Annual Report for Gravity Collection Lysimeter Monitoring Plan- ERDF Cells 5 and 6, CY 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. L. Weiss; D. W. Woolery
2009-08-25
The purpose of this annual report is to evaluate the conditions and identify trends to develop Hanford site-specific data on the performance of the lysimeter systems related to the vadose zone monitoring and potential future use of lysimeter systems.
Lysimeter Study of Plant Water Uptake in a Model Forest Ecosystem on Heavy Metal Contaminated Soil
NASA Astrophysics Data System (ADS)
Menon, M.; Abbaspour, K.; Schulin, R.; Oswald, S.
2003-04-01
We have been investigating the impact of heavy metal stress on the water regime of young forest ecosystems grown in 32 open top lysimeters (3 m in diameter and 1 m deep). The factorial treatments of the lysimeters include variations of rainwater acidity (acidic, ambient rain), subsoil type (acidic, calcareous), and soil contamination (with and without copper, zinc and cadmium in the top 20 cm). Each lysimeter was planted in spring of 2000 with the same selection of trees and herbaceous plants. All lysimeters are equipped with tensiometers for monitoring of pressure head and time domain reflectometry for measuring of water content. Irrigation was applied equally to all lysimeters through sprinkler devices. Drainage water was collected by means of canisters installed at the bottom of the lysimeters, and thus evapotranspiration could be calculated through water balancing. We monitored the water regime for two years including an imposed drought period. Significantly more water was extracted from the calcareous than the acidic subsoil. The water potential measurements show that also the heavy metal polluted topsoil had a significant influence on the water regime. Metal stress was particularly evident under reduced irrigation. We suspect that the roots were damaged in the contaminated topsoil. In contrast to the subsoil type, heavy metal pollution did not produce a significant effect on evapotranspiration (ET) though, and neither did acidic rain. Pot experiments confirmed that in presence of clean subsoil plants compensated for metal stress in contaminated topsoil by shifting their root activity from contaminated to uncontaminated zones.
Wireless lysimeters for real-time online soil water monitoring
USDA-ARS?s Scientific Manuscript database
Identification of nitrate-nitrogen (NO3-N) in drainage water allows accessing the effectiveness of water quality management. A passive capillary wick-type lysimeter (PCAPs) was used to monitor water flux and NO3-N leached below the root zone under an irrigated cropping system. Wireless lysimeters we...
2016 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, David
Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) within the Nevada National Security Site (NNSS). These data include direct radiation exposure, as well as radiation from the air, groundwater, meteorology, and vadose zone. This report summarizes the 2016 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports, developed by National Security Technologies, LLC Direct radiation monitoring data indicate exposure levels at the RWMSsmore » are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show that tritium concentrations in water vapor and americium and plutonium concentrations in air particles are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. During 2016, precipitation at the Area 3 RWMS was 8% below average, and precipitation at the Area 5 RWMS was 8% above average. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation as measured from the bare-soil weighing lysimeter. Vadose zone monitoring on Area 5 and Area 3 RWMS cell covers shows no evidence of precipitation percolating through the covers to the waste. Moisture from precipitation did not percolate below 150 centimeters (cm) (5 feet [ft]) in the vegetated final cover on the U-3ax/bl disposal unit at the Area 3 RWMS. During 2016, there was no drainage through 2.4 meters (8 ft) of soil as indicated from the Area 3 drainage lysimeters that received only natural precipitation. Forty-four percent of the applied precipitation and irrigation drained from the bare-soil drainage lysimeter, which received 3 times the natural precipitation. All 2016 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facilities’ PAs« less
NASA Astrophysics Data System (ADS)
Figueroa, A.; Tindall, J. A.; Friedel, M. J.
2005-12-01
Concentration of delO18 in water samples extracted by suction lysimeters is compared to samples obtained by methods of centrifugation and azeotropic distillation. Intact soil cores (30 cm diameter by 40 cm height) were extracted from two different sites. Site 1 was rapid infiltration basin number 50, near Altamonte Springs in Seminole County, Florida on properties belonging to the Walt Disney World Resort Complex. Site 2 was the Missouri Management System Evaluation Area (MSEA) near Centralia in Boone County, Missouri. The delO18 water was analyzed on a mass spectrophotometer. Potassium Bromide (KBr) was also used as a tracer and analyzed by ion chromatography. A portion of the data obtained was modeled using CXTFIT. Water collected by centrifugation and azeotropic distillation data were about 2-5% more negative than that collected by suction lysimeter values from the Florida (sandy) soil and about 5-7 % more negative from the Missouri (well structured clay) soil. Results indicate that the majority of soil water in well structured soil is strongly bound to soil grain surfaces and is not easily sampled by suction lysimeters. Also, it is plausible that evaporation caused some delO18 enrichment in the suction lysimeters. Suction lysimeters preferentially sampled water held at lower matric potentials, which may not represent total soil water. In cases where a sufficient volume of water has passed through the soil profile and displaced all previous pore water, suction lysimeters will however collect a representative sample of all the water at that depth interval. It is suggested that for stable isotope studies monitoring precipitation and soil water, suction lysimeters be installed at shallow depths (10 cm). Samples should also be coordinated with precipitation events. The CXTFIT program worked well for Florida soils (a more homogeneous sand), but gave poor performance for Missouri soils (well structured clays) except for deeper depths where clay structure was less variable. The data also suggest that each extraction method samples a separate component of soil-pore water. Consequently, centrifugation can be used with good success, particularly for efficient sampling of large areas. Azeotropic distillation is more appropriate when strict qualitative and quantitative data for desorption, desorption, and various types of kinetic studies are needed.
Design and Installation of a Disposal Cell Cover Field Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, C.H.; Waugh, W.J.; Albright, W.H.
2011-02-27
The U.S. Department of Energy’s Office of Legacy Management (LM) initiated a cover assessment project in September 2007 to evaluate an inexpensive approach to enhancing the hydrological performance of final covers for disposal cells. The objective is to accelerate and enhance natural processes that are transforming existing conventional covers, which rely on low-conductivity earthen barriers, into water balance covers, that store water in soil and release it as soil evaporation and plant transpiration. A low conductivity cover could be modified by deliberately blending the upper layers of the cover profile and planting native shrubs. A test facility was constructed atmore » the Grand Junction, Colorado, Disposal Site to evaluate the proposed methodology. The test cover was constructed in two identical sections, each including a large drainage lysimeter. The test cover was constructed with the same design and using the same materials as the existing disposal cell in order to allow for a direct comparison of performance. One test section will be renovated using the proposed method; the other is a control. LM is using the lysimeters to evaluate the effectiveness of the renovation treatment by monitoring hydrologic conditions within the cover profile as well as all water entering and leaving the system. This paper describes the historical experience of final covers employing earthen barrier layers, the design and operation of the lysimeter test facility, testing conducted to characterize the as-built engineering and edaphic properties of the lysimeter soils, the calibration of instruments installed at the test facility, and monitoring data collected since the lysimeters were constructed.« less
Tomlinson, S.A.
1996-01-01
This report compares evapotranspiration estimated with the Bowen-ratio and eddy-correlation methods with evapotranspiration measured by weighing lysimeters for two sparse-canopy sites in eastern Washington. The sites are located in a grassland area (grass lysimeter site) and a sagbrush- covered area (sage lysimeter site) on the Arid Lands Ecology Reserve in Benton County, Washington. Lysimeter data were collected at the sites from August 1990 to November 1994. Bowen-ratio data were collected for varying periods from May 1993 to November 1994. Additional Bowen-ratio data without interchanging air- temperature and vapor-pressure sensors to remove sensor bias (fixed-sensor system) were collected from October 1993 to June 1994. Eddy-correlation data were collected at the grass lysimeter site from March to April 1994, and at the sage lysimeter site from April to May 1994. The comparisons of evapotranspiration determined by the various methods differed considerably, depending on the periods of record being compared and the sites being analyzed. The year 1993 was very wet, with about 50 percent more precipitation than average; 1994 was a very dry year, with only about half the average precipitation. The study showed that on an annual basis, at least in 1994, Bowen-ratio evapotranspiration closely matched lysimeter evapotranspiration. In 1993, Bowen-ratio and lysimeter evapotranspiration comparisons were variable. Evapotranspiration estimated with the Bowen-ratio method averaged 5 percent more than evapotranspiration measured by lysimeters at the grass lysimeter site from October 1993 to November 1994, and 3 percent less than lysimeters at the sage lysimeter site from November 1993 to October 1994. From March 24 to April 5, 1994, at the grass lysimeter site, the Bowen-ratio method estimated 11 percent less, the Bowen-ratio method utilizing the fixed sensor system about 7 percent more, and the eddy-correlation method about 28 percent less evapotranspiration than the lysimeters measured. From May 7 to June 18, 1993, however, the Bowen-ratio method estimated only 54 percent of the evapotranspiration measured by lysimeters at the grass lysimeter site. This large difference possibly may be attributed to Bowen-ratio instrument variability or error, to the density of grasses in the lysimeters being greater than in the surrounding area, or to heating effects on the lysimeters. From September 1 to October 31, 1993, the Bowen-ratio method estimated more than 450 percent more evapotranspiration than was measured by lysimeters at the sage lysimeter site. This difference may have been due to conditions in the lysimeters at the sage lysimeter site that were unrepresentative of natural conditions. The Bowen-ratio instruments measured evapotrans- piration over sagebrush plants outside the lysimeters, which were blooming very heavily, possibly using supplemental ground water or spring water from nearby upslope areas. The sagebrush plants contained by the lysimeters showed very little evapotranspiration, possibly because they were root-bound and had already used all available water. Also, plants in the lysimeters would not have been able to access any supplemental water available to plants outside the confines of the lysimeters. Earlier in 1993, from June 17 to July 12, the Bowen-ratio method estimated only 1 percent less evapotranspiration than determined for the lysimeters at the sage lysimeter site. On the basis of lysimeter measurements from August 1990 to November 1994, cumulative evapotrans- piration ranged from about 97 to 103 percent of the annual precipitation each year. The evapotranspiration measurements made at the grass and sage lysimeter sites, which were based on weight changes in the lysimeters, showed that storage changes became nearly zero each year some time between August and November as average surface soil moisture decreased to about 2 percent and evapotranspiration rates decreased to less than 0.1 millimeter per day.
Fomsgaard, Inge S; Spliid, Niels Henrik; Felding, Gitte
2003-01-01
Isoproturon is a herbicide, which was used in Denmark against grass weeds and broad-leaved weeds until 1998. Isoproturon has frequently been detected in ground water monitoring studies. Leaching of isoproturon (N,N-dimethyl-N'-(4-(1-methylethyl)-phenyl)urea) and its metabolites, N'-(4-isopropylphenyl)-N-methylurea and N'-(4-isopropylphenyl)urea was studied in four lysimetres, two of them being replicates from a low-tillage field (lysimeter 3 and 4), the other two being replicates from a normal tillage field (lysimeter 5 and 6). In both cases the soil was a sandy loam soil with 13-14% clay. The lysimetres had a surface area of 0.5 m2 and a depth of 110 cm. Lysimeter 3 and 4 were sprayed with unlabelled isoproturon while lysimeter 5 and 6 was sprayed with a mixture of 14C-labelled and unlabelled isoproturon. The total amount of isoproturon sprayed onto each lysimeter was 63 mg, corresponding to 1.25 kg active ingredient per ha. The lysimeters were sprayed with isoproturon on October 26, 1997. The lysimetres were installed in an outdoor system in Research Centre Flakkebjerg and were thus exposed to normal climatic conditions of the area. A mean of 360 l drainage water were collected from lysimeter 3 and 4 and a mean of 375 litres from lysimeter 5 and 6. Only negligible amounts of isoproturon and its primary metabolites were found in the drainage water samples, and thus no significant difference between the two lysimeter sets was shown. In a total of 82 drainage water samples, evenly distributed between the four lysimetres isoproturon was found in detectable amounts in two samples and N'-(4-isopropylphenyl)urea was found in detectable amounts in two other samples. The detection limit for all the compounds was 0.02 microg/l. 48% and 54% of the added radioactivity were recovered from the upper 10 cm soil layer in lysimeter 5 and 6, respectively, and 17 and 14% from 10-20 cm's depth. By extraction first with an aquatic CaCl2 solution 0.49% of the added radioactivity was extracted from the upper 10 cm layer in lysimeter 5. In the subsequent extraction with acetonitril, 1.19% of the added radioactivity was extracted. In lysimeter 6, upper 10 cm, 0.2% were extracted with water and 0.56% were extracted with acetonitril. Below 10 cm's depth no measurable amounts could be extracted.
Improvements to measuring water flux in the vadose zone.
Masarik, Kevin C; Norman, John M; Brye, Kristofor R; Baker, John M
2004-01-01
Evaluating the impact of land use practices on ground water quality has been difficult because few techniques are capable of monitoring the quality and quantity of soil water flow below the root zone without disturbing the soil profile and affecting natural flow processes. A recently introduced method, known as equilibrium tension lysimetry, was a major improvement but it was not a true equilibrium since it still required manual intervention to maintain proper lysimeter suction. We addressed this issue by developing an automated equilibrium tension lysimeter (AETL) system that continuously matches lysimeter tension to soil-water matric potential of the surrounding soil. The soil-water matric potential of the bulk soil is measured with a heat-dissipation sensor, and a small DC pump is used to apply suction to a lysimeter. The improved automated approach reported here was tested in the field for a 12-mo period. Powered by a small 12-V rechargeable battery, the AETLs were able to continuously match lysimeter suction to soil-water matric potential for 2-wk periods with minimal human attention, along with the added benefit of collecting continuous soil-water matric potential data. We also demonstrated, in the laboratory, methods for continuous measurement of water depth in the AETL, a capability that quantifies drainage on a 10-min interval, making it a true water-flux meter. Equilibrium tension lysimeters have already been demonstrated to be a reliable method of measuring drainage flux, and the further improvements have created a more effective device for studying water drainage and chemical leaching through the soil matrix.
Construction and evaluation of simulated pilot scale landfill lysimeter in Bangladesh.
Rafizul, Islam M; Howlader, Milon Kanti; Alamgir, Muhammed
2012-11-01
This research concentrates the design, construction and evaluation of simulated pilot scale landfill lysimeter at KUET campus, Khulna, Bangladesh. Both the aerobic and anaerobic conditions having a base liner and two different types of cap liner were simulated. After the design of a reference cell, the construction of landfill lysimeter was started in January 2008 and completed in July 2008. In all construction process locally available civil construction materials were used. The municipal solid waste (MSW) of 2800-2985 kg having the total volume of 2.80 m(3) (height 1.6 m) and moisture content of 65% was deposited in each lysimeter by applying required compaction energy. In contrast, both the composition in terms of methane (CH(4)), carbon dioxide (CO(2)) and oxygen (O(2)) as well as the flow rate of landfill gas (LFG) generated from MSW in landfill lysimeter were measured and varied significantly in relation to the variation of lysimeter operational condition. Moreover, anaerobic lysimeter-C shows the highest composition of LFG in compare to the anaerobic lysimeter-B due to the providing of lower compaction of cap liner in anaerobic lysimeter-C. Here, it is interesting to note that in absence of compacted clay liner (CCL) and hence percolation of rainwater that facilitates rapid degradation of MSW in aerobic lysimeter-A has resulted in the highest settlement than that of anaerobic landfill lysimeter-B and C. Moreover, in case of anaerobic lysimeter-B and C, the leachate generation was lower than that of aerobic lysimeter-A due to the providing of cap liner in anaerobic lysimeter-B and C, played an important role to reduce the percolation of rainwater. The study also reveals that the leachate pollution index (LPI) has decreased in relation to the increasing of elapsed period as well as the LPI for collection system of aerobic lysimeter-A was higher than that of the collection system of anaerobic lysimeter-B and C. Finally, it can be depicted that LPI for lysimeter was significantly high and proper treatment will be necessary before discharging the lysimeter leachate into the water bodies. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rücker, Andrea; Boss, Stefan; Von Freyberg, Jana; Zappa, Massimiliano; Kirchner, James
2016-04-01
In many mountainous catchments the seasonal snowpack stores a significant volume of water, which is released as streamflow during the melting period. The predicted change in future climate will bring new challenges in water resource management in snow-dominated headwater catchments and their receiving lowlands. To improve predictions of hydrologic extreme events, particularly summer droughts, it is important characterize the relationship between winter snowpack and summer (low) flows in such areas (e.g., Godsey et al., 2014). In this context, stable water isotopes (18O, 2H) are a powerful tool for fingerprinting the sources of streamflow and tracing water flow pathways. For this reason, we have established an isotope sampling network in the Alptal catchment (46.4 km2) in Central-Switzerland as part of the SREP-Drought project (Snow Resources and the Early Prediction of hydrological DROUGHT in mountainous streams). Samples of precipitation (daily), snow cores (weekly) and runoff (daily) are analyzed for their isotopic signature in a regular cycle. Precipitation is also sampled along a horizontal transect at the valley bottom, and along an elevational transect. Additionally, the analysis of snow meltwater is of importance. As the sample collection of snow meltwater in mountainous terrain is often impractical, we have developed a fully automatic snow lysimeter system, which measures meltwater volume and collects samples for isotope analysis at daily intervals. The system consists of three lysimeters built from Decagon-ECRN-100 High Resolution Rain Gauges as standard component that allows monitoring of meltwater flow. Each lysimeter leads the meltwater into a 10-liter container that is automatically sampled and then emptied daily. These water samples are replaced regularly and analyzed afterwards on their isotopic composition in the lab. Snow melt events as well as system status can be monitored in real time. In our presentation we describe the automatic snow lysimeter system and present initial results from field tests in winter 2015/2016 under natural conditions at an experimental field site. Fully functional deployment in a forested and an open field location in the Erlenbach subcatchment (0.7 km2) is envisaged for winter 2016/2017. Godsey, S.E.,* J.W. Kirchner and C.L. Tague, Effects of changes in winter snowpacks on summer low flows: case studies in the Sierra Nevada, California, USA, Hydrological Processes, 28, 5048-5064, doi: 10.1002/hyp.9943, 2014.
A comparison of cation sampling in forest soils by tension and tension-free lysimeters
James H. Miller
1981-01-01
Field tests conducted in two soils with ceramic cup, ceramic plate, and tension-free lysimeters showed no concentration differences in collected cations (Ca, Mg, K, Na) between cups and plates, except for the hydrogen ion. Mean pH was 0.6 lower in cup collected samples for a sandy loam profile. Tension-free lysimeters of the design tested had persistent contamination...
The Precision Field Lysimeter Concept
NASA Astrophysics Data System (ADS)
Fank, J.
2009-04-01
The understanding and interpretation of leaching processes have improved significantly during the past decades. Unlike laboratory experiments, which are mostly performed under very controlled conditions (e.g. homogeneous, uniform packing of pre-treated test material, saturated steady-state flow conditions, and controlled uniform hydraulic conditions), lysimeter experiments generally simulate actual field conditions. Lysimeters may be classified according to different criteria such as type of soil block used (monolithic or reconstructed), drainage (drainage by gravity or vacuum or a water table may be maintained), or weighing or non-weighing lysimeters. In 2004 experimental investigations have been set up to assess the impact of different farming systems on groundwater quality of the shallow floodplain aquifer of the river Mur in Wagna (Styria, Austria). The sediment is characterized by a thin layer (30 - 100 cm) of sandy Dystric Cambisol and underlying gravel and sand. Three precisely weighing equilibrium tension block lysimeters have been installed in agricultural test fields to compare water flow and solute transport under (i) organic farming, (ii) conventional low input farming and (iii) extensification by mulching grass. Specific monitoring equipment is used to reduce the well known shortcomings of lysimeter investigations: The lysimeter core is excavated as an undisturbed monolithic block (circular, 1 m2 surface area, 2 m depth) to prevent destruction of the natural soil structure, and pore system. Tracing experiments have been achieved to investigate the occurrence of artificial preferential flow and transport along the walls of the lysimeters. The results show that such effects can be neglected. Precisely weighing load cells are used to constantly determine the weight loss of the lysimeter due to evaporation and transpiration and to measure different forms of precipitation. The accuracy of the weighing apparatus is 0.05 kg, or 0.05 mm water equivalent respectively. The different soil horizons in the lysimeters are equipped with sensors to measure soil temperature, water content and soil tension. Suction cups are used to get soil water samples. The lower boundary of the lysimeter is designed to maintain equilibrium between the suction applied to the leachate collection system and soil matrix potential thus the suction applied may vary depending on natural conditions - measured using tensiometers - in the field. The lysimeters are built in directly in a test area of 1000 m2 with the same vegetation to prevent island effects on evotranspiration. The topmost part of the lysimeter is realized as a removable ring that mechanical cultivation is possible in the same manner as at the test field. In this presentation the concept and the implementation of the Precision Field Lysimeter is shown. First results on water and solute balances of a 4 years investigation period are discussed.
Soil-solution chemistry in a low-elevation spruce-fir ecosystem, Howland, Maine
Fernandez, Ivan J.; Lawrence, Gregory B.; Son, Yowhan
1995-01-01
Soil solutions were collected monthly by tension and zero-tension lysimeters in a low-elevation red spruce stand in east-central Maine from May 1987 through December 1992. Soil solutions collected by Oa tension lysimeters had higher concentrations of most constituents than the Oa zero-tension lysimeters. In Oa horizon soil solutions growing season concentrations for SO4, Ca, and Mg averaged 57, 43, and 30 μmol L−1 in tension lysimeters, and 43, 28, and 19 μmol L−1 in zero-tension lysimeters, respectively. Because tension lysimeters remove water held by the soil at tensions up to 10 kPa, solutions are assumed to have more time to react with the soil compared to freely draining solutions collected by zero-tension lysimeters. Solutions collected in the Bs horizon by both types of collectors were similar which was attributed to the frequency of time periods when the water table was above the Bs lysimeters. Concentrations of SO4 and NO3 at this site were lower than concentrations reported for most other eastern U.S. spruce-fir sites, but base cation concentrations fell in the same range. Aluminum concentrations in this study were also lower than reported for other sites in the eastern U.S. and Ca/Al ratios did not suggest inhibition of Ca uptake by roots. Concentrations of SO4, Ca, K, and Cl decreased significantly in both the Oa and Bs horizons over the 56-month sampling period, which could reflect decreasing deposition rates for sulfur and base cations, climatic influences, or natural variation. A longer record of measured fluxes will be needed to adequately define temporal trends in solution chemistry and their causes.
Phosphorus in waters from sewage sludge amended lysimeters.
Hinesly, T D; Jones, R L
1990-01-01
In surface waters, phosphorus (P) concentrations exceeding 0.05 mg liter(-1) may cause eutrophic conditions. This study was undertaken to measure total P concentrations in runoff and tile drainage waters from land receiving either inorganic fertilizer or anaerobically digested sewage sludge. Total P was measured in runoff and tile drainage waters during 2 years of sample collections from instrumented, large-scale lysimeters planted to corn (Zea mays L.). During the 3 years prior to monitoring P concentrations, six of the lysimeter plots had been amended with anaerobically digested sewage sludge which supplied 5033 kg P per ha. Additional sludge applications supplied 1058 and 1989 kg P per ha during the first and second years of monitoring operations, respectively. Another six lysimeters were annually treated with fertilizer which included P applications amounting to 112 kg ha(-1). For years 1 and 2, respectively, annual losses from lysimeters treated with sewage sludge were 4.27 and 0.35 kg P per ha in runoff and 0.91 from 0.91 and 0.51 kg Per P per ha in drainage waters. Parallel annual losses of P from lysimeters treated with superphosphate were 2.15 and 0.17 kg ha(-1) in runoff and 0.53 and 0.35 kg ha(-1) in tile drainage waters. Sludge applications did not significantly change absolute soil contents of organic P, but did decrease the per cent of total P present in organic forms. Sludge and soil, respectively, contained 21 and 36% of their total P contents in organic forms. In sludge and soil about 85 and 64% of their respective total inorganic P contents were associated with the Al and Fe fractions. Sludge applications significantly increased soil contents of P in the saloid (water-soluble plus P extracted with 1 N NH(4)Cl), Al, Fe and reductant soluble P fractions, but contents of Ca-bound P were not changed. Total P contents of the soil below a depth of 30 cm were not affected by sludge incorporated to a depth of about 15 cm by plowing.
Variation in toxicity response of Ceriodaphnia dubia to Athabasca oil sands coke leachates.
Puttaswamy, Naveen; Turcotte, Dominique; Liber, Karsten
2010-07-01
Coke from the Athabasca (Alberta, Canada) oil sands operations may someday be integrated into reclamation landscapes. It is hypothesized that the metals associated with the solid coke may leach into the surrounding environment. Therefore, the main objectives of this study were to characterize the toxicity and chemistry of coke leachates collected from two field lysimeters (i.e. shallow lysimeter and deep lysimeter) over a period of 20months, as well as from other oil sands coke storage sites. In addition, a batch renewal leaching of coke was conducted to examine the rate of metals release. Chronic toxicity of key metals (e.g. Al, Mn, Ni and V) found in lysimeter coke leachate was evaluated separately. Toxicity test results revealed that whole coke leachates (100% v/v) were acutely toxic to Ceriodaphnia dubia; the 7-day LC50 values were always <25% v/v coke leachate. The deep lysimeter leachate was generally more toxic than the shallow lysimeter leachate, likely because of significantly higher concentrations of vanadium (V) found in the deep lysimeter leachate at all sampling times. Vanadium concentrations were higher than all other metals found in the leachate from both lysimeters, and in the batch renewal leaching study. Furthermore, V found in leachates collected from other oil sands field sites showed a concentration-response relationship with C. dubia survival. Mass balance calculations indicated that 94-98% of potentially leachable V fraction was still present in the coke from two field lysimeters. Evidence gathered from these assessments, including toxic unit (TU) calculations for the elements of concern, suggests that V was the likely cause of toxicity of the deep lysimeter leachate, whereas in the shallow lysimeter leachate both Ni and V could be responsible for the observed toxicity. 2010 Elsevier Ltd. All rights reserved.
A comparison of refuse attenuation in laboratory and field scale lysimeters.
Youcai, Zhao; Luochun, Wang; Renhua, Hua; Dimin, Xu; Guowei, Gu
2002-01-01
For this study, small and middle scale laboratory lysimeters, and a large scale field lysimeter in situ in Shanghai Refuse Landfill, with refuse weights of 187,600 and 10,800,000 kg, respectively, were created. These lysimeters are compared in terms of leachate quality (pH, concentrations of COD, BOD and NH3-N), refuse composition (biodegradable matter and volatile solid) and surface settlement for a monitoring period of 0-300 days. The objectives of this study were to explore both the similarities and disparities between laboratory and field scale lysimeters, and to compare degradation behaviors of refuse at the intensive reaction phase in the different scale lysimeters. Quantitative relationships of leachate quality and refuse composition with placement time show that degradation behaviors of refuse seem to depend heavily on the scales of the lysimeters and the parameters of concern, especially in the starting period of 0-6 months. However, some similarities exist between laboratory and field lysimeters after 4-6 months of placement because COD and BOD concentrations in leachate in the field lysimeter decrease regularly in a parallel pattern with those in the laboratory lysimeters. NH3-N, volatile solid (VS) and biodegradable matter (BDM) also gradually decrease in parallel in this intensive reaction phase for all scale lysimeters as refuse ages. Though the concrete data are different among the different scale lysimeters, it may be considered that laboratory lysimeters with sufficient scale are basically applicable for a rough simulation of a real landfill, especially for illustrating the degradation pattern and mechanism. Settlement of refuse surface is roughly proportional to the initial refuse height.
Status of SRNL radiological field lysimeter experiment-Year 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, D.; Roberts, K.; Bagwell, L.
The Savannah River National Laboratory (SRNL) Radiological Field Lysimeter Experiment is a one-of-a-kind field facility designed to study radionuclide geochemical processes at a larger spatial scale (from grams to tens of kilograms sediment) and temporal scale (from months to 10 years) than is readily afforded through laboratory studies. The lysimeter facility is intended to capture the natural heterogeneity of moisture and temperature regimes in the vadose zone, the unsaturated subsurface region between the surface soil and the underlying aquifer. The 48 lysimeter columns, which contain various radionuclides (and stable iodine), were opened to rainfall infiltration on July 5, 2012. Themore » objective of this report is to provide a status of the lysimeter facility operations and to compile data collected during FY13, including leachate volume, rainfall, and soil moisture and temperature in situ probe data. Radiological leachate data are not presented in this document but will be the subject of a separate document.1 Leachate samples were collected quarterly and shipped to Clemson University for radiological analyses. Rainfall, leachate volume, moisture and temperature probe data were collected continuously. During operations of the facility this year, there were four safety or technical concerns that required additional maintenance: 1) radioactivity was detected in one of the overflow bottles (captured water collected from the secondary containment that does not come in contact with the radiological source material); 2) rainwater accumulated within the sample-bottle storage sheds; 3) overflow containers collected more liquid than anticipated; and 4) significant spider infestation occurred in the sample-bottle storage sheds. To address the first three concerns, each of the lysimeter columns was re-plumbed to improve and to minimize the number of joint unions. To address the fourth concern regarding spiders, new sample-bottle water sheds were purchased and a pest control program was established. During this retrofit, the lysimeters were temporarily capped (covered to preclude additional water from entering lysimeter columns) for about two months (except the four Tc-cementitious containing lysimeters, which remain capped). At a later date, data summarized in this report will be combined with the leachate radionuclide concentration data that are presently being analyzed. Together, these data can be numerically modeled to provide bench-marking information, to test hypotheses regarding hydrogeochemical conceptual models, and to estimate effective transport parameters under field conditions.« less
Rafizul, Islam M; Alamgir, Muhammed
2012-11-01
This study aims to characterize the leachate and to investigate the tropical climatic influence on leachate characteristics of lysimeter studies under different seasonal variations at KUET campus, Bangladesh. Three different situations of landfill were considered here as well as both the open dump lysimeter-A having a base liner and sanitary landfill lysimeter-B and C at two different types of cap liner were simulated. The leachate characteristics, leachate generation and climatic influence parameter had been continually monitored since June 2008 to May 2010, these periods cover both the dry and rainy season. The leachate generation had followed the rainfall pattern and the open dump lysimeter-A without top cover was recorded to have highest leachate generation. Moreover, the open dump lysimeter-A had lower total kjeldahl nitrogen (TKN), ammonia nitrogen (NH(4)-N) and TKN load, while both the COD concentration and load was higher compared with sanitary landfill lysimeter-B and C. In addition, sanitary landfill lysimeter-B, not only had lowest leachate generation, but also produces reasonable low COD concentration and load compared with open dump lysimeter-A. Result reveals that lysimeter operational mode had direct effect on leachate quality. Finally, it can be concluded that the knowledge of leachate quality will be useful in planning and providing remedial measures of proper liner system in sanitary landfill design and leachate treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudson, D. B.
Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) within the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2013 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2013; 2014a; 2014b). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the rangemore » of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are close to detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. The 105.8 millimeters (mm) (4.17 inches [in.]) of precipitation at the Area 3 RWMS during 2013 is 30% below the average of 150.3 mm (5.92 in.), and the 117.5 mm (4.63 in.) of precipitation at the Area 5 RWMS during 2013 is 5% below the average of 123.6 mm (4.86 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Automated vadose zone monitoring on Area 5 and Area 3 RWMS cell covers show no evidence of precipitation percolating through the cover to the waste. Moisture from precipitation did not percolate below 60 centimeters (cm) (2 feet [ft]) in the vegetated final cover on the U-3ax/bl disposal unit at the Area 3 RWMS, and moisture from precipitation and irrigation did not percolate below 45 cm (1.5 ft) on the 92-Acre Area final cover. Irrigation was applied to this cover for seed germination and plant growth. During 2013, there was no drainage through 2.4 meters (8 ft) of soil from the Area 3 drainage lysimeters that received only natural precipitation. Twenty percent of the applied precipitation and irrigation drained from the bare-soil drainage lysimeter that received 3-times natural precipitation. All 2013 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudson, David B.
2013-09-10
Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2012 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2012; 2013a; 2013b). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the rangemore » of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are only slightly above detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. The 133.9 millimeters (mm) (5.27 inches [in.]) of precipitation at the Area 3 RWMS during 2012 is 12% below the average of 153.0 mm (6.02 in.), and the 137.6 mm (5.42 in.) of precipitation at the Area 5 RWMS during 2012 is 11% below the average of 122.4 mm (4.82 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Automated vadose zone monitoring on Area 5 and Area 3 RWMS cell covers show no evidence of precipitation percolating through the cover to the waste. Moisture from precipitation did not percolate below 60 centimeters (cm) (2 feet [ft]) in the vegetated final cover on the U-3ax/bl disposal unit at the Area 3 RWMS, and moisture from precipitation and irrigation did not percolate below 45 cm (1.5 ft) on the 92-Acre Area final cover. Irrigation was applied to this cover for seed germination and plant growth. During 2012, there was no drainage through 2.4 meters (8 ft) of soil from the Area 3 drainage lysimeters that received only natural precipitation. Twenty percent of the applied precipitation and irrigation drained from the bare-soil drainage lysimeter that received 3 times natural precipitation. All 2012 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.« less
Hydraulic considerations in sampling the unsaturated zone with inclined gravity lysimeters
Oaksford, E.T.
1983-01-01
Inclined gravity lysimeters as deep as 5.39 meters below land surface designed for sampling soil water in coarse sand under continuous ponding conditions, were shown to be capable of collecting 10 liters per hour at an infiltration rate of 0.5 meter per hour. This represents a capture efficiency of approximately 50%, a value observed in two similar but shallower lysimeters. When lysimeters are installed from a trench or observation manhole, soil-water samples can be taken under virtually undisturbed conditions, avoiding the soil disturbance and filtration associated with porous-cup vacuum lysimeters. Successful operation requires that the sampler be designed for the hydraulic characteristics of the soil from which the water sample is to be extracted. Criteria for lysimeter dimensions can be established on the basis of pressure heads experienced during sampling, can be induced to flow into the lysimeter by gradient manipulation. Observed head gradients outside the lysimeter ranged between 1.7 and 2.2 times those across the lysimeter, which would seem to explain the observed capture efficiency. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, David; Hudson, David
Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) within the Nevada National Security Site (NNSS). These data include direct radiation exposure, as well as radiation from the air, groundwater, meteorology, and vadose zone. This report summarizes the 2015 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports developed by National Security Technologies, LLC. Direct radiation monitoring data indicate exposure levels at the RWMSsmore » are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show that tritium concentrations in water vapor and americium and plutonium concentrations in air particles are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. During 2015, precipitation at the Area 3 RWMS was 0.9% above average, and precipitation at the Area 5 RWMS was 25% above average. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation as measured from the bare-soil weighing lysimeter. The 1.8 inches of precipitation in September reached the lowest sensors at 180 cm on the Cell 5S and 5N covers, however the sensors on the floor do not indicate any signs of the precipitation percolating thru the waste to the floor. Moisture from precipitation did not percolate below 150 centimeters (cm) (5 feet [ft]) in the vegetated final cover on the U-3ax/bl disposal unit at the Area 3 RWMS. A second remedial revegetation trial was done on the southern portion of the North Cover. In March 2015 it was determined that germination occurred on both the mulched and non-mulched treatments that were irrigated, but that no germination occurred on the non-irrigated treatments. By June the seedlings observed in March were gone, possibly grazed by rabbits which were observed inside the rabbit-proof fence. In August the entire area was sprayed with the herbicide glyphosate in an attempt to minimize weed seed production. During 2015, there was no drainage through 2.4 meters (8 ft) of soil as indicated from the Area 3 drainage lysimeters that received only natural precipitation. Thirty-one percent of the applied precipitation and irrigation drained from the bare-soil drainage lysimeter, which received 3 times the natural precipitation. All 2015 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facilities’ PAs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Management
2012-07-31
Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2011 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports. Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS.more » Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are only slightly above detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. During the last 2 weeks of March 2011, gamma spectroscopy results for air particles showed measurable activities of iodine-131 (131I), cesium-134 (134Cs), and cesium-137 (137Cs). These results are attributed to the release of fission products from the damaged Fukushima Daiichi power plant in Japan. The remaining gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below minimum detectable concentrations. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. The 86.3 millimeters (mm) (3.40 inches [in.]) of precipitation at the Area 3 RWMS during 2011 is 44% below the average of 154.1 mm (6.07 in.), and the 64.8 mm (2.55 in.) of precipitation at the Area 5 RWMS during 2011 is 47% below the average of 122.4 mm (4.82 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Automated vadose zone monitoring on Area 5 RWMS operational waste covers was not done during 2011 due to construction of the final evapotranspiration cover at these monitoring locations. Moisture from precipitation did not percolate below 122 centimeters (4 feet) in the vegetated final mono-layer cover on the U-3ax/bl disposal unit at the Area 3 RWMS before being removed by evapotranspiration. During 2011, there was no drainage through 2.4 meters (8 feet) of soil from the Area 3 drainage lysimeters that received only natural precipitation. Ten percent of the applied precipitation and irrigation drained from the bare-soil drainage lysimeter that received 3 times natural precipitation. All 2011 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.« less
NASA Astrophysics Data System (ADS)
Hussain, Imran; Wimmer, Bernhard; Soja, Gerhard; Sessitsch, Angela; Reichenauer, Thomas G.
2016-04-01
Total petroleum hydrocarbons (TPH) contain a mixture of crude oil, gasoline, creosote and diesel is one of the most common groups of persistent organic pollutants. TPH enters into the ecosystem (soil, water and air) through leakage of underground storage tanks (LUST), accidental oil spills, transportation losses and industrial processes. Pollution associated with diesel oil and its refined products is of great concern worldwide due to its threats/damages for human and ecosystem health, soil structure and ground water quality. Extensive soils pollution with petroleum hydrocarbons results in extreme harsh surroundings, produce hydrophobic conditions and infertile soils that ultimately lead towards less plant and microorganisms growth. Among biological methods, bioremediation and phytoremediation are promising technologies that have both technical and ecological benefits as compared to convention methods. Within phytoremediation, rhizoremediation based on stimulation of degrading microorganism's population influenced by plant rhizospheric effect is known as main mechanism for phytoremediation of petroleum polluted soils. Composting along with rhizodegradtion was used to remediate freshly spilled soils at Lysimeter station Siebersdof, Austria. Experiment was started in July 2013 and will be monitored up to September 2016. Field station has 12 Lysimeter in total; each has length, width and depth of 100 cm respectively. Each Lysimeter was filled with normal agricultural soil from Siebersdof (0-70 cm), sand (70-85 cm) and stones (85-100cm). Sand and stones were added to support the normal leaching and percolation of water as we collected leachate samples after regular intervals. After filling, commercial diesel oil (2% w/w of 0-70 cm soil) was spilled on top of each Lysimeter as accidental spill occurs in filed. Compost was added at 0-15 cm layer (5% w/w of soil) to stimulate plant as well as microorganisms growth. Whole Lysimeter station was divided into three treatments and four replicates; T1 was only planted with Lolium multiflorum and Lotus corniculatus, T2 was planted with both above mentioned plants inoculated with microbial consortium (mixture of strains: Pantoea sp. strains, ITSI10, BTRH79 and Pseudomonas sp. strain, MixRI75)and T3 was kept unplanted to support bioremediation. Germination percentage (GP) was monitored weekly until three weeks after seed sowing. Biometric parameters (plant height, fresh and dry weight of shoots) and leaf chlorophyll content were recorded in periodic intervals. Soil samples were taken in regular intervals (after every 6 month) and PHC content was measured by GC-FID. In the presentation we will report about the development of plants and the degradation of petroleum hydrocarbons in Lysimeter. The degradation of TPH will be reported for 7 layers inside each Lysimeter as well as in leachate samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David C. Anderson, Lloyd T. Desotell, David B. Hudson, Gregory J. Shott, Vefa Yucel
Since January 2001, drainage lysimeter studies have been conducted at Yucca Flat, on the Nevada Test Site, in support of an evapotranspirative cover design. Yucca Flat has an arid climate with average precipitation of 16.5 cm annually. The facility consists of six drainage lysimeters 3 m in diameter, 2.4 m deep, and backfilled with a single layer of native soil. The bottom of each lysimeter is sealed and equipped with a small drain that enables direct measurement of saturated drainage. Each lysimeter has eight time-domain reflectometer probes to measure moisture content-depth profiles paired with eight heat-dissipation probes to measure soil-watermore » potential depth profiles. Sensors are connected to dataloggers which are remotely accessed via a phone line. The six lysimeters have three different surface treatments: two are bare-soil; two were revegetated with native species (primarily shadscale, winterfat, ephedra, and Indian rice grass); and two were allowed to revegetate naturally with such species as Russian thistle, halogeton, tumblemustard and cheatgrass. Beginning in October 2003, one half of the paired cover treatments (one bare soil, one invader species, and one native species) were irrigated with an amount of water equal to two times the natural precipitation to achieve a three times natural precipitation treatment. From October 2003 through December 2005, all lysimeters received 52.8 cm precipitation, and the four irrigated lysimeters received an extra 105.6 cm of irrigation. No drainage has occurred from any of the nonirrigated lysimeters, but moisture has accumulated at the bottom of the bare-soil lysimeter and the native-plant lysimeter. All irrigated lysimeters had some drainage. The irrigated baresoil lysimeter had 48.3 cm of drainage or 26.4 percent of the combined precipitation and applied irrigation for the entire monitoring record. The irrigated invader species lysimeter had 5.8 cm of drainage, about 3.2 percent of the combined precipitation and applied irrigation. An irrigation valve failure caused an additional 50.8 cm of irrigation to be applied to the irrigated native plant lysimeter. There has been 29.3 cm of drainage from this lysimeter, which is 11.5 percent of the total applied water. Approximately 40 percent of the drainage from the irrigated native plant lysimeter occurred within four weeks of the valve failure.« less
2003-08-01
4-3 Table 4.3 TCLP Results for Amended Soils.................................................................... 4-7 Table 4.4 Leachate ...100 million cubic yards, far exceeding that which can be disposed to landfills. Additionally, large quantities of lead-contaminated leachates ...acre demonstration site at SWMU B-20 for observations of efficacy by collection of leachates from shallow lysimeter monitoring wells. The field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garland, T. R.; Wildung, R. E.; Harbert, H. P.
1979-04-01
Major cations, anions, trace elements and dissolved organic C were measured in percolate from retorted oil shale collected from irrigated lysimeters in the field at Anvil Points, Colorado, over a two year period. The investigations indicated that chemical equilibrium was not established over the monitoring period and major changes occurred in percolate composition as a function of applied water volume and water residence time in the shale. Field and laboratory studies indicated that several factors contributed to changes in the chemistry of the shale on weathering, including recarbonization of the surface horizons with atmospheric CO/sub 2/ and the activities ofmore » microorganisms in surface and subsurface horizons. However, the principal mechanism responsible for the decreases in pH and salt concentrations appeared to be the conversion of major quantities of sulfide in the retorted shale to sulfate through a thiosulfate intermediate.« less
NASA Astrophysics Data System (ADS)
Corbari, Chiara; paleari, roberto; mantovani, federico; tarro, stefano; mancini, marco
2017-04-01
Weighting lysimeters allow a direct measurement of water loss from the soil, determining the soil water balance, and thus providing an interesting tool to validate hydrological models. Lysimeters, which world originates from the greek words "lysis" (movement) and "metron" (to measure) have been used to measure percolation of water through the soils for over 300 years. The aim of this study is twofold: 1) to perform water and energy flux measurements under different meteorological conditions, irrigation practice (surface flood, drip and groundwater capillary rise), and soil coverage (bare soil and basil crop), 2) to verify hydrological model FEST-EWB parameterization at the lysimeter scale. A weighting lysimeter has been constructed in the Hydraulic Laboratory of Politecnico di Milano. It consists of a steel box of 1.5 x 1.5 x 1 m containing reconstructed soil. The box is mounted on a scale with four load cells with a nominal weight of 6000 kg and a precision of 0,5 kg. The lysimeter is fully instrumented to measure all the main components of the hydrological cycle. Profiles of soil moisture and temperature are provided by 7 probes; ground heat flux is measured by a heat flux plate and two thermocouples; the drainage flux is measured by a tipping bucket rain gauge; the four components of radiation are provided by a net radiometer; air temperature and humidity are measured by a thermo-hygrometer. Data are collected every 10 minutes on a datalogger. A thermal camera is also installed to provide accurate maps of land surface temperature. The different instruments have been subjected to a rigorous calibration process. A low cost station is also installed based on an Arduino micro-controller measuring soil moisture and temperature, air humidity and temperature and solar radiation. The idea is to understand whether low cost instruments can be used to monitor the fundamental hydrological variables. The measured fluxes (e.g. evapotranspiration, soil moisture, land surface temperature) are then used to verify the correctness of the hydrological model FEST-EWB parameterization. A general good accuracy of 2-6 % between observed and modeled fluxes is obtained.
Swati, M; Joseph, Kurian
2008-01-01
The patterns of settlement of fresh as well as partially stabilised municipal solid waste (MSW), undergoing degradation in five different landfill lysimeters, were studied elaborately. The first two lysimeters, R1 and R2, contained fresh MSW while the other three lysimeters, R3, R4 and R5, contained partially stabilised MSW. R1 and R3 simulated conventional controlled dumps with fortnightly disposal of drained leachate. R2 and R4 simulated bioreactor landfills with leachate recirculation. Fortnightly water flushing was done in R5. Settlement of MSW, monitored over a period of 58 weeks, was correlated with the organic carbon content of leachate and residual volatile matter in the MSW to establish the relationship between settlement and organic destruction. Compressibility parameters such as modulus of elasticity and compression indices were determined and empirical equations were applied for the settlement data. Overall settlements up to 49% were observed in the case of landfill lysimeters, filled with fresh MSW. Landfill lysimeters with liquid addition, in the form of leachate or water, experienced lower primary settlements and higher secondary settlements than conventional fills, where no liquid addition was practised. Modified secondary compression indices for MSW in lysimeters with leachate recirculation and flushing were 30%-44% higher than that for lysimeters where no liquid addition was done. Secondary settlements in bioreactor landfills were found to vary exponentially with time.
Hubbell, Joel M.; Sisson, James B.
2004-07-13
A portable lysimeter including a collection vessel having an inflatable bladder and a semi-permeable member assembly at least partially movable in response to inflation of the bladder, a sample conduit in fluid communication with the semi-permeable member and a reservoir in fluid communication with the sample conduit.
Wijewardana, Y N S; Shilpadi, A T; Mowjood, M I M; Kawamoto, K; Galagedara, L W
2017-02-01
The assessment of polluted areas and municipal solid waste (MSW) sites using non-destructive geophysical methods is timely and much needed in the field of environmental monitoring and management. The objectives of this study are (i) to evaluate the ground-penetrating radar (GPR) wave responses as a result of different electrical conductivity (EC) in groundwater and (ii) to conduct MSW stratification using a controlled lysimeter and modeling approach. A GPR wave simulation was carried out using GprMax2D software, and the field test was done on two lysimeters that were filled with sand (Lysimeter-1) and MSW (Lysimeter-2). A Pulse EKKO-Pro GPR system with 200- and 500-MHz center frequency antennae was used to collect GPR field data. Amplitudes of GPR-reflected waves (sub-surface reflectors and water table) were studied under different EC levels injected to the water table. Modeling results revealed that the signal strength of the reflected wave decreases with increasing EC levels and the disappearance of the subsurface reflection and wave amplitude reaching zero at higher EC levels (when EC >0.28 S/m). Further, when the EC level was high, the plume thickness did not have a significant effect on the amplitude of the reflected wave. However, it was also found that reflected signal strength decreases with increasing plume thickness at a given EC level. 2D GPR profile images under wet conditions showed stratification of the waste layers and relative thickness, but it was difficult to resolve the waste layers under dry conditions. These results show that the GPR as a non-destructive method with a relatively larger sample volume can be used to identify highly polluted areas with inorganic contaminants in groundwater and waste stratification. The current methods of MSW dumpsite investigation are tedious, destructive, time consuming, costly, and provide only point-scale measurements. However, further research is needed to verify the results under heterogeneous aquifer conditions and complex dumpsite conditions.
Influence of Heavy Metal Stress On Water Regime of A Model Forest Ecosystem
NASA Astrophysics Data System (ADS)
Menon, M.; Abbaspour, K. C.; Schulin, R.
Among various toxic substances that contaminate the soil, the effects of heavy metals are particularly severe on all aspects of soil-plant system. The Swiss Federal Institute for Forest Snow and Land Research (WSL) is addressing comprehensively the issue of heavy metal toxicity in a forest ecosystem in a project titled Sfrom cell to treeT. As & cedil; part of the above project an investigation is being carried out to evaluate the impact of heavy metal stress on water regime of a young forest ecosystem grown in sixteen open top lysimeters. The factorial treatments of the lysimeters include variations of rainwa- ter acidity (acidic, neutral), subsoil type (acidic, calcareous), and heavy metal con- centration (with and without heavy metals in the top 20 cm). Filling of lysimeters was completed in November 1999. Each model ecosystem was planted in spring 2000 with the same collection of trees and herbaceous plants. Each lysimeters is equipped with tensiometers for monitoring of pressure head, time domain reflectometry for moni- toring of water content, and sprinkler devices for application of controlled irrigation. Drainage water data are measured regularly from the canisters installed at the bot- tom of lysimeters and evapotranspiration is calculated through water balancing. Our preliminary analyses of the data shoed the following results. Weekly data collected from May to October 2001 indicated higher amount of percolating water in acidic soil compared to the neutral soil due to textural difference. At 12 cm depth in both soils, control and acidic rain showed lower water potential than heavy metal and combina- tion of acidic rain with heavy metal treatments. In lower depths, water potential did not show much difference between treatments. Water contents showed differences be- tween treatments in the upper part of the profile where the soil is contaminated with heavy metals. Higher water content was observed in heavy metal treatment at 0-25 cm depth than 25-50 cm depth. This indicates higher root activity at deeper soil profile where heavy metal is not present. The overall results indicated differences in water regime of the heavy metal-treated soils. We expect this difference to be more signifi- cant in the next years as trees grow larger and exert a stronger water demand.
Co-disposal of electronic waste with municipal solid waste in bioreactor landfills.
Visvanathan, C; Visvanthan, C; Yin, Nang Htay; Karthikeyan, Obuli P
2010-12-01
Three pilot scale lysimeters were adopted to evaluate the stability pattern and leaching potential of heavy metals from MSW landfills under the E-waste co-disposed condition. One lysimeter served as control and solely filled with MSW, whereas the other two lysimeters were provided with 10% and 25% of E-waste scraps (% by weight), respectively. The reactors were monitored over a period of 280 days at ambient settings with continuous leachate recirculation. Stabilization pattern of carbon appears to be more than 50% in all the three lysimeters with irrespective of their operating conditions. Iron and zinc concentrations were high in leachate during bioreactor landfill operation and correlating with the TCLP leachability test results. In contrast, Pb concentration was around <0.6 mg/L, but which showed maximum leaching potential under TCLP test conditions. But, no heavy metal accumulation was found with leachate recirculation practices in lysimeters. Mobility of the metal content from the E-waste was found to be amplified with the long term disposal or stabilization within landfills. The results showed that the TCLP test cannot be completely reliable tool for measuring long-term leachability of toxic substances under landfill condition; rather landfill lysimeter studies are necessary to get the real scenario. Copyright © 2010 Elsevier Ltd. All rights reserved.
Monitoring Radionuclide Transport and Spatial Distribution with a 1D Gamma-Ray Scanner
NASA Astrophysics Data System (ADS)
Dozier, R.; Erdmann, B.; Sams, A.; Barber, K.; DeVol, T. A.; Moysey, S. M.; Powell, B. A.
2016-12-01
Understanding radionuclide movement in the environment is important for informing strategies for radioactive waste management and disposal. A 1-dimensional (1D) gamma-ray emission scanning system was developed to investigate radionuclide transport behavior within soils. Two case studies illustrate the use of the system for non-destructively monitoring transport processes within a soil column. The first case study explores the system capabilities for simultaneously detecting technetium-99m (99mTc), iodine-131 (131I), and sodium-22 (22Na) moving through a column (length = 14.1 cm, diameter = 3.8 cm) packed with soil from the Department of Energy's Savannah River Site. A sodium iodide (NaI) detector was placed at 4 cm above the influent and a Bismuth germanate (BGO) detector at about 10 cm above the influent. The NaI detector results show 99mTc, 131I, and 22Na having similar breakthrough curves with the tail of 99mTc being lower than that of 131I and 22Na. NaCl tracer results compliment the gamma-ray emission measurements. These results are promising because we are able to monitor movement of the isotopes in the column in real-time. In the second case study, the 1D gamma scanner was used to quantify radionuclide mobility within a lysimeter (length = 51 cm, diameter = 10 cm). A cementitious waste form containing cobalt-60 (60Co), barium-133 (133Ba), cesium-137 (137Cs), and europium-152 (152Eu), with the amount of each contained in the cement ranging from 3 to 8.5 MBq, was placed at the midpoint of the lysimeter. The lysimeter was then exposed to natural rainfall and environmental conditions and effluent samples were collected and quantified on a quarterly basis. Following 3.3 years of exposure, the radionuclide distribution in the lysimeter was quantified with a 0.64 cm collimated high-purity germanium gamma-ray spectrometer. Diffusion of 137Cs away from the cementitious wasteform was observed. No movement was seen for 133Ba, 60Co, or 152Eu within the detection limits of the spectrometer. An activity balance was used to quantify the detection efficiency of the spectrometer as a function of gamma-ray energy.
Monitoring the performance of an alternative cover using caisson lysimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waugh, W.J.; Smith, G.M.; Mushovic, P.S.
2004-02-29
The U.S. Department of Energy (DOE) office in Grand Junction, Colorado, and the U.S. Environmental Protection Agency (EPA), Region 8, collaborated on a series of field lysimeter studies to design and monitor the performance of an alternative cover for a uranium mill tailings disposal cell at the Monticello, Utah, Superfund Site. Because groundwater recharge is naturally limited at Monticello in areas with thick loess soils, DOE and EPA chose to design a cover for Monticello using local soils and a native plant community to mimic this natural soilwater balance. Two large drainage lysimeters fabricated of corrugated steel culvert lined withmore » high-density polyethylene were installed to evaluate the hydrological and ecological performance of an alternative cover design constructed in 2000 on the disposal cell. Unlike conventional, lowpermeability designs, this cover relies on (1) the water storage capacity of a 163-cm soil “sponge” layer overlying a sand-and-gravel capillary barrier to retain precipitation while plants are dormant and (2) native vegetation to remove precipitation during the growing season. The sponge layer consists of a clay loam subsoil compacted to 1.65 g/cm2 in one lysimeter and a loam topsoil compacted to 1.45 g/cm2 in the other lysimeter, representing the range of as-built conditions constructed in the nearby disposal cell cover. About 0.1 mm of drainage occurred in both lysimeters during an average precipitation year and before they were planted, an amount well below the EPA target of <3.0 mm/yr. However, the cover with less compacted loam topsoil sponge had a 40% greater water storage capacity than the cover with overly compacted clay loam subsoil sponge. The difference is attributable in part to higher green leaf area and water extraction by plants in the loam topsoil. The lesson learned is that seemingly subtle differences in soil types, sources, and compaction can result in salient differences in performance. Diverse, seeded communities of predominantly native perennial species were established on both lysimeters during an extended 3-yr drought, highlighting the importance of a sound understanding of the local ecology and of implementing the science and methods of disturbed-land revegetation.« less
Tränkler, J; Visvanathan, C; Kuruparan, P; Tubtimthai, O
2005-01-01
Considering the quality of design and construction of landfills in developing countries, little information can be derived from randomly taken leachate samples. Leachate generation and composition under monsoon conditions have been studied using lysimeters to simulate sanitary landfills and open cell settings. In this study, lysimeters were filled with domestic waste, highly organic market waste and pre-treated waste. Results over two subsequent dry and rainy seasons indicate that the open cell lysimeter simulation showed the highest leachate generation throughout the rainy season, with leachate flow in all lysimeters coming to a halt during the dry periods. More than 60% of the precipitation was found in the form of leachate. The specific COD and TKN load discharged from the open cell was 20% and 180% more than that of the sanitary landfill lysimeters. Types of waste material and kind of pre-treatment prior to landfilling strongly influenced the pollutant load. Compared to the sanitary landfill lysimeter filled with domestic waste, the specific COD and TKN load discharged from the pre-treated waste lysimeter accounted for only 4% and 16%, respectively. Considering the local settings of tropical landfills, these results suggest that landfill design and operation has to be adjusted. Leachate can be collected and stored during the rainy season, and recirculation of leachate is recommended to maintain a steady and even accelerated degradation during the prolonged dry season. The open cell approach in combination with leachate recirculation is suggested as an option for interim landfill operations.
The influence of small-mammal burrowing activity on water storage at the Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landeen, D.S.
This paper summarizes the activities that were conducted in support of the long-term surface barrier development program by Westinghouse Hanford Company to determine the degree that small-mammal burrow systems affect the loss or retention of water in the soils at the Hanford Site in Washington state. An animal intrusion lysimeter facility was constructed, consisting of two outer boxes buried at grade, which served as receptacles for six animal intrusion lysimeters. Small burrowing animals common the Hanford Site were introduced over a 3- to 4-month period. Supplemental precipitation was added monthly to three of the lysimeters with a rainfall simulator (rainulator).more » Information collected from the five tests indicated that (1) during summer months, water was lost in all the lysimeters, including the supplemental precipitation added with the rainulator; and (2) during winter months, all lysimeters gained water. The data indicate little difference in the amount of water stored between control and animal lysimeters. The overall water loss was attributed to surface evaporation, a process that occurred equally in control and treatment lysimeters. Other causes of water loss are a result of (1) constant soil turnover and subsequent drying, and (2) burrow ventilation effects. This suggests that burrow systems will not contribute to any significant water storage at depth and, in fact, may enhance the removal of water from the soil.« less
Ionic tracer movement through a Wyoming snowpack
Roger C. Bales; Richard A. Sommerfeld; David G. Kebler
1990-01-01
A meltwater ionic pulse with initial concentrations of 5-10 or more times the average was observed in lysimeters set at the base of a 2-m snowpack in an unpolluted, alpine watershed. Both background chemical species and added tracers exhibited the initial pulse. About 10 days after the onset of meltwater release, solute concentrations collected in the lysimeters...
NASA Astrophysics Data System (ADS)
Misra, R. K.; Padhi, J.; Payero, J. O.
2011-08-01
SummaryWe used twelve load cells (20 kg capacity) in a mini-lysimeter system to measure evapotranspiration simultaneously from twelve plants growing in separate pots in a glasshouse. A data logger combined with a multiplexer was used to connect all load cells with the full-bridge excitation mode to acquire load-cell signal. Each load cell was calibrated using fixed load within the range of 0-0.8 times the full load capacity of load cells. Performance of all load cells was assessed on the basis of signal settling time, excitation compensation, hysteresis and temperature. Final calibration of load cells included statistical consideration of these effects to allow prediction of lysimeter weights and evapotranspiration over short-time intervals for improved accuracy and sustained performance. Analysis of the costs for the mini-lysimeter system indicates that evapotranspiration can be measured economically at a reasonable accuracy and sufficient resolution with robust method of load-cell calibration.
Clark, Dennis A.; Izbicki, John A.; Johnson, Russell D.; Land, Michael
2009-01-01
This report presents data on the physical and hydraulic properties of unsaturated alluvial deposits and on the chemical and isotopic composition of water collected at two recharge sites in the western part of the Mojave Desert, near Victorville, California, from 2001 to 2006. Unsaturated-zone monitoring sites were installed adjacent to the two recharge ponds using the ODEX air-hammer and air rotary method to depths of about 460 feet and 269 feet below land surface. Each of the two unsaturated-zone monitoring sites included a water-table well, matric-potential sensors, and suction-cup lysimeters installed in a single bore hole. Drilling procedures, lithologic and geophysical data, and site construction and instrumentation are described. Core material was analyzed for water content, bulk density, water potential, particle size, and water retention. The chemical composition of leachate from almost 400 samples of cores and cuttings was determined. Water from suction-cup lysimeters also was analyzed for chemical and isotopic composition. In addition, data on the chemical and isotopic composition of groundwater from the two water-table wells are reported along with chemical and isotopic composition of the surface water in the recharge ponds.
NASA Astrophysics Data System (ADS)
Brooks, J. R.; Pearlstein, S.; Hutchins, S.; Faulkner, B. R.; Rugh, W.; Willard, K.; Coulombe, R.; Compton, J.
2017-12-01
Groundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the USA. The southern Willamette Valley Groundwater Management Area (GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen (N) inputs to the GWMA comes from agricultural fertilizers, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding N transformations. In partnership with local farmers and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years. Our results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitation water isotopes were highly variable over time, lysimeter water isotopes were surprisingly consistent, more closely resembling long-term precipitation isotope means rather than recent precipitation isotopic signatures. However, some particularly large precipitation events with unique isotopic signatures revealed high spatial variability in transport, with some lysimeters showing greater proportions of recent precipitation inputs than others. In one installation where we have groundwater wells and lysimeters at multiple depths, nitrate/nitrite concentrations decreased with depth. N concentrations and δ15N values indicated leaching at 1 m and denitrification at 3 m depth. However, these relationships showed spatial and temporal complexity. We are exploring how these vadose zone complexities can be incorporated into practical understanding of the impacts of N management on groundwater inputs.
Matteson, Audrey R; Mahoney, Denis J; Gannon, Travis W; Polizzotto, Matthew L
2014-07-04
Potentially toxic chemicals are routinely applied to land to meet growing demands on waste management and food production, but the fate of these chemicals is often not well understood. Here we demonstrate an integrated field lysimetry and porewater sampling method for evaluating the mobility of chemicals applied to soils and established vegetation. Lysimeters, open columns made of metal or plastic, are driven into bareground or vegetated soils. Porewater samplers, which are commercially available and use vacuum to collect percolating soil water, are installed at predetermined depths within the lysimeters. At prearranged times following chemical application to experimental plots, porewater is collected, and lysimeters, containing soil and vegetation, are exhumed. By analyzing chemical concentrations in the lysimeter soil, vegetation, and porewater, downward leaching rates, soil retention capacities, and plant uptake for the chemical of interest may be quantified. Because field lysimetry and porewater sampling are conducted under natural environmental conditions and with minimal soil disturbance, derived results project real-case scenarios and provide valuable information for chemical management. As chemicals are increasingly applied to land worldwide, the described techniques may be utilized to determine whether applied chemicals pose adverse effects to human health or the environment.
Gannon, Travis W.; Polizzotto, Matthew L.
2014-01-01
Potentially toxic chemicals are routinely applied to land to meet growing demands on waste management and food production, but the fate of these chemicals is often not well understood. Here we demonstrate an integrated field lysimetry and porewater sampling method for evaluating the mobility of chemicals applied to soils and established vegetation. Lysimeters, open columns made of metal or plastic, are driven into bareground or vegetated soils. Porewater samplers, which are commercially available and use vacuum to collect percolating soil water, are installed at predetermined depths within the lysimeters. At prearranged times following chemical application to experimental plots, porewater is collected, and lysimeters, containing soil and vegetation, are exhumed. By analyzing chemical concentrations in the lysimeter soil, vegetation, and porewater, downward leaching rates, soil retention capacities, and plant uptake for the chemical of interest may be quantified. Because field lysimetry and porewater sampling are conducted under natural environmental conditions and with minimal soil disturbance, derived results project real-case scenarios and provide valuable information for chemical management. As chemicals are increasingly applied to land worldwide, the described techniques may be utilized to determine whether applied chemicals pose adverse effects to human health or the environment. PMID:25045915
NASA Astrophysics Data System (ADS)
Bento, C. P. M.; Shakesby, R. A.; Walsh, R. P. D.; Ferreira, C. S. S.; Ferreira, A. J. D.; Urbanek, E.
2012-04-01
Mediterranean wildfire activity has increased markedly in recent decades, leading to enhanced runoff and erosion. Limiting post-fire on-site soil degradation and off-site flooding and sedimentation, however, often has a low priority because of the high costs of materials and labour needed to implement many recognised techniques (e.g. seeding, hydromulching, installing logs along the contour). However, in pine plantations, the crowns may only be scorched so that after fire the needlecast can form a comparatively dense ground cover. Its post-fire erosion-limiting effectiveness is virtually unknown in the Mediterranean context, despite potentially protecting soil with minimal effort (requiring only a delay to existing salvage logging procedures at most). As part of the DESIRE research programme, this paper presents results from two complementary approaches testing the erosion-limiting effectiveness of needlecast. (1) Near Moinhos, central Portugal, two 8m2 erosion plots were established immediately post-fire in September 2009 on a steep (30°) slope representative of an adjacent burnt Pinus pinaster plantation. Soil erosion was monitored during a 3-month pre-treatment phase. Needles were then applied to one plot at a density (37.7% cover) measured on a post-fire pine plantation. Soil losses from treated and untreated plots were then monitored until April 2011. By taking the percentage increase or decrease in erosion between the two monitoring phases for the untreated control plot as the 'expected' pattern, the erosion-limiting effectiveness of needles applied to the treated plot could then be determined. (2) Six adjacent rectangular 1.23m2 lysimeters were filled with gravel and sand, and capped by 10 cm of topsoil taken from a long unburnt Pinus pinaster plantation. They were set at 15° and left open to natural rainfall. This angle was considered the steepest possible from logistical and soil stability points of view. All lysimeters underwent a phase under bare soil conditions. In a second phase, a representative amount (8.34 kg) of fermented litter and shrubs from a pine plantation was applied evenly to each of five lysimeters. In a third stage, four of the five treated lysimeters were burned to simulate a low-severity wildfire. After several more rainfall events, pine needles (37.7% cover) were applied to two of the burnt lysimeters. In the final stage, there was 1 lysimeter with bare soil, 1 unburnt with a vegetation cover, 2 burnt and untreated, and 2 burnt with needles. In all the lysimeters, runoff and percolated water were monitored during the entire study, as were the amounts of eroded sediment and organic matter contents for runoff. Calculating the erosion-limiting effect of needles was conducted in a similar fashion to (1) and based on results from stages 3 and 4. The results from both experiments show that the needles reduced erosion by as much as c.60% compared with the corresponding control situation, indicating that a needlecast 'carpet' is likely to be able to provide a highly effective, simple, cheap means of significantly reducing post-fire soil loss in pine forests where the tree canopies have been scorched but not consumed by fire.
Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G
2013-10-01
Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ(13)C, δ(2)H and δ(18)O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ(13)C-value of the dissolved inorganic carbon (δ(13)C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ(13)C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ(13)C-DIC of -20‰ to -25‰. The production of methane under anaerobic conditions caused an increase in δ(13)C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a δ(13)C-DIC of about -20‰. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidation-reduction status of MSW landfills. Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and stability of the organic matter in landfilled municipal solid waste and can be used for monitoring the progress of in situ aeration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Measurement of precipitation using lysimeters
NASA Astrophysics Data System (ADS)
Fank, Johann; Klammler, Gernot
2013-04-01
Austria's alpine foothill aquifers contain important drinking water resources, but are also used intensively for agricultural production. These groundwater bodies are generally recharged by infiltrating precipitation. A sustainable water resources management of these aquifers requires quantifying real evapotranspiration (ET), groundwater recharge (GR), precipitation (P) and soil water storage change (ΔS). While GR and ΔS can be directly measured by weighable lysimeters and P by separate precipitation gauges, ET is determined by solving the climatic water balance ET = P GR ± ΔS. According to WMO (2008) measurement of rainfall is strongly influenced by precipitation gauge errors. Most significant errors result from wind loss, wetting loss, evaporation loss, and due to in- and out-splashing of water. Measuring errors can be reduced by a larger area of the measuring gaugés surface and positioning the collecting vessel at ground level. Modern weighable lysimeters commonly have a surface of 1 m², are integrated into their typical surroundings of vegetation cover (to avoid oasis effects) and allow scaling the mass change of monolithic soil columns in high measuring accuracy (0.01 mm water equivalent) and high temporal resolution. Thus, also precipitation can be quantified by measuring the positive mass changes of the lysimeter. According to Meissner et al. (2007) also dew, fog and rime can be determined by means of highly precise weighable lysimeters. Furthermore, measuring precipitation using lysimeters avoid common measuring errors (WMO 2008) at point scale. Though, this method implicates external effects (background noise, influence of vegetation and wind) which affect the mass time series. While the background noise of the weighing is rather well known and can be filtered out of the mass time series, the influence of wind, which blows through the vegetation and affects measured lysimeter mass, cannot be corrected easily since there is no clear relation between wind speeds and the measured outliers of lysimeter mass. Moreover, the influence of wind seems to be varying for different lysimeters. At the agricultural test site Wagna, Austria, two precipitation gauges in high temporal resolution (weighing-recording gauge and tipping-bucket gauge; both 200 cm² surface; measuring height 1.5 m) are installed. Furthermore, mass time series of various lysimeters cultivated with different vegetation is also available for the same location. Appropriate methods to compensate the influence of wind on measuring precipitation using lysimeters are investigated and results between the different measuring devices are compared. Results show that precipitation measured with lysimeters is generally higher, especially compared to the weighing-recording gauge. In addition it is detected that also the data interval of lysimeter mass time series used for quantifying precipitation (e.g., 1 day, 1 hour, 30 minutes, 10 minutes) is a crucial factor and influences the result. Summarizing, the potential of using highly precise weighable lysimeters for measuring precipitation at the point scale is rather high. However, methods used to compensate external effects on lysimeter weighing have to be enhanced for a global application of using lysimeters as precipitation gauges. Meissner, R., J. Seeger, H. Rupp, M. Seyfarth & H. Borg, 2007: Measurement of dew, fog, and rime with a high-precision gravitation Lysimeter. J. Plant Nutr. Soil Sci. 2007, 170, p. 335-344. WMO (World Meteorological Organization), 2008. Guide to Meteorological Instruments and Methods of Observation. WMO-No. 8, 140 pp.
NASA Astrophysics Data System (ADS)
Queloz, Pierre; Carraro, Luca; Bertuzzo, Enrico; Botter, Gianluca; Rao, P. Suresh C.; Rinaldo, Andrea
2014-05-01
Experimental data have been collected over a year-long period in a large weighing lysimeter. Natural climatic forcing occurs, except for rainfall which is artificially generated as a given Poisson process at a daily timescale. A constant water table is maintained and excess infiltrated water is discharged through the outlet at the bottom of the lysimeter. Soil water storage and evapotranspiration fluxes (accentuated by a willow tree planted in the lysimeter) were monitored throughout the experiment, so that accurate time series of all in- and out-fluxes are available. Five rainfall inputs were marked with individually traceable passive solutes (fluorobenzoic acids) at various initial soil moisture conditions during the first month of the experiment. Tracer concentrations were measured in the soil water and in the discharge at high temporal resolution. We aim here at directly measuring solute travel times, a proxy of hydrological transport with the main advantage to blend the bulk effects of water velocity distributions. The drivers of water displacement in this hydrological setting - and in any other realistic case - have intrinsically a non-stationary nature (e.g. random rainfall occurrence, seasonal evapotranspiration cycles and moisture-related soil connectivity), but the integration of these processes over a larger time scale (i.e. typically the time scale of the mean travel time) often lead to the stationary assumption thus considerably simplifying the data interpretation. Results clearly show that even in such a hydrological system with reduced complexity, experimental travel time distributions are non-stationary and are strongly influenced by the states encountered by the system during the transport phase. The measurements help at identifying the relevant key features influencing the experimental bulk transport. Modeling efforts have demonstrated the inability of a plug-flow reactor (old-water first reservoir) to reproduce the solute outfluxes dynamics. On the other hand, the well-mixed reactor performs well at long term, but hardly applies for the period directly following the tracer injection.
Wong, Kelvin; Harrigan, Tim; Xagoraraki, Irene
2012-12-15
Much of the land available for application of biosolids is cropland near urban areas. Biosolids are often applied on hay or grassland during the growing season or on corn ground before planting or after harvest in the fall. In this study, mesophilic anaerobic digested (MAD) biosolids were applied at 56,000 L/ha on a sandy-loam soil over large containment lysimeters seeded to perennial covers of orchardgrass (Dactylis glomerata L.), switchgrass (Panicum virgatum), or planted annually to maize (Zea mays L.). Portable rainfall simulators were to maintain the lysimeters under a nearly saturated (90%, volumetric basis) conditions. Lysimeter leachate and surface ponded water samples were collected and analyzed for somatic phage, adenoviruses, and anionic (chloride) and microbial (P-22 bacteriophage) tracers. Neither adenovirus nor somatic phage was recovered from the leachate samples. P-22 bacteriophage was found in the leachate of three lysimeters (removal rates ranged from 1.8 to 3.2 log(10)/m). Although the peak of the anionic tracer breakthrough occurred at a similar pore volume in each lysimeter (around 0.3 pore volume) the peak of P-22 breakthrough varied between lysimeters (<0.1, 0.3 and 0.7 pore volume). The early time to peak breakthrough of anionic and microbial tracers indicated preferential flow paths, presumably from soil cracks, root channels, worm holes or other natural phenomena. The concentration of viral contaminants collected in ponded surface water ranged from 1 to 10% of the initial concentration in the applied biosolids. The die off of somatic phage and P-22 in the surface water was fit to a first order decay model and somatic phage reached background level at about day ten. In conclusion, sandy-loam soils can effectively remove/adsorb the indigenous viruses leached from the land-applied biosolids, but there is a potential of viral pollution from runoff following significant rainfall events when biosolids remain on the soil surface. Copyright © 2012 Elsevier Ltd. All rights reserved.
Field performance of alternative landfill covers vegetated with cottonwood and eucalyptus trees.
Abichou, Tarek; Musagasa, Jubily; Yuan, Lei; Chanton, Jeff; Tawfiq, Kamal; Rockwood, Donald; Licht, Louis
2012-01-01
A field study was conducted to assess the ability of landfill covers to control percolation into the waste. Performance of one conventional cover was compared to that of two evapotranspiration (ET) tree covers, using large (7 x 14 m) lined lysimeters at the Leon County Solid Waste management facility in Tallahassee, Florida. Additional unlined test sections were also constructed and monitored in order to compare soil water storage, soil temperature, and tree growth inside lysimeters and in unlined test sections. The unlined test sections were in direct contact with landfill gas. Surface runoff on the ET covers was a small proportion of the water balance (1% of precipitation) as compared to 13% in the conventional cover. Percolation in the ET covers averaged 17% and 24% of precipitation as compared to 33% in the conventional cover. On average, soil water storage was higher in the lined lysimeters (429 mm) compared to unlined test sections (408 mm). The average soil temperature in the lysimeters was lower than in the unlined test sections. The average tree height inside the lysimeters was not significantly lower (8.04 mfor eucalyptus and 7.11 mfor cottonwood) than outside (8.82 m for eucalyptus and 8.01 m for cottonwood). ET tree covers vegetated with cottonwood or eucalyptus are feasible for North Florida climate as an alternative to GCL covers.
NASA Astrophysics Data System (ADS)
Mykhailova, Larysa; Raab, Thomas; Gypser, Stella; Fischer, Thomas
2016-04-01
Representing a set of various micro-biocoenoses, biocrusts often reside in adjacent patches, which not necessarily relate to structural elements of the habitat, like (micro-) topography or vegetational patterns. Such biocrust patches may become more stable through the formation of mutually dependent ecohydrological regimes. For example, algal patches inhibiting infiltration and generating runoff alternate with runoff-receiving moss patches possessing high water holding capacities. Here, we preliminarily report on a lysimeter field experiment where natural biocrust isolates were used for surface inoculation to (I) prove stochastic vs. deterministic biocrust development and (II) to quantitatively relate biocrust development to soil hydrology. Lysimeter sand was collected from 3-4 m below surface at natural dune outcrops in south-eastern Brandenburg, Germany (Glashütte (GLA) and Neuer Lugteich (LUG)), where biocrust samples were collected at the respective dune bases. The lysimeters were designed to prevent runoff. In a completely randomized full-factorial design, three factors were considered. (A) Inocolum in three treatments (bare control, mosses, algae), (B) mineral substrate texture in two treatments (GLA: 55% and LUG: 79% particles >630 μm), and (C) surface compaction in two treatments (control, 41.5 kN m-2 for 30 seconds). The samples were kept dry and re-moistened to -60 hPa two days before inoculation. After a species inventory, the inoculate was isolated by gently washing off sand particles from the biocrust samples. Algal/lichen crusts were dominated by Zygogonium ericetorum and Cladonia sp. at both sites. All moss crusts were dominated by Polytrichum piliferum and Ceratodon purpureus, whereas Brachythecium albicans was present at GLA only. 20 g of homogenized moist inoculate were spread over the surface of each lysimeter (Ø 19 cm, 22 cm depth). We performed autochthonous inoculation, i.e. biocrust isolates collected from GLA were used for inoculation of GLA substrate etc. The experiment started at 12.02.2015 and was located at an open area in the vicinity of a meteorological station, where all relevant for HYDRUS modeling data, as well as global radiation have been recorded every 10 min. Crust development was monitored by non-destructive NDVI imaging and a per lysimeter determination of the areal share of biocrust developmental stages: mineral surface (NDVI ≤ 0), BSC1 (0 < NDVI ≤ 0.15), BSC2 (0.15 < NDVI ≤ 0.40) and BSC3 (NDVI > 0.40). The general water balance equation and the amount of lysimeter leachate were used to determine evaporation and changes in water stocks by regular weighing. Biomass growth was inhibited in summer compared to autumn, where mosses developed faster than algae. Finer grained substrate promoted biocrust growth. Evapotranspiration increased with biomass development, presumably because the amount of water held close to the surface increased with biomass. It can be expected that this effect strengthens with increasing amounts of silt and clay. Biodiversity studies are pending, but incipient biocrust growth in the controls points to atmogenic superinfection. So far, it can be concluded that availability of water, depending on both precipitation and substrate texture, were the driving factors of biocrust development. Apart from runoff losses in hillslope conditions, biocrusts are hypothesized to take advantage over their vascular competitors by preventing water infiltration into deeper soil through increased evapotranspiration.
Leaching behaviour of coal-ash: a case study.
