

    Taheri, M; Jafarizadeh, M; Baradaran, S; Zainali, Gh

    2006-12-01

    Passive radon dosimeters, based on alpha particle etched track detectors, are widely used for the assessment of radon exposure. These methods are often applied in radon dosimetry for long periods of time. In this research work, we have developed a highly efficient method of personal/environmental radon dosimetry that is based upon the detection of alpha particles from radon daughters, (218)Po and (214)Po, using a polycarbonate detector (PC). The radon daughters are collected on the filter surface by passing a fixed flow of air through it and the PC detector, placed at a specified distance from the filter, is simultaneously exposed to alpha particles. After exposure, the latent tracks on the detector are made to appear by means of an electrochemical etching process; these are proportional to the radon dose. The air flow rate and the detector-filter distance are the major factors that can affect the performance of the dosimeter. The results obtained in our experimental investigations have shown that a distance of 1.5 cm between the detector and the filter, an absorber layer of Al with a thickness of 12 microm and an air flow rate of 4 l min(-1) offer the best design parameters for a high efficiency radon dosimeter. Then, the designed dosimeter was calibrated against different values of radon exposures and the obtained sensitivity was found to be 2.1 (tracks cm(-2)) (kBq h m(-3))(-1). The most important advantages of this method are that it is reliable, fast and convenient when used for radon dose assessment. In this paper, the optimized parameters of the dosimeter structure and its calibration procedure are presented and discussed.

  7. Efficient color display using low-absorption in-pixel color filters

    NASA Technical Reports Server (NTRS)

    Wang, Yu (Inventor)

    2000-01-01

    A display system having a non-absorbing and reflective color filtering array and a reflector to improve light utilization efficiency. One implementation of the color filtering array uses a surface plasmon filter having two symmetric metal-dielectric interfaces coupled with each other to produce a transmission optical wave at a surface plasmon resonance wavelength at one interface from a p-polarized input beam on the other interface. Another implementation of the color filtering array uses a metal-film interference filter having two dielectric layers and three metallic films.

  8. Increasing EUV source efficiency via recycling of radiation power

    NASA Astrophysics Data System (ADS)

    Hassanein, Ahmed; Sizyuk, Valeryi; Sizyuk, Tatyana; Johnson, Kenneth C.

    2018-03-01

    EUV source power is critical for advanced lithography, for achieving economical throughput performance and also for minimizing stochastic patterning effects. Power conversion efficiency can be increased by recycling plasma-scattered laser radiation and other out-of-band radiation back to the plasma via retroreflective optics. Radiation both within and outside of the collector light path can potentially be recycled. For recycling within the collector path, the system uses a diffractive collection mirror that concomitantly filters all laser and out-of-band radiation out of the EUV output. In this paper we review the optical design concept for power recycling and present preliminary plasma-physics simulation results showing a potential gain of 60% in EUV conversion efficiency.

  9. Assessing FRET using Spectral Techniques

    PubMed Central

    Leavesley, Silas J.; Britain, Andrea L.; Cichon, Lauren K.; Nikolaev, Viacheslav O.; Rich, Thomas C.

    2015-01-01

    Förster resonance energy transfer (FRET) techniques have proven invaluable for probing the complex nature of protein–protein interactions, protein folding, and intracellular signaling events. These techniques have traditionally been implemented with the use of one or more fluorescence band-pass filters, either as fluorescence microscopy filter cubes, or as dichroic mirrors and band-pass filters in flow cytometry. In addition, new approaches for measuring FRET, such as fluorescence lifetime and acceptor photobleaching, have been developed. Hyperspectral techniques for imaging and flow cytometry have also shown to be promising for performing FRET measurements. In this study, we have compared traditional (filter-based) FRET approaches to three spectral-based approaches: the ratio of acceptor-to-donor peak emission, linear spectral unmixing, and linear spectral unmixing with a correction for direct acceptor excitation. All methods are estimates of FRET efficiency, except for one-filter set and three-filter set FRET indices, which are included for consistency with prior literature. In the first part of this study, spectrofluorimetric data were collected from a CFP–Epac–YFP FRET probe that has been used for intracellular cAMP measurements. All comparisons were performed using the same spectrofluorimetric datasets as input data, to provide a relevant comparison. Linear spectral unmixing resulted in measurements with the lowest coefficient of variation (0.10) as well as accurate fits using the Hill equation. FRET efficiency methods produced coefficients of variation of less than 0.20, while FRET indices produced coefficients of variation greater than 8.00. These results demonstrate that spectral FRET measurements provide improved response over standard, filter-based measurements. Using spectral approaches, single-cell measurements were conducted through hyperspectral confocal microscopy, linear unmixing, and cell segmentation with quantitative image analysis. Results from these studies confirmed that spectral imaging is effective for measuring subcellular, time-dependent FRET dynamics and that additional fluorescent signals can be readily separated from FRET signals, enabling multilabel studies of molecular interactions. PMID:23929684

  10. Assessing FRET using spectral techniques.

    PubMed

    Leavesley, Silas J; Britain, Andrea L; Cichon, Lauren K; Nikolaev, Viacheslav O; Rich, Thomas C

    2013-10-01

    Förster resonance energy transfer (FRET) techniques have proven invaluable for probing the complex nature of protein-protein interactions, protein folding, and intracellular signaling events. These techniques have traditionally been implemented with the use of one or more fluorescence band-pass filters, either as fluorescence microscopy filter cubes, or as dichroic mirrors and band-pass filters in flow cytometry. In addition, new approaches for measuring FRET, such as fluorescence lifetime and acceptor photobleaching, have been developed. Hyperspectral techniques for imaging and flow cytometry have also shown to be promising for performing FRET measurements. In this study, we have compared traditional (filter-based) FRET approaches to three spectral-based approaches: the ratio of acceptor-to-donor peak emission, linear spectral unmixing, and linear spectral unmixing with a correction for direct acceptor excitation. All methods are estimates of FRET efficiency, except for one-filter set and three-filter set FRET indices, which are included for consistency with prior literature. In the first part of this study, spectrofluorimetric data were collected from a CFP-Epac-YFP FRET probe that has been used for intracellular cAMP measurements. All comparisons were performed using the same spectrofluorimetric datasets as input data, to provide a relevant comparison. Linear spectral unmixing resulted in measurements with the lowest coefficient of variation (0.10) as well as accurate fits using the Hill equation. FRET efficiency methods produced coefficients of variation of less than 0.20, while FRET indices produced coefficients of variation greater than 8.00. These results demonstrate that spectral FRET measurements provide improved response over standard, filter-based measurements. Using spectral approaches, single-cell measurements were conducted through hyperspectral confocal microscopy, linear unmixing, and cell segmentation with quantitative image analysis. Results from these studies confirmed that spectral imaging is effective for measuring subcellular, time-dependent FRET dynamics and that additional fluorescent signals can be readily separated from FRET signals, enabling multilabel studies of molecular interactions. © 2013 International Society for Advancement of Cytometry. Copyright © 2013 International Society for Advancement of Cytometry.

  11. Evaluation of sampling and analytical methods for nicotine and polynuclear aromatic hydrocarbon in indoor air. Final report, 1 February 1987-30 March 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, J.C.; Kuhlman, M.R.; Hannan, S.W.

    1987-11-01

    The objective of this project was to evaluate a potential collection medium, XAD-4 resin, for collecting nicotine and polynuclear aromatic hydrocarbon (PAH) and to determine whether one collection system and one analytical method will allow quantification of both compound classes in air. The extraction efficiency study was to determine the extraction method to quantitatively remove nicotine and PAH from XAD-4 resin. The results showed that a two-step Soxhlet extraction consisting of dichloromethane followed by ethyl acetate resulted in the best recoveries for both nicotine and PAH. In the sampling efficiency study, XAD-2 and XAD-4 resin were compared, in parallel, formore » collection of PAH and nicotine. Quartz fiber filters were placed upstream of both adsorbents to collect particles. Prior to sampling, both XAD-2 and XAD-4 traps were spiked with known amounts (2 microgram) of perdeuterated PAH and D3-nicotine. The experiments were performed with cigarette smoking and nonsmoking conditions. The spiked PAH were retained well in both adsorbents after exposure to more than 300 cu. m. of indoor air. The spiked XAD-4 resin gave higher recoveries for D3-nicotine than did the spiked XAD-2 resin. The collection efficiency for PAH for both adsorbents is very similar but higher levels of nicotine were collected on XAD-4 resin.« less

  12. Enhancing search efficiency by means of a search filter for finding all studies on animal experimentation in PubMed

    PubMed Central

    Hooijmans, Carlijn R; Tillema, Alice; Leenaars, Marlies; Ritskes-Hoitinga, Merel

    2010-01-01

    Collecting and analysing all available literature before starting an animal experiment is important and it is indispensable when writing a systematic review (SR) of animal research. Writing such review prevents unnecessary duplication of animal studies and thus unnecessary animal use (Reduction). One of the factors currently impeding the production of ‘high-quality’ SRs in laboratory animal science is the fact that searching for all available literature concerning animal experimentation is rather difficult. In order to diminish these difficulties, we developed a search filter for PubMed to detect all publications concerning animal studies. This filter was compared with the method most frequently used, the PubMed Limit: Animals, and validated further by performing two PubMed topic searches. Our filter performs much better than the PubMed limit: it retrieves, on average, 7% more records. Other important advantages of our filter are that it also finds the most recent records and that it is easy to use. All in all, by using our search filter in PubMed, all available literature concerning animal studies on a specific topic can easily be found and assessed, which will help in increasing the scientific quality and thereby the ethical validity of animal experiments. PMID:20551243

  13. Separation of nanoparticles: Filtration and scavenging from waste incineration plants.

    PubMed

    Förster, Henning; Thajudeen, Thaseem; Funk, Christine; Peukert, Wolfgang

    2016-06-01

    Increased amounts of nanoparticles are applied in products of everyday life and despite material recycling efforts, at the end of their life cycle they are fed into waste incineration plants. This raises the question on the fate of nanoparticles during incineration. In terms of environmental impact the key question is how well airborne nanoparticles are removed by separation processes on their way to the bag house filters and by the existing filtration process based on pulse-jet cleanable fibrous filter media. Therefore, we investigate the scavenging and the filtration of metal nanoparticles under typical conditions in waste incineration plants. The scavenging process is investigated by a population balance model while the nanoparticle filtration experiments are realized in a filter test rig. The results show that depending on the particle sizes, in some cases nearly 80% of the nanoparticles are scavenged by fly ash particles before they reach the bag house filter. For the filtration step dust cakes with a pressure drop of 500Pa or higher are found to be very effective in preventing nanoparticles from penetrating through the filter. Thus, regeneration of the filter must be undertaken with care in order to guarantee highly efficient collection of particles even in the lower nanometre size regime. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Enhancing search efficiency by means of a search filter for finding all studies on animal experimentation in PubMed.

    PubMed

    Hooijmans, Carlijn R; Tillema, Alice; Leenaars, Marlies; Ritskes-Hoitinga, Merel

    2010-07-01

    Collecting and analysing all available literature before starting an animal experiment is important and it is indispensable when writing a systematic review (SR) of animal research. Writing such review prevents unnecessary duplication of animal studies and thus unnecessary animal use (Reduction). One of the factors currently impeding the production of 'high-quality' SRs in laboratory animal science is the fact that searching for all available literature concerning animal experimentation is rather difficult. In order to diminish these difficulties, we developed a search filter for PubMed to detect all publications concerning animal studies. This filter was compared with the method most frequently used, the PubMed Limit: Animals, and validated further by performing two PubMed topic searches. Our filter performs much better than the PubMed limit: it retrieves, on average, 7% more records. Other important advantages of our filter are that it also finds the most recent records and that it is easy to use. All in all, by using our search filter in PubMed, all available literature concerning animal studies on a specific topic can easily be found and assessed, which will help in increasing the scientific quality and thereby the ethical validity of animal experiments.

  15. Paper based Flexible and Conformal SERS Substrate for Rapid Trace Detection on Real-world Surfaces

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srikanth; Lee, Chang; Tian, Limei

    2011-03-01

    One of the important but often overlooked considerations in the design of surface enhanced Raman scattering (SERS) substrates for trace detection is the efficiency of sample collection. Conventional designs based on rigid substrates such as silicon, alumina, and glass resist conformal contact with the surface under investigation, making the sample collection inefficient. We demonstrate a novel SERS substrate based on common filter paper adsorbed with gold nanorods, which allows conformal contact with real-world surfaces, thus dramatically enhancing the sample collection efficiency compared to conventional rigid substrates. We demonstrate the detection of trace amounts of analyte (140 pg spread over 4 cm2) by simply swabbing the surface under investigation with the novel SERS substrate. The hierarchical fibrous structure of paper serves as a 3D vasculature for easy uptake and transport of the analytes to the electromagnetic hot spots in the paper. Simple yet highly efficient and cost effective SERS substrate demonstrated here brings SERS based trace detection closer to real-world applications. We acknowledge the financial support from Center for Materials Innovation at Washington University.

  16. Facile Preparation of Nanostructured, Superhydrophobic Filter Paper for Efficient Water/Oil Separation

    PubMed Central

    Wang, Jianhua; Wong, Jessica X. H.; Kwok, Honoria; Li, Xiaochun; Yu, Hua-Zhong

    2016-01-01

    In this paper, we present a facile and cost-effective method to obtain superhydrophobic filter paper and demonstrate its application for efficient water/oil separation. By coupling structurally distinct organosilane precursors (e.g., octadecyltrichlorosilane and methyltrichlorosilane) to paper fibers under controlled reaction conditions, we have formulated a simple, inexpensive, and efficient protocol to achieve a desirable superhydrophobic and superoleophilic surface on conventional filter paper. The silanized superhydrophobic filter paper showed nanostructured morphology and demonstrated great separation efficiency (up to 99.4%) for water/oil mixtures. The modified filter paper is stable in both aqueous solutions and organic solvents, and can be reused multiple times. The present study shows that our newly developed binary silanization is a promising method of modifying cellulose-based materials for practical applications, in particular the treatment of industrial waste water and ecosystem recovery. PMID:26982055

  17. Developing particulate thin filter using coconut fiber for motor vehicle emission

    NASA Astrophysics Data System (ADS)

    Wardoyo, A. Y. P.; Juswono, U. P.; Riyanto, S.

    2016-03-01

    Amounts of motor vehicles in Indonesia have been recognized a sharply increase from year to year with the increment reaching to 22 % per annum. Meanwhile motor vehicles produce particulate emissions in different sizes with high concentrations depending on type of vehicles, fuels, and engine capacity. Motor Particle emissions are not only to significantly contribute the atmosphric particles but also adverse to human health. In order to reduce the particle emission, it is needed a filter. This study was aimed to develop a thin filter using coconut fiber to reduce particulate emissions for motor vehicles. The filter was made of coconut fibers that were grinded into power and mixed with glues. The filter was tested by the measurements of particle concentrations coming out from the vehicle exhaust directly and the particle concentrations after passing through the filter. The efficiency of the filter was calculated by ratio of the particle concentrations before comming in the filter to the particle conentrations after passing through the filter. The results showed that the efficiency of the filter obtained more than 30 %. The efficiency increases sharply when a number of the filters are arranged paralelly.

  18. Particle bounce in a personal cascade impactor: a field evaluation.

    PubMed

    Hinds, W C; Liu, W C; Froines, J R

    1985-09-01

    The collection characteristics of five types of substrates (collection surfaces) used in personal cascade impactors were evaluated for particle bounce in the laboratory with lead dioxide dust, and in the field with brass pouring fume and brass grinding dust. The substrates tested were uncoated stainless steel, silicon grease-coated stainless steel, oil-saturated Millipore membrane filter, oil-saturated Teflon membrane filter and oil-saturated sintered stainless steel. The use of coated and uncoated stainless steel plates to collect lead dioxide dust produced no difference in measured mass median diameter (MMD); however, with brass grinding dust, there was a 50% decrease in measured MMD when uncoated stainless steel substrates were used, as compared with coated stainless steel substrates. Oil-saturated Millipore membrane surfaces gave consistently lower MMDs than coated stainless steel surfaces. Coated and uncoated stainless steel gave similar MMDs when used to sample brass pouring fume. Oil-saturated Teflon membrane and oil-saturated sintered metal, surfaces for which the collection efficiency is presumed to be independent of the particle loading, gave MMDs similar to those measured for grease-coated stainless steel. The implications of these comparisons are discussed. It is concluded that bounce characteristics are strongly dependent on aerosol material and the suitability of collection surfaces needs to be determined by field evaluation.

  19. A personal sampler for aircraft engine cold start particles: laboratory development and testing.

    PubMed

    Armendariz, Alfredo; Leith, David

    2003-01-01

    Industrial hygienists in the U.S. Air Force are concerned about exposure of their personnel to jet fuel. One potential source of exposure for flightline ground crews is the plume emitted during the start of aircraft engines in extremely cold weather. The purpose of this study was to investigate a personal sampler, a small tube-and-wire electrostatic precipitator (ESP), for assessing exposure to aircraft engine cold start particles. Tests were performed in the laboratory to characterize the sampler's collection efficiency and to determine the magnitude of adsorption and evaporation artifacts. A low-temperature chamber was developed for the artifact experiments so tests could be performed at temperatures similar to actual field conditions. The ESP collected particles from 0.5 to 20 micro m diameter with greater than 98% efficiency at particle concentrations up to 100 mg/m(3). Adsorption artifacts were less than 5 micro g/m(3) when sampling a high concentration vapor stream. Evaporation artifacts were significantly lower for the ESP than for PVC membrane filters across a range of sampling times and incoming vapor concentrations. These tests indicate that the ESP provides more accurate exposure assessment results than traditional filter-based particle samplers when sampling cold start particles produced by an aircraft engine.

  20. Recursive time-varying filter banks for subband image coding

    NASA Technical Reports Server (NTRS)

    Smith, Mark J. T.; Chung, Wilson C.

    1992-01-01

    Filter banks and wavelet decompositions that employ recursive filters have been considered previously and are recognized for their efficiency in partitioning the frequency spectrum. This paper presents an analysis of a new infinite impulse response (IIR) filter bank in which these computationally efficient filters may be changed adaptively in response to the input. The filter bank is presented and discussed in the context of finite-support signals with the intended application in subband image coding. In the absence of quantization errors, exact reconstruction can be achieved and by the proper choice of an adaptation scheme, it is shown that IIR time-varying filter banks can yield improvement over conventional ones.

  1. On optimal infinite impulse response edge detection filters

    NASA Technical Reports Server (NTRS)

    Sarkar, Sudeep; Boyer, Kim L.

    1991-01-01

    The authors outline the design of an optimal, computationally efficient, infinite impulse response edge detection filter. The optimal filter is computed based on Canny's high signal to noise ratio, good localization criteria, and a criterion on the spurious response of the filter to noise. An expression for the width of the filter, which is appropriate for infinite-length filters, is incorporated directly in the expression for spurious responses. The three criteria are maximized using the variational method and nonlinear constrained optimization. The optimal filter parameters are tabulated for various values of the filter performance criteria. A complete methodology for implementing the optimal filter using approximating recursive digital filtering is presented. The approximating recursive digital filter is separable into two linear filters operating in two orthogonal directions. The implementation is very simple and computationally efficient, has a constant time of execution for different sizes of the operator, and is readily amenable to real-time hardware implementation.

  2. 21 CFR 878.5040 - Suction lipoplasty system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... The device consists of a powered suction pump (containing a microbial filter on the exhaust and a microbial in-line filter in the connecting tubing between the collection bottle and the safety trap), collection bottle, cannula, and connecting tube. The microbial filters, tubing, collection bottle, and...

  3. 21 CFR 878.5040 - Suction lipoplasty system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... The device consists of a powered suction pump (containing a microbial filter on the exhaust and a microbial in-line filter in the connecting tubing between the collection bottle and the safety trap), collection bottle, cannula, and connecting tube. The microbial filters, tubing, collection bottle, and...

  4. Evaluation of sampling methods for measuring exposure to volatile inorganic acids in workplace air. Part 1: sampling hydrochloric acid (HCl) and nitric acid (HNO₃) from a test gas atmosphere.

    PubMed

    Howe, Alan; Musgrove, Darren; Breuer, Dietmar; Gusbeth, Krista; Moritz, Andreas; Demange, Martine; Oury, Véronique; Rousset, Davy; Dorotte, Michel

    2011-08-01

    Historically, workplace exposure to the volatile inorganic acids hydrochloric acid (HCl) and nitric acid (HNO(3)) has been determined mostly by collection on silica gel sorbent tubes and analysis of the corresponding anions by ion chromatography (IC). However, HCl and HNO(3) can be present in workplace air in the form of mist as well as vapor, so it is important to sample the inhalable fraction of airborne particles. As sorbent tubes exhibit a low sampling efficiency for inhalable particles, a more suitable method was required. This is the first of two articles on "Evaluation of Sampling Methods for Measuring Exposure to Volatile Inorganic Acids in Workplace Air" and describes collaborative sampling exercises carried out to evaluate an alternative method for sampling HCl and HNO(3) using sodium carbonate-impregnated filters. The second article describes sampling capacity and breakthrough tests. The method was found to perform well and a quartz fiber filter impregnated with 500 μL of 1 M Na(2)CO(3) (10% (m/v) Na(2)CO(3)) was found to have sufficient sampling capacity for use in workplace air measurement. A pre-filter is required to remove particulate chlorides and nitrates that when present would otherwise result in a positive interference. A GSP sampler fitted with a plastic cone, a closed face cassette, or a plastic IOM sampler were all found to be suitable for mounting the pre-filter and sampling filter(s), but care has to be taken with the IOM sampler to ensure that the sampler is tightly closed to avoid leaks. HCl and HNO(3) can react with co-sampled particulate matter on the pre-filter, e.g., zinc oxide, leading to low results, and stronger acids can react with particulate chlorides and nitrates removed by the pre-filter to liberate HCl and HNO(3), which are subsequently collected on the sampling filter, leading to high results. However, although there is this potential for both positive and negative interferences in the measurement, these are unavoidable. The method studied has now been published in ISO 21438-2:2009.

  5. Comparison of denitrifier communities in the biofilms of bioaugmented and non-augmented zeolite-biological aerated filters.

    PubMed

    Bai, Yaohui; Sun, Qinghua; Sun, Renhua; Wen, Donghui; Tang, Xiaoyan

    2012-09-01

    The denitrifier communities of a bioaugmented and non-augmented zeolite-biological aerated filter (Z-BAFs) were investigated and compared because the bioaugmented Z-BAF provided better and more stable treatment efficiency for nitrate and nitrite removal. Terminal restriction fragment length polymorphism (T-RFLP) and reverse transcription T-RFLP (RT-T-RFLP) were applied to analyse the denitrifier community diversity in the biofilm collected from each Z-BAF. The results showed that the bioaugmentation technology favourably changed the indigenous denitrifier community and enhanced denitrification under nitrogen loading shocks. The cDNA clone libraries were developed to explore the active denitrifier community structures of both filters. The results showed that the active denitrifiers in both the bioaugmented and non-bioaugmented Z-BAF belonged to alpha-, beta- and gamma-proteobacteria. However, the sequence of the introduced denitrifier (Paracoccus sp. BW001) was not found in the clone library of the bioaugmented filter, which implied that the removal of nitrate and nitrite was attributed mainly to the indigenous denitrifiers in the adjusted bacterial community in the bioaugmented Z-BAF.

  6. Crumb rubber filtration: a potential technology for ballast water treatment.

    PubMed

    Tang, Zhijian; Butkus, Michael A; Xie, Yuefeng F

    2006-05-01

    The removal of turbidity, particles, phytoplankton and zooplankton in water by crumb rubber filtration was investigated. A substantial reduction was achieved. Of the three variables, filter depth, media size and filtration rate, media size had the most significant influence. Smaller media size favored higher removal efficiency of all targeted matter. There was no apparent relationship between removal efficiency and filter depth. Higher filtration rate resulted in lower removal efficiency and higher head loss. Compared with conventional granular media filters, crumb rubber filters required less backwash, and developed lower head loss. Consequently crumb rubber filters could be run for a longer time or allow a higher filtration rate. The results also indicate that the crumb rubber filtration alone did not achieve the target removal of invasive species. However, crumb rubber filtration could potentially be used as a primary treatment technology to enhance the efficiency of a secondary treatment process (e.g., disinfection).

  7. 29 CFR 1910.134 - Respiratory protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... impact and penetration. High efficiency particulate air (HEPA) filter means a filter that is at least 99... as a high efficiency particulate air (HEPA) filter, or an air-purifying respirator equipped with a... frequency of respirator use (including use for rescue and escape); (C) The expected physical work effort; (D...

  8. 29 CFR 1910.134 - Respiratory protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... impact and penetration. High efficiency particulate air (HEPA) filter means a filter that is at least 99... as a high efficiency particulate air (HEPA) filter, or an air-purifying respirator equipped with a... frequency of respirator use (including use for rescue and escape); (C) The expected physical work effort; (D...

  9. 29 CFR 1910.134 - Respiratory protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... impact and penetration. High efficiency particulate air (HEPA) filter means a filter that is at least 99... as a high efficiency particulate air (HEPA) filter, or an air-purifying respirator equipped with a... frequency of respirator use (including use for rescue and escape); (C) The expected physical work effort; (D...

  10. Efficient Decoding With Steady-State Kalman Filter in Neural Interface Systems

    PubMed Central

    Malik, Wasim Q.; Truccolo, Wilson; Brown, Emery N.; Hochberg, Leigh R.

    2011-01-01

    The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5 ± 0.5 s (mean ± s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25 ± 3 single units by a factor of 7.0 ± 0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems. PMID:21078582

  11. System and Apparatus for Filtering Particles

    NASA Technical Reports Server (NTRS)

    Agui, Juan H. (Inventor); Vijayakumar, Rajagopal (Inventor)

    2015-01-01

    A modular pre-filtration apparatus may be beneficial to extend the life of a filter. The apparatus may include an impactor that can collect a first set of particles in the air, and a scroll filter that can collect a second set of particles in the air. A filter may follow the pre-filtration apparatus, thus causing the life of the filter to be increased.

  12. DCT based interpolation filter for motion compensation in HEVC

    NASA Astrophysics Data System (ADS)

    Alshin, Alexander; Alshina, Elena; Park, Jeong Hoon; Han, Woo-Jin

    2012-10-01

    High Efficiency Video Coding (HEVC) draft standard has a challenging goal to improve coding efficiency twice compare to H.264/AVC. Many aspects of the traditional hybrid coding framework were improved during new standard development. Motion compensated prediction, in particular the interpolation filter, is one area that was improved significantly over H.264/AVC. This paper presents the details of the interpolation filter design of the draft HEVC standard. The coding efficiency improvements over H.264/AVC interpolation filter is studied and experimental results are presented, which show a 4.0% average bitrate reduction for Luma component and 11.3% average bitrate reduction for Chroma component. The coding efficiency gains are significant for some video sequences and can reach up 21.7%.

  13. Large-scale generic test stand for testing of multiple configurations of air filters utilizing a range of particle size distributions

    NASA Astrophysics Data System (ADS)

    Giffin, Paxton K.; Parsons, Michael S.; Unz, Ronald J.; Waggoner, Charles A.

    2012-05-01

    The Institute for Clean Energy Technology (ICET) at Mississippi State University has developed a test stand capable of lifecycle testing of high efficiency particulate air filters and other filters specified in American Society of Mechanical Engineers Code on Nuclear Air and Gas Treatment (AG-1) filters. The test stand is currently equipped to test AG-1 Section FK radial flow filters, and expansion is currently underway to increase testing capabilities for other types of AG-1 filters. The test stand is capable of producing differential pressures of 12.45 kPa (50 in. w.c.) at volumetric air flow rates up to 113.3 m3/min (4000 CFM). Testing is performed at elevated and ambient conditions for temperature and relative humidity. Current testing utilizes three challenge aerosols: carbon black, alumina, and Arizona road dust (A1-Ultrafine). Each aerosol has a different mass median diameter to test loading over a wide range of particles sizes. The test stand is designed to monitor and maintain relative humidity and temperature to required specifications. Instrumentation is implemented on the upstream and downstream sections of the test stand as well as on the filter housing itself. Representative data are presented herein illustrating the test stand's capabilities. Digital images of the filter pack collected during and after testing is displayed after the representative data are discussed. In conclusion, the ICET test stand with AG-1 filter testing capabilities has been developed and hurdles such as test parameter stability and design flexibility overcome.

  14. Emissions During and Real-world Frequency of Heavy-duty Diesel Particulate Filter Regeneration.

    PubMed

    Ruehl, Chris; Smith, Jeremy D; Ma, Yilin; Shields, Jennifer Erin; Burnitzki, Mark; Sobieralski, Wayne; Ianni, Robert; Chernich, Donald J; Chang, M-C Oliver; Collins, John Francis; Yoon, Seungju; Quiros, David; Hu, Shaohua; Dwyer, Harry

    2018-05-15

    Recent tightening of particulate matter (PM) emission standards for heavy-duty engines has spurred the widespread adoption of diesel particulate filters (DPFs), which need to be regenerated periodically to remove trapped PM. The total impact of DPFs therefore depends not only on their filtering efficiency during normal operation, but also on the emissions during and the frequency of regeneration events. We performed active (parked and driving) and passive regenerations on two heavy-duty diesel vehicles (HDDVs), and report the chemical composition of emissions during these events, as well as the efficiency with which trapped PM is converted to gas-phase products. We also collected activity data from 85 HDDVs to determine how often regeneration occurs during real-world operation. PM emitted during regeneration ranged from 0.2 to 16.3 g, and the average time and distance between real-world active regenerations was 28.0 h and 599 miles. These results indicate that regeneration of real-world DPFs does not substantially offset the reduction of PM by DPFs during normal operation. The broad ranges of regeneration frequency per truck (3-100 h and 23-4078 miles) underscore the challenges in designing engines and associated aftertreatments that reduce emissions for all real-world duty cycles.

  15. Near-infrared spectral image analysis of pork marbling based on Gabor filter and wide line detector techniques.

    PubMed

    Huang, Hui; Liu, Li; Ngadi, Michael O; Gariépy, Claude; Prasher, Shiv O

    2014-01-01

    Marbling is an important quality attribute of pork. Detection of pork marbling usually involves subjective scoring, which raises the efficiency costs to the processor. In this study, the ability to predict pork marbling using near-infrared (NIR) hyperspectral imaging (900-1700 nm) and the proper image processing techniques were studied. Near-infrared images were collected from pork after marbling evaluation according to current standard chart from the National Pork Producers Council. Image analysis techniques-Gabor filter, wide line detector, and spectral averaging-were applied to extract texture, line, and spectral features, respectively, from NIR images of pork. Samples were grouped into calibration and validation sets. Wavelength selection was performed on calibration set by stepwise regression procedure. Prediction models of pork marbling scores were built using multiple linear regressions based on derivatives of mean spectra and line features at key wavelengths. The results showed that the derivatives of both texture and spectral features produced good results, with correlation coefficients of validation of 0.90 and 0.86, respectively, using wavelengths of 961, 1186, and 1220 nm. The results revealed the great potential of the Gabor filter for analyzing NIR images of pork for the effective and efficient objective evaluation of pork marbling.

  16. Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide.

    PubMed

    Shinya, Akihiko; Mitsugi, Satoshi; Kuramochi, Eiichi; Notomi, Masaya

    2005-05-30

    We have devised an ultra-small multi-channel drop filter based on a two-port resonant tunneling system in a two-dimensional photonic crystal with a triangular air-hole lattice. This filter does not require careful consideration of the interference process to achieve a high dropping efficiency. First we develop three-port systems based on a two-port resonant tunneling filter. Next we devise a multi-port channel drop filter by cascading these three-port systems. In this paper, we demonstrate a ten-channel drop filter with an 18 mum device size by 2D-FDTD calculation, and a three-port resonant tunneling filter with 65+/- 20 % dropping efficiency by experiment.

  17. Electret filter collects more exhaled albumin than glass condenser: A method comparison based on human study.

    PubMed

    Jia, Ziru; Liu, Hongying; Li, Wang; Xie, Dandan; Cheng, Ke; Pi, Xitian

    2018-02-01

    In recent years, noninvasive diagnosis based on biomarkers in exhaled breath has been extensively studied. The procedure of biomarker collection is a key step. However, the traditional condenser method has low efficacy in collecting nonvolatile compounds especially the protein biomarkers in breath. To solve this deficiency, here we propose an electret filter method.Exhaled breath of 6 volunteers was collected with a glass condenser and an electret filter. The amount of albumin was analyzed. Furthermore, the difference of exhaled albumin between smokers and nonsmokers was evaluated.The electret filter method collected more albumin than the glass condenser method at the same breath volume level (P < .01). Smokers exhaling more albumin than nonsmokers were also observed (P < .01).The electret filter is capable of collecting proteins more effectively than the condenser method. In addition, smokers tend to exhale more albumin than nonsmokers.

  18. Electret filter collects more exhaled albumin than glass condenser

    PubMed Central

    Jia, Ziru; Liu, Hongying; Li, Wang; Xie, Dandan; Cheng, Ke; Pi, Xitian

    2018-01-01

    Abstract In recent years, noninvasive diagnosis based on biomarkers in exhaled breath has been extensively studied. The procedure of biomarker collection is a key step. However, the traditional condenser method has low efficacy in collecting nonvolatile compounds especially the protein biomarkers in breath. To solve this deficiency, here we propose an electret filter method. Exhaled breath of 6 volunteers was collected with a glass condenser and an electret filter. The amount of albumin was analyzed. Furthermore, the difference of exhaled albumin between smokers and nonsmokers was evaluated. The electret filter method collected more albumin than the glass condenser method at the same breath volume level (P < .01). Smokers exhaling more albumin than nonsmokers were also observed (P < .01). The electret filter is capable of collecting proteins more effectively than the condenser method. In addition, smokers tend to exhale more albumin than nonsmokers. PMID:29384875

  19. Apparatus for measuring the decontamination factor of a multiple filter air-cleaning system

    DOEpatents

    Ortiz, John P.

    1986-01-01

    An apparatus for measuring the overall decontamination factor of first and second filters located in a plenum. The first filter separates the plenum's upstream and intermediate chambers. The second filter separates the plenum's intermediate and downstream chambers. The apparatus comprises an aerosol generator that generates a challenge aerosol. An upstream collector collects unfiltered aerosol which is piped to first and second dilution stages and then to a laser aerosol spectrometer. An intermediate collector collects challenge aerosol that penetrates the first filter. The filtered aerosol is piped to the first dilution stage, diluted, and then piped to the laser aerosol spectrometer which detects single particles. A downstream collector collects challenge aerosol that penetrates both filters. The twice-filtered aerosol is piped to the aerosol spectrometer. A pump and several valves control the movement of aerosol within the apparatus.

  20. Apparatus for measuring the decontamination factor of a multiple filter air-cleaning system

    DOEpatents

    Ortiz, J.P.

    1985-07-03

    An apparatus for measuring the overall decontamination factors of first and second filters located in a plenum. The first filter separates the plenum's upstream and intermediate chambers. The second filter separates the plenum's intermediate and downstream chambers. The apparatus comprises an aerosol generator that generates a challenge aerosol. An upstream collector collects unfiltered aerosol which is piped to first and second dilution stages and then to a laser aerosol spectrometer. An intermediate collector collects challenge aerosol that penetrates the first filter. The filtered aerosol is piped to the first dilution stage, diluted, and then piped to the laser aerosol spectrometer which detects single particles. A downstream collector collects challenge aerosol that penetrates both filters. The twice-filtered aerosol is piped to the aerosol spectrometer. A pump and several valves control the movement of aerosol within the apparatus.

  1. All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of a metamorphic InAs Quantum Dot

    PubMed Central

    Muñoz-Matutano, G.; Barrera, D.; Fernández-Pousa, C.R.; Chulia-Jordan, R.; Seravalli, L.; Trevisi, G.; Frigeri, P.; Sales, S.; Martínez-Pastor, J.

    2016-01-01

    New optical fiber based spectroscopic tools open the possibility to develop more robust and efficient characterization experiments. Spectral filtering and light reflection have been used to produce compact and versatile fiber based optical cavities and sensors. Moreover, these technologies would be also suitable to study N-photon correlations, where high collection efficiency and frequency tunability is desirable. We demonstrated single photon emission of a single quantum dot emitting at 1300 nm, using a Fiber Bragg Grating for wavelength filtering and InGaAs Avalanche Photodiodes operated in Geiger mode for single photon detection. As we do not observe any significant fine structure splitting for the neutral exciton transition within our spectral resolution (46 μeV), metamorphic QD single photon emission studied with our all-fiber Hanbury Brown & Twiss interferometer could lead to a more efficient analysis of entangled photon sources at telecom wavelength. This all-optical fiber scheme opens the door to new first and second order interferometers to study photon indistinguishability, entangled photon and photon cross correlation in the more interesting telecom wavelengths. PMID:27257122

  2. Effects of MERV 16 filters and routine work practices on enclosed cabs for reducing respirable dust and DPM exposures in an underground limestone mine

    PubMed Central

    Noll, J.D.; Cecala, A.B.; J.A.Organiscak; Rider, J.P.

    2015-01-01

    An effective technique to minimize miners’ respirable dust and diesel exposure on mobile mining equipment is to place mine operators in enclosed cabs with designed filtration and pressurization systems. Many factors affect the performance of these enclosed cab systems, and one of the most significant factors is the effectiveness of the filtration system. High-efficiency particulate air (HEPA)-type filters are typically used because they are highly efficient at capturing all types and sizes of particles, including those in the submicron range such as diesel particulate matter (DPM). However, in laboratory tests, minimum efficiency reporting value (MERV) 16 filters have proven to be highly efficient for capturing DPM and respirable dust. Also, MERV 16 filters can be less restrictive to cab airflow and less expensive than HEPA filters. To verify their effectiveness in the field, MERV 16 filters were used in the enclosed cab filtration system on a face drill and roof bolting mining machine and tested at an underground limestone mine. Test results showed that DPM and respirable dust concentrations were reduced by more than 90% when the cabs were properly sealed. However, when the cab door was opened periodically throughout the shift, the reduction efficiency of the MERV 16 filters was reduced to 80% on average. PMID:26236044

  3. Trace element geochemistry of volcanic gases and particles from 1983--1984 eruptive episodes of Kilauea volcano

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, B.M.; Finnegan, D.L.; Zoller, W.H.

    1987-12-10

    Compositional data have been obtained for volcanic gases and particles collected from fume emitted at the Pu'u O'o vent on the east rift zone of Kilauea volcano. The samples were collected by pumping fume through a filter pack system consisting of a front stage particulate filter followed by four base-treated filters (/sup 7/LiOH). Particles and condensed phases are trapped on the particulate filter, and acidic gases are collected on the treated filters. The filters are analyzed for 30 elements by instrumental neutron activation analysis. Fume samples were collected from the Pu'u O'o vent for two eruptive episodes: (1) 7 daysmore » after episode 11 (cooling vent samples) and (2) the stage of episode 13 (active vent samples).« less

  4. Changes in collection efficiency in nylon net filter media through magnetic alignment of elongated aerosol particles.

    PubMed

    Lam, Christopher O; Finlay, W H

    2009-10-01

    Fiber aerosols tend to align parallel to surrounding fluid streamlines in shear flows, making their filtration more difficult. However, previous research indicates that composite particles made from cromoglycic acid fibers coated with small nanoscaled magnetite particles can align with an applied magnetic field. The present research explored the effect of magnetically aligning these fibers to increase their filtration. Nylon net filters were challenged with the aerosol fibers, and efficiency tests were performed with and without a magnetic field applied perpendicular to the flow direction. We investigated the effects of varying face velocities, the amount of magnetite material on the aerosol particles, and magnetic field strengths. Findings from the experiments, matched by supporting single-fiber theories, showed significant efficiency increases at the low face velocity of 1.5 cm s(-1) at all magnetite compositions, with efficiencies more than doubling due to magnetic field alignment in certain cases. At a higher face velocity of 5.12 cm s(-1), filtration efficiencies were less affected by the magnetic field alignment being, at most, 43% higher for magnetite weight compositions up to 30%, while at a face velocity of 10.23 cm s(-1) alignment effects were insignificant. In most cases, efficiencies became independent of magnetic field strength above 50 mT, suggesting full alignment of the fibers. The present data suggest that fiber alignment in a magnetic field may warrant applications in the filtration and detection of fibers, such as asbestos.

  5. Fabrication of an anti-viral air filter with SiO₂-Ag nanoparticles and performance evaluation in a continuous airflow condition.

    PubMed

    Joe, Yun Haeng; Woo, Kyoungja; Hwang, Jungho

    2014-09-15

    In this study, SiO2 nanoparticles surface coated with Ag nanoparticles (SA particles) were fabricated to coat a medium air filter. The pressure drop, filtration efficiency, and anti-viral ability of the filter were evaluated against aerosolized bacteriophage MS2 in a continuous air flow condition. A mathematical approach was developed to measure the anti-viral ability of the filter with various virus deposition times. Moreover, two quality factors based on the anti-viral ability of the filter, and a traditional quality factor based on filtration efficiency, were calculated. The filtration efficiency and pressure drop increased with decreasing media velocity and with increasing SA particle coating level. The anti-viral efficiency also increased with increasing SA particle coating level, and decreased by with increasing virus deposition time. Consequently, SA particle coating on a filter does not have significant effects on filtration quality, and there is an optimal coating level to produce the highest anti-viral quality. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Method of concurrently filtering particles and collecting gases

    DOEpatents

    Mitchell, Mark A; Meike, Annemarie; Anderson, Brian L

    2015-04-28

    A system for concurrently filtering particles and collecting gases. Materials are be added (e.g., via coating the ceramic substrate, use of loose powder(s), or other means) to a HEPA filter (ceramic, metal, or otherwise) to collect gases (e.g., radioactive gases such as iodine). The gases could be radioactive, hazardous, or valuable gases.