Hajarnavis, M R; Bhide, A D
2003-10-01
Leaching of trace elements from fly ash dumps to subsoil layer due to the rain water results in contamination of ground water. The ground water pollution due to fly ash deposition on land so occurring was assessed by simulating the disposal site conditions using two lysimeter with two different soils. Leachate was collected and analysed daily to help understand the phenomenon of leaching of fly-ash constituents in the environment. The trace metals and physico-chemical parameters of fly ash and soil used were measured before and after the experiment. Results of analysis of soil and fly ash samples were then compared with the results of lysimeter-I and lysimeter-II. The study reveals that metals respond differently at dumping site while reacting with soil and water.
Upward movement of plutonium to surface sediments during an 11-year field study.
Kaplan, D I; Demirkanli, D I; Molz, F J; Beals, D M; Cadieux, J R; Halverson, J E
2010-05-01
An 11-year lysimeter study was established to monitor the movement of Pu through vadose zone sediments. Sediment Pu concentrations as a function of depth indicated that some Pu moved upward from the buried source material. Subsequent numerical modeling suggested that the upward movement was largely the result of invading grasses taking up the Pu and translocating it upward. The objective of this study was to determine if the Pu of surface sediments originated from atmosphere fallout or from the buried lysimeter source material (weapons-grade Pu), providing additional evidence that plants were involved in the upward migration of Pu. The (240)Pu/(239)Pu and (242)Pu/(239)Pu atomic fraction ratios of the lysimeter surface sediments, as determined by Thermal Ionization Mass Spectroscopy (TIMS), were 0.063 and 0.00045, respectively; consistent with the signatures of the weapons-grade Pu. Our numerical simulations indicate that because plants create a large water flux, small concentrations over multiple years may result in a measurable accumulation of Pu on the ground surface. These results may have implications on the conceptual model for calculating risk associated with long-term stewardship and monitored natural attenuation management of Pu contaminated subsurface and surface sediments. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Mobilization and transport of pollutants in an abandoned dump in tropical conditions
NASA Astrophysics Data System (ADS)
Pelinson, Natalia; Shinzato, Marjolly; Wendland, Edson
2017-04-01
The valuation and treatment techniques of municipal solid waste (MSW) in developing countries are not sufficiently developed, and therefore, the volume of waste destined for disposal still presents significant amounts. In Brazil, the more common practice of final destination is the deposition on the soil, due to its simple operation and low cost compared to other techniques. One of the most serious negative environmental impacts in the irregular disposal of solid waste is the contamination of soil and groundwater by waste leachates. The final disposal in dumps is forbidden by Brazilian law since 2010, nevertheless, the public administration is not prepared to monitor waste disposal areas and the risk of contamination of water. In this sense, a research has been developed in an abandoned dump installed over an outcrop of the Botucatu Formation, which is part of the Guarani Aquifer System (SAG) and therefore, is an area of high water vulnerability. In this dump, an old gully was used as a final waste disposal area for urban, construction and demolition, medical and industrial waste from 1980 to 1996. Since the end of the deposition, the waste body is kept with inefficient hydraulic control. The water infiltration due to rainfall promotes the mobility of contaminant in the deposit. The present water quality in the dump has been monitored through physical and chemical analysis of samples collected in the unsaturated zone (inside the waste mass using vacuum lysimeters) and in the saturated zone (monitoring wells). The rainfall variation observed in the years 2014 (dry year) and 2015 (wet year) contributed significantly to evaluate the mobilization of pollutants within the dump. The reduction of the water volume that infiltrates the waste mass affected the quality of the leachate collected in the lysimeters. The groundwater collected in monitoring wells outside the dump area presents low turbidity values (<1.50 NTU) in relation to wells located downstream of the dump showed values greater than 10, a similar behavior was observed for the conductivity (>1000 µS.cma-1 in leachate) and chlorides values (>800 mg.L-1). Contaminated water flows through the bottom of the dump. In addition, this research also indicates amendments of surface water downstream of the dump area.
Chemical evaluation of soil-solution in acid forest soils
Lawrence, G.B.; David, M.B.
1996-01-01
Soil-solution chemistry is commonly studied in forests through the use of soil lysimeters.This approach is impractical for regional survey studies, however, because lysimeter installation and operation is expensive and time consuming. To address these problems, a new technique was developed to compare soil-solution chemistry among red spruce stands in New York, Vermont, New Hampshire, Maine. Soil solutions were expelled by positive air pressure from soil that had been placed in a sealed cylinder. Before the air pressure was applied, a solution chemically similar to throughfall was added to the soil to bring it to approximate field capacity. After the solution sample was expelled, the soil was removed from the cylinder and chemically analyzed. The method was tested with homogenized Oa and Bs horizon soils collected from a red spruce stand in the Adirondack Mountains of New York, a red spruce stand in east-central Vermont, and a mixed hardwood stand in the Catskill Mountains of New York. Reproducibility, effects of varying the reaction time between adding throughfall and expelling soil solution (5-65 minutes) and effects of varying the chemical composition of added throughfall, were evaluated. In general, results showed that (i) the method was reproducible (coefficients of variation were generally < 15%), (ii) variations in the length of reaction-time did not affect expelled solution concentrations, and (iii) adding and expelling solution did not cause detectable changes in soil exchange chemistry. Concentrations of expelled solutions varied with the concentrations of added throughfall; the lower the CEC, the more sensitive expelled solution concentrations were to the chemical concentrations of added throughfall. Addition of a tracer (NaBr) showed that the expelled solution was a mixture of added solution and solution that preexisted in the soil. Comparisons of expelled solution concentrations with concentrations of soil solutions collected by zero-tension and tension lysimetry indicated that expelled solution concentrations were higher than those obtained with either type of lysimeter, although there was less difference with tension lysimeters than zero-tension lysimeters. The method used for collection of soil solution should be taken into consideration whenever soil solution data are being interpreted.
NASA Astrophysics Data System (ADS)
Doctor, D. H.; Sebestyen, S. D.; Aiken, G. R.; Shanley, J. B.; Kendall, C.; Boyer, E. W.
2006-12-01
Increased DOC flux in streams and rivers is commonly observed during high runoff regimes, however DOC concentrations alone do not provide information about multiple sources or pathways of DOC to streams. In an effort to gain this information, we measured DOC concentrations and stable carbon isotope composition (δ13C-DOC) on samples collected at high-frequency during events at Sleepers River Research Watershed in Vermont, USA. During snowmelt and storm events, peaks in stream DOC concentration (up to 10.5 mg/L) were coincident with peaks in flow. Stream water δ13C-DOC measurements ranged between -23.7‰ and - 28.9‰ and indicated changing sources of DOC during events; the highest δ13C-DOC values occurred consistently at the lowest flows, and the lowest δ13C-DOC values occurred with peaks in discharge. Water samples collected from shallow wells and stacked soil lysimeters showed the highest DOC concentrations in the most shallow (<0.5 m) lysimeter waters, and the lowest concentrations in the deeper (>1.5 m) well waters. Wells and lysimeters exhibited a range of δ13C-DOC values similar to those observed in the stream; however, samples collected from shallow horizons at nested wells and lysimeters consistently showed lower δ13C-DOC values than those from greater depths. Maple leaf litter collected from across the watershed provided an end-member of fresh organic material, with average δ13C composition of -31.3±0.7‰ (n=57), which is lower than the lowest measured DOC values in any of the stream, well, or lysimeter waters. A subset of stream waters were fractionated onto XAD4 and XAD8 resins; the hydrophobic acid fraction (XAD8) had consistently lower δ13C values than the transphilic acid fraction (XAD4), and both of these were lower than those of the bulk DOC. Samples with lower δ13C-DOC values also exhibited higher SUVA-254 values, i.e. greater aromaticity. Thus, lower δ13C-DOC values are interpreted as an indicator of relatively "fresh", more aromatic and more biologically labile material while higher δ13C-DOC values indicate relatively more degraded material. Since lower δ13C-DOC values were observed in the shallowest well and lysimeter waters and in stream water during periods of highest DOC flux, we surmise that fresh DOC is mobilized to the stream along relatively shallow flowpaths during high flows, and that a second source of more degraded DOC supplies background concentrations to the stream at lower flows.
Hubbell, Joel M.; Sisson, James B.
2003-08-26
A method of retrieving a liquid sample comprises providing a portable lysimeter including a semi-permeable membrane and a chamber in fluid communication with the semi-permeable membrane; making a hole at a site from which a liquid sample is desired; evacuating the chamber by applying a vacuum to the chamber; lowering the portable lysimeter into the hole; obtaining a sample in the chamber; and retrieving the lysimeter from the bore; wherein it is not necessary to backfill the bore. A portable lysimeter includes a semi-permeable member and a chamber in fluid communication with the semi-permeable membrane.
NASA Astrophysics Data System (ADS)
Lajtha, K.; Strid, A.; Lee, B. S.
2014-12-01
Dissolved organic matter (DOM) production and transport play an important role in regulating organic matter (OM) distribution through a soil profile and ultimately, OM stabilization or export to aquatic systems. The contributions of varying OM inputs to the quality and amount of DOM as it passes through a soil profile remain relatively unknown. The Detrital Input and Removal Treatment (DIRT) site at the H. J. Andrews Experimental Forest in Oregon has undergone 17 years of litter, wood and root input manipulations and allows us to guage shifts in DOM chemistry induced by long-term changes to aboveground and belowground OM additions and exclusions. Using fluorescence and UV spectroscopy to characterize fluorescent properties, extent of decomposition, and sources of DOM in streams and soil solutions collected with lysimeters and soil extractions, we have assessed the importance of fresh OM inputs to DOM chemistry. Soil extracts from DIRT plots had a higher fluorescence index (FI) than lysimeter solutions or stream water. A high FI in surface water is generally interpreted as indicative of a high proportion of microbially-derived DOM. However, we suspect that the high FI in soil extracts is due to a higher proportion of non-aromatic DOM from fresh soil that microorganisms consume in transit through the soil profile to lysimeters or to streams. High redox index (RI) values were observed in lysimeters from the April 2014 sampling compared with the November 2013 sampling. These RI values show evidence of more reducing conditions at the end of the rainy season in the spring compared to the onset of the rainy season in the fall. Lysimeter water collected in No Input, No Litter, and No Root treatments contained high proportions of protein, suggesting the absence of carbon inputs changes activities of the microbial community. Observed variations reflect the viability of using fluorescent properties to explore the terrestrial-aquatic interface.
Methane production from food waste leachate in laboratory-scale simulated landfill.
Behera, Shishir Kumar; Park, Jun Mo; Kim, Kyeong Ho; Park, Hung-Suck
2010-01-01
Due to the prohibition of food waste landfilling in Korea from 2005 and the subsequent ban on the marine disposal of organic sludge, including leachate generated from food waste recycling facilities from 2012, it is urgent to develop an innovative and sustainable disposal strategy that is eco-friendly, yet economically beneficial. In this study, methane production from food waste leachate (FWL) in landfill sites with landfill gas recovery facilities was evaluated in simulated landfill reactors (lysimeters) for a period of 90 d with four different inoculum-substrate ratios (ISRs) on volatile solid (VS) basis. Simultaneous biochemical methane potential batch experiments were also conducted at the same ISRs for 30 d to compare CH(4) yield obtained from lysimeter studies. Under the experimental conditions, a maximum CH(4) yield of 0.272 and 0.294 L/g VS was obtained in the batch and lysimeter studies, respectively, at ISR of 1:1. The biodegradability of FWL in batch and lysimeter experiments at ISR of 1:1 was 64% and 69%, respectively. The calculated data using the modified Gompertz equation for the cumulative CH(4) production showed good agreement with the experimental result obtained from lysimeter study. Based on the results obtained from this study, field-scale pilot test is required to re-evaluate the existing sanitary landfills with efficient leachate collection and gas recovery facilities as engineered bioreactors to treat non-hazardous liquid organic wastes for energy recovery with optimum utilization of facilities. 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Totsche, K. U.; Hensel, D.; Jann, S.; Jaesche, P.; Kögel-Knabner, I.; Scheibke, R.
The contamination of the unsaturated soil zone with organic pollutants (PAH, BTEX, PCB, Phenols, etc.) and pollutant mixtures, e.g. light/dense non-aqueous phase liq- uids (L/D-NAPLs), represents a specific challenge for sanitation and remediation of contaminated sites. Monitored natural attenuation as an alternative option for remedi- ation of such sites requires (1) the proof of an effective pollutant reduction potential and (2) the proof that a further spreading of the contaminants and their potentially toxic metabolites is minimized to an acceptable minimum concentration level. These demands apply equally likely to contaminated soil and groundwater environments. However, a major problem arises when the task is to monitor the release and transport of contaminants within the unsaturated soil zone over a longer period (> 10 years) of time at an expenditure as small as possible. The aim of our presentation is to employ and test a survey technique to monitor pollutant release and redistribution within the unsaturated soil zone in the context of MNA. The proposed technique is based on the combination of laboratory-column and field-lysimeter studies. The first is used to ac- quire knowledge on the governing processes, the latter is used to monitor release and transport of the contaminants.
Processing and comparison of two weighing lysimeters at the Rietholzbach catchment
NASA Astrophysics Data System (ADS)
Ruth, Conall; Michel, Dominik; Hirschi, Martin; Seneviratne, Sonia I.
2017-04-01
Weighing lysimeters are a well-established means of accurately obtaining local-scale estimates of actual evapotranspiration and seepage within soils. Current state-of-the-art devices have very high temporal resolutions and weighing precisions, and can also be used to estimate precipitation. These, however, require complex filtering to first remove noise (e.g. resulting from wind influence) from the mass measurements. At the Rietholzbach research catchment in northeastern Switzerland, two weighing lysimeters are in operation. One is a recently-installed state-of-the-art mini-lysimeter with a pump-controlled lower boundary; the other is a large free-drainage lysimeter in operation since 1976. To determine the optimal processing approach for the mini-lysimeter, a number of reported approaches were applied, with the resulting evapotranspiration and precipitation records being compared to those of the large lysimeter and a tipping bucket, respectively. Out of those examined, we found the Adaptive-Window and Adaptive-Threshold (AWAT) filter and a similar, non-adaptive approach, to perform best. Using the AWAT-filtered mini-lysimeter data as a reference, additional, retrospectively-applicable processing steps for the large lysimeter were then investigated. Those found to be most beneficial were the application of a three-point (10-min) moving mean to the mass measurements, and the setting-to-zero of estimated evapotranspiration and condensation in hours with greater-than-zero reference tipping bucket precipitation recordings. A comparison of lysimeter mass increases associated with precipitation revealed that the large lysimeter experiences a previously unknown under-catch of 11.1% (for liquid precipitation). Daily seepage measurements were found to be generally greater from the mini-lysimeter, probably reflecting the reduced input of water to the large lysimeter due to this under-catch.
Is It Working? Lysimeter Monitoring in the Southern Willamette Valley Groundwater Management Area
Groundwater nitrate contamination affects thousands of households in the southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Layton, Alice; Smart, Abby E.; Chauhan, Archana
Pseudomonas fluorescens HK44 represented the first genetically engineered microorganism to be approved in the United States for field release for applications related to subsurface soil bioremediation. In October 1996, strain HK44 was introduced into a replicated semi-contained array of soil lysimeters where its luciferase (luxCDABE)-based bioluminescent response to soil-borne polycyclic aromatic hydrocarbon (PAH) contaminants was detected and monitored for the next two years. At the termination of this experiment, it was decided that the lysimeters remain available for future longer-term monitoring efforts, and were thus covered and left essentially undisturbed until the initiation of a large sampling event in 2010,more » fourteen years after the original release. Although after extensive sampling culturable HK44 cells were not found, additional molecular and metagenomic analyses indicated that genetic signatures of HK44 cells still persisted, with genes diagnostic for the bioluminescent transposon carried by strain HK44 (luxA and tetA) being found at low concentrations (< 5000 copies/g).« less
Lysimeter study to investigate the effect of rainfall patterns on leaching of isoproturon.
Beulke, Sabine; Brown, Colin D; Fryer, Christopher J; Walker, Allan
2002-01-01
The influence of five rainfall treatments on water and solute leaching through two contrasting soil types was investigated. Undisturbed lysimeters (diameter 0.25 m, length 0.5 m) from a sandy loam (Wick series) and a moderately structured clay loam (Hodnet series) received autumn applications of the radio-labelled pesticide isoproturon and bromide tracer. Target rainfall plus irrigation from the end of November 1997 to May 1998 ranged from drier to wetter than average (235 to 414 mm); monthly rainfall was varied according to a pre-selected pattern or kept constant (triplicate lysimeters per regime). Leachate was collected at intervals and concentrations of the solutes were determined. Total flow (0.27-0.94 pore volumes) and losses of bromide (3-80% of applied) increased with increasing inputs of water and were larger from the Wick sandy loam than from the Hodnet clay loam soil. Matrix flow appeared to be the main mechanism for transport of isoproturon through the Wick soil whereas there was a greater influence of preferential flow for the Hodnet lysimeters. The total leached load of isoproturon from the Wick lysimeters was 0.02-0.26% of that applied. There was no clear variation in transport processes between the rainfall treatments investigated for this soil and there was an approximately linear relationship (r2 = 0.81) between leached load and total flow. Losses of isoproturon from the Hodnet soil were 0.03-0.39% of applied and there was evidence of enhanced preferential flow in the driest and wettest treatments. Leaching of isoproturon was best described by an exponential relationship between load and total flow (r2 = 0.62). A 45% increase in flow between the two wettest treatments gave a 100% increase in leaching of isoproturon from the Wick soil. For the Hodnet lysimeters, a 35% increase in flow between the same treatments increased herbicide loss by 325%.
Revisiting hydraulic hysteresis based on long-term monitoring of hydraulic states in lysimeters
NASA Astrophysics Data System (ADS)
Hannes, M.; Wollschläger, U.; Wöhling, T.; Vogel, H.-J.
2016-05-01
Hysteretic processes have been recognized for decades as an important characteristic of soil hydraulic behavior. Several studies confirmed that wetting and drying periods cannot be described by a simple functional relationship, and that some nonequilibrium of the water retention characteristics has to be taken into account. A large number of models describing the hysteresis of the soil water retention characteristic were successfully tested on soil cores under controlled laboratory conditions. However, its relevance under field conditions under natural forcings has rarely been investigated. In practice, the modeling of field soils usually neglects the hysteretic nature of soil hydraulic properties. In this study, long-term observations of water content and matric potential in lysimeters of the lysimeter network TERENO-SoilCan are presented, clearly demonstrating the hysteretic behavior of field soils. We propose a classification into three categories related to different time scales. Based on synthetic and long-term monitoring data, three different models of hysteresis were applied to data sets showing different degrees of hysteresis. We found no single model to be superior to the others. The model ranking depended on the degree of hysteresis. All models were able to reflect the general structure of hysteresis in most cases but failed to reproduce the detailed trajectories of state variables especially under highly transient conditions. As an important result we found that the temporal dynamics of wetting and drying significantly affects these trajectories which should be accounted for in future model concepts.
Healy, Richard W.; Rice, Cynthia A.; Bartos, Timothy T.
2012-01-01
The Powder River Structural Basin is one of the largest producers of coal-bed natural gas (CBNG) in the United States. An important environmental concern in the Basin is the fate of groundwater that is extracted during CBNG production. Most of this produced water is disposed of in unlined surface impoundments. A 6-year study of groundwater flow and subsurface water and soil chemistry was conducted at one such impoundment, Skewed Reservoir. Hydrologic and geochemical data collected as part of that study are contained herein. Data include chemistry of groundwater obtained from a network of 21 monitoring wells and three suction lysimeters and chemical and physical properties of soil cores including chemistry of water/soil extracts, particle-size analyses, mineralogy, cation-exchange capacity, soil-water content, and total carbon and nitrogen content of soils.
Long-term effects of crude oil contamination and bioremediation in a soil ecosystem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, K.; Levetin, E.; Buck, P.
1995-12-31
Analysis of samples taken from three experimental soil lysimeters demonstrate marked effects on the soil chemistry and on bacterial, fungal, nematode, and plant communities three years after the application of crude oil. The lysimeters are located at the Amoco Production Research Environmental Test Facility in Rogers County, OK, and were originally used to evaluate the effectiveness of managed (application of fertilizer and water, one lysimeter) vs. unmanaged bioremediation (one lysimeter) of Michigan Silurian crude oil compared to one uncontaminated control lysimeter. Five, two-foot-long soil cores were extracted from each lysimeter, each divided into three sections, and the like sections mixedmore » together to form composited soil samples. All subsequent chemical and microbiological analyses were performed on these nine composited samples. Substantial variation was found among the lysimeters for certain soil chemical characteristics [% moisture, pH, total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH{sub 4}-N), phosphate phosphorous (PO{sub 4}-P), and sulfate (SO{sub 4}{sup -2})]. The managed lysimeter had 10% the level of total petroleum hydrocarbons (TPH-IR) as did the unmanaged lysimeter. Assessment of the microbial community was performed for heterotropic: bacteria, fungi, and aromatic hydrocarbon-degrading bacteria by dilution onto solid media. Hydrocarbon degrading bacteria were elevated in both oil-contaminated lysimeters. Nematodes were extracted from soil samples, identified to genus, and classified according to their mode of nutrition. All vegetation and roots were removed from each lysimeter after the soil samples were taken, representative plants were pressed for identification, and the dry weight of all plants (total biomass) for each lysimeter was determined. The plant species were predominantly those found in disturbed habitats.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wimmer, Bernhard, E-mail: bernhard.wimmer@ait.ac.at; Hrad, Marlies; Huber-Humer, Marion
Highlights: ► The isotopic signature of δ{sup 13}C-DIC of leachates is linked to the reactivity of MSW. ► Isotopic signatures of leachates depend on aerobic/anaerobic conditions in landfills. ► In situ aeration of landfills can be monitored by isotope analysis in leachate. ► The isotopic analysis of leachates can be used for assessing the stability of MSW. ► δ{sup 13}C-DIC of leachates helps to define the duration of landfill aftercare. - Abstract: Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated themore » isotopic signatures of δ{sup 13}C, δ{sup 2}H and δ{sup 18}O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ{sup 13}C-value of the dissolved inorganic carbon (δ{sup 13}C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ{sup 13}C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ{sup 13}C-DIC of −20‰ to −25‰. The production of methane under anaerobic conditions caused an increase in δ{sup 13}C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a δ{sup 13}C-DIC of about −20‰. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidation–reduction status of MSW landfills. Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and stability of the organic matter in landfilled municipal solid waste and can be used for monitoring the progress of in situ aeration.« less
Lysimeter Research Group - A scientific community network for lysimeter research
NASA Astrophysics Data System (ADS)
Cepuder, Peter; Nolz, Reinhard; Bohner, Andreas; Baumgarten, Andreas; Klammler, Gernot; Murer, Erwin; Wimmer, Bernhard
2014-05-01
A lysimeter is a vessel that isolates a volume of soil between ground surface and a certain depth, and includes a sampling device for percolating water at its bottom. Lysimeters are traditionally used to study water and solute transport in the soil. Equipped with a weighing system, soil water sensors and temperature sensors, lysimeters are valuable instruments to investigate hydrological processes in the system soil-plant-atmosphere, especially fluxes across its boundary layers, e.g. infiltration, evapotranspiration and deep drainage. Modern lysimeter facilities measure water balance components with high precision and high temporal resolution. Hence, lysimeters are used in various research disciplines - such as hydrology, hydrogeology, soil science, agriculture, forestry, and climate change studies - to investigate hydrological, chemical and biological processes in the soil. The Lysimeter Research Group (LRG) was established in 1992 as a registered nonprofit association with free membership (ZVR number: 806128239, Austria). It is organized as an executive board with an international scientific steering committee. In the beginning the LRG focused mainly on nitrate contamination in Austria and its neighboring countries. Today the main intention of the LRG is to advance interdisciplinary exchange of information between researchers and users working in the field of lysimetry on an international level. The LRG also aims for the dissemination of scientific knowledge to the public and the support of decision makers. Main activities are the organization of a lysimeter conference every two years in Raumberg-Gumpenstein (Styria, Austria), the organization of excursions to lysimeter stations and related research sites around Europe, and the maintenance of a website (www.lysimeter.at). The website contains useful information about numerous European lysimeter stations regarding their infrastructure, instrumentation and operation, as well as related links and references which may help scientists to find an appropriate research site for potential cooperation projects. Currently, the website is becoming revised and updated. Up to now the LRG counts 485 registered members from 54 countries. Registration is possible free of charge via www.lysimeter.at. The LRG wants to attract new members from all over the world, intensify co-operation with other research groups, and enhance and support new and innovative ideas and technologies in lysimeter research.
Construction and evaluation of an inexpensive weighing lysimeter for studying contaminant transport
NASA Astrophysics Data System (ADS)
Corwin, D. L.; LeMert, R. D.
1994-01-01
A description is provided of an above-ground, weighing lysimeter that minimizes the edge flow of water which can occur between the soil and the wall of the casing. The lysimeter was designed to study water flux and the movement of inorganic and/or organic pollutants as they pass through and beyond the root zone. The lysimeter is instrumented at selected depths with thermistors, soil solution extractors, time-domain reflectometry probes, gas extractors and tensiometers. These sensors provide temperature measurements, soil solution samples, water content measurements, soil atmosphere samples and water potential measurements. The horizontal insertion of these instruments from the side of the lysimeter reduces and channeling that might occur along the sides of the instruments, if they had been inserted vertically. Annular-ring baffles are located at selected depths to reduce edge flow between the lysimeter casing and the column of soil. The baffles redirect water flow away from the edge of the column. Data are presented that show a reduction in the hydraulic bypass of the lysimeter compared to a lysimeter without baffles. The total cost of a single lysimeter including materials and labor is under US $4000.
A method for installing zero-tension pan and wick lysimeters in soil
USDA-ARS?s Scientific Manuscript database
Zero-tension pan lysimeters and passive capillary fiberglass wick lysimeters are useful in determining water quality and volumetric aspects of subsurface water flow. Installation of pan and wick lysimeters beneath undisturbed soil may be complicated by the tendency for the soil to cave-in as the lys...
A new automated passive capillary lysimeter for logging real-time drainage water fluxes
USDA-ARS?s Scientific Manuscript database
Effective monitoring of chemical transport through the soil profile requires accurate and appropriate instrumentation to measure drainage water fluxes below the root zone of cropping system. The objectives of this study were to methodically describe in detail the construction and installation of a n...
Field scale lysimeters to assess nutrient management impacts on runoff
USDA-ARS?s Scientific Manuscript database
Most empirical studies on the impact of field management on runoff water quality rely on edge-of-field monitoring, which is generally unreplicated and prone to high variances, or small plots, which constrain the use of conventional farm equipment and can hinder insight into landscape processes drivi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G. P.; Whiteside, T. S.
The E-Area Vadose Zone Monitoring System (VZMS) includes lysimeter sampling points at many locations alongside and angling beneath the Engineered Trench #1 (ET1) disposal unit footprint. The sampling points for ET1 were selected for this study because collectively they showed consistently higher tritium (H-3) concentrations than lysimeters associated with other trench units. The VZMS tritium dataset for ET1 from 2001 through 2015 comprises concentrations at or near background levels at approximately half of locations through time, concentrations up to about 600 pCi/mL at a few locations, and concentrations at two locations that have exceeded 1000 pCi/mL. The highest three valuesmore » through 2015 were 6472 pCi/mL in 2014 and 4533 pCi/mL in 2013 at location VL-17, and 3152 pCi/mL in 2007 at location VL-15. As a point of reference, the drinking water standard for tritium and a DOE Order 435.1 performance objective in the saturated zone at the distant 100-meter facility perimeter is 20 pCi/mL. The purpose of this study is to assess whether these elevated concentrations are indicative of a general trend that could challenge 2008 E-Area Performance Assessment (PA) conclusions, or are isolated perturbations that when considered in the context of an entire disposal unit would support PA conclusions.« less
An Isotopic view of water and nitrogen transport through the ...
Groundwater nitrate contamination affects thousands of households in Oregon’s southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen inputs to the GWMA comes from agricultural nitrogen use, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding nitrogen transformations within the vadose zone. In partnership with local farmers, and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years. Our results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitation water isotopes were highly variab
An Isotopic view of water and nitrogen transport through the ...
Background/Question/MethodsGroundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen inputs to the GWMA comes from agricultural nitrogen use, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding nitrogen transformations within the vadose zone. In partnership with local farmers, and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years Results/ConclusionsOur results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitatio
Schnabel, William E; Munk, Jens; Abichou, Tarek; Barnes, David; Lee, William; Pape, Barbara
2012-01-01
In order to test the efficacy ofa cold-region evapotranspiration (ET) landfill cover against a conventional compacted clay (CCL) landfill cover, two pilot scale covers were constructed in side-by-side basin lysimeters (20m x 10m x 2m) at a site in Anchorage, Alaska. The primary basis of comparison between the two lysimeters was the percolation of moisture from the bottom of each lysimeter. Between 30 April 2005 and 16 May 2006, 51.5 mm of water percolated from the ET lysimeter, compared to 50.6 mm for the the CCL lysimeter. This difference was not found to be significant at the 95% confidence level. As part of the project, electrical resistivity tomography (ERT) was utilized to measure and map soil moisture in ET lysimeter cross sections. The ERT-generated cross sections were found to accurately predict the onset and duration of lysimeter percolation. Moreover, ERT-generated soil moisture values demonstrated a strong linear relationship to lysimeter percolation rates (R-Squared = 0.92). Consequently, ERT is proposed as a reliable tool for assessing the function of field scale ET covers in the absence of drainage measurement devices.
Soil carbon changes: comparing flux monitoring and mass balance in a box lysimeter experiment.
S.M. Nay; B.T. Bormann
2000-01-01
Direct measures of soil-surface respiration are needed to evaluate belowground biological processes, forest productivity, and ecosystem responses to global change. Although infra-red gas analyzer {IRGA) methods track reference CO2 flows in lab studies, questions remain for extrapolating IRGA methods to field conditions. We constructed 10 box...
Dizer, Halim; Fischer, Birgit; Sepulveda, Isabel; Loffredo, Elisabetta; Senesi, Nicola; Santana, Fernando; Hansen, Peter-D
2002-01-01
Several experiments were conducted to evaluate the behavior and performance of some potential endocrine disrupters (ECDs). Two in vitro screening assays, one based on MCF7-cell proliferation (E-screen test) and the other on estrogenic receptor activity [enzyme-linked receptor assay (ELRA)], were used for the tests, which were done in lysimeters 80 cm in diameter with depth of 30 cm (shallow) or 90 cm (deep). A sandy soil was used to fill in all lysimeters, which were spiked on the surface with either: (a) a sewage sludge (SS) at a dose equivalent to 20 tons ha-1; (b) a mixture of reference ECDs, comprising 17 alpha- and 17 beta-estradiol (E2), nonylphenol, octylphenol, and bisphenol A at doses 100 times higher than the maximum concentrations respectively found in the applied SS; or (c) a mixture of ECDs and SS. After percolation of the lysimeters with rain and/or artificial water, five leachates were sampled from each lysimeter during a period of 210 days. Immediately after the lysimeter percolation experiments, four and six soil fractions were dissected from, respectively, the 30-cm and 90-cm lysimeters and extracted by water. Both the leachate and soil extract samples were analyzed for their estrogenicity using the assays indicated above. The E-screen assay was highly sensitive only for some leachate and extract samples but gave no response for most leachates and soil extracts. The results of the ELRA assay suggests a significantly higher estrogenicity of leachate samples from shallow lysimeters compared with that of leachates from deep lysimeters. In contrast, the estrogenic effect measured for soil extracts of shallow lysimeters was lower than that measured for soil extracts of deep lysimeters. The results of the E-screen assay suggests the occurrence of a fast mobilization of applied ECDs and a moderate retardation effect of native ECDs contained in applied SS in the sandy soil used in the lysimeters. In lysimeters spiked with a mixture of SS and ECDs, the washing-out effect of ECDs in the first leachate fraction decreased, but the distribution of ECDs in the lysimeters increased. The relatively high estrogenic impact measured for soil water extracts suggests that the ECDs were mostly associated with water-soluble fractions of organic matter and/or water-suspended fractions of the mineral soil matrix. The application of SS to agricultural and forest fields may determine the immobilization of ECDs in soil or their movement to surface and/or groundwater. Therefore, an endocrine risk of exposure exists for the water and soil organisms.
Rudolph, David L.; Kachanoski , R. Gary; Celia, Michael A.; LeBlanc, Denis R.; Stevens, Jonathon H.
1996-01-01
A series of infiltration and tracer experiments was conducted in unsaturated sand and gravel deposits on Cape Cod, Massachusetts. A network of 112 porous cup lysimeters and 168 time domain reflectometry (TDR) probes was deployed at depths from 0.25 to 2.0 m below ground surface along the centerline of a 2-m by 10-m test plot. The test plot was irrigated at rates ranging from 7.9 to 37.0 cm h−1 through a sprinkler system. Transient and steady state water content distributions were monitored with the TDR probes and spatial properties of water content distributions were determined from the TDR data. The spatial variance of the water content tended to increase as the average water content increased. In addition, estimated horizontal correlation length scales for water content were significantly smaller than those estimated by previous investigators for saturated hydraulic conductivity. Under steady state flow conditions at each irrigation rate, a sodium chloride solution was released as a tracer at ground surface and tracked with both the lysimeter and TDR networks. Transect-averaged breakthrough curves at each monitoring depth were constructed both from solute concentrations measured in the water samples and flux concentrations inferred from the TDR measurements. Transport properties, including apparent solute velocities, dispersion coefficients, and total mass balances, were determined independently from both sets of breakthrough curves. The dispersion coefficients tended to increase with depth, reaching a constant value with the lysimeter data and appearing to increase continually with the TDR data. The variations with depth of the solute transport parameters, along with observations of water and solute mass balance and spatial distributions of water content, provide evidence of significant three-dimensional flow during the irrigation experiments. The TDR methods are shown to efficiently provide dense spatial and temporal data sets for both flow and solute transport in unsaturated sediments with minimal sediment and flow field disturbance. Combined implementation of lysimeters and TDR probes can enhance data interpretation particularly when three-dimensional flow conditions are anticipated.
Huot, Hermine; Séré, Geoffroy; Charbonnier, Patrick; Simonnot, Marie-Odile; Morel, Jean Louis
2015-09-01
To assess the impact of metal-rich brownfields on groundwater quality, the fluxes in a Technosol developed on a former iron industry settling pond were studied. Intact soil monoliths (1 m(2) × 2 m) were extracted and placed in lysimeters. Dynamics of fluxes of metals and solutes under varying vegetation cover were monitored over the course of four years. Soil hydraulic properties were also determined. Results showed that the Technosol has a high retention capacity for water and metals, in relation to its mineral components and resulting chemical and physical properties. As a consequence, metal fluxes were limited. However, soluble compounds, such as SO4(2-), were found at significant concentrations in the leachates. The presence of a dense and deeply-rooted vegetation cover limited water- and solute-fluxes by increasing evapotranspiration and water uptake, thereby reducing the risks of transfer of potentially toxic compounds to local groundwater sources. However, vegetation development may induce changes in soil chemical (e.g. pH, redox potential) and physical properties (e.g. structure), favoring metal mobilization and transport. Revegetation is a valuable management solution for former iron industry settling ponds, provided vegetation does not change soil physico-chemical conditions in the long term. Monitored natural attenuation is required. Copyright © 2015 Elsevier B.V. All rights reserved.
Impact of climate change and management on N-balance of (pre-) alpine grassland soils
NASA Astrophysics Data System (ADS)
Fu, Jin; Lu, Haiyan; Feng, Jinchao; Diaz-Pines, Eugenio; Gasche, Rainer; Dannenmann, Michael; Butterbach-bahl, Klaus; Kiese, Ralf
2014-05-01
On a global perspective terrestrial biosphere hosts significant pools of nitrogen. Due to cool and moist climatic conditions alpine grassland soils of moderate elevation (app. 1000m) in particular, have large quantities of nitrogen (N) and are important source of reactive nitrogen (Nr). The ability of grassland soil to conserve N may be influenced by changes in management and climate. In the framework of the TERENO project funded by Helmholtz Association and BMBF, IMK-IFU installed a lysimeter network with undisturbed intact grassland soil cores (area 1 m2, depth 1.5 m, 2-3 t of soil) at three sites along a natural altitudinal and thus climate gradient. The lysimeter network consisting of 36 lysimeters and is run for Climate Change research with a long term perspective (>10years). For investigation of Climate Change effect the space for time approach is followed, where lysimeters were translocated along the climate gradient, with some lysimeters remaining at the sites as controls. At all sites two different fertilizer application rates as manure were applied (extensive: 120 kg N ha-1 yr 1; intensive: 300 kg N ha-1 yr-1). The different components of the water balance i.e. precipitation, evapotranspiration and groundwater recharge of each lysimeter are measured by precision weighting of the lysimeters and a separate container for collection of seepage water at the lower boundary condition (1.4m). In addition, soil moisture and temperature are measured in 10, 30, 50, 140 cm soil depth. Soil water in 10, 30, 50 and 140 cm soil depth is sampled with suction cups. Water samples are collected regularly every 2 weeks and at higher frequency (e.g. 3 times a week) after fertilization and cutting events, and analyzed for concentration of DON, NH4+ and NO3-. Greenhouse Gas (GHG) emissions (CO2, N2O and CH4) were measured manually with static chamber technique by GC as well as with automatic chambers via a new developed robot system and QCL Laser. On the basis of the results obtained Climate Change lead to an increase in N2O emission only in spring, summer and autumn but to a significant decrease during winter period. Due to the higher decrease in winter the annual N2O losses were lower under Climate Change. Furthermore a significant increase in N2 emissions could be observed. N2 to N2O ratio was up to 60 at the control site and up to 85 under Climate Change conditions, and both forms of gaseous losses showed an event based pattern (freeze-thaw, fertilization, precipitation). Climate Change leaded to a significant increase in nitrate leaching, whereas leaching of ammonium and DON remained unaffected. Intensive fertilization resulted in increased N-uptake by plants as well as increased NO3- leaching. Effect of Climate Change on nitrate leaching and N2O emission is more pronounced under extensive management. This is most likely due to the fact that under Climate Change conditions largest part of N applied was taken up by the plants and is no longer available for other processes.
Hubbell, Joel M.; Sisson, James B.
2004-06-01
A deep lysimeter including a hollow vessel having a chamber, a fill conduit extending into the chamber through apertures, a semi-permeable member mounted on the vessel and in fluid communication with the fill conduit, and a line connection for retrieving the lysimeter.
Effects of aeration on water quality from septic system leachfields.
Potts, David A; Görres, Josef H; Nicosia, Erika L; Amador, José A
2004-01-01
We conducted a pilot-scale study at a research facility in southeastern Connecticut to assess the effects of leachfield aeration on removal of nutrients and pathogens from septic system effluent. Treatments consisted of lysimeters periodically aerated to maintain a headspace O(2) concentration of 0.209 mol mol(-1) (AIR) or vented to an adjacent leachfield trench (LEACH) and were replicated three times. All lysimeters were dosed with effluent from a septic tank for 24 mo at a rate of 12 cm d(-1) and subsequently for 2 mo at 4 cm d(-1). LEACH lysimeters had developed a clogging mat, or biomat, 20 mo before the beginning of our study. The level of aeration in the AIR treatment was held constant regardless of loading rate. No conventional biomat developed in the AIR treatment, whereas a biomat was present in the LEACH lysimeters. The headspace of LEACH lysimeters was considerably depleted in O(2) and enriched in CH(4), CO(2), and H(2)S relative to AIR lysimeters. Drainage water from AIR lysimeters was saturated with O(2) and had significantly lower pH, five-day biological oxygen demand (BOD(5)), and ammonium, and higher levels of nitrate and sulfate than LEACH lysimeters regardless of dosing rate. By contrast, significantly lower levels of total N and fecal coliform bacteria were observed in AIR than in LEACH lysimeters only at the higher dosing rate. No significant differences in total P removal were observed. Our results suggest that aeration may improve the removal of nitrogen, BOD(5), and fecal coliforms in leachfield soil, even in the absence of a biomat.
Transport of europium colloids in vadose zone lysimeters at the semiarid Hanford site.
Liu, Ziru; Flury, Markus; Zhang, Z Fred; Harsh, James B; Gee, Glendon W; Strickland, Chris E; Clayton, Ray E
2013-03-05
The objective of this study was to quantify transport of Eu colloids in the vadose zone at the semiarid Hanford site. Eu-hydroxy-carbonate colloids, Eu(OH)(CO3), were applied to the surface of field lysimeters, and migration of the colloids through the sediments was monitored using wick samplers. The lysimeters were exposed to natural precipitation (145-231 mm/year) or artificial irrigation (124-348 mm/year). Wick outflow was analyzed for Eu concentrations, supplemented by electron microscopy and energy-dispersive X-ray analysis. Small amounts of Eu colloids (<1%) were detected in the deepest wick sampler (2.14 m depth) 2.5 months after application and cumulative precipitation of only 20 mm. We observed rapid transport of Eu colloids under both natural precipitation and artificial irrigation; that is, the leading edge of the Eu colloids moved at a velocity of 3 cm/day within the first 2 months after application. Episodic infiltration (e.g., Chinook snowmelt events) caused peaks of Eu in the wick outflow. While a fraction of Eu moved consistent with long-term recharge estimates at the site, the main mass of Eu remained in the top 30 cm of the sediments. This study illustrates that, under field conditions, near-surface colloid mobilization and transport occurred in Hanford sediments.
NASA Astrophysics Data System (ADS)
Wang, Y.; Umanzor, M.; Alves Meira Neto, A.; Sengupta, A.; Amistadi, M. K.; Root, R.; Troch, P.; Chorover, J.
2017-12-01
Elemental translocation, resulting in enrichment or depletion relative to parent rock, is a consequence of mineral dissolution and precipitation reactions of soil genesis. Accurate measurement of translocation in natural systems is complicated by factors such as parent material heterogeneity and dust deposition. In the present work, a fully controlled and monitored 10° sloping soil lysimeter with known homogeneous initial conditions, was utilized to investigate initial stages of soil genesis from 1 m3 of crushed basalt. Throughout the two-year experiment, periodic irrigation coupled with sensor measurements enabled monitoring of changes in internal moisture states. A total 15-meter water influx resulted in distinct efflux patterns, wetting and drying cycles, as well as high volume water storage. Biological changes, such as algal and grass emergence, were visible on the soil surface, and microbial colonization throughout the profile was measured in a companion study, suggesting that biogeochemical hotspots may have formed. Forensic excavation and sampling of 324 voxels captured the final state heterogeneity of the lysimeter with respect to length and depth. Total elemental concentrations and a five-step sequential extraction (SE) scheme quantified elemental redistributions into operationally-defined pools including exchangeable, poorly-crystalline (hydr)oxides, and crystalline (hydr)oxides. Data were correlated to water flux and storage that was determined from sensor and tracer data over the two years of rock-water interaction; then used to map 2D cross-sections and identify geochemical hotspots. Total and SE Fe concentrations were used to establish a governing mass balance equation, and sub mass balance equations with unique partitioning coefficients of Fe were developed for each SE pool, respectively. The results help to explain elemental (e.g., Fe) lability and redistribution due to physical and geochemical weathering during the initial stages of soil genesis.
Klammler, Gernot; Fank, Johann
2014-11-15
The shallow Murtal aquifer south of Graz, Austria, provides easily withdrawable groundwater, which is supplied as drinking water without any chemical treatment. The aquifer is also used intensively by agriculture. Common agricultural management practices are the main source for diffuse nitrogen leaching and high groundwater nitrate concentrations. To safeguard the coexisting use of these two important resources, lysimeters are operated at the agricultural test site Wagna, Austria, and the influence of two beneficial management practices--low nitrogen input and organic farming--on nitrogen leaching towards groundwater is investigated. The technical lysimeter design as presented here consists of: (1) high-resolution weighing cells, (2) a suction controlled lower boundary condition for sucking off seepage water, thus emulating undisturbed field conditions, (3) comparative soil temperature, water content and matrix potential measurements inside and outside the lysimeter at different depths, (4) an installation of the lysimeters directly into test plots and (5) a removable upper lysimeter ring enabling machinery soil tillage. Our results indicate that oasis effects or fringe effects of the lysimeter cylinder on unsaturated water flow did not occur. Another lysimeter cultivated with lawn is operated for observing grass-reference evapotranspiration, which resulted in good agreement with calculated grass-reference evapotranspiration according to the FAO-Penman-Monteith method. We conclude that lysimeters installed at Wagna test site did not show any fringe effects and, thus, are appropriate tools for measuring water balance elements and nitrogen leaching of arable and grass land at point scale. Furthermore, our results for the period of 2005 to 2011 show that beneficial management practices reduced nitrate leaching and, hence, may allow for a sustainable coexistence of drinking water supply and agriculture in the Murtal aquifer. Copyright © 2014 Elsevier B.V. All rights reserved.
KHAN, BERNINE I.; JAMBECK, JENNA; SOLO-GABRIELE, HELENA M.; TOWNSEND, TIMOTHY G.; CAI, YONG
2008-01-01
Wood treated with chromated copper arsenate (CCA) is primarily disposed within construction and demolition (C&D) debris landfills, with wood monofills and municipal solid waste (MSW) landfills as alternative disposal options. This study evaluated the extent and speciation of arsenic leaching from landfills containing CCA-treated wood. In control lysimeters where untreated wood was used, DMAA represented the major arsenic species. The dominant arsenic species differed in the lysimeters containing CCA-treated wood, with As(V) greatest in the monofill and C&D lysimeters and As(III) greatest in the MSW lysimeters. In CCA-containing lysimeters, the organoarsenic species MMAA and DMAA were virtually absent in the monofill lysimeter and observed in the C&D and MSW lysimeters. Overall arsenic leaching rate varied for the wood monofill (0.69% per meter of water added), C&D (0.36% per m), and MSW (0.84% per m) lysimeters. Utilizing these rates with annual disposal data, a mathematical model was developed to quantify arsenic leaching from CCA-treated wood disposed to Florida landfills. Model findings showed between 20 to 50 metric tons of arsenic (depending on lysimeter type) had leached prior to 2000 with an expected increase between 350 to 830 metric tons by 2040. Groundwater analysis from 21 Florida C&D landfills suspected of accepting CCA-treated wood showed that groundwater at 3 landfills were characterized by elevated arsenic concentrations with only 1 showing impacts from the C&D waste. The slow release of arsenic from disposed treated wood may account for the lack of significant impact to groundwater near most C&D facilities at this time. However, greater impacts are anticipated in the future given that the maximum releases of arsenic are expected by the year 2100. PMID:16509348
Modelling the water balance of a precise weighable lysimeter for short time scales
NASA Astrophysics Data System (ADS)
Fank, Johann; Klammler, Gernot; Rock, Gerhard
2015-04-01
Precise knowledge of the water fluxes between the atmosphere and the soil-plant system and the percolation to the groundwater system is of great importance for understanding and modeling water, solute and energy transfer in the atmosphere-plant-soil-groundwater system. Weighable lysimeters yield the most precise and realistic measures for the change of stored water volume (ΔS), Precipitation (P) which can be rain, irrigation, snow and dewfall and evapotranspiration (ET) as the sum of soil evaporation, evaporation of intercepted water and transpiration. They avoid systematic errors of standard gauges and class-A pans. Lysimeters with controlled suction at the lower boundary allow estimation of capillary rise (C) and leachate (L) on short time scales. Precise weighable large scale (surface >= 1 m2) monolithic lysimeters avoiding oasis effects allow to solve the water balance equation (P - ET - L + C ± ΔS = 0) for a 3D-section of a natural atmosphere-plant-soil-system for a certain time period. Precision and accuracy of the lysimeter measurements depend not only on the precision of the weighing device but also on external conditions, which cannot be controlled or turned off. To separate the noise in measured data sets from signals the adaptive window and adaptive threshold (AWAT) filter (Peters et al., 2014) is used. The data set for the years 2010 and 2011 from the HYDRO-lysimeter (surface = 1 m2, depth = 1 m) in Wagna, Austria (Klammler and Fank, 2014) with a resolution of 0,01 mm for the lysimeter scale and of 0,001 mm for the leachate tank scale is used to evaluate the water balance. The mass of the lysimeter and the mass of the leachate tank is measured every two seconds. The measurements are stored as one minute arithmetic means. Based on calculations in a calibration period from January to May 2010 with different widths of moving window the wmax - Parameter for the AWAT filter was set to 41 minutes. A time series for the system mass ('upper boundary') of the lysimeter has been calculated by adding lysimeter mass and the leachate tank mass for every minute. Based on the resolution of the scales and an evaluation of noise in periods without precipitation and evaporation a dmin-value of 0.002 to filter the leachate tank measurements and a dmin-value of 0.012 was used to filter the lysimeter weight data and the upper boundary data. A mandatory requirement for the quantification of P or ET from lysimeter measurements is that in a reasonably small time interval, either P or ET is negligible. With this assumption, every increase in upper boundary data is interpreted as P. Every increase of seepage mass is interpreted as L, every decrease as C. ΔS is evaluated from filtered lysimeter mass. ET is calculated using the water balance equation. The evaluation results are given as water balance components time series on a minute scale. P measured with the lysimeter for the two years 2010 and 2011 is 105 % of precipitation measured with a standard tipping bucket gauge 100 m beside the lysimeter. While P during the summer season (April to September) is very close to standard precipitation measurement, P during the winter season is more than 120 % of tipping bucket precipitation. Meissner et al. (2007) showed that P includes precipitation of dewfall and rime. A detailed evaluation of the HYDRO-Lysimeter in Wagna showed, that precipitation in the night and not recognized with the standard tipping bucket (interpreted as dew or rime) is about 1 % of P, the highest monthly sums (> 1 mm) are recognized from August to November. Klammler, G. and Fank, J.: Determining water and nitrogen balances for beneficial management practices using lysimeters at Wagna test site (Austria). Science of the Total Environment 499 (2014) 448-462. Meissner, R., Seeger, J., Rupp, H., Seyfarth, M., and Borg, H.: Measurement of dew, fog, and rime with a high-precision gravitation lysimeter, J. Plant Nutr. Soil Sci. 2007, 170, 335-344. Peters, A., Nehls, T., Schonsky, H., and Wessolek, G.: Separating precipitation and evapotranspiration from noise - a new filter routine for high-resolution lysimeter data. Hydrol. Earth Syst. Sci., 18, 1189-1198, 2014.
A protocol for collecting and constructing soil core lysimeters
USDA-ARS?s Scientific Manuscript database
Leaching of nutrients from land applied fertilizers and manure used in agriculture can lead to accelerated eutrophication of surface water. Because the landscape has complex and varied soil morphology, an accompanying disparity in flow paths for leachate through the soil macropore and matrix structu...
Earle, John; Choate, LaDonna
2010-01-01
This report presents chemical characteristics of transient unsaturated-zone water collected by lysimeter from the Manning Canyon repository site in Utah. Data collected by U.S. Geological Survey and U.S. Department of the Interior, Bureau of Land Management scientists under an intragovernmental order comprise the existing body of hydrochemical information on unsaturated-zone conditions at the site and represent the first effort to characterize the chemistry of the soil pore water surrounding the repository. Analyzed samples showed elevated levels of arsenic, barium, chromium, and strontium, which are typical of acidic mine drainage. The range of major-ion concentrations generally showed expected soil values. Although subsequent sampling is necessary to determine long-term effects of the repository, current results provide initial data concerning reactive processes of precipitation on the mine tailings and waste rock stored at the site and provide information on the effectiveness of reclamation operations at the Manning Canyon repository.
Mercer, Theresa G; Frostick, Lynne E; Walmsley, Anthony D
2011-10-15
This paper presents a statistical technique that can be applied to environmental chemistry data where missing values and limit of detection levels prevent the application of statistics. A working example is taken from an environmental leaching study that was set up to determine if there were significant differences in levels of leached arsenic (As), chromium (Cr) and copper (Cu) between lysimeters containing preservative treated wood waste and those containing untreated wood. Fourteen lysimeters were setup and left in natural conditions for 21 weeks. The resultant leachate was analysed by ICP-OES to determine the As, Cr and Cu concentrations. However, due to the variation inherent in each lysimeter combined with the limits of detection offered by ICP-OES, the collected quantitative data was somewhat incomplete. Initial data analysis was hampered by the number of 'missing values' in the data. To recover the dataset, the statistical tool of Statistical Multiple Imputation (SMI) was applied, and the data was re-analysed successfully. It was demonstrated that using SMI did not affect the variance in the data, but facilitated analysis of the complete dataset. Copyright © 2011 Elsevier B.V. All rights reserved.
Soil leachate responses during 10 years of induced whole-watershed acidification
Pamela J. Edwards; James N. Kochenderfer; Dean W. Coble; Mary Beth Adams
2002-01-01
Soil solution was collected from zero-tension lysimeters for 10 yr on two small central Appalachian watersheds in West Virginia, U.S.A. Ammonium sulfate fertilizer was applied to one catchment 3 times per year during each year. The other watershed was used as a reference to account for ambient baseline conditions. Ca and Mg concentrations collected below the A- and B-...
2006-05-24
and D.J. Bjornstad. 2002 Why would anyone object? An exploration of social aspects of phytoremediation acceptability. Critical Reviews in Plant... leachate ions ½ m below soil surface Water collected from field lysimeters; ion concentrations measured in lab ions in ppm Anions and cations that are being...indicator set Prescott College (P5) Nutrient Leakage: Ammonium The measurement of leachate ions ½ m below soil surface Water collected from field
NASA Astrophysics Data System (ADS)
Rücker, Andrea; Boss, Stefan; Von Freyberg, Jana; Zappa, Massimiliano; Kirchner, James
2017-04-01
In mountainous catchments with seasonal snowpacks, river discharge in downstream valleys is largely sustained by snowmelt in spring and summer. Future climate warming will likely reduce snow volumes and lead to earlier and faster snowmelt in such catchments. This, in turn, may increase the risk of summer low flows and hydrological droughts. Improved runoff predictions are thus required in order to adapt water management to future climatic conditions and to assure the availability of fresh water throughout the year. However, a detailed understanding of the hydrological processes is crucial to obtain robust predictions of river streamflow. This in turn requires fingerprinting source areas of streamflow, tracing water flow pathways, and measuring timescales of catchment storage, using tracers such as stable water isotopes (18O, 2H). For this reason, we have established an isotope sampling network in the Alptal, a snowmelt-dominated catchment (46.4 km2) in Central-Switzerland, as part of the SREP-Drought project (Snow Resources and the Early Prediction of hydrological DROUGHT in mountainous streams). Precipitation and snow cores are analyzed for their isotopic signature at daily or weekly intervals. Three-week bulk samples of precipitation are also collected on a transect along the Alptal valley bottom, and along an elevational transect perpendicular to the Alptal valley axis. Streamwater samples are taken at the catchment outlet as well as in two small nested sub-catchments (< 2 km2). In order to catch the isotopic signature of naturally-occurring snowmelt, a fully automatic snow lysimeter system was developed, which also facilitates real-time monitoring of snowmelt events, system status and environmental conditions (air and soil temperature). Three lysimeter systems were installed within the catchment, in one forested site and two open field sites at different elevations, and have been operational since November 2016. We will present the isotope time series from our regular sampling network, as well as initial results from our snowmelt lysimeter sites. Our data set will allow for detailed hydrograph separation based on stable water isotopes and geochemical components, which we use to identify source areas and to quantify snowmelt contributions to streamflow.
NASA Astrophysics Data System (ADS)
Maddocks, Greg; Lin, Chuxia; McConchie, David
2009-05-01
This second paper reports the results of plant growth, plant mortality, plant leaf tissue metal and salt concentrations and leachate quality monitoring from lysimeters in four large field trial treatments established on sulfidic waste rock/soil that was used for haul road construction at a closed gold mine in Australia. The TerraB™, lime and clay treatments allowed good tree growth of four Eucalypt species, compared to the control. There was no statistical difference in tree growth between the TerraB™, lime or clay treatments over the 2 years of monitoring in this paper. However, the growth of one tree species was poor in the TerraB™ treatment. Leaf tissue metal and major ion data are also presented. Leachate pH in the control became increasingly acidic (pH 4.57-3.95). The addition of Ca(OH)2 and biosolids led to an initial increase in leachate pH, compared to the control; however, this has decreased over the duration of the study (pH 5.37-4.89) and may affect the sustainable growth of plants in the future. In the TerraB™ and biosolids treatment leachate pH increased to 6.92 after the first rainfall event and continued to increase over the duration of the study to pH 7.4 after 24 months. After 24 months average heavy metal leachate concentrations (mg/L) in the lysimeters for Al, Cd, Cu, Mn and Zn were, control: 32.55, 5.67, 12.71, 39.29, 121.80, TerraB™: 0.07, 0.02, 0.07, 0.57, 0.23, and lime: 2.19, 1.19, 2.33, 3.6, 28.4. No leachate was available for collection from the clay treatment indicating that this technique was functioning in terms of minimizing the infiltration of water into the mine soil.
Hydrology and geochemistry of a surface coal mine in northwestern Colorado
Williams, R.S.; Clark, G.M.
1994-01-01
The hydrology and geochemistry of a reclaimed coal mine in northwestern Colorado were monitored during water years 1988 and 1989. Some data also were collected in water years 1987 and 1990. This report describes (1) the sources of hydrologic recharge to and discharge from reclaimed spoil, (2) the relative contributions of recharge to the reclaimed spoil aquifer from identified source waters and the rate of water movement from those sources to the reclaimed spoil, and (3) the geochemical reactions that control water quality in reclaimed spoil. The study area was at a dip-slope coal mine encompassing about 7 square miles with land slopes of varying aspect. The area was instrumented and monitored at five sites; two sites had unmined and reclaimed- spoil areas adjacent to each other and three sites were unmined. The mined areas had been reclaimed. Instrumentation at the study sites included 1 climate station, 3 rain gages, 19 soil-water access tubes, 2 lysimeters, 18 wells completed in bedrock, 7 wells completed in reclaimed spoil, and 2 surface- water gaging stations. The results of the study indicate that the reclaimed spoil is recharged from surface recharge and underburden aquifers. Discharge, as measured by lysimeters, was about 3 inches per year and occurred during and after snowmelt. Hydraulic-head measurements indicated a potential for ground-water movement from deeper to shallower aquifers. Water levels rose in the reclaimed-spoil aquifer and spring discharge at the toe of the spoil slopes increased rapidly in response to snowmelt. Water chemistry, stable isotopes, geochemical models, and mass-balance calculations indicate that surface recharge and the underburden aquifers each contribute about 50 percent of the water to the reclaimed-spoil aquifers. Geochemical information indicates that pyrite oxidation and dissolution of carbonate and efflorescent sulfate minerals control the water chemistry of the reclaimed-spoil aquifer.
Fate and Transport of Pharmaceutical Compounds Applied to Turf-Covered Soil
NASA Astrophysics Data System (ADS)
Young, M.; Green, R. L.; Devitt, D.; McCullough, M.; Wright, L.; Vanderford, B. J.; Snyder, S. A.
2012-12-01
In arid and semi-arid regions, the use of treated wastewater for landscape irrigation is becoming common practice and a significant asset to conserve potable water supplies. Public interest and lack of field-scale data are leading to a concern that compounds found in reuse water could persist in the environment and contaminate groundwater. As part of a larger study, 2-yr experiments were conducted in CA and NV, where reuse water was the primary source of non-ambient water input. A total of 13 compounds were studied, all originating in irrigation water applied to soil covered in turf or left bare. The target compounds included atenolol, atorvastatin, carbamazepine, diazepam, diclofenac, fluoxetine, gemfibrozil, ibuprofen, meprobamate, naproxen, primidone, sulfamethoxazole, triclosan, and trimethoprim. Analytical protocols for all compounds (detection at ng/L range) were established before the study commenced. The goals of the research were to increase available data on the fate and transport of these target compounds in turfgrass/soil systems, and to use these data to assess long-term risk from using water containing these compounds. Experiments conducted at two scales are discussed here: lysimeter-scale and field-scale. At the lysimeter-scale, 24 drainage lysimeters (120 cm thick) were exposed to treated wastewater as an irrigation source. Lysimeters varied by soil type (two types), soil cover (bare- versus turf-covered) and leaching fraction (5% and 25%). Upper and lower boundary conditions were monitored throughout the study. Water samples were collected periodically after water breakthrough. After the study, soil samples were analyzed for compound mass, allowing compound mass balance and removal to be assessed. At the field-scale, passive drain gages (Decagon Devices) were installed in triplicate in fairways at four operational golf courses, one in NV and three in CA, all with histories of using treated wastewater. The gages measure water fluxes through the 60-cm thick column and store water for subsequent sampling and analysis. Irrigation water was sampled and analyzed for input mass. Using output mass, removal efficiencies could also be assessed. Results of the lysimeter study showed that mass fluxes were reduced to less than 1 g/ha/yr for all compounds (sulfamethoxazole was highest at 0.25 g/ha/yr). Solute breakthrough was concentrated during fall and winter periods when turf was overseeded and sites received winter precipitation. Results of the golf course study were similar, showing scalability. We report more than 100 instances of target compounds detected in water that percolated through the turf and upper 60 cm of soil, but with total mass fluxes of <0.1 g/ha throughout the study. Sulfamethoxazole, meprobamate, and carbamazepine were most commonly found in drainage water, but gemfibrozil, diclofenac, naproxen, and triclosan were also found in more than one sample. The results allowed for a preliminary risk assessment to be conducted. Based on our results, restricting the use of recycled water, based solely on the presence of PPCPs should only be considered at sites where soils are extremely sandy and irrigation regimes are not based on an evapotranspiration feedback approach.
2001-09-01
during a major drought period. Preliminary results indicate that there were fewer differences among the disturbance classes. Contrary to the May...Magellan GPS receivers. The Fort Benning region experienced a severe drought during 1999-2000. Most lysimeter samples collected on 31 May and 23...samples collected both during drought and high pre- cipitation periods contained high sulfate concentrations. This pattern was par- ticularly evident
Clark, Don T.; Erickson, Eugene E.; Casper, William L.; Everett, David M.; Hubbell, Joel M.; Sisson, James B.
2005-09-06
A suction lysimeter for sampling subsurface liquids includes a lysimeter casing having a drive portion, a reservoir portion, and a tip portion, the tip portion including a membrane through which subsurface liquids may be sampled; a fluid conduit coupled in fluid flowing relation relative to the membrane, and which in operation facilitates the delivery of the sampled subsurface liquids from the membrane to the reservoir portion; and a plurality of tubes coupled in fluid flowing relation relative to the reservoir portion, the tubes in operation facilitating delivery of the sampled subsurface liquids from the reservoir portion for testing. A method of sampling subsurface liquids comprises using this lysimeter.
NASA Astrophysics Data System (ADS)
Evett, Steven R.; Schwartz, Robert C.; Howell, Terry A.; Louis Baumhardt, R.; Copeland, Karen S.
2012-12-01
Weighing lysimeters and neutron probes (NP) are both used to determine the change in soil water storage needed to solve for evapotranspiration (ET) using the soil water balance equation. We compared irrigated cotton ET determined using two large (3 × 3 × 2.4-m deep) weighing lysimeters and eight NP soil water profiles located outside the lysimeters in cotton fields during the BEAREX08 field campaign (see [16] Evett et al., 2012). The objectives were to (i) determine if lysimeter-based ET fluxes were representative of those from the fields, designated NE and SE, in which the lysimeters were centered, and (ii) investigate different methods of computing the soil water balance using NP data. Field fluxes were determined from the soil water balance using neutron probe measurements of change in profile water content storage. Fluxes of ET from the SE lysimeter were representative of those from the field throughout the season and can be used with reasonable certainty for comparisons of ET fluxes and energy balance closure derived from Bowen ratio (BR) and eddy covariance (EC) measurements whose footprints lay in the SE field. Comparisons of ET fluxes from EC and BR systems to those from the NE lysimeter should consider that NE lysimeter fluxes were up to 18% larger than those from the NE field during the period of rapid vegetative growth. This was due to plants on the lysimeter having greater height and width than those in the field. Nevertheless, the data from this and companion studies documents substantial underestimation of crop ET by EC stations under the conditions of BEAREX08. Comparison of zero flux plane (ZFP) and simple soil water balance methods of calculating ET from NP data showed them to be equivalent in this study; and for the ZFP method, the depth of the control volume should be determined by the depth at which the hydraulic gradient reverses, not by the depth of calculated minimum flux. If supported by a sufficiently dense and widespread network of deep soil water balance based estimates of ET in the surrounding patch and by ancillary measurements of crop stand and growth within the lysimeter and in the surrounding patch, a weighing lysimeter can provide accurate ET ground truth for comparisons with ET estimated using flux stations or ET calculated using satellite imagery. It must be emphasized that the water balance measurements must include soil profile water content measurements to well below (e.g., 0.5 to 1 m below) the root zone in order to close the water balance.
Michael C Tyree; John R Seiler; Christopher Maier
2011-01-01
We monitored two Pinus taeda L. genotypes, planted in 170 L lysimeters, subjected to different combinations of fertilization and logging residue (LR) incorporation for 1 year. The objectives were to elucidate how soil amendments modified soil biological properties and belowground C cycling, and secondly, to determine if planting of contrasting genotypes have a...
NASA Astrophysics Data System (ADS)
Harmon, T. C.; Rat'ko, A.; Dietrich, H.; Park, Y.; Wijsboom, Y. H.; Bendikov, M.
2008-12-01
Inorganic nitrogen (nitrate (NO3-) and ammonium (NH+)) from chemical fertilizer and livestock waste is a major source of pollution in groundwater, surface water and the air. While some sources of these chemicals, such as waste lagoons, are well-defined, their application as fertilizer has the potential to create distributed or non-point source pollution problems. Scalable nitrate sensors (small and inexpensive) would enable us to better assess non-point source pollution processes in agronomic soils, groundwater and rivers subject to non-point source inputs. This work describes the fabrication and testing of inexpensive PVC-membrane- based ion selective electrodes (ISEs) for monitoring nitrate levels in soil water environments. ISE-based sensors have the advantages of being easy to fabricate and use, but suffer several shortcomings, including limited sensitivity, poor precision, and calibration drift. However, modern materials have begun to yield more robust ISE types in laboratory settings. This work emphasizes the in situ behavior of commercial and fabricated sensors in soils subject to irrigation with dairy manure water. Results are presented in the context of deployment techniques (in situ versus soil lysimeters), temperature compensation, and uncertainty analysis. Observed temporal responses of the nitrate sensors exhibited diurnal cycling with elevated nitrate levels at night and depressed levels during the day. Conventional samples collected via lysimeters validated this response. It is concluded that while modern ISEs are not yet ready for long-term, unattended deployment, short-term installations (on the order of 2 to 4 days) are viable and may provide valuable insights into nitrogen dynamics in complex soil systems.
Milan, Marco; Ferrero, Aldo; Fogliatto, Silvia; Piano, Serenella; Vidotto, Francesco
2015-01-01
The effect of elapsed time between spraying and first leaching event on the leaching behavior of five herbicides (terbuthylazine, S-metolachlor, mesotrione, flufenacet, and isoxaflutole) and two metabolites (desethyl-terbuthylazine and diketonitrile) was evaluated in a 2011-2012 study in northwest Italy. A battery of 12 lysimeters (8.4 m(2) long with a depth of 1.8 m) were used in the study, each filled with silty-loam soil and treated during pre-emergence with the selected herbicides by applying a mixture of commercial products Lumax (4 L ha(-1)) and Merlin Gold (1 L ha(-1)). During treatment periods, no gravity water was present in lysimeters. Irrigation events capable of producing leaching (40 mm) were conducted on independent groups of three lysimeters on 1 day after treatment (1 DAT), 7 DAT, 14 DAT, and 28 DAT. The series was then repeated 14 days later. Leachate samples were collected a few days after irrigation; compounds were extracted by solid phase extraction and analyzed by high-performance liquid chromatography and gas chromatography-mass spectrometry. Under study conditions, terbuthylazine and S-metolachlor showed the highest leaching potentials. Specifically, S-metolachlor concentrations were always found above 0.25 µg L(-1). Desethyl-terbuthylazine was often detected in leached waters, in most cases at concentrations above 0.1 µg L(-1). Flufenacet leached only when irrigation occurred close to the time of herbicide spraying. Isoxaflutole and mesotrione were not measured (<0.1 µg L(-1)), while diketonitrile was detected in concentrations above 0.1 µg L(-1) on 1 DAT in 2011 only.
Lysimeter methods and apparatus
Clark, Don T.; Erickson, Eugene E.; Casper, William L.; Everett, David M.; Hubbell, Joel M.; Sisson, James B.
2004-12-07
A suction lysimeter for sampling subsurface liquids includes a lysimeter casing having a drive portion, a reservoir portion, and a tip portion, the tip portion including a membrane through which subsurface liquids may be sampled; a fluid conduit coupled in fluid flowing relation relative to the membrane, and which in operation facilitates the delivery of the sampled subsurface liquids from the membrane to the reservoir portion; and a plurality of tubes coupled in fluid flowing relation relative to the reservoir portion, the tubes in operation facilitating delivery of the sampled subsurface liquids from the reservoir portion for testing. A method of sampling subsurface liquids comprises using this lysimeter.
Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions.
Slezak, Radoslaw; Krzystek, Liliana; Ledakowicz, Stanislaw
2015-09-01
In this study the municipal solid waste degradation processes in simulated landfill bioreactors under aerobic and anaerobic conditions is investigated. The effect of waste aeration on the dynamics of the aerobic degradation processes in lysimeters as well as during anaerobic processes after completion of aeration is presented. The results are compared with the anaerobic degradation process to determine the stabilization stage of waste in both experimental modes. The experiments in aerobic lysimeters were carried out at small aeration rate (4.41⋅10(-3)lmin(-1)kg(-1)) and for two recirculation rates (24.9 and 1.58lm(-3)d(-1)). The change of leachate and formed gases composition showed that the application of even a small aeration rate favored the degradation of organic matter. The amount of CO2 and CH4 released from anaerobic lysimeter was about 5 times lower than that from the aerobic lysimeters. Better stabilization of the waste was obtained in the aerobic lysimeter with small recirculation, from which the amount of CO2 produced was larger by about 19% in comparison with that from the aerobic lysimeter with large leachate recirculation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Grundmann, Sabine; Doerfler, Ulrike; Munch, Jean Charles; Ruth, Bernhard; Schroll, Reiner
2011-03-01
The environmental fate of the worldwide used herbicide isoproturon was studied in four different, undisturbed lysimeters in the temperate zone of Middle Europe. To exclude climatic effects due to location, soils were collected at different regions in southern Germany and analyzed at a lysimeter station under identical environmental conditions. (14)C-isoproturon mineralization varied between 2.59% and 57.95% in the different soils. Barley plants grown on these lysimeters accumulated (14)C-pesticide residues from soil in partially high amounts and emitted (14)CO(2) in an extent between 2.01% and 13.65% of the applied (14)C-pesticide. Plant uptake and (14)CO(2) emissions from plants were inversely linked to the mineralization of the pesticide in the various soils: High isoproturon mineralization in soil resulted in low plant uptake whereas low isoproturon mineralization in soil resulted in high uptake of isoproturon residues in crop plants and high (14)CO(2) emission from plant surfaces. The soil water regime was identified as an essential factor that regulates degradation and plant uptake of isoproturon whereby the intensity of the impact of this factor is strongly dependent on the soil type. Copyright © 2010 Elsevier Ltd. All rights reserved.
Effect of Scintillometer Height on Structure Parameter of the Refractive Index of Air Measurements
NASA Astrophysics Data System (ADS)
Gowda, P. H.; Howell, T. A.; Hartogensis, O.; Basu, S.; Scanlon, B. R.
2009-12-01
Scintillometers measure amount of scintillations by emitting a beam of light over a horizontal path and expresses as the atmospheric turbulence structure parameter as the refractive index of air (Cn2). Cn2 represents the turbulent strength of the atmosphere and describes the ability of the atmosphere to transport heat and humidity. The main objective of this study was to evaluate the effect of scintillometer height on Cn2 measurements and on the estimation of latent heat fluxes. The study was conducted during the 2009 summer growing season in the USDA-ARS Conservation and Production Research Laboratory (CPRL) at Bushland [350 11' N, 1020 06' W; 1,170 m elevation MSL], Texas. Field experiment consisted of two steps: (1) cross-calibration of scintillometers and (2) measurement of Cn2 at different heights. In the first step, three large aperture scintillometers (LAS) were deployed across two large lysimeter fields with bare soil surfaces. During the 3-week cross-calibration period, all three scintillometers were installed at a 2-m height with a path length of 420 m. Cn2 was monitored at a 1-min interval and averaged for 15-min periods. Cn2 measurements were synchronized with weather station and weighing lysimeter measurements. After the cross-calibration period, scintillometers were installed at 2-, 2.5- and 3-m heights, and Cn2 measurements were continued for another 3-week period. In addition to the Cn2 measurements, net radiation (Rn) and soil heat fluxes (G) were measured in both lysimeter fields. Cn2 values were corrected for inner scale dependence before cross calibration and estimation of sensible heat fluxes. Measurements of wind speed, air temperature, and relative humidity were used with Cn2 data to derive sensible heat fluxes. Latent heat fluxes were estimated as a residual from the energy balance and compared with lysimeter data. Results of cross calibration and effects of scintillometer height on the estimation of latent heat fluxes were reported and discussed.
Response of pore water Al, Fe and S concentrations to waterlogging in a boreal acid sulphate soil.
Virtanen, Seija; Simojoki, Asko; Hartikainen, Helinä; Yli-Halla, Markku
2014-07-01
Environmental hazards caused by acid sulphate (AS) soils are of worldwide concern. Among various mitigation measures, waterlogging has mainly been studied in subtropical and tropical conditions. To assess the environmental relevance of waterlogging as a mitigation option in boreal AS soils, we arranged a 2.5-year experiment with monolithic lysimeters to monitor changes in the soil redox potential, pH and the concentrations of aluminium (Al), iron (Fe) and sulphur (S) in pore water in response to low and high groundwater levels in four AS soil horizons. The monoliths consisted of acidic oxidized B horizons and a reduced C horizon containing sulphidic material. Eight lysimeters were cropped (reed canary grass, Phalaris arundinacea) and two were bare without a crop. Waterlogging was conducive to reduction reactions causing a slight rise in pH, a substantial increase in Fe (Fepw) and a decrease in Al (Alpw) in the pore water. The increase in Fepw was decisively higher in the cropped waterlogged lysimeters than in the bare ones, which was attributable to the microbiologically catalysed reductive dissolution of poorly ordered iron oxides and secondary minerals. In contrast to warmer climates, Fepw concentrations remained high throughout the experiment, indicating that the reduction was poised in the iron range, while sulphate was not reduced to sulphide. Therefore, the precipitation of iron sulphide was negligible in the environment with a low pH and abundant with poorly ordered Fe oxides. Increased Fe in pore water counteracts the positive effects of waterlogging, when water is flushed from fields to watercourses, where re-oxidation of Fe causes acidity and oxygen depletion. However, waterlogging prevented further oxidation of sulphidic materials and decreased Alpw to one-tenth of the initial concentrations, and even to one-hundredth of the levels in the low water table lysimeters. Copyright © 2014 Elsevier B.V. All rights reserved.
The influence of the lysimeter filling on the soil monolith inside
NASA Astrophysics Data System (ADS)
Puetz, T.; Schilling, J.; Vereecken, H.
2009-04-01
In general, lysimeters are vessels containing disturbed or undisturbed soil blocks, for the most realistic scenario with regard to real outdoor conditions an undisturbed soil block so called soil monolith is preferable. The lower boundary condition was realized in two different ways: as a zero-tension lysimeter with a perforated bottom plate or as controlled lower boundary condition with a suction plate. The optimal surface area and the lysimeter length depend mainly on the scientific question. For cropped lysimeter experiments the lysimeter length has to reflect to a maximum root length. The base area is strongly connected to the scale of observation, whereby small-scale heterogeneity will be averaged using large base areas. For our experiments lysimeters with 2.5 m length, 2 m2 base area and with a wall thickness of the round vessel of 10 mm were used. A base frame weighted down by 120 t of concrete weights is necessary to press a lysimeter cylinder into the ground by the aid of a hydraulic press. The hydraulic press is connected with the base frame via chains. Because of the control of the four hydraulic cylinders a very precise vertical pressing process is guaranteed. To visualize the impact of the lysimeter filling on the intactness of the soil monolith a finite element computation was conducted. The finite element package ANSYS Release 11 was used to execute a nonlinear static analysis on a 2D-axisymmetric finite element model, to simulate the pressing process starting from a soil initial stress state and ending with the full length of the vessel driven into the soil, after which the hydraulic press and the concrete weights are deactivated and the vessel-surrounding soil is excavated. The numerical model of the pressing process considers among other things, a cap non-associative plasticity model with shear and volumetric hardening, soil to soil contact with cohesive zone modelling, soil to vessel contact with high friction, soil excavation using element birth and death and a stagger-loop over the complete pressing process to determine the actual cutting plane
Nyberg, Karin A; Vinnerås, Björn; Albihn, Ann
2014-01-01
An outbreak of Salmonella Typhimurium or E. coli O157:H7 among domestic animals can have great financial consequences for an animal enterprise but also be a threat for public health as there is a risk for transmission of the infection through the environment. In order to minimize disease transmission, it is important to treat not only the affected animals but also the areas on which they have been kept. In the present study, the effect of hydrated lime as a treatment for Salmonella Typhimurium or E. coli O157:H7 contaminated soil was investigated. The study was performed outdoors, in a lysimeter system and in field plots. The soils were spiked with Salmonella Typhimurium and/or E. coli O157:H7 and hydrated lime was added at three different concentrations (0.5, 1 and 2%). Sampling was performed over one month, and the levels of bacteria were analyzed by standard culture methods. In addition, the soil pH was monitored throughout the study. The results showed that application of 0.5-1 kg hydrated lime per m(2) reduced both Salmonella Typhimurium and E. coli O157:H7 numbers to below the detection limit (2 log10 CFU g-1 soil) in 3-7 days. Lower application rates of hydrated lime did not reduce pathogen numbers in the lysimeter study, but in the field plots no E. coli O157:H7 was detected at the end of the four-week study period regardless of hydrated lime application. A recommended strategy for treating a Salmonella Typhimurium or E. coli O157:H7 contaminated soil could therefore be to monitor the pH over the time of treatment and to repeat hydrated lime application if a decrease in pH is observed.
Dynamics of Nutrients Transport in Onsite Wastewater Treatment Systems
NASA Astrophysics Data System (ADS)
Toor, G.; De, M.