  7. Spectrum splitting metrics and effect of filter characteristics on photovoltaic system performance.

    PubMed

    Russo, Juan M; Zhang, Deming; Gordon, Michael; Vorndran, Shelby; Wu, Yuechen; Kostuk, Raymond K

    2014-03-10

    During the past few years there has been a significant interest in spectrum splitting systems to increase the overall efficiency of photovoltaic solar energy systems. However, methods for comparing the performance of spectrum splitting systems and the effects of optical spectral filter design on system performance are not well developed. This paper addresses these two areas. The system conversion efficiency is examined in detail and the role of optical spectral filters with respect to the efficiency is developed. A new metric termed the Improvement over Best Bandgap is defined which expresses the efficiency gain of the spectrum splitting system with respect to a similar system that contains the highest constituent single bandgap photovoltaic cell. This parameter indicates the benefit of using the more complex spectrum splitting system with respect to a single bandgap photovoltaic system. Metrics are also provided to assess the performance of experimental spectral filters in different spectrum splitting configurations. The paper concludes by using the methodology to evaluate spectrum splitting systems with different filter configurations and indicates the overall efficiency improvement that is possible with ideal and experimental designs.

  8. Performance of biomorphic Silicon Carbide as particulate filter in diesel boilers.

    PubMed

    Orihuela, M Pilar; Gómez-Martín, Aurora; Becerra, José A; Chacartegui, Ricardo; Ramírez-Rico, Joaquín

    2017-12-01

    Biomorphic Silicon Carbide (bioSiC) is a novel porous ceramic material with excellent mechanical and thermal properties. Previous studies have demonstrated that it may be a good candidate for its use as particle filter media of exhaust gases at medium or high temperature. In order to determine the filtration efficiency of biomorphic Silicon Carbide, and its adequacy as substrate for diesel particulate filters, different bioSiC-samples have been tested in the flue gases of a diesel boiler. For this purpose, an experimental facility to extract a fraction of the boiler exhaust flow and filter it under controlled conditions has been designed and built. Several filter samples with different microstructures, obtained from different precursors, have been tested in this bench. The experimental campaign was focused on the measurement of the number and size of particles before and after placing the samples. Results show that the initial efficiency of filters made from natural precursors is severely determined by the cutting direction and associated microstructure. In biomorphic Silicon Carbide derived from radially cut wood, the initial efficiency of the filter is higher than 95%. Nevertheless, when the cut of the wood is axial, the efficiency depends on the pore size and the permeability, reaching in some cases values in the range 70-90%. In this case, the presence of macropores in some of the samples reduces their efficiency as particle traps. In continuous operation, the accumulation of particles within the porous media leads to the formation of a soot cake, which improves the efficiency except in the case when extra-large pores exist. For all the samples, after a few operation cycles, capture efficiency was higher than 95%. These experimental results show the potential for developing filters for diesel boilers based on biomorphic Silicon Carbide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Design and Development of an Electrostatic Screen Battery for Emission Control (ESBEC)

    PubMed Central

    Han, Taewon; Mainelis, Gediminas

    2017-01-01

    Current diesel particulate filters (DPFs) can effectively capture the exhaust particles, but they add to engine backpressure and accumulate particles during their operation, which results in the need to regenerate the DPFs by burning off the collected particles periodically. This regeneration results in aerosol emissions, especially in the 10–30 nanometer size range and contributes to ultrafine particle pollution. In this research, we designed and developed a prototype of a novel diesel exhaust control device: the Electrostatic Screen Battery for Emissions Control (ESBEC). The device features high particle collection efficiency without adding to the exhaust backpressure and without the need for thermal regeneration of the collected particles. The ESBEC consists of a series of metal mesh screens coated with a superhydrophobic substance and an integrated carbon fiber ionizer to charge the incoming particles. Multiple pairs of screens (e.g., 5 pairs) are arranged in a battery, in which one screen of each pair is supplied with high voltage, and the other is grounded, producing electrostatic field produced across the screens. The application of a superhydrophobic coating onto the screens allows easy removal of the collected particles using liquid without the need for thermal regeneration. The current prototypes of the device were tested with fluorescent polystyrene latex (PSL) particles of 0.2 and 1.2 μm in size and at 25 and 105 L/min sampling flow rates. The average collection efficiency was ~87% for 0.2 μm and ~95% for 1.2 μm PSL particles. In addition, the ESBEC was tested with actual diesel exhaust particles; here its performance was verified by visually inspecting deposition of particles on an after-filter with the device ON and OFF. In the next stages of this work, the ESBEC will be challenged with diesel exhaust at different mass concentrations and for different collection time periods. PMID:28983124

  10. Design and Development of an Electrostatic Screen Battery for Emission Control (ESBEC).

    PubMed

    Han, Taewon; Mainelis, Gediminas

    2017-05-01

    Current diesel particulate filters (DPFs) can effectively capture the exhaust particles, but they add to engine backpressure and accumulate particles during their operation, which results in the need to regenerate the DPFs by burning off the collected particles periodically. This regeneration results in aerosol emissions, especially in the 10-30 nanometer size range and contributes to ultrafine particle pollution. In this research, we designed and developed a prototype of a novel diesel exhaust control device: the Electrostatic Screen Battery for Emissions Control (ESBEC). The device features high particle collection efficiency without adding to the exhaust backpressure and without the need for thermal regeneration of the collected particles. The ESBEC consists of a series of metal mesh screens coated with a superhydrophobic substance and an integrated carbon fiber ionizer to charge the incoming particles. Multiple pairs of screens (e.g., 5 pairs) are arranged in a battery, in which one screen of each pair is supplied with high voltage, and the other is grounded, producing electrostatic field produced across the screens. The application of a superhydrophobic coating onto the screens allows easy removal of the collected particles using liquid without the need for thermal regeneration. The current prototypes of the device were tested with fluorescent polystyrene latex (PSL) particles of 0.2 and 1.2 μm in size and at 25 and 105 L/min sampling flow rates. The average collection efficiency was ~87% for 0.2 μm and ~95% for 1.2 μm PSL particles. In addition, the ESBEC was tested with actual diesel exhaust particles; here its performance was verified by visually inspecting deposition of particles on an after-filter with the device ON and OFF. In the next stages of this work, the ESBEC will be challenged with diesel exhaust at different mass concentrations and for different collection time periods.

  11. Role of the Filters in the Formation and Stabilization of Semiquinone Radicals Collected from Cigarette Smoke

    PubMed Central

    Maskos, Zofia; Dellinger, Barry

    2013-01-01

    The fractional pyrolysis of Bright tobacco was performed in nitrogen atmosphere over the temperature range of 240 – 510 °C in a specially constructed, high temperature flow reactor system. Electron paramagnetic resonance (EPR) spectroscopy was used to analyze the free radicals in the initially produced total particular matter (TPM) and in TPM after exposure to ambient air (aging). Different filters have been used to collect TPM from tobacco smoke: cellulosic, cellulose nitrate, cellulose acetate, nylon, Teflon and Cambridge. The collection of the primary radicals (measured immediately after collection of TPM on filters), the formation and stabilization of the secondary radicals (defined as radicals formed during aging of TPM samples on the filters) depend significantly on the material of the filter. A mechanistic explanation about different binding capability of the filters decreasing in the order: cellulosic < cellulose nitrate < cellulose acetate < nylon ~ teflon is presented. Different properties were observed for the Cambridge filter. Specific care must be taken using the filters for identification of radicals from tobacco smoke to avoid artifacts in each case. PMID:24265513

  12. Increasing the efficiency of photon collection in LArTPCs: the ARAPUCA light trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cancelo, G.; Cavanna, F.; Escobar, C. O.

    The Liquid Argon Time Projection Chambers (LArTPCs) are a choice for the next generation of large neutrino detectors due to their optimal performance in particle tracking and calorimetry. The detection of Argon scintillation light plays a crucial role in the event reconstruction as well as the time reference for non-beam physics such as supernovae neutrino detection and baryon number violation studies. Here in this contribution, we present the current R&D work on the ARAPUCA (Argon R&D Advanced Program at UNICAMP), a light trap device to enhance Ar scintillation light collection and thus the overall performance of LArTPCs. The ARAPUCA workingmore » principle is based on a suitable combination of dichroic filters and wavelength shifters to achieve a high efficiency in light collection. We discuss the operational principles, the last results of laboratory tests and the application of the ARAPUCA as the alternative photon detection system in the protoDUNE detector.« less

  13. Evaluation of methods for simultaneous collection and determination of nicotine and polynuclear aromatic hydrocarbons in indoor air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, J.C.; Kuhlman, M.R.; Wilson, N.K.

    1990-01-01

    A study was performed to determine whether one sampling system and one analytical method can be used to measure both polynuclear aromatic hydrocarbons (PAH) and nicotine. The PAH collection efficiencies for both XAD-2 and XAD-4 adsorbents are very similar, but the nicotine collection efficiency was greater for XAD-4. The spiked perdeuterated PAH were retained well in both adsorbents after exposure to more than 300 cu m of air. A two-step Soxhlet extraction, dichloromethane followed by ethylacetate, was used to remove nicotine and PAH from XAD-4. The extract was analyzed by positive chemical ionization or electron impact gas chromatography/mass spectrometry (GC/MS)more » to determine nicotine and PAH. It is shown that one sampling system (quartz fiber filter and XAD-4 in series) and one analytical method (Soxhlet extraction and GC/MS) can be used to measure both nicotine and PAH in indoor air.« less

  14. Increasing the efficiency of photon collection in LArTPCs: the ARAPUCA light trap

    DOE PAGES

    Cancelo, G.; Cavanna, F.; Escobar, C. O.; ...

    2018-03-26

    The Liquid Argon Time Projection Chambers (LArTPCs) are a choice for the next generation of large neutrino detectors due to their optimal performance in particle tracking and calorimetry. The detection of Argon scintillation light plays a crucial role in the event reconstruction as well as the time reference for non-beam physics such as supernovae neutrino detection and baryon number violation studies. Here in this contribution, we present the current R&D work on the ARAPUCA (Argon R&D Advanced Program at UNICAMP), a light trap device to enhance Ar scintillation light collection and thus the overall performance of LArTPCs. The ARAPUCA workingmore » principle is based on a suitable combination of dichroic filters and wavelength shifters to achieve a high efficiency in light collection. We discuss the operational principles, the last results of laboratory tests and the application of the ARAPUCA as the alternative photon detection system in the protoDUNE detector.« less

  15. Micron-pore-sized metallic filter tube membranes for filtration of particulates and water purification.

    PubMed

    Phelps, T J; Palumbo, A V; Bischoff, B L; Miller, C J; Fagan, L A; McNeilly, M S; Judkins, R R

    2008-07-01

    Robust filtering techniques capable of efficiently removing particulates and biological agents from water or air suffer from plugging, poor rejuvenation, low permeance, and high backpressure. Operational characteristics of pressure-driven separations are in part controlled by the membrane pore size, charge of particulates, transmembrane pressure and the requirement for sufficient water flux to overcome fouling. With long term use filters decline in permeance due to filter-cake plugging of pores, fouling, or filter deterioration. Though metallic filter tube development at ORNL has focused almost exclusively on gas separations, a small study examined the applicability of these membranes for tangential filtering of aqueous suspensions of bacterial-sized particles. A mixture of fluorescent polystyrene microspheres ranging in size from 0.5 to 6 microm in diameter simulated microorganisms in filtration studies. Compared to a commercial filter, the ORNL 0.6 microm filter averaged approximately 10-fold greater filtration efficiency of the small particles, several-fold greater permeance after considerable use and it returned to approximately 85% of the initial flow upon backflushing versus 30% for the commercial filter. After filtering several liters of the particle-containing suspension, the ORNL composite filter still exhibited greater than 50% of its initial permeance while the commercial filter had decreased to less than 20%. When considering a greater filtration efficiency, greater permeance per unit mass, greater percentage of rejuvenation upon backflushing (up to 3-fold), and likely greater performance with extended use, the ORNL 0.6 microm filters can potentially outperform the commercial filter by factors of 100-1,000 fold.

  16. An Efficient Index Dissemination in Unstructured Peer-to-Peer Networks

    NASA Astrophysics Data System (ADS)

    Takahashi, Yusuke; Izumi, Taisuke; Kakugawa, Hirotsugu; Masuzawa, Toshimitsu

    Using Bloom filters is one of the most popular and efficient lookup methods in P2P networks. A Bloom filter is a representation of data item indices, which achieves small memory requirement by allowing one-sided errors (false positive). In the lookup scheme besed on the Bloom filter, each peer disseminates a Bloom filter representing indices of the data items it owns in advance. Using the information of disseminated Bloom filters as a clue, each query can find a short path to its destination. In this paper, we propose an efficient extension of the Bloom filter, called a Deterministic Decay Bloom Filter (DDBF) and an index dissemination method based on it. While the index dissemination based on a standard Bloom filter suffers performance degradation by containing information of too many data items when its dissemination radius is large, the DDBF can circumvent such degradation by limiting information according to the distance between the filter holder and the items holders, i. e., a DDBF contains less information for faraway items and more information for nearby items. Interestingly, the construction of DDBFs requires no extra cost above that of standard filters. We also show by simulation that our method can achieve better lookup performance than existing ones.

  17. Development of a filter to prevent infections with spore-forming bacteria in injecting drug users.

    PubMed

    Alhusein, Nour; Scott, Jenny; Kasprzyk-Hordern, Barbara; Bolhuis, Albert

    2016-12-01

    In heroin injectors, there have been a number of outbreaks caused by spore-forming bacteria, causing serious infections such as anthrax or botulism. These are, most likely, caused by injecting contaminated heroin, and our aim was to develop a filter that efficiently removes these bacteria and is also likely to be acceptable for use by people who inject drugs (i.e. quick, simple and not spoil the hit). A prototype filter was designed and different filter membranes were tested to assess the volume of liquid retained, filtration time and efficiency of the filter at removing bacterial spores. Binding of active ingredients of heroin to different types of membrane filters was determined using a highly sensitive analytical chemistry technique. Heroin samples that were tested contained up to 580 bacteria per gramme, with the majority being Bacillus spp., which are spore-forming soil bacteria. To remove these bacteria, a prototype filter was designed to fit insulin-type syringes, which are commonly used by people who inject drugs (PWIDs). Efficient filtration of heroin samples was achieved by combining a prefilter to remove particles and a 0.22 μm filter to remove bacterial spores. The most suitable membrane was polyethersulfone (PES). This membrane had the shortest filtration time while efficiently removing bacterial spores. No or negligible amounts of active ingredients in heroin were retained by the PES membrane. This study successfully produced a prototype filter designed to filter bacterial spores from heroin samples. Scaled up production could produce an effective harm reduction tool, especially during outbreaks such as occurred in Europe in 2009/10 and 2012.

  18. [Research on removal efficiency of Cd (II)-bearing wastewater by sulfate-reducing biological filter].

    PubMed

    Wu, Xuan; Tan, Ke-Yan; Hu, Xi-Jia; Gu, Yun; Yang, Hong

    2014-04-01

    At the temperature of 18.0-22.3 degrees C, biological carriers were produce from pure SRB and zeolite by the embedding immobilized method, and a sulfate-reducing biological filter filled with filter carriers was built to treat cadmium-containing wastewater. Experimental research on removal efficiency of Cd2+, COD and SO4(2-) in wastewater by the biological filter was carried out after SRB domestication. Results show that cadmium can be removed satisfactorily from wastewater using SRB by the biological filter filled with sulfate-reducing bacteria. When the filtration rate was 0.4 m x h(-1) and the cadmium concentration in wastewater was not more than 15 mg x L(-1), the processing efficiency was the best. In the formal running period, the removal rates of Cd2+, COD and SO4(2-) by the biological filter were more than 99%, 75% and 50%. The effluent Cd2+ concentration was less than 0.1 mg x L(-1), which could meet the cadmium emission requirements in the wastewater quality standards for discharge to municipal sewers (CJ 343-2010). The removal of Cd2+, COD and SO4(2-) by biological filter mainly occurs in the top 60 cm of the filter bed during stable operation. When the filtration rate was less than 0.6 m x h(-1), Cd(2+) can be removed by the biological filter with high efficiency and stability.

  19. An efficient implementation of a high-order filter for a cubed-sphere spectral element model

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Gyu; Cheong, Hyeong-Bin

    2017-03-01

    A parallel-scalable, isotropic, scale-selective spatial filter was developed for the cubed-sphere spectral element model on the sphere. The filter equation is a high-order elliptic (Helmholtz) equation based on the spherical Laplacian operator, which is transformed into cubed-sphere local coordinates. The Laplacian operator is discretized on the computational domain, i.e., on each cell, by the spectral element method with Gauss-Lobatto Lagrange interpolating polynomials (GLLIPs) as the orthogonal basis functions. On the global domain, the discrete filter equation yielded a linear system represented by a highly sparse matrix. The density of this matrix increases quadratically (linearly) with the order of GLLIP (order of the filter), and the linear system is solved in only O (Ng) operations, where Ng is the total number of grid points. The solution, obtained by a row reduction method, demonstrated the typical accuracy and convergence rate of the cubed-sphere spectral element method. To achieve computational efficiency on parallel computers, the linear system was treated by an inverse matrix method (a sparse matrix-vector multiplication). The density of the inverse matrix was lowered to only a few times of the original sparse matrix without degrading the accuracy of the solution. For better computational efficiency, a local-domain high-order filter was introduced: The filter equation is applied to multiple cells, and then the central cell was only used to reconstruct the filtered field. The parallel efficiency of applying the inverse matrix method to the global- and local-domain filter was evaluated by the scalability on a distributed-memory parallel computer. The scale-selective performance of the filter was demonstrated on Earth topography. The usefulness of the filter as a hyper-viscosity for the vorticity equation was also demonstrated.

  20. Aerosol filtration with steel fiber filters

    NASA Astrophysics Data System (ADS)

    Bergman, W.; Wilson, K.; Larsen, G.; Lopez, R.

    1993-04-01

    An experimental study has been conducted of aerosol penetration through a new high efficiency steel fiber filter and filter media that was developed in cooperation with Pall Corporation. Previous studies have shown that sintered steel fiber media have significant improvements in higher filter efficiency and lower pressure drop than the previous steel filter technology based on sintered powder metal media. In the present study, measurements were made of the penetration of dioctyl sebacate (DOS) aerosols through flat sheet samples, pleated cartridge filters, and a 1000 cfm filter having 64 cartridges housed in a 2 x 2 x 1 ft. frame. The steel fiber media used in our study consists of 2 micron diameter stainless steel (316 L) fibers sintered together into sheets.

  1. Numerical studies on the performance of an aerosol respirator with faceseal leakage

    NASA Astrophysics Data System (ADS)

    Zaripov, S. K.; Mukhametzanov, I. T.; Grinshpun, S. A.

    2016-11-01

    We studied the efficiency of a facepiece filtering respirator (FFR) in presence of a measurable faceseal leakage using the previously developed model of a spherical sampler with porous layer. In our earlier study, the model was validated for a specific filter permeability value. In this follow-up study, we investigated the effect of permeability on the overall respirator performance accounting for the faceseal leakage. The Total Inward Leakage (TIL) was calculated as a function of the leakage-to-filter surface ratio and the particle diameter. A good correlation was found between the theoretical and experimental TIL values. The TIL value was shown to increase and the effect of particle size on TIL to decrease as the leakage-to- filter surface ratio grows. The model confirmed that within the most penetrating particle size range (∼50 nm) and at relatively low leakage-to-filter surface ratios, an FFR performs better (TIL is lower) when the filter has a lower permeability which should be anticipated as long as the flow through the filter represents the dominant particle penetration pathway. An increase in leak size causes the TIL to rise; furthermore, under certain leakage-to-filter surface ratios, TIL for ultrafine particles becomes essentially independent on the filter properties due to a greater contribution of the aerosol flow through the faceseal leakage. In contrast to the ultrafine fraction, the larger particles (e.g., 800 nm) entering a typical high- or medium-quality respirator filter are almost fully collected by the filter medium regardless of its permeability; at the same time, the fraction penetrated through the leakage appears to be permeability- dependent: higher permeability generally results in a lower pressure drop through the filter which increases the air flow through the filter at the expense of the leakage flow. The latter reduces the leakage effect thus improving the overall respiratory protection level. The findings of this study provide valuable information for developing new respirators with a predictable actual workplace protection factor.

  2. [Characteristics of microbial community and operation efficiency in biofilter process for drinking water purification].

    PubMed

    Xiang, Hong; Lü, Xi-Wu; Yang, Fei; Yin, Li-Hong; Zhu, Guang-Can

    2011-04-01

    In order to explore characteristics of microbial community and operation efficiency in biofilter (biologically-enhanced active filter and biological activated carbon filter) process for drinking water purification, Biolog and polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) techniques were applied to analyze the metabolic function and structure of microbial community developing in biofilters. Water quality parameters, such as NH; -N, NO; -N, permanganate index, UV254 and BDOC etc, were determined in inflow and outflow of biofilters for investigation of operation efficiency of the biofilters. The results show that metabolic capacity of microbial community of the raw water is reduced after the biofilters, which reflect that metabolically active microbial communities in the raw water can be intercepted by biofilters. After 6 months operation of biofilters, the metabolic profiles of microbial communities are similar between two kinds of biologically-enhanced active filters, and utilization of carbon sources of microbial communities in the two filters are 73.4% and 75.5%, respectively. The metabolic profiles of microbial communities in two biological activated carbon filters showed significant difference. The carbon source utilization rate of microbial community in granule-activated carbon filter is 79.6%, which is obviously higher than 53.8% of the rate in the columnar activated carbon filter (p < 0.01). The analysis results of PCR-SSCP indicate that microbial communities in each biofilter are variety, but the structure of dominant microorganisms is similar among different biofilters. The results also show that the packing materials had little effect on the structure and metabolic function of microbial community in biologically-enhanced active filters, and the difference between two biofilters for the water purification efficiency was not significant (p > 0.05). However, in biological activated carbon filters, granule-activated carbon is conducive to microbial growth and reproduction, and the microbial communities in the biofilter present high metabolic activities, and the removal efficiency for NH4(+)-N, permanganate index and BDOC is better than the columnar activated carbon filter(p < 0.05). The results also suggest that operation efficiency of biofilter is related to the metabolic capacity of microbial community in biofilter.

  3. Hybrid Filter Membrane

    NASA Technical Reports Server (NTRS)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of dust particles on the filter surface and to facilitate dust removal with pulse or back airflow.

  4. Improving signal-to-noise ratios of liquid chromatography-tandem mass spectrometry peaks using noise frequency spectrum modification between two consecutive matched-filtering procedures.

    PubMed

    Wang, Shau-Chun; Huang, Chih-Min; Chiang, Shu-Min

    2007-08-17

    This paper reports a simple chemometric technique to alter the noise spectrum of liquid chromatography-tandem mass spectrometry (LC-MS-MS) chromatogram between two consecutive matched filter procedures to improve the peak signal-to-noise (S/N) ratio enhancement. This technique is to multiply one match-filtered LC-MS-MS chromatogram with another artificial chromatogram added with thermal noises prior to the second matched filter. Because matched filter cannot eliminate low-frequency components inherent in the flicker noises of spike-like sharp peaks randomly riding on LC-MS-MS chromatograms, efficient peak S/N ratio improvement cannot be accomplished using one-step or consecutive matched filter procedures to process LC-MS-MS chromatograms. In contrast, when the match-filtered LC-MS-MS chromatogram is conditioned with the multiplication alteration prior to the second matched filter, much better efficient ratio improvement is achieved. The noise frequency spectrum of match-filtered chromatogram, which originally contains only low-frequency components, is altered to span a boarder range with multiplication operation. When the frequency range of this modified noise spectrum shifts toward higher frequency regime, the second matched filter, working as a low-pass filter, is able to provide better filtering efficiency to obtain higher peak S/N ratios. Real LC-MS-MS chromatograms containing random spike-like peaks, of which peak S/N ratio improvement is less than four times with two consecutive matched filters typically, are remedied to accomplish much better ratio enhancement approximately 16-folds when the noise frequency spectrum is modified between two matched filters.

  5. Efficiency of Respirator Filter Media against Diesel Particulate Matter: A Comparison Study Using Two Diesel Particulate Sources.

    PubMed

    Burton, Kerrie A; Whitelaw, Jane L; Jones, Alison L; Davies, Brian

    2016-07-01

    Diesel engines have been a mainstay within many industries since the early 1900s. Exposure to diesel particulate matter (DPM) is a major issue in many industrial workplaces given the potential for serious health impacts to exposed workers; including the potential for lung cancer and adverse irritant and cardiovascular effects. Personal respiratory protective devices are an accepted safety measure to mitigate worker exposure against the potentially damaging health impacts of DPM. To be protective, they need to act as effective filters against carbon and other particulates. In Australia, the filtering efficiency of respiratory protective devices is determined by challenging test filter media with aerosolised sodium chloride to determine penetration at designated flow rates. The methodology outlined in AS/NZS1716 (Standards Australia International Ltd and Standards New Zealand 2012. Respiratory protective devices. Sydney/Wellington: SAI Global Limited/Standards New Zealand) does not account for the differences between characteristics of workplace contaminants like DPM and sodium chloride such as structure, composition, and particle size. This study examined filtering efficiency for three commonly used AS/NZS certified respirator filter models, challenging them with two types of diesel emissions; those from a diesel generator and a diesel engine. Penetration through the filter media of elemental carbon (EC), total carbon (TC), and total suspended particulate (TSP) was calculated. Results indicate that filtering efficiency assumed by P2 certification in Australia was achieved for two of the three respirator models for DPM generated using the small diesel generator, whilst when the larger diesel engine was used, filtering efficiency requirements were met for all three filter models. These results suggest that the testing methodology specified for certification of personal respiratory protective devices by Standards Australia may not ensure adequate protection for respirator users against DPM under all circumstances of diesel generated particles. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  6. Improvement of contact grating device for efficient terahertz wave generation using bi-angular filter

    NASA Astrophysics Data System (ADS)

    Nagashima, Keisuke; Tsubouchi, Masaaki; Ochi, Yoshihiro; Maruyama, Momoko

    2018-03-01

    We have proposed an improved contact grating device for generating terahertz waves efficiently and have succeeded in developing the device with a very high diffraction efficiency and a wide spectral width. This device has a bi-angular filter and a Fabry-Perot-type structure, which are composed of dielectric multilayers. The bi-angular filter is designed to reflect the 0th-order wave and transmit the-1st-order diffraction wave. Numerical calculations indicate that the new device has a maximum diffraction efficiency over 99% and a spectral width of approximately 20 nm. We measured a high efficiency of 90% over a broad spectral range using a fabricated device.

  7. Survey monitoring results on the reduction of micropollutants, bacteria, bacteriophages and TSS in retention soil filters.

    PubMed

    Tondera, Katharina; Koenen, Stefan; Pinnekamp, Johannes

    2013-01-01

    A main source of surface water pollution in Western Europe stems from combined sewer overflow. One of the few technologies available to reduce this pollution is the retention soil filter. In this research project, we evaluated the cleaning efficiency of retention soil filters measuring the concentration ratio of standard wastewater parameters and bacteria according to factors limiting efficiency, such as long dry phases or phases of long-lasting retention. Furthermore, we conducted an initial investigation on how well retention soil filters reduce certain micropollutants on large-scale plants. There was little precipitation during the 1-year sampling phase, which led to fewer samples than expected. Nevertheless, we could verify how efficiently retention soil filters clean total suspended solids. Our results show that retention soil filters are not only able to eliminate bacteria, but also to retain some of the micropollutants investigated here. As the filters were able to reduce diclofenac, bisphenol A and metoprolol by a median rate of almost 75%, we think that further investigations should be made into the reduction processes in the filter. At this point, a higher accuracy in the results could be achieved by conducting bench-scale experiments.

  8. High efficiency virtual impactor

    DOEpatents

    Loo, B.W.

    1980-03-27

    Environmental monitoring of atmospheric air is facilitated by a single stage virtual impactor for separating an inlet flow (Q/sub 0/) having particulate contaminants into a coarse particle flow (Q/sub 1/) and a fine particle flow (Q/sub 2/) to enable collection of such particles on different filters for separate analysis. An inlet particle acceleration nozzle and coarse particle collection probe member having a virtual impaction opening are aligned along a single axis and spaced apart to define a flow separation region at which the fine particle flow (Q/sub 2/) is drawn radially outward into a chamber while the coarse particle flow (Q/sub 1/) enters the virtual impaction opening.

  9. Evaluation of the Performance of Iodine-Treated Biocidal Filters Under the Influence of Environmental Parameters

    DTIC Science & Technology

    2013-02-01

    analysis for total virus count . To examine the effects of bioaerosol on the release of iodine from the triiodide resin medium, MS2 aerosol was treated with...airborne pathogens. 2.2.2. Viral Aerosols Bioaerosols are airborne particles with biological origins, such as nonviable pollen , and viable fungi...performed: collection efficiency of BioSampler, virus PSD by SMPS, plaque assay for virus infectivity, and PCR analysis for total virus count . PSL

  10. Evaluation of Delcath Systems' Generation 2 (GEN 2) melphalan hemofiltration system in a porcine model of percutaneous hepatic perfusion.

    PubMed

    Moeslein, Fred M; McAndrew, Elizabeth G; Appling, William M; Hryniewich, Nicole E; Jarvis, Kevin D; Markos, Steven M; Sheets, Timothy P; Uzgare, Rajneesh P; Johnston, Daniel S

    2014-06-01

    A new melphalan hemoperfusion filter (GEN 2) was evaluated in a simulated-use porcine model of percutaneous hepatic perfusion (PHP). The current study evaluated melphalan filtration efficiency, the transfilter pressure gradient, and the removal of specific blood products. A porcine PHP procedure using the GEN 2 filter was performed under Good Laboratory Practice conditions to model the 60-min clinical PHP procedure. The mean filter efficiency for removing melphalan in six filters was 99.0 ± 0.4 %. The transfilter pressure gradient across the filter averaged 20.9 mmHg for the 60-min procedure. Many blood components, including albumin and platelets, decreased on average from 3.55 to 2.02 g/dL and from 342 to 177 × 10.e3/μL, respectively, during the procedure. The increased melphalan extraction efficiency of the new filter is expected to decrease systemic melphalan exposure. In addition, the low transfilter pressure gradient resulted in low resistance to blood flow in the GEN 2 filter, and the changes to blood components are expected to be clinically manageable.

  11. An efficient incremental learning mechanism for tracking concept drift in spam filtering

    PubMed Central

    Sheu, Jyh-Jian; Chu, Ko-Tsung; Li, Nien-Feng; Lee, Cheng-Chi

    2017-01-01

    This research manages in-depth analysis on the knowledge about spams and expects to propose an efficient spam filtering method with the ability of adapting to the dynamic environment. We focus on the analysis of email’s header and apply decision tree data mining technique to look for the association rules about spams. Then, we propose an efficient systematic filtering method based on these association rules. Our systematic method has the following major advantages: (1) Checking only the header sections of emails, which is different from those spam filtering methods at present that have to analyze fully the email’s content. Meanwhile, the email filtering accuracy is expected to be enhanced. (2) Regarding the solution to the problem of concept drift, we propose a window-based technique to estimate for the condition of concept drift for each unknown email, which will help our filtering method in recognizing the occurrence of spam. (3) We propose an incremental learning mechanism for our filtering method to strengthen the ability of adapting to the dynamic environment. PMID:28182691

  12. Fish Gill Inspired Crossflow for Efficient and Continuous Collection of Spilled Oil.

    PubMed

    Dou, Yuhai; Tian, Dongliang; Sun, Ziqi; Liu, Qiannan; Zhang, Na; Kim, Jung Ho; Jiang, Lei; Dou, Shi Xue

    2017-03-28

    Developing an effective system to clean up large-scale oil spills is of great significance due to their contribution to severe environmental pollution and destruction. Superwetting membranes have been widely studied for oil/water separation. The separation, however, adopts a gravity-driven approach that is inefficient and discontinuous due to quick fouling of the membrane by oil. Herein, inspired by the crossflow filtration behavior in fish gills, we propose a crossflow approach via a hydrophilic, tilted gradient membrane for spilled oil collection. In crossflow collection, as the oil/water flows parallel to the hydrophilic membrane surface, water is gradually filtered through the pores, while oil is repelled, transported, and finally collected for storage. Owing to the selective gating behavior of the water-sealed gradient membrane, the large pores at the bottom with high water flux favor fast water filtration, while the small pores at the top with strong oil repellency allow easy oil transportation. In addition, the gradient membrane exhibits excellent antifouling properties due to the protection of the water layer. Therefore, this bioinspired crossflow approach enables highly efficient and continuous spilled oil collection, which is very promising for the cleanup of large-scale oil spills.

  13. Ceramic High Efficiency Particulate Air (HEPA) Filter Final Report CRADA No. TC02102.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, M.; Morse, T.

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermor e National Laboratory (LLNL) and Flanders-Precisionaire (Flanders), to develop ceramic HEP A filters under a Thrust II Initiative for Proliferation Prevention (IPP) project. The research was conducted via the IPP Program at Commonwe alth of Independent States (CIS) Institutes, which are handled under a separate agreement. The institutes (collectively referred to as "CIS Institutes") involved with this project were: Bochvar: Federal State Unitarian Enterprise All-Russia Scientific and Research Institute of Inorganic Materials (FSUE VNIINM); Radium Khlopin: Federal State Unitarian Enterprisemore » NPO Radium Institute named (FSUE NPO Radium Institute); and Bakor: Science and Technology Center Bakor (STC Bakor).« less

  14. Volatilization of PM2.5 Inorganic Ions in a Filter Pack System with Backup Filter and Denuders

    NASA Astrophysics Data System (ADS)

    Kim, C.; Choi, Y.; Ghim, Y.

    2012-12-01

    Concentrations of PM2.5 inorganic ions were measured at the rooftop of the 5-story building on the hill (37.02oN, 127.16oE, 167 m above sea level) in the Global Campus of Hankuk University of Foreign Studies, about 35 km southeast of downtown Seoul, Korea. The measurements were made four times during one-year span between 2011 and 2012 by considering the climate of Korea with distinct seasonal variations: July 29 to August 26 (summer); September 14 to October 13 (fall); November 28 to January 4 (winter); February 14 to May 31 (spring). A filter pack system was composed of PM2.5 cyclone, two annular denuders, Teflon filter, nylon filter, and an annular denuder, in series. Two annular denuders were to remove acidic and basic gases prior to collecting particles on the Teflon filter. Nylon filter and an annular denuder were to back up the Teflon filter by absorbing acidic and basic gases, respectively, which were volatilized from collected particles on the Teflon filter. Samplings were made for 24 hours every day. Extracts from filters and denuders were analyzed by ion chromatography to measure concentrations of anions (SO42-, NO3-, Cl-) and cations (Ca2+, Mg2+, NH4+, Na+, K+). The amounts of ionic species absorbed at the backup nylon filter and denuder were examined in terms of meteorological parameters, the amounts of gases removed in front of the Teflon filter, and the amounts of particulate ions collected on the Teflon filter. Major factors to affect the volatilization from particles collected on the Teflon filter were discussed.

  15. Hemispherical-field-of-view, nonimaging narrow-band spectral filter

    NASA Technical Reports Server (NTRS)

    Miles, R. B.; Webb, S. G.; Griffith, E. L.

    1981-01-01

    Two compound parabolic concentrators are used to create a 180-deg-field-of-view spectral filter. The collection optics are reflective and are designed to collimate the light through a multilayer interference filter and then to refocus it onto an optical detector. Assuming unit reflectance and no loss through the optical filter, this device operates at the thermodynamic collection limit.

  16. Hemispherical-field-of-view, nonimaging narrow-band spectral filter.

    PubMed

    Miles, R B; Webb, S G; Griffith, E L

    1981-12-01

    Two compound parabolic concentrators are used to create a 180 degrees -field-of-view spectral filter. The collection optics are reflective and are designed to collimate the light through a multilayer interference filter and then to refocus it onto an optical detector. Assuming unit reflectance and no loss through the optical filter, this device operates at the thermodynamic collection limit.

  17. Forced-air warming blowers: An evaluation of filtration adequacy and airborne contamination emissions in the operating room.

    PubMed

    Albrecht, Mark; Gauthier, Robert L; Belani, Kumar; Litchy, Mark; Leaper, David

    2011-05-01

    Forced-air warming (FAW) is widely used to prevent hypothermia during surgical procedures. The airflow from these blowers is often vented near the operative site and should be free of contaminants to minimize the risk of surgical site infection. Popular FAW blowers contain a 0.2-μm rated intake filter to reduce these risks. However, there is little evidence that the efficiency of the intake filter is adequate to prevent airborne contamination emissions or protect the internal air path from microbial contamination buildup. Five new intake filters were obtained directly from the manufacturer (Bair Hugger 505, model 200708D; Arizant Healthcare, Eden Prairie, MN), and 5 model 200708C filters currently in hospital use were removed from FAW devices. The retention efficiency of these filters was assessed using a monodisperse sodium chloride aerosol. In the same hospitals, internal air path surface swabs and hose outlet particle counts were performed on 52 forced-air warming devices (all with the model 200708C filter) to assess internal microbial buildup and airborne contamination emissions. Intake filter retention efficiency at 0.2 μm was 93.8% for the 200708C filter and 61.3% at for the 200708D filter. The 200708D filter obtained directly from the manufacturer has a thinner filtration media than the 200708C filter in current hospital use, suggesting that the observed differences in retention efficiency were due to design changes. Fifty-eight percent of the FAW blowers evaluated were internally generating and emitting airborne contaminants, with microorganisms detected on the internal air path surfaces of 92.3% of these blowers. Isolates of Staphylococcus aureus, coagulase-negative Staphylococcus, and methicillin-resistant S aureus were detected in 13.5%, 3.9%, and 1.9% of FAW blowers, respectively. The design of popular FAW devices using the 200708C filter was found to be inadequate for preventing the internal buildup and emission of microbial contaminants into the operating room. Substandard intake filtration allowed airborne contaminants (both viable and nonviable) to penetrate the intake filter and reversibly attach to the internal surfaces within the FAW blowers. The reintroduction of these contaminants into the FAW blower air stream was detected and could contribute to the risk of cross-infection. Given the deficiencies identified with the 200708C intake filter, the introduction of a new filter (model 200708D) with substantially lower retention efficiency is of concern. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  18. A multimodal spectroscopy system for real-time disease diagnosis

    NASA Astrophysics Data System (ADS)

    Šćepanović, Obrad R.; Volynskaya, Zoya; Kong, Chae-Ryon; Galindo, Luis H.; Dasari, Ramachandra R.; Feld, Michael S.

    2009-04-01

    The combination of reflectance, fluorescence, and Raman spectroscopy—termed multimodal spectroscopy (MMS)—provides complementary and depth-sensitive information about tissue composition. As such, MMS is a promising tool for disease diagnosis, particularly in atherosclerosis and breast cancer. We have developed an integrated MMS instrument and optical fiber spectral probe for simultaneous collection of all three modalities in a clinical setting. The MMS instrument multiplexes three excitation sources, a xenon flash lamp (370-740 nm), a nitrogen laser (337 nm), and a diode laser (830 nm), through the MMS probe to excite tissue and collect the spectra. The spectra are recorded on two spectrograph/charge-coupled device modules, one optimized for visible wavelengths (reflectance and fluorescence) and the other for the near-infrared (Raman), and processed to provide diagnostic parameters. We also describe the design and calibration of a unitary MMS optical fiber probe 2 mm in outer diameter, containing a single appropriately filtered excitation fiber and a ring of 15 collection fibers, with separate groups of appropriately filtered fibers for efficiently collecting reflectance, fluorescence, and Raman spectra from the same tissue location. A probe with this excitation/collection geometry has not been used previously to collect reflectance and fluorescence spectra, and thus physical tissue models ("phantoms") are used to characterize the probe's spectroscopic response. This calibration provides probe-specific modeling parameters that enable accurate extraction of spectral parameters. This clinical MMS system has been used recently to analyze artery and breast tissue in vivo and ex vivo.

  19. Baseline design of the filters for the LAD detector on board LOFT

    NASA Astrophysics Data System (ADS)

    Barbera, M.; Winter, B.; Coker, J.; Feroci, M.; Kennedy, T.; Walton, D.; Zane, S.

    2014-07-01

    The Large Observatory for X-ray Timing (LOFT) was one of the M3 missions selected for the phase A study in the ESA's Cosmic Vision program. LOFT is designed to perform high-time-resolution X-ray observations of black holes and neutron stars. The main instrument on the LOFT payload is the Large Area Detector (LAD), a collimated experiment with a nominal effective area of ~10 m2 @ 8 keV, and a spectral resolution of ~240 eV in the energy band 2-30 keV. These performances are achieved covering a large collecting area with more than 2000 large-area Silicon Drift Detectors (SDDs) each one coupled to a collimator based on lead-glass micro-channel plates. In order to reduce the thermal load onto the detectors, which are open to Sky, and to protect them from out of band radiation, optical-thermal filter will be mounted in front of the SDDs. Different options have been considered for the LAD filters for best compromise between high quantum efficiency and high mechanical robustness. We present the baseline design of the optical-thermal filters, show the nominal performances, and present preliminary test results performed during the phase A study.

  20. Rapid DNA extraction from dried blood spots on filter paper: potential applications in biobanking.

    PubMed

    Choi, Eun-Hye; Lee, Sang Kwang; Ihm, Chunhwa; Sohn, Young-Hak

    2014-12-01

    Dried blood spot (DBS) technology is a microsampling alternative to traditional plasma or serum sampling for pharmaco- or toxicokinetic evaluation. DBS technology has been applied to diagnostic screening in drug discovery, nonclinical, and clinical settings. We have developed an improved elution protocol involving boiling of blood spots dried on Whatman filter paper. The purpose of this study was to compare the quality, purity, and quantity of DNA isolated from frozen blood samples and DBSs. We optimized a method for extraction and estimation of DNA from blood spots dried on filter paper (3-mm FTA card). A single DBS containing 40 μL blood was used. DNA was efficiently extracted in phosphate-buffered saline (PBS) or Tris-EDTA (TE) buffer by incubation at 37°C overnight. DNA was stable in DBSs that were stored at room temperature or frozen. The housekeeping genes GAPDH and beta-actin were used as positive standards for polymerase chain reaction (PCR) validation of general diagnostic screening. Our simple and convenient DBS storage and extraction methods are suitable for diagnostic screening by using very small volumes of blood collected on filter paper, and can be used in biobanks for blood sample storage.

  1. Kalman and particle filtering methods for full vehicle and tyre identification

    NASA Astrophysics Data System (ADS)

    Bogdanski, Karol; Best, Matthew C.

    2018-05-01

    This paper considers identification of all significant vehicle handling dynamics of a test vehicle, including identification of a combined-slip tyre model, using only those sensors currently available on most vehicle controller area network buses. Using an appropriately simple but efficient model structure, all of the independent parameters are found from test vehicle data, with the resulting model accuracy demonstrated on independent validation data. The paper extends previous work on augmented Kalman Filter state estimators to concentrate wholly on parameter identification. It also serves as a review of three alternative filtering methods; identifying forms of the unscented Kalman filter, extended Kalman filter and particle filter are proposed and compared for effectiveness, complexity and computational efficiency. All three filters are suited to applications of system identification and the Kalman Filters can also operate in real-time in on-line model predictive controllers or estimators.

  2. Prediction of particulate loading in exhaust from fabric filter baghouses with one or more failed bags.

    PubMed

    Qin, Wenjun; Dekermenjian, Manuel; Martin, Richard J

    2006-08-01

    Loss of filtration efficiency in a fabric filter baghouse is typically caused by bag failure, in one form or another. The degree of such failure can be as minor as a pinhole leak or as major as a fully involved baghouse fire. In some cases, local air pollution regulations or federal hazardous waste laws may require estimation of the total quantity of particulate matter released to the environment as a result of such failures. In this paper, a technique is presented for computing the dust loading in the baghouse exhaust when one or more bags have failed. The algorithm developed is shown to be an improvement over a previously published result, which requires empirical knowledge of the variation in baghouse pressure differential with bag failures. An example calculation is presented for a baghouse equipped with 200 bags. The prediction shows that a small percentage of failed bags can cause a relatively large proportion of the gas flow to bypass the active bags, which, in turn, leads to high outlet dust loading and low overall collection efficiency from the baghouse.

  3. High efficiency processing for reduced amplitude zones detection in the HRECG signal

    NASA Astrophysics Data System (ADS)

    Dugarte, N.; Álvarez, A.; Balacco, J.; Mercado, G.; Gonzalez, A.; Dugarte, E.; Olivares, A.

    2016-04-01

    Summary - This article presents part of a more detailed research proposed in the medium to long term, with the intention of establishing a new philosophy of electrocardiogram surface analysis. This research aims to find indicators of cardiovascular disease in its early stage that may go unnoticed with conventional electrocardiography. This paper reports the development of a software processing which collect some existing techniques and incorporates novel methods for detection of reduced amplitude zones (RAZ) in high resolution electrocardiographic signal (HRECG).The algorithm consists of three stages, an efficient processing for QRS detection, averaging filter using correlation techniques and a step for RAZ detecting. Preliminary results show the efficiency of system and point to incorporation of techniques new using signal analysis with involving 12 leads.

  4. Silicon oxide nanoparticles doped PQ-PMMA for volume holographic imaging filters.

    PubMed

    Luo, Yuan; Russo, Juan M; Kostuk, Raymond K; Barbastathis, George

    2010-04-15

    Holographic imaging filters are required to have high Bragg selectivity, namely, narrow angular and spectral bandwidth, to obtain spatial-spectral information within a three-dimensional object. In this Letter, we present the design of holographic imaging filters formed using silicon oxide nanoparticles (nano-SiO(2)) in phenanthrenquinone-poly(methyl methacrylate) (PQ-PMMA) polymer recording material. This combination offers greater Bragg selectivity and increases the diffraction efficiency of holographic filters. The holographic filters with optimized ratio of nano-SiO(2) in PQ-PMMA can significantly improve the performance of Bragg selectivity and diffraction efficiency by 53% and 16%, respectively. We present experimental results and data analysis demonstrating this technique in use for holographic spatial-spectral imaging filters.

  5. Filter Media Tests Under Simulated Martian Atmospheric Conditions

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.

    2016-01-01

    Human exploration of Mars will require the optimal utilization of planetary resources. One of its abundant resources is the Martian atmosphere that can be harvested through filtration and chemical processes that purify and separate it into its gaseous and elemental constituents. Effective filtration needs to be part of the suite of resource utilization technologies. A unique testing platform is being used which provides the relevant operational and instrumental capabilities to test articles under the proper simulated Martian conditions. A series of tests were conducted to assess the performance of filter media. Light sheet imaging of the particle flow provided a means of detecting and quantifying particle concentrations to determine capturing efficiencies. The media's efficiency was also evaluated by gravimetric means through a by-layer filter media configuration. These tests will help to establish techniques and methods for measuring capturing efficiency and arrestance of conventional fibrous filter media. This paper will describe initial test results on different filter media.

  6. Achieving highly efficient and broad-angle polarization beam filtering using epsilon-near-zero metamaterials mimicked by metal-dielectric multilayers

    NASA Astrophysics Data System (ADS)

    Wu, Feng

    2018-03-01

    We report a highly efficient and broad-angle polarization beam filter at visible wavelengths using an anisotropic epsilon-near-zero metamaterial mimicked by a multilayer composed of alternative subwavelength magnesium fluoride and silver layers. The underlying physics can be explained by the dramatic difference between two orthogonal polarizations' iso-frequency curves of anisotropic epsilon-near-zero metamaterials. Transmittance for two orthogonal polarization waves and the polarization extinction ratio are calculated via the transfer matrix method to assess the comprehensive performance of the proposed polarization beam filter. From the simulation results, the proposed polarization beam filter is highly efficient (the polarization extinction ratio is far larger than two orders of magnitude) and has a broad operating angle range (ranging from 30° to 75°). Finally, we show that the proper tailoring of the periodic number enables us to obtain high comprehensive performance of the proposed polarization beam filter.

  7. Iterated unscented Kalman filter for phase unwrapping of interferometric fringes.

    PubMed

    Xie, Xianming

    2016-08-22

    A fresh phase unwrapping algorithm based on iterated unscented Kalman filter is proposed to estimate unambiguous unwrapped phase of interferometric fringes. This method is the result of combining an iterated unscented Kalman filter with a robust phase gradient estimator based on amended matrix pencil model, and an efficient quality-guided strategy based on heap sort. The iterated unscented Kalman filter that is one of the most robust methods under the Bayesian theorem frame in non-linear signal processing so far, is applied to perform simultaneously noise suppression and phase unwrapping of interferometric fringes for the first time, which can simplify the complexity and the difficulty of pre-filtering procedure followed by phase unwrapping procedure, and even can remove the pre-filtering procedure. The robust phase gradient estimator is used to efficiently and accurately obtain phase gradient information from interferometric fringes, which is needed for the iterated unscented Kalman filtering phase unwrapping model. The efficient quality-guided strategy is able to ensure that the proposed method fast unwraps wrapped pixels along the path from the high-quality area to the low-quality area of wrapped phase images, which can greatly improve the efficiency of phase unwrapping. Results obtained from synthetic data and real data show that the proposed method can obtain better solutions with an acceptable time consumption, with respect to some of the most used algorithms.

  8. International Space Station (ISS) Bacterial Filter Elements (BFEs): Filter Efficiency and Pressure Drop Testing of Returned Units

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Agui, Juan H.; Vijayakumar, R.; Berger, Gordon M.; Perry, Jay L.

    2017-01-01

    The air quality control equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provide the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Air (HEPA) filters deployed at multiple locations in each U.S. Seg-ment module; these filters are referred to as Bacterial Filter Elements, or BFEs. In our previous work, we presented results of efficiency and pressure drop measurements for a sample set of two returned BFEs with a service life of 2.5 years. In this follow-on work, we present similar efficiency, pressure drop, and leak tests results for a larger sample set of six returned BFEs. The results of this work can aid the ISS Program in managing BFE logistics inventory through the stations planned lifetime as well as provide insight for managing filter element logistics for future exploration missions. These results also can provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  9. Filter Efficiency and Pressure Testing of Returned ISS Bacterial Filter Elements (BFEs)

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Perry, Jay L.

    2017-01-01

    The air quality control equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provide the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Air (HEPA) filters deployed at multiple locations in each U.S. Seg-ment module; these filters are referred to as Bacterial Filter Elements, or BFEs. In our previous work, we presented results of efficiency and pressure drop measurements for a sample set of two returned BFEs with a service life of 2.5 years. In this follow-on work, we present similar efficiency, pressure drop, and leak tests results for a larger sample set of six returned BFEs. The results of this work can aid the ISS Program in managing BFE logistics inventory through the stations planned lifetime as well as provide insight for managing filter element logistics for future exploration missions. These results also can provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  10. 42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e., “N95...

  11. 42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e., “N95...

  12. 42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e., “N95...

  13. 42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e., “N95...

  14. 42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e., “N95...

  15. Development of a filter regeneration system for advanced spacecraft fluid systems

    NASA Technical Reports Server (NTRS)

    Behrend, A. F., Jr.; Descamp, V. A.

    1974-01-01

    The development of a filter regeneration system for efficiently cleaning fluid particulate filters is presented. Based on a backflush/jet impingement technique, the regeneration system demonstrated a cleaning efficiency of 98.7 to 100%. The operating principles and design features are discussed with emphasis on the primary system components that include a regenerable filter, vortex particle separator, and zero-g particle trap. Techniques and equipment used for ground and zero-g performance tests are described. Test results and conclusions, as well as possible areas for commercial application, are included.

  16. A highly efficient, stable, durable, and recyclable filter fabricated by femtosecond laser drilling of a titanium foil for oil-water separation.

    PubMed

    Ye, Sen; Cao, Qiang; Wang, Qingsong; Wang, Tianyuan; Peng, Qing

    2016-11-21

    It has been a long standing challenge to efficiently separate oil and water since prehistoric times, and now it has become even more desirable in oily wastewater purification and oil spill cleanup. Here we introduce a super oil-water separation filter with superhydrophilicity and underwater superoleophobicity, fabricated using femtosecond laser micro-hole drilling of a titanium foil. Such a simply-made filter, without any modification, can achieve a separation efficiency exceeding 99% in eight typical oil-water mixtures. It remains highly efficient after 40 cycles of recycling and after suffering erosion by corrosive media. Furthermore, the used filter, polluted with oil, could be recovered by ultraviolet illumination. The flux of filtered water is tunable by simply selecting the aperture of the microhole or the spacing between adjacent microholes. Such advanced functionality is due to roughness and the TiO 2 layers on the ablated surface during fabrication. With superhydrophilic and superoleophobic surfaces, this oil-water filer is also suitable for applications in anti-fouling, anti-smudge, anti-fog, and self-cleaning.

  17. A highly efficient, stable, durable, and recyclable filter fabricated by femtosecond laser drilling of a titanium foil for oil-water separation

    PubMed Central

    Ye, Sen; Cao, Qiang; Wang, Qingsong; Wang, Tianyuan; Peng, Qing

    2016-01-01

    It has been a long standing challenge to efficiently separate oil and water since prehistoric times, and now it has become even more desirable in oily wastewater purification and oil spill cleanup. Here we introduce a super oil–water separation filter with superhydrophilicity and underwater superoleophobicity, fabricated using femtosecond laser micro-hole drilling of a titanium foil. Such a simply-made filter, without any modification, can achieve a separation efficiency exceeding 99% in eight typical oil–water mixtures. It remains highly efficient after 40 cycles of recycling and after suffering erosion by corrosive media. Furthermore, the used filter, polluted with oil, could be recovered by ultraviolet illumination. The flux of filtered water is tunable by simply selecting the aperture of the microhole or the spacing between adjacent microholes. Such advanced functionality is due to roughness and the TiO2 layers on the ablated surface during fabrication. With superhydrophilic and superoleophobic surfaces, this oil-water filer is also suitable for applications in anti-fouling, anti-smudge, anti-fog, and self-cleaning. PMID:27869194

  18. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, Stanley J.

    1999-01-01

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements.

  19. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, S.J.

    1999-08-17

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements. 12 figs.

  20. Non-uniform cosine modulated filter banks using meta-heuristic algorithms in CSD space.

    PubMed

    Kalathil, Shaeen; Elias, Elizabeth

    2015-11-01

    This paper presents an efficient design of non-uniform cosine modulated filter banks (CMFB) using canonic signed digit (CSD) coefficients. CMFB has got an easy and efficient design approach. Non-uniform decomposition can be easily obtained by merging the appropriate filters of a uniform filter bank. Only the prototype filter needs to be designed and optimized. In this paper, the prototype filter is designed using window method, weighted Chebyshev approximation and weighted constrained least square approximation. The coefficients are quantized into CSD, using a look-up-table. The finite precision CSD rounding, deteriorates the filter bank performances. The performances of the filter bank are improved using suitably modified meta-heuristic algorithms. The different meta-heuristic algorithms which are modified and used in this paper are Artificial Bee Colony algorithm, Gravitational Search algorithm, Harmony Search algorithm and Genetic algorithm and they result in filter banks with less implementation complexity, power consumption and area requirements when compared with those of the conventional continuous coefficient non-uniform CMFB.

  1. Non-uniform cosine modulated filter banks using meta-heuristic algorithms in CSD space

    PubMed Central

    Kalathil, Shaeen; Elias, Elizabeth

    2014-01-01

    This paper presents an efficient design of non-uniform cosine modulated filter banks (CMFB) using canonic signed digit (CSD) coefficients. CMFB has got an easy and efficient design approach. Non-uniform decomposition can be easily obtained by merging the appropriate filters of a uniform filter bank. Only the prototype filter needs to be designed and optimized. In this paper, the prototype filter is designed using window method, weighted Chebyshev approximation and weighted constrained least square approximation. The coefficients are quantized into CSD, using a look-up-table. The finite precision CSD rounding, deteriorates the filter bank performances. The performances of the filter bank are improved using suitably modified meta-heuristic algorithms. The different meta-heuristic algorithms which are modified and used in this paper are Artificial Bee Colony algorithm, Gravitational Search algorithm, Harmony Search algorithm and Genetic algorithm and they result in filter banks with less implementation complexity, power consumption and area requirements when compared with those of the conventional continuous coefficient non-uniform CMFB. PMID:26644921

  2. Iridium emissions from Hawaiian volcanoes

    NASA Technical Reports Server (NTRS)

    Finnegan, D. L.; Zoller, W. H.; Miller, T. M.

    1988-01-01

    Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were collected using a filterpack system consisting of a Teflon particle filter followed by a series of 4 base-treated Whatman filters. The samples were analyzed by INAA for over 40 elements. As previously reported in the literature, Ir was first detected on particle filters at the Mauna Loa Observatory and later from non-erupting high temperature vents at Kilauea. Since that time Ir was found in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Enrichment factors for Ir in the volcanic fumes range from 10,000 to 100,000 relative to BHVO. Charcoal impregnated filters following a particle filter were collected to see if a significant amount of the Ir was in the gas phase during sample collection. Iridium was found on charcoal filters collected close to the vent, no Ir was found on the charcoal filters. This indicates that all of the Ir is in particulate form very soon after its release. Ratios of Ir to F and Cl were calculated for the samples from Mauna Loa and Kilauea collected during fountaining activity. The implications for the KT Ir anomaly are still unclear though as Ir was not found at volcanoes other than those at Hawaii. Further investigations are needed at other volcanoes to ascertain if basaltic volcanoes other than hot spots have Ir enrichments in their fumes.

  3. Reducing patients' exposures to asthma and allergy triggers in their homes: an evaluation of effectiveness of grades of forced air ventilation filters.

    PubMed

    Brown, Kathleen Ward; Minegishi, Taeko; Allen, Joseph G; McCarthy, John F; Spengler, John D; MacIntosh, David L

    2014-08-01

    Many interventions to reduce allergen levels in the home are recommended to asthma and allergy patients. One that is readily available and can be highly effective is the use of high performing filters in forced air ventilation systems. We conducted a modeling analysis of the effectiveness of filter-based interventions in the home to reduce airborne asthma and allergy triggers. This work used "each pass removal efficiency" applied to health-relevant size fractions of particles to assess filter performance. We assessed effectiveness for key allergy and asthma triggers based on applicable particle sizes for cat allergen, indoor and outdoor sources of particles <2.5 µm in diameter (PM2.5), and airborne influenza and rhinovirus. Our analysis finds that higher performing filters can have significant impacts on indoor particle pollutant levels. Filters with removal efficiencies of >70% for cat dander particles, fine particulate matter (PM2.5) and respiratory virus can lower concentrations of those asthma triggers and allergens in indoor air of the home by >50%. Very high removal efficiency filters, such as those rated a 16 on the nationally recognized Minimum Efficiency Removal Value (MERV) rating system, tend to be only marginally more effective than MERV12 or 13 rated filters. The results of this analysis indicate that use of a MERV12 or higher performing air filter in home ventilation systems can effectively reduce indoor levels of these common asthma and allergy triggers. These reductions in airborne allergens in turn may help reduce allergy and asthma symptoms, especially if employed in conjunction with other environmental management measures recommended for allergy and asthma patients.

  4. International Space Station (ISS) Bacterial Filter Elements (BFEs): Filter Efficiency and Pressure Testing of Returned Units

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Agui, Juan H.; Vijayakumar, R.

    2017-01-01

    The air revitalization system aboard the International Space Station (ISS) provides the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation due to the microgravity environment in Low Earth Orbit (LEO). The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Adsorption (HEPA) media filters deployed at multiple locations in each U.S. Segment module; these filters are referred to as Bacterial Filter Elements, or BFEs. These filters see a replacement interval, as part of maintenance, of 2-5 years dependent on location in the ISS. In this work, we present particulate removal efficiency, pressure drop, and leak test results for a sample set of 8 BFEs returned from the ISS after filter replacement. The results can potentially be utilized by the ISS Program to ascertain whether the present replacement interval can be maintained or extended to balance the on-ground filter inventory with extension of the lifetime of ISS beyond 2024. These results can also provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  5. Preparation of affordable and multifunctional clay-based ceramic filter matrix for treatment of drinking water.

    PubMed

    Shivaraju, H Puttaiah; Egumbo, Henok; Madhusudan, P; Anil Kumar, K M; Midhun, G

    2018-02-01

    Affordable clay-based ceramic filters with multifunctional properties were prepared using low-cost and active ingredients. The characterization results clearly revealed well crystallinity, structural elucidation, extensive porosity, higher surface area, higher stability, and durability which apparently enhance the treatment efficiency. The filtration rates of ceramic filter were evaluated under gravity and the results obtained were compared with a typical gravity slow sand filter (GSSF). All ceramic filters showed significant filtration rates of about 50-180 m/h, which is comparatively higher than the typical GSSF. Further, purification efficiency of clay-based ceramic filters was evaluated by considering important drinking water parameters and contaminants. A significant removal potential was achieved by the clay-based ceramic filter with 25% and 30% activated carbon along with active agents. Desired drinking water quality parameters were achieved by potential removal of nitrite (98.5%), nitrate (80.5%), total dissolved solids (62%), total hardness (55%), total organic pollutants (89%), and pathogenic microorganisms (100%) using ceramic filters within a short duration. The remarkable purification and disinfection efficiencies were attributed to the extensive porosity (0.202 cm 3  g -1 ), surface area (124.61 m 2  g -1 ), stability, and presence of active nanoparticles such as Cu, TiO 2 , and Ag within the porous matrix of the ceramic filter.

  6. Bacterial treatment effectiveness of point-of-use ceramic water filters.

    PubMed

    Bielefeldt, Angela R; Kowalski, Kate; Summers, R Scott

    2009-08-01

    Laboratory experiments were conducted on six point-of-use (POU) ceramic water filters that were manufactured in Nicaragua; two filters were used by families for ca. 4 years and the other filters had limited prior use in our lab. Water spiked with ca. 10(6)CFU/mL of Escherichia coli was dosed to the filters. Initial disinfection efficiencies ranged from 3 - 4.5 log, but the treatment efficiency decreased with subsequent batches of spiked water. Silver concentrations in the effluent water ranged from 0.04 - 1.75 ppb. Subsequent experiments that utilized feed water without a bacterial spike yielded 10(3)-10(5)CFU/mL bacteria in the effluent. Immediately after recoating four of the filters with a colloidal silver solution, the effluent silver concentrations increased to 36 - 45 ppb and bacterial disinfection efficiencies were 3.8-4.5 log. The treatment effectiveness decreased to 0.2 - 2.5 log after loading multiple batches of highly contaminated water. In subsequent loading of clean water, the effluent water contained <20-41 CFU/mL in two of the filters. This indicates that the silver had some benefit to reducing bacterial contamination by the filter. In general these POU filters were found to be effective, but showed loss of effectiveness with time and indicated a release of microbes into subsequent volumes of water passed through the system.

  7. 40 CFR Appendix Q to Part 50 - Reference Method for the Determination of Lead in Particulate Matter as PM10 Collected From...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....1.2) 46.2 mm diameter polytetrafluoroethylene (PTFE) filter for 24 hours using active sampling at... PM10 is performed on each individual 24-hour sample. Gravimetric mass analysis of PM10c filters is not... Pb in PM10 filters collected with the PM10c sampler. If these filters are analyzed for elements other...

  8. 40 CFR Appendix Q to Part 50 - Reference Method for the Determination of Lead in Particulate Matter as PM10 Collected From...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....1.2) 46.2 mm diameter polytetrafluoroethylene (PTFE) filter for 24 hours using active sampling at... PM10 is performed on each individual 24-hour sample. Gravimetric mass analysis of PM10c filters is not... Pb in PM10 filters collected with the PM10c sampler. If these filters are analyzed for elements other...

  9. 40 CFR Appendix Q to Part 50 - Reference Method for the Determination of Lead in Particulate Matter as PM10 Collected From...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....1.2) 46.2 mm diameter polytetrafluoroethylene (PTFE) filter for 24 hours using active sampling at... PM10 is performed on each individual 24-hour sample. Gravimetric mass analysis of PM10c filters is not... Pb in PM10 filters collected with the PM10c sampler. If these filters are analyzed for elements other...

  10. 40 CFR Appendix Q to Part 50 - Reference Method for the Determination of Lead in Particulate Matter as PM10 Collected From...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....1.2) 46.2 mm diameter polytetrafluoroethylene (PTFE) filter for 24 hours using active sampling at... PM10 is performed on each individual 24-hour sample. Gravimetric mass analysis of PM10c filters is not... Pb in PM10 filters collected with the PM10c sampler. If these filters are analyzed for elements other...

  11. 40 CFR Appendix Q to Part 50 - Reference Method for the Determination of Lead in Particulate Matter as PM10 Collected From...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....1.2) 46.2 mm diameter polytetrafluoroethylene (PTFE) filter for 24 hours using active sampling at... PM10 is performed on each individual 24-hour sample. Gravimetric mass analysis of PM10c filters is not... Pb in PM10 filters collected with the PM10c sampler. If these filters are analyzed for elements other...

  12. An efficient interpolation filter VLSI architecture for HEVC standard

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Zhou, Xin; Lian, Xiaocong; Liu, Zhenyu; Liu, Xiaoxiang

    2015-12-01

    The next-generation video coding standard of High-Efficiency Video Coding (HEVC) is especially efficient for coding high-resolution video such as 8K-ultra-high-definition (UHD) video. Fractional motion estimation in HEVC presents a significant challenge in clock latency and area cost as it consumes more than 40 % of the total encoding time and thus results in high computational complexity. With aims at supporting 8K-UHD video applications, an efficient interpolation filter VLSI architecture for HEVC is proposed in this paper. Firstly, a new interpolation filter algorithm based on the 8-pixel interpolation unit is proposed in this paper. It can save 19.7 % processing time on average with acceptable coding quality degradation. Based on the proposed algorithm, an efficient interpolation filter VLSI architecture, composed of a reused data path of interpolation, an efficient memory organization, and a reconfigurable pipeline interpolation filter engine, is presented to reduce the implement hardware area and achieve high throughput. The final VLSI implementation only requires 37.2k gates in a standard 90-nm CMOS technology at an operating frequency of 240 MHz. The proposed architecture can be reused for either half-pixel interpolation or quarter-pixel interpolation, which can reduce the area cost for about 131,040 bits RAM. The processing latency of our proposed VLSI architecture can support the real-time processing of 4:2:0 format 7680 × 4320@78fps video sequences.

  13. Rapid, absolute calibration of x-ray filters employed by laser-produced plasma diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, G. V.; Beiersdorfer, P.; Emig, J.

    2008-10-15

    The Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of x-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen x-ray energies. X rays are detected using the high resolution EBIT Calorimeter Spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the x-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification ofmore » filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated x-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed.« less

  14. Fabrication of a multi-walled carbon nanotube-deposited glass fiber air filter for the enhancement of nano and submicron aerosol particle filtration and additional antibacterial efficacy.

    PubMed

    Park, Jae Hong; Yoon, Ki Young; Na, Hyungjoo; Kim, Yang Seon; Hwang, Jungho; Kim, Jongbaeg; Yoon, Young Hun

    2011-09-01

    We grew multi-walled carbon nanotubes (MWCNTs) on a glass fiber air filter using thermal chemical vapor deposition (CVD) after the filter was catalytically activated with a spark discharge. After the CNT deposition, filtration and antibacterial tests were performed with the filters. Potassium chloride (KCl) particles (<1 μm) were used as the test aerosol particles, and their number concentration was measured using a scanning mobility particle sizer. Antibacterial tests were performed using the colony counting method, and Escherichia coli (E. coli) was used as the test bacteria. The results showed that the CNT deposition increased the filtration efficiency of nano and submicron-sized particles, but did not increase the pressure drop across the filter. When a pristine glass fiber filter that had no CNTs was used, the particle filtration efficiencies at particle sizes under 30 nm and near 500 nm were 48.5% and 46.8%, respectively. However, the efficiencies increased to 64.3% and 60.2%, respectively, when the CNT-deposited filter was used. The reduction in the number of viable cells was determined by counting the colony forming units (CFU) of each test filter after contact with the cells. The pristine glass fiber filter was used as a control, and 83.7% of the E. coli were inactivated on the CNT-deposited filter. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Hepa filter dissolution process

    DOEpatents

    Brewer, Ken N.; Murphy, James A.

    1994-01-01

    A process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.

  16. Monochromatic-beam-based dynamic X-ray microtomography based on OSEM-TV algorithm.

    PubMed

    Xu, Liang; Chen, Rongchang; Yang, Yiming; Deng, Biao; Du, Guohao; Xie, Honglan; Xiao, Tiqiao

    2017-01-01

    Monochromatic-beam-based dynamic X-ray computed microtomography (CT) was developed to observe evolution of microstructure inside samples. However, the low flux density results in low efficiency in data collection. To increase efficiency, reducing the number of projections should be a practical solution. However, it has disadvantages of low image reconstruction quality using the traditional filtered back projection (FBP) algorithm. In this study, an iterative reconstruction method using an ordered subset expectation maximization-total variation (OSEM-TV) algorithm was employed to address and solve this problem. The simulated results demonstrated that normalized mean square error of the image slices reconstructed by the OSEM-TV algorithm was about 1/4 of that by FBP. Experimental results also demonstrated that the density resolution of OSEM-TV was high enough to resolve different materials with the number of projections less than 100. As a result, with the introduction of OSEM-TV, the monochromatic-beam-based dynamic X-ray microtomography is potentially practicable for the quantitative and non-destructive analysis to the evolution of microstructure with acceptable efficiency in data collection and reconstructed image quality.

  17. Maximal power output by solar cells with angular confinement.

    PubMed

    Höhn, Oliver; Kraus, Tobias; Bauhuis, Gerard; Schwarz, Ulrich T; Bläsi, Benedikt

    2014-05-05

    Angularly selective filters can increase the efficiency of radiatively limited solar cells. A restriction of the acceptance angle is linked to the kind of utilizable solar spectrum (global or direct radiation). This has to be considered when calculating the potential enhancement of both the efficiency and the power output. In this paper, different concepts to realize angularly selective filters are compared regarding their limits for efficiency and power output per unit area. First experimental results of a promising system based on a thin-film filter as the angularly selective element are given to demonstrate the practical relevance of such systems.

  18. Monodisperse CNT Microspheres for High Permeability and Efficiency Flow-Through Filtration Applications.

    PubMed

    Copic, Davor; Maggini, Laura; De Volder, Michael

    2018-03-01

    Carbon nanotube (CNT)-based filters have the potential to revolutionize water treatment because of their high capacity and fast kinetics in sorption of organic, inorganic, and biological pollutants. To date, CNT filters either rely on CNTs dispersed in liquids, which are difficult to recover and cause safety concerns, or on CNT buckypaper, which offers high efficiency, but suffers from an intrinsic trade-off between filter permeability and capacity. Here, a new approach is presented that bypasses this trade-off and achieves buckypaper-like efficiency combined with filter-column-like permeability and capacity. For this, CNTs are first assembled into porous microspheres and then are packed into microfluidic column filters. These microcolumns exhibit large flow-through filtration efficiencies, while maintaining membrane permeabilities an order of magnitude larger then CNT buckypaper and specific permeabilities double that of activated carbon for similar flowrates (232 000 L m -2 h -1 bar -1 , 1.23 × 10 -12 m 2 ). Moreover, in a test to remove sodium dodecyl sulfate (SDS) from water, these microstructured CNT columns outperform activated carbon columns. This improved filtration efficiency and permeability is an important step toward a broader implementation of CNT-based filtration devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Further development of a robust workup process for solution-phase high-throughput library synthesis to address environmental and sample tracking issues.

    PubMed

    Kuroda, Noritaka; Hird, Nick; Cork, David G

    2006-01-01

    During further improvement of a high-throughput, solution-phase synthesis system, new workup tools and apparatus for parallel liquid-liquid extraction and evaporation have been developed. A combination of in-house design and collaboration with external manufacturers has been used to address (1) environmental issues concerning solvent emissions and (2) sample tracking errors arising from manual intervention. A parallel liquid-liquid extraction unit, containing miniature high-speed magnetic stirrers for efficient mixing of organic and aqueous phases, has been developed for use on a multichannel liquid handler. Separation of the phases is achieved by dispensing them into a newly patented filter tube containing a vertical hydrophobic porous membrane, which allows only the organic phase to pass into collection vials positioned below. The vertical positioning of the membrane overcomes the hitherto dependence on the use of heavier-than-water, bottom-phase, organic solvents such as dichloromethane, which are restricted due to environmental concerns. Both small (6-mL) and large (60-mL) filter tubes were developed for parallel phase separation in library and template synthesis, respectively. In addition, an apparatus for parallel solvent evaporation was developed to (1) remove solvent from the above samples with highly efficient recovery and (2) avoid the movement of individual samples between their collection on a liquid handler and registration to prevent sample identification errors. The apparatus uses a diaphragm pump to achieve a dynamic circulating closed system with a heating block for the rack of 96 sample vials and an efficient condenser to trap the solvents. Solvent recovery is typically >98%, and convenient operation and monitoring has made the apparatus the first choice for removal of volatile solvents.

  20. Deep Kalman Filter: Simultaneous Multi-Sensor Integration and Modelling; A GNSS/IMU Case Study

    PubMed Central

    Hosseinyalamdary, Siavash

    2018-01-01

    Bayes filters, such as the Kalman and particle filters, have been used in sensor fusion to integrate two sources of information and obtain the best estimate of unknowns. The efficient integration of multiple sensors requires deep knowledge of their error sources. Some sensors, such as Inertial Measurement Unit (IMU), have complicated error sources. Therefore, IMU error modelling and the efficient integration of IMU and Global Navigation Satellite System (GNSS) observations has remained a challenge. In this paper, we developed deep Kalman filter to model and remove IMU errors and, consequently, improve the accuracy of IMU positioning. To achieve this, we added a modelling step to the prediction and update steps of the Kalman filter, so that the IMU error model is learned during integration. The results showed our deep Kalman filter outperformed the conventional Kalman filter and reached a higher level of accuracy. PMID:29695119

  1. Deep Kalman Filter: Simultaneous Multi-Sensor Integration and Modelling; A GNSS/IMU Case Study.

    PubMed

    Hosseinyalamdary, Siavash

    2018-04-24

    Bayes filters, such as the Kalman and particle filters, have been used in sensor fusion to integrate two sources of information and obtain the best estimate of unknowns. The efficient integration of multiple sensors requires deep knowledge of their error sources. Some sensors, such as Inertial Measurement Unit (IMU), have complicated error sources. Therefore, IMU error modelling and the efficient integration of IMU and Global Navigation Satellite System (GNSS) observations has remained a challenge. In this paper, we developed deep Kalman filter to model and remove IMU errors and, consequently, improve the accuracy of IMU positioning. To achieve this, we added a modelling step to the prediction and update steps of the Kalman filter, so that the IMU error model is learned during integration. The results showed our deep Kalman filter outperformed the conventional Kalman filter and reached a higher level of accuracy.

  2. Denuder/filter sampling of organic acids and organosulfates at urban and boreal forest sites: Gas/particle distribution and possible sampling artifacts

    NASA Astrophysics Data System (ADS)

    Kristensen, Kasper; Bilde, Merete; Aalto, Pasi P.; Petäjä, Tuukka; Glasius, Marianne

    2016-04-01

    Carboxylic acids and organosulfates comprise an important fraction of atmospheric secondary organic aerosols formed from both anthropogenic and biogenic precursors. The partitioning of these compounds between the gas and particle phase is still unclear and further research is warranted to better understand the abundance and effect of organic acids and organosulfates on the formation and properties of atmospheric aerosols. This work compares atmospheric aerosols collected at an urban and a boreal forest site using two side-by-side sampling systems; a high volume sampler (HVS) and a low volume (LVS) denuder/filter sampling system allowing for separate collection of gas- and particle-phase organics. All particle filters and denuder samples were collected at H.C. Andersen Boulevard (HCAB), Copenhagen, Denmark in the summer of 2010, and at the remote boreal forest site at Hyytiälä forestry field station in Finland in the summer of 2012. The chemical composition of gas- and particle-phase secondary organic aerosol was investigated by ultra-high performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-Q-TOFMS), with a focus on carboxylic acids and organosulfates. Results show gas-phase concentrations higher than those observed in the particle phase by a factor of 5-6 in HCAB 2010 and 50-80 in Hyytiälä 2012. Although abundant in the particle phase, no organosulfates were detected in the gas phase at either site. Through a comparison of samples collected by the HVS and the LVS denuder/filter sampling system we evaluate the potential artifacts associated with sampling of atmospheric aerosols. Such comparison shows that particle phase concentrations of semi-volatile organic acids obtained from the filters collected by HVS are more than two times higher than concentrations obtained from filters collected using LVS denuder/filter system. In most cases, higher concentrations of organosulfates are observed in particles collected by HVS compared to samples collected by LVS denuder/filter sampling system. The present study shows that volatile organics may absorb onto filter materials in the HVS (and similar sampling systems without denuder) and furthermore undergo subsequent on-filter oxidation and sulfation resulting in formation of both organic acids and organosulfates.

  3. Method and Apparatus for the Collection Storage and Real Time Analysis of Blood and Other Bodily Fluids

    NASA Technical Reports Server (NTRS)

    Whitson, Peggy A. (Inventor); Clift, Vaughan L. (Inventor)

    1997-01-01

    The present invention provides an apparatus for separating a relatively large volume of blood into cellular and acellular fractions without the need for centrifugation. The apparatus comprises a housing divided by a fibrous filter into a blood sample collection chamber having a volume of at least about 1 milliliter and a serum sample collection chamber. The fibrous filter has a pore size of less than about 3 microns, and is coated with a mixture of mannitol and plasma fraction protein (or an animal or vegetable equivalent thereof). The coating causes the cellular fraction to be trapped by the small pores, leaving the cellular fraction intact on the fibrous filter while the acellular fraction passes through the filter for collection in unaltered form from the serum sample collection chamber.

  4. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    PubMed

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  5. Portable XRF analysis of occupational air filter samples from different workplaces using different samplers: final results, summary and conclusions.

    PubMed

    Harper, Martin; Pacolay, Bruce; Hintz, Patrick; Bartley, David L; Slaven, James E; Andrew, Michael E

    2007-11-01

    This paper concludes a five-year program on research into the use of a portable X-ray fluorescence (XRF) analyzer for analyzing lead in air sampling filters from different industrial environments, including mining, manufacturing and recycling. The results from four of these environments have already been reported. The results from two additional metal processes are presented here. At both of these sites, lead was a minor component of the total airborne metals and interferences from other elements were minimal. Nevertheless, only results from the three sites where lead was the most abundant metal were used in the overall calculation of method accuracy. The XRF analyzer was used to interrogate the filters, which were then subjected to acid digestion and analysis by inductively-coupled plasma optical-emission spectroscopy (ICP-OES). The filter samples were collected using different filter-holders or "samplers" where the size (diameter), depth and homogeneity of aerosol deposit varied from sampler to sampler. The aerosol collection efficiencies of the samplers were expected to differ, especially for larger particles. The distribution of particles once having entered the sampler was also expected to differ between samplers. Samplers were paired to allow the between-sampler variability to be addressed, and, in some cases, internal sampler wall deposits were evaluated and compared to the filter catch. It was found, rather surprisingly, that analysis of the filter deposits (by ICP-OES) of all the samplers gave equivalent results. It was also found that deposits on some of the sampler walls, which in some protocols are considered part of the sample, could be significant in comparison to the filter deposit. If it is concluded that wall-deposits should be analyzed, then XRF analysis of the filter can only give a minimum estimate of the concentration. Techniques for the statistical analysis of field data were also developed as part of this program and have been reported elsewhere. The results, based on data from the three workplaces where lead was the major element present in the samples, are summarized here. A limit of detection and a limit of quantitation are provided. Analysis of some samples using a second analyzer with a different X-ray source technology indicated reasonable agreement for some metals (but this was not evaluated for lead). Provided it is only necessary to analyze the filters, most personal samplers will provide acceptable results when used with portable XRF analysis for lead around applicable limit values.

  6. Electrostatic N-95 respirator filter media efficiency degradation resulting from intermittent sodium chloride aerosol exposure.

    PubMed

    Moyer, E S; Bergman, M S

    2000-08-01

    The effects of intermittently loading small masses of sodium chloride aerosol on the filtration efficiency of N-95 filtering facepiece respirators was investigated. The National Institute for Occupational Safety and Health (NIOSH) certifies that N-95 respirators must provide at least 95 percent filtration efficiency against a sodium chloride aerosol challenge as per the respirator certification (42 CFR 84) test criteria. N-95 respirators are specified for protection against solid and water-based particulates (i.e., non-oil aerosols). New N-95 respirators from three different manufacturers were loaded with 5 +/- 1 mg of sodium chloride aerosol one day a week, over a period of weeks. Aerosol loading and penetration measurements were performed using the TSI 8130 Filter Tester. Respirators were stored uncovered on an office desktop outside the laboratory. To investigate environmental and temporal effects of filters being stored without sodium chloride exposure, control respirators were stored on the desk for various lengths of time before being initiated into weekly testing. For all manufacturers' respirators, the controls showed similar initial penetrations on their day of initiation (day zero) to those of the study samples on day zero. As the controls were tested weekly, they showed similar degradation rates to those of the study samples. Results show that some of the manufacturers' models had penetrations of greater than 5 percent when intermittently exposed to sodium chloride aerosol. It is concluded that intermittent, low-level sodium chloride aerosol loading of N-95 respirators has a degrading effect on filter efficiency. This reduction in filter efficiency was not accompanied by a significant increase in breathing resistance that would signal the user that the filter needs to be replaced. Furthermore, it was noted that the effect of room storage time prior to initial exposure was much less significant.

  7. Virus removal efficiency of Cambodian ceramic pot water purifiers.

    PubMed

    Salsali, Hamidreza; McBean, Edward; Brunsting, Joseph

    2011-06-01

    Virus removal efficiency is described for three types of silver-impregnated, ceramic water filters (CWFs) produced in Cambodia. The tests were completed using freshly scrubbed filters and de-ionized (DI) water as an evaluation of the removal efficiency of the virus in isolation with no other interacting water quality variables. Removal efficiencies between 0.21 and 0.45 log are evidenced, which is significantly lower than results obtained in testing of similar filters by other investigators utilizing surface or rain water and a less frequent cleaning regime. Other experiments generally found virus removal efficiencies greater than 1.0 log. This difference may be because of the association of viruses with suspended solids, and subsequent removal of these solids during filtration. Variability in virus removal efficiencies between pots of the same manufacturer, and observed flow rates outside the manufacturer's specifications, suggest tighter quality control and consistency may be needed during production.