2013-05-01
Domestic wastewater is abundant in nutrients¬ that originate from various activities in the households. In developed countries, wastewater is largely managed by (1) centralized treatment where wastewater from large population is collected, treated, and discharged and (2) onsite treatment where wastewater is collected from an individual house, treated, and dispersed onsite; this system is commonly known as septic system or onsite wastewater treatment system (OWTS) and consist of a septic tank (collects wastewater) and drain-field (disperses wastewater in soil). In areas with porous sandy soils, the transport of nutrients from drain-field to shallow groundwater is accelerated. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to study the dynamics of nitrogen (N) and phosphorus (P) transport in the vadose zone and groundwater in traditional and advanced OWTS. Soil water samples were collected from the vadose zone by using suction cup lysimeters and groundwater samples were collected by using piezometers. Collected samples (wastewater, soil-water, groundwater) were analyzed for various water quality parameters. The pH (4.39-4.78) and EC (0.28-0.34 dS/m) of groundwater was much lower than both wastewater and soil-water. In contrast to >50 mg/L of ammonium-N in wastewater, concentrations in all lysimeters (0.02-0.81 mg/L) and piezometers (0.01-0.82 mg/L) were <1 mg/L; suggesting that >99% disappeared (primarily nitrified) in the vadose zone (<1.05-m soil profile depth). In the vadose zone of advanced system, heterotrophic and autrotrophic denitrification reduced nitrate-N concentrations to <0.12 mg/L, compared with >20 mg/L in the vadose zones of traditional systems (drip dispersal and gravel trench). Concentrations of chloride showed a distinct pattern of nitrate-N breakthrough in vadose zone and groundwater; the groundwater nitrate-N was elevated upto 19.2 mg/L after wastewater delivery in tradional systems. Total P in the wastewater was ~10 mg/L, but low in all lysimeters (0.046-1.72 mg/L) and piezometers (0.01-0.78 mg/L) indicating enhanced P attenuation in the vadose zone of all systems.
Spatial extrapolation of lysimeter results using thermal infrared imaging
NASA Astrophysics Data System (ADS)
Voortman, B. R.; Bosveld, F. C.; Bartholomeus, R. P.; Witte, J. P. M.
2016-12-01
Measuring evaporation (E) with lysimeters is costly and prone to numerous errors. By comparing the energy balance and the remotely sensed surface temperature of lysimeters with those of the undisturbed surroundings, we were able to assess the representativeness of lysimeter measurements and to quantify differences in evaporation caused by spatial variations in soil moisture content. We used an algorithm (the so called 3T model) to spatially extrapolate the measured E of a reference lysimeter based on differences in surface temperature, net radiation and soil heat flux. We tested the performance of the 3T model on measurements with multiple lysimeters (47.5 cm inner diameter) and micro lysimeters (19.2 cm inner diameter) installed in bare sand, moss and natural dry grass. We developed different scaling procedures using in situ measurements and remotely sensed surface temperatures to derive spatially distributed estimates of Rn and G and explored the physical soundness of the 3T model. Scaling of Rn and G considerably improved the performance of the 3T model for the bare sand and moss experiments (Nash-Sutcliffe efficiency (NSE) increasing from 0.45 to 0.89 and from 0.81 to 0.94, respectively). For the grass surface, the scaling procedures resulted in a poorer performance of the 3T model (NSE decreasing from 0.74 to 0.70), which was attributed to effects of shading and the difficulty to correct for differences in emissivity between dead and living biomass. The 3T model is physically unsound if the field scale average air temperature, measured at an arbitrarily chosen reference height, is used as input to the model. The proposed measurement system is relatively cheap, since it uses a zero tension (freely draining) lysimeter which results are extrapolated by the 3T model to the unaffected surroundings. The system is promising for bridging the gap between ground observations and satellite based estimates of E.
The estimation of soil water fluxes using lysimeter data
NASA Astrophysics Data System (ADS)
Wegehenkel, M.
2009-04-01
The validation of soil water balance models regarding soil water fluxes in the field is still a problem. This requires time series of measured model outputs. In our study, a soil water balance model was validated using lysimeter time series of measured model outputs. The soil water balance model used in our study was the Hydrus-1D-model. This model was tested by a comparison of simulated with measured daily rates of actual evapotranspiration, soil water storage, groundwater recharge and capillary rise. These rates were obtained from twelve weighable lysimeters with three different soils and two different lower boundary conditions for the time period from January 1, 1996 to December 31, 1998. In that period, grass vegetation was grown on all lysimeters. These lysimeters are located in Berlin, Germany. One potential source of error in lysimeter experiments is preferential flow caused by an artificial channeling of water due to the occurrence of air space between the soil monolith and the inside wall of the lysimeters. To analyse such sources of errors, Hydrus-1D was applied with different modelling procedures. The first procedure consists of a general uncalibrated appli-cation of Hydrus-1D. The second one includes a calibration of soil hydraulic parameters via inverse modelling of different percolation events with Hydrus-1D. In the third procedure, the model DUALP_1D was applied with the optimized hydraulic parameter set to test the hy-pothesis of the existence of preferential flow paths in the lysimeters. The results of the different modelling procedures indicated that, in addition to a precise determination of the soil water retention functions, vegetation parameters such as rooting depth should also be taken into account. Without such information, the rooting depth is a calibration parameter. However, in some cases, the uncalibrated application of both models also led to an acceptable fit between measured and simulated model outputs.
Nitrate in waters from sewage-sludge amended lysimeters.
Jones, R L; Hinesly, T D
1988-01-01
Nitrate nitrogen was measured in runoff and tile-drainage during two years of operation of instrumented, large-scale lysimeters planted to corn (Zea mays L.) and amended with sewage sludge which was applied at rates supplying total N amounting to 2292 kg ha(-) in 1972 and 3286 kg ha(-1) in 1973. Other lysimeters were amended with inorganic fertiliser at the rate of 336 kg N ha(-1) year(-1). Annual losses in runoff and tile-drainage from sludge treatments were 0.9 and 5.1 and 371 and 663 kg NO(3)(-)-N ha(-1). Losses from lysimeters treated with inorganic fertiliser were 1.1 and 3.3 kg NO(3)(-)-N ha(-1) year(-1) in runoff and 31 and 79 kg NO(3)(-)-N ha(-1) year(-1) in tile-drainage. Given the nitrogen inputs accounted for in the study design, unaccounted for losses of 1800 to 2400 kg ha(-1) year(-1) were calculated for sludge and 277 kg ha(-1) year(-1) for inorganic fertiliser treatments. For one year there was a 300 kg ha(-1) increase in N in the lysimeters receiving inorganic fertiliser. Median NO(3)(-)-N concentrations ranged from 8.9 to 14.0 mg litre(-1) in runoff from sludge-treated lysimeters and 3.6 to 5.9 mg litre(-1) in runoff from lysimeters receiving inorganic fertiliser. In tile-drainage the median NO(3)(-)-N concentrations were 148 to 223 mg litre(-1) and 24 to 44 mg litre(-1) for sludge and inorganic fertiliser treatments, respectively. Highest runoff levels occurred in early summer storms, whereas highest tile-drainage concentrations occurred in late winter and early spring.
Impact of paper mill wastewater on soil properties and crop yield through lysimeter studies.
Singh, P K; Ladwani, K; Ladwani, K; Deshbhratar, P B; Ramteke, D S
2013-01-01
Paper and pulp industries produce large quantities of wastewater which can have adverse effects on the receiving water systems. In the present study lysimeters were used and filled with different soils replicating natural soil horizons and provided with a leachate collection system. The physico-chemical characteristics of the soil in each lysimeter and the quality of wastewater before leaching were assessed. Treated wastewater was evaluated for crop irrigation, and was categorized according to the irrigation water class 'Increasing Problem to Severe Problem' with respect to salinity and specific ion toxicity. Sandy loam soils showed 96% chemical oxygen demand (COD) removal while clay loam soils removed 99% of COD, and the colour removal in both the cases was found to be 100%. Application of wastewater resulted in an increase of pH value, ranging from 6.2-7.6; the electrical conductivity (ECe) of saturated extracts was found to be 0.6-1.7 dS m(-1), and exchangeable sodium percentage (ESP) ranged from 7.8-11.1% in soils. Similarly, an increase in the organic carbon, available nitrogen, phosphorus and potash content of soils was observed when irrigated with wastewater. Wastewater irrigation showed increased grain and straw yield of jowar, wheat and moong. These results permit successful utilization of pulp and paper mill wastewater for crop production without damaging the soils.
NASA Astrophysics Data System (ADS)
Llorens, Pilar; Cayuela, Carles; Sánchez-Costa, Elisenda; Gallart, Francesc; Latron, Jérôme
2017-04-01
This work uses a dual isotope-based approach (18O, 2H) to examine the mixing of water in the soil and the linkages between tree water fluxes and soil water pools in a Mediterranean mountain catchment (Vallcebre Research Catchments, NE Spain, 42° 12'N, 1° 49'E). Since May 2015, water-isotopes have been monitored in rainfall, throughfall and stemflow below a Scots pine stand and in stream water at the Can Vila (0.56 km2) catchment outlet. Moreover, fortnightly (From May to December 2015) soil samples (10, 20, 30, 50 and 100 cm), xylem samples (3 Scots pines) and mobile soil water samples in low-suction lysimeters (20, 50 and 100 cm) and in a piezometer (150-300 cm deep) were collected at the same stand. Water from soil and xylem samples was extracted by cryogenic vacuum distillation and isotope analyses were obtained by infrared spectroscopy. All this information has been combined with continuous measurement of meteorological, soil moisture and water potential, piezometric levels and hydrological variables at the stand and catchment scales. Stable isotopes ratios of bound soil water fell below the local meteoric water line (LMWL), with more evaporative enrichment in the shallow horizons. On the contrary, mobile soil water (low suction lysimeters) and groundwater fell along the LMWL, well mixed with stream water. The differences observed between these two water pools remained similar during the whole study period. Stable isotopes ratios indicate that Scots pine trees use shallow bound soil water during the whole study period. No marked changes in depth of water uptake were observed, presumably due to the availability of water in the shallow horizons, even during the summer months.
Melo, Márcio C; Caribé, Rômulo M; Ribeiro, Libânia S; Sousa, Raul B A; Monteiro, Veruschka E D; de Paiva, William
2016-12-05
Long-term settlement magnitude is influenced by changes in external and internal factors that control the microbiological activity in the landfill waste body. To improve the understanding of settlement phenomena, it is instructive to study lysimeters filled with MSW. This paper aims to understand the settlement behavior of MSW by correlating internal and external factors that influence waste biodegradation in a lysimeter. Thus, a lysimeter was built, instrumented and filled with MSW from the city of Campina Grande, the state of Paraíba, Brazil. Physicochemical analysis of the waste (from three levels of depth of the lysimeter) was carried out along with MSW settlement measurements. Statistical tools such as descriptive analysis and principal component analysis (PCA) were also performed. The settlement/compression, coefficient of variation and PCA results indicated the most intense rate of biodegradation in the top layer. The PCA results of intermediate and bottom levels presented fewer physicochemical and meteorological variables correlated with compression data in contrast with the top layer. It is possible to conclude that environmental conditions may influence internal indicators of MSW biodegradation, such as the settlement.
Formation of secondary minerals in a lysimeter approach - A mineral-microbe interaction
NASA Astrophysics Data System (ADS)
Schäffner, F.; Merten, D.; De Giudici, G.; Beyer, A.; Akob, D. M.; Ricci, P. C.; Küsel, K.; Büchel, G.
2012-04-01
Heavy metal contamination of large areas due to uranium mining operations poses a serious long-term environmental problem. In the Ronneburg district (eastern Thuringia, Germany), leaching of low grade uranium bearing ores (uranium content < 300 g/t) occurred from 1972 to 1990 using acid mine drainage (AMD; pH 2.7-2.8) and diluted sulphuric acid (10 g/l). Secondary mineral phases like birnessite, todorokite and goethite occur within a natural attenuation process associated with enrichment of heavy metals, especially Cd, Ni, Co, Cu and Zn due to a residual contamination even after remediation efforts. To reveal the processes of secondary mineral precipitation in the field a laboratory lysimeter approach was set up under in situ-like conditions. Homogenized soil from the field site and pure quartz sand were used as substrates. In general, in situ measurements of redox potentials in the substrates showed highly oxidizing conditions (200-750 mV). Water was supplied to the lysimeter from below via a mariottés bottle containing contaminated groundwater from the field. Evaporation processes were allowed, providing a continuous flow of water. This led to precipitation of epsomite and probably aplowite on the top layer of substrate, similar to what is observed in field investigations. After 4 weeks, the first iron and manganese bearing secondary minerals became visible. Soil water samples were used to monitor the behaviour of metals within the lysimeter. Saturation indices (SI) for different secondary minerals were calculated with PHREEQC. The SI of goethite showed oversaturation with respect to the soil solution. SEM-EDX analyses and IR spectroscopy confirmed the formation of goethite. Geochemical data revealed that goethite formation was mainly dominated by Eh/pH processes and that heavy metals, e.g. Zn and U, could be enriched in this phase. Although Eh/pH data does not support formation of manganese minerals, Mn(II)-oxidizing bacteria (MOB) could be isolated from field soil samples, supporting the fact that microorganisms may influence this natural attenuation process. Laser ablation ICP-MS data reveal accumulation of manganese in MOB biomass on Mn(II)-containing agar plates. Furthermore, it was possible to show the importance of iron on this process, as some MOB isolates were able to oxidize manganese independently from the iron content, whereas some are not. The latter isolates are only able to oxidize manganese if iron is present in the media. In the lysimeter, SEM-EDX data showed microorganisms in organic rich phases together with the occurrence of manganese, oxygen, and nickel, indicating manganese oxides enriched in nickel. Although this new mineral phases could not yet be identified microprobe EDX results from polished thin sections showed needle-like mineral structures that are similar to the birnessite and todorokite samples observed from field samples. Hence, the lysimeter experiment revealed that the formation of iron and manganese minerals that are involved in heavy metal natural attenuation is result of both abiotic and biotic processes.
A lysimeter-based approach to quantify the impact of climate change on soil hydrological processes
NASA Astrophysics Data System (ADS)
Slawitsch, Veronika; Steffen, Birk; Herndl, Markus
2016-04-01
The predicted climate change involving increasing CO2 concentrations and increasing temperatures will have effects on both vegetation and soil properties and thus on the soil water balance. The aim of this work is to quantify the effects of changes in these climatic factors on soil hydrological processes and parameters. For this purpose data of six high precision weighable lysimeters will be used. The lysimeters are part of a Lysi-T-FACE concept, where free-air will be enriched with CO2 (FACE-Technique) and infrared heaters heat the plots for investigation on effects of increasing temperatures (T-FACE-Technique). The Lysi-T-FACE concept was developed on the „Clim Grass Site" at the HBLFA Raumberg-Gumpenstein (Styria, Austria) in 2011 and 2012 with a total of 54 experimental plots. These include six plots with lysimeters where the two climatic factors are varied in different combinations. On the basis of these grass land lysimeters the soil hydraulic parameters under different experimental conditions will be investigated. The lysimeters are equipped with TDR-Trime sensors and temperature sensors combined with tensiometers in different depths. In addition, a mechanical separation snow cover system is implemented to obtain a correct water balance in winter. To be able to infer differences between the lysimeters reliably a verification of functionalities and a plausibility check of the data from the lysimeters as well as adequate data corrections are needed. Both an automatic and a user-defined control including the recently developed filter method AWAT (Adaptive Window and Adaptive Threshold Filter) are combined with a visualisation tool using the software NI DIAdem. For each lysimeter the raw data is classified in groups of matric potentials, soil water contents and lysimeter weights. Values exceeding technical thresholds are eliminated and marked automatically. The manual data control is employed every day to obtain high precision seepage water weights. The subsequent application of the AWAT Filter reduces up to 80% of the oscillations in the calculated precipitation and evapotranspiration. The filtered data of the reference plot in June 2014 yields a precipitation of about 100 mm, whereas the non-filtered raw data result in approximately 170 mm and thus an obvious overestimation of precipitation. The resulting evapotranspiration amounts to slightly more than 100 mm with filter and 200 mm without filter in the same time period. The total water balance (precipitation minus evapotranspiration) of the year 2014 obtained with the automatic and manual data filter is 470 mm on the reference plot but only 358 mm on a plot where CO2 is enriched and temperature increased. In summary, these first results demonstrate that an adequate data correction is the precondition to identify changes of soil hydrological processes and properties.
The mobilization of aluminum in a natural soil system: Effects of hydrologic pathways
Cozzarelli, Isabelle M.; Herman, Janet S.; Parnell, Roderic A.
1987-01-01
A two-component soil water flow model was used in conjunction with an equilibrium speciation model WATEQF to study aluminum mobility in soils of a forested watershed, White Oak Run, in the Shenandoah National Park, Virginia. Soil solution samples, taken from the O, E, B, C1, and C2horizons, were collected from zero-tension lysimeters designed to collect faster gravitational macropore flow and tension lysimeters designed to collect slower capillary micropore flow. Dissolved aluminum was fractionated into acid-soluble, inorganic monomeric, and organic monomeric aluminum. Soil water aluminum concentrations decreased with depth indicating that the deep soil is a sink for aluminum. All waters contained significant concentrations of acid-soluble aluminum and exhibited a negative correlation between pH and the inorganic monomeric aluminum concentrations. Water in the shallow soil showed distinctly different chemical compositions for the two flow types, while C horizon micropore and macropore waters were more similar. Because of its shorter residence time, water flowing in deep soil macropores underwent less extensive neutralization and immobilization of aqueous aluminum than micropore water. The O horizon macropore waters were undersaturated for all hydroxide, silicate, and sulfate mineral phases considered. The C horizon samples from both flow types were near equilibrium with respect to kaolinite and synthetic gibbsite, indicating that mineral solubility controls water chemistry in the deep soil, while organic substances are the key control in the shallow macropore waters.
Soil water nitrate concentrations in giant cane and forest riparian buffer zones
Jon E. Schoonover; Karl W. J. Williard; James J. Zaczek; Jean C. Mangun; Andrew D. Carver
2003-01-01
Soil water nitrate concentrations in giant cane and forest riparian buffer zones along Cypress Creek in southern Illinois were compared to determine if the riparian zones were sources or sinks for nitrogen in the rooting zone. Suction lysimeters were used to collect soil water samples from the lower rooting zone in each of the two vegetation types. The cane riparian...
Stamos, Christina L.; Martin, Peter; Everett, Rhett; Izbicki, John A.
2013-01-01
Between the late 1940s and 1994, groundwater levels in the Warren subbasin, California, declined by as much as 300 feet because pumping exceeded sparse natural recharge. In response, the local water district, Hi-Desert Water District, implemented an artificial-recharge program in early 1995 using imported water from the California State Water Project. Subsequently, the water table rose by as much as 250 feet; however, a study done by the U.S. Geological Survey found that the rising water table entrained high-nitrate septic effluent, which caused nitrate (as nitrogen) concentrations in some wells to increase to more than the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter.. A new artificial-recharge site (site 3) was constructed in 2006 and this study, which started in 2004, was done to address concerns about the possible migration of nitrates in the unsaturated zone. The objectives of this study were to: (1) characterize the hydraulic, chemical, and microbiological properties of the unsaturated zone; (2) monitor changes in water levels and water quality in response to the artificial-recharge program at site 3; (3) determine if nitrates from septic effluent infiltrated through the unsaturated zone to the water table; (4) determine the potential for nitrates within the unsaturated zone to mobilize and contaminate the groundwater as the water table rises in response to artificial recharge; and (5) determine the presence and amount of dissolved organic carbon because of its potential to react with disinfection byproducts during the treatment of water for public use. Two monitoring sites were installed and instrumented with heat-dissipation probes, advanced tensiometers, suction-cup lysimeters, and wells so that the arrival and effects of recharging water from the State Water Project through the 250 to 425 foot-thick unsaturated zone and groundwater system could be closely observed. Monitoring site YVUZ-1 was located between two recharge ponds in the middle of site 3, and YVUZ-2 was located approximately 1,200 feet down-gradient and to the southeast in an area where septic systems have been in use since about 1960. Site YVUZ-3 only went to a depth of 42 feet and was used to sample the upper part of the unsaturated zone near a golf course. Prior to the start of artificial recharge at site 3, nitrate concentrations reported as nitrogen from the soil leachate below YVUZ-1 did not exceed 1.58 milligrams per kilogram. Nitrate-reducing bacteria concentrations of 4,300 most probable number were found at about 220 feet below land surface and at the top of the water table at YVUZ-1. Nitrate concentrations at YVUZ-2 reached a maximum concentration of about 25 milligrams per kilogram between about 100 and 121 feet below land surface; concentrations of nitrate-reducing or denitrifying bacteria were as high as 21,000 most probable number at 36 feet below land surface but did not exceed 40 most probable number below about 150 feet below land surface. Between June 2006 and September 2009, more than 9,800 acre feet of water from the State Water Project was released to site 3 ponds. The infiltration of the recharge water was predominantly vertical with limited lateral spreading to a depth of about 200 feet below land surface at YVUZ-1. Lateral spreading of the recharge water with depth was caused by geologic heterogeneities within the unsaturated zone, and resulted in varied arrival times of the recharge water to the instruments and slower rates of vertical movement with depth. No abrupt changes in soil moisture were observed at YVUZ-2, indicating that the recharge water had not reached that site by September 2009. Water levels from the monitoring wells at both sites and from five production wells nearby showed that the water table rose at a mean rate of about 0.08 feet per day between June 2006 and January 2009. The arrival of the water from the State Water Project caused relatively rapid changes in the stable-isotopic ratios from the lysimeters at YVUZ-1. The estimated average rate of infiltration of the recharge water through the unsaturated zone ranged from 3.7 to 25 feet per day. The recharge water arrived at the monitoring well below the recharge ponds between August 2007 and March 2008; the rate of vertical movement to the monitoring well was between 0.6 and 0.9 feet per day. By September 2008, a production well located 375 feet west of site 3 was producing almost 100 percent infiltrated recharge water. By contrast, the stable-isotope data from the lysimeters at YVUZ-2 showed that the recharge water had not reached this site by September 2009, but that septic effluent in the unsaturated zone likely had mixed with the native pore water to at least 154 feet below land surface. Assuming vertical infiltration, the minimum rate of infiltration of septic effluent since 1960 was about 3 feet per year. The isotopic data from the lysimeters at YVUZ-3 indicated two different sources of water to the upper 43 feet–irrigation-return flow and precipitation. Nitrate concentrations of the water from the State Water Project did not exceed 1 milligram per liter. Prior to artificial recharge, nitrate concentrations of the pore water at YVUZ-1 ranged between 6 to 18.2 milligrams per liter. After the arrival of the recharge water, the nitrate concentrations from the lysimeters and well at YVUZ-1 decreased to less than 1 milligram per liter, with the exception of samples collected at 205.5 feet, which did not exceed 4.12 milligrams per liter. The decrease in nitrate concentrations after artificial recharge indicated that the rising water table did not result in an increase of nitrates below YVUZ-1. At YVUZ-2, nitrate concentrations ranged between 12 to 479 milligrams per liter. The highest nitrate concentrations were at 92 feet below land surface and were almost seven times that of samples collected from a nearby septic tank. Nitrate concentrations from the lysimeter at 273 feet below land surface increased from 6 to almost 58 milligrams per liter after it was saturated by the rising water table in December 2007. These increases could be the result of the mobilization of high-nitrate water from regional sources of septic effluent after saturation, or the result of high-nitrate water present at the top of the water table that may be diluted deeper in the aquifer. Nitrate concentrations in groundwater from five nearby production wells and from both monitoring wells were less than 5 milligrams per liter before artificial recharge started. Nitrate concentrations decreased to less than 3 milligrams per liter in three of the production wells and the monitoring well below the recharge ponds after artificial recharge. Dissolved organic carbon concentrations were measured in the recharge water and groundwater because of the potential for dissolved organic carbon to react with chlorine to form trihalomethanes during the water-treatment process. The dissolved organic carbon concentrations of the recharge water were 3.1 milligrams per liter or less, and dissolved organic carbon concentrations of the groundwater were less than 1 milligram per liter. Even though recharge water was present in some of the wells by September 2008, the concentrations of both dissolved organic carbon and trihalomethane formation potential in the groundwater did not increase. Interpretation of these data suggests that the dissolved organic carbon from the recharge water is altered or metabolized in the unsaturated zone, either by absorption to the grain particles in the soil or by microbiological processes.
A Centimeter-Scale Investigation of Geochemical Hotspots in a Soil Lysimeter
NASA Astrophysics Data System (ADS)
Umanzor, M.; Wang, Y.; Dontsova, K.; Chorover, J.; Troch, P. A. A.
2016-12-01
Studying the co-evolution of hydrological and biogeochemical processes in the subsurface of natural landscapes can enhance the understanding of coupled Earth-system processes. Such knowledge is imperative for improving predictions of hydro-biogeochemical cycles, especially under climate change scenarios. Hotspots may form in porous media that is undergoing biogeochemical weathering at locations where reactants accumulate to threshold values along hydrologic flow paths. This is expected to occur in weatherable silicate media, like granular basalt. To examine such processes during incipient soil formation, we constructed a sloping weighing lysimeter 2-m in length, 0.5-m in width and 1-m in depth. Mini-LEO was filled with crushed granular basalt rock with a known initial chemical composition. After 18 months of irrigation and intensive hydrological study, the model "landscape" was divided into a 3D matrix of 324 voxels and excavated. Collected samples were subjected to detailed hydro-bio-geochemical analysis to assess the formation of geochemical heterogeneity. A five-step sequential extraction was employed to characterize incongruent mineral weathering, and its relation to the spatial distribution of microbial composition (in a related study). The changes in Fe and Mn concentration and speciation along the lysimeter length and depth (as measured by each step of the sequential extraction) was quantified to characterize spatial distribution of weathering processes. Results are being used to assist in understanding not only spatial and temporal distribution of basalt weathering on the slope, but also, connections between hydrological and biogeochemical cycles that lead to formation of hotspots.
Assessment of soil hydrology variability of a new weighing lysimeter facility
NASA Astrophysics Data System (ADS)
Brown, S. E.; Wagner-Riddle, C.; Berg, A. A.
2017-12-01
Diversifying annual crop rotations is a strategy that mimics natural ecosystems and is postulated to increase agricultural resilience to climate change, soil quality and provision of soil ecosystem services. However, diverse cropping systems could increase soil mineral N levels and lead to greater leaching and/or N2O emissions; which raises the questions: (i) are diverse cropping systems actually beneficial for air and water quality? (ii) what are the trade-offs between soil, water, and air quality upon implementing a diverse cropping rotation? It can be difficult to fully evaluate the interactions between the two N-pollution pathways simultaneously in traditional field studies as drainage is largely unconstrained. Weighing lysimeters solve this issue by providing a closed system to measure N outputs via drainage and soil gas fluxes. A set of 18 weighting lysimeters were installed in Elora, Ontario, Canada in May 2016, to establish a long-term study of N-leaching and greenhouse gas emission from traditional and diverse cropping rotations for two different soil types. Each lysimeter is equipped with an automated chamber for continuous measurement of soil N2O and CO2 fluxes. A full characterization of variations of physical properties that may affect GHG emissions and N-leaching (e.g., soil temperature, moisture, drainage and evapotranspiration rates) amongst the lysimeters is required prior to application and assessment of the management treatments. Novel techniques such as wavelet analysis is required as standard statistical analyses are not applicable to the time series data. A full description of the lysimeters will be presented along with results of the characterization.
NASA Astrophysics Data System (ADS)
Knoblauch, S.
2009-04-01
Both the potential water consumption of plants and their ability to withdraw soil water are necessary in order to estimate actual evapotranspiration and to predict irrigation timing and amount. In relating to root water uptake the threshold value at which plants reducing evapotranspiration is an important parameter. Since transpiration is linearly correlated to dry matter production, under the condition that the AET/PET-Quotient is smaller than 1.0 (de Wit 1958, Tanner & Sinclair 1983), the dry matter production begins to decline too. Plants respond to drought with biochemical, physiological and morphological modifications in order to avoid damages, for instance by increasing the root water uptake. The objective of the study is to determine threshold values of soil water content and pressure head respectively for different field and vegetable plants with lysimeter measurements and to derive so called reduction functions. Both parameter, potenzial water demand in several growth stages and threshold value of soil water content or pressure head can be determined with weighable field lysimeter. The threshold value is reached, when the evapotranspiration under natural rainfall condition (AET) drop clearly (0.8 PET) below the value under well watered condition (PET). Basis for the presented results is the lysimeter plant Buttelstedt of the Thuringian State Institute of Agriculture. It consist of two lysimeter cellars, each with two weighable monolithic lysimeters. The lysimeter are 2.5 m deep with a surface area of 2 m2 to allow a non-restrictive root growth and to arrange a representative number of plants. The weighing accuracy amounts to 0.05 mm. The percolating water is collected by ceramic suction cups with suction up to 0.3 MPa at a depth of 2.3 m. The soil water content is measured by using neutron probe. One of the two lysimeter cellars represents the will irrigated, the other one the non irrigated and/or reduced irrigated part of field. The soil is a Haplic Phaeozem with silt-loamy texture developed from loess (water content at wilting point amounts between 0.167 and 0.270 cm3/cm3 and at field capacity (0.03 MPa) between 0.286 and 0.342 cm3/cm3). The mean annual temperature is 8.2°C and the mean annual precipitation is 550 mm. Results are as follows: Winter wheat begins to reduce evapotranspiration when the water content in the root zone to a depth of 2.0 m is smaller than 25 % of the available water holding capacity (AWC). That is equal to an amount of soil water of 171 mm. The threshold value of potatoes is 40 % of the AWC to a rooting depth of 0.6 m (49 mm soil water amount). The corresponding value for cabbage is 40 % of the AWC relating to a rooting depth of 1.2 m, for cauli flower 60 % of the AWC relating to a depth of 1.0 m and for onion 80 % of the AWC to a rooting depth of 0.3 m (90, 50 and 5 mm soil water amount). Nevertheless onion attain a maximum rooting depth of 0.9 m. The maximum rooting depths of winter wheat, potatoes, cabbage and cawli flower are 2.0, 1.0, 1.5 und 1.5 m. The date on which the threshold is reached is different, for winter wheat and cabbage just before harvest and for onion in a few days after 8-leaf-stage. However, it is assumed that these values are also the influence of weather reflect, particulary with regard to the transpiration demand of the atmosphere and the amount of rain fall during earlier growth stages which can prefer the development of adaptation mechanism. Although there are great differences between the plant species concerning root water uptake to avoid a decline of biomass production due to drought.
NASA Astrophysics Data System (ADS)
Iwagami, Sho; Tsujimura, Maki; Onda, Yuichi; Sakakibara, Koichi; Konuma, Ryohei; Sato, Yutaro
2016-04-01
Radiocesium migration from headwater forested catchment is important perception as output from the forest which is also input to the subsequent various land use and downstream rivers after Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. In this study, dissolved Cs-137 concentration of stream water, soil water and groundwater were measured. Observations were conducted at headwater catchment in Yamakiya district, located 35 km northwest of FDNPP from April 2014 to November 2015. Stream water discharge was monitored and stream water samples were taken at main channel and sub channel. Stream water discharge was monitored by combination of parshallflume and v-notch weir. Stream water was sampled manually at steady state condition in 3-4 month interval and also intense few hours interval sampling were conducted during rainfall events using automated water sampler. Around the sub channel, it is found that there is a regularly saturated area at the bottom of the slope, temporary saturated area which saturate during the rainy season in summer and regularly dry area. 6 interval cameras were installed to monitor the changing situation of saturated area. Suction lysimeters were installed at three areas (regularly saturated area, temporary saturated area and dry area) for sampling soil water in depth of 0.1 m and 0.3 m. Boreholes were installed at three points along the sub channel. Three boreholes with depth of 3 m, 5 m and 10 m were installed at temporary saturated area, 20 m upstream of sub channel weir. Another three boreholes with depth of 3 m, 5 m and 10 m were installed at dry area, 40 m upstream of sub channel weir. And a borehole with depth of 20 m was installed at ridge of sub catchment, 52 m upstream of sub channel weir. Groundwater was sampled by electrically powered pump and groundwater level was monitored. Also suction-free lysimeter was installed at temporary saturated area for sampling the near surface subsurface water. Soil water samples were collected as much as collected in flask. Stream water and groundwater samples were collected for 40 L each. All the water samples were filtered through 0.45 μm pore-size membrane. Water samples with less than few L were concentrated by evaporative concentration. Water samples with more than 40 L were concentrated using the ammonium molybdophosphate (AMP)/Cs compound method. The Cs-137 concentration was determined using gamma-ray spectrometry with a germanium semiconductor detector. Spatial distribution of dissolved Cs-137 concentration in the slope was obtained and the source of Cs-137 concentration in stream water was examined. The Cs-137 concentration in groundwater showed low value of 0.0004-0.001 Bq/L. The Cs-137 concentration of soil water showed 0.01-0.1 Bq/L. And Cs-137 concentrations of stream water were 0.007-0.03 Bq/L at steady state condition. Also Cs-137 concentrations in stream water showed temporary increase during rainfall event. The source of dissolved Cs-137 was suggested to be shallow soil water under saturated condition or leaching from the litter might be affecting.
Greenhouse gases dissolved in soil solution - often ignored, but important?
NASA Astrophysics Data System (ADS)
Weymann, Daniel; Brueggemann, Nicolas; Puetz, Thomas; Vereecken, Harry
2014-05-01
Flux measurements of climate-relevant trace gases from soils are frequently undertaken in contemporary ecosystem studies and substantially contribute to our understanding of greenhouse gas balances of the biosphere. While the great majority of such investigations builds on closed chamber and eddy covariance measurements, where upward gas fluxes to the atmosphere are measured, fewest concurrently consider greenhouse gas dissolution in the seepage and leaching of dissolved gases via the vadose zone to the groundwater. Here we present annual leaching losses of dissolved N2O and CO2 from arable, grassland, and forest lysimeter soils from three sites differing in altitude and climate. We aim to assess their importance in comparison to direct N2O emission, soil respiration, and further leaching parameters of the C- and N cycle. The lysimeters are part of the Germany-wide lysimeter network initiative TERENO-SoilCan, which investigates feedbacks of climate change to the pedosphere on a long-term scale. Soil water samples were collected weekly from different depths of the profiles by means of suction cups. A laboratory pre-experiment proved that no degassing occurred under those sampling conditions. We applied the headspace equilibration technique to determine dissolved gas concentrations by gas chromatography. The seepage water of all lysimeters was consistently supersaturated with N2O and CO2 compared to water equilibrated ambient air. In terms of N2O, leaching losses increased in the ascending order forest, grassland, and arable soils, respectively. In case of the latter soils, we observed a strong variability of N2O, with dissolved concentrations up to 23 μg N L-1. However, since seepage discharge of the arable lysimeters was comparatively small and mostly limited to the hydrological winter season, leached N2O appeared to be less important than direct N2O emissions. In terms of dissolved CO2,our measurements revealed considerable leaching losses from the mountainous forest and grassland soils, based on concentrations up to 24 mg C L-1 and high seepage discharge. Such losses turned out to be similarly important like soil respiration, particularly during winter when temperature-dependent soil respiration declined. In conclusion, the results of the first year of our measurements provide evidence that dissolved greenhouse gases should be considered in studies which aim to assess full greenhouse gas balances, particularly in ecosystems where hydrological conditions favour microbial activity and high leaching losses.
Influence of the lower boundary in lysimeter observations
NASA Astrophysics Data System (ADS)
Weller, Ulrich; Richter, Katja; Gubis, Jozef; Vogel, Hans-Jörg
2014-05-01
Lysimeters are a valuable tool to study the water household in soils under close to natural conditions. One major drawback is that they are cut off at the lower boundary. This influences strongly the percolation of water. As long as water is leaching down in the soil, it is stagnating at the lower boundary until saturated conditions are reached and the water can percolate through the gravel filter, and under unsaturated conditions there is no flow at all at the lower boundary. In natural soils the water potential at the same depth differs considerably from the regime in a lysimeter. If the depth of the soil or the soil forming substrate is deep enough, the lower boundary is at the potential that allows the percolation of the long term mean of percolation. In other situations, a water table may influence the matric potential in the natural soil, or a less permeable layer may impede free drainage. In all these situations the matric potential at the depth of the lower boundary of the lysimeter will differ substantially in the natural soil. The latest generation of lysimeter therefore has a controlled lower boundary. The matric potential can be actively adjusted to a desired value over a broad range. Most applications connect the suction in the lysimeter to a reference value obtained in the field at the same depth in order to mimic the correct distribution of the soil water. In this presentation we demonstrate the long term influence of the different lower boundary regimes on percolation and evaporation of water based on soil physical models, and we show first field data on the practical implementations with several months of observations.
Partnership to Improve Nutrient Efficiency
PINE began in 2013 by working with OSU Extension and producers to locate and test existing 1990s lysimeters in Benton, Linn and Lane counties. The team identified additional producers to install Prenart lysimeters at a total of 15 sites. Producers allow for soil and water samplin...
NASA Astrophysics Data System (ADS)
Rupp, Holger; Meissner, Ralph; Shaheen, Sabry; Rinklebe, Jörg
2014-05-01
Trace elements and arsenic (As) were transported with water during inundation in floodplain ecosystems, where they settled down and accumulated predominantly in depressions and low-lying terraces. Highly variable hydrological conditions in floodplains can affect the dynamics of pollutants. The impact of different flooding/drying periods on the temporal dynamics of pore water concentrations of As, Cr, Mo and V as a function of soil EH/pH changes and dynamics of DOC, Fe, Mn and SO42- was studied in a contaminated floodplain soil collected at the Elbe River (Germany). A specific groundwater lysimeter technique with two separate small lysimeter vessels served as replicates was used for this study. The groundwater level inside the lysimeters was controlled to simulate long term and short term flooding/drying. The long term (LT) flooding scenario consists of 94 days of flooding followed by similar drying term. The short term (ST) flooding/drying scenario comprises 21 days and was six times repeated. The entire experimental period (LT_ST) was about 450 days. Flooding of the soil caused a significant decrease of EH and pH. Concentrations of soluble As, Cr, Fe, Mn, Mo and DOC were higher under reducing conditions than under oxidizing conditions in LT. However, As and Cr tended to be mobilized under oxidizing conditions during ST, which might be due to slow kinetics of the redox reaction of As and Cr. Dynamics of Mo were more affected by changes of EH/pH as compared to As, Cr and V and governed mainly by Fe-Mn chemistry. Concentrations of V in ST were higher than in LT and were controlled particularly by pH and chemistry of Fe. The interactions between the elements and carriers studied were stronger during long flood-dry-cycles than during short cycles, which confirmed our hypothesis. We conclude that the dynamics of As, Cr, Mo and V are determined by the length of time soils are exposed to flooding, because drivers of element mobility need a certain time to provoke reactions in soils under changing conditions.
USDA-ARS?s Scientific Manuscript database
Evapotranspiration was continuously measured by an array of eddy covariance systems and large weighting lysimeter in a cotton field in Bushland, Texas. The advective divergence from both horizontal and vertical directions were measured through profile measurements above canopy. All storage terms wer...
USDA-ARS?s Scientific Manuscript database
Passive capillary lysimeters (PCLs) are uniquely suited for measuring water fluxes in variably-saturated soils. The objective of this work was to compare PCL flux measurements with simulated fluxes obtained with a calibrated unsaturated flow model. The Richards equation-based model was calibrated us...
NASA Astrophysics Data System (ADS)
Erdmann, Bryan James
The objective of this work is to quantify the one-dimensional spatial distribution of radionuclides in field lysimeters from the Radionuclide Field Lysimeter Experiment (RadFLEX) facility at the Savannah River Nationals Laboratory (SRNL). The lysimeters, containing 137Cs, 60Co, 133Ba and 152Eu incorporated either into solid wasteforms (Portland cement and reducing grout) or introduced into soil via a filter paper wasteform, were weathered for three to four years. The initial contaminant activities range from 4.0 to 9.0 MBq for the cementitious wasteforms and 0.25 to 0.47 MBq for the filter paper wasteform. An analytical method was developed to perform non-destructive measurements to quantify the spatial distributions measured in field lysimeters. This method provides an alternative to traditional destructive techniques to determine the spatial distribution of activity. This non-destructive method also allows for multiple scans to be performed periodically. Observing how these distributions change with time would improve modeling transport parameters. The detection system consists of a collimated high-purity germanium (HPGe) radiation detector coupled with a linear translational table. A lead collimator is used to achieve spatial resolution as high as 0.25 cm. The lysimeters are positioned relative to the detector using a linear translation stage that can move vertically via a computercontrolled stepping motor. A user control interface was developed with National Instruments LabVIEWRTM that synchronizes the data acquisition from the radiation detector with the lysimeter movement and positioning thus allowing the lysimeter scans to be automated. The detection efficiency of the system was investigated using two methods. Europium-152 is an ideal candidate for calibration source due to its multiple gamma-ray emissions across a wide range of energies. One method uses a 152Eu point source as the calibration standard while the other method uses the 152Eu within the lysimeter systems themselves as the calibration standard. These methods show that system geometry and source distribution are the key factors influencing the detection efficiency. This suggest that to reduce the impact from the source distribution and geometry variability within a volume, that lysimeters be rotated during measurements. These scans showed downward mobility of 60Co and 133Ba when the radionuclides were incorporated directly into the Savannah River Site (SRS) soil via the filter paper wasteform. When radionuclides were incorporated into the cementitious wasteforms positioned in the SRSS soil, 137Cs exhibited both upward and downward dispersion while the other radionuclides showed no movement. This dispersion was more significant for the Portland cement than the reducing grout wasteform. In the case of the filter paper wasteform, 137Cs mobility was greatly reduced. This suggests the presence of a cementitious wasteform enhances 137Cs mobility. The movement of 137Cs from the solid wasteform was modelled using a retarded diffusion model. Retardation factors for 137Cs are determined to range from approximately 700-2500 for Portland cement, 1500-4000 for reducing grout, and up to 2500-8000 the filter paper wasteform. Numerical simulations were run to investigate the hypothesis that ions released from the wasteforms compete for sorption sites in the SRS soil, enhancing the mobility of 137Cs. These simulations suggest ion-competition could be a factor, but more data is needed to explore this mechanism for Cs+ transport. Understanding radionuclide movement in the environment is important for informing strategies used for waste management and disposal.
Poultry litter application to loblolly pine forests: growth and nutrient containment.
Friend, Alexander L; Roberts, Scott D; Schoenholtz, Stephen H; Mobley, Juanita A; Gerard, Patrick D
2006-01-01
Forestland application of poultry manure offers an alternative to the conventional practice of pastureland application. Before such a practice is considered viable, however, it must be demonstrated that the forest ecosystem is capable of absorbing the nutrients contained in poultry manure, especially nitrogen (N) and phosphorus (P). From the forestry perspective, it must also be demonstrated that tree growth is not diminished. We investigated these questions using loblolly pine (Pinus taeda L.) stands growing in central Mississippi in an area of high poultry production. Stockpiled broiler litter was applied to newly thinned, 8-yr-old stands at 0, 4.6, and 18.6 dry Mg ha-1, supplying 0, 200, and 800 kg N ha-1 and 0, 92, and 370 kg P ha-1, respectively. Levels of nitrate in soil water, monitored at a 50-cm depth with porous cup tension lysimeters, exceeded 10 mg N L-1 during the first two years after application in the 18.6 Mg ha-1 rate but only on two occasions in the first year for the lower rate of application. Phosphate was largely absent from lysimeter water in all treatments. Other macronutrients (K, Ca, Mg, S) were elevated in lysimeter water in proportion to litter application rates. Soil extractable nitrate showed similar trends to lysimeter water, with substantial elevation during the first year following application for the 18.6 Mg ha-1 rate. Mehlich III-extractable phosphate peaked in excess of 100 microg P g-1 soil during the third year of the study for the 18.6 Mg ha-1 rate. The 4.6 Mg ha-1 rate did not affect extractable soil P. Tree growth was increased by the poultry litter. Total stem cross-sectional area, or basal area, was approximately 20% greater after 2 yr for both rates of litter application. Overall, the nutrients supplied by the 4.6 Mg ha-1 rate were contained by the pine forest and resulted in favorable increases in tree growth. The higher rate, by contrast, did pose some risk to water quality through the mobilization of nitrate. These results show that, under the conditions of this study, application of poultry litter at moderate rates of approximately 5 Mg ha-1 to young stands of loblolly pine offers an alternative disposal option with minimal impacts to water quality and potential increases in tree growth.
Surface effects on water storage under dryland summer fallow, a lysimeter study
USDA-ARS?s Scientific Manuscript database
Small changes in short and long term soil water storage can have large effects on crop productivity in semi-arid climates. To optimize tillage and residue management, we need to measure evaporation from a range of treatments on contrasting soil types. Sixty low-cost, low-maintenance lysimeters were ...
Effects of biochar addition to soil on nitrogen fluxes in a winter wheat lysimeter experiment
NASA Astrophysics Data System (ADS)
Hüppi, Roman; Leifeld, Jens; Neftel, Albrecht; Conen, Franz; Six, Johan
2014-05-01
Biochar is a carbon-rich, porous residue from pyrolysis of biomass that potentially increases crop yields by reducing losses of nitrogen from soils and/or enhancing the uptake of applied fertiliser by the crops. Previous research is scarce about biochar's ability to increase wheat yields in temperate soils or how it changes nitrogen dynamics in the field. In a lysimeter system with two different soils (sandy/silt loam) nitrogen fluxes were traced by isotopic 15N enriched fertiliser to identify changes in nitrous oxide emissions, leaching and plant uptake after biochar addition. 20t/ha woodchip-waste biochar (pH=13) was applied to these soils in four lysimeters per soil type; the same number of lysimeters served as a control. The soils were cropped with winter wheat during the season 2012/2013. 170 kg-N/ha ammonium nitrate fertiliser with 10% 15N was applied in 3 events during the growing season and 15N concentrations where measured at different points in time in plant, soil, leachate and emitted nitrous oxide. After one year the lysimeter system showed no difference between biochar and control treatment in grain- and straw yield or nitrogen uptake. However biochar did reduce nitrous oxide emissions in the silt loam and losses of nitrate leaching in sandy loam. This study indicates potential reduction of nitrogen loss from cropland soil by biochar application but could not confirm increased yields in an intensive wheat production system.
Zhang, Jianye; Kim, Hwidong; Dubey, Brajesh; Townsend, Timothy
2017-01-01
The effects of sulfide levels on arsenic leaching and speciation were investigated using leachate generated from laboratory-scale construction and demolition (C&D) debris landfills, which were simulated lysimeters containing various percentages of gypsum drywall. The drywall percentages in lysimeters were 0, 1, 6, and 12.4wt% (weight percent) respectively. With the exception of a control lysimeter that contained 12.4wt% of drywall, each lysimeter contained chromated copper arsenate (CCA) treated wood, which accounts for 10wt% of the C&D waste. During the period of study, lysimeters were mostly under anaerobic conditions. Leachate analysis results showed that sulfide levels increased as the percentage of drywall increased in landfills, but arsenic concentrations in leachate were not linearly correlated with sulfide levels. Instead, the arsenic concentrations decreased as sulfide increased up to approximately 1000μg/L, but had an increase with further increase in sulfide levels, forming a V-shape on the arsenic vs. sulfide plot. The analysis of arsenic speciation in leachate showed different species distribution as sulfide levels changed; the fraction of arsenite (As(III)) increased as the sulfide level increased, and thioarsenate anions (As(V)) were detected when the sulfide level further increased (>10 4 μg/L). The formation of insoluble arsenic sulfide minerals at a lower range of sulfide and soluble thioarsenic anionic species at a higher range of sulfide likely contributed to the decreasing and increasing trend of arsenic leaching. Copyright © 2016. Published by Elsevier Ltd.
Erdmann, Bryan J; Powell, Brian A; Kaplan, Daniel I; DeVol, Timothy A
2018-05-01
One-dimensional scans of gamma-ray emitting contaminants were conducted on lysimeters from the RadFLEX facility at the Savannah River Nationals Laboratory (SRNL). The lysimeters each contained a contamination source that was buried in SRNL soil. A source consisted of Cs, Co, Ba, and Eu incorporated either into a solid waste form (Portland cement and reducing grout) or applied to a filter paper for direct soil exposure. The lysimeters were exposed to natural environmental conditions for 3 to 4 y. The initial contaminant activities range from 4.0 to 9.0 MBq for the solid wasteforms and 0.25 to 0.47 MBq for the soil-incorporated source. The measurements were performed using a collimated high-purity germanium gamma-ray spectrometer with a spatial resolution of 2.5 mm. These scans showed downward mobility of Co and Ba when the radionuclides were incorporated directly into the SRNL soil. When radionuclides were incorporated into the solid waste forms positioned in the SRNL soil, Cs exhibited both upward and downward dispersion while the other radionuclides showed no movement. This dispersion was more significant for the Portland cement than the reducing grout wasteform. Europium-152 was the only radionuclide of those studied that showed no movement within the spatial resolution of the scanner from the original placement within the lysimeter. Understanding radionuclide movement in the environment is important for developing strategies for waste management and disposal.
Harold F. Haupt
1969-01-01
A simple gage on the lysimeter principle has been developed to provide continuous readings of the volume of water flowing from the base of a snowpack in the form of surface melt alone or rain percolate and surface melt combined. The data obtained show promise, after two seasons of being applicable in river flood forecasting, as well as in studies of snow hydrology....
USDA-ARS?s Scientific Manuscript database
Long term weighing lysimeter records may have utility for assessment of climate changes occurring during the period of record. They typically enclose a depth of soil that exceeds the root zone of vegetation normally grown on them and have drainagy systems so that more or less natural hydrologic flux...
NASA Astrophysics Data System (ADS)
Brückner, Lisa; Klammler, Gernot; Schuhmann, Andrea; Kupfersberger, Hans; Fank, Johann
2017-04-01
A lysimeter experiment was conducted at the agricultural test site in Wagna, Austria, where clayey-sandy cambisol are predominant. The pesticides chloridazon and s-metolachlor were applied between 2010 and 2014 and the concentration of the active ingredients and their metabolites were measured regularly in the soil and the leachate in different depths (Schuhmann et al. 2016). During the lysimeter experiment maize, pumpkin and triticale were cultivated, which are the main field crops in that region. Beside this data, precise measurements of the soil hydrology parameters as well as meteorological data are available. Average annual precipitation at this site is 972 mm, mean annual groundwater recharge is 358 mm (2005-2014). Based on this data and the different breakthrough curves a comparison of the three different pesticide fate models PEARL, PELMO and MACRO is carried out for the pesticides s-metolachlor and chloridazon and their metabolites metolachlor oxanilic acid, metolachlor ethane sulfonic acid, desphenyl-chloridazon and methyl-desphenyl-chloridazon. The results of the modeling of the water movement and pesticide fate are evaluated and discussed. This work will contribute to a better understanding of the performance of this pesticide fate models for the above mentioned soil and hydrologic conditions. Schuhmann, A; Gans, O; Weiss, S; Fank, J; Klammler, G; Haberhauer, G; Gerzabek, MH (2016): A long-term lysimeter experiment to investigate the environmental dispersion of the herbicide chloridazon and its metabolites - comparison of lysimeter types. J SOIL SEDIMENT. 2016; 16(3): 1032-1045
USDA-ARS?s Scientific Manuscript database
Weighing lysimeters and neutron probes are two tools used to determine the change in soil water storage that is needed to solve for evapotranspiration (ET) using the soil water balance equation. Errors in the soil water balance due to errors in determination of precipitation and irrigation are commo...
Leaching behaviour of hazardous demolition waste.
Roussat, Nicolas; Méhu, Jacques; Abdelghafour, Mohamed; Brula, Pascal
2008-11-01
Demolition wastes are generally disposed of in unlined landfills for inert waste. However, demolition wastes are not just inert wastes. Indeed, a small fraction of demolition waste contains components that are hazardous to human health and the environment, e.g., lead-based paint, mercury-contained in fluorescent lamps, treated wood, and asbestos. The objective of this study is to evaluate the release potential of pollutants contained in these hazardous components when they are mixed with inert wastes in unlined landfills. After identification of the different building products which can contain hazardous elements and which can be potentially pollutant in landfill scenario, we performed leaching tests using three different lysimeters: one lysimeter containing only inert wastes and two lysimeters containing inert wastes mixed with hazardous demolition wastes. The leachates from these lysimeters were analysed (heavy metals, chlorides, sulphates fluoride, DOC (Dissolved Organic Carbon), phenol index, and PAH). Finally, we compared concentrations and cumulative releases of elements in leachates with the limits values of European regulation for the acceptance of inert wastes at landfill. Results indicate that limit values are exceeded for some elements. We also performed a percolation column test with only demolition hazardous wastes to evaluate the specific contribution of these wastes in the observed releases.
Automated Passive Capillary Lysimeters for Estimating Water Drainage in the Vadose Zone
NASA Astrophysics Data System (ADS)
Jabro, J.; Evans, R.
2009-04-01
In this study, we demonstrated and evaluated the performance and accuracy of an automated PCAP lysimeters that we designed for in-situ continuous measuring and estimating of drainage water below the rootzone of a sugarbeet-potato-barley rotation under two irrigation frequencies. Twelve automated PCAPs with sampling surface dimensions of 31 cm width * 91 cm long and 87 cm in height were placed 90 cm below the soil surface in a Lihen sandy loam. Our state-of-the-art design incorporated Bluetooth wireless technology to enable an automated datalogger to transmit drainage water data simultaneously every 15 minutes to a remote host and had a greater efficiency than other types of lysimeters. It also offered a significantly larger coverage area (2700 cm2) than similarly designed vadose zone lysimeters. The cumulative manually extracted drainage water was compared with the cumulative volume of drainage water recorded by the datalogger from the tipping bucket using several statistical methods. Our results indicated that our automated PCAPs are accurate and provided convenient means for estimating water drainage in the vadose zone without the need for costly and manually time-consuming supportive systems.
Modeling Recharge - can it be Done?
NASA Astrophysics Data System (ADS)
Verburg, K.; Bond, W. J.; Smith, C. J.; Dunin, F. X.
2001-12-01
In sub-humid areas where rainfall is relatively low and sporadic, recharge (defined as water movement beyond the active root zone) is the small difference between the much larger numbers rainfall and evapotranspiration. It is very difficult to measure and often modeling is resorted to instead. But is modeling this small number any less difficult than measurement? In Australia there is considerable debate over the magnitude of recharge under different agricultural systems because of its contribution to rising saline groundwater levels following the clearing of native vegetation in the last 100 years. Hence the adequacy of measured and modeled estimates of recharge is under close scrutiny. Results will be presented for the water balance of an intensively monitored 8 year sequence of crops and pastures. Measurements included meteorological inputs, evapotranspiration measured with a pair of weighing lysimeters, and soil water content was measured with TDR and neutron moisture meter. Recharge was estimated from the percolate removed from the lysimeters as well as, when conditions were suitable, from soil water measurements and combined soil water and evapotranspiration measurements. This data was simulated using a comprehensive soil-plant-atmosphere model (APSIM). Comparison with field measurements shows that the recharge can be simulated with an accuracy similar to that with which it can be measured. However, is either sufficiently accurate for the applications for which they are required?
NASA Astrophysics Data System (ADS)
Müller, J.
2009-04-01
Investigations with large-scale forest lysimeter research of the lowlands of Northeast Germany - Results and consequences for the choice of tree species and forest management Introduction At present about 28 % - i.e. 1.9 million hectares - of the Northeast German Lowlands are covered with forests. The Lowlands are among the driest and at the same time the most densely wooded regions in Germany. The low annual precipitation between 500 and 600 mm and the light sandy soils with their low water storage capacity and a high porosity lead to a limited water availability. Therefore the hydrological functions of forests play an important role in the fields of regional water budget, water supply and water distribution. Experimental sites Lysimeters are suitable measuring instruments in the fields of granular soils and loose rocks to investgate evaporation and seepage water. The usage of lysimeter of different construction has a tradition of more than 100 years in this region. To investigate the water consumption of different tree species, lysimeters were installed at Britz near Eberswalde under comparable site conditions. In the early 1970s nine large-scale lysimeters were built with an area of 100 m2 and a depth of 5 m each. In 1974 the lysimeters were planted, together with their environment, with Scots pine (Pinus sylvestris L), common beech (Fagus sylvatica L.), larch (Larix decidua L.) and Douglas-fir (Pseudotsuga menziesii [Mirb.] FRANCO) as experimental stands of 0.5 ha each according to the usual management practices. Therefore the "Large-scale lysimeters of Britz" are unparalleled in Europe. It was the initial aim of the experiment to find out the influence of the species and age of the growing stock growing on identical sandy soil under comparable weather conditions on both natural groundwater recharge and evaporation. Future forests in the north-eastern lowlands of Germany shall be mixed stands with as large a number of different species as possible. And this is also the aim of forest conversion in Land Brandenburg. The programme requires scientific attendance and foundation. In particular it shall be examined how the hydro-ecological conditions - which often are the limiting factor for forest growth in this area - would change with underplanted pine and larch and how these conditions may benefit from stand-structural and forestry measures. This is why several lysimeter stands were changed as follows: Ø Larch underplanted with beech Ø Scots pine underplanted with beech Ø Scots pine underplanted with oak Results Forests with their special hydrological properties have a substantial influence on the water budget, water supply and water distribution of entire landscapes. The tree species is of outstanding importance for deep seepage under forest stands. The sum of transpiration gives a rough overview about the water budget of the forest stand. More important for the detection of interactions between the compartments is the partitioning of the whole evaporation into individual evaporation components. Under the given precipitation and soil conditions, the course of interception and hence, the amount of seepage water depend on the crown structure in the stand. Depending on the amount of interception of the tree canopy and the duration of the leaching phase in spring, the mixed stands range between pure pine and pure beech. Making use of silvicultural methods and adequate stand treatment, forestry is able to control the water budget of landscapes.
Hrad, Marlies; Huber-Humer, Marion; Wimmer, Bernhard; Reichenauer, Thomas G
2012-12-01
Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top covers that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 × 2 × 3m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH(4) loadings up to 300 lCH(4)/m(2)d. In addition, the compost material provided high air permeability even at 100% water holding capacity (WHC). In contrast, the more cohesive, mineral soil cover was expected to cause a notably uniform distribution of the injected air within the waste layer. Laboratory results also revealed sufficient air permeability of the soil materials (TS-F and SS-Z) placed in lysimeter C. However, at higher compaction density SS-Z became impermeable at 100% WHC. Methane emissions from the reference lysimeter with the smaller substrate cover (12-52 g CH(4)/m(2)d) were significantly higher than fluxes from the other lysimeters (0-19 g CH(4)/m(2)d) during in situ aeration. Regarding water balance, lysimeters covered with compost and compost-sand mixture, showed the lowest leachate rate (18-26% of the precipitation) due to the high water holding capacity and more favourable plant growth conditions compared to the lysimeters with mineral, more cohesive, soil covers (27-45% of the precipitation). On the basis of these results, the authors suggest a layered top cover system using both compost material as well as mineral soil in order to support active low-pressure aeration. Conventional soil materials with lower permeability may be used on top of the landfill body for a more uniform aeration of the waste due to an increased resistance to vertical gas flow. A compost cover may be built on top of the soil cover underlain by a gas distribution layer to improve methane oxidation rates and minimise water infiltration. By planting vegetation with a high transpiration rate, the leachate amount emanating from the landfill could be further minimised. The suggested design may be particularly suitable in combination with intermittent in situ aeration, in the later stage of an aeration measure, or at very small sites and shallow deposits. The top cover system could further regulate water infiltration into the landfill and mitigate residual CH(4) emissions, even beyond the time of active aeration. Copyright © 2012 Elsevier Ltd. All rights reserved.
Using long-term lysimeter data to analyze hydrological trends
NASA Astrophysics Data System (ADS)
Puetz, Thomas; Hendricks-Franssen, Harrie-Jan; Roesseler, Anne-Kathrin; Vereecken, Harry
2014-05-01
Evapotranspiration (ET) is a major component of the terrestrial water cycle. Recent studies based on analysis of experimental and observations-based data have shown that over the last decades the magnitude of evapotranspiration (both potential and actual) has been affected by global climate change although the sign and size of the change in ET differ strongly between regions around the globe, as well as between datasets (e.g. Teuling et al. 2009, Jung et al. 2010, Sheffield et al. 2012). Basically, there are two approaches that are available to measure actual evapotranspiration in situ (e.g. Seneviratne et al. 2010): the measurement from micrometeorological approaches (in particular the Eddy Covariance method) and the determination of evapotranspiration by measuring the components of the soil water balance. Evett et al. (2012) showed that Eddy Covariance measurements of actual evapotranspiration obtained in irrigated cotton fields was 31 to 45% lower than estimates obtained from soil water balance measurements using lysimeters. Forcing the closure of the energy balance with more data than typically available at EC stations, the difference was still about 17%. Despite the fact that lysimeter systems, especially the weighing based systems, are ideal tools to determine actual evapotranspiration no global assessment has been made of available data at present that might be valuable to assess the impact of climate change on actual evapotranspiration. A screening of literature showed that many data are either not reported or made available through research reports rather than peer reviewed literature. Typically lysimeter studies have been used for well-designed experimental studies for the assessment of flow and transport processes in cropped systems that were limited in time. Still at present, we have lysimeter systems operational that have long term time series available on soil hydrological fluxes. Recently, a few studies were reported that analyzed long term series of actual evapotranspiration derived from lysimeter measurements at specific locations. Observed water storage changes, and evaporative and drainage fluxes in lysimeter systems combined with mathematical modeling of the soil water balance may help to separate climate forcing from management. Evett, S.R., et al., 2012. Can weighing lysimeter et represent surrounding field et well enough to test flux station measurements of daily and sub-daily et? Adv. Water Resour. 50:79-90. Jung, M., et al., 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467:951-954. Seneviratne, S.I., et al., 2010: Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews, 99, 3-4, 125-161, doi:10.1016/j.earscirev.2010.02.004. Sheffield, J., et al., 2012. Little change in global drought over the past 60 years. Nature, 491, 435-438. Teuling, A.J., et al., 2009: A regional perspective on trends in continental evaporation. Geophys. Res. Lett., 36, L02404, doi:10.1029/2008GL036584.
NASA Astrophysics Data System (ADS)
Ryabenko, Evgenia; Elsner, Martin; Bakkour, Rani; Hofstetter, Thomas; Torrento, Clara; Hunkeler, Daniel
2015-04-01
The frequent detection of organic micropollutants such as pesticides, consumer care products or pharmaceuticals in water is an increasing concern for human and ecosystem health. Degradation analysis of these compounds can be challenging in complex systems due to the fact that metabolites are not always found and mass balances frequently cannot be closed. Many abiotic and biotic degradation pathways cause, however, distinct isotope fractionation, where light isotopes are transferred preferentially from the reactant to the product pool (normal isotope fractionation). Compound-specific isotope analysis (CSIA) of multiple elements is a particularly powerful method to evaluate organic micropollutant transformation, because it can even give pathway-specific isotope fractionation (1,2). Available CSIA field studies, however, have focused almost exclusively on volatile petroleum and chlorinated hydrocarbons, which are present in high concentrations in the environment and can be extracted easily from water for GC-IRMS analysis. In the case of micropollutants, such as pesticides, CSIA in more challenging since it needs to be conducted at lower concentrations and requires pre-concentration, purification and high chromatographic performance (3). In this study we used lysimeters experiments to analyze transformation of atrazine, acetochlor, metolachlor and chloridazone by studying associated isotope fractionation. The project combines a) analytical method development for CSIA, b) identification of pathways of micropollutant degradation and c) quantification of transformation processes under field condition. The pesticides were applied both, at the soil surface and below the top soil under field-relevant concentrations in May 2014. After typical irrigation of the lysimeters, seepage water was collected in 50L bottles and stored for further SPE and CSIA. Here we present the very first result of a) analytical method development, b) improvement of SPE methods for complex pesticide mixtures and c) transformation of pesticides in lysimeters during the year 2014. 1 Elsner, M. Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. J. Environ. Monit. 12, 2005-2031 (2010). 2 Hofstetter, T. B. & Berg, M. Assessing transformation processes of organic contaminants by compound-specific stable isotope analysis. TrAC Trends in Analytical Chemistry 30, 618-627 (2011). 3 Elsner, M. et al. Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal. Bioanal. Chem. 403, 2471-2491, doi:10.1007/s00216-011-5683-y (2012).
NASA Astrophysics Data System (ADS)
Paul, G.; Gowda, P. H.; Howell, T. A.; Basu, S.; Colaizzi, P. D.; Marek, T.
2013-12-01
Scintillation method is a relatively new technique for measuring the sensible heat and water fluxes over land surfaces. Path integrating capabilities of scintillometer over heterogeneous landscapes make it a potential tool for comparing the energy fluxes derived from remote sensing based energy balance algorithms. For this reason, scintillometer-derived evapotranspiration (ET) fluxes are being used to evaluate remote sensing based energy balance algorithms for their ability to estimate ET fluxes. However, LAS' (Large Aperture Scintillometer) ability to derive ET fluxes is not thoroughly tested. The objective of this study was to evaluate LAS- and Surface Energy Balance System (SEBS)-derived fluxes against lysimetric data to determine LAS' suitability for validating remote sensing based evapotranspiration (ET) maps. The study was conducted during the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment - 2008 (BEAREX-08) at the USDA-ARS Conservation and Production Research Laboratory (CPRL), Bushland, Texas. SEBS was coded in a GIS environment to retrieve ET fluxes from the high resolution imageries acquired using airborne multispectral sensors. The CPRL has four large weighing lysimeters (3 m long x 3 m wide x 2.4 m deep), each located in the middle of approximately 5 ha fields, arranged in a block pattern. The two lysimeter fields located on the east (NE and SE) were managed under irrigated conditions, and the other two lysimeters on the west (NW and SW) were under dryland management. Each lysimeter field was equipped with an automated weather station that provided measurements for net radiation (Rn), Ts, soil heat flux (Go), Ta, relative humidity, and wind speed. During BEAREX08, the NE and SE fields were planted to cotton on May 21, and the NW and SW dryland lysimeters fields were planted to cotton on June 5. One LAS each was deployed across two large dryland lysimeter fields (NW and SW) and two large irrigated lysimeter fields (NE and SE). The structural parameter of refractive index of air was measured at 1-min interval and averaged at 15-min, and synchronized with weather station. The source area (footprint) of the surface energy fluxes were computed using a footprint model. ET fluxes were derived using LAS-estimated H as a residual from the energy balance equation. Comparison of SEBS- and LAS-derived ET fluxes were made against lysimetric data and performance of each method was discussed to determine the suitability of LAS for evaluating accuracy of remote sensing based ET maps.
NASA Astrophysics Data System (ADS)
Kiese, Ralf; Lu, Haiyan; Fu, Jin; Diaz-Pines, Eugenio; Gasche, Rainer; Dannenmann, Michael; Butterbach-Bahl, Klaus
2015-04-01
Due to cool and moist climatic conditions alpine grassland soils of moderate elevation are rich in soil organic carbon and associated nitrogen. In the framework of an in-situ climate change experiment we test the hypothesis that soil organic carbon and nitrogen are either volatilized (GHG emissions) or leached with seepage water due to increase in temperature. Field investigations are carried out in the (Pre-) Alpine TERENO Observatory covering several research sites (including ICOS sites) in South-Bavaria, Germany. IMK-IFU has installed 36 weighable lysimeters with undisturbed intact grassland soil cores (diameter 1m, depth 1.4m) and is operating them at three sites differing in altitude and thus climatic conditions (850m, 750m, 600m) since 2011. Lysimeters were partly translocated from higher elevation to sites at lower elevation and other soil cores still staying at the sites as controls. In addition to the space for time in-situ climate change approach the total of 36 lysimeters are split into treatments of intensive and extensive grassland management. GHG exchange was measured by manual (850m site) but also with two novel automatic robot chamber systems (750m, 600m) connected to QCLs for simultaneous detection of CO2, N2O, and CH4 concentration changes in chamber headspace. GHG flux monitoring was supplemented by NEE measurements with transparent chambers since 2014. Climate change, generally stimulated plant growth (according to biomass sampling after cutting events) and soil C and N turnover leading to increased soil CO2 emissions and an increased uptake of atmospheric CH4. N2O emission were generally low and slightly increased in spring, summer and autumn but significantly decreased during the winter period under global change conditions, the latter due to lower intensity and frequency of frost-thaw events. The main gaseous nitrogen component emitted from the grassland ecosystems was N2 which also showed a much stronger increase with climate change than N2O. Furthermore, climate change lead to a significant increase in nitrate leaching, whereas leaching of ammonium and DON as well as DOC were hardly affected. Climate induced changes in the GHG balance of (pre-) alpine grassland ecosystems are mainly triggered by alteration of ecosystem CO2 exchange since magnitude of CH4 (mainly uptake) and N2O exchange, even regarding their much higher global warming potential are of lower importance. Overall, impacts of climate change on ecosystem C and N losses seem to be more severe under extensive management.
Assessing tungsten transport in the vadose zone: from dissolution studies to soil columns.
Tuna, Gulsah Sen; Braida, Washington; Ogundipe, Adebayo; Strickland, David
2012-03-01
This study investigates the dissolution, sorption, leachability, and plant uptake of tungsten and alloying metals from canister round munitions in the presence of model, well characterized soils. The source of tungsten was canister round munitions, composed mainly of tungsten (95%) with iron and nickel making up the remaining fraction. Three soils were chosen for the lysimeter studies while four model soils were selected for the adsorption studies. Lysimeter soils were representatives of the typical range of soils across the continental USA; muck-peat, clay-loamy and sandy-quartzose soil. Adsorption equilibrium data on the four model soils were modeled with Langmuir and linear isotherms and the model parameters were obtained. The adsorption affinity of soils for tungsten follows the order: Pahokee peat>kaolinite>montmorillonite>illite. A canister round munition dissolution study was also performed. After 24 d, the measured dissolved concentrations were: 61.97, 3.56, 15.83 mg L(-1) for tungsten, iron and nickel, respectively. Lysimeter transport studies show muck peat and sandy quartzose soils having higher tungsten concentration, up to 150 mg kg(-1) in the upper layers of the lysimeters and a sharp decline with depth suggesting strong retardation processes along the soil profile. The concentrations of tungsten, iron and nickel in soil lysimeter effluents were very low in terms of posing any environmental concern; although no regulatory limits have been established for tungsten in natural waters. The substantial uptake of tungsten and nickel by ryegrass after 120 d of exposure to soils containing canister round munition suggests the possibility of tungsten and nickel entering the food chain. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kidron, Giora J.; Kronenfeld, Rafael
2017-05-01
The use of micro-lysimeters (MLs) by the scientific community for the measurement of non-rainfall water input, NRWI (dew, fog, water vapor) has become more widespread. With MLs being isolated bodies, we hypothesized that changes in heat flux may affect the surface temperatures and subsequently NRWI. Measurements were conducted with MLs of various lengths (3.5, 12, 20, 30, 40, 50 cm for 2014 and 3.5, 12, 50 cm for 2015), and on the adjacent soil that served as a control (COT) using cloths attached to glass plates in Sede Boqer (Negev Desert, Israel) during the late summer and fall of 2014 and 2015. In addition, periodical temperature and moisture measurements were also conducted on additional lysimeters. Non-significant differences in NRWI characterized MLs 12-50 cm-long, which could have been therefore grouped (termed ML12/50). However, these lysimeters and especially the 3.5 cm-long ML (ML3.5) yielded substantially higher values than that of COT, with the ratio of ML12/50 to COT and the ratio of ML3.5 to COT being up to 2.4 and 5.8, respectively, implying, as was indeed found during periodic measurements, lower nocturnal temperatures and subsequently higher moisture content at 0-0.2 cm at the MLs in comparison to COT. This was also reflected in the amount of recorded mornings with effective (>0.03 mm) NRWI: 34 mornings based on the ML12/50 in comparison to only 4 when based on COT. The findings raise serious concerns regarding published data on NRWI and call for proper calibration between the amounts obtained by the MLs and the natural intact soil.
Kim, Hyun Young; Seo, Jiyoung; Kim, Tae-Hun; Shim, Bomi; Cha, Seok Mun; Yu, Seungho
2017-06-01
This study examined the use of microbial community structure as a bio-indicator of decomposition levels. High-throughput pyrosequencing technology was used to assess the shift in microbial community of leachate from animal carcass lysimeter. The leachate samples were collected monthly for one year and a total of 164,639 pyrosequencing reads were obtained and used in the taxonomic classification and operational taxonomy units (OTUs) distribution analysis based on sequence similarity. Our results show considerable changes in the phylum-level bacterial composition, suggesting that the microbial community is a sensitive parameter affected by the burial environment. The phylum classification results showed that Proteobacteria (Pseudomonas) were the most influential taxa in earlier decomposition stage whereas Firmicutes (Clostridium, Sporanaerobacter, and Peptostreptococcus) were dominant in later stage under anaerobic conditions. The result of this study can provide useful information on a time series of leachate profiles of microbial community structures and suggest patterns of microbial diversity in livestock burial sites. In addition, this result can be applicable to predict the decomposition stages under clay loam based soil conditions of animal livestock. Copyright © 2017 Elsevier B.V. All rights reserved.
Shaddox, Travis W; Kruse, Jason K; Miller, Grady L; Nkedi-Kizza, Peter; Sartain, Jerry B
2016-09-01
United States Golf Association putting greens are susceptible to nitrogen (N) and phosphorus (P) leaching. Inorganic soil amendments are used to increase moisture and nutrient retention and may influence N and P leaching. This study was conducted to determine whether N and P leaching could be reduced using soil amendments and surfactant-modified soil amendments. Treatments included a control (sand), sand-peat, zeolite, calcined clay, hexadecyltrimethylammonium-zeolite, and hexadecyltrimethylammonium-calcined clay. Lysimeters were filled with a 30-cm rootzone layer of sand-peat (85:15 by volume), below which a 5-cm treatment layer of amendments was placed. A solution of NO-N, NH-N, and orthophosphate-P (2300, 2480, and 4400 μg mL, respectively) was injected at the top of each lysimeter, and leachate was collected using an autocollector set to collect a 10-mL sample every min until four pore volumes were collected. Uncoated amendments, sand, and peat had no influence on NO-N retention, whereas hexadecyltrimethylammonium-coated amendments reduced NO-N leaching to below detectable limits. Both coated and uncoated amendments reduced NH-N leaching, with zeolite reducing NH-N leached to near zero regardless of hexadecyltrimethylammonium coating. Pure sand resulted in a 13% reduction of applied orthophosphate-P leaching, whereas peat contributed to orthophosphate-P leaching. Surfactant-modified amendments reduced orthophosphate-P leaching by as much as 97%. Surfactant-modified soil amendments can reduce NO-N, NH-N, and orthophosphate-P leaching and, thus, may be a viable option for removing leached N and P before they enter surface or ground waters. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Filipović, Vilim; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre
2014-11-15
Transport processes in soils are strongly affected by heterogeneity of soil hydraulic properties. Tillage practices and compost amendments can modify soil structure and create heterogeneity at the local scale within agricultural fields. The long-term field experiment QualiAgro (INRA-Veolia partnership 1998-2013) explores the impact of heterogeneity in soil structure created by tillage practices and compost application on transport processes. A modeling study was performed to evaluate how the presence of heterogeneity due to soil tillage and compost application affects water flow and pesticide dynamics in soil during a long-term period. The study was done on a plot receiving a co-compost of green wastes and sewage sludge (SGW) applied once every 2 years since 1998. The plot was cultivated with a biannual rotation of winter wheat-maize (except 1 year of barley) and a four-furrow moldboard plow was used for tillage. In each plot, wick lysimeter outflow and TDR probe data were collected at different depths from 2004, while tensiometer measurements were also conducted during 2007/2008. Isoproturon concentration was measured in lysimeter outflow since 2004. Detailed profile description was used to locate different soil structures in the profile, which was then implemented in the HYDRUS-2D model. Four zones were identified in the plowed layer: compacted clods with no visible macropores (Δ), non-compacted soil with visible macroporosity (Γ), interfurrows created by moldboard plowing containing crop residues and applied compost (IF), and the plow pan (PP) created by plowing repeatedly to the same depth. Isoproturon retention and degradation parameters were estimated from laboratory batch sorption and incubation experiments, respectively, for each structure independently. Water retention parameters were estimated from pressure plate laboratory measurements and hydraulic conductivity parameters were obtained from field tension infiltrometer experiments. Soil hydraulic properties were optimized on one calibration year (2007/08) using pressure head, water content and lysimeter outflow data, and then tested on the whole 2004/2010 period. Lysimeter outflow and water content dynamics in the soil profile were correctly described for the whole period (model efficiency coefficient: 0.99) after some correction of LAI estimates for wheat (2005/06) and barley (2006/07). Using laboratory-measured degradation rates and assuming degradation only in the liquid phase caused large overestimation of simulated isoproturon losses in lysimeter outflow. A proper order of magnitude of isoproturon losses was obtained after considering that degradation occurred in solid (sorbed) phase at a rate 75% of that in liquid phase. Isoproturon concentrations were found to be highly sensitive to degradation rates. Neither the laboratory-measured isoproturon fate parameters nor the independently-derived soil hydraulic parameters could describe the actual multiannual field dynamics of water and isoproturon without calibration. However, once calibrated on a limited period of time (9 months), HYDRUS-2D was able to simulate the whole 6-year time series with good accuracy. Copyright © 2014 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
This lysimeter experiment was designed to investigate the effects of dietary crude protein (CP) concentration on nitrate-N (NO3-N) and ammonia (NH3) losses from dairy manure applied to soil and manure N use for plant growth. Lactating dairy cows were fed diets with 16.7 (HighCP) or 14.8% (LowCP) cru...
Fate and Transport of Nitrogen and Phosphorus in Onsite Wastewater Treatment Systems
NASA Astrophysics Data System (ADS)
Toor, G.; De, M.; Danmowa, N.