  8. Allergy-Proof Your House

    MedlinePlus

    ... small-particle or high-efficiency particulate air (HEPA) filter. Shampoo the carpet frequently. Curtains and blinds. Use ... dander they shed. Air filtration. Choose an air filter that has a small-particle or HEPA filter. ...

  9. Vectorization of linear discrete filtering algorithms

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.

    1977-01-01

    Linear filters, including the conventional Kalman filter and versions of square root filters devised by Potter and Carlson, are studied for potential application on streaming computers. The square root filters are known to maintain a positive definite covariance matrix in cases in which the Kalman filter diverges due to ill-conditioning of the matrix. Vectorization of the filters is discussed, and comparisons are made of the number of operations and storage locations required by each filter. The Carlson filter is shown to be the most efficient of the filters on the Control Data STAR-100 computer.

  10. 77 FR 32632 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of Three New Equivalent Methods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... Hydrogen Peroxide Filter Extraction'' In this method, total suspended particulate matter (TSP) is collected on glass fiber filters according to 40 CFR Appendix G to part 50, EPA Reference Method for the Determination of Lead in Suspended Particulate Matter Collected From Ambient Air. The filter samples are...

  11. 40 CFR 86.884-11 - Instrument checks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... collection equipment response of zero; (3) Calibrated neutral density filters having approximately 10, 20, and 40 percent opacity shall be employed to check the linearity of the instrument. The filter(s) shall.... Filters with exposed filtering media should be checked for opacity every six months; all other filters...

  12. 40 CFR 92.122 - Smoke meter calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... collection equipment response of zero; (b) Calibrated neutral density filters having approximately 10, 20, and 40 percent opacity shall be employed to check the linearity of the instrument. The filter(s) shall.... Filters with exposed filtering media should be checked for opacity every six months; all other filters...

  13. 40 CFR 86.884-11 - Instrument checks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... collection equipment response of zero; (3) Calibrated neutral density filters having approximately 10, 20, and 40 percent opacity shall be employed to check the linearity of the instrument. The filter(s) shall.... Filters with exposed filtering media should be checked for opacity every six months; all other filters...

  14. 40 CFR 92.122 - Smoke meter calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... collection equipment response of zero; (b) Calibrated neutral density filters having approximately 10, 20, and 40 percent opacity shall be employed to check the linearity of the instrument. The filter(s) shall.... Filters with exposed filtering media should be checked for opacity every six months; all other filters...

  15. 40 CFR 92.122 - Smoke meter calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... collection equipment response of zero; (b) Calibrated neutral density filters having approximately 10, 20, and 40 percent opacity shall be employed to check the linearity of the instrument. The filter(s) shall.... Filters with exposed filtering media should be checked for opacity every six months; all other filters...

  16. 40 CFR 92.122 - Smoke meter calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... collection equipment response of zero; (b) Calibrated neutral density filters having approximately 10, 20, and 40 percent opacity shall be employed to check the linearity of the instrument. The filter(s) shall.... Filters with exposed filtering media should be checked for opacity every six months; all other filters...

  17. 40 CFR 86.884-11 - Instrument checks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... collection equipment response of zero; (3) Calibrated neutral density filters having approximately 10, 20, and 40 percent opacity shall be employed to check the linearity of the instrument. The filter(s) shall.... Filters with exposed filtering media should be checked for opacity every six months; all other filters...

  18. 40 CFR 86.884-11 - Instrument checks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... collection equipment response of zero; (3) Calibrated neutral density filters having approximately 10, 20, and 40 percent opacity shall be employed to check the linearity of the instrument. The filter(s) shall.... Filters with exposed filtering media should be checked for opacity every six months; all other filters...

  19. Highly efficient all-fiber tunable polarization filter using torsional acoustic wave.

    PubMed

    Lee, Kwang Jo; Park, Hyun Chul; Kim, Byoung Yoon

    2007-09-17

    We demonstrate an all-fiber tunable polarization filter with high coupling efficiency based on acousto-optic coupling between two optical polarization modes of the LP(01) mode propagating in a highly birefringent single mode optical fiber. An over-coupling between the two polarization modes is realized over the wavelength range from 1530 nm to 1610 nm using traveling torsional acoustic wave. The measured 3-dB optical bandwidth of the filter was 4.8 nm at the wavelength around 1550 nm. The details of the filter transmission and the coupling characteristics are discussed.

  20. A Custom Robotic System for Inspecting HEPA Filters in the Payload Changeout Room at the NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Spencer, James E., Jr.; Looney, Joe

    1994-01-01

    In this paper, the prime objective is to describe a custom 4-dof (degree-of-freedom) robotic arm capable of autonomously or telerobotically performing systematic HEPA filter inspection and certification in the Shuttle Launch Pad Payload Changeout Rooms (PCR's) on pads A and B at the Kennedy Space Center, Florida. This HEPA filter inspection robot (HFIR) has been designed to be easily deployable and is equipped with the necessary sensory devices, control hardware, software and man-machine interfaces needed to implement HEPA filter inspection reliably and efficiently without damaging the filters or colliding with existing PCR structures or filters. The main purpose of the HFIR is to implement an automated positioning system to move special inspection sensors in pre-defined or manual patterns for the purpose of verifying filter integrity and efficiency. This will ultimately relieve NASA Payload Operations from significant problems associated with time, cost and personnel safety, impacts realized during non-automated PCR HFIR filter certification.

  1. High-throughput sample adaptive offset hardware architecture for high-efficiency video coding

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Yan, Chang; Zhang, Jingzhi; Zhou, Xin

    2018-03-01

    A high-throughput hardware architecture for a sample adaptive offset (SAO) filter in the high-efficiency video coding video coding standard is presented. First, an implementation-friendly and simplified bitrate estimation method of rate-distortion cost calculation is proposed to reduce the computational complexity in the mode decision of SAO. Then, a high-throughput VLSI architecture for SAO is presented based on the proposed bitrate estimation method. Furthermore, multiparallel VLSI architecture for in-loop filters, which integrates both deblocking filter and SAO filter, is proposed. Six parallel strategies are applied in the proposed in-loop filters architecture to improve the system throughput and filtering speed. Experimental results show that the proposed in-loop filters architecture can achieve up to 48% higher throughput in comparison with prior work. The proposed architecture can reach a high-operating clock frequency of 297 MHz with TSMC 65-nm library and meet the real-time requirement of the in-loop filters for 8 K × 4 K video format at 132 fps.

  2. Disk filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  3. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOEpatents

    Wilson, Kirk A.; Burchell, Timothy D.; Judkins, Roddie R.

    1998-01-01

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply airstream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium.

  4. Disk filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  5. Achieving 'excellent' indoor air quality in commercial offices equipped with air-handling unit--respirable suspended particulate.

    PubMed

    Lam, K S; Chan, F S; Fung, W Y; Lui, B S S; Lau, L W L

    2006-04-01

    A study was carried out to investigate the feasibility of achieving ultra low respirable suspended particulates (RSP) in commercial offices without major modification of existing ventilation systems by enhancing the particulates removal efficiency of existing central ventilation systems. Four types of filters which include pre-filters, cartridge filters, bag filters and high efficiency particulates air (HEPA) filters were tested in a commercial building in Causeway Bay. The results show that an RSP objective of <20 microg/m3 could be met by removing RSP from both the return air and outdoor air supply simultaneously. This level of performance is classed as 'excellent' by the Hong Kong Government, Environmental Protection Department. Filters with efficiency that exceed 80% placed both in the return air and outdoor air were sufficient to meet the objective. It is not necessary to install HEPA filters to achieve the 'excellent' class. The outdoor air filter has great influence on the steady state indoor RSP concentration while the effective cleaning rate is governed by the return air filter. Higher efficiency filters increased the static drop but the volume flow of the air fan was not affected significantly. The additional cost incurred was <5% of the existing operation cost. This paper reports a field study of RSP control for an indoor office environment. The results are directly applicable to building service engineering in the design of ventilation systems using air-handling units. Field observations indicated that indoor RSP in an office environment could be suppressed below 20 microg/m3 within 1 h by the simultaneous filtration of outdoor air and return air. Outdoor air filtration has a great influence on the steady state indoor concentration and return air filtration governs the cleaning rate. It is believed that the results of this study could be extended to the cleaning of other indoor pollutants such as volatile organic compounds.

  6. Applications of charge-coupled device transversal filters to communication

    NASA Technical Reports Server (NTRS)

    Buss, D. D.; Bailey, W. H.; Brodersen, R. W.; Hewes, C. R.; Tasch, A. F., Jr.

    1975-01-01

    The paper discusses the computational power of state-of-the-art charged-coupled device (CCD) transversal filters in communications applications. Some of the performance limitations of CCD transversal filters are discussed, with attention given to time delay and bandwidth, imperfect charge transfer efficiency, weighting coefficient error, noise, and linearity. The application of CCD transversal filters to matched filtering, spectral filtering, and Fourier analysis is examined. Techniques for making programmable transversal filters are briefly outlined.

  7. Effective use of iron-aluminum rich laterite based soil mixture for treatment of landfill leachate.

    PubMed

    Nayanthika, I V K; Jayawardana, D T; Bandara, N J G J; Manage, P M; Madushanka, R M T D

    2018-04-01

    Landfill leachate poses environmental threats worldwide and causes severe issues on adjacent water bodies and soil by direct discharge. The primary objective of this study is to analyze the efficient use of compost and laterite mixtures (0, 10, 20, 30 and 40 wt% compost/laterite) on leachate treatment and to investigate the associated removal efficiencies under different sorption processes. Therefore, in the experimental design, laterite is used for providing adsorption characteristics, and compost for activating biological properties of the filter. The filtering process is continued until major physical changes occur in the filter at approximately 100 days. The raw leachate used for the experiment shows higher average values for many analyzed parameters. Parameters for the experiment are selected based on their availability in raw leachate in the Sri Lanka. During filtering, removal efficiencies of BOD (>90%), COD (>85%), phosphate (>90%) and nitrate (75-95%) show higher values for all filters. These removals are mainly associated with biodegradation, which is activated by the added compost. Perhaps the removal of nitrate steadily increases with time, which indicates in denitrification by the added excess carbon from the leachate. The removal of total suspended solids (TSS) is moderate to high, but conversely, the electric conductivity (EC) is unsteady, indicating an association between iron exchange and carbonate degradation. A very high removal efficiency is reported in Fe (90-100%), and wide ranges of efficiencies in Mn (30-90%), Cu (45-85%), Ni (30-93%), Cd (37-98%), Zn (15-98%), and Pb (35-98%) involve heterogeneous sorption processes. Furthermore, the normalization of raw leachate by the liquid filtrate has apparent improvements. The differences (p > .05) in removal efficiencies between the filters are significant. It can be concluded that the filter with laterite mixed with 20% of compost has the optimum conditions. Further, the Fourier-transforminfrared (FT-IR) models for filter media conclude multiple sorptions and reveal evidence on vacant sites. X-ray diffraction (XRD) analyses indicate secondary minerals gibbsite, hematite, goethite and kaolinite as the major minerals that involved on the sorption process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. HEPA filter dissolution process

    DOEpatents

    Brewer, K.N.; Murphy, J.A.

    1994-02-22

    A process is described for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal. 4 figures.

  9. Highly efficient color filter array using resonant Si3N4 gratings.

    PubMed

    Uddin, Mohammad Jalal; Magnusson, Robert

    2013-05-20

    We demonstrate the design and fabrication of a highly efficient guided-mode resonant color filter array. The device is designed using numerical methods based on rigorous coupled-wave analysis and is patterned using UV-laser interferometric lithography. It consists of a 60-nm-thick subwavelength silicon nitride grating along with a 105-nm-thick homogeneous silicon nitride waveguide on a glass substrate. The fabricated device exhibits blue, green, and red color response for grating periods of 274, 327, and 369 nm, respectively. The pixels have a spectral bandwidth of ~12 nm with efficiencies of 94%, 96%, and 99% at the center wavelength of blue, green, and red color filter, respectively. These are higher efficiencies than reported in the literature previously.

  10. Use of Nuclepore filters for ambient and workplace nanoparticle exposure assessment-Spherical particles

    NASA Astrophysics Data System (ADS)

    Chen, Sheng-Chieh; Wang, Jing; Fissan, Heinz; Pui, David Y. H.

    2013-10-01

    Nuclepore filter collection with subsequent electron microscopy analysis for nanoparticles was carried out to examine the feasibility of the method to assess the nanoparticle exposure. The number distribution of nanoparticles collected on the filter surface was counted visually and converted to the distribution in the air using existing filtration models for Nuclepore filters. To search for a proper model, this paper studied the overall penetrations of three different nanoparticles (PSL, Ag and NaCl), covering a wide range of particle sizes (20-800 nm) and densities (1.05-10.5 g cm-3), through Nuclepore filters with two different pore diameters (1 and 3 μm) and different face velocities (2-15 cm s-1). The data were compared with existing particle deposition models and modified models proposed by this study, which delivered different results because of different deposition processes considered. It was found that a parameter associated with flow condition and filter geometry (density of fluid medium, particle density, filtration face velocity, filter porosity and pore diameter) should be taken into account to verify the applicability of the models. The data of the overall penetration were in very good agreement with the properly applied models. A good agreement of filter surface collection between the validated model and the SEM analysis was obtained, indicating a correct nanoparticle number distribution in the air can be converted from the Nuclepore filter surface collection and this method can be applied for nanoparticle exposure assessment.

  11. Treatment of municipal wastewater in full-scale on-site sand filter reduces BOD efficiently but does not reach requirements for nitrogen and phosphorus removal.

    PubMed

    Laaksonen, Petteri; Sinkkonen, Aki; Zaitsev, Gennadi; Mäkinen, Esa; Grönroos, Timo; Romantschuk, Martin

    2017-04-01

    A traditional sand filter for treatment of household wastewater was constructed in the fall of 2012 at Biolinja 12, Turku, Finland. Construction work was led and monitored by an authorized wastewater treatment consultant. The filter was placed on a field bordered by open ditches from all sides in order to collect excess rain and snowmelt waters. The filter was constructed and insulated from the environment so that all outflowing water was accounted for. Untreated, mainly municipal, wastewater from Varissuo suburb was pumped from a sewer separately via three septic tanks (volume = 1 m 3 each) into the filters. Normally, wastewater was distributed to ground filters automatically according to pre-programmed schedule. Initially, the daily flow was 1200 L day -1 to reflect the average organic load of a household of five persons (load: ca 237 g day -1 BOD; 73 g day -1 total N; and 10.4 g day -1 total P). Later in the test, the flow rate was decreased first to 900 and then to 600 L day -1 to better reflect the average volume produced by five persons. Volumes of inlet wastewater as well as treated water were monitored by magnetic flow meters. Samples were withdrawn from the inlet water, from the water entering the filters after the third septic tank, and from the outflowing water. After an initial adaption time, the reductions in BOD and chemical oxygen demand were constantly between 92 and 98%, showing that the biological degradation process in the filters functioned optimally and clearly comply with the national and EU standards. The reduction in total nitrogen and total phosphorus, however, reached required levels only during the first months of testing, apparently when buildup of microbial biomass was still ongoing. After this initial period of 3 months showing satisfactory reduction levels, the reduction of total nitrogen varied between 5 and 25% and total phosphorus mostly between 50 and 65%. Nitrification was efficient in the filter, but as indicated by high nitrate levels and poor nitrogen reductions, denitrification was inefficient or absent. During the winter period, the temperature in the filter dropped to near freezing, but at all time points, the flow of water was unaffected by freezing. During snowmelt and heavy rain, occasional flooding was observed. Such situations may lead to dilution rather than purification of the wastewater. In conclusion, the sand filter tested worked well for reduction of the organic load in municipal wastewater but failed to sufficiently reduce nitrogen and phosphorus levels.

  12. Numerical investigation of the effect of number and shape of inlet of cyclone and particle size on particle separation

    NASA Astrophysics Data System (ADS)

    Khazaee, Iman

    2017-06-01

    Cyclones are one of the most common devices for removing particles from the gas stream and act as a filter. The mode of action of separating these particles, from mass gas flow, in this case, is that the inertia force exerted on the solid particles in the cyclone, several times greater than the force of inertia into the gas phase and so the particles are guided from the sides of the cyclone body to the bottom body but less power will be affected by the gas phase and from upper parts, solid particles, goes to the bottom chamber. Most of the attention has been focused on finding new methods to improve performance parameters. Recently, some studies were conducted to improve equipment performance by evaluating geometric effects on projects. In this work, the effect of cyclone geometry was studied through the creation of a symmetrical double and quad inlet and also studied cutting inlet geometry and their influence on separation efficiency. To assess the accuracy of modeling, selected model compared with the model Kim and Lee and the results were close to acceptable. The collection efficiency of the double inlet cyclone was found to be 20-25% greater than that of the single inlet cyclone and the collection efficiency of the quad inlet cyclone was found to be 40-45% greater than with the same inlet size. Also the collection efficiency of the rectangle inlet was found to be 4-6% greater than ellipse inlet and the collection efficiency of the ellipse inlet was found to be 30-35% greater than circle inlet.

  13. No Photon Left Behind: Advanced Optics at ARPA-E for Buildings and Solar Energy

    NASA Astrophysics Data System (ADS)

    Branz, Howard M.

    2015-04-01

    Key technology challenges in building efficiency and solar energy utilization require transformational optics, plasmonics and photonics technologies. We describe advanced optical technologies funded by the Advanced Research Projects Agency - Energy. Buildings technologies include a passive daytime photonic cooler, infra-red computer vision mapping for energy audit, and dual-band electrochromic windows based on plasmonic absorption. Solar technologies include novel hybrid energy converters that combine high-efficiency photovoltaics with concentrating solar thermal collection and storage. Because the marginal cost of thermal energy storage is low, these systems enable generation of inexpensive and dispatchable solar energy that can be deployed when the sun doesn't shine. The solar technologies under development include nanoparticle plasmonic spectrum splitting, Rugate filter interference structures and photovoltaic cells that can operate efficiently at over 400° C.

  14. Effect of the Cedar River on the quality of the ground-water supply for Cedar Rapids, Iowa

    USGS Publications Warehouse

    Schulmeyer, P.M.

    1995-01-01

    Above-normal streamflow and precipitation during the study could have increased the effect the river had on the alluvial aquifer and on the possibility of contamination by a pathogen. Microscopic particulate analysis of 29 samples found no Giardia cysts or Crytosporidium oocysts in water collected from municipal wells. Data also indicate that the aquifer is filtering out large numbers of algae, diatoms, rotifers, and nematodes as well as filtering out Cryptosporidium, Giardia, and other protozoa. The number of algae, diatoms, rotifers, protozoa, and vegetative debris for selected municipal wells tested showed at least a reduction to 1 per 1,000 of the number found in the river. A relative risk factor and a log-reduction rate were determined for the aquifer in the vicinity of selected wells. One municipal well had a high-risk factor, three other wells had a moderate-risk factor, and four wells had a low-risk factor. The filtering efficiency of the aquifer is equivalent to a 3 log-reduction rate or 99.99-percent reduction in particulates.

  15. Fungal spore concentrations in two haematopoietic stem cell transplantation (HSCT) units containing distinct air control systems.

    PubMed

    Brun, C P; Miron, D; Silla, L M R; Pasqualotto, A C

    2013-04-01

    Invasive fungal diseases have emerged as important causes of morbidity and mortality in haematological patients. In this study air samples were collected in two haematopoietic stem cell transplantation (HSCT) units, in which distinct air-control systems were in place. In hospital 1 no high-efficiency particulate air (HEPA) filter was available whereas in hospital 2 HSCT rooms were equipped with HEPA filters, with positive air pressure in relation to the corridor. A total of 117 samples from rooms, toilets and corridors were obtained during December 2009 to January 2011, using a six-stage Andersen sampler. In both hospitals, the concentration of potentially pathogenic fungi in the air was reduced in patients' rooms compared to corridors (P < 0·0001). Despite the presence of a HEPA filter in hospital 2, rooms in both hospitals showed similar concentrations of potentially pathogenic fungi (P = 0·714). These findings may be explained by the implementation of additional protective measures in hospital 1, emphasizing the importance of such measures in protected environments.

  16. Arsenic removal from drinking water by a household sand filter in Vietnam--effect of filter usage practices on arsenic removal efficiency and microbiological water quality.

    PubMed

    Nitzsche, Katja Sonja; Lan, Vi Mai; Trang, Pham Thi Kim; Viet, Pham Hung; Berg, Michael; Voegelin, Andreas; Planer-Friedrich, Britta; Zahoransky, Jan; Müller, Stefanie-Katharina; Byrne, James Martin; Schröder, Christian; Behrens, Sebastian; Kappler, Andreas

    2015-01-01

    Household sand filters are applied to treat arsenic- and iron-containing anoxic groundwater that is used as drinking water in rural areas of North Vietnam. These filters immobilize poisonous arsenic (As) via co-oxidation with Fe(II) and sorption to or co-precipitation with the formed Fe(III) (oxyhydr)oxides. However, information is lacking regarding the effect of the frequency and duration of filter use as well as of filter sand replacement on the residual As concentrations in the filtered water and on the presence of potentially pathogenic bacteria in the filtered and stored water. We therefore scrutinized a household sand filter with respect to As removal efficiency and the presence of fecal indicator bacteria in treated water as a function of filter operation before and after sand replacement. Quantification of As in the filtered water showed that periods of intense daily use followed by periods of non-use and even sand replacement did not significantly (p<0.05) affect As removal efficiency. The As concentration was reduced during filtration from 115.1 ± 3.4 μg L(-1) in the groundwater to 5.3 ± 0.7 μg L(-1) in the filtered water (95% removal). The first flush of water from the filter contained As concentrations below the drinking water limit and suggests that this water can be used without risk for human health. Colony forming units (CFUs) of coliform bacteria increased during filtration and storage from 5 ± 4 per 100mL in the groundwater to 5.1 ± 1.5 × 10(3) and 15 ± 1.4 × 10(3) per 100mL in the filtered water and in the water from the storage tank, respectively. After filter sand replacement, CFUs of Escherichia coli of <100 per 100mL were quantified. None of the samples contained CFUs of Enterococcus spp. No critical enrichment of fecal indicator bacteria belonging to E. coli or Enterococcus spp. was observed in the treated drinking water by qPCR targeting the 23S rRNA gene. The results demonstrate the efficient and reliable performance of household sand filters regarding As removal, but indicate a potential risk for human health arising from the enrichment of coliform bacteria during filtration and from E. coli cells that are introduced by sand replacement. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. [Appropriate dust control measures for jade carving operations].

    PubMed

    Liu, Jiang; Wang, Qiushui; Liu, Guangquan

    2002-12-01

    To provide the appropriate dust control measures for jade carving operations. Dust concentrations in the workplace were measured according to GB/T 5748-85. Ventilation system of dust control were measured according to GB/T 16157-1996. Dust particle size distributions for different sources and particle size fraction collecting efficiencies of the dust collectors were measured with WY-1 in-stack 7 stage cascade impactors. On the basis of adopting wet process in the carving operations, local exhaust ventilation system for dust control was installed, which included: the special designed slot exhaust hoods with hood face velocity of 2.5 m/s and exhaust volume of 600 m3/h. The pipe sizes were determined according to the air volume passing through the pipe and the reasonable air velocities. Impinging scrubber or bag filter dust collector were selected to treat the dust laden air from the local exhaust ventilation system, which gave a total collecting efficiency of 97% for impinging scrubber and 98% for bag filter; The type of fan and its size were selected according to the total air volume of the ventilation system and maximum total pressure needed for the longest pipe line plus the pressure drop of the dust collector. Practical application showed that, after installation and use of the appropriate dust control measures, the dust concentrations in the workplaces could meet or nearly meet the national hygienic standard and the dust laden air at the local exhaust ventilation system could meet the national emission standard.

  18. Multi-Target Tracking Using an Improved Gaussian Mixture CPHD Filter.

    PubMed

    Si, Weijian; Wang, Liwei; Qu, Zhiyu

    2016-11-23

    The cardinalized probability hypothesis density (CPHD) filter is an alternative approximation to the full multi-target Bayesian filter for tracking multiple targets. However, although the joint propagation of the posterior intensity and cardinality distribution in its recursion allows more reliable estimates of the target number than the PHD filter, the CPHD filter suffers from the spooky effect where there exists arbitrary PHD mass shifting in the presence of missed detections. To address this issue in the Gaussian mixture (GM) implementation of the CPHD filter, this paper presents an improved GM-CPHD filter, which incorporates a weight redistribution scheme into the filtering process to modify the updated weights of the Gaussian components when missed detections occur. In addition, an efficient gating strategy that can adaptively adjust the gate sizes according to the number of missed detections of each Gaussian component is also presented to further improve the computational efficiency of the proposed filter. Simulation results demonstrate that the proposed method offers favorable performance in terms of both estimation accuracy and robustness to clutter and detection uncertainty over the existing methods.

  19. Effect of filter media thickness on the performance of sand drying beds used for faecal sludge management.

    PubMed

    Manga, M; Evans, B E; Camargo-Valero, M A; Horan, N J

    2016-12-01

    The effect of sand filter media thickness on the performance of faecal sludge (FS) drying beds was determined in terms of: dewatering time, contaminant load removal efficiency, solids generation rate, nutrient content and helminth eggs viability in the dried sludge. A mixture of ventilated improved pit latrine sludge and septage in the ratio 1:2 was dewatered using three pilot-scale sludge drying beds with sand media thicknesses of 150, 250 and 350 mm. Five dewatering cycles were conducted and monitored for each drying bed. Although the 150 mm filter had the shortest average dewatering time of 3.65 days followed by 250 mm and 350 mm filters with 3.83 and 4.02 days, respectively, there was no significant difference (p > 0.05) attributable to filter media thickness configurations. However, there was a significant difference for the percolate contaminant loads in the removal and recovery efficiency of suspended solids, total solids, total volatile solids, nitrogen species, total phosphorus, chemical oxygen demand, dissolved chemical oxygen demand and biochemical oxygen demand, with the highest removal efficiency for each parameter achieved by the 350 mm filter. There were also significant differences in the nutrient content (NPK) and helminth eggs viability of the solids generated by the tested filters. Filtering media configurations similar to 350 mm have the greatest potential for optimising nutrient recovery from FS.

  20. Microplastics in seafood: Benchmark protocol for their extraction and characterization.

    PubMed

    Dehaut, Alexandre; Cassone, Anne-Laure; Frère, Laura; Hermabessiere, Ludovic; Himber, Charlotte; Rinnert, Emmanuel; Rivière, Gilles; Lambert, Christophe; Soudant, Philippe; Huvet, Arnaud; Duflos, Guillaume; Paul-Pont, Ika

    2016-08-01

    Pollution of the oceans by microplastics (<5 mm) represents a major environmental problem. To date, a limited number of studies have investigated the level of contamination of marine organisms collected in situ. For extraction and characterization of microplastics in biological samples, the crucial step is the identification of solvent(s) or chemical(s) that efficiently dissolve organic matter without degrading plastic polymers for their identification in a time and cost effective way. Most published papers, as well as OSPAR recommendations for the development of a common monitoring protocol for plastic particles in fish and shellfish at the European level, use protocols containing nitric acid to digest the biological tissues, despite reports of polyamide degradation with this chemical. In the present study, six existing approaches were tested and their effects were compared on up to 15 different plastic polymers, as well as their efficiency in digesting biological matrices. Plastic integrity was evaluated through microscopic inspection, weighing, pyrolysis coupled with gas chromatography and mass spectrometry, and Raman spectrometry before and after digestion. Tissues from mussels, crabs and fish were digested before being filtered on glass fibre filters. Digestion efficiency was evaluated through microscopical inspection of the filters and determination of the relative removal of organic matter content after digestion. Five out of the six tested protocols led to significant degradation of plastic particles and/or insufficient tissue digestion. The protocol using a KOH 10% solution and incubation at 60 °C during a 24 h period led to an efficient digestion of biological tissues with no significant degradation on all tested polymers, except for cellulose acetate. This protocol appeared to be the best compromise for extraction and later identification of microplastics in biological samples and should be implemented in further monitoring studies to ensure relevance and comparison of environmental and seafood product quality studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Method and Apparatus for the Collection, Storage, and Real Time Analysis of Blood and Other Bodily Fluids

    NASA Technical Reports Server (NTRS)

    Whiitson, Peggy A. (Inventor); Clift, Vaughan L. (Inventor)

    1999-01-01

    The present invention provides a method and apparatus for separating a blood sample having a volume of up to about 20 milliliters into cellular and acellular fractions. The apparatus includes a housing divided by a fibrous filter into a blood sample collection chamber having a volume of at least about 1 milliliter and a serum sample collection chamber. The fibrous filter has a pore size of less than about 3 microns, and is coated with a mixture including between about 1-40 wt/vol % mannitol and between about 0.1-15 wt/vol % of plasma fraction protein (or an animal or vegetable equivalent thereof). The coating causes the cellular fraction to be trapped by the small pores, leaving the cellular fraction intact on the fibrous filter while the acellular fraction passes through the filter for collection in unaltered form from the serum sample collection chamber.

  2. Optimal design of FIR triplet halfband filter bank and application in image coding.

    PubMed

    Kha, H H; Tuan, H D; Nguyen, T Q

    2011-02-01

    This correspondence proposes an efficient semidefinite programming (SDP) method for the design of a class of linear phase finite impulse response triplet halfband filter banks whose filters have optimal frequency selectivity for a prescribed regularity order. The design problem is formulated as the minimization of the least square error subject to peak error constraints and regularity constraints. By using the linear matrix inequality characterization of the trigonometric semi-infinite constraints, it can then be exactly cast as a SDP problem with a small number of variables and, hence, can be solved efficiently. Several design examples of the triplet halfband filter bank are provided for illustration and comparison with previous works. Finally, the image coding performance of the filter bank is presented.

  3. Impact of HVAC filter on indoor air quality in terms of ozone removal and carbonyls generation

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Chi; Chen, Hsuan-Yu

    2014-06-01

    This study aims at detecting ozone removal rates and corresponding carbonyls generated by ozone reaction with HVAC filters from various building, i.e., shopping mall, school, and office building. Studies were conducted in a small-scale environmental chamber. By examining dust properties including organic carbon proportion and specific surface area of dusts adsorbed on filters along with ozone removal rates and carbonyls generation rate, the relationship among dust properties, ozone removal rates, and carbonyls generation was identified. The results indicate a well-defined positive correlation between ozone removal efficiency and carbonyls generation on filters, as well as a positive correlation among the mass of organic carbon on filters, ozone removal efficiency and carbonyls generations.

  4. Bessel smoothing filter for spectral-element mesh

    NASA Astrophysics Data System (ADS)

    Trinh, P. T.; Brossier, R.; Métivier, L.; Virieux, J.; Wellington, P.

    2017-06-01

    Smoothing filters are extremely important tools in seismic imaging and inversion, such as for traveltime tomography, migration and waveform inversion. For efficiency, and as they can be used a number of times during inversion, it is important that these filters can easily incorporate prior information on the geological structure of the investigated medium, through variable coherent lengths and orientation. In this study, we promote the use of the Bessel filter to achieve these purposes. Instead of considering the direct application of the filter, we demonstrate that we can rely on the equation associated with its inverse filter, which amounts to the solution of an elliptic partial differential equation. This enhances the efficiency of the filter application, and also its flexibility. We apply this strategy within a spectral-element-based elastic full waveform inversion framework. Taking advantage of this formulation, we apply the Bessel filter by solving the associated partial differential equation directly on the spectral-element mesh through the standard weak formulation. This avoids cumbersome projection operators between the spectral-element mesh and a regular Cartesian grid, or expensive explicit windowed convolution on the finite-element mesh, which is often used for applying smoothing operators. The associated linear system is solved efficiently through a parallel conjugate gradient algorithm, in which the matrix vector product is factorized and highly optimized with vectorized computation. Significant scaling behaviour is obtained when comparing this strategy with the explicit convolution method. The theoretical numerical complexity of this approach increases linearly with the coherent length, whereas a sublinear relationship is observed practically. Numerical illustrations are provided here for schematic examples, and for a more realistic elastic full waveform inversion gradient smoothing on the SEAM II benchmark model. These examples illustrate well the efficiency and flexibility of the approach proposed.

  5. Testing particle filters on convective scale dynamics

    NASA Astrophysics Data System (ADS)

    Haslehner, Mylene; Craig, George. C.; Janjic, Tijana

    2014-05-01

    Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical fluid dynamics. - Computers and Fluids, doi:10,1016/j.compfluid.2010.11.011, 1096 2011. Würsch, M. and G. C. Craig, 2013: A simple dynamical model of cumulus convection for data assimilation research, submitted to Met. Zeitschrift.

  6. Particulate emissions from a mid-latitude prescribed chaparral fire

    Treesearch

    Wesley R. Cofer; Joel S. Levine; Daniel I. Sebacher; Edward L. Winstead; Philip J. Riggan; James A. Brass; Vincent G. Ambrosia

    1988-01-01

    Smoke aerosol was collected on filters from a helicopter during a 400-acre (1.62 km2) prescribed chaparral burn in the San Dimas Experimental Forest on December 12, 1986. Hi-Vol samplers were used to collect particles on both Teflon and glass fiber filters. Scanning electron microscopy of the filters revealed particles that ranged in size from...

  7. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOEpatents

    Wilson, K.A.; Burchell, T.D.; Judkins, R.R.

    1998-10-27

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply air stream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium. 3 figs.

  8. Performance Limits of Non-Line-of-Sight Optical Communications

    DTIC Science & Technology

    2015-05-01

    high efficiency solar blind photo detectors. In this project, we address the main challenges towards optimizing the UV communication system...LEDs), solar blind filters, and high efficiency solar blind photo detectors. In this project, we address the main challenges towards optimizing the UV...solar blind filters, and high efficiency solar blind photo detectors. In this project, we address the main challenges towards optimizing the UV

  9. The importance of temporal inequality in quantifying vegetated filter strip removal efficiencies

    USDA-ARS?s Scientific Manuscript database

    Vegetated filter strips (VFSs) are best management practices (BMPs) commonly implemented adjacent to row-cropped fields to trap overland transport of sediment and other constituents often present in agricultural runoff. VFSs are generally reported to have high sediment removal efficiencies (i.e., 70...

  10. Air filtration systems and restrictive access conditions improve indoor air quality in clinical units: Penicillium as a general indicator of hospital indoor fungal levels.

    PubMed

    Araujo, Ricardo; Cabral, João Paulo; Rodrigues, Acácio Gonçalves

    2008-03-01

    High-efficiency particulate air (HEPA) filters do not completely prevent nosocomial fungal infections. The first aim of this study was to evaluate the impact of different filters and access conditions upon airborne fungi in hospital facilities. Additionally, this study identified fungal indicators of indoor air concentrations. Eighteen rooms and wards equipped with different air filter systems, and access conditions were sampled weekly, during 16 weeks. Tap water samples were simultaneously collected. The overall mean concentration of atmospheric fungi for all wards was 100 colony forming units/m(3). We found a direct proportionality between the levels of the different fungi in the studied atmospheres. Wards with HEPA filters at positive air flow yielded lower fungal levels. Also, the existence of an anteroom and the use of protective clothes were associated to the lowest fungal levels. Principal component analysis showed that penicillia afforded the best separation between wards' air fungal levels. Fungal strains were rarely recovered from tap water samples. In addition to air filtration systems, some access conditions to hospital units, like presence of anteroom and use of protective clothes, may prevent high fungal air load. Penicillia can be used as a general indicator of indoor air fungal levels at Hospital S. João.

  11. PCDD/F emissions during startup and shutdown of a hazardous waste incinerator.

    PubMed

    Li, Min; Wang, Chao; Cen, Kefa; Ni, Mingjiang; Li, Xiaodong

    2017-08-01

    Compared with municipal solid waste incineration, studies on the PCDD/F emissions of hazardous waste incineration (HWI) under transient conditions are rather few. This study investigates the PCDD/F emission level, congener profile and removal efficiency recorded during startup and shutdown by collecting flue gas samples at the bag filter inlet and outlet and at the stack. The PCDD/F concentration measured in the stack gas during startup and shutdown were 0.56-4.16 ng I-TEQ Nm -3 and 1.09-3.36 ng I-TEQ Nm -3 , respectively, far exceeding the present codes in China. The total amount of PCDD/F emissions, resulting from three shutdown-startup cycles of this HWI-unit is almost equal to that generated during one year under normal operating conditions. Upstream the filter, the PCDD/F in the flue gas is mainly in the particle phase; however, after being filtered PCDD/F prevails in the gas phase. The PCDD/F fraction in the gas phase even exceeds 98% after passing through the alkaline scrubber. Especially higher chlorinated PCDD/F accumulate on inner walls of filters and ducts during these startup periods and could be released again during normal operation, significantly increasing PCDD/F emissions. Copyright © 2017. Published by Elsevier Ltd.

  12. Protection of the vehicle cab environment against bacteria, fungi and endotoxins in composting facilities.

    PubMed

    Schlosser, O; Huyard, A; Rybacki, D; Do Quang, Z

    2012-06-01

    Microbial quality of air inside vehicle cabs is a major occupational health risk management issue in composting facilities. Large differences and discrepancies in protection factors between vehicles and between biological agents have been reported. This study aimed at estimating the mean protection efficiency of the vehicle cab environment against bioaerosols with higher precision. In-cab measurement results were also analysed to ascertain whether or not these protection systems reduce workers' exposure to tolerable levels. Five front-end loaders, one mobile mixer and two agricultural tractors pulling windrow turners were investigated. Four vehicles were fitted with a pressurisation and high efficiency particulate air (HEPA) filtration system. The four others were only equipped with pleated paper filter without pressurisation. Bacteria, fungi and endotoxins were measured in 72 pairs of air samples, simultaneously collected inside the cab and on the outside of the cab with a CIP 10-M sampler. A front-end loader, purchased a few weeks previously, fitted with a pressurisation and high efficiency particulate air (HEPA) filtration system, and with a clean cab, exhibited a mean protection efficiency of between 99.47% CI 95% [98.58-99.97%] and 99.91% [99.78-99.98%] depending on the biological agent. It is likely that the lower protection efficiency demonstrated in other vehicles was caused by penetration through the only moderately efficient filters, by the absence of pressurisation, by leakage in the filter-sealing system, and by re-suspension of particles which accumulated in dirty cabs. Mean protection efficiency in regards to bacteria and endotoxins ranged between 92.64% [81.87-97.89%] and 98.61% [97.41-99.38%], and between 92.68% [88.11-96.08%] and 98.43% [97.44-99.22%], respectively. The mean protection efficiency was the lowest when confronted with fungal spores, from 59.76% [4.19-90.75%] to 94.71% [91.07-97.37%]. The probability that in-cab exposure to fungi exceeded the benchmark value for short-term respiratory effects suggests that front-end loaders and mobile mixers in composting facilities should be fitted with a pressurisation and HEPA filtration system, regardless of whether or not the facility is indoors or outdoors. Regarding the tractors, exposure inside the cabs was not significantly reduced. However, in this study, there was a less than 0.01% risk of exceeding the bench mark value associated with fungi related short-term respiratory effects during an 1-h per day windrow turning operation. Pressurisation and a HEPA filtration system can provide safe working conditions inside loaders and mobile mixer with regard to airborne bacteria, fungi and endotoxins in composting facilities. However, regular thorough cleaning of the vehicle cab, as well as overalls and shoes cleaning, and mitigation of leakage in the filter-sealing system are necessary to achieve high levels of protection efficiency. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Development of Na Adaptive Filter to Estimate the Percentage of Body Fat Based on Anthropometric Measures

    NASA Astrophysics Data System (ADS)

    do Lago, Naydson Emmerson S. P.; Kardec Barros, Allan; Sousa, Nilviane Pires S.; Junior, Carlos Magno S.; Oliveira, Guilherme; Guimares Polisel, Camila; Eder Carvalho Santana, Ewaldo

    2018-01-01

    This study aims to develop an algorithm of an adaptive filter to determine the percentage of body fat based on the use of anthropometric indicators in adolescents. Measurements such as body mass, height and waist circumference were collected for a better analysis. The development of this filter was based on the Wiener filter, used to produce an estimate of a random process. The Wiener filter minimizes the mean square error between the estimated random process and the desired process. The LMS algorithm was also studied for the development of the filter because it is important due to its simplicity and facility of computation. Excellent results were obtained with the filter developed, being these results analyzed and compared with the data collected.

  14. High efficiency cabin air filter in vehicles reduces drivers' roadway particulate matter exposures and associated lipid peroxidation

    PubMed Central

    Shu, Shi; Lin, Yan; She, Jianwen; Ip, Ho Sai Simon; Qiu, Xinghua; Zhu, Yifang

    2017-01-01

    Commuters who spend long hours on roads are exposed to high levels of traffic related air pollutants (TRAPs). Despite some well-known multiple adverse effects of TRAPs on human health, limited studies have focused on mitigation strategies to reduce these effects. In this study, we measured fine particulate matter (PM2.5) and ultrafine particle (UFP) concentrations inside and outside 17 taxis simultaneously while they were driven on roadways. The drivers’ urinary monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and malondialdehyde (MDA) concentrations just before and right after the driving tests were also determined. Data were collected under three driving conditions (i.e. no mitigation (NM), window closed (WC), and window closed plus using high efficiency cabin air filters (WC+HECA)) for each taxi and driver. The results show that, compared to NM, the WC+HECA reduced in-cabin PM2.5 and UFP concentrations, by 37% and 47% respectively (p < 0.05), whereas the reductions on PAH exposures were insignificant. Although nonsignificant, a reduction of 17% was also observed in the drivers’ urinary MDA under WC+HECA. The MDA concentrations were found to be significantly associated with the in-cabin PM2.5 and UFP concentrations, suggesting the reduction of the drivers’ lipid peroxidation can be at least partially attributed to the PM2.5 and UFP reduction by WC+HECA. Overall, these results suggest HECA filters have potential to reduce particle levels inside taxis and protect drivers’ health. PMID:29176859

  15. High efficiency cabin air filter in vehicles reduces drivers' roadway particulate matter exposures and associated lipid peroxidation.

    PubMed

    Yu, Nu; Shu, Shi; Lin, Yan; She, Jianwen; Ip, Ho Sai Simon; Qiu, Xinghua; Zhu, Yifang

    2017-01-01

    Commuters who spend long hours on roads are exposed to high levels of traffic related air pollutants (TRAPs). Despite some well-known multiple adverse effects of TRAPs on human health, limited studies have focused on mitigation strategies to reduce these effects. In this study, we measured fine particulate matter (PM2.5) and ultrafine particle (UFP) concentrations inside and outside 17 taxis simultaneously while they were driven on roadways. The drivers' urinary monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and malondialdehyde (MDA) concentrations just before and right after the driving tests were also determined. Data were collected under three driving conditions (i.e. no mitigation (NM), window closed (WC), and window closed plus using high efficiency cabin air filters (WC+HECA)) for each taxi and driver. The results show that, compared to NM, the WC+HECA reduced in-cabin PM2.5 and UFP concentrations, by 37% and 47% respectively (p < 0.05), whereas the reductions on PAH exposures were insignificant. Although nonsignificant, a reduction of 17% was also observed in the drivers' urinary MDA under WC+HECA. The MDA concentrations were found to be significantly associated with the in-cabin PM2.5 and UFP concentrations, suggesting the reduction of the drivers' lipid peroxidation can be at least partially attributed to the PM2.5 and UFP reduction by WC+HECA. Overall, these results suggest HECA filters have potential to reduce particle levels inside taxis and protect drivers' health.

  16. Culturability of Bacillus spores on aerosol collection filters exposed to airborne combustion products of Al, Mg, and B·Ti.

    PubMed

    Adhikari, Atin; Yermakov, Michael; Indugula, Reshmi; Reponen, Tiina; Driks, Adam; Grinshpun, Sergey A

    2016-05-01

    Destruction of bioweapon facilities due to explosion or fire could aerosolize highly pathogenic microorganisms. The post-event air quality assessment is conducted through air sampling. A bioaerosol sample (often collected on a filter for further culture-based analysis) also contains combustion products, which may influence the microbial culturability and, thus, impact the outcome. We have examined the interaction between spores deposited on collection filters using two simulants of Bacillus anthracis [B. thuringiensis (Bt) and B. atrophaeus (referred to as BG)] and incoming combustion products of Al as well as Mg and B·Ti (common ingredient of metalized explosives). Spores extracted from Teflon, polycarbonate, mixed cellulose ester (MCE), and gelatin filters (most common filter media for bioaerosol sampling), which were exposed to combustion products during a short-term sampling, were analyzed by cultivation. Surprisingly, we observed that aluminum combustion products enhanced the culturability of Bt (but not BG) spores on Teflon filters increasing the culturable count by more than an order of magnitude. Testing polycarbonate and MCE filter materials also revealed a moderate increase of culturability although gelatin did not. No effect was observed with either of the two species interacting on either filter media with products originated by combustion of Mg and B·Ti. Sample contamination, spore agglomeration, effect of a filter material on the spore survival, changes in the spore wall ultrastructure and germination, as well as other factors were explored to interpret the findings. The study raises a question about the reliability of certain filter materials for collecting airborne bio-threat agents in combustion environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Infiltration of forest fire and residential wood smoke: an evaluation of air cleaner effectiveness.

    PubMed

    Barn, Prabjit; Larson, Timothy; Noullett, Melanie; Kennedy, Susan; Copes, Ray; Brauer, Michael

    2008-09-01

    Communities impacted by fine-particle air pollution (particles with an aerodynamic diameter less than 2.5 microm; PM(2.5)) from forest fires and residential wood burning require effective, evidence-based exposure-reduction strategies. Public health recommendations during smoke episodes typically include advising community members to remain indoors and the use of air cleaners, yet little information is available on the effectiveness of these measures. Our study attempted to address the following objectives: to measure indoor infiltration factor (F(inf)) of PM(2.5) from forest fires/wood smoke, to determine the effectiveness of high-efficiency particulate air (HEPA) filter air cleaners in reducing indoor PM(2.5), and to analyze the home determinants of F(inf) and air cleaner effectiveness (ACE). We collected indoor/outdoor 1-min PM(2.5) averages and 48-h outdoor PM(2.5) filter samples for 21 winter and 17 summer homes impacted by wood burning and forest fire smoke, respectively, during 2004-2005. A portable HEPA filter air cleaner was operated indoors with the filter removed for one of two sampling days. Particle F(inf) and ACE were calculated for each home using a recursive model. We found mean F(inf)+/-SD was 0.27+/-0.18 and 0.61+/-0.27 in winter (n=19) and summer (n=13), respectively, for days when HEPA filters were not used. Lower F(inf)+/-SD values of 0.10+/-0.08 and 0.19+/-0.20 were found on corresponding days when HEPA filters were in place. Mean+/-SD ACE ([F(inf) without filter-F(inf) with filter]/F(inf) without filter) in winter and summer were 55+/-38% and 65+/-35%, respectively. Number of windows and season predicted F(inf) (P<0.001). No significant predictors of ACE were identified. Our findings show that remaining indoors combined with use of air cleaner can effectively reduce PM(2.5) exposure during forest fires and residential wood burning.

  18. Optimal noise reduction in 3D reconstructions of single particles using a volume-normalized filter

    PubMed Central

    Sindelar, Charles V.; Grigorieff, Nikolaus

    2012-01-01

    The high noise level found in single-particle electron cryo-microscopy (cryo-EM) image data presents a special challenge for three-dimensional (3D) reconstruction of the imaged molecules. The spectral signal-to-noise ratio (SSNR) and related Fourier shell correlation (FSC) functions are commonly used to assess and mitigate the noise-generated error in the reconstruction. Calculation of the SSNR and FSC usually includes the noise in the solvent region surrounding the particle and therefore does not accurately reflect the signal in the particle density itself. Here we show that the SSNR in a reconstructed 3D particle map is linearly proportional to the fractional volume occupied by the particle. Using this relationship, we devise a novel filter (the “single-particle Wiener filter”) to minimize the error in a reconstructed particle map, if the particle volume is known. Moreover, we show how to approximate this filter even when the volume of the particle is not known, by optimizing the signal within a representative interior region of the particle. We show that the new filter improves on previously proposed error-reduction schemes, including the conventional Wiener filter as well as figure-of-merit weighting, and quantify the relationship between all of these methods by theoretical analysis as well as numeric evaluation of both simulated and experimentally collected data. The single-particle Wiener filter is applicable across a broad range of existing 3D reconstruction techniques, but is particularly well suited to the Fourier inversion method, leading to an efficient and accurate implementation. PMID:22613568

  19. Transparent air filter for high-efficiency PM2.5 capture.

    PubMed

    Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi

    2015-02-16

    Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m(-3)). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.

  20. Sintered composite medium and filter

    DOEpatents

    Bergman, Werner

    1987-01-01

    A particulate filter medium is formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers. A preferred composition is about 40 vol. % quartz and about 60 vol. % stainless steel fibers. The media is sintered at about 1100.degree. C. to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550.degree. C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.

  1. Transparent air filter for high-efficiency PM2.5 capture

    NASA Astrophysics Data System (ADS)

    Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi

    2015-02-01

    Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m-3). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.

  2. Sintered composite filter

    DOEpatents

    Bergman, W.

    1986-05-02

    A particulate filter medium formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers is described. Preferred composition is about 40 vol.% quartz and about 60 vol.% stainless steel fibers. The media is sintered at about 1100/sup 0/C to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550/sup 0/C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.

  3. Hardware-efficient implementation of digital FIR filter using fast first-order moment algorithm

    NASA Astrophysics Data System (ADS)

    Cao, Li; Liu, Jianguo; Xiong, Jun; Zhang, Jing

    2018-03-01

    As the digital finite impulse response (FIR) filter can be transformed into the shift-add form of multiple small-sized firstorder moments, based on the existing fast first-order moment algorithm, this paper presents a novel multiplier-less structure to calculate any number of sequential filtering results in parallel. The theoretical analysis on its hardware and time-complexities reveals that by appropriately setting the degree of parallelism and the decomposition factor of a fixed word width, the proposed structure may achieve better area-time efficiency than the existing two-dimensional (2-D) memoryless-based filter. To evaluate the performance concretely, the proposed designs for different taps along with the existing 2-D memoryless-based filters, are synthesized by Synopsys Design Compiler with 0.18-μm SMIC library. The comparisons show that the proposed design has less area-time complexity and power consumption when the number of filter taps is larger than 48.

  4. An Efficient Conflict Detection Algorithm for Packet Filters

    NASA Astrophysics Data System (ADS)

    Lee, Chun-Liang; Lin, Guan-Yu; Chen, Yaw-Chung

    Packet classification is essential for supporting advanced network services such as firewalls, quality-of-service (QoS), virtual private networks (VPN), and policy-based routing. The rules that routers use to classify packets are called packet filters. If two or more filters overlap, a conflict occurs and leads to ambiguity in packet classification. This study proposes an algorithm that can efficiently detect and resolve filter conflicts using tuple based search. The time complexity of the proposed algorithm is O(nW+s), and the space complexity is O(nW), where n is the number of filters, W is the number of bits in a header field, and s is the number of conflicts. This study uses the synthetic filter databases generated by ClassBench to evaluate the proposed algorithm. Simulation results show that the proposed algorithm can achieve better performance than existing conflict detection algorithms both in time and space, particularly for databases with large numbers of conflicts.

  5. Nonlinear electro-optic tuning of plasmonic nano-filter

    NASA Astrophysics Data System (ADS)

    Kotb, Rehab; Ismail, Yehea; Swillam, Mohamed A.

    2015-03-01

    Efficient, easy and accurate tuning techniques to a plasmonic nano-filter are investigated. The proposed filter supports both blue and red shift in the resonance wavelength. By varying the refractive index with a very small change (in the order of 10-3), the resonance wavelength can be controlled efficiently. Using Pockels material, an electrical tuning to the response of the filter is demonstrated. In addition, the behavior of the proposed filter can be controlled optically using Kerr material. A new approach of multi-stage electro-optic controlling is introduced. By cascading two stages and filling the first stage with pockels material and the second stage with kerr material, the output response of the second stage can be controlled by controlling the output response of the first stage electrically. Due to the sharp response of the proposed filter, 60nm shift in the resonance wavelength per 10 voltages is achieved. This nano-filter has compact size, low loss, sharp response and wide range of tunabilty which is highly demandable in many biological and sensing applications.

  6. Hygienic quality of artificial greywater subjected to aerobic treatment: a comparison of three filter media at increasing organic loading rates.

    PubMed

    Lalander, Cecilia; Dalahmeh, Sahar; Jönsson, Håkan; Vinnerås, Björn

    2013-01-01

    With a growing world population, the lack of reliable water sources is becoming an increasing problem. Reusing greywater could alleviate this problem. When reusing greywater for crop irrigation it is paramount to ensure the removal of pathogenic organisms. This study compared the pathogen removal efficiency of pine bark and activated charcoal filters with that of conventional sand filters at three organic loading rates. The removal efficiency of Escherichia coli O157:H7 decreased drastically when the organic loading rate increased fivefold in the charcoal and sand filters, but increased by 2 log10 in the bark filters. The reduction in the virus model organism coliphage phiX174 remained unchanged with increasing organic loading in the charcoal and sand filters, but increased by 2 log10 in the bark filters. Thus, bark was demonstrated to be the most promising material for greywater treatment in terms of pathogen removal.

  7. Distributed Data Service for Data Management in Internet of Things Middleware.

    PubMed

    Cruz Huacarpuma, Ruben; de Sousa Junior, Rafael Timoteo; de Holanda, Maristela Terto; de Oliveira Albuquerque, Robson; García Villalba, Luis Javier; Kim, Tai-Hoon

    2017-04-27

    The development of the Internet of Things (IoT) is closely related to a considerable increase in the number and variety of devices connected to the Internet. Sensors have become a regular component of our environment, as well as smart phones and other devices that continuously collect data about our lives even without our intervention. With such connected devices, a broad range of applications has been developed and deployed, including those dealing with massive volumes of data. In this paper, we introduce a Distributed Data Service (DDS) to collect and process data for IoT environments. One central goal of this DDS is to enable multiple and distinct IoT middleware systems to share common data services from a loosely-coupled provider. In this context, we propose a new specification of functionalities for a DDS and the conception of the corresponding techniques for collecting, filtering and storing data conveniently and efficiently in this environment. Another contribution is a data aggregation component that is proposed to support efficient real-time data querying. To validate its data collecting and querying functionalities and performance, the proposed DDS is evaluated in two case studies regarding a simulated smart home system, the first case devoted to evaluating data collection and aggregation when the DDS is interacting with the UIoT middleware, and the second aimed at comparing the DDS data collection with this same functionality implemented within the Kaa middleware.

  8. Improved aethalometer

    DOEpatents

    Hansen, A.D.

    1988-01-25

    An improved aethalometer having a single light source and a single light detector and two light paths from the light source to the light detector. A quartz fiber filter is inserted in the device, the filter having a collection area in one light path and a reference area in the other light path. A gas flow path through the aethalometer housing allows ambient air to flow through the collection area of the filter so that aerosol particles can be collected on the filter. A rotating disk with an opening therethrough allows light for the light source to pass alternately through the two light paths. The voltage output of the detector is applied to a VCO and the VCO pulses for light transmission separately through the two light paths, are counted and compared to determine the absorption coefficient of the collected aerosol particles. 5 figs.

  9. In-situ suspended aggregate microextraction of gold nanoparticles from water samples and determination by electrothermal atomic absorption spectrometry.

    PubMed

    Choleva, Tatiana G; Kappi, Foteini A; Tsogas, George Z; Vlessidis, Athanasios G; Giokas, Dimosthenis L

    2016-05-01

    This work describes a new method for the extraction and determination of gold nanoparticles in environmental samples by means of in-situ suspended aggregate microextraction and electrothermal atomic absorption spectrometry. The method relies on the in-situ formation of a supramolecular aggregate phase through ion-association between a cationic surfactant and a benzene sulfonic acid derivative. Gold nanoparticles are physically entrapped into the aggregate phase which is separated from the bulk aqueous solution by vacuum filtration on the surface of a cellulose filter in the form of a thin film. The film is removed from the filter surface and is dissociated into an acidified methanolic solution which is used for analysis. Under the optimized experimental conditions, gold nanoparticles can be efficiently extracted from water samples with recovery rates between 81.0-93.3%, precision 5.4-12.0% and detection limits as low as 75femtomolL(-1) using only 20mL of sample volume. The satisfactory analytical features of the method along with the simplicity indicate the efficiency of this new approach to adequately collect and extract gold nanoparticle species from water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Prediction of particulate loading in exhaust from fabric filter baghouses with one or more failed bags

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenjun Qin; Manuel Dekermenjian; Richard J. Martin

    2006-08-15

    Loss of filtration efficiency in a fabric filter baghouse is typically caused by bag failure, in one form or another. The degree of such failure can be as minor as a pinhole leak or as major as a fully involved baghouse fire. In some cases, local air pollution regulations or federal hazardous waste laws may require estimation of the total quantity of particulate matter released to the environment as a result of such failures. In this paper, a technique is presented for computing the dust loading in the baghouse exhaust when one or more bags have failed. The algorithm developedmore » is shown to be an improvement over a previously published result, which requires empirical knowledge of the variation in baghouse pressure differential with bag failures. An example calculation is presented for a baghouse equipped with 200 bags. The prediction shows that a small percentage of failed bags can cause a relatively large proportion of the gas flow to bypass the active bags, which, in turn, leads to high outlet dust loading and low overall collection efficiency from the baghouse. 10 refs., 5 figs., 3 tabs.« less

  11. Evaluation of Fast Technology Analysis (FTA) Cards as an improved method for specimen collection and shipment targeting viruses associated with Bovine Respiratory Disease Complex.

    PubMed

    Liang, Xiao; Chigerwe, Munashe; Hietala, Sharon K; Crossley, Beate M

    2014-06-01

    In order to improve the analytic quality of respiratory specimens collected from cattle for nucleic acid-based diagnosis, a study was undertaken to verify realtime PCR efficiency of specimens collected and stabilized on FTA Cards™, filter paper which is treated chemically. Nucleic acids collected using FTA Cards without the need for a cold-chain or special liquid media handling provided realtime PCR results consistent (96.8% agreement, kappa 0.923 [95% CI=0.89-0.96]) with the same specimens collected using traditional viral transport media and shipped on ice using the U.S. Department of Transportation mandated liquid handling requirements. Nucleic acid stabilization on FTA Cards was evaluated over a temperature range (-27 °C to +46 °C) for up to 14 days to mimic environmental conditions for diagnostic sample handling between collection and processing in a routine veterinary laboratory. No significant difference (P≥0.05) was observed in realtime PCR cycle threshold values over the temperature range and time storage conditions for Bovine Viral Diarrhea virus, Bovine Respiratory Syncytial virus, Bovine Coronavirus, and Bovine Herpesvirus I. The four viruses evaluated in the study are associated with Bovine Respiratory Disease Complex where improvements in ease and reliability of specimen collection and shipping would enhance the diagnostic quality of specimens collected in the field, and ultimately improve diagnostic efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J [Middle Grove, NY; DePoy, David Moore [Clifton Park, NY; Baldasaro, Paul Francis [Clifton Park, NY

    2007-01-23

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  13. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J [Middle Grove, NY; Baldasaro, Paul F [Clifton Park, NY; DePoy, David M [Clifton Park, NY

    2010-09-07

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  14. A simulation study of turbofan engine deterioration estimation using Kalman filtering techniques

    NASA Technical Reports Server (NTRS)

    Lambert, Heather H.

    1991-01-01

    Deterioration of engine components may cause off-normal engine operation. The result is an unecessary loss of performance, because the fixed schedules are designed to accommodate a wide range of engine health. These fixed control schedules may not be optimal for a deteriorated engine. This problem may be solved by including a measure of deterioration in determining the control variables. These engine deterioration parameters usually cannot be measured directly but can be estimated. A Kalman filter design is presented for estimating two performance parameters that account for engine deterioration: high and low pressure turbine delta efficiencies. The delta efficiency parameters model variations of the high and low pressure turbine efficiencies from nominal values. The filter has a design condition of Mach 0.90, 30,000 ft altitude, and 47 deg power level angle (PLA). It was evaluated using a nonlinear simulation of the F100 engine model derivative (EMD) engine, at the design Mach number and altitude over a PLA range of 43 to 55 deg. It was found that known high pressure turbine delta efficiencies of -2.5 percent and low pressure turbine delta efficiencies of -1.0 percent can be estimated with an accuracy of + or - 0.25 percent efficiency with a Kalman filter. If both the high and low pressure turbine are deteriorated, the delta efficiencies of -2.5 percent to both turbines can be estimated with the same accuracy.

  15. Improving attention control in dysphoria through cognitive training: transfer effects on working memory capacity and filtering efficiency.

    PubMed

    Owens, Max; Koster, Ernst H W; Derakshan, Nazanin

    2013-03-01

    Impaired filtering of irrelevant information from working memory is thought to underlie reduced working memory capacity for relevant information in dysphoria. The current study investigated whether training-related gains in working memory performance on the adaptive dual n-back task could result in improved inhibitory function. Efficacy of training was monitored in a change detection paradigm allowing measurement of a sustained event-related potential asymmetry sensitive to working memory capacity and the efficient filtering of irrelevant information. Dysphoric participants in the training group showed training-related gains in working memory that were accompanied by gains in working memory capacity and filtering efficiency compared to an active control group. Results provide important initial evidence that behavioral performance and neural function in dysphoria can be improved by facilitating greater attentional control. Copyright © 2013 Society for Psychophysiological Research.

  16. Reappraisal of solid selective emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1990-01-01

    New rare earth oxide emitters show greater efficiency than previous emitters. As a result, based on a simple model the efficiency of these emitters was calculated. Results indicate that the emission band of the selective emitter must be at relatively low energy (less than or equal to .52 eV) to obtain maximum efficiency at moderate emitter temperatures (less than or equal to 1500 K). Thus low bandgap energy PV materials are required to obtain an efficient thermophotovoltaic (TPV) system. Of the 4 specific rare earths (Nd, Ho, Er, Yb) studied Ho has the largest efficiency at moderate temperatures (72 percent at 1500 K). A comparison was made between a selective emitter TPV system and a TPV system that uses a thermal emitter plus a band pass filter to make the thermal emitter behave like a selective emitter. Results of the comparison indicate that only for very optimistic filter and thermal emitter properties will the filter TPV system have a greater efficiency than the selective emitter system.

  17. Dante Soft X-ray Power Diagnostic for NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewald, E; Campbell, K; Turner, R

    2004-04-15

    Soft x-ray power diagnostics are essential for measuring spectrally resolved the total x-ray flux, radiation temperature, conversion efficiency and albedo that are important quantities for the energetics of indirect drive hohlraums. At the Nova or Omega Laser Facilities, these measurements are performed mainly with Dante, but also with DMX and photo-conductive detectors (PCD's). The Dante broadband spectrometer is a collection of absolute calibrated vacuum x-ray diodes, thin filters and x-ray mirrors used to measure the soft x-ray emission for photon energies above 50 eV.

  18. Sodium purification apparatus and method

    DOEpatents

    Gould, Marc I. [Van Nuys, CA

    1980-03-04

    An apparatus for and method of collecting and storing oxide impurities contained in high-temperature liquid alkali metal. A method and apparatus are provided for nucleating and precipitating oxide impurities by cooling, wherein the nucleation and precipitation are enhanced by causing a substantial increase in pressure drop and corresponding change in the velocity head of the alkali metal. Thereafter the liquid alkali metal is introduced into a quiescent zone wherein the liquid velocity is maintained below a specific maximum whereby it is possible to obtain high oxide removal efficiencies without the necessity of a mesh or filter.

  19. Respirator Filter Efficiency Testing Against Particulate and Biological Aerosols Under Moderate to High Flow Rates

    DTIC Science & Technology

    2006-08-01

    Biotech QCount® Colony Counter G.2 MS2 Phage G.2.1 Growth of E . coli E . co/i serves as the host for MS2 replication and was needed for the MS2...quantification assay. Before culturing, the E . coli (American Type Culture Collection [ATCC] No. 15597, Rockville, MD) stock was tested for purity by streaking on...pure, a working solution of E . coli was prepared by inoculating nutrient broth (NB) media and incubating in a shaking incubator at 37°C and 150

  20. Vectorized image segmentation via trixel agglomeration

    DOEpatents

    Prasad, Lakshman [Los Alamos, NM; Skourikhine, Alexei N [Los Alamos, NM

    2006-10-24

    A computer implemented method transforms an image comprised of pixels into a vectorized image specified by a plurality of polygons that can be subsequently used to aid in image processing and understanding. The pixelated image is processed to extract edge pixels that separate different colors and a constrained Delaunay triangulation of the edge pixels forms a plurality of triangles having edges that cover the pixelated image. A color for each one of the plurality of triangles is determined from the color pixels within each triangle. A filter is formed with a set of grouping rules related to features of the pixelated image and applied to the plurality of triangle edges to merge adjacent triangles consistent with the filter into polygons having a plurality of vertices. The pixelated image may be then reformed into an array of the polygons, that can be represented collectively and efficiently by standard vector image.

  1. Passenger aircraft cabin air quality: trends, effects, societal costs, proposals.

    PubMed

    Hocking, M B

    2000-08-01

    As aircraft operators have sought to substantially reduce propulsion fuel cost by flying at higher altitudes, the energy cost of providing adequate outside air for ventilation has increased. This has lead to a significant decrease in the amount of outside air provided to the passenger cabin, partly compensated for by recirculation of filtered cabin air. The purpose of this review paper is to assemble the available measured air quality data and some calculated estimates of the air quality for aircraft passenger cabins to highlight the trend of the last 25 years. The influence of filter efficiencies on air quality, and a few medically documented and anecdotal cases of illness transmission aboard aircraft are discussed. Cost information has been collected from the perspective of both the airlines and passengers. Suggestions for air quality improvement are given which should help to result in a net, multistakeholder savings and improved passenger comfort.

  2. Rain events and their effect on effluent quality studied at a full scale activated sludge treatment plant.

    PubMed

    Wilén, B M; Lumley, D; Mattsson, A; Mino, T

    2006-01-01

    The effect of rain events on effluent quality dynamics was studied at a full scale activated sludge wastewater treatment plant which has a process solution incorporating pre-denitrification in activated sludge with post-nitrification in trickling filters. The incoming wastewater flow varies significantly due to a combined sewer system. Changed flow conditions have an impact on the whole treatment process since the recirculation to the trickling filters is set by the hydraulic limitations of the secondary settlers. Apart from causing different hydraulic conditions in the plant, increased flow due to rain or snow-melting, changes the properties of the incoming wastewater which affects process performance and effluent quality, especially the particle removal efficiency. A comprehensive set of on-line and laboratory data were collected and analysed to assess the impact of rain events on the plant performance.

  3. Iron and manganese removal: Recent advances in modelling treatment efficiency by rapid sand filtration.

    PubMed

    Vries, D; Bertelkamp, C; Schoonenberg Kegel, F; Hofs, B; Dusseldorp, J; Bruins, J H; de Vet, W; van den Akker, B

    2017-02-01

    A model has been developed that takes into account the main characteristics of (submerged) rapid filtration: the water quality parameters of the influent water, notably pH, iron(II) and manganese(II) concentrations, homogeneous oxidation in the supernatant layer, surface sorption and heterogeneous oxidation kinetics in the filter, and filter media adsorption characteristics. Simplifying assumptions are made to enable validation in practice, while maintaining the main mechanisms involved in iron(II) and manganese(II) removal. Adsorption isotherm data collected from different Dutch treatment sites show that Fe(II)/Mn(II) adsorption may vary substantially between them, but generally increases with higher pH. The model is sensitive to (experimentally) determined adsorption parameters and the heterogeneous oxidation rate. Model results coincide with experimental values when the heterogeneous rate constants are calibrated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. 40 CFR 63.11423 - What are the standards and compliance requirements for new and existing sources?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Lead Acid Battery Manufacturing Area Sources Standards and Compliance Requirements § 63.11423 What are.... Fabric filters equipped with a high efficiency particulate air (HEPA) filter or other secondary filter...

  5. 40 CFR 63.11423 - What are the standards and compliance requirements for new and existing sources?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Lead Acid Battery Manufacturing Area Sources Standards and Compliance Requirements § 63.11423 What are.... Fabric filters equipped with a high efficiency particulate air (HEPA) filter or other secondary filter...

  6. 40 CFR 63.11423 - What are the standards and compliance requirements for new and existing sources?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Lead Acid Battery Manufacturing Area Sources Standards and Compliance Requirements § 63.11423 What are.... Fabric filters equipped with a high efficiency particulate air (HEPA) filter or other secondary filter...

  7. 40 CFR 63.11423 - What are the standards and compliance requirements for new and existing sources?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Lead Acid Battery Manufacturing Area Sources Standards and Compliance Requirements § 63.11423 What are.... Fabric filters equipped with a high efficiency particulate air (HEPA) filter or other secondary filter...

  8. 40 CFR 63.11423 - What are the standards and compliance requirements for new and existing sources?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Lead Acid Battery Manufacturing Area Sources Standards and Compliance Requirements § 63.11423 What are.... Fabric filters equipped with a high efficiency particulate air (HEPA) filter or other secondary filter...

  9. Design of efficient circularly symmetric two-dimensional variable digital FIR filters.

    PubMed

    Bindima, Thayyil; Elias, Elizabeth

    2016-05-01

    Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability.

  10. Design of efficient circularly symmetric two-dimensional variable digital FIR filters

    PubMed Central

    Bindima, Thayyil; Elias, Elizabeth

    2016-01-01

    Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability. PMID:27222739

  11. Efficient Data Assimilation Algorithms for Bathymetry Applications

    NASA Astrophysics Data System (ADS)

    Ghorbanidehno, H.; Kokkinaki, A.; Lee, J. H.; Farthing, M.; Hesser, T.; Kitanidis, P. K.; Darve, E. F.

    2016-12-01

    Information on the evolving state of the nearshore zone bathymetry is crucial to shoreline management, recreational safety, and naval operations. The high cost and complex logistics of using ship-based surveys for bathymetry estimation have encouraged the use of remote sensing monitoring. Data assimilation methods combine monitoring data and models of nearshore dynamics to estimate the unknown bathymetry and the corresponding uncertainties. Existing applications have been limited to the basic Kalman Filter (KF) and the Ensemble Kalman Filter (EnKF). The former can only be applied to low-dimensional problems due to its computational cost; the latter often suffers from ensemble collapse and uncertainty underestimation. This work explores the use of different variants of the Kalman Filter for bathymetry applications. In particular, we compare the performance of the EnKF to the Unscented Kalman Filter and the Hierarchical Kalman Filter, both of which are KF variants for non-linear problems. The objective is to identify which method can better handle the nonlinearities of nearshore physics, while also having a reasonable computational cost. We present two applications; first, the bathymetry of a synthetic one-dimensional cross section normal to the shore is estimated from wave speed measurements. Second, real remote measurements with unknown error statistics are used and compared to in situ bathymetric survey data collected at the USACE Field Research Facility in Duck, NC. We evaluate the information content of different data sets and explore the impact of measurement error and nonlinearities.

  12. The soft x ray telescope for Solar-A

    NASA Technical Reports Server (NTRS)

    Brown, W. A.; Acton, L. W.; Bruner, M. E.; Lemen, J. R.; Strong, K. T.

    1989-01-01

    The Solar-A satellite being prepared by the Institute for Sapce and Astronautical Sciences (ISAS) in Japan is dedicated to high energy observations of solar flares. The Soft X Ray Telescope (SXT) is being prepared to provide filtered images in the 2 to 60 A interval. The flight model is now undergoing tests in the 1000 foot tunnel at MSFC. Launch will be in September 1991. Earlier resolution and efficiency tests on the grazing incidence mirror have established its performance in soft x rays. The one-piece, two mirror grazing incidence telescope is supported in a strain free mount separated from the focal plane assembly by a carbon-epoxy metering tube whose windings and filler are chosen to minimize thermal and hygroscopic effects. The CCD detector images both the x ray and the concentric visible light aspect telescope. Optical filters provide images at 4308 and 4700 A. The SXT will be capable of producing over 8000 of the smallest partial frame images per day, or fewer but larger images, up to 1024 x 1024 pixel images. Image sequence with two or more of the five x ray analysis filters, with automatic exposure compensation to optimize the charge collection by the CCD detector, will be used to provide plasma diagnostics. Calculations using a differential emission measure code were used to optimize filter selection over the range of emission measure variations and to avoid redundancy, but the filters were chosen primarily to give ratios that are monotonic in plasma temperature.

  13. PDF-based heterogeneous multiscale filtration model.

    PubMed

    Gong, Jian; Rutland, Christopher J

    2015-04-21

    Motivated by modeling of gasoline particulate filters (GPFs), a probability density function (PDF) based heterogeneous multiscale filtration (HMF) model is developed to calculate filtration efficiency of clean particulate filters. A new methodology based on statistical theory and classic filtration theory is developed in the HMF model. Based on the analysis of experimental porosimetry data, a pore size probability density function is introduced to represent heterogeneity and multiscale characteristics of the porous wall. The filtration efficiency of a filter can be calculated as the sum of the contributions of individual collectors. The resulting HMF model overcomes the limitations of classic mean filtration models which rely on tuning of the mean collector size. Sensitivity analysis shows that the HMF model recovers the classical mean model when the pore size variance is very small. The HMF model is validated by fundamental filtration experimental data from different scales of filter samples. The model shows a good agreement with experimental data at various operating conditions. The effects of the microstructure of filters on filtration efficiency as well as the most penetrating particle size are correctly predicted by the model.

  14. Efficiency analysis for 3D filtering of multichannel images

    NASA Astrophysics Data System (ADS)

    Kozhemiakin, Ruslan A.; Rubel, Oleksii; Abramov, Sergey K.; Lukin, Vladimir V.; Vozel, Benoit; Chehdi, Kacem

    2016-10-01

    Modern remote sensing systems basically acquire images that are multichannel (dual- or multi-polarization, multi- and hyperspectral) where noise, usually with different characteristics, is present in all components. If noise is intensive, it is desirable to remove (suppress) it before applying methods of image classification, interpreting, and information extraction. This can be done using one of two approaches - by component-wise or by vectorial (3D) filtering. The second approach has shown itself to have higher efficiency if there is essential correlation between multichannel image components as this often happens for multichannel remote sensing data of different origin. Within the class of 3D filtering techniques, there are many possibilities and variations. In this paper, we consider filtering based on discrete cosine transform (DCT) and pay attention to two aspects of processing. First, we study in detail what changes in DCT coefficient statistics take place for 3D denoising compared to component-wise processing. Second, we analyze how selection of component images united into 3D data array influences efficiency of filtering and can the observed tendencies be exploited in processing of images with rather large number of channels.

  15. Nuisance Compounds, PAINS Filters, and Dark Chemical Matter in the GSK HTS Collection.

    PubMed

    Chakravorty, Subhas J; Chan, James; Greenwood, Marie Nicole; Popa-Burke, Ioana; Remlinger, Katja S; Pickett, Stephen D; Green, Darren V S; Fillmore, Martin C; Dean, Tony W; Luengo, Juan I; Macarrón, Ricardo

    2018-07-01

    High-throughput screening (HTS) hits include compounds with undesirable properties. Many filters have been described to identify such hits. Notably, pan-assay interference compounds (PAINS) has been adopted by the community as the standard term to refer to such filters, and very useful guidelines have been adopted by the American Chemical Society (ACS) and subsequently triggered a healthy scientific debate about the pitfalls of draconian use of filters. Using an inhibitory frequency index, we have analyzed in detail the promiscuity profile of the whole GlaxoSmithKline (GSK) HTS collection comprising more than 2 million unique compounds that have been tested in hundreds of screening assays. We provide a comprehensive analysis of many previously published filters and newly described classes of nuisance structures that may serve as a useful source of empirical information to guide the design or growth of HTS collections and hit triaging strategies.

  16. DEVELOPMENT OF AG-1 SECTION FI ON METAL MEDIA FILTERS - 9061

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, D; Charles A. Waggoner, C

    Development of a metal media standard (FI) for ASME AG-1 (Code on Nuclear Air and Gas Treatment) has been under way for almost ten years. This paper will provide a brief history of the development process of this section and a detailed overview of its current content/status. There have been at least two points when dramatic changes have been made in the scope of the document due to feedback from the full Committee on Nuclear Air and Gas Treatment (CONAGT). Development of the proposed section has required resolving several difficult issues associated with scope; namely, filtering efficiency, operating conditions (mediamore » velocity, pressure drop, etc.), qualification testing, and quality control/acceptance testing. A proposed version of Section FI is currently undergoing final revisions prior to being submitted for balloting. The section covers metal media filters of filtering efficiencies ranging from medium (less than 99.97%) to high (99.97% and greater). Two different types of high efficiency filters are addressed; those units intended to be a direct replacement of Section FC fibrous glass HEPA filters and those that will be placed into newly designed systems capable of supporting greater static pressures and differential pressures across the filter elements. Direct replacements of FC HEPA filters in existing systems will be required to meet equivalent qualification and testing requirements to those contained in Section FC. A series of qualification and quality assurance test methods have been identified for the range of filtering efficiencies covered by this proposed standard. Performance characteristics of sintered metal powder vs. sintered metal fiber media are dramatically different with respect to parameters like differential pressures and rigidity of the media. Wide latitude will be allowed for owner specification of performance criteria for filtration units that will be placed into newly designed systems. Such allowances will permit use of the most appropriate metal media for a system as specified by the owner with respect to material of manufacture, media velocity, system maximum static pressure, maximum differential pressure across the filter, and similar parameters.« less

  17. Enhancement of CNT-based filters efficiency by ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Elsehly, Emad M.; Chechenin, N. G.; Makunin, A. V.; Shemukhin, A. A.; Motaweh, H. A.

    2018-05-01

    It is shown in the report that disorder produced by ion beam irradiation can enhance the functionality of the carbon nanotubes. The filters of pressed multiwalled carbon nanotubes (MWNTs) were irradiated by He+ ions of the energy E = 80 keV with the fluence 2 × 1016 ion/cm2. The removal of manganese from aqueous solutions by using pristine and ion beam irradiated MWNTs filters was studied as a function of pH, initial concentration of manganese in aqueous solution, MWNT mass and contact time. The filters before and after filtration were characterized by Raman (RS) and energy dispersive X-ray spectroscopy (EDS) techniques to investigate the deposition content in the filter and defect formation in the MWNTs. The irradiated samples showed an enhancement of removal efficiency of manganese up to 97.5% for 10 ppm Mn concentration, suggesting that irradiated MWNT filter is a better Mn adsorbent from aqueous solutions than the pristine one. Radiation-induced chemical functionalization of MWNTs due to ion beam irradiation, suggesting that complexation between the irradiated MWNTs and manganese ions is another mechanism. This conclusion is supported by EDS and RS and is correlated with a larger disorder in the irradiated samples as follows from RS. The study demonstrates that ion beam irradiation is a promising tool to enhance the filtration efficiency of MWNT filters.

  18. Phosphorus removal using Ca-rich hydrated oil shale ash as filter material--the effect of different phosphorus loadings and wastewater compositions.

    PubMed

    Kõiv, Margit; Liira, Martin; Mander, Ulo; Mõtlep, Riho; Vohla, Christina; Kirsimäe, Kalle

    2010-10-01

    We studied the phosphorus (P) binding capacity of Ca-rich alkaline filter material - hydrated oil shale ash (i.e. hydrated ash) in two onsite pilot-scale experiments (with subsurface flow filters) in Estonia: one using pre-treated municipal wastewater with total phosphorus (TP) concentration of 0.13-17.0 mg L(-1) over a period of 6 months, another using pre-treated landfill leachate (median TP 3.4 mg L(-1)) for a total of 12 months. The results show efficient P removal (median removal of phosphates 99%) in horizontal flow (HF) filters at both sites regardless of variable concentrations of several inhibitors. The P removal efficiency of the hydrated ash increases with increasing P loading, suggesting direct precipitation of Ca-phosphate phases rather than an adsorption mechanism. Changes in the composition of the hydrated ash suggest a significant increase in P concentration in all filters (e.g. from 489.5 mg kg(-1) in initial ash to 664.9 mg kg(-1) in the HF filter after one year in operation), whereas almost all TP was removed from the inflow leachate (R(2) = 0.99). Efficiency was high throughout the experiments (median outflow from HF hydrated ash filters 0.05-0.50 mg L(-1)), and P accumulation did not show any signs of saturation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes.

    PubMed

    Li, Peng; Wang, Chunya; Zhang, Yingying; Wei, Fei

    2014-11-01

    Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Rapid detection of fungal keratitis with DNA-stabilizing FTA filter paper.

    PubMed

    Menassa, Nardine; Bosshard, Philipp P; Kaufmann, Claude; Grimm, Christian; Auffarth, Gerd U; Thiel, Michael A

    2010-04-01

    Purpose. Polymerase chain reaction (PCR) is increasingly important for the rapid detection of fungal keratitis. However, techniques of specimen collection and DNA extraction before PCR may interfere with test sensitivity. The purpose of this study was to investigate the use of DNA-stabilizing FTA filter paper (Indicating FTA filter paper; Whatman International, Ltd., Maidstone, UK) for specimen collection without DNA extraction in a single-step, nonnested PCR for fungal keratitis. Methods. Specimens were collected from ocular surfaces with FTA filter discs, which automatically lyse collected cells and stabilize nucleic acids. Filter discs were directly used in single-step PCR reactions to detect fungal DNA. Test sensitivity was evaluated with serial dilutions of Candida albicans, Fusarium oxysporum, and Aspergillus fumigatus cultures. Test specificity was analyzed by comparing 196 and 155 healthy individuals from Switzerland and Egypt, respectively, with 15 patients with a diagnosis of microbial keratitis. Results. PCR with filter discs detected 3 C. albicans, 25 F. oxysporum, and 125 A. fumigatus organisms. In healthy volunteers, fungal PCR was positive in 1.0% and 8.4% of eyes from Switzerland and Egypt, respectively. Fungal PCR remained negative in 10 cases of culture-proven bacterial keratitis, became positive in 4 cases of fungal keratitis, but missed 1 case of culture-proven A. fumigatus keratitis. Conclusions. FTA filter paper for specimen collection together with direct PCR is a promising method of detecting fungal keratitis. The analytical sensitivity is high without the need for a semi-nested or nested second PCR, the clinical specificity is 91.7% to 99.0%, and the method is rapid and inexpensive.