2012-12-01
The contribution of nitrogen (N) and phosphorus (P) from onsite wastewater treatment systems (OWTS) to groundwater pollution is largely not quantified in most aquifers and watersheds in the world. Thus, the knowledge about the fate and transport of N and P from OWTS is needed to protect groundwater contamination. In Florida, porous sandy soils intensify the transport of N from drianfield of OWTS to shallow groundwater. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to investigate the dynamics of N and P transport in the vadose zone and groundwater in full scale OWTS. We constructed three mounds: (1) drip dispersal mound: 45 cm depth of sand below the emitters, followed by natural soil; (2) gravel trench mound: 45 cm depth of sand below the emitters, followed by 30 cm depth of gravels, and natural soil; and (3) advanced system mound: which contained aerobic (lingo-cellulosic) and anaerobic (sulfur) media for enhanced nitrification and denitrification before dispersing wastewater in the vadose zone. Each mound received 120 L of septic tank effluent (STE) per day (equivalent to maximum allowable rate of 3 L/ft2/day) from our facility (office and homes); STE was dosed 6 times at 4-hour intervals in a day. Soil water samples were collected from the mounds (vadose zone) by using suction cup lysimeters installed at 0.30, 0.60, and 1.05 m depth and groundwater samples were collected by using piezometers installed at 3-3.30 m depth below mounds. We collected samples during May-Aug 2012 before STE delivery (3 events at 3-day intervals) and after STE delivery (10 events at 3-day intervals; 13 events at 7-day intervals). Collected samples (STE, soil water, groundwater) were analysed for pH, EC, chloride (Cl), and organic and inorganic N and P fractions. The ranges of pH, EC, and Cl of STE (26 events) were 6.9-7.7, 1.01-1.33 dS/m, and 56-121 mg/l, respectively. Mean (n = 26) ammonium-N (NH4-N) and nitrate-N (NO3-N) concentrations in the STE were 53.4 and 0.06 mg/L, respectively, while concentrations of P in the STE were 5.2-13.8 mg/L. The pH (6.31-6.94) and EC (0.46-0.75 dS/m) in lysimeter samples were lower than STE. The pH (4.39-4.78) and EC (0.28-0.34 dS/m) of groundwater was much lower than both STE and soil water. Concentrations of NH4-N in all samples collected from lysimeters (0.02-0.45 mg/L) and piezometers (0.01-0.14 mg/L) were <0.50 mg/L; suggesting that >99% disappeared (primarily nitrified) in the vadose zone (<1.05 m soil profile depth). Higher residence time and presence of gravels apparently in gravel trench resulted in greater nitrification (82.3%) than drip dispersal mound (upto 66.4%). Concentrations of NO3-N were lower (0.02-6.14 mg/L) in the soil water at 0.30-1.05 m depth before STE delivery, but slowly increased after STE delivery. Concentrations of P in the lysimeters and piezometers were 0.041-1.68 mg/L and 0-0.113 mg/L, respectively; suggesting greater P attenuation in the vadose zone of all OWTS. Concentrations of Cl showed a distinct pattern of NO3-N breakthrough in vadose zone and groundwater. The groundwater NO3-N was elevated upto 19.2 mg/L after STE delivery.
Wehrer, Markus; Lissner, Heidi; Bloem, Esther; French, Helen; Totsche, Kai Uwe
2014-01-01
Non-invasive spatially resolved monitoring techniques may hold the key to observe heterogeneous flow and transport behavior of contaminants in soils. In this study, time-lapse electrical resistivity tomography (ERT) was employed during an infiltration experiment with deicing chemical in a small field lysimeter. Deicing chemicals like potassium formate, which frequently impact soils on airport sites, were infiltrated during snow melt. Chemical composition of seepage water and the electrical response was recorded over the spring period 2010. Time-lapse electrical resistivity tomographs are able to show the infiltration of the melt water loaded with ionic constituents of deicing chemicals and their degradation product hydrogen carbonate. The tomographs indicate early breakthrough behavior in parts of the profile. Groundtruthing with pore fluid conductivity and water content variations shows disagreement between expected and observed bulk conductivity. This was attributed to the different sampling volume of traditional methods and ERT due to a considerable fraction of immobile water in the soil. The results show that ERT can be used as a soil monitoring tool on airport sites if assisted by common soil monitoring techniques.
NASA Astrophysics Data System (ADS)
Goss, Michael J.; Ehlers, Wilfried; Unc, Adrian
With the recognition that landscape position affects potential gradients for water movement, the linkages between soil, geology and the quality of groundwater resources have become evident. This paper provides a historical perspective of the contribution that the use of lysimeters has made to our understanding of the physical, chemical and biological features that govern water and contaminant flows through the soil-geological strata-groundwater continuum, leading to contamination of unconfined aquifers. It indicates how we can take action to mitigate effects of some of the land management practices that increase the threats to groundwater resources. The term ‘lysimeter’ has been applied to a wide variety of structures that allow measurement of changes in the volume of water within or flow of water through a bounded soil column of a variety of depths. Some have contained repacked or undisturbed soil from one or more layers, while others have enclosed the three primary soil horizons (A, B and C) together with fractured bedrock layers. Lysimeters have ranged in the size of the upper boundary from a few tens of cm 2 to at least 1 ha, and in depth from about 20 cm to a few metres. Lysimeters were first used to gain an understanding of the importance of water for plants as well as the components of the soil water balance. The quantification of the drainage component was quickly followed by enquiries into the chemical content of the leachate. Lysimeters have been used to quantify the loss of NO3--N by leaching from the soil into shallow groundwater and elucidate the sources of the nitrogen lost at any one time. With the availability of organic pesticides immediately after World War II and their identification in groundwater, considerable attention has been paid to the mechanisms governing their downwards transport and the important role of preferential flow paths in the soil. More recently concerns for the transport of pathogenic microorganisms to groundwater have further highlighted the importance of preferential flow. Lysimeters have permitted investigation of the mechanisms by which these chemical and biological materials, which can be hazardous to human health, reach our sources of drinking water. They have also provided the means of identifying soil management practices that could be used to reduce the movement contaminants in the leachate from agricultural fields.
Hockmann, Kerstin; Tandy, Susan; Lenz, Markus; Reiser, René; Conesa, Héctor M; Keller, Martin; Studer, Björn; Schulin, Rainer
2015-09-01
Many soils polluted by antimony (Sb) are subject to fluctuating waterlogging conditions; yet, little is known about how these affect the mobility of this toxic element under field conditions. Here, we compared Sb leaching from a calcareous shooting range soil under drained and waterlogged conditions using four large outdoor lysimeters. After monitoring the leachate samples taken at bi-weekly intervals for >1.5 years under drained conditions, two of the lysimeters were subjected to waterlogging with a water table fluctuating according to natural rainfall water infiltration. Antimony leachate concentrations under drained conditions showed a strong seasonal fluctuation between 110 μg L(-1) in summer and <40 μg L(-1) in winter, which closely correlated with fluctuations in dissolved organic carbon (DOC) concentrations. With the development of anaerobic conditions upon waterlogging, Sb in leachate decreased to 2-5 μg L(-1) Sb and remained stable at this level. Antimony speciation measurements in soil solution indicated that this decrease in Sb(V) concentrations was attributable to the reduction of Sb(V) to Sb(III) and the stronger sorption affinity of the latter to iron (Fe) (hydr)oxide phases. Our results demonstrate the importance of considering seasonal and waterlogging effects in the assessment of the risks from Sb-contaminated sites. Copyright © 2014 Elsevier Ltd. All rights reserved.
An electrical resistivity-based method for investigation of subsurface structure
NASA Astrophysics Data System (ADS)
Alves Meira Neto, A.; Litwin, D.; Troch, P. A. A.; Ferre, T. P. A.
2017-12-01
Resolving the spatial distribution of soil porosity within the subsurface is of great importance for understanding flow and transport within heterogeneous media. Additionally, porosity patterns can be associated with the availability of water and carbon dioxide that will drive geochemical reactions and constrain microbiological growth. The use of controlled experimentation has the potential to circumvent problems related to the external and internal variability of natural systems, while also allowing a higher degree of observability. In this study, we suggest an ERT-based method of retrieving porosity fields based on the application of Archie's law associated with an experimental procedure that can be used in laboratory-scale studies. We used a 2 cubic meter soil lysimeter, equipped with 238 electrodes distributed along its walls for testing the method. The lysimeter serves as a scaled-down version of the highly monitored artificial hillslopes at the Landscape Evolution Observatory (LEO) located at Biosphere 2 - University of Arizona. The capability of the ERT system in deriving spatially distributed patterns of porosity with respect to its several sources of uncertainty was numerically evaluated. The results will be used to produce an optimal experimental design and for assessing the reliability of experimental results. This novel approach has the potential to further resolve subsurface heterogeneity within the LEO project, and highlight the use of ERT-derived results for hydro-bio-geochemical studies.
NASA Astrophysics Data System (ADS)
Wang, Jihuan; Bogena, Heye; Brüggemann, Nicolas
2017-04-01
Soil greenhouse gas (GHG) emissions contribute to global warming. In order to support mitigation measures against global warming it is important to understand the controlling processes of GHG emissions. Previous studies focused mainly on the paddy rice fields or wetlands showed a strong relationship between soil redox potential and GHG emission (e.g. N2O). Recent sensor developments open the possibility for the long-term monitoring of field scale soil redox potential changes. Here, we performed laboratory lysimeter experiments to investigate how changes in the redox potential, induced by changes in the water level, affect GHG emissions from agricultural soil. Under our experimental conditions, we found that N2O emissions followed closely the changes in redox potential. The dynamics of redox potential were induced by changing the water-table depth in a laboratory lysimeter. During saturated conditions we found a clear negative correlation between redox potentials and N2O emission rates N2O. After switching from saturated to unsaturated conditions, N2O emission quickly decreased. In contrast, the emissions of CO2 increased with increasing soil redox potentials. The level of N2O emission also depended on the fertilization level of the soil. We propose that redox potential measurements are a viable method for better understanding of the controlling factors of GHG emission and the development agricultural management practices to reduce such emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrad, Marlies; Huber-Humer, Marion, E-mail: marion.huber-humer@boku.ac.at; Wimmer, Bernhard
2012-12-15
Highlights: Black-Right-Pointing-Pointer Tested engineered covers as surrogate to gas extraction during and after in situ aeration. Black-Right-Pointing-Pointer Examined how covers influence gas emissions, water balance and leachate generation. Black-Right-Pointing-Pointer Investigated effect of top covers on air-distribution in waste mass during aeration. Black-Right-Pointing-Pointer We suggest criteria and cover design to meet the demands during and after aeration. Black-Right-Pointing-Pointer Such cover systems may offer greenhouse gas emission reduction also after active aeration. - Abstract: Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top coversmore » that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 Multiplication-Sign 2 Multiplication-Sign 3 m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH{sub 4} loadings up to 300 l CH{sub 4}/m{sup 2} d. In addition, the compost material provided high air permeability even at 100% water holding capacity (WHC). In contrast, the more cohesive, mineral soil cover was expected to cause a notably uniform distribution of the injected air within the waste layer. Laboratory results also revealed sufficient air permeability of the soil materials (TS-F and SS-Z) placed in lysimeter C. However, at higher compaction density SS-Z became impermeable at 100% WHC. Methane emissions from the reference lysimeter with the smaller substrate cover (12-52 g CH{sub 4}/m{sup 2} d) were significantly higher than fluxes from the other lysimeters (0-19 g CH{sub 4}/m{sup 2} d) during in situ aeration. Regarding water balance, lysimeters covered with compost and compost-sand mixture, showed the lowest leachate rate (18-26% of the precipitation) due to the high water holding capacity and more favourable plant growth conditions compared to the lysimeters with mineral, more cohesive, soil covers (27-45% of the precipitation). On the basis of these results, the authors suggest a layered top cover system using both compost material as well as mineral soil in order to support active low-pressure aeration. Conventional soil materials with lower permeability may be used on top of the landfill body for a more uniform aeration of the waste due to an increased resistance to vertical gas flow. A compost cover may be built on top of the soil cover underlain by a gas distribution layer to improve methane oxidation rates and minimise water infiltration. By planting vegetation with a high transpiration rate, the leachate amount emanating from the landfill could be further minimised. The suggested design may be particularly suitable in combination with intermittent in situ aeration, in the later stage of an aeration measure, or at very small sites and shallow deposits. The top cover system could further regulate water infiltration into the landfill and mitigate residual CH{sub 4} emissions, even beyond the time of active aeration.« less
Unsaturated flow dynamics during irrigation with wastewater: field and modelling study
NASA Astrophysics Data System (ADS)
Martinez-Hernandez, V.; de Miguel, A.; Meffe, R.; Leal, M.; González-Naranjo, V.; de Bustamante, I.
2012-04-01
To deal with water scarcity combined with a growing water demand, the reuse of wastewater effluents of wastewater treatment plants (WWTP) for industrial and agricultural purposes is considered as a technically and economically feasible solution. In agriculture, irrigation with wastewater emerges as a sustainable practice that should be considered in such scenarios. Water infiltration, soil moisture storage and evapotranspiration occurring in the unsaturated zone are fundamental processes that play an important role in soil water balance. An accurate estimation of unsaturated flow dynamics (during and after irrigation) is essential to improve wastewater management (i.e. estimating groundwater recharge or maximizing irrigation efficiency) and to avoid possible soil and groundwater affections (i.e. predicting contaminant transport). The study site is located in the Experimental Plant of Carrión de los Céspedes (Seville, Spain). Here, treated wastewater is irrigated over the soil to enhance plants growth. To obtain physical characteristics of the soil (granulometry, bulk density and water retention curve), soil samples were collected at different depths. A drain gauge passive capillary lysimeter was installed to determine the volume of water draining from the vadose zone. Volumetric water content of the soil was monitored by measuring the dielectric constant using capacitance/frequency domain technology. Three soil moisture probes were located at different depths (20, 50 and 70 cm below the ground surface) to control the variation of the volumetric water content during infiltration. The main aim of this study is to understand water flow dynamics through the unsaturated zone during irrigation by using the finite element model Hydrus-1D. The experimental conditions were simulated by a 90 cm long, one dimensional solution domain. Specific climatic conditions, wastewater irrigation rates and physical properties of the soil were introduced in the model as input parameters. Data from the lysimeter and soil moisture probes were used to calibrate the model. The overall simulation time period included the dry (irrigation as main source of water) and the wet season (precipitation as main source of water). Future investigation concerning groundwater affections and contaminant transport at the field site will be based on the results obtained through the flow model developed in this study.
NASA Astrophysics Data System (ADS)
Tindall, James A.; Vencill, William K.
1995-03-01
The objectives were to determine how atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)- s-triazine), dicamba (3-6-dichloro-2-methoxybenzoic acid), and 2,4-D (2,4-dichlorophenoxy-acetic acid) move through claypan soils (fine montmorillonitic, mesic Udollic Ochraqualf Mollic albaqualf, Mexico silty loam) at the Missouri Management System Evaluation Area (MSEA) near Centralia in Boone County, Missouri, and the role of preferential flowpaths in that movement. Twelve intact soil cores (30 cm diameter by 40 cm height), were excavated sequentially, four from each of the following depths: 0-40 cm, 40-80 cm, and 80-120 cm. These cores were used to study preferential flow characteristics using dye staining experiments and to determine hydraulic properties. Six undisturbed experimental field plots, with a 1 m 2 surface area (two sets of three each), were instrumented at the Missouri MSEA on 11 May 1991: 1 m 2 zero-tension pan lysimeters were installed at 1.35 m depths in Plots 1-3 and at 1.05 m depths in Plots 4-6. Additionally, each plot was planted with soybeans ( Glycine max L.) and instrumented with suction lysimeters and tensiometers at 15 cm depth increments. A neutron probe access tube was installed in each plot to determine soil water content at 15 cm intervals. All plots were enclosed with a raised frame (of 8 cm height) to prevent surface runoff, and were allowed to equilibrate for a year before data collection. During this waiting period, all suction and pan lysimeters were purged monthly and were sampled immediately prior to herbicide application in May 1992 to obtain background concentrations. Atrazine, 2,4-D, and dicamba moved rapidly through the soil, probably owing to the presence of preferential flowpaths. Staining of laboratory cores showed a positive correlation between the per cent area stained by depth and the subsequent breakthrough of Br - in the laboratory and leaching of field-applied herbicides owing to large rainfall events. Suction lysimeter samples in the field showed increases in concentrations of herbicides at depths where laboratory data indicated greater percentages of what appeared to be preferential flowpaths. Concentrations of atrazine, 2,4-D, and dicamba exceeding 0.50, 0.1, and 0.15 μg ml -1 were observed with depth (45-135 cm, 60-125 cm and 60-135 cm) after several months following rainfall events. Preferential flowpaths were a major factor in transport of atrazine, 2,4-D, and dicamba at the site.
Using Advanced Tensiometers to Monitor Temporal Variations in Pore Pressure
NASA Astrophysics Data System (ADS)
Nichols, R. L.; Young, M. H.; Dixon, K. L.; Rossabi, J.; Hyde, W. K.; Holmes-Burns, H.
2002-12-01
The Savannah River Site has installed a comprehensive vadose zone monitoring system (VZMS) at it's low level radioactive waste disposal facility to collect the necessary information to calculate contaminant flux. The VZMS includes water content reflectometers, suction lysimeters, advanced tensiometers (ATs), water flux meters, access ports for neutron probes, and a tipping bucket rain gauge. Forty one ATs were installed from 1999 to 2001 at depths ranging from 2 to 60 feet and have been operated continuously. The installation depths were based on a hydrostatigraphic model developed from core logs, cone penetrometer logs, moisture content profiles, water retention curves model that were obtained during the phased installation of the VZMS. An AT consists of a porous cup installed at a prescribed depth with casing back to the surface and a pressure transducer that is lowered into the casing and connects with the porous cup. The pressure transducer transmits it's signal to a datalogger where the data is stored for future retrieval using a cellular phone communications package. Results from the 2 year operating period show that the AT calibrations are stable and t ATs are capable of extended monitoring of pore pressures in the 0 to 300 cm H2 O range. The ATs had sufficient resolution to detect the naturally occurring fluctuations in pore pressure (1 to 100 cm H2 O over 1 to 72 hours) that resulted from infiltration events at the site. The stable performance of the ATs combined with their ability to detect naturally occurring fluctuations in pore pressure make the ATs a useful tool in measuring temporal pore pressure variations for use in calibrating numerical models of fluid flow in variably saturated porous media.
NASA Astrophysics Data System (ADS)
Digiovanni, K. A.; Montalto, F. A.; Gaffin, S.; Rosenzweig, C.
2010-12-01
Green roofs and other urban green spaces can provide a variety of valuable benefits including reduction of the urban heat island effect, reduction of stormwater runoff, carbon sequestration, oxygen generation, air pollution mitigation etc. As many of these benefits are directly linked to the processes of evaporation and transpiration, accurate and representative estimation of urban evapotranspiration (ET) is a necessary tool for predicting and quantifying such benefits. However, many common ET estimation procedures were developed for agricultural applications, and thus carry inherent assumptions that may only be rarely applicable to urban green spaces. Various researchers have identified the estimation of expected urban ET rates as critical, yet poorly studied components of urban green space performance prediction and cite that further evaluation is needed to reconcile differences in predictions from varying ET modeling approaches. A small scale green roof lysimeter setup situated on the green roof of the Ethical Culture Fieldston School in the Bronx, NY has been the focus of ongoing monitoring initiated in June 2009. The experimental setup includes a 0.6 m by 1.2 m Lysimeter replicating the anatomy of the 500 m2 green roof of the building, with a roof membrane, drainage layer, 10 cm media depth, and planted with a variety of Sedum species. Soil moisture sensors and qualitative runoff measurements are also recorded in the Lysimeter, while a weather station situated on the rooftop records climatologic data. Direct quantification of actual evapotranspiration (AET) from the green roof weighing lysimeter was achieved through a mass balance approaches during periods absent of precipitation and drainage. A comparison of AET to estimates of potential evapotranspiration (PET) calculated from empirically and physically based ET models was performed in order to evaluate the applicability of conventional ET equations for the estimation of ET from green roofs. Results have shown that the empirically based Thornthwaite approach for estimating monthly average PET underestimates compared to AET by 54% over the course of a one year period, and performs similarly on a monthly basis. Estimates of PET from the Northeast Regional Climate Center MORECS model based on a variation of the Penman-Monteith model, overestimates compared to AET by only 2% over a one year period. However, monthly and daily estimates were not accurate, with the model overestimating during warm, summer months by as much as 206% and underestimating during winter months by as much as 58%, which would have significant implications if such estimates were utilized for the evaluation of potential benefits from green roofs. Thus, further evaluation and improvement of these and other methodologies are needed and will be pursued for estimation of ET from green roofs and other urban green spaces including NYC Greenstreets and urban parks.
2009-12-01
ER D C TR -0 9- 10 Strategic Environmental Research and Development Program Phytoremediation of Composition-B Derived TNT and RDX in...Program ERDC TR-09-10 December 2009 Phytoremediation of Composition-B Derived TNT and RDX in Herbaceous Plant-vegetated and Bare Lysimeters Elly P. H...for U.S. Army Corps of Engineers Washington, DC 20314-1000 ERDC TR-09-10 ii Abstract: This report describes a study in which phytoremediation of
NASA Astrophysics Data System (ADS)
Alves Meira Neto, A.; Sengupta, A.; Wang, Y.; Volkmann, T.; Chorover, J.; Troch, P. A. A.
2017-12-01
Advances in the understanding of processes in the critical zone (CZ) are dependent on studies coupling the fields of hydrology, microbiology, geochemistry and soil development. At the same time, better insights are needed to integrate hydrologic information into biogeochemical analysis of subsurface environments. This study investigated potential hydrological indexes that help explaining spatiotemporal biogeochemical patterns. The miniLEO is a 2 m3, 10 degree sloping lysimeter located at Biosphere 2 - University of Arizona. The lysimeter was initially filled with pristine basaltic soil and subject to intermittent rainfall applications throughout the period of 18 months followed by its excavation, resulting in a grid-based sample collection at 324 locations. As a result, spatially distributed microbiological and geochemical patterns as well as soil physical properties were obtained. A hydrologic model was then developed in order to simulate the history of the system until the excavation. After being calibrated against sensor data to match its observed input-state-output behavior, the resulting distributed fields of flow velocities and moisture states were retrieved. These results were translated into several hydrological indexes to be used in with distributed microbiological and geochemical signatures. Our study attempts at conciliating sound hydrological modelling with an investigation of the subsurface biological signatures, thus providing a unique opportunity for understanding of fine-scale hydro-biological interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brownell, L.E.; Backer, J.G.; Isaacson, R.E.
1975-07-01
Data are presented from measurements of soil moisture at the Hanford Reservation. Possible mechanisms for moisture transport in arid and semi-arid climates were studied. Measurements for the lysimeter experiment and the thermocouple psychrometer experiment were continued with a new series of measurements using closely spaced sensors installed to a depth of 1.52 meters. During the 1973-1974 water year the percolation envelope of higher moisture content penetrated to a depth of four meters in the closed-bottom lysimeter and then was eliminated by upward transport of water in late summer. Precipitation during the 1973-1974 water year percolated to a depth of aboutmore » six meters in the open-bottom lysimeter and remains as a residual perched envelope. The increase over normal percolation was due in part to a residual envelope of higher moisture content from the previous water year. Results obtained indicate the advantages of Hanford as a site for a national repository for radioactive waste. (CH)« less
Geotechnical applications of CCPs in Wisconsin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edil, T.C.; Benson, C.H.
2006-07-01
The article reports research case histories on applications of coal combustion products (CCPs) in Wisconsin developed by the University of Wisconsin Consortium for Fly Ash Use in Geotechnical Applications (FAUGA). Fly ash was used to stabilize poor soils during construction of Wisconsin State Highway (STH) 60, and bottom ash was used as a granular working platform. Long term performance is proving good. Nearly all Class C fly ash in Wisconsin is now used in construction. Leaching characteristics of pavements incorporating fly ash are being monitored by pan lysimeters underneath. A computer model, WiscLEACH has been developed to predict the maximummore » concentration of chemicals in ground water adjacent to roadways using CCPs. 1 photo.« less
NASA Astrophysics Data System (ADS)
Li, Hongchen; Zhao, Xining; Gao, Xiaodong; Ren, Kemeng; Wu, Pute
2018-03-01
Soil water and its efficient use are critical to sustainable productivity of rainfed orchards under the context of climate change in water-limited areas. Here, we combined micro-catchments for collecting hillslope runoff, named fish-scale pits, with mulches to examine water infiltration and water consumption of fruit trees using in situ soil moisture monitoring, the micro-lysimeter and sap flow methods via a two-year experiment in a rainfed jujube orchard on China's Loess Plateau. This experiment included four treatments: fish-scale pit with branch mulching (FB), fish-scale pit with straw mulching (FS), fish-scale pit without mulching (F), and bare land treatment (CK). The results showed that only about 50% of the rainfall infiltrated the soil for CK during the 2014 and 2015 growing seasons. The fish-scale pit without mulching experienced significantly increased rainfall infiltration by 41.38 and 27.30%, respectively, but also increased evaporation by 42.28 and 65.59%, respectively, compared to CK during the two growing seasons. The jujube transpiration significantly increased by 45.64-53.10% over CK, and the evaporation decreased by 42.47-53.50% when fish-scale pits were mulched with branches or straw. Taken together, the results show that the fish-scale pits and mulching combinations efficiently increased rainfall infiltration and jujube evapotranspiration in the experimental jujube orchard. The findings here provide an insight into the field water management for hillslope orchards in water-limited regions.
Measuring forest floor evaporation from interception in prescribed burned forests in Southern Italy.
NASA Astrophysics Data System (ADS)
Giuditta, Elisabetta; Coenders-Gerrits, Miriam; Bogaard, Thom; Wenninger, Jochen; Greco, Roberto; Ialongo, Gianluca; Esposito, Assunta; Rutigliano, Flora Angela
2016-04-01
Wildfires are one of the major environmental issue in the Mediterranean area. Prescribed burning (PB) is increasingly used in Europe as a practice to reduce fire risk, through dead fine fuel reduction. Several studies have focused on fire effects on vegetation and soil microbial community, but very few on ecosystem processes involved in water cycle. This study aims to estimate interception by the litter and fermentation layer and the successive evaporation flux in laboratory conditions, using a water balance and 2H and 18O isotopes mass balance calculation, in order to assess PB effects on the hydrology and ecosystem in pine plantations. PB was carried out in spring 2014 in three pine plantations of Southern Italy, dominated by Pinus halepensis (Cilento, Vallo di Diano e Alburni National Park, CVDANP), P. pinaster (Vesuvio National Park, VNP) and P. pinea (Castel Volturno Nature Reserve, CVNR). A dataset concerning the effects of PB on vegetation structure, floristic composition, microbial biomass and activity in the fermentation layer and 5-cm of soil beneath is available for the same stands. In each plantation, two cores of litter and fermentation layer were sampled in a burned area and in a near unburned area (control), respectively, with a collector to extract an "undisturbed" core. Then, each core was transferred in a lysimeter installed in the Water Lab of Delft University of Technology. In total, three lysimeters were set up and each experiment was carried out in duplicate. The laboratory had constant temperature, and both temperature and relative humidity were recorded every 15 minutes. To simulate rainfall, ~1 litre of tap water was sprinkled uniformly on the lysimeter with a plant spray (equivalent to 32 mm of rain). The precipitation was sprinkled every 3 days for a period of two months. Soil moisture and temperature were measured during the experiment every 15 minutes in the top and bottom of the litter and fermentation layer. Interception water was collected for isotope analysis from every layer with Rhizon soil moisture samplers by applying a vacuum with 5 ml syringes. Samples were collected two times per day (in the morning and in the evening) and at two different depths for each layer (~4 cm and ~7 cm in litter layer and ~10 and ~15 cm in fermentation layer) until 2 days after rain simulation. Water samples were analysed with laser spectrometry using the liquid water isotope analyser (LGR-LWIA). The influence of different litter layers and PB on interception and litter layer evaporation was assessed. Then, the evaporation flux measured using the lysimeter was compared with the calculated evaporation flux using the isotopes mass balance. Generally, the preliminary results indicate a slight increase in evaporation flux in burned areas compared to the controls, in P. pinea and P. pinaster stands. By contrast, in P. halepensis stand, a significant decrease in evaporation flux was detected in prescribed burned plot. The isotope mass balance method to measure litter evaporation is promising and could be used in future, in-situ, measurements of evaporation from the litter layer.
NASA Astrophysics Data System (ADS)
Peters, Andre; Groh, Jannis; Schrader, Frederik; Durner, Wolfgang; Vereecken, Harry; Pütz, Thomas
2017-06-01
Weighing lysimeters are considered to be the best means for a precise measurement of water fluxes at the interface between the soil-plant system and the atmosphere. Any decrease of the net mass of the lysimeter can be interpreted as evapotranspiration (ET), any increase as precipitation (P). However, the measured raw data need to be filtered to separate real mass changes from noise. Such filter routines typically apply two steps: (i) a low pass filter, like moving average, which smooths noisy data, and (ii) a threshold filter that separates significant from insignificant mass changes. Recent developments of these filters have identified and solved some problems regarding bias in the data processing. A remaining problem is that each change in flow direction is accompanied with a systematic flow underestimation due to the threshold scheme. In this contribution, we analyze this systematic effect and show that the absolute underestimation is independent of the magnitude of a flux event. Thus, for small events, like dew or rime formation, the relative error is high and can reach the same magnitude as the flux itself. We develop a heuristic solution to the problem by introducing a so-called "snap routine". The routine is calibrated and tested with synthetic flux data and applied to real measurements obtained with a precision lysimeter for a 10-month period. The heuristic snap routine effectively overcomes these problems and yields an almost unbiased representation of the real signal.
Non-isothermal processes during the drying of bare soil: Model Development and Validation
NASA Astrophysics Data System (ADS)
Sleep, B.; Talebi, A.; O'Carrol, D. M.
2017-12-01
Several coupled liquid water, water vapor, and heat transfer models have been developed either to study non-isothermal processes in the subsurface immediately below the ground surface, or to predict the evaporative flux from the ground surface. Equilibrium phase change between water and gas phases is typically assumed in these models. Recently, a few studies have questioned this assumption and proposed a coupled model considering kinetic phase change. However, none of these models were validated against real field data. In this study, a non-isothermal coupled model incorporating kinetic phase change was developed and examined against the measured data from a green roof test module. The model also incorporated a new surface boundary condition for water vapor transport at the ground surface. The measured field data included soil moisture content and temperature at different depths up to the depth of 15 cm below the ground surface. Lysimeter data were collected to determine the evaporation rates. Short and long wave radiation, wind velocity, air ambient temperature and relative humidity were measured and used as model input. Field data were collected for a period of three months during the warm seasons in south eastern Canada. The model was calibrated using one drying period and then several other drying periods were simulated. In general, the model underestimated the evaporation rates in the early stage of the drying period, however, the cumulative evaporation was in good agreement with the field data. The model predicted the trends in temperature and moisture content at the different depths in the green roof module. The simulated temperature was lower than the measured temperature for most of the simulation time with the maximum difference of 5 ° C. The simulated moisture content changes had the same temporal trend as the lysimeter data for the events simulated.
NASA Astrophysics Data System (ADS)
Reder, Alfredo; Rianna, Guido; Pagano, Luca
2018-02-01
In the field of rainfall-induced landslides on sloping covers, models for early warning predictions require an adequate trade-off between two aspects: prediction accuracy and timeliness. When a cover's initial hydrological state is a determining factor in triggering landslides, taking evaporative losses into account (or not) could significantly affect both aspects. This study evaluates the performance of three physically based predictive models, converting precipitation and evaporative fluxes into hydrological variables useful in assessing slope safety conditions. Two of the models incorporate evaporation, with one representing evaporation as both a boundary and internal phenomenon, and the other only a boundary phenomenon. The third model totally disregards evaporation. Model performances are assessed by analysing a well-documented case study involving a 2 m thick sloping volcanic cover. The large amount of monitoring data collected for the soil involved in the case study, reconstituted in a suitably equipped lysimeter, makes it possible to propose procedures for calibrating and validating the parameters of the models. All predictions indicate a hydrological singularity at the landslide time (alarm). A comparison of the models' predictions also indicates that the greater the complexity and completeness of the model, the lower the number of predicted hydrological singularities when no landslides occur (false alarms).
Healy, R.W.; DeVries, M.P.; Striegl, Robert G.
1986-01-01
A study of water and radionuclide movement through the unsaturated zone is being conducted at the low level radioactive waste disposal site near Sheffield, Illinois. Included in the study are detailed investigations of evapotranspiration, movement of water through waste trench covers, and movement of water and radionuclides (dissolved and gaseous) from the trenches. An energy balance/Bowen ratio approach is used to determine evapotranspiration. Precipitation, net radiation, soil-heat flux, air temperature and water vapor content gradients, wind speed, and wind direction are measured. Soil water tension is measured with tensiometers which are connected to pressure transducers. Meteorological sensors and tensiometers which are connected to pressure transducers. Meteorological sensors and tensiometers are monitored with automatic data loggers. Soil moisture contents are measured through small-diameter access tubes with neutron and gamma-ray attenuation gages. Data beneath the trenches are obtained through a 130-meter-long tunnel which extends under four of the trenches. Water samples are obtained with suction lysimeters, and samples of the geologic material are obtained with core tubes. These samples are analyzed for radiometric and inorganic chemistry. Gas samples are obtained from gas piezometers and analyzed for partial pressures of major constituents, Radon-222, tritiated water vapor, and carbon-14 dioxide. (USGS)
Prédélus, Dieuseul; Coutinho, Artur Paiva; Lassabatere, Laurent; Bien, Le Binh; Winiarski, Thierry; Angulo-Jaramillo, Rafael
2015-10-01
It is well recognized that colloidal nanoparticles are highly mobile in soils and can facilitate the transport of contaminants through the vadose zone. This work presents the combined effect of the capillary barrier and soil layer slope on the transport of water, bromide and nanoparticles through an unsaturated soil. Experiments were performed in a lysimeter (1×1×1.6m(3)) called LUGH (Lysimeter for Urban Groundwater Hydrology). The LUGH has 15 outputs that identify the temporal and spatial evolution of water flow, solute flux and nanoparticles in relation to the soil surface conditions and the 3D system configuration. Two different soil structures were set up in the lysimeter. The first structure comprises a layer of sand (0-0.2cm, in diameter) 35cm thick placed horizontally above a layer of bimodal mixture also 35cm thick to create a capillary barrier at the interface between the sand and bimodal material. The bimodal material is composed of a mixture 50% by weight of sand and gravel (0.4-1.1cm, in diameter). The second structure, using the same amount of sand and bimodal mixture as the first structure represents an interface with a 25% slope. A 3D numerical model based on Richards equation for flow and the convection dispersion equations coupled with a mechanical module for nanoparticle trapping was developed. The results showed that under the effect of the capillary barrier, water accumulated at the interface of the two materials. The sloped structure deflects flow in contrast to the structure with zero slope. Approximately 80% of nanoparticles are retained in the lysimeter, with a greater retention at the interface of two materials. Finally, the model makes a good reproduction of physical mechanisms observed and appears to be a useful tool for identifying key processes leading to a better understanding of the effect of capillary barrier on nanoparticle transfer in an unsaturated heterogeneous soil. Copyright © 2015 Elsevier B.V. All rights reserved.
Luo, Y.; Sophocleous, M.
2010-01-01
Groundwater evaporation can play an important role in crop-water use where the water table is shallow. Lysimeters are often used to quantify the groundwater evaporation contribution influenced by a broad range of environmental factors. However, it is difficult for such field facilities, which are operated under limited conditions within limited time, to capture the whole spectrum of capillary upflow with regard to the inter-seasonal variability of climate, especially rainfall. Therefore, in this work, the method of combining lysimeter and numerical experiments was implemented to investigate seasonal groundwater contribution to crop-water use. Groundwater evaporation experiments were conducted through a weighing lysimeter at an agricultural experiment station located within an irrigation district in the lower Yellow River Basin for two winter wheat growth seasons. A HYDRUS-1D model was first calibrated and validated with weighing lysimeter data, and then was employed to perform scenario simulations of groundwater evaporation under different depths to water table (DTW) and water input (rainfall plus irrigation) driven by long term meteorological data. The scenario simulations revealed that the seasonally averaged groundwater evaporation amount was linearly correlated to water input for different values of DTW. The linear regression could explain more than 70% of the variability. The seasonally averaged ratio of the groundwater contribution to crop-water use varied with the seasonal water input and DTW. The ratio reached as high as 75% in the case of DTW=1.0. m and no irrigation, and as low as 3% in the case of DTW=3.0. m and three irrigation applications. The results also revealed that the ratio of seasonal groundwater evaporation to potential evapotranspiration could be fitted to an exponential function of the DTW that may be applied to estimate seasonal groundwater evaporation. In this case study of multilayered soil profile, the depth at which groundwater may evaporate at potential rate was 0.60-0.65. m, and the extinction depth of groundwater evaporation was approximately 3.8. m. ?? 2010 Elsevier B.V.
Dörfler, Ulrike; Cao, Guoyin; Grundmann, Sabine; Schroll, Reiner
2006-11-01
In four different agricultural soils the long-term leaching behaviour of [14C]isoproturon was studied in outdoor lysimeters (2 m length, 1 m2 surface area). The herbicide was applied in spring 1997 and spring 2001. At the end of the first 4-year-investigation period between 0.13% and 0.31% of the applied radioactivity was leached. Isoproturon or known metabolites could not be detected in the leachate. However, shortly after the second application isoproturon and its degradation products 2-hydroxy-isoproturon and monodemethyl-isoproturon were leached via preferential flow in one of the lysimeters (Mollic gleysol) in concentrations of 4.5 microg L-1, 3.1 microg L-1 and 0.9 microg L-1, respectively, thus considerably exceeding the EU threshold limit of 0.1 microg L-1 for ground and drinking water. The results indicate that in soils where mass flow transfer dominates, leaching of isoproturon to groundwater is of low probability whereas in highly structured soils which have the tendency to form macropores, isoproturon can be transported via preferential flow to the groundwater.
Nitrate Leaching from Winter Cereal Cover Crops Using Undisturbed Soil-Column Lysimeters.
Meisinger, John J; Ricigliano, Kristin A
2017-05-01
Cover crops are important management practices for reducing nitrogen (N) leaching, especially in the Chesapeake Bay watershed, which is under total maximum daily load (TMDL) restraints. Winter cereals are common cool-season crops in the Bay watershed, but studies have not directly compared nitrate-N (NO-N) leaching losses from these species. A 3-yr cover crop lysimeter study was conducted in Beltsville, MD, to directly compare NO-N leaching from a commonly grown cultivar of barley ( L.), rye ( L.), and wheat ( L.), along with a no-cover control, using eight tension-drained undisturbed soil column lysimeters in a completely randomized design with two replicates. The lysimeters were configured to exclude runoff and to estimate NO-N leaching and flow-weighted NO-N concentration (FWNC). The temporal pattern of NO-N leaching showed a consistent highly significant ( < 0.001) effect of lower NO-N leaching with cover crops compared with no cover but showed only small and periodically significant ( < 0.05) effects among the cultivars of barley, rye, and wheat covers. Nitrate-N leaching was more affected by the quantity of establishment-season (mid-October to mid-December) precipitation than by cover crop species. For example, compared with no cover, winter cereal covers reduced NO-N leaching 95% in a dry year and 50% in wet years, with corresponding reductions in FWNC of 92 and 43%, respectively. These results are important for scientists, nutrient managers, and policymakers because they directly compare NO-N leaching from winter cereal covers and expand knowledge for developing management practices for winter cereals that can improve water quality and increase N efficiency in cropping systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Moorhead, Jerry E.; Marek, Gary W.; Colaizzi, Paul D.; Gowda, Prasanna H.; Evett, Steven R.; Brauer, David K.; Marek, Thomas H.; Porter, Dana O.
2017-01-01
Accurate estimates of actual crop evapotranspiration (ET) are important for optimal irrigation water management, especially in arid and semi-arid regions. Common ET sensing methods include Bowen Ratio, Eddy Covariance (EC), and scintillometers. Large weighing lysimeters are considered the ultimate standard for measurement of ET, however, they are expensive to install and maintain. Although EC and scintillometers are less costly and relatively portable, EC has known energy balance closure discrepancies. Previous scintillometer studies used EC for ground-truthing, but no studies considered weighing lysimeters. In this study, a Surface Layer Scintillometer (SLS) was evaluated for accuracy in determining ET as well as sensible and latent heat fluxes, as compared to a large weighing lysimeter in Bushland, TX. The SLS was installed over irrigated grain sorghum (Sorghum bicolor (L.) Moench) for the period 29 July–17 August 2015 and over grain corn (Zea mays L.) for the period 23 June–2 October 2016. Results showed poor correlation for sensible heat flux, but much better correlation with ET, with r2 values of 0.83 and 0.87 for hourly and daily ET, respectively. The accuracy of the SLS was comparable to other ET sensing instruments with an RMSE of 0.13 mm·h−1 (31%) for hourly ET; however, summing hourly values to a daily time step reduced the ET error to 14% (0.75 mm·d−1). This level of accuracy indicates that potential exists for the SLS to be used in some water management applications. As few studies have been conducted to evaluate the SLS for ET estimation, or in combination with lysimetric data, further evaluations would be beneficial to investigate the applicability of the SLS in water resources management. PMID:29036926
Experimental measurement and modeling of snow accumulation and snowmelt in a mountain microcatchment
NASA Astrophysics Data System (ADS)
Danko, Michal; Krajčí, Pavel; Hlavčo, Jozef; Kostka, Zdeněk; Holko, Ladislav
2016-04-01
Fieldwork is a very useful source of data in all geosciences. This naturally applies also to the snow hydrology. Snow accumulation and snowmelt are spatially very heterogeneous especially in non-forested, mountain environments. Direct field measurements provide the most accurate information about it. Quantification and understanding of processes, that cause these spatial differences are crucial in prediction and modelling of runoff volumes in spring snowmelt period. This study presents possibilities of detailed measurement and modeling of snow cover characteristics in a mountain experimental microcatchment located in northern part of Slovakia in Western Tatra mountains. Catchment area is 0.059 km2 and mean altitude is 1500 m a.s.l. Measurement network consists of 27 snow poles, 3 small snow lysimeters, discharge measurement device and standard automatic weather station. Snow depth and snow water equivalent (SWE) were measured twice a month near the snow poles. These measurements were used to estimate spatial differences in accumulation of SWE. Snowmelt outflow was measured by small snow lysimeters. Measurements were performed in winter 2014/2015. Snow water equivalent variability was very high in such a small area. Differences between particular measuring points reached 600 mm in time of maximum SWE. The results indicated good performance of a snow lysimeter in case of snowmelt timing identification. Increase of snowmelt measured by the snow lysimeter had the same timing as increase in discharge at catchment's outlet and the same timing as the increase in air temperature above the freezing point. Measured data were afterwards used in distributed rainfall-runoff model MIKE-SHE. Several methods were used for spatial distribution of precipitation and snow water equivalent. The model was able to simulate snow water equivalent and snowmelt timing in daily step reasonably well. Simulated discharges were slightly overestimated in later spring.
Loss pathways of N-nitrosodimethylamine (NDMA) in turfgrass soils.
Arienzo, M; Gan, J; Ernst, F; Qin, S; Bondarenko, S; Sedlak, D L
2006-01-01
N-nitrosodimethylamine (NDMA) is a potent carcinogen that is often present in municipal wastewater effluents. In a previous field study, it was observed that NDMA did not leach through turfgrass soils following 4 mo of intensive irrigation with NDMA-containing wastewater effluent. To better understand the loss pathways for NDMA in landscape irrigation systems, a mass balance approach was employed using in situ lysimeters treated with 14C-NDMA. When the lysimeters were subjected to irrigation and field conditions after NDMA application, very rapid dissipation of NDMA was observed for both types of soil used in the field plots. After only 4 h, total 14C activity in the lysimeters decreased to 19.1 to 26.1% of the applied amount, and less than 1% of the activity was detected below the 20-cm depth. Analysis of plant materials showed that less than 3% of the applied 14C was incorporated into the plants, suggesting only a minor role for plant uptake in removing NDMA from the vegetated soils. The rapid dissipation and limited downward movement of NDMA in the in situ lysimeters was consistent with the negligible leaching observed in the field study, and suggests volatilization as the only significant loss pathway. This conclusion was further corroborated by rapid NDMA volatilization found from water or a thin layer of soil under laboratory conditions. In a laboratory incubation experiment, prolonged wastewater irrigation did not result in enhanced NDMA degradation in the soil. Therefore, although NDMA may be present at relatively high levels in treated wastewater, gaseous diffusion and volatilization in unsaturated soils may effectively impede significant leaching of NDMA, minimizing the potential for ground water contamination from irrigation with treated wastewater.
Moorhead, Jerry E; Marek, Gary W; Colaizzi, Paul D; Gowda, Prasanna H; Evett, Steven R; Brauer, David K; Marek, Thomas H; Porter, Dana O
2017-10-14
Accurate estimates of actual crop evapotranspiration (ET) are important for optimal irrigation water management, especially in arid and semi-arid regions. Common ET sensing methods include Bowen Ratio, Eddy Covariance (EC), and scintillometers. Large weighing lysimeters are considered the ultimate standard for measurement of ET, however, they are expensive to install and maintain. Although EC and scintillometers are less costly and relatively portable, EC has known energy balance closure discrepancies. Previous scintillometer studies used EC for ground-truthing, but no studies considered weighing lysimeters. In this study, a Surface Layer Scintillometer (SLS) was evaluated for accuracy in determining ET as well as sensible and latent heat fluxes, as compared to a large weighing lysimeter in Bushland, TX. The SLS was installed over irrigated grain sorghum ( Sorghum bicolor (L.) Moench) for the period 29 July-17 August 2015 and over grain corn ( Zea mays L.) for the period 23 June-2 October 2016. Results showed poor correlation for sensible heat flux, but much better correlation with ET, with r² values of 0.83 and 0.87 for hourly and daily ET, respectively. The accuracy of the SLS was comparable to other ET sensing instruments with an RMSE of 0.13 mm·h -1 (31%) for hourly ET; however, summing hourly values to a daily time step reduced the ET error to 14% (0.75 mm·d -1 ). This level of accuracy indicates that potential exists for the SLS to be used in some water management applications. As few studies have been conducted to evaluate the SLS for ET estimation, or in combination with lysimetric data, further evaluations would be beneficial to investigate the applicability of the SLS in water resources management.
Seasonal Snowpack Dynamics and Runoff in a Maritime Forested Basin, Niigata, Japan
NASA Astrophysics Data System (ADS)
Whitaker, A. C.; Sugiyama, H.
2005-12-01
Seasonal snowpack dynamics are described through field measurements under contrasting canopy conditions for a mountainous catchment in the Japan Sea region. Microclimatic data, snow accumulation, albedo and lysimeter runoff is given through three complete winter seasons 2002-05 in: (1) mature cedar stand, (2) larch stand, and (3) regenerating cedar stand or opening. The accumulation and melt of seasonal snowpack strongly influences streamflow runoff during December to May, including winter base-flow, mid-winter melt, rain-on-snow, and diurnal peaks driven by radiation melt in spring. Lysimeter runoff at all sites is characterised by constant ground melt of 0.8-1.0 mm/day. Rapid response to mid-winter melt or rainfall shows that the snowpack remains in a ripe or near-ripe condition throughout the snowcover season. Hourly and daily lysimeter discharge was greatest during rain-on-snow with the majority of runoff due to rainfall passing through the snowpack as opposed to snowmelt. For both rain-on-snow and radiation melt events lysimeter discharge was generally greatest at the open site, although there were exceptions such as during interception melt events. During radiation melt instantaneous discharge was up to 4.0 times greater in the opening compared to the mature cedar, and 48-hour discharge was up to 2.5 times greater. Perhaps characteristic of maritime climates, forest interception melt is shown to be important in addition to sublimation in reducing snow accumulation beneath dense canopies. While sublimation represents a loss from the catchment water balance, interception melt percolates through the snowpack and contributes to soil moisture during the winter season. Strong differences in microclimate and snowpack albedo persisted between cedar, larch and open sites, and it is suggested further work is needed to account for this in hydrological simulation models.
Flow through in situ reactors with suction lysimeter sampling capability and methods of using
Radtke, Corey W [Idaho Falls, ID; Blackwelder, D Brad [Blackfoot, ID; Hubbell, Joel M [Idaho Falls, ID
2009-11-17
An in situ reactor for use in a geological strata includes a liner defining a centrally disposed passageway and a sampling conduit received within the passageway. The sampling conduit may be used to receive a geological speciment derived from geological strata therein and a lysimeter is disposed within the sampling conduit in communication with the geological specimen. Fluid may be added to the geological specimen through the passageway defined by the liner, between an inside surface of the liner and an outside surface of the sampling conduit. A distal portion of the sampling conduit may be in fluid communication with the passageway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, Wookeun; Shin, Eung Bai; Lee, Kil Chul
The potential hazard of landfill wastes was previously evaluated by examining the extraction procedures for individual waste, although various wastes were co-disposed of in actual landfills. This paper investigates the reduction of extraction-procedure toxicity by co-disposing various combinations of two wastes. When two wastes are mixed homogeneously, the extraction of heavy metals from the waste mixture is critically affected by the extract pH. Thus, co-disposal wastes will have a resultant pH between the pH values of its constituent. The lower the resultant pH, the lower the concentrations of heavy metals in the extract. When these wastes are extracted sequentially, themore » latter extracted waste has a stronger influence on the final concentration of heavy metals in the extract. Small-scale lysimeter experiments confirm that when heavy-metal-bearing leachates Generated from hazardous-waste lysimeters are passed through a nonhazardous-waste lysimeter filled with compost, briquette ash, or refuse-incineration ashes, the heavy-metal concentration in the final leachates decreases significantly. Thus, the heavy-metal leaching could be attenuated if a less extraction-procedure-toxic waste were placed at the bottom of a landfill. 3 refs., 4 figs., 5 tabs.« less
Multiple-methods investigation of recharge at a humid-region fractured rock site, Pennsylvania, USA
Heppner, C.S.; Nimmo, J.R.; Folmar, G.J.; Gburek, W.J.; Risser, D.W.
2007-01-01
Lysimeter-percolate and well-hydrograph analyses were combined to evaluate recharge for the Masser Recharge Site (central Pennsylvania, USA). In humid regions, aquifer recharge through an unconfined low-porosity fractured-rock aquifer can cause large magnitude water-table fluctuations over short time scales. The unsaturated hydraulic characteristics of the subsurface porous media control the magnitude and timing of these fluctuations. Data from multiple sets of lysimeters at the site show a highly seasonal pattern of percolate and exhibit variability due to both installation factors and hydraulic property heterogeneity. Individual event analysis of well hydrograph data reveals the primary influences on water-table response, namely rainfall depth, rainfall intensity, and initial water-table depth. Spatial and seasonal variability in well response is also evident. A new approach for calculating recharge from continuous water-table elevation records using a master recession curve (MRC) is demonstrated. The recharge estimated by the MRC approach when assuming a constant specific yield is seasonal to a lesser degree than the recharge estimate resulting from the lysimeter analysis. Partial reconciliation of the two recharge estimates is achieved by considering a conceptual model of flow processes in the highly-heterogeneous underlying fractured porous medium. ?? Springer-Verlag 2007.
Sun, Jianlei; Yuen, Samuel T S; Fourie, Andy B
2010-11-01
This paper examines the potential effects of a geotextile layer used in a lysimeter pan experiment conducted in a monolithic (evapotranspiration) soil cover trial on its resulting water balance performance. The geotextile was added to the base of the lysimeter to serve as a plant root barrier in order to delineate the root zone depth. Both laboratory data and numerical modelling results indicated that the geotextile creates a capillary barrier under certain conditions and retains more water in the soil above the soil/geotextile interface than occurs without a geotextile. The numerical modelling results also suggested that the water balance of the soil cover could be affected by an increase in plant transpiration taking up this extra water retained above the soil/geotextile interface. This finding has a practical implication on the full-scale monolithic cover design, as the absence of the geotextile in the full-scale cover may affect the associated water balance and hence cover performance. Proper consideration is therefore required to assess the final monolithic cover water balance performance if its design is based on the lysimeter results. Copyright © 2010 Elsevier Ltd. All rights reserved.
Monitoring soil greenhouse gas emissions from managed grasslands
NASA Astrophysics Data System (ADS)
Díaz-Pinés, Eugenio; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf
2014-05-01
Grasslands in Central Europe are of enormous social, ecological and economical importance. They are intensively managed, but the influence of different common practices (i.e. fertilization, harvesting) on the total greenhouse gas budget of grasslands is not fully understood, yet. In addition, it is unknown how these ecosystems will react due to climate change. Increasing temperatures and changing precipitation will likely have an effect on productivity of grasslands and on bio-geo-chemical processes responsible for emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). In the frame of the TERENO Project (www.tereno.net), a long-term observatory has been implemented in the Ammer catchment, southern Germany. Acting as an in situ global change experiment, 36 big lysimeters (1 m2 section, 150 cm height) have been translocated along an altitudinal gradient, including three sites ranging from 600 to 860 meters above sea level. In addition, two treatments have been considered, corresponding to different management intensities. The overall aim of the pre-alpine TERENO observatory is improving our understanding of the consequences of climate change and management on productivity, greenhouse gas balance, soil nutritional status, nutrient leaching and hydrology of grasslands. Two of the sites are equipped with a fully automated measurement system in order to continuously and accurately monitor the soil-atmosphere greenhouse gas exchange. Thus, a stainless steel chamber (1 m2 section, 80 cm height) is controlled by a robotized system. The chamber is hanging on a metal structure which can move both vertically and horizontally, so that the chamber is able to be set onto each of the lysimeters placed on the field. Furthermore, the headspace of the chamber is connected with a gas tube to a Quantum Cascade Laser, which continuously measures CO2, CH4, N2O and H2O mixing ratios. The chamber acts as a static chamber and sets for 15 minutes onto each lysimeter; changes with time in the mixing ratios of the targeted gases are used to calculate exchange rates of the different molecules. The system allows for precise calculation of soil greenhouse gas fluxes at sub-daily resolution. Here, we will show the importance of high temporal frequency measurements for unbiased estimations of annual greenhouse gas emission budgets. Extremely high pulses of CH4 and N2O emissions after fertilizer application were observed, but in some occasions lasted for a couple of hours, only, before returning to baseline levels. Pulse response after fertilization was not always immediate. Especially for CO2, a clear diel pattern was observed, with emission rates varying by more than 100 % between early morning and midday. In summary, implications of the spatial and temporal dynamics of soil N2O, CH4 and CO2 emissions will be discussed and recommendations for avoiding under- and/or overestimation of exchange rates will be given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BP McGrail, WL Ebert, DH Bacon, DM Strachan
1998-02-18
Privatized services are being procured to vitrify low-activity tank wastes for eventual disposal in a shallow subsurface facility at the Hanford Site. Over 500,000 metric tons of low-activity waste glass will be generated, which is among the largest volumes of waste within the U.S. Department of Energy (DOE) complex and is one of the largest inventories of long-lived radionuclides planned for disposal in a low-level waste facility. Before immobilized waste can be disposed, DOE must approve a "performance assessment," which is a document that describes the impacts of the disposal facility on public health and environmental resources. Because the releasemore » rate of radionuclides from the glass waste form is a key factor determining these impacts, a sound scientific basis for determining their long-term release rates must be developed if this disposal action is to be accepted by regulatory agencies, stakeholders, and the public. In part, the scientific basis is determined from a sound testing strategy. The foundation of the proposed testing strategy is a well accepted mechanistic model that is being used to calculate the glass corrosion behavior over the geologic time scales required for performance assessment. This model requires that six parameters be determined, and the testing program is defined by an appropriate set of laboratory experiments to determine these parameters, and is combined with a set of field experiments to validate the model as a whole. Three general classes of laboratory tests are proposed in this strategy: 1) characterization, 2) accelerated, and 3) service condition. Characterization tests isolate and provide specific information about processes or parameters in theoretical models. Accelerated tests investigate corrosion behavior that will be important over the regulated service life of a disposal system within a laboratory time frame of a few years or less. Service condition tests verify that the techniques used in accelerated tests do not change the alteration mechanisms. The recommended characterization tests are single-pass flow-through tests using a batch reactor design, Accelerated and service conditions tests include product consistency and pressurized unsaturated flow (PUF) tests. Nonradioactive glasses will be used for the majority of the laboratory testing (-80%), with the remainder performed with glasses containing a selected set of key radionuclides. Additionally, a series of PUF experiments with a natural analog of basaltic glass is recommended to confirm that the alteration products observed under accelerated conditions in the PUF tests are similar to those found associated with the natural analog. This will provide additional confidence in using the PUF test results to infer long-term corrosion behavior. Field tests are proposed as a unique way to validate the glass corrosion and contaminant transport models being used in the performance assessment. To better control the test conditions, the field tests are to be performed in lysimeters (corrugated steel containers buried flush with the ground surface). Lysimeters provide a way to combine a glass, Hanford soil, and perhaps other engineered materials in a well-controlled test, but on a scale that is not practicable in the laboratory. The recommended field tests include some experiments where a steady flow rate of water is artificially applied. These tests use a glass designed to have a high corrosion rate so that it is easier to monitor contaminant release and transport. Existing lysimeters at the Hanford Site can be used for these experiments or new lysimeters that have been equipped with the latest in monitoring equipment and located near the proposed disposal site.« less
A Multiscale Approach to Modeling Carbon and Nitrogen Cycling within a High Elevation Watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, Corey
This funding represents a small sub-award related the larger project titled: A Multiscale Approach to Modeling Carbon and Nitrogen Cycling within a High Elevation Watershed. The goal of the sub-award was to facilitate the characterization of carbon and radiocarbon data collected from the East River watershed outside Gothic, Colorado USA. During the period of funding from 8/1/15 until 7/31/17, we sampled 40 soil profiles and collected ~325 soil samples. This funding supported the collection, processing, and elemental analysis of each of these samples. In addition, the funding allowed for the further density separation of a subset of soil resulting inmore » 60 measurements of 13C and 14C of bulk soil and density separates. Funding also supported installation of temperature and moisture data sensors arrays, soil gas wells, and soil water lysimeters. From this infrastructure, a steady stream data including soil gas, water, and physical information have been generated to support the larger research project.« less
Ortegón, Gloria Páez; Arboleda, Fernando Muñoz; Candela, Lucila; Tamoh, Karim; Valdes-Abellan, Javier
2016-01-01
Extensive application of vinasse, a subproduct from sugar cane plantations for bioethanol production, is currently taking place as a source of nutrients that forms part of agricultural management in different agroclimatic regions. Liquid vinasse composition is characterised by high variability of organic compounds and major ions, acid pH (4.7), high TDS concentration (117,416-599,400mgL(-1)) and elevated EC (14,350-64,099μScm(-1)). A large-scale sugar cane field application is taking place in Valle del Cauca (Colombia), where monitoring of soil, unsaturated zone and the aquifer underneath has been made since 2006 to evaluate possible impacts on three experimental plots. For this assessment, monitoring wells and piezometers were installed to determine groundwater flow and water samples were collected for chemical analysis. In the unsaturated zone, tensiometers were installed at different depths to determine flow patterns, while suction lysimeters were used for water sample chemical determinations. The findings show that in the sandy loam plot (Hacienda Real), the unsaturated zone is characterised by low water retention, showing a high transport capacity, while the other two plots of silty composition presented temporal saturation due to La Niña event (2010-2011). The strong La Niña effect on aquifer recharge which would dilute the infiltrated water during the monitoring period and, on the other hand dissolution of possible precipitated salts bringing them back into solution may occur. A slight increase in the concentration of major ions was observed in groundwater (~5% of TDS), which can be attributed to a combination of factors: vinasse dilution produced by water input and hydrochemical processes along with nutrient removal produced by sugar cane uptake. This fact may make the aquifer vulnerable to contamination. Copyright © 2015 Elsevier B.V. All rights reserved.
Soil nitrogen balance under wastewater management: Field measurements and simulation results
Sophocleous, M.; Townsend, M.A.; Vocasek, F.; Ma, Liwang; KC, A.
2009-01-01
The use of treated wastewater for irrigation of crops could result in high nitrate-nitrogen (NO3-N) concentrations in the vadose zone and ground water. The goal of this 2-yr field-monitoring study in the deep silty clay loam soils south of Dodge City, Kansas, was to assess how and under what circumstances N from the secondary-treated, wastewater-irrigated corn reached the deep (20-45 m) water table of the underlying High Plains aquifer and what could be done to minimize this problem. We collected 15.2-m-deep soil cores for characterization of physical and chemical properties; installed neutron probe access tubes to measure soil-water content and suction lysimeters to sample soil water periodically; sampled monitoring, irrigation, and domestic wells in the area; and obtained climatic, crop, irrigation, and N application rate records for two wastewater-irrigated study sites. These data and additional information were used to run the Root Zone Water Quality Model to identify key parameters and processes that influence N losses in the study area. We demonstrated that NO3-N transport processes result in significant accumulations of N in the vadose zone and that NO3-N in the underlying ground water is increasing with time. Root Zone Water Quality Model simulations for two wastewater-irrigated study sites indicated that reducing levels of corn N fertilization by more than half to 170 kg ha-1 substantially increases N-use efficiency and achieves near-maximum crop yield. Combining such measures with a crop rotation that includes alfalfa should further reduce the accumulation and downward movement of NO3-N in the soil profile. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Evaluation of americium-241 toxicity influence on the microbial growth of organic wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takehiro Marumo, Julio; Padua Ferreira, Rafael Vicente de; Keiko Isiki, Vera Lucia
2007-07-01
Available in abstract form only. Full text of publication follows: Since the licenses for using radioactive sources in radioactive lightning rods were lifted by the Brazilian national nuclear authority, in 1989, the radioactive devices have been replaced by Franklin type and collected as radioactive waste. However, only 20 percent of the estimated total number of installed rods was delivered to Brazilian Nuclear Commission. This situation causes concern, due to, first, the possibility of the rods being disposed as domestic waste, and second, the americium, the most commonly employed radionuclide, is classified as a high-toxicity element. In the present study, Am-241more » migration experiments were performed by a lysimeter system, in order to evaluate the risk of contamination caused by radioactive lightning rods disposed as a common solid waste. Besides the risk evaluation, it is important to know the mechanism of the Am-241 release or retention in waste as well as its influence in the waste decomposition processes. Many factors are involved, but microorganisms present in the waste play an important role in its degradation, which control the physical and chemical processes. The objective of this work was to evaluate the Am-241 influence on the microbial population by counting number of cells in lysimeters leachate. Preliminary results suggest that americium may influence significantly the bacteria growth in organic waste, evidenced by culture under aerobiosis and an-aerobiosis and the antimicrobial resistance test. (authors)« less
Izbicki, John A.; Clark, Dennis A.; Pimental, Maria I.; Land, Michael; Radyk, John C.; Michel, Robert L.
2000-01-01
This report presents data on the physical properties of unsaturated alluvial deposits and on the chemical and isotopic composition of soil water and soil gas collected at 12 monitoring sites in the western part of the Mojave Desert, near Victorville, California. Sites were installed using the ODEX air-hammer method. Seven sites were located in the active channels of Oro Grande and Sheep Creek Washes. The remaining five sites were located away from the active washes. Most sites were drilled to a depth of about 100 feet below land surface; two sites were drilled to the water table almost 650 feet below land surface. Drilling procedures, lithologic and geophysical data, and site construction and instrumentation are described. Core material was analyzed for water content, bulk density, water potential, particle size, and water retention. The chemical composition of leachate from almost 1,000 subsamples of cores and cuttings was determined. Water extracted from selected subsamples of cores was analyzed for tritium and the stable isotopes of oxygen and hydrogen. Water from suction-cup lysimeters and soil-gas samples also were analyzed for chemical and isotopic composition. In addition, data on the chemical and isotopic composition of bulk precipitation from five sites and on ground water from two water-table wells are reported.
NASA Astrophysics Data System (ADS)
Weymann, Daniel; Brueggemann, Nicolas; Puetz, Thomas; Vereecken, Harry
2015-04-01
Central Europe is expected to be exposed to altered temperature and hydrological conditions, which will affect the vulnerability of nitrogen and carbon cycling in soils and thus production and fluxes of climate relevant trace gases. However, knowledge of the response of greenhouse gas fluxes to climate change is limited so far, but will be an important basis for future climate projections. Here we present preliminary results of an ongoing lysimeter field study which aims to assess the impact of simulated climate change on N2O and CH4 fluxes from a forest and a fertilized grassland soil. The lysimeters are part of the Germany-wide research infrastructure TERENO, which investigates feedbacks of climate change to the pedosphere on a long-term scale. Lysimeters (A = 1m2) were established in 2010 at high elevated sites (HE, 500 and 600 m.a.s.l.) and subsequently transferred along an altitudinal gradient to a low elevated site (LE, 100 m.a.s.l.) within the Eifel / Lower Rhine Valley Observatory in Western Germany, thereby resulting in a temperature increase of 2.3 K whereas precipitation decreased by 160 mm during the present study period. Systematic monitoring of soil-atmosphere exchange of N2O and CH4 based on weekly manual closed chamber measurements at HE and LE sites has started in August 2013. Furthermore, we routinely determine dissolved N2O and CH4 concentrations in the seepage water using a headspace equilibration technique and record water discharge in order to quantify leaching losses of both greenhouse gases. Cumulative N2O fluxes clearly responded to simulated climate change conditions and increased by 250 % and 600 % for the forest and the grassland soil, respectively. This difference between the HE and LE sites was mainly caused by an exceptionally heavy precipitation event in July 2014 which turned the LE site sustainably to a consistently higher emission level. Nonetheless, emissions remained rather small and ranged between 20 and 40 μg m-2 h-1. In terms of CH4, the forest soil exhibits a consistent uptake. Climate change conditions almost doubled the CH4 sink strength from -0.14 to -0.27 g C m-2 year-1. In contrast, the grassland soil was a net source of CH4 which appeared to be mainly related to emission peaks responding to organic fertilization and periods with high soil moisture. However, the net source strength was so far not significantly affected by simulated climate change. In conclusion, our preliminary results provide evidence that climate change will considerably affect N2O emissions from both soils as well as CH4 uptake by the forest soil. However, comparatively small fluxes of both trace gases suggest that N2O and CH4 fluxes of the investigated soils will be of minor importance for the net greenhouse gas balance of our sites. Our data further highlight the need for long-term flux measurements, in particular to account for the impact of short-term events and interannual variability.
Water Use and Quality Footprints of Biofuel Crops in Florida
NASA Astrophysics Data System (ADS)
Shukla, S.; Hendricks, G.; Helsel, Z.; Knowles, J.
2013-12-01
The use of biofuel crops for future energy needs will require considerable amounts of water inputs. Favorable growing conditions for large scale biofuel production exist in the sub-tropical environment of South Florida. However, large-scale land use change associated with biofuel crops is likely to affect the quantity and quality of water within the region. South Florida's surface and ground water resources are already stressed by current allocations. Limited data exists to allocate water for growing the energy crops as well as evaluate the accompanying hydrologic and water quality impacts of large-scale land use changes. A three-year study was conducted to evaluate the water supply and quality impacts of three energy crops: sugarcane, switchgrass, and sweet sorghum (with a winter crop). Six lysimeters were used to collect the data needed to quantify crop evapotranspiration (ETc), and nitrogen (N) and phosphorus (P) levels in groundwater and discharge (drainage and runoff). Each lysimeter (4.85 x 3.65 x 1.35 m) was equipped to measure water input, output, and storage. The irrigation, runoff, and drainage volumes were measured using flow meters. Groundwater samples were collected bi-weekly and drainage/runoff sampling was event based; samples were analyzed for nitrogen (N) and phosphorous (P) species. Data collected over the three years revealed that the average annual ETc was highest for sugarcane (1464 mm) followed by switchgrass and sweet sorghum. Sweet sorghum had the highest total N (TN) concentration (7.6 mg/L) in groundwater and TN load (36 kg/ha) in discharge. However, sweet sorghum had the lowest total P (TP) concentration (1.2 mg/L) in groundwater and TP load (9 kg/ha) in discharge. Water use footprint for ethanol (liter of water used per liter of ethanol produced) was lowest for sugarcane and highest for switchgrass. Switchgrass had the highest P-load footprint for ethanol. No differences were observed for the TN load footprint for ethanol. This is the first study to quantify water use and nutrient load footprint based on measurements in the southeast and perhaps the USA, and will be useful for selecting suitable biofuel crops in Florida and elsewhere with similar environment.
NASA Astrophysics Data System (ADS)
Groh, J.; Vanderborght, J.; Puetz, T.; Gerke, H. H.; Rupp, H.; Wollschlaeger, U.; Stumpp, C.; Priesack, E.; Vereecken, H.
2015-12-01
Understanding water flow and solute transport in the unsaturated zone is of great importance for an appropriate land use management strategy. The quantification and prediction of water and solute fluxes through the vadose zone can help to improve management practices in order to limit potential risk on our fresh water resources. Water related solute transport and residence time is strongly affected by preferential flow paths in the soil. Water flow in soils depends on soil properties and site factors (climate or experiment conditions, land use) and are therefore important factors to understand preferential solute transport in the unsaturated zone. However our understanding and knowledge of which on-site properties or conditions define and enhance preferential flow and transport is still poor and mostly limited onto laboratory experimental conditions (small column length and steady state boundary conditions). Within the TERENO SOILCan lysimeter network, which was designed to study the effects of climate change on soil functions, a bromide tracer was applied on 62 lysimeter at eight different test sites between Dec. 2013 and Jan. 2014. The TERENO SOILCan infrastructure offers the unique possibility to study the occurrence of preferential flow and transport of various soil types under different natural transient hydrological conditions and land use (crop, bare and grassland) at eight TERENO SOILCan observatories. Working with lysimeter replicates at each observatory allows defining the spatial variability of preferential transport and flow. Additionally lysimeters in the network were transferred within and between observatories in order to subject them to different rainfall and temperature regimes and enable us to relate the soil type susceptibility of preferential flow and transport not only to site specific physical and land use properties, but also to different transient boundary conditions. Comparison and statistical analysis between preferential flow indicators 5% arrival time and potential key soil properties, site factors and boundary conditions will be presented in order to identify key properties which control the preferential transport in the vadose zone under transient hydrological conditions.
Butera, Stefania; Hyks, Jiri; Christensen, Thomas H; Astrup, Thomas F
2015-09-01
Five samples of construction and demolition waste (C&DW) were investigated in order to quantify leaching of inorganic elements under percolation conditions according to two different experimental setups: standardised up-flow saturated columns (<4mm particle size) and unsaturated, intermittent down-flow lysimeters (<40mm particle size). While standardised column tests are meant primarily to provide basic information on characteristic leaching properties and mechanisms and not to reproduce field conditions, the lysimeters were intended to mimic the actual leaching conditions when C&DW is used in unbound geotechnical layers. In practice, results from standardised percolation tests are often interpreted as estimations of actual release from solid materials in percolation scenarios. In general, the two tests yielded fairly similar results in terms of cumulative release at liquid-to-solid ratio (L/S) 10l·kgTS; however, significant differences were observed for P, Pb, Ba, Mg and Zn. Further differences emerged in terms of concentration in the early eluates (L/S<5l·kg(-1)TS) for Al, As, Ba, Cd, Cu, DOC, Mg, Mn, Ni, P, Pb, Sb, Se, Si, Zn. Observed differences between tests are likely to be due to differences in pH related to crushing and exposure of fresh particle surfaces, as well as in equilibrium conditions. In the case of C&DW, the standardised column tests, which are more practical, are considered to acceptably describe cumulative releases at L/S 10l·kg(-1)TS in percolation scenarios. However, when the focus is on estimation of initial concentrations for (for example) risk assessment, data from standardised column tests may not be fully applicable, and data from lysimeters may be used for validation purposes. Se, Cr and, to a lesser extent, SO4 and Sb were leaching from C&DW in critical amounts compared with existing limit values. Copyright © 2015 Elsevier Ltd. All rights reserved.
Watershed Scale Monitoring and Modeling of Natural Organic Matter (NOM) Generation and Transport
NASA Astrophysics Data System (ADS)
Adams, R.; Rees, P. L.; Reckhow, D. A.; Castellon, C. M.
2006-05-01
This study describes a coupled watershed scale monitoring campaign, laboratory study, and hydrological modeling study which has been focused on determining the sources and transport mechanisms for Natural Organic Matter (NOM), in a small, mostly forested New England watershed. For some time, the state conservation authorities and a large metropolitan water authority have been concerned that the level of naturally-occurring disinfection byproducts in drinking water supplied by a large surface water reservoir (Watchusett Reservoir, MA) have been increasing over time. The resulting study has attempted to investigate how these compounds, which are mostly formed by the chlorination process at the water treatment plant, are related to NOM precursor compounds which are generated from organic matter and transported by runoff processes in the watershed of the Watchusett Reservoir. The laboratory study measures disinfection byproduct formation potential (DBPFP) through chlorination of raw water samples obtained through field monitoring. Samples are analysed for trihalomethanes (THMs), and haloacetic acids (HAAs). Samples are also analysed for dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm (UV254). The samples have been collected from as many components of the hydrological cycle as possible in one of the subcatchments of Watchusett Reservoir (Stillwater River). To date the samples include, stream runoff, water impounded naturally in small ponds by beaver dams, rainfall, snow, throughfall (drainage from tree canopies) and samples pumped from shallow suction lysimeters which were installed to monitor soil water in the riparian zone. The current monitoring program began in late-Summer 2005, however infrequent stream samples are available dating back to 2000 from an earlier research project and water quality monitoring by various regulatory authorities. The monitoring program has been designed to capture as much seasonal variation in water chemistry as possible and also to capture a large spring snowmelt event. The modeling study has been designed to provide a method of estimating the export of NOM and DBPFP precursor compounds by running a series of simple macromodels. One of these models has already been developed for DOC transport based on a variant of the popular TOPMODEL hydrological model. Currently, historical daily streamflow and precipitation data have been used to calibrate the hydrological model, and the results from the current and previous monitoring programs are being used to improve the representation of DOM generation in the model. The ultimate aim is to produce a modeling tool which can be used to investigate changes both in land-use and climate in the watershed and the resulting effects on the export of NOM and DBPFP compounds into the reservoir.
Field Performance of A Compacted Clay Landfill Final cover At A Humid Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albright, William H.; Benson, Craig H.; Gee, Glendon W.
A study was conducted in southern Georgia, USA to evaluate how the hydraulic properties of the compacted clay barrier layer in a landfill final cover changed over a 4-yr service life. The cover was part of a test section constructed in a large drainage lysimeter that allowed CE Database subject headings: landfill, hydrogeology, compacted soils, lysimeters, desiccation continuous monitoring of the water balance. Patterns in the drainage (i.e., flow from the bottom of the cover) record suggest that preferential flow paths developed in the clay barrier soon after construction, apparently in response to desiccation cracking. After four years, the claymore » barrier was excavated and examined for changes in soil structure and hydraulic conductivity. Tests were conducted in situ with a sealed double-ring infiltrometer and two-stage borehole permeameters and in the laboratory on hand-carved blocks taken during construction and after four years of service. The in situ and laboratory tests indicated that the hydraulic conductivity increased approximately three orders of magnitude (from ? 10-7 to ? 10-4 cm s-1) during the service life. A dye tracer test and soil structure analysis showed that extensive cracking and root development occurred throughout the entire depth of the barrier layer. Laboratory tests on undisturbed specimens of the clay barrier indicated that the hydraulic conductivity of damaged clay barriers can be under-estimated significantly if small specimens (e.g., tube samples) are used for hydraulic conductivity assessment. The findings also indicate that clay barriers must be protected from desiccation and root intrusion if they are expected to function as intended, even at sites in warm, humid locations.« less
Azadi, Sama; Amiri, Hamid; Rakhshandehroo, G Reza
2016-09-01
Waste burial in uncontrolled landfills can cause serious environmental damages and unpleasant consequences. Leachates produced in landfills have the potential to contaminate soil and groundwater resources. Leachate management is one of the major issues with respect to landfills environmental impacts. Improper design of landfills can lead to leachate spread in the environment, and hence, engineered landfills are required to have leachate monitoring programs. The high cost of such programs may be greatly reduced and cost efficiency of the program may be optimized if one can predict leachate contamination level and foresee management and treatment strategies. The aim of this study is to develop two expert systems consisting of Artificial Neural Network (ANN) and Principal Component Analysis-M5P (PCA-M5P) models to predict Chemical Oxygen Demand (COD) load in leachates produced in lab-scale landfills. Measured data from three landfill lysimeters, including rainfall depth, number of days after waste deposition, thickness of top and bottom Compacted Clay Liners (CCLs), and thickness of top cover over the lysimeter, were utilized to develop, train, validate, and test the expert systems and predict the leachate COD load. Statistical analysis of the prediction results showed that both models possess good prediction ability with a slight superiority for ANN over PCA-M5P. Based on test datasets, the mean absolute percentage error for ANN and PCA-M5P models were 4% and 12%, respectively, and the correlation coefficient for both models was greater than 0.98. Developed models may be used as a rough estimate for leachate COD load prediction in primary landfill designs, where the effect of a top and/or bottom liner is disputed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sulphate release from construction and demolition material in soils
NASA Astrophysics Data System (ADS)
Abel, Stefan; Wessolek, Gerd
2013-04-01
In Berlin and many other cities soils are heavily influenced by anthropogenic activities and deposited substrates. A widespread technical substrate in technosols is construction and demolition material from residential and industrial buildings. Existing rubble landfills without sealing facilities pose threats to ground water quality. In the central city of Berlin rising sulphate concentrations of groundwaters (up to 1200 mg/L) are measured since more than two decades. Previous studies point out that the high sulphate concentrations are mainly attributed to World War II rubble. The major part of debris was deposited in form of landfills and contains approximately 0.3 wt% gypsum. The scope of our research is to determine mechanisms of sulphate release from debris material, interactions between sulphate release, soil hydraulic properties and potential sinks of sulphur. To estimate equilibrium concentration and kinetics of sulphate release of various debris components batch and column experiments are conducted. The same method is applied to determine potential adsorptive character of common debris components. To analyse the impacts of soil hydraulic properties on sulphate leaching we carry out soil column experiments with defined upper and lower boundary conditions, varying water flow velocity and induced preferential flow. Simultaneously we monitor sulphate concentration of soil leachate in a 2 m³ lysimeter. First results of the batch experiments show that gypsum from broken stucco is the main source of sulphate in the observed technosols. Other components as mortar and slag show a quite low sulphate release. Similar results are found within the column experiments. For brigs medium and strongly time dependent sulphate release is determined. Concentrations up to 1500 mg/L are measured in the soil leachate from the lysimeter.
Displacement of soil pore water by trichloroethylene
Wershaw, R. L.; Aiken, G.R.; Imbrigiotta, T.E.; Goldberg, M.C.
1994-01-01
Dense nonaqueous phase liquids (DNAPLS) are important pollutants because of their widespread use as chemical and industrial solvents. An example of the pollution caused by the discharge of DNAPLs is found at the Picatinny Arsenal, New Jersey, where trichloroethylene (TCE) has been discharged directly into the unsaturated zone. This discharge has resulted in the formation of a plume of TCE-contaminated water in the aquifer downgradient of the discharge. A zone of dark-colored groundwater containing a high dissolved organic C content has been found near the point of discharge of the TCE. The colored-water plume extends from the point of discharge at least 30 m (100 feet) downgradient. Fulvic acids isolated from the colored-waters plume, from water from a background well that has not been affected by the discharge of chlorinated solvents, and from soil pore water collected in a lysimeter installed at an uncontaminated site upgradient of the study area have been compared. Nuclear magnetic resonance spectra of the fulvic acids from the colored waters and from the lysimeter are very similar, but are markedly different from the nuclear magnetic resonance spectrum of the fulvic acid from the background well. The three-dimensional fluorescence spectrum and the DOC fractionation profile of the colored groundwater and the soil pore water are very similar to each other, but quite different from those of the background water. It is proposed from these observations that this colored water is soil pore water that has been displaced by a separate DNAPL liquid phase downward to the saturated zone.
NASA Astrophysics Data System (ADS)
Peters, Ande; Durner, Wolfgang; Schrader, Frederik; Groh, Jannis; Pütz, Thomas
2017-04-01
Weighing lysimeters are known to be the best means for a precise and unbiased measurement of water fluxes at the interface between the soil-plant system and the atmosphere. The measured data need to be filtered to separate evapotranspiration (ET) and precipitation (P) from noise. Such filter routines apply typically two steps: (i) a low pass filter, like moving average, which is used to smooth noisy data, and (ii) a threshold filter to separate significant from insignificant mass changes. Recent developments of these filters have revealed and solved many problems regarding bias in the data processing. A remaining problem is that each change in flow direction is accompanied with a systematic flow underestimation due to the threshold scheme. In this contribution we show and analyze this systematic effect and propose a heuristic solution by introducing a so-called snap routine. The routine is calibrated and tested with synthetic flux data and applied to real data from a precision lysimeter for a 10-month period. We show that the absolute systematic effect is independent of the magnitude of a certain flux event. Thus, for small events, like dew or rime formation, the relative error is highest and can be in the same order of magnitude as the flux itself. The heuristic snap routine effectively overcomes these problems and yields an almost unbiased representation of the real signal.
NASA Astrophysics Data System (ADS)
Gutierrez, K. Y.; Fernald, A.; Ochoa, C. G.; Guldan, S. J.
2013-12-01
KEY WORDS - Hydrology, Water budget, Deep percolation, Surface water-Groundwater interactions. With the recent projections for water scarcity, water balances have become an indispensable water management tool. In irrigated floodplains, deep percolation from irrigation can represent one of the main aquifer recharge sources. A better understanding of surface water and groundwater interactions in irrigated valleys is needed for properly assessing the water balances in these systems and estimating potential aquifer recharge. We conducted a study to quantify the parameters and calculate the water budgets in three flood irrigated hay fields with relatively low, intermediate and, high water availability in northern New Mexico. We monitored different hydrologic parameters including total amount of water applied, change in soil moisture, drainage below the effective root zone, and shallow water level fluctuations in response to irrigation. Evapotranspiration was calculated from weather station data collected in-situ using the Samani-Hargreaves. Previous studies in the region have estimated deep percolation as a residual parameter of the water balance equation. In this study, we used both, the water balance method and actual measurements of deep percolation using passive lysimeters. Preliminary analyses for the three fields show a relatively rapid movement of water through the upper 50 cm of the vadose zone and a quick response of the shallow aquifer under flood irrigation. Further results from this study will provide a better understanding of surface water-groundwater interactions in flood irrigated valleys in northern New Mexico.
NASA Astrophysics Data System (ADS)
Rodny, Marek; Nolz, Reinhard
2017-04-01
Evapotranspiration (ET) is a fundamental component of the hydrological cycle, but challenging to be quantified. Lysimeter facilities, for example, can be installed and operated to determine ET, but they are costly and represent only point measurements. Therefore, lysimeter data are traditionally used to develop, calibrate, and validate models that allow calculating reference evapotranspiration (ET0) based on meteorological data, which can be measured more easily. The standardized form of the well-known FAO Penman-Monteith equation (ASCE-EWRI) is recommended as a standard procedure for estimating ET0 and subsequently plant water requirements. Applied and validated under different climatic conditions, the Penman-Monteith equation is generally known to deliver proper results. On the other hand, several studies documented deviations between measured and calculated ET0 depending on environmental conditions. Potential reasons are, for example, differing or varying surface characteristics of the lysimeter and the location where the weather instruments are placed. Advection of sensible heat (transport of dry and hot air from surrounding areas) might be another reason for deviating ET-values. However, elaborating causal processes is complex and requires comprehensive data of high quality and specific analysis techniques. In order to assess influencing factors, we correlated differences between measured and calculated ET0 with pre-selected meteorological parameters and related system parameters. Basic data were hourly ET0-values from a weighing lysimeter (ET0_lys) with a surface area of 2.85 m2 (reference crop: frequently irrigated grass), weather data (air and soil temperature, relative humidity, air pressure, wind velocity, and solar radiation), and soil water content in different depths. ET0_ref was calculated in hourly time steps according to the standardized procedure after ASCE-EWRI (2005). Deviations between both datasets were calculated as ET0_lys-ET0_ref and separated into positive and negative values. For further interpretation, we calculated daily sums of these values. The respective daily difference (positive or negative) served as independent variable (x) in linear correlation with a selected parameter as dependent variable (y). Quality of correlation was evaluated by means of coefficients of determination (R2). When ET0_lys > ET0_ref, the differences were only weakly correlated with the selected parameters. Hence, the evaluation of the causal processes leading to underestimation of measured hourly ET0 seems to require a more rigorous approach. On the other hand, when ET0_lys < ET0_ref, the differences correlated considerably with the meteorological parameters and related system parameters. Interpreting the particular correlations in detail indicated different (or varying) surface characteristics between the irrigated lysimeter and the nearby (non-irrigated) meteorological station.
Denning, A. Scott; Baron, Jill S.; Mast, M. Alisa; Arthur, Mary
1991-01-01
Intensive sampling of a stream draining an alpine-subalpine basin revealed that depressions in pH and acid neutralizing capacity (ANC) of surface water at the beginning of the spring snowmelt in 1987 and 1988 were not accompanied by increases in strong acid anions, and that surface waters did not become acidic (ANC<0). Samples of meltwater collected at the base of the snowpack in 1987 were acidic and exhibited distinct ‘pulses’ of nitrate and sulfate. Solutions collected with lysimeters in forest soils adjacent to the stream revealed high levels of dissolved organic carbon (DOC) and total Al. Peaks in concentration of DOC, Al, and nutrient species in the stream samples indicate a flush of soil solution into the surface water at the beginning of the melt. Infiltration of meltwater into soils and spatial heterogeneity in the timing of melting across the basin prevented stream and lake waters from becoming acidic.
Dugas, D.L.; Cravotta, C.A.; Saad, D.A.
1993-01-01
Water-quality and other hydrologic data for two surface coal mines in Clarion County, Pa., were collected during 1983-89 as part of studies conducted by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Environmental Resources. Water samples were collected from streams, seeps, monitor wells, and lysimeters on a monthly basis to evaluate changes in water quality resulting from the addition of alkaline waste or urban sewage sludge to the reclaimed mine-spoil surface. The mines are about 3.5 miles apart and were mined for bituminous coal of the upper and lower Clarion seams of the Allegheny Group of Pennsylvanian age. The coal had high sulfur (greater than 2 weight percent) concentrations. Acidic mine drainage is present at both mines. At one mine, about 8 years after mining was completed, large quantities (greater than 400 tons per acre) of alkaline waste consisting of limestone and lime-kiln flue dust were applied on two 2.5-acre plots within the 65-acre mine area. Water-quality data for the alkaline-addition plots and surrounding area were collected for 1 year before and 3 years after application of the alkaline additives (May 1983-July 1987). Data collected for the alkaline-addition study include ground-water level, surface-water discharge rate, temperature, specific conductance, pH, and concentrations of alkalinity, acidity, sulfate, iron (total and ferrous), manganese, aluminum, calcium, and magnesium. At the other mine, about 3.5 years after mining was completed, urban sewage sludge was applied over 60 acres within the 150-acre mine area. Waterquality data for the sludge-addition study were collected for 3.5 years after the application of the sludge (June 1986-December 1989). Data collected for the sludge-addition study include the above constituents plus dissolved oxygen, redox potential (Eh), and concentrations of dissolved solids, phosphorus, nitrogen species, sulfide, chloride, silica, sodium, potassium, cyanide, arsenic, barium, boron, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, selenium, strontium, and zinc. Climatic data, including monthly average temperature and cumulative precipitation, from a nearby weather station for the period January 1983 through December 1989 also are reported.
Numerical model for thermodynamical behaviors of unsaturated soil
NASA Astrophysics Data System (ADS)
Miyamoto, Yuji; Yamada, Mitsuhide; Sako, Kazunari; Araki, Kohei; Kitamura, Ryosuke
Kitamura et al. have proposed the numerical models to establish the unsaturated soil mechanics aided by probability theory and statistics, and to apply the unsaturated soil mechanics to the geo-simulator, where the numerical model for the thermodynamical behaviors of unsaturated soil are essential. In this paper the thermodynamics is introduced to investigate the heat transfer through unsaturated soil and the evaporation of pore water in soil based on the first and second laws of thermodynamics, i.e., the conservation of energy, and increasing entropy. On the other hand the lysimeter equipment is used to obtain the data for the evaporation of pore water during fine days and seepage of rain water during rainy days. The numerical simulation is carried out by using the proposed numerical model and the results are compared with those obtained from the lysimeter test.
Transport of atrazine versus bromide and δO18 in sand
Tindall, James A.; Friedel, Michael J.
2016-01-01
The objective of this research was to determine the process of atrazine transport compared to bromide and δO18 transport in sands near Denver. Three 1.5 × 2 × 1.5-m plots were installed and allowed to equilibrate for 2 years before research initiation and were instrumented with 1.5 × 2-m zero-tension pan lysimeters installed at 1.5-m depths. Additionally, each plot was instrumented with suction lysimeters, tensiometers, time domain reflectometry (TDR) moisture probes, and thermocouples (to measure soil temperature) at 15-cm depth increments. All plots were enclosed with a raised frame (of 8-cm height) to prevent surface runoff. During the 2-year period before research began, all suction and pan lysimeters were purged monthly and were sampled for fluids immediately prior to atrazine and KBr application to obtain background concentrations. Atrazine illustrated little movement until after a significant rainfall event, which peaked concentrations at depths of about 90 to 135 cm. Both Br− and δO18 moved rapidly through the soil, probably owing to soil porosity and anion exclusion for Br−. Concentrations of atrazine exceeding 5.0 μL−1 were observed with depth (90 to 150 cm) after several months. It appears that significant rainfall events were a key factor in the movement of atrazine in the sand, which allowed the chemicals to move to greater depths and thus avoid generally found biodegradation processes.
Ecological controls on water-cycle response to climate variability in deserts.
Scanlon, B R; Levitt, D G; Reedy, R C; Keese, K E; Sully, M J
2005-04-26
The impact of climate variability on the water cycle in desert ecosystems is controlled by biospheric feedback at interannual to millennial timescales. This paper describes a unique field dataset from weighing lysimeters beneath nonvegetated and vegetated systems that unequivocally demonstrates the role of vegetation dynamics in controlling water cycle response to interannual climate variability related to El Nino southern oscillation in the Mojave Desert. Extreme El Nino winter precipitation (2.3-2.5 times normal) typical of the U.S. Southwest would be expected to increase groundwater recharge, which is critical for water resources in semiarid and arid regions. However, lysimeter data indicate that rapid increases in vegetation productivity in response to elevated winter precipitation reduced soil water storage to half of that in a nonvegetated lysimeter, thereby precluding deep drainage below the root zone that would otherwise result in groundwater recharge. Vegetation dynamics have been controlling the water cycle in interdrainage desert areas throughout the U.S. Southwest, maintaining dry soil conditions and upward soil water flow since the last glacial period (10,000-15,000 yr ago), as shown by soil water chloride accumulations. Although measurements are specific to the U.S. Southwest, correlations between satellite-based vegetation productivity and elevated precipitation related to El Nino southern oscillation indicate this model may be applicable to desert basins globally. Understanding the two-way coupling between vegetation dynamics and the water cycle is critical for predicting how climate variability influences hydrology and water resources in water-limited landscapes.
NASA Astrophysics Data System (ADS)
Sakashita, W.; Onda, Y.; Boutefnouchet, M. R.; Kato, H.; Gomi, T.
2017-12-01
Evapotranspiration is an important controlling factor of the hydrological cycle in forested watershed. In general, the evapotranspiration is partitioned into three components (evaporation, transpiration, and interception). In a Japanese cypress plantation, our previous work using hydrometric method revealed that total evapotranspiration rate was 47.5% of the total rainfall amount during the growing season. This research also provided the contribution rates of three evapotranspiration components. Our previous study reported the difference of forest floor evaporation between pre-thinning and post-thinning periods (pre-thinning: Nov 2010-Oct 2011; post-thinning: Nov 2011-Oct 2012), indicating that a significant change appeared in the evaporation flux after the thinning. To examine the long-term changes of evapotranspiration, we have to consider the influence of increased understory vegetation. However, hydrometric-based method using such as weighting lysimeter is sensitive to vegetation conditions inside and outside lysimeter. This disadvantage makes it difficult to evaluate the contribution rates of each evapotranspiration components. In this study, we focus on the isotope-based method to obtain each flux of evapotranspiration under the condition including understory vegetation. Our study site is Mt. Karasawa, Tochigi Prefecture, in central Japan (139°36'E, 36°22'N; 198 m a.s.l.), and we prepare both sparse and dense areas of understory vegetation. In these two plots, we collect soil water samples from shallow depth profiles after various intensity precipitation events. Throughfall and understory-intercepted water are also obtained. Stable water isotope measurements of these samples may provide information about (a) effects of understory vegetation on shallow soil water movement and (b) interception flux of understory vegetation. In this paper, we report the results and interpretations of our measurements.
NASA Astrophysics Data System (ADS)
Lajtha, K.; Strid, A.; Lee, B. S.
2015-12-01
Soil dissolved organic carbon (DOC) is a small but crucial part of the forest carbon cycle. Characterizing the relationship between organic matter inputs to soil and DOC chemistry is crucial to understanding the ultimate fate of root carbon, fallen wood and needles. Chemical differences in the DOC pool may help to explain whether fractions are sorbed to mineral surfaces and contribute to accumulation of soil organic carbon, respired as CO2, or exported. Soil solution DOC was sampled from the detrital input and removal treatment (DIRT) plots located in the H.J. Andrews Experimental Forest, OR to determine whether detrital inputs impart a detectable signal on DOC in mineral soil. Multiple types of fresh litter extracts, along with lysimeter and soil extracts from DIRT treatment plots were characterized using UV-Vis and fluorescence spectroscopy coupled with the Cory and McKnight (2005) parallel factor analysis (PARAFAC) model. Principal component analysis of 13 unique fluorophores distinguished using PARAFAC show that litter and soil extracts (needles, wood of decomposition Class 1, Class 3 and Class 5, O-horizon, and A-horizon) each have distinct fluorescence signatures. However, while litter-leached DOC chemistry varies by litter type, neither lysimeter-collected DOC or soil extracts show statistically significant differences in fluorescence signatures among treatments, even after 17 years of litter manipulations. The lack of observed differences among DIRT treatments suggests a "Soil Blender" hypothesis whereby both abiotic and biotic mechanisms effectively homogenize organic carbon constituents within the dissolved pool. The results of this work emphasize the ability of sorption and biodegradation to homogenize soil DOC and demonstrate that fluorescence can be an effective fingerprinting technique for soil DOC composition.
Qiu, Guo Yu; Zhao, Ming
2010-03-01
Remote monitoring of soil evaporation and soil water status is necessary for water resource and environment management. Ground based remote sensing can be the bridge between satellite remote sensing and ground-based point measurement. The primary object of this study is to provide an algorithm to estimate evaporation and soil water status by remote sensing and to verify its accuracy. Observations were carried out in a flat field with varied soil water content. High-resolution thermal images were taken with a thermal camera; soil evaporation was measured with a weighing lysimeter; weather data were recorded at a nearby meteorological station. Based on the thermal imaging and the three-temperatures model (3T model), we developed an algorithm to estimate soil evaporation and soil water status. The required parameters of the proposed method were soil surface temperature, air temperature, and solar radiation. By using the proposed method, daily variation in soil evaporation was estimated. Meanwhile, soil water status was remotely monitored by using the soil evaporation transfer coefficient. Results showed that the daily variation trends of measured and estimated evaporation agreed with each other, with a regression line of y = 0.92x and coefficient of determination R(2) = 0.69. The simplicity of the proposed method makes the 3T model a potentially valuable tool for remote sensing.
NASA Astrophysics Data System (ADS)
Bowers, W.; Mercer, J.; Pleasants, M.; Williams, D. G.
2017-12-01
Isotopic partitioning of water within soil into tightly and loosely bound fractions has been proposed to explain differences between isotopic water sources used by plants and those that contribute to streams and ground water, the basis for the "two water worlds" hypothesis. We examined the isotope ratio values of water in trees, bulk soil, mobile water collected from soil lysimeters, stream water, and GW at three different hillslopes in a mixed conifer forest in southeastern Wyoming, USA. Hillslopes differed in aspect and topographic position with corresponding differences in surface energy balance, snowmelt timing, and duration of soil moisture during the dry summer. The isotopic results support the partitioning of water within the soil; trees apparently used a different pool of water for transpiration than that recovered from soil lysimeters and the source was not resolved with the isotopic signature of the water that was extracted from bulk soil via cryogenic vacuum distillation. Separating and measuring the isotope ratios values in these pools would test the assumption that the tightly bound water within the soil has the same isotopic signature as the water transpired by the trees. We employed a centrifugation approach to separate water within the soil held at different tensions by applying stepwise increases in rotational velocity and pressures to the bulk soil samples. Effluent and the remaining water (cryogenically extracted) at each step were compared. We first applied the centrifugation method in a simple lab experiment using sandy loam soil and separate introductions of two isotopically distinct waters. We then applied the method to soil collected from the montane hillslopes. For the lab experiment, we predicted that effluents would have distinct isotopic signatures, with the last effluent and extracted water more closely representing the isotopic signature of the first water applied. For our field samples, we predicted that the isotopic signature of the water discharged in the last centrifuge step and final extraction would more closely represent the isotopic signature of water extracted from trees. Understanding the isotopic partitioning of water within soil is important for interpreting plant water isotope values within the context of the "two water worlds" hypothesis.
NASA Astrophysics Data System (ADS)
Santos, F.; Wagner, S.; Rothstein, D.; Miesel, J. R.; Jaffe, R.
2015-12-01
Pyrogenic carbon (PyC) is formed from the thermal decomposition of plant biomass and fossil fuels, and accounts for a significant portion of the dissolved organic matter pool in rivers worldwide. While PyC mobilization and leaching from fire-impacted terrestrial ecosystems are thought to be the primary source of dissolved PyC (DPC) in riverine environments, the influence of recent biomass burning on the fluxes of DPC leached from soils remains poorly quantified. Here we examined differences in DPC leaching fluxes between (1) red pine sites that experienced post-logging slash burning in the late 19th century, and (2) sugar maple sites that show no evidence of burning in the past 200 years. We collected spring snowmelt leachates from zero-tension lysimeters installed underneath O and E soil horizons of Spodosols in both red pine and sugar maple ecosystems. We quantified DPC in leachates by measuring Benzene Polycarboxylic Acids. We also determined DPC in leachates collected from lysimeters installed beneath B horizons in the red pine ecosystem. Average concentrations of DPC leached from O and E horizons in red pine and sugar maple sites were 1.22 ± 0.33 mg L-1 and 0.96 ±0.58 mg L-1, respectively. Although DPC concentrations in either the O or E horizon leachates did not differ between the two ecosystem types, the proportion of DPC in the dissolved organic C pool was 62% higher in red pine than in sugar maple in E horizon leachates. In red pine sites, DPC concentrations were significantly lower in the B horizon leachates than in the upper soil horizons leachates, likely due to DPC immobilization in the mineral subsoil. Our preliminary results showed that a single production of PyC was not the main source of DPC exported from soils, suggesting that DPC mobilized and released from the ecosystems studied here likely integrates PyC produced at a millennial time-scale in the Great Lakes Region.
NASA Astrophysics Data System (ADS)
Senay, G. B.; Budde, M. E.; Allen, R. G.; Verdin, J. P.
2008-12-01
Evapotranspiration (ET) is an important component of the hydrologic budget because it expresses the exchange of mass and energy between the soil-water-vegetation system and the atmosphere. Since direct measurement of ET is difficult, various modeling methods are used to estimate actual ET (ETa). Generally, the choice of method for ET estimation depends on the objective of the study and is further limited by the availability of data and desired accuracy of the ET estimate. Operational monitoring of crop performance requires processing large data sets and a quick response time. A Simplified Surface Energy Balance (SSEB) model was developed by the U.S. Geological Survey's Famine Early Warning Systems Network to estimate irrigation water use in remote places of the world. In this study, we evaluated the performance of the SSEB model with the METRIC (Mapping Evapotranspiration at high Resolution and with Internalized Calibration) model that has been evaluated by several researchers using the Lysimeter data. The METRIC model has been proven to provide reliable ET estimates in different regions of the world. Reference ET fractions of both models (ETrF of METRIC vs. ETf of SSEB) were generated and compared using individual Landsat thermal images collected from 2000 though 2005 in Idaho, New Mexico, and California. In addition, the models were compared using monthly and seasonal total ETa estimates. The SSEB model reproduced both the spatial and temporal variability exhibited by METRIC on land surfaces, explaining up to 80 percent of the spatial variability. However, the ETa estimates over water bodies were systematically higher in the SSEB output, which could be improved by using a correction coefficient to take into account the absorption of solar energy by deeper water layers that has little contribution to the ET process. This study demonstrated the usefulness of the SSEB method for large-scale agro-hydrologic applications for operational monitoring and assessing of crop performance and regional water balance dynamics.
NASA Astrophysics Data System (ADS)
Alfieri, Joseph G.; Kustas, William P.; Prueger, John H.; Hipps, Lawrence E.; Evett, Steven R.; Basara, Jeffrey B.; Neale, Christopher M. U.; French, Andrew N.; Colaizzi, Paul; Agam, Nurit; Cosh, Michael H.; Chavez, José L.; Howell, Terry A.
2012-12-01
Discrepancies can arise among surface flux measurements collected using disparate techniques due to differences in both the instrumentation and theoretical underpinnings of the different measurement methods. Using data collected primarily within a pair of irrigated cotton fields as a part of the 2008 Bushland Evapotranspiration and Remote Sensing Experiment (BEAREX08), flux measurements collected with two commonly-used methods, eddy covariance (EC) and lysimetry (LY), were compared and substantial differences were found. Daytime mean differences in the flux measurements from the two techniques could be in excess of 200 W m-2 under strongly advective conditions. Three causes for this disparity were found: (i) the failure of the eddy covariance systems to fully balance the surface energy budget, (ii) flux divergence due to the local advection of warm, dry air over the irrigated cotton fields, and (iii) the failure of lysimeters to accurately represent the surface properties of the cotton fields as a whole. Regardless of the underlying cause, the discrepancy among the flux measurements underscores the difficulty in collecting these measurements under strongly advective conditions. It also raises awareness of the uncertainty associated with in situ micrometeorological measurements and the need for caution when using such data for model validation or as observational evidence to definitively support or refute scientific hypotheses.
Dissecting the Hydrobiogeochemical Box
NASA Astrophysics Data System (ADS)
Wang, Y.; Alves Meira Neto, A.; Sengupta, A.; Root, R. A.; Dontsova, K.; Troch, P. A. A.; Chorover, J.
2015-12-01
Soil genesis is a coupled hydrologic and biogeochemical process that involves the interaction of weathering rock surfaces and water. Due to strong nonlinear coupling, it is extremely difficult to predict biogeochemical changes from hydrological modeling in natural field systems. A fully controlled and monitored system with known initial conditions could be utilized to isolate variables and simplify these natural processes. To investigate the initial weathering of host rock to soil, we employed a 10° sloping soil lysimeter containing one cubic meter of crushed and homogenized basaltic rock. A major experiment of the Periodic Tracer Hierarchy (PERTH) method (Harman and Kim, 2014) coupled with its bonus experiment were performed in the past two years. These experimental applications successfully described the transit-time distribution (TTD) of a tracer-enriched water breakthrough curve in this unique hydrological system (Harman, 2015). With intensive irrigation and high volume of water storage throughout the experiments, rapid biological changes have been observed on the soil surface, such as algal and grass growth. These observations imply that geochemical hotspots may be established within the soil lysimeter. To understand the detailed 2D spatial distribution of biogeochemical changes, 100 selected and undisturbed soil blocks, among a total 1000 sub-gridded equal sized, are tested with several geochemical tools. Each selected soil block was subjected to elemental analysis by pXRF to determine if elemental migration is detectable in the dynamic proto-soil development. Synchrotron XRD quantification with Reitveld refinement will follow to clarify mineralogical transformations in the soil blocks. The combined techniques aim to confirm the development of geochemical hotspots; and link these findings with previous hydrological findings from the PERTH experiment as well as other hydrological modeling, such as conducted with Hydrus and CATHY. This work provides insight to the detailed correlations between hydrological and biogeochemical processes during incipient soil formation, as well as aiding the development of advanced tools and methods to study complex Earth-system dynamics.
Assessing the fate of radioactive nickel in cultivated soil cores.
Denys, Sébastien; Echevarria, Guillaume; Florentin, Louis; Leclerc, Elisabeth; Morel, Jean-Louis
2009-10-01
Parameters regarding fate of (63)Ni in the soil-plant system (soil: solution distribution coefficient, K(d) and soil plant concentration ratio, CR) are mostly determined in controlled pot experiments or from simple models involving a limited set of soil parameters. However, as migration of pollutants in soil is strongly linked to the water migration, variation of soil structure in the field and seasonal variation of evapotranspiration will affect these two parameters. The aim of this work was to explore to what extent the downward transfer of (63)Ni and its uptake by plants from surface-contaminated undisturbed soil cores under cultivation can be explained by isotopic dilution of this radionuclide in the pool of stable Ni of soils. Undisturbed soil cores (50 cm x 50 cm) were sampled from a brown rendzina (Rendzic Leptosol), a colluvial brown soil (Fluvic Cambisol) and an acidic brown soil (Dystric Cambisol) using PVC lysimeter tubes (three lysimeters sampled per soil type). Each core was equipped with a leachate collector. Cores were placed in a greenhouse and maize (DEA, Pioneer) was sown. After 44 days, an irrigation was simulated at the core surfaces to supply 10 000 Bq (63)NiCl(2). Maize was harvested 135 days after (63)Ni input and radioactivity determined in both vegetal and water samples. Effective uptake of (63)Ni by maize was calculated for leaves and kernels. Water drainage and leaching of (63)Ni were monitored over the course of the experiment. Values of K(d) in surface soil samples were calculated from measured parameters of isotopic exchange kinetics. Results confirmed that (63)Ni was strongly retained at the soil surface. Prediction of the (63)Ni downward transfer could not be reliably assessed using the K(d) values, since the soil structure, which controls local water fluxes, also affected both water and Ni transport. In terms of (63)Ni plant uptake, the effective uptake in undisturbed soil cores is controlled by isotope dilution as previously shown at the pot experiment scale.
Testing the Structure of Hydrological Models using Genetic Programming
NASA Astrophysics Data System (ADS)
Selle, B.; Muttil, N.
2009-04-01
Genetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that genetic programming can be used to test the structure hydrological models and to identify dominant processes in hydrological systems. To test this, genetic programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, water table depths and water ponding times during surface irrigation. Using genetic programming, a simple model of deep percolation was consistently evolved in multiple model runs. This simple and interpretable model confirmed the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that genetic programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.
NASA Astrophysics Data System (ADS)
Ali, M. F.; Mawdsley, J. A.
1987-09-01
An advection-aridity model for estimating actual evapotranspiration ET is tested with over 700 days of lysimeter evapotranspiration and meteorological data from barley, turf and rye-grass from three sites in the U.K. The performance of the model is also compared with the API model . It is observed from the test that the advection-aridity model overestimates nonpotential ET and tends to underestimate potential ET, but when tested with potential and nonpotential data together, the tendencies appear to cancel each other. On a daily basis the performance level of this model is found to be of the same order as the API model: correlation coefficients were obtained between the model estimates and lysimeter data of 0.62 and 0.68 respectively. For periods greater than one day, generally the performance of the models are improved. Proposed by Mawdsley and Ali (1979)
NASA Astrophysics Data System (ADS)
Aljoumani, Basem; Kluge, Björn; sanchez, Josep; Wessolek, Gerd
2017-04-01
Highways and main roads are potential sources of contamination for the surrounding environment. High traffic rates result in elevated heavy metal concentrations in road runoff, soil and water seepage, which has attracted much attention in the recent past. Prediction of heavy metals transfer near the roadside into deeper soil layers are very important to prevent the groundwater pollution. This study was carried out on data of a number of lysimeters which were installed along the A115 highway (Germany) with a mean daily traffic of 90.000 vehicles per day. Three polyethylene (PE) lysimeters were installed at the A115 highway. They have the following dimensions: length 150 cm, width 100 cm, height 60 cm. The lysimeters were filled with different soil materials, which were recently used for embankment construction in Germany. With the obtained data, we will develop a time series analysis model to predict total and dissolved metal concentration in road runoff and in soil solution of the roadside embankments. The time series consisted of monthly measurements of heavy metals and was transformed to a stationary situation. Subsequently, the transformed data will be used to conduct analyses in the time domain in order to obtain the parameters of a seasonal autoregressive integrated moving average (ARIMA) model. Four phase approaches for identifying and fitting ARIMA models will be used: identification, parameter estimation, diagnostic checking, and forecasting. An automatic selection criterion, such as the Akaike information criterion, will use to enhance this flexible approach to model building
Nitrogen fluxes through unsaturated zones in five agricultural settings across the United States
Green, C.T.; Fisher, L.H.; Bekins, B.A.
2008-01-01
The main physical and chemical controls on nitrogen (N) fluxes between the root zone and the water table were determined for agricultural sites in California, Indiana, Maryland, Nebraska, and Washington from 2004 to 2005. Sites included irrigated and nonirrigated fields; soil textures ranging from clay to sand; crops including corn, soybeans, almonds, and pasture; and unsaturated zone thicknesses ranging from 1 to 22 m. Chemical analyses of water from lysimeters and shallow wells indicate that advective transport of nitrate is the dominant process affecting the flux of N below the root zone. Vertical profiles of (i) nitrogen species, (ii) stable isotopes of nitrogen and oxygen, and (iii) oxygen, N, and argon in unsaturated zone air and correlations between N and other agricultural chemicals indicate that reactions do not greatly affect N concentrations between the root zone and the capillary fringe. As a result, physical factors, such as N application rate, water inputs, and evapotranspiration, control the differences in concentrations among the sites. Concentrations of N in shallow lysimeters exhibit seasonal variation, whereas concentrations in lysimeters deeper than a few meters are relatively stable. Based on concentration and recharge estimates, fluxes of N through the deep unsaturated zone range from 7 to 99 kg ha-1 yr-1. Vertical fluxes of N in ground water are lower due to spatial and historical changes in N inputs. High N fluxes are associated with coarse sediments and high N application rates. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Ecological controls on water-cycle response to climate variability in deserts
Scanlon, B. R.; Levitt, D. G.; Reedy, R. C.; Keese, K. E.; Sully, M. J.
2005-01-01
The impact of climate variability on the water cycle in desert ecosystems is controlled by biospheric feedback at interannual to millennial timescales. This paper describes a unique field dataset from weighing lysimeters beneath nonvegetated and vegetated systems that unequivocally demonstrates the role of vegetation dynamics in controlling water cycle response to interannual climate variability related to El Niño southern oscillation in the Mojave Desert. Extreme El Niño winter precipitation (2.3-2.5 times normal) typical of the U.S. Southwest would be expected to increase groundwater recharge, which is critical for water resources in semiarid and arid regions. However, lysimeter data indicate that rapid increases in vegetation productivity in response to elevated winter precipitation reduced soil water storage to half of that in a nonvegetated lysimeter, thereby precluding deep drainage below the root zone that would otherwise result in groundwater recharge. Vegetation dynamics have been controlling the water cycle in interdrainage desert areas throughout the U.S. Southwest, maintaining dry soil conditions and upward soil water flow since the last glacial period (10,000-15,000 yr ago), as shown by soil water chloride accumulations. Although measurements are specific to the U.S. Southwest, correlations between satellite-based vegetation productivity and elevated precipitation related to El Niño southern oscillation indicate this model may be applicable to desert basins globally. Understanding the two-way coupling between vegetation dynamics and the water cycle is critical for predicting how climate variability influences hydrology and water resources in water-limited landscapes. PMID:15837922
Eddy covariance and lysimeter measurements of moisture fluxes over supraglacial debris
NASA Astrophysics Data System (ADS)
Brock, Benjamin
2015-04-01
Supraglacial debris covers have the potential to evaporate large quantities of water derived from either sub-debris ice melt or precipitation. Currently, knowledge of evaporation and condensation rates in supraglacial debris is limited due to the difficulty of making direct measurements. This paper presents eddy covariance and lysimeter measurements of moisture fluxes made over a 0.2 m debris layer at Miage debris covered glacier, Italian Alps, during the 2013 ablation season. The meteorological data are complimented by reflectometer measurements of volumetric water fraction in the saturated and vadose zones of the debris layer. The lysimeters were designed specifically to mimic the debris cover and were embedded within the debris matrix, level with the surface. Over the ablation season, the latent heat flux is dominated by evaporation, and the flux magnitude closely follows the daily cycle of daytime solar heating and night time radiative cooling of debris. Mean flux values are of the order of 1 kg m-2 day-1, but often higher for short periods following rainfall. Condensation rates are relatively small and restricted to night time and humid conditions when the debris-atmosphere vapour pressure gradient reverses due to relatively warm air overlying cold debris. The reflectometer measurements provide evidence of vertical water movement through capillary rise in the upper part of the fine-grained debris layer, just above the saturated horizon, and demonstrate how debris bulk water content increases after rainfall. The latent heat flux responds directly to changes in wind speed, indicating that atmospheric turbulence can penetrate porous upper debris layers to the saturated horizon. Hence, vertical sorting of debris sediments and antecedent rainfall are important in determining evaporation rates, in addition to current meteorological conditions. Comparison of lysimeter measurements with rainfall data provides an estimate that between 45% and 89% of rainfall is evaporated directly back to the atmosphere. Rainfall evaporation rates increase with debris impermeability and temperature, with highest rates occurring when a shower falls on hot debris. If these point measurements are representative of larger scales, evaporation rates of the order of 1000 tonnes km-2 day-1 are implied, with higher rates following rainfall. This has important implications for downstream runoff, sub-debris ice melt rates (due to consumption of evaporative latent heat energy) and, possibly, convective atmospheric processes.
NASA Astrophysics Data System (ADS)
Sánchez, Juan Manuel; Doña, Carolina; Cuxart, Joan; Caselles, Vicente; Niclòs, Raquel
2014-05-01
Water management and understanding of irrigation efficiency could be significantly improved if the components of evapotranspiration (ET) in row-crop systems (plants and soil interrows) could be quantified separately. This evaporation/transpiration (E/T) partition, and its daily and seasonal evolution, depends on a variety of biophysical and environmental factors. In this work we present an operational method to provide continuous E/T results avoiding soil or canopy disturbance. This technique is based on the combination of the surface-atmosphere energy exchange modeling together with an accurate remote thermal characterization of the crop elements. An experiment was carried out in a row-crop vineyard in Mallorca, Spain, from June 2012 to May 2013. A set of 6 thermal-infrared radiometers (IRTs) were mounted in a mast placed in the middle of a vineyard N-S row. Two IRTs pointed to the soil between rows and other two pointed to the plants from a frontal view, measuring both east and west sides of the row. A fifth IRT pointed upward to collect the downwelling sky radiance and the remaining IRT was mounted at 4.5-m height over the canopy measuring the composed soil-canopy temperature. Measurements of the four components of the net radiation over the canopy and soil heat fluxes, as well as air temperature, humidity, wind speed, and soil moisture, were collected and stored in 15-min averages. A two-source energy balance approach was applied to the vineyard from its appropriate thermal characterization. Total and separate soil/canopy components of net radiation, soil, sensible and latent heat fluxes were obtained every 15 minutes and averaged at hourly and daily scales. Comparison between observed and modeled values of available surface energy showed relative errors below 15%. An analysis of the partition E/T was conducted along the vineyard growing season and the different phenological stages. In this experiment, interrow soil evaporation reached as much as 1/3 of the total cumulative evapotranspiration from floration to harvest. This technique can be useful for scientists and land managers interested in improving water use efficiency, not only because it is shown as an alternative to traditional weighing lysimeters, but also because the presented method allows the continuous monitoring of the E/T partition under a variety of meteorological conditions and covering the different stages of the crop development.
Impacts of a Rural Subdivision on Groundwater Quality: Results of Long-Term Monitoring.
Rayne, Todd W; Bradbury, Kenneth R; Krause, Jacob J
2018-03-30
A rural subdivision in south central Wisconsin was instrumented with monitoring wells and lysimeters before, during, and after its construction to examine the impacts of the unsewered subdivision on groundwater quality and quantity. Prior to construction, the 78-acre (32 ha) site was farmland. Sixteen homes were constructed beginning in 2003. Initial monitoring from 2002 to 2005 showed that groundwater beneath the site had been impacted by previous agricultural use, with nitrate-N values as high as 30 mg/L and some detections of the herbicide atrazine. Our 12-year study shows that the transition from agricultural to residential land use has changed groundwater quality in both negative and positive ways. Although groundwater elevations showed typical seasonal fluctuations each year, there were no measurable changes in groundwater levels or general flow directions during the 12-year study period. Chloride values increased in many wells, possibly as a result of road salting or water softener discharge. Nitrate concentrations varied spatially and temporally over the study period, with some initial concentrations substantially above the drinking water standard. In some wells, nitrate and atrazine levels have declined substantially since agriculture ceased. However, atrazine was still present at trace concentrations throughout the site in 2014. Wastewater tracers show there are small but detectable impacts from septic effluent on groundwater quality. Particle traces based on a groundwater flow model are consistent with the hypothesis that septic leachate has impacted groundwater quality. © 2018, National Ground Water Association.
Risser, Dennis W.; Gburek, William J.; Folmar, Gordon J.
2005-01-01
This study by the U.S. Geological Survey (USGS), in cooperation with the Agricultural Research Service (ARS), U.S. Department of Agriculture, compared multiple methods for estimating ground-water recharge and base flow (as a proxy for recharge) at sites in east-central Pennsylvania underlain by fractured bedrock and representative of a humid-continental climate. This study was one of several within the USGS Ground-Water Resources Program designed to provide an improved understanding of methods for estimating recharge in the eastern United States. Recharge was estimated on a monthly and annual basis using four methods?(1) unsaturated-zone drainage collected in gravity lysimeters, (2) daily water balance, (3) water-table fluctuations in wells, and (4) equations of Rorabaugh. Base flow was estimated by streamflow-hydrograph separation using the computer programs PART and HYSEP. Estimates of recharge and base flow were compared for an 8-year period (1994-2001) coinciding with operation of the gravity lysimeters at an experimental recharge site (Masser Recharge Site) and a longer 34-year period (1968-2001), for which climate and streamflow data were available on a 2.8-square-mile watershed (WE-38 watershed). Estimates of mean-annual recharge at the Masser Recharge Site and WE-38 watershed for 1994-2001 ranged from 9.9 to 14.0 inches (24 to 33 percent of precipitation). Recharge, in inches, from the various methods was: unsaturated-zone drainage, 12.2; daily water balance, 12.3; Rorabaugh equations with PULSE, 10.2, or RORA, 14.0; and water-table fluctuations, 9.9. Mean-annual base flow from streamflow-hydrograph separation ranged from 9.0 to 11.6 inches (21-28 percent of precipitation). Base flow, in inches, from the various methods was: PART, 10.7; HYSEP Local Minimum, 9.0; HYSEP Sliding Interval, 11.5; and HYSEP Fixed Interval, 11.6. Estimating recharge from multiple methods is useful, but the inherent differences of the methods must be considered when comparing results. For example, although unsaturated-zone drainage from the gravity lysimeters provided the most direct measure of potential recharge, it does not incorporate spatial variability that is contained in watershed-wide estimates of net recharge from the Rorabaugh equations or base flow from streamflow-hydrograph separation. This study showed that water-level fluctuations, in particular, should be used with caution to estimate recharge in low-storage fractured-rock aquifers because of the variability of water-level response among wells and sensitivity of recharge to small errors in estimating specific yield. To bracket the largest range of plausible recharge, results from this study indicate that recharge derived from RORA should be compared with base flow from the Local-Minimum version of HYSEP.
Fuller, Mark E; Schaefer, Charles E; Steffan, Robert J
2009-11-01
An evaluation of peat moss plus crude soybean oil (PMSO) for mitigation of explosive contamination of soil at military facilities was performed using large soil lysimeters under field conditions. Actual range soils were used, and two PMSO preparations with different ratios of peat moss:soybean oil (1:1, PO1; 1:2, PO2) were compared to a control lysimeter that received no PMSO. PMSO was applied as a 10 cm layer on top of the soil, and Composition B detonation residues from a 55-mm mortar round were applied at the surface of each of the lysimeters. Dissolution of the residues occurred during natural precipitation events over the course of 18 months. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) emanating from the Composition B residues were significantly reduced by the PO2 PMSO material compared to the untreated control. Soil pore water RDX concentrations and RDX fluxes were reduced over 100-fold compared to the control plots at comparable depths. Residual RDX in the soil profile was also significantly lower in the PMSO treated plots. PO1 PMSO resulted in lower reductions in RDX transport than the PO2 PMSO. The transport of the RDX breakdown product hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) was also greatly reduced by the PMSO materials. Results were in general agreement with a previously developed fate and transport model describing PMSO effectiveness. These results demonstrate the potential effectiveness of the inexpensive and environmentally benign PMSO technology for reducing the subsurface loading of explosives at training ranges and other military facilities.
Arkoun, Mustapha; Sarda, Xavier; Jannin, Laëtitia; Laîné, Philippe; Etienne, Philippe; Garcia-Mina, José-Maria; Yvin, Jean-Claude; Ourry, Alain
2012-09-01
N-fertilizer use efficiencies are affected by their chemical composition and suffer from potential N-losses by volatilization. In a field lysimeter experiment, (15)N-labelled fertilizers were used to follow N uptake by Brassica napus L. and assess N-losses by volatilization. Use of urea with NBPT (urease inhibitor) showed the best efficiency with the lowest N losses (8% of N applied compared with 25% with urea alone). Plants receiving ammonium sulphate, had similar yield achieved through a better N mobilization from vegetative tissues to the seeds, despite a lower N uptake resulting from a higher volatilization (43% of applied N). Amounts of (15)N in the plant were also higher when plants were fertilized with ammonium nitrate but N-losses reached 23% of applied N. In parallel, hydroponic experiments showed a deleterious effect of ammonium and urea on the growth of oilseed rape. This was alleviated by the nitrate supply, which was preferentially taken up. B. napus was also characterized by a very low potential for urea uptake. BnDUR3 and BnAMT1, encoding urea and ammonium transporters, were up-regulated by urea, suggesting that urea-grown plants suffered from nitrogen deficiency. The results also suggested a role for nitrate as a signal for the expression of BnDUR3, in addition to its role as a major nutrient. Overall, the results of the hydroponic study showed that urea itself does not contribute significantly to the N nutrition of oilseed rape. Moreover, it may contribute indirectly since a better use efficiency for urea fertilizer, which was further increased by the application of a urease inhibitor, was observed in the lysimeter study.
Epfl Lyisimeters Measurements Campaign Summer 2010:Set-Up and First Results
NASA Astrophysics Data System (ADS)
Ciocca, F.; Parlange, M.; Lunati, I.; van de Giesen, N.; Huwald, H.
2010-09-01
The goal of this experience is to evaluate the main contribution to heat and moisture fluxes into two different kinds of bare soils, one artificially realized and one real. The main hope is to definitely give an answer to the still open question of the effective role played by water vapor in the diffusion processes of heat and moisture, theoretically less efficient than liquid water of several order of magnitude but still considered the main responsible of unexpected high heat fluxes measured in many previous experiments. A refutation or a confirmation of the existence of the so discussed enhancement factor, or of a meaningful contribution by air advection, is also waited. To do this the six weighable lysimeters installed at the EPF Lausanne have been set up with a very accurate weighing system and used. Three of them filled up in the same way with natural sand silty soil coming from the site of Conthey (Sion - CH), filtered and put inside the tanks in homogeneous layer using a big sieve, without trying to preserve the original structure. For the remaining three an artificial porous mix, with textural properties as close as possible to those of the real soil, has been realized. Then a comparison between the real soil containing organic matter and the artificial sterile medium will be possible. A thick series of FDR and tensiometers has been installed in the upper part of each lysimeter and a new technique to measure volumetric water content using warmed optical fiber has been installed in two of them (one natural and one artificial). Incoming (general) and outcoming (for every lysimeter) short and longwave radiation have been measured, for consideration about energy balance. A comparison of the results obtained using a simple numerical model will also be realized.
Lusk, Mary G; Toor, Gurpal S; Inglett, Patrick W
2017-12-08
Understanding the mechanisms of nitrogen (N) retention and loss from fertilized urban turfgrass is critical to develop practices that mitigate N transport and protect water quality in urban ecosystems. We investigated the fate of N in lysimeters sodded with St. Augustine turfgrass and amended with labeled 15 N from either ammonium sulfate or urea. Fourier transform ion cyclotron resonance mass spectroscopy (FTICR-MS) was employed to identify various biomolecular classes in the leached dissolved organic N (DON) from one lysimeter for each treatment and the control. Mean DON concentrations, over 92 days, were 88, 94, and 94% of total N in the leachate from the control, urea, and ammonium sulfate treatments, respectively. Isotopic analysis showed that <3% of N in the leachate originated from newly applied N fertilizer, suggesting that the remainder of the N in the leachate was derived from the lysimeter soil or sod biomass pools. The 15 N fertilizer recovery was greatest in soil (44-48%), followed by sod+thatch (18-33%), grass clippings (10-13%), and leachate (<3%). Despite isotopic evidence of little contribution of N from fertilizers in the leachate, a fraction of ammonium sulfate fertilizer was recovered as DON in the leachate, likely after uptake and conversion of inorganic fertilizer to organic plant exudates and/or microbial byproducts. FTICR-MS identified N-bearing organic molecular formulas in the leachate from urea and ammonium sulfate treatments, providing evidence of N leaching from newly established turfgrass of DON compounds in a range of biomolecular compositions such as lipid-, protein-, carbohydrate-, and lignin-like molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.
Islam, M Robiul; Mao, Sishuai; Xue, Xuzhang; Eneji, A Egrinya; Zhao, Xingbao; Hu, Yuegao
2011-08-30
Nitrate leaching and the resulting groundwater contamination from intensive cereal production has become a major concern for long-term farmland efficiency and environmental sustainability in northern China. The aim of this study was to evaluate a water-saving super-absorbent polymer (SAP) for minimising NO(3)(-) leaching from soil and optimising corn growth and yield. Thirty-six undisturbed soil lysimeters were installed in a field lysimeter facility in drought-affected northern China to study the growth and yield characteristics of summer corn (Zea mays L.) as well as the amount of NO(3)-leaching losses under different fertiliser (standard, medium or 75% and low, or 50% of conventional fertilisation rate) and SAP (control, 0; level-1, 15 kg ha(-1) and level-2, 30 kg ha(-1)) treatments. Corn yield fell by 19.7% under medium and 37.7% under low fertilisation; the application of SAP increased yield significantly by 44.4% on level-1 and 80.3% on level-2. Similarly, plant height, leaf area, number of grains as well as protein, soluble sugar and starch contents in the grain also increased with SAP treatment. Application of SAP at 30 kg ha(-1) plus half of conventional fertilisation can reduce maximum (64.1%) nitrate leaching losses from soil. Application of SAP at 30 kg ha(-1) plus only half the amount of conventional fertiliser rate (150 kg urea, and 50 kg each of superphosphate and potassium sulfate) would be a more appropriate practice both for minimising nitrate leaching and sustainable corn production under the arid and semiarid conditions of northern China. Copyright © 2011 Society of Chemical Industry.
Uptake, distribution, and velocity of organically complexed plutonium in corn (Zea mays).
Thompson, Shannon W; Molz, Fred J; Fjeld, Robert A; Kaplan, Daniel I
2012-10-01
Lysimeter experiments and associated simulations suggested that Pu moved into and through plants that invaded field lysimeters during an 11-year study at the Savannah River Site. However, probable plant uptake and transport mechanisms were not well defined, so more detailed study is needed. Therefore, experiments were performed to examine movement, distribution, and velocity of soluble, complexed Pu in corn. Corn was grown and exposed to Pu using a "long root" system in which the primary root extended through a soil pot and into a hydroponic container. To maintain solubility, Pu was complexed with the bacterial siderophore DFOB (Desferrioxamine B) or the chelating agent DTPA (diethylenetriaminepentaacetic acid). Corn plants were exposed to nutrient solutions containing Pu for periods of 10 min to 10 d. Analysis of root and shoot tissues permitted concentration measurement and calculation of uptake velocity and Pu retardation in corn. Results showed that depending on exposure time, 98.3-95.9% of Pu entering the plant was retained in the roots external to the xylem, and that 1.7-4.1% of Pu entered the shoots (shoot fraction increased with exposure time). Corn Pu uptake was 2-4 times greater as Pu(DFOB) than as Pu(2)(DTPA)(3). Pu(DFOB) solution entered the root xylem and moved 1.74 m h(-1) or greater upward, which is more than a million times faster than Pu(III/IV) downward movement through soil during the lysimeter study. The Pu(DFOB) xylem retardation factor was estimated to be 3.7-11, allowing for rapid upward Pu transport and potential environmental release. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nitrate and Aluminum Transport Through Soil Layers in a Clear-Cut Watershed
NASA Astrophysics Data System (ADS)
McHale, M. R.; Murdoch, P. S.; Burns, D. A.
2002-12-01
The 24-ha Dry Creek watershed in the Catskill Mountains of New York State was clear-cut during 1997 to evaluate nutrient release to New York City reservoirs due to forest harvesting. The Dry Creek watershed is in the headwaters of the Neversink watershed, which is part of the New York City Reservoir system that supplies drinking water to over 20 million people. Soil water, groundwater seeps, and stream water chemistry were monitored to trace the transport of solutes before and after the timber harvest. Automated sequential zero-tension lysimeters and standard zero-tension lysimeters were installed at depths of 70, 300, and 500 mm to sample soil water in the O, B, and C-horizons, respectively. Pre-cut (water years 1993-1996) mean soil water concentrations from zero tension lysimeters indicate that O-horizon soil water (70 mm depth) had the highest nitrate (NO3-) and monomeric aluminum (Alm) concentrations (73 and 18 μmoles l-1, respectively). During that same time period water from ground-water seeps had lower NO3- and Alm concentrations (22 and 0.88 μmoles l-1, respectively) than any soil waters sampled. During the two years following the clear-cut, groundwater seep NO3- concentrations were 138-123 μmoles l-1 and Alm concentrations were 50-30 μmoles l-1 lower than that measured in soil water. Throughout the same time period, B-horizon soil water had the highest mean NO3- concentration (345 μmoles l-1) while C-horizon soil water had the highest mean Alm concentrations (51 μmoles l-1). But during storms in the first year after the clear-cut O-horizon soil water NO3- and Alm concentrations often peaked at more than twice those measured in the B-horizon. During the second year after the clear-cut, B-horizon storm NO3- concentrations were consistently greater than O-horizon concentrations. During the fourth and fifth years following the clear-cut, soil water NO3- concentrations had dropped below pre-cut concentrations however NO3- in groundwater seeps remained elevated. The NO3- concentration at the watershed outlet also remained above pre-cut levels. During the first years following the clear-cut, in the absence of watershed vegetation, soil NO3- was leached to watershed streams and to deeper groundwater. As the forest has regenerated soil NO3- has been immobilized while groundwater continues as a source of NO3- to watershed streams 4-5 years after the cut. Four to five years after the clear-cut Alm concentrations were below pre-cut levels for all waters sampled. The elevated stream water NO3- concentrations that continue to be measured at the stream outlet, are not accompanied by elevated Alm concentrations since the groundwater seeps that are the source of the NO3- have never been a significant source of Alm.
Phosphorus and nitrogen losses from winter stacking of manure
USDA-ARS?s Scientific Manuscript database
Appropriate management of animal manure including storage is essential for minimizing nutrient losses and guaranteeing good water quality. A field lysimeter study was carried out at the Susquehanna River Basin, northeastern USA to investigate phosphorus (P) and nitrogen (N) losses in leachate and ru...
Testing the structure of a hydrological model using Genetic Programming
NASA Astrophysics Data System (ADS)
Selle, Benny; Muttil, Nitin
2011-01-01
SummaryGenetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that Genetic Programming can be used to test the structure of hydrological models and to identify dominant processes in hydrological systems. To test this, Genetic Programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, watertable depths and water ponding times during surface irrigation. Using Genetic Programming, a simple model of deep percolation was recurrently evolved in multiple Genetic Programming runs. This simple and interpretable model supported the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that Genetic Programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.
Modelling Water Flow through Paddy Soils under Alternate Wetting and Drying Irrigation Practice
NASA Astrophysics Data System (ADS)
Shekhar, S.; Mailapalli, D. R.; Das, B. S.; Raghuwanshi, N. S.
2017-12-01
Alternate wetting and drying (AWD) irrigation practice in paddy cultivation requires an optimum soil moisture stress (OSMS) level at which irrigation water savings can be maximized without compromising the yield reduction. Determining OSMS experimentally is challenging and only possible with appropriate modeling tools. In this study, field experiments on paddy were conducted in thirty non-weighing type lysimeters during dry seasons of 2016 and 2017. Ten plots were irrigated using continuous flooding (CF) and the rest were irrigated with AWD practice at 40mb and 75mb soil moisture stress levels. Depth of ponding and soil suction at 10, 40 and 70 cm from the soil surface were measured daily from all lysimeter plots. The measured field data were used in calibration and validation of Hydrus-1D model and simulated the water flow for both AWD and CF plots. The Hydrus-1D is being used to estimate OSMS for AWD practice and compared the seasonal irrigation water input and deep percolation losses with CF practice.
Data from a thick unsaturated zone in Joshua Tree, San Bernardino County, California, 2007--09
Burgess, Matthew; Izbicki, John; Teague, Nicholas; O'Leary, David R.; Clark, Dennis; Land, Michael
2012-01-01
Data were collected on the physical properties of unsaturated alluvial deposits, the chemical composition of leachate extracted from unsaturated alluvial deposits, the chemical and isotopic composition of groundwater and unsaturated-zone water, and the chemical composition of unsaturated-zone gas at four monitoring sites in the southwestern part of the Mojave Desert in the town of Joshua Tree, San Bernardino County, California. The presence of denitrifying and nitrate-reducing bacteria from unsaturated alluvial deposits was evaluated for two of these monitoring sites that underlie unsewered residential development. Four unsaturated-zone monitoring sites were installed in the Joshua Tree area—two in an unsewered residential development and two adjacent to a proposed artificial-recharge site in an undeveloped area. The two boreholes in residential development areas were installed by using the ODEX air-hammer method. One borehole was drilled through the unsaturated zone to a depth of 541 ft (feet) below land surface; a well screened across the water table was installed. Groundwater was sampled from this well. The second borehole was drilled to a depth of 81 ft below land surface. Drilling procedures, lithologic and geophysical data, construction details, and instrumentation placed in these boreholes are described. Core material was analyzed for water content, bulk density, matric potential, particle size, and water retention. The leachate from over 500 subsamples of cores and cuttings was analyzed for soluble anions, including fluoride, sulfate, bromide, chloride, nitrate, nitrite, and orthophosphate. Groundwater was analyzed for major ions, inorganic compounds, select trace elements, and isotopic composition. Unsaturated-zone water from suction-cup lysimeters was analyzed for major ions, inorganic compounds, select trace elements, and isotopic composition. Unsaturated-zone gas samples were analyzed for argon, oxygen, nitrogen, methane, carbon dioxide, ethane, nitrous oxide, and carbon monoxide. Drill cuttings were analyzed for denitrifying and nitrate-reducing bacteria. One of the boreholes installed adjacent to the Joshua Basin Water District proposed groundwater-recharge facility was installed by using the ODEX air-hammer method and the other was installed by using a 7.875-inch hollow-stem auger. Drilling procedures, lithologic and geophysical data, construction details, and instrumentation placed in these boreholes are described; however, geochemical data were not available at the time of publication.
Modelling and Evaluation of Non-Linear Rootwater Uptake for Winter Cropping of Wheat and Berseem
NASA Astrophysics Data System (ADS)
GS, K.; Prasad, K. S. H.
2017-12-01
The plant water uptake is significant for study to monitor the irrigation supplied to the plant. The Richards equation has been the key governing equation to quantify the root water uptake in the vadose zone and it takes all the sources and sink terms into consideration. The β parameter or the non linearity parameter is used in this modeling to bring the non linearity in the plant root water uptake. The soil parameters are obtained by experimentation and are employed in the Van-Genuchten equation for soil moisture study. Field experiments were carried out at Civil Engineering Department IIT Roorkee, Uttarakhand, India, during the winter season of 2013 and 2014 for berseem and 2016 for wheat as per the local cropping practices. Drainage type lysimeters were installed to study the soil water balance. Soil moisture was monitored using profile probe. Precipitation and all meteorological data were obtained from the nearby gauges located at the National Institute of Hydrology, Roorkee.The moisture data and the deep percolation data were collected on a daily basis and the irrigation supply was controlled and monitored to satisfy the moisture requirements of the crops respectively.In order to study the effect of water scarcity on the crops, the plot was divided and deficited irrigation was applied for the second cropping season for Berseem.The yields for both the seasons was also measured. The solution of Richards equation as applied to the moisture movement in the root zone was modeled. For estimation of root water uptake, the governing equation is the one-dimensional mixed form of Richards' equation is employed (Ji et al., 2007; Shankar et al., 2012).The sink term in the model accounts for the root water uptake, which is utilized by the plant for transpiration. Smaxor the maximum root water uptake for the root zone on a given day must be equal to the maximum transpiration on the corresponding day The model computed moisture content and pressure head is calibrated with the measured soil water content in the crop root zone. The Model output is compared with the output of the HYDRUS 1D software package. The complete calibrated model is now employed to determine the irrigation requirement of crops for a known initial moisture content and available precipitation and can be useful for economical agriculture in the semi-arid regions of India.
FIELD EVALUATION OF EVAPO-TRANSPIRATION (ET) CAPS
A field study was conducted to assess the ability of landfill covers to control percolation into the waste. Performance of one conventional cover was compared to that of two evapotranspiration (ET) tree covers, using large (7 x 14 m) lined lysimeters at the Leon County Solid W...
Middle East Regional Irrigation Management Information Systems project-Some science products
USDA-ARS?s Scientific Manuscript database
Similarities in the aridity of environments and water scarcity for irrigation allow common approaches to irrigation management problems and research methods in the Southern Great Plains of the United States and the Middle East. Measurement methods involving weighing lysimeters and eddy covariance sy...
USDA-ARS?s Scientific Manuscript database
Seepage flow initiates undercutting, similar to development and headward migration of internal gullies, by liquefaction of soil particles, followed by mass wasting of the bank. Although seepage erosion has three-dimensional characteristics, two-dimensional lysimeters have been used in previous resea...
A subsurface drip irrigation system for weighing lysimetry
USDA-ARS?s Scientific Manuscript database
Large, precision weighing lysimeters can have accuracies as good as 0.04 mm equivalent depth of water, adequate for hourly and even half-hourly determinations of evapotranspiration (ET) rate from crops. Such data are important for testing and improving simulation models of the complex interactions o...
Transport of Nitrogen and Phosphorus from Onsite Wastewater Treatment Systems to Shallow Groundwater
NASA Astrophysics Data System (ADS)
Toor, G.
2014-12-01
The knowledge about the nutrients transport from the vadose zone of onsite wastewater treatment systems (commonly called septic systems) is crucial to protect groundwater quality as 25% of US population uses septic systems to discharge household wastewater. For example, our preliminary data showed that about 47% of applied water was recovered at 60-cm below drainfield of septic systems. This implies that contaminants present in wastewater, if not attenuated in the vadose zone, can be transported to shallow groundwater. This presentation will focus on the biophysical and hydrologic controls on the transport of nitrogen (N) and phosphorus (P) from the vadose of two conventional (drip dispersal, gravel trench) and an advanced (with aerobic and anaerobic medias) system. These systems were constructed using two rows of drip pipe (37 emitters/mound) placed 0.3 m apart in the center of 6 m x 0.6 m drainfield. Each system received 120 L of wastewater per day. During 20-month period (May 2012 to December 2013), soil-water samples were collected from the vadose zone using suction cup lysimeters installed at 0.30, 0.60, and 1.05 m depth and groundwater samples were collected from piezometers installed at 3-3.30 m depth below the drainfield. A complimentary 1-year study using smaller drainfields (0.5 m long, 0.9 m wide, 0.9 m high) was conducted to obtain better insights in the vadose zone. A variety of instruments (multi-probe sensors, suction cup lysimeters, piezometers, tensiometers) were installed in the vadose zones. Results showed that nitrification controlled N evolution in drainfield and subsequent transport of N plumes (>10 mg/L) into groundwater. Most of the wastewater applied soluble inorganic P (>10 mg/L) was quickly attenuated in the drainfield due to fixation (sorption, precipitation) in the vadose zone (<0.10 mg/L), which was further reduced to <0.05 mg/L in groundwater. The hydrologic controls (primarily rainfall during June-September) facilitated transport of N, but not P, to shallow groundwater. The advanced system was extremely effective as it removed >95% N from wastewater, but was less effective at removing P. This presentation will conclude with importance of better septic system design and soil-based processes in reducing N and P transport to groundwater and protecting water quality in aquifers.
Assessing reference evapotranspiration in a subhumid climate in NE Austria
NASA Astrophysics Data System (ADS)
Nolz, Reinhard; Eitzinger, Josef; Cepuder, Peter
2015-04-01
Computing reference evapotranspiration and multiplying it with a specific crop coefficient as recommended by the Food and Agriculture Organization of the United Nations (FAO) is the most widely accepted approach to estimate plant water requirements. The standardized form of the well-known FAO Penman-Monteith equation, published by the Environmental and Water Resources Institute of the American Society of Civil Engineers (ASCE-EWRI), is recommended as a standard procedure for calculating reference evapotranspiration. Applied and validated under different climatic conditions it generally achieved good results compared to other methods. However, several studies documented deviations between measured and calculated reference evapotranspiration depending on local environmental conditions. Consequently, it seems advisable to evaluate the model under local environmental conditions. Evapotranspiration was determined at a subhumid site in Austria (48°12'N, 16°34'E; 157 m asl) using a large weighing lysimeter operated at (limited) reference conditions and compared with calculations according to ASCE-EWRI. The lysimeter had an inner diameter of 1.9 m and a hemispherical bottom with a maximum depth of 2.5 m. Seepage water was measured at a free draining outlet using a tipping bucket. Lysimeter mass changes were sensed by a weighing facility with an accuracy of ±0.1 mm. Both rainfall and evapotranspiration were determined directly from lysimeter data using a simple water balance equation. Meteorological data for the ASCE-EWRI model were obtained from a weather station of the Central Institute for Meteorology and Geodynamics, Austria (ZAMG). The study period was from 2005 to 2010, analyses were based upon daily time steps. Daily calculated reference evapotranspiration was generally overestimated at small values, whereas it was rather underestimated when evapotranspiration was large, which is supported also by other studies. In the given case, advection of sensible heat proved to have an impact. On the other hand, it could not explain the differences exclusively, as it was also shown that small net radiation in combination with small wind velocity produced by trend better results than small net radiation with a large wind velocity, which is somehow contradicting the principle of advection. Obviously, there were also other disregarded influences, for example seasonal varying surface resistance, albedo and soil heat flux. Generally, the ASCE-EWRI equation for daily time steps performed best at average weather conditions. The outcomes should help to correctly interpret reference evapotranspiration data in the region and in similar environments and improve knowledge on the dynamics of the influencing factors that caused the deviations.
Borba, Ricardo Perobelli; Ribeirinho, Victor Sanches; de Camargo, Otávio Antonio; de Andrade, Cristiano Alberto; Kira, Carmen Silvia; Coscione, Aline Reneé
2018-02-01
In this study, we performed monitoring of the soil solution (SS) over 10 years on a loamy/clayey-textured Dark Red Dystroferric Oxisol that received sewage sludge for agricultural purposes. The SS was obtained by lysimeters installed along the walls of a well at 1 m, 2 m, 3 m, 4 m and 5 m in depth. The major ions found in the SS were NO 3 - , SO 4 2- , Cl - , Ca 2+ , Mg 2+ , Al 3+ , Pb 2+ , Cd 2+ and Zn 2+ , and the pH level ranged from 4 to 6.5 along the profile. Throughout the first three years of monitoring, the pH to a 3-m depth became more acidic, and in the last year, this trend reached 5 m. At the 5-m depth, the pH decreased from 6.5 to 4.5 from the first to the last monitoring. The SS acidification was provoked by both nitrite oxidation and ion leaching. The leaching of H + or the possible ion exchange/desorption of H + due to the leached cations (Ca 2+ and Mg 2+ ) at the 4-m and 5-m depth caused the pH decrease. The ionic strength (IS) of the solution controlled the ion leaching. The sludge application increased the IS to 3 m, increasing the density of the soil charges and its ability to absorb ions. After the sludge application was completed, there was a decrease in IS of the SS as well as a decrease in ion absorption and retention abilities, which promoted leaching to greater depths. During the entire monitoring process, NO 3 - , Cd and Pb remained above the potability limit. Copyright © 2017 Elsevier Ltd. All rights reserved.
Paladino, Ombretta; Seyedsalehi, Mahdi; Massabò, Marco
2018-09-01
The use of fertilizers in greenhouse-grown crops can pose a threat to groundwater quality and, consequently, to human beings and subterranean ecosystem, where intensive farming produces pollutants leaching. Albenga plain (Liguria, Italy) is an alluvial area of about 45km 2 historically devoted to farming. Recently the crops have evolved to greenhouses horticulture and floriculture production. In the area high levels of nitrates in groundwater have been detected. Lysimeters with three types of reconstituted soils (loamy sand, sandy clay loam and sandy loam) collected from different areas of Albenga plain were used in this study to evaluate the leaching loss of nitrate (NO 3 - ) over a period of 12weeks. Leaf lettuce (Lactuca sativa L.) was selected as a representative green-grown crop. Each of the soil samples was treated with a slow release fertilizer, simulating the real fertilizing strategy of the tillage. In order to estimate the potential risk for aquifers as well as for organisms exposed via pore water, nitrate concentrations in groundwater were evaluated by applying a simplified attenuation model to the experimental data. Results were refined and extended from comparison of single effects and exposure values (Tier I level) up to the evaluation of probabilistic distributions of exposure and related effects (Tier II, III IV levels). HHRA suggested HI >1 and about 20% probability of exceeding RfD for all the greenhouses, regardless of the soil. ERA suggested HQ>100 for all the greenhouses; 93% probability of PNEC exceedance for greenhouses containing sand clay loam. The probability of exceeding LC50 for 5% of the species was about 40% and the probability corresponding to DBQ of DEC/EC50>0.001 was >90% for all the greenhouses. The significantly high risk, related to the detected nitrate leaching loss, can be attributed to excessive and inappropriate fertigation strategies. Copyright © 2018 Elsevier B.V. All rights reserved.
Nitrate leaching from winter cereal cover crops using undisturbed soil-column lysimeters
USDA-ARS?s Scientific Manuscript database
Cover crops are important management practices for reducing nitrogen (N) leaching in the Chesapeake Bay watershed, which is under Total Maximum Daily Load restraints. Cool-season annual grasses such as barley, rye, or wheat are common cover crops, but studies are needed to directly compare field ni...
Limited transport of functionalized multi-walled carbon nanotubes in two natural soils
USDA-ARS?s Scientific Manuscript database
Column experiments were conducted in undisturbed and in repacked soil columns at water contents close to saturation (85–96%) to investigate the transport and retention of functionalized 14C-labeled multi-walled carbon nanotubes (MWCNT) in two natural soils. Additionally, a field lysimeter experiment...
Evapotranspiration: Mass balance measurements compared with flux estimation methods
USDA-ARS?s Scientific Manuscript database
Evapotranspiration (ET) may be measured by mass balance methods and estimated by flux sensing methods. The mass balance methods are typically restricted in terms of the area that can be represented (e.g., surface area of weighing lysimeter (LYS) or equivalent representative area of neutron probe (NP...
Lysimetric evaluation of eddy covariance and scitillometer systems for the Texas High Plains
USDA-ARS?s Scientific Manuscript database
Evapotranspiration (ET) is an important component in the water budget and used extensively in water planning and irrigation scheduling. Although lysimetry is considered the most accurate method for crop water use measurements, large precision weighing lysimeters are expensive to build and operate. A...
Measurement of surface energy balance components in dryland wheat/fallow and limited-irrigation corn
USDA-ARS?s Scientific Manuscript database
Water evaporation from soil and plant surfaces and plant transpiration comprise land surface/canopy evapotranspiration (ET), which is essential to estimate for land-atmosphere interaction and crop water use. There are no direct measurements of ET, and the most direct methods (e.g., weighing lysimet...
USDA-ARS?s Scientific Manuscript database
Many producers practice fall and winter manure spreading for economic and practical reasons. In order to minimize the risk of nitrogen loss between application and crop uptake in the spring, university extension publications and industry professionals often make recommendations based on soil tempera...
USDA-ARS?s Scientific Manuscript database
More and more evapotranspiration (ET) models, ET crop coefficients, and associated measurements of ET are reported in the literature. These measurements base from a range of measurement systems including lysimeters, eddy covariance, Bowen ratio, water balance (gravimetric, neutron meter, other soil ...
2007-06-01
of metals and explo- sives from HGR soil are transport in surface water and subsurface trans- port in leachate or pore water. Simple, innovative, and...and II.................................................................................... 41 RDX in leachate and runoff...44 Significant metals in leachate and runoff from Lysimeter Study I
NASA Astrophysics Data System (ADS)
Moeys, J.; Larsbo, M.; Bergström, L.; Brown, C. D.; Coquet, Y.; Jarvis, N. J.
2012-07-01
Estimating pesticide leaching risks at the regional scale requires the ability to completely parameterise a pesticide fate model using only survey data, such as soil and land-use maps. Such parameterisations usually rely on a set of lookup tables and (pedo)transfer functions, relating elementary soil and site properties to model parameters. The aim of this paper is to describe and test a complete set of parameter estimation algorithms developed for the pesticide fate model MACRO, which accounts for preferential flow in soil macropores. We used tracer monitoring data from 16 lysimeter studies, carried out in three European countries, to evaluate the ability of MACRO and this "blind parameterisation" scheme to reproduce measured solute leaching at the base of each lysimeter. We focused on the prediction of early tracer breakthrough due to preferential flow, because this is critical for pesticide leaching. We then calibrated a selected number of parameters in order to assess to what extent the prediction of water and solute leaching could be improved. Our results show that water flow was generally reasonably well predicted (median model efficiency, ME, of 0.42). Although the general pattern of solute leaching was reproduced well by the model, the overall model efficiency was low (median ME = -0.26) due to errors in the timing and magnitude of some peaks. Preferential solute leaching at early pore volumes was also systematically underestimated. Nonetheless, the ranking of soils according to solute loads at early pore volumes was reasonably well estimated (concordance correlation coefficient, CCC, between 0.54 and 0.72). Moreover, we also found that ignoring macropore flow leads to a significant deterioration in the ability of the model to reproduce the observed leaching pattern, and especially the early breakthrough in some soils. Finally, the calibration procedure showed that improving the estimation of solute transport parameters is probably more important than the estimation of water flow parameters. Overall, the results are encouraging for the use of this modelling set-up to estimate pesticide leaching risks at the regional-scale, especially where the objective is to identify vulnerable soils and "source" areas of contamination.
Steiner, Laure D; Bidwell, Vincent J; Di, Hong J; Cameron, Keith C; Northcott, Grant L
2010-04-01
The presence of endocrine-disrupting chemicals, including estrone (E1) and 17beta-estradiol (E2), in surface waters has been associated with physiological dysfunction in a number of aquatic organisms. One source of surface and groundwater contamination with E1 and E2 is the land application of animal wastes. The processes involved in the transport of these hormones in the soil, when applied with animal wastes, are still unclear. Therefore, a field-transport experiment was carried out, where a dairy farm effluent spiked with E1 and E2 was applied on large (50 cm diameter and 70 cm depth) undisturbed soil lysimeters. The concentrations of E1 and E2 in the leachate were monitored over a 3-month period, during which irrigation was applied. The experimental data suggest that E1 and E2 were transported through preferential/macropore flow pathways. The data from the experiment also show that E1 and E2 are leached earlier than the inert tracer (bromide). This observation can be explained either by the presence of antecedent concentrations in the soil or by an enhanced transport of E1 and E2 through the soil. A state-space mixing-cell model was further developed in order to describe the transport of E1 and E2 by three transport processes in parallel. The inverse modeling of the leaching data did not support the hypothesis that antecedent concentrations of estrogens could be responsible for the observed breakthrough curves but confirmed that estrogens were transported mainly via preferential/macropore flow and also via an enhanced transport. The parameter values that characterized this enhanced transport strongly suggest that this enhanced transport is mediated by colloids. For the first time, the simultaneous transport of E1 and E2 was modeled under transient conditions, taking into account the advection-dispersion, preferential/macropore flow, and colloidal-enhanced transport processes as well as E1 and E2 dissipation in the soil. These findings have major implications in terms of management practices to decrease E1 and E2 transport and water contamination.
NASA Astrophysics Data System (ADS)
Pangle, L. A.; Cardoso, C.; Kim, M.; Lora, M.; Wang, Y.; Troch, P. A. A.; Harman, C. J.
2014-12-01
Water molecules traverse myriad flow paths and spend different lengths of time on or within the landscape before they are discharged into a stream channel. The transit-time distribution (TTD) is a probability distribution that represents the range and likelihood of transit times for water and conservative solutes within soils and catchments, and is useful for comparative analysis and prediction of solute transport into streams. The TTD has customarily been assumed to be time-invariant in practical applications, but is understood to vary due to unsteady flow rates, changes in water-balance partitioning, and shifting flow pathways. Recent theoretical advances have clarified how the distribution of transit times experienced by water and solutes within a stream channel at any moment in time is conditional on the specific series of precipitation events preceding that time. Observations resolving how TTDs vary during a specific sequence of precipitation events could be obtained by introducing unique and conservative tracers during each event and quantifying their distinct breakthrough curves in the stream. At present, the number of distinct and conservative tracers available for this purpose is insufficient. Harman and Kim [Harman, C.J. and Kim, M., 2014, Geophysical Research Letters, 41, 1567-1575] proposed a new experimental method—based on the establishment of periodic steady-state conditions—that allows multiple overlapping breakthrough curves of non-unique tracers to be decomposed, thus enabling analysis of the distinct TTDs associated with their specific times of introduction through precipitation. We present results from one of the first physical experiments to test this methodology. Our experiment involves a sloping lysimeter (10° slope) that contains one cubic meter of crushed basalt rock (loamy sand texture), an irrigation system adaptable to controlled tracer introductions, and instruments that enable total water balance monitoring. We imposed a repeated sequence of rainfall pulses and achieved periodic-steady-state conditions over 24 days. Using systematic introductions of deuterium- and chloride-enriched water, and the PERTH method, we resolve the time-conditional TTDs associated with tracer injections that occurred during specific intervals of the overall rainfall sequence.
Treated wastewater and Nitrate transport beneath irrigated fields near Dodge city, Kansas
Sophocleous, M.; Townsend, M.A.; Vocasek, F.; Ma, Liwang; Ashok, K.C.
2010-01-01
Use of secondary-treated municipal wastewater for crop irrigation south of Dodge City, Kansas, where the soils are mainly of silty clay loam texture, has raised a concern that it has resulted in high nitratenitrogen concentrations (10-50 mg/kg) in the soil and deeper vadose zone, and also in the underlying deep (20-45 m) ground water. The goal of this field-monitoring project was to assess how and under what circumstances nitrogen (N) nutrients under cultivated corn that is irrigated with this treated wastewater can reach the deep ground water of the underlying High Plains aquifer, and what can realistically be done to minimize this problem. We collected 15.2-m-deep cores for physical and chemical properties characterization; installed neutron moisture-probe access tubes and suction lysimeters for periodic measurements; sampled area monitoring, irrigation, and domestic wells; performed dye-tracer experiments to examine soil preferential-flow processes through macropores; and obtained climatic, crop, irrigation, and N-application rate records. These data and additional information were used in the comprehensive Root Zone Water Quality Model (RZWQM2) to identify key parameters and processes that influence N losses in the study area. We demonstrated that nitrate-N transport processes result in significant accumulations of N in the thick vadose zone. We also showed that nitrate-N in the underlying ground water is increasing with time and that the source of the nitrate is from the wastewater applications. RZWQM2 simulations indicated that macropore flow is generated particularly during heavy rainfall events, but during our 2005-06 simulations the total macropore flow was only about 3% of precipitation for one of two investigated sites, whereas it was more than 13% for the other site. Our calibrated model for the two wastewater-irrigated study sites indicated that reducing current levels of corn N fertilization by half or more to the level of 170 kg/ha substantially increases N-use efficiency and achieves near-maximum crop yield. Combining such measures with a crop rotation that includes alfalfa should further reduce the amounts of residual N in the soil, as indicated in one of the study sites that had alfalfa in past crop rotations.