  1. Variation in aluminum, iron, and particle concentrations in oxic groundwater samples collected by use of tangential-flow ultrafiltration with low-flow sampling

    NASA Astrophysics Data System (ADS)

    Szabo, Zoltan; Oden, Jeannette H.; Gibs, Jacob; Rice, Donald E.; Ding, Yuan

    2002-02-01

    Particulates that move with ground water and those that are artificially mobilized during well purging could be incorporated into water samples during collection and could cause trace-element concentrations to vary in unfiltered samples, and possibly in filtered samples (typically 0.45-um (micron) pore size) as well, depending on the particle-size fractions present. Therefore, measured concentrations may not be representative of those in the aquifer. Ground water may contain particles of various sizes and shapes that are broadly classified as colloids, which do not settle from water, and particulates, which do. In order to investigate variations in trace-element concentrations in ground-water samples as a function of particle concentrations and particle-size fractions, the U.S. Geological Survey, in cooperation with the U.S. Air Force, collected samples from five wells completed in the unconfined, oxic Kirkwood-Cohansey aquifer system of the New Jersey Coastal Plain. Samples were collected by purging with a portable pump at low flow (0.2-0.5 liters per minute and minimal drawdown, ideally less than 0.5 foot). Unfiltered samples were collected in the following sequence: (1) within the first few minutes of pumping, (2) after initial turbidity declined and about one to two casing volumes of water had been purged, and (3) after turbidity values had stabilized at less than 1 to 5 Nephelometric Turbidity Units. Filtered samples were split concurrently through (1) a 0.45-um pore size capsule filter, (2) a 0.45-um pore size capsule filter and a 0.0029-um pore size tangential-flow filter in sequence, and (3), in selected cases, a 0.45-um and a 0.05-um pore size capsule filter in sequence. Filtered samples were collected concurrently with the unfiltered sample that was collected when turbidity values stabilized. Quality-assurance samples consisted of sequential duplicates (about 25 percent) and equipment blanks. Concentrations of particles were determined by light scattering.

  2. High efficiency virtual impactor

    DOEpatents

    Loo, Billy W.

    1981-01-01

    Environmental monitoring of atmospheric air is facilitated by a single stage virtual impactor (11) for separating an inlet flow (Q.sub.O) having particulate contaminants into a coarse particle flow (Q.sub.1) and a fine particle flow (Q.sub.2) to enable collection of such particles on different filters (19a, 19b) for separate analysis. An inlet particle acceleration nozzle (28) and coarse particle collection probe member (37) having a virtual impaction opening (41) are aligned along a single axis (13) and spaced apart to define a flow separation region (14) at which the fine particle flow (Q.sub.2) is drawn radially outward into a chamber (21) while the coarse particle flow (Q.sub.1) enters the virtual impaction opening (41). Symmetrical outlet means (47) for the chamber (21) provide flow symmetry at the separation region (14) to assure precise separation of particles about a cutpoint size and to minimize losses by wall impaction and gravitational settling. Impulse defocusing means (42) in the probe member (37) provides uniform coarse particle deposition on the filter (19a) to aid analysis. Particle losses of less than 1% for particles in the 0 to 20 micron range may be realized.

  3. Efficient implementations of a pseudodynamical stochastic filtering strategy for static elastography.

    PubMed

    Banerjee, Biswanath; Roy, Debasish; Vasu, Ram Mohan

    2009-08-01

    A computationally efficient pseudodynamical filtering setup is established for elasticity imaging (i.e., reconstruction of shear modulus distribution) in soft-tissue organs given statically recorded and partially measured displacement data. Unlike a regularized quasi-Newton method (QNM) that needs inversion of ill-conditioned matrices, the authors explore pseudodynamic extended and ensemble Kalman filters (PD-EKF and PD-EnKF) that use a parsimonious representation of states and bypass explicit regularization by recursion over pseudotime. Numerical experiments with QNM and the two filters suggest that the PD-EnKF is the most robust performer as it exhibits no sensitivity to process noise covariance and yields good reconstruction even with small ensemble sizes.

  4. Reducing indoor air pollutants with air filtration units in wood stove homes.

    PubMed

    McNamara, Marcy L; Thornburg, Jonathon; Semmens, Erin O; Ward, Tony J; Noonan, Curtis W

    2017-08-15

    Biomass burning has been shown to be a major source of poor indoor air quality (IAQ) in developing and higher income countries across the world. Specifically, wood burning for cooking and heating contributes to high indoor concentrations of fine (particles with aerodynamic diameters<2.5μm; PM 2.5 ) and coarse (particles with aerodynamic diameters <10μm and >2.5μm; PMc) particulate matter. Endotoxin, predominantly found within the coarse fraction of airborne particulate matter, is associated with proinflammatory effects and adverse outcomes among susceptible populations. The aim of this study was to assess the efficacy of air filter interventions in reducing indoor PM 2.5 , PMc, and PMc-associated endotoxin concentrations in homes using a wood stove for primary heating. Homes (n=48) were randomized to receive in-room air filtration units with either a high efficiency filter (i.e. active) or a lower efficiency fiberglass filter (i.e., placebo). The active filter intervention showed a 66% reduction in indoor PM 2.5 concentrations (95% CI: 42.2% to 79.7% reduction) relative to the placebo intervention. Both the active and the placebo filters were effective in substantially reducing indoor concentrations of PMc (63.3% and 40.6% average reduction for active and placebo filters, respectively) and PMc-associated endotoxin concentrations (91.8% and 80.4% average reductions, respectively). These findings support the use of high efficiency air filtration units for reducing indoor PM 2.5 in homes using a wood stove for primary heating. We also discovered that using lower efficiency, lower cost filter alternatives can be effective for reducing PMc and airborne endotoxin in homes burning biomass fuel. Copyright © 2017. Published by Elsevier B.V.

  5. Simplified greywater treatment systems: Slow filters of sand and slate waste followed by granular activated carbon.

    PubMed

    Zipf, Mariah Siebert; Pinheiro, Ivone Gohr; Conegero, Mariana Garcia

    2016-07-01

    One of the main actions of sustainability that is applicable to residential, commercial, and public buildings is the rational use of water that contemplates the reuse of greywater as one of the main options for reducing the consumption of drinking water. Therefore, this research aimed to study the efficiencies of simplified treatments for greywater reuse using slow sand and slow slate waste filtration, both followed by granular activated carbon filters. The system monitoring was conducted over 28 weeks, using analyses of the following parameters: pH, turbidity, apparent color, biochemical oxygen demand (BOD), chemical oxygen demand (COD), surfactants, total coliforms, and thermotolerant coliforms. The system was run at two different filtration rates: 6 and 2 m(3)/m(2)/day. Statistical analyses showed no significant differences in the majority of the results when filtration rate changed from 6 to 2 m(3)/m(2)/day. The average removal efficiencies with regard to the turbidity, apparent color, COD and BOD were 61, 54, 56, and 56%, respectively, for the sand filter, and 66, 61, 60, and 51%, respectively, for the slate waste filter. Both systems showed good efficiencies in removing surfactants, around 70%, while the pH reached values of around 7.80. The average removal efficiencies of the total and thermotolerant coliforms were of 61 and 90%, respectively, for the sand filter, and 67 and 80%, respectively, for the slate waste filter. The statistical analysis found no significant differences between the responses of the two systems, which attest to the fact that the slate waste can be a substitute for sand. The maximum levels of efficiency were high, indicating the potential of the systems, and suggesting their optimization in order to achieve much higher average efficiencies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Improving liquid chromatography-tandem mass spectrometry determinations by modifying noise frequency spectrum between two consecutive wavelet-based low-pass filtering procedures.

    PubMed

    Chen, Hsiao-Ping; Liao, Hui-Ju; Huang, Chih-Min; Wang, Shau-Chun; Yu, Sung-Nien

    2010-04-23

    This paper employs one chemometric technique to modify the noise spectrum of liquid chromatography-tandem mass spectrometry (LC-MS/MS) chromatogram between two consecutive wavelet-based low-pass filter procedures to improve the peak signal-to-noise (S/N) ratio enhancement. Although similar techniques of using other sets of low-pass procedures such as matched filters have been published, the procedures developed in this work are able to avoid peak broadening disadvantages inherent in matched filters. In addition, unlike Fourier transform-based low-pass filters, wavelet-based filters efficiently reject noises in the chromatograms directly in the time domain without distorting the original signals. In this work, the low-pass filtering procedures sequentially convolve the original chromatograms against each set of low pass filters to result in approximation coefficients, representing the low-frequency wavelets, of the first five resolution levels. The tedious trials of setting threshold values to properly shrink each wavelet are therefore no longer required. This noise modification technique is to multiply one wavelet-based low-pass filtered LC-MS/MS chromatogram with another artificial chromatogram added with thermal noises prior to the other wavelet-based low-pass filter. Because low-pass filter cannot eliminate frequency components below its cut-off frequency, more efficient peak S/N ratio improvement cannot be accomplished using consecutive low-pass filter procedures to process LC-MS/MS chromatograms. In contrast, when the low-pass filtered LC-MS/MS chromatogram is conditioned with the multiplication alteration prior to the other low-pass filter, much better ratio improvement is achieved. The noise frequency spectrum of low-pass filtered chromatogram, which originally contains frequency components below the filter cut-off frequency, is altered to span a broader range with multiplication operation. When the frequency range of this modified noise spectrum shifts toward the high frequency regimes, the other low-pass filter is able to provide better filtering efficiency to obtain higher peak S/N ratios. Real LC-MS/MS chromatograms, of which typically less than 6-fold peak S/N ratio improvement achieved with two consecutive wavelet-based low-pass filters remains the same S/N ratio improvement using one-step wavelet-based low-pass filter, are improved to accomplish much better ratio enhancement 25-folds to 40-folds typically when the noise frequency spectrum is modified between two low-pass filters. The linear standard curves using the filtered LC-MS/MS signals are validated. The filtered LC-MS/MS signals are also reproducible. The more accurate determinations of very low concentration samples (S/N ratio about 7-9) are obtained using the filtered signals than the determinations using the original signals. Copyright 2010 Elsevier B.V. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arndt, T.E., Fluor Daniel Hanford

    A previous evaluation documented in report WHC-SD-GN-RPT-30005, Rev. 0, titled ``Evaluation on Self-Contained High Efficiency Particulate Filters,`` revealed that the SCHEPA filters do not have required documentation to be in compliance with the design, testing, and fabrication standards required in ASME N-509, ASME N-510, and MIL-F-51068. These standards are required by DOE Order 6430.IA. Without this documentation, filter adequacy cannot be verified. The existing SCHEPA filters can be removed and replaced with new filters and filter housing which meet current codes and standards.

  8. MRT letter: Guided filtering of image focus volume for 3D shape recovery of microscopic objects.

    PubMed

    Mahmood, Muhammad Tariq

    2014-12-01

    In this letter, a shape from focus (SFF) method is proposed that utilizes the guided image filtering to enhance the image focus volume efficiently. First, image focus volume is computed using a conventional focus measure. Then each layer of image focus volume is filtered using guided filtering. In this work, the all-in-focus image, which can be obtained from the initial focus volume, is used as guidance image. Finally, improved depth map is obtained from the filtered image focus volume by maximizing the focus measure along the optical axis. The proposed SFF method is efficient and provides better depth maps. The improved performance is highlighted by conducting several experiments using image sequences of simulated and real microscopic objects. The comparative analysis demonstrates the effectiveness of the proposed SFF method. © 2014 Wiley Periodicals, Inc.

  9. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... filters, or for replacement of equipment needing major repair. (c) Filters shall be analyzed and concentrations calculated within 30 days after filters are collected. Records of concentrations at all sampling...

  10. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... filters, or for replacement of equipment needing major repair. (c) Filters shall be analyzed and concentrations calculated within 30 days after filters are collected. Records of concentrations at all sampling...

  11. A large volume particulate and water multi-sampler with in situ preservation for microbial and biogeochemical studies

    NASA Astrophysics Data System (ADS)

    Breier, J. A.; Sheik, C. S.; Gomez-Ibanez, D.; Sayre-McCord, R. T.; Sanger, R.; Rauch, C.; Coleman, M.; Bennett, S. A.; Cron, B. R.; Li, M.; German, C. R.; Toner, B. M.; Dick, G. J.

    2014-12-01

    A new tool was developed for large volume sampling to facilitate marine microbiology and biogeochemical studies. It was developed for remotely operated vehicle and hydrocast deployments, and allows for rapid collection of multiple sample types from the water column and dynamic, variable environments such as rising hydrothermal plumes. It was used successfully during a cruise to the hydrothermal vent systems of the Mid-Cayman Rise. The Suspended Particulate Rosette V2 large volume multi-sampling system allows for the collection of 14 sample sets per deployment. Each sample set can include filtered material, whole (unfiltered) water, and filtrate. Suspended particulate can be collected on filters up to 142 mm in diameter and pore sizes down to 0.2 μm. Filtration is typically at flowrates of 2 L min-1. For particulate material, filtered volume is constrained only by sampling time and filter capacity, with all sample volumes recorded by digital flowmeter. The suspended particulate filter holders can be filled with preservative and sealed immediately after sample collection. Up to 2 L of whole water, filtrate, or a combination of the two, can be collected as part of each sample set. The system is constructed of plastics with titanium fasteners and nickel alloy spring loaded seals. There are no ferrous alloys in the sampling system. Individual sample lines are prefilled with filtered, deionized water prior to deployment and remain sealed unless a sample is actively being collected. This system is intended to facilitate studies concerning the relationship between marine microbiology and ocean biogeochemistry.

  12. Collection and conversion of algal lipid

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Chieh

    Sustainable economic activities mandate a significant replacement of fossil energy by renewable forms. Algae-derived biofuels are increasingly seen as an alternative source of energy with potential to supplement the world's ever increasing demand. Our primary objective is, once the algae were cultivated, to eliminate or make more efficient energy-intensive processing steps of collection, drying, grinding, and solvent extraction prior to conversion. To overcome the processing barrier, we propose to streamline from cultivated algae to biodiesel via algal biomass collection by sand filtration, cell rupturing with ozone, and immediate transesterification. To collect the algal biomass, the specific Chlorococcum aquaticum suspension was acidified to pH 3.3 to promote agglomeration prior to sand filtration. The algae-loaded filter bed was drained of free water and added with methanol and ozonated for 2 min to rupture cell membrane to accelerate release of the cellular contents. The methanol solution now containing the dissolved lipid product was collected by draining, while the filter bed was regenerated by further ozonation when needed. The results showed 95% collection of the algal biomass from the suspension and a 16% yield of lipid from the algae, as well as restoration of filtration velocity of the sand bed via ozonation. The results further showed increased lipid yield upon cell rupturing and transesterified products composed entirely of fatty acid methyl ester (FAME) compounds, demonstrating that the rupture and transesterification processes could proceed consecutively in the same medium, requiring no separate steps of drying, extraction, and conversion. The FAME products from algae without exposure to ozone were mainly of 16 to 18 carbons containing up to 3 double bonds, while those from algae having been ozonated were smaller, highly saturated hydrocarbons. The new technique streamlines individual steps from cultivated algal lipid to transesterified products and represents an improvement over existing energy-intensive steps.

  13. DigiLens color sequential filtering for microdisplay-based projection applications

    NASA Astrophysics Data System (ADS)

    Sagan, Stephen F.; Smith, Ronald T.; Popovich, Milan M.

    2000-10-01

    Application Specific Integrated Filters (ASIFs), based on a unique holographic polymer dispersed liquid crystal (H-PDLC) material system offering high efficiency, fast switching and low power, are being developed for microdisplay based projection applications. A new photonics technology based H-PDLC materials combined with the ability to be electrically switched on and off offers a new approach to color sequential filtering of a white light source for microdisplay-based front and rear projection display applications. Switchable Bragg gratings created in the PDLC are fundamental building blocks. Combined with the well- defined spectral and angular characteristics of Bragg gratings, these selectable filters can provide a large color gamut and a dynamically adjustable white balance. These switchable Bragg gratings can be reflective or transmissive and in each case can be designed to operate in either additive or subtractive mode. The spectral characteristics of filters made from a stack of these Bragg gratings can be configured for a specific lamp spectrum to give high diffractive efficiency over the broad bandwidths required for an illumination system. When it is necessary to reduce the spectral bandwidth, it is possible to use the properties of reflection Bragg holograms to construct very narrow band high efficiency filters. The basic properties and key benefits of ASIFs in projection displays are reviewed.

  14. Concentration of poliovirus from tap water using positively charged microporous filters.

    PubMed Central

    Sobsey, M D; Jones, B L

    1979-01-01

    Microporous filters that are more electropositive than the negatively charged filters currently used for virus concentrations from water by filter adsorption-elution methods were evaluated for poliovirus recovery from tap water. Zeta Plus filters composed of diatomaceous earth-cellulose-"charge-modified" resin mixtures and having a net positive charge of up to pH 5 to 6 efficiently adsorbed poliovirus from tap water at ambient pH levels 7.0 to 7.5 without added multivalent cation salts. The adsorbed virus were eluted with glycine-NaOH, pH 9.5 to 11.5. Electropositive asbestos-cellulose filters efficiently adsorbed poliovirus from tap water without added multivalent cation salts between pH 3.5 and 9.0, and the absorbed viruses could be eluted with 3% beef extract, pH 9, but not with pH 9.5 to 11.5 glycine-NaOH. Under water quality conditions in which poliovirus recoveries from large volumes of water were less than 5% with conventional negatively charged filters and standard methods, recoveries with Zeta Plus filters averaged 64 and 22.5% for one- and two-stage concentration procedures, respectively. Electropositive filters appear to offer distinct advantages over conventional negatively charged filters for concentrating enteric viruses from water, and their behavior tends to confirm the importance of electrostatic forces in virus recovery from water by microporous filter adsorption-elution methods. PMID:36844

  15. Particulate removal processes and hydraulics of porous gravel media filters

    NASA Astrophysics Data System (ADS)

    Minto, J. M.; Phoenix, V. R.; Dorea, C. C.; Haynes, H.; Sloan, W. T.

    2013-12-01

    Sustainable urban Drainage Systems (SuDS) are rapidly gaining acceptance as a low-cost tool for treating urban runoff pollutants close to source. Road runoff water in particular requires treatment due to the presence of high levels of suspended particles and heavy metals adsorbed to these particles. The aim of this research is to elucidate the particle removal processes that occur within gravel filters that have so far been considered as 'black-box' systems. Based on these findings, a better understanding will be attained on what influences gravel filter removal efficiency and how this changes throughout their design life; leading to a more rational design of this useful technology. This has been achieved by tying together three disparate research elements: tracer residence time distribution curves of filters during clogging; 3D magnetic resonance imaging (MRI) of clogging filters and computational fluid dynamics (CFD) modelling of complex filter pore networks. This research relates column average changes in particle removal efficiency and tracer residence time distributions (RTDs) due to clogging with non-invasive measurement of the spatial variability in particle deposition. The CFD modelling provides a link between observed deposition patterns, flow velocities and wall shear stresses as well as the explanations for the change in RTD with clogging and the effect on particle transport. Results show that, as a filter clogs, particles take a longer, more tortuous path through the filter. This is offset by a reduction in filter volume resulting in higher flow velocities and more rapid particle transport. Higher velocities result in higher shear stresses and the development of preferential pathways in which the velocity exceeds the deposition threshold and the overall efficiency of the filter decreases. Initial pore geometry is linked to the pattern of deposition and subsequent formation of preferential pathways. These results shed light on the 'black-box' internal clogging processes of gravel filters and are a considerable improvement on the inflow/outflow data most often available to monitor removal efficiency and clogging. Sub-section of the MRI derived geometry showing gravel (grey), pore space (blue), deposited particles (red) for 1) prior to clogging and 2) after clogging. The pore network skeleton (green) provided a reference point for comparing pore diameter change with clogging.

  16. Sorption and degradation of petroleum hydrocarbons, polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachate using sand, activated carbon and peat filters.

    PubMed

    Kalmykova, Yuliya; Moona, Nashita; Strömvall, Ann-Margret; Björklund, Karin

    2014-06-01

    Landfill leachates are repeatedly found contaminated with organic pollutants, such as alkylphenols (APs), phthalates and polycyclic aromatic hydrocarbons (PAHs) at levels exceeding water quality standards. It has been shown that these pollutants may be present in the colloidal and truly dissolved phase in contaminated water, making particle separation an inefficient removal method. The aim of this study was to investigate sorption and degradation of petroleum hydrocarbons (PHCs), selected APs, bisphenol A (BPA), phthalates and PAHs from landfill leachate using sand, granulated activated carbon (GAC) and peat moss filters. A pilot plant was installed at an inactive landfill with mixed industrial and household waste and samples were collected before and after each filter during two years. Leachate pre-treated in oil separator and sedimentation pond failed to meet water quality standards in most samples and little improvement was seen after the sand filter. These techniques are based on particle removal, whereas the analysed pollutants are found, to varying degrees, bound to colloids or dissolved. However, even highly hydrophobic compounds expected to be particle-bound, such as the PHCs and high-molecular weight PAHs, were poorly removed in the sand filter. The APs and BPA were completely removed by the GAC filter, while mass balance calculations indicate that 50-80% of the investigated phenols were removed in the peat filter. Results suggest possible AP degradation in peat filters. No evidence of phthalate degradation in the landfill, pond or the filters was found. The PHCs were completely removed in 50% and 35% of the measured occasions in the GAC and peat filters, respectively. The opposite trend was seen for removal of PAHs in GAC (50%) and peat (63%). Oxygenated PAHs with high toxicity were found in the leachates but not in the pond sediment. These compounds are likely formed in the pond water, which is alarming because sedimentation ponds are commonly used treatment techniques. The oxy-PAHs were effectively removed in the GAC, and especially the peat filter. It was hypothesized that dissolved compounds would adsorb equally well to the peat and GAC filters. This was not completely supported as the GAC filter was in general more efficient than peat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Photon harvesting, coloring and polarizing in photovoltaic cell integrated color filters: efficient energy routing strategies for power-saving displays.

    PubMed

    Wen, Long; Chen, Qin; Song, Shichao; Yu, Yan; Jin, Lin; Hu, Xin

    2015-07-03

    We describe the integral electro-optical strategies that combine the functionalities of photovoltaic (PV) electricity generation and color filtering as well as polarizing to realize more efficient energy routing in display technology. Unlike the conventional pigment-based filters and polarizers, which absorb substantial amounts of unwanted spectral components and dissipate them in the form of heat, we propose converting the energy of those photons into electricity by constructing PV cell-integrated color filters based on a selectively transmitting aluminum (Al) rear electrode perforated with nanoholes (NHs). Combining with a dielectric-metal-dielectric (DMD) front electrode, the devices were optimized to enable efficient cavity-enhanced photon recycling in the PV functional layers. We perform a comprehensive theoretical and numerical analysis to explore the extraordinary optical transmission (EOT) through the Al NHs and identify basic design rules for achieving structural coloring or polarizing in our PV color filters. We show that the addition of thin photoactive polymer layers on the symmetrically configured Al NH electrode narrows the bandwidth of the EOT-assisted high-pass light filtering due to the strongly damped anti-symmetric coupling of the surface modes excited on the front and rear surface of the Al NHs, which facilitates the whole visible coloring with relatively high purity for the devices. By engineering the cut-off characteristics of the plasmonic waveguide mode supported by the circular or ellipsoidal Al NHs, beyond the photon recycling capacity, PV color filters and PV polarizing color filters that allow polarization-insensitive and strong polarization-anisotropic color filtering were demonstrated. The findings presented here may shed some light on expanding the utilization of PV electricity generation across new-generation energy-saving electrical display devices.

  18. Reducing patients’ exposures to asthma and allergy triggers in their homes: an evaluation of effectiveness of grades of forced air ventilation filters

    PubMed Central

    Minegishi, Taeko; Allen, Joseph G.; McCarthy, John F.; Spengler, John D.; MacIntosh, David L.

    2014-01-01

    Objective Many interventions to reduce allergen levels in the home are recommended to asthma and allergy patients. One that is readily available and can be highly effective is the use of high performing filters in forced air ventilation systems. Methods We conducted a modeling analysis of the effectiveness of filter-based interventions in the home to reduce airborne asthma and allergy triggers. This work used “each pass removal efficiency” applied to health-relevant size fractions of particles to assess filter performance. We assessed effectiveness for key allergy and asthma triggers based on applicable particle sizes for cat allergen, indoor and outdoor sources of particles <2.5 µm in diameter (PM2.5), and airborne influenza and rhinovirus. Results Our analysis finds that higher performing filters can have significant impacts on indoor particle pollutant levels. Filters with removal efficiencies of >70% for cat dander particles, fine particulate matter (PM2.5) and respiratory virus can lower concentrations of those asthma triggers and allergens in indoor air of the home by >50%. Very high removal efficiency filters, such as those rated a 16 on the nationally recognized Minimum Efficiency Removal Value (MERV) rating system, tend to be only marginally more effective than MERV12 or 13 rated filters. Conclusions The results of this analysis indicate that use of a MERV12 or higher performing air filter in home ventilation systems can effectively reduce indoor levels of these common asthma and allergy triggers. These reductions in airborne allergens in turn may help reduce allergy and asthma symptoms, especially if employed in conjunction with other environmental management measures recommended for allergy and asthma patients. PMID:24555523

  19. Generalized spin filtering and an improved derivative-sign binary image method for the extraction of fringe skeletons

    NASA Astrophysics Data System (ADS)

    Yu, Qifeng; Liu, Xiaolin; Sun, Xiangyi

    1998-07-01

    Generalized spin filters, including several directional filters such as the directional median filter and the directional binary filter, are proposed for removal of the noise of fringe patterns and the extraction of fringe skeletons with the help of fringe-orientation maps (FOM s). The generalized spin filters can filter off noise on fringe patterns and binary fringe patterns efficiently, without distortion of fringe features. A quadrantal angle filter is developed to filter off the FOM. With these new filters, the derivative-sign binary image (DSBI) method for extraction of fringe skeletons is improved considerably. The improved DSBI method can extract high-density skeletons as well as common density skeletons.

  20. Comparison of holographic lens and filter systems for lateral spectrum splitting

    NASA Astrophysics Data System (ADS)

    Vorndran, Shelby; Chrysler, Benjamin; Kostuk, Raymond K.

    2016-09-01

    Spectrum splitting is an approach to increasing the conversion efficiency of a photovoltaic (PV) system. Several methods can be used to perform this function which requires efficient spatial separation of different spectral bands of the incident solar radiation. In this paper several of holographic methods for implementing spectrum splitting are reviewed along with the benefits and disadvantages associated with each approach. The review indicates that a volume holographic lens has many advantages for spectrum splitting in terms of both power conversion efficiency and energy yield. A specific design for a volume holographic spectrum splitting lens is discussed for use with high bandgap InGaP and low bandgap silicon PV cells. The holographic lenses are modeled using rigorous coupled wave analysis, and the optical efficiency is evaluated using non-sequential raytracing. A proof-of-concept off-axis holographic lens is also recorded in dichromated gelatin film and the spectral diffraction efficiency of the hologram is measured with multiple laser sources across the diffracted spectral band. The experimental volume holographic lens (VHL) characteristics are compared to an ideal spectrum splitting filter in terms of power conversion efficiency and energy yield in environments with high direct normal incidence (DNI) illumination and high levels of diffuse illumination. The results show that the experimental VHL can achieve 62.5% of the ideal filter power conversion efficiency, 64.8% of the ideal filter DNI environment energy yield, and 57.7% of the ideal diffuse environment energy yield performance.

  1. 40 CFR 63.11465 - What are the standards for new and existing sources?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Metals Processing Area Sources Standards, Compliance, and Monitoring Requirements § 63.11465 What are the... through a fabric filter or baghouse that achieves a particulate matter (PM) control efficiency of at least... affected source through a fabric filter or baghouse that achieves a PM control efficiency of at least 99.5...

  2. Performance evaluation of a dual-flow recharge filter for improving groundwater quality.

    PubMed

    Samuel, Manoj P; Senthilvel, S; Mathew, Abraham C

    2014-07-01

    A dual-flow multimedia stormwater filter integrated with a groundwater recharge system was developed and tested for hydraulic efficiency and pollutant removal efficiency. The influent stormwater first flows horizontally through the circular layers of planted grass and biofibers. Subsequently, the flow direction changes to a vertical direction so that water moves through layers of pebbles and sand and finally gets recharged to the deep aquifers. The media in the sequence of vegetative medium:biofiber to pebble:sand were filled in nine proportions and tested for the best performing combination. Three grass species, viz., Typha (Typha angustifolia), Vetiver (Chrysopogon zizanioides), and St. Augustine grass (Stenotaphrum secundatum), were tested as the best performing vegetative medium. The adsorption behavior of Coconut (Cocos nucifera) fiber, which was filled in the middle layer, was determined by a series of column and batch studies.The dual-flow filter showed an increasing trend in hydraulic efficiency with an increase in flowrate. The chemical removal efficiency of the recharge dual-flow filter was found to be very high in case of K+ (81.6%) and Na+ (77.55%). The pH normalizing efficiency and electrical conductivity reduction efficiency were also recorded as high. The average removal percentage of Ca2+ was moderate, while that of Mg2+ was very low. The filter proportions of 1:1 to 1:2 (plant:fiber to pebble:sand) showed a superior performance compared to all other proportions. Based on the estimated annual costs and returns, all the financial viability criteria (internal rate of return, net present value, and benefit-cost ratio) were found to be favorable and affordable to farmers in terms of investing in the developed filtration system.

  3. Constraints on the utility of MnO2 cartridge method for the extraction of radionuclides: A case study using 234Th

    USGS Publications Warehouse

    Baskaran, M.; Swarzenski, P.W.; Biddanda, B.A.

    2009-01-01

    [1] Large volume (102-103 L) seawater samples are routinely processed to investigate the partitioning of particle reactive radionuclides and Ra between solution and size-fractionated suspended particulate matter. One of the most frequently used methods to preconcentrate these nuclides from such large volumes involves extraction onto three filter cartridges (a prefilter for particulate species and two MnO2-coated filters for dissolved species) connected in series. This method assumes that the extraction efficiency is uniform for both MnO2-coated cartridges, that no dissolved species are removed by the prefilter, and that any adsorbed radionuclides are not desorbed from the MnO2-coated cartridges during filtration. In this study, we utilized 234Th-spiked coastal seawater and deionized water to address the removal of dissolved Th onto prefilters and MnO2-coated filter cartridges. Experimental results provide the first data that indicate (1) a small fraction of dissolved Th (<6%) can be removed by the prefilter cartridge; (2) a small fraction of dissolved Th (<5%) retained by the MnO2 surface can also be desorbed, which undermines the assumption of uniform extraction efficiency for Th; and (3) the absolute and relative extraction efficiencies can vary widely. These experiments provide insight on the variability of the extraction efficiency of MnO 2-coated filter cartridges by comparing the relative and absolute efficiencies and recommend the use of a constant efficiency on the combined activity from two filter cartridges connected in series for future studies of dissolved 234Th and other radionuclides in natural waters using sequential filtration/extraction methods. ?? 2009 by the American Geophysical Union.

  4. A design aid for sizing filter strips using buffer area ratio

    Treesearch

    M.G. Dosskey; M.J. Helmers; D.E. Eisenhauer

    2011-01-01

    Nonuniform field runoff can reduce the effectiveness of filter strips that are a uniform size along a field margin. Effectiveness can be improved by placing more filter strip where the runoff load is greater and less where the load is smaller. A modeling analysis was conducted of the relationship between pollutant trapping efficiency and the ratio of filter strip area...

  5. Ceramic High Efficiency Particulate Air (HEPA) Filter Final Report CRADA No. TC02160.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, M.; Bergman, W.

    2017-08-25

    The technical objective of this project was to develop a ceramic HEPA filter technology, by initially producing and testing coupon ceramics, small scale prototypes, and full scale prototype HEPA filters, and to address relevant manufacturing and commercialization technical issues.

  6. 29 CFR 1910.1027 - Cadmium.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... respirators when they experience eye irritation. (C) Provide HEPA filters for powered and non-powered air.... High-efficiency particulate air (HEPA) filter means a filter capable of trapping and retaining at least..., the employer shall sample the employee(s) expected to have the highest cadmium exposures. (2) Specific...

  7. In vitro comparison of Günther Tulip and Celect filters: testing filtering efficiency and pressure drop.

    PubMed

    Nicolas, M; Malvé, M; Peña, E; Martínez, M A; Leask, R

    2015-02-05

    In this study, the trapping ability of the Günther Tulip and Celect inferior vena cava filters was evaluated. Thrombus capture rates of the filters were tested in vitro in horizontal position with thrombus diameters of 3 and 6mm and tube diameter of 19mm. The filters were tested in centered and tilted positions. Sets of 30 clots were injected into the model and the same process was repeated 20 times for each different condition simulated. Pressure drop experienced along the system was also measured and the percentage of clots captured was recorded. The Günther Tulip filter showed superiority in all cases, trapping almost 100% of 6mm clots both in an eccentric and tilted position and trapping 81.7% of the 3mm clots in a centered position and 69.3% in a maximum tilted position. The efficiency of all filters tested decreased as the size of the embolus decreased and as the filter was tilted. The injection of 6 clots raised the pressure drop to 4.1mmHg, which is a reasonable value that does not cause the obstruction of blood flow through the system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Enhanced H-filter based on Fåhræus-Lindqvist effect for efficient and robust dialysis without membrane

    PubMed Central

    Zheng, Wei-Chao; Xie, Rui; He, Li-Qun; Xi, Yue-Heng; Liu, Ying-Mei; Meng, Zhi-Jun; Wang, Wei; Ju, Xiao-Jie; Chen, Gang; Chu, Liang-Yin

    2015-01-01

    A novel microfluidic device for highly efficient and robust dialysis without membrane is highly desired for the development of portable or wearable microdialyzer. Here we report an enhanced H-filter with pillar array based on Fåhræus-Lindqvist effect (F-L effect) for highly efficient and robust membraneless dialysis of simplified blood for the first time. The H-filter employs two fluids laminarly flowing in the microchannel for continuously membraneless dialysis. With pillar array in the microchannel, the two laminar flows, with one containing blood cells and small molecules and another containing dialyzate solution, can form a cell-free layer at the interface as selective zones for separation. This provides enhanced mixing yet extremely low shear for extraction of small molecules from the blood-cell-containing flow into the dialyzate flow, resulting in robust separation with reduced cell loss and improved efficiency. We demonstrate this by first using Chlorella pyrenoidosa as model cells to quantitatively study the separation performances, and then using simplified human blood for dialysis. The advanced H-filter, with highly efficient and robust performance for membraneless dialysis, shows great potential as promising candidate for rapid blood analysis/separation, and as fundamental structure for portable dialyzer. PMID:26339313

  9. Enhanced H-filter based on Fåhræus-Lindqvist effect for efficient and robust dialysis without membrane.

    PubMed

    Zheng, Wei-Chao; Xie, Rui; He, Li-Qun; Xi, Yue-Heng; Liu, Ying-Mei; Meng, Zhi-Jun; Wang, Wei; Ju, Xiao-Jie; Chen, Gang; Chu, Liang-Yin

    2015-07-01

    A novel microfluidic device for highly efficient and robust dialysis without membrane is highly desired for the development of portable or wearable microdialyzer. Here we report an enhanced H-filter with pillar array based on Fåhræus-Lindqvist effect (F-L effect) for highly efficient and robust membraneless dialysis of simplified blood for the first time. The H-filter employs two fluids laminarly flowing in the microchannel for continuously membraneless dialysis. With pillar array in the microchannel, the two laminar flows, with one containing blood cells and small molecules and another containing dialyzate solution, can form a cell-free layer at the interface as selective zones for separation. This provides enhanced mixing yet extremely low shear for extraction of small molecules from the blood-cell-containing flow into the dialyzate flow, resulting in robust separation with reduced cell loss and improved efficiency. We demonstrate this by first using Chlorella pyrenoidosa as model cells to quantitatively study the separation performances, and then using simplified human blood for dialysis. The advanced H-filter, with highly efficient and robust performance for membraneless dialysis, shows great potential as promising candidate for rapid blood analysis/separation, and as fundamental structure for portable dialyzer.

  10. Slope efficiency over 30% single-frequency ytterbium-doped fiber laser based on Sagnac loop mirror filter.

    PubMed

    Yin, Mojuan; Huang, Shenghong; Lu, Baole; Chen, Haowei; Ren, Zhaoyu; Bai, Jintao

    2013-09-20

    A high-slope-efficiency single-frequency (SF) ytterbium-doped fiber laser, based on a Sagnac loop mirror filter (LMF), was demonstrated. It combined a simple linear cavity with a Sagnac LMF that acted as a narrow-bandwidth filter to select the longitudinal modes. And we introduced a polarization controller to restrain the spatial hole burning effect in the linear cavity. The system could operate at a stable SF oscillating at 1064 nm with the obtained maximum output power of 32 mW. The slope efficiency was found to be primarily dependent on the reflectivity of the fiber Bragg grating. The slope efficiency of multi-longitudinal modes was higher than 45%, and the highest slope efficiency of the single longitudinal mode we achieved was 33.8%. The power stability and spectrum stability were <2% and <0.1%, respectively, and the signal-to-noise ratio measured was around 60 dB.

  11. A flexible curvilinear electromagnetic filter for direct current cathodic arc source.

    PubMed

    Dai, Hua; Shen, Yao; Li, Liuhe; Li, Xiaoling; Cai, Xun; Chu, Paul K

    2007-09-01

    Widespread applications of direct current (dc) cathodic arc deposition are hampered by macroparticle (MP) contamination, although a cathodic arc offers many unique merits such as high ionization rate, high deposition rate, etc. In this work, a flexible curvilinear electromagnetic filter is described to eliminate MPs from a dc cathodic arc source. The filter which has a relatively large size with a minor radius of about 85 mm is suitable for large cathodes. The filter is open and so the MPs do not rebound inside the filter. The flexible design allows the ions to be transported from the cathode to the sample surface optimally. Our measurements with a saturated ion current probe show that the efficiency of this flexible filter reaches about 2.0% (aluminum cathode) when the filter current is about 250 A. The MP density measured from TiN films deposited using this filter is two to three orders of magnitude less than that from films deposited with a 90 degrees duct magnetic filter and three to four orders of magnitude smaller than those deposited without a filter. Furthermore, our experiments reveal that the potential of the filter coil and the magnetic field on the surface of the cathode are two important factors affecting the efficacy of the filter. Different biasing potentials can enhance the efficiency to up to 12-fold, and a magnetic field at about 4.0 mT can improve it by a factor of 2 compared to 5.4 mT.

  12. Anti-clogging filter system

    DOEpatents

    Brown, Erik P.

    2015-05-19

    An anti-clogging filter system for filtering a fluid containing large particles and small particles includes an enclosure with at least one individual elongated tubular filter element in the enclosure. The individual elongated tubular filter element has an internal passage, a closed end, an open end, and a filtering material in or on the individual elongated tubular filter element. The fluid travels through the open end of the elongated tubular element and through the internal passage and through the filtering material. An anti-clogging element is positioned on or adjacent the individual elongated tubular filter element and provides a fluid curtain that preferentially directs the larger particulates to one area of the filter material allowing the remainder of the filter material to remain more efficient.

  13. Anti-clogging filter system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Erik P.

    An anti-clogging filter system for filtering a fluid containing large particles and small particles includes an enclosure with at least one individual elongated tubular filter element in the enclosure. The individual elongated tubular filter element has an internal passage, a closed end, an open end, and a filtering material in or on the individual elongated tubular filter element. The fluid travels through the open end of the elongated tubular element and through the internal passage and through the filtering material. An anti-clogging element is positioned on or adjacent the individual elongated tubular filter element and provides a fluid curtain thatmore » preferentially directs the larger particulates to one area of the filter material allowing the remainder of the filter material to remain more efficient.« less

  14. High efficiency and broadband acoustic diodes

    NASA Astrophysics Data System (ADS)

    Fu, Congyi; Wang, Bohan; Zhao, Tianfei; Chen, C. Q.

    2018-01-01

    Energy transmission efficiency and working bandwidth are the two major factors limiting the application of current acoustic diodes (ADs). This letter presents a design of high efficiency and broadband acoustic diodes composed of a nonlinear frequency converter and a linear wave filter. The converter consists of two masses connected by a bilinear spring with asymmetric tension and compression stiffness. The wave filter is a linear mass-spring lattice (sonic crystal). Both numerical simulation and experiment show that the energy transmission efficiency of the acoustic diode can be improved by as much as two orders of magnitude, reaching about 61%. Moreover, the primary working band width of the AD is about two times of the cut-off frequency of the sonic crystal filter. The cut-off frequency dependent working band of the AD implies that the developed AD can be scaled up or down from macro-scale to micro- and nano-scale.

  15. Report to DHS on Summer Internship 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckwith, R H

    2006-07-26

    This summer I worked at Lawrence Livermore National Laboratory in a bioforensics collection and extraction research group under David Camp. The group is involved with researching efficiencies of various methods for collecting bioforensic evidence from crime scenes. The different methods under examination are a wipe, swab, HVAC filter and a vacuum. The vacuum is something that has particularly gone uncharacterized. My time was spent mostly on modeling and calculations work, but at the end of the summer I completed my internship with a few experiments to supplement my calculations. I had two major projects this summer. My first major projectmore » this summer involved fluid mechanics modeling of collection and extraction situations. This work examines different fluid dynamic models for the case of a micron spore attached to a fiber. The second project I was involved with was a statistical analysis of the different sampling techniques.« less

  16. Go Grey - A Laundry to Landscape Irrigation System

    NASA Astrophysics Data System (ADS)

    Rajmohan, S.

    2017-12-01

    California residents have dealt with severe drought and high water bills for the few past years[1]. The objective of our project is to use the concept of greywater irrigation to build a low cost, adaptable, and easy to install irrigation system to collect the greywater from the washing machine and use it to water the plants. This system can reduce a household's water usage, extend the life of a septic system, and save time on watering plants by recycling the water from the washing machine. Our simple system requires PVC pipes, a three-way water diverter (valve), a mesh coffee filter, and a water (rain) barrel. The water from the washing machine travels through the three-way valve, which diverts it either to the garden or to the sewer. The PVC pipes lead outside to the garden, where the water barrel is located. The water goes through the mesh coffee filter that is attached on top of the barrel, so that lint and other impurities can be filtered out. The water collected in the barrel will travel through drip irrigation or through a hose to directly water the roots of the plants. This fully functional greywater system was successfully constructed and tested through various trails. We used a Kenmore standard 4.5 cubic feet front load high efficiency washer which uses less water compared to the traditional washers and measured the water collected in water barrel after each wash. Irrespective of the size of the load, the amount of water collected from each wash remained almost the same.. However, we collected enough grey water from each washer load to fill the rain barrel and water the plants in the garden. We were able apply the concept of greywater irrigation successfully to build our own low cost, adaptable, and easy to install greywater system that can be used in any household to water plants in the garden. Our system recycles the water from the washer instead of just wasting it thereby reducing a household's water usage and water bill especially during the time of drought. [1] U.S.Geological Survey/California Water Science Center - https://ca.water.usgs.gov/data/drought/index.html

  17. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts.

    PubMed

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf

    2017-02-18

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor.

  18. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts

    PubMed Central

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf

    2017-01-01

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor. PMID:28218700

  19. Development and evaluation of antimicrobial activated carbon fiber filters using Sophora flavescens nanoparticles.

    PubMed

    Sim, Kyoung Mi; Kim, Kyung Hwan; Hwang, Gi Byoung; Seo, SungChul; Bae, Gwi-Nam; Jung, Jae Hee

    2014-09-15

    Activated carbon fiber (ACF) filters have a wide range of applications, including air purification, dehumidification, and water purification, due to their large specific surface area, high adsorption capacity and rate, and specific surface reactivity. However, when airborne microorganisms such as bacteria and fungi adhere to the carbon substrate, ACF filters can become a source of microbial contamination, and their filter efficacy declines. Antimicrobial treatments are a promising means of preventing ACF bio-contamination. In this study, we demonstrate the use of Sophora flavescens in antimicrobial nanoparticles coated onto ACF filters. The particles were prepared using an aerosol process consisting of nebulization-thermal drying and particle deposition. The extract from S. flavescens is an effective, natural antimicrobial agent that exhibits antibacterial activity against various pathogens. The efficiency of Staphylococcus epidermidis inactivation increased with the concentration of S. flavescens nanoparticles in the ACF filter coating. The gas adsorption efficiency of the coated antimicrobial ACF filters was also evaluated using toluene. The toluene-removal capacity of the ACF filters remained unchanged while the antimicrobial activity was over 90% for some nanoparticle concentrations. Our results provide a scientific basis for controlling both bioaerosol and gaseous pollutants using antimicrobial ACF filters coated with S. flavescens nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Upgrading constructed wetlands phosphorus reduction from a dairy effluent using electric arc furnace steel slag filters.

    PubMed

    Weber, D; Drizo, A; Twohig, E; Bird, S; Ross, D

    2007-01-01

    In 2003, a subsurface flow constructed wetlands (SSF-CW) system was built at the University of Vermont (UVM) Paul Miller Dairy Farm as an alternative nutrient management approach for treating barnyard runoff and milk parlour waste. Given the increasing problem of phosphorus (P) pollution in the Lake Champlain region, a slag based P-removal filter technology (PFT) was established (2004) at the CW with two objectives: (i) to test the filters' efficiency as an upgrade unit for improving P removal performance via SSF-CW (ii) to investigate the capacity of filters technology to remove P as a "stand alone" unit. Six individual filters (F1-F6) were filled with electric arc furnace (EAF) steel slag, each containing 112.5 kg of material with a pore volume of 21 L. F1-F4, fed with CW treated water, received approximately 2.17 g DRP kg(-1) EAF steel slag (0.25 kg DRP total) during the 259 day feeding period. F1-F4 retained 1.7 g DRP kg(-1) EAF steel slag, resulting in an average P removal efficiency of 75%. The addition of filters improved CW DRP removal efficiency by 74%. F5 and F6, fed non-treated water, received 1.9 g DRP kg(-1) EAF steel slag (0.22 kg DRP in total) and retained 1.5 g DRP kg(-1) resulting in a P removal efficiency of 72%. The establishment of the EAF slag based PFT is the first in-field evaluation of this technology to reduce P from dairy farm effluent in Vermont.

  1. Arsenic in drinking water wells on the Bolivian high plain: Field monitoring and effect of salinity on removal efficiency of iron-oxides-containing filters.

    PubMed

    Van Den Bergh, K; Du Laing, G; Montoya, Juan Carlos; De Deckere, E; Tack, F M G

    2010-11-01

    In the rural areas around Oruro (Bolivia), untreated groundwater is used directly as drinking water. This research aimed to evaluate the general drinking water quality, with focus on arsenic (As) concentrations, based on analysis of 67 samples from about 16 communities of the Oruro district. Subsequently a filter using Iron Oxide Coated Sand (IOCS) and a filter using a Composite Iron Matrix (CIM) were tested for their arsenic removal capacity using synthetic water mimicking real groundwater. Heavy metal concentrations in the sampled drinking water barely exceeded WHO guidelines. Arsenic concentrations reached values up to 964 μ g L⁻¹ and exceeded the current WHO provisional guideline value of 10 μ g L⁻¹ in more than 50% of the sampled wells. The WHO guideline of 250 mg L⁻¹ for chloride and sulphate was also exceeded in more than a third of the samples, indicating high salinity in the drinking waters. Synthetic drinking water could be treated effectively by the IOCS- and CIM-based filters reducing As to concentrations lower than 10 μ g L⁻¹. High levels of chloride and sulphate did not influence As removal efficiency. However, phosphate concentrations in the range from 4 to 24 mg L⁻¹ drastically decreased removal efficiency of the IOCS-based filter but had no effects on removal efficiency of the CIM-based filter. Results of this study can be used as a base for further testing and practical implementation of drinking water purification in the Oruro region.

  2. Efficiency of automotive cabin air filters to reduce acute health effects of diesel exhaust in human subjects

    PubMed Central

    Rudell, B.; Wass, U.; Horstedt, P.; Levin, J. O.; Lindahl, R.; Rannug, U.; Sunesson, A. L.; Ostberg, Y.; Sandstrom, T.

    1999-01-01

    OBJECTIVES: To evaluate the efficiency of different automotive cabin air filters to prevent penetration of components of diesel exhaust and thereby reduce biomedical effects in human subjects. Filtered air and unfiltered diluted diesel exhaust (DDE) were used as negative and positive controls, respectively, and were compared with exposure to DDE filtered with four different filter systems. METHODS: 32 Healthy non- smoking subjects (age 21-53) participated in the study. Each subject was exposed six times for 1 hour in a specially designed exposure chamber: once to air, once to unfiltered DDE, and once to DDE filtered with the four different cabin air filters. Particle concentrations during exposure to unfiltered DDE were kept at 300 micrograms/m3. Two of the filters were particle filters. The other two were particle filters combined with active charcoal filters that might reduce certain gaseous components. Subjective symptoms were recorded and nasal airway lavage (NAL), acoustic rhinometry, and lung function measurements were performed. RESULTS: The two particle filters decreased the concentrations of diesel exhaust particles by about half, but did not reduce the intensity of symptoms induced by exhaust. The combination of active charcoal filters and a particle filter significantly reduced the symptoms and discomfort caused by the diesel exhaust. The most noticable differences in efficacy between the filters were found in the reduction of detection of an unpleasant smell from the diesel exhaust. In this respect even the two charcoal filter combinations differed significantly. The efficacy to reduce symptoms may depend on the abilities of the filters investigated to reduce certain hydrocarbons. No acute effects on NAL, rhinometry, and lung function variables were found. CONCLUSIONS: This study has shown that the use of active charcoal filters, and a particle filter, clearly reduced the intensity of symptoms induced by diesel exhaust. Complementary studies on vehicle cabin air filters may result in further diminishing the biomedical effects of diesel exhaust in subjects exposed in traffic and workplaces.   PMID:10450238

  3. Tailoring noise frequency spectrum between two consecutive second derivative filtering procedures to improve liquid chromatography-mass spectrometry determinations.

    PubMed

    Wang, Shau-Chun; Lin, Chiao-Juan; Chiang, Shu-Min; Yu, Sung-Nien

    2008-03-15

    This paper reports a simple chemometric technique to alter the noise spectrum of a liquid chromatography-mass spectrometry (LC-MS) chromatogram between two consecutive second-derivative filter procedures to improve the peak signal-to-noise (S/N) ratio enhancement. This technique is to multiply one second-derivative filtered LC-MS chromatogram with another artificial chromatogram added with thermal noises prior to the other second-derivative filter. Because the second-derivative filter cannot eliminate frequency components within its own filter bandwidth, more efficient peak S/N ratio improvement cannot be accomplished using consecutive second-derivative filter procedures to process LC-MS chromatograms. In contrast, when the second-derivative filtered LC-MS chromatogram is conditioned with the multiplication alteration prior to the other second-derivative filter, much better ratio improvement is achieved. The noise frequency spectrum of the second-derivative filtered chromatogram, which originally contains frequency components within the filter bandwidth, is altered to span a broader range with multiplication operation. When the frequency range of this modified noise spectrum shifts toward the other regimes, the other second-derivative filter, working as a band-pass filter, is able to provide better filtering efficiency to obtain higher peak S/N ratios. Real LC-MS chromatograms, of which 5-fold peak S/N ratio improvement achieved with two consecutive second-derivative filters remains the same S/N ratio improvement using a one-step second-derivative filter, are improved to accomplish much better ratio enhancement, approximately 25-fold or higher when the noise frequency spectrum is modified between two matched filters. The linear standard curve using the filtered LC-MS signals is validated. The filtered LC-MS signals are also more reproducible. The more accurate determinations of very low-concentration samples (S/N ratio about 5-7) are obtained via standard addition procedures using the filtered signals rather than the determinations using the original signals.

  4. Biotreatment of ammonia- and butanal-containing waste gases.

    PubMed

    Weckhuysen, B; Vriens, L; Verachtert, H

    1994-10-01

    The biological removal of ammonia and butanal in contaminated air was investigated by using, respectively, a laboratory-scale filter and a scrubber-filter combination. It was shown that ammonia can be removed with an elimination efficiency of 83% at a volumetric load of 100 m3.m-2.h-1 with 4-16 ppm of ammonia. During the experiment percolates were analysed for nitrate, nitrite, ammonium and pH. It was found that the nitrification in the biofilter could deteriorate due to an inhibition of Nitrobacter species, when the free ammonia concentration was rising in the percolate. It should be easy to control such inhibition through periodic analysis of the liquid phase by using a filter-scrubber combination. Such a combination was studied for butanal removal. Butanal was removed with an elimination efficiency of 80% by a scrubber-filter combination at a volumetric load of 100 m3.m-2.h-1 and a high butanal input concentration. Mixing the filter material with CaCO3 and pH control of the liquid in the scrubber resulted in an increase of the elimination efficiency. These results, combined with previous results on the biofiltration of butanal and butyric acid, allow us to discuss the influence of odour compounds on the removal efficiency of such systems and methods for control. The results were used to construct a full-size system, which is described.

  5. Epi-Fluorescence Microscopy

    PubMed Central

    Webb, Donna J.; Brown, Claire M.

    2012-01-01

    Epi-fluorescence microscopy is available in most life sciences research laboratories, and when optimized can be a central laboratory tool. In this chapter, the epi-fluorescence light path is introduced and the various components are discussed in detail. Recommendations are made for incident lamp light sources, excitation and emission filters, dichroic mirrors, objective lenses, and charge-coupled device (CCD) cameras in order to obtain the most sensitive epi-fluorescence microscope. The even illumination of metal-halide lamps combined with new “hard” coated filters and mirrors, a high resolution monochrome CCD camera, and a high NA objective lens are all recommended for high resolution and high sensitivity fluorescence imaging. Recommendations are also made for multicolor imaging with the use of monochrome cameras, motorized filter turrets, individual filter cubes, and corresponding dyes that are the best choice for sensitive, high resolution multicolor imaging. Images should be collected using Nyquist sampling and should be corrected for background intensity contributions and nonuniform illumination across the field of view. Photostable fluorescent probes and proteins that absorb a lot of light (i.e., high extinction co-efficients) and generate a lot of fluorescence signal (i.e., high quantum yields) are optimal. A neuronal immune-fluorescence labeling protocol is also presented. Finally, in order to maximize the utility of sensitive wide-field microscopes and generate the highest resolution images with high signal-to-noise, advice for combining wide-field epi-fluorescence imaging with restorative image deconvolution is presented. PMID:23026996

  6. Filters: It's Not about Porn, Stupid!

    ERIC Educational Resources Information Center

    Schuyler, Michael

    1997-01-01

    Discusses libraries' uses of filters to prevent access to objectionable sites on the Internet. Highlights include the American Library Association's resolution against filters as a violation of First Amendment rights; patron's use of terminals for e-mail or games; using filters for collection management; and listservs and online resources…

  7. Efficient OCT Image Enhancement Based on Collaborative Shock Filtering

    PubMed Central

    2018-01-01

    Efficient enhancement of noisy optical coherence tomography (OCT) images is a key task for interpreting them correctly. In this paper, to better enhance details and layered structures of a human retina image, we propose a collaborative shock filtering for OCT image denoising and enhancement. Noisy OCT image is first denoised by a collaborative filtering method with new similarity measure, and then the denoised image is sharpened by a shock-type filtering for edge and detail enhancement. For dim OCT images, in order to improve image contrast for the detection of tiny lesions, a gamma transformation is first used to enhance the images within proper gray levels. The proposed method integrating image smoothing and sharpening simultaneously obtains better visual results in experiments. PMID:29599954

  8. Efficient OCT Image Enhancement Based on Collaborative Shock Filtering.

    PubMed

    Liu, Guohua; Wang, Ziyu; Mu, Guoying; Li, Peijin

    2018-01-01

    Efficient enhancement of noisy optical coherence tomography (OCT) images is a key task for interpreting them correctly. In this paper, to better enhance details and layered structures of a human retina image, we propose a collaborative shock filtering for OCT image denoising and enhancement. Noisy OCT image is first denoised by a collaborative filtering method with new similarity measure, and then the denoised image is sharpened by a shock-type filtering for edge and detail enhancement. For dim OCT images, in order to improve image contrast for the detection of tiny lesions, a gamma transformation is first used to enhance the images within proper gray levels. The proposed method integrating image smoothing and sharpening simultaneously obtains better visual results in experiments.

  9. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, Charles V.; Killian, E. Wayne; Grafwallner, Ervin G.; Kynaston, Ronnie L.; Johnson, Larry O.; Randolph, Peter D.

    1996-01-01

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector.

  10. Device and method for accurately measuring concentrations of airborne transuranic isotopes

    DOEpatents

    McIsaac, C.V.; Killian, E.W.; Grafwallner, E.G.; Kynaston, R.L.; Johnson, L.O.; Randolph, P.D.

    1996-09-03

    An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector. 7 figs.

  11. Performance evaluation and modelling studies of gravel--coir fibre--sand multimedia stormwater filter.

    PubMed

    Samuel, Manoj P; Senthilvel, S; Tamilmani, D; Mathew, A C

    2012-09-01

    A horizontal flow multimedia stormwater filter was developed and tested for hydraulic efficiency and pollutant removal efficiency. Gravel, coconut (Cocos nucifera) fibre and sand were selected as the media and filled in 1:1:1 proportion. A fabric screen made up of woven sisal hemp was used to separate the media. The adsorption behaviour of coir fibre was determined in a series of column and batch studies and the corresponding isotherms were developed. The hydraulic efficiency of the filter showed a diminishing trend as the sediment level in inflow increased. The filter exhibited 100% sediment removal at lower sediment concentrations in inflow water (>6 g L(-1)). The filter could remove NO3(-), SO4(2-) and total solids (TS) effectively. Removal percentages of Mg(2+) and Na(+) were also found to be good. Similar results were obtained from a field evaluation study. Studies were also conducted to determine the pattern of silt and sediment deposition inside the filter body. The effects of residence time and rate of flow on removal percentages of NO3(-) and TS were also investigated out. In addition, a multiple regression equation that mathematically represents the filtration process was developed. Based on estimated annual costs and returns, all financial viability criteria (internal rate of return, net present value and benefit-cost ratio) were found favourable and affordable to farmers for investment in the developed filtration system. The model MUSIC was calibrated and validated for field conditions with respect to the developed stormwater filter.

  12. Raman Laser Spectrometer internal Optical Head current status: opto-mechanical redesign to minimize the excitation laser trace

    NASA Astrophysics Data System (ADS)

    Sanz, Miguel; Ramos, Gonzalo; Moral, Andoni; Pérez, Carlos; Belenguer, Tomás; del Rosario Canchal, María; Zuluaga, Pablo; Rodriguez, Jose Antonio; Santiago, Amaia; Rull, Fernando; Instituto Nacional de Técnica Aeroespacial (INTA); Ingeniería de Sistemas para la Defesa de España S.A. (ISDEFE)

    2016-10-01

    Raman Laser Spectrometer (RLS) is the Pasteur Payload instruments of the ExoMars mission, within the ESA's Aurora Exploration Programme, that will perform for the first time in an out planetary mission Raman spectroscopy. RLS is composed by SPU (Spectrometer Unit), iOH (Internal Optical Head), and ICEU (Instrument Control and Excitation Unit). iOH focuses the excitation laser on the samples (excitation path), and collects the Raman emission from the sample (collection path, composed on collimation system and filtering system). The original design presented a high laser trace reaching to the detector, and although a certain level of laser trace was required for calibration purposes, the high level degrades the Signal to Noise Ratio confounding some Raman peaks.The investigation revealing that the laser trace was not properly filtered as well as the iOH opto-mechanical redesign are reported on. After the study of the Long Pass Filters Optical Density (OD) as a function of the filtering stage to the detector distance, a new set of filters (Notch filters) was decided to be evaluated. Finally, and in order to minimize the laser trace, a new collection path design (mainly consisting on that the collimation and filtering stages are now separated in two barrels, and on the kind of filters to be used) was required. Distance between filters and collimation stage first lens was increased, increasing the OD. With this new design and using two Notch filters, the laser trace was reduced to assumable values, as can be observed in the functional test comparison also reported on this paper.

  13. Accurate mask-based spatially regularized correlation filter for visual tracking

    NASA Astrophysics Data System (ADS)

    Gu, Xiaodong; Xu, Xinping

    2017-01-01

    Recently, discriminative correlation filter (DCF)-based trackers have achieved extremely successful results in many competitions and benchmarks. These methods utilize a periodic assumption of the training samples to efficiently learn a classifier. However, this assumption will produce unwanted boundary effects, which severely degrade the tracking performance. Correlation filters with limited boundaries and spatially regularized DCFs were proposed to reduce boundary effects. However, their methods used the fixed mask or predesigned weights function, respectively, which was unsuitable for large appearance variation. We propose an accurate mask-based spatially regularized correlation filter for visual tracking. Our augmented objective can reduce the boundary effect even in large appearance variation. In our algorithm, the masking matrix is converted into the regularized function that acts on the correlation filter in frequency domain, which makes the algorithm fast convergence. Our online tracking algorithm performs favorably against state-of-the-art trackers on OTB-2015 Benchmark in terms of efficiency, accuracy, and robustness.

  14. Wavelength-tunable thulium-doped fiber laser by employing a self-made Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Wang, Y. P.; Ju, Y. L.; Wu, C. T.; Liu, W.; Yang, C.

    2017-06-01

    In this demonstration, we proposed a novel wavelength-tunable thulium-doped fiber laser (TDFL) with a self-made Fabry-Perot (F-P) filter. When the F-P filter was not inserted, the maximum output power of 11.1 W was achieved when the pump power was 70.2 W. The corresponding optical-to-optical conversion efficiency was 15.8% and the slope efficiency was 22.1%. When the F-P filter was inserted, the output wavelength could be tuned from 1952.9 to 1934.9 nm with the change of cavity length of F-P filter which was fixed on a piezoelectric ceramic transducer (PZT) controlled by the voltage applied to it. The full width at half maximum (FWHM) was no more than 0.19 nm. Furthermore, the wavelength fluctuations of the tunable fiber laser were kept within  ±0.2 nm.

  15. Modeling vegetative filter performance with VFSMOD

    Treesearch

    Matthew J. Helmers; Dean E. Eisenhauer; Michael G. Dosskey; Thomas G. Franti

    2002-01-01

    The model VFSMOD was used to investigate the effect of varying watershed characteristics and buffer dimensions on the sediment trapping efficiency of vegetative filters. This investigation allows for a better understanding of how watershed characteristics, buffer dimensions, and storm characteristics impact the performance of vegetative filters. Using VFSMOD,...

  16. Efficient and Scalable Graph Similarity Joins in MapReduce

    PubMed Central

    Chen, Yifan; Zhang, Weiming; Tang, Jiuyang

    2014-01-01

    Along with the emergence of massive graph-modeled data, it is of great importance to investigate graph similarity joins due to their wide applications for multiple purposes, including data cleaning, and near duplicate detection. This paper considers graph similarity joins with edit distance constraints, which return pairs of graphs such that their edit distances are no larger than a given threshold. Leveraging the MapReduce programming model, we propose MGSJoin, a scalable algorithm following the filtering-verification framework for efficient graph similarity joins. It relies on counting overlapping graph signatures for filtering out nonpromising candidates. With the potential issue of too many key-value pairs in the filtering phase, spectral Bloom filters are introduced to reduce the number of key-value pairs. Furthermore, we integrate the multiway join strategy to boost the verification, where a MapReduce-based method is proposed for GED calculation. The superior efficiency and scalability of the proposed algorithms are demonstrated by extensive experimental results. PMID:25121135

  17. Efficient and scalable graph similarity joins in MapReduce.

    PubMed

    Chen, Yifan; Zhao, Xiang; Xiao, Chuan; Zhang, Weiming; Tang, Jiuyang

    2014-01-01

    Along with the emergence of massive graph-modeled data, it is of great importance to investigate graph similarity joins due to their wide applications for multiple purposes, including data cleaning, and near duplicate detection. This paper considers graph similarity joins with edit distance constraints, which return pairs of graphs such that their edit distances are no larger than a given threshold. Leveraging the MapReduce programming model, we propose MGSJoin, a scalable algorithm following the filtering-verification framework for efficient graph similarity joins. It relies on counting overlapping graph signatures for filtering out nonpromising candidates. With the potential issue of too many key-value pairs in the filtering phase, spectral Bloom filters are introduced to reduce the number of key-value pairs. Furthermore, we integrate the multiway join strategy to boost the verification, where a MapReduce-based method is proposed for GED calculation. The superior efficiency and scalability of the proposed algorithms are demonstrated by extensive experimental results.

  18. Optimized Multi-Spectral Filter Array Based Imaging of Natural Scenes.

    PubMed

    Li, Yuqi; Majumder, Aditi; Zhang, Hao; Gopi, M

    2018-04-12

    Multi-spectral imaging using a camera with more than three channels is an efficient method to acquire and reconstruct spectral data and is used extensively in tasks like object recognition, relighted rendering, and color constancy. Recently developed methods are used to only guide content-dependent filter selection where the set of spectral reflectances to be recovered are known a priori. We present the first content-independent spectral imaging pipeline that allows optimal selection of multiple channels. We also present algorithms for optimal placement of the channels in the color filter array yielding an efficient demosaicing order resulting in accurate spectral recovery of natural reflectance functions. These reflectance functions have the property that their power spectrum statistically exhibits a power-law behavior. Using this property, we propose power-law based error descriptors that are minimized to optimize the imaging pipeline. We extensively verify our models and optimizations using large sets of commercially available wide-band filters to demonstrate the greater accuracy and efficiency of our multi-spectral imaging pipeline over existing methods.

  19. Optimized Multi-Spectral Filter Array Based Imaging of Natural Scenes

    PubMed Central

    Li, Yuqi; Majumder, Aditi; Zhang, Hao; Gopi, M.

    2018-01-01

    Multi-spectral imaging using a camera with more than three channels is an efficient method to acquire and reconstruct spectral data and is used extensively in tasks like object recognition, relighted rendering, and color constancy. Recently developed methods are used to only guide content-dependent filter selection where the set of spectral reflectances to be recovered are known a priori. We present the first content-independent spectral imaging pipeline that allows optimal selection of multiple channels. We also present algorithms for optimal placement of the channels in the color filter array yielding an efficient demosaicing order resulting in accurate spectral recovery of natural reflectance functions. These reflectance functions have the property that their power spectrum statistically exhibits a power-law behavior. Using this property, we propose power-law based error descriptors that are minimized to optimize the imaging pipeline. We extensively verify our models and optimizations using large sets of commercially available wide-band filters to demonstrate the greater accuracy and efficiency of our multi-spectral imaging pipeline over existing methods. PMID:29649114

  20. Optical implementation of the synthetic discriminant function

    NASA Astrophysics Data System (ADS)

    Butler, S.; Riggins, J.

    1984-10-01

    Much attention is focused on the use of coherent optical pattern recognition (OPR) using matched spatial filters for robotics and intelligent systems. The OPR problem consists of three aspects -- information input, information processing, and information output. This paper discusses the information processing aspect which consists of choosing a filter to provide robust correlation with high efficiency. The filter should ideally be invariant to image shift, rotation and scale, provide a reasonable signal-to-noise (S/N) ratio and allow high throughput efficiency. The physical implementation of a spatial matched filter involves many choices. These include the use of conventional holograms or computer-generated holograms (CGH) and utilizing absorption or phase materials. Conventional holograms inherently modify the reference image by non-uniform emphasis of spatial frequencies. Proper use of film nonlinearity provides improved filter performance by emphasizing frequency ranges crucial to target discrimination. In the case of a CGH, the emphasis of the reference magnitude and phase can be controlled independently of the continuous tone or binary writing processes. This paper describes computer simulation and optical implementation of a geometrical shape and a Synthetic Discriminant Function (SDF) matched filter. The authors chose the binary Allebach-Keegan (AK) CGH algorithm to produce actual filters. The performances of these filters were measured to verify the simulation results. This paper provides a brief summary of the matched filter theory, the SDF, CGH algorithms, Phase-Only-Filtering, simulation procedures, and results.

  1. In-line Kevlar filters for microfiltration of transuranic-containing liquid streams.

    PubMed

    Gonzales, G J; Beddingfield, D H; Lieberman, J L; Curtis, J M; Ficklin, A C

    1992-06-01

    The Department of Energy Rocky Flats Plant has numerous ongoing efforts to minimize the generation of residue and waste and to improve safety and health. Spent polypropylene liquid filters held for plutonium recovery, known as "residue," or as transuranic mixed waste contribute to storage capacity problems and create radiation safety and health considerations. An in-line process-liquid filter made of Kevlar polymer fiber has been evaluated for its potential to: (1) minimize filter residue, (2) recover economically viable quantities of plutonium, (3) minimize liquid storage tank and process-stream radioactivity, and (4) reduce potential personnel radiation exposure associated with these sources. Kevlar filters were rated to less than or equal to 1 mu nominal filtration and are capable of reducing undissolved plutonium particles to more than 10 times below the economic discard limit, however produced high back-pressures and are not yet acid resistant. Kevlar filters performed independent of loaded particles serving as a sieve. Polypropylene filters removed molybdenum particles at efficiencies equal to Kevlar filters only after loading molybdenum during recirculation events. Kevlars' high-efficiency microfiltration of process-liquid streams for the removal of actinides has the potential to reduce personnel radiation exposure by a factor of 6 or greater, while simultaneously achieving a reduction in the generation of filter residue and waste by a factor of 7. Insoluble plutonium may be recoverable from Kevlar filters by incineration.

  2. African Swine Fever Diagnosis Adapted to Tropical Conditions by the Use of Dried-blood Filter Papers.

    PubMed

    Randriamparany, T; Kouakou, K V; Michaud, V; Fernández-Pinero, J; Gallardo, C; Le Potier, M-F; Rabenarivahiny, R; Couacy-Hymann, E; Raherimandimby, M; Albina, E

    2016-08-01

    The performance of Whatman 3-MM filter papers for the collection, drying, shipment and long-term storage of blood at ambient temperature, and for the detection of African swine fever virus and antibodies was assessed. Conventional and real-time PCR, viral isolation and antibody detection by ELISA were performed on paired samples (blood/tissue versus dried-blood 3-MM filter papers) collected from experimentally infected pigs and from farm pigs in Madagascar and Côte d'Ivoire. 3-MM filter papers were used directly in the conventional and real-time PCR without previous extraction of nucleic acids. Tests that performed better with 3-MM filter papers were in descending order: virus isolation, real-time UPL PCR and conventional PCR. The analytical sensitivity of real-time UPL PCR on filter papers was similar to conventional testing (virus isolation or conventional PCR) on organs or blood. In addition, blood-dried filter papers were tested in ELISA for antibody detection and the observed sensitivity was very close to conventional detection on serum samples and gave comparable results. Filter papers were stored up to 9 months at 20-25°C and for 2 months at 37°C without significant loss of sensitivity for virus genome detection. All tests on 3-MM filter papers had 100% specificity compared to the gold standards. Whatman 3-MM filter papers have the advantage of being cheap and of preserving virus viability for future virus isolation and characterization. In this study, Whatman 3-MM filter papers proved to be a suitable support for the collection, storage and use of blood in remote areas of tropical countries without the need for a cold chain and thus provide new possibilities for antibody testing and virus isolation. © 2014 Blackwell Verlag GmbH.

  3. Simple and Efficient Single Photon Filter for a Rb-based Quantum Memory

    NASA Astrophysics Data System (ADS)

    Stack, Daniel; Li, Xiao; Quraishi, Qudsia

    2015-05-01

    Distribution of entangled quantum states over significant distances is important to the development of future quantum technologies such as long-distance cryptography, networks of atomic clocks, distributed quantum computing, etc. Long-lived quantum memories and single photons are building blocks for systems capable of realizing such applications. The ability to store and retrieve quantum information while filtering unwanted light signals is critical to the operation of quantum memories based on neutral-atom ensembles. We report on an efficient frequency filter which uses a glass cell filled with 85Rb vapor to attenuate noise photons by an order of magnitude with little loss to the single photons associated with the operation of our cold 87Rb quantum memory. An Ar buffer gas is required to differentiate between signal and noise photons or similar statement. Our simple, passive filter requires no optical pumping or external frequency references and provides an additional 18 dB attenuation of our pump laser for every 1 dB loss of the single photon signal. We observe improved non-classical correlations and our data shows that the addition of a frequency filter increases the non-classical correlations and readout efficiency of our quantum memory by ~ 35%.

  4. Fluid sample collection and distribution system. [qualitative analysis of aqueous samples from several points

    NASA Technical Reports Server (NTRS)

    Brooks, R. L. (Inventor)

    1979-01-01

    A multipoint fluid sample collection and distribution system is provided wherein the sample inputs are made through one or more of a number of sampling valves to a progressive cavity pump which is not susceptible to damage by large unfiltered particles. The pump output is through a filter unit that can provide a filtered multipoint sample. An unfiltered multipoint sample is also provided. An effluent sample can be taken and applied to a second progressive cavity pump for pumping to a filter unit that can provide one or more filtered effluent samples. The second pump can also provide an unfiltered effluent sample. Means are provided to periodically back flush each filter unit without shutting off the whole system.

  5. 40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sample collection filter) differs significantly from that specified for reference method samplers as... transport is the percentage of a laboratory challenge aerosol which penetrates to the active sample filter of the candidate equivalent method sampler. (2) The active sample filter is the exclusive filter...

  6. 40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sample collection filter) differs significantly from that specified for reference method samplers as... transport is the percentage of a laboratory challenge aerosol which penetrates to the active sample filter of the candidate equivalent method sampler. (2) The active sample filter is the exclusive filter...

  7. 40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sample collection filter) differs significantly from that specified for reference method samplers as... transport is the percentage of a laboratory challenge aerosol which penetrates to the active sample filter of the candidate equivalent method sampler. (2) The active sample filter is the exclusive filter...

  8. 40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sample collection filter) differs significantly from that specified for reference method samplers as... transport is the percentage of a laboratory challenge aerosol which penetrates to the active sample filter of the candidate equivalent method sampler. (2) The active sample filter is the exclusive filter...

  9. 40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sample collection filter) differs significantly from that specified for reference method samplers as... transport is the percentage of a laboratory challenge aerosol which penetrates to the active sample filter of the candidate equivalent method sampler. (2) The active sample filter is the exclusive filter...

  10. 40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...

  11. 40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM 2.5 or PM 10-2.5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...

  12. 40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...

  13. 40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...

  14. 40 CFR 53.57 - Test for filter temperature control during sampling and post-sampling periods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Test for filter temperature control... Class I and Class II Equivalent Methods for PM 2.5 or PM 10-2,5 § 53.57 Test for filter temperature... candidate sampler's ability to prevent excessive overheating of the PM sample collection filter (or filters...

  15. Distributed Data Service for Data Management in Internet of Things Middleware

    PubMed Central

    Cruz Huacarpuma, Ruben; de Sousa Junior, Rafael Timoteo; de Holanda, Maristela Terto; de Oliveira Albuquerque, Robson; García Villalba, Luis Javier; Kim, Tai-Hoon

    2017-01-01

    The development of the Internet of Things (IoT) is closely related to a considerable increase in the number and variety of devices connected to the Internet. Sensors have become a regular component of our environment, as well as smart phones and other devices that continuously collect data about our lives even without our intervention. With such connected devices, a broad range of applications has been developed and deployed, including those dealing with massive volumes of data. In this paper, we introduce a Distributed Data Service (DDS) to collect and process data for IoT environments. One central goal of this DDS is to enable multiple and distinct IoT middleware systems to share common data services from a loosely-coupled provider. In this context, we propose a new specification of functionalities for a DDS and the conception of the corresponding techniques for collecting, filtering and storing data conveniently and efficiently in this environment. Another contribution is a data aggregation component that is proposed to support efficient real-time data querying. To validate its data collecting and querying functionalities and performance, the proposed DDS is evaluated in two case studies regarding a simulated smart home system, the first case devoted to evaluating data collection and aggregation when the DDS is interacting with the UIoT middleware, and the second aimed at comparing the DDS data collection with this same functionality implemented within the Kaa middleware. PMID:28448469

  16. Stable Computation of the Vertical Gradient of Potential Field Data Based on Incorporating the Smoothing Filters

    NASA Astrophysics Data System (ADS)

    Baniamerian, Jamaledin; Liu, Shuang; Abbas, Mahmoud Ahmed

    2018-04-01

    The vertical gradient is an essential tool in interpretation algorithms. It is also the primary enhancement technique to improve the resolution of measured gravity and magnetic field data, since it has higher sensitivity to changes in physical properties (density or susceptibility) of the subsurface structures than the measured field. If the field derivatives are not directly measured with the gradiometers, they can be calculated from the collected gravity or magnetic data using numerical methods such as those based on fast Fourier transform technique. The gradients behave similar to high-pass filters and enhance the short-wavelength anomalies which may be associated with either small-shallow sources or high-frequency noise content in data, and their numerical computation is susceptible to suffer from amplification of noise. This behaviour can adversely affect the stability of the derivatives in the presence of even a small level of the noise and consequently limit their application to interpretation methods. Adding a smoothing term to the conventional formulation of calculating the vertical gradient in Fourier domain can improve the stability of numerical differentiation of the field. In this paper, we propose a strategy in which the overall efficiency of the classical algorithm in Fourier domain is improved by incorporating two different smoothing filters. For smoothing term, a simple qualitative procedure based on the upward continuation of the field to a higher altitude is introduced to estimate the related parameters which are called regularization parameter and cut-off wavenumber in the corresponding filters. The efficiency of these new approaches is validated by computing the first- and second-order derivatives of noise-corrupted synthetic data sets and then comparing the results with the true ones. The filtered and unfiltered vertical gradients are incorporated into the extended Euler deconvolution to estimate the depth and structural index of a magnetic sphere, hence, quantitatively evaluating the methods. In the real case, the described algorithms are used to enhance a portion of aeromagnetic data acquired in Mackenzie Corridor, Northern Mainland, Canada.

  17. [Testing method research for key performance indicator of imaging acousto-optic tunable filter (AOTF)].

    PubMed

    Hu, Shan-Zhou; Chen, Fen-Fei; Zeng, Li-Bo; Wu, Qiong-Shui

    2013-01-01

    Imaging AOTF is an important optical filter component for new spectral imaging instruments developed in recent years. The principle of imaging AOTF component was demonstrated, and a set of testing methods for some key performances were studied, such as diffraction efficiency, wavelength shift with temperature, homogeneity in space for diffraction efficiency, imaging shift, etc.

  18. Filter vapor trap

    DOEpatents

    Guon, Jerold

    1976-04-13

    A sintered filter trap is adapted for insertion in a gas stream of sodium vapor to condense and deposit sodium thereon. The filter is heated and operated above the melting temperature of sodium, resulting in a more efficient means to remove sodium particulates from the effluent inert gas emanating from the surface of a liquid sodium pool. Preferably the filter leaves are precoated with a natrophobic coating such as tetracosane.

  19. MANUFACTURING FACILITY FOR ACTIVATED CARBON AND CERAMIC WATER FILTERS AT THE SONGHAI CENTER, BENIN

    EPA Science Inventory

    Ceramic filters will be manufactured at the Songhai Center in Porto-Novo, Benin for cost-effective drinking water treatment. The efficiency of the ceramic filters will be improved by adding activated carbon cartridges to remove organic and inorganic impurities. The activate...

  20. [How efficient and safe are Vena-cava-filters?].

    PubMed

    Kluge, Stefan

    2015-08-01

    In the last 30 years patients with pulmonary embolism have increasingly often been implanted with a vena cava filter. Evidence of safety and efficacy in comparison to pure anticoagulation are in short supply. Re-removable filter reduces neither the risk of recurrence nor mortality, according to a study now revealed.

  1. Rhenium-phthalocyanine molecular nanojunction with high magnetic anisotropy and high spin filtering efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Institute of Nanomaterial and Nanostructure, Changsha University of Science and Technology, Changsha 410114; Hu, J.

    2015-07-20

    Using the density functional and non-equilibrium Green's function approaches, we studied the magnetic anisotropy and spin-filtering properties of various transition metal-Phthalocyanine molecular junctions across two Au electrodes. Our important finding is that the Au-RePc-Au junction has both large spin filtering efficiency (>80%) and large magnetic anisotropy energy, which makes it suitable for device applications. To provide insights for the further experimental work, we discussed the correlation between the transport property, magnetic anisotropy, and wave function features of the RePc molecule, and we also illustrated the possibility of controlling its magnetic state.

  2. Lidar-Based Rock-Fall Hazard Characterization of Cliffs

    USGS Publications Warehouse

    Collins, Brian D.; Greg M.Stock,

    2017-01-01

    Rock falls from cliffs and other steep slopes present numerous challenges for detailed geological characterization. In steep terrain, rock-fall source areas are both dangerous and difficult to access, severely limiting the ability to make detailed structural and volumetric measurements necessary for hazard assessment. Airborne and terrestrial lidar survey methods can provide high-resolution data needed for volumetric, structural, and deformation analyses of rock falls, potentially making these analyses straightforward and routine. However, specific methods to collect, process, and analyze lidar data of steep cliffs are needed to maximize analytical accuracy and efficiency. This paper presents observations showing how lidar data sets should be collected, filtered, registered, and georeferenced to tailor their use in rock fall characterization. Additional observations concerning surface model construction, volumetric calculations, and deformation analysis are also provided.

  3. Aethalometer

    DOEpatents

    Hansen, Anthony D.

    1990-01-01

    An improved aethalometer (10) having a single light source (18) and a single light detector (20) and two light paths (21, 22) from the light source (18) to the light detector (20). A quartz fiber filter (13) is inserted in the device, the filter (13) having a collection area (23) in one light path (21) and a reference area (24) in the other light path (22). A gas flow path (46) through the aethalometer housing (11) allows ambient air to flow through the collection area (23) of the filter (13) so that aerosol particles can be collected on the filter. A rotating disk (31) with an opening (33) therethrough allows light for the light source (18) to pass alternately through the two light paths (21, 22). The voltage output of the detector (20) is applied to a VCO (52) and the VCO pulses for light transmission separately through the two light paths (21, 22 ) are counted and compared to determine the absorption coefficient of the collected aerosol particles.