Deep Soil Recharge in Arid and Semi-Arid Regions: New Evidences in MU-US Sandy Land of China
NASA Astrophysics Data System (ADS)
Cheng, Y.; Yang, W.; Zhan, H.
2017-12-01
Precipitation induced recharge is an important source of groundwater budget but it is very difficult to quantify in arid and semiarid regions. In this study, a newly invented lysimeter was used to monitor deep soil recharge (DSR) under 200 cm depth in MU-US sandy land in western China under three kinds of landforms (mobile dune, semi-fixed dune, and fixed dune). We found that the annual DSRs in such three different kinds of landforms varied significantly. Specifically, the annual DSRs were 224.1 mm (50.5% of the annual precipitation), 71.1 mm (50.5% of the annual precipitation), and 1.3 mm (0.3% of the annual precipitation) in mobile dune, semi-fixed dune, and fixed dune, respectively. We also found that vegetation coverage and precipitation pattern significantly affected DSR. A 24-hr precipitation event with the precipitation amount greater than 8 mm was able to infiltrate soil deeper than 200 cm and contributed to ground water recharge directly. Vegetation was a dominant factor influencing infiltration in the fixed sand dune. Our research revealed that precipitation induced DSR in arid and semi-arid regions was a complex process that required long-term monitoring and innovative system analysis of interrelated factors such as precipitation strength and pattern, meteorological parameters, and dynamic soil moisture. Key words: Precipitation pattern, sand dune groundwater, deep soil recharge, infiltration.
USDA-ARS?s Scientific Manuscript database
Since 2003, a regional project funded by USDA-ARS-OIRP has focused on improving irrigation scheduling in Jordan, Palestine and Israel. The Middle Eastern Regional Irrigation Management Information Systems (MERMIS) project involves cooperators from Palestine, Jordan, Israel and the United States, all...
COSMOS soil water sensor compared with EM sensor network & weighing lysimeter
USDA-ARS?s Scientific Manuscript database
Soil water sensing methods are widely used to characterize the root zone and below, but only a few are capable of delivering water content data with accuracy for the entire soil profile such that evapotranspiration (ET) can be determined by soil water balance and irrigations can be scheduled with mi...
USDA-ARS?s Scientific Manuscript database
Irrigation scheduling is one of the most cost effective means of conserving limited groundwater resources, particularly in semi-arid regions. Effective precipitation, or the net amount of water from precipitation that can be used in field water balance equations, is essential to accurate and effecti...
USDA-ARS?s Scientific Manuscript database
The two-source energy balance (TSEB) model has undergone several advances recently that improved its accuracy in calculating evaporation (E), transpiration (T), and evapotranspiration (ET) for row crops. These advances were tested using microlysimeter, sap flow, and large weighing lysimeter measurem...
A study was initiated to determine the accuracy with which the Extraction Procedures (EP), employed in the regulations promulgated under Section 3001 of the Resource Conservation and Recovery Act (40 CFR 26.124), simulates the leaching an industrial waste would undergo when codis...
Field Performance Of A Compacted Clay Landfill Final Cover At A Humid Site
A study was conducted in southern Georgia, USA, to evalaute how the hydraulic properties of the compacted clay barrier layer in a final landfill cover changed over a 4-year service life. The cover was part of a test section constructed in a large drainage lysimeter that allowed ...
USDA-ARS?s Scientific Manuscript database
Evapotranspiration (ET) and water use efficiency (WUE) in peach orchards has previously been observed in young (less than 5-8 years old), drip irrigated orchards using micrometeorological techniques such as Eddy Covariance or large-weighing lysimeters. However, no work has been reported on ET and W...
Calibration and validation of CSM-CROPGRO-cotton model using lysimeter data in the Texas High Plains
USDA-ARS?s Scientific Manuscript database
The Texas High Plains (THP) is one of the most important food and fiber producing regions in the Ogallala Aquifer Region, currently facing rapid decline of groundwater levels. Predicated climate extremes and high temporal variability in growing season precipitation in the future may demand growers t...
No effect of digestate amendment on Cs-137 and Sr-90 translocation in lysimeter experiments.
Mehmood, Khalid; Berns, Anne E; Pütz, Thomas; Burauel, Peter; Vereecken, Harry; Opitz, Thorsten; Zoriy, Myroslav; Hofmann, Diana
2017-04-01
The soil-plant transfer of Cs-137 and Sr-90 in different crops was determined with respect to the present-day amendment practice of using digestate from biogas fermenters. The studies were performed using large lysimeters filled with undisturbed luvisol monoliths. In contrast to the conservative tracer, Br - , neither of the studied radionuclides showed a significant vertical translocation nor effect of the applied digestate amendment compared to a non-amended control was found. Furthermore, no significant plant uptake was measured for both nuclides in wheat or oat as indicated by the low transfer factors between soil-shoot for Cs-137 (TF 0.001-0.010) and for Sr-90 (0.10-0.51). The transfer into nutritionally relevant plant parts was even lower with transfer factors for soil-grain for Cs-137 (TF 0.000-0.001) and for Sr-90 (0.01-0.06). Hence, the amendment with biogas digestate is unfortunately not an option to further reduce plant uptake of these radionuclides in agricultural crops, but it does not increase plant uptake either. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Xiaoying; Liang, Wenju; Wen, Dazhong
2004-10-01
The ecological and physiological water requirement of rice was studied in a paddy field of north China, and the field experiment was conducted at Shenyang Experimental Station of Ecology, Chinese Academy of Sciences. Under continuous flooding irrigation (CSF) and intermittent irrigation (IT) conditions, the evapotranspiration and soil evaporation of paddy fields were measured by non-weighing lysimeters and micro-lysimeters, respectively. The results showed that compared with continuous flooding irrigation, the transpiration under intermittent irrigation condition was not significantly reduced, but 16% and 24% of water amounts were reduced by decreasing the water losses through soil water evaporation and percolation, respectively. The water use efficiency of intermittent irrigation was increased 10%, without any adverse effects on biomass and grain yield of rice. Although the amount of water requirement under IT treatment was reduced significantly compared with CSF treatment, about 60% of total water requirement was still lost through deep percolation. Based on the results obtained, the corresponding countermeasures to reduce the amounts of soil water evaporation and percolation and to increase the water use efficiency were put forward in this paper.
A spatial-temporal method for assessing the energy balance dynamics of partially sealed surfaces.
NASA Astrophysics Data System (ADS)
Pipkins, Kyle; Kleinschmit, Birgit; Wessolek, Gerd
2017-04-01
The effects of different types of sealed surfaces on the surface energy balance have been well-studied in the past. However, these field studies typically aggregate these surfaces into continuous units. The proposed method seeks to disaggregate such surfaces into paving and seam areas using spatial methods, and to consider the temperature dynamics under wet and dry conditions between these two components. This experimental work is undertaken using a thermal camera to record a time series of images over two lysimeters with differing levels of surface sealing. The images are subsequently decomposed into component materials using object-based image analysis and compared on the basis of both the surface materials as well as the spatial configuration of materials. Finally, a surface energy balance method is used to estimate evaporation rates from the surfaces, both separately for the different surface components as well as using the total surface mean. Results are validated using the output of the weighing lysimeter. Our findings will determine whether the explicitly spatial method is an improvement over the mean aggregate method.
Mauder, Matthias; Genzel, Sandra; Fu, Jin; ...
2017-11-10
Here, we report non-closure of the surface energy balance is a frequently observed phenomenon of hydrometeorological field measurements, when using the eddy-covariance method, which can be ascribed to an underestimation of the turbulent fluxes. Several approaches have been proposed in order to adjust the measured fluxes for this apparent systematic error. However, there are uncertainties about partitioning of the energy balance residual between the sensible and latent heat flux and whether such a correction should be applied on 30-minute data or longer time scales. The data for this study originate from two grassland sites in southern Germany, where measurements frommore » weighable lysimeters are available as reference. The adjusted evapotranspiration rates are also compared with joint energy and water balance simulations using a physically-based distributed hydrological model. We evaluate two adjustment methods: the first one preserves the Bowen ratio and the correction factor is determined on a daily basis. The second one attributes a smaller portion of the residual energy to the latent heat flux than to the sensible heat flux for closing the energy balance for every 30-minute flux integration interval. Both methods lead to an improved agreement of the eddy-covariance based fluxes with the independent lysimeter estimates and the physically-based model simulations. The first method results in a better comparability of evapotranspiration rates, and the second method leads to a smaller overall bias. These results are similar between both sites despite considerable differences in terrain complexity and grassland management. Moreover, we found that a daily adjustment factor leads to less scatter than a complete partitioning of the residual for every half-hour time interval. Lastly, the vertical temperature gradient in the surface layer and friction velocity were identified as important predictors for a potential future parameterization of the energy balance residual.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauder, Matthias; Genzel, Sandra; Fu, Jin
Here, we report non-closure of the surface energy balance is a frequently observed phenomenon of hydrometeorological field measurements, when using the eddy-covariance method, which can be ascribed to an underestimation of the turbulent fluxes. Several approaches have been proposed in order to adjust the measured fluxes for this apparent systematic error. However, there are uncertainties about partitioning of the energy balance residual between the sensible and latent heat flux and whether such a correction should be applied on 30-minute data or longer time scales. The data for this study originate from two grassland sites in southern Germany, where measurements frommore » weighable lysimeters are available as reference. The adjusted evapotranspiration rates are also compared with joint energy and water balance simulations using a physically-based distributed hydrological model. We evaluate two adjustment methods: the first one preserves the Bowen ratio and the correction factor is determined on a daily basis. The second one attributes a smaller portion of the residual energy to the latent heat flux than to the sensible heat flux for closing the energy balance for every 30-minute flux integration interval. Both methods lead to an improved agreement of the eddy-covariance based fluxes with the independent lysimeter estimates and the physically-based model simulations. The first method results in a better comparability of evapotranspiration rates, and the second method leads to a smaller overall bias. These results are similar between both sites despite considerable differences in terrain complexity and grassland management. Moreover, we found that a daily adjustment factor leads to less scatter than a complete partitioning of the residual for every half-hour time interval. Lastly, the vertical temperature gradient in the surface layer and friction velocity were identified as important predictors for a potential future parameterization of the energy balance residual.« less
Napier, F; Jefferies, C; Heal, K V; Fogg, P; Arcy, B J D; Clarke, R
2009-01-01
SUDS are being increasingly employed to control highway runoff and have the potential to protect groundwater and surface water quality by minimising the risks of both point and diffuse sources of pollution. While these systems are effective at retaining polluted solids by filtration and sedimentation processes, less is known of the detail of pollutant behaviour within SUDS structures. This paper reports on investigations carried out as part of a co-ordinated programme of controlled studies and field measurements at soft-engineered SUDS undertaken in the UK, observing the accumulation and behaviour of traffic-related heavy metals, oil and PAHs. The field data presented were collected from two extended detention basins serving the M74 motorway in the south-west of Scotland. Additional data were supplied from an experimental lysimeter soil core leaching study. Results show that basin design influences pollutant accumulation and behaviour in the basins. Management and/or control strategies are discussed for reducing the impact of traffic-related pollutants on the aqueous environment.
NASA Astrophysics Data System (ADS)
Choi, R. T.; Beard, K. H.; Leffler, A. J.; Schmutz, J. A.; Welker, J. M.
2014-12-01
Climate change in Arctic wetlands is resulting in a widening phenological mismatch between the onset of the growing season and the arrival and hatch date of migratory geese, the primary consumers in the system. During the past three decades, the growing season has advanced but geese have not advanced arrival or hatch date at the same rate. Geese now arrive into a system that has been growing longer than in the past with potential changes in forage quality because sedges have their highest nutrient density shortly following emergence. One potential concomitant result of this phenological gap is altered carbon to nitrogen ratio (C:N) of leaf tissue being returned to the ecosystem as feces that is more N-poor. Altering the C:N of these inputs can further influence C and N cycling in the system. We examine the influence of advanced growing season and different arrival times by black brant on leaf and soil C:N ratio and soil N-form. Our experiment consists of six blocks with nine study plots each. Half the plots are warmed to advance the growing season. Two plots each receive early, typical, late, and no grazing; one plot is a control that is not warmed and grazing is natural. Leaf tissue was collected to determine C and N concentration using an elemental analyzer. Anion and cation exchange membranes were used to monitor inorganic N forms in soil; samples were analyzed via fluorescence following extraction. Soil water collected from lysimeters was analyzed for organic N. Warming advanced plant growth between one and two weeks and resulted in higher C:N of leaf tissue Geese maintained 'grazing lawns', areas of exceptionally short vegetation, where plants had high N compared to non-grazed areas. Grazing early in the season promoted higher N content of leaves and soil while grazing late had little influence on N. The timing of the growing season and grazing both have important implications for C and N in this system.
NASA Astrophysics Data System (ADS)
Filipović, Vilim; Coquet, Yves; Pot, Valérie; Romić, Davor; Benoit, Pierre; Houot, Sabine
2016-04-01
Implementing various compost amendments and tillage practices has a large influence on soil structure and can create heterogeneities at the plot/field scale. While tillage affects soil physical properties, compost application influences also chemical properties like pesticide sorption and degradation. A long-term field experiment called "QualiAgro" (https://www6.inra.fr/qualiagro_eng/), conducted since 1998 aims at characterizing the agronomic value of urban waste composts and their environmental impacts. A modeling study was carried out using HYDRUS-2D for the 2004-2010 period to confront the effects of two different compost types combined with the presence of heterogeneities due to tillage in terms of water and isoproturon dynamics in soil. A municipal solid waste compost (MSW) and a co-compost of sewage sludge and green wastes (SGW) have been applied to experimental plots and compared to a control plot without any compost addition (CONT). Two wick lysimeters, 5 TDR probes, and 7 tensiometers were installed per plot to monitor water and isoproturon dynamics. In the ploughed layer, four zones with differing soil structure were identified: compacted clods (Δ), non-compacted soil (Γ), interfurrows (IF), and the plough pan (PP). These different soil structural zones were implemented into HYDRUS-2D according to field observation and using measured soil hydraulic properties. Lysimeter data showed (2004 -2010 period) that the CONT plot had the largest cumulative water outflow (1388 mm) compared to the MSW plot (962 mm) and SGW plot (979 mm). HYDRUS-2D was able to describe cumulative water outflow after calibration of soil hydraulic properties, for the whole 2004-2010 period with a model efficiency value of 0.99 for all three plots. Isoproturon leaching showed had the largest cumulative value in the CONT plot (21.31 μg) while similar cumulated isoproturon leachings were measured in the SGW (0.663 μg) and MSW (0.245 μg) plots. The model was able to simulate isoproturon leaching patterns except for the large preferential flow events that were observed in the MSW and CONT plots. The timing of these preferential flow events could be reproduced by the model but not their magnitude. Additional simulations were carried out, assuming temporal variation of the IPU degradation rate to explain the leaching events observed at the end of the monitoring period (2010). Modeling results indicate that spatial and temporal variations in pesticide degradation rate due to tillage and compost application play a major role in the dynamics of isoproturon leaching. Both types of compost were found to reduce isoproturon leaching on the long-term (6 years) duration of the field experiment. Keywords: Compost amendment; Soil heterogeneity; Conventional tillage; Water flow; Isoproturon; HYDRUS-2D
A Novel Method for Measurement and Characterization of Soil Macroporosity
Christopher Barton; Tasos Karathanasis
2002-01-01
Quantitative macropore characterizations were performed in large zero-tension soil lysimeters of a Maury silt loam (fine, mixed, mesic Typic Paleudalf) and a Loradale silt loam (fine, silty, mixed, mesic Typic Axgiudoll) soil in an effort to assess potential colloid transport. Steel pipe sections (50 cm diameter X 100 cm length) were hydraulically driven into the soil...
USDA-ARS?s Scientific Manuscript database
Characterization of soil water dynamics in the root zone under subsurface drip irrigated (SDI) is complicated by the three dimensional nature of water fluxes from drip emitters plus the fluxes, if any, of water from precipitation. In addition, soil water sensing systems may differ in their operating...
Impacts of acid precipitation on coniferous forest ecosystems
Gunnar Abrahamsen; Richard Horntvedt; Bjorn Tveite
1976-01-01
This paper summarizes the results from current studies in Norway. One main approach is the application of artificial acid "rain" and of lime to field plots and lysimeters. Application during two growth seasons of 50 mm per month of "rain water" of pH 3 to a podzol soil increased the acidity of the humus and decreased the base saturation. The...
John P. Gannon; Scott W. Bailey; Kevin J. McGuire; James B. Shanley
2015-01-01
We investigated potential source areas of dissolved organic carbon (DOC) in headwater streams by examining DOC concentrations in lysimeter, shallow well, and stream water samples from a reference catchment at the Hubbard Brook Experimental Forest. These observations were then compared to high-frequency temporal variations in fluorescent dissolved organic matter (FDOM)...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, D.; Powell, B.; Barber, K.
The SRNL Radiological Field Lysimeter Experiment (RadFLEx) is a one-of-a-kind test bed facility designed to study radionuclide geochemical processes in the Savannah River Site (SRS) vadose zone at a larger spatial scale (from grams to tens of kilograms of sediment) and temporal scale (from months to decade) than is readily afforded through laboratory studies. RadFLEx is a decade-long project that was initiated on July 5, 2012 and is funded by six different sources. The objective of this status report is as follows: 1) to report findings to date that have an impact on SRS performance assessment (PA) calculations, and 2)more » to provide performance metrics of the RadFLEx program. The PA results are focused on measurements of transport parameters, such as distribution coefficients (Kd values), solubility, and unsaturated flow values. As this is an interim report, additional information from subsequent research may influence our interpretation of current results. Research related to basic understanding of radionuclide geochemistry in these vadose zone soils and other source terms are not described here but are referenced for the interested reader.« less
NASA Astrophysics Data System (ADS)
Benettin, P.; Queloz, P.; Bailey, S. W.; McGuire, K. J.; Rinaldo, A.; Botter, G.
2015-12-01
Water age distributions can be used to address a number of environmental challenges, such as modeling the dynamics of river water quality, quantifying the interactions between shallow and deep flow systems and understanding nutrient loading persistence. Moreover, as the travel time of a water particle is the time available for biogeochemical reactions, it can be explicitly used to predict the concentration of non-conservative solutes, as e.g. those derived by mineral weathering. In recent years, many studies acknowledged the dynamic nature of streamflow age and linked it to observed variations in stream water quality. In this new framework, water stored within a catchment can be seen as a pool that is selectively "sampled" by streams and vegetation, determining the chemical composition of discharge and evapotranspiration. We present results from a controlled lysimeter experiment and real-world catchments, where the theoretical framework has been used to reproduce water quality datasets including conservative tracers (e.g. chloride and water stable isotopes) and weathering-derived solutes (like silicon and sodium). The approach proves useful to estimate the catchment water storage involved in solute mixing and sheds light on how solutes and water of different ages are selectively removed by vegetation and soil drainage.
Paz, Anat; Tadmor, Galit; Malchi, Tomer; Blotevogel, Jens; Borch, Thomas; Polubesova, Tamara; Chefetz, Benny
2016-10-01
Irrigation with reclaimed wastewater may result in the ubiquitous presence of pharmaceutical compounds (PCs) and their metabolites in the agroecosystem. In this study, we focused on two highly persistent anticonvulsant drugs, lamotrigine and carbamazepine and two of its metabolites (EP-CBZ and DiOH-CBZ), aiming to elucidate their behavior in agricultural ecosystem using batch and lysimeter experiments. Sorption of the studied compounds by soils was found to be governed mainly by the soil organic matter level. Sorption affinity of compounds to soils followed the order lamotrigine > carbamazepine > EP-CBZ > DiOH-CBZ. Sorption was reversible, and no competition between sorbates in bi-solute systems was observed. The results of the lysimeter studies were in accordance with batch experiment findings, demonstrating accumulation of lamotrigine and carbamazepine in top soil layers enriched with organic matter. Detection of carbamazepine and one of its metabolites in rain-fed wheat previously irrigated with reclaimed wastewater, indicates reversibility of their sorption, resulting in their potential leaching and their availability for plant uptake. This study demonstrates the long-term implication of introduction of PCs to the agroecosystem. Copyright © 2016 Elsevier Ltd. All rights reserved.
Peters, C.A.; Striegl, Robert G.; Mills, P.C.; Healy, R.W.
1992-01-01
A 1982-84 field study defined the chemistry of water collected from the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Ill. Chemical data were evaluated to determine the principal, naturally occurring geochemical reactions in the unsaturated zone and to evaluate waste-induced effects on pore-water chemistry. Samples of precipitation, unsaturated-zone pore water, and saturated-zone water were analyzed for specific conductance, pH, alkalinity, major cations and anions, dissolved organic carbon, gross alpha and beta radiation, and tritium. Little change in concentration of most major constituents in the unsaturated-zone water was observed with respect to depth or distance from disposal trenches. Tritium and dissolved organic carbon concentrations were, however, dependent on proximity to trenches. The primary reactions, both on-site and off-site, were carbonate and clay dissolution, cation exchange, and the oxidation of pyrite. The major difference between on-site and off-site inorganic water chemistry resulted from the removal of the Roxana Silt and the Radnor Till Member of the Glasford Formation from on-site. Off-site, the Roxana Silt contributed substantial quantities of sodium to solution from montmorillonite dissolution and associated cation-exchange reactions. The Radnor Till Member provided exchange surfaces for magnesium. Precipitation at the site had an ionic composition of calcium zinc sulfate and an average pH of 4.6. Within 0.3 meter of the land surface, infiltrating rainwater or snowmelt changed to an ionic composition of calcium sulfate off-site and calcium bicarbonate on-site and had an average pH of 7.9; below that depth, pH averaged 7.5 and the ionic composition generally was calcium magnesium bicarbonate. Alkalinity and specific conductance differed primarily according to composition of geologic materials. Tritium concentrations ranged from 0.2 (detection limit) to 1,380 nanocuries per liter. The methods of constructing, installing, and sampling with lysimeters were evaluated to ensure data reliability. These evaluations indicate that, with respect to most constituents, the samples retrieved from the lysimeters accurately represented pore-water chemistry.
Peters, C.A.; Striegl, Robert G.; Mills, P.C.; Healy, R.W.
1992-01-01
A 1982-84 field study defined the chemistry of water collected from the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Chemical data were evaluated to determine the principal naturally occurring geochemical reactions in the unsaturated zone and to evaluate waste-induced effects on pore-water chemistry. Samples of precipitation, unsaturated-zone pore water, and saturated-zone water were analyzed for specific conductance, pH, alkalinity, major cations and anions, dissolved organic carbon, gross alpha and beta radiation, and tritium. Little change in concentration of most major constituents in the unsaturated-zone water was observed with respect to depth or distance from disposal trenches. Tritium and dissolved organic carbon concentrations were, however, dependent on proximity to trenches. The primary reactions, both on- site and off-site, were carbonate and clay dissolution, cation exchange, and the oxidation of pyrite. The major difference between on-site and off-site inorganic water chemistry resulted from the removal of the Roxana Silt and the Radnor Till Member of the Glasford Formation from on-site. Off-site, the Roxana Silt contributed substantial quantities of sodium to solution from montmorillonite dissolution and associated cation-exchange reactions. The Radnor Till Member provided exchange surfaces for magnesium. Precipitation at the site had an ionic composition of calcium zinc sulfate and an average pH of 4.6. Within 0.3 meter of the land surface, infiltrating rain water or snowmelt changed to an ionic canposition of calcium sulfate off-site and calcium bicarbonate on-site and had an average pH of 7.9; below that depth, pH averaged 7.5 and the ionic composition generally was calcium magnesium bicarbonate. Alkalinity and specific conductance differed primarily according to composition of geologic materials. Tritium concentrations ranged from 0.2 (detection limit) to 1,380 nanocuries per liter. The methods of constructing, installing, and sampling with lysimeters were evaluated to ensure data reliability. These evaluations indicate that, with respect to most constituents, the samples retrieved from the lysimeters accurately represented pore-water chemistry.
Passive wick fluxmeters: Design considerations and field applications
NASA Astrophysics Data System (ADS)
Gee, G. W.; Newman, B. D.; Green, S. R.; Meissner, R.; Rupp, H.; Zhang, Z. F.; Keller, J. M.; Waugh, W. J.; van der Velde, M.; Salazar, J.
2009-04-01
Optimization of water use in agriculture and quantification of percolation from landfills and watersheds require reliable estimates of vadose zone water fluxes. Current technology is limited primarily to lysimeters, which directly measure water flux but are expensive and may in some way disrupt flow, causing errors in the measured drainage. We report on design considerations and field tests of an alternative approach, passive wick fluxmeters, which use a control tube to minimize convergent or divergent flow. Design calculations with a quasi-three-dimensional model illustrate how convergence and divergence can be minimized for a range of soil and climatic conditions under steady state and transient fluxes using control tubes of varying heights. There exists a critical recharge rate for a given wick length, where the fluxmeter collection efficiency is 100% regardless of the height of the control tube. Otherwise, convergent or divergent flow will occur, especially when the control tube height is small. While divergence is eliminated in coarse soils using control tubes, it is reduced but not eliminated in finer soils, particularly for fluxes <100 mm/a. Passive wick fluxmeters were tested in soils ranging from nonvegetated semiarid settings in the United States to grasslands in Germany and rain-fed crops in New Zealand and the South Pacific. Where side-by-side comparisons of drainage were made between passive wick fluxmeters and conventional lysimeters in the United States and Germany, agreement was very good. In semiarid settings, drainage was found to depend upon precipitation distribution, surface soil, topographic relief, and the type and amount of vegetation. In Washington State, United States, soil texture dominated all factors controlling drainage from test landfill covers. As expected, drainage was greatest (>60% annual precipitation) from gravel surfaces and least (no drainage) from silt loam soils. In Oregon and New Mexico, United States, and in New Zealand, drainage showed substantial spatial variability. The New Mexico tests were located in semiarid canyon bottom terraces, with flash flood prone locations having extremely high drainage/precipitation ratios. In the wettest environments, drainage was found to be closely linked to the rate and duration of precipitation events.
Nighttime water absorption by a bare loess soil in a coastal desert
NASA Astrophysics Data System (ADS)
Ninari, N.; Berliner, P. R.
2003-04-01
The role of dew in arid and semi-arid ecosystems is considered to be of great importance. It can serve as a water source for the bacteria of biological crust, for plants and for small insects. The Negev Desert is a semiarid region characterized by winter rainfall with a very large inter-annual variability. Reports on measurements carried out in this area mention that up to 180 nights a year with dew were registered by a conventional Hiltner Dew Balance, with intensities that ranged from 0.1 to 0.2 mm per night (yielding a total of 15 mm per year, which is more than 10% of the total rainfall). The Hiltner dew balance is based on the continuous weighing of an artificial condensation plate that has a completely different energy balance from that of the soil surface above which it is installed. The Hiltner dew balance could, therefore, be considered as a ``potential dew" gauge, whose results are probably mainly correlated to atmospheric conditions. The prime objective of this work was, therefore, to quantify the amounts of dew deposition on the soil surface, and to compare these amounts to those measured by the Hiltner balance. Measurements were carried out at the Wadi Mashash Experimental Farm in the Negev. To estimate deposition and evaporation of dew, a micro-lysimeter (diameter: 20 cm; soil depth: 50 cm) with an undisturbed soil sample was installed flush with the soil surface. The following were continuously monitored: micro-lysimeter weight, incoming and reflected short wave radiation, net radiation, dry and wet bulb temperatures, wind speed, and soil heat flux. A Hiltner Dew Balance was placed close by as a reference to compare with previous measurements. Throughout the ``dew period" (spring, summer and fall), and at random intervals, soil samples were taken hourly during the whole night. The uppermost 10 cm of the soil was divided into 1 cm intervals, and the soil moisture content was measured (oven dry). During the above-mentioned night campaigns, no dew deposition could be visually detected on the soil surface. A mass gain was however registered with the ML and an increase in moisture content was observed. The Hiltner balance clearly underestimated dew deposition amounts. These results indicate that although no visual signs of dew deposition could be detected, moisture did penetrate into the soil.
USDA-ARS?s Scientific Manuscript database
Vera et al. (2009) compared estimates of soil profile water content (mm) to a depth of 0.8 m made with the neutron moisture meter (NMM) and a multi-depth capacitance probe (MDCP), using measurements replicated in four drainage lysimeters (5 m x 5 m x 1.5-m deep). The NMM estimates of water content w...
Loss of nitrate (NO3-) from grazing land is a major cause for surface and ground water contamination. These losses can further increase when other N sources apply to grazing land. The objectives of this work were 1) to study the impact of either dairy effl...
EFFECT OF SIMULATED SULFURIC ACID RAIN ON THE CHEMISTRY OF A SULFATE-ADSORBING FOREST SOIL
Simulated H2SO4 rain (pH 3.0, 3.5, 4.0) or control rain (pH 5.6) was applied for 3.5 yr to large lysimeter boxes containing a sulfate-adsorbing forest soil and either red alder (Alnus rubra) or sugar maple (Acer saccharum) seedlings. After removal of the plants and the litter lay...
Fate of the antibiotic sulfadiazine in natural soils: Experimental and numerical investigations.
Engelhardt, Irina; Sittig, Stephan; Šimůnek, Jirka; Groeneweg, Joost; Pütz, Thomas; Vereecken, Harry
2015-01-01
Based on small-scale laboratory and field-scale lysimeter experiments, the sorption and biodegradation of sulfonamide sulfadiazine (SDZ) were investigated in unsaturated sandy and silty-clay soils. Sorption and biodegradation were low in the laboratory, while the highest leaching rates were observed when SDZ was mixed with manure. The leaching rate decreased when SDZ was mixed with pure water, and was smallest with the highest SDZ concentrations. In the laboratory, three transformation products (TPs) developed after an initial lag phase. However, the amount of TPs was different for different mixing-scenarios. The TP 2-aminopyrimidine was not observed in the laboratory, but was the most prevalent TP at the field scale. Sorption was within the same range at the laboratory and field scales. However, distinctive differences occurred with respect to biodegradation, which was higher in the field lysimeters than at the laboratory scale. While the silty-clay soil favored sorption of SDZ, the sandy, and thus highly permeable, soil was characterized by short half-lives and thus a quick biodegradation of SDZ. For 2-aminopyrimidine, half-lives of only a few days were observed. Increased field-scale biodegradation in the sandy soil resulted from a higher water and air permeability that enhanced oxygen transport and limited oxygen depletion. Furthermore, low pH was more important than the organic matter and clay content for increasing the biodegradation of SDZ. A numerical analysis of breakthrough curves of bromide, SDZ, and its TPs showed that preferential flow pathways strongly affected the solute transport within shallow parts of the soil profile at the field scale. However, this effect was reduced in deeper parts of the soil profile. Due to high field-scale biodegradation in several layers of both soils, neither SDZ nor 2-aminopyrimidine was detected in the discharge of the lysimeter at a depth of 1m. Synthetic 50 year long simulations, which considered the application of manure with SDZ for general agricultural practices in Germany and humid climate conditions, showed that the concentration of SDZ decreased below 0.1 μg/L in both soils below the depth of 50 cm. Copyright © 2015 Elsevier B.V. All rights reserved.
Fate of the antibiotic sulfadiazine in natural soils: Experimental and numerical investigations
NASA Astrophysics Data System (ADS)
Engelhardt, Irina; Sittig, Stephan; Šimůnek, Jirka; Groeneweg, Joost; Pütz, Thomas; Vereecken, Harry
2015-06-01
Based on small-scale laboratory and field-scale lysimeter experiments, the sorption and biodegradation of sulfonamide sulfadiazine (SDZ) were investigated in unsaturated sandy and silty-clay soils. Sorption and biodegradation were low in the laboratory, while the highest leaching rates were observed when SDZ was mixed with manure. The leaching rate decreased when SDZ was mixed with pure water, and was smallest with the highest SDZ concentrations. In the laboratory, three transformation products (TPs) developed after an initial lag phase. However, the amount of TPs was different for different mixing-scenarios. The TP 2-aminopyrimidine was not observed in the laboratory, but was the most prevalent TP at the field scale. Sorption was within the same range at the laboratory and field scales. However, distinctive differences occurred with respect to biodegradation, which was higher in the field lysimeters than at the laboratory scale. While the silty-clay soil favored sorption of SDZ, the sandy, and thus highly permeable, soil was characterized by short half-lives and thus a quick biodegradation of SDZ. For 2-aminopyrimidine, half-lives of only a few days were observed. Increased field-scale biodegradation in the sandy soil resulted from a higher water and air permeability that enhanced oxygen transport and limited oxygen depletion. Furthermore, low pH was more important than the organic matter and clay content for increasing the biodegradation of SDZ. A numerical analysis of breakthrough curves of bromide, SDZ, and its TPs showed that preferential flow pathways strongly affected the solute transport within shallow parts of the soil profile at the field scale. However, this effect was reduced in deeper parts of the soil profile. Due to high field-scale biodegradation in several layers of both soils, neither SDZ nor 2-aminopyrimidine was detected in the discharge of the lysimeter at a depth of 1 m. Synthetic 50 year long simulations, which considered the application of manure with SDZ for general agricultural practices in Germany and humid climate conditions, showed that the concentration of SDZ decreased below 0.1 μg/L in both soils below the depth of 50 cm.
NASA Astrophysics Data System (ADS)
Evett, Steven R.; Kustas, William P.; Gowda, Prasanna H.; Anderson, Martha C.; Prueger, John H.; Howell, Terry A.
2012-12-01
In 2008, scientists from seven federal and state institutions worked together to investigate temporal and spatial variations of evapotranspiration (ET) and surface energy balance in a semi-arid irrigated and dryland agricultural region of the Southern High Plains in the Texas Panhandle. This Bushland Evapotranspiration and Agricultural Remote sensing EXperiment 2008 (BEAREX08) involved determination of micrometeorological fluxes (surface energy balance) in four weighing lysimeter fields (each 4.7 ha) containing irrigated and dryland cotton and in nearby bare soil, wheat stubble and rangeland fields using nine eddy covariance stations, three large aperture scintillometers, and three Bowen ratio systems. In coordination with satellite overpasses, flux and remote sensing aircraft flew transects over the surrounding fields and region encompassing an area contributing fluxes from 10 to 30 km upwind of the USDA-ARS lysimeter site. Tethered balloon soundings were conducted over the irrigated fields to investigate the effect of advection on local boundary layer development. Local ET was measured using four large weighing lysimeters, while field scale estimates were made by soil water balance with a network of neutron probe profile water sites and from the stationary flux systems. Aircraft and satellite imagery were obtained at different spatial and temporal resolutions. Plot-scale experiments dealt with row orientation and crop height effects on spatial and temporal patterns of soil surface temperature, soil water content, soil heat flux, evaporation from soil in the interrow, plant transpiration and canopy and soil radiation fluxes. The BEAREX08 field experiment was unique in its assessment of ET fluxes over a broad range in spatial scales; comparing direct and indirect methods at local scales with remote sensing based methods and models using aircraft and satellite imagery at local to regional scales, and comparing mass balance-based ET ground truth with eddy covariance and remote sensing-based methods. Here we present an overview of the experiment and a summary of preliminary findings described in this special issue of AWR. Our understanding of the role of advection in the measurement and modeling of ET is advanced by these papers integrating measurements and model estimates.
Evapotranspiration using a satellite-based surface energy balance with standardized ground control
NASA Astrophysics Data System (ADS)
Trezza, Ricardo
This study evaluated the potential of using the S&barbelow;urface E&barbelow;nergy Ḇalance A&barbelow;lgorithm for Ḻand (SEBAL) as a means for estimating evapotranspiration (ET) for local and regional scales in Southern Idaho. The original SEBAL model was refined during this study to provide better estimation of ET in agricultural areas and to make more reliable estimates of ET from other surfaces as well, including mountainous terrain. The modified version of SEBAL used in this study, termed as SEBALID (ID stands for Idaho) includes standardization of the two SEBAL "anchor" pixels, the use of a water balance model to track top soil moisture, adaptation of components of SEBAL for better prediction of the surface energy balance in mountains and sloping terrain, and use of the ratio between actual ET and alfalfa reference evapotranspiration (ET r) as a means for obtaining the temporal integration of instantaneous ET to daily and seasonal values. Validation of the SEBALID model at a local scale was performed by comparing lysimeter ET measurements from the USDA-ARS facility at Kimberly, Idaho, with ET predictions by SEBAL using Landsat 5 TM imagery. Comparison of measured and predicted ET values was challenging due to the resolution of the Landsat thermal band (120m x 120m) and the relatively small size of the lysimeter fields. In the cases where thermal information was adequate, SEBALID predictions were close to the measured values of ET in the lysimeters. Application of SEBALID at a regional scale was performed using Landsat 7 ETM+ and Landsat 5 TM imagery for the Eastern Snake Plain Aquifer (ESPA) region in Idaho during 2000. The results indicated that SEBALID performed well for predicting daily and seasonal ET for agricultural areas. Some unreasonable results were obtained for desert and basalt areas, due to uncertainties of the prediction of surface parameters. In mountains, even though validation of results was not possible, the values of ET obtained reflected the progress produced by the refinements made to the original SEBAL algorithm.
Du, Wenchao; Gardea-Torresdey, Jorge L; Ji, Rong; Yin, Ying; Zhu, Jianguo; Peralta-Videa, Jose R; Guo, Hongyan
2015-10-06
Interactions of nCeO2 with plants have been mostly evaluated at seedling stage and under controlled conditions. In this study, the effects of nCeO2 at 0 (control), 100 (low), and 400 (high) mg/kg were monitored for the entire life cycle (about 7 months) of wheat plants grown in a field lysimeter. Results showed that at high concentration nCeO2 decreased the chlorophyll content and increased catalase and superoxide dismutase activities, compared with control. Both concentrations changed root and leaf cell microstructures by agglomerating chromatin in nuclei, delaying flowering by 1 week, and reduced the size of starch grains in endosperm. Exposed to low concentration produced embryos with larger vacuoles, while exposure to high concentration reduced number of vacuoles, compared with control. There were no effects on the final biomass and yield, Ce concentration in shoots, as well as sugar and starch contents in grains, but grain protein increased by 24.8% and 32.6% at 100 and 400 mg/kg, respectively. Results suggest that more field life cycle studies are needed in order to better understand the effects of nCeO2 in crop plants.
Mechtensimer, Sara
2017-01-01
Septic systems can be a potential source of phosphorus (P) in groundwater and contribute to eutrophication in aquatic systems. Our objective was to investigate P transport from two conventional septic systems (drip dispersal and gravel trench) to shallow groundwater. Two new in-situ drainfields (6.1 m long by 0.61 m wide) with a 3.72 m2 infiltrative surface were constructed. The drip dispersal drainfield was constructed by placing 30.5 cm commercial sand on top of natural soil and the gravel trench drainfield was constructed by placing 30.5 cm of gravel on top of 30.5 cm commercial sand and natural soil. Suction cup lysimeters were installed in the drainfields (at 30.5, 61, 106.7 cm below infiltrative surface) and piezometers were installed in the groundwater (>300 cm below infiltrative surface) to capture P dynamics from the continuum of unsaturated to saturated zones in the septic systems. Septic tank effluent (STE), soil-water, and groundwater samples were collected for 64 events (May 2012–Dec 2013) at 2 to 3 days (n = 13), weekly (n = 29), biweekly (n = 17), and monthly (n = 5) intervals. One piezometer was installed up-gradient of the drainfields to monitor background groundwater (n = 15). Samples were analyzed for total P (TP), orthophosphate-P (PO4–P), and other–P (TP—PO4-P). The gravel trench drainfield removed significantly (p<0.0001) greater TP (~20%) than the drip dispersal in the first 30.5 cm of the drainfield. However, when STE reached >300 cm in the groundwater, both systems had similar TP reductions of >97%. After 18 months of STE application, there was no significant increase in groundwater TP concentrations in both systems. We conclude that both drainfield designs are effective at reducing P transport to shallow groundwater. PMID:28107505
Mechtensimer, Sara; Toor, Gurpal S
2017-01-01
Septic systems can be a potential source of phosphorus (P) in groundwater and contribute to eutrophication in aquatic systems. Our objective was to investigate P transport from two conventional septic systems (drip dispersal and gravel trench) to shallow groundwater. Two new in-situ drainfields (6.1 m long by 0.61 m wide) with a 3.72 m2 infiltrative surface were constructed. The drip dispersal drainfield was constructed by placing 30.5 cm commercial sand on top of natural soil and the gravel trench drainfield was constructed by placing 30.5 cm of gravel on top of 30.5 cm commercial sand and natural soil. Suction cup lysimeters were installed in the drainfields (at 30.5, 61, 106.7 cm below infiltrative surface) and piezometers were installed in the groundwater (>300 cm below infiltrative surface) to capture P dynamics from the continuum of unsaturated to saturated zones in the septic systems. Septic tank effluent (STE), soil-water, and groundwater samples were collected for 64 events (May 2012-Dec 2013) at 2 to 3 days (n = 13), weekly (n = 29), biweekly (n = 17), and monthly (n = 5) intervals. One piezometer was installed up-gradient of the drainfields to monitor background groundwater (n = 15). Samples were analyzed for total P (TP), orthophosphate-P (PO4-P), and other-P (TP-PO4-P). The gravel trench drainfield removed significantly (p<0.0001) greater TP (~20%) than the drip dispersal in the first 30.5 cm of the drainfield. However, when STE reached >300 cm in the groundwater, both systems had similar TP reductions of >97%. After 18 months of STE application, there was no significant increase in groundwater TP concentrations in both systems. We conclude that both drainfield designs are effective at reducing P transport to shallow groundwater.
Rainwater propagation through snow during artificial rain-on-snow events
NASA Astrophysics Data System (ADS)
Juras, Roman; Würzer, Sebastian; Pavlasek, Jiri; Jonas, Tobias
2016-04-01
The mechanism of rainwater propagation and runoff generation during rain-on-snow (ROS) is still insufficiently known. Understanding rainwater behaviour within the natural snowpack is crucial especially for forecasting of natural hazards like floods and wet snow avalanches. In this study, rainwater percolation through snow was investigated by sprinkling the naturally stable isotope deuterium on snow and conduct hydrograph separation on samples collected from the snowpack runoff. This allowed quantifying the contribution of rainwater and snowmelt in the water released from the snowpack. Four field experiments were carried out during the winter 2015 in the vicinity of Davos, Switzerland. A 1 by 1 m block of natural snow cover was isolated from the surrounding snowpack to enable a closed water balance. This experimental snow sample was exposed to artificial rainfall with 41 mm of deuterium enriched water. The sprinkling was run in four 30 minutes intervals separated by three 30 minutes non-sprinkling intervals. The runoff from the snow cube was monitored quantitatively by a snow lysimeter and output water was continuously sampled for the deuterium concentration. Further, snowpack properties were analysed before and after the sprinkling, including vertical profiles of snow density, liquid water content (LWC) and deuterium concentration. One experiment conducted on cold snowpack showed that rainwater propagated much faster as compared to three experiments conducted on ripe isothermal snowpack. Our data revealed that sprinkled rainwater initially pushed out pre-event LWC or mixed with meltwater created within the snowpack. Hydrographs from every single experiment showed four pronounced peaks, with the first peak always consisted of less rainwater than the following ones. The partial contribution of rainwater to the total runoff consistently increased over the course of the experiment, but never exceeded 63 %. Moreover, the development of preferential paths after the first sprinkling period caused a quicker runoff response in subsequent periods.
Hippe, D.J.; Hall, D.W.
1996-01-01
Physical and chemical data were collected from May 1991 through April 1993 at a 4.5 hectare field site in Cumberland County, Pa., about 5 kilometers southeast of Newville. These data were used to define the hydrogeologic setting of a field site representative of the intensively farmed carbonate valleys of southeastern and south-central Pennsylvania. The environmental processing of commonly used pesticides (herbicides, fungicides, and insecticides) in the unsaturated zone was simulated with a process- oriented digital model to evaluate the environmental fate and transport of pesticides to ground water. Site data and modelling results provide a basis for a discussion of water-quality implications of agricultural best-management practices. The carbonate valleys of Pennsylvania comprise regolith-mantled carbonate-rock terrains that consist of broad undulating upland areas dissected by mostly dry valleys and widely spaced spring-fed creeks. The upland areas are farmed and exhibit possess a doline karst topography with many closed depressions, sinkholes, and bedrock outcrops. Unsaturated materials at the field site consist of an almost continuous soil cover composed of fine-grained residuum underlain by an intermediate vadose zone composed of karstified limestone. Soils are absent on scattered bedrock outcrops and are more than 12 meters thick in other areas of the site. The soil profile stores appreciable quantities of water with a volumetric average of about 36 percent water at field capacity. Organic carbon content of soil materials is about 1.7 percent in the Ap-horizon and from 0.1 to 0.3 percent throughout the full thickness of the B- and C-horizons. Atrazine, metolachlor, simazine, and the atrazine soil metabolites deethylatrazine and deisopropylatrazine were detected at concentrations above 0.05 mg/L in just the upper 0.6 meters of soil materials. However, detectable concentrations of atrazine, simazine, and atrazine soil metabolites were measured in water samples from lysimeters installed in soil materials at depths of 1.2, 2.1, and 3.7 meters and from monitor wells completed in the saturated zone to depths of 122 meters. Data collected from the field site were used to configure a pesticide screening model based on the pesticide version of the leaching estimation and chemistry model (LEACHP) developed by Wagenet and Hutson (1987). Model simulations show that most field-applied pesticides volatilize to the atmosphere, accumulate in soils, degrade in the subsurface environment, or leach to ground water. Model results were used to rank the leaching potentials of 66 pesticides. Eighteen of 32 herbicides, 4 of 9 fungicides, and 10 of 25 insecticides have moderate to large potential for leaching to ground water. A review of available pesticide monitoring data suggests that many compounds given moderate or high leaching potentials have not been tested for in ground water and the presence of pesticides in Pennsylvania's ground water may be underreported. Monitoring data do not exist for more than two-thirds of the pesticide compounds currently used in agricultural, carbonate areas of Pennsylvania. Knowledge of processes that govern fate and transport of pesticides is needed to facilitate development of effective pesticide best-management practices. In addition to comprehensive monitoring for pesticides and pesticide degradation products in ground water downgradient of areas of pesticide use, improved (1) characterization of unsaturated flow and transport through regolith mantled carbonate rocks, (2) estimates of pesticide degradation rates, (3) understanding of soil-property controls on pesticide movement, and (4) management models developed from process-oriented research would aid in understanding the processes.
Osako, Masahiro; Kim, Yong-Jin; Lee, Dong-Hoon
2002-09-01
A field investigation by boring was carried out in a landfill site primarily with municipal solid waste incineration residue. From the collected core samples, vertical profiles of homologous content of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs) in the landfill layer were traced and the behavior of PCDDs/PCDFs was examined. In addition, a pilot-scale study was conducted on the PCDDs/PCDFs leached from incineration fly ash and the treated one using large landfill simulation columns (lysimeters) and the leaching behavior of PCDDs/PCDFs was examined. As a result, it was found that the coexistence of dissolved coloring constituents (DCCs), which might be composed of constituents like dissolved humic matters having strong affinity for hydrophobic organic pollutants, could enhance the leachability of PCDDs/PCDFs, thus contributing to the vertical movement and leaching behavior of PCDDs/PCDFs in the landfill layers of the incineration residue. Moreover, it is highly probable that DCCs derive from the unburned carbon in the bottom ash mixed and buried with the fly ash containing a high content of PCDDs/PCDFs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitoring data I must collect with my continuous emission monitoring systems, and is the data collection... collect with my continuous emission monitoring systems, and is the data collection requirement enforceable? (a) Where continuous emission monitoring systems are required, obtain 1-hour arithmetic averages...
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring data I must collect with my continuous emission monitoring systems, and is the data collection... collect with my continuous emission monitoring systems, and is the data collection requirement enforceable? (a) Where continuous emission monitoring systems are required, obtain 1-hour arithmetic averages...
Jelusic, Masa; Lestan, Domen
2015-11-01
Soils highly contaminated with toxic metals are currently treated as waste despite their potential inherent fertility. We applied EDTA washing technology featuring chelant and process water recovery for remediation of soil with 4037, 2527, and 26 mg kg(-1) of Pb, Zn and Cd, respectively in a pilot scale. A high EDTA dose (120 mmol kg(-1) of soil) removed 70%, 15%, and 58% of Pb, Zn, and Cd, respectively, and reduced human oral bioaccessibility of Pb below the limit of quantification and that of Zn and Cd 3.4 and 3.2 times. In a lysimeters experiment, the contaminated and remediated soils were laid into two garden beds (4×1×0.15 m) equipped with lysimeters, and subjected to cultivation of ornamental plants: Impatiens walleriana, Tagetes erecta, Pelargonium×peltatum, and Verbena×hybrida and grasses: Dactylis glomerata, Lolium multiflorum, and Festuca pratensis. Plants grown on remediated soil demonstrated the same or greater biomass yield and reduced the uptake of Pb, Zn and Cd up to 10, 2.5 and 9.5 times, respectively, compared to plants cultivated on the original soil. The results suggest that EDTA remediation produced soil suitable for greening. Copyright © 2014 Elsevier Ltd. All rights reserved.
Estimating Recharge From Soil Water Tension Data
NASA Astrophysics Data System (ADS)
Sisson, J. B.; Gee, G. W.
2001-12-01
Effectively managing an aquifer requires accurate estimates of the ambient flux as well as the travel time of annual pulses to pass through the vadose zone. When soil water potential and/or water content data are available together with unsaturated hydraulic properties the ambient flux can be estimated using Darcy's Law. A field site, the Buried Waste Test Facility, located at Hanford WA was instrumented with advanced tensiometers to a depth of 20 ft bls and data obtained over a 2 year period. The unsaturated hydraulic properties were available at the closed bottom lysimeter from previous studies. The ambient flux was estimated from the rate of pumpage from the lysimeter to be 55 mm/y. Data from the tensiometers indicated a unit gradient in total water potential at depths greater than 4 m. Thus, the ambient flux was numerically equal to the unsaturated hydraulic conductivity. The data also clearly show the passage of wetting fronts beyond 2.3 m and with some imagination to depths beyond 4.3 m. Using the tensiometer data together with previously estimated hydraulic properties resulted in estimates of ambient flux that ranged from about 10 to 120 mm/y. These estimates were found to depend on the length of the period, for which soil water potentials were averaged, and on how the hydraulic conductivity was averaged.
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitoring data I must collect with my continuous parameter monitoring systems and is the data collection... must collect with my continuous parameter monitoring systems and is the data collection requirement enforceable? (a) Where continuous parameter monitoring systems are used, obtain 1-hour arithmetic averages for...
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring data I must collect with my continuous emission monitoring systems and is the data collection... I must collect with my continuous emission monitoring systems and is the data collection requirement enforceable? (a) Where continuous emission monitoring systems are required, obtain 1-hour arithmetic averages...
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring data I must collect with my continuous parameter monitoring systems and is the data collection... must collect with my continuous parameter monitoring systems and is the data collection requirement enforceable? (a) Where continuous parameter monitoring systems are used, obtain 1-hour arithmetic averages for...
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitoring data I must collect with my continuous emission monitoring systems and is the data collection... I must collect with my continuous emission monitoring systems and is the data collection requirement enforceable? (a) Where continuous emission monitoring systems are required, obtain 1-hour arithmetic averages...
Formation and transport of deethylatrazine in the soil and vadose zone
Adams, C.D.; Thurman, E.M.
1991-01-01
Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and two degradation products were monitored at seven depths in the soil and vadose zone throughout the growing season in two experimental plots in which corn (Zea mays L.) was grown. The soils in these plots were a Kimo silty clay loam (clayey over loamy, montmorillonitic, mesic, Fluvaquentic Hapludoll) and a Eudora silt loam (course, silty, mixed, mesic, Fluventic Hapludoll). The purpose this field study was to identify and quantify the mobile and persistent degradation products of atrazine that comprise the input, or “source term,” to groundwater resulting from the application of atrazine to the soils. The formation of deethylatrazine (2-amino-4-chloro-6-isopropylamino-s-triazine) and deisopropylatrazine (2-amino-4-chloro-6-ethylamino-s-triazine) was monitored at vurious depths using suction lysimeters to determine the relative proportions at which these compounds enter the aquifer. Deethylatrazine was the major degradation product of atrazine identified in the soil water and appeared to enter the underlying aquifer at a concentration of 5.0 µg/L, which was greater than the concentration of atrazine entering the aquifer. Deisopropylatrazine also was detected in the soil water, bnt only in minor concentrations relative to atrazine and deethylatrazine. Because deethylatrazine was the major degradation product in the unsaturated zone, the deethylatrazine-to-atrazine ratio (DAR) may be a good indicator of transport of atrazine through the soil. The hypothesis is proposed that the DAR may be used to distinguish point-source from nonpoint-source contamination of an aquifer.
Activated carbon amendment to sequester PAHs in contaminated soil: a lysimeter field trial.
Hale, Sarah E; Elmquist, Marie; Brändli, Rahel; Hartnik, Thomas; Jakob, Lena; Henriksen, Thomas; Werner, David; Cornelissen, Gerard
2012-04-01
Activated carbon (AC) amendment is an innovative method for the in situ remediation of contaminated soils. A field-scale AC amendment of either 2% powder or granular AC (PAC and GAC) to a PAH contaminated soil was carried out in Norway. The PAH concentration in drainage water from the field plot was measured with a direct solvent extraction and by deploying polyoxymethylene (POM) passive samplers. In addition, POM samplers were dug directly in the AC amended and unamended soil in order to monitor the reduction in free aqueous PAH concentrations in the soil pore water. The total PAH concentration in the drainage water, measured by direct solvent extraction of the water, was reduced by 14% for the PAC amendment and by 59% for GAC, 12 months after amendment. Measurements carried out with POM showed a reduction of 93% for PAC and 56% for GAC. The free aqueous PAH concentration in soil pore water was reduced 93% and 76%, 17 and 28 months after PAC amendment, compared to 84% and 69% for GAC. PAC, in contrast to GAC, was more effective for reducing freely dissolved concentrations than total dissolved ones. This could tentatively be explained by leaching of microscopic AC particles from PAC. Secondary chemical effects of the AC amendment were monitored by considering concentration changes in dissolved organic carbon (DOC) and nutrients. DOC was bound by AC, while the concentrations of nutrients (NO(3), NO(2), NH(4), PO(4), P-total, K, Ca and Mg) were variable and likely affected by external environmental factors. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gassmann, Matthias; Olsson, Oliver; Höper, Heinrich; Hamscher, Gerd; Kümmerer, Klaus
2016-04-01
The simulation of reactive transport in the aquatic environment is hampered by the ambiguity of environmental fate process conceptualizations for a specific substance in the literature. Concepts are usually identified by experimental studies and inverse modelling under controlled lab conditions in order to reduce environmental uncertainties such as uncertain boundary conditions and input data. However, since environmental conditions affect substance behaviour, a re-evaluation might be necessary under environmental conditions which might, in turn, be affected by uncertainties. Using a combination of experimental data and simulations of the leaching behaviour of the veterinary antibiotic Sulfamethazine (SMZ; synonym: sulfadimidine) and the hydrological tracer Bromide (Br) in a field lysimeter, we re-evaluated the sorption concepts of both substances under uncertain field conditions. Sampling data of a field lysimeter experiment in which both substances were applied twice a year with manure and sampled at the bottom of two lysimeters during three subsequent years was used for model set-up and evaluation. The total amount of leached SMZ and Br were 22 μg and 129 mg, respectively. A reactive transport model was parameterized to the conditions of the two lysimeters filled with monoliths (depth 2 m, area 1 m²) of a sandy soil showing a low pH value under which Bromide is sorptive. We used different sorption concepts such as constant and organic-carbon dependent sorption coefficients and instantaneous and kinetic sorption equilibrium. Combining the sorption concepts resulted in four scenarios per substance with different equations for sorption equilibrium and sorption kinetics. The GLUE (Generalized Likelihood Uncertainty Estimation) method was applied to each scenario using parameter ranges found in experimental and modelling studies. The parameter spaces for each scenario were sampled using a Latin Hypercube method which was refined around local model efficiency maxima. Results of the cumulative SMZ leaching simulations suggest a best conceptualization combination of instantaneous sorption to organic carbon which is consistent with the literature. The best Nash-Sutcliffe efficiency (Neff) was 0.96 and the 5th and 95th percentile of the uncertainty estimation were 18 and 27 μg. In contrast, both scenarios of kinetic Br sorption had similar results (Neff =0.99, uncertainty bounds 110-176 mg and 112-176 mg) but were clearly better than instantaneous sorption scenarios. Therefore, only the concept of sorption kinetics could be identified for Br modelling whereas both tested sorption equilibrium coefficient concepts performed equally well. The reasons for this specific case of equifinality may be uncertainties of model input data under field conditions or an insensitivity of the sorption equilibrium method due to relatively low adsorption of Br. Our results show that it may be possible to identify or at least falsify specific sorption concepts under uncertain field conditions using a long-term leaching experiment and modelling methods. Cases of environmental fate concept equifinality arouse the possibility of future model structure uncertainty analysis using an ensemble of models with different environmental fate concepts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitoring data I must collect with my continuous emission monitoring systems, and is the data collection... with my continuous emission monitoring systems, and is the data collection requirement enforceable? (a) Where continuous emission monitoring systems are required, obtain 1-hour arithmetic averages. Make sure...
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring data I must collect with my continuous parameter monitoring systems and is the data collection... parameter monitoring systems and is the data collection requirement enforceable? (a) Where continuous parameter monitoring systems are used, obtain 1-hour arithmetic averages for three parameters: (1) Load...
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitoring data I must collect with my continuous parameter monitoring systems and is the data collection... parameter monitoring systems and is the data collection requirement enforceable? (a) Where continuous parameter monitoring systems are used, obtain 1-hour arithmetic averages for three parameters: (1) Load...
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring data I must collect with my continuous emission monitoring systems, and is the data collection... with my continuous emission monitoring systems, and is the data collection requirement enforceable? (a) Where continuous emission monitoring systems are required, obtain 1-hour arithmetic averages. Make sure...
Baseflow separation in a premontane transitional rainforest using stable isotope techniques
NASA Astrophysics Data System (ADS)
Miller, G. R.; DuMont, A.; Roark, E.; Cahill, A. T.; Brumbelow, J. K.
2013-12-01
Hydrologic, geologic, and biologic processes are critical to understanding the ecosystem in the tropical premontane transitional forests of Costa Rica. Precipitation is significantly lower during the dry season, and incoming rainfall can be completely intercepted and re-evaporated by the canopy during light events. These canopy processes can affect the rates of runoff and infiltration by changing the quantity and timing of rainfall reaching the ground surface. However, the resulting partitioning of stream water sources between event-water and baseflow from groundwater is not well quantified due to limited accessibility and complex subsurface conditions. This study focuses on research conducted at the Texas A&M Soltis Center for Education and Research, near San Ramón, Costa Rica. We have monitored a 2.2 ha watershed there, measuring precipitation and transpiration rates for over two years, and groundwater levels and stream flow rates for nearly one year. Precipitation rates for the watershed averaged 4.4 m/yr since 2010. Stream flow (runoff, spring flow, and baseflow) averaged 0.09 m^3/sec during the 2012-2013 wet seasons. At 1.2 mm/day, transpiration was a relatively minor component of the water budget. Over a 40-day span during summer 2013, we collected a combination of daily and rain-event based samples from locations throughout the watershed. Sources included: the main stream and two small tributaries, groundwater from piezometers, pore water from suction lysimeters, throughfall and stemflow from under canopy collection systems, and xylem water from 8 tree species across the watershed. We then measured stable isotope fractions (δ18O and δD) in the water using a Picarro L2120i CRDS. Isotope ratios for all surface water averaged -5.50‰ for δ18O and -28.00‰ for δD, while that measured under baseflow conditions were -5.45‰ for δ18O and -29.18‰ for δD. These results indicate that baseflow is the dominate source of stream water even in the wet season. We additionally conclude that despite the ubiquity of low permeability Andisols in this watershed, groundwater transport to the stream is characterized by short residence times attributable to macropore/fracture flow in the subsurface.
1992-10-01
infiltration studies ( Westerdahl and Skogerboe 1982). Extensive field 53 verification studies have been conducted with the WES Rainfall Simulator...Lysimeter System on a wide range of Corps project sites ( Westerdahl and Skogerboe 1982, Lee and Skogerboe 1984, Skogerboe et al. 1987). The WES Rain- fall...Vicksburg, MS. Winer, B. J. 1971. Statistical Principles in Experimental Design, McGraw- Hill Book Company, New York. Westerdahl , H. E., and Skogerboe, J
Nutrients levels in paddy soils and flood waters from Tagus-Sado basin: the impact of farming system
NASA Astrophysics Data System (ADS)
Santos, Erika S.; Abreu, Maria Manuela; Magalhães, Maria Clara; Viegas, Wanda; Amâncio, Sara; Cordovil, Cláudia
2017-04-01
Application of fertilizers for crops can contribute to nutrients surplus, namely nitrogen, in both groundwater and surface waters resulting in serious environmental problems. The impacts on water quality due to fertilizers are related to land management. In paddy fields using high amounts of water, the nutrient dynamic knowledge is essential to evaluate the impact of farming system. The aims of this study were to evaluate: i)nutrients levels in soils and floodwaters from rice cultivation in Tagus-Sado basin (Portugal); ii)the effect, under controlled conditions, of different irrigation techniques on nutrient enrichment of floodwaters from rice cultivation. Composite samples (n=24) of paddy soils (0-15 cm) and floodwaters were collected, during rice flooding period. In the field, pH and electrical conductivity (EC) were determined in waters. Soil pH, concentrations of Corganic, NPK and nutrients (Ca, Cu, Fe, Mg, Mn, Zn) in soils and floodwaters (nitrites, nitrates, phosphates) were determined. A mesocosm assay was performed in lysimeters with a paddy soil (pH: 5.6; g/kg- Ntotal: 2.0, Pextractable: 0.04, Kextractable: 0.6, Corganic: 35.5) and different irrigation techniques (n=3): a)flood; b)four floods per day (great water renewal); c)flood until rice flowering and then a normal superficial irrigation. Rice cultivation was done by transplant as in the field. Irrigation water come from a well. Same chemical characterization than in field assay were determined in floodwater and irrigation water. In field conditions, paddy soils had values of pH between 5.1 and 8.1 and a great fertility range (g/kg; Ntotal: 0.4‒2.2; Pextractable: 0.01‒0.2; Kextractable: 0.04‒0.7; Corganic: 6.5‒37.9). Total soil concentrations of Cu, Fe, and Zn in soils were in same range and below maximum admissible values for agriculture. Total soil concentrations of Ca, Mg and Mn, showed higher heterogeneity (g/kg; 1.2‒19.3, 7.6‒34.2 and 0.2‒1.5 respectively). Floodwaters presented pH ≈7 and, usually, EC>1 mS/cm (MRV‒maximum recommended value for irrigation water). Nitrites concentrations were <0.1 mg/L in floodwaters, while concentrations of nitrates (<2.4 mg/L), Cu (<2‒12.3 µg/L), Fe (<0.1‒0.9 mg/L) and Zn (0.04‒1.9 mg/L) were below MRV. The fertilizers used in rice cultivation did not seem to affect the water quality. Nitrates concentration in irrigation water of lysimeters (24 mg/L) was close to MVR for irrigation water. Intensive agriculture of corn surrounding the well can explain the greater nutrients concentrations, especially nitrates, nitrites and phosphates, in this water compared to water from river used for paddy fields irrigation. Independently of irrigation technique, nutrient concentrations in lysimeters floodwaters (except phosphates in some samples) were in same range of those in irrigation water from well. The nutrients excess in water seems not to be uptake by rice contributing to nutrient enrichment of nearby waters and soils. Studied paddy fields from Tejo-Sado basin are not a potential pollution source of nutrients. However, according mesocosm assay, the potential irrigation of paddy soils with water rich in nitrates can contribute to serious environmental risks. The authors are thankful to: Atlantic Meals for financial and sampling support, and NitroPortugal, H2020-TWINN-2015, EU coordination and support action n. 692331 funding.
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitoring data I must collect with my continuous emission monitoring systems and is the data collection... monitoring systems and is the data collection requirement enforceable? (a) Where continuous emission monitoring systems are required, obtain 1-hour arithmetic averages. Make sure the averages for sulfur dioxide...
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring data I must collect with my continuous emission monitoring systems and is the data collection... monitoring systems and is the data collection requirement enforceable? (a) Where continuous emission monitoring systems are required, obtain 1-hour arithmetic averages. Make sure the averages for sulfur dioxide...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fred J. Molz, III
To better understand longer-term vadose zone transport in southeastern soils, field lysimeter experiments were conducted at the Savannah River Site (SRS) near Aiken, SC, in the 1980s. Each of the three lysimeters analyzed herein contained a filter paper spiked with different Pu solutions, and they were left exposed to natural environmental conditions (including the growth of annual weed grasses) for 11 years. The resulting Pu activity measurements from each lysimeter core showed anomalous activity distributions below the source, with significant migration of Pu above the source. Such results are not explainable by adsorption phenomena alone. A transient variably saturated flowmore » model with root water uptake was developed and coupled to a soil reactive transport model. Somewhat surprisingly, the fully transient analysis showed results nearly identical to those of a much simpler steady flow analysis performed previously. However, all phenomena studied were unable to produce the upward Pu transport observed in the data. This result suggests another transport mechanism such as Pu uptake by roots and upward transport due to transpiration. Thus, the variably saturated flow and reactive transport model was extended to include uptake and transport of Pu within the root xylem, along with computational methodology and results. In the extended model, flow velocity in the soil was driven by precipitation input along with transpiration and drainage. Water uptake by the roots determined the flow velocity in the root xylem, and this along with uptake of Pu in the transpiration stream drove advection and dispersion of the two Pu species in the xylem. During wet periods with high potential evapotranspiration, maximum flow velocities through the xylem would approached 600 cm/hr, orders of magnitude larger that flow velocities in the soil. Values for parameters and the correct conceptual viewpoint for Pu transport in plant xylem was uncertain. This motivated further experiments devoted to Pu uptake by corn roots and xylem transport. Plants were started in wet paper wrapped around each corn seed. When the tap roots were sufficiently long, the seedlings were transplanted to a soil container with the tap root extending out the container bottom. The soil container was then placed over a nutrient solution container, and the solution served as an additional medium for root growth. To conduct an uptake study, a radioactive substance, such as Pu complexed with the bacterial siderophore DFOB, was added to the nutrient solution. After a suitable elapsed time, the corn plant was sacrificed, cut into 10 cm lengths, and the activity distribution measured. Experimental results clarified the basic nature of Pu uptake and transport in corn plants, and resulting simulations suggested that each growing season Pu in the SRS lysimeters would move into the plant shoots and be deposited on the soil surface during the Fall dieback. Subsequent isotope ratio analyses showed that this did happen. OVERALL RESULTS AND CONCLUSIONS - (1) Pu transport downward from the source is controlled by advection, dispersion and adsorption, along with surface-mediated REDOX reactions. (2) Hysteresis, extreme root distribution functions, air-content dependent oxidation rate constants, and large evaporation rates from the soil surface were not able to explain the observed upward migration of Pu. (3) Small amounts of Pu uptake by plant roots and translocation in the transpiration stream creates a realistic mechanism for upward Pu migration (4) Realistic xylem cross-sectional areas imply high flow velocities under hot, wet conditions. Such flow velocities produce the correct shape for the observed activity distributions in the top 20 cm of the lysimeter soil. (5) Simulations imply that Pu should have moved into the above-ground grass tissue each year during the duration of the experiments, resulting in an activity residual accumulating on the soil surface. An isotope ratio analysis showed that the observed surface Pu residue was from the buried sources, not atmospheric fallout. (6) The plant experiments indicate a Pu-DFOB velocity in the corn xylem of at least 174 cm/hr, much higher than ionic Pu in soil. Thus, Pu complexation with chelating agents is probably what led to the observed enhanced uptake and mobility in grasses. (7) Plant experiments show that the uptake of Fe-DFOB, Pu-DFOB and the resulting distributions are very similar. This supports the hypothesis that plant and bacterial iron-seeking chemistry mistakes Pu for Fe.« less
NASA Astrophysics Data System (ADS)
Eljuri, A. G.; Moffett, K. B.
2013-12-01
Rain gardens and retention ponds are intended to reduce storm water and pollutant runoff to rivers and streams, rain gardens by enhancing infiltration and retention ponds by promoting evaporation. The City of Austin, Texas is actively investing money and time into these storm water management solutions, but there are no data comparing their effectiveness. In particular, comparisons of rain gardens against control plots and new wetland-vegetated retention pond designs against traditional grassy pond designs are lacking. This study quantifies the quantity and quality of storm runoff to and from five sites: three engineered sites, two rain gardens receiving direct runoff from the same residential roof and a planted retention pond receiving municipal parking lot runoff, and two control sites, a mulched residential lawn receiving direct roof runoff and a grassy municipal retention pond receiving parking lot runoff. A locally installed rain gauge monitors precipitation rates and we collect and analyze rainwater chemistry. Each site is instrumented with bottles to collect direct runoff samples and suction lysimeters within and below the root zone, at 10 cm and 40 cm depth, from which to collect soil water. Soil moisture sensors at 5 cm, 25 cm, and 50 cm depth are used to monitor changes in soil moisture profiles over time. Evapotranspiration rates were determined using local meteorological data and stomatal conductance measurements at the sites. Infiltrometer tests, soil characterizations, and vegetation surveys were also conducted at each site. The soil at the rain gardens are highly mixed with pebbles at the top and become a more uniform soil towards the bottom of the root zone. This differs from the control site where the soil is uniform except for the thin layer of wood chips at the surface. The water samples were analyzed for pH, dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and cations (incl. cadmium, iron, zinc, and lead) and anions (incl. ammonia and nitrate). Samples of waters are taken immediately after rain events and soil moisture is taken both immediately after and two days after events. Austin summers experience fewer rainy days than the spring, fall, and winter, but summer storms are usually high-intensity and short-duration, increasing the potential for flooding. Seasonally, rainfall is somewhat more concentrated around May and October. We find that the negligible constituent concentrations of rainfall quickly become enriched in metals and nutrients from contact with impervious surfaces and that the presence of vegetation is critical, both as canopy over the surface, which promotes substantially higher nutrient levels in runoff (e.g., 1.45 ppm ammonia and 1.68 ppm nitrate under an overhanging tree compared to 0.57 ppm and 0.13 ppm not under the tree), and as plantings in the pond and gardens, which promote infiltration. These field data and a GIS study comparing different possible distributions of future rain gardens and vegetated retention ponds across the city provide much needed data and analysis to support decision making regarding these green storm water management solutions in central Texas.
NASA Technical Reports Server (NTRS)
Choudhury, Bhaskar J.
1997-01-01
Potential evaporation (E(0)) has been found to be useful in many practical applications and in research for setting a reference level for actual evaporation. All previous estimates of regional or global E(0) are based upon empirical formulae using climatologic meteorologic measurements at isolated stations (i.e., point data). However, the Penman-Monteith equation provides a physically based approach for computing E(0), and by comparing 20 different methods of estimating E(0), Jensen et al. (1990) showed that the Penman-Monteith equation provides the most accurate estimate of monthly E(0) from well-watered grass or alfalfa. In the present study, monthly total E(0) for 24 months (January 1987 to December 1988) was calculated from the Penman-Monteith equation, with prescribed albedo of 0.23 and surface resistance of 70 s/m, which are considered to be representative of actively growing well-watered grass covering the ground. These calculations have been done using spatially representative data derived from satellite observations and data assimilation results. Satellite observations were used to obtain solar radiation, fractional cloud cover, air temperature, and vapor pressure, while four-dimensional data assimilation results were used to calculate the aerodynamic resistance. Meteorologic data derived from satellite observations were compared with the surface measurements to provide a measure of accuracy. The accuracy of the calculated E(0) values was assessed by comparing with lysimeter observations for evaporation from well-watered grass at 35 widely distributed locations, while recognizing that the period of present calculations was not concurrent with the lysimeter measurements and the spatial scales of these measurements and calculations are vastly different. These comparisons suggest that the error in the calculated E(0) values may not be exceeded, on average, 20% for any month or location, but are more likely to be about 15%. These uncertainties are difficult to quantify for mountainous areas or locations close to extensive water bodies. The difference between the calculated and observed E(0) is about 5% when all month and locations were considered. Errors are expected to be less than 15% for averages of E(0) over large areas or several months. Further comparisons with lysimeter observations could provide a better appraisal of the calculated values. Global pattern of E(0) was presented, together with zonal average values.
Transport of atrazine and dicamba through silt and loam soils
Tindall, James A.; Friedel, Michael J.
2016-01-01
The objectives of this research were to determine the role of preferential flow paths in the transport of atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine) and dicamba (3-6-dichloro-2-methoxybenzoic acid) through silt and loam soils overlying the High Plains aquifer in Nebraska. In a previous study, 3 of 6 study areas demonstrated high percentages of macropores; those three areas were used in this study for analysis of chemical transport. As a subsequent part of the study, 12 intact soil cores (30-cm diameter by 40-cm height), were excavated sequentially, two from each of the following depths: 0-40cm and 40-80cm. These cores were used to study preferential flow characteristics using dye staining and to determine hydraulic properties. Two undisturbed experimental field plots, each with a 3-m2 surface area, were installed in three study areas in Nebraska. Each was instrumented with suction lysimeters and tensiometers at depths of 10cm to 80cm in 10-cm increments. Additionally, each plot was planted with corn (Zea mays). A neutron probe access tube was installed in each plot to determine soil w ater content at 15-cm intervals. All plots were enclosed w ith a raised frame (of 8-cm height) to prevent surface runoff. All suction lysimeters were purged monthly for three months and were sampled immediately prior to pre-plant herbicide application to obtain background chemical concentrations. Atrazine and dicamba moved rapidly through the soil, but only after a heavy rainfall event, probably owing to the presence of preferential flow paths and lack of microbial degradation in these soil areas. Staining of laboratory cores showed a positive correlation between the percent area stained by depth and the subsequent breakthrough of Br- in the laboratory and leaching of field-applied herbicides owing to large rainfall events. Suction lysimeter samples in the field showed increases in concentrations of herbicides at depths where laboratory data indicated greater percentages of what appeared to be preferential flow paths. Concentrations of atrazine and dicamba exceeding 0.30 and 0.05µg m1-1 were observed at depths of 10-30cm and 50-70cm after two months following heavy rainfall events. It appears from the laboratory experiment that preferential flow paths were a significant factor in transport of atrazine and dicamba.
Response of soil C fluxes to warming and irrigation in a lysimeter experiment
NASA Astrophysics Data System (ADS)
Beck, Kerstin; Schindlbacher, Andreas; Borken, Werner
2017-04-01
Current climate change alters the temperature and precipitation regime of alpine forests, but its impact on soil carbon (C) dynamics is not well known. Recent studies suggest substantial soil C losses through persistently enhanced mineralization of soil organic matter in the Northern European Calcareous Alps. These C losses could result from increasing soil respiration as the most important pathway of soil C processes followed by leaching of dissolved inorganic and organic C (DIC, DOC). Here, we studied the response of these three C fluxes to (I) soil warming (+4°C), (II) irrigation (+40% water), and (III) a combination of soil warming and irrigation relative to a (IV) control in a field lysimeter experiment. The lysimeters (n=5 per treatment) were filled with mineral soil from a humus-rich A-horizon of a Rendzic Leptosol and detrital dolomite (C-horizon). Soil warming revealed an increase in soil respiration by 52%, but no or little change in soil CO2 concentration, DIC and DOC leaching during the growing season. Irrigation increased DIC and DOC leaching by >70% but had no effect on soil respiration. The combination of soil warming and irrigation increased soil CO2 efflux by only 28%, while the DIC and DOC fluxes increased by about 70% as in the irrigation treatment. The positive correlation between seepage fluxes and DIC fluxes (R2=0.97) suggests that precipitation is a strong driver of DIC losses. Despite the strong linear relationship between DIC and soil CO2 concentrations (R2=0.82), latter was poorly correlated with DIC losses (R2=0.44). A first estimate using the concentrations of dissolved Mg and Ca cations in seepage suggests that abiogenic DIC from dolomite weathering contributed about 30% to the total DIC flux. The biogenic DIC flux contributed 1-3% and the DOC flux <1% to the total soil C loss during the growing season. Taking average seepage fluxes of about 1000 mm into account, as typical for the Northern European Alps, the DIC flux could account for up to 7% of the annual soil C loss. Our results suggest that warming triggers elevated C losses by CO2 efflux, while increasing precipitation enhances DIC losses.
NASA Astrophysics Data System (ADS)
Kim, M.; Pangle, L. A.; Cardoso, C.; Lora, M.; Wang, Y.; Harman, C. J.; Troch, P. A. A.
2014-12-01
Transit time distributions (TTD) are an efficient way of characterizing transport through the complex flow dynamics of a hydrologic system, and can serve as a basis for spatially-integrated solute transport modeling. Recently there has been progress in the development of a theory of time-variable TTDs that captures the effect of temporal variability in the timing of fluxes as well as changes in flow pathways. Furthermore, a new formulation of this theory allows the essential transport properties of a system to be parameterized by a physically meaningful time-variable probability distribution, the Ω function. This distribution determines how the age distribution of water in storage is sampled by the outflow. The form of the Ω function varies if the flow pathways change, but is not determined by the timing of fluxes (unlike the TTD). In this study, we use this theory to characterize transport by transient flows through a homogeneously packed 1 m3 sloping soil lysimeter. The transit time distribution associated with each of four irrigation periods (repeated daily for 24 days) are compared to examine the significance of changes in the Ω function due to variations in total storage, antecedent conditions, and precipitation intensity. We observe both the time-variable TTD and the Ω function experimentally by applying the PERTH method (Harman and Kim, 2014, GRL, 41, 1567-1575). The method allows us to observe multiple overlapping time-variable TTD in controlled experiments using only two conservative tracers. We hypothesize that both the TTD and the Ω function will vary in time, even in this small scale, because water will take different flow pathways depending on the initial state of the lysimeter and irrigation intensity. However, based on primarily modeling, we conjecture that major variability in the Ω function will be limited to a period during and immediately after each irrigation. We anticipate the Ω function is almost time-invariant (or scales simply with total storage) during the recession period because flow pathways are stable during this period. This is one of the first experimental studies of this type, and the results offer insights into solute transport in transient, variably-saturated systems.