  4. In vitro evaluation of clot capture efficiency of an absorbable vena cava filter.

    PubMed

    Dria, Stephen J; Eggers, Mitchell D

    2016-10-01

    The purpose of this study was to determine the in vitro clot capture efficiency (CCE) of an investigational absorbable inferior vena cava filter (IVCF) vs the Greenfield IVCF. Investigational absorbable and Greenfield filters were challenged with polyacrylamide clot surrogates ranging from 3 × 5 to 10 × 24 mm (diameter × length) in a flow loop simulating the venous system. Filters were challenged with clots until CCE standard error of 5% or less was achieved under binomial statistics. Pressure gradients across the filters were measured for the largest size clot, enabling calculation of forces on the filter. The in vitro CCE of the absorbable IVCF was statistically similar to that of the Greenfield filter for all clot sizes apart from the 3 × 10-mm clot, for which there was statistically significant difference between filter CCEs (absorbable filter, 59%; Greenfield filter, 31%; P = .0001). CCE ranged from an average 32% for the 3 × 5-mm clot to 100% for 7 × 10-mm and larger clots for the absorbable IVCF. Pressure gradient across the absorbable filter with 10 × 24-mm clot averaged 0.14 mm Hg, corresponding to a net force on the filter of 2.1 × 10(-3) N, compared with 0.39 mm Hg or 5.8 × 10(-3) N (P < .001) for the Greenfield filter. CCE of the absorbable filter was statistically similar to or an improvement on that of the Greenfield stainless steel filter for all clot sizes tested. CCE of the Greenfield filter in this study aligned with data from previous studies. Given the efficacy of the Greenfield filter in attenuating the risk of pulmonary embolism, the current study suggests that the absorbable filter may be a viable candidate for subsequent human testing. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  5. Consistent and efficient processing of ADCP streamflow measurements

    USGS Publications Warehouse

    Mueller, David S.; Constantinescu, George; Garcia, Marcelo H.; Hanes, Dan

    2016-01-01

    The use of Acoustic Doppler Current Profilers (ADCPs) from a moving boat is a commonly used method for measuring streamflow. Currently, the algorithms used to compute the average depth, compute edge discharge, identify invalid data, and estimate velocity and discharge for invalid data vary among manufacturers. These differences could result in different discharges being computed from identical data. Consistent computational algorithm, automated filtering, and quality assessment of ADCP streamflow measurements that are independent of the ADCP manufacturer are being developed in a software program that can process ADCP moving-boat discharge measurements independent of the ADCP used to collect the data.

  6. Sodium purification apparatus and method

    DOEpatents

    Gould, M.I.

    1980-03-04

    An apparatus for and method of collecting and storing oxide impurities contained in high-temperature liquid alkali metal are disclosed. A method and apparatus are provided for nucleating and precipitating oxide impurities by cooling, wherein the nucleation and precipitation are enhanced by causing a substantial increase in pressure drop and corresponding change in the velocity head of the alkali metal. Thereafter the liquid alkali metal is introduced into a quiescent zone wherein the liquid velocity is maintained below a specific maximum whereby it is possible to obtain high oxide removal efficiencies without the necessity of a mesh or filter. 1 fig.

  7. Impact of long-pass interferential filters on dark current and background light rejection in Silicon Photomultipliers

    NASA Astrophysics Data System (ADS)

    Mazzillo, M.; Sciuto, A.; Libertino, S.; Lombardo, S.; Fallica, G.

    2018-02-01

    There is an increasing interest in using Silicon Photomultipliers (SiPMs) in emerging applications where the detectors have to operate in ambient environment with high sensitivity and fast timing response in combination with narrow bandwidth light emitting sources like LEDs or VCSELs. The need to use large area detectors for optimizing the light collection efficiency, due to the low optical fluxes to be usually detected, imposes the optimization of the SiPM performance in specific wavelength ranges (usually visible or near infrared), to fully exploit the single photon sensitivity of these detectors and not to reduce at the same time their dynamic range. The use of proper optical long-pass filters on the detector's package can represent a suitable way to reach both these targets, through the reduction of environmental light absorption. Here we present the preliminary results obtained from the characterization of n+-p SiPMs with commercial long-pass filters with increasing cut-on wavelength in the range 500 nm-900 nm glued on the top side of the detector's package. The performance of the detectors has been evaluated in terms of dark current variation induced by the use of the filters and background light rejection under the illumination of white fluorescent lamps. The relevant reduction observed in the dark current (up to 90% at 13 V overvoltage) and the consistent reduction of stray light absorption (up to 90% at 3 V overvoltage with a 900 nm cut-on wavelength long-pass filter) are the main characterization results obtained and shown in this paper.

  8. Microbiological Characterization of the International Space Station Water Processor Assembly External Filter Assembly S/N 01

    NASA Technical Reports Server (NTRS)

    Weir, Natalee; Wilson, Mark; Yoets, Airan; Yoets, Airan; Molina, Thomas; Bruce, Rebekah; Sitler, Glenn; Carter, Layne

    2012-01-01

    The External Filter Assembly (EFA) S/N 01 is a mesh screen filter with a pore size of approximately 300 micron that was installed in the International Space Station (ISS) Water Processor Assembly (WPA) between the Waste Tank and the Mostly Liquid Separator (MLS) on February 11, 2010 to protect clearances in the MLS solenoid valve SV_1121_3. A removal & replacement of the EFA Filter was performed on March 22, 2011 in response to increasing pressure across the Waste Tank solenoid valve SV_1121_1 and the EFA Filter. The EFA Filter was returned on ULF6 and received in the Boeing Huntsville Laboratory on June 13, 2011. The filter was aseptically removed from the housing, and the residual water was collected for enumeration and identification of bacteria and fungi. Swab samples of the filter surface were also collected for microbiological enumeration and identification. Sample analyses were performed by Boeing Huntsville Laboratory and NASA Johnson Space Center Microbiology for comparison. Photographic documentation of the EFA filter was performed using a stereo microscope and environmental scanning electron microscope. This paper characterizes the amount and types of microorganisms on the filter surface and in the residual water from the filter housing following 1 year of utilization in the ISS WPA.

  9. Evaluation of a new method for the collection and measurement of 8-isoprostane in exhaled breath for future application in nanoparticle exposure biomonitoring.

    PubMed

    Marie-Desvergne, Caroline; Dubosson, Muriel; Mossuz, Véronique Chamel

    2018-05-14

    In the field of nanoparticle exposure biomonitoring, oxidative stress biomarkers measured in exhaled breath condensate appear promising to detect early respiratory effects in workers handling nanomaterials. However, condensation is known for its poor efficiency in collecting non-volatiles in exhaled breath, leading to the low sensitivity of such measurements. Moreover, to be easily used in field studies on large groups of workers, the collection device must be disposable and convenient. In this study, we have tested a totally disposable commercial device that allows for the easy dry collection of exhaled air after filtration on a patented filter. The suitability and efficiency of the SensAbues (SB) device for collecting 8-isoprostane were evaluated and compared to the RTube (RT). Seven healthy volunteers performed two 15 min collections of exhaled breath, one with the SB and one with the RT. Blank devices were used to determine the background levels induced by each device. 8-isoprostane was measured in all samples using an EIA technique. The levels of 8-isoprostane in the exhaled breath of volunteers after collection with the SB were significantly higher than those after collection with the RT. Moreover, the levels obtained in volunteers with the SB were significantly higher than background levels obtained in blank devices, which was not the case for the RT. This is the first study to report the ability of the SB device to collect and measure 8-isoprostane in exhaled breath. The proposed method offers better sensitivity than a classical collection with the RT device and should be further explored before future application in biomonitoring studies.

  10. Active optimal control strategies for increasing the efficiency of photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Aljoaba, Sharif Zidan Ahmad

    Energy consumption has increased drastically during the last century. Currently, the worldwide energy consumption is about 17.4 TW and is predicted to reach 25 TW by 2035. Solar energy has emerged as one of the potential renewable energy sources. Since its first physical recognition in 1887 by Adams and Day till nowadays, research in solar energy is continuously developing. This has lead to many achievements and milestones that introduced it as one of the most reliable and sustainable energy sources. Recently, the International Energy Agency declared that solar energy is predicted to be one of the major electricity production energy sources by 2035. Enhancing the efficiency and lifecycle of photovoltaic (PV) modules leads to significant cost reduction. Reducing the temperature of the PV module improves its efficiency and enhances its lifecycle. To better understand the PV module performance, it is important to study the interaction between the output power and the temperature. A model that is capable of predicting the PV module temperature and its effects on the output power considering the individual contribution of the solar spectrum wavelengths significantly advances the PV module edsigns toward higher efficiency. In this work, a thermoelectrical model is developed to predict the effects of the solar spectrum wavelengths on the PV module performance. The model is characterized and validated under real meteorological conditions where experimental temperature and output power of the PV module measurements are shown to agree with the predicted results. The model is used to validate the concept of active optical filtering. Since this model is wavelength-based, it is used to design an active optical filter for PV applications. Applying this filter to the PV module is expected to increase the output power of the module by filtering the spectrum wavelengths. The active filter performance is optimized, where different cutoff wavelengths are used to maximize the module output power. It is predicted that if the optimized active optical filter is applied to the PV module, the module efficiency is predicted to increase by about 1%. Different technologies are considered for physical implementation of the active optical filter.

  11. Indoor Pedestrian Localization Using iBeacon and Improved Kalman Filter.

    PubMed

    Sung, Kwangjae; Lee, Dong Kyu 'Roy'; Kim, Hwangnam

    2018-05-26

    The reliable and accurate indoor pedestrian positioning is one of the biggest challenges for location-based systems and applications. Most pedestrian positioning systems have drift error and large bias due to low-cost inertial sensors and random motions of human being, as well as unpredictable and time-varying radio-frequency (RF) signals used for position determination. To solve this problem, many indoor positioning approaches that integrate the user's motion estimated by dead reckoning (DR) method and the location data obtained by RSS fingerprinting through Bayesian filter, such as the Kalman filter (KF), unscented Kalman filter (UKF), and particle filter (PF), have recently been proposed to achieve higher positioning accuracy in indoor environments. Among Bayesian filtering methods, PF is the most popular integrating approach and can provide the best localization performance. However, since PF uses a large number of particles for the high performance, it can lead to considerable computational cost. This paper presents an indoor positioning system implemented on a smartphone, which uses simple dead reckoning (DR), RSS fingerprinting using iBeacon and machine learning scheme, and improved KF. The core of the system is the enhanced KF called a sigma-point Kalman particle filter (SKPF), which localize the user leveraging both the unscented transform of UKF and the weighting method of PF. The SKPF algorithm proposed in this study is used to provide the enhanced positioning accuracy by fusing positional data obtained from both DR and fingerprinting with uncertainty. The SKPF algorithm can achieve better positioning accuracy than KF and UKF and comparable performance compared to PF, and it can provide higher computational efficiency compared with PF. iBeacon in our positioning system is used for energy-efficient localization and RSS fingerprinting. We aim to design the localization scheme that can realize the high positioning accuracy, computational efficiency, and energy efficiency through the SKPF and iBeacon indoors. Empirical experiments in real environments show that the use of the SKPF algorithm and iBeacon in our indoor localization scheme can achieve very satisfactory performance in terms of localization accuracy, computational cost, and energy efficiency.

  12. The invariant of the stiffness filter function with the weight filter function of the power function form

    NASA Astrophysics Data System (ADS)

    Shang, Zhen; Sui, Yun-Kang

    2012-12-01

    Based on the independent, continuous and mapping (ICM) method and homogenization method, a research model is constructed to propose and deduce a theorem and corollary from the invariant between the weight filter function and the corresponding stiffness filter function of the form of power function. The efficiency in searching for optimum solution will be raised via the choice of rational filter functions, so the above mentioned results are very important to the further study of structural topology optimization.

  13. Impact of PubMed search filters on the retrieval of evidence by physicians.

    PubMed

    Shariff, Salimah Z; Sontrop, Jessica M; Haynes, R Brian; Iansavichus, Arthur V; McKibbon, K Ann; Wilczynski, Nancy L; Weir, Matthew A; Speechley, Mark R; Thind, Amardeep; Garg, Amit X

    2012-02-21

    Physicians face challenges when searching PubMed for research evidence, and they may miss relevant articles while retrieving too many nonrelevant articles. We investigated whether the use of search filters in PubMed improves searching by physicians. We asked a random sample of Canadian nephrologists to answer unique clinical questions derived from 100 systematic reviews of renal therapy. Physicians provided the search terms that they would type into PubMed to locate articles to answer these questions. We entered the physician-provided search terms into PubMed and applied two types of search filters alone or in combination: a methods-based filter designed to identify high-quality studies about treatment (clinical queries "therapy") and a topic-based filter designed to identify studies with renal content. We evaluated the comprehensiveness (proportion of relevant articles found) and efficiency (ratio of relevant to nonrelevant articles) of the filtered and nonfiltered searches. Primary studies included in the systematic reviews served as the reference standard for relevant articles. The average physician-provided search terms retrieved 46% of the relevant articles, while 6% of the retrieved articles were relevant (corrected) (the ratio of relevant to nonrelevant articles was 1:16). The use of both filters together produced a marked improvement in efficiency, resulting in a ratio of relevant to nonrelevant articles of 1:5 (16 percentage point improvement; 99% confidence interval 9% to 22%; p < 0.003) with no substantive change in comprehensiveness (44% of relevant articles found; p = 0.55). The use of PubMed search filters improves the efficiency of physician searches. Improved search performance may enhance the transfer of research into practice and improve patient care.

  14. Efficiency of beef extract for the recovery of poliovirus from wastewater effluents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landry, E.F.; Vaughn, J.M.; Thomas, M.Z.

    1978-10-01

    The efficiency of poliovirus elution from fiber glass cartridge filters (K27), epoxy-fiber glass-asbestos filters (M780), and pleated cartridge filters was assessed by using 3% beef extract (pH 9.0) or 0.1 M glycine (pH 11.5). Poliovirus type I, strain LSc, was seeded into 20 to 25 gallon (ca. 75.6 to 95.6 liter) samples of treated sewage effluent and concentrated by using a filter adsorption-elution technique. Virus elution was accomplished by using either two 600-ml portions of 3% beef extract (pH 9.0), or two 1 liter portions of 0.1 M glycine (pH 11.5). In all experiments, beef extract elution followed by organicmore » flocculation was found to be superior, yielding a mean recovery efficiency of 85%, with recoveries ranging from 68 to 100%. Elution with 0.1 M glycine (pH 11.5) followed by inorganic flocculation resulted in a mean recovery efficiency of 36%. The variable range of recoveries with beef extract could not be significantly improved by varying the type of beef extract or by extending the elution time to 30 min. Second-step reconcentration of 1 liter seeded sewage effluent and renovated wastewater samples indicated that organic flocculation was a more efficient method for virus recovery than inorganic flocculation. Beef extract concentrations of less than 3% were found to be efficient in the recovery of poliovirus from renovated wastewater.« less

  15. Automated process for solvent separation of organic/inorganic substance

    DOEpatents

    Schweighardt, F.K.

    1986-07-29

    There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process. 4 figs.

  16. Automated process for solvent separation of organic/inorganic substance

    DOEpatents

    Schweighardt, Frank K.

    1986-01-01

    There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process.

  17. Automated apparatus for solvent separation of a coal liquefaction product stream

    DOEpatents

    Schweighardt, Frank K.

    1985-01-01

    An automated apparatus for the solvent separation of a coal liquefaction product stream that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In use of the apparatus, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control means. The mixture in the filter is agitated by means of ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process.

  18. Fission gas detection system

    DOEpatents

    Colburn, Richard P.

    1985-01-01

    A device for collecting fission gas released by a failed fuel rod which device uses a filter to pass coolant but which filter blocks fission gas bubbles which cannot pass through the filter due to the surface tension of the bubble.

  19. Effects of mineral amendments on trace elements leaching from pre-treated marine sediment after simulated rainfall events.

    PubMed

    Hurel, C; Taneez, M; Volpi Ghirardini, A; Libralato, G

    2017-01-01

    Bauxite extraction by-products (red mud) were used to evaluate their potential ability to stabilize trace elements from dredged and aerated/humidified marine sediment. The investigated by-products were: bauxaline ® (BX) that is a press-filtered red mud; bauxsol™(BS) that is a press-filtered red mud previously washed with excess of seawater, and gypsum neutralized bauxaline ® (GBX). These materials were separately mixed to dredged composted sediment sample considering 5% and 20% sediment: stabilizer ratios. For pilot experiments, rainfall events were regularly simulated for 3 months. Concentrations of As, Mo, Cd, Cr, Zn, Cu, and Ni were analyzed in collected leachates as well as toxicity. Results showed that Cd, Mo, Zn, and Cu were efficiently stabilized in the solid matrix when 20% of BX, BS, and GBX was applied. Consequently, toxicity of leachates was lower than for the untreated sediment, meaning that contaminants mobility was reduced. A 5% GBX was also efficient for Mo, Zn and Cu stabilization. In all scenarios, As stabilization was not improved. Compared to all other monitored elements, Mo mobility seemed to depend upon temperature-humidity conditions during pilot experiments suggesting the need of further investigations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Possibilities of a metal surface radioactive decontamination using a pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Milijanic, Scepan S.; Stjepanovic, Natasa N.; Trtica, Milan S.

    2000-01-01

    There is a growing interest in the laser radioactive decontamination of metal surfaces. It offers advantages over conventional methods: improved safety, reduction of secondary waste, reduced waste volume, acceptable cost. A main mechanism of cleaning in by lasers is ablation. In this work a pulsed TEA CO2 laser was used for surface cleaning, primarily in order to demonstrate that the ablation from metal surfaces with this laser is possible even with relatively low pulse energies, and secondary, that it could be competitive with other lasers because of much higher energy efficiencies. The laser pulse contains two parts, one strong and shot peak at the beginning, followed with a tail. The beam was focused onto a contaminated surface with a KBr lens. The surface was contaminated with 137Cs. Three different metals were used: stainless steel, copper and aluminum. The evaporated material was pumped out in air atmosphere and transferred to a filter. Presence of the activity on the filter was proved by a germanium detector-multichannel analyzer. Activity levels were measured by a GM counter. Calculated decontamination factors as well as collection factors have shown that ablation takes place with relatively high efficiency of decontamination. This investigation suggests that decontamination using the CO2 laser should be seriously considered.

  1. Storage and stability of IgG and IgM monoclonal antibodies dried on filter paper and utility in Neisseria meningitidis serotyping by Dot-blot ELISA.

    PubMed

    Ferraz, Aline S; Belo, Elza F T; Coutinho, Ligia M C C; Oliveira, Ana P; Carmo, Andréia M S; Franco, Daniele L; Ferreira, Tatiane; Yto, André Y; Machado, Marta S F; Scola, Monica C G; De Gaspari, Elizabeth

    2008-03-06

    A simple filter paper method was developed for, the transport and storage of monoclonal antibodies (Mabs) at room temperature or -20 degrees C after spotting on filter paper, for subsequent serotyping of outer membrane antigens of N.meningitidis by dot-blot ELISA. Monoclonal antibodies (Mabs) were spotted within a 0.5-1 cm diameter area of Whatman grade 903 paper, which were stored individually at room temperature or at -20 degrees C. These MAbs were stored and analyzed after periods of one week, 4 weeks, 12 months, or 13 years in the case of frozen Mab aliquots, or after 4 weeks at -20 degrees C or at room temperature (RT) in the case of Mabs dried on filter paper strips. Assays were performed in parallel using dot-blot ELISA. In addition to the MAbs specific for serotyping class 1, 2 or 3, we used a larger number of Mabs for polysaccharides, lipooligosaccharides (LOS), class 5 and cross-reactive antigens for native outer membrane of N.meningitidis. The Mabs dried on filter paper were eluted with phosphate-buffered saline (PBS) containing 0.2% gelatin. Mabs of the isotypes IgG and IgM dried on filter papers were not affected by duration of storage. The detection by serotyping Mabs was generally consistent for dried filter paper MAb samples stored frozen for over 1 year at -20 degrees C, and although decreased reactive antibody titers were found after storage, this did not interfere with the specificity of the Mabs used after 13 years as dry spots on filter paper. The use of filter paper is an inexpensive and convenient method for collecting, storing, and transporting Mab samples for serotyping studies. In addition, the samples occupy little space and can be readily transported without freezing. The efficiency of using immunoglobulin G (IgG) or M (IgM) eluted was found to be consistent with measurement of IgG or IgM titers in most corresponding, ascites Mabs stored frozen for over 1 year. The application of meningococcal typing methods and designations depend on the question being asked.

  2. An Independent Filter for Gene Set Testing Based on Spectral Enrichment.

    PubMed

    Frost, H Robert; Li, Zhigang; Asselbergs, Folkert W; Moore, Jason H

    2015-01-01

    Gene set testing has become an indispensable tool for the analysis of high-dimensional genomic data. An important motivation for testing gene sets, rather than individual genomic variables, is to improve statistical power by reducing the number of tested hypotheses. Given the dramatic growth in common gene set collections, however, testing is often performed with nearly as many gene sets as underlying genomic variables. To address the challenge to statistical power posed by large gene set collections, we have developed spectral gene set filtering (SGSF), a novel technique for independent filtering of gene set collections prior to gene set testing. The SGSF method uses as a filter statistic the p-value measuring the statistical significance of the association between each gene set and the sample principal components (PCs), taking into account the significance of the associated eigenvalues. Because this filter statistic is independent of standard gene set test statistics under the null hypothesis but dependent under the alternative, the proportion of enriched gene sets is increased without impacting the type I error rate. As shown using simulated and real gene expression data, the SGSF algorithm accurately filters gene sets unrelated to the experimental outcome resulting in significantly increased gene set testing power.

  3. Removing tidal-period variations from time-series data using low-pass digital filters

    USGS Publications Warehouse

    Walters, Roy A.; Heston, Cynthia

    1982-01-01

    Several low-pass, digital filters are examined for their ability to remove tidal Period Variations from a time-series of water surface elevation for San Francisco Bay. The most efficient filter is the one which is applied to the Fourier coefficients of the transformed data, and the filtered data recovered through an inverse transform. The ability of the filters to remove the tidal components increased in the following order: 1) cosine-Lanczos filter, 2) cosine-Lanczos squared filter; 3) Godin filter; and 4) a transform fitter. The Godin fitter is not sufficiently sharp to prevent severe attenuation of 2–3 day variations in surface elevation resulting from weather events.

  4. A simple novel device for air sampling by electrokinetic capture

    DOE PAGES

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; ...

    2015-12-27

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrodemore » assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of the device is substantially equivalent to capture by pumping through a filter for microbiome analysis by quantitative PCR and amplicon sequencing.« less

  5. A simple novel device for air sampling by electrokinetic capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrodemore » assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of the device is substantially equivalent to capture by pumping through a filter for microbiome analysis by quantitative PCR and amplicon sequencing.« less

  6. A simple novel device for air sampling by electrokinetic capture.

    PubMed

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack A

    2015-12-27

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrode assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87 %, with the reference filter taken as "gold standard." Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. The performance of the device is substantially equivalent to capture by pumping through a filter for microbiome analysis by quantitative PCR and amplicon sequencing.

  7. Method for reducing pressure drop through filters, and filter exhibiting reduced pressure drop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sappok, Alexander; Wong, Victor

    Methods for generating and applying coatings to filters with porous material in order to reduce large pressure drop increases as material accumulates in a filter, as well as the filter exhibiting reduced and/or more uniform pressure drop. The filter can be a diesel particulate trap for removing particulate matter such as soot from the exhaust of a diesel engine. Porous material such as ash is loaded on the surface of the substrate or filter walls, such as by coating, depositing, distributing or layering the porous material along the channel walls of the filter in an amount effective for minimizing ormore » preventing depth filtration during use of the filter. Efficient filtration at acceptable flow rates is achieved.« less

  8. Broadband spatial optical filtering with a volume Bragg grating and a blazed grating pair

    NASA Astrophysics Data System (ADS)

    Chen, Guanjin; Sun, Xiaojie; Yuan, Xiao; Zhang, Guiju

    2017-10-01

    A broadband spatial optical filtering system is presented in this paper, which is composed of a Volume Bragg Grating (VBG) and a blazed grating pair. The diffraction efficiency and filtering properties are calculated and simulated by using Fourier diffraction analysis and Coupled Wave Theory. A blazed grating pair and VBG structures are designed and optimized in our simulation. The diffraction efficiency of filtering system shows more than 77.2% during the wavelength period from 953nm to 1153nm, especially 84.1% at the center wavelength. The beam quality is described with near-field modulation (M) and contrast ratio (C). The M of filtering beam are 1.44, 1.49 and 1.55, respectively and the C of filtering beam are 10.1%, 10.2% and 10.5% , respectively and the beam intensity distribution is great improved. The cut-off frequencies of three filtering systems are 1.57mm-1 , 2.06 mm-1 and 2.38 mm-1 , respectively from power spectral density (PSD) curve. It's clear that the cut-off frequency of filtering system is closely related to the angular selectivity of VBG, and the value of cut-off frequency is decided by VBG's Half Width at First Zero (HWFZ) and center wavelength.

  9. Digital Signal Processing Methods for Ultrasonic Echoes.

    PubMed

    Sinding, Kyle; Drapaca, Corina; Tittmann, Bernhard

    2016-04-28

    Digital signal processing has become an important component of data analysis needed in industrial applications. In particular, for ultrasonic thickness measurements the signal to noise ratio plays a major role in the accurate calculation of the arrival time. For this application a band pass filter is not sufficient since the noise level cannot be significantly decreased such that a reliable thickness measurement can be performed. This paper demonstrates the abilities of two regularization methods - total variation and Tikhonov - to filter acoustic and ultrasonic signals. Both of these methods are compared to a frequency based filtering for digitally produced signals as well as signals produced by ultrasonic transducers. This paper demonstrates the ability of the total variation and Tikhonov filters to accurately recover signals from noisy acoustic signals faster than a band pass filter. Furthermore, the total variation filter has been shown to reduce the noise of a signal significantly for signals with clear ultrasonic echoes. Signal to noise ratios have been increased over 400% by using a simple parameter optimization. While frequency based filtering is efficient for specific applications, this paper shows that the reduction of noise in ultrasonic systems can be much more efficient with regularization methods.

  10. Flight prototype regenerative particulate filter system development

    NASA Technical Reports Server (NTRS)

    Green, D. C.; Garber, P. J.

    1974-01-01

    The effort to design, fabricate, and test a flight prototype Filter Regeneration Unit used to regenerate (clean) fluid particulate filter elements is reported. The design of the filter regeneration unit and the results of tests performed in both one-gravity and zero-gravity are discussed. The filter regeneration unit uses a backflush/jet impingement method of regenerating fluid filter elements that is highly efficient. A vortex particle separator and particle trap were designed for zero-gravity use, and the zero-gravity test results are discussed. The filter regeneration unit was designed for both inflight maintenance and ground refurbishment use on space shuttle and future space missions.

  11. Straight-Pore Microfilter with Efficient Regeneration

    NASA Technical Reports Server (NTRS)

    Liu, Han; LaConti, Anthony B.; McCallum. Thomas J.; Schmitt, Edwin W.

    2010-01-01

    A novel, high-efficiency gas particulate filter has precise particle size screening, low pressure drop, and a simple and fast regeneration process. The regeneration process, which requires minimal material and energy consumption, can be completely automated, and the filtration performance can be restored within a very short period of time. This filter is of a novel material composite that contains the support structure and a novel coating.

  12. Spectral Absorption By Particulate Impurities in Snow Determined By Photometric Analysis Of Filters

    NASA Astrophysics Data System (ADS)

    Grenfell, T. C.; Doherty, S. J.; Clarke, A. D.

    2009-12-01

    Our work is motivated by the 1983-84 survey by Clarke and Noone (Atmos. Environ., 1985) of soot in Arctic snow. Our objective is to resurvey the original area they covered and to extend the observations around the entire Arctic Basin under the auspices of the IPY program. We use the filtering and integrating sandwich techniques developed by Clarke and Noone to process the snow samples. Among the advantages of this method are that (a) it provides a direct measure of light absorption and the result is closely related to the actual absorption of sunlight in the snow or ice, (b) processing and filtering of the snow samples can be carried out in remote locations and (c) it is not necessary to transport large quantities of snow back to our home laboratory. Here we describe the construction, calibration, and some applications of an integrating sphere spectrophotometer system designed to take advantage of recent advances in instrumentation to improve the accuracy of measurements of absorption by particulate impurities collected on nuclepore filters used in our survey. Filter loading in terms of effective black carbon (BC) amount is determined together with the ratio of non-BC to BC concentrations using a set of reference filters with known loadings of Monarch 71 BC prepared by A. D. Clarke. The new spectrophotometer system has (a) system stability of approximately 0.5%; (b) precision relative to ADC standards of 3-4% for filter loadings greater than about 0.5 microgm Carbon/cm2. (c) We can distinguish BC from non-BC from relative spectral shapes of the energy absorption curves with an accuracy that depends on our knowledge of the spectral absorption curves of the non-BC components; and (d) by-eye estimates are consistent with spectrophotometric results. The major outstanding uncertainty is the appropriate value to use for the mass absorption efficiency for BC.

  13. Design Techniques for Uniform-DFT, Linear Phase Filter Banks

    NASA Technical Reports Server (NTRS)

    Sun, Honglin; DeLeon, Phillip

    1999-01-01

    Uniform-DFT filter banks are an important class of filter banks and their theory is well known. One notable characteristic is their very efficient implementation when using polyphase filters and the FFT. Separately, linear phase filter banks, i.e. filter banks in which the analysis filters have a linear phase are also an important class of filter banks and desired in many applications. Unfortunately, it has been proved that one cannot design critically-sampled, uniform-DFT, linear phase filter banks and achieve perfect reconstruction. In this paper, we present a least-squares solution to this problem and in addition prove that oversampled, uniform-DFT, linear phase filter banks (which are also useful in many applications) can be constructed for perfect reconstruction. Design examples are included illustrate the methods.

  14. Human breath metabolomics using an optimized noninvasive exhaled breath condensate sampler

    PubMed Central

    Zamuruyev, Konstantin O.; Aksenov, Alexander A.; Pasamontes, Alberto; Brown, Joshua F.; Pettit, Dayna R.; Foutouhi, Soraya; Weimer, Bart C.; Schivo, Michael; Kenyon, Nicholas J.; Delplanque, Jean-Pierre; Davis, Cristina E.

    2017-01-01

    Exhaled breath condensate (EBC) analysis is a developing field with tremendous promise to advance personalized, non-invasive health diagnostics as new analytical instrumentation platforms and detection methods are developed. Multiple commercially-available and researcher-built experimental samplers are reported in the literature. However, there is very limited information available to determine an effective breath sampling approach, especially regarding the dependence of breath sample metabolomic content on the collection device design and sampling methodology. This lack of an optimal standard procedure results in a range of reported results that are sometimes contradictory. Here, we present a design of a portable human EBC sampler optimized for collection and preservation of the rich metabolomic content of breath. The performance of the engineered device is compared to two commercially available breath collection devices: the RTube™ and TurboDECCS. A number of design and performance parameters are considered, including: condenser temperature stability during sampling, collection efficiency, condenser material choice, and saliva contamination in the collected breath samples. The significance of the biological content of breath samples, collected with each device, is evaluated with a set of mass spectrometry methods and was the primary factor for evaluating device performance. The design includes an adjustable mass-size threshold for aerodynamic filtering of saliva droplets from the breath flow. Engineering an inexpensive device that allows efficient collection of metalomic-rich breath samples is intended to aid further advancement in the field of breath analysis for non-invasive health diagnostic. EBC sampling from human volunteers was performed under UC Davis IRB protocol 63701-3 (09/30/2014-07/07/2017). PMID:28004639

  15. Human breath metabolomics using an optimized non-invasive exhaled breath condensate sampler.

    PubMed

    Zamuruyev, Konstantin O; Aksenov, Alexander A; Pasamontes, Alberto; Brown, Joshua F; Pettit, Dayna R; Foutouhi, Soraya; Weimer, Bart C; Schivo, Michael; Kenyon, Nicholas J; Delplanque, Jean-Pierre; Davis, Cristina E

    2016-12-22

    Exhaled breath condensate (EBC) analysis is a developing field with tremendous promise to advance personalized, non-invasive health diagnostics as new analytical instrumentation platforms and detection methods are developed. Multiple commercially-available and researcher-built experimental samplers are reported in the literature. However, there is very limited information available to determine an effective breath sampling approach, especially regarding the dependence of breath sample metabolomic content on the collection device design and sampling methodology. This lack of an optimal standard procedure results in a range of reported results that are sometimes contradictory. Here, we present a design of a portable human EBC sampler optimized for collection and preservation of the rich metabolomic content of breath. The performance of the engineered device is compared to two commercially available breath collection devices: the RTube ™ and TurboDECCS. A number of design and performance parameters are considered, including: condenser temperature stability during sampling, collection efficiency, condenser material choice, and saliva contamination in the collected breath samples. The significance of the biological content of breath samples, collected with each device, is evaluated with a set of mass spectrometry methods and was the primary factor for evaluating device performance. The design includes an adjustable mass-size threshold for aerodynamic filtering of saliva droplets from the breath flow. Engineering an inexpensive device that allows efficient collection of metalomic-rich breath samples is intended to aid further advancement in the field of breath analysis for non-invasive health diagnostic. EBC sampling from human volunteers was performed under UC Davis IRB protocol 63701-3 (09/30/2014-07/07/2017).

  16. Inferior vena cava filter insertion through the popliteal vein: enabling the percutaneous endovenous intervention of deep vein thrombosis with a single venous access approach in a single session

    PubMed Central

    Kim, Hyoung Ook; Kim, Jae Kyu; Park, Jin Gyoon; Yim, Nam Yeol; Kang, Yang Jun; Jung, Hye Doo

    2016-01-01

    PURPOSE We aimed to evaluate the efficiency of placing an inferior vena cava (IVC) filter through the same popliteal vein access site used for percutaneous endovenous intervention in patients with extensive lower extremity deep vein thrombosis. METHODS This retrospective study included 21 patients who underwent IVC filter insertion through the popliteal vein over a three-year period. Patient medical records were reviewed for the location of the deep vein thrombosis, result of filter removal, and total number of endovascular procedures needed for filter insertion and recanalization of the lower extremity venous system. Follow-up lower extremity computed tomography (CT) venography was also reviewed in each patient to assess the degree of filter tilt in the IVC. RESULTS All patients had extensive lower extremity deep vein thrombosis involving the iliac vein and/or femoral vein. Seventeen patients showed deep vein thrombosis of the calf veins. In all patients, IVC filter insertion and the recanalization procedure were performed during a single procedure through the single popliteal vein access site. In the 17 patients undergoing follow-up CT, the mean tilt angle of the filter was 7.14°±4.48° in the coronal plane and 8.77°±5.49° in the sagittal plane. Filter retrieval was successful in 16 of 17 patients (94.1%) in whom filter retrieval was attempted. CONCLUSION Transpopliteal IVC filter insertion is an efficient technique that results in low rates of significant filter tilt and enables a single session procedure using a single venous access site for filter insertion and percutaneous endovenous intervention. PMID:27559713

  17. Density and distribution of nitrifying guilds in rapid sand filters for drinking water production: Dominance of Nitrospira spp.

    PubMed

    Tatari, Karolina; Musovic, Sanin; Gülay, Arda; Dechesne, Arnaud; Albrechtsen, Hans-Jørgen; Smets, Barth F

    2017-12-15

    We investigated the density and distribution of total bacteria, canonical Ammonia Oxidizing Bacteria (AOB) (Nitrosomonas plus Nitrosospira), Ammonia Oxidizing Archaea (AOA), as well as Nitrobacter and Nitrospira in rapid sand filters used for groundwater treatment. To investigate the spatial distribution of these guilds, filter material was sampled at four drinking water treatment plants (DWTPs) in parallel filters of the pre- and after-filtration stages at different locations and depths. The target guilds were quantified by qPCR targeting 16S rRNA and amoA genes. Total bacterial densities (ignoring 16S rRNA gene copy number variation) were high and ranged from 10 9 to 10 10 per gram (10 15 to 10 16 per m 3 ) of filter material. All examined guilds, except AOA, were stratified at only one of the four DWTPs. Densities varied spatially within filter (intra-filter variation) at two of the DWTPs and in parallel filters (inter-filter variation) at one of the DWTPs. Variation analysis revealed random sampling as the most efficient strategy to yield accurate mean density estimates, with collection of at least 7 samples suggested to obtain an acceptable (below half order of magnitude) density precision. Nitrospira was consistently the most dominant guild (5-10% of total community), and was generally up to 4 orders of magnitude more abundant than Nitrobacter and up to 2 orders of magnitude more abundant than canonical AOBs. These results, supplemented with further analysis of the previously reported diversity of Nitrospira in the studied DWTPs based on 16S rRNA and nxrB gene phylogeny (Gülay et al., 2016; Palomo et al., 2016), indicate that the high Nitrospira abundance is due to their comammox (complete ammonia oxidation) physiology. AOA densities were lower than AOB densities, except in the highly stratified filters, where they were of similar abundance. In conclusion, rapid sand filters are microbially dense, with varying degrees of spatial heterogeneity, which requires replicate sampling for a sufficiently precise determination of total microbial community and specific population densities. A consistently high Nitrospira to bacterial and archaeal AOB density ratio suggests that non-canonical pathways for nitrification may dominate the examined RSFs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Long-term field-scale experiment on using lime filters in an agricultural catchment.

    PubMed

    Kirkkala, Teija; Ventelä, Anne-Mari; Tarvainen, Marjo

    2012-01-01

    The River Yläneenjoki catchment in southwest Finland is an area with a high agricultural nutrient load. We report here on the nutrient removal performance of three on-site lime-sand filters (F1, F2, and F3), established within or on the edge of the buffer zones. The filters contain burnt lime (CaO) or spent lime [CaO, Ca(OH), and CaCO]. Easily soluble lime results in a high pH level (>11) and leads to an efficient precipitation of soluble phosphorus (P) from the runoff. Water samples were taken from the inflow and outflow of each site in different hydrological situations. The length of the monitoring period was 4 yr for F1, 6 yr for F2, and 1.5 yr for F3. F1 and F2 significantly reduced the suspended solids (SS), total P (PTOT), and dissolved reactive P (DRP) in the treated water. The proportional reduction (%) varied but was usually clearly positive. Filter F3 was divided into two equal parts, one containing burnt lime and the other spent lime. Both filter parts removed PTOT and SS efficiently from the water; the burnt-lime part also removed DRP. The mixed-lime part removed DRP for a year, but then the efficiency decreased. The effect of filters on nitrogen compounds varied. We conclude that sand filters incorporating lime can be used together with buffer zones to reduce both P and SS load to watercourses. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Application of Reverse Transcriptase -PCR (RT-PCR) for rapid detection of viable Escherichia coli in drinking water samples.

    PubMed

    Molaee, Neda; Abtahi, Hamid; Ghannadzadeh, Mohammad Javad; Karimi, Masoude; Ghaznavi-Rad, Ehsanollah

    2015-01-01

    Polymerase chain reaction (PCR) is preferred to other methods for detecting Escherichia coli (E. coli) in water in terms of speed, accuracy and efficiency. False positive result is considered as the major disadvantages of PCR. For this reason, reverse transcriptase-polymerase chain reaction (RT-PCR) can be used to solve this problem. The aim of present study was to determine the efficiency of RT-PCR for rapid detection of viable Escherichia coli in drinking water samples and enhance its sensitivity through application of different filter membranes. Specific primers were designed for 16S rRNA and elongation Factor II genes. Different concentrations of bacteria were passed through FHLP and HAWP filters. Then, RT-PCR was performed using 16srRNA and EF -Tu primers. Contamination of 10 wells was determined by RT-PCR in Arak city. To evaluate RT-PCR efficiency, the results were compared with most probable number (MPN) method. RT-PCR is able to detect bacteria in different concentrations. Application of EF II primers reduced false positive results compared to 16S rRNA primers. The FHLP hydrophobic filters have higher ability to absorb bacteria compared with HAWB hydrophilic filters. So the use of hydrophobic filters will increase the sensitivity of RT-PCR. RT-PCR shows a higher sensitivity compared to conventional water contamination detection method. Unlike PCR, RT-PCR does not lead to false positive results. The use of EF-Tu primers can reduce the incidence of false positive results. Furthermore, hydrophobic filters have a higher ability to absorb bacteria compared to hydrophilic filters.

  20. Long-term evaluation of the performance of four point-of-use water filters.

    PubMed

    Pérez-Vidal, Andrea; Diaz-Gómez, Jaime; Castellanos-Rozo, Jose; Usaquen-Perilla, Olga Lucía

    2016-07-01

    Despite technological advances water supply quality and poor access to safe water remain a major problem in developing countries, especially in rural areas. Point-of-use (POU) water treatment has been shown to be a viable option to produce safe drinking water quality. The aim of this study was to evaluate, under laboratory conditions over 14 months, the performance of four household filtration systems: membrane filter (MF), one-candle ceramic filter (1CCF), two-candle ceramic filter (2CCF) and pot ceramic filter (PCF). The evaluation was made using spiked water having the required concentrations of turbidity, Escherichia coli and Total Dissolved Solids (TDS). The results show that all systems have high removal efficiencies for turbidity (98-99%), and E. coli 4-5 Log Reduction Value (LRV). The poorest efficiency was for TDS (9-18%). The MF and the CCF displayed no significant difference in efficiencies for these parameters. The PCF had less significant differences for turbidity removal than the other systems. The average filtration rate for all systems decreased during the operation time. The CPF showed the major potential to be used in rural communities mainly for its low operational level and maintenance requirements as well as its local craftsmanship. It was observed that the efficiency of the systems is highly sensitive to cleaning and maintenance activities and therefore, the system sustainability will depend considerably on the training and education of the potential users. Copyright © 2016 Elsevier Ltd. All rights reserved.

Top