Harned, Douglas
1988-01-01
An evaluation of water-quality data from streams that receive stormwater runoff from a segment of Interstate Highway 85 in North Carolina indicated increased levels of many constituents compared to levels in nearby undeveloped basins. Additional data collected from a network of dry and wet atmospheric deposition collectors, lysimeter samples, soil surveys, wind measurements, and road sweepings helped define the general sources and migration of chemical substances near the highway. The eight study basins, located in a rural area in the Piedmont of North Carolina, had a combined area of 17.5 square miles and drained a 4.8-mile-long segment of the interstate. The average traffic flow along this section was 25,000 vehicles per day. During storm runoff, streamflow in basins traversed by the highway rose and fell more rapidly than that in the undeveloped basins. This more rapid response is due to the impervious, paved area of the basins and the manmade drainage systems designed to rapidly move water off the highway. Alkalinity, specific conductance, and concentrations of calcium, sodium, and chloride were greater at the highway stations than in the undeveloped basins as a result of highway salting for control of ice. Specific conductance and concentrations of dissolved and total nitrogen peaked at the beginning of each storm event. The data indicated that, for the study basins, highway runoff had little or no effect on suspended sediment, water temperature, dissolved oxygen, and pH. However, the pH at all stations decreased during stormflow because the rainfall drained off by the streams had pH values less than 5.7. High metals concentrations were found in the soils within 100 feet of the highway and in the soil water infiltrating the soil zone. Chromium, copper, nickel, and zinc concentrations in the streams near the highway generally were above the maximum levels recommended by the U.S. Environmental Protection Agency (EPA) for the protection of aquatic life. Lead and cadmium concentrations frequently exceeded the maximum levels recommended by the EPA for drinking water. The highway is a source of contaminants to surrounding areas. Particulate and metal loads in dustfall and chemical-constituent concentrations in soils decrease exponentially with distance from the highway. The highest concentrations of contaminants were found on the downwind side. Increased concentrations of metals (cadmium, chromium, iron, lead, nickel, and zinc) in rainfall were observed in samples collected near the highway and in samples collected approximately one-half mile away. Material loading due to dustfall was greater than loading due to rainfall. Loading due to saltated particles, those heavier particles bounced along the highway surface, was higher than loading due to dustfall. Saltation loads were greatest during the winter months because of highway deicing and sanding, which supplied an estimated two-thirds of the saltated materials. The remaining one-third of the saltated load came primarily from the deposition of particles from vehicles. Some of the greatest constituent concentrations were measured in the soil water sampled from the lysimeters located adjacent to the highway.
Fruit load governs transpiration of olive trees
Bustan, Amnon; Dag, Arnon; Yermiyahu, Uri; Erel, Ran; Presnov, Eugene; Agam, Nurit; Kool, Dilia; Iwema, Joost; Zipori, Isaac; Ben-Gal, Alon
2016-01-01
We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from trees at three separate stages of growth: early, mid and late in the season. Tree-scale transpiration, calculated from lysimeter water balance, was found to be a function of fruit load, canopy size and weather conditions. Fruit removal caused an immediate decline in water consumption, measured as whole-plant transpiration normalized to tree size, which persisted until the end of the season. The later the execution of fruit removal, the greater was the response. The amount of water transpired by a fruit-loaded tree was found to be roughly 30% greater than that of an equivalent low- or nonyielding tree. The tree-scale response to fruit was reflected in stem water potential but was not mirrored in leaf-scale physiological measurements of stomatal conductance or photosynthesis. Trees with low or no fruit load had higher vegetative growth rates. However, no significant difference was observed in the overall aboveground dry biomass among groups, when fruit was included. This case, where carbon sources and sinks were both not limiting, suggests that the role of fruit on water consumption involves signaling and alterations in hydraulic properties of vascular tissues and tree organs. PMID:26802540
Jelusic, Masa; Lestan, Domen
2014-03-15
We applied a multi-level approach assessing the quality, toxicity and functioning of Pb, Zn and Cd contaminated/remediated soil from a vegetable garden in Meza Valley, Slovenia. Contaminated soil was extracted with EDTA and placed into field experimental plots equipped with lysimeters. Soil properties were assessed by standard pedological analysis. Fractionation and leachability of toxic metals were analyzed by sequential extraction and TCLP and metal bioaccessibility by UBM tests. Soil respiration and enzyme activities were measured as indicators of soil functioning. Remediation reduced the metal burden by 80, 28 and 72% for Pb, Zn and Cd respectively, with a limited impact on soil pedology. Toxic metals associated with labile soil fractions were largely removed. No shifts between labile and residual fractions were observed during the seven months of the experiment. Initial metal leaching measured through lysimeters eventually ceased. However, remediation significantly diminished potential soil enzyme activity and no trends were observed of the remediated soil recovering its biological properties. Soil washing successfully removed available forms of Pb, Zn and Cd and thus lowered the human and environmental hazards of the remediated soil; however, remediation also extracted the trace elements essential for soil biota. In addition to reduced water holding capacity, soil health was not completely restored. Copyright © 2013 Elsevier B.V. All rights reserved.
Yang, Yun-Ya; Toor, Gurpal S; Wilson, P Chris; Williams, Clinton F
2016-10-01
Septic systems, a common type of onsite wastewater treatment systems, can be an important source of micropollutants in the environment. We investigated the fate and mass balance of 17 micropollutants, including wastewater markers, hormones, pharmaceuticals and personal care products (PPCPs) in the drainfield of a septic system. Drainfields were replicated in lysimeters (1.5m length, 0.9m width, 0.9m height) and managed similar to the field practice. In each lysimeter, a drip line dispersed 9L of septic tank effluent (STE) per day (equivalent to 32.29L/m(2) per day). Fourteen micropollutants in the STE and 12 in the leachate from drainfields were detected over eight months. Concentrations of most micropollutants in the leachate were low (<200ng/L) when compared to STE because >85% of the added micropollutants except for sucralose were attenuated in the drainfield. We discovered that sorption was the key mechanism for retention of carbamazepine and partially for sulfamethoxazole, whereas microbial degradation likely attenuated acetaminophen in the drainfield. This data suggests that sorption and microbial degradation limited transport of micropollutants from the drainfields. However, the leaching of small amounts of micropollutants indicate that septic systems are hot-spots of micropollutants in the environment and a better understanding of micropollutants in septic systems is needed to protect groundwater quality. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Filipović, Vilim; Romić, Davor; Romić, Marija; Matijević, Lana; Mallmann, Fábio J. K.; Robinson, David A.
2016-04-01
Growing vegetables commercially requires intensive management and involves high irrigation demands and input of agrochemicals. Plastic mulch application in combination with drip irrigation is a common agricultural management technique practiced due to variety of benefits to the crop, mostly vegetable biomass production. However, the use of these techniques can result in various impacts on water and nutrient distribution in underlying soil and consequently affect nutrient leaching towards groundwater resources. The aim of this work is to estimate the effect of plastic mulch cover in combination with drip irrigation on water and nitrate dynamics in soil using HYDRUS-2D model. The field site was located in Croatian costal karst area on a Gleysol (WRB). The experiment was designed according to the split-plot design in three repetitions and was divided into plots with plastic mulch cover (MULCH) and control plots with bare soil (CONT). Each of these plots received applications of three levels of nitrogen fertilizer: 70, 140, and 210 kg per ha. All plots were equipped with drip irrigation and cropped with bell pepper (Capsicum annuum L. cv. Bianca F1). Lysimeters were installed at 90 cm depth in all plots and were used for monitoring the water and nitrate outflow. HYDRUS-2D was used for modeling the water and nitrogen outflow in the MULCH and CONT plots, implementing the proper boundary conditions. HYDRUS-2D simulated results showed good fitting to the field site observed data in both cumulative water and nitrate outflow, with high level of agreement. Water flow simulations produced model efficiency of 0.84 for CONT and 0.56 for MULCH plots, while nitrate simulations showed model efficiency ranging from 0.67 to 0.83 and from 0.70 to 0.93, respectively. Additional simulations were performed with the absence of the lysimeter, revealing faster transport of nitrates below drip line in the CONT plots, mostly because of the increased surface area subjected to precipitation/irrigation due the absence of soil cover. Contrary, in the MULCH plots most of the nitrate applied was still left in the upper soil layer at the end of simulations. Numerical modeling revealed a large influence of plastic mulch cover on water and nutrient outflow and distribution in soil. Results suggest that under this management practice the nitrogen amounts applied via fertigation can be lowered and optimized (higher application frequencies) to reduce possible negative influence of the nitrogen based fertilizer such as leaching of nitrates to groundwater. Keywords: Plastic mulch cover; Vegetable cultivation; Water flow; Nitrate dynamics; HYDRUS-2D
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-28
... DEPARTMENT OF JUSTICE [OMB Number 1103-0100] Agency Information Collection Activities: Extension Requested; Comments Requested, Monitoring Information Collections ACTION: 60-day notice. The Department of.... (2) Title of the Form/Collection: Monitoring Information Collections. (3) Agency form number, if any...
NASA Astrophysics Data System (ADS)
Panzacchi, P.; Davies, C. A.; Ventura, M.; Michie, E. J.; Tonon, G.
2012-04-01
Biochar is defined as charcoal produced by pyrolysis with the aim to apply it to the soil in order to improve its fertility and carbon (C) storage capacity. Biochar physical and chemical properties can vary depending on the original biomass feedstock and pyrolysis conditions. The potential agricultural benefits and CO2 carbon sequestration from the application of biochar to soil, were assessed in field trials with well characterised biochar. In May 2010 we applied biochar from Miscanthus biomass produced at 450 °C at 3 different application rates: 10, 25 and 50 tons ha-1 to a 6 year old Miscanthus x giganteus plantation in Brattleby (Lincoln, UK) . Each treated 25 m2 plot had 4 replicates according to a randomised block experimental design. Biochar was incorporated to a depth of 10 cm in the soil between plant rhizomes after the harvest, through shallow tilling. CO2 emissions from biochar amended soil were monitored every two weeks by a portable infrared gas analyser (IRGA) with a closed dynamic chamber system, and continuously through 8 automated chambers (both systems from Li-COR, Lincoln, Nebraska). N2O fluxes were monitored using a closed static chamber technique with manual gas sampling and subsequent gas chromatography. Cation/anion exchange resin lysimeters were buried 20 cm deep in order to capture the leached nitrogen. Higher biochar applications led to a reduction of CO2 effluxes in the first 10 weeks of the experiment, after which no treatment effect was observed. The emission of N2O was significantly reduced in the 25 and 50 tons ha-1 application rates. Addition of biochar had no significant affect on the surface soil temperature, however the temperature sensitivity of soil respiration in the biochar treated plots decreased with increasing application rates
NASA Astrophysics Data System (ADS)
Winterdahl, M.; Laudon, H.; Köhler, S.; Seibert, J.; Bishop, K.
2009-04-01
Dissolved organic material (DOM) plays a key role in many natural surface waters. Despite the importance of DOC for the hydrochemistry in boreal headwaters there are few models that conceptualize the controls on short-term variability in stream DOC. A relatively simple model has been proposed where the vertical profile of DOC in the riparian soil solution, serves as an instantaneous "chemostat" setting the DOC of laterally flowing groundwater just before it enters the stream. This paper considers whether the addition of seasonality (in the form of soil temperature) and antecedent flows can improve the predictions of daily DOC concentrations. The model was developed and tested using field data from the Krycklan catchment on the Svartberget Research Station in northern Sweden where a transect of soil solution sampling sites equipped with suction lysimeters and wells for monitoring groundwater level have been installed and monitored for over a decade. The field data showed an exponential correlation between depth and DOC concentration in the soil solution. There was also an exponential correlation between stream discharge and groundwater table position. The expressions for these two correlations (exponential functions) have been combined into a simple riparian DOC model. To simulate effects of seasonality and/or antecedent flow, modules for soil temperature evolution and/or groundwater flow were added and tested. The model was calibrated and tested against 8 years of data from the Västrabäcken headwater catchment in the Krycklan area. To estimate the uncertainty in the model and the observed data a Hornberger-Spear-Young sensitivity analysis together with a GLUE uncertainty analysis was performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, R.
1984-12-01
Lysimeters were installed at two soil depths within each of the three major ecosystems on Camels Hump Mountain. Collections were made weekly during the frost-free season of 1982 and 1983. Samples were analyzed for pH, conductivity, and a broad range of metals, anionic and cationic constituents, and for other physical properties. The findings included: soil solutions obtained from the upper-elevations in a northern coniferous forest zone are significantly more acidic than those from the lower elevation hardwood forest zone; soil solutions for all ecological zones are more acidic in the spring during and shortly after snowmelt than they are latermore » in the frost free-season; aluminum in soil solutions from the upper elevations is present in concentrations known to be phytotoxic to seedlings of forest trees and to groundcover plants; cadmium, Pb, and Zn are, in the spring, present in concentrations that are close to being phytotoxic; there are changes in the ratios of divalent cations to specific metals during the season and as functions of altitude and forest zones; nitrate concentration in soil water are also elevation- and time dependent.« less
Hawkins, Jane M B; Scholefield, David; Braven, Jim
2006-08-15
Organic matter is a valuable resource on which the sustainability and productivity of soils relies heavily. Thus, it is important to understand the mechanisms for the loss of organic compounds from soil. It is also essential to determine how these losses can be minimized, especially those resulting from anthropogenic activity. Grazed grassland lysimeters (1 hectare) were used to examine the contribution and distribution patterns of dissolved free and combined amino acids to dissolved organic nitrogen and carbon in surface runoff and drainage waters from a grassland soil over three winter drainage periods. The waters were collected from soils beneath drained and undrained permanent ryegrass swards, receiving 0 and 280 kg ha(-1) year(-1) mineral nitrogen (N) input. Total dissolved free amino acid (DFAA) and dissolved combined amino acid (DCAA) concentrations ranged between 1.9 nM and 6.1 microM and between 1.3 and 87 microM, respectively. Although addition of mineral N fertilizer increased both DFAA and DCAA concentrations in waters, there was no detectable effect of soil hydrology or fertilizer addition on distribution patterns.
1993-08-01
the drop size and terminal velocities of natural rain- fall, factors which are critical in erosion and infiltration studies ( Westerdahl and Skogerboe... Westerdahl and Skogerboe 1982; Lee and Skogerboe 1984; Skogerboe et al. 1987). The WES Rainfall Simulator/ Lysimeter System proved to be an effective...Waters (Phase IIIA of -42-Foot Project); Volume 2: Appendixes," iNL-83-2, Vol 2, Battelle/Marine Science Laboratory, Sequim, WA. Westerdahl , H. E., and
Using Landsat data to estimate evapotranspiration of winter wheat
NASA Technical Reports Server (NTRS)
Kanemasu, E. T.; Heilman, J. L.; Bagley, J. O.; Powers, W. L.
1977-01-01
Results obtained from an evapotranspiration model as applied to Kansas winter wheatfields were compared with results determined by a weighing lysimeter, and the standard deviation was found to be less than 0.5 mm/day (however, the 95% confidence interval was between plus and minus 0.2 mm/day). Model inputs are solar radiation, temperature, precipitation, and leaf area index; an equation was developed to estimate the leaf area index from Landsat data. The model provides estimates of transpiration, evaporation, and soil moisture.
2005-09-01
found no significant change in concentration (+ 5 percent) occurring between 72 and 96 hr. The aqueous metal/ soil solution was then centrifuged and...environment. Soils with high Kd values strongly adsorb the lead onto the soil particles and slow the rate of migration of the lead in the soil solution . A...small Kd suggests faster migration rates and more rapid migration with the soil solution . Comparison of the Kd values obtained shows a large
Awad, John; van Leeuwen, John; Liffner, Joel; Chow, Christopher; Drikas, Mary
2016-02-01
The treatability of NOM present in runoff and subsurface waters from discrete zero-order catchments (ZOCs) with three land management practices (Australian native vegetation, pine plantation, grasslands) on varying soil textures of a closed drinking water reservoir-catchment was investigated. Subsurface water samples were collected by lysimeters and shallow piezometers and surface waters by installation of barriers that diverted waters to collection devices. For small sample volumes collected, a 'micro' jar testing procedure was developed to assess the treatability of organics by enhanced coagulation using alum, under standardised conditions. DOM present in water samples was quantified by measurement of DOC and UV absorbance (at 254 nm) and characterized using these and F-EEM. The mean alum dose rate (mg alum per mg DOC removed or Al/DOC) was found to be lower for DOM from sandy soil ZOCs (21.1 ± 11.0 Al/DOC) than from clayey soil ZOCs (38.6 ± 27.7 Al/DOC). ZOCs with Pinus radiata had prominent litter layers (6.3 ± 2.6 cm), and despite differences in soil textures showed similarity in DOM character in subsurface waters, and in alum dose rates (22.2 ± 5.5 Al/DOC). For sandy soil ZOCs, the lowest alum dose rates (16.5 ± 10.6 Al/DOC) were for waters from native vegetation catchment while, for clayey soil ZOCs, waters from pine vegetation had the lowest alum dose rates (23.0 ± 5.0 Al/DOC). Where ZOCs have a prominent O horizon, soil minerals had no apparent influence on the treatability of DOM. Copyright © 2015 Elsevier Ltd. All rights reserved.
Study on an agricultural environment monitoring server system using Wireless Sensor Networks.
Hwang, Jeonghwan; Shin, Changsun; Yoe, Hyun
2010-01-01
This paper proposes an agricultural environment monitoring server system for monitoring information concerning an outdoors agricultural production environment utilizing Wireless Sensor Network (WSN) technology. The proposed agricultural environment monitoring server system collects environmental and soil information on the outdoors through WSN-based environmental and soil sensors, collects image information through CCTVs, and collects location information using GPS modules. This collected information is converted into a database through the agricultural environment monitoring server consisting of a sensor manager, which manages information collected from the WSN sensors, an image information manager, which manages image information collected from CCTVs, and a GPS manager, which processes location information of the agricultural environment monitoring server system, and provides it to producers. In addition, a solar cell-based power supply is implemented for the server system so that it could be used in agricultural environments with insufficient power infrastructure. This agricultural environment monitoring server system could even monitor the environmental information on the outdoors remotely, and it could be expected that the use of such a system could contribute to increasing crop yields and improving quality in the agricultural field by supporting the decision making of crop producers through analysis of the collected information.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-17
...] Notice of Request for Approval of an Information Collection; National Animal Health Monitoring System... information collection; comment request. SUMMARY: In accordance with the Paperwork Reduction Act of 1995, this... Epidemiologic Investigations, an information collection to support the National Animal Health Monitoring System...
Hu, Peter F; Yang, Shiming; Li, Hsiao-Chi; Stansbury, Lynn G; Yang, Fan; Hagegeorge, George; Miller, Catriona; Rock, Peter; Stein, Deborah M; Mackenzie, Colin F
2017-01-01
Research and practice based on automated electronic patient monitoring and data collection systems is significantly limited by system down time. We asked whether a triple-redundant Monitor of Monitors System (MoMs) to collect and summarize key information from system-wide data sources could achieve high fault tolerance, early diagnosis of system failure, and improve data collection rates. In our Level I trauma center, patient vital signs(VS) monitors were networked to collect real time patient physiologic data streams from 94 bed units in our various resuscitation, operating, and critical care units. To minimize the impact of server collection failure, three BedMaster® VS servers were used in parallel to collect data from all bed units. To locate and diagnose system failures, we summarized critical information from high throughput datastreams in real-time in a dashboard viewer and compared the before and post MoMs phases to evaluate data collection performance as availability time, active collection rates, and gap duration, occurrence, and categories. Single-server collection rates in the 3-month period before MoMs deployment ranged from 27.8 % to 40.5 % with combined 79.1 % collection rate. Reasons for gaps included collection server failure, software instability, individual bed setting inconsistency, and monitor servicing. In the 6-month post MoMs deployment period, average collection rates were 99.9 %. A triple redundant patient data collection system with real-time diagnostic information summarization and representation improved the reliability of massive clinical data collection to nearly 100 % in a Level I trauma center. Such data collection framework may also increase the automation level of hospital-wise information aggregation for optimal allocation of health care resources.
Salt as a mitigation option for decreasing nitrogen leaching losses from grazed pastures.
Ledgard, Stewart F; Welten, Brendon; Betteridge, Keith
2015-12-01
The main source of nitrogen (N) leaching from grazed pastures is animal urine with a high N deposition rate (i.e. per urine patch), particularly between late summer and early winter. Salt is a potential mitigation option as a diuretic to induce greater drinking-water intake, increase urination frequency, decrease urine N concentration and urine N deposition rate, and thereby potentially decrease N leaching. This hypothesis was tested in three phases: a cattle metabolism stall study to examine effects of salt supplementation rate on water consumption, urination frequency and urine N concentration; a grazing trial to assess effects of salt (150 g per heifer per day) on urination frequency; and a lysimeter study on effects of urine N rate on N leaching. Salt supplementation increased cattle water intake. Urination frequency increased by up to 69%, with a similar decrease in urine N deposition rate and no change in individual urination volume. Under field grazing, sensors showed increased urination frequency by 17%. Lysimeter studies showed a proportionally greater decrease in N leaching with decreased urine N rate. Modelling revealed that this could decrease per-hectare N leaching by 10-22%. Salt supplementation increases cattle water intake and urination frequency, resulting in a lower urine N deposition rate and proportionally greater decrease in urine N leaching. Strategic salt supplementation in autumn/early winter with feed is a practical mitigation option to decrease N leaching in grazed pastures. © 2015 Society of Chemical Industry.
Pitkäjärvi, Jyrki; Räsänen, Leena A; Langenskiöld, Jenny; Wallenius, Kaisa; Niemi, Maarit; Lindström, Kristina
2003-10-01
Abstract A non-indigenous wild-type strain Rhizobium galegae HAMBI 540, which specifically nodulates perennial goat's rue (Galega orientalis), and its marker gene-tagged derivatives R. galegae HAMBI 2363(luc), R. galegae HAMBI 2368(gusA21) and R. galegae HAMBI 2364(gusA30) were used to evaluate the persistence, population dynamics and competitiveness for nodulation of rhizobia under field conditions in Finland. The lysimeters were filled with clean or diesel oil-polluted (3000 mug g(-1)) agricultural soil. During the first 2 years of the field release luc- and gusA21-tagged strains could be effectively detected by cultivation, reinforced with colony polymerase chain reaction. The population densities remained relatively stable from 10(4) to 10(5) cfu g(-1) dry soil from spring until late autumn. Replicate limiting dilution polymerase chain reaction analysis gave comparable results with cultivation with strain HAMBI 2363 until 49 weeks after inoculation. GUS activity of strain HAMBI 2368 could be stably detected in nodules and soil. On the other hand, luc activity weakened clearly in cold conditions along with decreased metabolic activity of rhizobia. The competitive ability for nodulation of the gusA30-tagged strain decreased slowly with time compared to the wild-type strain. Moderate soil pollution did not have significant effects on target bacteria or plant growth. Limited vertical movement of target bacteria outside the rhizosphere was detected from percolated water.
Fruit load governs transpiration of olive trees.
Bustan, Amnon; Dag, Arnon; Yermiyahu, Uri; Erel, Ran; Presnov, Eugene; Agam, Nurit; Kool, Dilia; Iwema, Joost; Zipori, Isaac; Ben-Gal, Alon
2016-03-01
We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from trees at three separate stages of growth: early, mid and late in the season. Tree-scale transpiration, calculated from lysimeter water balance, was found to be a function of fruit load, canopy size and weather conditions. Fruit removal caused an immediate decline in water consumption, measured as whole-plant transpiration normalized to tree size, which persisted until the end of the season. The later the execution of fruit removal, the greater was the response. The amount of water transpired by a fruit-loaded tree was found to be roughly 30% greater than that of an equivalent low- or nonyielding tree. The tree-scale response to fruit was reflected in stem water potential but was not mirrored in leaf-scale physiological measurements of stomatal conductance or photosynthesis. Trees with low or no fruit load had higher vegetative growth rates. However, no significant difference was observed in the overall aboveground dry biomass among groups, when fruit was included. This case, where carbon sources and sinks were both not limiting, suggests that the role of fruit on water consumption involves signaling and alterations in hydraulic properties of vascular tissues and tree organs. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Comparison of lysimeter based and calculated ASCE reference evapotranspiration in a subhumid climate
NASA Astrophysics Data System (ADS)
Nolz, Reinhard; Cepuder, Peter; Eitzinger, Josef
2016-04-01
The standardized form of the well-known FAO Penman-Monteith equation, published by the Environmental and Water Resources Institute of the American Society of Civil Engineers (ASCE-EWRI), is recommended as a standard procedure for calculating reference evapotranspiration (ET ref) and subsequently plant water requirements. Applied and validated under different climatic conditions it generally achieved good results compared to other methods. However, several studies documented deviations between measured and calculated reference evapotranspiration depending on environmental and weather conditions. Therefore, it seems generally advisable to evaluate the model under local environmental conditions. In this study, reference evapotranspiration was determined at a subhumid site in northeastern Austria from 2005 to 2010 using a large weighing lysimeter (ET lys). The measured data were compared with ET ref calculations. Daily values differed slightly during a year, at which ET ref was generally overestimated at small values, whereas it was rather underestimated when ET was large, which is supported also by other studies. In our case, advection of sensible heat proved to have an impact, but it could not explain the differences exclusively. Obviously, there were also other influences, such as seasonal varying surface resistance or albedo. Generally, the ASCE-EWRI equation for daily time steps performed best at average weather conditions. The outcomes should help to correctly interpret ET ref data in the region and in similar environments and improve knowledge on the dynamics of influencing factors causing deviations.
The Kühtai data set: 25 years of lysimetric, snow pillow, and meteorological measurements
Kirnbauer, R.; Parajka, J.; Schöber, J.; Blöschl, G.
2017-01-01
Abstract Snow measurements at the Kühtai station in Tirol, Austria, (1920 m.a.s.l.) are described. The data set includes snow water equivalent from a 10 m2 snow pillow, snow melt outflow from a 10 m2 snow lysimeter placed at the same location as the pillow, meteorological data (precipitation, incoming shortwave radiation, reflected shortwave radiation, air temperature, relative air humidity, and wind speed), and other data (snow depths, snow temperatures at seven heights) from the period October 1990 to May 2015. All data have been quality checked, and gaps in the meteorological data have been filled in. The data set is unique in that all data are available at a temporal resolution of 15 min over a period of 25 years with minimal changes in the experimental setup. The data set can therefore be used to analyze snow pack processes over a long‐time period, including their extremes and long‐term changes, in an Alpine climate. Analyses may benefit from the combined measurement of snow water equivalent, lysimeter outflow, and precipitation at a wind‐sheltered alpine site. An example use of data shows the temporal variability of daily and 1 April snow water equivalent observed at the Kühtai site. The results indicate that the snow water equivalent maximum varies between 200 and more than 500 mm w.e., but there is no statistically significant temporal trend in the period 1990–2015. PMID:28931957
Temporal variability in phosphorus transfers: classifying concentration-discharge event dynamics
NASA Astrophysics Data System (ADS)
Haygarth, P.; Turner, B. L.; Fraser, A.; Jarvis, S.; Harrod, T.; Nash, D.; Halliwell, D.; Page, T.; Beven, K.
The importance of temporal variability in relationships between phosphorus (P) concentration (Cp) and discharge (Q) is linked to a simple means of classifying the circumstances of Cp-Q relationships in terms of functional types of response. New experimental data at the upstream interface of grassland soil and catchment systems at a range of scales (lysimeters to headwaters) in England and Australia are used to demonstrate the potential of such an approach. Three types of event are defined as Types 1-3, depending on whether the relative change in Q exceeds the relative change in Cp (Type 1), whether Cp and Q are positively inter-related (Type 2) and whether Cp varies yet Q is unchanged (Type 3). The classification helps to characterise circumstances that can be explained mechanistically in relation to (i) the scale of the study (with a tendency towards Type 1 in small scale lysimeters), (ii) the form of P with a tendency for Type 1 for soluble (i.e., <0.45 μm P forms) and (iii) the sources of P with Type 3 dominant where P availability overrides transport controls. This simple framework provides a basis for development of a more complex and quantitative classification of Cp-Q relationships that can be developed further to contribute to future models of P transfer and delivery from slope to stream. Studies that evaluate the temporal dynamics of the transfer of P are currently grossly under-represented in comparison with models based on static/spatial factors.
Measuring and modeling maize evapotranspiration under plastic film-mulching condition
NASA Astrophysics Data System (ADS)
Li, Sien; Kang, Shaozhong; Zhang, Lu; Ortega-Farias, Samuel; Li, Fusheng; Du, Taisheng; Tong, Ling; Wang, Sufen; Ingman, Mark; Guo, Weihua
2013-10-01
Plastic film-mulching techniques have been widely used over a variety of agricultural crops for saving water and improving yield. Accurate estimation of crop evapotranspiration (ET) under the film-mulching condition is critical for optimizing crop water management. After taking the mulching effect on soil evaporation (Es) into account, our study adjusted the original Shuttleworth-Wallace model (MSW) in estimating maize ET and Es under the film-mulching condition. Maize ET and Es respectively measured by eddy covariance and micro-lysimeter methods during 2007 and 2008 were used to validate the performance of the Penman-Monteith (PM), the original Shuttleworth-Wallace (SW) and the MSW models in arid northwest China. Results indicate that all three models significantly overestimated ET during the initial crop stage in the both years, which may be due to the underestimation of canopy resistance induced by the Jarvis model for the drought stress in the stage. For the entire experimental period, the SW model overestimated half-hourly maize ET by 17% compared with the eddy covariance method (ETEC) and overestimated daily Es by 241% compared with the micro-lysimeter measurements (EL), while the PM model only underestimated daily maize ET by 6%, and the MSW model only underestimated half-hourly maize ET by 2% and Es by 7% during the whole period. Thus the PM and MSW models significantly improved the accuracy against the original SW model and can be used to estimate ET and Es under the film-mulching condition.
Pig slurry application and irrigation effects on nitrate leaching in Mediterranean soil lysimeters.
Daudén, A; Quílez, D; Vera, M V
2004-01-01
Land application of animal manures, such as pig slurry (PS), is a common practice in intensive-farming agriculture. However, this practice has a pitfall consisting of the loss of nutrients, in particular nitrate, toward water courses. The objective of this study was to evaluate nitrate leaching for three application rates of pig slurry (50, 100, and 200 Mg ha(-1)) and a control treatment of mineral fertilizer (275 kg N ha(-1)) applied to corn grown in 10 drainage lysimeters. The effects of two irrigation regimes (low vs. high irrigation efficiency) were also analyzed. In the first two irrigation events, drainage NO(3)-N concentrations as high as 145 and 69 mg L(-1) were measured in the high and moderate PS rate treatments, respectively, in the low irrigation efficiency treatments. This indicates the fast transformation of the PS ammonium into nitrate and the subsequent leaching of the transformed nitrate. Drainage NO(3)-N concentration and load increased linearly by 0.69 mg NO(3)-N L(-1) and 4.6 kg NO(3)-N ha(-1), respectively, for each 10 kg N ha(-1) applied over the minimum of 275 kg N ha(-1). An increase in irrigation efficiency did not induce a significant increase of leachate concentration and the amount of nitrate leached decreased about 65%. Application of low PS doses before sowing complemented with sidedressing N application and a good irrigation management are the key factors to reduce nitrate contamination of water courses.
NASA Astrophysics Data System (ADS)
Stumpp, C.; Nützmann, G.; Maciejewski, S.; Maloszewski, P.
2009-09-01
SummaryIn this paper, five model approaches with different physical and mathematical concepts varying in their model complexity and requirements were applied to identify the transport processes in the unsaturated zone. The applicability of these model approaches were compared and evaluated investigating two tracer breakthrough curves (bromide, deuterium) in a cropped, free-draining lysimeter experiment under natural atmospheric boundary conditions. The data set consisted of time series of water balance, depth resolved water contents, pressure heads and resident concentrations measured during 800 days. The tracer transport parameters were determined using a simple stochastic (stream tube model), three lumped parameter (constant water content model, multi-flow dispersion model, variable flow dispersion model) and a transient model approach. All of them were able to fit the tracer breakthrough curves. The identified transport parameters of each model approach were compared. Despite the differing physical and mathematical concepts the resulting parameters (mean water contents, mean water flux, dispersivities) of the five model approaches were all in the same range. The results indicate that the flow processes are also describable assuming steady state conditions. Homogeneous matrix flow is dominant and a small pore volume with enhanced flow velocities near saturation was identified with variable saturation flow and transport approach. The multi-flow dispersion model also identified preferential flow and additionally suggested a third less mobile flow component. Due to high fitting accuracy and parameter similarity all model approaches indicated reliable results.
40 CFR 63.11221 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... malfunctions or out-of-control periods, or required monitoring system quality assurance or control activities... collect data according to this section. (b) You must operate the monitoring system and collect data at all required intervals at all times the affected source is operating except for periods of monitoring system...
40 CFR 63.11221 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2011 CFR
2011-07-01
... malfunctions or out-of-control periods, or required monitoring system quality assurance or control activities... collect data according to this section. (b) You must operate the monitoring system and collect data at all required intervals at all times the affected source is operating except for periods of monitoring system...
NASA Astrophysics Data System (ADS)
Demirkanli, I.; Molz, F. J.; Kaplan, D. I.; Fjeld, R. A.; Serkiz, S. M.
2006-05-01
An improved understanding of flow and radionuclide transport in vadose zone sediments is fundamental to all types of future planning involving radioactive materials. One way to obtain such understanding is to perform long-term experimental studies of Pu transport in complex natural systems. With this in mind, a series of field experiments were initiated at the SRNL in the early 1980s. Lysimeters containing sources of different Pu oxidation states were placed in the shallow subsurface and left open to the natural environment for 2 to 11 years. At the end of the experiments, Pu activities were measured along vertical cores obtained from the lysimeters. Pu distributions were anomalous in nature, with transport from oxidized Pu sources being less than expected, and a small fraction of Pu from reduced sources moving more. Laboratory studies with lysimeter sediments suggested that surface-mediated, oxidation/reduction (redox) reactions could be responsible for the anomalous behavior, and this hypothesis is tested by performing both steady-state and transient Pu transport simulations that include retardation along with first-order redox reactions on mineral surfaces. Based on the simulations, we conclude that the surface-mediated, redox hypothesis is consistent with the observed downward Pu activity profiles in the experiments, and such profiles are captured well by a steady-state, net downward, flow model. (Discussion is presented as to why a steady model appears to work in a highly transient flow environment.) The redox model explains how Pu(V/VI) sources release activity that moves downward more slowly than expected based on adsorptive retardation alone, and how Pu(III/IV) sources result in a small fraction of activity that moves downward more rapidly than expected. The calibrated parameter values were robust and relatively well-defined throughout all four sets of simulations. Pu(V/VI) (i.e., oxidized Pu)retardation factors were about 15, and reduced Pu(III/IV) retardation factors were about 10,000. For these values, ko (1st order oxidation rate) averaged 2.4x10-7/hr with a standard deviation of 1.6x10-7, and kr (reduction rate)was 7.1x10-4/hr with a standard deviation of 1.6x10-4. Preliminary transient flow simulations showed a very slight increase in the fitted reaction rate constants, but otherwise reproduced the steady-state results. To date, neither approach is able to simulate the observed Pu movement above the source.
40 CFR 63.5895 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true How do I monitor and collect data to... Composites Production Continuous Compliance Requirements § 63.5895 How do I monitor and collect data to demonstrate continuous compliance? (a) During production, you must collect and keep a record of data as...
40 CFR 63.5895 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true How do I monitor and collect data to... Composites Production Continuous Compliance Requirements § 63.5895 How do I monitor and collect data to demonstrate continuous compliance? (a) During production, you must collect and keep a record of data as...
Ouvrard, Stéphanie; Chenot, Elodie-Denise; Masfaraud, Jean-François; Schwartz, Christophe
2013-07-01
Natural attenuation processes valorization for PAH-contaminated soil remediation has gained increasing interest from site owners. A misunderstanding of this method and a small amount of data available does not encourage its development. However, monitored natural attenuation (MNA) offers a valuable, cheaper and environmentally friendly alternative to more classical options such as physico-chemical treatments (e.g., chemical oxidation, thermal desorption). The present work proposes the results obtained during a long-term natural attenuation assessment of historically contaminated industrial soils under real climatic conditions. This study was performed after a 10 year natural attenuation period on 60 off-ground lysimeters filled with contaminated soils from different former industrial sites (coking industry, manufactured gas plants) whose initial concentration of PAH varied between 380 and 2,077 mg kg(-1). The analysed parameters included leached water characterization, soil PAH concentrations, evaluation of vegetation cover quality and quantity. Results showed a good efficiency of the PAH dissipation and limited transfer of contaminants to the environment. It also highlighted the importance of the fine soil fractions in controlling PAH reactivity. PAH dissipation through water leaching was limited and did not present a significant risk for the environment. This PAH water concentration appeared however as a good indicator of overall dissipation rate, thereby illustrating the importance of pollutant availability in predicting its degradation potential.
NASA Astrophysics Data System (ADS)
Ma, Y.; Song, X.; Kumar, P.; Wu, Y.; Woo, D.; Le, P. V.; Ma, C.
2016-12-01
Increased temperature affects the agricultural hydrologic cycle not only by changing precipitation levels, evapotranspiration and the magnitude and timing of run-off, but also by impacting water flows and soil water dynamics. Accurate prediction of hydrologic change under global warming requires high-precision experiment and mathematical model to determine water interaction between interfaces in the soil-plant-atmosphere continuum. In this study, the weighting lysimeter and chamber were coupled to monitor water balance component dynamics of maize under controlled ambient temperature and elevated temperature of 2°C conditions. A mechanistic multilayer canopy-soil-root system model (MLCan) was used to predict hydrologic fluxes variation under different elevated temperature scenarios after calibration with experimental results. The results showed that maize growth period reduced 8 days under increased temperature of 2°C. The mean daily evapotranspiration, soil water storage change, and drainage was 2.66 mm, -2.75 mm, and 0.22 mm under controlled temperature condition, respectively. When temperature was elevated by 2°C, the average daily ET for maize significantly increased about 6.7% (p<0.05). However, there were non-significant impacts of increased temperature on the daily soil water storage change and drainage (p>0.05). Quantification of changes in water balance components induced by temperature increase for maize is critical for optimizing irrigation water management practices and improving water use efficiency.
1988-01-01
infiltration studies ( Westerdahl and Skogerboe 1982). Exten- sive field verification studies have been conducted with the WES Rainfall Simulator...Lysimeter System on a wide range of USACE project sites ( Westerdahl and Skogerboe 1982, Lee and Skogerboe 1984, Skogerboe et al. 1987). The WES Rainfall...Criteria for Water 1986,"’ Criteria and Standards Division, Washington, DC. Westerdahl , H. E., and Skogerboe, J. G. 1982. "Realistic Rainfall and Water
Compound-specific isotope analysis (CSIA) for assessing pesticide dynamics in soil and vadose zone
NASA Astrophysics Data System (ADS)
Torrentó, Clara; Bakkour, Rani; Melsbach, Aileen; Ponsin, Violaine; Lihl, Christina; Prasuhn, Volker; Hofstetter, Thomas B.; Elsner, Martin; Hunkeler, Daniel
2017-04-01
A lysimeter facility was used to study long-term pesticide fate and transport through two different soils. The present investigation focuses on some commonly and worldwide used herbicides for weed control on corn (atrazine, acetochlor and metolachlor) and sugar beet (chloridazon), together with their main degradation products. Since some degradation products are found more frequently and at higher concentrations that their parent compounds, there is growing environmental concern. The fate of these metabolites is, however, not well-understood. Twelve weighing lysimeters filled with two typical arable soils in Switzerland (a well-drained sandy loam cambisol developed from a stony alluvium-"gravel soil"- and a poorly-drained loam cambisol developed from moraine deposits -"moraine soil"-) were cropped with corn in the first and third seasons, and sugar beet in the second one. Three types of experiments were performed: (1) herbicides application at the surface simulating the common application scenario, (2) herbicides injection at a depth of 40 cm for simulating high preferential transport through the topsoil and assessing the dynamics below the root zone, and (3) metabolites (2,6-dichlorobenzamide, desphenylchloridazon and desethylatrazine) application at the surface to simulate rapid generation of transformation products from the parent compounds. Leachate was collected and the concentration of the applied substances and main degradation products was determined. Since assessing transport and fate of micropollutants in the environment is extremely difficult because transformation processes are slow and may not become evident from analysis of concentrations, multi-element (C, N, Cl) compound-specific isotope analysis (CSIA) is also being used. With both surface application and depth injection, compound breakthrough by preferential as well as matrix flow was observed. A few days after their application, significant infiltration of the herbicides took place by preferential flow, bypassing the sorption and degradation capacity of the soil matrix. Thereafter, the main movement was through the soil matrix and thus, the longer residence time of the herbicides in the soil zone enhanced degradation and due to the high mobility of the metabolites, they were detected in the leachates. Breakthrough of the applied metabolites was also observed. For most of the cases, concentrations were higher in the leachates of the gravel soil than in the moraine soil. Preliminary results of C and N isotope signatures of the target compound in the leachates show significant isotope enrichment trends in acetochlor and metolachlor and less evident in atrazine, confirming the occurrence of degradation processes.
NASA Astrophysics Data System (ADS)
Matosziuk, L.; Gallo, A.; Hatten, J. A.; Heckman, K. A.; Nave, L. E.; Sanclements, M.; Strahm, B. D.; Weiglein, T.
2017-12-01
Wildfire can dramatically affect the quantity and quality of soil organic matter (SOM), producing thermally altered organic material such as pyrogenic carbon (PyC) and polyaromatic hydrocarbons (PAHs). The movement of this thermally altered material through terrestrial and aquatic ecosystems can differ from that of unburned SOM, with far-reaching consequences for soil carbon cycling and water quality. Unfortunately, due to the rapid ecological changes following fire and the lack of robust pre-fire controls, the cycling of fire-altered carbon is still poorly understood. In December 2016, the Chimney Tops 2 fire in Great Smoky Mountains National Park burned over co-located terrestrial and aquatic NEON sites. We have leveraged the wealth of pre-fire data at these sites (chemical, physical, and microbial characterization of soils, continuous measurements of both soil and stream samples, and five soil cores up to 110 cm in depth) to conduct a thorough study of the movement of fire-altered organic matter through terrestrial and aquatic ecosystems. Stream samples have been collected weekly beginning 5 weeks post-fire. Grab samples of soil were taken at discrete time points in the first two months after the fire. Eight weeks post-fire, a second set of cores was taken and resin lysimeters installed at three different depths. A third set of cores and grab samples will be taken 8-12 months after the fire. In addition to routine soil characterization techniques, solid samples from cores and grab samples at all time points will be analyzed for PyC and PAHs. To determine the effect of fire on dissolved organic matter (DOM), hot water extracts of these soil samples, as well as the stream samples and lysimeter samples, will also be analyzed for PyC and PAHs. Selected samples will be analyzed by 1D- and 2D-NMR to further characterize the chemical composition of DOM. This extensive investigation of the quantity and quality of fire-altered organic material at discrete time points will provide insight into the production and cycling of thermally-altered SOM and DOM. We hypothesize that PyC will be an important source of SOM to surface mineral soil horizons, and that the quantity of DOM will increase after fire, providing a rapid pulse of C to deep soils and aquatic systems.
NASA Astrophysics Data System (ADS)
Peterson, H.; Bay, D. S.; Beckie, R. D.; Mayer, K. U.; Klein, B.; Smith, L.
2009-12-01
An ongoing study at the Antamina Cu-Zn-Mo mine in Peru investigates the hydrology and geochemistry of heterogeneous waste rock at multiple scales. Three of five instrumented mesoscale experimental waste rock piles (36m X 36m X 10m high) were constructed between 2006 and 2008. The coarsest-grained Pile 1 exhibits rapid, intense response to rain and returns to residual saturation relatively quickly, suggesting a significant influence of preferential flow in addition to high-conductivity matrix flow. Pile 2, the finest-grained of the three piles, exhibits signals from rain events that are significantly delayed and muted in comparison to those from Pile 1. Except for in the finest size fractions, the particle size distribution of Pile 3 closely resembles that of Pile 2, yet Pile 3 responds to rain events more similarly to Pile 1 than Pile 2. The presence of large boulders in Pile 3 could facilitate preferential flow, either through surface flow effects across boulders or by contributing to the formation of unfilled void space acting as macropores at high infiltration rates. The rapid rain event response of Pile 3 could also be attributed to a silt-clay percentage that is similar to Pile 1, which is less than half of the silt-clay percentage observed in Pile 2 (i.e., ~3%, ~8.5%, and ~4% for Piles 1, 2 and 3, respectively). For each of the three piles, the pH of effluent collected from bottom lysimeters and internal pore water sampled with suction lysimeters has remained circumneutral, with notable maximum concentrations of 2.8 mg/L Zn from Pile 1, which is comprised of slightly reactive hornfels and marble waste rock; 13.4 mg/L Zn and 22.7 mg/L Mo from Pile 2, comprised of reactive intrusive waste rock; and 42.5 mg/L Zn from Pile 3, comprised of reactive exoskarn waste rock. Ongoing work includes analysis of two additional mixed-rock experimental piles, studies to investigate the role of microbes on metal release (Dockrey et al., this session), analysis of pore gas chemistry to aid in the characterization of weathering processes (Singurindy et al., this session), smaller scale barrel-sized field cells to assess specific material characteristics and scaling issues, complemented by laboratory column and mineralogical studies. Mechanistic modeling will be used to integrate the multiscale data and provide a framework for prediction at field scales.
49 CFR 40.69 - How is a monitored collection conducted?
Code of Federal Regulations, 2012 CFR
2012-10-01
...) As the collector, you must ensure that the monitor is the same gender as the employee, unless the..., if someone else is to monitor the collection (e.g., in order to ensure a same-gender monitor), you...
49 CFR 40.69 - How is a monitored collection conducted?
Code of Federal Regulations, 2014 CFR
2014-10-01
...) As the collector, you must ensure that the monitor is the same gender as the employee, unless the..., if someone else is to monitor the collection (e.g., in order to ensure a same-gender monitor), you...
49 CFR 40.69 - How is a monitored collection conducted?
Code of Federal Regulations, 2013 CFR
2013-10-01
...) As the collector, you must ensure that the monitor is the same gender as the employee, unless the..., if someone else is to monitor the collection (e.g., in order to ensure a same-gender monitor), you...
49 CFR 40.69 - How is a monitored collection conducted?
Code of Federal Regulations, 2010 CFR
2010-10-01
...) As the collector, you must ensure that the monitor is the same gender as the employee, unless the..., if someone else is to monitor the collection (e.g., in order to ensure a same-gender monitor), you...
49 CFR 40.69 - How is a monitored collection conducted?
Code of Federal Regulations, 2011 CFR
2011-10-01
...) As the collector, you must ensure that the monitor is the same gender as the employee, unless the..., if someone else is to monitor the collection (e.g., in order to ensure a same-gender monitor), you...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-26
... Monitoring System Requirements in the Western Pacific Pelagic Longline Fishery), OMB Control No. 0648-0519... requirement from OMB Control No. 0648-0584 (Permitting, Vessel Identification and Vessel Monitoring System... one collection (OMB Control No. 0648-0441). II. Method of Collection Automatic. III. Data OMB Control...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
... Collection; Comment Request; Expanded Vessel Monitoring System Requirement in the Pacific Coast Groundfish... and use a vessel monitoring system (VMS) that automatically sends hourly position reports. Exemptions... declaration reporting system are not expected to change the public reporting burden. II. Method of Collection...
Code of Federal Regulations, 2010 CFR
2010-07-01
... must I collect with my continuous emission monitoring systems and is this requirement enforceable? 62... with my continuous emission monitoring systems and is this requirement enforceable? (a) Where continuous emission monitoring systems are required, obtain 1-hour arithmetic averages. Make sure the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... must I collect with my continuous emission monitoring systems and is this requirement enforceable? 62... with my continuous emission monitoring systems and is this requirement enforceable? (a) Where continuous emission monitoring systems are required, obtain 1-hour arithmetic averages. Make sure the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... must I collect with my continuous parameter monitoring systems and is this requirement enforceable? 62... with my continuous parameter monitoring systems and is this requirement enforceable? (a) Where continuous parameter monitoring systems are used, obtain 1-hour arithmetic averages for three parameters: (1...
Code of Federal Regulations, 2011 CFR
2011-07-01
... must I collect with my continuous parameter monitoring systems and is this requirement enforceable? 62... with my continuous parameter monitoring systems and is this requirement enforceable? (a) Where continuous parameter monitoring systems are used, obtain 1-hour arithmetic averages for three parameters: (1...
Schneider, B.J.; Oaksford, E.T.
1986-01-01
Artificial recharge with tertiary-treated sewage is being tested at East Meadow to evaluate the physical and chemical effects on the groundwater system. The recharge facility contains 11 recharge basins and 5 injection wells and is designed to accept 4 million gallons of reclaimed water per day. Of the 11 basins, 7 are recently constructed and will accept 0.5 million gallons per day each. An observation manhole (12-foot inside diameter and extending 16 feet below the basin floor) was installed in each of two basins to enable monitoring and sampling of percolating reclaimed water in the unsaturated zone with instruments such as tensiometers, gravity lysimeters, thermocouples, and soil-gas samplers. Five shallow (100-feet deep) injection wells will each return 0.5 million gallons per day to the groundwater reservoir. Three types of injection-well design are being tested; the differences are in the type of gravel pack around the well screen. When clogging at the well screen occurs, redevelopment should restore the injection capability. Flow to the basins and wells is regulated by automatic flow controllers in which a desired flow rate is maintained by electronic sensors. Basins can also operate in a constant-head mode in which a specified head is maintained in the basin automatically. An observation-well network consisting of 2-inch- and 6-inch-diameter wells was installed within a 1-square-mile area at the recharge facility to monitor aquifer response and recharge. During 48 days of operation within a 17-week period (October 1982 through January 1983), 88.5 million gallons of reclaimed water was applied to the shallow water table aquifer through the recharge basins. A 4.29-foot-high groundwater mound developed during a 14-day test; some water level increase associated with the mound was detected 1,000 ft from the basins. Preliminary water quality data from wells affected by reclaimed water show evidence that mechanisms of mixing, dilution, and dispersion are affecting chemical concentrations of certain constituents, such as nitrogen and trichloroethane, in the shallow aquifer beneath the recharge area. (USGS)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-10
...] Agency Information Collection Activities; Proposed Collection; Comment Request; Regulations for In Vivo Radiopharmaceuticals Used for Diagnosis and Monitoring AGENCY: Food and Drug Administration, HHS. ACTION: Notice... collection for in vivo Radiopharmaceuticals Used for Diagnosis and Monitoring. DATES: Submit either...
Fernelius, Kaitlynn J.; Madsen, Matthew D.; Hopkins, Bryan G.; Bansal, Sheel; Anderson, Val J.; Eggett, Dennis L.; Roundy, Bruce A.
2017-01-01
Woody plant encroachment can increase nutrient resources in the plant-mound zone. After a fire, this zone is often found to be water repellent. This study aimed to understand the effects of post-fire water repellency on soil water and inorganic nitrogen and their effects on plant growth of the introduced annual Bromus tectorum and native bunchgrass Pseudoroegneria spicata. Plots centered on burned Juniperus osteosperma trees were either left untreated or treated with surfactant to ameliorate water repellency. After two years, we excavated soil from the untreated and treated plots and placed it in zerotension lysimeter pots. In the greenhouse, half of the pots received an additional surfactant treatment. Pots were seeded separately with B. tectorum or P. spicata. Untreated soils had high runoff, decreased soilwater content, and elevated NO3eN in comparison to surfactant treated soils. The two plant species typically responded similar to the treatments. Above-ground biomass and microbial activity (estimated through soil CO2 gas emissions) was 16.8-fold and 9.5-fold higher in the surfactant-treated soils than repellent soils, respectably. This study demonstrates that water repellency can influence site recovery by decreasing soil water content, promoting inorganic N retention, and impairing plant growth and microbial activity.
Simulation of construction and demolition waste leachate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Townsend, T.G.; Jang, Y.; Thurn, L.G.
1999-11-01
Solid waste produced from construction and demolition (C and D) activities is typically disposed of in unlined landfills. Knowledge of C{ampersand}D debris landfill leachate is limited in comparison to other types of wastes. A laboratory study was performed to examine leachate resulting from simulated rainfall infiltrating a mixed C and D waste stream consisting of common construction materials (e.g., concrete, wood, drywall). Lysimeters (leaching columns) filled with the mixed C and D waste were operated under flooded and unsaturated conditions. Leachate constituent concentrations in the leachate from specific waste components were also examined. Leachate samples were collected and analyzed formore » a number of conventional water quality parameters including pH, alkalinity, total organic carbon, total dissolved solids, and sulfate. In experiments with the mixed C and D waste, high concentrations of total dissolved solids (TDS) and sulfate were detected in the leachate. C and D leachates produced as a result of unsaturated conditions exhibited TDS concentrations in the range of 570--2,200 mg/L. The major contributor to the TDS was sulfate, which ranged in concentration between 280 and 930 mg/L. The concentrations of sulfate in the leachate exceeded the sulfate secondary drinking water standard of 250 mg/L.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-18
... Collection; National Animal Health Monitoring System; Layers 2013 Study AGENCY: Animal and Plant Health... Health Inspection Service's intention to initiate the Layers 2013 Study, an information collection to... INFORMATION: Title: National Animal Health Monitoring System; Layers 2013 Study. OMB Number: 0579-XXXX. Type...
NASA Astrophysics Data System (ADS)
Oh, D.; Ryu, J. H.; Cho, J.
2017-12-01
Estimation of the crop evapotranspiration (ETc), as a representative of crop water needs, is important for not only high crop productivity, but also improving irrigation water management. In farm lands crop coefficient (Kc), the ratio of ETc to potential ET, is often used to simply estiamte ETc. However, the traits of Kc under the global warming condition will different with current one because plant transpiration and surface evaporaiton will be changed by the alternative crop growth and evaporative energy. In this study, Non-Weighting Lysimeter (NWL) was used to directly estimate ETc under the warmed condition, particularly for paddy riace which has one of lower water use efficiency. The different air t emperature (Ta) conditions for the NWL were provided by Temperature Gradient Chamber (TGC), which was formed gradually warmed conditions. The water body evporation and paddy rice evapotransipiration in the NWL were at the two places of ambient Ta (AT) and AT+3° in the TGC. In addition, we installed Infra-Red thermometer (IRT) to understand the surface energy balance. The result was shown that the different partitioning of evaporation and transpiration of paddy rice at the AT+3°, comparing at AT. Further, the water use efficiency, the ratio of yield to total ET, was also decreased in the warmed condition. These experiments for paddy rice ET in the warmed conditions during growth period will be useful to understand the effect of global warming on the hydrological cycle and manamge the irrigation schedule for more efficient water use.
NASA Astrophysics Data System (ADS)
Webb, R. W.; Williams, M. W.; Erickson, T. A.
2018-02-01
Snowmelt is an important part of the hydrologic cycle and ecosystem dynamics for headwater systems. However, the physical process of water flow through snow is a poorly understood aspect of snow hydrology as meltwater flow paths tend to be highly complex. Meltwater flow paths diverge and converge as percolating meltwater reaches stratigraphic layer interfaces creating high spatial variability. Additionally, a snowpack is temporally heterogeneous due to rapid localized metamorphism that occurs during melt. This study uses a snowmelt lysimeter array at tree line in the Niwot Ridge study area of northern Colorado. The array is designed to address the issue of spatial and temporal variability of basal discharge at 105 locations over an area of 1,300 m2. Observed coefficients of variation ranged from 0 to almost 10 indicating more variability than previously observed, though this variability decreased throughout each melt season. Snowmelt basal discharge also significantly increases as snow depth decreases displaying a cluster pattern that peaks during weeks 3-5 of the snowmelt season. These results are explained by the flow of meltwater along snow layer interfaces. As the snowpack becomes less stratified through the melt season, the pattern transforms from preferential flow paths to uniform matrix flow. Correlation ranges of the observed basal discharge correspond to a mean representative elementary area of 100 m2, or a characteristic length of 10 m. Snowmelt models representing processes at scales less than this will need to explicitly incorporate the spatial variability of snowmelt discharge and meltwater flow paths through snow between model pixels.
Khalid, Iqbal; Nadeem, Amana; Ahmed, Rauf; Husnain, Anwer
2014-01-01
Objectives of the present study were to investigate the physico-chemical properties of municipal solid waste (MSW)-enriched compost and its effect on nutrient mineralization and subsequent plant growth. The enrichment of MSW compost by inorganic salts enhanced the humification rate and reduced the carbon nitrogen (C/N) ratio in less time than control compost. The chemical properties of compost, C/N ratio, humic acid, fulvic acid, degree of polymerization and humification index revealed the significant correlation amid properties. A laboratory-scale experiment evaluated the conjunctive effect of MSW compost and inorganic fertilizer on tomato plants in a pot experiment. In the pot experiment five treatments, Inorganic fertilizer (T1), enriched compost (T2), enriched compost 80% + 20% inorganic fertilizer (T3), enriched compost 60% + 40% inorganic fertilizer (T4) were defined including control (Ts), applied at the rate of 110 kg-N/ha and results revealed that all treatments significantly enhanced horticultural production of tomato plant; however T4 was most effectual as compared with control, T1, T2 and T3. Augmentation in organic matter and available phosphorus (P) potassium (K) and nitrogen (N) were also observed in compost treatments. The leachability and phytoavailability of phosphorus (P), potassium (K) and nitrogen (N) from sandy soil, amended with enriched, control compost and inorganic fertilizer at rates of 200, 400 and 600 kg-N/ha were evaluated in a lysimeter study. Results illustrated that concentration of mineral nitrogen was elevated in the leachate of inorganic fertilizer than enriched and control composts; therefore compost fortifies soil with utmost nutrients for plants' growth.
Leaching and degradation of corn and soybean pesticides in an Oxisol of the Brazilian Cerrados.
Laabs, V; Amelung, W; Pinto, A; Altstaedt, A; Zech, W
2000-11-01
Pesticide pollution of ground and surface water is of growing concern in tropical countries. The objective of this pilot study was to evaluate the leaching potential of eight pesticides in a Brazilian Oxisol. In a field experiment near Cuiabá, Mato Grosso, atrazine, chlorpyrifos, lambda-cyhalothrin, endosulfane alpha, metolachlor, monocrotofos, simazine, and trifluraline were applied onto a Typic Haplustox. Dissipation in the topsoil, mobility within the soil profile and leaching of pesticides were studied for a period of 28 days after application. The dissipation half-life of pesticides in the topsoil ranged from 0.9 to 14 d for trifluraline and metolachlor, respectively. Dissipation curves were described by exponential functions for polar pesticides (atrazine, metolachlor, monocrotofos, simazine) and bi-exponential ones for apolar substances (chlorpyrifos, lambda-cyhalothrin, endosulfane alpha, trifluraline). Atrazine, simazine and metolachlor were moderately leached beyond 15 cm soil depth, whereas all other compounds remained within the top 15 cm of the soil. In lysimeter percolates (at 35 cm soil depth), 0.8-2.0% of the applied amounts of atrazine, simazine, and metolachlor were measured within 28 days after application. Of the other compounds less than 0.03% of the applied amounts was detected in the soil water percolates. The relative contamination potentials of pesticides, according to the lysimeter study, were ranked as follows: metolachlor > atrazine = simazine > monocrotofos > endsulfane alpha > chlorpyrifos > trifluraline > lambda-cyhalothrin. This order of the pesticides was also achieved by ranking them according to their effective sorption coefficient Ke, which is the ratio of Koc to field-dissipation half-life.
NASA Astrophysics Data System (ADS)
Jennings, Keith; Jones, Julia A.
2015-09-01
This study tested multiple hydrologic mechanisms to explain snowpack dynamics in extreme rain-on-snow floods, which occur widely in the temperate and polar regions. We examined 26, 10 day large storm events over the period 1992-2012 in the H.J. Andrews Experimental Forest in western Oregon, using statistical analyses (regression, ANOVA, and wavelet coherence) of hourly snowmelt lysimeter, air and dewpoint temperature, wind speed, precipitation, and discharge data. All events involved snowpack outflow, but only seven events had continuous net snowpack outflow, including three of the five top-ranked peak discharge events. Peak discharge was not related to precipitation rate, but it was related to the 10 day sum of precipitation and net snowpack outflow, indicating an increased flood response to continuously melting snowpacks. The two largest peak discharge events in the study had significant wavelet coherence at multiple time scales over several days; a distribution of phase differences between precipitation and net snowpack outflow at the 12-32 h time scale with a sharp peak at π/2 radians; and strongly correlated snowpack outflow among lysimeters representing 42% of basin area. The recipe for an extreme rain-on-snow event includes persistent, slow melt within the snowpack, which appears to produce a near-saturated zone within the snowpack throughout the landscape, such that the snowpack may transmit pressure waves of precipitation directly to streams, and this process is synchronized across the landscape. Further work is needed to understand the internal dynamics of a melting snowpack throughout a snow-covered landscape and its contribution to extreme rain-on-snow floods.
Kaufmann, Vander; Pinheiro, Adilson; Castro, Nilza Maria dos Reis
2014-05-01
Intense rainfall adversely affects agricultural areas, causing transport of pollutants. Physically-based hydrological models to simulate flows of water and chemical substances can be used to help decision-makers adopt measures which reduce such problems. The purpose of this paper is to evaluate the performance of SWAP and ANIMO models for simulating transport of water, nitrate and phosphorus nutrients, during intense rainfall events generated by a simulator, and during natural rainfall, on a volumetric drainage lysimeter. The models were calibrated and verified using daily time series and simulated rainfall measured at 10-minute intervals. For daily time-intervals, the Nash-Sutcliffe coefficient was 0.865 for the calibration period and 0.805 for verification. Under simulated rainfall, these coefficients were greater than 0.56. The pattern of both nitrate and phosphate concentrations in daily drainage flow under simulated rainfall was acceptably reproduced by the ANIMO model. In the simulated rainfall, loads of nitrate transported in surface runoff varied between 0.08 and 8.46 kg ha(-1), and in drainage form the lysimeter, between 2.44 and 112.57 kg ha(-1). In the case of phosphate, the loads transported in surface runoff varied between 0.002 and 0.504 kg ha(-1), and in drainage, between 0.005 and 1.107 kg ha(-1). The use of the two models SWAP and ANIMO shows the magnitudes of nitrogen and phosphorus fluxes transported by natural and simulated intense rainfall in an agricultural area with different soil management procedures, as required by decision makers. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Xijuan; Pauly, Udo; Rehfus, Stefan; Bester, Kai
2009-10-15
Sludge reed beds have been used for dewatering (draining and evapotranspiration) and mineralisation of sludge in Europe since 1988. Although reed beds are considered as a low cost and low contamination method in reducing volume, breaking down organic matter and increasing the density of sludge, it is not yet clear whether this enhanced biological treatment is suitable for degradation of organic micro-pollutants such as personal care products. Within this project the effect of biological sludge treatment in a reed bed on reducing the concentrations of the fragrances HHCB, AHTN, OTNE was studied as on the bactericide Triclosan. Additionally, the capacity of different macrophytes species to affect the treatment process was examined. Three different macrophyte species were compared: bulrush (Typha latifolia), reed (Phragmites australis) and reed canary grass (Phalaris arundinacea). They were planted into containers (lysimeters) with a size of 1 m x 1 m x 1 m which were filled with 20 cm gravel at the bottom and 50 cm sludge on top, into which the macrophytes were planted. During the twelve months experiment reduction of 20-30% for HHCB and AHTN, 70% for Triclosan and 70% for OTNE were determined under environmental conditions. The reduction is most likely due to degradation, since volatilization, uptake into plants and leaching are insignificant. No difference between the containers with different macrophyte species or the unplanted containers was observed. Considering the usual operation time of 10 years for reed beds, an assessment was made for the whole life time.
USDA-ARS?s Scientific Manuscript database
Standardized monitoring data collection efforts using a probabilistic sample design, such as in the Bureau of Land Management’s (BLM) Assessment, Inventory, and Monitoring (AIM) Strategy, provide a core suite of ecological indicators, maximize data collection efficiency, and promote reuse of monitor...
40 CFR 63.10020 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
...-of-control periods, or required monitoring system quality assurance or control activities in... monitoring system quality assurance or quality control activities including, as applicable, calibration... collect data according to this section and the site-specific monitoring plan required by § 63.10000(d). (b...
40 CFR 63.10020 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
...-of-control periods, or required monitoring system quality assurance or control activities in... monitoring system quality assurance or quality control activities including, as applicable, calibration... collect data according to this section and the site-specific monitoring plan required by § 63.10000(d). (b...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-27
...] Notice of Request for Approval of an Information Collection; National Animal Health Monitoring System... to support the National Animal Health Monitoring System Sheep 2011 Study. DATES: We will consider all... Coordinator, at (301) 851-2908. SUPPLEMENTARY INFORMATION: Title: National Animal Health Monitoring System...
40 CFR 63.10020 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2013 CFR
2013-07-01
...-of-control periods, or required monitoring system quality assurance or control activities in... monitoring system quality assurance or quality control activities including, as applicable, calibration... collect data according to this section and the site-specific monitoring plan required by § 63.10000(d). (b...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... monitoring, accumulated refuse, surface methane monitoring, and collection and control system exceedances... included a burden item for Agency review of surface methane monitoring reports. Respondents, however, are... adjusted the calculations to exclude any Agency burden associated with surface methane monitoring. We have...
USDA-ARS?s Scientific Manuscript database
Monitoring of rangelands poses significant challenges to land managers due to broad extent and many uses of rangelands. The Bureau of Land Management’s (BLM) Assessment, Inventory, and Monitoring (AIM) program seeks to efficiently collect standard, quantitative monitoring data which is collected onc...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-23
... Collection; Comment Request; Western Region Vessel Monitoring System and Pre-Trip Reporting Requirements... information or new problems in the fisheries. Vessel Monitoring System (VMS) units will facilitate enforcement... monitoring system (VMS) activation reports, 15 minutes; pre-trip reports, 5 minutes. Estimated Burden Hours...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-22
...] Agency Information Collection Activities; Proposed Collection; Comment Request; Guidance for Clinical Trial Sponsors: Establishment and Operation of Clinical Trial Data Monitoring Committees AGENCY: Food... establishment and operation of clinical trial data monitoring committees. DATES: Submit either electronic or...
75 FR 44816 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-29
... NUCLEAR REGULATORY COMMISSION [NRC-2010-0263] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: U.S. Nuclear Regulatory Commission (NRC). ACTION: Notice of pending NRC... individual monitoring for occupational radiation exposure during a monitoring (one calendar year) period to...
NASA Astrophysics Data System (ADS)
Lloyd, Charlotte; Michaelides, Katerina; Evershed, Richard; Chadwick, David; Dungait, Jennifer
2010-05-01
We explore the use of organic biomarkers as tracers for different components of livestock-derived organic matter (LD-OM) at two different spatial scales. We conducted six small-scale rainfall simulation experiments on a 30 × 30 × 30 cm soil lysimeter, following an application of bovine slurry at a rate of 5 l m-2. Throughout the experiment timed samples of leachate from the base of the lysimeter were collected, then soil cores were taken following the rainfall simulation. These samples were analysed in order to identify the most suitable biomarkers to trace dissolved and sediment-bound LD-OM respectively. The results showed that ammonium was an important tracer compound for dissolved LD-OM, along with other key low molecular weight compounds such as carbohydrates and amino acids. Analysis of the soil cores confirmed that compounds 5-β sigmastanol and 5-β epistigmastanol (5-β stanols) could be used very effectively to trace the sediment-bound and colloidal component of LD-OM. These specific organic compounds, which are identifiable by GC/MS analysis, only occur due to biohydrogenation of plant sterols in a ruminant gut, providing a unique opportunity to trace bovine faecal matter via sediment pathways. These tracers were then applied to a larger 3-D hillslope system by using University of Bristol's TRACE (Test Rig for Advancing Connectivity Experiments) facility. TRACE is a large-scale dual axis soil-slope measuring 6 m long × 2.5 m wide × 0.3 m deep accompanied by a 6-nozzle rainfall simulator. In these experiments slurry was only applied to the top 1 m section of the hillslope, in order to trace how the LD-OM was transported in the soil system. The slope allows the collection of leachate from the soil surface, from lateral through-flow and infiltrated water which reached the soil base (indicating deeper pathways). This enabled the distinction between LD-OM transported via different hydrological pathways. Soil cores were also taken across the soil surface and analysed for 5-β stanols, this allowed the spatial distribution of LD-OM to be determined following the rainfall event. The results showed that not only is LD-OM transported on the surface of the hillslope via overland flow, but the dissolved component infiltrates through the soil profile and is transported via deeper hydrological flowpaths. 5-β stanol analysis showed that soil erosion processes were extremely important, as LD-OM was found downslope of the application area and in eroded material lost from the base of the experimental hillslope. These experiments provided new insights into how LD-OM interacts with the soil-water system and allows quantification of the contamination risk posed. This is important as 90 million tonnes of LD-OM is applied to land annually in the UK. It is well known that there is a potential for contamination of water courses by nitrate, ammonium and other faecal-derived pollutants such as E. Coli through runoff from treated land. Pollution from LD-OM has now been shown to extend to the contamination of subsurface pathways and potentially groundwater resources.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-09
... FEDERAL DEPOSIT INSURANCE CORPORATION Agency Information Collection Activities: Proposed Collection Renewal; Comment Request Re: Procedures for Monitoring Bank Secrecy Act Compliance AGENCY: Federal... agencies to take this opportunity to comment on renewal of its Procedures for Monitoring Bank Secrecy Act...
Integrated Disposal Facility FY 2016: ILAW Verification and Validation of the eSTOMP Simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freedman, Vicky L.; Bacon, Diana H.; Fang, Yilin
2016-05-13
This document describes two sets of simulations carried out to further verify and validate the eSTOMP simulator. In this report, a distinction is made between verification and validation, and the focus is on verifying eSTOMP through a series of published benchmarks on cementitious wastes, and validating eSTOMP based on a lysimeter experiment for the glassified waste. These activities are carried out within the context of a scientific view of validation that asserts that models can only be invalidated, and that model validation (and verification) is a subjective assessment.
NASA Astrophysics Data System (ADS)
Pakro, Naser; Dillon, Peter
1995-12-01
Urine-affected areas can lead to considerable losses of N by leaching, ammonia volatilisation and denitrification from dairy pastures in the southeast of South Australia. Potable groundwater supplies are considered to have become contaminated by nitrate as a result of leaching from these leguminous pastures. Dairy cow urine, labelled with 15N urea, was applied to micro-plots and mini-lysimeters installed in two adjacent irrigated (white clover-rye grass) and non-irrigated (subterranean clover-annual grasses) paddocks of a dairy farm on four occasions representing different seasonal conditions. These experiments allowed measurement of nitrogen transformations, recovery of 15N in the pasture and soil, and leaching below various depths. Gaseous losses were calculated from the nitrogen balance. The results of the four experiments showed that within a day of urine application up to 40% of the applied urinary-N was leached below a depth of 150 mm as a result of macropore flow in the irrigated paddock, and up to 24% in the non-irrigated one. After application to the irrigated paddock 17% of the urinary-N moved immediately below 300 mm but only 2% below the 450-mm depth. The urinary-N remaining in the soil was converted from urea to ammonium within a day regardless of season. Within the first 7 days of application six times more nitrate was produced in summer than in winter. This has obvious implications for leaching potential. Leaching of 15N from the top 150 mm of soil, following urine applications in all seasons, was between 41% and 62% of the applied 15N in the irrigated paddock and 25-51% in the non-irrigated paddock. However, leaching losses measured at depths of 300 or 450 mm were smaller by a factor of 2-4. The leaching loss of 15N applied in spring in both paddocks was 41% below 150 mm and 12% below 450 mm. Recovery of 15N from the soil-plant system in the 450-nm deep lysimeters was ˜60% of that applied. Estimated ammonia was ˜9% of applied 15N with no paddock or season effect. No denitrification was evident in summer nor in the non-irrigated paddock in winter but 12% of the applied 15N was lost due denitrification following winter application to the irrigated paddock. Estimated 15N loss due to denitrification from urine applied in spring was ˜13% of that applied and no difference was found between paddocks. The combination of mini-lysimeters, micro-plots and 15N measurements enabled the nitrogen budget to be determined during four periods throughout the year.
NASA Astrophysics Data System (ADS)
Stimson, J.; Suhogusoff, A. V.; Blowes, D. W.; Hirata, R. A.; Ptacek, C. J.; Robertson, W. D.; Emelko, M. B.
2009-05-01
In densely-populated communities in developing countries, appropriate setback distances for pit latrines often cannot be met. An alternative latrine was designed that incorporates two permeable reactive media to treat pathogens and nitrate from effluent. Basic oxygen furnace (BOF) slag in contact with wastewater effluent elevates pH to levels (> 11) that inactivate pathogens. Saturated woodchip creates reducing conditions that encourage the growth of denitrifying bacteria which remove NO3-. The field application was constructed in Santo Antônio, a peri-urban community located 25 km south of the city of São Paulo, Brazil. A 2-m diameter pit was excavated to a depth of 4 m into the sandy-clay unsaturated zone. A geotextile liner was emplaced to create saturated conditions in the 0.5-m thick woodchip barrier. Above the woodchip barrier, a 1-m thick layer of BOF slag mixed with pea gravel and sand was emplaced. A series of filter layers, grading upward from coarse sand to fine gravel, where placed above the BOF layer, and gravel was also infilled around the outer perimeter of the excavation, to ensure O2 diffusion into the design, the formation of biofilm, and degradation of organic material. A control latrine, constructed with similar hydraulic characteristics and nonreactive materials, was constructed at a locality 100 m away, in the same geological materials. Total coliform, thermotolerant coliform, and E. coli are removed by approximately 4-5 log concentration units in less than one meter of vertical transport through the BOF slag media. In the control latrine, comparable reductions in these pathogenic indicators are observed over three meters of vertical transport. Removal of sulphur-reducing Clostridia, Clostridium perfrigens and somatic coliphage are also achieved in the alternative design, but initial concentrations in effluent are low. Some measurable concentrations of pathogen indicators are measured in lysimeters below the BOF layer, but are associated with low-TDS, neutral water that is infiltrating in from the sidewall of the excavation. Oxygen concentration is augmented (5 mg L-1) in the alternative latrine compared to the control design (1-2 mg L-1), suggesting that conditions for biofilm development are improved. The decline in pH between sampling events after 42 and 82 days of wastewater application suggest that the potential for base release is decreased over time. Somatic coliphage concentrations are 1-2 log concentration units lower in stainless steel lysimeters compared to concentrations measured in adjacent pan lysimeters, suggesting that the filtration of coliphage by the porous cup may negatively bias sampling.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-09
... Activities; Proposed Collection; Comment Request; Facility Ground-Water Monitoring Requirements AGENCY...) concerning groundwater monitoring reporting and recordkeeping requirements. This ICR is scheduled to expire... arrived at the estimate that you provide. 5. Offer alternative ways to improve the collection activity. 6...
Errors in patient specimen collection: application of statistical process control.
Dzik, Walter Sunny; Beckman, Neil; Selleng, Kathleen; Heddle, Nancy; Szczepiorkowski, Zbigniew; Wendel, Silvano; Murphy, Michael
2008-10-01
Errors in the collection and labeling of blood samples for pretransfusion testing increase the risk of transfusion-associated patient morbidity and mortality. Statistical process control (SPC) is a recognized method to monitor the performance of a critical process. An easy-to-use SPC method was tested to determine its feasibility as a tool for monitoring quality in transfusion medicine. SPC control charts were adapted to a spreadsheet presentation. Data tabulating the frequency of mislabeled and miscollected blood samples from 10 hospitals in five countries from 2004 to 2006 were used to demonstrate the method. Control charts were produced to monitor process stability. The participating hospitals found the SPC spreadsheet very suitable to monitor the performance of the sample labeling and collection and applied SPC charts to suit their specific needs. One hospital monitored subcategories of sample error in detail. A large hospital monitored the number of wrong-blood-in-tube (WBIT) events. Four smaller-sized facilities, each following the same policy for sample collection, combined their data on WBIT samples into a single control chart. One hospital used the control chart to monitor the effect of an educational intervention. A simple SPC method is described that can monitor the process of sample collection and labeling in any hospital. SPC could be applied to other critical steps in the transfusion processes as a tool for biovigilance and could be used to develop regional or national performance standards for pretransfusion sample collection. A link is provided to download the spreadsheet for free.
Wei, Ze-Bin; Guo, Xiao-Fang; Wu, Qi-Tang; Long, Xin-Xian
2014-11-01
In order to elucidate the continuous effectiveness of co-cropping system coupling with chelator enhancement in remediating heavy metal contaminated soils and its environmental risk towards underground water, soil lysimeter (0.9 m x 0.9 m x 0.9 m) experiments were conducted using a paddy soil affected by Pb and Zn mining in Lechang district of Guangdong Province, 7 successive crops were conducted for about 2.5 years. The treatments included mono-crop of Sedum alfredii Hance (Zn and Cd hyperaccumulator), mono-crop of corn (Zea mays, cv. Yunshi-5, a low-accumulating cultivar), co-crop of S. alfredii and corn, and co-crop + MC (Mixture of Chelators, comprised of citric acid, monosodium glutamate waste liquid, EDTA and KCI with molar ratio of 10: 1:2:3 at the concentration of 5 mmol x kg(-1) soil). The changes of heavy metal concentrations in plants, soil and underground water were monitored. Results showed that the co-cropping system was suitable only in spring-summer seasons and significantly increased Zn and Cd phytoextraction. In autumn-winter seasons, the growth of S. alfredii and its phytoextraction of Zn and Cd were reduced by co-cropping and MC application. In total, the mono-crops of S. alfredii recorded a highest phytoextraction of Zn and Cd. However, the greatest reduction of soil Zn, Cd and Pb was observed with the co-crop + MC treatment, the reduction rates were 28%, 50%, and 22%, respectively, relative to the initial soil metal content. The reduction of this treatment was mainly attributed to the downwards leaching of metals to the subsoil caused by MC application. The continuous monitoring of leachates during 2. 5 year's experiment also revealed that the addition of MC increased heavy metal concentrations in the leaching water, but they did not significantly exceed the III grade limits of the underground water standard of China.
Perchlorate in Turfgrass Systems, Suffolk County, Long Island, NY
NASA Astrophysics Data System (ADS)
Munster, J. E.; Hanson, G. N.; Jackson, W. A.
2007-12-01
Perchlorate concentrations in precipitation, grass clippings, and soil water were analyzed at nine turfgrass sites in Suffolk County, NY. The samples were collected monthly between June, 2006 and January, 2007. The soil water was collected from suction lysimeters at 100 cm depth. Four of these sites were treated with chemical fertilizer, three with organic fertilizer and two were not fertilized. Concentrations of ClO4 in grass clippings and soil water, at the sites treated with chemical fertilizer or not treated with fertilizer, are found to increase when spikes of ClO4 concentrations in precipitation are observed. We believe that the spikes in perchlorate in precipitation collected shortly after the Fourth of July are due to firework displays. The concentration of ClO4 in soil water are 1 to 3 times higher than the maximum perchlorate concentrations in precipitation, with maximum soil water concentrations ranging from 0.5 to 3.0 ppb. At the sites treated with organic fertilizer, grass clippings and soil water ClO4 concentrations increase after the fertilizer application in May. The organic fertilizer that was applied has nine mg ClO4 per kg (9,000 ppb). Soil water concentrations at the sites treated with organic fertilizer increase 100 to 300 times the maximum ClO4 concentration observed in precipitation, with maximum soil water concentrations ranging from 120 to 625 ppb. The increase in ClO4 concentrations in the soil water cannot be explained by evaporation alone since the Cl to ClO4 ratios decrease in the soil water relative to precipitation. This decrease in the Cl to ClO4 ratio suggests another source of perchlorate besides precipitation. We postulate that this additional source is associated with the decomposition of mulched grass left after mowing. Grass takes only a few weeks to decompose after mulching, thus providing a continuous source of perchlorate throughout the mowing season. The Cl to ClO4 ratio of the grass is unknown.
40 CFR 58.20 - Special purpose monitors (SPM).
Code of Federal Regulations, 2010 CFR
2010-07-01
... Administrator will not base a NAAQS violation determination for the PM2.5 or ozone NAAQS solely on data from the... discontinuation of the monitor as a SLAMS site. (b) Any SPM data collected by an air monitoring agency using a... monitoring agency's data objectives are inconsistent with those requirements. Data collected at an SPM using...
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission monitoring system is temporarily unavailable to meet the data collection requirements? 62.15225... Emission Monitoring § 62.15225 What must I do if my continuous emission monitoring system is temporarily... methods for collecting data when these systems malfunction or when repairs, calibration checks, or zero...
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission monitoring systems are temporarily unavailable to meet the data collection requirements? 60.1770... Emission Monitoring § 60.1770 What must I do if any of my continuous emission monitoring systems are... alternate methods for collecting data when systems malfunction or when repairs, calibration checks, or zero...
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission monitoring system is temporarily unavailable to meet the data collection requirements? 62.15225... Emission Monitoring § 62.15225 What must I do if my continuous emission monitoring system is temporarily... methods for collecting data when these systems malfunction or when repairs, calibration checks, or zero...
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission monitoring systems are temporarily unavailable to meet the data collection requirements? 60.1770... Emission Monitoring § 60.1770 What must I do if any of my continuous emission monitoring systems are... alternate methods for collecting data when systems malfunction or when repairs, calibration checks, or zero...
Fate and transport modeling of phthalate esters from biosolid amended soil under corn cultivation.
Sayyad, G; Price, G W; Sharifi, M; Khosravi, K
2017-02-05
Phthalate esters (PAEs) are prevalent in the environment due to the broad range of industrial, agriculture and domestic applications. The ubiquitous use of PAEs has resulted in their potential to reach groundwater sources through application of agri-chemicals and municipal biosolids. A study was conducted to monitor the fate and transport of seven commonly detected PAEs in the environment including: dimethyl phthalate (DMP), diethyl phthalate (DEP), benzyl butyl phthalate (BBP), bis(di-ethyl hexyl) phthalate (DEHP), di-n-octyl phthalate (DnOP), dipentyl phthalate (DPP), and di-n-butyl phthalate (DnBP). Biosolids sourced from the Halifax Regional Municipality were applied at three rates on field-based lysimeter cells which were cropped to corn (Zea mays) for one growing season. In the present study, breakthrough curves (BTCs) were established for phthalates leaching from a corn-cultivated agricultural soil profile. The HYDRUS-1D model and a two-site sorption model were applied to predict transport parameters of PAEs using an inverse solution approach. Results of our research revealed that higher PAE adsorption was observed based on increasing carbon chain number. In addition, higher values of F (i.e. the fraction of type-1 sorption sites assumed to be in equilibrium with the solution phase) and lower values of D (i.e. dispersion coefficient) were observed for PAEs with large carbon chains which was validated both through the empirical dataset and the model simulations. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
van der Ploeg, Martine; de Rooij, Gerrit
2014-05-01
Periods of soil water deficit often occur within a plant's life cycle, even in temperate deciduous and rain forests (Wilson et al. 2001, Grace 1999). Various experiments have shown that roots are able to sense the distribution of water in the soil, and produce signals that trigger changes in leaf expansion rate and stomatal conductance (Blackman and Davies 1985, Gollan et al. 1986, Gowing et al. 1990 Davies and Zhang 1991, Mansfield and De Silva 1994, Sadras and Milroy 1996). Partitioning of water and air in the soil, solute distribution in soil water, water flow through the soil, and water availability for plants can be determined according to the distribution of the soil water potential (e.g. Schröder et al. 2013, Kool et al. 2014). Understanding plant water uptake under dry conditions has been compromised by hydrological instrumentation with low accuracy in dry soils due to signal attenuation, or a compromised measurement range (Whalley et al. 2013). Development of polymer tensiometers makes it possible to study the soil water potential over a range meaningful for studying plant responses to water stress (Bakker et al. 2007, Van der Ploeg et al. 2008, 2010). Polymer tensiometer data obtained from a lysimeter experiment (Van der Ploeg et al. 2008) were used to analyse day-night fluctuations of soil moisture in the vicinity of maize roots. To do so, three polymer tensiometers placed in the middle of the lysimeter from a control, dry and very dry treatment (one lysimeter per treatment) were used to calculate water content changes over 12 hours. These 12 hours corresponded with the operation of the growing light. Soil water potential measurements in the hour before the growing light was turned on or off were averaged. The averaged value was used as input for the van Genuchten (1980) model. Parameters for the model were obtained from laboratory determination of water retention, with a separate model parameterization for each lysimeter setup. Results show daily fluctuations in water content changes, with both root water uptake and root water excretion. The magnitude of the water content change was in the same order for all treatments, thus suggesting compensatory uptake. References Bakker G, Van der Ploeg MJ, de Rooij GH, Hoogendam CW, Gooren HPA, Huiskes C, Koopal LK and Kruidhof H. New polymer tensiometers: Measuring matric pressures down to the wilting point. Vadose Zone J. 6: 196-202, 2007. Blackman PG and Davies WJ. Root to shoot communication in maize plants of the effects of soil drying. J. Exp. Bot. 36: 39-48, 1985. Davies WJ and Zhang J. Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 55-76, 1991. Gollan T, Passioura JB and Munns R. Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leafs. Aust. J. Plant Physiol. 13: 459-464, 1986. Gowing DJG, Davies WJ and Jones HG. A Positive Root-sourced Signal as an Indicator of Soil Drying in Apple, Malus x domestica Borkh. J. Exp. Bot. 41: 1535-1540, 1990. Grace J. Environmental controls of gas exchange in tropical rain forests. In: Press, M.C, J.D. Scholes and M.G. Barker (ed.). Physiological plant ecology: the 39th Symposium of the British Ecological Society. Blackwell Science, United Kingdom, 1999. Kool D, Agam N, Lazarovitch N, Heitman JL, Sauer TJ, Ben-Gal A. A review of approaches for evapotranspiration partitioning. Agricultural and Forest Meteorology 184: 56- 70, 2014. Mansfield TA and De Silva DLR. Sensory systems in the roots of plants and their role in controlling stomatal function in the leaves. Physiol. Chem. Phys. & Med. 26: 89-99, 1994. Sadras VO and Milroy SP. Soil-water thresholds for the responses of leaf expansion and gas exchange: a review. Field Crops Res. 47: 253-266, 1996. Schröder N, Lazarovitch N, Vanderborcht J, Vereecken H, Javaux M. Linking transpiration reduction to rhizosphere salinity using a 3D coupled soil-plant model. Plant Soil 2013, doi: 10.1007/s11104-013-1990-8 Van der Ploeg MJ, Gooren HPA, Bakker G and de Rooij GH. Matric potential measurements by polymer tensiometers in cropped lysimeters under water-stressed conditions. Vadose Zone J. 7:1048-1053, 2008. Van der Ploeg MJ, Gooren HPA, Bakker G, Hoohendam CW, Huiskes C, Koopal LK, Kruidhof H and de Rooij GH. Polymer tensiometers with ceramic cones: direct observations of matric pressures in drying soils. Hydrology and Earth System Sciences 14, 1787-1799, 2010. Van Genuchten MTh. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44: 892-898, 1980. Wilson KB, Baldocchi DD and Hanson PJ. Leaf age affects the seasonal pattern of photosysnthetic capacity and net ecosystem exchange of carbon in a deciduous forest. Plant, cell and the environment 24: 571-583, 2001. Whalley WR, Ober ES, Jenkins M. Measurement of the matric protential of soil water in the rhzosphere. J. Exp. Bot. 64(13) 3951-3963, 2013.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-09
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; Expanded Vessel Monitoring System Requirement in the Pacific Coast Groundfish... and use a vessel monitoring system (VMS) that automatically sends hourly position reports. Exemptions...
NASA Astrophysics Data System (ADS)
Peters, Andre; Nehls, Thomas; Wessolek, Gerd
2016-06-01
Weighing lysimeters with appropriate data filtering yield the most precise and unbiased information for precipitation (P) and evapotranspiration (ET). A recently introduced filter scheme for such data is the AWAT (Adaptive Window and Adaptive Threshold) filter (Peters et al., 2014). The filter applies an adaptive threshold to separate significant from insignificant mass changes, guaranteeing that P and ET are not overestimated, and uses a step interpolation between the significant mass changes. In this contribution we show that the step interpolation scheme, which reflects the resolution of the measuring system, can lead to unrealistic prediction of P and ET, especially if they are required in high temporal resolution. We introduce linear and spline interpolation schemes to overcome these problems. To guarantee that medium to strong precipitation events abruptly following low or zero fluxes are not smoothed in an unfavourable way, a simple heuristic selection criterion is used, which attributes such precipitations to the step interpolation. The three interpolation schemes (step, linear and spline) are tested and compared using a data set from a grass-reference lysimeter with 1 min resolution, ranging from 1 January to 5 August 2014. The selected output resolutions for P and ET prediction are 1 day, 1 h and 10 min. As expected, the step scheme yielded reasonable flux rates only for a resolution of 1 day, whereas the other two schemes are well able to yield reasonable results for any resolution. The spline scheme returned slightly better results than the linear scheme concerning the differences between filtered values and raw data. Moreover, this scheme allows continuous differentiability of filtered data so that any output resolution for the fluxes is sound. Since computational burden is not problematic for any of the interpolation schemes, we suggest always using the spline scheme.
Mahoney, Denis J; Gannon, Travis W; Jeffries, Matthew D; Matteson, Audrey R; Polizzotto, Matthew L
2015-03-01
Monosodium methylarsenate (MSMA) is an organic arsenical herbicide currently utilized in turfgrass and cotton systems. In recent years, concerns over adverse impacts of arsenic (As) from MSMA applications have emerged; however, little research has been conducted in controlled field experiments using typical management practices. To address this knowledge gap, a field lysimeter experiment was conducted during 2012-2013 to determine the fate of As following MSMA applications to a bareground and an established turfgrass system. Arsenic concentrations in soil, porewater, and aboveground vegetation, were measured through one yr after treatment. Aboveground vegetation As concentration was increased compared to nontreated through 120 d after initial treatment (DAIT). In both systems, increased soil As concentrations were observed at 0-4 cm at 30 and 120 DAIT and 0-8 cm at 60 and 365 DAIT, suggesting that As was bound in shallow soil depths. Porewater As concentrations in MSMA-treated lysimeters from a 30-cm depth (22.0-83.8 μg L(-1)) were greater than those at 76-cm depth (0.4-5.1 μg L(-1)). These results were combined with previous research to devise management considerations in systems where MSMA is utilized. MSMA should not be applied if rainfall is forecasted within 7 DAIT and/or in areas with shallow water tables. Further, disposing of MSMA-treated turfgrass aboveground vegetation in a confined area - a common management practice for turfgrass clippings - may be of concern due to As release to surface water or groundwater as the vegetation decomposes. Finally, long-term MSMA use may cause soil As accumulation and thus downward migration of As over time; therefore, MSMA should be used in rotation with other herbicides. Copyright © 2014 Elsevier Ltd. All rights reserved.
Senay, Gabriel; Gowda, Prasanna H.; Bohms, Stefanie; Howell, T.A.; Friedrichs, Mackenzie; Marek, T.H.; Verdin, James
2014-01-01
The operational Simplified Surface Energy Balance (SSEBop) approach was applied on 14 Landsat 5 thermal infrared images for mapping daily actual evapotranspiration (ETa) fluxes during the spring and summer seasons (March–October) in 2006 and 2007. Data from four large lysimeters, managed by the USDA-ARS Conservation and Production Research Laboratory were used for evaluating the SSEBop estimated ETa. Lysimeter fields are arranged in a 2 × 2 block pattern with two fields each managed under irrigated and dryland cropping systems. The modeled and observed daily ETa values were grouped as "irrigated" and "dryland" at four different aggregation periods (1-day, 2-day, 3 day and "seasonal") for evaluation. There was a strong linear relationship between observed and modeled ETa with R2 values ranging from 0.87 to 0.97. The root mean square error (RMSE), as percent of their respective mean values, were reduced progressively with 28, 24, 16 and 12% at 1-day, 2-day, 3-day, and seasonal aggregation periods, respectively. With a further correction of the underestimation bias (−11%), the seasonal RMSE reduced from 12 to 6%. The random error contribution to the total error was reduced from 86 to 20% while the bias' contribution increased from 14 to 80% when aggregated from daily to seasonal scale, respectively. This study shows the reliable performance of the SSEBop approach on the Landsat data stream with a transferable approach for use with the recently launched LDCM (Landsat Data Continuity Mission) Thermal InfraRed Sensor (TIRS) data. Thus, SSEBop can produce quick, reliable and useful ET estimations at various time scales with higher seasonal accuracy for use in regional water management decisions.
Paudel, Indira; Cohen, Shabtai; Shaviv, Avi; Bar-Tal, Asher; Bernstein, Nirit; Heuer, Bruria; Ephrath, Jhonathan
2016-06-01
Roots interact with soil properties and irrigation water quality leading to changes in root growth, structure and function. We studied these interactions in an orchard and in lysimeters with clay and sandy loam soils. Minirhizotron imaging and manual sampling showed that root growth was three times lower in the clay relative to sandy loam soil. Treated wastewater (TWW) led to a large reduction in root growth with clay (45-55%) but not with sandy loam soil (<20%). Treated wastewater increased salt uptake, membrane leakage and proline content, and decreased root viability, carbohydrate content and osmotic potentials in the fine roots, especially in clay. These results provide evidence that TWW challenges and damages the root system. The phenology and physiology of root orders were studied in lysimeters. Soil type influenced diameter, specific root area, tissue density and cortex area similarly in all root orders, while TWW influenced these only in clay soil. Respiration rates were similar in both soils, and root hydraulic conductivity was severely reduced in clay soil. Treated wastewater increased respiration rate and reduced hydraulic conductivity of all root orders in clay but only of the lower root orders in sandy loam soil. Loss of hydraulic conductivity increased with root order in clay and clay irrigated with TWW. Respiration and hydraulic properties of all root orders were significantly affected by sodium-amended TWW in sandy loam soil. These changes in root order morphology, anatomy, physiology and hydraulic properties indicate rapid and major modifications of root systems in response to differences in soil type and water quality. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mass Balance of Water and Nitrogen in the Mounded Drainfield of a Drip-Dispersal Septic System.
De, Mriganka; Toor, Gurpal S
2016-07-01
Quantitative assessment of nitrogen (N) loading from septic systems is needed to protect groundwater contamination. We determined the mass balance of water and N in the mounded drainfield of a drip-dispersal septic system. Three lysimeters (152.4 cm long, 91.4 cm wide, 91.4 cm high, with 1:1 side slope) were constructed using pressure-treated wood to mimic mounded drainfields. Of total water inputs, septic tank effluent (STE) added 57% water and natural rainfall added 43% water from January 2013 to January 2014. Outputs included leached water (46%) from the lysimeters over 67 sampling events ( = 15 daily and = 52 weekly flow-weighted), potential evapotranspiration (28%), and water stored in the drainfields (26%). Over 13 mo, each drainfield received 227 g of total N (STE, 99%; rainfall, 1%), of which 33% leached, 23% accumulated in the drainfield, and 6% was taken up by grass, with the remainder (38%) estimated to be gaseous N loss. Using these data, the leaching of water from 2.5 million drip-dispersal drainfields in the state of Florida was estimated to be 2.29 × 10 L yr, which would transport 2.4 × 10 kg of total N yr from the drainfields to shallow groundwater. Further reduction of N below drainfields in the soil profile could be expected before STE reaches groundwater. Our results provide quantitative information on the water and N loading and can be used to optimize drainfield conditions to attenuate N and protect groundwater quality. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Mehmood, Khalid; Berns, Anne E.; Pütz, Thomas; Burauel, Peter; Vereecken, Harry; Zoriy, Myroslav; Flucht, Reinhold; Opitz, Thorsten; Hofmann, Diana
2014-05-01
Radiocesium and radiostrontium are among the most problematic soil contaminants following nuclear fallout due to their long half-lives and high fission yields. Their chemical resemblance to potassium, ammonium and calcium facilitates their plant uptake and thus enhances their chance to reach humans through the food-chain dramatically. The plant uptake of both radionuclides is affected by the type of soil, the amount of organic matter and the concentration of competitive ions. In the present lysimeter scale experiment, soil-plant transfer of Cs-137 and Sr-90 was investigated in an agricultural silty soil amended with digestate, a residue from a biogas plant. The liquid fraction of the digestate, liquor, was used to have higher nutrient competition. Digestate application was done in accordance with the field practice with an application rate of 34 Mg/ha and mixing it in top 5 cm soil, yielding a final concentration of 38 g digestate/Kg soil. The top 5 cm soil of the non-amended reference soil was also submitted to the same mixing procedure to account for the physical disturbance of the top soil layer. Six months after the amendment of the soil, the soil contamination was done with water-soluble chloride salts of both radionuclides, resulting in a contamination density of 66 MBq/m2 for Cs-137 and 18 MBq/m2 for Sr-90 in separate experiments. Our results show that digestate application led to a detectable difference in soil-plant transfer of the investigated radionuclides, effect was more pronounced for Cs-137. A clear difference was observed in plant uptake of different plants. Pest plants displayed higher uptake of both radionuclides compared to wheat. Furthermore, lower activity values were recorded in ears compared to stems for both radionuclides.
NASA Astrophysics Data System (ADS)
Montzka, Carsten; Hendricks Franssen, Harrie-Jan; Moradkhani, Hamid; Pütz, Thomas; Han, Xujun; Vereecken, Harry
2013-04-01
An adequate description of soil hydraulic properties is essential for a good performance of hydrological forecasts. So far, several studies showed that data assimilation could reduce the parameter uncertainty by considering soil moisture observations. However, these observations and also the model forcings were recorded with a specific measurement error. It seems a logical step to base state updating and parameter estimation on observations made at multiple time steps, in order to reduce the influence of outliers at single time steps given measurement errors and unknown model forcings. Such outliers could result in erroneous state estimation as well as inadequate parameters. This has been one of the reasons to use a smoothing technique as implemented for Bayesian data assimilation methods such as the Ensemble Kalman Filter (i.e. Ensemble Kalman Smoother). Recently, an ensemble-based smoother has been developed for state update with a SIR particle filter. However, this method has not been used for dual state-parameter estimation. In this contribution we present a Particle Smoother with sequentially smoothing of particle weights for state and parameter resampling within a time window as opposed to the single time step data assimilation used in filtering techniques. This can be seen as an intermediate variant between a parameter estimation technique using global optimization with estimation of single parameter sets valid for the whole period, and sequential Monte Carlo techniques with estimation of parameter sets evolving from one time step to another. The aims are i) to improve the forecast of evaporation and groundwater recharge by estimating hydraulic parameters, and ii) to reduce the impact of single erroneous model inputs/observations by a smoothing method. In order to validate the performance of the proposed method in a real world application, the experiment is conducted in a lysimeter environment.
Kurihara, Momo; Onda, Yuichi; Suzuki, Hiroyuki; Iwasaki, Yuichi; Yasutaka, Tetsuo
2018-05-26
We examined spatial variation in vertical 137 Cs flux from the litter layer using lysimeters combined with copper-substituted Prussian blue in two forests (deciduous broad-leaved and Japanese cedar (Cryptomeria japonica)), approximately 40 km northwest of the Fukushima Daiichi Nuclear power plant. The study ran from August 2016 to February 2017 in three periods; summer (10 Aug-4 Oct), autumn (5 Oct-30 Nov) and winter (1 Dec-27 Feb). Twenty-five and 15 lysimeters were installed in the deciduous broad-leaved and the Japanese cedar sites within 400 and 300 m 2 areas with 3-5 m intervals, respectively. The geometric means of the flux in the deciduous broad-leaved site were 0.51, 0.085 and 0.060 kBq/m 2 /month in summer, autumn and winter periods, respectively. In the Japanese cedar site, the mean fluxes were 0.45, 0.036 and 0.023 kBq/m 2 /month. The ratio of 137 Cs flux during the survey period to litter 137 Cs inventory was 6% and 1% on average in the deciduous broad-leaved and Japanese cedar sites, respectively. The 137 Cs flux in the summer period was much larger than those in other periods, resulting from higher precipitation in the summer. Our fine scale observation with 5 m interval showed very large spatial variation in the 137 Cs flux and the differences between maximum and minimum range from 8 to 104 times, but were mostly 20-25 times. The spatial variations in the 137 Cs flux were affected positively by those in the litter 137 Cs inventory and negatively by canopy openness. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ratnakumar, P; Vadez, V; Nigam, S N; Krishnamurthy, L
2009-11-01
Transpiration efficiency (TE) is an important trait for drought tolerance in peanut (Arachis hypogaea L.). The variation in TE was assessed gravimetrically using a long time interval in nine peanut genotypes (Chico, ICGS 44, ICGV 00350, ICGV 86015, ICGV 86031, ICGV 91114, JL 24, TAG 24 and TMV 2) grown in lysimeters under well-watered or drought conditions. Transpiration was measured by regularly weighing the lysimeters, in which the soil surface was mulched with a 2-cm layer of polythene beads. TE in the nine genotypes used varied from 1.4 to 2.9 g kg(-1) under well-watered and 1.7 to 2.9 g kg(-1) under drought conditions, showing consistent variation in TE among genotypes. A higher TE was found in ICGV 86031 in both well-watered and drought conditions and lower TE was found in TAG-24 under both water regimes. Although total water extraction differed little across genotypes, the pattern of water extraction from the soil profile varied among genotypes. High water extraction within 24 days following stress imposition was negatively related to pod yield (r(2) = 0.36), and negatively related to water extraction during a subsequent period of 32 days (r(2) = 0.73). By contrast, the latter, i.e. water extraction during a period corresponding to grain filling (24 to 56 days after flowering) was positively related to pod yield (r(2) = 0.36). TE was positively correlated with pod weight (r(2) = 0.30) under drought condition. Our data show that under an intermittent drought regime, TE and water extraction from the soil profile during a period corresponding to pod filling were the most important components.
NASA Astrophysics Data System (ADS)
Storck, Pascal; Lettenmaier, Dennis P.; Bolton, Susan M.
2002-11-01
The results of a 3 year field study to observe the processes controlling snow interception by forest canopies and under canopy snow accumulation and ablation in mountain maritime climates are reported. The field study was further intended to provide data to develop and test models of forest canopy effects on beneath-canopy snowpack accumulation and melt and the plot and stand scales. Weighing lysimeters, cut-tree experiments, and manual snow surveys were deployed at a site in the Umpqua National Forest, Oregon (elevation 1200 m). A unique design for a weighing lysimeter was employed that allowed continuous measurements of snowpack evolution beneath a forest canopy to be taken at a scale unaffected by variability in canopy throughfall. Continuous observations of snowpack evolution in large clearings were made coincidentally with the canopy measurements. Large differences in snow accumulation and ablation were observed at sites beneath the forest canopy and in large clearings. These differences were not well described by simple relationships between the sites. Over the study period, approximately 60% of snowfall was intercepted by the canopy (up to a maximum of about 40 mm water equivalent). Instantaneous sublimation rates exceeded 0.5 mm per hour for short periods. However, apparent average sublimation from the intercepted snow was less than 1 mm per day and totaled approximately 100 mm per winter season. Approximately 72 and 28% of the remaining intercepted snow was removed as meltwater drip and large snow masses, respectively. Observed differences in snow interception rate and maximum snow interception capacity between Douglas fir (Pseudotsuga menziesii), white fir (Abies concolor), ponderosa pine (Pinus ponderosa), and lodgepole pine (Pinus contorta) were minimal.
CTEPP DATA COLLECTION FORM 10 (PERIODS 1-3): DAY CARE CENTER CHILD ACTIVITY DIARY AND FOOD SURVEY
This data collection form collects information on the child's activities at the day care center over the 48-hr monitoring period. The diary is divided into three time periods over the 48-monitoring interval. The Food Survey collects information on the frequency and types of frui...
Healy, Richard W.; Rice, Cynthia A.; Bartos, Timothy T.; P. McKinley, Michael
2008-01-01
Development of coal‐bed natural gas (CBNG) in the Powder River Basin, Wyoming, has increased substantially in recent years. Among environmental concerns associated with this development is the fate of groundwater removed with the gas. A preferred water‐management option is storage in surface impoundments. As of January 2007, permits for more than 4000 impoundments had been issued within Wyoming. A study was conducted on changes in water and sediment chemistry as water from an impoundment infiltrated the subsurface. Sediment cores were collected prior to operation of the impoundment and after its closure and reclamation. Suction lysimeters were used to collect water samples from beneath the impoundment. Large amounts of chloride (12,300 kg) and nitrate (13,500 kg as N), most of which accumulated naturally in the sediments over thousands of years, were released into groundwater by infiltrating water. Nitrate was more readily flushed from the sediments than chloride. If sediments at other impoundment locations contain similar amounts of chloride and nitrate, impoundments already permitted could release over 48 × 106 kg of chloride and 52 × 106 kg of nitrate into groundwater in the basin. A solute plume with total dissolved solid (TDS) concentrations at times exceeding 100,000 mg/L was created in the subsurface. TDS concentrations in the plume were substantially greater than those in the CBNG water (about 2300 mg/L) and in the ambient shallow groundwater (about 8000 mg/L). Sulfate, sodium, and magnesium are the dominant ions in the plume. The elevated concentrations are attributed to cation‐exchange‐enhanced gypsum dissolution. As gypsum dissolves, calcium goes into solution and is exchanged for sodium and magnesium on clays. Removal of calcium from solution allows further gypsum dissolution.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-27
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; Permitting, Vessel Identification, and Vessel Monitoring System Requirements for... satellite- based vessel monitoring system (VMS). This collection of information is needed for permit...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-19
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; Vessel Monitoring System Requirements Under the Western and Central Pacific...-fixing transmitters (``Vessel Monitoring System-VMS-units'') at all times except when the vessel is in...
USDA-ARS?s Scientific Manuscript database
Background/Question/Methods Standardized monitoring data collection efforts using a probabilistic sample design, such as in the Bureau of Land Management’s (BLM) Assessment, Inventory, and Monitoring (AIM) Strategy, provide a core suite of ecological indicators, maximize data collection efficiency,...
NASA Astrophysics Data System (ADS)
Decock, Charlotte; Lee, Juhwan; Barthel, Matti; Mikita, Chris; Wilde, Benjamin; Verhoeven, Elizabeth; Hund, Andreas; Abiven, Samuel; Friedli, Cordula; Conen, Franz; Mohn, Joachim; Wolf, Benjamin; Six, Johan
2016-04-01
It has been suggested that crops with deeper root systems could improve agricultural sustainability, because scavenging of nitrogen (N) in the subsoil would increase overall N retention and use efficiency in the system. However, the effect of plant root depth and root architecture on N-leaching and emissions of the potent greenhouse N2O remains largely unknown. We aimed to assess the effect of plant rooting depth on N-cycling and N2O production and reduction within the plant-soil system and throughout the soil profile. We hypothesized that greater root depth and root biomass will (1) increase N use efficiency and decrease N losses in the form of N leaching and N2O emissions; (2) increase N retention by shifting the fate of NH4+ from more nitrification toward more plant uptake and microbial immobilization; and (3) increase the depth of maximum N2O production and decrease the ratio of N2O:(N2O+N2) in denitrification end-products. To test these hypotheses, 4 winter wheat cultivars were grown in lysimeters (1.5 m tall, 0.5 m diameter, 3 replications per cultivar) under greenhouse conditions. Each lysimeter was equipped with an automated flux chamber for the determination of N2O surface fluxes. At 7.5, 30, 60, 90 and 120 cm depth, sampling ports were installed for the determination of soil moisture contents, as well as the collection of soil pore air and soil pore water samples. We selected two older and two newer varieties from the Swiss winter wheat breeding program, spanning a 100-year breeding history. The selection was based on previous experiments indicating that the older varieties have deeper rooting systems than the newer varieties under well watered conditions. N2O fluxes were determined twice per day on a quantum cascade laser absorption spectrometer interfaced with the automated flux chambers. Once per week, we determined concentrations of mineral N in pore water and of CO2 and N2O in the pore air. For mineral N and N2O, also natural abundance isotope deltas were determined, to obtain in situ process-level information on N-cycling. Preliminary results show lower soil moisture content and higher subsurface N2O and CO2 concentrations for the old varieties compared to the new varieties. Currently, we are performing isotope analyses, surface flux analyses, and we are harvesting the plants for determination of root- and aboveground biomass, and C and N contents therein. Results from these analyses are expected before April 2016, and will allow us to reconstruct the N budget and further explore to what extent our hypotheses are corroborated.
Maximizing the utility of monitoring to the adaptive management of natural resources
Kendall, William L.; Moore, Clinton T.; Gitzen, Robert A.; Cooper, Andrew B.; Millspaugh, Joshua J.; Licht, Daniel S.
2012-01-01
Data collection is an important step in any investigation about the structure or processes related to a natural system. In a purely scientific investigation (experiments, quasi-experiments, observational studies), data collection is part of the scientific method, preceded by the identification of hypotheses and the design of any manipulations of the system to test those hypotheses. Data collection and the manipulations that precede it are ideally designed to maximize the information that is derived from the study. That is, such investigations should be designed for maximum power to evaluate the relative validity of the hypotheses posed. When data collection is intended to inform the management of ecological systems, we call it monitoring. Note that our definition of monitoring encompasses a broader range of data-collection efforts than some alternative definitions – e.g. Chapter 3. The purpose of monitoring as we use the term can vary, from surveillance or “thumb on the pulse” monitoring (see Nichols and Williams 2006), intended to detect changes in a system due to any non-specified source (e.g. the North American Breeding Bird Survey), to very specific and targeted monitoring of the results of specific management actions (e.g. banding and aerial survey efforts related to North American waterfowl harvest management). Although a role of surveillance monitoring is to detect unanticipated changes in a system, the same result is possible from a collection of targeted monitoring programs distributed across the same spatial range (Box 4.1). In the face of limited budgets and many specific management questions, tying monitoring as closely as possible to management needs is warranted (Nichols and Williams 2006). Adaptive resource management (ARM; Walters 1986, Williams 1997, Kendall 2001, Moore and Conroy 2006, McCarthy and Possingham 2007, Conroy et al. 2008a) provides a context and specific purpose for monitoring: to evaluate decisions with respect to achievement of specific management objectives; and to evaluate the relative validity of predictive system models. This latter purpose is analogous to the role of data collection within the scientific method, in a research context.
40 CFR 63.7832 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2011 CFR
2011-07-01
... and collect data to demonstrate continuous compliance? (a) Except for monitoring malfunctions, out-of... control activities (including as applicable, calibration checks and required zero and span adjustments... source is operating. (b) You may not use data recorded during monitoring malfunctions, associated repairs...
40 CFR 63.7832 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2013 CFR
2013-07-01
... and collect data to demonstrate continuous compliance? (a) Except for monitoring malfunctions, out-of... control activities (including as applicable, calibration checks and required zero and span adjustments... source is operating. (b) You may not use data recorded during monitoring malfunctions, associated repairs...
40 CFR 63.7832 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... and collect data to demonstrate continuous compliance? (a) Except for monitoring malfunctions, out-of... control activities (including as applicable, calibration checks and required zero and span adjustments... source is operating. (b) You may not use data recorded during monitoring malfunctions, associated repairs...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-17
... Collection; National Animal Health Monitoring System; Feedlot 2011 Study AGENCY: Animal and Plant Health... National Animal Health Monitoring Feedlot 2011 Study. DATES: We will consider all comments that we receive.... SUPPLEMENTARY INFORMATION: Title: National Animal Health Monitoring System; Feedlot 2011 Study. OMB Number: 0579...
40 CFR 63.7832 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... and collect data to demonstrate continuous compliance? (a) Except for monitoring malfunctions, out-of... control activities (including as applicable, calibration checks and required zero and span adjustments... source is operating. (b) You may not use data recorded during monitoring malfunctions, associated repairs...
40 CFR 63.7832 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... and collect data to demonstrate continuous compliance? (a) Except for monitoring malfunctions, out-of... control activities (including as applicable, calibration checks and required zero and span adjustments... source is operating. (b) You may not use data recorded during monitoring malfunctions, associated repairs...
40 CFR 63.6135 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Combustion Turbines Continuous Compliance Requirements § 63.6135 How do I monitor and collect data to... quality assurance or quality control activities (including, as applicable, calibration checks and required... times the stationary combustion turbine is operating. (b) Do not use data recorded during monitor...
40 CFR 63.6135 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Combustion Turbines Continuous Compliance Requirements § 63.6135 How do I monitor and collect data to... quality assurance or quality control activities (including, as applicable, calibration checks and required... times the stationary combustion turbine is operating. (b) Do not use data recorded during monitor...
40 CFR 63.6135 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Combustion Turbines Continuous Compliance Requirements § 63.6135 How do I monitor and collect data to... quality assurance or quality control activities (including, as applicable, calibration checks and required... times the stationary combustion turbine is operating. (b) Do not use data recorded during monitor...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-12
... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5484-N-09] Notice of Proposed Information Collection: Comment Request; Use Restriction Agreement Monitoring and Compliance AGENCY: Office of... Monitoring and Compliance. OMB Control Number, if applicable: 2502-0577. Description of the need for the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-03
... Collection; Environmental Monitoring Form AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION... monitoring. DATES: We will consider all comments that we receive on or before May 2, 2011. ADDRESSES: You may... information on environmental monitoring, contact Dr. Robert Baca, Team Leader, Environmental Compliance...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-13
... the fact that most facilities are now using electronic monitoring to conduct their recording, thus... Request; Comment Request; 40 CFR Part 64 Compliance Assurance Monitoring Program AGENCY: Environmental... an information collection request, ``40 CFR Part 64 Compliance Assurance Monitoring Program'' (EPA...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-15
... Early Warning and Intervention Monitoring System AGENCY: Institute of Education Sciences/National Center... Intervention Monitoring System. OMB Control Number: 1850-NEW. Type of Review: New collection. Respondents... planning a two-part evaluation of the Early Warning and Intervention Monitoring System (EWIMS), consisting...
May, Thomas W.; Walther, Mike J.; Brumbaugh, William G.
2007-01-01
This report presents the results of contaminant monitoring surveys conducted annually by the Missouri Department of Conservation to examine the levels of selected elemental contaminants in hellbender (Cryptobranchus alleganiensis) blood and fish. Catfish (Ictalurus furcatus, Ictalurus punctatus, Pylodictis olivaris), redhorse (Moxostoma anisorum, Moxostoma erythrurum), bass (Micropterus salmoides, Micropterus punctulatus, Micropterus Lacepede, Ambloplites rupestris), walleye (Sander vitreus), and sunfish (Lepomis megalotis) were collected from 17 sites as part of the Department's General Contaminant Monitoring Program. Bluegill (Lepomis macrochirus) and other sunfish (Lepomis megalotis, Lepomis cyanellus) were collected from 18 sites as part of the Department's Resource Assessment and Monitoring Program. Blood from hellbenders was collected from seven sites as part of the Department's Hellbender Monitoring Program.
Dose Monitoring in Radiology Departments: Status Quo and Future Perspectives.
Boos, J; Meineke, A; Bethge, O T; Antoch, G; Kröpil, P
2016-05-01
The number of computed tomography examinations has continuously increased over the last decades and accounts for a major part of the collective radiation dose from medical investigations. For purposes of quality assurance in modern radiology a systematic monitoring and analysis of dose related data from radiological examinations is mandatory. Various ways of collecting dose data are available today, for example the Digital Imaging and Communication in Medicine - Structured Report (DICOM-SR), optical character recognition and DICOM-modality performed procedure steps (MPPS). The DICOM-SR is part of the DICOM-standard and provides the DICOM-Radiation Dose Structured Report, which is an easily applicable and comprehensive solution to collect radiation dose parameters. This standard simplifies the process of data collection and enables comprehensive dose monitoring. Various commercial dose monitoring software devices with varying characteristics are available today. In this article, we discuss legal obligations, various ways to monitor dose data, current dose monitoring software solutions and future perspectives in regard to the EU Council Directive 2013/59/EURATOM. • Automated, systematic dose monitoring is an important element in quality assurance of radiology departments. • DICOM-RDSR-capable CT scanners facilitate the monitoring of dose data. • A variety of commercial and non-commercial dose monitoring software tools are available today. • Successful dose monitoring requires comprehensive infrastructure for monitoring, analysing and optimizing radiation exposure. Citation Format: • Boos J, Meineke A, Bethge OT et al. Dose Monitoring in Radiology Departments: Status Quo and Future Perspectives. Fortschr Röntgenstr 2016; 188: 443 - 450. © Georg Thieme Verlag KG Stuttgart · New York.
CTEPP DATA COLLECTION FORM 07: CHILD DAY CARE CENTER POST-MONITORING
This data collection form is used to provide information on the child's daily activities and potential exposures to pollutants at their homes. It includes questions on chemicals applied and cigarettes smoked at the home over the 48-hr monitoring period. It also collects informati...
NASA Astrophysics Data System (ADS)
Ciocca, Francesco; Abesser, Corinna; Hannah, David; Blaen, Philip; Chalari, Athena; Mondanos, Michael; Krause, Stefan
2017-04-01
Optical fibre distributed temperature sensing (DTS) is increasingly used in environmental monitoring and for subsurface characterisation, e.g. to obtain precise measurements of soil temperature at high spatio-temporal resolution, over several kilometres of optical fibre cable. When combined with active heating of metal elements embedded in the optical fibre cable (active-DTS), the temperature response of the soil to heating provides valuable information from which other important soil parameters, such as thermal conductivity and soil moisture content, can be inferred. In this presentation, we report the development of an Actively Heated Fibre Optics (AHFO) method for the characterisation of soil thermal conductivity and soil moisture dynamics at high temporal and spatial resolutions at a vegetated hillslope site in central England. The study site is located within a juvenile forest adjacent to the Birmingham Institute of Forest Research (BIFoR) experimental site. It is instrumented with three loops of a 500m hybrid-optical cable installed at 10cm, 25cm and 40cm depths. Active DTS surveys were undertaken in June and October 2016, collecting soil temperature data at 0.25m intervals along the cable, prior to, during and after the 900s heating phase. Soil thermal conductivity and soil moisture were determined according to Ciocca et al. 2012, applied to both the cooling and the heating phase. Independent measurements of soil thermal conductivity and soil moisture content were collected using thermal needle probes, calibrated capacitance-based probes and laboratory methods. Results from both the active DTS survey and independent in-situ and laboratory measurements will be presented, including the observed relationship between thermal conductivity and moisture content at the study site and how it compares against theoretical curves used by the AHFO methods. The spatial variability of soil thermal conductivity and soil moisture content, as observed using the different methods, will be shown and an outlook will be provided of how the AHFO method can benefit soil sciences, ground source heat pump applications and groundwater recharge estimations. This research is part of the Distributed intelligent Heat Pulse System (DiHPS) project which is funded by the UK Natural Environmental Research Council (NERC). The project is supported by BIFoR, the European Space Agency (ESA), CarbonZero Ltd, the UK Forestry Commission and the UK Soil Moisture Observation Network (COSMOS-UK). This work is distributed under the Creative Commons Attribution 3.0 Unported Licence together with an author copyright. This licence does not conflict with the regulations of the Crown Copyright. Ciocca F., Lunati I., van de Giesen N., and Parlange M.B. 2012. Heated optical fiber for distributed soil-moisture measurements: A lysimeter experiment. Vadose Zone J. 11. doi:10.2136/vzj2011.0177
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-29
... Collection Activities: Comment Request for the North American Amphibian Monitoring Program (NAAMP) AGENCY: U... Monitoring Program (NAAMP). As required by the Paperwork Reduction Act (PRA) of 1995, and as part of our... assigned survey routes that are part of the North American Amphibian Monitoring Program. Volunteers use an...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... DEPARTMENT OF EDUCATION [Docket No.: ED-2013-ICCD-0106] Agency Information Collection Activities; Comment Request; Evaluation of the Early Warning and Intervention Monitoring System AGENCY: Institute of... Intervention Monitoring System. OMB Control Number: 1850-NEW. Type of Review: A new information collection...
Rodriguez-Lainz, Alfonso; McDonald, Mariana; Fonseca-Ford, Maureen; Penman-Aguilar, Ana; Waterman, Stephen H; Truman, Benedict I; Cetron, Martin S; Richards, Chesley L
Despite increasing diversity in the US population, substantial gaps in collecting data on race, ethnicity, primary language, and nativity indicators persist in public health surveillance and monitoring systems. In addition, few systems provide questionnaires in foreign languages for inclusion of non-English speakers. We assessed (1) the extent of data collected on race, ethnicity, primary language, and nativity indicators (ie, place of birth, immigration status, and years in the United States) and (2) the use of data-collection instruments in non-English languages among Centers for Disease Control and Prevention (CDC)-supported public health surveillance and monitoring systems in the United States. We identified CDC-supported surveillance and health monitoring systems in place from 2010 through 2013 by searching CDC websites and other federal websites. For each system, we assessed its website, documentation, and publications for evidence of the variables of interest and use of data-collection instruments in non-English languages. We requested missing information from CDC program officials, as needed. Of 125 data systems, 100 (80%) collected data on race and ethnicity, 2 more collected data on ethnicity but not race, 26 (21%) collected data on racial/ethnic subcategories, 40 (32%) collected data on place of birth, 21 (17%) collected data on years in the United States, 14 (11%) collected data on immigration status, 13 (10%) collected data on primary language, and 29 (23%) used non-English data-collection instruments. Population-based surveys and disease registries more often collected data on detailed variables than did case-based, administrative, and multiple-source systems. More complete and accurate data on race, ethnicity, primary language, and nativity can improve the quality, representativeness, and usefulness of public health surveillance and monitoring systems to plan and evaluate targeted public health interventions to eliminate health disparities.
Gollan, John; de Bruyn, Lisa Lobry; Reid, Nick; Wilkie, Lance
2012-11-01
Having volunteers collect data can be a cost-effective strategy to complement or replace those collected by scientists. The quality of these data is essential where field-collected data are used to monitor progress against predetermined standards because they provide decision makers with confidence that choices they make will not cause more harm than good. The integrity of volunteer-collected data is often doubted. In this study, we made estimates of seven vegetation attributes and a composite measure of six of those seven, to simulate benchmark values. These attributes are routinely recorded as part of rehabilitation projects in Australia and elsewhere in the world. The degree of agreement in data collected by volunteers was compared with those recorded by professional scientists. Combined results showed that scientists collected data that was in closer agreement with benchmarks than those of volunteers, but when data collected by individuals were analyzed, some volunteers collected data that were in similar or closer agreement, than scientists. Both groups' estimates were in closer agreement for particular attributes than others, suggesting that some attributes are more difficult to estimate than others, or that some are more subjective than others. There are a number of ways in which higher degrees of agreement could be achieved and introducing these will no doubt result in better, more effective programs, to monitor rehabilitation activities. Alternatively, less subjective measures should be sought when developing monitoring protocols. Quality assurance should be part of developing monitoring methods and explicitly budgeted for in project planning to prevent misleading declarations of rehabilitation success.
2010 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2011-02-01
This report presents the 2010 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Gnome-Coach (Gnome) Site in New Mexico (Figure 1). Groundwater monitoring consisted of collecting hydraulic head data and groundwater samples from the wells on site. Historically, the U.S. Environmental Protection Agency (EPA) had conducted these annual activities under the Long-Term Hydrologic Monitoring Program (LTHMP). LM took over the sampling and data collection activities in 2008 but continues to use the EPA Radiation and Indoor Environments National Laboratory in Las Vegas, Nevada, to analyze the water samples. This reportmore » summarizes groundwater monitoring and site investigation activities that were conducted at the site during calendar year 2010.« less
75 FR 24705 - Proposed Data Collections Submitted for Public Comment and Recommendations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-05
... health departments to monitor syndrome-based (e.g., case information collected in emergency departments... monitor syndromic data from emergency departments, 911 calls, physician office data, school and business...
Apparatus and method for monitoring of gas having stable isotopes
Clegg, Samuel M; Fessenden-Rahn, Julianna E
2013-03-05
Gas having stable isotopes is monitored continuously by using a system that sends a modulated laser beam to the gas and collects and transmits the light not absorbed by the gas to a detector. Gas from geological storage, or from the atmosphere can be monitored continuously without collecting samples and transporting them to a lab.
2014-09-01
ER-200717) Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data Collection, Processing and Analysis...N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data...8 2.1.2 The Geophysical Signatures of Bioremediation ......................................... 8 2.2 PRIOR
Price, Don; Plantz, G.G.
1987-01-01
The U.S. Geological Survey conducted a coal-hydrology monitoring program in coal-field areas of central and southern Utah during August 1978-September 1984 to determine possible hydrologic impacts of future mining and to provide a better understanding of the hydrologic systems of the coal resource areas monitored. Data were collected at 19 gaging stations--18 stations in the Price, San Rafael, and Dirty Devil River basins, and 1 in the Kanab Creek Basin. Streamflow data were collected continuously at 11 stations and seasonally at 5 stations. At the other three stations streamflow data were collected continuously during the 1979 water year and then seasonally for the rest of their periods of record. Types of data collected at each station included quantity and quality of streamflow; suspended sediment concentrations; and descriptions of stream bottom sediments, benthic invertebrate, and phytoplankton samples. Also, base flow measurements were made annually upstream from 12 of the gaging stations. Stream bottom sediment sampled at nearly all the monitoring sites contained small to moderate quantities of coal, which may be attributed chiefly to pre-monitoring mining. Streamflow sampled at several sites contained large concentrations of sulfate and dissolved solids. Also, concentrations of various trace elements at 10 stations, and phenols at 18 stations, exceeded the criteria of the EPA for drinking water. This may be attributed to contemporary (water years 1979-84) mine drainage activities. The data collected during the complete water years (1979-84) of monitoring do provide a better understanding of the hydrologic systems of the coal field areas monitored. The data also provide a definite base by which to evaluate hydrologic impacts of continued or increased coal mining in those areas. (Author 's abstract)
McNary Dam, Ice Harbor Dam, and Lower Monumental Dam Smolt Monitoring Program; 1996 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillson, Todd; Lind, Sharon; Price, William
1997-07-01
The Washington Department of Fish & Wildlife (WDFW) assumed responsibility for the Smolt Monitoring Program at McNary Dam on the Columbia River in 1990 and at the new juvenile collection facility at Lower Monumental Dam on the Snake River in 1993. In 1996, Smolt Monitoring Program activities also began at the new juvenile collection facility located at Ice Harbor Dam. This report summarizes the 1996 Smolt Monitoring work at all three sites. The work at Ice Harbor consisted of Gas Bubble Trauma (GBT) monitoring only. In general, the 1996 passage season at both the McNary and Lower Monumental sites canmore » be characterized by reduced passage of juveniles through the collection systems due to elevated river flows and spill, and low (<1%) overall facility mortality rates most likely resulting from cooler water temperatures. In accordance with the National Marine Fisheries Service recommendations (NMFS, 1995) all spring migrants were bypassed at McNary Dam in 1996. Mechanical problems within the McNary collection system resulted in collection and sampling activities being delayed until April 18 at this site, while sampling and collection began on the scheduled starting date of April 1 at Lower Monumental Dam. Monitoring operations were conducted through December 14 at McNary Dam and through October 28 at Lower Monumental Dam. An ongoing transportation evaluation summer migrant marking program was conducted at McNary Dam in 1996 by the NMFS. This necessitated the sampling of 394,211 additional fish beyond the recommended sampling guidelines. All total, 509,237 and 31,219 juvenile salmonids were anesthetized and individually counted, examined for scale loss, injuries, and brands by WDFW Smolt Monitoring personnel in 1996 at McNary Dam and Lower Monumental Dam, respectively.« less
Clark, Dennis A.; Izbicki, John A.; Metzger, Loren F.; Everett, Rhett; Smith, Gregory A.; O'Leary, David R.; Teague, Nicholas F.; Burgess, Matthew K.
2012-01-01
Data were collected by the U.S. Geological Survey from 2003 through 2008 in the Eastern San Joaquin Groundwater Subbasin, 80 miles east of San Francisco, California, as part of a study of the increasing chloride concentrations in groundwater processes. Data collected include geologic, geophysical, chemical, and hydrologic data collected during and after the installation of five multiple-well monitoring sites, from three existing multiple-well sites, and from 79 selected public-supply, irrigation, and domestic wells. Each multiple-well monitoring site installed as part of this study contained three to five 2-inch diameter polyvinyl chloride (PVC)-cased wells ranging in depth from 68 to 880 feet below land surface. Continuous water-level data were collected from the 19 wells installed at these 5 sites and from 10 existing monitoring wells at 3 additional multiple-well sites in the study area. Thirty-one electromagnetic logs were collected seasonally from the deepest PVC-cased monitoring well at seven multiple-well sites. About 200 water samples were collected from 79 wells in the study area. Coupled well-bore flow data and depth-dependent water-quality data were collected from 12 production wells under pumped conditions, and well-bore flow data were collected from 10 additional wells under unpumped conditions.
ERIC Educational Resources Information Center
Nelson, Peter M.; Van Norman, Ethan R.; Klingbeil, Dave A.; Parker, David C.
2017-01-01
Although extensive research exists on the use of curriculum-based measures for progress monitoring, little is known about using computer adaptive tests (CATs) for progress-monitoring purposes. The purpose of this study was to evaluate the impact of the frequency of data collection on individual and group growth estimates using a CAT. Data were…
ERIC Educational Resources Information Center
Myers, Bronwyn; Burnhams, Nadine Harker; Fakier, Nuraan
2010-01-01
Although outcomes monitoring and the collection of other performance data holds benefits for service managers and policy makers, the extent to which these data are collected by South African substance abuse service providers is unknown. To describe (i) the extent to which substance abuse service providers in South Africa monitor and evaluate their…
ERIC Educational Resources Information Center
Poon, Brenda T.; Simmons, Noreen R.
2016-01-01
Population-based outcome monitoring could provide useful information about factors that differentially influence the developmental trajectories of deaf or hard-of-hearing children. A strong basis for population-based outcome monitoring is a coordinated, longitudinal data collection, and management infrastructure that includes quality local…
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirement enforceable? 60.1260 Section 60.1260 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring § 60.1260 What is the minimum amount of monitoring data I must collect with my continuous emission..., nitrogen oxides, and carbon monoxide are in parts per million by dry volume at 7 percent oxygen (or the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirement enforceable? 60.1260 Section 60.1260 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring § 60.1260 What is the minimum amount of monitoring data I must collect with my continuous emission..., nitrogen oxides, and carbon monoxide are in parts per million by dry volume at 7 percent oxygen (or the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirement enforceable? 60.1260 Section 60.1260 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring § 60.1260 What is the minimum amount of monitoring data I must collect with my continuous emission..., nitrogen oxides, and carbon monoxide are in parts per million by dry volume at 7 percent oxygen (or the...
This data collection form is divided into two parts: Child Activity Diary and Food Survey. The Child Activity Diary collects information on the child's activities at home over the 48-hr monitoring period. The diary is divided into four time periods over the 48-hr monitoring inter...
This data collection form is divided into two parts: Child Activity Diary and Food Survey. The Child Activity Diary collects information on the child's activities at home over the 48-hr monitoring period. The diary is divided into five time periods over the 48-hr monitoring inter...
40 CFR 141.88 - Monitoring requirements for lead and copper in source water.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the basis of tap samples collected in accordance with § 141.86 shall collect lead and copper source... value or be considered one-half the PQL. (b) Monitoring frequency after system exceeds tap water action level. Any system which exceeds the lead or copper action level at the tap shall collect one source...
Sensing Solutions for Collecting Spatio-Temporal Data for Wildlife Monitoring Applications: A Review
Baratchi, Mitra; Meratnia, Nirvana; Havinga, Paul J. M.; Skidmore, Andrew K.; Toxopeus, Bert A. G.
2013-01-01
Movement ecology is a field which places movement as a basis for understanding animal behavior. To realize this concept, ecologists rely on data collection technologies providing spatio-temporal data in order to analyze movement. Recently, wireless sensor networks have offered new opportunities for data collection from remote places through multi-hop communication and collaborative capability of the nodes. Several technologies can be used in such networks for sensing purposes and for collecting spatio-temporal data from animals. In this paper, we investigate and review technological solutions which can be used for collecting data for wildlife monitoring. Our aim is to provide an overview of different sensing technologies used for wildlife monitoring and to review their capabilities in terms of data they provide for modeling movement behavior of animals. PMID:23666132
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-22
... from Grand Canyon National Park air tour operators to monitor their compliance with the Federal... information it collects and reviews to monitor compliance with the regulations and, if necessary, take...
Phillips-Salimi, Celeste R; Donovan Stickler, Molly A; Stegenga, Kristin; Lee, Melissa; Haase, Joan E
2011-08-01
Although treatment fidelity strategies for enhancing the integrity of behavioral interventions have been well described, little has been written about monitoring data collection integrity. This article describes the principles and strategies developed to monitor data collection integrity of the "Stories and Music for Adolescent/Young Adult Resilience During Transplant" study (R01NR008583, U10CA098543, and U10CA095861)-a multi-site Children's Oncology Group randomized clinical trial of a music therapy intervention for adolescents and young adults undergoing stem cell transplant. The principles and strategies outlined in this article provide one model for development and evaluation of a data collection integrity monitoring plan for behavioral interventions that may be adapted by investigators and may be useful to funding agencies and grant application reviewers in evaluating proposals. Copyright © 2011 Wiley Periodicals, Inc.
Building Energy Monitoring and Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Tianzhen; Feng, Wei; Lu, Alison
This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyzemore » good building energy data to provide valuable and actionable information for key stakeholders.« less
C principal pools and fluxes in the field agroecosystems of Juriev-Polskiy Opolie
NASA Astrophysics Data System (ADS)
Atenbekov, Ramiz; Yashin, Ivan; Vasenev, Ivan
2017-04-01
There are results of 7-year (2010-2016) investigation of the Podzols and Podzoluvisols genesis, dynamics and soil organic carbon (SOC) pools in the representative agrolandscapes of the Yuryev-Polish plain (Yaroslavl region) with estimated environmental risks, including topsoil CO2 emission and the water-soluble organic substances (WSOS) profile and lateral fluxes in conditions of different land-use practice and microclimate conditions. A set of regional stationary plots has been investigated in 5 soil-ecological catenas with different level of erosion and hydromorphic processes. Soil organic matter is poorly fixed to the mineral matrix and has high migration ability, as shown by the sorption lysimeter and model experiments with weak solutions of oxalic acid and water. The total content of soil organic carbon varies in the range of 1.4% to 2.8% in topsoil of the investigated arable Podzols and Podzoluvisols. SOC fractional-group average composition indicates the presence of 37% of fulvic acids and 41% of gumins. The most available for soil microorganisms, enhancing CO2 emission, principal water-soluble organic substances accumulate in the topsoil A1 horizon, whereas the eluvial horizon E serves as a transit barrier to their profile migration and layer of active lateral migration. Modern climate and land-use changes play important role in the spatial-temporal variability of dominant soil GHG fluxes in these landscapes that determines the rising interest in the agroecological monitoring here to develop basic elements of the climate-smart farming systems with sustainable grass, winter wheat and barley production.
A Root water uptake model to compensate disease stress in citrus trees
NASA Astrophysics Data System (ADS)
Peddinti, S. R.; Kambhammettu, B. P.; Lad, R. S.; Suradhaniwar, S.
2017-12-01
Plant root water uptake (RWU) controls a number of hydrologic fluxes in simulating unsaturated flow and transport processes. Variable saturated models that simulate soil-water-plant interactions within the rizhosphere do not account for the health of the tree. This makes them difficult to analyse RWU patterns for diseased trees. Improper irrigation management activities on diseased (Phytopthora spp. affected) citrus trees of central India has resulted in a significant reduction in crop yield accompanied by disease escalation. This research aims at developing a quantitative RWU model that accounts for the reduction in water stress as a function of plant disease level (hereafter called as disease stress). A total of four research plots with varying disease severity were considered for our field experimentation. A three-dimensional electrical resistivity tomography (ERT) was performed to understand spatio-temporal distribution in soil moisture following irrigation. Evaporation and transpiration were monitored daily using micro lysimeter and sap flow meters respectively. Disease intensity was quantified (on 0 to 9 scale) using pathological analysis on soil samples. Pedo-physocal and pedo-electric relations were established under controlled laboratory conditions. A non-linear disease stress response function for citrus trees was derived considering phonological, hydrological, and pathological parameters. Results of numerical simulations conclude that the propagation of error in RWU estimates by ignoring the health condition of the tree is significant. The developed disease stress function was then validated in the presence of deficit water and nutrient stress conditions. Results of numerical analysis showed a good agreement with experimental data, corroborating the need for alternate management practices for disease citrus trees.
Atoyan, Janet A; Patenaude, Erika L; Potts, David A; Amador, José A
2007-09-01
Antibiotics can be present in low concentrations in domestic wastewater, but little is known about their effect on bacteria in onsite wastewater treatment systems. Mesocosms, consisting of soil-filled lysimeters representing the leachfield of a septic system under aerated (AIR) and unaerated (LEACH) conditions, were used to study the effects of tetracycline addition (5 mg L(-1)) to septic tank effluent on tetracycline resistance in the fecal indicator bacteria Escherichia coli and fecal streptococci, and on their removal. The mesocosms were dosed with antibiotic for 10 days, and effects monitored for 52 days. The fraction of resistant bacteria in mesocosm drainage water relative to that in septic tank effluent, GammaRes, for E. coli ranged from 0 to 0.66 in the AIR treatment and from 0 to 3.32 in the LEACH treatment. For fecal streptococci, GammaRes ranged from 0 to 0.41 and from 0.63 to 1.06 in the AIR and LEACH treatments, respectively. No significant differences in antibiotic resistance of fecal indicator bacteria were observed among sampling dates in soil or water from either treatment. Tetracycline had no significant effect on removal of fecal indicator bacteria, which ranged from 99.9 to 100% for E. coli and from 95.9 to 100% for fecal streptococci. Our results suggest that short-term addition of tetracycline at environmentally-relevant concentrations is likely to have minimal consequences on pathogen removal from wastewater and development of antibiotic resistance among pathogenic bacteria in leachfield soil.
Phosphogypsum capping depth affects revegetation and hydrology in Western Canada.
Jackson, Mallory E; Naeth, M Anne; Chanasyk, David S; Nichol, Connie K
2011-01-01
Phosphogypsum (PG), a byproduct of phosphate fertilizer manufacturing, is commonly stacked and capped with soil at decommissioning. Shallow (0, 8, 15, and 30 cm) and thick (46 and 91 cm) sandy loam caps on a PG stack near Fort Saskatchewan, Alberta, Canada, were studied in relation to vegetation establishment and hydrologic properties. Plant response was evaluated over two growing seasons for redtop ( L.), slender wheatgrass ( (Link) Malte ex H.F. Lewis), tufted hairgrass ( (L.) P. Beauv.), and sheep fescue ( L.) and for a mix of these grasses with alsike clover ( L.). Water content below the soil-PG interface was monitored with time-domain reflectometry probes, and leachate water quantity and quality at a depth of 30 cm was measured using lysimeters. Vegetation responded positively to all cap depths relative to bare PG, with few significant differences among cap depths. Slender wheatgrass performed best, and tufted hairgrass performed poorly. Soil caps <1 m required by regulation were sufficient for early revegetation. Soil water fluctuated more in shallow than in thick caps, and water content was generally between field capacity and wilting point regardless of cap depth. Water quality was not affected by cap depths ≤30 cm. Leachate volumes at 30 cm from distinct rainfall events were independent of precipitation amount and cap depth. The study period had lower precipitation than normal, yet soil caps were hospitable for plant growth in the first 2 yr of establishment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
A wind tunnel for measuring selenium volatilization under field-like conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dungan, R.S.; Stork, A.; Frankenberger, W.T. Jr.
2000-04-01
A wind tunnel was developed to measure the loss of volatile selenium (Se) from soil under field-like conditions. The wind tunnel consisted of a volatilization chamber made of Plexiglas (2.4 m long x 0.8 m wide x 1.2 m high), which was set above a stainless steel lysimeter (0.5 m{sup 2} surface area x 0.8 m deep). High air exchange rates (avg. 700 air changes h{sup {minus}1}) were used to simulate field-like environmental conditions inside the wind tunnel. To monitor the fate and transport of the Se, radiolabeled {sup 75}Se as sodium selenite (Na{sub 2}{sup 75}SeO{sub 3}) was incorporated intomore » the top 5 cm of soil. Volatile Se was trapped on activated carbon filters and measured directly using gamma counting. A 135-d bare-soil experiment was carried out, during which 2.7% of the Se was released through volatilization without added C. The average flux rate of gaseous Se was 17 mg m{sup {minus}2} h{sup {minus}1}, with a high of 72 mg m{sup {minus}2} h{sup {minus}1} occurring on Day 6. After 135 d, 59 and 43% of the {sup 75}Se was located in the 0 to 5 and 5 to 10 cm soil layers, respectively. A total of 84.5% of all applied {sup 75}Se was recovered. The purpose of this study was to improve estimates on Se volatilization from seleniferous soils and help close the gap between previous laboratory and field experiments.« less
Rasmussen, Teresa J.; Paxson, Chelsea R.
2017-08-25
Municipalities in Johnson County in northeastern Kansas are required to implement stormwater management programs to reduce pollutant discharges, protect water quality, and comply with applicable water-quality regulations in accordance with National Pollutant Discharge Elimination System permits for stormwater discharge. To this end, municipalities collect grab samples at streams entering and leaving their jurisdiction to determine levels of excessive nutrients, sediment, and fecal bacteria to characterize pollutants and understand the factors affecting them.In 2014, the U.S. Geological Survey and the Johnson County Stormwater Management Program, with input from the Kansas Department of Health and Environment, initiated a 5-year monitoring program to satisfy minimum sampling requirements for each municipality as described by new stormwater permits issued to Johnson County municipalities. The purpose of this report is to provide a preliminary assessment of the monitoring program. The monitoring program is described, a preliminary assessment of the monitoring program design is provided using water-quality data collected during the first 2 years of the program, and the ability of the current monitoring network and sampling plan to provide data sufficient to quantify improvements in water quality resulting from implemented and planned best management practices is evaluated. The information in this initial report may be used to evaluate changes in data collection methods while data collection is still ongoing that may lead to improved data utility.Discrete water-quality samples were collected at 27 sites and analyzed for nutrients, Escherichia coli (E. coli) bacteria, total suspended solids, and suspended-sediment concentration. In addition, continuous water-quality data (water temperature, pH, dissolved oxygen, specific conductance, turbidity, and nitrate plus nitrite) were collected at one site to characterize variability and provide a basis for comparison to discrete data. Base flow samples indicated that point sources are likely affecting nutrient concentrations and E. coli bacteria densities at several sites. Concentrations of all analytes in storm runoff samples were characterized by substantial variability among sites and samples. About one-half of the sites, representing different watersheds, had storm runoff samples with nitrogen concentrations greater than 10 milligrams per liter. About one-third of the sites, representing different watersheds, had storm runoff samples with total phosphorus concentrations greater than 3 milligrams per liter. Six sites had samples with E. coli densities greater than 100,000 colonies per 100 milliliters of water. Total suspended solids concentrations of about 12,000 milligrams per liter or greater occurred in samples from three sites.Data collected for this monitoring program may be useful for some general assessment purposes but may also be limited in potential to fully inform stormwater management activities. Valuable attributes of the monitoring program design included incorporating many sites across the county for comparisons among watersheds and municipalities, using fixed-stage samplers to collect multiple samples during single events, collection of base flow samples in addition to storm samples to isolate possible point sources from stormwater sources, and use of continuous monitors to characterize variability. Limiting attributes of the monitoring program design included location of monitoring sites along municipal boundaries to satisfy permit requirements rather than using watershed-based criteria such as locations of tributaries, potential pollutant sources, and implemented management practices. Additional limiting attributes include having a large number of widespread sampling locations, which presented logistical challenges for predicting localized rainfall and collecting and analyzing samples during short timeframes associated with storms, and collecting storm samples at fixed-stage elevations only during the rising limb of storms, which does not characterize conditions over the storm hydrograph. The small number of samples collected per site resulted in a sample size too small to be representative of site conditions, including seasonal and hydrologic variability, and insufficient for meaningful statistical analysis or site-specific modeling.Several measures could be taken to improve data utility and include redesigning the monitoring network according to watershed characteristics, incorporating a nested design in which data are collected at different scales (watershed, subwatershed, and best management practices), increasing sampling frequency, and combining different methods to allow for flexibility to focus on areas and conditions of particular interest. A monitoring design that would facilitate most of these improvements would be to focus efforts on a limited number of watersheds for several years, then cycle to the next set of watersheds for several years, eventually returning to previously monitored watersheds to document changes.Redesign of the water-quality monitoring program requires considerable effort and commitment from municipalities of Johnson County. However, the long-term benefit likely is a monitoring program that results in improved stream conditions and more effective management practices and efficient expenditure of resources.
Movalli, Paola; Dekker, René; Koschorreck, Jan; Treu, Gabriele
2017-11-01
Raptors are good sentinels of environmental contamination and there is good capability for raptor biomonitoring in Europe. Raptor biomonitoring can benefit from natural history museums (NHMs), environmental specimen banks (ESBs) and other collections (e.g. specialist raptor specimen collections). Europe's NHMs, ESBs and other collections hold large numbers of raptor specimens and samples, covering long periods of time. These collections are potentially a valuable resource for contaminant studies over time and space. There are strong needs to monitor contaminants in the environment to support EU and national chemical management. However, data on raptor specimens in NHMs, ESBs and other collections are dispersed, few are digitised, and they are thus not easy to access. Specimen coverage is patchy in terms of species, space and time. Contaminant research with raptors would be facilitated by creating a framework to link relevant collections, digitising all collections, developing a searchable meta-database covering all existing collections, making them more visible and accessible for contaminant research. This would also help identify gaps in coverage and stimulate specimen collection to fill gaps in support of prioritised contaminant monitoring. Collections can further support raptor biomonitoring by making samples available for analysis on request.
Guo, Xin-E; Zhao, Yu-Bin; Xie, Yan-Ming; Zhao, Li-Cai; Li, Yan-Feng; Hao, Zhe
2013-09-01
To establish a nurse based post-marketing safety surveillance model for traditional Chinese medicine injections (TCMIs). A TCMIs safety monitoring team and a research hospital team engaged in the research, monitoring processes, and quality control processes were established, in order to achieve comprehensive, timely, accurate and real-time access to research data, to eliminate errors in data collection. A triage system involving a study nurse, as the first point of contact, clinicians and clinical pharmacists was set up in a TCM hospital. Following the specified workflow involving labeling of TCM injections and using improved monitoring forms it was found that there were no missing reports at the ratio of error was zero. A research nurse as the first and main point of contact in post-marketing safety monitoring of TCM as part of a triage model, ensures that research data collected has the characteristics of authenticity, accuracy, timeliness, integrity, and eliminate errors during the process of data collection. Hospital based monitoring is a robust and operable process.
NASA Astrophysics Data System (ADS)
Humber, M. L.; Becker-Reshef, I.; Nordling, J.; Barker, B.; McGaughey, K.
2014-12-01
The GEOGLAM Crop Monitor's Crop Assessment Tool was released in August 2013 in support of the GEOGLAM Crop Monitor's objective to develop transparent, timely crop condition assessments in primary agricultural production areas, highlighting potential hotspots of stress/bumper crops. The Crop Assessment Tool allows users to view satellite derived products, best available crop masks, and crop calendars (created in collaboration with GEOGLAM Crop Monitor partners), then in turn submit crop assessment entries detailing the crop's condition, drivers, impacts, trends, and other information. Although the Crop Assessment Tool was originally intended to collect data on major crop production at the global scale, the types of data collected are also relevant to the food security and rangelands monitoring communities. In line with the GEOGLAM Countries at Risk philosophy of "foster[ing] the coordination of product delivery and capacity building efforts for national and regional organizations, and the development of harmonized methods and tools", a modified version of the Crop Assessment Tool is being developed for the USAID Famine Early Warning Systems Network (FEWS NET). As a member of the Countries at Risk component of GEOGLAM, FEWS NET provides agricultural monitoring, timely food security assessments, and early warnings of potential significant food shortages focusing specifically on countries at risk of food security emergencies. While the FEWS NET adaptation of the Crop Assessment Tool focuses on crop production in the context of food security rather than large scale production, the data collected is nearly identical to the data collected by the Crop Monitor. If combined, the countries monitored by FEWS NET and GEOGLAM Crop Monitor would encompass over 90 countries representing the most important regions for crop production and food security.
40 CFR 63.9335 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Cells/Stands Continuous Compliance Requirements § 63.9335 How do I monitor and collect data to... continuous operation at all times the engine test cell/stand is operating. (b) Do not use data recorded...
40 CFR 63.9335 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Cells/Stands Continuous Compliance Requirements § 63.9335 How do I monitor and collect data to... continuous operation at all times the engine test cell/stand is operating. (b) Do not use data recorded...
40 CFR 63.9335 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Cells/Stands Continuous Compliance Requirements § 63.9335 How do I monitor and collect data to... continuous operation at all times the engine test cell/stand is operating. (b) Do not use data recorded...
Changing the Paradigm of Air Pollution Monitoring
Historically, approaches for monitoring air pollution generally use expensive, complex, stationary equipment,1,2 which limits who collects data, why data are collected, and how data are accessed. This paradigm is changing with the materialization of lower-cost, easy-to...
40 CFR 63.9335 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Cells/Stands Continuous Compliance Requirements § 63.9335 How do I monitor and collect data to... continuous operation at all times the engine test cell/stand is operating. (b) Do not use data recorded...
40 CFR 63.9335 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Cells/Stands Continuous Compliance Requirements § 63.9335 How do I monitor and collect data to... continuous operation at all times the engine test cell/stand is operating. (b) Do not use data recorded...
Backman, Chantal; Vanderloo, Saskia; Momtahan, Kathy; d'Entremont, Barb; Freeman, Lisa; Kachuik, Lynn; Rossy, Dianne; Mille, Toba; Mojaverian, Naghmeh; Lemire-Rodger, Ginette; Forster, Alan
2015-09-01
Monitoring the quality of nursing care is essential to identify patients at risk, measure adherence to hospital policies and evaluate the effectiveness of best practice interventions. However, monitoring nursing-sensitive indicators (NSI) is a challenge. Prevalence surveys are one method used by some organizations to monitor NSI, which are patient outcomes that are directly affected by the quantity or quality of nursing care that the patient receives. The aim of this paper is to describe the development of an innovative electronic data collection tool to monitor NSI. In the preliminary development work, we designed a mobile computing application with pre-populated patient census information to collect the nursing quality data. In subsequent phases, we refined this process by designing an electronic trigger using The Ottawa Hospital's Patient Safety Learning System, which automatically generated a case report form for each inpatient based on the hospital's daily patient census on the day of the prevalence survey. Both of these electronic data collection tools were accessible on tablet computers, which substantially reduced data collection, analysis and reporting time compared to previous paper-based methods. The electronic trigger provided improved completeness of the data. This work leveraged the use of tablet computers combined with a web-based application for patient data collection at point of care. Overall, the electronic methods improved data completeness and timeliness compared to traditional paper-based methods. This initiative has resulted in the ability to collect and report on NSI organization-wide to advance decision-making support and identify quality improvement opportunities within the organization. Copyright © 2015 Longwoods Publishing.
40 CFR 63.5895 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false How do I monitor and collect data to... data to demonstrate continuous compliance? (a) During production, you must collect and keep a record of data as indicated in 40 CFR part 63, subpart SS, if you are using an add-on control device. (b) You...
40 CFR 63.5895 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true How do I monitor and collect data to... data to demonstrate continuous compliance? (a) During production, you must collect and keep a record of data as indicated in 40 CFR part 63, subpart SS, if you are using an add-on control device. (b) You...
Monitoring surface water quality using social media in the context of citizen science
NASA Astrophysics Data System (ADS)
Zheng, Hang; Hong, Yang; Long, Di; Jing, Hua
2017-02-01
Surface water quality monitoring (SWQM) provides essential information for water environmental protection. However, SWQM is costly and limited in terms of equipment and sites. The global popularity of social media and intelligent mobile devices with GPS and photography functions allows citizens to monitor surface water quality. This study aims to propose a method for SWQM using social media platforms. Specifically, a WeChat-based application platform is built to collect water quality reports from volunteers, which have been proven valuable for water quality monitoring. The methods for data screening and volunteer recruitment are discussed based on the collected reports. The proposed methods provide a framework for collecting water quality data from citizens and offer a primary foundation for big data analysis in future research.
On the value of information for Industry 4.0
NASA Astrophysics Data System (ADS)
Omenzetter, Piotr
2018-03-01
Industry 4.0, or the fourth industrial revolution, that blurs the boundaries between the physical and the digital, is underpinned by vast amounts of data collected by sensors that monitor processes and components of smart factories that continuously communicate amongst one another and with the network hubs via the internet of things. Yet, collection of those vast amounts of data, which are inherently imperfect and burdened with uncertainties and noise, entails costs including hardware and software, data storage, processing, interpretation and integration into the decision-making process to name just the few main expenditures. This paper discusses a framework for rationalizing the adoption of (big) data collection for Industry 4.0. The pre-posterior Bayesian decision analysis is used to that end and industrial process evolution with time is conceptualized as a stochastic observable and controllable dynamical system. The chief underlying motivation is to be able to use the collected data in such a way as to derive the most benefit from them by trading off successfully the management of risks pertinent to failure of the monitored processes and/or its components against the cost of data collection, processing and interpretation. This enables formulation of optimization problems for data collection, e.g. for selecting the monitoring system type, topology and/or time of deployment. An illustrative example utilizing monitoring of the operation of an assembly line and optimizing the topology of a monitoring system is provided to illustrate the theoretical concepts.
NASA Astrophysics Data System (ADS)
Rappe-George, M. O.; Gärdenäs, A. I.; Kleja, D. B.
2012-09-01
Addition of mineral nitrogen (N) can alter the concentration and quality of dissolved organic matter (DOM) in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in the Stråsan experimental forest (Norway spruce) in Central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity, but a longer duration (43 yr) of N addition than the shorter N2 treatment (24 yr). N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n=6) and tension lysimeters were installed in the underlying B horizon (n=4): soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C) and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B-horizon leachates, the N1 treatment approximately doubled leachate concentration of DOC and DON. DON returned to control levels but DOC remained elevated in B-horizon leachates in N2 plots 19 yr after termination of N addition. Increased aromaticity of the sampled DOM in mineral B horizon in both the ongoing and terminated N treatment indicated that old SOM in the mineral soil was a source of the increased DOC.
NASA Astrophysics Data System (ADS)
Wehrer, Markus; Lissner, Heidi; Totsche, Kai
2013-04-01
A quantitative knowledge of the fate of deicing chemicals in the subsurface can be provided by analysis of laboratory and field experiments with numerical simulation models. In the present study, experimental data of microbial degradation of the deicing chemical propylene glycol (PG) under flow conditions in soil columns and field lysimeters were simulated to analyze the process conditions of degradation and to obtain the according parameters. Results from the column experiment were evaluated applying different scenarios of an advection-dispersion model using HYDRUS-1D. To reconstruct the data, different competing degradation models were included, i.e., zero order, first order and inclusion of a growing and decaying biomass. The general breakthrough behavior of propylene glycol in soil columns can be simulated well using a coupled model of solute transport and degradation with growth and decay of biomass. The susceptibility of the model to non-unique solutions was investigated using systematical forward and inverse simulations. We found that the model tends to equifinal solutions under certain conditions. Complex experimental boundary conditions can help to avoid this. Under field conditions, the situation is far more complex than in the laboratory. Studying the fate of PG with undisturbed lysimeters we found that aerobic and anaerobic degradation occurs simultaneously. We attribute this to the physical structure and the aggregated nature of the undisturbed soil material . This results in the presence of spatially disjoint oxidative and reductive regions of microbial activity and requires, but is not fully reflected by a dual porosity model. Currently, the numerical simulation of this system is in progress, considering several flow and transport models. A stochastic global search algorithm (DREAM-ZS) is used in conjuction with HYDRUS-1D to avoid local minima in the inverse simulations. The study shows the current limitations and potentials of modeling degradation in an aggregated and structured system under flow conditions.